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ABSTRACT

An immersive audio environment was created that explores how humans react to

commands imposed by a machine generating its acoustic stimuli on the basis of

tracked body movement. In this environment, different states of human and machine

action are understood as a balance of power that moves back and forth between the

apparatus and the human being. This system is based on spatial sounds that are

designed to stimulate body movements. The physical set-up consists of headphones

with attached sensors to pick up the movements of the head. Mathematic models

calculate the behavior of the sound, its virtual motion path relative to the person, and

how it changes over time.
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1. Introduction

Technical devices are generally considered to be compliant instruments that are

fully controllable tools. From this perspective, humans have total power to operate

machines at will. However, technologies often act back on humans, reversing the

intended command direction. First of all, there is the inherent danger of malfunctions

and accidents. Besides the obvious consequences of an accident, the possibility of

dysfunctions alone requires constant vigilance. Driving a car, for example, demands

the driver's full attention, and partly subordinates him to the technical device.

Coercions like this can be found on different scales and in varying degrees of

directness. The driving example describes a person and a technical object in a

confined one-to-one situation. But as technical objects grow to systems, their

interactions become manifold and complex. To continue the car example to less

oblique effects, the need for fuel has huge political and environmental implications,

even causing war.

Interactive art pieces are usually designed to be compliant systems that wait for

user input, and are often are designed for strictly limited and controlled output. This

can be understood from their evolution from information systems and data terminals,

and their tradition of data storage and retrieval. Even with such minimal

functionality, interactive artwork goes far beyond traditional painting and sculpture,

which naturally produces passive objects for appreciation. By leaving simple

interaction schemes behind, technological art has the potential of an inner animus

that develops its own intentions and can even escape control. So, human "linkage

with the machine is never free from anxiety or the structures of domination."' This

issue has been reflected in a variety of art pieces, covering topics such as body and

R. Frieling, Reality/Mediality Hybrid Processes Between Art and Life
(http://www.medienkunstnetz.de/themes/overview-ofmedia-art/performance/23/)



machines,2 blind spots of technology from a social point of view,3 or technology

purposely used for controlling humans.4

Acoustic Chase looks at the give and take of man-made systems by establishing

an interactive artwork with the power to actively impel the human being. It generates

man-machine interactions intentionally provided with degrees of freedom that can't

be fully controlled by people. This example of a machine with "free" will illustrates

how technical systems have the potential to leave their role as compliant tools and

develop their own agency. It uses sound and motion tracking as the main interaction

components, in order to establish a mutual relationship of power in which the human

being is partially controlled by a device, which in turn is controlled by the human.

This paper describes the technical platform for that system as well as different

types of embedded acoustic stimuli. As the final system is designed to provide a

coherent aesthetic experience as a piece of art, its expressiveness and place within

this context is also examined.

Acoustic Chase expands on ideas that I explored in "Haptic Opposition," a

previous project, which combined touch and vision to create a human machine

interaction in which the apparatus physically pushed back against human motion.

There, the concept of acting back was taken very literally, and expressed in the form

of a handle that was forcefully driven by the machine. The system focused on a

physical contact with a real object, and an interaction designed to grow into chaotic

fight.

Haptic Opposition had a clear object-like character, being a curious machine that

people could touch and physically fight with. It manifested itself as a very real entity

in space, and the fight with it became hard work. Acoustic Chase directs the viewer's

2 Cp. Ars Electronica topics "Flesh Factor" (1997), "Genetic Life" (1993), "Life Science" (1999), or "Next Sex" (2000)

3 Cp. Judith Butler "Cyborg Bodies", Chris Csikszentmihalyi "Afghan Explorer", Natalie Jeremijenko-Bureau of Inverse
Technologies "Suicide Box"

4 Cp. CTRL[Space] - Rhetorics of Surveillance from Bentham to Big Brother, ZKM 2002



attention to the here and now, and abandons the use of expressive media as a window

to medial worlds.

The main technical components of Acoustic Chase are headphones, an inertial

tracking unit attached to them, and a system for sound generation (see Figure 1). The

sound control is designed to increase the acoustic stimuli until specific head motions

are tracked.

Figure 1: headphones with attached IMU

By switching from haptic feedback to sound, the quality of interaction changes

significantly. First, the object-character that is an essential part of Haptic Opposition

vanishes. Sound displayed by headphones is closely and directly applied to the ears,

resulting in "phantom" locations where it seems to come from. These may be

undefined, global directions for regular sound, or from virtual spots in space for 3D

spatialized sound. Thus, the physical object is replaced by disembodied sounds, and

the user interaction volatilizes from a defined spot, the handle, and diffuses into the

whole space around the user. In Acoustic Chase, the clear distinction between the

object and the observer dissolves into partial immersion.



Though less direct than tangible force, sound can also be used to push and impel

persons. Volume is a basic quality on an audio "push" that compares to the strength

of a physical push. Audio signals, verbal and non-verbal, are a familiar method of

commanding often used in teaching, interpersonal relationships, or military

applications. They are difficult to escape: people can't easily "hear away" or "close

their ears." However, sound by itself leaves much room for imagination. This

characteristic fits nicely with the often oblique and indirect ways humans are subject

to diffuse pressures from their environment.

Acoustic Chase does not use sound in a musical way but rather generates a

collage of prerecorded snippets. This media aspect adds an additional layer of

expression into the system: By selecting the appropriate sound material, Acoustic

Chase adapts its core idea of a balanced system of power to different fields: the

content is not limited to talking about technology itself, but can draw analogies to

other forms of coercion, such as addiction or peer pressure.

Head tracking provides an intuitive interface for moving through the soundscape.

By recording the head position, which, of course, tracks the ears as well, the virtual

audio scene can react to human motions in a natural way. Physical objects have been

replaced by disembodied sounds, so there is no need for any manual interface.

Instead, the human subject is defenselessly exposed to the sound. And since the

acoustic objects are invisible, they are untouchable as well.



2. Technical Platform

The basic elements of the technical platform are the motion tracking, sound

generation, and control unit. The motion sensor tracks the movements of the head

and therefore the position of the ears. This information will be used to localize the

person within the virtual audio environment, and as input variables for the higher-

level man-machine interaction. The audio generating unit plays back stored audio

samples using mixers and filters, allowing effects such as putting a virtual sound

source to a specific geometric spot in the space around the listener. Headphones are

used as output to the user from the sound generator. Based on the tracked motion of

the person, mathematically described models control the behavior of the sounds.

Figure 2: basic elements of the technical platform



2.1 Motion Sensor

This project focuses on generating an audio environment that interacts with the

person in two ways: considered as a geometric space, the user's movements inside

this environment lead to quasi natural relocation of the virtual sound sources relative

to the person's head. On a higher level, the tracked motions influence the animation

of the sound sources described by specific behavior patterns. All this is done by

tracking the movements of the person's head. This equals the main tracking task in

VR environments, and a number of solutions have been developed.

2.1.1 Overview Tracking Technology

Well-established principles are mechanical, acoustic, optical, magnetic, and

inertial technologies. Youngblut et al. give an overview of available tracking

systems. 5

Mechanical systems use joint linkages with attached encoders that directly bridge

the remote system with a fixed reference frame. The defined geometry in conjunction

with high accuracy position encoders provides a very precise tracking result. Their

main disadvantage, the subject being tethered by a cumbersome system of rods, is

inherent to the principle. Mechanical tracking has been replaced by a variety of

contact-free sensing technologies.

Optical systems generally watch the scene through one or more cameras and

estimate the orientation and position of the object of interest by image analysis.

Many image processors thereby rely on tags that have to be mounted on the tracked

5 C. Youngblut, R. E. Johnson, S. H. Nash, R. A. Wienclaw, and C. A. Will, Review of virtual Environment Interface
Technology, Institute for Defense Analyses - IDA, Paper P-3186, March 1996



object. This approach has gained a lot of interest in research 6, but has not had a

major impact on commercial products so far7.

Several methods have been successfully applied to replace the linkages used by a

mechanical probe head, and to measure the geometric relationship between the body

frame, which is attached to the moving object, and the fixed reference frame.

Acoustic systems gage the running time between one or several ultrasonic emitters to

one or several receivers. This results in a mesh of straight lines of distances, which

can be resolved to the relative position and - with enough emitters and receivers -

also to orientation, covering a space up to 15 ft. Their main weaknesses are the

sensitivity to environmental conditions, like wind and noise interference, and the

difficulty to radiate and receive the waves throughout all directions. The ultrasonic

head tracker from Logitech, for example, only allows movements within a 100-

degree cone and 5 ft along linear axis to ensure sound contact between the source

and the receiver.8

By generating varying magnetic fields and sensing their relative strength at the

moving probe, precise contact-less sensing within a confined space may be

accomplished. These may be resolved to relative position and orientation. With a

6 Cp.: M. La Cascia, S. Sclaro, and V. Athitsos, Fast, reliable head tracking under varying illumination: An approach based on

registration of texture-mapped 3D models, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(4): pp. 322-

336, April 1999.

