
The Principle of Maximum Entropy Production

in a Simple Model of a Convection Cell

by

David W. Hogg

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Physics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1992

(David W. Hogg, MCMXCII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Author ... -
Departenbf P ysics

V11 Ma 1992

Certified by
Michel Baranger

Professor of Physics
Thesis Supervisor

Accepted by.
Aron Bernstein

(4airman, Departmental Thesis Committee
ARCHIVES

MASSACHUSETTS INSTITUTE
F: treumnl nsy

AUG 25 192
LIRARIES

The Principle of Maximum Entropy Production in a Simple

Model of a Convection Cell

by

David W. Hogg

Submitted to the Department of Physics
on 11 May 1992, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Physics

Abstract

A simple, discrete, two-dimensional, computer model of a convection cell is described
that is qualitatively accurate, but not designed to be quantitatively accurate. The
model can be used to simulate relaxation to equilibrium as well as steady-state pro-
cesses.

A principle of maximum entropy production is formulated for non-equilibrium
statistical systems: close to a bifurcation, the stable branch is the one on which the
system produces entropy at the greatest rate. In order to test this principle, the
model is used to simulate convection and to simulate the relaxation to equilibrium of
a fluid with a non-uniform initial heat distribution.

The following results are found: Close to the bifurcation from conduction-domi-
nated to mixing-dominated behaviour, a fluid in a gravitational field with non-uni-
form heat distribution relaxes to equilibrium by the path that maximizes entropy
production: the mixing-dominated path. Close to every investigated bifurcation in
the behaviour of the simulated convection cell, the stable mode is the available steady-
state mode that maximizes entropy production.

Thesis Supervisor: Michel Baranger
Title: Professor of Physics

Biography

David W. Hogg was born on 8 September 1970 in Toronto, Ontario, Canada to Peter

W. Hogg and Frances L. Benson Hogg. He spent most of his childhood in Toronto,

attending Whitney Public School through grade six and the University of Toronto

Schools through grade thirteen. At the end of high school, he represented Canada

at the Nineteenth International Physics Olympiad in Bad Ischl, Austria. He entered

the Massachusetts Institute of Technology in September of 1988 and at the time of

writing plans to graduate in June of 1992 with a B. S. in physics and a minor in

philosophy. He plans to enter graduate school in physics at the California Institute

of Technology in the fall of 1992. During the summers of 1990 and 1991 he worked

at the Canadian Institute for Theoretical Astrophysics in Toronto, and he plans to

work there again in the summer of 1992. At the time of writing, he has two published

articles, one in educational psychology, and one in Solar System dynamics.

Acknowledgments

Above all, I would like to thank Michel Baranger for being an excellent thesis advisor.

In justice, this thesis should be co-authored by him, as all the ideas in it were worked

out in discussions between him and me. Of course, he is not responsible for any errors

I have made.

I owe thanks to all of the physicists who listened to explanations of the work in

this thesis and who commented on it, including Albert Libchaber, Michael Berry,

and Edgar Knobloch. These scientists gave me new ideas, corrected many of my

misconceptions, supplied me with useful references, and were very encouraging.

I am also grateful to Jack Wisdom, who suggested that I look at the work of I.

Prigogine; and to S. Goerner, who put Michel Baranger and me in touch with R.

Swenson.

Contents

Biography .

Acknowledgments

1 Introduction and Objectives

1.1 Introduction.

1.2 The Principle of Maximum Entropy Production . .

1.3 The Steady-State Convection Cell

1.4 Relaxation to Equilibrium

1.5 The Model

10

10

11

12

14

15

18

18

2 The Model

2.1 The Lattice

2.2 Heat 20

2.3 Momenta 20

2.4 Whorls 21

2.5 Laws in the Model 22

2.5.1 Heat Diffusion 23

2.5.2 Heat Transport 23

2.5.3 Whorl Diffusion 24

2.5.4 Whorl Transport 24

2.5.5 Gravity 25

2.5.6 Randomization 26

2.6 Boundary Conditions 26

2.6.1 Relaxation Version . . . 27

5

3

4

.

.

2.6.2 Steady-State Version and Heat Flow

2.6.3 Whorl Absorption

2.6.4 Whorl Transport at Walls

2.7 Initial Conditions

2.7.1 Step Function.

2.7.2 Static Gradient

2.7.3 Pattern-Inducing

2.8 "Thermodynamic" Quantities . .

2.8.1 Total Heat

2.8.2 Heat Entropy

2.8.3 Heat Flux

.. 28

. 28

. 29

. 29

. 29

. 29

..................... 29

. 30

. 30

. 30

2.9 Summary

3 Results

3.1 Testing the Model

3.1.1 Critical Rayleigh Number

31

33

33

33

3.1.2 Wavelength of Stable Convection Pattern 34

3.1.3 Further Tests 36

3.2 Results in the Relaxation Version 38

3.3 Results in the Steady-State Version 39

3.3.1 20 x 10 Lattice 42

3.3.2 80 x 10 Lattice 46

3.4 Summary 47

3.5 Areas for Further Study 49

3.5.1 More Interesting Bifurcations 49

3.5.2 Defining Entropies .

3.5.3 Theoretical Justification of the Principle of Maximum Entropy

Production.

References

50

51

52

6

. 27

A The Source Code

A.1 Makefile . .

A.2 benard.h

A.3 main. .

A.4 allocate.c

A.5 entropy.c.

A.6 getdouble.c

A.7 get-int.c

A.8 gradient.c.....

A.9 gravity.c

A.10 heatdiffusion. c...

A.11 heatIlux.c

A.12 heat_transport. ...

A.13 menu. c

A.14 randomize. c

A.15 stepfunction. c

A.16 updat emomenta. ..

A.17 whorl-diffusion

A.18 whorl-transport. c.

7

54

55

56

6

58

58

59

60

61

61

62

63

64

65

69

70

71

71

73

List of Figures

1-1 A convection cell 13

2-1 A small portion of the lattice 19

2-2 A unit whorl 22

3-1 Critical heat value q for convection 35

3-2 Convection at different aspect ratios 37

3-3 Conduction/mixing bifurcation in the relaxation version 40

3-4 Comparison of conduction and mixing in the relaxation version 41

3-5 Bifurcation diagram for steady-state modes, 20 x 10 lattice 44

3-6 Comparison of steady-state modes, 20 x 10 lattice 45

3-7 Bifurcation diagram for steady-state modes, 80 x 10 lattice 48

8

List of Tables

2.1 Lattice position names 19

2.2 Calculation of momenta using edge-crossing momenta 21

2.3 Calculation of momenta using whorls 23

2.4 Laws in the model 31

2.5 Symbols used 32

9

Chapter 1

Introduction and Objectives

1.1 Introduction

One of the objectives of the research described in this thesis was to explore the be-

haviour of statistical systems which are not at equilibrium; this includes systems that

are relaxing towards equilibrium, and systems that are in a steady non-equilibrium

state. In order to perform this research, I created a very simple, discrete, mathemat-

ical model of a convection cell. The purpose of this thesis project was not to model

the behaviour of a convection cell in a quantitatively accurate way. The purpose was

to study a simplified but qualitatively accurate model which is well understood, and

see if it behaves in a way that confirms general hypotheses that might apply to a very

wide range of non-equilibrium statistical systems.

In this chapter, I will begin by introducing the principle of maximum entropy

production, which is the general hypothesis that I investigated. I will then go on to

discuss the system that was modelled for this purpose: the convection cell. Finally

I will very briefly discuss the model itself. Following chapters will give a much more

detailed description of the model and a presentation of my results.

10

1.2 The Principle of Maximum Entropy Produc-

tion

One general principle governing statistical processes might be the following: systems

which are not at equilibrium and have several possible paths or qualitatively distinct

ways of getting to equilibrium or of maintaining their steady state will always choose

the path or state that maximizes the rate of entropy production. This is the crudest

formulation of the principle of mazimum entropy production.

The principle of maximum entropy production has been suggested before in the

literature, but, as far as I know, it has never been conclusively confirmed or refuted.

Dafermos (1973; 1984) has put forward this principle in a general way as the "entropy

rate admissibility criterion," and analyzed it for systems governed by "hyperbolic"

conservation laws. Unfortunately, his papers are very difficult, and I discovered them

too recently to have completely understood them by the time of writing. His entropy

rate admissibility criterion is presented as a likely hypothesis that needs to be tested

or proved. I do not know of anyone who has undertaken either task.

A principle of maximum entropy production is widely used by systems theorists,

particularily R. Swenson (Swenson and Turvey, 1991), in discussing self-organization

in the evolution of ecosystems and the evolution of life. However, the principle has

never been rigourously related to the laws of physics, as far as I know.

Certainly the principle of maximum entropy production is not true for absolutely

all physical systems. For instance, Prigogine (1955) has shown that linear systems of

chemical reactions in the steady state close to equilibrium actually minimize entropy

production. Therefore, the principle of maximum entropy production could only

be true for non-linear systems or systems far from equilibrium. In fact, Prigogine

(1980, p. 88) implies that entropy production is often maximized for systems far from

equilibrium. He does not back this up with any arguments or references.

Something very close to the principle of maximum entropy production is some-

times appealed to in discussions of pattern selection in convecting systems. Rayleigh-

B6nard convection can occur in many different types of patterns, such as rolls, cross-

11

rolls, squares and hexagons (see, e.g., Knobloch, 1989; Silber and Knobloch, 1988).

However, near the onset of convection (Rayleigh number close to the critical value),

it has been suggested that the pattern which is stable is the one that transports the

most heat from the hot lower plate to the cold upper plate (Clune and Knobloch,

1991). In a convecting system, the entropy production is proportional to the trans-

port of heat between the hot and cold plates, so the stable pattern is the one that

produces entropy at the greatest rate.

Unfortunately, I am told that this is not true far from the onset of convection

(Knobloch, 1992; Libchaber, 1992). That is, when the Rayleigh number of the system

is greater than its critical value by a large enough margin, the stable pattern may not

be the one that transports the most heat. If the maximum-heat-transport pattern-

selection rule is true at all, it is only true near the onset of convection. This suggests

a more restrictive version of the principle of maximum entropy production:

The Principle of Mazimum Entropy Production: Consider any non-equilibrium

statistical system with variable parameter . Imagine that there is a bifurcation in

the behaviour of the system at some critical value l = 77c, such that for q > r7c there

are at least two qualitatively distinct solutions to the equations of motion. If 7 exceeds

7rc by a small enough margin, the system will choose the branch of the bifurcation

(i. e., the solution to the equations of motion) that maximizes entropy production.

In other words, close to any bifurcation, the stable branch is the one that maximizes

entropy production.

This last formulation of the principle of maximum entropy production is the one

that was tested in this thesis. I do not know whether or not this principle is obvious. I

do not even know if it is true. However, the principle of maximum entropy production

was confirmed in all of the tests that I performed.

1.3 The Steady-State Convection Cell

In the previous section, I said a little about convection, convection patterns, and

critical Rayleigh numbers. I will now go further into this subject, as convection is

12

going to be the main focus of this thesis.

A convection cell is a box in a gravitational field that is completely filled with water

or some other liquid. The bottom and top walls of the box are heat-conducting plates

that are maintained at different temperatures; the bottom plate hotter than the top

plate. If the temperature difference AT between the plates is small enough, then the

water in the cell will remain motionless and heat will diffuse to the top of the box in a

very symmetrical way. The behaviour of the system will be dominated by conduction.

If AT is above some critical value (AT),, however, convection will set in, and the

water will start moving in little counter-rotating eddies, actually carrying hot water

to the top of the box and cold water to the bottom. This is called Rayleigh-Benard

convection, after Lord Rayleigh and H. B6nard. The latter (Benard, 1901) performed

the first convection experiments, and the former (Rayleigh, 1916) was the first person

to analyze them and explain the existence of a critical temperature difference (AT)c.

/TC /////
top plate

9 d fluid: Po, 77, a, DT

I bottom plate
////// TH = Tc + AT //////

Figure 1-1: A cross-section of a convection cell

Actually, to speak more generally, temperature is not the only parameter that can

be varied to bring on convection. Viscosity and system size also have critical values

if the other parameters are kept fixed. Usually the system is descibed in terms of the

dimensionless parameter R called the Rayleigh number:

Po 9 c dA
R= o T (1.1)

77 DT

where po is the mean density, g is the acceleration due to gravity, a is the expansion

coefficient, d is the distance between plates, 7 is the viscosity, DT is the thermal

diffusivity, and AT is the temperature difference between the plates (Berge, Pomeau,

13

Vidal, 1984, pp. 84-85). Whenever the Rayleigh number exceeds the critical value R,,

convection sets in. In the terminology of Hopf bifurcation theory, Rc is a bifurcation

point, and the bifurcation to convection is supercritical (Libchaber, 1992; Tabor,

1989, pp. 197-198).

