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Abstract

This thesis presents finite elements based simulations of electromechanical transfer functions for
resonator and filter geometries. These Finite Element Analysis (FEA) simulations are performed
using the ANSYS software and demonstrate the significance of mechanical coupling between
MEMS longitudinal-mode bar (L-Bar) resonators. An analytical model and equivalent circuit
are derived for a single L-Bar resonator. The analytical derivation is validated with an FEA
model having the same material parameters and boundary conditions. The center frequency and
resonant impedance produced by the FEA model are within 1% of the analytical values. A
boundary condition study is undertaken to determine the sensitivity of the L-Bar resonator model
to changes in the peripheral geometry and displacement constraints. A comparison of FEA
results indicates that a simple resonator model with only tether supports yields impedance and
center frequency values comparable to those of more complex geometries. When compared to
initial experimental results from an actual resonator, the simulated electrical output corresponds
well to the actual transfer function. This study also introduces a method for calculating the
parameters of the resonator's equivalent circuit model from simulated (or measured) transfer
function data. The method is tested on simulation data for which a mechanical Quality factor is
designated. Comparing the prescribed mechanical Q to the extracted circuit Q provides a
consistency check for the technique. The parameter extraction technique is a useful first attempt
to devise a comprehensive method for determining circuit parameters that will reliably reproduce
the transfer function of an actual resonator. Finally, a new resonator topology is presented that
employs mechanical coupling between L-Bar resonators to improve upon the output of a single
bar and create alternative configurations for filter design at Draper. The new coupled bar
geometry can be configured as either a single-port resonator or a multi-port filter. The benefits
of mechanical coupling are investigated for both configurations. In discussion of future work,
optimized filter parameters are presented, along with suggestions for achieving these values.
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Chapter 1

Introduction and Qualitative Analysis of Resonator

1.1 Introduction

The MEMS group at Draper Laboratory has developed a longitudinal-mode bar (L-Bar)

resonator for use in wireless communication applications such as ultra-high frequency (UHF,

300 MHz - 3 GHz) filters and oscillators [5]. The L-Bar resonator is designed to be the primary

component in an RF channel-select filter comprised of MEMS parts and fully integrated on a

CMOS chip [9]. The purpose of this study is to present simulated electromechanical transfer

functions of individual resonators as well as filters. Furthermore, this work also investigates

mechanically coupled resonators and their use in filter designs.

First, in the remaining sections of Ch. 1, background for coupled MEMS resonators is briefly

reviewed. A qualitative investigation of Draper's L-Bar resonator is also presented. This

investigation introduces the single and coupled model geometries, describing their characteristic

mode shapes and frequency range. Ch. 2 focuses on an analytical derivation of the resonator

bar's mechanical behavior and electrical transfer function. Ch. 3 continues the quantitative

analysis by comparing the analytical model to an equivalent Finite Element Analysis (FEA)

geometry. Transfer functions are obtained for both models and the results are discussed. In Ch.

4, a boundary condition study is undertaken to qualify the FEA model presented in Ch. 1. The

primary objective of this case study is to determine the range of error associated with neglecting

the full substrate and packaging in the electromechanical simulations.

Ch. 5 introduces a method for extracting the circuit model parameters of a resonator from

measured data and tests the method on various simulated transfer functions. Ch. 6 introduces

and expounds upon a new resonator topology that utilizes the benefits of mechanical coupling to
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produce a more advantageous filter configuration. Finally, Ch. 7 provides a summary of the

work presented in the study including conclusions and suggestions for future filter design.

1.2 Other Work in Coupled MEMS Resonators

The work of other groups on coupled MEMS resonators is reviewed now in order to formulate a

context for the contributions of this thesis. Many different coupled resonator topologies have

been developed for use in MEMS filter design. These topologies are characterized by a wide

variety of coupling mechanisms and operational frequency ranges. Each design is electrically

driven by either capacitive or piezoelectric actuation. This section presents four examples of

actual coupled MEMS resonator configurations, followed by a brief comparison to Draper's

design.

1.2.1 Mechanically Corner-Coupled, Square Microresonator

The corner-coupled microresonator is presented in [6] primarily as a filter component that offers

a reduced motional resistance as compared to a stand-alone square resonator. The resistance of

the device is decreased by placing the mechanically coupled resonators in a parallel electrical

configuration, thus creating multiple paths for current to flow. As the design name indicates, the

coupling mechanism of the device is characterized by short, stiff stubs that connect the

individual microresonators at their corners. The primary design in [6] is comprised of a parallel

array of three corner-coupled resonators actuated and sensed capacitively. Rigid mechanical

connections are used between the resonators in order to separate the primary flexural modes as

much as possible. Furthermore, unwanted filter modes are then "suppressed by imposing

properly phased ac forces on constituent resonators [to] emphasize phasings associated with [the]

desired mode, while counteracting all others" [6]. For this topology, the desired mode is that

characterized by an in-phase displacement of all the resonators. In the ideal case, when all the

coupled resonators have the same (uncoupled) resonance frequency, the in-phase mode is well

isolated and the other primary modes are suppressed. However, with as small as a .01%
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mismatch in uncoupled resonant frequency, simulations show that the combined output of the

parallel resonators is compromised significantly.

A center frequency of approximately 64 MHz and Quality factor of 10,900 is measured for a

three-resonator coupled configuration designed and fabricated in POCl3-doped polysilicon.

Furthermore, with a 52 V dc-bias applied to the device, the transmission of the in-phase mode is

approximately -47 dB, corresponding to a measured resonant impedance of 7.7 kf2. Each of the

constituent resonators has square dimensions with a side length of 16 gm and a thickness of 2

gm. The resonators are anchored at the center and capacitively actuated by triangular electrodes

positioned .18 pm below the array.

1.2.2 Programmable MEMS Bandpass Filter

The next example is a folded-beam comb-transduced coupled resonator that employs external

control voltage to "vary spring constants [and] obtain a bandpass filter whose center frequency

and bandwidth are programmable" [3]. The folded-beam resonators are connected by a square-

truss coupling spring and the device vibrates parallel to the substrate. The resonators are

comprised of polycrystalline silicon. Key dimensional parameters include the following: 2 jm

thick structural layer, coupling beam length of 175 pim, and tuning finger gap spacing of 2 gm.

Using a 10 V dc-bias and a Q of 20, an FEA simulation yields a center frequency of

approximately 21 kHz with an insertion loss of about 2 dB. The source and load resistances used

in the simulation are not specified.

The filter is capacitively actuated and tuned using a comb-configuration of parallel plate

structures. As a result, the filter center frequency and the mechanical coupling between the

resonators can be varied by modifying the tuning finger overlap capacitance. For no dc-bias

applied to the filter, the nominal bandwidth is 1.05 kHz. For an 11 V range in tuning voltage,

theoretical calculations and FEA simulations show that the bandwidth (i.e. coupling) increases

approximately 14% to a value of 1.2 kHz. Furthermore, for a 16 V range, about a 1.3% tuning

range is achieved for the center frequency.
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1.2.3 Two-Resonator High Frequency (HF) Micromechanical Filter

In [1], Nguyen introduces a coupled (HF) flexural-mode micromechanical filter. The filter is

comprised of two clamped-clamped beam resonators coupled mechanically by a soft spring. As

in the other designs, the filter is capacitively actuated and sensed. "Conductive strips underlie

the central regions of each resonator and serve as capacitive transducer electrodes positioned to

induce resonator vibration in a direction perpendicular to the substrate" [1]. For resonator beams

40.8 gm in length, the operational frequency of the filter is 8.71 MHz. The length of the

coupling spring is maintained at the calculated quarter-wavelength value, and the mechanical

coupling is varied by changing the location of the spring connection along the resonator beams.

"Low-velocity" coupling is used to achieve small percent bandwidths while maintaining

reasonable coupling spring dimensions. This "low-velocity" method is accomplished by moving

the coupling location away from the center of the beam (i.e. point of highest velocity) and closer

to the anchors.

For an "8.71 MHz low velocity, coupled micromechanical filter constructed of phosphorous-

doped polysilicon," a percent bandwidth of .23% is achieved with an insertion loss less than 2 dB

and passband rejection exceeding 35 dB. It is important to note, however, that these results are

obtained using a dc-bias of 35 V and source/load resistor values on the order of 12 kQ.

1.2.4 Bulk Acoustic Wave (BAW) Coupled Resonator Filter

Bulk acoustic wave devices such as the stacked crystal filter (SCF) are advantageous because of

their high operational frequency range and wide bandwidth capabilities. In [7], Lakin presents

results for both a conventional SCF and a new BAW device referred to as a Coupled Resonator

Filter (CRF). A CRF has virtually the same design as a typical SCF, but is amended to include a

"sequence of nominal quarter wavelength thick layers whose transmission response is designed

to allow optimum resonator coupling" [7]. Both the SCF and CRF are fabricated upon "a limited

bandwidth reflector array that attenuates spurious responses" [8] occurring above and below the

primary thickness mode. The tight mechanical coupling between resonators in a SCF design

restricts the realizable filter bandwidth by limiting the effectiveness of the piezoelectric
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transducer. Using electrical means to decrease the coupling between the resonators are

advantageous in certain applications, but such methods normally require a larger filter size than

is desirable for fully integrated designs [8]. As a result, [7] suggests the implementation of

layers between the resonators to adjust the acoustic coupling and control the filter bandwidth.

Experimental results are presented for a CRF made of Aluminum Nitride (AIN) and designed to

operate at resonant frequency of 1960 MHz. The 3 dB bandwidth of the device is about 67 MHz

with an insertion loss of 2.8 dB. This bandwidth is 3.6% of the center frequency, making it

suitable for RF communication applications. The out of band attenuation is approximately 40

dB. Adjustments to the thickness of the electrodes can be employed to shift the operational

frequency, while bandwidth can be manipulated by modifying the number and thickness of the

coupling layers.

1.2.5 Draper's Coupled Resonator Design

The coupled resonator design being developed at Draper Laboratory has a monolithic crystal

filter structure. The individual resonator bars are coupled by tethers and the device is driven by

piezoelectric actuation. Like the design in [7], Draper's coupled resonator exploits the properties

of bulk acoustic waves propagating through the material. However, rather than thickness modes,

these waves produce longitudinal displacement of the bar transverse to the thickness. Coupling

in the device can be varied by changing the tether dimensions (i.e. length, width, etc). The

resonator bars and support tethers are configured in a sandwich orientation of metal-

piezoelectric-metal. The piezoelectric material is Aluminum Nitride, and the two metal layers

are Nickel and Molybdenum.

Experimental results for Draper's coupled resonator are not yet available, but finite element

simulations indicate that the device's operational frequency is in the UHF range, significantly

higher than the other designs presented. Furthermore, simulated transfer functions of FEA and

circuit models show that filter bandwidth could be tunable in a range of .25-1.5 % of the center

frequency. Based on testing of single resonators, the Quality factor of initial coupled designs is
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not expected to be within the desired range (i.e. 104). However, Q values of 104 should be

achievable in future designs

Assuming the desired resonator Q can be obtained, Draper's coupled device offers significant

advantages over the other designs presented in this section. First, with Q values of 104 , Draper's

coupled resonator can achieve resonant impedances below 200 Q, making impedance matching

with front end circuit elements feasible. Secondly, because the device uses piezoelectric

actuation, no dc-bias is required to achieve reduced impedance at resonance. Furthermore,

Draper's design operates under linear conditions and thus, has the capability to handle a wide

range of power inputs. As a result, the selectivity (or Q) versus power tradeoff characterizing

many other MEMS devices is not applicable to Draper's design. Finally, because the device is

fabricated using photolithography and laser trimming, frequency tuning of the individual

resonators is greatly facilitated.

1.3 Single Mechanical Modes

1.3.1 Description of Bar Geometry

While a variety of resonator topologies are being fabricated and tested, this study is limited

primarily to a resonator bar geometry having a length of 6 jim. A resonator of this size possesses

a longitudinal natural frequency on the order of 1 GHz, making it a suitable geometry for UHF

filter applications. The full set of physical dimensions for the resonator is the following: length

= 6 im, width = 3 gm, and thickness = .5 jim. The also includes support tethers that connect the

resonator to the substrate. Figure 1.1 shows the initial model geometry.
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Displacement boundary
condition applied to tether end

(nodes fixed in y-direction)

6 pm

.5 pm

1.5 pm

xz

y

Figure 1.1: Resonator geometry with tether supports. Cartesian coordinate system (x, y, z) is
used in the figure. These coordinates are analogous to the unit vectors (x1 , x 2 , and x3) used in
later sections.

Based on previous analysis and general engineering guidelines for the construction of resonator

geometries, a length of 3 pm is initially chosen for the tether supports. This length is measured

from the edge of the resonator to the end of the tether as shown in the figure above. For a

resonator topology of this size, the tether length of 3 gm corresponds approximately to a quarter

wavelength at the device's longitudinal natural frequency.

1.3.2 Longitudinal Mode Shape and Frequency

In order to gain insight into the mode shapes and modal frequencies associated with the L-Bar

resonator, a qualitative investigation using FEA methods is performed on the geometry of Fig.

1.1. The specific goal of this preliminary analysis is to obtain information about the motion and

general frequency range of the longitudinal mode. An actual resonator has multiple layers of

material. However, to simplify the modeling process, the FEA geometry is comprised entirely of

Aluminum Nitride (AlN). The metal electrodes used to actuate the device have been neglected.

As shown in Fig. 1.1, the boundary conditions are applied to the cross-sectional face of the tether
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ends and mimic an infinite condition. The modal analysis for the single mechanical model

produces a longitudinal center frequency of approximately 840 MHz. Figure 1.2 illustrates the

general motion of the longitudinal mode shape of the resonator.

Figure 1.2: Stages of longitudinal mode shape. Top row: steps of FEA animation; Bottom row:
2-D illustration of one longitudinal cycle

From left to right, Fig. 1.2 details the variation in time of the longitudinal mode shape. At this

lowest order longitudinal mode, a node of zero displacement forms at the middle of the bar and

the structure compresses and stretches sinusoidally about this point. With the general mode

shape and center frequency range of the single resonator bar established, we can begin to

investigate combining, or coupling, individual bars to create various filter topologies.

1.4 Coupled Mechanical Modes

1.4.1 Coupled Resonator Theory

In the electrical domain, a single resonator bar with a metal-piezoelectric-metal configuration

behaves like a capacitor over a wide band of frequencies. However, at the longitudinal

resonance frequency, its impedance characteristic departs from that of a normal passive circuit

element. The mechanical resonance dominates its electrical response close to the natural

20
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frequency, resulting in a significant decrease in the bar's impedance over this range. This

impedance drop corresponds to a large accumulation of charge on the metal electrodes, and

because the forcing function is sinusoidal, current is produced in the device.

When single resonators are combined to create a filter, the impedance drops of the resonators

must occur simultaneously for the filter to function properly. By assuming that the impedance

drop of the electrically coupled resonators will coincide precisely, the designer presupposes that

the fabrication processes being employed are virtually ideal. However, creating two identical

resonators is virtually impossible due to limitations on the accuracy of current fabrication

methods. These methods, while relatively advanced, do not possess the precision needed to

guarantee that tolerance errors will not occur. Presently, the only way to ensure that the dual

resonators have identical center frequencies and matching resonant responses is to couple them

mechanically as well as electrically. If the structures are not coupled mechanically, even an

extremely small error in fabrication can cause a significant discrepancy between the individual

resonant frequencies.

For this reason, it is important to gain intuition for the sensitivity of longitudinal center

frequency to variations in resonator length. If the effect is large, meaning that a small variation

in resonator length produces a large shift in the center frequency of the longitudinal mode, then

the need for mechanically coupled resonators is justified. In order to observe this "sensitivity," a

set of mechanical simulations is performed in which the length of the resonator in Fig. 1.1 is

varied to mimic the effect of fabrication errors. Furthermore, a graph showing the difference in

center frequency values is shown as Figure 1.3.
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Center Frequency vs. Resonator Length

840

S830

820

810

800
6.0 6.1 6.2 6.3

Length (nm)

Figure 1.3: Graph of center frequency change with variation of resonator length (pm)

The plot illustrates that, as resonator length varies, the center frequency shifts rapidly away from

the standard value associated with the 6 pm bar. From the graph, we observe that with a

discrepancy in length as small as a .1 pm, the center frequency can be expected to shift about 1.5

% from its original value. This discrepancy value is significant because it represents the

approximate tolerance of current fabrication methods for the RF resonator. The frequency shift

of 1.5% is important because the 3 dB bandwidth of a high Q (i.e. 104) MEMS resonator is

typically on the order of kHz. A response bandwidth of this size is over a hundred times smaller

than the MHz range shift associated with tolerance errors. This relationship indicates that with

even the smallest fabrication error, the transfer function of a mechanically uncoupled filter will

most likely show two distinct frequency responses in its impedance characteristic.

1.4.2 Effect of Frequency Shift on an Uncoupled Filter

Based on the sensitivity of center frequency to changes in resonator length, mechanical coupling

of resonator pairs is crucial in MEMS filter design. For example, without mechanical coupling,

the electrical output of a filter using parallel resonators breaks down quickly as resonant

frequency mismatch increases. The objective of placing two resonators electrically in parallel is

to decrease the insertion loss of the filter component by increasing the paths through which

current can flow. Once again, this concept holds only if the resonant frequencies of the
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combined resonators are matched. For non-identical resonators in parallel, the impedance

characteristics would be observed electrically as two distinct passbands in the frequency domain,

thus compromising the filter's transmission. Consequently, from a qualitative standpoint,

coupling individual resonators mechanically creates a filter component which is potentially more

robust to fabrication errors. In later sections, both FEA and circuit simulation data are provided

to illustrate the difference in robustness between the coupled and uncoupled filter topologies.

1.4.3 Coupled Resonator Geometry

With the importance of a coupled resonator configuration established, the qualitative

investigation will now shift focus toward gaining insight into the mechanical behavior of such a

device. Like a single resonator, the basic geometry of the coupled bar is characterized by the

resonators and their supporting tethers. The primary modification associated with the

mechanically connected geometry is the presence of a coupling tether that physically joins the

resonators, creating a new single structure. This modified geometry is shown in Figure 1.4.

