
RESIDUAL STRESSES AND WEB FRACTURE

IN ROLLER-STRAIGHTENED RAIL

by

SARAH J. WINEMAN

S.M. Mechanical Engineering, M.I.T. (1987)

S.B. Mechanical Engineering, M.I.T. (1985)

Submitted to the Department of
Mechanical Engineering

in Partial Fulfillment ot the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY
in Mechanical Engineering

at the

Massachusetts Institute of Technology

June, 1991

MI.I.T., 1991. All rights reserved

Signature of Author .........................................
Department of Mechanical Engineering

June, 1991

Certified by ........ ...........- .. . .............................
Prof. Frank A. McClintock

Professor, Department of Mechanical Engineering
Thesis Supervisor

Accepted by ......................... ..................................... ..

Prof. Ain A. Sonin
Chairman, Departmental Graduate Committee

ARICHIVES

MASSACUSEVTS i ISTI TUTE
OF TEC,Nn' n¥y

JUN 12 1991

LIBRARIES



RESIDUAL STRESSES AND XWEB FRACTURE
IN ROLLER-STRAIGHTENED RAIL

by

SARAH J. WVINEMAN

Submitted to the Department of Mechanical Engineering
on March 15, 1991, in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy in
Mechanical Engineering

Abstract
Roller-straightening of railroad rails is a final or near-final step in manufacture

wrhich introduces longitudinal residual stresses throughout the rail section. These
stresses can be severe enough to drive a crack in the rail web, causing derailments.
Residual stress creation ill the roller-straightener is a three-dimensional problem
which can, however, be idealized as plane stress. Two-dimensional, plane stress,
models of the straightener agree with experimental deta and show that the unfa-
vorable residual stress arises in the lightly loaded final straightener rolls, where the
low bending moment but high contact stress causes the rail to yield only in the
flange near the roll. Mlaintaining high bending moments through the straightener
may avoid the formation of the unfavorable U-shaped residual stress distribution.

At a rail end, the longitudinal residual stress distribution of the mid-rail region
must drop to zero and other components of residual stress may develop. Finite
element and analytical models show that the distance from a cut rail end to develop
the mid-rail stress is approximately one rail height for both a free end and an
end with fixed base. At the end near mid-web, a vertical tensile residual stress
develops of 1.35 and 1.10 times the maximum longitudinal stress for a free and
fixed end, respectively. An estimate of the Mode sress intensity on a. short crack
in this vertical stress field gives a KI increasing with crack length and reaching
approximately 2/3 of the typical carbon rail steel fracture toughness for cracks
13 mm (0.07 rail height) long. Therefore, although KI on a short crack may not
be sufficient in itself to drive fracture, in the presence of service loads the risk of
fracture is greatly increased. The risk is still greater in alloy rails with low fracture
toughness.

A saw-cutting test can give an estimate of the stress intensity KI acting on a
web crack at the saw-cut location. The test is simple, requiring a longitudinal saw
cut of the web, measurement of the curvature changes of the split ends, and an
algebraic calculation.

Thesis Committee: Prof. Frank A. McClintock, thesis supervisor
Prof. David E. Hardt
Prof. David NM. Parks
Dr. Oscar Orringer, US DOT/TSC
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Chapter 1

Introduction

After railroad rail is hot-rolled to shape, it is cooled to near room temperature.

During cooling the rail warps due to its non-uniform section and the resulting non-

uniform rate of cooling. There may also be initial curvature from the hot mill.

Therefore current railroad-rail manufacture in the U.S., Europe, the Soviet Union,

and Japan usually includes roller-straightening of each rail after it has cooled from

the hot working temperature. In roller-straightening, the rail is passed through

staggered rolls (Fig. 1), which plastically deform and straighten the rail. However,

roller-straightening leaves longitudinal tensile residual stress in the rail head and

base, and compression in the web (Fig. 2), according to European, Soviet, and

Japanese experimental stress measurements. With high-strength rails, this residual

stress field can be severe enough to drive web fracture, as evidenced by a derailment

in 1983 with four fatalities (John et al. 1984), and as demonstrated by a fracture

stability analysis (Wineman and McClintock 1987). Ways o.f eliminating or reducing

the residual stresses in rail are therefore of great concern. Roller-straightening is

also done on certain wide-flange beams (Samways 1986, Tselikov and Smirnov 1965).

An understanding of residual stress formation and modification in rails could lead

to reducing the residual stresses created in other sections, such as I-beams and

T-beams.

In Chapter 2 of this work, models for the creation of residual stresses during

roller-straightening are developed. The effects of straightener parameters on the

severity of the residual stresses formed are investigated, and modification of these
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parameters to minimize unfavorable residual stresses is suggested.

At a rail end, the mid-rail longitudinal residual stress must drop to zero, and

other components of residual stress may develop, such as a vertical tensile stress

in mid-web. In Chapter 3, these stress transients are estimated from finite element

and analytical models, and their resulting stress intensity Ki on a short web crack

at the rail end is estimated.

The severity of longitudinal residual stress in a given rail can be quantified with a

saw-cutting test, described in Chapter 4. Such a test requires a longitudinal saw cut

in the web, measurement of the curvature change of the cut ends, and an algebraic

calculation, and gives an estimate of the stress intensity KI acting on a web crack

at the saw cut location. The saw-cutting procedure is applied to experimental data

for split rails.

1.1 References

1. R.R. John et al. (1984) "Task force report-rail failure evaluation", DOT
Transportation Systems Center, Cambridge, MA.

2. S.J. Wineman, F.A. McClintock (1987) "Rail web fracture in the presence of
residual stresses", Theoret. Appl. Fracture Alech., 8, 87-99.

3. Samways, N.L. (1986) "Wheeling-Pittsburgh's modern continuous casting/rail
mill complex", !ror and Steel Engineer, June, 25-31.

4. Tselikov. A.I., Smirnov, V.V. (1965) Rolling AMills, Pergamon, p. 254-278.
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rolls

Fig. 1. Schematic of the roller-straightener (exaggerated amplitude of

rail deflection).
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Chapter 2

The creation and modification of
residual stresses during
roller-straightening

2.1 Introduction

Several aspects of the roller-straightening process make it unusual and challenging

to analyze. First, the stress states in the rail as it passes through the straightener

are complex. The raii is subjected to bending, shear, and roll contact stresses, with

lateral spreading in the flanges nearest the rolls. Since this preferential flange defor-

mation is the key mechanism creating the observed longitudinal residual stresses,

straightener models must be detailed enough to capture this local deformation. Sec-

ond, the straightener cannot be idealized as a periodic problem, since the magni-

tudes of the alternating applied loads or deflections decrease through the straight-

ener. Third, the effects of the rolls are coupled: the stresses under each roll are

affected by the other roll settings, and the residual stresses from one roll are mod-

ified by subsequent rolls. Fourth, as material passes under a roll it is subjected to

rapidly varying ratios of stress components, including rotation of principal stress

axes. Simple kinematic hardening material behavior may not give an accurate re-

sponse to this loading history.

A simultaneous, as yet unpublished, study of roller-straightening (Wunderlich

Briinig and Obrecht 1988) ha.s succeeded in obtaining reasonable agreement with

10



experimentally measured residual stresses. Published analyses of straightening pro-

cesses and on rolling either are not applicable to the complex roller-straightening

process, or fall short of accurate residual stress prediction. In analyzing the roller-

straightener, Tselikov and Smirnov (1965) treat the process as pure bending. In

one study (ORE 1987) the straightener is modelled using beam finite elements near

the rolls that can carry bending, shear, and an assumed distribution of vertical

stress. Neither model gives the U-shaped longitudinal residual stresses observed

in roller-straightened rails. Studies of other straightening processes, such as cross-

roll straightening (Tokunaga 1961, Das Talukder and Johnson 1981, Tselikov and

Smirnov 1965), and tension-levelling (Roberts and Sheppard 1971, Hibino and Ku-

nii 1971, Sheppard and Roberts 1972, No6. Fischer and Schwenzfeier 1986), treat

the processes as pure bending. Rolling analyses (for example Numiform 86, 89 ) are

often for large strains (roller-straightening is a small-strain problem), and for plane

strain or uniform-width slabs, unlike the varying-width rail. In addition, rolling

analy ses treat the effects of one roll stand at a time, unlike the many, coupled rolls

in the roller-straightener. Dawson's streamline technique (Lee, Dawson and De-

whurst 1989) is capable of modelling three-dimensional problems (such as a study

of plate bulging, in Numiform 89), but it has not yet been adapted to multiple

roll stands or the kinematic hardening material behavior appropriate for rail steel.

Shakedov -i analyses are not useful: the roller-straightener loads are expected to be

too large and too few for the shakedown techniques of Orkisz (1988) to apply.

The goals of this work are first, to develop models for residual stress formation

during roller-straightening of rails. Then, the effects of process parameters (such

as roll offset or load, roll horizontal spacing and roll diameter) on the severity of

residual stresses formed are investigated, and modification of these parameters to

minimize unfavorable residual stresses is discussed.

2.2 The roller-straightening process

Modelling roller-straightening first requires knowledge of the rails used and the

straightening process. Information frorn North America, Europe, the Soviet Union,
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and Japan on rails, their conditions before and after straightening, and roller-

straighteners i summarized below.

2.2.1 Rail sections and material properties

Rail sections. There are many different types of rail cross section in service today

(see, for example, the AREA manual (1978) for sections in use in the U.S.). In the

U.S., the 136RE (136 lb/yd, or 6S kg/m) (Fig. 1) is commonly used for freight. In

Europe, UIC60 (60 kg/m) and S49 (49 kg/m) rails are commonly used (Figs. 2 and

3). Much of the experimental data on residual stresses and dimensional changes are

for these sections, although data on other European and Soviet rail sections also

exist. In this ork, a 36RE section was used for most models. A UIC60 section

was used when needed for comparison with existing experimental data.

Material properties. Rail steels can be characterized by their alloy composition,

which affects their mechanical properties. Heat treatment and cooling schedules

further determine the properties of the rail. Table 1 shows values of composition,

yield strength, tensile strength, and hardness for carbon and several alloy rail steels.

Heat treatments are chosen by the rail producers to meet the required mechanical

properties. Variation of mechanica.l properties other than hardness over the rail

cross section is not well documented, but hardness may vary as much as ±10% over

the rail cross section (cEvily and Ochi 19S5, Frommann 1965). In head-hardened

rails, the head ca.n have a hardness 30% higher than that of the web and base

(McEvily and Ochi 1985).

In modelling the roller-straightener, it is desirable to have material data for

the multiaxial, non-proportional, transient cyclic loading that takes place in the

straightener. However, most existing stress-strain data are restricted to monotonic

data from tensile tests, cyclic stress-strain curves obtained from the locus of tips of

steady-state hysteresis loops (for example Sunwoo, Fine, Meshii, and Stone 1982,

Park and Fletcher 19S2, Rice and Broek 1982, Scutti 19S2, Dabell et al. 1978,

and Leis 1978), and some transient cyclic data (ORE 1987, Journet 1983, Rice and

12



Broek 1982). All of the above data are for uniaxial loading. Hahn et al. (1988) has

shown that for the small strain amplitudes present under wheel loading, kinematic

hardening gives better correlation with experimental data than isotropic hardening.

Bower (1989) has compared a non-linear kinematic hardening model with cyclic data

for both proportional and non-proportional loading of rail steel. Bower was able

to predict the amount of ratchetting but not the shape of the individual hysteresis

loops. Although the effects of non-proportional loading under the straightener rolls

should be investigated, this is beyond the scope of this work.

The modelling described below uses a bilinear stress-strain curve approximating

that of the cyclic curve for carbon rail steel, and kinematic hardening (Fig. 4).

There is considerable variation in yield strength and hardening over different rail

steels. For most finite element models, a yield strength Y of 4.80 MPa and hardening

modulus h of 0.09 times the elastic modulus E, representative of carbon rail for the

U.S., was used. When comparing finite element results with experimental data,

the yield strength was increased to 500 MPa to more closely approximate the rail

steel (alloy 90A) used. Throughout this work it has been a ssumed that rails are

straightened at room temperature. This is sometimes not true, although rails are

not straightened red-hot or glowing. Also, rolling speeds are assumed to be slow

enough that strain-rate effects are negligible.

2.2.2 Condition of rail before straightening

After the rails are hot-rolled, they are cooled to room temperature, or heat treated

and then cooled. After such heating and cooling, the rails are usually curved due to

the uneven cooling rates of the thick head and the thinner web and base and also

due to pre-curvature in the hot mill. The rails also contain low values of residual

stress from cooling. Table 2 summarizes the curvatures and residual stresses in rails

before and after straightening.