Of course there are many possible patterns of convection. As I mentioned in the

previous section, these include rolls, cross-rolls, squares, and hexagons. One thing

that unites these patterns is that the characteristic distance scale of all patterns is

roughly d, the height of the cell (Velarde and Normand, 1980). For example, if the

convection pattern is rolls, the individual rolls will tend to have a cross-section of size

d x d. As I said earlier, which pattern is actually selected is a difficult question except

possibly when the system is close to the convection bifurcation. When it is close to

the bifurcation it may simply be a question of which pattern produces entropy at the

greatest rate.

The only type of convection pattern that I was able to observe was rolls, because

the model I used is of a two-dimensional slice of a convection cell, and rolls form

the only convection pattern with translational symmetry along the third dimension.

However, as I will show, there are still many phenomena to study, even when the

convection cell system is restricted to roll patterns. For instance, rolls of different

aspect ratios can be solutions to the equations of motion. Why then does the system

choose roll patterns with a certain aspect ratio? This question may also be answerable

with the principle of maximum entropy production.

1.4 Relaxation to Equilibrium

In addition to convection experiments, there is another set of experiments that could

be carried out in a fluid cell in a gravitational field, which I will refer to as relaxation

experiments. These involve putting a small quantity of hotter fluid into the bottom of

a cold fluid cell and then watching the system relax to equilibrium. That is, instead

of using heat conductors at constant temperature at the top and bottom of the cell,

with heat flowing through the cell, the walls of the cell could be made of non-heat-

14

conducting material. A small bit of heat could be added to the bottom initially and

the system could be observed as it approaches equilibrium. As far as I know, no one

has ever actually performed any relaxation experiments with a fluid cell.

Just as in the steady-state experiments, there should be a critical Rayleigh number

R', below which the behaviour of the system will be conduction dominated, and

above which the behaviour will be mixing dominated. I call it "mixing," and not

"convection," because the motion of the fluid will be a brief transient in which clear

patterns will not develop. Also, R' > Rc because in steady-state experiments there is

a lot of time (an infinite amount) for a convection pattern to develop out of random

fluctuations, whereas in relaxation experiments if the mixing does not set in quickly,

heat conduction may bring the system to equilibrium before the initial fluctuations

in the fluid motion can be amplified.

A relaxation experiment should provide a very simple system with a bifurcation

point beyond which there are two qualitatively distinct paths to equilibrium. It is

therefore an ideal system for checking the principle of maximum entropy production.

In addition to modelling steady-state convection, the model presented in this thesis

was used to model relaxation.

1.5 The Model

Here I will briefly introduce the model I used, leaving the details for the next chapter.

The actual C code used to implement the model is given in Appendix A

The model is a two-dimensional cellular-automata-style model of a convection cell

in the Boussinesq approximation. It can be used to model either steady-state or

relaxation experiments.

The model is a two-dimensional cross-section of a convection cell. The hot plate

is at the bottom and the cold plate is at the top. Because there is only one horizontal

dimension, any patterns that are produced must be interpreted as having translational

symmetry along the unmodelled axis.

It is discrete in both space and time. The model has local variables on the points

15

of a two-dimensional lattice: there are heats, and there are "whorls." The whorls

form a stream function in the model; they simplify the laws I use regarding fluid

momentum. At each time step, the variables change according to several local laws.

These laws were not created by taking a discrete approximation of the differential

equations that describe a convection cell. Rather they were motivated directly from

simple facts about fluids. The thing that I like about the model is that its behaviour is

qualitatively correct despite the fact that it is very simple and it was created without

analyzing real convection cells quantitatively.

The Boussinesq approximation is the approximation in which none of the physical

parameters of the system depend on temperature. Of course convection depends on

the fact that fluids expand when heated; but the Boussinesq approximation is that

the thermal expansion coefficient a is independent of temperature and the thermal

expansion is never a significant correction to the mean density (Libchaber, 1992). In

equations, this says that for all parameters pi except the density:

aaT 0 (1.2)

And for the density:

a AT < po (1.3)

where a is the thermal expansion coefficient, AT is the temperature difference and

po is the mean density.

When discussing the model, I never speak in terms of these parameters (viscosity,

thermal expansion, thermal diffusivity etc.) because the model has a different, al-

though related, parameter set. However, it is true that the parameters in the model

are independent of temperature. That is why I say that the model is in the Boussinesq

approximation.

The model can perform both steady-state and relaxation experiments, and it was

used for both types. It has a large parameter space, so steady-state experiments were

performed to ensure that a set of physically realistic (in a qualitative sense) parameters

were being used. This parameter set was then employed in testing the principle of

16

maximum entropy production. The results presented in this thesis represent only the

beginning of a very long possible programme of research, both into models of this

type and into principles of non-equilibrium statistical mechanics such as the principle

of maximum entropy production.

17

Chapter 2

The Model

2.1 The Lattice

The model is two-dimensional. The x-direction is parallel to the top and bottom of

the cell. The y-direction is up.

The model is discrete in both space and time. The two-dimensional space is

divided into cells, which are called bins. There are M bins in the x-direction and N

bins in the y-direction. However, for reasons that will soon come apparent, there are

about four times as many points in the lattice as there are bins. For any position

(xr,y) on the lattice, the following holds:

O< x < 2M and O < y < 2N (2.1)

Each position (x, y) on the grid can be either a bin, an edge, or a corner. Table 2.1

explains this terminology, and it is depicted in Figure 2-1.

Because whether or not a particular index is odd or even is important to the

discussion, I will always use the indices m and n to represent odd numbers and the

indices r and s to represent even numbers. This is also illustrated in Table 2.1.

18

x y position name examples
bin
edge, horizontal
edge, vertical
corner

(m, n), (15,9), (1,2N - 1)
(m, s), (11,4), (m,n + 1)
(r, n), (6, 13), (2M - 2, n)
(r, s), (8, 8), (r + 2,n - 1)

Table 2.1: Lattice position names for an arbitrary position (x,y).

Y

...... /o A\

-edge (4, 3)

- edge (5,2)

- bin (7, 1)

wall y = /W
6 7 8

Figure 2-1: A small
names.

portion of the lattice, showing some representative position

19

odd
odd
even
even

odd
even
odd
even

6

5
A

3

2

1

U
0 1 2 3 4 5

/

C
I i I I

i'mlr ! ~ r~ · # u

W"/
Jl ,

I

___7
·I- __- m L

In

2.2 Heat

In each bin (m, n) there is an amount of heat q(m,n). q(,,,) is a real number and it

can be negative or positive. It represents the amount of heat contained in the liquid

at that location above some reference amount (zero).

The model operates in the Boussinesq approximation, as discussed in Section 1.5.

Therefore, the heat capacity of the liquid in each bin is independent of the amount

of heat in that bin, so the heats q(,,,) can be thought of as temperatures. The field

of heats is proportional to the temperature field. In fact, I may occasionally refer to

the heats in the model as temperatures.

2.3 Momenta

There are momenta defined at every position in the lattice, but I will do most calcu-

lations with momenta at the edges. In fact, I will do most momentum calculations

with x-components on vertical edges and y-components on horizontal edges. These are

the momentum components that represent flow directly from one bin to an adjacent

bin. I will call these edge-crossing momenta. For example pr(4,5) is the edge-crossing

momentum from bin (3,5) to bin (5,5).

Because the liquid is modelled as incompressible, the following restriction holds

on the edge-crossing momenta surrounding each bin (m, n):

Ps(m+l,n) Px(rn-l,n) + Py(m,n+l) - Py(m,n-1) = 0 (2.2)

Equation (2.2) is just a discrete version of the continuous equation

5 + = 0 (2.3)

(2.3) is simply the equation of continuity for a fluid of constant density (Landau and

Lifshitz, 1959, p. 20).

Table 2.2 shows how to use the edge-crossing momenta to calculate the x- and

20

y-momenta in bins and at corners.

position

bin (m, n)

corner (r,s)

momentum formulae

P,(m,n) = (1/2)(P.(,n+1,n) + Pa(m-l,n))
Py(m,n) = (1/ 2)(Py(m,n+1) + Py(mn-1))

P.(r,a) = (1/ 2)(.r(t,+1) + Px(r,o-1))
I_ It' i . \

Py(r,a) = l/Z)Py(r+-l,) t py(r-,,))

Table 2.2: Calculation of momenta in bins and at corners using edge-crossing mo-
menta. Table 2.3 will replace these formulae once whorls have been introduced.

2.4 Whorls

The incompressibility of the fluid, as expressed by (2.2), is difficult to model with local

laws. That is, an arbitrary momentum field will not satisfy (2.2). At first I thought

that there might need to be a non-local law in the model that would readjust all

momenta to ensure that (2.2) is always satisfied. However, the introduction of whorls

renders this unnecessary. The whorls are a set of local quantities that determine the

momentum field and ensure that (2.2) is always satisfied.

At each corner (r, s), there is a real number w(r,,) which is called the whorl at

(r, s). A unit whorl w(,,) = 1 represents counter-clockwise flow of liquid through the

four bins surrounding the corner (r, s). An isolated unit whorl at the corner (r, s) is

equivalent to the following four momenta on the surrounding edges:

py(r+l,o) = 1 P(r,s+l) = -1, Py(r-l,s) ,= -1 P(r,-1l) = 1 (2.4)

Figure 2-2 depicts a unit whorl.

Notice that an isolated whorl satisfies (2.2) for its four surrounding bins. In fact,

any linear superposition of whorls will also satisfy (2.2) in all bins (m, n). The whorls

form a complete set for describing the momenta in the model.

If one takes the continuum limit, one sees that the whorls form a scalar function

21

y

s+2

s-2 x
r-2 r r+2

Figure 2-2: An isolated unit whorl w(r,,) = 1

W, the gradient of which is the momentum field rotated by 900. That is:

oW 8W
p = and p= -- (2.5)

Oy Ox

Equations (2.5) show that the field of whorls constitutes a stream function (Berry,

1992; Landau and Lifshitz, 1959, p. 22).

Equations (2.5) ensure that (2.3) would be satisfied in the continuum limit. Also,

the equations (2.5) show that the flow lines for the momentum are contours of constant

W. The flow is counter-clockwise around positive "hills" of W and clockwise around

negative "depressions."

Table 2.3 shows how to calculate the momenta at all positions in the lattice using

adjacent whorls.

2.5 Laws in the Model

The following laws get applied to the heats q(mn,) and whorls w(,,,) in the model at

each time step. Each law gets applied as a separate, independent operation, but a

single time step consists of the application of all the laws in order.

The laws constitute the "physics" of the model. The list of laws given in this

22

momentum formulae

bin (m, n)

horizontal edge (m, s)
vertical edge (r, n)

corner (r,s)

P:(m,n) = (1/2)[W(m+1,n+l) - W(m+l,n-l)

+W(m-l,n+l) - W(m-l,n+l)]

P(rn,n) = (1/2)[W(m-l,n-l) + W(m-l,n+l)

-W(m+l,n-1) - W(m+l,n+l)]

Pv(m,) = [W('-1,8) - W(m+l,)]

p.(r,n) = [w(r,n+1) - W(r,n-1)]
p.(r,,,) = (1/2)[w(r,.+2)- W(r,s-2)]
Py(r,.) = (1/2)[W(r_2,,) - (r+2,s)]

Table 2.3: Calculation of momenta at all lattice positions using adjacent whorls. The
corner and bin formulae follow from the edge formulae and the equations given in
Table 2.2.

section is not exhaustive; other laws will be introduced in Sections 2.6.2 and 2.6.3.

The laws are summarized in Table 2.4, where their order of application is also given.

2.5.1 Heat Diffusion

At each time step, a fraction aq of the heat in each bin spreads into each of the four

adjacent bins. That is, 4 aqq(m,n) is subtracted from q(m,n) and aqq(m,n) is added to

q(m+2,n), q(m,n+2), q(m-2,n), and q(m,n-2)- aq must lie in the range

1
0 < _< 1 (2.6)

or else more heat will diffuse out of each location than is in it to begin with.

Heat diffusion simulates heat conduction. I call it "diffusion" to emphasize the

symmetry between heats and whorls in the model (cf. Section 2.5.3). Heat diffusion

is a linear process acting only on the heats.