Figure 1.4: Mechanically coupled resonator bar.
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In order to maintain continuity with the single resonator model, the outside tethers of the coupled

design are also 3 jim. Maintaining a constant outside tether length helps to ensure that the

qualitative case study does not increase in complexity too rapidly. Thus, while the value for the

outside tether length has not been thoroughly optimized, a length of 3 gm is chosen so that key

features of the single and coupled geometries correspond to each other. The coupling tether,

labeled in the Fig. 1.4, has a length of 6 pm, an initial value chosen based on symmetry. A key

modification made to the coupled model is the change in mesh characteristics from tetrahedral to

block elements. For a simple rectangular geometry, block elements, having a sufficient mesh

density, tend to solve such a model more efficiently and with comparable accuracy.

1.4.4 In-Phase and Out-of-Phase Longitudinal Modes

Because the coupled model is comprised of two resonators, which both contribute to the overall

motion of the system, there is a need to address two distinct kinds of longitudinal modes - in-

phase and 180 degrees out-of-phase. While the center frequency of a coupled model is largely

dependent on its material properties (i.e. density and stiffness), the mode shapes of the two

primary longitudinal modes depend mainly on the amount of coupling between the resonators.

An effective method for varying the coupling is to modify the length of the coupling tether.

In order to investigate the sensitivity of the mode shapes to changes in coupling tether length, a

series of FEA simulations are performed and the resulting mode shapes are observed. Sensitivity

refers to the amount the mode shapes differ from the longitudinal motion of a single bar as a

result of a change in coupling tether length. Furthermore, a "clean" mode shape will be defined

as one which exhibits displacement primarily along the length of the resonator, with no flexural

or twisting components present in the overall deformation. Figure 1.5 shows in-phase and out-

of-phase mode shapes for coupling tether lengths of 3, 6, and 9 gm.
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LCCUP = 6 pm LOUP = 9 Pm

Figure 1.5: In-phase and out-of-phase mode shapes (Top row: In, Bottom row: Out)

Looking first at the top row of illustrations in Fig. 1.5, we observe that the resonator with a

coupling (or inside) tether length of 6 gm has the cleanest in-phase mode shape. As the coupling

tether length departs from a value of 6 im, we observe a more polluted in-phase mode in which

the longitudinal motion is mixed with an in-plane twisting. This twisting is undesirable for any

coupled configuration, but particularly adverse for a parallel resonator topology. In theory,

additional twisting or flexing will cancel a portion of the total charge accumulated on the

electrode surface. A cancellation of charge will then, in turn, decrease the filter response at the

in-phase resonant frequency. If the response of the device degrades, the signal passed by the

filter decreases, thus compromising its effectiveness.

The illustrations in the bottom row of Fig. 1.5 indicate that, regardless of the coupling tether

length, a certain degree of twisting will always be present in the out-of-phase mode shape.

However, because the parallel configuration suppresses the electrical contribution of this mode,

the extra motion is not as detrimental to the filter transfer function. In the out-of-phase mode, as

one resonator stretches, the other compresses, and thus, the net charge accumulated on the

electrodes is minimal. In the ideal case, the net charge produced by the out-of-phase mode is
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zero. With a twisting component added, the cancellation may not be complete, but any net

charge produced will most likely be negligible. With respect to a series or multi-port circuit

topology, little can be determined about the effect of these non-idealities from a purely

qualitative analysis. A quantitative, electromechanical analysis using piezoelectric finite

elements is necessary to confirm their impact.
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Chapter 2

Analytical Derivation: Single Electromechanical

Model

2.1 Constitutive Equations

All modal and harmonic analyses in this study are performed using the FEA software, ANSYS

[see Appendix]. ANSYS is employed because it possesses a group of "coupled field" element

types specifically designed to simulate the electromechanical behavior of a piezoelectric

material. Although ANSYS automatically solves the piezoelectric constitutive equations which

characterize the behavior of AlN, it is important to understand how a corresponding

mathematical model is set up, constrained and solved. This analytical model then becomes a

benchmark for a full finite elements study. The following analysis corresponds closely to the

derivation included in [2] and is included in this study for completeness.

The general constitutive equations for a piezoelectric material are written in matrix form below

[2].

T C11 C12  c13 0 0 0 S 0 0 e3 ,

T2  C21 C22 C23  0 0 0 S2 0 0 e32 [E

T3  C31 C32  C33 0 0 0 S3  0 0 e 3  E

T4 0 0 0 c4 0 0 S 4  0 e2 4  0 21

T, 0 0 0 0 C55 0 S5  e,5  0 0

T_ 0 0 0 0 0Oc S 0 0 0
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S

Di 0 0 0 0 e,5 0[6 0 0 E]

D2 = 0 0 0 e1 0 0 3 + 0 E J 0 E (2.1.2)

S e3  e32  e33  0 0 0 5 - 0  0 ell --

LS6

where [f] = stress matrix, [c] = stiffness matrix, [S] = strain matrix, [e] = piezoelectric constant

matrix, [E] = electric field matrix, [D] = electrical displacement matrix, and [c] = dielectric

constant matrix.

Eq. (2.1.1) illustrates the relationship between stress, strain and electric field, while (2.1.2) shows

the connection between electrical displacement (i.e. accumulation of charge on the electrodes),

strain and electric field. The [e] matrix holds the piezoelectric constants which mathematically

couple stress in the structure to the output charge. For Draper's L-Bar resonator, the primary

independent variables are displacement and electric potential. The displacement of the resonator

determines the stress and strain in the bar. When the resonator vibrates at its longitudinal natural

frequency, the longitudinal displacement of the bar is large, causing an increase in stress and

strain. For a piezoelectric material such as AIN, the amplified displacement also causes a

significant accumulation of charge on the metal electrodes lining the top and bottom surfaces of

the resonator. When the displacement varies sinusoidally with time, an output current is

produced at resonance, and the resonator's impedance decreases. In order to make the resonator

vibrate at its resonant frequency, an AC voltage is applied to the bar. If the displacement and

potential are assumed to have the same sinusoidal variation (e.g. e-'" t), the time dependence falls

out of the constitutive equations and the problem becomes essentially static in nature. In order to

transform (2.1.1) and (2.1.2) into the desired form, with stress and charge written in terms of

displacements, ui, and potentialAD, the following relationships are established.

Sau au +Uj(213
S+ = ' + (2.1.3)

" S2 ax ax 2

Si = Si II; S2 = S22; S 3 = S 33;
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S4 = 2S23 = 2S32; S5 = 2S]3 = 2S 31; S6 = 2SI 2 = 2Slj

and

E -=- ; E =- ; E 3 =
axi ax2

Substituting (2.1.3) and (2.1.4) back into the constitutive equations gives,

T,

T2

T,

T4

T5
_T6

CH'

C21

C31

0

0

0

D 0

_D3 e3,

C,
2

C 22

C-12

0

0

0

0

0

e32

C1
3

C2

C33

0

0

0

0

0

e33

0

0

0

C44

0

0

0

e24

0

0

0

0

0

C55

0

e,5

0

0

0

0

0

0

0

C66

01

0
0-

ul, 9
U21 2

U3 3

U2!,3+u3',2

u,,93+u3,,]

U] , 2+U 2,

U '33'2

U2, 3 +U3,
u2,93+u3,2]

UI ,2 +2 11

+

0

0

0

0

e,5

0

-~ 0

0-0

0

0

0

e0
0

0

0

2

0

e3 7
e32

e33

0

0

0

01
03

C33

a@x

aX2
a(D

-3_

axi
a(D

ax,

a_ 3_

(2.1.5)

(2.1.6)

Utilizing (2.1.5) and (2.1.6) as a foundation, it is possible to derive the electrical transfer

characteristics of the L-Bar resonator. First, force balance is applied to the stress-strain relation

of (2.1.5) in order to determine the acoustic wave equation for the structure. Furthermore,

because longitudinal waves in the x-direction (along the length of the resonator) are of interest,

assumptions related to the motion of the bar and the boundary conditions are made to simplify

the analysis. Secondly, a modified Laplace's equation is derived from the charge-potential

relation of (2.1.6). The wave equation combined with the modified Laplace's equation

represents a set of coupled equations describing the electromechanical behavior of the resonator.

The solution to the wave equation is determined by the magnitude and frequency of the electric
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potential applied to the bar. Furthermore, the mechanical displacement described by the wave

equation drives the electric potential generated in the piezoelectric material. In most cases, the

fully coupled equations cannot be solved analytically. However, useful results can be obtained

by employing an iterative approach. This approach is characterized by one-way

electromechanical coupling between the applied voltage and the bar's displacement. In other

words, the effects of reverse coupling, which account for the influence of the mechanical

displacement on the electric potential, are neglected, and simplified first order solutions are

obtained [2].

2.2 Force Balance

Force balance is applied by setting the first spatial derivative of the stress defined in (2.1.5) equal

to the bar's vibrational inertia, producing the following equation.

- -'T'
0 0 0 T

Pu ax] ax3 ax2 2lL iar 3  x T1

pa2 0 0 0 a (2.2.1)
.. ax" ax, ax T

_puO - 3 a a T4
0 0 0 T

ax,  ax2 axiT

Because the longitudinal mode is of interest, we assume that the above equation has no

dependence on the lateral component (i.e. X2 direction), and thus all displacements (u2) and

displacement gradients (ui,2) in the x2 direction are neglected. Applying these simplifications to

(2.1.1), three stress equations remain.

TI = c,uL + C U + e,(D, 3  (2.2.2)

T1 = c31uL + c33u33 + e33 D,3  (2.2.3)

T5 = c55 (uL3 + u 3. )+ e 5 D,, (2.2.4)
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Applying a stress free boundary condition to the top and bottom faces of the bar and neglecting

any x-x 3 shear components, the following must hold on the x 3 boundaries.

T, = 0 at x 3 = a

(2.2.5)

T, = 0 at x 3 = ±a

Furthermore, in order to focus on the lowest longitudinal modes, we assume the inertia in the x3

direction to be approximately zero, expressed below as

pa3 = 0 (2.2.6)

Utilizing the simplified conditions above and noting that the spatial derivatives of Tj and Ts at

the boundaries are also zero, one force balance equation remains.

p 1 =L T =cIIu1 I + c13 u3 3 + e,D,3, where u = a
Pii] 

axiax.

(2.2.7)

Using the stress relations established by (2.2.5) and solving for the U3,3 component in (2.2.3), a

relationship is obtained for the displacement gradients through the length and thickness of the

bar.

(2.2.8)U = - [C + e33 cD, 3 ]
C3 3

Substituting (2.2.8) into (2.2.7), we obtain an equation for the longitudinal inertia

2nd spatial derivatives of ul and (1.

2

pO = C 11- um+[e1 - Cee" ]D,3,
C33 C

in terms of the

(2.2.9)
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Eq. (2.2.9) represents the acoustic wave equation for the longitudinal modes in the x, direction.

The presence of the < term in the wave equation indicates that the displacement of the resonator

is coupled to the electrostatic potential.

2.3 Maxwell's Equations

The general Maxwell equation (i.e. differential form of Gauss' Law for electricity) states that the

divergence of electrical displacement through the surface of a material equals the free charge

density within the material. Written symbolically, Gauss' Law is

V -D = p (2.3.1)

where p = free charge density, and D = electrical displacement. For a linear isotropic dielectric

D can be expressed as cE, where E is electric field and c is the relative permittivity of the

material. AIN is a good electrical insulator, thus the free charge density is assumed to be zero.

Applying this approximation, (2.3.1) becomes

V-D=O (2.3.2)

(2.3.2) is the electrostatic equation that will

electrical transfer function for the resonator.

there is no x2 dependence, we are left with the

DI = e 5 (u13 + U1 ) - (D,

D3 = e3, uL, + e33 u3 3 - C33(1),3

be coupled with the wave equation to obtain an

Substituting (2.1.2) into (2.3.2) and recalling that

following two equations

(2.3.3)

(2.3.4)

32



Again, applying the boundary conditions specified in (2.2.5) to (2.2.4), we define the counterpart

of (2.2.8) as

u31= -u 13 - 15 , (2.3.5)
C5 5

Substituting the (2.2.8) and (2.3.5) into the electric displacement equations of (2.3.3) and (2.3.4),

and applying the constitutive relation of (2.3.2), we arrive at a modified Laplacian equation

relating the potential in the bar to the vibrational displacement. The displacement of the bar at

resonance serves as the driving force for the resonator's electrical output. This relationship is

stated as

2 2

El3 + , + 3 + e3  D,= [e3 - e3 C3, (2.3.6)

2.4 Coupled Electromechanical System of Equations

The piezoelectric interaction between the applied potential and the displacement of the bar can

be summarized by the following two coupled equations:

2

pa, - c - 3uLI = e3 Ce33 ,I (2.2.9)

I 3 C33 IC 3
2 2~

e 5 + 1  3+ , = L e 3 c 3 , (2.3.6)

The xJ-x3 coupling denoted by the mixed partial derivatives of both displacement and potential

terms (i.e. uJ.] and 0,,1 ) creates difficulties when attempting to solve the system of equations

simultaneously. As a result, an iterative approach employing certain assumptions to simplify the
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problem is required to arrive at an analytical solution. Because the modified Laplacian relation

described by (2.3.6) is a linear, non-homogeneous, 2nd order differential equation, the solution

for the potential can be split up into two parts: homogeneous and non-homogeneous - which can

then be solved separately. The solution for the potential will be written as

( D (2.4.1)

Applying (2.4.1) to (2.2.9), we arrive at the separated form of the wave equation

pii - C11 I -C13 juii I 3 - C,3e33I((,BC + ) (2.4.2)

Taking the coefficients on the left hand side of (2.3.6) to be approximately equal and defining

them as one effective value, cf, the homogeneous equation can be stated as

e V 2 BC = 0 (2.4.3)

where (BC represents the boundary condition contribution to the potential, assuming a voltage-

biased system in which voltage inputs are applied on the boundary. The non-homogeneous, or

particular solution, constitutes the driven contribution to the potential and has no boundary

conditions associated with it. Once again, using an effective coefficient, the driven potential can

be expressed as

e, V 2c:1u Le3, e33 C3 31  (2.4.4)

where P" = 0 on the boundary and is directly proportional to the product of the displacement,

uJ3j, and its corresponding piezoelectric coefficients on the right hand side of the equation. With

respect to the method of actuation - in this case, by AC voltage inputs -- & naturally represents

the forward coupling of potential to displacement in the bar. With the boundary condition
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contribution defined in this way, the driven contribution to the potential, q", can then be defined

as the reverse coupling between the voltage biased displacement and the additional potential it

produces. Since Eq. (2.4.4) is a linear system driven by strain (derivatives of uj), a proportional

relationship exists between q" and the displacement. Therefore, because the displacements in

the bar are known to be small, the 0" potential produced by the piezoelectric response of the bar

is also a small quantity. As a result, to first order, we neglect the reverse coupling contribution

to the potential in the bar, realizing that it only produces a small change in the longitudinal

natural frequency of the resonator. Applying this simplification, we are left with one-way

coupling between the applied AC voltage on the boundary and the resulting sinusoidal

displacement of the bar. As a result, the potential in the bar arises solely from the inputs at the

boundary and (2.4.2) simplifies to

2

pa1 - cIj - ]ului =Le3I - Ci3e 33 IDBC, 3 1  (2.4.5)

In other words, the modified Laplace's equation in (2.4.4) is solved by the potential, (pBC

prescribed on the boundary of the bar. Due to the piezoelectric characteristics of the bar, this

voltage input drives the acoustic wave equation above, producing sinusoidal displacements and

an output current.

2.5 Electrostatic Solution

Because one-way coupling between the voltage inputs and the displacements of the resonator are

a reasonable first order approximation, the electrostatic solution is reduced to the homogeneous

part of the modified Laplace's equation and written as

aD + D _, , =0 (2.5.1)
Xax2 Z.aZ2
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where c and c- are defined in (2.3.6) as

ex =Ell + e,5

C_ = E3 + e,

C33

(2.5.2)

(2.5.3)

D(x, z = 2a) = f(x,t)

x=L

z

x=0

D(x, z =0) =0 y

x

** Bar is infinite in x-direction

Figure 2.1: Piezoelectric resonator bar with spatial and potential boundary conditions.

Applying the one-way coupling approximation, (2.4.1) is now simplified to

(D = (BC + u BC (2.5.4)

As in the mechanical analysis, we neglect any x2 dependence, assuming uniformity of both

displacement and potential in the x2-direction. As illustrated in the figure above, the electrostatic

boundary conditions are applied on the top and bottom surfaces of the bar, thus simulating the
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existence of electrodes. These boundary conditions prescribe voltage inputs on the electrodes

and are expressed in the following form.

4(x,z = 0) = 0 (2.5.5)

-(x, z = 2a) = f (x, t) (2.5.6)

In order to simplify the problem solving process from a mathematical standpoint, the bar will be

assumed infinite in the x-direction. However, to account for the bar's actual finite length, an

assumption is made about the limit of the potential function,f(x,t), which captures the nature of

(D as we move away from the origin - x --+ ± oc. If we assume that as x -+ ± Ocf(x,t) -+ 0,

implied boundary conditions exist that define the limits of the potential, 0, in the x-direction.

This assumption allows for the bar to be both mechanically infinite and electrically finite at the

same time. These implied boundary conditions can be expressed as

lim (I(x, z = 0) = 0 (2.5.7)

Using Eq. (2.5.1) as a starting point, the electrostatic solution is determined by employing

Fourier analysis. First, we transform (2.5.1) from the spatial to the frequency domain, solve the

infinite series in the frequency domain, and finally, transform the result back to the spatial

domain to maximize the applicability of the solution.