J. Rekimoto. A vision-based head tracker for fish tank virtual reality: VR without head gear. In Virtual Reality Annual

International Symposium (VRAIS '95), pp. 94-100, 1995.

Z. Zivkovic and F. van der Heijden, A stabilized adaptive appearance changes model for 3D head tracking. In IEEE ICCV

Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems (RATFG-RTS'01), pp. 175-

182, 2001.

L.-P. Morency, A. Rahimi, N. Checka, and T. Darrell. Fast stereo-based head tracking for interactive environments. In

Proceedings of Conference on Automatic Face and Gesture Recognition, pp. 375-380, 2002.

D.O. Gorodnichy, S. Malik, and G. Roth. Affordable 3D face tracking using projective vision. In Proceedings of International

Conference on Vision Interface (VI'2002), pp. 383-390, 2002.

7 One of the rare available products is the marker based system DynaSight that tracks the head position in front of a camera,

limited in space of a person sitting in front of a desktop screen. (http://www.orin.com/3dtrack/docs/index.htm)

laserBird is a optical system without camera; it uses scanning laser beams and photo-receptors, mounted onto the target, to track

within a cone of approx. 60 degree and a distance up to 3 ft. (http://www.ascension-tech.com/products/laserbird.pdf)

8 http://www.vrdepot.com/manual-tracker.pdf



careful antenna design, spaces up to 10ft can be covered.9 The main drawback with

this method is that the magnetic fields are very weak and drop significantly over

distance, so that ferromagnetic and metallic objects can cause significant distortions.

Inertial system offer a completely different approach to track motion: instead of

measuring the geometric relationship between the fixed and the body frame, they

work without an external reference, but maintain a contained fixed frame by

integrating the changes in position and angle over time. Being a self-contained

system without having the need of any external aids makes this motion tracking

principle highly attractive for navigation over big distances and through arbitrary

environment.

The main drawback thereby is that, due to the lack of an external reference, long-

time stability is very hard to achieve, and measurement errors quickly build up to a

significant misalignment between the calculated and the actual position. This effect

turned out to be particularly critical for linear movements, as linear inertial sensors

are only able to pick up acceleration, which has to be double integrated to give

information about displacement. Even worse, the accelerations resulting out of head

motion are much smaller than the gravitational field of the earth; and this small

signal has to be separated from this significant static acceleration for motion

tracking.

This still limits the field of application of inertial sensing for head tracking to

angular degrees of freedom only (3D systems).10 To overcome this problem, hybrid

systems add data from additional sensors to maintain long-term stability. For

9 cp. Flock of Birds (http://www.ascension-tech.com/products/flockofbirds.php)

see also tracking systems from Polhemus (http://www.polhemus.com/FastTrak/fastrak.pdf)

10 E. Foxlin, Inertial head-tracking, M.S. Thesis, Dept. of E.E.C.S., MIT, 1993.



example, an electronic compass can constantly adjust the orientation, or acoustic

systems provide the Cartesian coordinates, whereas gyroscopes measure rotation.'1

The key characteristics to evaluate different tracking technologies are resolution,

accuracy, and system responsiveness. Besides these basic features, one most

consider the size of the sensor part that is attached to the person must be considered,

as well as the size of the working volume, the need for preparing the environment

with special equipment, and the general robustness and easiness to use. For Acoustic

Chase, the latter features gain special importance, as all technical components should

be as small as possible, and no cumbersome elements should disturb the user

experience or limit the design possibilities of the outer appearance. Furthermore the

system must be easy to use, without any need for special preparation or assistance.

Also the hardware should be easy to set up and take down, with minimal needs in

preparing the environment or calibrating. Accuracy is subordinated here: the acoustic

sense is much less precise on localizing objects than the visual sense. While the

angular resolution of the human hearing is pretty high, especially in forward

direction (around 20), it is very hard to hear how far a sound source is away.13 The

sensor therefore should have a good angular resolution, but may lack in picking up

the linear axis.

Considering the stated priorities for selecting a sensor technology, inertial

systems are a good choice, as they meet all requirements: they are small, self-

contained without the need for external reference aids, offer a high angular

resolution, and are pretty fast. Furthermore, this type of sensor is available for a very

" E. Foxlin, M. Harrington, and Y. Altschuler, Miniature 6-DOF inertial system for tracking HMDs, SPIE vol. 3362, Proc.

AeroSense '98 Conference on Helmet- and Head-Mounted Displays III, Orlando, FL 1998

12 Resolution refers to the fineness of the measurement; accuracy describes how close the measured value is to the true value;

system responsiveness comprises different types of time lags that result out of the measurment, in particular sample rate, and

time between the reprted and the actual movement of the tracked object.

K. Meyer, H.L. Applewhite, and F.A. Biocca(1992). A Survey of Position-Trackers. Presence: Teleoperators and virtual

Environments. 1 (2) (spring 1992), pp. 173-200.

13 B. Hartmann: How We Localize Sound, in Physics Today on the Web, 1999 (http://www.aip.org/pt/nov99/locsound.html)

J. Blauert, Spatial Hearing, 2nd ed., J. S. Allen, trans., MIT Press, Cambridge, Mass. 1997



moderate cost. The main challenge in using this technology is to deal with its strong

limitations in tracking linear motion. As described below in detail, MEMS inertial

units inherently don't offer long-term stability, especially for the linear axis, so they

are mostly used for angular tracking only. Acoustic Chase is purely acoustic

feedback system, so it has fewer requirements in tracking the linear position. This

offers the possibility to base the location tracking on the inertial system and avoid a

hybrid solution. Nonetheless, for further experiments, adding a tracking system with

higher locational accuracy, like magnetic technologies, will offer advanced

possibilities.

2.1.2 Inertial Motion Sensing

The advantage of a self-contained tracking system that moves with the object and

doesn't need external reference points is an ideal navigation system for aircrafts,

used for the first time in military rockets during WWII. A rotating plate (Gimballed

Inertial Platform) that could freely move around the three rotational axes was kept

stable in its original reference orientation by fast spinning masses, while the

navigated aircraft moved relative to it. This technology has been further developed to

a complete Inertial Navigation System by adding accelerometers and other

electromechanical elements to stabilize the inertial platform.14

In later systems, electronic integrators replaced the stabilized platform that

performed as a three-dimensional mechanical integrator, getting rid of complex

mechanical bearings. In this strap-down approach the accelerometers and gyroscopes

were fixed ("strapped down") to the chassis.' 5

" D. MacKenzie, Inventing Accuracy: A Historical Sociology of Nuclear Missile Guidance, MIT Press, 1991

15 D. H. Titterton, J. L. Weston, Strapdown Inertial Navigation Technology, IEE Radar, Sonar, Navigation and Avionics, No 5



Recent developments in MEMS technology allow micro-sized sensors to pick up

angular rates and linear accelerations.16 These single chip sensors can be combined

to a very small sized strap-down inertial measurement unit, sensing all six rotational

and linear degrees of motion. With this enormous downscaling in size, and also in

price, inertial measurement has gained attention for use in tracking devices for

human motion. The challenge is to achieve high accuracy with sensors that are much

less accurate than the ones used for aircraft.' 7

2.1.2.1 6 Axis System

With low-cost micro-machined sensors available, three orthogonal angular rate

sensors (gyroscopes) and three accelerometers parallel to them can be integrated in

small packages, principally providing a full inertial measurement unit.

In the case of head tracking, the three orientational degrees, yaw, pitch, and roll,

relate to shaking, nodding, and tilting the head. This defines a natural body frame

fixed to the head, with the origin in the middle of the head, the x-axis pointing

upwards, the y-axis pointing to the front, and the z-axis to the side, parallel to the

ear-axis, as shown in figure 3. With the origin of this frame inside the body, the

inertial measurement unit can't coincide with all axes and the origin, but has to be

placed with an offset. A typical position would be on top of the head or near one ear,

with the axes of the measurement unit oriented parallel to the main head axes. The

picked up rates then directly correspond to the rotation about the main head axes. No

placement without direct implantation, however, is perfect: the accelerometers

16 A. Lawrence, Modem Inertial Technology, Springer-verlag, New York, 1993

A. Shkel, R. Horowitz, A. Seshia, and R. T. Howe, Dynamics and Control of Micromachined Gyroscopes, in The American

Control Conference, San Diego, CA, June 1999

http://www.analog.com/AnalogRoot/sitePage/mainSectionHome/0,2130,level4%253D%25252D1 %2526Language%253DEng

lish%2526level1%253D212%2526level2%253D%25252D1%2526level3%253D%
2 5 2 5 2 D1,00.htm

17 E. Foxlin, M. Harrington, and Y. Altschuler, Miniature 6-DOF inertial system for tracking HMDs" SPIE vol. 3362, Proc.

AeroSense '98 Conference on Helmet- and Head-Mounted Displays III, Orlando, FL 1998



measure an additional component during rotations, as the whole inertial

measurement unit gets displaced with rotation angle multiplied by center offset.