2.5.2 Heat Transport

After heat diffusion is completed, some quantity of heat is transported across each

edge in the direction of the moving liquid. At the vertical edge (r,n), a quantity of

heat Aq(,,n) moves from bin (r - 1, n) to bin (r + 1,n). Note that A.,q(r,n) can be

23

position

either positive or negative. If Awq(r,n) is negative, heat actually moves from (r + 1, n)

to (r - 1,n).

A-q(r,n) =- qP(r,n)1 [q(r-l.n) + q(+l,n) (2.7)

Azq(,n) is called the horizontal heat transport. 3q is called the heat transport param-

eter.

Similarly, in the y-direction there is the vertical heat transport, defined at every

horizontal edge (m, s):

Aq(ms) = P(m [q(m,-l) + q(m,+)] (2.8)

Ayq(m,s) moves from (m,s - 1) to (m,s + 1) if it is positive, and from (m,s + 1) to

(m, s - 1) if it is negative.

Heat transport is a non-linear process since the amount of heat transported is

proportional to a product of momentum (a difference of whorls) and heat.

2.5.3 Whorl Diffusion

Just like heat diffusion (Section 2.5.1), there is whorl diffusion. This occurs at each

time step after heat diffusion and heat transport have completed. A fraction a of

the whorl at each corner (r,s) spreads into each of the four adjacent corners. Like

aq:

< < (2.9)
- 4

Whorl diffusion simulates the effect of viscosity, since any large differences in nearby

whorls will get evened out by its action.

Whorl diffusion is a linear process acting on the whorls.

2.5.4 Whorl Transport

We whirl the whorl.

-Michel Baranger.

Whorl diffusion is followed by whorl transport. Consider the whorl at (r,), and

24

the four surrounding whorls at corners (r + 2, s), (r, s + 2), (r - 2, s), and (r, s - 2).

If w(r,.) is positive, then a fraction of each of the four adjacent whorls moves into the

location 900 counter-clockwise from it. That is, if w(,,o) is positive, then the following

movements of whorls take place:

130 W(t,) [W(r+ 2 ,a) + W(r,+2) moves from (r + 2, 8) to (r, s + 2)

w UW(r,a) 2 [w(,,+ 2) + W(,,)] moves from (r, s + 2) to (r - 2, s)

/w W(r,,)) [w(,-2,) + w(.-2)] moves from (r - 2, s) to (r, s - 2)

P w(t,)2 [W(, -2) + W(t+2,.)] moves from (r,s - 2) to (r + 2, s) (2.10)

w, is called the whorl transport parameter. If w(,,,) is negative, the movement is in the

opposite direction. The idea is that the four whorls rotate around the central whorl

in the direction of the central whorl, and that the amount that moves is proportional

to the magnitude of the central whorl.

Whorl transport is a non-linear process acting on the whorls, since the amount of

whorl that moves is a product of two whorls.

How whorl transport is accomplished at the top and bottom boundaries of the

lattice is discussed in Section 2.6.4.

2.5.5 Gravity

Hot liquid tends to rise. This is the motivation for the law called gravity in the model.

This law simulates the "torque" on each corner from an imbalance of heats on the

left and right sides.

Consider the four bins surrounding each corner (r,s). At each time step, after

the diffusion and transport operations, if there is more heat in the two bins to the

right of (r, s) than there is to the left, then the whorl w(,,,) will be increased. If there

is more heat to the left than to the right, then w(7,,) will be decreased. Specifically,

25

w(,,.) will change by an amount Aw(r,) where

Aw(,,) = y (q(r+1,,+1) + q(,+,._i) -q(rl,.+) - q(,_,,-_)) (2.11)

y is the gravitational parameter.

Gravity is a linear process acting on the whorls, since the change in whorl is

proportional only to a sum of heats.

2.5.6 Randomization

Some randomness is put into the model to allow symmetry to break. At each time

step, to each corner is added a random whorl picked from a Gaussian distribution

with mean zero and standard deviation o,.

Sometimes my results consist of comparing runs in which symmetry is allowed to

break with runs in which symmetry is not allowed to break. The latter are runs in

which a, = 0.

The Gaussian-distributed random numbers were generated with Press et al.'s

(1988) C language routine "gasdev.c."

2.6 Boundary Conditions

Until now I have carefully avoided discussion of what happens at the walls of the

container. A position (, y) in the lattice will be called a wall point if

y=O or y=2N (2.12)

That is, a point is a wall point if it lies on the top or bottom boundary of the lattice.

There are also boundaries to the lattice in the x-direction, at x = 0 and x = 2M.

However, I model the convection cell as being infinite in x-extent by using circular

boundary conditions. That is, bin (2M - 1, y) is adjacent to bin (y) for all y, and

the edges and corners with x = 2M are identical with those with x = 0. The model

26

"wraps-around" in the x-direction. All laws behave accordingly.

Obviously the wall points defined by (2.12) are corners and edges by the terminol-

ogy given in Table 2.1. However, they are corners at which the whorls are identically

zero and edges at which no edge-crossing momenta are defined. This is because there

can be no momenta "through" the walls.

The behaviour of heat at the walls determines the "version" of the model that is

being used. If no heat is exchanged with the walls, then I will say that the model

is in the relaxation version. If, on the other hand, there is heat exchange with the

walls, then I will say that the model is in the steady-state version.

2.6.1 Relaxation Version

In the relaxation version, there is no heat exchange with the walls. The model starts in

some initial heat and whorl distribution and it relaxes to equilibrium (see Section 2.7.1

for the actual initial conditions used). This process does not involve dissipation

of heat, only redistribution of heat throughout the lattice by heat transport and

diffusion. Equilibrium is the state in which the heat is evenly distributed and the

whorls are all zero. In the relaxation version, heat diffusion and transport do not

operate "through" or "into" the walls.

2.6.2 Steady-State Version and Heat Flow

In the steady-state version of the model, the bins at the top and bottom of the cell

are maintained at heat values 0 and q0o, respectively, where q0 > 0. That is, precisely

enough heat is added to the bottom of the cell and subtracted from the top to maintain

the heats in the bins adjacent to the walls at prescribed "temperatures." This is how

the model is used to simulate a conventional convection cell. That is, in the steady-

state version, heat diffusion and transport do not operate "through" or "into" the

walls, but a new law called heat flow operates in addition to those previously given:

At every time step, all bins (m, 2N - 1) at the top of the lattice have their heats

q(m.2N-1) set to zero, and all bins (m, 1) at the bottom of the lattice have their heats

27

q(m,l) set to qo.

2.6.3 Whorl Absorption

There is no heat diffusion into the walls, but there is whorl diffusion into the walls.

It is called whorl absorption.

In order to model fluid-wall friction, there is a parameter 71T that is the fraction

of the whorls adjacent to the walls that is absorbed by the walls at each time step.

For example, the whorl W(r,2) adjacent to the lower wall would have an amount Aw =

?7wW(r, 2) subtracted from it at every time step. Whorl absorption is exactly like whorl

diffusion, except that the whorls are dissipated from the system into the walls.

In practice, the whorl absorption and whorl diffusion laws are performed simulta-

neously (see the source code whorl-diffusion. c in Section A.17).

2.6.4 Whorl Transport at Walls

Whorls cannot transport into the walls, since no whorls are defined on the walls. That

is, all whorls are identically zero along the walls. Consider a corner (r, 2) or (r, 2N- 2)

adjacent to the wall. Whorl transport operates around (r, 2) and (r, 2N - 2), except

that there are only three whorls involved instead of four. Consider the whorl transport

around the corner (r, 2):

. W(r,2) 2 [w(,+ 2,2) + W(v,4)] moves from (r + 2, 2) to (r, 4)

'W(r,2) 2 [W(-,4)+ w(,_2,2)] moves from (r, 4) to (r - 2, 2)

#i W(r,2) 2 [w(_2,2) + w(+2,2)] moves from (r - 2,2) to (r + 2,2) (2.13)

Note that all coefficients are the same as in (2.10), but only the three non-wall adjacent

corners are used. The analogous thing happens in locations (r, 2N - 2).

28

2.7 Initial Conditions

2.7.1 Step Function

Step function initial conditions are used in the relaxation version of the model. All

whorls w(,,) are set to zero. The heats q(m,n) in all bins are set to zero, except for the

line of bins (m, 1) adjacent to the lower wall y = 0. The bins adjacent to the lower

wall are set to:

q(m,l) = qo (2.14)

where qo has some positive value.

2.7.2 Static Gradient

Static gradient initial conditions (or simply "gradient initial conditions") are some-

times used in the steady-state version of the model. All whorls w(t,) are set to zero

(hence the "static"). The heats q(,,,) are set as follows:

q(m,n) = qo 2N + 1 (2.15)2N

(hence the "gradient") where qo has some positive value. This starts the model in a

state that is close to the conduction steady-state.

2.7.3 Pattern-Inducing

Sometimes, in the steady-state version, the initial conditions are set so as to excite

a particular convection pattern. When this is done, the initial conditions will be

specified in the discussion (see Section 3.3).

2.8 "Thermodynamic" Quantities

Aside from the actual state of the model at any time, as specified by the heats q(m,n)

and whorls w(,,.), there are a couple of more coarse-grained, global, macroscopic, or

29

"thermodynamic" quantities that describe the general condition of the model. These

quantities are some of the "measurements" that I make on the model as it is running.

2.8.1 Total Heat

The total heat Q in the model is defined in the obvious way:

Q = E q(m,n) (2.16)
m,n odd

Q is be time-independent in the relaxation version of the model and time-dependent

in the steady-state version. Of course, when the steady-state version is actually in a

steady state, Q is time-independent.

2.8.2 Heat Entropy

The heat entropy S is a measure of how evenly distributed the heat is in the bins:

s = - q(m,n) in (,(m)) (2.17)
m,nodd Q Q

Where Q is defined by (2.16). The maximum possible value Smax of S is ln(MN),

and S = S = ln(MN) when the heat is evenly distributed across the bins.

It might be slightly misleading to use the name "entropy," since S in (2.17) does

not measure the normal thermodynamic entropy of the fluid in the cell. However,

(2.17) is based on a generalized entropy formula from information theory which is

justified very well in Balian (1991, § 3.1). S is really a measure of he uniformity of

the heat distribution in the lattice.

2.8.3 Heat Flux

In the steady-state version of the model, there is heat flux in and out of the convection

cell. This heat flux is a result of the heat flow law described in Section 2.6.2. The

heat flux (AQ)H entering the cell on the hot side (the bottom) at each time step is

30

given by:

(2.18)(AQ)H = C (qo - q(m,l))
m odd

While the heat flux entering the cell on the cold side (the top) is:

(2.19)(AQ)c = (- (m,2N-1))
m odd

Note that usually (AQ)H will be positive while (Q)c will be negative.

When the steady-state version of the model has actually reached a steady state,

(Q)H = -(A Q)c (2.20)

2.9 Summary

Table 2.4 shows the laws that are used in the model. Table 2.5 shows the symbols

that I use in discussing the model.

law name
heat diffusion
heat transport
whorl diffusion
whorl absorption at walls
whorl transport
gravity
randomization
heat flow (steady-state only)

parameter
ctq

77aut

qw

qo

section
2.5.1
2,.2
2.5.3
2.6.3
2.5.4
2.5.5
2.5.6
2.6.2

Table 2.4: Laws in the model. At each time step, the laws in this table are applied
to the lattice in the order shown. The only exceptions are whorl absorption, which
actually takes place at the same time as whorl diffusion, and heat flow, which only
acts in the steady-state version of the model.

31

-

symbol name section
M number of bins, x-direction 2.1
N number of bins, y-direction 2.1

(z, y) lattice location 2.1
m, n odd indices 2.1
r, s even indices 2.1

q(m,n) heat (temperature) in bin at (m, n) 2.2
p,(,,n) x-momentum at (r, n) 2.3
Py,(m,,) y-momentum at (,) 2.3
w(,,.) whorl at (r,s) 2.4

aq heat diffusion parameter 2.5.1
13q heat transport parameter 2.5.2
a,, whorl diffusion parameter 2.5.3
,,, whorl transport parameter 2.5.4
7 gravitational parameter 2.5.5

O,, standard deviation of random whorls 2.5.6
qo lower wall heat value 2.6.2
7,w whorl absorption at walls 2.6.3
Q total heat 2.8.1
S heat entropy 2.8.2

Sm,. maximum possible heat entropy 2.8.2
(AQ)H heat flux from hot resevoir 2.8.3
(AQ)c heat flux from cold resevoir 2.8.3

Table 2.5: Symbols used in the model discussion.

32

Chapter 3

Results

Roughly, the experiments that I performed with the model fall into two categories:

tests to see that the model behaves in a qualitatively reasonable way, and actual

results that relate to my objectives.