Let the Fourier transform and inverse transform be defined as the following

P(k, z) f (x, z)e akdx= {} (2.5.8)

(x, Z)= fT(k, Z) e" dk = X '{Y} (2.5.9)

where k, is the transform variable. Evaluating the first and second terms of (2.5.1), we arrive at

the following expressions.
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I"' Term: e a(k, k e-k,

2" Term: C - ) -e- dk1

In the first term, the exponential expression is the only part with an x dependence, and therefore

can be evaluated independently adding -Q k to the integrand. Similarly, the Fourier transform,

V'(kx, z), is the only part of the second term which has a z-dependence and, as a result, the 2nd

partial derivative with respect to z can be applied to the transform alone. Combining the terms

and distributing yields the Fourier transform of (2.5.1) expressed in the frequency domain

-[~k 2 (k + (k Z)] e-ikdk =0 (2.5.10)

For all non-zero dk, the RHS of (2.5.10) is equal to zero if the argument inside the integral

equals zero. Therefore, the following differential equation must hold.

S--c k -T=0 (2.5.11l)

The roots of the differential equation above are calculated by solving

m2  k 2=0 (2.5.12)

The roots of (2.5.12) are expressed as

m= ik I (2.5.13)
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Finally, the general solution follows naturally as

P(k,z)= a(k,)e +b(k)e e (2.5.14)

With the general solution determined, the specific solution relating to the bar resonator is found

by applying the boundary conditions shown in Fig. 2.1. The boundary conditions are prescribed

on the top and bottom surfaces of the bar corresponding to the electrode positions in the actual

device. As shown in Figure 2.1, at z = 0, P = 0, and from (2.5.8) we know that T = 0.

Therefore, applying this condition to (2.5.14), we find the following relationship for the

frequency dependent coefficients.

a(k,) = -b(k,) (2.5.15)

Substituting this relationship back into the general solution, we now express the transform

equation as

T(kz) = a(kY) e -e = a(k,)2sinh Lk, (2.5.16)

Furthermore, at z = 2a, we know that P = f(x). Using this second condition, we solve for the

lone coefficient, a(k,). Applying the boundary condition for the top electrode and recalling that

T = S {4D} yields the following equation for a(k)

a(kA) = ,X {f(x (2.5.17)

2 sinh 2ak,

and Eq. (2.5.16) becomes
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2 sinh k,

n(khrk - 3 {f(x)} (2.5.18)

2sinh 2ak J

With the infinite series solved in the frequency domain, the final step is to transform the solution

back to the spatial domain to better understand the electromechanical characteristics of the bar

from a physical standpoint. This final solution is found by taking the inverse transform of the

RHS of (2.5.18), giving the following equation.

2sinh -k J
i(x, nhr) >* (x) -3. {T} (2.5.19)

2 sinh 2ak-

In order to check the solution above, we substitute - = 2a and z = 0 into (2.5.19) and find that the

solutions for 0 match the boundary conditions - $(x, 2a)= f(x) and $(x, 0) = 0. At this point,

the constraints on the final equation are further specified by applying the approximation that the

length of the bar is much larger than is thickness - expressed by the inequality, x >> 2a . This is

a reasonable approximation because the resonator's length to height ratio ranges from 10 to 60.

Assuming this approximation holds, the solution for the potential in the spatial domain is linear

through the thickness of the bar. In order to show this relationship, (2.5.19) is non-

dimensionalized by rescaling the transform variable, kx. We create a non-dimensional parameter,

k, which is equal to the ratio kx/2a and substitute this value into (2.5.19). The new equation

becomes

2 sinh k "
2a e~j
2(x, z)a=3 - * f (x) (2.5.20)

2 sinh k

40



We then make the critical assumption that k << I and c, - c-. While the latter is simply a

numerical approximation that is easily justified, the former is not obvious and requires a more

detailed explanation. The inequality above can also be expressed as k, << 1/2a. Recalling that,

in the electromagnetic (EM) frequency domain, k, is equal to the inverse of the wavelength, the

relationship can be written yet another way as A >> 2a, thus indicating that the wavelength of an

EM wave in the resonator is much larger than the bar's thickness. This relationship can be

validated by calculating a typical wavelength for an electromagnetic wave traveling through the

bar and then comparing it to the value of 2a. Because the operational frequency range of the

resonator is known, an approximate wavelength value can be determined by employing the

relationship between the wavelength and frequency of an electromagnetic wave - =

where c,,., is the electromagnetic wave speed in the material, and frequency is measured in Hz.

Typically, the electromagnetic wave speed for a given material depends on its relative dielectric

constant and is calculated according to the equation

C
c = , where c = 3.8x10 8 M / s (2.5.21)

For AIN, the relative dielectric constant is 9.5, making Cnat approximately equal to a value of

9.73x10 7 m/s. Therefore, considering a sinusoidal driving frequency of I GHz, the

corresponding wavelength of an electromagnetic wave produced in the bar is on the order of .1

meters. Comparing this wavelength with the value of 2a, which is on the order of a micron, we

find that the wavelength of an EM wave in the resonator is much greater than the characteristic

dimension of the bar. As a result, the assumption that X >> 2a is a valid one. Furthermore,

because k << I indicates the same relationship, we utilize it to simplify (2.5.20) to the following

<D(x, z) = 3 L* f (x) = f(x) Z (2.5.22)
2a 2a

recalling that, in general, for q << 1, sinh(q) ~ q. For a bar with a high aspect ratio

(length/thickness), the potential function is approximated as having a linear variation through the

thickness described by Equation (2.5.22). According to (2.5.22), the potential varies linearly
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from zero on the bottom electrode to the function fi(x) on the top electrode. This condition

assumes that the electric field produced between the electrodes is generally uniform and neglects

the effects of fringing fields at the edges. The fringing fields can be ignored because the high

aspect ratio of the bar's geometry. This geometric characteristic makes it possible to employ the

parallel plate approximation, which is only valid for structures whose length and width are much

larger than its thickness.

2.6 Mechanical Resonance: Time and Spatial Solutions

With the electrostatic solution solved and simplified to a convenient form, we determine the

mechanical solution. This is accomplished by employing Eqs (2.2.9) and (2.5.22), which

describe the longitudinal inertia of the bar and the linear relationship for the potential through the

thickness. Recalling that (2.2.9) is simplified to the form

pa, - c - 1U. = [e-e _ D,3 (2.2.9)
C33 C3 3 j

The potential term on the left side is written as

cD , f = (2.6.1)
2a

Also, for simplicity, the coefficients in (2.2.9) are defined more concisely as

CO = CI - (2.6.2)
CT;

e, = e3 , -e 3 3 C13  (2.6.3)
C3 3
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Because (2.2.9) is a linear differential equation, separation of variables is used to solve for the

function that describes the longitudinal displacement, u(xt).

u(x,t)= A, (t)-X,(x) (2.6.4)

The longitudinal displacement has both a time and spatial dependence. However, because of

linearity, the function described by (2.6.4) is accurately represented as the product of two

individual functions, one with only a time dependence and the other with only a spatial

dependence. Furthermore, summation operator is present in the displacement function, because

the solution is actually an infinite series of all the normal modes of the bar. In order to find the

complete set of eigenvectors for the structure, we consider the unforced wave equation.

Applying the simplifications noted above, the unforced form of (2.2.9) becomes

p .X, -I c,, A, - =0 (2.6.5)

Separating variables, time dependent variables are set equal to their spatial counterparts, and the

unforced wave equation is expressed in the form

An cX. (2.6.6)
Al p X,

Because the LHS of (2.6.6) is dependent solely on time and the RHS has only a spatial

dependence, their common solution must be a constant, having neither a time nor a spatial

dependence of its own. If we define this constant as -o2, , we know that to, represents the

natural frequency of mode n and are now able to determine the eigenvalues of the infinite series.

We first solve the time dependent problem, which has the same solution for both a continuous

and a lumped mass-spring model. Because the time solution is consistent between the models,

we solve the simpler system. Figure 2.2 illustrates the mass-spring system with its key features

labeled.
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Figure 2.2: Lumped parameter mass-spring model

The equation of motion for the mass-spring system is written as

M +IxC =0

Solving for the roots (on,

expressed as

where n = 1, 2, 3,...) of this differential equation, we find they are

,k
"M

(2.6.8)

The solution to (2.6.7) is straightforward and well known in the form

x, (t) = a, cos(w,,t) + b, sin(v,,t)
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and with respect to Eq (2.6.6) for the continuous model, the solution above becomes

A, (t) = 1, cos(W, t) + m, sin(w, t) (2.6.10)

where the constants 1, and mn, are chosen to satisfy initial conditions. With the time solution

determined, we now shift focus to the spatial component of the wave equation. Recalling the

relationship established between the time and spatial domains in (2.6.6), the spatial equation can

be written as

X1 = - I2 X (2.6.11)

Once again, the solution is relatively straightforward and is simply the summation of the infinite

cosine series over all possible n. Below are the solution and the applicable free-free boundary

conditions. A free-free condition is imposed by prescribing zero strain at the ends of the bar.

X, (x) = cos oi . x (2.6.12)

X, (x=0)=X, (x=L)=0 (2.6.13)

Applying the boundary conditions above and solving for o,,, the natural frequency and final

solution to the longitudinal wave equation are

O = nr C (2.6.14)
L p

u(x,t) = cos n /xj -Il, cos(cO,,t) + Mn, sin(ot)] (2.6.15)
L
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The solution above is for the unforced eigenvalue problem. In order to solve the driven wave

equation, a forcing term is be added to (2.6.5). For our bar, the forcing function is defined as

j(x,t). However, according to (2.6.1), the function which drives the bar is expressed in terms of

f l, the first spatial derivative off(x,t). Therefore, the driving force is designated asf ;(x,t), which

is again represented as the product of a time and spatial function summed over all n. The forcing

function and driven wave equation are then written as

ff,1 (x,t) = F, (t) -X, (x) (2.6.16)

"e
pA X,, -c A, X, = " FJX (2.6.17)

2a

where 2a is again defined as the thickness of the bar, and e, is the simplified piezoelectric

constant described by Equation (2.6.3). As with the unforced eigenvalue problem, (2.6.17) is

manipulated so that all time and spatial variables are grouped separately on opposite sides of the

equation. Furthermore, we also assume the separation constant to be the same. As a result, we

arrive at the following separated differential equation for the forced problem.

Al e0 F,, co X 2 (2..18

A,, 2ap A,, p X,

As before, the time domain problem is solved first. However, unlike the unforced case, in order

to accurately represent the time-dependent behavior of the driven resonator, we add a modal

damping term, y,,,. This damping term is expressed as a function of the modal center frequency.

0)'= l (2.6.19)
Q

where Q denotes the Quality factor of the resonator. Focusing only on the time dependent side

of (2.6.18), adding the damping, and rearranging terms, we arrive at the equation governing the

time domain response of the forced problem.
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+ + Al = " F,, (2.6.20)
A, yA, ±wjA =2ap

Converting (2.6.20) from the time to the frequency domain and solving, the following

relationship is obtained.

A,, (s) _ e /2ap (2.6.21)
Fl, (s) s 2 + y,s+ , 2

The spatial solution is the same as that determined earlier for the unforced problem.

X, =cos n /T x (2.6.22)

As (2.6.16) indicates, the spatial function for the driving force (i.e. f j(xt)) matches that of the

unforced problem. In reality, the spatial function can be any infinite series, but the cosine form

seems to be the most logical and convenient choice.

The time-dependent component of the driving force, F,(t), represents the projection of the

driving force,f(x,t), onto the individual modes. The driving force, of course, is directly related

to the potential on the bar. Specifically, it is proportional to the first spatial derivative of the

potential function. This potential function was defined earlier in (2.5.6) as the boundary

condition prescribed on the bar's top electrode. In practice, f(xt) does not have a spatial

dependence along the bar, because the electrode is assumed to be a perfect conductor and thus,

equi-potential. As a result, the actual function describing the potential across the top electrode is

f (x, t) = V, (t) * [u(x) - u(x - L)] (2.6.23)

where Vo(t) is the time-dependent magnitude of the AC input voltage used to drive the bar. The

u(x) functions are mathematical conventions used to describe the shape of f(x,t). In words, the
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function is described as: f(x,t) is equal to VX(t) from 0 < x < 6 jim, and otherwise equal to zero.

For mathematical convenience, we would like to express f(x,t) as an infinite Fourier series.

However, because the function is not periodic, it is not possible to reproduce it by these means.

This fact notwithstanding, if we assume the equi-potential range to be part of an infinite periodic

square wave, the mathematical representation becomes much more straightforward. Therefore,

we choose to definef(x,t) in the following way.

f(x,t)= a,,(t) -sin X (2.6.24)
n=- (L )

where a, is the Fourier coefficient for the series and represents the weighting factor that

determines contribution of each term to the sum. This coefficient is solved for according to

a,(t) =- V (t )-sin jx dx (2.6.25)
L f L)

Solving (2.6.25) and substituting back into (2.6.24), the sine series forf(x,t) is written as

f (X, 2) = "Y,( 1 ) sin -/Tx (2.6.26)
)F-, n (L

This is the sine series that reproduces the function.f(x,t), describing the potential along the length

of the top electrode - 0 < x < 6 Rm. A graphical approximation of the Fourier sum in this range

is shown in Figure 2.3.
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Figure 2.3: Graphical approximation of square functionf(x,t) reproduced by Fourier sine series.

Equation (2.6.26) describes the potential function only. However, in order to determine the total

displacement solution, we need to obtain the expression for the magnitude, F,(t), of the forcing

function, written as f1(x,t) and defined by (2.6.16). Noting that the expression l-(-l)" reduces

the potential function to an odd sine series, we solve for the forcing function by taking the first

spatial derivative of (2.6.26). The result of this operation yields

f, 1 (x, t) = 4V,(t) I cos -- x), where n = 1, 3,5,...
L n=-_o L

(2.6.27)

Comparing the equation above to (2.6.16), we find that the cosine term in the summation

argument matches the spatial solution of the unforced problem. Therefore, we further deduce

that the expression outside the argument must be equal to F,(t). To match the form of (2.6.21),

we convert from the time to the frequency domain, and Fn(s) is expressed as

(2.6.28)F,(s) = 4V0(s)
L
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Using the equation for F,(s), we substitute back into (2.6.21) to solve for the frequency

dependent displacement coefficient. Solving for An(s), we arrive at the following result.

A, (s) - " ( 2 (2.6.29)
apL s 2 + yns + C

Finally, to obtain the total displacement solution, we introduce the expression for As(s) into Eq

(2.6.4), and the frequency dependent form of the displacement equation, u(x,s), becomes

u(x,s)= 2e Cos - V (s) 2 (2.6.30)
apL (L ) s +ys+CO

where the n term has been assigned a value of unity in order to isolate the primary longitudinal

mode.

2.7 Electrical Transfer Function

We now return to Gauss' Law describing the relation between the free charge density, p, and the

electrical displacement, D3, normal to the interface of the dielectric and the electrode. The

boundary condition prescribed at this interface is written below and constitutes a reduced form of

(2.3.1), applicable specifically to the geometry and coordinate system of interest.

- D -2 = -D 3 =p (2.7.1)

To find the electromechanical transfer function of the bar, we calculate the output charge

resulting from the sinusoidal input voltage, V0(s). This charge is determined by integrating the

normal component of the electrical displacement, D3 , over the total electrode area. The current is

then calculated by taking the time derivative of the total charge. The current, or admittance of

the bar, is solved for according to
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I = Q =D dA (2.7.2)
at dA

(electrode)

Recalling the assumption that piezoelectric coupling between the input voltage and bar

displacement is in one direction only, D3 is defined according to the constitutive equations.

D 3 = eo uH - e 0,3  (2.7.3)

where er and e, are defined by (2.5.3) and (2.6.3), respectively, as the more compact form of the

material property coefficients. By substituting the total displacement and potential solutions into

(2.7.3), we obtain D3 as expressed in the frequency domain.

2e "2 )T /T (S)
D3e(Xs 2 f -sin ( - " 2 .VK(S) (2.7.4)

apL2  KL s2+yslc2 2a

(D, 3 is replaced by the quotient of the potential function, V/s), and the thickness, 2a.

Furthermore, we return to the original definition of f(x,t) as defined by (2.6.23). Continuing to

use the Fourier sine series representation would create difficulty when taking the area integral to

find the current. Therefore, the current calculation is simplified by setting f(xt) equal to Vjt)

and converting the differential area, dA, to a constant width, w, multiplied by dx. Then, solving

(2.7.2), a relationship for the current output due to the input voltage is obtained and written as

1 4we sV(s) + Z s V (s) (2.7.5)
apL s 2 + yr s + o 2a
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2.8 Equivalent Circuit Model

From (2.7.4), the bar's impedance characteristic versus frequency is calculated by Ohm's

relation, V(s)/I. This impedance looks similar to that of an RLC circuit in parallel with a single

parallel plate capacitor. In this configuration, the parallel capacitance is simply defined by

,c-wL
C', = (2.8.1)

2a

In order to determine the values of the equivalent RLC circuit, we manipulate the circuit's

transfer function to match the coefficient of the first term in (2.7.4). The original transfer

function and its manipulated form are defined below.

I s2 LC~sRC+l
ZRLC= sL+ R + -= (2.8.2)

sC sC

S

= L (2.8.3)
ZRLC s 2 +(R / L)s+

LC

Using Ohm's Law, we draw the connection between the current defined by (2.7.5) and the

equivalent circuit. With the parallel term already accounted for by (2.8.1) we arrive at the

following relationship

1s 4we "2 s
IY= (S) = " K V (S) (2.8.4)

L S 2 +(R / L)s+ -apL S ys+ ,
LCuc

Matching terms between the two current equations, the motional inductance can be expressed as
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(2.8.5)L- apL
4weO

The other circuit parameters are then represented in terms of L, recalling the equations for -,, and

y,,, as defined by (2.6.14) and (2.6.19).

1 4weO 2 Lp 4we 2 L
C = - 2 = 2

o> L apL Z2 CO ar2C

RyL= COapL a L

Q 4we' 2 4we 2 Q

(2.8.6)

(2.8.7)

With the equivalent RLC circuit parameters defined, we determine the total transfer function

describing the impedance characteristic of the 6x3x0.5 gm bar. Below is a schematic showing

the bar geometry and equivalent circuit topology.