Initial curvatures. Curvatures of rails entering the straightener vary widely from

mill to mill, both in their magnitude and sense. These variations occur partly
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from attempts to pre-curve the rails in the hot mill to compensate for the curvature

acquired during cooling. Therefore, there are instances of rails bowed away from the

rail head (Marcelin Abouaf and Chenot 1986), bowed towards the rail head (ORE

1987), and even rails with reversing curvatures (ORE 1987). Values of deflection

quoted in the literature differ in whether the rail shape is corrected for gravity.

Measurements that do not correct for gravity cite "small" deflections of from 10-40

mm on a 25-m rail fo' oil quenching after high-frequency induction heating (Babich

et al. 1982), and "large" deflections of 500-S00 mm on a 25-m rail (Vorozhishchev et

al. 1983). An ORE study (1987) which corrected for the effects of gravity obtained

deflections ranging from almost zero to a maximum of approximately 120 mm over

a 20-m rail. Marcelin, Abouaf. and Chenot (1986) calculated the final deflection of

a rail due to air cooling to be about 400 mm on a 36-m rail (no gravity present).

Tile above are vertical curvatures; the rails can also acquire lateral curvatures.

However, since lateral symmetry should greatly reduce warpage due to uneven cool-

ing, and since roller-straightening to remove vertical curvatures introduces the ob-

served residual stresses, lateral curvatures have been neglected in this work.

Initial residual stresses. Fig. 5 shows scatterbands of measured longitudinal

residual stresses in unstraightenedl rail (ORE 1984). Marcelin, Abouaf and Chenot

(1986) have calculated longitudinal residual stresses from cooling of a straight rail

using a thermo-mechanical finite element model with both elastoplastic and elasto-

viscoplastic material behavior (Fig. 6). Their calculated values fall within the

scatterband of measured stresses for unstraightened rail at the locations of residual

stress measurement (Fig. 5), except for the stress at the top of the head in the elasto-

viscoplastic case. The maximnum initial stress inside the head and base reaches at

worst about half the maximum residual stress after straightening.

Typical values. Because of the wide variation in rail curvatures, it is impossible

to choose a typical curvature. Because of this, and because straightening above a

certain level of roll loads or deflections produces straight rails independently of the

14



initial curvatures, initially straight rails were modelled. Since the initial longitudinal

residual stresses are small compared to those produced by the straightener, zero

initial residual stresses were assumed before straightening.

2.2.3 The roller-straightener

The rail is passed through rolls with horizontal axes, to straighten the rail in the

stiffest, vertical, direction by alternately pressing on the top of the head and bottom

of the base. In many mills, the rail leaving this "horizontal" straightener immedi-

ately enters the "vertical" straightener: rolls with vertical axes to straighten the

rail in the horizontal direction by pressing on the side of the web or the side of the

head. This work investigates the "horizontal" straightener, where the rolls press

vertically on the rail head and base, since this is the chief straightening operation

and is the cause of the longitudinal residual stress that can cause web fracture.

Fig. 7 shows various roller-straightener configurations used in North America,

Europe, and the Soviet Union. North American and European (German-made)

roller straighteners usually have 9 rolls: 4 fixed driven rolls on top, and 5 vertically-

adjustable idler rolls on the bottom. In some European mills, the outer two lower

rolls are not used. Soviet-made roller-straighteners can have 6 or 8 rolls. Either

vertical force or displacement control can be used. In the straighteners observed

in North America, there is force control on the three central idler (lower) rolls and

displacement control on the outer two idler rolls. In Europe and in the Soviet

Union displacement control is preferred for all the idler rolls. No lubrication is used

between rolls and rail.

The parameters of these roller-straighteners are summarized in Table 3.

Typical straightener. The straightener used in modelling is shown in Fig 8. The

upper rolls are fixed, and the lower rolls have applied vertical displacements.

2.2.4 Condition of rail after straightening

After roller-straightening at room temperature, the rails are nominally straight and

contain significant longitudinal residual stresses. These have been summarized in

15



Table 2.

Final curvatures. In the United States, the recommended overall vertical deflec-

tion of rails after straightening is less than 19 mm (0.75 in) over a 11.9-m (39-ft)

rail (AREA 1975). An ORE study (1987) gives final deflections for European roller-

straightened rails of less than 20 mm over a 20-m rail. Babich et al. (1982) give final

deflections of less than 12 mm over a. 25-m rail length for rails in the Azovstal' steel-

works in the Soviet Union. In the ORE study, correction is made for the weight

of the rail. The measurement of Babich et al. was done with the rail standing

vertically on its base, with no weight correction.

Final residual stresses. Tile longitudinal residual stresses for carbon and alloy

rails fall in the scatterband shown in Fig. 2 of Chapter 1, based on residual stress

data from Europe, the Soviet Union, and Japan. This U-shaped stress distribution

of tension-compression-tension in the head, web, and base has maximum magnitudes

of 100-300 MPa (14.5-43.5 ksi). The data are for plain carbon and alloy rails, and for

both heat-treated and non-heat-treated rails. An exception is'head-hardened rail,

which has compression in the head after head-hardening and roller-straightening

(Fig. 9) (Masumoto et al. 1982). Vertical residual stresses in the head and web

have also been measured but have relatively low magnitudes and less effect on web

fracture, as shown in Wineman and McClintock (1987).

Dimensional changes. Roller straightening produces a decrease in rail height and

length, and an increase in head and base width (Frommann 1965, Didyk 1988,

Christiansen 1988). The overall strains corresponding to these dimensional changes

are from 0.3 to 1.8 times the yield strain. In one study (ORE 1987), the rail

head showed a slight decrease in width instead of an increase. Frommann (1965)

studied dimensional changes for a. 7-roll straightener and found that almost all of

the dimensional change occurred under the second and third rolls.
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End effects. The length from an untrimmed rail end needed to achieve the mid-rail

residual stress and dimensional change can be estimated easily if there is significant

mill scale on the rails during straightening. This oxide layer falls off in the fillet

regions over the entire rail length except for a half-roll-spacing length (about 750

mm, or 30 in) at each end. Dimensional changes measured at the ends by Deroche

et al (1982), and residual stresses ultrasonically measured by Utrata (1989) agree

with this half-oll-spacing end effects region. Frommann (1965) found that the mid-

rail dimensions were attained an entire roll spacing (1500 mm) from the ends. Note

that this is much longer than the one rail height from a cut rail end needed to attain

the mid-rail stress distribution, discussed in Chapter 3.

These mill ends are often not straight, and in addition each end is often deformed

from hitting the rolls. Many mills trim some distance from the ends and often

manually press-straighten the ends.

2.3 Model selection

It is desirable to select models of the roller-straightener that are as simple as possi-

ble but which capture the essentials of the residual stresses. A key to understanding

residual stress creation is the dimensional changes induced in the rail by straight-

ening: an overall shortening in the rail height and length and a lateral spreading

of the head and base. Under a straightener roll, the flange (head or base) is in

longitudinal compression due to bending, and in vertical compression due to the

roll (Fig. 10). These dimensional changes suggest, then, that under these applied

stresses the flange yields, shortens in length and height, and spreads laterally. The

shortening near the roll is greater than any lengthening of the flange away from

the roll, and the fina.l product is a. ia.il with head and base preferentially shortened

with respect to the web. This gives the U-shaped residual stress distribution of

longitudinal tension-compression-tension through the head, web, and base. This

physical insight was made by Meier as early as 1936 (Meier 1936, in Frommann

1965). In fact, the above is an oversimplification; the actual stress states are three-

dimensional. As shown in the three-dimensional studies described below, the loaded
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rail is closer to a plane strain state near the center under the roll, and is closer to

plane stress away from the roll and near the tips of the flange under the roll. The

tips of the base and the bottom of the head remain elastic and constrain the flow of

the yielding material. However, it turns out that 2-D plane stress models provide

a.n adequate representation of the 3-D centerline residual stresses. This is probably

because the elastic material surrounding the yielding regions provides only partial

constraint from lateral spreading, and the resulting deformation is closer to plane

stress than to plane strain.

An additional point to be kept in mind when selecting models is that the rolls

are not at the maximum points of deflection of the rail as it passes through the

straightener. Since each roll is at the point of maximum bending moment, producing

a change in curvature of the rail, the rolls should be at the points of inflection of

the sinusoidal rail trajectory. Although in practice this is difficult to verify since

the rail deflections are very small, this was the case for the finite element results.

It is interesting to note that this could account for the discrepancy between the

rolling and stopped roll loads measured by the ORE (1987). When the machine is

stopped, the rail may be rolled backwards or forwards a small amount toward the

maximla of its trajectory, accompanied by unloading.

The work described below compares three- and two-dimensional finite element

models and a simple analytical model, for selection of the optimum model to use in

parametric studies.

An assumption common to all the models is the idealization of roll-rail contact.

The rail head and base are assumed flat, with flat rolls which are as wide as the

head or base. In the real straightener, the head roll is originally contoured to fit

the head radius of approximately 300-355 mm, but the trough flattens with use.

The rail base roll is flat but only contacts the central two-thirds of the rail base.

In the two-dimensional and analytical models discussed below, the base rolls are

assumed to contact the entire base. In the three-dimensional models of base rolling,

anticlastic curvature of the base causes the base tips to lift off the roll, resulting in

an effective contact width approximately equal to that in the real straightener.
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Friction was neglected in the 3-D and 2-D finite element models having just

one loaded roll contacting the rail and in the 2-D, 9-roll models for static loading.

In models having multiple rolls and rail travel through the straightener, friction

was used on one of the upper rolls to drive the rail through the straightener, since

pulling the rail through the rolls could lead to spurious bending moments and plastic

deformation.

2.3.1 Three-dimensional studies

A comparison of three- and two-dimensional finite element models was done to

assess the accuracy of two-dimensional models of the straightener. Two cases of

static loading were studied: loading and unloading of the roll on the rail head and

on the rail base. In addition, a case of base loading with 19 mm (0.75 in) roll

travel before unloading was studied. All finite element analysis was done using the

program ABAQUS (1987, 1989).

Initial residual stress. Before loading, the rail was given initial longitudinal

residual stresses. These initial stress distributions were brought to equilibrium

with a preliminary loading step; the equilibrated initial stresses are shown in the

figures below. The initial stresses were taken fiom two-dimensional plane stress

models in which loaded head and base rolls were displaced along an entire 762-

mm (30-in) length of rail, with end moments mimicking the rest of the rail in the

straightener (the "single-roll" model, described below). The residual stresses from

these models are necessarily uniform across the flanges (head or base). However,

experimental data. show that the centerline tensile stress decreases towards the flange

tips (Konyukhov, Reikha.rt, and IKaportsev 1973, Lempitskiy and Kazarnovskiy

1973, Konyukhov Rabinovich et al. 1969, McEvily and Ochi 1985). Therefore

the 3-D models used the 2-D result as the centerline stress, decreasing to 1/3 the

centerline value at the tips of the head and to zero 2/3 of the way out along the base.

Across the web the stress was assumed to be uniform. In addition, the maximum

centerline residual stress in the 3-D head static loading model was increased so that

the average residual stress was closer to the 2-D value. This was thought to be
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especially important in the region of high residual stress in the head. In the head

loading (Fig. 11) there was initial residual stress only after the roll, corresponding

to the first upper roll in the straightener. In the base loading and travel, there

were different stress distributions before and after the roll (Fig. 12). In all cases,

stresses were smoothed over a transition region under the roll by a cubic weighting

function. This transition region was assumed to be approximately one roll contact

length under the roll (0.027 times the rail height) and one rail height long on the

opposite side of tile rail. These approximations to the actual residual stresses were

considered better than having no initial residual stresses, since the magnitudes of

residual stress are significant, with maxima approaching yield. Such approximations

remain useful for comparison of corresponding two- and three-dimensional models.

Displacement histories. During loading and roll travel, longitudinal and ver-

tical displacement histories were applied at the ends of the mesh to mimic the rest

of the rail in the straightener. Again, these were ta.ken from 2-D modelling, and

for the 3-D models the displacements were assumed constant across the web and

flanges.

Static loading on rail head and base Three models were compared: 3-D, 2-D

plane stress, and 2-D plane strain. An initial loading step was used to introduce

and equilibrate the initial longitudinal stresses. Longitudinal end displacements

were held at zero during this step. Then, a roll load was applied to the rail head

or base and removed. The head roll load of 874.8 kN (89.2 tonnes) and the base

roll load of 1083.7 kN (110.5 tonnes) are similar to the loads on the first head roll

and the second base roll of a North American 9-roll straightener. At the same

time, nonzero longitudinal and vertical end displacements were applied during the

loading steps to mimic the rest of the rail. Note that since the displacements on

"unloading" were approximations taken from a previous 2-D model, they do not

necessarily correspond to a state of zero end-tractions and equilibrated stresses.