Depending on the requirements in accuracy, this offset has to be numerically

corrected, by transforming the frame of the inertial measurement unit to the head

frame.

X44

Figure 3: body frame and reference frame

Starting from an initial reference position, constant instantaneous integration of

the angular speed, picked up by the gyroscope, provides the momentary position of

the moving body. The three accelerometers measure the total acceleration vector,

which is the sum of the constant gravitational vector g and acceleration resulting

from motion. Using the orientation information from the gyroscope, the gravitational

vector can be converted to the body frame, and subtracted from the measured

acceleration. The remaining acceleration data is first integrated to velocity, which in

turn is integrated to position offset. Figure 4 illustrates this process.



Figure 4: integration of sensor signals

In this idealized flow diagram sensor inaccuracies and drift are not included.

MEMS sensors currently are much less stable and precise than the high quality

accelerometers and gyroscopes used for aviation (up to a factor 106).18 This is

especially critical, as already small errors in orientation will cause parts of the

gravitational vector to be erroneously added to the integrals that provide speed and

position. Due to the double integration, bias in measuring acceleration will cause

linear increasing speed and, even worse, quadratic growing position offset, making

the tracking result instable. To keep this error below 1 cm/s, the pitch and roll

accuracy must be better than 0.05 .19

2.1.2.2 3 Axis System

With the currently available micro-sized inertial sensors, reliable position

tracking has not yet been proven feasible without frequent updates. All commercial

systems for inertial head tracking therefore focus on providing orientation degrees

only. These 3DOF systems primarily process the angular rates from the gyroscopes,

using additional sensors for drift correction. In this setup the acceleration data is only

used to find the downward directions and to stabilize pitch and roll. In so-called

' Laser gyros (RLG) drift about 0.001*/hr, whereas a typical MEMS gyro drifts about 1800f/hr

19 a < asin(O.01/9.8) = 0.058*



MARG units (Magnetic Angular Rate Gravity) additional magnetic compass sensors

eliminate yaw drift.20

Acoustic Chase will use an inertial measurement unit equipped with three

gyroscopes and three accelerometers, mounted on headphones near the ear. For

different applications, a varying subset of the available sensor outputs will be

processed. One of them will be a 3DOF configuration, where the x gyroscope picks

up the turning of the head (yaw), and the y and z accelerometers work as tilt sensors,

delivering the nodding and tilting of the head (pitch and roll) in a range up to ±90.

For content requiring position information, filters will be used, allowing location

tracking with low accuracy over short periods of time. Imprecision in position is

acceptable for acoustic content, as the aural-sense is much more sensitive to

horizontal rotation than to linear differences, and generally much less accurate than

human vision. Long-term drift of the sensors is being reset to zero by subtracting a

low-pass response from the signal.

2.1.3 Signal Processing

MEMS sensors from the manufacturer Analog Devices were chosen for the

inertial measurement unit. The ADX-series (accelerometers and gyroscopes) offers

good performance in a small package at low prices. The sensors are fully integrated
21and need just a few simple external components to operate.

The range of these sensors matches the requirements of head tracking. Their

moderate range of linear acceleration is mainly determined by Ig gravity plus

acceleration resulting from motion below lg; so the ADXL202E accelerometer with

20 W. Frey, Application of Inertial Sensors and Flux-Gate Magnetometers to Real-Time Human Body Motion Capture, Master's
Thesis, Naval Postgraduate School, Monterey, California, September 1996.

21 ADXL202E: low-cost ±2 g dual-axis accelerometer with duty cycle output

ADXRS300EB: ±300*/s Single Chip Rate Gyro



its ±2g range covers all normally occurring acceleration values. Angular velocities

are within a peak maximum of 600/s. 2 By adding an external scale resistor, the

measurement range of the ADXRS300 gyroscope, which is normally 300"/s, doubles

to this value. The read-out rates for the sensor data must be higher than 30Hz, as

head motions can contain frequencies up to 15Hz.

The angular rate is displayed as a linear voltage curve centered around 2.5V (half

the supply voltage of 5V). It is digitized with a quantization of 12 bits, which fully

exploits the sensor accuracy which is around 0.50/s. 23

The acceleration sensors interface via a duty cycle output, whose ratio of high

and low time is linear to the measured acceleration. The resolution is 1mg, or 0.05%

of the total scale. 24 The timer that picks up the PWM-signal therefore must count

with a minimum number of 2,000 steps per cycle.

In the current version of Acoustic Chase, an embedded controller handles the

sampling of the sensors, and performs some preliminary filtering of the signals, then

passes these results to a Windows machine that handles the remaining processing

steps.

2.1.3.1 Spatial Geometry

Two main coordinate systems have to be considered for inertial navigation: the

reference frame remains fixed in space and describes the position of the tracked head

and other objects, such as the sound sources, in a common view. The body frame is

attached to the moving object, which here is the human head, with the y-axis

22 E. Foxlin and N. Durlach, "An Inertial Head Orientation Tracker with Automatic Drift Compensation Doe Use with HMD's,"

Proceedings from vRST'94, Virtual Reality Software and Technology, Singapore (August 23-26, 1994).

23 The nonlinearity of the ADXRS300 is stated as 0.1% typ., which is 0.6*/s for the 600*/s range. The noise density is specified

as 0.1'/s Vsqrt(Hz), which is 0.5/s random rate error for a 30Hz bandwidth.

12 bits divide a range of ±600*/s in 4096 steps of 0.3*/s.

24 The specified noise floor is 200pgVHz, which means a resolution of 1mg at 30 Hz bandwidth



pointing in forward direction, x-axis to the top, and z-axis to the side establishing a

right-handed coordinate system. The local difference between the center of the

inertial measurement unit and the origin of the body frame for the human head of

about 3 inches will be neglected for the further discussion, as it only affects the

position, which is anyway flawed with significant errors resulting from the

measuring principle based on double integration.

To fully describe the orientation of the human head, two vectors are used: the top

and the front vectors. The top vector T points straight up through the top of the head,

and the front vector F points forward through the listener's face at right angles to the

top vector.

By default, the front vector is F=(O, 1, 0), and the top vector is T=(1, 0, 0).

T

Figure 5: top and front vector describing the head orientation

The inertial forces are referenced to the body frame, strapped-down to the

moving head. Thereby the gyroscopes pick up yaw rate wx (head shaking), roll rate

wy (tilting), and pitch rate wz (nodding); the accelerometers also are moved with the

head, and pick up accelerations referenced to the body frame. Suitable coordinate

transformations allow passing the numerical values for measurands and vectors from

one frame to the other without loosing consistency.



Signal processing is split in two branches: obtaining the head orientation, and

getting its position.

On the assumption that the head is mostly in upward position, or in the top 180*-

dome, a stable way to track roll and pitch (q, r) is to use the y and z accelerometer as

tilt sensors and obtain the derivation from the horizontal position with following

equations:

q = sin-(y) (1)
g

r = sin-( a) (2)
g

Yaw (p) is obtained from the x gyroscope, integrating its measured angular rate

in body frame coordinates:

p = Jazdt (3)

These angles are transformed to the orientation vectors T and F in the reference

frame by starting at the default upward front position for F and T and first rotating F

about T with angle p, then rotating F and T about FXT (which is the local z or tilt

axis) with q, and after that rotating T about F with r. The resulting vectors T and F

define the actual position of the tracked head.
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Figure 6: 3 consecutive rotations about T, FX T, and F

To obtain head displacement, gravity has to be cancelled out of the acceleration

data. As the accelerometers are fixed to the head, the gravitation vector moves

relative to them, whenever the head is rotated. Splitting the measured data in

components from gravitation and from motion can only be achieved if the

momentary position of the gravitation referenced to the body frame is known with

high precision. Assuming that the average rotation of the human head over a longer

period of time is zero, the low-passed filtered data rates from the accelerometers will

define the gravitation vector. To maintain the correct orientation of the gravitation

expressed in body coordinates, this vector is rotated with the angular rates provided

by the gyroscopes. Now knowing the direction of gravitation in body coordinates,

the acceleration due to motion can be calculated by simply subtracting g from the

measured acceleration a.
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Figure 7: correction of gravity

Velocity, still expressed in the body frame, is obtained by integrating the

acceleration over time.

v = fa*dt (4)

Integrating speed to position is done in reference coordinates, by using the head

orientation vectors T and F. vy denotes the speed in forward direction of the head, so

the head moves with vy parallel to T. Accordingly it moves with vx parallel to T, and

with vz parallel to TXF.

dx = vT+v, F +v, T x F (5)

x,, = x, + dx (6)



2.1.3.2 Filtering

Inertial tracking is very sensitive to measurement errors, as these tend to build up

during the involved integration steps. Important error sources are sensor noise, scale

factor, offset, bias and drift.2 5 For achieving optimal accuracy in tracking, these

errors have to be minimized or compensated using a suitable mathematical model

with carefully system calibrated constants.26

For Acoustic Chase, the precision requirements are much less rigid; first, as the

location abilities of the human hearing are limited, second as acoustic content in this

environment is designed for performance with somewhat imprecise head tracking.