The symbols that I use in this chapter will be the same as those used in Chapter 2.

They are summarized in Table 2.5.

3.1 Testing the Model

All of the tests of the model's qualitative accuracy were performed in the steady-

state version (Section 2.6.2). This is because there is a great deal that is known

about steady-state convection and I was able to use some of this knowledge to check

the behaviour of the model.

3.1.1 Critical Rayleigh Number

Because the model does not represent an attempt to simulate a convection cell ex-

actly, I have not attempted to calculate a Rayleigh number in terms of the model

parameters.

However, it is true that for any setting of the other parameters, there is a itical

value q of the lower wall heat value qo, such that for qo < q there is no convection

and for qo > q, there is convection. This is illustrated in Figure 3-1. Of course q,

33

is a function of the other parameters. This is analogous to the critical temperature

difference (AT), mentioned in Section 1.3.

It is also true that for any setting of the other parameters, there is a critical

value a,, of the whorl diffusion parameter a,, such that convection only occurs when

a, < awe. Again, awe is a function of the other parameter settings. This is analogous

to the critical fluid viscosity under which convection sets in for real convection cells.

The existence of these critical values does not show that the model is quantitatively

accurate, but it does show that it has some of the important qualitative features of a

convection cell.

3.1.2 Wavelength of Stable Convection Pattern

As I mentioned in Chapter 1, convecting rolls have a characteristic aspect ratio. If

the separation between the top and bottom walls of the convection cell is d, rolls that

develop have cross-sectional size d x d. Actually, the rolls that develop adjacent to

one another rotate in opposite directions, so that the repeated pattern in a convection

cell is a pair of rolls, one rotating clockwise and the other counter-clockwise. The

aspect ratio of this basic pattern is 2. For this reason, Berge, Pomeau, and Vidal

(1984, p. 88) suggest making convection cells with cross-sectional aspect ratio 2.

I initially ran the model with aspect ratio 2 (M x N = 20 x 10) in order to see if

the same type of convection pattern appears. Figure 3-1 shows that the convection

pattern that sets in does have aspect ratio 2, and it consists of two counter-rotating

rolls.

When the lattice has aspect ratio 2, the aspect ratio of the convection pattern

is fairly independent of the parameters. That is, so long as the parameters allow

convection, the convection pattern usually has aspect ratio 2. Roughly, this is because

the size of the cell and the circular boundary conditions "force" a pattern of aspect

ratio 2. This is not true for higher aspect ratios.

For example, if 77, = 0, stable convection on a lattice of aspect ratio 4 has aspect

ratio 4, not 2. That is, only one double-roll pattern forms, not two. On a lattice of

aspect ratio 6, the stable pattern has aspect ratio 6, not 2. On the other hand, if i7,

34

Figure 3-1: The top picture shows the output from the steady-state version of the
model with qo = 1.5 (5000 time steps), and the bottom picture shows the output
with qo = 3.0 (10000 time steps), establishing the existence of a critical value q¢ for
convection, 1.5 < q < 3.0. Later tests showed 1.5 < q < 1.75 (see Figure 3-5). Other
parameters are set as per equation (3.1), a,,, = 0.01, M x N = 20 x 10 (remember
that the lattice dimensions are actually 2M x 2N). The circle size represents the
amount of heat q(,,,) at each location (m,n), and the arrow lengths and directions
indicate magnitude and direction of fluid momentum.

35

is large enough, the stable pattern on a lattice of aspect ratio 4 might have aspect

ratio 1.33 (i. e., 3 double-roll patterns form) while on a lattice with aspect ratio 6 the

stable pattern might have aspect ratio 1.5 (i. e., 4 patterns form). I decided to fix the

parameters of the model so that the aspect ratio of the convection patterns comes

out to be 2 on all lattices of even aspect ratio.

I ran tests on lattices of even aspect ratios up to aspect ratio 8. The parameters

that I ended up choosing were:

aq = P = a =w = = 0.1, = 0.025 (3.1)

I used these parameters in most of my experiments.

Figure 3-2 shows the results of running the model at various aspect ratios with

these parameters and qo = 3.0. The convection patterns all have aspect ratio 2.

Actually, later testing showed that even with these parameters, when I ran the aspect

ratio 8 lattice with different random number sequences, sometimes 5 patterns with

aspect ratio 8/5 developed instead of 4 patterns with aspect ratio 2. However, when

the model was run with qo = 2.0, much closer to q (1.5 < q < 1.75), the aspect

ratio 8 lattice always developed 4 patterns. I will return to this phenomenon later

(Section 3.3.2).

The parameters (3.1) that I chose are such that the stable convection patterns have

the same aspect ratio as real convection patterns. This suggests that the parameters

are physically realistic, and that the model is qualitatively accurate.

3.1.3 Further Tests

There are many further tests that should be performed on the model that lack of

time prevented me from performing. For instance, tests should be made on the size

of the lattice: are there artifacts from the lattice discreteness that disappear as the

number of lattice points increases? If so, what is the smallest lattice such that the

lattice artifacts are negligible?

Another test would be to change the order in which the rules (heat diffusion, heat

36

20

15 T I , -- ',' ' . . -, t T T T T t , ' - .r . -,
10 f .

0 20 40 60 80

20 -- -'

5 IT IAA- I

5 ' . t,,- . , , ' ,It tt 4'" L"/ S'-." tD ''""i .I . 4 'IJ%".i.ttl . LJ--v5 tt l ttI % tt

TT5 t1..-V/4 ww -d/- b'.- sv t t ''- , s-/a tt ' --- " ' - 8'

0 0 20 100 100 12020 -

0 50 100 150

Figure 3-2: These three diagrams show convection patterns for lattices of aspect ratios
4 (M x N = 40 x 10), 6 (60 x 10), and 8 (80 x 10), after 10000 time steps, using
the parameters in (3.1) and ,,, = 0.01. Remember that the lattice has dimensions
2M x 2N. Note that the diagrams have been horizontally compressed to fit into the
available space, and the heats (circles) have been ommited for clarity. One can see
that in each case the (uncompressed) convection pattern is of aspect ratio 2: in the
top diagram there are 2 patterns, in the middle diagram there are 3 patterns, in the
bottom diagram there are 4 patterns.

37

Il _- 4,q I . ,'_ do - -I - I r . JlbI

vs%.,ooo-oos. SS'Fs~~~~~~eN'8tooooooozI-..LIJ. v vs

% ' t ~ ~ . I s tI :X c 4

transport, etc.) are executed. In all the experiments described in this thesis, the laws

were executed in the order given in Table 2.4. Ideally, the results should not depend

strongly on the order of execution of the rules.

Also, all of the simulations were run in a very small volume of "parameter space."

That is, I did not experiment much with varying the parameters. This should be

done extensively to see if there are any anomalies, and in order to help choose the

most physically realistic set of parameters.

Finally, I should have taken the continuum limit of our discrete equations. In

the continuum limit, I would like to get the equations of motion for convection in

the Boussinesq approximation. This would be a check to see if the model really does

simulate a convection cell. It was not my intention to model a convection cell precisely,

but the "accuracy" of the model is still an interesting and important question.

3.2 Results in the Relaxation Version

As I explained in Section 2.6.1, the relaxation version allows observation of a system

relaxing to equilibrium. The system modelled is that of a fluid cell in a gravitational

field with non-heat-conducting walls. It starts with hot water on the bottom, colder

water above. These initial conditions are modelled with step function initial condi-

tions (Section 2.7.1): all bins (m, n) have heat q(,,n) = 0 except the bins (n, 1) along

the bottom of the cell which have q(,m,) = qo. All whorls w(,.,) are set to zero.

As I conjectured in Section 1.4, above a critical value of qo there should be two

qualitatively distinct paths to equilibrium, one that is very symmetrical and con-

duction (heat diffusion) dominated, and one that is asymmetrical and mixing (heat

transport) dominated. Furthermore, according to the principle of maximum entropy

production, when qo is close to its critical value q, the stable path will be the one

that maximizes the rate of entropy production.

Figure 3-3 illustrates the bifurcation in the relaxation behaviour as a function

of the lower wall heat qo. When the lower wall heat is small enough, there is only

one path to equilibrium that is a solution to the equations of motion. This is the

38

conduction-dominated, symmetrical path that involves no fluid motion. When qo is

above a critical value qc (q, - 63 for the parameters in (3.1)), there are two paths, one

stable and one unstable. The unstable path is the conduction-dominated path, which

involves no fluid motion. It can be produced by setting oaw = 0 because when there is

no randomization, there are no fluctuations which can be amplified into mixing. The

stable path, achieved when a > 0, is mixing dominated. It involves a magnification

of the small fluid motion fluctuations from the randomization, and the subsequent

mixing speeds the approach to equilibrium. Figure 3-4 compares the time evolution

of the heat entropy for a run with and a run without randomization.

In Figures 3-3 and 3-4, the comparison between the two paths is made in terms

of the heat entropy S (Section 2.8.2), not in terms of the real entropy of the fluid

cell that is being modelled (if such an entropy exists for a non-equilibrium system;

see Section 3.5.2). The heat entropy is only an indicator of how close the system

is to equilibrium, and I am only using it to indicate when the system has reached

equilibrium. The same total amount of "real" entropy is produced along both the

conduction-dominated and mixing-dominated paths, since they both start and end in

identical states. Therefore, the path which gets to equilibrium fastest is the one that

produces entropy at the greatest rate.

In the region of the bifurcation to mixing-dominated behaviour (i. e., with qo

greater than, but close to, q) the stable path gets the system to equilibrium more

quickly. Therefore the stable path is the path that maximizes the rate of entropy

production, and the principle of maximum entropy production is confirmed.

3.3 Results in the Steady-State Version

In the steady-state version, the entropy that I will discuss is not the heat entropy, but

rather the entropy produced as the convection cell transports heat from a hot resevoir

to a cold resevoir. In all cases, I will be comparing systems with identical lower wall

heats qo, and I will be comparing them when they have reached their steady-state

patterns, and so the entropy production comparison will simply be a comparison of

39

3UU

or 200
oC

0

to
100

.

n
50 60 70 80

qo

Figure 3-3: This graph is a comparison of the behaviour of the relaxation version with
and without randomization for varying qo. It plots the time it takes the system to get
to a heat distribution with heat entropy S = 0.999Sm,,x (Section 2.8.2) as a function
of qo. Parameters are set as per (3.1). When there is no randomization (a, = 0),
the only path available for the system is the symmetrical path with no fluid motion.
When randomization is introduced (here a, = 10-7), the symmetry can break, and
mixing can speed the approach to equilibrium, as long as qo is above the critical
value (here about 63). The stable path is the path chosen when randomization is
introduced, and this is also the path that gets the system to equilibrium the most
quickly. In both cases the total entropy production is the same, so the stable path is
the one with the maximum rate of entropy production.

40

0% 0%

- - - -

D.D

En
4.5

0Y

I.e
0

cI

3.

3.5

0 100 200 300
time t

Figure 3-4: This graph is a comparison of the time evolution of the heat entropy in
the relaxation version for runs with and without randomization for qo = 80 (recall
that qc, 63). Other parameters are set as per (3.1). Clearly the stable path (the one
with a, > 0) produces heat entropy at a greater rate. See the text for a discussion
of how this relates to the real entropy of the system.

41

_ __ _________ ____ ___ __ ________ __ ____ __

L. 0T.

I

the heat fluxes (AQ)H.

3.3.1 20 x 10 Lattice

Consider the 20 x 10 lattice originally tested in Section 3.1.1. When the parameters

are set as in (3.1) and qo = 3.0, the stable steady-state behaviour mode is convection

with a single convection pattern of aspect ratio 2. However, if the system starts

with static gradient initial conditions (Section 2.7.2), and O, = 0, then there are no

fluid-motion fluctuations in the system to allow it to develop convection patterns.

In this discussion, I will sometimes refer to static gradient initial conditions as zero

whorl initial conditions. With zero-whorl initial conditions and O, = 0, the system is

"forced" into the conduction mode, even when only convection is stable.