Fig. 13 shows the 3-D finite element mesh for head static loading, and Fig. 14

shows the 2-D mesh for head loading. Figs. 15 and 16 show the 3-D and 2-D meshes
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for base static loading. The 2-D models used 8-node (quadratic displacement)

elements and the 3-D models used 8-node brick (linear displacement) elements. In

the refined central region of the 3-D meshes, therefore, 4 elements were substituted

for each 1 element in the plane of the 2-D meshes.

When a roll load is applied, the stresses under the applied roll load are highest

in the center over the web and decrease towards the flange tips. This effect is

most pronounced in the base loading. Figs. 17-19 are contour plots of the normal

components of stress (, o, ayy ) for the 3-D head loading. Figs. 20-22 are

similar plots for the base loading. Shear stresses were small compared to the high

normal stresses under the roll, although they were not negligible compared to the

normal components of deviatoric stress. Figs. 23-30 compare the applied stresses

of the 3-D centerline, plane stress, and plane strain models for the rail head and

base loadings. Under the roll, the 3-D centerline stress is closest to plane strain,

but near the flange tips and in the rest of the rail the 3-D stresses are closest to

plane stress.

As the rail bends over the roll, there is anticlastic curvature in the flanges. In

Figs. 31 and 32 the regions of non-zero vertical applied stress correspond roughly to

the roll "footprint" on the head and base. There is no liftoff in the head loading, but

in the base loading the outermost third of the base lifts off the roll. It is interesting

that in the real straightener the base rolls extend only under the center of the base,

ending at roughly this liftoff point.

When the roll load is removed, residual stresses remain. Figs. 33 and 34 compare

the longitudinal residual stresses for the head and base loading models. The other

components of residual stress are negligibly small, except for a centerline transverse

residual stress in the region of roll loading in the 3-D models. This stems from

constraint of the yielded material in the center by the surrounding elastic flanges.

Roll travel on rail base Figs. 35 and 36 show the 3-D and 2-D meshes for

roll travel along the rail base. Fig. 37 compares the roll "footprints" (regions of

non-zero vertical stress) for the static and travelling base rolls. Fig. 38 shows the
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longitudinal residual stresses left in the roll wake for the 3-D, plane stress, and plane

strain models: note that near the base they are different from the static residual

stresses of Fig. 34.

Conclusions on 3-D versus 2-D models In order to model even 3 or 4 rolls, it

was necessary to choose the best two-dimensional model, since three-dimensional

studies are prohibitively large and time consuming. For example, the largest three-

dimensional model above, that allowing 75 mm (3 in) maximum roll travel along the

base, was approximately 12,000 degrees of freedom and required approximately 40

hours CPU time for 19 mm roll travel, using an Alliant FX/8 with vectorized code

(approximately 2 mflops listed for a simple test case). Since the goals of this work

are to model the creation of residual stresses, particularly the longitudinal residual

stress of concern for web fracture, attention is focussed on the ability of the models to

reproduce longitudinal residual stresses. I the comparisons of longitudinal residual

stresses (Figs. 33, 34, and 3S), the residual stresses for the 3-D, plane stress, and

plane strain models are very close to one another except in the region near the

roll. Especially in the roll wake (Fig. 38), the 3-D model gives stresses which are

different from both the plane stress and the plane strain model. However, since plane

stress allows lateral spreading of the flanges, which is necessary to reproduce the

dimensional changes measured in roller-straightened rails, plane stress was judged

to be the best two-dimensional model and is used in subsequent studies.

2.3.2 Choice of two-dimensional plane stress model

After the choice of element type for the 2-D model, the choice of physical configura-

tion remains. There are several possibilities for modelling the roller-straightener us-

ing 2-dimensional, plane stress finite elements. Modelling the entire 9-roll straight-

ener with a lagrangian mesh requires too large a. model to even crudely reproduce

residual stresses. Therefore, it is necessary to explore possibilities of local refine-

ment or modelling parts of the straightener. The two approaches that seemed most

promising were therefore compared.
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The first, called the "single-roll" model, uses a mesh 1/2 roll spacing long and

an upper and lower roll consecutively. The straightener is simulated by moving the

loaded rolls along the mesh, with end tractions simulating the moment history seen

by the length of rail moving through the straightener (Fig. 39). The roll forces and

corresponding moment distribution are found from static loading on a coarse mesh

of the entire straighter. This approach has the advantage of small mesh size, but

cannot model the actual trajectory of the rail in the straightener. Also, the rolls

are loaded with force boundary conditions, not the mixed force and displacement

conditions actually present in the straightener.

The second approach, called the "quasi-Eulerian" model, uses a mesh as long

as the straightener being considered, with refined regions under and some distance

ahead of each roll (Fig. 40). Initial guesses for the wakes of residual stresses after

the rolls are used as initial stress conditions, then the rolls are loaded or displaced

onto the rail and the rail is moved a. short distance with respect to the rolls. The

new wake of residual stresses is compared with the initial guess, and this new wake

is used in a second iteration of the problem if they are very different. This approach

has the advantage of allowing the real, mixed boundary conditions to be applied to

the rolls.

To compare the two approaches, a three-roll "straightener" was modelled. For

the "single-roll" model, the corresponding moment history was used to apply time-

varying end pressures as the rolls moved along the mesh. For the "quasi-Eulerian"

model, the mesh was refined under and 200 mm ahead of the rolls. An initial

longitudinal stress distribution, taken from the results of the "single-roll" model,

was introduced before displacing the mesh 200 mm through the rolls. The stresses

left by the center roll were then used as an initial guess in a second iteration. As the

second iteration of the "quasi-Eulerian" model gave stresses after the roll that were

at worst 25% low under the roll, with agreement within 10% elsewhere, the model

was deemed to have sufficiently converged on the final residual stress distribution.

Fig. 41 shows the resulting residual stresses for the "single-roll" and for the two

iterations of the "quasi-Eulerian" model.
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It was concluded that the quasi-Eulerian approach is the best, since it allows

specification of the mixed force and displacement boundary conditions present in

the real straightener and converges to an acceptable result after several iterations.

However, the "single-roll" models give reasonable estimates of residual stress and

are in fact used for initial stress to use in the "quasi-Eulerian" model. In the 2-D

runs discussed below, the "single-roll" model only was used, since time constraints

did not permit setting up and running "quasi-Eulerian" models.

2.3.3 Analytical model

A rail, or beam, subjected to bending develops a distribution of longitudinal residual

stress that is Z-shaped, not the U-shaped distribution observed in roller-straightened

rail. A simple analytical model was developed which serves to illustrate the devel-

opment of residual tension in the flange near a roll.

The model considers a symmetrical I-section as a beam in bending, with applied

end moments Al, leading to a longitudinal stress distribution orzz. However, it is

assumed that the vertical roll stress ayy combines with the longitudinal stress and

serves to reduce the amount of longitudinal stress needed to produce yielding. Fig.

42 shows this idealization of the loaded rail and the assumed region on the yield

locus of the yielding part of the flange. Unloading superposes a linear longitudinal

stress with resultant -l on the applied stress, with the resulting residual stress

distribution also shown in Fig. 42.

The applied and residual longitudinal stress distributions can be determined for

a given bending moment Al and vertical stress ayy as follows. The applied stress

distribution must give zero net. longitudinal force:

vFz 0= O f = azdArail . (2.1)

The resultant bending moment must be equal to the applied bending moment M:

Eilb =A = J ydA. (2.2)

Also, the longitudinal stress rf in the yielding region near the roll and the vertical

stress oy, combine in the Mises yield criterion, where Y is the yield stress:
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2- Y af + 2] 1/2 =t2 (2.3)

These three equations allow solution for the parameters Caf, ab, and c, of the

applied stress distri-bution, in terms of the roll stress oa, and bending moment M

and chosen height of yielding material a. The residual stress distribution is then

obtained by superposing a linear distribution with resultant moment -M.

A numerical example of this is given in Fig. 43, for a bending moment M of

0.95 the yield moment, ryy of-1.1 Y, and an assumed height a of the yielding region

of 0.05 times the total height. This choice of a is similar to the height observed in

some of the 2-D finite element models over which the longitudinal stress deviates

fiom a roughly linear distribution. The resulting residual stress has maxima of 0.1,

-0.01, and 0.005 times yield.

This model illustrates the development of tension in the flange after a roll pass.

The model is limited as a. predictive tool, since there is actually pre-existing residual

stress in the rail and since in the real case, there may be yield due to longitudinal

stress alone. The shortcomings of the model are further highlighted by its relatively

low values of residual stress, compared to observed values, and by the fact that

the envelope of parameters ary and Al needed to produce a tension-compression-

tension distribution through the section is very small-in practice, many different

roller-straightened rails have been found to have a U-shaped stress distribution.

However, the model demonstrates the importance of the combined effect of vertical

and longitudinal stress in producing the observed residual stress.

2.4 Comparison with experimental data

The finite element models were compared with experimental data where possible.

First, static loading of a. 9-roll straightener was done with applied roll displacements,

a.nd the finite element roll loads were compared with measured loads. Then, results

of the "single-roll" model for this straightener were compared with residual stress

data. for a partially-straightened rail. Since time did not permit simulating the entire

straightener, development of the U-shaped stress distribution in the last rolls was
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demonstrated by subjecting rail with residual stress from the first two straightener

rolls to the last two rolls.

2.4.1 Static 9-roll model for roll loads

Existing data on roll loads (ORE 1987), for a UIC60 rail section and Grade 90A

carbon rail, were compared with calculated loads from a coarse finite element mesh

of a 9-roll straightener. This mesh is shown in Fig. 44 for plane stress elements.

Unsymmetrical I-beam elements vwere also used. Table 4 shows the experimental

straightener settings, the actual displacements when loaded, and the measured loads

when rolling and after stopping the straightener. The measured loads in the stopped

straightener are lower than the measured operating loads, probably due to the

rail moving backwards or forwards in the stopped rolls and partially unloading.

These loads are therefore not analogous to static loading of the rail. The finite

element loads, of static loading on virgin material, should be closer to the operating

loads than to the stopped loads, with differences due to the presence of residual

stresses, curvatures, and hardening in the operating straightener. Table 4 also

shows the finite element roll loads for plane stress and for beam elements, with a

comparison of finite element and experimental loads in Fig. 45. The finite element

roll loads are lower than, but within 12% of, the operating loads. This agreement

with experimental data suggests that the 9-roll static loading models can be used

to obtain corresponding roll loads for displacement-controlled straighteners, which

can then be used as boundary conditions for the "single-roll" model.

It is interesting to note the difference in load sequencing between the above Euro-

pean straightener and the straighteners common in North America. The straighten-

ers in European studies have decreasing displacements applied through the straight-

ener; North American straighteners use decreasing applied forces. This experimental

study suggests that the maximum loads in both types of straighteners are similar,

but that the maximum load occurs in the middle of the straightener in European

straighteners, instead of at the beginning as in North American straighteners.
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2.4.2 "Single-roll" model for residual stresses

The "single-roll" model provides initial guesses for residual stress, to be used in

"quasi-Eulerian" models, and also provides estimates of residual stress in its own

right. The "single-roll" mlodel was used to model the 9-roll straightener shown in

Fig. 46 (Schweitzer, Fliigge, Heller 1985). This straightener was stopped and the

rolls disengaged during straightening so that the intermediate curvatures, height

decrease, and residual stresses could be measured. The 9-roll plane stress model for

static loading was used to determine the roll loads for these straightener settings,

with the nominal settings of rolls 2, 4, and 6 decreased by the 3 mm of settling

under load (ORE 1987). The roll loads and accompanying moment history for the

first two loaded rolls (rolls 1 and 2 in Fig. 46) were used in the "single-roll" model.

The mesh used is shown in Fig. 47, and the resulting longitudinal residual stress is

shown in Fig. 48, along with the experimentally measured values. Considering the

many idealizations involved in the finite element model, and the possible inaccuracy

in strain gage data, this agreement is excellent. However, one thing is surprising-

the stress distribution is a Z-shape characteristic of bending, and not the U-shape

observed in roller-straighteaed rail.

Fig. 49 shows the measured longitudinal stresses after each roll, along with our

postulated stress distributions between the three strain-gage locations. The figure

also shows the bending moment distribution through the straightener, normalized

by the moment to cause initial yield in an unstraightened rail. The residual stress

distribution takes a Z-shape throughout most of the straightener. The U-shape

appears after roll 6, when the bending moment first decreases below the yield mo-

ment. Time constraints did not permit running the "single-roll" model for this whole

straightener. However, the resulting deformed mesh from the first two straightener

rolls was subjected to rolls 6 and 7 of the experimental straightener. The resulting

longitudinal residual stress, as well as the measured residual stresses after roll 7, are

shown in Fig. 50. Passage of roll 7 over the rail head has caused the compressive

residual stress in the head from roll 6 to become tensile, with little change in the rest

of the residual stress distribution. This effect was also seen in another case when a
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mesh of 136RE section with a Z-shaped stress distribution was passed through rolls

6 and 7, with moments and roll loads scaled up according to the heavier section.