This means that strong filters can be used to stabilize the output signals of the

inertial tracking unit. This will keep the filter implementation less complex than

using the Kalman filter, which is often used for high precision inertial measuring.

The following assumptions determine the filter process:

The horizontal orientation of the head (yaw p) can have long time drift. This

corresponds to a slow turning of the acoustic scene in the horizontal plane. As the

virtual acoustic objects are not locally referenced to the real scene, the person won't

notice the slow rotation of the whole scene around this axis.

Pitch and roll (q, r) of the head are tracked using accelerometers, which rely on

gravitation and therefore have limited bias. By means of a high-pass filter these two

angles are slowly dragged to zero position, assuming that the average head position

is upright. This mainly compensates different angles of headphones and head that

will naturally occur whenever the headphone is set up. This bias compensation,

25 R. Dorobantu, Simulation des Verhaltens einer Low-cost strapdown IMU unter Laborbedingungen, Institut fir
Astronomische und Physikalische Geodasie Forschungseinrichtung Sattelitengeodasie TU-Minchen, IAPG/FESG No. 6, 1999

26 R. M. Rogers, Applied Mathematics in Integrated Navigation Systems, American Institute of Aeronautics and Astronautics,
AIIA, Direction Series, 2000

27 For information on the Kalman filter see G. Welch, G. Bishop, An Introduction to the Kalman Filter, TR-95-041, Department
of Computer Science, University of North Carolina at Chapell Hill, updated in 2002



though, is limited to ±30 to not overcompensate when a person tilts his or her head

for a really long time, like when lying on the floor.

High-pass filters are also used to stabilize location tracking, the most critical

process in inertial measurement. Following the same idea as above, the long-time

average velocity of the head is assumed to be zero. This can be justified, as most

natural human head movements change frequently over time, like changing

orientation, accelerating, or slowing down. Furthermore, the acoustic content can be

optimized for reacting upon abrupt motion rather than on slow constant linear

displacement. By selecting an adequate corner frequency, both integration steps, one

for velocity and one for position, can be kept stable. This allows the use of inertial

measurement for linear location measurement limited to track offsets from a

momentary origin.

The following diagram shows the first order high-pass filter used here. This filter

is synthesized by subtracting a low-pass response from the signal. The time constant

for rotation has been chosen as Trot> 2 0 sec, the time constant for linear position as

run > 5sec.

Figure 8: high-pass filter (C is a constant factor; J is an integrator)



2.2 Sound Generation

Acoustic Chase uses pre-recorded and digitally stored audio content that is

instantaneously accessed, filtered, and mixed to generate real-time feedback from

tracked human motions. The sound system therefore flexibly organizes the audio

content and alters its physical quality during playback. This chapter describes the

signal chain and audio processing techniques.

Basic sound control comprises volume adjustment, mixing of several channels,

and varying the playback speed. Adding effect blocks, coupled with a crossbar

mixer, allows for a rich variety of sound manipulation, including 3D effects. Figure 9

shows the audio paths from the playback sources passing through different

processing blocks to the headphone output.
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Figure 9: audio paths



The acoustic material is either single channel or dual channel. The mono signals

are split up, with both forks passing through individual filters, configured for

spatialization as described below. Stereo signals go through effect filters as well, but

bypass the 3D stage.

Signal sources, mixers, and filters are accessible by the main controller for

instant changes.



2.2.1 3D Audio

2.2.1.1 Psychoacoustic Principles

3D audio positions sounds around the listener. The possibility to generate

localized audio spots that move in space is an important feature for Acoustic Chase.

Spatial hearing is based on three primary mechanisms:28

- Interaural Level Difference (ILD)

For sound coming from the side, the head damps the signal getting to the ear

that is turned away. This creates a difference in amplitude between both ears,

especially for higher frequencies.

- Interaural Time Difference (ITD)

Small differences in arrival times of sound, not coming from center plane

rectangular to the axis between both ears, can be decoded to determine the

direction. This effect works well for lower frequencies.

- Head Related Transfer Function (HRTF)

Depending on the arrival direction, sound waves are scattered differently by

the external ear, the head, and shoulders. This directional filtering with

attenuations and boosts over the frequency range, gives further information

about the location of the sound for almost all orientations, including the

vertical axis.

Additional secondary clues for localizing sounds come from the influence of

room acoustics, most importantly echo from the walls, which provide reverberation

cues.

28 Cp. J. Blauert, Spatial Hearing: The Psychophysics of Human Sound Localization, The MIT Press, Cambridge,
Massachusetts, 1983.

B.C.J. Moore, An introduction to the psychology of hearing, 5th edition. University of Cambridge. 2003



2.2.1.2 Displaying Spatial Audio

Acoustic Chase is based on headphones. Thus, the audio signals are directly

transferred to the ears without crosstalk between the two channels and with no

external reflections. Embedding the sound localization cues in audio streams in such

a framework is called binaural synthesis, and many techniques for generating an

immersive sound field are based on this. For example, a simple, yet effective method

is placing two microphones inside the ears of an "artificial head", which modifies the

recorded sound-waves like a real head would do before they reach the inner ear.

Played-back next to the ear by headphones, the original spatial quality is reproduced.

Filters and sound manipulation can imitate all these sound localizing cues,

naturally generated by the human or artificial head. A typical system, as shown in

Figure 10, adds level differences, inter-aural delays, and transfer functions separately
29

for each ear to give the impression that the sound comes from a specific direction.

L
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Figure 10: spatialization of an audio signal

29 J. Huopaniemi, M. Karjalainen, HRTF Filter Design Based on Auditory Criteria, NAM, Helsinki, 1996
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The most critical aspect thereby is to design the head-related-transfer functions.

As this complex frequency filter results out of anatomic features, such as head and

ear shape, HRTFs can differ significantly from person to person. Therefore using

non-individualized transfer-functions generally limits the achievable results. 30

The sophistication of the head-related-transfer functions is a main characteristic

distinguishing 3D audio systems, whereas the other two primary features of spatial

hearing, ILD and ITD, are easy to realize with delay lines and volume control.

Beyond that, simulating the environmental acoustic conditions of a specific scene,

like echo from wall reflection and Doppler effect, may add to the realism of the

acoustic model.3' With massive computational power available even on small

systems, complex HRTFs and spatial rendering can now be designed, propelling the

quality of synthesized audio scenes in 3D environments. 32

Most commercial systems run on PC platforms and are developed for the game

industry. DirectSound3D, for instance, is a standardized API that bundles a growing

variety of hard- and software components in one platform. 33

Specialized single-chip processors optimized for audio applications outside the

PC domain, such as home entertainment, are also currently gaining momentum.

These stand-alone chips are able to embed all primary 3D cues into audio streams,

30 E. M. Wenzel, M. Arruda, D. J. Kistler, and F. L. Wightman, Localization using nonindividualized head-related transfer

functions, J. Acoust. Soc. Am., 94(1), 1993, pp. 111-123.

W. G. Gardner and K. D. Martin, HRTF measurements of a KEMAR, J. Acoust. Soc. Am., 97(6), 1995, pp. 3907-3908.

31 D. R. Begault, 3-D Sound for Virtual Reality and Multimedia, Academic Press, Cambridge, MA, 1994

32 "InTheMix", a 3D audio installation takes advantage of the very sophisticated rendering system AuSim (see note 32).
W. L. Chapin, AuSIM Incorporated, et al. (2000): "InTheMix", interactive audio environment, Siggraph 2000
(http://www.ausim3d.com/InTheMix/history.html).

Another 3D augmented sound reality application has been developed by the Fachhochschule Hagenberg:
M. Haller,D. Dobler, P. Stampfl, Augmenting the Reality with 3D Sound Sources, ACM SIGGRAPH 2002

' Alternative systems are OpenAL and AuSIM.
OpenAL is a software interface to audio hardware, specialized to generate simple 3D audio, using distance-related attenuation,
Doppler effect, and environmental effects such as reflection, obstruction, transmission, and reverberation.
(http://www.openal.org)
AuSIM3D physically models the propagation from the sound sources to the listener with a high degree in details to achieve a
convincing experience (http://www.ausim3d.com)



allowing for the design of miniature systems based on embedded controllers, without

the overhead of a complete workstation. 34

2.2.2 Direct Sound 3D

Acoustic Chase uses Direct Sound, the Microsoft API for sound control. This

software package offers basic 3D audio, including head-related-transfer functions.