Equivalent Circuit

Model Geometry

Rm

C

LM

w

Figure 2.4: AIN piezoelectric longitudinal bar and its equivalent RLC circuit
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Using the circuit parameters defined by Equations (2.8.4), (2.8.5), and (2.8.6) as well as the

material properties of AIN, we obtain the relationship between impedance and frequency for the

resonator. The material property values used for this analytical analysis are listed in Table 2.1.

Table 2.1: AIN material property values used for the equivalent circuit model

As specified earlier, the dimensions of the longitudinal bar are

L =6 pm, w = 3 um , 2a =0.5 Pm

These dimensional parameters yield the following values for R, L, C and Co of the equivalent

circuit

-~ - 1C-805.8 MHz
2ff 2L\Ip

R = a 2Q =1891 Q

e-wL
C = = 3.246 fF

2a

L = apL = 3.7 3 5x10-4 H
4weO

C= we,"L =.104 fF

These circuit parameters produce the impedance transfer function shown in Figure 2.5. For Q =
1000, the impedance of the bar drops to approximately 1890 Q at the longitudinal resonance,

corresponding to the R value of the equivalent circuit.

54

Material Parameter Symbol (Units) Value

Density p (kg/M 3) 3300

Stiffness Constant c0 (N/rn2) 3.09e 1

Dielectric Constant iz (F/m) 9.02e- 11

Piezoelectric Constant eo (C/rn 2) -1.051
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Figure 2.5: Graph of the resonator bar's impedance versus frequency
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Chapter 3

Comparison of Simulation and Analytical Results

3.1 Electromechanical FEA Model (No Tethers)

With an analytical derivation and equivalent circuit model established for the piezoelectric L-Bar

resonator, electromechanical simulations are utilized to validate the results of Ch.2. In this

chapter, the simulated FEA model has the same geometry and boundary conditions as the

analytical model. Because it is necessary to limit the analytical analysis to relatively simple

geometries, the corresponding FEA model is comprised of the resonator bar without support

tethers. Figure 3.1 shows the FEA geometry of the analytical bar with its corresponding

electrical and spatial boundary conditions.

y =0

x =

y =w
(O(z = 2a) = f (x,t)

UY(y =w) = 0

z
y

x

)0L

,0,a) =0

(D(z = 0) =0 x -

Figure 3.1: FEA model of bar without support tethers. In the model presented, L = 6 pm, w = 3
pm, and 2a = 0.5 pm.
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The purpose of the model in Fig. 3.1 is to serve as an FEA equivalent to the analytical model.

All dimensions, boundary conditions and other material parameters are made to match, as closely

as possible, those used to derive the RLC circuit model. The bar's dimensions are maintained at:

L = 6 gm, w = 3 gm, and t = 0.5 gm. To mimic an infinite boundary condition through the width

of the resonator, all the nodes at y = 0 and y = w are fixed in the y-direction. Furthermore, to

fully constrain the model, a cantilever condition is placed on the node at the center of the left

edge (i.e. point -* (L/2, 0, a)). For the electrical boundary conditions, electrodes are modeled by

coupling the nodes along the top and bottom surfaces of the bar and prescribing a potential value

on the master node of each set. The equi-potential condition on the electrodes is applied in this

manner because, for simplicity, neither the mass nor the stiffness of the metal layers is modeled

in the geometry. Finally, a mechanical Quality factor (Q) of 1000 is prescribed for the structure.

The goal for the actual resonator design is a Q of 104. However, for Q = 104, the bandwidth of

the model's response at resonance is extremely small and thus, difficult for the FEA program to

capture accurately. Therefore, a value of 1000 is set for simulations in order to facilitate

adequate resolution of the resonant response. The Quality factor is input into the FEA

parameters as a damping ratio relating to the resonator Q by the following equation.

Q = 2(3.1)

where 4 is a constant damping ratio across the frequency range of the harmonic analysis. Thus,

to assign a Q of 1000, the user inputs a value of .0005 for the damping ratio.

The table below shows the material properties used for the FEA model.
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M aterial Param eter Sym bol (Units) Value

Density p (kg/m 3) 3300

Stiffness Constants c,,, c 2 2 (N/m 2 ) 3.45e11

C33 3.95e11

c12 1.25e11

C13, C23 1 .20e1 1

Dielectric Constants s , 22' , 33 (F/m) 8.41 e-1 1

Piezoelectric
Constants e 3 (C/m 2 ) 1.55

e13 , e2 3 -0.58

Table 3.1: Material properties for FEA model

For the analytical model, the problem solving process is made more convenient if a compact set

(i.e. co, eo, 6z) of the material property coefficients is defined. However, because the FEA model

is not being solved analytically, the actual orthotropic material property values of AlN are used.

With an FEA model having virtually the same characteristics as its analytical counterpart, the

output of the electromechanical FEA simulation is compared to the result obtained from the

mathematical calculation.

3.2 Impedance Transfer Functions

The test procedure for finding the impedance transfer function of the bar is comprised of two

main steps. First, a modal analysis is performed and the frequencies from the modal output are

read into an array. The second step is to perform a harmonic sweep about each of the modal

frequencies from the array. This procedure is applied to the model shown in Fig. 3.1, and a

transfer function is obtained. Table 3.2 compares the key results between the two models, such

as impedance and center frequency of the bar at the longitudinal resonance. Furthermore, Fig.

3.2 is the graph of the FEA result overlaid on the analytical curve. The sweep range is

approximately 300 MHz from 650 to 950 MHz.
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Table 3.2: Results for comparison of FEA and analytical models; Q = 1000

Impedance vs Frequency
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E
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1

103
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Frequency (MHz)

50 900 950

Figure 3.2: Plot of FEA/analytical impedance results

Both the table and graph above demonstrate that the FEA results match those predicted by

theory. The two models' impedances and center frequency values at the longitudinal resonance

coincide to within a percent difference of each other. This result illustrates that, with the correct

boundary conditions and material parameters applied, the FEA model and the analytical

calculation validate each other.
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Model Type Z (ohms) Co. (MHz)

FEA 1873.1 807

Analytical 1888.2 807.5

% Error 0.800 0.062

FEA w/ tethers
FEA w/o tethers



Chapter 4

Boundary Condition Study: Single Bar

4.1 Exploring Models of Greater Complexity

With the analytical results validated by simulation data, the simple FEA model introduced in Ch.

I is now qualified in relation to more complex geometries. The purpose of this case study is to

determine the error associated with the results of the simpler model. In other words, we now

attempt to find out if the simple model yields an acceptable tradeoff between modeling

sophistication and simulation efficiency. The former provides increased accuracy and a more

realistic model, while the latter facilitates the attainment of usable results. It is important to

achieve a balance between these two aspects of modeling.

One of the resonator's primary roles is to interface with integrated circuit (IC) technology as a

frequency filter component, driven and sensed in the electrical domain [5]. Voltage inputs are

used to actuate the resonator while output potentials are employed to measure its response. The

bond pads, used for electrically driving and sensing the resonator, are orders of magnitude larger

than the dimensions of the bar. Consequently, a series of intermediate geometries are fabricated

to link the resonator to the external environment - specifically, the bond pads and the packaging

of the IC chip. The interactions between these intermediate geometries, the resonator, and the IC

chip establish the actual boundary conditions of the device, which, in turn, determine how the

resonator will behave in the electrical and mechanical domains. Ideally, the geometry and

boundary conditions of the FEA model would correspond identically to those of the real device.

However, because of the size discrepancy between the resonator and its external environment,

the full set of boundary conditions and geometric components characterizing the

electromechanical behavior of the MEMS filter cannot feasibly be modeled. The size and mesh

characteristics (i.e. number of elements and nodes) of a model determine how feasibly it can be

built and simulated. As the mesh density is refined, the simulation results, theoretically, become
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more reliable. However, the computation time and memory requirements increase drastically.

The simple geometry, including only the resonator and its support tethers, is thought to satisfy

the balance needed between model size, mesh density, and computation time. However, to be

certain, we compare its electromechanical output with the transfer functions of more complex

geometries to determine the error between the results.

4.2 Determining Appropriate Tether Length for Study

In general, the purpose of the support tethers is to provide the resonator bar with partial acoustic

isolation from the substrate. This isolation can never be perfect, however, because the tethers

will always dissipate some portion of the resonator's energy to the environment. Therefore, to

minimize this energy loss, an attempt to optimize the length of the tether supports is undertaken.

Optimization of the tether length could potentially isolate a longitudinal wave traveling through

the structure, thus trapping the energy of that wave and minimizing the amount of dissipation.

Theoretically, a standing longitudinal wave could be established in the device if the tether ends

coincided with a displacement node of that wave. If this were accomplished, the end of the

tether would have zero displacement and the longitudinal wave traveling through the tether

would be reflected perfectly, resulting in no transmission of the wave to the substrate. In reality,

it is virtually impossible to determine the exact location of the wave node. However, a good

approximation of that location would serve as a suitable starting point for choosing the

appropriate tether length for the boundary condition study.

In order to determine the locations of the longitudinal wave nodes occurring along the tethers, a

free-free boundary condition is applied to the resonator model geometry with extra long tethers.

For the model shown in Figure 4.1, the primary nodes of the longitudinal wave in the tethers

occur at approximately 6 Rm and 12 gm from the edge of the resonator. Because the wavelength

corresponding to the longitudinal natural frequency of the bar is 12 jm, this finding seems to be

consistent with what would be expected in theory.
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Figure 4.1: Resonator with extra long tether supports. Free-free boundary conditions imposed
upon the tether ends; tether length = 15 ptm.

Using the free-free case as a reference, the tether length is increased from a quarter to a half

wavelength in order to better match the tether ends with a wave node. Based on the modal

animation of the simple free-free case, we observe that the first node in the tether does not

coincide exactly with the edge of the resonator. As a result, subsequent nodes do not lie

precisely at their theoretical values (i.e. 6 tm, 12 tm, 18 pim, etc). Therefore, an estimate of 6.4

pm is chosen as an appropriate tether length for the remainder of the boundary condition study.

4.3 Simple Model: Resonator Bar with Tethers

With an appropriate tether length established, the boundary condition study begins with a look at

the geometry and transfer function of the resonator bar with tethers. While this simple geometry

does not include much of the filter substrate or packaging, it still provides useful information and

insight into the electromechanical behavior of a real device. The simple model is shown in

Figure 4.2.
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Figure 4.2: Simple model geometry.

In order to analytically solve for the electrical transfer function of the bar, many assumptions and

simplifications are necessary to idealize the model. The addition of tethers represents a

significant non-ideality characterizing the simple model. The effect of such a non-ideality is

demonstrated through a comparison of the models' electrical transfer functions. Specifically, it

is significant to observe the way and the degree to which the transfer function parameters such as

resonant impedance and longitudinal center frequency vary between the models. Figure 4.3

shows the transfer function for the model in Fig. 4.2 overlaid on the electrical response of the

geometry with no tethers.
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Impedance vs Frequency
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Figure 4.3: Electrical transfer function comparison. Simple geometry
analytical response curve.

impedance overlaid on

Comparing the transfer functions in Fig. 4.3, we observe that the addition of tethers has a

significant effect on the absolute impedance value at resonance. Each curve exhibits an isolated

longitudinal response having both a resonance and anti-resonance. With respect to circuit

parameters, the main discrepancies between the transfer functions lie in their R and CO values.

In the equivalent circuit model of Fig. 2.4, the R value represents the approximate impedance of

the device at resonance. Comparing the two resonant impedances, we observe that the addition

of tethers causes a 30% increase in the R value. This discrepancy can most likely be attributed to

the difference in boundary conditions between the models. For the resonator geometry with no

tethers, the sides of the bar are given an infinite boundary condition which restricts displacement

in the x 2 (i.e. y) direction. This displacement restriction negates any Poisson effect in the x2

direction as the bar displaces longitudinally. If a Poisson effect was present, a portion of the

charge on the electrodes would be cancelled due to changes in the bar's width. For example, as

the resonator extends there would normally be an associated Poisson compression through the

width, canceling some of the total charge accumulated on the bar. Because this effect is not
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present in the x2 direction of the analytical model, the electromechanical coupling in the bar is

more efficient, producing a lower resonant impedance.

Another difference between the transfer functions is their off-resonance impedance

characteristics. With the addition of tethers to the resonator bar, the baseline impedance of the

model drops significantly, thus accounting for the offset between the transfer functions. The

presence of tethers causes the effective capacitive area of the device to increase, thus, decreasing

the model's impedance over a wideband frequency range.

4.4 Initial Complex Model: 45 Degree Departure

4.4.1 Features and Boundary Conditions

The first complex model is designed and fashioned after the actual topology of Draper's current

L-Bar resonators. This geometry, like its simple counterpart, has tethers which serve to

acoustically isolate the resonator from the substrate. The tethers suspend the bar over an air gap

created by a chemical etch of the silicon substrate. Figure 4.4 shows this model and an image of

an actual L-Bar resonator as viewed through a scanning electron microscope (SEM).
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Bond Pad Area AIN L-Bar resonator

Support tether Silicon substrate

Tether length
= 6.4 m

/ Bond Pad Ledge
45 degree (~ 30 gm)
departure angle

Figure 4.4: Top - SEM image of Draper's L-Bar resonator; Bottom - Initial electromechanical
model for boundary condition study. Model includes a portion of the bond pads and Si/SiO 2
substrate.

The important features of this initial model are the substrate and the bond pad areas. The bond

pads depart at a 45 degree angle from the support tethers. In the initial device design, this

departure angle is chosen in order to produce a smooth transition between the filter components.

The bond pad material sits on a thin film of silicon dioxide (SiO 2), approximately .5 gm thick.

The SiO2 serves as the sacrificial layer in the fabrication process. A chemical etch is used to

release the resonator from the substrate, providing acoustic isolation for the bar. Because of the

isotropic characteristics of the echant, however, the bond pad is undercut by the etching process.
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This undercut is significant enough to create a ledge of bond pad material extending out over the

Si layer below. The ledge is virtually free in space and as a result, facilitates the propagation of

energy away from the system. For this reason, the presence of the ledge can be expected to

influence the overall output of the device. Figure 4.5 provides a profile view of the model with

the individual layers of the geometry labeled. The figure illustrates how the bond pad ledge is

unconstrained over the majority of its surface area

(2 pm thick)

Si02 Layer
(.5 ptm thick)

Bond Pad Ledge
(2 ptm wide/.5 pm thick)

Undercut causing ledge

Figure 4.5: Model profile with material types and dimensions labeled

4.4.2 Modeling Theory

Because of the size discrepancy between the resonator and the substrate, an "infinite" boundary

condition is utilized to constrain the periphery of the model. "Infinite" refers specifically to the

assumption that, relative to the size of the resonator, the silicon substrate is modeled as

dimensionally infinite in all directions. The infinite boundary conditions apply to those surfaces

beyond which material would extend in the actual device. For any such surface, the infinite

condition is applied by fixing the normal displacement degree of freedom (DOF) corresponding
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to that surface. For example, in order to apply the infinite constraint to the base nodes of the

silicon substrate in Fig. 4.5, the x3 DOF are fixed, because the z-direction is the normal unit

vector to that surface.

The ledge width is dictated by the characteristics of the current fabrication process. When the

release etch is performed on the sacrificial layer below the resonator, the echant attacks the SiO2

in an isotropic manner. Thus, the SiO2 is etched laterally as well as through the thickness. The

echant works downward until it reaches the silicon substrate which serves as an etch stop for the

process. Once the echant hits the Si layer, its downward progress ceases, but SiO2 etching

continues laterally. The limiting parameter on this lateral etch is the width of the resonator,

because the echant is applied until the resonator has been completely released from the substrate.

As the echant works laterally through the SiO 2 to release the resonator, it also works underneath

the bond pads creating a ledge around the periphery of the material, as shown in Figure 4.5.

Because resonators are fabricated in batches, the width of the ledge is determined by the width 6f

the largest resonator in the array being etched. Assuming the bar shown in Figure 4.4 is the

largest of its array, the echant would work laterally from the edges of the bar, eventually

converging at the middle. Therefore, the resonator is fully released after etching a distance equal

to half the bar width. Thus, for the 3 gm wide bar, the width of the corresponding ledge would

be approximately 1.5 pm. As noted in Figure 4.5, the ledge is assigned a value of 2 gm in order

to simulate a worst case scenario.
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4.4.3 Longitudinal Mode Shape

Studying the longitudinal mode shape of the structure indicates that the influence of the ledge

motion is significant as predicted earlier. Below is a graphic illustrating how the displacement of

the ledge compares to that of the resonator bar.

Waves travelng
2 along AIN ledge

Side View Flexural motion of resonator/tether
present in longitudinal mode

Resonator

Figure 4.6: Longitudinal mode shape of initial FEA model. Modal animation shows
significance of ledge motion relative to the resonator's displacement.

It is important to remember that the displacement of the mode shape is purposely exaggerated by

the FEA software during animation in order to emphasize the motion. In reality, the absolute

displacements of the bar, the tether, and the AIN ledge are on the order of nanometers.

Relatively, however, the animation indicates that the ledge motion is comparable to that of the

resonator, and, as a result, degrades the transfer function of the filter. In other words, the large

amount of additional flexural motion present through the geometry pollutes the longitudinal

mode shape, resulting in an increase in impedance at resonance and thus a decrease in filter

performance.
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4.4.4 Electrical Transfer Function

Besides the primary resonant frequency, several additional modes appear to have longitudinal

motion. Because of the complexity of the model, irregular motion present in the bulk material

has the capability to produce longitudinal displacement in the resonator at several different

frequencies. In order to investigate the effect of this irregular motion in the electrical domain, a

harmonic analysis is performed and the corresponding impedance transfer function for the model

is obtained. Figure 4.7 shows this transfer function and illustrates how it is degraded relative to

the impedance characteristic of the simple model. Once again, a mechanical Q of 1000 is

prescribed for the simulations.