It seems, then, that the unfavorable U-shaped distribution of longitudinal resid-

ual stress occurs not from the heavily loaded rolls at the start of the straightener,

which cause mostly bending deformation, but from the lighter roll passes at the

end. Here, bending stresses may be insufficient to cause yield, and yield occurs near

the roll due to contact stresses.

2.5 Effects of straightener parameters on residual stresses

It is desirable to quantify the variation of residual stress with straightener param-

eters such as roll load, diameter, and spacing. This is useful both to obtain less

unfavorable residual stress with existing straighteners and to design the optimum

straightener. Frommann (1965) performed parametric studies on a 7-roll straight-

ener but focussed on the dimensional changes of the straightened rail, giving only

limited, unexpected data for the resulting residual stresses.

The sections below discuss the determination of the important parameters for

residual stress formation and some limited studies on a 4-roll straightener to in-

vestigate the effects of roll load and diameter. Four rolls are the minimum needed

to obtain a straight rail. First, a beam model of an entire 4-roll straightener was

used to determine roll deflections and corresponding forces to obtain a straight rail.

Then, the "single-roll" model was used for two different straight-rail settings to

investigate the effects of roll force/deflection on residual stress. Lastly, a larger roll

was used for another case to investigate the effects of roll diameter.

2.5.1 Determination of most important parameters for study

Table 5 lists the many parameters that may affect residual stresses and straightness

of the rail. The rail material and geometry, the straightener geometry and settings,

and the guide rolls and lateral straightening may all influence the final state of the

rail. However, the parameters most important for rail deformation and residual

28



stress are three of those inside the straightener: roll loads or displacements, roll

spacing, and roll diameter. Appendix 1 discusses in detail the rationale for the

choice of important parameters.

2.5.2 4-roll beam model for curvatures and roll forces

A 4-roll straightener was modelled to find settings for a "straight" rail (curvatures

within AREA guidelines (1975) of less than 19 mm (0.75 in) deflection over a 11.9-m

(39-ft) rail). Although the I-bean- elements used only capture the bending of the

rail, not local deformation, and thus are incapable of correctly modelling residual

stress formation, they are quick to run and give insights on final curvatures of the

rail and roll forces.

The beam element model (Fig. 51) consisted of four rigid rolls and 50 beam

elements (a 5000 mm long rail). The upper rolls, 2 and 4, were fixed in the vertical

and horizontal directions. The lower rolls, 1 and 3, were restrained horizontally and

were given prescribed vertical displacements. Friction on roll 2 and a prescribed

rotation were used to drive the rail through the straightener. Rolls 1, 3, and 4 were

frictionless.

Instead of considering the vertical displacements of rolls 1 and 3 as independent

variables, they can be combined in two pairs: the average upward roll displacement

(bending at the first roll) and the slope of the line joining their centers. The amount

of deformation occuring under roll 2 is affected only by the average displacement:

ave. upward displacement = (ul + u3)/2 . (2.4)

The deformation under roll 3 is affected by this displacement and also by the slope

of the line joining the centers of rolls 1 and 3, proportional to the difference in their

respective displacements:

slope of roll 1 - 3 axis - U-1 . (2.5)

The above expression has dimensions of length. Normalization by the roll spacing

would give a slope.
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Fig. 52 shows the variation of final curvature 1/R (normalized by the yield

curvature 1/Ry) with the slope of the roll 1-3 axis, for three different values of

average upward displacement. The straightener settings for a "straight" rail are

also indicated, and these settings are listed in Table 6 along with the roll loads.

The curvature study also gives an insight on straightener design. The average

vertical deflections studied in the 4-roll beam model, and their accompanying roll

loads, are typical of the first few (3-5) rolls of current roller-straighteners. The

curvatures produced under such heavy settings are greater (at least 10 times) than

incoming rail curvatures. This suggests that in multi-roll straighteners, the first

few rolls serve to produce a large, reproducible curvature. Subsequent rolls, with

gentler deformations, are set to remove this curvature, and the resulting machine

does not have to adjust to fluctuations in initial curvature. In practice, some mills

use lighter roll settings and have to do more "tuning" of the straightener to obtain

a straight rail (Sydnev Steel, private communication, 1989).

2.5.3 Effects of roll loads and diameter: studies with "single-roll" model

Effect of roll displacements/loads. Two straightener settings were used,

corresponding to those in Table 6 with average displacement of 20 and 30 mm.

The same, coarse, mesh was used as that for the 3-roll straightener studies (Fig.

39). The final longitudinal residual stress distributions for both cases (Fig. 53)

have the Z-shaped distribution typical of bending. The values of stress are similar

in the head and base, with discrepancies in the web that are probably due to the

coarse mesh (2 -node elements high) there. This study, giving Z-shaped residual

stress distributions, does not shed light on the effects of roll loads and moment

distributions on the magnitude of the U-shaped distribution arising from the last

few straightener rolls.

Effects of roll diameter. Roller-straighteners have horizontal roll spacings of

1140-1800 mm, with a typical spacing chosen to be 1500 mm. Changing this spacing

would require redesign and rebuilding of the straightening machine. Therefore,
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variations in roll diameter are practically limited by the roll spacing. It was felt

that an increase in roll diameter should be studied, since this should decrease the

local deformation and resulting residual stresses. With a spacing of 1500 mm, the

largest possible roll diameter was estimated to be 1150 mm, a 20% increase from the

typical diameter of 950 mm. The "single-roll" model was used to compare the final

residual stresses for these two roll diameters, using settings for the 9-roll straightener

of Fig. 46. Fig. 54 shows the residual stress after roll 2, for the standard and larger

roll diameter. The stress distributions are almost identical. This is also the case

for the stress after roll 7 (skipping rolls 3-5), shown in Fig. 55. It can therefore

be concluded that both for the bending regime where the rolls produce a Z-shaped

stress distribution, and for the end of the straightener where a U-shape appears,

there is no noticeable effect of increasing the roll diameter by 20%. This may not

be surprising, since even under the last rolls a significant portion of the head or

base is yielding under the roll and plastic strains are as much as 5 times the yield

strain. This is far too much for application of the elastic (Hertz) theory of contact,

which predicts decreasing stress with increasing roll diameter.

2.6 Recommendations for straightening

It has been demonstrated that the unfavorable U-shaped residual stress arises in

the last straightener rolls, where the bending moment is less than that to produce

yielding but where there is still significant deformation under the roll. The question

of development of unfavorable residual stresses, then, reduces to that of the tendency

of the last rolls to change a Z- to a U-shape. Increasing the roll diameter by 20%

seems to have no effect on the residual stresses. A straightener having high loads

and high bending moments under all but the last roll may leave only a Z-shape

in the rail if the last roll is lightly loaded enough so as not to cause significant

deformation. This could be assured by increasing the horizontal spacing to the last

roll, so that a light load on this roll creates a significant bending moment at the

previous roll. However, further investigation should be done to find combinations
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of roll loads and moments needed to avoid a U-shaped stress distribution.

2.7 Alternative processes

The work described above has focussed on analyzing the roller-straightening process

in order to suggest improvements which reduce the unfavorable residual stresses

produced. However, roller-straightening is only a small part of the process of rail

manufacture. Avoiding unfavorable residual stresses requires consideration of the

entire process, giving several possible approaches: avoid the need to straighten,

improve the roller-straightener, or use an alternate method of straightening.

Rail manufacturers often attempt to compensate for curvature due to cooling by

pre-curving the rails in the hot mill. This does not seem to be done with enough

accuracy to achieve the desired straightness. Some mills keep the rail base hot

while the head cools, reducing warpage. Unfortunately, some of these mills still

need to roller-straighten the rail. A third way to obtain straight rail is by using an

induction heat-treating process (Sommer et al. 1988) which holds the rail straight

as it cools, giving straight, heat-treated rail without unfavorable residual stress.

However, unlike roller-straightening. this process operates at less than the usual

production speed, requiring several such heat-treaters to be installed.

Improving the roller-straightener may be possible by proper adjustment of im-

posed roll displacements or loads. In addition, heating the rail web after straight-

ening to relieve residual stresses, and straightening with a hot web, have been

considered (Heller et al. 1987), but it is not clear whether such steps are taken in

actual rail production.

An alternate method of straightening is stretch-straightening (Deroche et al.

1982), in which a rail is pulled between grips so that it straightens. This method

gives straight rails with essentially no residual stress (Deroche et al. 1982, ORE

1987), but is slow and wastes material at either end of the rail. However, with the

current trend toward longer rails, this technique may become more economical.

There are, then, several ways to minimize the problem of unfavorable residual
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stress in rails, such as those from the roller-straightener. Decisions on what method

to use will probably need to be made individually by each mill, taking into account

the specific process, plant layout, and customer requirements, and the associated

economics.

2.8 Conclusions

In this work, models for residual stress formation during roller-straightening were

developed. Then, the effects of process parameters (applied roll load or displace-

ment, roll diameter and spacing) were investigated in order to suggest ways to

minimize unfavorable residual stresses.

1. The deformation of the rail in the straightener is really a three-dimensional

problem. However, plane stress models of the straightener are adequate to

model the resulting residual stresses.

2. A plane stress, "single-roll" model for the first two loaded rolls in the straight-

ener gives qualitative agreement with strain gage data taken at three locations

on the rail. Disparities between experimental and calculated residual stresses

appear to result from idealization of boundary conditions and material behav-

ior in the finite element model, and from the coarse mesh used.

3. The unfavorable, U-shaped longitudinal residual stress distribution found in

roller-straightened rail arises fiom the last straightener rolls, where the bending

moment is relatively low and most of the plastic deformation occurs under the

roll, due to the high contact stresses there.

4. Increasing the roll diameter by 20% has no effect on residual stresses, both

in the initial, heavier loaded rolls, and in the final rolls producing the U-

shaped stress distribution. This is not surprising since the amount of plastic

deformation is too great for the elastic (Hertz) theory of contact to apply.
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5. A straightener that maintained high bending moments throughout would avoid

the U-shaped residual stress distribution, giving instead a Z-shape from bend-

ing deformation. This may mean that the spacing to the last roll must be

very large, so that there can be a small force on the last roll and still a large

moment at the next-to-last roll. Further investigation is needed to determine

the combinations of roll force and bending moment to avoid the U-shaped

residual stress distribution.

6. The best solution to the problem of unfavorable residual stresses from straight-

ening must be based on the overall process of rail manufacture. It may be more

economical to avoid the need to straighten by reducing or avoiding initial cur-

vat ures or to use an alternate method of straightening than to redesign the

roller-straightener.

2.9 References

1. ABAQUS (1987, 1989) A general-purpose finite element code with emphasis
on nonlinear applications, versions 4.6, 4.7, and 4.8, lfibbitt, Karlsson, and
Sorensen Inc., Providence, RI.

2. AREA (1975) Alanual for Railway Engineering (Fixed Properties), American
Railway Engineering Association, Washington, D.C., Chapter 4, Sec. 4-2-4.2.

3. AREA (1978) Manual for Raiiway Engineering (Fixed Properties), American
Railway Engineering Association, Washington, D.C., Chapter 4, Sec. 4-1-6.

4. Babich, A.P., Biklhunov, L.Ya., Chernov, E.I., Vereshchaga, E.A. (1982) "In-
fluence of cold straightening on quality of rails quenched after high frequency
current heating", Steel in the USSR, 12(7), 318-320.

5. Botschen, K.F., Steck, R.. (1982) "Bearing rigidity, a precondition for straight-
ening section material", Ball and Roller Bearing Engineering, 21(2), 23-25.

6. Bower, A.F. (1989) "Cyclic hardening properties of hard-drawn copper and
rail steel", J. Mech. Phys. Solids, 37, 455-470.

34



7. Christiansen, H.P. (1988) Colorado Fuel and Iron, Pueblo, CO, private com-
munication and tour of facility.

S. Dabell, B.J., Hill, S.J., Watson, P. (1978) "An Evaluation of the fatigue perfor-
mance of conventional British rail steels", Rail Steels-Developments, Process-
ing, and Use, ASTMA STP 644, D.H. Stone and G.G. Knupp, eds., American
Society for Testing and Materials, 430-448.

9. Das Talukder, N.K., Johnson, W. (1981) "On the arrangement of rolls in
cross-roll straighteners", Int J. Mech. Sci., 23, 213-220.

10. Deroche, R.Y., et al. (1982) "Stress releasing and straightening of rails by
stretching", Paper no. 82-HI-H-17, Proc. Second International Heavy Haul
Railwnay Conference, Colorado Springs, CO.