Several independent localized sound sources can be displayed in parallel to the

standard audio channels and a variety of acoustic effects are available. 35

Direct Sound is open for expansion, both in lower layers, as in supporting

hardware acceleration on sound cards, as well as in higher layers, like software

modules for advanced 3D audio. EAX, for example, optimizes the Direct Sound

functions and offers enhanced audio attributes. 36 Thus starting with standard Direct

Sound provides the opportunity to significantly improve the acoustic rendering

quality by adding 3rd party tools, with only minimal changes in code.

The 3D effect in Direct Sound is controlled by positioning the listener and one or

more sound sources in space. The orientation is defined by a top vector, pointing

straight up through the listener's head, and a front vector, pointing straight forward

through the listener's face. Position and orientation of the sound sources are

described in a similar way. Additionally, the virtual sounds offer a "cone feature" for

non-uniform sound emission, with volume dropping outside the cone. By providing

velocity information, Doppler effects are realized as well. Table 1 and 2 give an

overview of the involved parameters. 37

1 See TAS3103 Digital Audio Processor (http://focus.ti.com/docs/prod/folders/print/tas3103.html)
The SHARC Melody chip series from Analog Devices offers similar features
(http://www.analog.com/AnalogRoot/productPage/productHome/0,2121,SSTMELODYSHARC,00.html)

* see http://www.microsoft.com/windows/directx/default.aspx

36 see http://eax.creative.com

3 Tables taken from the Microsoft DXSDK9 documentation



IDirectSound3DListener8 Interface
Global sound properties

Method Description

GetistanreFactor Retrieves the distance factor, which is the number
of meters in a vector unit.

Getfospplerfactor Retrieves the mutiplier for the Doppler effect,

GeRqllofactor Retrieves the rolloff factor, which determires the
rate of attenuation over distance.

SetDistanrefactor Sets the distance factor.

Stt oppertactor Sets the multiplier for the Doppl er effect.

SetRolloff Factc r Sets the rolloff factor.

Listener properties

Method

GetPosition

Ge tveloc 

SetOrientation

SetPOVec gi....tv ..........u .....

Description

Retrieves the orientation of the listener's head

Retrieves the listener's position.

Retrieves the listener's veiocity.

Sets the orientation of the listener's head.

Sets the listener's position.

Sets the listener's velocity.

Table 1: IDirectSound3DListener8 interface

IDirectSound3DBuffer8 Interface
Minimum and maximum distance

Method Description

GetMaxistancet Retrieves the maximum distance, which is the distance from the listener beyond which
sounds in this buffer are no lorger attenuated.

Gettmnistance Retrieves retrieves the minimum distance, which is the distance from the istener at
which sounds in this buffer begin to be attenuated.

1etMaytistance Sets the maximum distance.

Sets the minimum distance.

Position

Method

GetPositivo

Description

Retrieves the position of the sound source,

Sets the position of the sound source.

Sound projection cone

Method Description

ettone n"les Retrieves the inside and outside angles of the sound projection cone.

GtoneOrienftatIon Retrieves the orientation of the sound projection cone.

Gettonetutidevolune Retrieves the volume of the sound outside the outside angle of the round projection
cone.

SetCosneAnqlesSets the inside and outside angles of the sound projection core

Setcoinetnientation Sets the orientation of the sound projection core.

S Sets the volume of the sound outside the outside angle of the sound pro~ectir cerne

Velocity

Method Description

GetVelocity Retrieves the velocitv of the sound source.

etVelouity Sets the velocity of the sound source.

Table 2: IDirectSound3DBuffer8 interface



2.3 Positioning Sounds

In Acoustic Chase 3D sounds are modeled as moving particles based on

Newtonian mechanics. This physical model describes a mass point traveling in three-

dimensional space affected by force fields. The resulting motions are generally

smooth and intuitively understood by the listener.38

Newton's equations describe the change in velocity of a particle over time in

reaction to impulses from other objects outside, as well as the particle's impetus. The

basic equations add all acting forces Fj to an acceleration vector a, which gradually

changes the velocity y in an integration step, which in turn is integrated to a

continuous position path x(t) over time:

N

Ftot =Z.j (7)
j=1

1
a=-F (8)

-m

v. 1 =v. +adt (9)

x 1 =x +v dt (10)

The key to get a broad bandwidth of motions out of these equations is the actual

implementation of how the acting forces Ej are determined as a function of time,

particle's position, and other parameters.

For Acoustic Chase the motion of a 3D sound is governed by two force fields,

both originating at the listener's position: first, a far-reaching field that either attracts

3 8 This method is widely used to generate realistic animation of virtual objects. Cp. B .Arnald, G. Dumon, G. Hdgro, N.
Magnenat-Thalmann, D. Thalmann, Animation Control with Dynamics, in: Magnenat-Thalmann N, Thalmann D (eds) State-of-

the-Art in Computer Animation, Springer, Tokyo, 1989, pp. 1 13-124.

D. Thalmann, Robotics Methods for Task-level and Behavioral Animation, in: D. Thalmann (ed) Scientific visualization and

Graphics Simulation, John Wiley, Chichester, UK, 1990, pp. 12 9 -14 7 .



or repels the virtual object in relation to the listener; second, a well of fast rising

locally confined outward forces that push the moving object away when it comes too

close, ensuring that it doesn't get glued to the listener's center position. This

resembles a virtual listener's body that can't be intruded. Figure 11 shows the radial

field resulting from the overlay of the two discussed forces. Parameter gradually

changes the far-reaching field from attraction to repulsion.

Figure 11: radial force field

To keep the velocity of the moving object within a certain range, two additional

forces E are introduced: friction FF and self-drive FD. A growing friction coefficient

decelerates the objects, when its speed exceeds a certain limit.

[A = A
with A = A2_F F= -AV

if v <vcri

if |v|> crt. (11)

Added random forces propel the sound object and give it own drive. Parameters

b and c adjust the rate and amplitude of these pushes.



FD= x rand (c) + y rand(c) + z rand(c)

FD =0

if b > rand (1)

else
(12)



3. Sound Implementation

Live recordings from an amusement arcade in Coney Island/NY were chosen for

the sound implementation. This sound moves as a virtual object around the listener,

and approaches in irregular loops circling faster and faster the closer it gets.

Whenever the person moves or shakes his head, the sound is left behind or repelled.

But the chasing object keeps track and approaches again.

My hypothesis was that the soundscape of the lively gambling hall offers some

features that fit with the Acoustic Chase concept. When the sound is heard from far

away in low volume, it gives an impression of an attractive and joyful place. But this

turns into a hectic atmosphere when the sound is close. Higher and higher volume

and hectic motions around the listener develop into an aggressive atmosphere that

besieges the listener.

The captured sound fragments from several gambling machines form a dense mix

of melodic elements, artificial voices, and many other noises. This rich sounding

collage overwhelms the listener at first, and it takes a while to make some sense of

the heard sound. Although it is a concrete sample, the soundscape has abstract

qualities. It is very hard to build a coherent imagined picture for all the different

noises. This should keep the mind of the listener on site and not immediately

transport it to a different world as it would happen with a more suggestive recording.

Gambling also talks about circulating money, winning and loosing, and

addiction. This adds connotations to Acoustic Chase that point to dimensions beyond

the actual acoustic experience.



4. Placement Within the Artistic Context

Acoustic Chase is a sound installation in the field of interactive art based on

technology. This category covers a wide range of artistic practice. Still, as a main

characteristic, sound is generally not produced by human players following a score,

but result from processes automatically executed by technical devices. These pieces

rely on a strong conceptual component, treating sound not as instrumental music, but

as acoustic material, editing and mixing recorded or synthesized sound fragments.

The degree of actual interaction between human and artwork can span from passive

objects to highly interactive "complex machines, where the user does not so much

individually control the work, but cooperates, obstructs and directs." 39

By examining the appearance, the interaction concept, and the use of sound, as

well as establishing relations to other pieces, this chapter will survey the space of

communicative dimensions in which Acoustic Chase is located.

4.1 Appearance of the Installation

The main physical part of Acoustic Chase that the user interacts with is the set of

headphones, which keeps the visual appearance minimal. Once they are set up and

the actual experience begins, the headphones stay out of the field of view,

contributing to an "invisible installation".

The combination of immersive audio with free sight puts the participant in an

intermediate state between being part of both a virtual environment and a real space.

The unchanged visual information blends with autonomous, disembodied sounds that

react to the human movements, come closer and move away, or maintain their

locations when the person moves through space. They represent the influences and

constraints people are exposed to. They are quite there, but not seeable or tangible.