Furthermore, although convection with a single pattern of aspect ratio 2 is sta-

ble, it is possible to excite the system into a convection mode that has two patterns,

each with aspect ratio 1. To do this, I used pattern-inducing initial conditions (Sec-

tion 2.7.3). The initial state was as follows: the heat distribution started as in gradient

initial conditions (Section 2.7.2), but the whorls were not all set to zero. The whorls

w(,,o) were set to:

w(r,,)= -0.5 for r = 2,4,6,8

= 0.5, r = 12, 14, 16,18

= -0.5, r=22,24,26,28

= 0.5, r = 32, 34, 36, 38

= 0, r =0, 10, 20, 30 (3.2)

I call these initial conditions 2-pattern pattern-inducing initial conditions. Initial

conditions (3.2) effectively start the system with a large fluctuation that is the right

wavelength to excite convection in two patterns. When the model is run with initial

conditions (3.2), qo greater than the appropriate critical value, and a, = 0, the model

is forced into the two-pattern steady-state mode, even though only the one-pattern

42

mode is stable. The convection mode with two patterns does not die out in time, so

it is a steady-state solution to the equations of motion, albeit an unstable solution.

Ordinarily, 1-pattern convection is triggered with static gradient initial conditions,

qo > q, and > 0. However, in order to be able to make comparisons with u = 0, I

created 1-pattern pattern-inducing initial conditions as well:

w(r,,)= -0.5 for 2 < r < 18

= 0.5, 22 < r < 38

= 0, r = 0,20 (3.3)

These act the same way as 2-pattern conditions, except that they excite the 1-pattern

convection mode.

Using pattern-inducing initial conditions and mo, = 0 to force the system into

particular modes allowed comparison of the entropy production (heat flux (AQ)H) of

unstable modes with the entropy production of stable modes. As Figure 3-5 shows,

the stable mode is the one that produces the most entropy. Figure 3-6 shows the three

modes that were compared. Of course, Figure 3-5 also shows that the two convection

modes tested (1-pattern and 2-pattern) have different critical values q, at which they

become solutions to the equations of motion.

Figure 3-5 shows that the stable convection aspect ratio is the one that maxi-

mizes entropy production. However, it also shows that the two different aspect ratio

convection patterns have different bifurcation points. 1-pattern convection becomes

a solution to the equations of motion at qc where 1.5 < q < 1.75, while 2-pattern

convection only becomes a solution at q where 2.5 < q < 2.75. This means that the

principle of maximum entropy production, as formulated in Section 1.2, might not re-

ally apply to the selection of convection pattern size. It is true that, at the bifurcation

to 1-pattern convection (qo near qc), the system chooses the branch that maximizes

entropy production, but this is only how it chooses between 1-pattern convection and

conduction, not how it chooses between 1- and 2-pattern convection when q0o > q.'

The principle of maximum entropy production can be applied to the bifurcation

43

3

2

1

0

I -pattern I I I I pattern-induc I initial Iconditions

· 1-pattern pattern-inducing initial conditionsh
)

* 2-pattern pattern-inducing initial con

- o zero-whorl initial conditions

F.

WI

..00* **"Os.~

.I I . . I .I 1 I I I I

0 1 2 3

i

4

Figure 3-5: This figure compares heat fluxes (Q)H at time step 5000 in the steady-
state version for three different initial conditions on a 20 x 10 lattice as a function of qo.
Initial conditions are described in the text in detail (see Section 2.7 and equations (3.2)
and (3.3)). Roughly: the 1-pattern initial conditions (3.3) excite 1-pattern convection
if such convection is a solution to the equations of motion; 2-pattern conditions (3.2)
excite 2-pattern convection if it is a solution; and zero-whorl conditions (actually
static gradient conditions, see Section 2.7.2 and the text) excite only the conduction
mode. Pictures of the three behaviour modes are shown in Figure 3-6. Parameters
are set as per (3.1) and a,, = 0.0. Here the stable branch is indicated by a solid line,
unstable behaviours are indicated with dotted lines. The bifurcation points for 1- and
2-pattern convection are different.

44

0
0
0

II

a)
43011

.0-i
CO

0

0a0)

I
CO
-
MCO

0

x
I'lCO

0)

· · 1 · _ · __ · _ __ _ __

- - - - - . .

_

4

I

Figure 3-6: These three pictures show the three steady-state behaviour modes com-
pared in Figure 3-5. The top picture shows conduction, the middle shows convection
with one pattern, the bottom shows convection with two patterns. In each case
M x N = 20 x 10, but note that the diagrams have been slightly compressed to fit
in the available space and remember that the lattice has dimensions 2M x 2N. Pa-
rameters are set as per (3.1), qo = 3.0, and ow, = 0. Initial conditions are zero-whorl
(static gradient) at the top, 1-pattern pattern-inducing in the middle, and 2-pattern
pattern-inducing at the bottom (see the text). The middle picture depicts the stable
mode (convection, one pattern).

45

shown in Figure 3-5 between conduction and 2-pattern convection (qo = q), even

though neither of these steady-state modes is actually stable at this bifurcation. They

can be compared by running the model with a modified randomization law. If the

randomization law acts so that the randomness added to the whorl w(,,.) is always

equal to the randomness added to the whorl w(,+M,) (remember that the lattice has

dimensions 2M x 2N), then only behaviour patterns with a certain symmetry can

be excited: patterns that are repeated twice side by side. This symmetry constraint

rules out 1-pattern convection, but allows for conduction and 2-pattern convection. In

fact, because the lattice has periodic boundary conditions in the x-direction, when the

randomization law is changed in this way, the 20 x 10 lattice becomes mathematically

identical to a 10 x 10 lattice with normal randomization. I found that a 20 x 10 lattice

run with this randomization always chooses 2-pattern convection over conduction if

a > 0 and qo > q. Again (see Figure 3-5) the system is choosing the available

steady-state mode that maximizes entropy production.

These tests show that near each bifurcation that I investigated, the 20 x 10 system

chooses the available behaviour that maximizes entropy production.

3.3.2 80 x 10 Lattice

Recall that the aspect ratio 8 lattice (M x N = 80 x 10, parameters set as per (3.1),

qo = 3, and ,,, = 10-2) sometimes developed 4 convection patterns, each of aspect

ratio 2, and sometimes developed 5, each of ratio 8/5. In a manner similar to that

in which 1- and 2-pattern pattern-inducing initial conditions were constructed on the

20 x 10 lattice, 4- and 5-pattern pattern-inducing initial conditions can be constructed

on the 80 x 10 lattice. 4-pattern conditions are just those given in (3.3) repeated 4

times in a row, and 5-pattern are the same, but with 5 repeats, and a basic length

of 32 lattice units, not 40. By using the parameters given in (3.1) and = 0, I was

able to compare the heat fluxes (AQ)H of the two patterns for various values of qo,

independent of their relative stability.

Figure 3-7 shows the bifurcation diagram for the 80 x 10 lattice, comparing the heat

fluxes for conduction, 4-pattern convection, and 5-pattern convection. The bifurcation

46

points for 4- and 5-pattern convection are very close, but they are not identical. For

q < qo < 2.0, only the 4-pattern mode is stable. For qo > 3.0, the mode that

is selected depends on the sequence of random numbers used by the randomization

function. That is, for qo > 3.0, both 4-pattern and 5-pattern convection modes are

stable. I did not find the point between 2.0 and 3.0 at which both modes become

stable.

The model with an 80 x 10 lattice is an example of a system which only chooses

the branch which maximizes entropy production close to the bifurcation point. For

example, qo = 3.0 is far enough from qc (1.55 < q < 1.60) such that 5-pattern convec-

tion, despite producing less entropy than 4-pattern convection, is a stable steady-state

mode.

These tests show that near the bifurcation that I investigated, the 80 x 10 system

also chooses the available behaviour that maximizes entropy production. However,

the system does not have to be far from the bifurcation for maximum entropy pro-

duction to fail as a pattern-selection rule. This is the kind of situation that motivated

putting the "near the bifurcation" condition into the principle of maximum entropy

production. Of course, it may be that every bifurcation I have studied has the prop-

erty that far enough from it, the stable mode is no longer the one with the maximum

rate of entropy production. However, it is only this bifurcation at which I actually

observed this change in behaviour.

3.4 Summary

I have created a simple, discrete, two-dimensional, computer model of a convection

cell, described in Chapter 2. I tested this model and found that given the right

parameters, it is qualitatively accurate. I used this model to test the principle of

maximum entropy production that I formulated in Section 1.2. This principle states

that near to a bifurcation in the behaviour of a non-equilibrium statistical system,

the stable branch is the one on which entropy is produced at the greatest rate.

In all the tests that I performed with the model, the principle of maximum entropy

47

I

- * 4-pattern pattern-inducing initial conditions

- * 5-pattern pattern-inducing initial conditions

- o zero-whorl initial conditions
J

J

I de

///I
//

I!
//

//

,//

//

/-

/
*&O

...

I I I I ,

2
I I I I I I I I

3

Figure 3-7: This figure compares heat fluxes (AQ)H in the steady-state version for
three different initial conditions on a 80 x 10 lattice as a function of qo. Values for
(AQ)H were taken at t = 5000 except when 1.55 < qo < 1.80, for which t = 5000
to t = 40000, depending on how long it took the model to reach a steady-state to
5 digits of accuracy. Initial conditions are described in the text. Roughly: the 4-
pattern initial conditions excite 4-pattern convection if such convection is a solution
to the equations of motion; 5-pattern conditions excite 5-pattern convection if it is a
solution; and zero-whorl (static gradient) conditions excite only the conduction mode.
Parameters are set as per (3.1) and or = 0.0. Here the stable branch is shown with
a solid line until qo = 2.0, beyond which the stability is unknown for 2.0 < qo < 3.0
and shared for qo > 3.0 (see text).

48

4 %
IV

,
/

/
/0

0
0
0

0
0

0
0
to

I)

0
o

(u

Cl

4:

a

-4
M)

0_1

8

6

4

2

. r

0
1 4

__ · ___ · __ __ _ __
I !

production was confirmed. When the relaxation version of the model was used to

simulate a fluid cell in a gravitational field with a non-uniform initial heat distribution,

it was found that near the bifurcation to mixing-dominated behaviour, the system

takes the path to equilibrium that maximizes entropy production: the mixing path.

When the model was used to simulate a convection cell with aspect ratio 2, it was

found that near the bifurcation to convection, the steady-state mode that is stable

is the one that produces entropy at the greatest rate: convection with patterns of

aspect ratio 2. Conduction, and convection patterns with aspect ratio 1, both of

which had lower entropy production, are unstable behaviours. When the model was

used to simulate a convection cell with aspect ratio 8, it was found that convection

patterns of aspect ratio 2 maximize entropy production, and that they are the only

stable mode very close to the bifurcation to convection.

3.5 Areas for Further Study

This thesis represents only the beginning of what could be a very interesting and

useful research programme into the principle of maximum entropy production. Also,

I believe that the convection cell model described in this thesis is new and quite

unusual, and much more work could be done to test and improve it. I discussed some

of the possibilites for future work on the model in Section 3.1.3. In this section I

will suggest some avenues of further research for the principle of maximum entropy

production.

3.5.1 More Interesting Bifurcations

The tests presented in this thesis were performed on a set of very similar bifurcations.

The bifurcations were all supercritical, in that in every case, below the critical value

the behaviour of the system approached a static mode, while beyond the critical value

the stable mode involved periodic fluid motion (convection). It would be interesting

to see if the principle of maximum entropy production can also be used to analyze

subcritical bifurcations, in which the mode involving fluid motion is unstable, and

49

exists only below the critical value (Tabor 1989, pp. 197-199). Furthermore, every

bifurcation I studied had only two branches, one stable and one unstable. It would

be nice to test out the principle of maximum entropy production on bifurcations with

many branches, as it is in these situations that the principle would be most useful.

3.5.2 Defining Entropies

One problem with the principle of maximum entropy production as it now stands

is that it does not give a definition of the appropriate entropy to use in comparing

the branches of the bifurcation. In fact, some physicists believe that entropy is not

defined at all for non-equilibrium systems. If entropy is taken to be the logarithm

of the volume of the accesible phase space of the system, then it is not defined for a

system following a trajectory towards equilbirium. After all, a single trajectory does

not represent any volume in phase space at all. For this reason, if entropy is defined

outside of equilibrium, it must be something like Boltzmann's (1896) function H or

an entropy from information theory that relates to the amount of information needed

to specify the state of the system.

In the model, there are several possible entropies which might be relevant to the

principle of maximum entropy production. There is the heat entropy introduced in

Section 2.8.2, which is an information-theoretic entropy that is really a measure of

the uniformity of the heat distribution. There is also an analogous whorl entropy.

There is the actual entropy of the real system that is being simulated, if, as discussed

above, non-equilibrium systems have entropies. And there may be another entropy

that corresponds to the amount of information that is being thrown away when the

actions of the various rules cancel each other out. It is not clear how these entropies are

related, and probably this must be understood before it will be possible to formulate

the principle of maximum entropy production in a clear and general way.