11. Didyk, S.H. (1988) Sydney Steel, Sydney, Nova Scotia, private communication.

12. Frommann, K. (1965) "Uber die Forminderungen beim Richten von Schienen
auf einer Rollenrichtmaschine", Doktor-Ingenieurs Dissertation, Fakultat fir
Bergbau und Hiittenwesen der Rheinisch-NWestffilischen Technischen Hochschule
Aachen.

13. fHahn, G.T., Bhargava, V., Chen, Q. (1988) "The cyclic stress-strain proper-
ties, hysteresis loop shapes and kinematic hardening of a rail steel", unpub-
lished, Vanderbilt University, Nashville, TN 37235.

14. Ieller, W., Weber, L., Schweitzer, R., Flfigge, J. (1987) Aethod for Reducing
Internal Stresses of Roller Straightened Rails, U.S. Patent No. 4,659,398, Apr.
21, 1987.

15. Hibino, F., Kunii, A. (1971) "Residual stress after roller levelling", Annals of
the C.I.R.P., XVIV, 347-360.

16. Journet, B. (1983) "Fatigue properties of rail steels", S.M. thesis, Department
of Ma.terials Science, M.I.T.

17. Konyukhov, A.D., Rabinovich, D.M., Vinokurov, I.Ya., Serebryakov, V.S.
(1969) "Effects of production methods on the residual stresses in completely
quenched rails", Stal (English), 6, 591-3.

18S. Konyukhov, A.D., Reikhart, V.A., aportsev, V.N. (1973) "Comparison of
two methods for assessing residual stresses in rails", Industrial Laboratory
(USSR), 39, 117-119.

35



19. Lee, Y-S., Dawson, P.R., Dewhurst, T.B. (1989) "Bulge predictions in steady
state bar rolling processes", Numiform 89, ThomFson et al. eds., Balkema,
Rotterdam, 323-330.

20. Leis, B.N. (1978) "Cyclic inelastic deformation and fatigue resistance charac-
teristics of a rail steel", Rail Steels-Developments, Processing, and Use, ASTM
STP 644, D.H. Stone and G.G. Knupp, eds., American Society for Testing and
Materials, 449-468.

21. Lempitskiy, V.V., Kazarnovskiy, D.S. (1973) "Improving the service life and
reliability of railroad rails", Russian Metallurgy, 1, 111-117.

22. Marcelin, J.L., Abouaf, M., Chenot, J.L. (1986) "Analysis of residual stresses
in hot-rolled complex beams", Computer Methods in Applied Alechanics and
Engineering, 56, 1-16.

23. AMasumoto, H., et al. (1982) "Production and properties of a rail of high
serviceability", 61st Transportation Research Board Annual Meeting, Wash-
ington, D.C.

24. McEvily, A.J., Ochi, Y. (1985) A comparison of six rail steels", final report
to Conrail, Institute of Materials Science, University of Connecticut, Storrs,
CT.

25. Meier, H. (1936) "Eigenspannungen in Eisenbahnschienen", Organ Fortschr.

Eiscnbahnwesen, 91, 321-329.

26. No6, A., Fischer, F.D., Schwenzfeier, W\. (1986) "Theoretische und praktis-

che Untersuchungen zum Streckbiegcrichten", Stahl und Eisen, 106(21), 1131-
1137.

27. Nrnumiform 86: Numerical AIethods in Industrial Formiing Processes: Proceed-
ings (1986) Mhattiasson, K., Samuelsson, A., Wood, R.D., Zienkiewicz, O.C.,
eds., A.A. Balkema., Rotterdam.

28. Numiform 89: Numerical AMethods in Industrial Forming Processes: Proceed-
ings (1989) Thompson et al. eds., A.A. Balkema, Rotterdam.

29. ORE (1984) "Factors influencing the fracture resistance of rails in the unused
condition", in: Possibilities of Improving the Service Characteristics of Rails
by Metallurgical Aeans, Report Nlo. 1, Office for Research and Experiments
of the International Union of Railways (ORE/IUR), Utrecht.

36



30. ORE (1987) "Studies concerning the measurement and improvement of the
level of residual stresses", in: Possibilities of Improving the Service Character-
istics of Rails by Metallurgical Means, Report No. 4, Office for Research and
Experiments of the International Union of Railways (ORE/IUR), Utrecht.

31. Orkisz, J., Harris, A. (1988) "Analysis of residual stresses at shakedown: a
hybrid approach", Theor. Appl. Frac. MAech., 9, 109-121.

32. Orringer, O., Morris, J.M., Steele, R.K. (1984) "Applied research on rail fa-
tigue and fracture in the United States", Theor. Appl. Fracture Mech., 1,
23-49.

33. Roberts, J.M., Sheppard, T. (1971) "On the mechanics of the tension-levelling
process", J. Inst. Metals, 99, 293-301.

31. Samwas, N.L. (1986) '"\lhelinig-Pittsburgh's modern continuous casting/rail
mill complex", Iron and Steel Engineer, 25-31.

35. Schmedders. I1. (1979) "A chllromium-vanadium alloyed rail steel for heavy
duty reqluirements", in: Van adiuin in Rail Steels, Proc. Seminar in Chicago,
Nov. 1979, VANITEC, London, 3-11.

36. Schweitzer, R., Flugge, J., Heller, W. (1985) "Einfluisse auf das Bruchverhalten
von Schienen", Stahl und Eisen, 105, 1451-1456.

37. Scutti, J.J. (1982) "Fatigue properties of rail steel", S.M. thesis, Department
of Materials Science, ?M.I.T.

38. Sheppard, T., Roberts, J.MI. (1972) "On the strip-to-roll conformity in the
tension-levelling process", J. Inst. AMetals, 100, 130-135.

39. Sommer, R.A., Faber, MI.R., Jennings, R.E. (1988) Method for Heat Treating
Rail, U.S. Patent No. 4,749,419, June 7, 1988.

40. Sunwoo, H., Fine, M.E., Meshii, M., Stone, D.H. (1982) "Cyclic Deformation
of pearlitic eutectoid rail steel", Met. Trans. A, 13A, 2035-2047.

41. Tokunaga, H. (1961) "On the roller straightener", Bulletin of the JSMiE, 4(15),
605-611.

42. Tselikov, A.I., Smirnov, V.V. (1965) Rolling Mills, Pergamon, p. 254-278.

43. Utrata, D. (1989) "Residual stress distributions measured along rail lengths",
Appendix VII of minutes of AREA 4 meeting, Spring 1989, Sept-Iles, Qu6bec.

37



44. Vorozhishchev, V.I., Kisil', B.S., Babich, A.P., Ermolaev, V.N., Lysenko, I.K.,
Yudin, N.S. (1983) "Heat-treating and improving the quality of rails at the
Kuznetsk metallurgical combine", Afetallurgist, 26(7-8), 296-298.

45. Wineman, S.J., McClintock, F.A. (1987) "Rail web fracture in the presence of
residual stresses", Theor. Appl. Fracture Mech., 8, 87-99.

46. Wunderl.zh, W., Brinig, Mh., Obrecht, H. (1988) "Theoretisch-numerische
Mhodellbildung und rechnerische Simulation zur Entstehung on Eigenspan-
nungen beim Rollenrichten von Schienen", AbschluBbericht zum Projekt 153
der Studiengesellschaft ffir Anwendungstechnik von Eisen und Stahl e.V.,
Dusseldorf, unter Verwendung von Versuchsergebnissen der Krupp Stahl AG,
Werk Rheinhausen, Qualititswesen und Forschung, (unpublished report), De-
cember 1988.

38



2.10 Appendix 1: Comments on parameter selection

Table 5 shows the straightener parameters and their relative importance. Reasons

for these choices are giv( n below.

A. Material

1. The straightening temperature is assumed room temperature for the first

approximation. In some mills, the rails are warmer than this (but not glowing).

Near room temperature, the effect on mechanical properties should be small but for

warmer rails may be significant.The effects of the elevated temperature should be

included in a more thorough study but will be neglected in the first approximation.

2. ighly non-proportional loading occurs as the flange of the rail passes un-

der the roll. The difference between a conventional kinematic hardening material

model and one which includes effects of non-proportional loading bears considera-

tion, but is beyond the scope of this study. Also, the bilinear kinematic hardening

stress-strain behavior, which is an option in the program ABAQUS, is itself an

approximation to the actual, more rounded stress-strain curve.

3. and 4. Rails .vith different yield strengths and hardening behavior will develop

different residual stresses after straightening. The effects of these properties should

be studied but are beyond the scope of this work.

B. Rail geometry

1. Initial curvatures affect the final straightness in light straightening. In heavy

straightening, they have little effect on final straightness. Initial curvatures may be

important for study, but it was felt more important to focus on more controllable

aspects such as the straightener settings.

2. Different rail proportions (e.g. different head/web thickness) may have an ef-

fect on the deformation under the rolls and therefore the residual stresses produced.

Although study of this effect is not practical in the sense that the rail rolling di-

mensions cannot be changed appreciably, it may shed light on the residual stresses

produced in different types of rail.

3. Changing the rail size with respect to the straightener is the same as changing
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the straightener parameters with respect to the rail, and therefore need not be

treated separately.

C. Inside the straightener

1. Roll loads or imposed displacements affect the magnitudes of contact stresses

and the bending and shear stresses in the rail. Therefore they are of prime impor-

tance for study.

2. Roll spacings affect the bending and shear stresses in the rail and are of prime

importance.

3. Lateral loadings are negligibly small, since the flanges are allowed to spread.

4. Larger roll diameters create lower contact stresses and are important for

study.

5. The roll-rail contact geometry is important in that it affects the contact

stresses. However, generally the rolls start out contoured to the rail and wear over

time. Also, although the base rolls actually do not contact the full base width,

the length of contact corresponds roughly to the contacting length with anticlastic

curvature of the flange tips. Therefore flat rolls, head, and base should be sufficient

for a first approximation.

6. As a first approximation, friction will be neglected. The coefficient of friction

between roll and rail, and the resulting longitudinal forces, are insufficient to develop

inter-roll stresses which are significant compared to yield.

7. Sequencing of roll loads and deformations may be very important, especially

if residual stresses can be reduced, say, by using heavier or lighter passes in the last

few rolls. However, 5 rolls or more are needed for study of sequencing effects.

8. Since as a first approximation the rail is treated as being at room temperature,

strain rate effects should be neglible. Therefore the overall feed velocity should not

be important. (With warmer rails, this may become more important.)

9. For typical coefficients of friction, the longitudinal frictional forces accompa-

nying typical roll loads are too small to cause significant longitudinal stresses in the

rail. Therefore different speeds from roll to roll in the straightener should not be

able to build up significant stresses between rolls and are not important for study.
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D. External to the straightener
1. and 2. The start and end boundary conditions (guide rolls and vertical

straightener) are not thought to cause the rail to yield in the straightener. They

will not be considered as parameters in the straightening study.
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Table 1. Composition, yield strength, tensile strength, and Brinell hardness (BHN,
kg/mm 2 ) of typical rail steels (from Schmedders 1979, Orringer, Morris and Steele
1984).
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I Yield Tensile
Alloy Composition (wt%) Strength Strength BHN

C Mn Si Cr Mo V (MPa) (MPa)

Carbon 0.69- 0.70- 0.10- - - - 480 920 255
(North 0.82 1.00 0.25
America)

Carbon 0.40- 0.80- 0.05- - - - 690-
(Europe) 0.60 1.20 0.35 830

Carbon 0.65- 0.70- 0.10- - - - 780
(Japan) 0.75 1.10 0.30

High-Si 0.75 0.80 0.65 - - - 520 980 285
Cr-V 0.70 1.00 0.70 1.00 - 0.10 640 1080 325
1% Cr 0.75 0.65 0.25 1.15 - - 650 1100 320
Cr-Mo 0.75 0.81 0.26 0.69 0.18 - 790 1210 3 0



Table 2. Curvature and longitudinal residual stress magnitudes before and after
roller-straightening.
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Before After
_ traightening Straightening

Curvature wide range of < 19 mm over 11.9 m
(max. deflection) magnitude and sense (AREA 1975)

< 20 mm over 20 m
(ORE 1987)

< 12 mm over 25 m
(Babich 1982)

Typical longitudinal max. of max. of
residual stress ±50 MPa ±100-300 MPa;
through cross-section typical U-shape



Table 3. Roller-straightener parameters.

Roll diameter

Roll spacing

Maximum applied displacement'
(displacement-controlled machines)

Decrement of applied
displacement between lower rolls
(displacement-controlled machines)

Maximum applied forcel
(force-controlled machines)

Decrement of applied
force between lower rolls
(force-controlled machines)

550-1200 mm

1140-1800 mm

8-25 mm

2-7 mm

980-1470 kN
(100-150 tonnes)

P295 kN
(;30 tonnes)

1 Depends on type of rail section and severity of initial curvatures.

Sources: ORE 1987, Schweitzer et al. 1985, Botschen and Steck 1982, Babich 1982,
Konyukhov Rabinovich et al. 1969, Frommann 1965, and private communications
with mill operators.
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Table 4. Comparison of experimental (ORE 1987) and finite element (static loading)
results for 9-roll straightener.