39 http://www.aec.at/en/archives/prix-archive/prixJuryStatement.asp?iProjectID= 25 6 0



This theme of imaginative sound locations or objects is used in many sound

installations. Hiding the image of the sound source offers the potential to build up an

imagination that is more powerful or multifaceted than an actual depiction. This can

have different connotations: At R. Horn's object "The Turtle Sighing Tree"40 soft

sounds can be heard at the end of the long metal branches of the tree. The sound

sources are hidden, but it seems that they are objects, located inside the tree, at a

romantic place, not accessible for humans. J. Cardiff's "Forty-Part Motet"41 takes a

different approach to disembodied sounds: 40 speakers play back a chorus of 40

separately recorded voices, substituting each individual singer by a loudspeaker

column. A magic moment arises from the discrepancy of the seen object, a black

case on a tripod, and the natural beauty of the human voice singing the choral. The

spatial distribution of the speakers, placed like the singers at the recording session,

add to the impression that the square boxes are a clear representation of human

beings, resulting in a tension between visual sense and the hearing. Both pieces are

very sculptural, with the sounds being tied to fixed objects in space. The user

determines how to approach them; there is always a clear distance maintained

between the human being and the object.

In Acoustic Chase the clear separation of a fixed object in space and individual

changes. The sound is all around the listener, with spatialized sound spots moving

dynamically and through self-control. The person no longer sets the distance by

walking back and forth, but a variety of (head) motions determine the actions of the

acoustic environment.

The sounds, as the representation of the artwork, not only leave a passive state,

they are also designed to confront and incite the listener. They do this by loud

volume, approaching and cycling around the human head, and appropriate content,

like spoken commands or suggestive content.

40 R. Horn, The Turtle Sighing Tree, 1994

41 J. Cardiff, Forty-Part Motet, 2001



While hearing has a dominant role here, the visual impressions are still

important, and work as an anchor to keep the person on site. Locating the installation

inside an empty, neutral room provides an adequate balance between hearing and

seeing. By removing all distracting objects from the field of sight, the focus of

perception shifts from the dominating visual sense to the secondary senses,

increasing the awareness of them. "The absence of sight immediately stimulates an

intimate, introspective listening experience that can be very unique."

4.2 Individual and Machine

4.2.1 Mutual Influence

Acoustic Chase is an active system that is designed to play with the person. An

important element thereby is the complexity of the interaction - that is, how the

acoustic scene is rendered in response to the tracked movements. Beside the actual

sound content, this will significantly define the user experience. A key feature of

Acoustic Chase is that it doesn't stay passive, but provokes the user in a situation of

mutual influence.

The following three examples of interactive systems illustrate different aspects of

user participation:

A very passive form of interaction is used for "Immersive Audio" by C. Moeller.

This 3D audio installation enables a visitor to dive into virtual space, filled with

sound objects that can be seen and heard. The objects remain passive and the person

is a visitor with no influence.

"Very Nervous System" from D. Rokeby is a discrete interactive sound

installation that triggers sounds by detecting the physical presence of the user inside

specific image areas of a video camera that watches the scene form above. Each state

42 G. K. Montgomery, Outer Ear/Inner Eye (http://www.generatorsoundart.org/GSA-16.html)



change of the system, that is changing which sound to play, is triggered by a defined

event, which is activity in a specific cell in the video image. This approach

introduces hidden information layers that appear one after another, released by the

respective trigger events. As each change in system output switches between

predefined states, and usually requires user action, the overall actions of the machine

remain stable in clear boundaries. Nonetheless, Rokeby sees his installation already

beyond a simple "control system. [...] The changing states of the installation are a

result of the collaboration of these two elements (installation and person). The work

only exists in this state of mutual influence".43

A different quality of interaction is achieved with a continuous feedback system

without the conservative discrete steps that limit the possible configurations of the

generated output. By increasing the number of trigger points and decreasing reaction

time, the discrete interaction can be transformed to a continuous system. The artwork

liquefies to a dynamic process, whose states are no longer constrained by a small

discrete set of manifestations, but form a continuum over a potentially large scale.

These mechanisms go beyond simple trigger effect rules, but define an open

interaction. Depending on the complexity, chaotic elements and system responses

can occur, and the artist no longer completely overlooks what states the artwork will

ever enter. In "Untitled Ball" by D. Jolliffe the continuous system is defined by the

distance of the viewer, the physical properties of the wooden ball, and the

characteristics of the control system. Because of its stateless feature, the movements

of the ball are chaotic and unpredictable. Still, the feedback system uses mechanical

principles that can be understood intuitively, leading to comprehensible movements.

4 D. Rokeby, Lecture for "Info Art", Kwangju Biennale (http://homepage.mac.com/davidrokeby/install.html)



4.2.2 Controlling And Being Controlled by Machines

Acoustic Chase explores how sound signals can be designed to gain some degree

of control over humans. The headphones establish a very close contact between

device and person, which can be seen as an "intimate interface", directly connecting

to the human input port, the ears. Whenever the headphones are put up, the machine

gets direct access to the body that can't be blocked any more. There is also a

connotation of electrodes used for electroshock therapy, or helmets used for

brainwashing in movies. 44

The use of sound further supports this theme of a device partly intruding the

individual: Many types of sound are not so clearly localizable. Compared to vision,

hearing doesn't establish such a clear distance to the sensed object. Hearing is

sensitive to all directions and can't be shut completely, always allowing sound to get

through. In the art installation ACCESS Internet user can "shoot" sounds with an

audio spotlight to visually tracked persons in public spaces.45

Sound also offers a great range in tones, melodies, and volume, which can act on

the subconscious and influence feelings. A loud fire horn, for example, immediately

triggers a surge of adrenalin, whereas a soft voice can develop power of persuasion

by constantly talking over a long time. The computer HAL in 2001 uses a vocal

interface for addressing the people on board;46 they can't escape - the machine's

smooth voice follows them everywhere, and slowly endears itself to the astronauts.

On the other hand, the power of sound is, of course, limited. People can

withstand acoustic commands and ignore them. In Acoustic Chase the intensity of

the acoustic stimuli increases the longer the person ignores the commands. The weak

4 E.g. in the music video of C. Cunningham "Come On My Selector", 1999

4 M. Sester, Access, presented at Siggraph 2003

4 D. G. Stork (Ed.), HAL's Legacy: 2001's Computer as Dream and Reality, MIT Press, 1997



coupling via sound establishes a mutual system that constantly rebalances instead of

a clear command direction in either direction.

Stelarc, an artist interested in coupling the body with technology, uses a much

more direct way to give machines power over humans: In "Ping Body"47 and

"Fractal Flesh", 48 the human being gets subject to computer control by triggering of

the muscles via applied electric impulses. In this extreme "human-machine

symbiosis" the machine gains direct control over the body with a clear tendency of

total mastery by the apparatus.

Connecting with the machine via electrodes is a complex process with a ritual

connotation, in which the human slowly subordinates himself wire by wire, resulting

in a bond not easy to leave. In Acoustic Chase, getting in contact with the machine is

lightweight and just a matter of seconds: by putting the headphones on, people enter

the interaction; by putting them down, they are out again.

4.3 The Use of Sound From a Media Perspective

4.3.1 Simplified And Abstract Sounds

Technical media has radically changed the ways in which sound was perceived,

generated, and thought about. "Technologies of electric media were integrated into

the creative techniques, [...] gaining control and the technically determined

feasibility of what was previously unachievable. The storage, transmission and

synthesis of sound as well as intermedia transformation and virtualization." 49

Recording devices capture any kind of sounds, which, now disembodied, have been

47 http://www.stelarc.va.com.au/pingbody/ping.html

48 http://www.stelarc.va.com.au/fractal/

49 G. F611mer, Audio Art (http://www.medienkunstnetz.de/themes/overview-ofmediaart/audio/21/. Rev. 2004-04-30)



added to the material for artistic production. Sounds became part of the aesthetic

vocabulary - the "art of noise"50 became a leitmotif of modem times.

In music "there was a tendency through the whole twentieth century, from the

Futurists on, to use noises, anything that produced sound, as a musical instrument."5 1

With availability of the tape recorder, the movement Musique Concrete worked with

recorded samples as sound objects, which transform to music objects when

assembled to a collage.5 2 Recording technology introduced a new way to work with

non-instrumental sounds and provided a basis for composing that is "no longer

dependent upon preconceived sound abstractions, but now using fragments of sound

existing concretely and considered as sound objects defined and whole..." 3 The

early use of tape recorder for "organization of sound" (Cage) by manipulations of the

tape, like cutting and splicing, anticipated the cut and paste of digital production, and

remains a common principle to many contemporary artworks.

In accepting almost any kind of object as a potential element for composing, the

established concept of linear procession, as described by a sequence of notes in

scores, was also challenged, and two principles of arranging musical objects became

important: indeterminism and loops.