50

3.5.3 Theoretical Justification of the Principle of Maximum

Entropy Production

In order to really establish the principle of maximum entropy production, an argument

that it is true is required. I have shown that the principle makes good predictions for

a small set of questions about the model presented in this thesis, and this endeavour

is useful. This type of project could be repeated with different systems or models or

even with different questions about this model. However, if the principle is true in

general, then there must be some general argument that can be used to justify it.

This is a very important research project, because if the principle is true and can

be justified, it will be one of the first general principles ever found in the study of

non-equilibrium statistical mechanics.

51

References

Balian, R. (1991). From Microphysics to Macrophysics: Methods and Applications

of Statistical Physics. Ter Harr, D., and Gregg, J. F. translators. Springer-

Verlag, New York, 1991.

Benard, H. (1901). Les tourbillons cellulaires dans une nappe liquide transportant

de la chaleur par convection en regime permanent. Annales de Chimie et de

Physique, series 7, 23 62-144.

BergS, P., Pomeau, Y., and Vidal, C. (1984). Order within chaos: towards a

deterministic approach to turbulence. Tuckerman, L. translator. John Wiley &

Sons, Inc., New York NY, 1984.

Berry, M. V. (1992). Personal communication, 7 April 1992.

Boltzmann, L. (1896). Lectures on Gas Theory. Brush, S. G. translator. University

of California Press, Berkeley and Los Angeles CA, 1964.

Clune, T., and Knobloch, E. (1991). Square pattern convection in binary fluids

with experimental boundary conditions. Physical Review A 44 8084-8090.

Dafermos, C. M. (1973). The Entropy Rate Admissibility Criterion for Solutions of

Hyperbolic Conservation Laws. Journal of Differential Equations 14, 202-212.

Dafermos, C. M. (1984). Discontinuous Thermokinetic Processes. In Truesdell,

C. Rational Thermodynamics, 2 ed. Springer-Verlag, New York, 1984, ap-

pendix 4B, pp. 211-218.

52

Knobloch, E. (1989). Pattern selection in binary-fluid convection at positive sepa-

ration ratios. Physical Review A 40 1549-1559.

Knobloch, E. (1992). Personal communication, 10 April 1992.

Landau, L. D., and Lifshitz, E. M. (1959). Fluid Mechanics. Sykes, J. B., and

Reid, J. H. translators. Pergamon Press, London, 1959.

Libchaber, A. (1992). Personal communication, 9 April 1992.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1988).

Numerical Recipes in C. Cambridge University Press, Cambridge, 1988.

Prigogine, I. (1955). Introduction to Thermodynamics of Irreversible Processes.

Charles C. Thomas publisher, Springfield IL, 1955.

Prigogine, I. (1980). From being to becoming: time and complezity in the physical

sciences. W. H. Freeman and Co., San Francisco CA, 1980.

Rayleigh, Lord J. W. S. (1916). On Convection Currents in a Horizontal Layer

of Fluid, when the Higher Temperature is on the Under Side. Philosophical

Magazine, series 6, 32 529-546.

Silber, M., and Knobloch, E. (1988). Pattern selection in steady binary-fluid con-

vection. Physical Review A 38 1468-1477.

Swenson, R., and Turvey, M. T. (1991). Thermodynamic Reasons for Perception-

Action Cycles. Ecological Psychology 3(4) 317-348.

Tabor, M. (1989). Chaos and integrability in nonlinear dynamics: an introduction.

John Wiley & Sons, Inc., New York NY, 1989.

Velarde, M. G., and Normand, C. (1980). Convection. Scientific American 234

(1) 92-108.

53

Appendix A

The Source Code

The following pages show the computer files containing the C source code actually

used to run the simulations. Although the programmes are not necessarily all that

clear, the emphasis in writing them was on clarity, not computational speed. I am

certain that they could be greatly speeded up with rewriting.

The functions are all written to operate on a matrix that is isomorphic to the

lattice discussed in section 2.1. That is, points with odd coordinates are bins, points

with even coordinates are corners, and all other points are edges (see Figure 2-1 and

Table 2.1). The single lattice contains heats, whorls, and edge-crossing momenta.

The code listed here hanldles only gradient and step function initial conditions,

not pattern-inducing ones (see Section 2.7). Experiments with pattern-inducing initial

conditions were performed using modified versions of this code.

This appendix starts with the makefile, the header file, and the main function and

then lists all the other functions in alphabetical order. The only files used but not

given in this appendix are ga.dev.c, nrutil.c, and rani.c, since they are taken

directly from Press et al. (1988). My only modification of the Press et al. (1988) files

was to change all occurences of float to double.

54

A.1 Makefile

This is the makefile for the unix command make that is used to compile the model

programme. The model programme is called benard. Another version, benard2,

was used for testing and for performing runs with strange ("pattern-inducing," see

Section 2.7.3) initial conditions. The code main2.c is not listed in this appendix. As

can be seen from this makefile, the source code was in several different directories.

CFLAGS= -0

allocate .o:
cc (CFLAGS) -c ../utilities/allocate.c
gasdev.o:

cc (CFLAGS) -c ../recipes/gasdev.c
getdouble.o:
cc (CFLAGS) -c ../utilities/getdouble.c
get_int.o:
cc $(CFLAGS) -c ../utilities/getint.c
nrut il. o:

cc $(CFLAGS) -c ../recipes/nrutil.c

ranl.o:

cc $(CFLAGS) -c ../recipes/ranl.c

benard= \
allocate.o \
entropy.o \
gasdev.o \
getdouble.o \
getint.o \
gradient.o \
gravity.o \
heatdiffusion.o \
heatflux.o \
heattransport.o \
menu.o \
nrutil.o \
ranl.o \
randomize.o \
stepfunction.o \
updatemomenta.o \
vhorldiffusion.o \
whorltransport. o

benard: $ (benard) main.o

cc $(CFLAGS) $(benard) main.o -lm -o benard

benard2: (benard) main2.o
cc $(CFLAGS) (benard) main2.o -m -o benard2

55

clean:
rm *.o a.out core benard benard2 benard.out output.?

A.2 benard.h

This is the header file that is included at the top of most of the files with an #include

statement.

/* this is the header file for the convection cell functions */

#define MAXM 80 /* Maximum M */
#define MAXN 40 /* Maximum N */

#define BUFSZ 32 /* parameter buffer size in menu() */
#define MAXLINE 80 /* maximum input length in menu() */
#define MAXOUT 3 /* maximum number of output files */

#define PI 3.14159265

#define STEADY 1 /* flag setting for steady-state version */
#define RELAX 0 /* for relaxation version */

A.3 main. c

This is the main function which calls the others.

#include "benard.h"
#include <math.h>
#include <stdio.h>
#include <strings.h>

void main()
/* This is the main programme. It handles output and it calls all of the
functions.
*/
{
double **allocate(),entropy() ;
void heatdiffusion() ,heattransport() ,whorl_diffusion(), whorltransport ()
void gravity() ,updatemoment a () ,menu() ,heat_flux(),stepfunction() ;
void gradient(),randomize() ;

double **lattice,qO,sigma,alphaq,betaq,alphaw,betaw,gamma,etaw=0.0
double px,py,p,theta,deltaqc=0.0, deltaqh=O.0 ;

56

int M,N,m,n,T,t,deltaT,seed,steady,outputtimes[MAXOUT ,outindex
char outname[MAXLINE] ;
FILE *outfp,*fp ;

lattice = allocate(2*MAXM+1,2*MAXN+i) ;

/* get parameters */
menu("benard.par" ,&M,&N,lsteady ,&T,outputtime s, qO,&sigma,tseed,&alphaq,

&betaq,&alphaw,&betaw ,kgamma,&eta_) ;
/* set initial conditions */

if(steady==RELAX) stepfunction(lattice,M,N,q_O) ;
if(steady==STEADY) gradient(lattice,M,N,qO) ;
updatemomenta(lattice ,M,N) ;

/* open output file for times and heat entropies */
fp = fopen("benard.out","w") ;
fprintf(fp,"%dx%d steady=%d qO=%.lf sigma=%. le seed=%d\n",
M,N,steady,qO,sigma,seed) ;
fprintf (fp,"alphaq=%.3f betaq=%. 3f alphaw=%.3f betaw=%.3f gamma=%.3f\n",
alphaq,betaq,alpha_w,betaw,gamma) ;

deltaT = T / 1000 ; /* number of steps between small outputs */
if(deltaT<1) deltaT=1 ;
outindex = 0 ; /* initialize output file number */

/* start time loop */
for(t=O ; t<T ; t++){

/* output a bit every deltaT2 steps */
if(t%deltaT == 0) fprintf(fp,"%04d %.17e %e %e\n",t,

entropy(lattice,M,N),deltaq_h,deltaq_c) ;
/* output lots 3 times */

ii(outindex < MAXOUT && t == outputtimes[outindex]){
outindex++ ;
sprintf(outname, "output.%d", outindex)
outfp = fopen(outname,"w") ;
fprintf(stdout,"main: opened file %s\n",outname)
fprintf(outfp,"t=%d %dxd steady=%d qO=%.lf sigma=%.le seed=%d\n",
t,M,N,steady,qO,sigma,seed) ;
fprintf (outfp,
"alphaq=%.3f betaq=%.3f alphaw=%.3f betaw=%.3f gamma=%.3f\n",
alphaq,betaq,alphaw,beta_w,gamma) ;
for(m=1 ; m<2*M ; m+=2){

for(n=1 ; n<2*N ; n+=2){
px = 0.5*(latticeEm+l][n] + lattice[m-1][n]) ;
py = 0.5*(lattice[m][n+1] + lattice[m][n-1]) ;
p = sqrt(px*px + py*py) ;
theta = atan2(py,px) ; if(theta<0.0) theta += 2*PI ;
fprintf(outfp,"%02d %02d %.4e %.4e %.4e %.4e %.4e\n",
m,n,lattice[m] n] ,px,py,p,theta)

fclose(outfp) ;
fprintf(stdout,"main: closed file %s\n",outname) ;

57

}

/* do processes */

if(steady == STEADY) heatflux(kdeltaqh,&deltaqc,lattice,M,N,qO)
heatdiffusion(lattice,M,N,alphaq) ;
heattransport(lattice,M,N,betaq) ;
whorldiffusion(lattice,M,N,alpha_w,etaw) ; /* this includes absorption */

whorltransport(lattice,M,N,betaw) ;
gravity(lattice,M,N,gamma) ;
if(sigma>O.O) randomize(lattice,M,N,sigma,seed) ;

/* update edge-crossing momenta */

updatemomenta(lattice,M, N)

/* done */

}

A.4 allocate.c

This is a function that allocates two-dimensional arrays.

double **allocate(M,N)

int M,N ;
/* allocate() returns a pointer to an MxN array.

*/
{
int i=O ;
double **temp ;

temp = (double **) malloc(* sizeof(double *)) ;

for(i=O ; i<M ; i++){
tempCi] = (double *) malloc(N * sizeof(double)) ;

}

}
return temp ;

A.5 entropy.c

This function calculates the heat entropy described in Section 2.8.2.

#include <math.h>
#define TINY le-17

58

double entropy(L,M,N)
double **L ;
int ,N ;

/* entropy() returns the value of the entropy of the heat distribution
according to the formula (3.1) in Balian, "du microscopique au macroscopique,"
p. 92.

Lt[O..2M]t0..2N, on input, is the Lattice.

MxN, on input, is the size of the lattice.

*/
{

int i=O,= ;
double SO.O,Q=O.0,temp ;

for(i=1 ; i<2*M ; i+=2){

for(j=1 ; j<2*N ; j+=2){
temp=L[i] j] ;

Q += temp ;

}

for(i=1 ; i<2*M ; i+=2){
for(j=1 ; j<2*N ; j+=2){
temp=Li] [j] ;
if(temp > TINY) S -= (log(fabs(temp/Q)) * (temp/Q)) ;

}

return(S)

A.6 get_double. c

This is an input utility.

#include <stdio.h>

#define MAXLINE 80

void getdouble(message, number)

char *message ;
double *number ;

/* getdouble is a generalized prompting-input routine for double-precision
real numbers.

*message, on input, is the prompt to be used, with an optional "%f" or

whatever in it to display the default value.
*number, on input, is the default value; on output, it is the user-supplied

value, if anything is in fact supplied.

59

int i ;
char inputlineMAXLINE] ;

fprintf(stdout, message, *number) ;

i = -1;
do{

inputline[++i] = getc(stdin) ;
} while(inputline[i] != '\n') ;

if(i > 0)(
inputlinei] ' \0' ;
if(sscanf(inputline, "%lf", number) != 1) {
fprintf(stderr, "getdouble: error reading input\n")
exit(O)

}

A.7 get_int.c

This is an input utility.