Impedance vs Frequency
106

Complex FEA
Simple FEA

105

104 ~ Impedance dips of )
Longitudinal Modes

10I

650 700 750 800 850 900 950

Frequency (MHz)

Figure 4.7: Plot of simulated impedance characteristics: simple and complex FEA models

Relative to the transfer function of the simple model, the impedance characteristic for the

complex model is degraded dramatically. As the graph indicates, the complex model does not

produce a dominant, well isolated longitudinal mode. The primary impedance dip, occurring at

approximately 778 MHz, is not significantly lower than spurious modes adjacent to it in the
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graph. Each of the five dips in the transfer function represents the characteristic impedance of a

distinct longitudinal mode shape of the structure.

4.5 New Complex Model: 90 Degree Departure

For a sweep range of approximately 230 MHz, the initial complex model, shown in Fig. 4.4,

produces over 260 distinct mode shapes. Furthermore, as evidenced by the FEA data series in

Fig. 4.7, several modes are characterized by electromechanical coupling that is strong enough to

significantly lower the impedance of the bar. As a result, a primary goal for future filter

topologies is to reduce the effect of these spurious modes and isolate the filter's passband about

one distinct longitudinal frequency. With this goal in mind, a new geometric configuration is

introduced which potentially provide better acoustic isolation and a reduction in the significance

of spurious modes, thus producing a cleaner electrical transfer function. The new configuration

is simply a modified form of the initial geometry. The modification centers on the departure

angle of the bond pads from the tether supports. Rather than having the bond pad area

lithographically cut to depart at a 45 degree angle from the x-axis, in the new topology, this

material extends away from the tether supports parallel to the x-axis (i.e. 90 degree angle) as

depicted in Figure 4.8.
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90 deg departure ,

Ledge Width =2 ptm
Tether Length =6.4 ptm z

AIN Ledge

Figure 4.8: New complex configuration with 90 degree departure of bond pads.

Other than the difference in departure angle of the bond pads, the boundary conditions and

dimensional parameters are consistent between the two configurations. As described in the

previous section, displacement constraints are applied to the outer surfaces of the 90 degree

model to mimic an infinite substrate. Both the tether length and the ledge width are maintained

at their original values of 6.4 pm and 2 pm, respectively. These model characteristics are kept

constant in order to facilitate a legitimate comparison between the transfer functions of the

differing configurations. In Figure 4.9, the impedance characteristics of both the new and old

topologies are shown.
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Impedance vs Frequency
1 0 . . ..... ... .... ...... ...

45 Degree Departure 90 Degree Departure

' 105-
E
0

N 104-

Zn =0700 Q Z - = 7800 Q

103 -

720 770 820 870 720 770 820 870

Frequency (MHz)
Figure 4.9: Plots of transfer functions for 45 and 90 degree configurations

The transfer function for the new configuration, shown on the right of the figure, indicates that

the modification of the departure angle improves the electrical output of the bar. The

longitudinal mode having a center frequency of approximately 799 MHz couples the electrodes

better than the other modes around it. Furthermore, of the spurious modes producing a

significant response at their resonance, only two seem to have impedances comparable to that of

the predominant mode. This contrasts with the output of the 45 degree geometry whose transfer

function is characterized by four significant spurious modes. For the 90 degree configuration,

the magnitude of the impedance at the primary longitudinal mode is approximately 7800 Q. This

value represents about a 30 % decrease in device impedance as compared to the output of the

initial configuration. As before, the modal animation can be used to illustrate these results. Fig.

4.10 shows the primary longitudinal mode shape of the 90 degree configuration.
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Less pollution of longitudinal
mode resulting from change
in departure angle

Flexing in resonator
and tether

Side View

Resonator

Figure 4.10: Longitudinal mode shape of 90 degree geometry. The image shows the bar in
tension.

Although the motion of the resonator does not yet correspond to the ideal longitudinal mode

shape, it is significantly improved relative to the displacement of the original configuration as

depicted in Fig. 4.6. Flexural waves are present in both the tethers and the ledge of the model

shown above, but as the side view indicates, this motion does not have as great an effect on the

resonator's displacement. As a result, because of this "cleaner" longitudinal mode shape, the

resonator passes more current at its operational frequency. In addition, this topology suppresses

the output of the spurious modes more effectively and thus, reduces their impact on the overall

transfer function. For this reason, the new configuration represents a viable alternative to the 45

degree geometry and therefore, could prove valuable in future filter design.
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4.6 Comparison of Model Parameters

As the previous sections demonstrate, with respect to the longitudinal mode, the simple model

produces a transfer function comparable to that of both the idealized and more complex

geometries. Table 4.1 gives a break-down of the key features of each model's transfer function.

A I

Illustration/Description of BC's

Analytical Bar

Impedance
(Z, ohms)

Q = 1000

1874

2715

Fixed-Fixed (x direction)

10685

45 Degree Departure

7804

90 Degree Departure

Center Frequency.
Spurious Modes

(MHz)

oc : 807

Spurious modes:
None

Notes

" Sweep Range:
600-1000 MHz

- No tethers
" Infinite BC's along

right and left sides

c : 805 -. Sweep range:
600-1000 MHz

Spurious modes: - Tether length: 6.4 pm

None - Infinite BC's at
tether ends

ok : 778

4 spurious modes:
788, 795. 798. 800

* Sweep range:
670-905 MHz

" Ledge not shown
* Bond pad area not

drawn to scale
" Tether length: 6.4 gm

- Sweep range:

670-905 MHz
*Ledge not shown

2 spurious modes: *-Bond pad area not

775, 792 drawn to scale
* Tether length: 6.4 jim

Table 4.1: Comparison of key electrical transfer function parameters.
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The first column of data gives the value of the impedance at resonance for each model assuming

a mechanical Q of 1000. As previously discussed, there is approximately a 30% increase in

impedance due to the addition of tethers to the analytical model geometry. This percentage

corresponds closely to the Poisson's ratio for AIN, indicating that the difference in boundary

conditions explains the increase. Comparing the simple model to the more complex geometries,

we observe another jump in the impedance due to the presence of additional non-idealities such

as the bond pads and substrate.

The second column notes the center frequencies of the primary longitudinal modes as well as the

frequencies of significant spurious responses. Regardless of the topology, the longitudinal center

frequency falls consistently into a narrow range of values. With the exception of the 45 degree

configuration, the geometries produce center frequencies within a percent difference of each

other. The 45 degree geometry yields a primary longitudinal mode whose frequency value is

approximately 3% different from the other configurations. This invariance of the resonant

frequency indicates its robustness to changes in the model geometry. In contrast, the appearance

of spurious modes is highly dependent on the complexity of the model. For both the analytical

and simple models, no spurious modes exist and, consequently, the longitudinal mode shape is

well isolated. In the complex geometries, however, substrate motion produces transfer functions

with significant spurious responses.

4.7 Transfer Function Data: Simulated vs. Actual Results

The table in Section 4.6 provides a range of error for the simple model relative to other FEA

geometries. In order to fully qualify the simple model, we now compare its electrical transfer

function to actual resonator data. A few modifications are made to the geometry of the simple

model in order to match it to the actual resonator. Due to the limitations associated with the

experimental testing of Draper's resonators, only a few geometries produce data which facilitates

further analysis. From the first batch of resonators tested, the I Ox5xO.5 jim geometry yields the

most useful transfer functions. Therefore, the FEA bar is changed to match these dimensions.

Also, the tether length and width are modified to 6 pm and I pm, respectively. Furthermore, in
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order to better match the operational frequency of the actual resonator, the metal electrode

geometry, including the density and stiffness, is modeled in addition to the AIN. The profile

view of the model in Fig. 4.11 shows the metal-piezoelectric-metal configuration characteristic

of an actual L-Bar resonator [5].

Ni - .24 pm thick Side View

Mo - .15 m thick

Resonator/Tether
Dimensions:
Lres =10 m

Wres=5 m
Ltether =6 gm

Wtether = 1 gm

Figure 4.11: SEM image and FEA model geometry of 10 pm bar with metal electrodes. Tether
dimensions and Q (i.e. 125) modified to match real structure

Because direct impedance measurements cannot be obtained in experimental tests, the response

of the filter is measured in terms of scattering parameters (S-parameters). S-parameters are

reflection and transmission coefficients which measure the performance of an electrical device
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operating under linear conditions in the MHz frequency range. For this study, the S21

transmission coefficient is used to determine the electrical response of Draper's L-Bar

resonators. The S21 parameter, characterized by a magnitude and phase, is calculated from the

resonator bar's output voltage ratio (i.e. Vu,/Vin). The equation for the magnitude of S21 is

written as

(4.1)
S 2 1 =20- (091 " - g 20log "'

where V01ic is the voltage out in the short circuit case - Vout.se = Vin/2. In order to obtain the

voltage ratio, the resonator is placed electrically in series with a source and load resistance. The

modified filter topology and its corresponding equivalent circuit are shown in Fig. 4.12.

Figure 4.12: FEA model with passive resistor elements and equivalent circuit.
designs, Rs and RL are 50 0.

For initial

For simplicity, a sinusoidal input voltage of I V is used for the simulations. The output voltage

is measured across the load resistor and used to calculate the S21 parameter. Experimental S21
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data measured from the actual device gives resonator Q of approximately 125. As a result, the

mechanical Q for the FEA model is set to this new value. With these adjustments made to the

I0x5 pm resonator model, the simulated electrical transfer function is generated and found to

correspond closely to the actual results data. Fig. 4.13 shows the simulated transfer function

overlaid on the actual data [9].

S21 vs Frequency

-45

-55
Width Mode (687 MHz)

Longitudinal Mode (330 MHz)

-65
-EA 10Ox5 -6 prm tethers

- Actual I 0x5 -6 tm tethers

100

60

20

0 200 400 600

Frequency (MHz)

800 1000

Figure 4.13: S,)]
simulated curve

plot of simulated and actual data. Longitudinal and width modes labeled for
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4.8 Variation of Tether Length: Impedance Analysis

At the beginning of the boundary condition study, an appropriate tether length was established

based upon the approximate location of longitudinal wave nodes along the tether. With the

quantitative FEA approach now firmly established, we attempt to verify the initial choice of 6.4

gm for the tether length of the simple L-Bar resonator. This final task of the boundary condition

study is accomplished by varying the tether length in half micron increments and obtaining the

simulated resonant impedance of each geometry.

Impedance vs. Tether length

6000 6000 rQuarter
Wavelength

5000

4000

3 3000

2000

Half Wavelength
1000

0
0 3 6 9 12 15 18

Tether Length (pm)

Figure 4.14: Plot of impedance versus tether length for simple model. 6x3 Rm resonator
geometry and 1.5 gm wide tether used for simulations; Q = 1000.

The graph illustrates that the impedance of the resonator is significantly dependent upon the

length of its supporting tethers. For example, an increase in impedance occurs when the tether

length corresponds approximately to a quarter wavelength increment. At tether lengths of 4 and

10 pm, the impedance reaches a peak value and drops off quickly at lengths above and below

these values. This trend is most likely caused by poor coupling between the resonator and
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support tethers. At these lengths (i.e. 1/4), 3/4k, 5/4 k, etc), the vibration of the resonator is out-

of-phase with the wave traveling through the tether, causing destructive interference and a

subsequent canceling of charge on the electrode. This cancellation of charge causes a

corresponding impedance rise at the quarter wavelength increments.

A trend is also observed for geometries with half wavelength tethers. The response at these

tether lengths correspond to minimum impedance values on the plot. For half wavelength

increments (1/2k, k, 3/2k, etc), the waves in the tether resonate in-phase with the sinusoidal

motion of the bar. The acoustic waves traveling in the resonator and the tethers combine

constructively, thus maximizing their electromechanical coupling and reducing the impedance of

the device.

As illustrated by Fig. 4.14, for each successive half wavelength increment, the associated

impedance "trough" rises slightly, indicating the smaller tether values produce better a better

response at resonance. Furthermore, the graph verifies the results of Ch. 3, which demonstrated

that the resonator geometry with no tethers represents the ideal boundary conditions. However,

this is not a realistic model for actual L-Bar resonators. The next minimum impedance value

along the curve corresponds to a tether length of approximately Xres. For the 6 gm resonator

bar, based on the quarter wavelength increments of 4 gm and 10 gm, a new half wavelength

estimate of 7 pm will be used in future models.
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Chapter 5

Extracting Equivalent Circuit Model Parameters

5.1 Equivalent Circuit Model Theory

In general, an equivalent circuit model is useful because it allows an electromechanical device to

be incorporated into a purely electrical system. In Ch. 2, an equivalent circuit for the resonator

geometry is derived analytically. This equivalent circuit, known as the Butterworth van Dyke

(BVD) model, is commonly used by filter designers to represent the electrical transfer function

of filter elements (i.e. resonators) over a wide band of frequencies [10]. As the analytical

derivation demonstrates, the BVD model accurately describes the electromechanical behavior of

the resonator bar without tethers. However, an actual L-Bar resonator has support tethers

connecting it to the substrate and therefore, yields a different set of circuit parameters. As noted

in the boundary condition study, both the impedance at resonance (R) and the through

capacitance (CO) increase with the addition of tethers. The L and C values of the equivalent

circuit also change because the extra mass of tethers causes a shift in resonant frequency. The

BVD model is shown again below with its element parameters labeled.

FnR

C CO

LT

Figure 5.1: Butterworth van Dyke equivalent circuit model
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Draper's resonators are designed to be integrated into larger electrical circuits such as frequency

filters and oscillators. Consequently, there is a need to determine the new BVD element

parameters corresponding to the resonator geometry with tethers. In this chapter, we introduce a

method for extracting the BVD element values from measured data parameters. Using a

simulated transfer function, specific values from the data curve are used to determine the new R,

L, C and C. Also, in order to verify the extraction method, the mechanical Q prescribed in the

FEA model is compared to the circuit Q calculated from the new BVD parameters.

5.2 BVD Parameter Extraction: Impedance Transfer Function

To maintain continuity with previous impedance data, the method for BVD parameter extraction

is applied first to a simulated transfer function for a resonator without passive elements. The

first step in the process is to define the complex impedance function characterizing the BVD

model. The impedance function of the equivalent circuit in Fig. 5.1 is expressed as

BVD - I s2LC+sRC+l (5.1)
sC) s LC+sRC+l+CIC

C, represents the resonator's through capacitance, which dominates the off-resonance impedance

characteristic of the model. The R, L, and C parameters capture the mechanical resonance and

piezoelectric behavior of the bar at the longitudinal mode. The longitudinal frequencies

corresponding to the resonance and anti-resonance of the BVD model are found by solving for

the zeros and poles of (5.1). For a typical resonator, the loss is small and thus, for convenience,

we initially assume a lossless system (i.e. R ~ 0). Employing this assumption, the two equations

needed to solve for the zeros and poles are

S 2 + -- =0 (5.2)
LC
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S2 +- -+- =0 (5.3)
L C Co

where s is the frequency domain parameter equivalent to the complex expression jo. Solving

these equations, we find that the solution yields a complex conjugate zero pair followed closely

by complex poles. Only one peak occurs for each pair because the complex conjugates have the

same magnitude. The frequencies corresponding to the minimum and maximum impedance of

the longitudinal mode are calculated according to

Cs = (5.4)
WS LC

CCOP = OJs C+- (5.5)

These values are referred to as the series and parallel resonant frequencies. These values are

significant, because they can be read directly from a plot of measured data. As such, the

unknown L and C parameters are defined in terms of os and op. Taking the difference between

(5.4) and (5.5), dividing the result by the series resonant frequency and rearranging terms, we

arrive at the following equations for the unknown parameters.

C = C". (+ O -_ (5.6)

L = (5.7)

Co is found by fitting the off-resonance impedance characteristic of the data to the function

l/oC0 and then verifying this extracted value by comparing it to an analytical calculation based

on the capacitor area. With these parameters defined, we recall that our device is not actually

lossless and therefore, has some non-zero impedance at the series resonance. To determine this

value, consider the fact that, at Cos, the RLC branch dominates the impedance transfer function of
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the BVD model. As a result, at frequencies near resonance, Z(o) for the model can be

effectively reduced to that of a series RLC circuit.

ZRLC =R+.j OL- (5.8)

From (5.8), we can solve for the impedance at co directly. Substituting (5.4) for (o in the

equation above, the imaginary term drops out, and we find that the impedance at the series

resonance is equal to R of the BVD model. In reality, Z(os) is equal to the sum of R and the

through impedance calculated from the resonator's C0 value (i.e. Zcap =l1oC). For an L-Bar

resonator 6 gm in length, the series resonant frequency is approximately 800 MHz with a Co on

the order of 10-15 F. Based on these values, a reasonable estimate for Zeap is approximately 20

kQ. This impedance value is about an order of magnitude larger than the typical R of a high Q

resonator. Therefore, the assumption that ZBvD(Os) = ZRLC(os) = R is feasible. As a result, the

value of R can be read directly from a plot of measured data as the impedance value at Cos.

With all the BVD element values expressed in terms of measured parameters, we now solve for

the Quality factor of the resonator to check the effectiveness of the extraction method. Nilsson

[4] notes that, by definition, Q is the ratio of the resonant frequency to the filter bandwidth. This

bandwidth is calculated by taking the difference of the half-power frequencies. These

frequencies are defined as those at which the magnitude of the impedance is equal to 2 R.

Taking the magnitude of (5.8) and setting it equal to 2 R, we arrive at the following quadratic

equation.

OL- - R 2 =0 (5.9)
O>C)
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The roots of this difference of squares are the half-power frequencies. Solving (5.9) yields

r1 .= (R + (5.10)
2L LC 2L

As stated above, the half-power frequencies define the bandwidth of the filter response and

therefore, the quality factor.

bandwidth can be expressed as

8= oi - O2= 
L

Taking the difference between ol and o2 , we find that the

(5.11)

With the bandwidth defined in this manner, the resonator Q becomes

Qcs os L

/8 R
(5.12)

In terms of the measured parameters, the equation for the Quality factor takes the form

Q =[Os R C, - I + , )O)S -I (5.13)

Figure 5.2 is a simulated transfer function showing where the important measured parameters are

found on a data plot.
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Impedance vs Frequency
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Wideband Frequency
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Z((o) = R + 1/oC.