Similar developments took place in all Western art and reflected a more and

more complex industrial and urban world, where well-arranged entities have been

replaced by a confusing system of an immense number of processes and activities

that define life. There is little left from the once granted principle of cause and effect

- events seem to happen simultaneously, randomly, and chaotic. In response, new

forms of art have been introduced, which reflect on our contemporary situation.

50 proclaimed in 1913 by the Futurist painter Luigi Russolo.

5' R. Kostelanetz, John Cage and Richard Kostelanetz: A Conversation About Radio, The Musical Quarterly 72.2 (1986), pp.
216-227.

52 "objets sonores" and "objets musicaux"; cp. P. Schaeffer, Traitd des Objets Musicaux, Seuil, Paris, 1966.

" Schaffer, quoted after C. Joel, The great opening up of music to all sounds. Electric sound: the past and promise of electronic

music. Upper Saddle River, NJ, Prentice Hall, 1997



4.3.2 Aleatoric Processes

Digital systems are an ideal tool for handling media objects, and allow a wide

range of processes on them. Implementing random control mechanisms takes the

idea of fragmentation one step further toward the rearranging of output in real time.

The artist thereby defines the rules and the possible media content, but transfers the

generation of the final output to a machine, and in the case of aleatoric pieces even to

random factors. "Christina Kubisch's Clock Tower Project, drawing from this

tradition, also relies on chance: the position and intensity of the sun, mediated by a

computer program, determine the sequencing of tones in the compositions; a passing

cloud changes everything."54

The 3D sound fragments, circling in chaotic ways around the listener, are the

aleatoric elements in Acoustic Chase. They point to the disperse fragments of reality

that we are exposed to in our lives.

4.3.3 Loops

Loops on the other hand, express not so much the fragmentation of the world, but

have a meditative or rhythmic connotation. In the installation "He Weeps For

You,"5 5 Bill Viola creates a secluded space that reminds of ancient times, or of the

beginning of everything. By focusing the attention on a water drop, which regularly

falls on an amplified drum, he gives us "experience of continuity, constancy, and the

connections between micro- and macrostructures. He produces a space of experience

based on total perception. In so doing, he addresses "archetypal" notions like the

54 http://www.massmoca.org/visual-arts/soundart.html

55 http://www.cnca.gob.mx/viola/2.html



inexorable cycle of renewal, and produces a situation of perception that is directed

towards primeval forms and patterns for conceiving human life."5 6

In Acoustic Chase, the motif of the loop expresses the restlessly following sound

teaser that approaches the listener in circles. These geometric loops are irregular.

They start slowly as long as the acoustic chaser is far away, but as the sound comes

closer, it gains speed and flutters wildly around the person's head. For the time the

listener stays in the acoustic environment an escape is impossible - the sound will

always follow in enduring circles, chasing the human being.

56 H. Helfert, Technological Constructions of Space-Time Aspects of Perception
(http://www.medienkunstnetz.de/themes/overview-ofmediaart/perception/1/. Rev. 2004-04-30)



5. Evaluation - Opinion of Artists and Curators

The technical platform is working and provides an acoustic environment,

reacting to body movements, as described in Chapter 3. The rotational position

tracking is stable with a yaw drift less than 5O/s. The pitch and roll tracking has a

good long-time stability because of the usage of accelerometers that reference to the

gravity vector. The position sensing continually reset to zero with a small time

constant of 5 sec. This allows tracking of rapid movements only. This is compatible

with the current implementation of the sound movement, as it generates fast motions

of the acoustic object, with velocities much higher than the "phantom" speeds

resulting from drift and low-pass resetting of the sensor signals.

Acoustic Chase was evaluated by senior professional artists and curators in a

formal critique session.

The participants felt the confrontation through the acoustic stimuli and moved

away when the sound approached closely. The current system realized the concept of

motion tracking and spatial sounds that approach and incite the human being to

action.

From an artistic point of view, the use of the casino sound in combination with

the described interaction principle established a coherent experience that can

transport the hectic and up-heated situation that is typical for a gambling hall.

During the review session, a number of suggestions were made regarding

methods to improve the artistic quality of the piece, add to the user experience, and

enhance its expressive power. In particular, the audio content, the sound quality, the

interaction concept, and the appearance of Acoustic Chase were discussed:

57 This panel consisted of Bill Arning (curator of the List Visual Arts Center), Chris Csikszentihalyi (artist and professor of

Media Arts and Sciences), John Maeda (artist and professor of Design and Computation), Joan Jonas (artist and professor of

Visual Arts), Winnie Wong (Associate Director of Art Interactive).



The gambling hall-sound that Acoustic Chase works with right now is very dense

and bundles a lot of acoustic events in one stream. This can make it difficult for the

listener to locate the sound within the acoustic environment and establish a

relationship beyond the pure volume and hecticness of the sample. Two directions

might improve this situation:

One is to concentrate on "cleaner" sounds that result from one source only. This

will rely on the concise strength of a carefully selected sound instead of

accumulating a multitude of noises playing simultaneously to an overwhelmingly

dense layering. A simple example illustrates in which direction this could develop;

the buzzing of a bee. Many people develop strong emotions of anxiety when they

hear an aggressive bee circling closer and closer.

Another way to dissolve the very dense cluster of the current sample is to

distribute the different involved sounds to separated objects inside the acoustic

environment instead of bonding them in one channel. These objects then move

independently and give richer impressions with more spatial details.

The quality of the acoustic spatialization still lacks quality, especially in the

forward backward direction and in displaying the distance of the sound. Better sound

rendering will improve the effect of the acoustic chase a lot.

The interaction of Acoustic Chase doesn't become clear right from the start, and

it takes a certain openness of the user and usually a short approaching phase to

understand and get involved in the interaction process. One thing that can be

improved here is to tighten the linking of the sound actions to the body movements

and especially shorten the reaction time upon human motions. This will make it

easier to understand the system's reactions. It will also reduce the feeling that the

simulated environment is very "floaty" - that is, lacking fixed references to the user.

For future versions of Acoustic Chase, it might also be desirable to make the

interaction concept more complex and add elements of evolution and discovery into

it. This will maintain the interest of the listener for a longer period of time and



expand the expressive possibilities of Acoustic Chase beyond a fixed system of one

specific sound interacting in one specific way.

The visual sense, which currently is not actively served by Acoustic Chase, could

be used in future versions to supplement the heard content. For example adding a

specifically designed photography or video projection can provide references for the

acoustic content and expand its meaning.



6. Future Work

These results and the suggestions of the critique panel motivate further research

and exploration. Some main lines along which future work can be aligned regard

interaction principle, acoustic content, and technical platform.

The current implementation of a sound approaching in circles is a starting point

for more detailed and complex interaction patterns. One interesting direction would

be to add software modules that analyze the body movements more carefully, such as

gesture recognition, and supply the basis for an interaction scheme that goes beyond

direct approaching and repelling.

This also will allow implementing acoustic content with a storyline that evolves

during interaction, making the experience more interesting and diversified.

Another promising interaction concept for Acoustic Chase is to implement verbal

instructions, spoken by the machine. These direct commands try to animate the

participant, and they get louder and more demanding if the person resists. Thereby

one specific command may be repeated several times. When the person follows each

of them, the machine's voice changes to a mellifluous tone. If the human being and

the machine find a common speed, a calm and meditative atmosphere arises for a

little while, before the commands change.

This concept could be realized by commands referring to head gestures only.

Below, two ideas are provided, how such a system could be implemented in the

behavior system.

6.1 Gesture Recognition

A high-level signal analysis module provides the recognition of head gestures.

Here we focus on gestures that can be described by only using angular degrees,

which covers the common human head gestures:

- Rotation around yaw axis:



o turn left

o turn right

o head shaking ('no')

- Rotation around pitch axis:

o look up

o look down

o head nodding ('yes')

- Rotation around roll axis:

o tilt head to the right

o tilt head to the left

o tilt head left and right ('maybe')

A variety of methods for recognizing head gestures have been presented in

literature, most notably using Hidden Markov Models, 58 neuronal networks, 59 and

Fuzzy Logic. 0

6.2 Finite States

Finite state machines are a powerful method for realizing complex behaviors that

run through several consecutive stages. Such systems consist of different states and

transitions between them. Beginning at a start state, certain events trigger transitions

5' C. Morimoto, Y. Yacoob, and L Davis, Recognition of Head Gestures using Hidden Markov Models in International
Conference on Pattern Recognition, 1996, pp. 461-465

59 J. Tang, R. Nakatsu, A Head Gesture Recognition Algorithm, Proceeding of International Conference on multi-modal
Interface, OCT. 14 - 16, 2000, Beijing China.

6 0 T. Frantti, S. Kallio, Fuzzy logic aided gesture recognition, KBCS-2002 International Conference on Knowledge Based
Computer Systems, 2003, Hongkong, China.



to one of the possible next states; from there other transitions lead to further states,

and so on.61

Figure 12 shows an example of a state system that plays a sound file saying

"yes", anytime a head nod occurs. Transitions lead from all states to the idle state.