#include <stdio.h>

#define MAXLINE 80

void getint(message, number)
char *message ;
int *number ;

/* getint is a generalized prompting-input routine for double-precision real
numbers.

*message, on input, is the prompt to be used, with an optional "%d" or
whatever in it to display the default value.

*number, on input, is the default value; on output, it is the user-supplied
value, if anything is in fact supplied.
*/

{
int i ;
char inputline[MAXLINE] ;

fprintf(stdout, message, *number) ;

i = -1 ;
do{

inputline[++i] = getc(stdin)
I while(inputline[i] != '\n') ;

60

if(i > o){
inputline[i] = '\O' ;
if(sscanf(inputline, "%d", number) = 1) {

fprintf(stderr, "getint: error reading input\n")
exit(O) ;

A.8 gradient.c

This function creates gradient initial conditions, described in Section 2.7.2.

#include "benard.h"

void gradient(L,M,N,q_O)
double **L,qO ;
int M,N ;

/* This function sets the gradient initial conditions. This involves:
(a) setting the heats to a slope from 0 to qO; and (b) setting the whorls to
zero.

L[O..2M][O..2N], on output, is the initialized lattice.
N,N, on input, are the dimensions of the lattice.
qO, on input, is the heat of the lower wall.

*/
{

int m,n,r,s ;

/* initialize heats */
for(m= ; m<2*M ; m+=2) for(n= ; n<2*N ; n+=2)

L[m] n] = q_O * (2*M+l-n) / (2*M) ;

/* set whorls to zero */

for(r=O ; r<2*H ; r+=2) for(s=O ; s<=2*N ; s+=2) Lr][s] = 0.0 ;

/* done */

A.9 gravity. c

This function is responsible for performing the law of gravity, described in Sec-

tion 2.5.5.

61

#include "benard.h"

void gravity(L,M,N,gamma)

double **L,gamma ;
int M,N ;

/* L..2M] [0..2N], on input, is the lattice. On output it is the lattice
updated by one gravity step.

M, on input, is the number of bins in the x-direction.
N, on input, is the number of bins in the y-direction.
gamma, on input, is the gravitational parameter.

*/

int r,rl,r2,s,sl,s2 ; /* r,s will always be even, rl,r2,sl,s2 odd */

for(r=O ; r<2*M ; r+=2){
rl = r-1 ; r2 = r+1 ;
if(r1<O) rl = 2*M-1 ;
for(s=2 ; s<2*N ; s+=2){

si = s-I ; s2 = s+1 ;
L[r][s] += gamma*(L[r2][s2 + Lr2][sl - L[rl][s2 - Lrl[sl]) ;

A.10 heatdiffusion. c

This function is responsible for performing the law of heat diffusion, described in

Section 2.5.1.

#include "benard.h"

void heat_diffusion(L,M,N,alpha_q)

double **L,alphaq ;
int M,N ;

/* L[O..2M] t..2N], on input, is the lattice. On output it is the lattice
updated by one heat diffusion step.

N, on input, is the number of bins in the x-direction.
N, on input, is the number of bins in the y-direction.
alphaq, on input, is the heat diffusion parameter.

*/
{

int m,n,ml,m2,nl,n2 ; /* m,n,ml,m2,nl,n2 will all always be odd */
double temp,deltaL [2*MAXM+1] [2*MAXN+] ;

/* initialize the delta-lattice to zero for odd m,n */
for(m=1 ; m<2*M ; m+=2) for(n=l ; n<2*N ; n+=2) deltaL[m][n] = 0.0 ;

/* calculate the changes to the lattice values */
for(m=1 ; m<2*M ; m+=2){

62

ml = m-2 ; m2 = m+2 ;
ii(ml<O) ml 2*M-I ;
if(m2>2*M) m2 = 1 ;
for(n=1 ; n<2*N ; n+-2)1
ni - n-2 ; n2 = n+2 ;
temp alpha_q*L [m nJ ;
deltaL[m][n -= temp ;
deltaL[ml][n] += temp ;
deltaL [m [n] -= temp ;
deltaL[m2][n] += temp ;
if(nl>O){

deltaL[m] En] -= temp ;
deltaL[m] n] += temp ; /* -

}
ii(n2<2*N){

deltaL[m] n] -= temp ;
deltaL[m] En2] += temp ; /* +I

}
}

}

/* model wraps-around in x */
/* same explanation */

/* -ve x-direction */

/* +ve x-direction */

ve y-direction */

re y-direction */

/* now change the actual lattice values using the delta-lattice */
for(m=l ; m<2*M ; m+=2) for(n= ; n<2*N ; n+=2) Lm] tn += deltaL[m][n] ;

/* done */

A.11 heat-flux. c

This function is responsible for performing the law of heat flow, described in Sec-

tion 2.6.2. It is also responsible for calculating the two heat fluxes, (AQ)H and

(AQ)c, described in Section 2.8.3.

#include "benard.h"

void heatflux(dqh,dqc,L,M,N,qO)
double *dqh,*dqc,**L,q_O ;
int M,N ;

/* *dqh, on output, is the amount of heat that enters the system from the
bottom.

*dqc, on output, is the amount of heat that enters the system from the top.
LCO..2M] O..2N], on input, is the lattice. On output it is the lattice with

the edge heats set to O and qO. This function is used for modelling steady-
state convection.

n, on input, is the number of bins in the x-direction.
N, on input, is the number of bins in the y-direction.
q_O, on input, is the heat at the bottom of the convection cell.

*/

63

{
int m,n ;
double temph=O.0,tempc=O.O ;

n = 2N-1 ;
for(m= ; m<2*M ; m+-2){
temph += q_O - Lm]l3] ;
tempc + - Lm]n] ;
Lem] l] = q_O ;
Lmn] = O.o ;

*dqh = temph ;
*dqc = tempc ;

I

A.12 heat_transport. c

This function is responsible for performing the law of heat transport, described in

Section 2.5.2.

#include "benard.h"

void heat_transport(L ,M,N,beta_q)
double **L,betaq ;
int M,N ;

/* LO..2M] CO..2N], on input, is the lattice. On output it is the lattice

updated by one heat transport step.
N, on input, is the number of bins in the x-direction.
N, on input, is the number of bins in the y-direction.

betaq, on input, is the heat transport parameter.

{
int m,n,h,hl,h2,i,j,k,kl,k2 ; /* m,n,hl,h2,i,j,kl,k2 all odd; h,k even */

double temp,deltaL[2*MAXM+ [2*MnAXN+l ;

/* initialize the delta-lattice to zero for odd m,n */
for(m=1 ; m<2* ; m+=2) for(n=1 ; n<2*N ; n+=2) deltaL[m] n = 0.0 ;

/* first do horizontal transport across vertical edges */

for(h=O ; h<2*M ; h+=2){

hi = h- ; h2 = h+1 ;
if(hl<O) hi = 2*M-1 ; /* model wraps-around in x */
for(i= ; i<2*N ; i+=2){

temp = beta_q*L [h] [i]*O.5*(L[hli]i] + L h2 [i]) ;
deltaL [hi] [i -= temp ;
deltaL[h2] i] += temp ;

I.

64

/* now vertical transport */
for(jul ; j<2*M ; J+=2){
for(k=2 ; k<2*N ; k+=2)(/* this ensures no transport across yO */

k1 = k-1 ; k2 = k+ ;
temp = betaq*Lj] [k]*0.6*(L[J][kl] + L[j][k2])
deltaL[J] kl] -= temp ;
deltaL[j[k2] += temp ;

/* now change the actual lattice values using the delta-lattice */
for(m=1 ; m<2*M ; m+=2) for(n=l ; n2*N ; n+=2) Lm] n] += deltaL[m] [nJ

/* done */

A.13 menu.c

This is an input function which presents the user with a set of parameters and the

option to change them. It reads the parameters in from a parameter file and then

when the user is done selecting parameters, it saves them back into the parameter

file for next time.

#include "benard.h"
#include <fcntl.h>
#include <stdio.h>

#include <strings .h>

#define PERMS 0666 /* permissions for parameter file */
#define RUN 1
#define WAIT 0

void menu(parameterfile,M,N,steady,T,outtimes,qO,sigma,seed,alphaq,betaq,
alpha_w,beta_w,gamma,eta_w)

double *qO,*sigma,*alphaq,*betaq,*alphaw,*beta_w,*gamma, *eta_ ;
int *M,*N,*steady,*T,outtimes ,*seed ;
char *parameterfile ;

/* menu() reads the parameter file and then presents the user with a menu for
changing the parameters. It is relatively self-explanatory. At the beginning it
reads parameters in from a paramter file, and at the end it saves the chosen
parameters for next time in the same file.
*/

void getdouble() ;
void get_int() ;

static int count=0 ;

65

double parambuf[BUFSZ] ; /* BUFSZ defined in benard.h */
int paramid,indexl, index2,choice, status,k ;

count++ ;
status = WAIT ;

/* read parameter file */
paramfd = open(parameterfile,ORDONLY,O) ; /* ORDONLY in fcntl.h */
if(paramfd == - 1)
fprintf(stderr,'menu: warning: file %s does not yet exist\n",
parameterfile) ;

3 else{
fprintf(stdout,"menu: opened file %s to read\n",parameterfile) ;
read(paramfd,parambuf,(BUFSZ * sizeof(double))) ;
close(paramfd) ;
fprintf(stdout,"menu: closed file %s\n",parameterfile) ;

}

indexl = 0
index2 = 0

/* read in old parameter list */
* = (int) parambuf[indexl++] ;
* = (int) parambuf[indexl++] ;
*steady = (int) parambuf[indexl++]
*T = (int) parambuf[indexl++ ;
for(k=O;k<NAXOUT;k++) outtimes[k] = (int) parambuf[indexl++] ;
*qO = parambufiindexl++] ;
*alphaq = parambuf[iindexl++ ;
*betaq = parambufiindexl++] ;
*alphaw_ = parambuf indexl++] ;
*betaw = parambuf[indexl++] ;
*gamma = parambuf[indexl++] ;
*sigma = parambuf[iindexl++] ;
*seed = (int) parambuf[indexl++]
*etaw = parambuf[indexl++]

do{

/* create menu */
fprintf(stdout,"O: run simulation\n")
fprintf(stdout,"l: set lattice dimensions xN (max %dxd) %dxYd]\n",
MAIM,MAXN,*M,*N) ;
fprintf(stdout,"2: relaxation () or steady-state (%d) %d\n",
RELAX,STEADY,*steady) ;
fprintf(stdout,"3: set number of time steps T %d]\n",*T) ;
fprintf(stdout,"4: set d output times",MAXOUT) ;
for(k=O ;k<MAXOUT;k++) fprintfi(tdout," [%d/]",outtimes k]) ;
fprinti(stdout,"\n") ;
fprintf (stdout,"5: set lower wall heat q_O /..3fi\n",*q_0) ;
fprintf(stdout,"6: set heat diffusion parameter alphaq [%..3f]\n",
*alphaq) ;
fprintf(stdout,"7: set heat transport parameter betaq %.3f]\n",*betaq) ;
fprintf(stdout,"8: set whorl diffusion parameter alphaw [%.3f]\n",

66

*alphaw) ;
fprintf(stdout,"9: set whorl transport parameter betaw [%.3f]\n",

*betaw) ;

fprintf(stdout,"10: set gravitational parameter gamma %.3f]\n",*gamma)

fprintf(stdout,"11: set random whorl standard deviation sigma [%.30e\n",

*sigma) ;

fprintf(stdout,"12: set random number seed %d]\n" ,*seed)
fprintf(stdout,"13: set whorl absorption parameter etaw [%.3f]\n",

*etaw) ;

/* get menu choice */
choice = ;

get_int("'enu selection? [%d] ",&choice) ;

fprintf(stdout,"choice = %d\n",choice)

switch(choice){

case 0:
status = RUN ;
break ;

case 1:
/* set lattice dimensions M,N */

getint("number of bins in x-direction (M)? %d] ",M) ;
fprintf(stdout,"M = %d\n",*M) ;
getint("number of bins in y-direction (N)? %d] ",N) ;
fprintf(stdout,"N = %d\n",*N)

break ;

case 2:

/* set steady-state or equilibrium */

getint("relaxation or steady state? [%d] ",steady) ;
fprintf(stdout,"steady = %d\n",*steady)
break ;

case 3:

/* set time steps T */

getint("number of time steps? %d] ",T)
fprintf(stdout,"T = %d\n",*T)
break ;

case 4:

/* set output times */
for(k=O;k<MAXOUT;k++){

getint("output time? %d] ",outtimes+k) ;
fprintf(stdout,"output time %d = %d\n",k+l,outtimes [k) ;

}
break ;

case 5:

/* set lower wall heat q_O */

getdouble("lower wall heat q_O? %.3f] ",qO)
fprintf(stdout,"qO = %f\n",*qO)
break ;

67

case 6:
/* set heat diffusion parameter alphaq */

getdouble("heat diffusion parameter? [%.3f] ",alphaq) ;
fprintf (stdout,"alphaq = %f\n",*alphaq)
break ;

case 7:
/* set heat transport parameter betaq */

getdouble("heat transport parameter? %.3f] ",betaq) ;
fprintf(stdout,"betaq = %f\n",*betaq)
break ;

case 8:
/* set whorl diffusion parameter alphaw */

getdouble("whorl diffusion parameter? %.3f] ",alphaw) ;
fprintf(stdout ,"alphaw = %f\n" ,*alphaw)
break ;

case 9:

/* set whorl transport parameter betaw */
getdouble("whorl transport parameter? [%.3f] ",betaw)
fprintf(stdout,"betaw = %f\n",*betaw)
break ;

case 10:

/* set gravitational parameter gamma */
getdouble("gravitational parameter? [%.3f] ",gamma)

fprintf(stdout,"gamma = %f\n",*gamma)
break ;

case 11:

/* set whorl standard deviation sigma */

getdouble("random whorl standard deviation? [%.3e] ",sigma) ;
fprintf(stdout,"sigma = %e\n",*sigma)
break ;

case 12:

/* set random number seed */

getint("random number seed? [%d] ",seed) ;
fprintf(stdout,"seed = %d\n",*seed)
break ;

case 13:

/* set whorl absorption parameter etaw */
getdouble("whorl absorption parameter? [..3f] ",etaw)
fprintf(stdout,"etaw = Y.f\n",*etaw)
break ;

}
}while(status == WAIT) ;

/* rewrite parameter buffer */

parambuf[index2++] = (double) (*M) ;

68

parambuf[index2++] = (double) (*) ;
parambuf[index2++] (double) (*steady) ;
parambuf[index2++J = (double) (*T) ;
ior(k=O;k<NAXOUT;k++) parambuf [index2++] = (double) (outtimes[k]) ;
parambuf[index2++j = *qO ;
parambuf index2++] = *alpha_q ;
parambuf[index2++] = *betaq ;
parambuf[index2++] = *alphaw ;
parambuf[index2++] = *betaw ;
parambuf[index2++] = *gamma ;
parambuf[index2++] = *sigma ;
parambuf[index2++] = (double) (*seed) ;
parambuf[index2++j = *etaw ;

/* check pointers to parambuf[i */
if(indexl != index2){

fprintf(stderr,"menu: warning: %s",
"may be error in reading and writing parameters\n")

/* re-write parameter file */
paramfd = creat(parameterfile,PERMS) ;
if(paramfd == -1){

fprintf(stderr,"menu: error opening %s\n",parameterfile)
exit(O) ;

fprintf(stdout,"menu: opened file %s to write\n",parameterfile)
write(paramfd,((char *) parambuf),(BUFSZ * sizeof(double))) ;
close(paramfd) ;
fprintf(stdout,"menu: closed file %s\n",parameterfile)

A.14 randomize. c

This function is responsible for performing the law of randomization, described in

Section 2.5.6.

#include "benard.h"

void randomize(L,M,N,sigma,seed)

double **L,sigma ;
int N,N,seed ;

/* This function adds to each whorl a randomly generated number from a
Gaussian distribution with zero mean and standard deviation sigma.

L[O..2N] (0..2N], on output, is the initialized lattice.

n,N, on input, are the dimensions of the lattice.

sigma, on input, is the standard deviation of the random whorls.

seed, on input, is the initial seed for the random number generator.

69

double gasdev() ; /* from Press et. al., Numerical Recipes */

static int sed=O,flag=O ;
int r,s ;

/* set seed on first call */
if(flag==O){
sed = seed ;
flag++ ;

}
/* add random values to whorls */

for(r=O ; r<2*M ; r+=2) for(s=2 ; s<2*N ; s+=2)

L[r] s] += sigma * gasdev(&sed)

/* done */

}

A.15 stepfunction. c

This function sets up step function initial conditions, described in Section 2.7.1.

#include "benard.h"

void stepfunction(L,M,N,qO)
double **L,q_O ;
int M,N ;

/* This function sets the step function initial conditions. This involves:

(a) setting the heats to zero except for those along the lower wall, which get

set to qO; and (b) setting whorls to zero.

LtO..2M][0..2N], on output, is the initialized lattice.

M,N, on input, are the dimensions of the lattice.
qO, on input, is the heat of the lower wall.

*/
{

int m,n,r,s ;

/* initialize heats to zero and qO */

for(m=l ; m<2*M ; m+=2){

LCm]l] = qO ;
for(n=3 ; n<2*N ; n+=2) L[m]In] = 0.0 ;

/* set whorls to zero */

for(r=O ; r<2*M ; r+=2) for(s=O ; s<=2*N ; s+=2) Lr] s] = 0.0 ;

/* done */

70

A.16 update momenta. c

This function converts the whorl field into a field of edge-crossing momenta, and

stores those momenta in the appropriate places in the lattice.

#include "benard.h"

void updatemomenta(L ,M,N)
double **L ;
int M,N ;

/* updatemomenta() sets all edge-crossing momenta to agree with the whorls.

L[O..2M[0..2N], on input, is the lattice with correct whorls and heats on
output it is the lattice with

M, on input, is the number
N, on input, is the number

correct
of bins

of bins

whorls, heats and edge-crossing momenta.
in the x-direction.

in the y-direction.

int m,ml,n,r,s ; /* m,n are always odd; r,s always even */

/* do horizontal edges (m,s) */
for(m=l ; m<2*M ; m+=2){
ml = m+l ; if(ml==2*M) ml = 0 ;
for(s=0 ; s<=2*N ; s+=2){

L[m] Es] = L[m-1] [s] - L[ml] [s]

}

/* model wraps-around in x */

I

/* do vertical edges (r,n) */
for(r=O ; r<2*M ; r+=2){
for(n=l ; n<2*N ; n+=2){

L[r][n] = Lr][n+l] - Lr] En-i] ;

}
}

/* done */

A.17 whorldiffusion. c

This function is responsible for performing the law of whorl diffusion, described in

Section 2.5.3. It also performs whorl absorption, described in Section 2.6.3.

#include "benard.h"

void whorldiffusion(L,M,N,alphaw,etaw)

71

{

;

double **L,alpha_w,eta_w ;
int M,N ;

/* LO..2M]O..2N], on input, is the lattice. On output it is the lattice
updated by one whorl diffusion step, plus one whorl absorption step.

M, on input, is the number of bins in the x-direction.
N, on input, is the number of bins in the y-direction.
alpha_w, on input, is the whorl diffusion parameter.
etaw, on input, is the whorl absorption at walls parameter.

*/

int r,s,rl,r2,s1,s2 ; /* r,s,rl,r2,s1,s2 will all always be even */
double temp,deltaL[2*MAXM+l] 2*MAXN+1] ;

/* initialize the delta-lattice to zero for even r,s */
for(r=O ; r<2*M ; r+=2) for(s=2 ; s<2*N ; s+=2) deltaLr] [s] = 0.0 ;

/* calculate the changes to the lattice values */
for(r=O ; r<2*M ; r+=2){

rl = r-2 ; r2 = r+2 ;
if(r==O) rl = 2*M-2 ; /* model wraps-i
if(r2==2*M) r2 = 0 ; /* same explanai
deltaL Er] [2 -= etaw*L r] [2] ; /*
deltaL[r][2*N-2] -= eta_w*LEr][2*N-2] ; /*
for(s=2 ; s<2*N ; s+=2){

s = s-2 ; s2 = s+2 ;
temp = alphaw*L[r][s]
deltaL[r [s] -= temp ;
deltaL[rl][s] += temp ; /* -ve x-directi
deltaL r] [s] -= temp ;
deltaLr2] [s] += temp ; /* +ve x-directi

if(sl>1){
deltaLrr]ts] -= temp ;
deltaL[r][sl += temp ; /* -ve y-direction */

}
if(s2<2*N-1){

deltaL[r] Es] -= temp ;
deltaL[r][s2] += temp ; /* +ve y-direction */

}

around in x */
tion */
whorl absorption at bottom */
whorl absorption at top */

Lon */

.on */

}

/* now change the actual lattice values using the delta-lattice */
for(r= ; r<2*M ; r+=2) for(s=2 ; s<2*N ; s+=2) L[r][s] += deltaL[r] s] ;

/* done */

72

A.18 whorl_transport. c

This function is responsible for performing the law of whorl transport, described in

Section 2.5.4.

#include "benard.h"

void whorl_transport(L,M,N,beta_w)

double **L,beta_w ;
int M,N ;

/* LO..2H]t0..2N], on input, is the lattice. On output it is the lattice
updated by one whorl transport step.

M, on input, is the number of bins in the x-direction.
N, on input, is the number of bins in the y-direction.
betaw, on input, is the whorl transport parameter.

*/

double deltaL 2*MAXM+I1 [2*MAXN+1] ,temp ;
int r,rl,r2,s,sl,s2 ; /* r,rl,r2,s,sl,s2 all even at all times */

/* initialize the delta-lattice to zero for even r,s */
for(r=O ; r<=2* ; r+=2) for(s=O ; s<=2*N ; s+=2) deltaL[r] s] = 0.0 ;

/* first do non-edge cases */
for(r=O ; r<(2*M-i) ; r+=2){

rl = r-2 ; r2 = r+2 ;
if(rl<O) r = 2*H-2 ; /* model wraps-around in x */
if(r2==2*M) r2 = 0 ; /* model wraps-around in x */
for(s=4 ; s<(2*N-3) ; s+=2){

s = s-2 ; s2 = s+2 ;
temp = betaw*L Er] [s]*0.5* (L r2 Es] + Lr] [s2]) ;
deltaL[r2] Es] -= temp ;
deltaL[r] Es2] += temp ;
temp = beta_w*Lr] [s]*0O.5*(L[r][s2] + L[rl]s]) ;)
deltaL[r] s2] -= temp ;
deltaL[rl] Es] += temp ;
temp = betaw,*LEr] s]*0.5*(L[r]i Es] + Lr] Esl]) ;
deltaL[rl]t s] -= temp ;
deltaLtr] [sl] += temp ;
temp = betaw*Lr] E[s]*0.5*(L[r] sl] + Lr2 Cs]) ;
deltaLrJ sl] -= temp ;
deltaL[r2] Es] += temp ;

/* now do edge cases */
s = 2*M-2 ; si = 2*M-4 ;
for(r=O ; r<(2*M-1) ; r+=2){

rl = r-2 ; r2 = r+2 ;
if(rl<O) rl = 2*M-2 ;
if(r2==2*M) r2 = 0 ;

/* model wraps-around in x */
/* model wraps-around in x */

73

/* do the bottom all (s=2) */
temp = betawv*Ltr [23 *O.S*(L[x2] [2 + Lr] C4) ;
deltaL[r2] [2] -= tmp ;
deltaL[r] [4] += temp ;
temp = beta_w*L[tr C23*0.6*(L[r] 4] + Lrl C2) ;
deltaL[r] 4] - temp ;
deltaL[rl [2] += temp ;
temp = beta_w*L[r C23*0O.6*(L[r]i [2] + L[r2] [2])
deltaLCrlJ 2] -= temp ;
deltaL[r2][2] += temp ;

/* do the top wall (s=2M-2) */
temp = beta_v*LCr] [s]*0.5*(L[r2 Cs] + Lr] Cs])3)
deltaL[r2] Cs] -= temp ;
deltaL[rl][s] += temp ;
temp = beta_w*L[r [s]*0.5*(L[rl1Cs] + L[r] Csli)
deltaL[rl] Cs] -= temp ;
deltaLtr [sil] += temp ;
temp = beta_w*L[r] Cs]*0.5*(L[r] Csl] + L[r2] s]) ;
deltaLir] [sl] -= temp ;
deltaL[r2] Cs += temp ;

/* now change the actual lattice values using the delta-lattice */

for(r=O ; r<2*M ; r+=2) for(s=2 ; s<2*N ; s+=2) L[r][s] += deltaLr][s] ;

/* done */
}

74

;

;

;

1