700 800

Frequency (MHz)
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Figure 5.2: Plot of resonator impedance versus frequency. Key measured values used for circuit
parameter extraction include os, op, C0, and R.
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5.3 BVD Parameter Extraction: S21 Transfer Function

As previously mentioned, a filter designer is not able to experimentally determine the transfer

function of an actual device in terms of impedance. As a result, the procedure for the parameter

extraction is now applied to the S21 transfer function of a filter topology similar to that

introduced in Section 4.7. Fig. 5.3 shows the equivalent circuit of the geometry in Fig. 4.12.

R s
CO

ViL R C RL

Figure 5.3: BVD model in series with source and load resistors. This configuration is needed to
measure an output voltage (i.e. V(RL)) and obtain an S21 transfer function

Extracting the BVD parameters from a plot of measured S21 data is analogous to the process

described in the previous section. First, to find R, the S21 value is measured at o. At or near the

series resonant frequency, the equivalent circuit of Fig. 5.3 can be simplified to the following.

RR

U s 

C O

i L R C r L

Figure 5.4 Simplified circuit model used to fit the impedance (i.e. R) at resonance.
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At resonance, the impedances of the L and C components of the BVD model cancel, leaving only

the R in parallel with the through capacitance, C. For a high Q filter, we can assume that R <<

l/(osC at os and consequently, R can be determined by a simple voltage divider calculation. The

equation for R is then

R =50 '" -2 (5.14)
V(II I' /

Recalling the definition for the magnitude of S21 in Ch. 4, we manipulate the form of (4.1) and

calculate " according to the following
V(ut ITS

2 (5.15)
V'('Ut IA'A 1 0 "S21 /2"

With the voltage ratio known at resonance, (5.14) becomes

R =50 -2 (T - 1 (5.16)

For a non-idealized geometry including electrical parasitics, the parallel capacitance, CO, may

become significant in relation to R, making it necessary to account for its effect. In this case,

(5.14) would be modified to

RII =50 V" -2 (5.17)
i j, Co KitV e

It is important to note that (5.17) fits R based only on the magnitude of the simulated data. For

actual S21 measurements, a complex fit of the data is the most appropriate. This is accomplished

by fitting the real and imaginary parts simultaneously to a constant magnitude and zero phase

impedance.
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No calculation is necessary to determine o s and o4, as these values can be measured directly.

However, the wideband frequency response of the resonator must be fit in order to find the off-

resonance capacitance, Co. The equation necessary to fit the S21 data and calculate the through

capacitance is

C = where x = 100 1 -1 (5.18)
jomx 10 S2120

Once all the required measured parameters are determined, as before, in order to complete the

parameter extraction, the remaining BVD element values are calculated according to Eqs (5.6),

(5.7), and (5.12). The simulated electrical response of the circuit configuration in Fig. 5.3, is

recorded in dB, and graphed versus frequency, producing the following S21 plot.

S21 vs Frequency

-30
S 1(wO)

- -50

Wideband Frequency
Response - SI (o)

-70 ~_

600 700 800 900 1000

Frequency (MHz)

Figure 5.5: Simulated S2, plot with important measured parameters labeled.

By virtue of the S21 calculation, the resonant impedance drop occurring at the longitudinal

natural frequency now corresponds to a resonant peak on the response plot. Likewise, the anti-

resonance peak of the Z(f) plot is analogous to the minimum value of the S21 curve.
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5.4 Parameter Extraction Example

In the following example, the circuit element values for the longitudinal and width modes of a 10

gm bar are calculated from a simulated S21 transfer function. Shown below is the simulated S21

plot for the I 0x5 gm geometry with an input mechanical Q of 1000. Overlaid on the S2 1 curve is

the through capacitance fit of the wideband frequency response.

Simulated S2 of Draper Resonator

0
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3 -30

-40

-50

-60

-70

-80

0 200 400 600 800 1000 1200

Frequency (MHz)

Figure 5.6: Simulated S21 for FEA mechanical resonator loaded in the series
Fig. 4.12. The resonator bar is lOx5xO.5 gm, with tethers that are 1.5 gm wide

configuration of
and 11 Im long.

AIN material parameters are used, and metal electrodes are not modeled for this simulation.

Following the procedure from the previous section, we first calculate the R value of the BVD

circuit characterizing the longitudinal mode. Using Eq. (5.16), for S21(0os) equal to -26.29 dB, R

is calculated to be

R = 50. 2 1-,90 -1 = 1963 Q
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Next, the series and resonant frequencies of the longitudinal response are read directly from the

simulated data. These values are

os = 4 70.49 MHz

co = 473.08 MHz

Finally, Co is calculated from a complex fit of the wideband frequency response. This C" value

applies for both the longitudinal and width modes. Using Eq. (5.18), we find that the through

capacitance is

C 15.46 fF where x =100< s21/20 -i

Employing these measured parameters, the remaining BVD element values are

C = C -r+ ,OP- ' -) =.1707fF

L= =.6703 mH
oIC

The BVD model parameters are determined in the same way for the width mode of the bar.

Table 5.1 gives a summary of the measured and calculated parameters used in the extraction

method.
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Circuit Param eter Lon

R (f)

os (M H z)

co) (M H z)

C. (fF)

C (fF)

L (mH)

Table 5.1: Circuit parameters and measured

gitudinal M ode

1963

470.49

473.08

15.46

.1707

.6703

Width Mode

1092

955.56

960.30

15.46

.1538

.1804

values from the transfer function of a 10 tm bar.

5.5 Quality Factor Comparison: Mechanical Q vs. Circuit Q

In order to verify the results of the parameter extraction method, a Quality factor comparison is

conducted. Several different mechanical Q values are input for the 10x5 gm FEA model, and a

simulated S21 plot is obtained for each case. Using this S2i data, the BVD model parameters for

both the longitudinal and width modes are extracted, and the associated circuit Q is calculated

according to the procedure described in the Section 5.2. The frequency sweep of the harmonic

analysis spans a range of 100 MHz - I GHz. The following table summarizes the comparison

between the input mechanical Q of the FEA model and the circuit Q extracted from the simulated

S21 curves.

Q, mechanical Mode Q, extracted % error
500 Length 497.40 0.520
500 Width 496.37 0.726
1000 Length 1009.91 0.991
1000 Width 991.47 0.853
10000 Length 9931.94 0.681
10000 Width 9946.87 0.531

Table 5.2: Comparison of input mechanical Q and extracted circuit Q for a
ptm piezoelectric resonator - includes percent error calculations.

simulated lOx5xO.5
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Based on the information in the table, the extracted Q values match the mechanical Q values to

within a percent difference. For the case where Q = 1000, the BVD element parameters are

analyzed in a circuit simulator. Fig. 5.7 shows the circuit transfer function overlaid on the

simulated S21 curve from Fig. 5.6.

S2 1 vs Frequency
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Figure 5.7: Circuit transfer function generated using extracted BVD parameters overlaid on
simulated S21. Simulated curve (gray) can only be distinguished from the circuit transfer
function (black) by spurious responses of the FEA model.
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5.6 Conclusions for Parameter Extraction Method

In the preceding sections, BVD element parameters are extracted from simulated data, which is

obtained from a model geometry including no electrical parasitics. When parasitics are

significant, as in an actual Draper resonator, the method for determining circuit parameters does

not hold well. As a result, a more comprehensive circuit model including parasitics is being

developed with the expectation that the latter will be more applicable to geometries of varying

sizes and complexities.

Despite the current method's limitations, it still provides significant insight into how the circuit

parameters are related to each other when the BVD model applies. For a real device, the

relationship between C and C is dependent on material properties alone and therefore sets

performance limits for the resonator. For longitudinal modes, the maximum value for the ratio

of C/C0 is given by

C 8e 2
- 2 -3.22% for AlN (5.19)

C0  Ec 26

Since this ratio has a theoretical limit based on the material properties of AlN, a corresponding

restriction is placed upon the impedance and peak separation of the electrical transfer function.

Applying (5.19) to (5.13) and rearranging terms to isolate R, we find that for a given resonant

frequency and Quality factor, the minimum impedance at o) is determined by

R 1 1 (5.20)
coQ C(0.0322)

Furthermore, the maximum peak separation is calculated according to

C co-ca

+1 -1= C = 1.6% (5.21)
Co COS
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These limits can be verified by calculating the R value and peak separation of the analytical

transfer function of Ch.2. Substituting the applicable simulation parameters into (5.20) and

(5.21), we find that

Rm =1840 Q

Limits calculated from simulation data

I- =1.6%

While the peak separation matches the material property based maximum exactly, the minimum

R is slightly lower (- 2%) than the value produced by the FEA simulation. This discrepancy

indicates that even the "ideal" geometry contains some loss which prevents it from producing the

maximum response at resonance. The CO used for these calculations is determined analytically

from the resonator geometry and scaled by a factor of 1.1 to account for the effect of fringing

fields. Furthermore, from (5.20), we observe that the through capacitance and the resonant

frequency are the only real control variables for R. The two values are inversely proportional -

as resonator size increases, CO increases, while os decreases. The increase in CO occurs more

rapidly than the corresponding decrease in resonant frequency, and as a result, in the current

design, larger devices will be able to achieve lower impedances at resonance.
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Chapter 6

Coupled Resonator Geometry: Single and Multi-Port

Configurations

6.1 Introduction

Thus far, it has been demonstrated that the current design for Draper's L-Bar resonator, while not

completely optimized, is applicable in the MEMS community and specifically, in the area of

wireless communications. However, initial studies of the resonators indicate that a considerable

amount of improvement is still needed in the overall design. As a result, a new topology,

initially presented in the qualitative analysis, will not only improve upon the performance

characteristics of the current device but also create new opportunities in filter design at Draper.

The new geometry couples two longitudinal bars through a common tether to create a new

device. Although the electromechanical behavior of the coupled bar is similar to that of a single

bar, the new device possesses unique characteristics that make it a more advantageous design.

This coupled configuration has the capability to serve a variety of functions depending upon the

electrical boundary conditions that are imposed upon it. Because the L-Bar resonator is an

electrical device represented as a combination of passive elements (i.e. BVD equivalent circuit

model), individual resonator bars can be coupled in various single and multi-port configurations.

Figure 6.1 shows the new coupled design, with its key features highlighted.
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Resonator Dimensions:

L = 6 ptm
w = 3 pm
t = 0.5 pm

Tether Lengths:
Outside = 7 pm
Inside = 14 pim

Boundary Conditions:
y-DOF constrained at tether ends

x
z

y

Figure 6.1: Coupled resonator geometry. "Infinite" displacement boundary conditions imposed

upon tether ends. Electrical boundary conditions are determined by filter configuration.

The model in Fig. 6.1 represents a "symmetric" coupled geometry, where the inside tether length

is twice the outside. The qualitative analysis demonstrated that this configuration would produce

the cleanest in-phase mode and therefore, in theory, the most desirable electrical transfer

function. Theoretical knowledge of modal analyses suggests that the resonant frequencies

associated with the in-phase and out-of-phase modes will fall symmetrically about the

longitudinal center frequency of a single bar. However, FEA simulations of the coupled bar

show that the in-phase modal frequency coincides closely with the single bar's natural frequency,

and the out-of-phase mode falls either above or below this value.

6.2 Comparison of Single Port Configurations

Two straightforward single port topologies are the parallel and series configurations. Normally,

in relation to filter technology, the goal is to design a device whose impedance is as low as

possible at the operational resonant frequency. Consequently, boundary conditions which

prescribe a parallel electrical configuration are most useful in frequency filter design. Regardless
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of applicability, however, investigating the responses of parallel and series coupled

configurations as they compare to that of a single bar, provides insight into how the coupled

piezoelectric resonator behaves as an electrical device. Figures 6.2(a) and (b) illustrate how the

electrical boundary conditions of the model are applied in defining the two single port

configurations.

2

series

(a)

parallel

(b) 2 1 -E 1 2

Figure 6.2(a) and (b): Single port electrical configurations of coupled resonator design. Gaps in
electrode represent cuts made in the metal to create the boundary conditions.

As indicated by the figure above, the electrical configuration is determined by the placement of

the electrodes on the top and bottom surfaces of the resonator. The equivalent circuits to the

right of each geometry show the path current is allowed to travel from the input at terminal I to

the output at 2. From knowledge of basic circuits, the parallel configuration is expected to yield

a transfer function two times lower in magnitude than that obtained from a single bar, assuming

the coupled bars have the same impedance characteristics. Conversely, the series topology

should produce an impedance whose magnitude is double that of a single model. The following

is a set of plots comparing the output of the parallel and series configurations. The impedance

characteristic of each topology is overlaid on the electrical transfer function of a single bar to

demonstrate their significance.
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Impedance vs. Frequency

106

104

Z11= 1416 Q Z = 118Q
(795.52 MHz) (787.56 MHz)

103 1
700 800 900 1000 700 800 900 1000

Frequency (MHz)

Figure 6.3: Electrical transfer functions for the coupled parallel and series configurations. Plot
on the left shows parallel response while the graph on the right illustrates series curve.

For a coupled resonator design, there are two primary longitudinal modes - in-phase and out-of-

phase. By virtue of the electrode configurations used to create a parallel or series resonator

circuit, only one of the two longitudinal modes will produce a net electrical output for a given

configuration. For the parallel design, the operational frequency corresponds to that of the in-

phase mode, whereas, the series configuration produces an amplified response when the

displacement of the bars is out of phase. This knowledge helps explain the frequency shift of the

resonant response for the series transfer function shown in the plot on the right of the figure. The

center frequency of the in-phase mode coincides almost exactly with o, of the single bar, while

the out of phase modal frequency is slightly lower than the latter. Furthermore, in contrast to

theory, the Zmin value for the series design is more than twice the single bar output. This result

occurs because the out-of-phase mode shape is characterized by a "polluted" longitudinal motion

relative to the "clean" mode shape of a single bar (i.e. qualitative analysis - Fig. 1.5). Therefore,

the electrodes are not coupled perfectly by the out-of-phase mode, and the impedance of the

device increases slightly above the theoretical value of 2 -Z(Os)single. On the other hand, because

the resonance of the parallel configuration occurs at the in-phase mode, the symmetry of the

latter produces a much cleaner longitudinal mode shape. This clean longitudinal motion, in turn,

produces a resonant impedance value that matches the theoretical standard of %-Z(Os)singie.
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6.3 Parallel Configuration

As discussed earlier, the series configuration applied to a coupled resonator has little

applicability in regards to frequency filter design. Consequently, with respect to single port

coupled topologies, we restrict our focus to the modeling of the parallel configuration. As

evidenced by Fig. 6.3 and test results from [6], the impedance transfer function of the coupled

parallel configuration corresponds closely to that of its single counterpart. Although the parallel

resonator circuit possesses an additional longitudinal mode shape (i.e. out-of-phase), its

impedance characteristic is virtually identical to that of a single bar, excluding a factor of two

between their magnitudes. Therefore, the parallel topology represents a way to achieve the

wideband frequency response of a single bar with a reduction in impedance at resonance. This

improvement upon the performance of the single bar is highly advantageous and makes the

parallel coupled configuration a viable option for future resonator design.

6.3.1 Effect of Coupled Tether Length Variations on Impedance

The geometry shown in Fig. 6.1 is chosen based on a symmetry condition. In other words, the

initial topology for the coupled resonator is analogous to placing two single resonators side by

side. To create the coupled design, the "inside" tethers are joined to each other. The length of

this common tether affects the amount of coupling between the resonator bars. As Fig. 6.3

indicates, when the coupled configuration is symmetric (i.e. inside tether length is twice outside

lengths), the characteristics of its transfer function, such as bandwidth and center frequency,

match those of a single bar. However, if the length of the coupling tether is modified, the

impedance characteristics of the model change as well. As a result, a study of the influence of

inside tether length on the device impedance is undertaken. If modifications yield appreciable

changes in the transfer functions, the coupling tether length can then be utilized as an additional

tunable parameter in the filter design process. The lengths of the coupling tether used in the case

study are chosen so as to coincide with multiples of 7 pnm, the outside tether length. The values

chosen were 3.5, 7, 14 and 21 tm, which correspond approximately to increments of the

longitudinal wavelength of the 6 pm bar (i.e. 3.5 pm ' A, 7 pm ~ A, etc). Figure 6.4 shows

the simulated transfer functions corresponding to the various geometric topologies.
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Impedance vs Frequency
106-

SCF 7-3.5-7 SCF 7-7-7

105

104

103

105

104

103

SCF 7-14-7 SCF 7-21-7

650 725 800 875 950 725 800 875 950

Frequency (MHz)

Figure 6.4: Parallel impedance characteristics for different coupling tether lengths. Legend
notation (i.e. 7-4-7) indicates lengths of the inside and outside tethers according to the form
outside-inside-outside (values in ptm)

The different geometries produce comparable resonant impedances and center frequencies at

their primary longitudinal modes. The center frequencies are, for the most part, within a percent

difference of each other. The largest discrepancy between the resonant impedances is only about

500 92, a relatively small difference considering average off-resonance impedances of 10 kM or

greater. Therefore, based on the simulation results, the primary longitudinal response of the

parallel coupled resonator seems to be relatively insensitive to changes in coupling tether length.

However, spurious responses, which result from longitudinal modes dominated by tether motion,

do appear to be highly dependent upon the amount of mechanical coupling that exists between

the resonators. All the geometries, with the exception of the symmetric case, possess at least one

spurious mode. The magnitude of the spurious mode's electrical response and its center

frequency vary significantly as inside tether length changes. Only coupling tether lengths

corresponding to a half wavelength or less produce negligible spurious modes, with relatively

small magnitudes and locations far from the center frequency of the primary longitudinal mode.
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As the inside tether length increases above 7 pm, longitudinal waves traveling through the tether

produce significant motion in the resonator, resulting in an electrical response at a frequency

other than the primary resonant mode. Table 6.1 illustrates this phenomenon by comparing the

frequency and impedance values of the different geometries.