Note: For the finite element models, rolls 2, 4, 6, and 8 were assumed to have zero
vertical deflection and roll 1 (a guide roll) was given a load of 0.004 kN.
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Roll 1 2 3 4 5 6 7 8 9

Nominal 0 17 0 9 0 7 0 4
displacement

Approximate 14 6 4 1
actual
displacement
(mm)

Measured
loads:
rolling (kN) 1080- 1400- 980-

1190 1420 970

stopped (kN) 940- 770- 710-
1060 860 750

F.E. loads:
(static, kN)

plane stress (0.004) -387 1138 -1428 1272 -1110 864 -443 94
elements

beam (0.004) -396 1166 -1476 1321 -1134 865 -435 88
elements



Table 5. Selection of straightener parameters.

Parameters

A. Material
1. hot rail (properties not stable)
2. Material other than kinematic

hardening; non-proportional loading
3. different amounts of hardening
4. different yield strengths

B. Rail geometry
1. initial curvatures/kinks
2. different rail proportions

(w.r.t. 136RE rail)
3. diff. rail proportions

(w.r.t. straightener)

C. Inside the straightener
(macro-loadings- on rail)
1. roll load or imposed displacement
2. roll spacing
3. lateral loadings

(affect local contact)
4. roll diameter
5. roll-rail contact geometry
6. friction/lubrication

(as rail passes through)
7. sequencing of loads and deformations

(need at least 5 rolls)
S. overall velocity
9. relative roll speed

D. External to straightener
i. cooling bed and guide rolls (before str.)
2. vertical straightener (after str.)
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Most
important

X
X

X

Secondary

X
X

X
X

X
X

X
X

X

Neglect

(V

X

X
X

X
X
x

.



Table 6. Settings for a straight rail (curvature within AREA
beam element model.

guidelines), 4-roll
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average
displacement slope

(U1 + u 3)/2 (U3 - U1) 1 U3F 1 F2 F 3 F4

(mm) (mm) (mm) (mm) (kN) (kN) (kN) (kN)

15. -30.33 30.165 -0.165 462.21 -1206.4 1105.9 -361.71

20. -46.769 43.3845 -3.3845 503.43 -1302.7 1181.2 -381.95

30. -77.24 68.62 -8.62 618.24 -1507.5 1294.9 -405.68

___________________________________ ________________________ _____________________ ____________________ __________________ ____________________ __________________ ____________________
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Fig. 1. 136RE rail section (AREA 1978).
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72 mm

-I150 mm

Fig. 2. UIC60 rail section (US DOT/TSC, private communication, 1990).
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G. 49,43 kg /m

llId 14. Schiene S 49 (Doutsche Bundesban).

Fig. 3. S49 rail section (Frommann 1965).
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Fig. 4. Bilinear kinematic hardening approximation for behavior of
carbon rail steel.
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Longitudinal residual stress (MPa)

Fig. 5. Scatterband of measured longitudinal residual stress for
unstraightened carbon and alloy rail (from ORE 1984).
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a) Europe and North America

/I

b) Soviet Union

Fig. 7. Roller-straightener configurations used in Europe, North America,
and the Soviet Union (sources: ORE 1987, Schweitzer, Fliigge and Heller
1985, Botschen and Steck 1982, Babich 1982).
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controlled

idler rolls

Fig. 8. Roller-straightener used for modelling.
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Fig. 9. Longitudinal residual stress on the surface of head-hardened or as-rolled rails
(Masumoto et al. 1982).
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Fig. 10. Deformation of a small element in the flange as it passes beneath the

roll, resulting in a decrease in length and height and an increase in width.
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Fig. 11. Initial longitudinal residual stress for the finite element study of head loading.
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Fig. 12. Initial longitudinal residual stress for the finite element study of base loading.
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Fig. 18. Contours of vertical stress under the loaded roll, head static loading.

65



(I
xx

[MPa] [ksil

-552 -80'
-138 -20

0 0

0 0

0 0

0 0
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Fig. 20. Contours of longitudinal stress under the loaded roll, base static loading.
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Fig. 23. Comparison of 3-D centerline longitudinal stress ar,
with plane stress and plane strain results, static roll loading
on the rail head.
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Fig. 24. Comparison of 3-D centerline vertical stress ,
with plane stress and plane strain results, static roll loading
on the rail head.
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Fig. 25. Comparison of 3-D centerline horizontal stress a,
with plane strain results, static roll loading on the rail head.
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Fig. 26. Comparison of 3-D centerline shear stress a, with
plane stress and plane strain results, static roll loading on
the rail head.
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Fig. 27. Comparison of 3-D centerline longitudinal stress ,
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80

ne

500



.- 4

0

C)
cO
-q

._
v:

150

100

50

nv
-500 0

Longitudinal stress (MPa)

Fig. 34. Comparison of longitudinal residual stresses a,
after base static loading, for 3-D centerline, plane stress,
and plane strain results.

81

ne

500



Fig. 35. Three-dimensional mesh for roll travel along the rail base.

82

I

I
I

--

I

-7

---

--

rl

I-

l l-

=t E�ffi To= Et,.a EIEE(EHi MEI BEET7TEm� - -

| I I I I _ I I I



I- IX

i i I l -1 [T I .-
IO I I I 

+

Fig. 36. Two-dimensional mesh for roll travel along the rail base.
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Fig. 47. Plane stress mesh for "single-roll" model, used for comparison with
experimental data and for study of effects of increasing roll diameter.
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Fig. 51. Beam element model of a 4-roll straightener.
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Chapter 3

Residual stresses and short cracks
at rail ends

3.1 Introduction

The longitudinal residual stress field found in roller-straightened rail can contain

enough elastic strain energy to drive web fracture, as demonstrated by Wineman

and McClintock (1987). However, near the rail ends this longitudinal residual stress

must drop to zero, and for equilibrium there must be an accompanying rise of

other residual stress components, such as vertical stress in the web. Knowledge of

the length and character of these stress transients is necessary for predicting the

behavior of cracks at and near rail ends.

The models discussed here apply to ends of rail which have been cut through the

mid-rail stress field, such as may occur during installation or repairs. Mill ends of

roller-straightened rail retain their as-rolled dimensions over the first 750-890 mm

(30-35 inches) (Deroche et al. 1982), and therefore their end effects should be of

this length or longer.

The objective of this work was first to detefirmine the stress transients at a cut

rail end for rail containing the longitudinal residual stress field found in roller-

straightened rail. Several analytical models and a finite element model were de-

veloped and compared. Then the stresses near the end were used to determine

the worst location for an end crack. A superposition of point load solutions was

used to estimate the stress intensity Kl at the tip of a, horizontal web crack in the
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(uncracked) rail-end vertical residual stress field.

The stress transients predicted by these models agree with those of the finite

element work of Joerms (1987). He reconstructed the residual stresses at the cut

end of a roller-straightened rail by modelling the deformed rail resulting from a

web saw-cut, then forcing the displacements at the saw-cut location back to zero.

The resulting length to develop 95% of the mid-rail longitudinal residual stress was

between 0.8 and 1.1 rail heights. The maximum vertical residual stress at the end

was 0.96 of the maximum magnitude of longitudinal residual stress developed in

mid-rail.

3.2 Models of a rail end

Figure 1 shows a scatterband of typical mid-rail longitudinal residual stress a,, for

roller-straightened rail (ORE 1984, Deroche et al. 1982, Konyukhov, Reikhart, and

Kaportsev 1973, Lempitskiy and Kazarnovskiy 1973, and Masumoto et al. 1982).

Although residual stresses have been measured on the surface of the rail only, it was,

assumed in all calculations that the distribution of mid-rail longitudinal residual

stress is constant through the rail thickness. The other mid-rail residual stress

components, such as a transversely-varying vertical residual stress oy, in the web,

were assumed zero since Wineman and McClintock (1987) demonstrated, based on

Groom (1983) and ORE (1984), that their magnitudes and effects on web fracture

are small compared with those of ar..

The general character of changes in stress components near the rail end can

be found from equilibrium. At a free rail end, the longitudinal residual stress az,

and the shear stress a,, must go to zero. If the stress gradients in the thickness

direction are negligibly small(al/Ox = 0), the y- and z-direction differential equations

of equilibrium require that there be vertical gradients of shear and vertical stress

(&aZy/y and Oayy/&y) to compensate for longitudinal gradients near the end of

longitudinal and shear stress (az,/z and Oac,la/z). Working through these stress

changes keeping careful track of signs gives the general character of residual stress

transients near a. cut rail end: a longitudinal stress (az,) decay to zero at the
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end. a tensile vertical stress oay at the end which is maximum near mid-web, and

shear stresses ay toward the end which change sign with y and have a maximum

magnitude somewhere near the end, but not at it. In addition, because of thickness

transitions at the head-web and web-base intersections, there are stress singularities

at the rail end. As shown below, these singularities turn out to be weak even with

abrupt thickness transitions; typical fillets make them weak enough to be ignored.

3.2.1 Analytical models

Three analytical models were used to estimate the distance from a cut end

needed to develop 95% of the mid-rail residual stress field. Two of these, the beam-

on-elastic-foundation model and the elasticity solution of Horvay, can also be used

to estimate the maximum vertical stress developed at the end.

Beam on elastic foundation.

Modelling the rail head as a beam on the web as an elastic foundation can

give an estimate of the length to reach the mid-rail residual stress and also of the

maximum vertical residual stress at the rail end (see Hetenyi (1962) or Orringer,

Morris and Jeong (1986) for descriptions of beam-on-elastic-foundation models).

Several different models were compared, using different definitions for the "beam"

and "foundation". Both a. free rail end and one whose base is restrained in the

vertical direction were modelled. The models giving the best agreement with the

finite element results were, for a free rail end, modelling the rail head plus half

the web as the bel)ca, on half the web as the foundation, and for a rail with fixed

base, modelling tile head plus half the web as the beam, plus the whole web as the

foundation. In these models, the web or part of the web is behaving as both beam

and foundation. The results of these models were within 30% of the finite element

results.

It should be kept in mind that real cases of cut rail ends will never have a base

which is rigidly constrained, since the spiking of the base to the ties is intermittent

and there will alwa.ys be some compliance in the ties and bed. However, the fixed-
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base analytical and finite element models are still useful for estimates.

The length of stress transients at a cut rail end can be found from the character-

istic length 1/A of the differential equation for displacement of the beam (Hetenyi

1962). For rail, the stiffness k of the elastic foundation can be written (Orringer

Morris and Jeong 1986) in terms of the web thickness t eb, the height of web used

as the foundation hound, and the elastic modulus E:

Ak - touebE (3.1)
hf ound

Dominance by the exponential in the solution for beam displacement means that

the length L,, to reach 95% of the mid-rail residual stress field is three times the

characteristic length:

Ls = 3 =3 . (3.2)(1 ) [4E 1 ]1[4hl'] ~/ 4 (" ;- ~ tweb J
Here, Iyy is the centroidal moment of inertia of the part of the rail modelling the

beam.

The maximum vertical residual stress in the web at a cut end can be estimated

from the vertical deflection w at the end of a semi-infinite beam subject to an end

moment Alo(Het6nyi 1962):

-2AIz2 l" rhfound J1/2
w(Z = 0) X= k E [ttwebiyy (3.3)

The moment AL was taken to be that acting above the rail centroid for a fourth-

order, self-equilibrating polynomial stress distribution representing the longitudinal

mid-rail stress.

The vertical stress ayy in the web at the end is then related to the dimensions

and residual moment by

0)y(z = 0)E(U(Z = 0)) [ 1/2
hfound tweb foundY(.4)
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Saint-Venant (Horvay).

Saint-NVenant's principle suggests that for a uniform-thickness bar, 95% of the

steady-state residual stress field will be attained one or two bar heights away from

the cut end. Horvay (1957) has solved a related problem for stresses near a self-

equilibrated, parabolic distribution of end loads on a uniform-thickness, semi-infinite

rectangular strip. From superposition, the stress changes should be the same or

end stresses going to zero in mid-strip as for mid-strip stresses going to zero at

a free end. For the rail, these stress transients will be changed somewhat by the

non-uniform thickness, but Horvay's solution is still useful as a comparison.

From plots of the stress components given in the reference, the length L,, (nor-

malized by the strip height h) to reach 95% of the longitudinal residual stress is:

Lss
ss 1.8. (3.5)

h

The maximum tensile stress a.y in the web at the end, normalized by the max-

imum longitudinal stress Oa, is:

YY 0.7. (3.6)
Orzzmax

SiLear lag.