These transitions are triggered by inactivity for a period of some seconds. The

system remains in the idle state until either an upward or a downward motion is

detected. An upward motion leads to an up state. From there the only transition

besides the default idle path is to the down state, triggered by a downward motion.

When this motion occurs, the sound file is triggered, and the down state is entered.

An upward motion leads back to the up position.

VJ

Figure 12: simple finite state system

Another example shows a linear sequence of states that represent spoken

instructions to be followed by the person. When a state is entered, an audio sequence

is played, telling the listener what he or she has to do. If the pattern analysis system

detects the required action, the next state is entered, which asks to do another

movement. Any other action triggers the reentering into the current state, which will

61 R. C. Martin, UML Tutorial: Finite State Machines, Engineering Notebook Column, C++ Report, June 98



repeat the demanded instruction. When the person remains inactive for a specific

time, the system also loops the present state.

C.'

Figure 13: chain of linear states

& 0 0



7. Conclusion

It was a short and soft sound from far away that turned out to be one of the

eeriest noises I ever should hear in New York. At first I nearly didn't notice it, some

crackling and a deep swoosh. As it continued for 10 seconds or so, it drew my

attention, and I was wondering what it might be.

I was sitting near a window at my office downtown. I went there very early on

this September morning, before the attack happened.

Shortly after that sound, my girlfriend called me to tell that the first tower came

down. This immediately turned my small sound experience, that at first seemed

unimportant, into a message of immense suffering.

I ran out on the street to get away from the scene, and dived into a sea of noise

from police sirens, shouting people, and stuck traffic.



8. References

B. Arnald, G. Dumon, G. H6gro, N. Magnenat-Thalmann, D. Thalmann, Animation
Control with Dynamics, in: Magnenat-Thalmann N, Thalmann D (eds) State-of-the-
Art in Computer Animation, Springer, Tokyo, 1989, pp. 1 13 - 12 4 .

D. R. Begault, 3-D Sound for Virtual Reality and Multimedia, Academic Press,
Cambridge, MA, 1994

J. Blauert, Spatial Hearing, 2nd ed., J. S. Allen, trans., MIT Press, Cambridge, Mass.
1997

M. La Cascia, S. Sclaro, and V. Athitsos. Fast, reliable head tracking under varying
illumination: An approach based on registration of texture-mapped 3D models, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(4): pp. 322-336,
April 1999.

W. L. Chapin, AuSIM Incorporated, et al. (2000): "InTheMix", interactive audio
environment, Siggraph 2000 (http://www.ausim3d.com/InTheMix/history.html)

R. Dorobantu, Simulation des Verhaltens einer Low-cost strapdown IMU unter
Laborbedingungen, Institut fUr Astronomische und Physikalische Geodasie
Forschungseinrichtung Sattelitengeodasie TU-MUnchen, IAPG/FESG No. 6, 1999

G. F611mer, Audio Art
(http://www.medienkunstnetz.de/themes/overview-ofmediaart/audio/21/. Rev.
2004-04-30)

E. Foxlin, Inertial head-tracking, M.S. Thesis, Dept. of E.E.C.S., MIT, 1993.

E. Foxlin and N. Durlach, An Inertial Head Orientation Tracker with Automatic Drift
Compensation Doe Use with HMD's, Proceedings from VRST'94, Virtual Reality
Software and Technology, Singapore (August 23-26, 1994).

E. Foxlin, M. Harrington, and Y. Altschuler, Miniature 6-DOF inertial system for
tracking HMDs, SPIE vol. 3362, Proc. AeroSense '98 Conference on Helmet- and
Head-Mounted Displays III, Orlando, FL 1998

T. Frantti, S. Kallio, Fuzzy logic aided gesture recognition, KBCS-2002 International
Conference on Knowledge Based Computer Systems, 2003, Hongkong, China.

W. Frey, Application of Inertial Sensors and Flux-Gate Magnetometers to Real-Time
Human Body Motion Capture, Master's Thesis, Naval Postgraduate School,
Monterey, California, September 1996.

R. Frieling, Reality/Mediality Hybrid Processes Between Art and Life
(http://www.medienkunstnetz.de/themes/overview-ofmediaart/performance/23/.
Rev. 2004-04-29)

W. G. Gardner and K. D. Martin, HRTF measurements of a KEMAR, J. Acoust. Soc.
Am., 97(6), 1995, pp. 3907-3908.



D.O. Gorodnichy, S. Malik, and G. Roth. Affordable 3D face tracking using
projective vision. In Proceedings of International Conference on Vision Interface
(VI'2002), pp. 383-390, 2002.

M. Haller,D. Dobler, P. Stampfl, Augmenting the Reality with 3D Sound Sources,
ACM SIGGRAPH 2002

B. Hartmann: How We Localize Sound, in Physics Today on the Web, 1999
(http://www.aip.org/pt/nov99/locsound.html)

H. Helfert, Technological Constructions of Space-Time Aspects of Perception
(http://www.medienkunstnetz.de/themes/overview-ofmedia-art/perception/l/. Rev.
2004-04-30)

J. Huopaniemi, M. Karjalainen: HRTF Filter Design Based on Auditory Criteria,
NAM, Helsinki, 1996

C. Joel, The great opening up of music to all sounds. Electric sound: the past and
promise of electronic music. Upper Saddle River, NJ, Prentice Hall, 1997

R. Kostelanetz, J. Cage and R. Kostelanetz: A Conversation About Radio, The
Musical Quarterly 72.2 (1986), pp. 216-227.

D. MacKenzie, Inventing Accuracy: A Historical Sociology of Nuclear Missile
Guidance, MIT Press, 1991

R. C. Martin, UML Tutorial: Finite State Machines, Engineering Notebook Column,
C++ Report, June 98

K. Meyer, H.L. Applewhite, and F.A. Biocca(1992). A Survey of Position-Trackers.
Presence: Teleoperators and Virtual Environments. 1 (2) (spring 1992), pp. 173-200.

B.C.J. Moore, An introduction to the psychology of hearing, 5th edition. University
of Cambridge. 2003

L.-P. Morency, A. Rahimi, N. Checka, and T. Darrell. Fast stereo-based head
tracking for interactive environments. In Proceedings of Conference on Automatic
Face and Gesture Recognition, pp. 375-380, 2002.

C. Morimoto, Y. Yacoob, and L Davis, Recognition of Head Gestures using Hidden
Markov Models in International Conference on Pattern Recognition, 1996, pp. 461-
465

J. Rekimoto. A vision-based head tracker for fish tank virtual reality: VR without
head gear. In Virtual Reality Annual International Symposium (VRAIS '95), pp. 94-
100, 1995.

R. M. Rogers, Applied Mathematics in Integrated Navigation Systems, American
Institute of Aeronautics and Astronautics, AIIA, Direction Series, 2000



A. Shkel and R. T. Howe, Polysilicon Surface Micromachined Rate Integrating
Gyroscopes. UC-Berkeley Office of Technology and Licensing. Case Number B99-
077

A. Shkel, R. Horowitz, A. Seshia, and R. T. Howe, Dynamics and Control of
Micromachined Gyroscopes, in The American Control Conference, San Diego, CA,
June 1999

M. Sester, Access, presented at Siggraph 2003

D. G. Stork (Ed.), HAL's Legacy: 2001's Computer as Dream and Reality, MIT
Press, 1997

J. Tang, R. Nakatsu, A Head Gesture Recognition Algorithm, Proceeding of
International Conference on multi-modal Interface, OCT. 14-16, 2000, Beijing
China.

D. Thalmann, Robotics Methods for Task-level and Behavioral Animation, in: D.
Thalmann (ed) Scientific Visualization and Graphics Simulation, John Wiley,
Chichester, UK, 1990, pp. 12 9 -14 7 .

D. H. Titterton, J. L. Weston, Strapdown Inertial Navigation Technology (IEE
Radar, Sonar, Navigation and Avionics, No 5)

G. Welch, G. Bishop, An Introduction to the Kalman Filter, TR-95-041, Department
of Computer Science, University of North Carolina at Chapell Hill, updated in 2002

E. M. Wenzel, M. Arruda, D. J. Kistler, and F. L. Wightman, Localization using
nonindividualized head-related transfer functions, J. Acoust. Soc. Am., 94(1), 1993,
pp. 111-123.

C. Youngblut, R. E. Johnson, S. H. Nash, R. A. Wienclaw, and C. A. Will, Review
of Virtual Environment Interface Technology , Institute for Defense Analyses - IDA,
Paper P-3186, March 1996

Z. Zivkovic and F. van der Heijden, A stabilized adaptive appearance changes model
for 3D head tracking. In IEEE ICCV Workshop on Recognition,

60

-7
.1*