Illustration and BCs
(Parallel Configuration)

Coupling Tether
Length, pm

(L)USld= 7pm)

3.5

5

7

11

14

17

21

Longitudinal Mode,
Ohms - (os, MHz)

1391.1
(797.7)

1456.7
(795.7)

1581.4
(789.0)

3059.4
(777.2)

1416.2
(795.2)

1517.7
(790.9)

1878.9
(785.5)

Spurious Mode,
Ohms - (os, MHz)

N/A
(520.4)

17877
(682.9)

16426
(659.1)

2368.5
(830.2)

N/A

6144.0
(997.2)

4440.2
(857.9)

Table 6.1: Magnitude and frequency values for various coupling tether lengths. Mechanical Q of
1000 input for simulations of parallel configurations. "N/A" indicates a negligible value.

For the three coupling tether lengths of 7 gm or less, the impedance value of the spurious mode

is over an order of magnitude larger than that of the corresponding longitudinal mode.

Furthermore, the spurious frequency is shifted more than 100 MHz from the longitudinal center
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frequency. Neglecting the symmetric geometry, models with coupling tether lengths greater than

a half wavelength possess significant spurious contributions. In fact, for a tether length of I1

jim, the spurious impedance is about 20% lower than the primary response. In general, for

longer inside tether lengths, spurious modes resulting from large vibrations in the tether cause

electrical responses comparable in magnitude and frequency to the primary longitudinal mode of

the device.

6.3.2 Effects of Tolerance Error: Mechanically Coupled vs. Uncoupled

To this point, we have assumed the lengths of the coupled resonators to be equal. This

assumption requires their longitudinal resonant frequencies to be equal as well. However, as

discussed briefly in the qualitative section, with respect to current fabrication techniques, making

two identically dimensioned resonators is virtually impossible. Therefore, it is important to

investigate how tolerance errors affect the electrical response of the parallel configuration for

both a coupled and uncoupled bar. During fabrication, photolithography is used to define the

resonator geometry. A chemical etch is then employed to release the resonator from the

substrate. Finally, detailed modifications of the geometry can be made by means of laser

trimming. While this fabrication process is considerably accurate, the tolerance of the existing

process is only accurate to about a tenth of a micron. In an absolute sense, this tolerance value is

adequate, but, as demonstrated in the qualitative analysis, even a resonator length discrepancy as

small as . I m shifts the center frequency of the device by more than a percent. In relation to

high Q resonators which are mechanically uncoupled, a percent difference between the resonant

frequencies of the two bars creates two distinct response peaks and negates the benefit of using

the parallel configuration. As shown in [6], a coupled resonator bar forces the bars' resonant

frequencies to match and thus, offers a more robust design. Figures 6.5(a) and (b) show the

electromechanical topologies of a coupled and uncoupled parallel resonator.
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Mechanically Coupled

(1)

Mechanically Uncoupled

12

(b)

Figure 6.5: (a) Coupled parallel configuration (b) Uncoupled parallel configuration

As the figure above shows, the resonators are coupled electrically in both configurations. The

distinction between coupling occurs in the mechanical domain depending on whether the inside

tethers are physically joined. If the resonators are identical in size, both configurations produce

the same transfer function when driven at the longitudinal resonant frequency. However, if

fabrication errors result in a small discrepancy between the lengths of the bars, the impedance

characteristics associated with the two configurations will no longer match. For the coupled

geometry, a small difference between the bar lengths causes the in-phase and out-of-phase mode

shapes to degrade slightly, affecting their electrical outputs. In the ideal case, with no

discrepancy in length, the in-phase mode couples the electrodes perfectly, and the out-of-phase

response is completely cancelled. However, with a discrepancy in lengths, the response of the

in-phase mode decreases, while incomplete cancellation of the out-of-phase mode causes a small

impedance drop. On the other hand, having neither an in-phase or out-of- phase mode, the

resonators of the uncoupled case behave like two separate bars, with two distinct resonant

frequencies. Consequently, fabrication error causes the uncoupled transfer function to break

down, and the amplified responses the two bars no longer combine at a single frequency. Figure
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6.6 compares the changes in electrical transfer function due to tolerance errors for a

mechanically coupled and uncoupled parallel resonator configuration.

Impedance vs Frequency
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104

Out of Phase Response

In-Phase Response
103

700 730 760 790 820 850 88

Frequency (MHz)

0

Figure 6.6: Coupled and uncoupled transfer functions showing effect of fabrication errors.

The two distinct impedance dips of the uncoupled geometry are shown in the first graph, while

the in-phase and out-of-phase responses of the coupled design are marked on the lower graph.

For the coupled bar, slight pollution of the in-phase mode shape causes a small increase in

impedance as compared to the ideal geometry. Likewise, a break down in the out of phase mode

shape corresponds to an imperfect cancellation of charge and a spurious electrical response.

When analyzing the plots above, it is important to note that these transfer functions are produced

by a dimensional mismatch that is half (i.e. 50 nm) the quoted tolerance value of .1 gm.

Therefore, a more realistic error value would cause even greater degradation of the impedance

characteristics. Specifically, in relation to the uncoupled case, a larger fabrication error would
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produce an even greater frequency gap between the two longitudinal responses. Their

magnitudes would not suffer significantly however, because, despite the discrepancy in lengths,

the longitudinal mode shape of each resonator would still be clean. On the other hand, in the

coupled design, as the difference between resonator lengths becomes more severe, the two

primary longitudinal mode shapes will continue to degrade, resulting in a further break down of

the transfer function. This break down is illustrated in the figure below.

Impedance vs Frequency

106
Coupled Parallel (6-6) Coupled Parallel (6-6.1)

104

Coupled Parallel (6-6.2) Coupled Parallel (6-6.3)

1 05

104

103
700 750 800 850 700 750 800 850 900

Frequency (MHz)

Figure 6.7: Deterioration of coupled transfer function as fabrication error increases (i.e.
discrepancy between resonator lengths increases). The first value in the parentheses refers to the
unmodified bar, 6 gm in length. The second indicates the amount of mismatch between the bars.

When the fabrication mismatch reaches .2-.3 gm, the transfer function of the coupled geometry

resembles that of the uncoupled case, where the in-phase and out-of-phase modes represent two

distinct resonant frequencies with comparable responses. A similar result was found for the

effect of resonant frequency mismatch on the corner-coupled resonators of [6]. However, in the
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latter, the combined electrical output of the flexural-mode microresonators was dramatically

compromised with a much smaller mismatch than the values shown in Fig. 6.7.

Current fabrication techniques employed at Draper consistently produce dimensional tolerances

of . gm or less. Therefore, assuming errors will not exceed this standard, the coupled parallel

resonator represents a much more robust design than its uncoupled counterpart, whose transfer

function is degraded severely with even the smallest of dimensional discrepancies.

6.4 Multi-Port Configuration: Ladder Filter

Because the parallel coupled resonator is a one-port electrical device, it can function only as

filter component. However, by changing the electrical boundary conditions imposed upon the

coupled geometry, the latter can be transformed into a multi-port device, allowing it to operate as

a filter independent of additional passive elements. Because the electrical boundary conditions

depend only on the positions of the electrodes, the geometries of the single and multi-port

configurations are the same. The difference between the two configurations lies in the method

used to actuate and sense the behavior of the resonator bars. In the parallel configuration, both

the bars in the coupled set are driven simultaneously and their output represents a combination of

their responses. In contrast, for a multi-port configuration, only one resonator is driven by a

sinusoidal potential input. Because the resonator has piezoelectric properties, this voltage input

produces a sinusoidal displacement in the driven resonator. Mechanical coupling between the

bars, in turn, causes a corresponding vibration in the unforced resonator. The vibration of the

latter induces an output voltage which determines the filter response.

The ladder filter is a common multi-port topology, with well established applications in the area

of wireless communications [12]. A normal ladder filter design includes two resonators whose

electrical responses are linked by a passive capacitor element. This capacitive element provides

electrical coupling between the resonators and creates a filter which can operate with or without

a mechanical connection. In fact, most current ladder filter designs are fabricated such that the

resonators are not physically joined. However, as with the parallel configuration, mechanical
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coupling yields a ladder filter design that is more robust to tolerance errors. Figure 6.8 shows

both the coupled and uncoupled ladder filter geometries as well as the corresponding equivalent

circuit. Source and load resistances are added to the geometries shown in Figures 6.5(a) and (b)

in order to model the presence of the electrical probes used to actuate and sense the filter's

response. The output voltage is determined by finding the potential drop across the load resistor.

The electrical reflection coefficient, S21, is calculated from this value and utilized to generate the

transfer function of the filter.

Ladder Filter Equivalent 2

Circuit

R s

Vout

Vin R

RsL

Figure 6.8: Coupled and uncoupled ladder filter topologies including equivalent circuit model.
Passive elements include coupling capacitor, C12, as well as source and load resistances (i.e. Rs
and RL). Filter output is read across RL.

The passive coupling capacitor is connected to the bottom electrodes of both resonator pairs. As

the equivalent circuit indicates, the resonators share a common node in the electrical domain. In

the coupled geometry, this common node is created by both the mechanical connection between

the inside tethers and the presence of C12 . For the uncoupled configuration, the coupling

capacitor alone is responsible for linking the electrical responses of the resonator pair. For the

uncoupled topology, the C12 element provides filter designers with a tunable parameter that can
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control the filter response in the passband [2]. At or near the operational resonant frequency of a

high Q filter, the impedance characteristic of the coupling capacitor dominates the electrical

transfer function of the uncoupled filter. For typical MEMS filters, the bandwidth is relatively

small compared to the center frequency. As a result, the coupling capacitor impedance is

virtually constant over the operational frequency range, providing a relatively flat passband

response. As will be demonstrated later, the passband response for a coupled filter is dominated

by the mechanical connection between its tethers rather than the value of C12 .

Similar to the response of the parallel configuration, the filter output of the uncoupled ladder

topology will break-down if the resonator sizes do not match exactly. Once again, however, if

the resonators are coupled mechanically, the transfer function of the filter is significantly more

robust to dimensional errors. To demonstrate this phenomenon, a case study is performed

utilizing the guidelines provided by an optimized ladder filter design, the details of which are

included in the thesis of J. Kang [2]. While the design in [2] was fully defined for only one

specific resonator (L = 6.04 pm, w = 3.22 pm, Q = 104), the general optimization approach

suggests that filter parameters based on a generic resonator bar should have the following

relationships:

R 5 C R Un oupled Ladder Filter Design
C12 =500C f

where R is the resistance and C is the motional capacitance of the BVD model. When the

mechanical coupling is included, an optimal transfer function is achieved with a different set of

filter parameters:

Rs = RL =10 R
R = =10 C }Coupled Ladder Filter Design

C12 = 1000C
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With both the coupled and uncoupled configurations close to their optimum designs, Figure 6.9

compares their electrical responses.

S21 vs Frequency

0 -Uncoupr-------- - -- - -
- Uncoupled Ladder

- Coupled Ladder
-10

%u -40

-60

-70
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Frequency (MHz)

Figure 6.9: Electrical transfer functions for coupled and uncoupled configurations using circuit
parameter guidelines from an optimized design.

The effect of mechanical coupling on the transfer function of the ladder filter is evident from the

S21 plot above. The two peaks of the coupled response correspond to the in-phase and out-of-

phase modes of the device. While the values of the passive electrical elements are refined to

achieve minimal insertion loss, the passband "ripple" between the peaks indicates that further

mechanical optimization is needed to flatten the response over this frequency range.

Assuming that this ripple can be attenuated, the coupled filter offers the potential for a much

larger response bandwidth than the value that is achievable using the uncoupled configuration.

The uncoupled bandwidth, like that of a single bar, depends primarily on the Q of the device. In

contrast, the bandwidth of the coupled filter is determined mechanically by the modal output of

the structure [13].
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Despite the advantages discussed thus far, the importance of coupling becomes most apparent

when the effects of fabrication errors are investigated. When tolerance errors are incorporated

into the geometry of a ladder filter model, the effects of such non-idealities are similar to those

associated with the parallel configuration. For example, in the uncoupled case, the single

resonance occurring at the resonators' common longitudinal frequency begins to break-down

into two distinct, smaller electrical responses. On the other hand, the transfer function of the

coupled geometry is only slightly degraded. Figure 6.10 illustrates this difference in robustness.

S2 1 vs Frequency
0 - -

-Uncoupled 6-6
-- Uncoupled 6-6.05

-30

-60

- Coupled 6-6
-- Coupled 6-6.05

-5

-15

735 765 795 825 855

Frequency (MHz)

Figure 6.10: The effect of fabrication errors on the transfer functions of coupled and uncoupled
ladder filters. The legend notation, "6-6.05", refers to the different resonator lengths (pi).

For a relatively small discrepancy in resonator length, the uncoupled ladder geometry produces a

significantly deteriorated transfer function. Because the fabrication error of .05 gm is still rather

small compared to the resonator lengths, the difference between the center frequencies is also

small. For this reason, the unforced bar has an electrical response at both resonant frequencies.
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As the difference in resonator length increases, the individual responses in the transfer function

would be expected to drift farther apart and decrease further in magnitude. In contrast, the lower

plot illustrates the robustness of the coupled design. For the same fabrication error as in the

uncoupled case, the response at resonance drops slightly and the passband ripples increases.

However, the transfer function, in general, does not break down significantly.

While the presence of the coupling capacitor is necessary in the uncoupled design, the effect of

C12 is still not clearly established for the coupled geometry. Since the advantages of the latter are

now firmly established, there is interest in investigating the role of the coupling capacitor in the

mechanically coupled ladder filter design. For this case study, we return to the more realistic

circuit parameters of Ch. 5, where Rs and RL equal 50 K. Assuming identical bar dimensions,

the coupling capacitor value is varied to match multiples of a single bar's through capacitance,

C. Figure 6.11 shows how the S21 transfer function of the coupled ladder filter is affected by

changes in the value of C12 .
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Figure 6.11: Changes in transfer function of coupled ladder filter with variation in C12. "FEA
Ladder" response curves generated from simulation data of coupled topology shown in Fig. 6.8.
"Circuit Ladder" represents response of circuit model in which BVD parameters have been
replaced by a passive capacitor having a value of Co.

The figure above indicates that the coupling capacitor value in the mechanically coupled ladder

design has a significant effect on the transfer function of the latter. However, the general trend is

that the filter response becomes increasingly better as the value of C12 is made larger. This trend

indicates that the coupled ladder design performs best when the mechanical coupling through the

support tethers dominates the impedance characteristic. Therefore, whereas C12 is necessary for

operation of the uncoupled ladder filter, its presence in the coupled design is not only

unnecessary, but degrades the transfer function significantly when the C12 value is within an

order of magnitude of Co.
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6.5 Multi-Port Configuration: Stacked Crystal Filter

The general conclusion from the ladder filter case study is that large coupling capacitor values

produce the best transfer function characteristics. In the electrical domain, large capacitors have

low impedances. When C12 is equal to 1000CO, the impedance of the coupling capacitor

(Z cc l/C, ) is relatively small and, therefore, has little effect on the transfer function of the

model. As a result, for large coupling capacitor values, the effect of C1 2 in the circuit model can

be neglected. If the impedance of the coupling capacitor is assumed to be negligible, the

equivalent circuit for the ladder filter matches that of another multi-port topology - namely, the

stacked crystal filter (SCF). Originally, SCF designs were characterized by vertically stacked

layers of piezoelectric material and focused on isolating the primary thickness modes of the

structure [11]. In a SCF design, the top layer is driven at the resonant frequency and because the

two layers are joined mechanically, the bottom layer resonates as well. In between the layers,

the common electrode is grounded, thus completely decoupling the layers in the electrical

domain. Because the layers are not coupled electrically, the output voltage is attributed solely to

the mechanical resonance of the bottom layer. Like the original SCF, the electrodes of Draper's

coupled resonator design are lithographically cut such that the two bars are driven and sensed

independently, while, at the same time, sharing a common ground electrode. Figure 6.12 shows

the two geometric configurations characterizing the SCF topology.
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Figure 6.12(a) and (b): Geometric configurations for original and coupled bar stacked crystal
filter. The equivalent circuit for the SCF topology is also shown.

The equivalent circuit indicates that the bars will not interact with each other electrically without

mechanical coupling. As in a ladder configuration, both the longitudinal modes of the SCF

geometry produce a voltage response at their resonant frequencies. For a typical SCF geometry,

the in-phase and out-of-phase responses overlap in the transfer function creating a new larger

passband. The frequency separation between the in-phase and out-of-phase modes depends upon

the modal output of the structure and, as a result, varies with modifications to the geometry.

Consequently, as with the parallel configuration, there is interest in observing how varying the

inside tether length (i.e. affecting the coupling between the resonators) changes the filter

characteristics of the coupled SCF geometry.

6.5.1 Effect of Coupled Tether Length Variations on S21

An ideal filter has a large bandwidth (i.e. 3-5% of center frequency), flat passband, and sharp roll

off characteristics. A set of relatively optimized circuit parameter values was introduced in the

ladder filter case study. However, the optimized source and load resistances are currently not

realizable values. Therefore, Rs and RL are maintained at 50 Q and simulations are performed to
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determine how modifications to the coupling tether length can be utilized to tune filter

parameters. The simulated FEA model employed to generate the transfer functions of the

various coupled configurations is shown in Figure 6.13.

Figure 6.13: FEA model of coupled SCF configuration including
Output voltage is read across RL-

source and load resistances.

As in the previous tether length study, the outside tether length of 7 gm is held constant, and the

coupling tether length is varied to match multiples of the outside value (i.e. 3.5, 7, 14 gm, etc).

Because the multiples approximately coincide with fractions of the bar's longitudinal

wavelength, the different configurations produce relatively similar transfer function parameters.

Figure 6.14 illustrates the similarities between the various response curves.
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S21 vs Frequency
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Figure 6.14: SCF transfer functions for various coupling tether lengths. The legend notat

the same as that used for Fig. 6.4.

For all the configurations, the out-of-phase response peak (between -33 and -35 dB) is slightly

higher than the in-phase value. The peak to peak difference for the symmetric geometry is the

smallest (< I dB) of the group. However, none of the other configurations produce a peak

discrepancy larger than 3 dB. Since the models are not optimized, their passbands response is

significantly distorted. For all the geometries, the "ripple" through the passband is in the range

of 12-16 dB. Finally, the roll off for each curve is consistent with that of a typical filter. On

average, the passband rejection is approximately 40 dB. Table 6.2 summarizes the comparison

of the transfer function parameters.
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Table 6.2: Transfer function parameters for SCF geometries with modified inside tether lengths.