A shear-lag model (Fig. 2) predicts the length to attain the mid-rail residual

stress field by idealizing the rail as a composite of a web and two equal flanges, with

transition regions between the web and flanges. In the web and flanges, longitudinal

displacement is assumed to be constant vertically and to vary longitudinally. In the

transition regions, longitudinal displacement varies linearly with y and also varies

longitudinally. All other displacement components are assumed zero. This means

that the web and flanges are in a state of longitudinal compression and tension,

respectively, and the transition regions are mostly shear. It is useful when analyzing

the model to think in terms of changes in stress and displacements irom the mid-rail

field. That is, in mid-rail the displacement changes Au and the stress changes Ao-

are zero. At the free end, the displacement and stress changes are nonzero, with the
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stress changes at the end being the same in magnitude and opposite in sign to the

original mid-rail stress field. The length to reach 95% of the mid-rail stress field,

then, is the length for 95% of the displacement and stress changes to decay to zero.

Equilibrium for a differential element dz in the web can be written in terms of

the longitudinal stress change AZr, in the web, the shear stress change Aoz in

the transition region, and the Leight h,i of the idealized web (the transition regions

are the same thickness as the web):

dazz _ 2Aayzt (3.7)
dz hbw

Equilibrium for a differential element in the flange can be written in terms of

the longitudinal stress change AEazf in the flange, the shear stress change Ao,, in

the transition region, the flange height hf, and the web and flange thicknesses tw

and f:

dZAu cj _Aay-tt, (3.8)

dz hiftf

Combining these into one equation gives

d (A'7zzf = t+ 2 AyZt (3.9)
dz ,hfif + .,

The stress changes can be expressed in terms of displacement changes via the

following relations, where ht is the height of the transition region and E and G are

the elastic and shear moduli, respectively:

flange: aoz = Ed(Auzf)/dz . (3.10)

(3.11)

web: Aazz = Ed(Auz,,)/dz. (3.12)

(3.13)

transition region: Aayzt - G(Au - iAuzw)/ht. (3.14)

This results in a differential equation of the form

2 1
2(Alzf - Au,,)= 2(Au I - AuW) (315)
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where

[E hi hhff 1 1/2
LG (hit. + 2/hif) j ' (3.16)

and boundary conditions

(Auf - -Auz) 0 as z 00, (3.17)

(LaOzf - z) =-(af - oa.) at z = 0. (3.18)

Here, aj and aw are the flange and web stresses in the idealized original mid-rail

residual stress field.

The solution to the above differential equation is an exponential with charac-

teristic length L. The length L,, to reach 95% of the mid-rail stress field, then, is

three times this length:

Ls = 3 [ (hhth, + 2if (3.19)

Choosing ht so that L,, is maximized, remembering that hwi + 2ht = h, (the actual

web height) gives:

h, = (h, - hi)/2 (3.20)

hwi = l [4ht + 2ht ,t] 1/ 2 2h tf .1)
tw [ tw

3.2.2 Finite element model

To obtain a more complete description of stress transients at the rail end, a plane-

stress finite element model with elements of different thickness for the head, web,

and base was run using the finite element program ABAQUS (1985). The final mesh

of S-node elements (Fig. 3) represented a 610 mm (24 in) long section of rail. At one

end, the longitudinal displacements of all nodes and the vertical displacement of the

node nearest to the centroid were constrained to simulate attachment to the rest of

the rail. For the case imitating a rail spiked to fixed ties, the bottom nodes were

also constrained. Residual stresses were introduced by specifying a self-equilibrating
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initial stress distribution in the form of a fourth-order polynomial with maximum

values of ±138 MIPa (20 ksi), and letting the program bring this to equilibrium.

The element size in the final mesh was chosen by estimating the curvature of the

stress contours over several elements, and choosing the element size so that the error

due to approximating these curved contours by linearly-varying-stress elements was

less than 5% of the maximum longitudinal residual stress azzmax. Assuming the

local curvatures within an element are small and approximately constant, the error

can be estimated as follows. Let 2aij/ar2 be the estimated curvature of a stress

component in the Xk direction (y or z direction), and Azk be the element size. Then

the error can be estimated as half the maximum distance between the curved stress

contour and its mid-point tangent:

error = - ( ( 9 ) (no70 summation over Xk). (3.22)

Singularities at thickness transitions. In the variable-thickness mesh, sin-

gularities in stress exist at the rail end at the thickness transitions. The strength

of such singularities can be found by modelling the different thicknesses as different

shear moduli: G 1/G 2 - t/t 2 , and using Bogy's solution (1970) for two elastic

quarter-planes with different moduli. The stresses vary as r- t, where r is the dis-

tance from the intersection of the planes at the free surface. The exponent e can

be found from a plot in Bogy's paper, in terms of Dundurs' parameters a and #/

(functions of the elastic constants of the two quarter-planes). For the head-web and

web-base intersections, the stress distributions can be written in terms of the radial

distance r, the angle 0 from the interface, and the exponent :

j = r-ef f(0) , where = 0.10 (head- web) ,

0.15 (web - base) . (3.23)

This singularity is very weak. For example, suppose the singularity is in effect

10 mm from the rail end. Then the stress will not double due to the singularity

until 0.1 mm from the end for the web-base region, and not until 0.01 mm from

the end for the head-base region. These lengths to double are negligible compared
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to an 18 mm (0.7 in) web thickness. Fillets with radii of the order of 20 to 25 mm

(- 3/4 to 1 inch) at the head-web and web-base intersections smooth the thickness

transitions and would practically eliminate the effects of stress singularities.

3.3 Discussion of model predictions

3.3.1 Stress transients near a cut rail end

Contour plots from the finite element model (Figs. 4-6) give a general picture

of stress components a-., aY, and az near the rail end. Stresses have been plotted

separately for the head, web, and base to avoid smoothing across the thickness

transitions. Although there should be no visible singularities in stress at the rail

ends near the thickness transitions, the plots of longitudinal and shear stress show

small perturbations there. These probably result from approximating the actual

stress fields using elements with linearly-varying stresses. As a confirmation of the

finite element modelling, a uniform-thickness finite element model was applied to

Horvay's problem, giving results within 15% for a parabolic stress distribution. Use

of a fourth-order distribution did not affect the length of transients appreciably but

increased the maximum vertical stress from 0.7 to 1.0 times azzmax.

Length of stress transients

Table 1 summarizes the predictions from various models of the length L,, to reach

955% of the mid-rail residual stress distribution, normalized by a rail height of 185

mm (7.3 in). For a free rail end, values of the length L,, range from 0.69-1.22 times

the rail height with the highest value coming from the beam-o,-elastic-foundation

model and the lowest value coming from the shear lag model. The finite element

predictions for free and fixed rail ends are 1.10 and 1.12 rail heights, respectively,

while the beam-on-elastic-foundation model predictions are at most 30% higher.

Maximum vertical stress

Table 1 also summarizes the analytical and finite element predictions of maximum

vertical residual stress a,y at the rail end near mid-web, normalized by the maximum
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value of mid-rail longitudinal residual stress azzmax = 138 MPa (20 ksi). For a free

rail end, values of maximum vertical residual stress range from 0.7 to 1.35 times the

maximum azz. The finite element predictions for free and fixed rail ends are 1.35

and 1.10, respectively, while the beam-on-elastic-foundation model predictions are

at most 30% lower.

It can be concluded, then, that appropriately chosen beam-on-elastic-foundation

models, requiring only algebraic calculations, can give estimates of stress transients

at a cut rail end that are within 30% of the finite element results.

Shear stresses

The finite element contours of shear stress aoy (Fig. 6) show oyz to be zero at the

rail end and at mid-rail, and to reach a maximum magnitude of 0.3 and -0.4 times

the maximum a:: near the head-web and web-base intersections, respectively, about

0.3 rail heights (50 mm, or 2 inches) from the cut rail end. This can be compared

with Horvay's solution (1957), which gives a maximum magnitude of shear stress

ay of 0.18 times the maximum value of applied stress, at 0.45 strip heights from

the end.

3.3.2 Stress intensity on short end cracks

The worst location for a. crack is at the cut rail end, near mid-web where the

vertical residual stress is a maximum. The stress intensity K/ was estimated for

a horizontal crack in the mid-web (uncracked) stress field resulting from the finite

element analysis of a free rail end. Superposition of point load Ki solutions (from

Hartranft and Sih (1973), in Murakami et al.(1987)) were used to represent the

effect of the non-uniform distribution of vertical residual stress near the end. The

resulting values of K1 versus crack length are shown in Fig. 7 by a solid line: the

stress intensity reaches approximately 22 MPaVm (20 ksivin) for cracks 13 mm

(0.5 in) long. A region bounded by light lines, representing the probable behavior,

connects the stress intensity KI for short cracks with KI for long running cracks

of 36-47 MPa/m (33-43 ksiv/in) from the energy release rate analysis in Wineman
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and McClintock (1987).

These stress intensity values are comparable to the range of fracture toughnesses

KIc of 27-55 MPaV/m (25-50 ksi,/in) for carbon and alloy rails (see, for example,

Orringer Morris and Steele 1984, Jones and Rice 1985).

3.3.3 Longitudinal displacements at the free rail end

For roller-straightened rail, when a short length is cut from mid-rail, for example

to use in the Meier technique of residual stress measurement (Groom 1983), the

flanges of the Meier length will be shorter and the web longer than the average

length of the section. From the finite element model, this difference in displacement

is as much as 0.1 mm (0.004 in). Failure to correct for these differences during

initial cutting could result in an underestimate of the magnitude of longitudinal

residual stress of as much as 48 NIPa (7 ksi) on a 460 mm (18 in) Meier length.

This is significant compared to typical residual stress maxima of 138 MPa (20 ksi)

for roller-straightened rail. Thus, the length changes at various locations around

the rail periphery should be measured and used in calculating residual stress, as is

done in practice. A further, smaller effect is due to the variation of longitudinal

stress across the head from surface to interior.

3.4 Conclusions

Rail with a self-equilibrating longitudinal residual stress field having maximum

and minimum values of +138 MhPa (20 ksi), representative of that found in roller-

straightened rail, was modelled to determine the stress transients near a cut rail

end and the location and severity of the worst possible end-crack.

1. Stress transients at a cut end of roller-straightened rail consist of a decrease

to zero of longitudinal stress at the end and a vertical tensile residual stress

in the web at the end. Finite element models for both a free end and an end

with a fixed base gave the lengths to reach 95% of the mid-rail stress field to

he 1.10 and 1.12 rail heights, respectively. The maximum vertical stresses at
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the end were 1.35 and 1.10 times the maximum value of mid-rail longitudinal

residual stress. Beam-on-elastic-foundation models give algebraic estimates of

such stress transients agreeing within 30% of the finite element results.

2. An estimate of the stress intensity KI on a short web crack at the rail end,

in the (uncracked) vertical residual stress field there, gives KI increasing with

crack length and reaching 22 MPa/m (20 ksil/in) for cracks 13 mm (0.5 in)

long. Although I on short cracks may not be sufficient in itself to drive a web

crack, in the presence of service loads the risk of fracture is greatly increased.

3. When a length of roller-straightened rail is taken from mid-rail the changes in

longitudinal displacements can be large enough to affect subsequent residual

stress measurements. For example, if the uneven length changes on cutting a

460 mm (1S in) AMeier section are not accounted for, there may be an under-

estimate of the magnitude of measured longitudinal residual stress of as much

as 48 MPa (7 ksi), significant compared to typical maxima of 138 MPa (20

ksi) for roller-straightened rail.
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Table 1. Length Lss to reach 95% of the mid-rail residual stresses, normalized by a
rail height hrail of 185 mm(7.3 in.), and maximum vertical residual stress yy, at the
rail end, normalized by the maximum mid-rail longitudinal residual stress, Uazzma,

of 138 MPa (20 ksi), from finite element and analytical predictions.
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Model Lss/hrail yy/UzzmaX

Finite element
Joerms (1987) (free end) 0.8-1.1 0.96
free end 1.10 1.35
base spiked to fixed ties 1.12 1.10

Analytical models
Beam on elastic foundation

free end 1.22 1.11
base spiked to fixed ties 1.45 0.79

Shear lag 0.69

Uniform strip solution (Horvay 1957) 1.8 0.7
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Chapter 4

A Saw-cutting test to quantify
the severity of residual stresses

4.1 Introduction

Unstable web fracture due to residual stresses in roller-straightened rail can

cause derailments. An estimate of the stress intensity K1 due to residual stresses

and tending to grow a web crack can be made from a saw-cutting test (Fig. 1).

In such a test, the rail web is saw-cut longitudinally and the change in curvature

of the split ends due to residual stresses is measured. That the curvature change,

rather than the opening displacement or shortening, is needed for a KI estimate is

based on the following argument. As discussed by Wineman and McClintock (1987),

unstable fracture of a web crack due to residual stresses should depend on Mode I

energy release rate, since Mode II would tend to produce a change in crack direction.