For coupling tether lengths which do not coincide with multiples of the outside length, the

transfer function parameters vary significantly from the values shown above. Especially in the

cases of smaller inside tether lengths, the transfer function parameters are sensitive to changes in

the geometry. With a change as little as a micron in the coupling tether length, the passband

ripple and peak to peak bandwidth vary considerably. Furthermore, the location and significance

of spurious modes is also affected. Fig. 6.15 shows the effect of a transition in coupling tether

length from 7 to 6 gm.

S2 1 vs Frequency
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Figure 6.15: Transfer function progression with small changes to coupling tether length.
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Coupling Tether B andw idth Passband
Length (p m) (M H z) Ripple (dB

3.5 8.00 11.89

7.0 12.14 15.85

14.0 7.98 13.25

21.0 7.63 12.98
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As the length changes from 7 gm to 6 gm, the peaks corresponding to the in-phase and out-of-

phase modes drift apart. In one sense, this movement is beneficial because it produces a larger

filter bandwidth. However, because the passband ripple also increases, the peaks begin to appear

more like two distinct electrical responses, reducing the effectiveness of the filter. The three

plots in Fig. 6.15 track the frequency shift and response increase of a lower spurious mode

relative to the filter passband. For the inside tether length of 7 gm, the passband is relatively

well isolated, having a response about 40 dB larger and 50 MHz higher than the corresponding

spurious mode. For the 7-6-7 geometry, that same spurious mode is shifted 20 MHz closer to the

filter passband and approximately 20 dB higher in magnitude. These results demonstrate that the

inside tether length represents an important geometric parameter that can be manipulated to tune

the filter's performance.

6.4.2 Comparison of Simulated SCF and Equivalent Circuit Model

Comparing the FEA model to its corresponding equivalent circuit provides information about

how the mechanical effects of coupling can be represented in the electrical domain. As

discussed earlier, the transfer function produced by the resonator bar can be reproduced by the

BVD model, comprised of a series RLC combination in parallel with a through capacitance.

Using a separate BVD circuit to represent each bar in the coupled configuration, the equivalent

circuit model looks like Figure 6.16.

Cm C

R L mR
Ci C1

Circuit Parameters: R = 2830.38 0

Vin 1 V Lm .5662 mH R

Rs RL = 5 0 0  Cm .0707 fF

CO 7.075 fF Ccoup = .01Cm

Figure 6.16: Equivalent circuit for coupled SCF configuration; coupling tether represented by

coupling capacitor (Ccoup).
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In order to account for the effect of mechanical coupling in the device, the model of Fig. 6.12 is

amended to include a passive capacitor element between the BVD circuits. The BVD element

parameters are calculated by applying the technique of Ch. 5 to simulation data. The individual

parameter values correspond to those for a 6 tm single bar. In the electrical domain, without the

coupling capacitor (Ccoup) present, the driven bar could not communicate with its counterpart.

Therefore, COup serves as the electrical representation of the coupling between the bars through

their common tether. Its value is found by fitting the simulation data generated from the SCF

topology shown in Fig. 6.13. As the figure above indicates, in order to match the transfer

function of the symmetric case, the value for Ccup should be approximately a hundred times

smaller than the motional capacitance for a single bar. Figure 6.17 illustrates the effectiveness of

the equivalent circuit to accurately reproduce the transfer function of the symmetric coupled

geometry.
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Figure 6.17: Comparison of transfer functions for SCF: Equivalent circuit vs. FEA.

In the equivalent circuit, Ccoup is the only parameter available to change the coupling between the

resonators. Changing the value of Ccoup modifies the response bandwidth, and the latter can be

tuned to fit any peak separation. In the structural FEA model, the coupling mechanism is much

more complex, and, consequently, variations in the coupling tether length cause, not only
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bandwidth changes, but also passband frequency shifts. Modifying the value of CcOup in the

circuit model cannot account for frequency shifts such as these. In the BVD model, the resonant

frequency of the circuit is proportional to the product of L and C. To accurately account for the

frequency shift, the higher of the two longitudinal frequencies in the modal response is utilized to

recalculate the BVD element parameters. With the appropriate value of L, C and Ccoup, the

circuit model of Fig 6.16 can be utilized to fit the simulation data of models with varied inside

tether lengths.

For example, with respect to a SCF coupled geometry having inside and outside tether lengths of

7 gim, Ccoup is increased to account for the change in bandwidth and the BVD parameters are

recalculated to match the new frequency range of the passband. Relative to the symmetric

geometry (7-14-7), the bandwidth of the 7-7-7 configuration increases about 4 MHz and the

passband shifts approximately 10 MHz higher. The circuit model captures the increased

bandwidth with a corresponding increase in the value of COUP. In fact, the appropriate ratio of

CcOUP to C for a given geometry coincides closely with the ratio between the bandwidth and the

resonant frequency of the filter. This trend is analogous to the relationship found by Clark [1] in

the study of a three resonator micromechanical filter coupled with soft flexural-mode springs.

This study demonstrated that the percent bandwidth (BW/os) of the filter is proportional to the

stiffness ratio between the resonators and the coupling springs. Table 6.3 shows this relationship

for the circuit model of Draper's coupled resonator bar.

Coupling Tether Ratio: Bandwidth To Ratio: C To M otional

Length (pm) Resonant Frequency (%) Capacitance (%

3.5 1.01 1.02

7.0 1.53 1.54

10.0 1.16 1.17

14.0 1.01 1.02

18.0 1.94 1.96

21.0 .97 .98

Table 6.3: Ratio of transfer function parameters (BW/os) compared to ratio of circuit element
parameters (Ccoup/C). The ratio of capacitances in the circuit model is analogous to the stiffness
ratio in [I].
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The table shows that, relative to the symmetric case, the ratio of Ccoup to C is increased to 1.5%

to account for the larger bandwidth. This passband spans the frequency range from

approximately 793.5 to 805.6 MHz. To account for this frequency shift, the motional inductance

and capacitance of the BVD model are recalculated using the higher of the two frequencies. The

transfer function of the modified circuit model is overlaid on the response of the corresponding

FEA simulation in Figure 6.18.

S21 vs Frequency
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Figure 6.18: Circuit and FEA model transfer functions for a coupled SCF geometry with a
modified coupling tether length (i.e. 7 gm).
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Chapter 7

Future Work and Conclusions

7.1 Optimization of Coupled L-Bar Stacked Crystal Filter

In Ch. 6, an equivalent circuit model was introduced and validated as a useful means of

representing the electrical behavior of a coupled SCF. Using this equivalent circuit, the coupled

design is now optimized, noting the modifications made to achieve the improved transfer

function. The suggested source and load resistance values from [2] are used to obtain the

optimum filter response. Furthermore, the passband ripple characterizing the unoptimized SCF

configuration is eliminated by lowering the value of the coupling capacitor in the circuit model.

Finally, because initial testing established the 10 Rm bar as the most advantageous resonator

geometry, the BVD model parameters introduced in Section 5.4 are used for the optimized SCF

design. Applying these modifications to the SCF equivalent circuit of Fig. 6.16, the following

model is obtained.

CCM)UP

CC

Cmn CM

R LM Lm R

C C

Circuit Parameters: R = 1962.14 Q
V = 1V Lm = .6751 mH

V RS = RL = 1QR Cm .1695 fF
Co = 15.35 fF 0 cojp = .007Cm

Figure 7.1: Optimized SCF equivalent circuit model with corresponding element values.
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The modified equivalent circuit produces an optimized filter transfer function characterized by a

flat passband response and an insertion loss of approximately 1.4 dB. Also, the percent

bandwidth of the filter is I % with a passband rejection of about 40 dB. The impedance at

resonance is around 2 kQ for an input mechanical Q of 1000. As a result, the source and load

resistances, equal to 10 R, are not realizable values in an actual filter design. However, assuming

the desired Q range (i.e. 104) for the resonator can be obtained, impedance matching with front

end electronics will become more feasible. Figure 7.2 shows the response magnitude and phase

angle of the optimized transfer function plotted versus frequency.
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Figure 7.2: Circuit transfer function for optimized stacked crystal filter configuration. Circuit
data obtained using BVD model parameters for I 0x5 pm geometry.

In order to achieve the passband characteristic shown above, the value of Ccup is reduced by

30%. This decrease in the coupling between the individual BVD circuit components causes the

peaks to shift closer together, and the passband flattens as a result.
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Figure 7.3 illustrates this phenomenon by comparing the transfer functions of the standard

symmetric geometry and the SCF model with reduced coupling.

S21 vs Frequency
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Figure 7.3: Zoomed
response

view of original transfer function overlaid on the optimized passband

Although reduced, the passband of the modified SCF design is more useful for filter applications

because of its flattened response. Reducing Ccoup in the electrical domain is analogous to

decreasing the amount of mechanical coupling between the resonators. Therefore, in order to

achieve smaller mechanical coupling in future coupled filter designs, physical modifications

must be made to the inside tether connecting the resonators. The amount of mechanical coupling

present in a design depends upon the ease with which longitudinal waves can travel through the

common support tether. As a result, modifications to the filter geometry which discourage the

formation of these waves could potentially reduce the coupling between the resonator bars. For

example, a stress relief structure could be incorporated into the model to dissipate some of the

energy transmitted by the tether waves. A structure such as this could be created by fabricating

bends in the coupling tether. Other options include reducing the width of the coupling tether or

fabricating a rigid structure to connect a portion of the tether to the substrate. Figure 7.4 gives
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examples (top view) illustrating what each of the suggested geometries would look like after

etching.

Figure 7.4: Examples of modified coupling tether geometries.
the mechanical coupling between the resonator bars.

Goal of modification is to reduce

7.2 Proposed SCF Geometry and Fabrication

Presently, Draper's fabrication and testing of the L-Bar resonator have been restricted to a single

bar geometry. However, it is anticipated that future batches of the devices will include coupled

designs, which may serve as both filters and filter components. Depending on their compatibility

with current fabrication techniques, the suggested coupling tether modifications introduced in the

preceding section can be implemented as necessary. The following is a proposed SCF topology
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that can serve as a guideline for future coupled devices. Figure 7.5 illustrates the steps of the

fabrication process.

Ni

Mo

Sil

sio,

Figure 7.5: Steps for fabrication of coupled SCF topology. Top view is shown for reference.
Side views show the progression of fabrication process.

The geometry shown in Fig. 7.5 combines the coupled bar design with the new 90 degree

departure of the bond pads from the support tethers. The first profile view shows that the process

begins with a multi-layered film. A metal-AIN-metal combination sits upon two layers of

substrate. The silicon comprises the wafer base, while the silicon dioxide serves as the sacrificial

layer eventually removed in order to release the device. The second profile view illustrates how

the electrical circuit is patterned. Both the top metal (Ni) and AIN are removed at both ends of

the structure to expose the bottom metal (Mo). Exposing the bottom metal on both sides

facilitates the actuation and sensing of the device. A cut is made in the bottom metal between

the resonators to electrically decouple them. Then, to complete the patterning of the electrical

boundary conditions, a lead is used to connect the top metal to ground. These boundary

conditions are slightly different from those applied to the FEA models of Ch. 6. For the

simulated SCF geometries, a cut is made in the top surface and the entire bottom surface is

grounded. For an actual device, inverting this set up reduces the probability of parasitic

capacitances developing across the bond pads. The last step, as shown in the final profile view,
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is to release the resonator bar and tether supports from the substrate. This is accomplished by

etching away the sacrificial SiO 2 layer from beneath the device.

7.3 Conclusions

The purpose of this study was to show how mechanical coupling between MEMS L-Bar

resonators could be utilized to achieve improved impedance characteristics for a range of UHF

filter applications. FEA simulations were used to investigate this mechanical coupling. First, an

analytical model and equivalent circuit were derived. The analytical derivation was then

validated with an FEA model having the same material properties and boundary conditions. The

center frequency and resonant impedance produced by the FEA model was within I% of the

analytical values. For further investigations, the FEA model was modified to include both the

resonator bar and its tether supports.

Compared to an actual device, this geometry including tethers is relatively simple, not

accounting for any of the filter's substrate or packaging. As a result, a boundary condition study

was undertaken to determine the sensitivity of the L-Bar model to changes in the peripheral

geometry and displacement constraints. This case study provided information about the range of

error associated with the simple resonator-tether model. A table was generated comparing the

transfer function parameters of resonator geometries with various boundary conditions. The

longitudinal center frequencies of the different models fell in a narrow range, and the resonant

impedance of the simple model was within a factor of four or less of the other values. Therefore,

the comparison of FEA results demonstrated that the simple model yielded impedance and center

frequency values comparable to those of more complex geometries. Despite these similarities,

the more complex models did produce a greater number of spurious modes than the simple

geometry. However, due to an inability to reproduce the exact boundary conditions of the real

device, it was decided that the presence and significance of spurious modes would ultimately

have to be determined by experimental means. Taking this into consideration, initial

experimental results from an actual resonator were compared to the transfer function of a simple

I0x5 gm model including metal electrodes. With respect to resonant frequency, impedance, and
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the nature of spurious modes, the simulated electrical output corresponded well to the actual

transfer function.

With the simple model qualified as a suitable FEA geometry, a technique was introduced that

outlined a method for calculating the parameters of the Butterworth van Dyke (BVD) circuit

model from simulated (or measured) transfer function data. This technique was tested on

simulation data for which a mechanical Q had been designated. As a consistency check, the

input mechanical Q was compared to the extracted Q for a range of values. The percent error

between the two Q values was found to be minimal for all cases. Consequently, it was

demonstrated that an effective circuit model could be developed from transfer function data.

Further testing of the method on actual S21 data was hindered by the presence of electrical

parasitics, which contribute significantly to the transfer function of a real device. However, this

parameter extraction technique can serve as a foundation for future efforts to develop a more

comprehensive circuit model.

In the final chapter, a new resonator topology was presented. This topology employs mechanical

coupling between L-Bar resonators to improve upon the output of a single bar, and offer

alternative configurations for filter design at Draper. The new coupled geometry can be

configured as either a single-port resonator or a multi-port filter. If used as a resonator, the

single-port mechanically coupled configuration with parallel electrical boundary conditions

provides virtually the same transfer function as a single bar, with half the impedance at

resonance. If the coupled bar is designed to operate as a filter, it provides a geometry that is

more robust and offers a wider bandwidth than uncoupled topologies. In the discussion of future

work, optimized filter parameters were presented, and suggestions were provided for achieving

these values. Furthermore, the process for fabricating a stacked crystal filter geometry was

outlined, thus establishing a guideline that will facilitate efforts to improve upon current UHF

filter designs at Draper.
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Appendix

Finite Element Analysis in ANSYS

This section provides a general overview of the finite element modeling process using ANSYS.
The steps for modeling a piezoelectric resonator bar with tether supports are outlined. The
descriptions given below provide insight into the procedure for finite elements based analysis
and demonstrate the comprehensive nature of electromechanical modeling in ANSYS. The
general modeling process is divided into three main parts: preprocessing, solution, and post-
processing.

Preprocessing

" Define model geometry including dimensions and coordinate system. For consistency
with the analytical model, resonator length is aligned with x, and tether length with x2 .
Also, Boolean operations (i.e. adding/gluing volumes, areas, etc) are performed to
combine resonator and tethers into a single geometry.

* Choose element types. A piezoelectric block element is chosen along with the circuit
elements (i.e. source/load resistors, coupling capacitor, etc.) used in the harmonic
analysis.

" Define material properties - density, orthotropic stiffness and piezoelectric constants, and
isotropic dielectric value.

* Define real constants - values for passive circuit elements. Only necessary in harmonic
analysis because circuit elements are not compatible with modal solver.

o For a MEMS component, both material property values and real constants should
be scaled to account for the micrometer dimensions of the geometry.

* Mesh model geometry. Area and line element divisions are designated to define the mesh
density. Because linear block elements are used, the mesh through the model thickness
should be comprised of at least three element layers and the element aspect ratio (i.e.
length/thickness) should not exceed five.

" Apply boundary conditions - mechanical and electrical
o Mechanical - finite element displacement constraints are imposed on the tether

ends. Nodes on the cross-section of the tethers are fixed in the y-direction. A
stress free boundary condition exists on all other surfaces.

o Electrical - nodes along the top and bottom surfaces of the geometry are grouped
into separate coupled sets. Top reference node is given a value of I V and bottom
reference node is grounded.
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Solution

" Choose analysis type - modal or harmonic.

" Modal analysis yields the mode shapes and corresponding resonant frequency values of
the geometry. The modal extraction method is Block Lanczos and the analysis range is
defined by a starting and ending frequency - these values are on the order of a GHz for
the MEMS geometry.

* Harmonic analysis produces the electrical transfer function of the model. The harmonic
solution method is designated as "full" and a sparse equation solver is used. Solver
parameters include the frequency sweep range and the number of sub-steps to be
analyzed within that range. A greater number of sub-steps results in a finer frequency
sweep - the frequency step is the smallest when sweeping across the primary mode (i.e.
longitudinal) of the geometry. The individual values of the harmonic sweep represent the
frequencies of the sinusoidal potential function used to drive the model. The magnitude
of the forcing function is I V.

Post-Processor

" Choose post-processor type - general or time.

" General post-processor is used for reviewing the modal analysis results. The mode
shapes of the geometry are animated and the longitudinal mode is identified by its
displacement and frequency. The modal frequencies are then input into an array, which
is used in the harmonic analysis.

" The time post-processor is employed to determine the electrical response of the geometry
as it varies with frequency. The charge is calculated as the reaction force at the driven
reference node on the top surface of the model. The charge is then multiplied by the
frequency to obtain a value for the current produced in the device. The impedance is
calculated as the drive voltage (i.e. I V) divided by the current, and the transfer function
is generated by graphing the impedance versus frequency. If an S-parameter transfer
function is desired, the voltage across the load resistor is obtained instead of the charge.
The output voltage ratio, calculated as the reciprocal of this load resistor voltage, is used
to determine the corresponding S-i values.
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