Release of the longitudinal stresses present in roller-straightened rail would make a

web crack tend towards mid-web, where there is zero KII and maximum K. The

total energy release rate from the change in curvature of the split rail ends is then

concentrated into Mode I. If the resulting K1 is above the critical value IC, for the

rail steel, the rail is capable of unstable web fracture driven by residual stresses. K.,

must be less than KIl by some finite amount to avoid undue risk of fracture.

Some previous work has been done in saw-cutting the rail web to estimate resid-

ua.l stresses. Lempitskiy and Kazarnovskiy (1973) attempted to correlate saw-cut

openings with measured residual stresses. Orringer and Tong (1985) mention work
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done at the Association of American Railroads (AAR) in which the rail web was

saw-cut and displacements of the cut openings measured. Indeed, it was these test

results that Joerms (1987) used in his finite element work mentioned in Chapter

3, assuming uniform radii of curvature for the split ends to estimate the residual

stresses in a rail end. However, none of these tests relates the curvature change of

the split rail ends to the stress intensity KI.

The saw-cutting test seems particularly attractive for the following reasons.
First, it allows a simple estimate of the stress intensityr KI, requiring only a mea-

surernent of rail curvature and an algebraic calculation. Second, it is a static test,

allowing isolation of residual stress effects from dynamic effects. Although crack

growth may involve dynamic effects, such as stress wave propagation or inertia of

the split ends, crack initiation due to wheel loads should not be dynamic, since the

time to reach peak wheel load (R.R. John et al. 1984) is at least 30 times greater

than the time for stress waves to travel one rail height. Therefore, a static fracture

stability criterion should be sufficient for assessing rail safety in the presence of

residual stresses.

In this work, the saw-cutting test procedure and the Kl calculation are described,

and the uncertainties in the resulting Kl values are estimated. Then, the results

of applying the stress intensity calculation procedure to deflection data from three

rails split by the Association of American Railroads (AAR) are presented.

4.2 Procedure

Table 1 summarizes the procedure for estimating Kl from the curvature change

of the saw-cut ends. The following is a discussion of this procedure.

The residual stresses are assumed to be fairly uniform along the cut rail; that is,

the wavelength of any residual stress variation is greater than several rail heights.

The presence of non-uniform residual stresses would be indicated, after cutting, by

fluctuations in rail curvatures and resulting stress intensities along a short length

of rail.
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4.2.1 Saw-cutting and curvature change measurement

The rail web must be cut longitudinally into two split sections. The saw-cut

must be long enough to provide a region for measuring curvatures away from stress

transition regions at the start and end of the cut. These transition regions are

estimated from Saint-Venant's principle to be at most 2 split-section heights (about

200 mm, or 8 inches) from a free split end or from the tip of the saw-cut.

Since the stress intensity K, is a function of the residual stress relieved by saw-

cutting or cracking, what is actually of interest is the change in curvature due to

cutting. Therefore the curvature of the rail head and base should be measured both

before and after cutting.

The radius of curvature at a point on the rail can be estimated in several ways.

A plot of the rail profile could be made by running a dial gage referenced to a flat

surface along the head or base of each split rail section. Local curvatures could then

be estimated from, say, fitting a parabola to three evenly-spaced points along the

rail profile. This was done for the AAR rail specimens discussed below. To find an

expression for local curvature, denote the parabola in terms of deflection 6 versus

position along the rail x, where a is a constant to be found (Fig. 2):

6- [62 + -- (x- 2) = a(-x 2) 2 (4.1)
X 3 -- X1

The constant a can be found from geometry in terms of the coordinates of the three

points in Fig. 2:

1

9(63 + 61) -62 = a(x3 - 2 )2 . (4.2)

The local radius of curvature R, at the central point (x2, 652), is the reciprocal

of the second derivative of the curve (Eq. 4.1), where a is found from Eq. (4.2):

1 1 (x3 - x2 )2

R- d = 2a= -- - (4.3)2a 63 + - 262

The simplest means of curvature measurement, however, seems to be with a

curvature measurement device consisting of a dial gage centrally mounted on a bar,

with guides for alignment (Fig. 3). An averaged local curvature is found directly
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from the difference in displacement between the dial gage and feet at each end of

the bar. In terms of the dial gage deflection 6 and the half-length L between the

dial gage and feet at either end of the bar:

L 2

R = (4.4)26

4.2.2 Calculation of stress intensity K1

Moment released by cutting

The moment released during cutting or cracking can be related to the change in

radius of curvature of the split ends by approximating the split ends as beams. The

moment released, LAM, for each split section is given in terms of Young's modulus

E, the moment of inertia I of the split section (head plus part of web, or base plus

rest of web), and the radius of curvature of the split section before and after cutting,

Rbejore and Rafter:

-Rafter Rbefore (4.5)

Energy release rate

The strain energy release rate is the elastic strain energy released per unit crack

area during fracture (see, for example, Broek (1982) pp. 115-119). In the rail, the

elastic strain energy release contributing to Ki is assumed to come entirely from

release of moments due to longitudinal residual stress on the split section. Saw-

cutting the web causes a strain energy release similar to that in fracture with a

small difference because material is removed or plastically deformed by the saw.

Since the volume of this material is small compared with the total rail volume, this

difference should be negligible.

The contribution g of each split section to the total energy release rate during

fracture or saw-cutting can be written in terms of the moment released AM (Eq.

4.5), where teb is the web thickness:

128



tweb 2EI 2tweb Raftier Refore

The total energy release rte is the sum of that for each split section. In terms

of the energy release rates for the head and base split sections, OH and GB, the total

energy release rate tota is:

,total = At + GB * (4.7)

Stress intensity

The stress intensity Il at a location along the rail is related to the total energy

release rate (see, for example, Broek (1982) pp. 16-17). Rail web fracture should

be plane strain fracture, since the estimated plastic zone size rp , (Kil/lY) 2/2tr

(where Ic is the fracture toughness and Y is the yield strength) is less than 1/20

of the web thickness. For plane strain fracture, then, where v is Poisson's ratio:

KIl [total (1 - 2)] (4.8)

This can be written in terms of the radii of curvature before and after cutting

for the head and base split sections, denoted by subscripts H and B:

E 1 1

= [2tweb(1 - v2)]1 /2 H RH afte RH before

+IsB ( RB after RB before 

This is the formula given in Table 1.

4.3 Uncertainty analysis

The uncertainty in a value of IK' estimated by the saw-cutting test (the possible

value of the error at given odds) depends. on the uncertainties in all of the variables

used to obtain K1. However, a plot of stress intensities calculated at several positions
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along the rail will be affected in different ways by uncertainties in different variables.

Uncertainty in a local radius of curvature (R) measurement affects only one point

on a plot of K, versus position along the rail. Uncertainties in other variables,

such as rail dimensions and elastic constants, tend to affect all the points on the

curve in the same manner, shifting the entire curve vertically. The effect on KI of

uncertainties in radius of curvature will be discussed first, followed by a mention of

the effect of uncertainties in other variables.

4.3.1 Uncertainties in radius of curvature R.

Uncertainty in measured local radii of curvature, for example due to uncertainty in

dial gage deflections and in spacings between points along the rail, can be quantified

using a technique discussed by S.J. Kline and F.A. McClintock (1953) (see also

Beckwith, Buck and Marangoni (1982)). If F is a function of n independent variables

(v1 , v2 , ... v,), then the uncertainty 11F in F is related to the uncertainties u,, in

the variables by:

2 1 dF2 21/2
UF = [(FUvlU,) + ( v u2) + ... + Uvn, . (4.10)F i\ U VOn2 V,

In this case the function F is the stress intensity KlI and the uncertainty uK in

KI is a function of the four measured radii of curvature: for the head split section

before and after cutting, and for the base split section before and after cutting. In

terms of the measured dial gage deflections (6 i) and spacings between points along

the rail ( 3 - R'2 = Ax) used in Eq. 3, KI becomes:

I, [tb(l2)]/ (X)2{IH [(63 + 6 - 262)H after- (3 + 61 - 22)Hbefore] 2

+IB [(63 + - 2 62)B fter - (63 + 6 - 262)B before 2 11/2 . (4.11)

For convenience, define

f = 63 + b6 - 262. (4.12)

130



It turns out that, for uncertainties in Ax of uz, = ±1.27 mm (±0.05 in), for

the 51 mm (2 in) spacing (Ax) along the rail used in calculating from the AAR

data, the contribution of Ax is negligible. Therefore, the fractional uncertainty in

KI, uKI /KI, can be written as follows, assuming that uncertainties arise only from

uncertainties in fi, that u and /3 have similar values for the upper and lower split

sections, and that the uncertainty us is the same for all dial gage deflections:

, =O u[( )J]= [1210 2 ()2 + 3 ) 1/2 U,
/16 +(Us + ( s = , 613

where us (=±0.00025 in, or ±0.00635 mm) is the estimated uncertainty in a faired

plot of dial gage deflection versus position along the rail.

Note that for this analysis each curvature should be based on 3 independent

dial gage deflection measurements. For the AAR data, curvatures were calculated

from the deflection plots every 50 mm (2 in), although deflections were measured

every 25 mm (1 in). There is then some correlation between curvatures, although

we consider it of negligible importance. A detailed study of the sources of the

uncertainties could be made by repeated measurements at various intervals along

the uncut rail.

4.3.2 Uncertainties in other variables.

Uncertainties in the elastic constants E and M are probably negligible. If the

dimensions of each rail have been measured, the uncertainties here are also small

and should have a negligible affect on KI compared to uncertainty in curvature

measurement. If the rail dimensions have not been measured, an uncertainty of,

for example, ±6 mm (0.25 in) in all rail dimensions results in an uncertainty of

all KI values for the rail of approximately ±25%. An uncertainty of only ±0.8

mm (0.030 in), such as is obtainable with a ruler, results in an uncertainty in

KI of approximately 3%, which is negligible compared to the uncertainty from

measuring rail curvatures corresponding to KI, using a dial gage.

Another source of error comes from calculating the moments of inertia I by ap-

proximating the rail with rectangular regions. Although a more accurate calculation
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can be done to account for fillets and the tapered web, the effect on KI should not

be large compared to uncertainties due to measuring the radius of curvature.

4.4 Results of applying procedure to AAR data

Plots of the deflection of three roller-straightened rails split by the Association of

American Railroads (AAR) were used to estimate stress intensities along the rails.

Figs. 4-6 are plots of calculated stress intensities along the rail for the three rail

specimens, arbitrarily numbered Specimen 1 to 3. The rails were assumed straight

before cutting (Rbeforc = 0).

Error bars represent estimated uncertainty in the value of KI, due to estimated

uncertainties in measuring local radii of curvature of the split sections. Uncertainties

uK,/IKI are typically ±21% (20 to 1 odds). The uncertainty uK/I depends on

the value of /3 (Eq. 13), and for the AAR data /3 ranged from 0 to approximately

1.27 mm (0.005 in) (corresponding to radii of curvature R = oo to 750 inches (19

m)). Therefore, this range was divided into 5 regions and uncertainties uK,/KI

were calculated for each region separately.

The exact rail dimensions were not known, so typical dimensions were assumed:

height of the rail head, web and base 43, 102, and 25 mm (1.7, 4.0, and 1.0 in),

respectively; width of the rail head, web, and base 76, 18, and 152 mm (3.0, 0.7,

and 6.0 in), respectively. Differences between these and the actual dimensions will

change the vertical scale of the entire plot rather than affecting the error bars for

individual measurements, as discussed above. Stress transition regions, shown on

the plots by dotted lines, are estimated to be about 2 split section heights, or

approximately 200 mm (8 in), from the free split end or from the tip of the saw-cut.

Calculated stress intensities in the middle portion of the specimens are:

Specimen 1 If x 33-55 MPaVm (30-50 ksi1/in)

Specimen 2 I' 1 m 66-88 MPax/m (60-80 ksi/in)

(with one point at - 22 MPaVm = 20 ksi/in)

Specimen 3 I' 1 m 33-55 MPa/m (30-50 ksi/in)

(with one point at m 93 MPa\/m = 85 ksi/in).
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The low value for Specimen 2 occurs at a relatively flat spot on the deflection plot,

and the high value for Specimen 3 occurs at a sharp bend of the deflection curve.

The fracture toughness KI, for these rails, or even the type of rail, was not

known for the AAR specimens. However, the fracture toughness KIC for carbon

and alloy rail ranges from about 27 to 55 MPa/m (25 to 50 ksi/in), with typical

values for carbon rail of 38 MPa/m (35 ksix/in) (Orringer, Morris, and Steele 1984)

and for chromium-vanadium (Cr-V) rail of approximately 31 MPax/m (28 ksi/in)

(Jones and Rice 1985). Therefore, there is danger of spontaneous cracking in these

rails tested by the AAR.

These results are further reinforced by a KI estimate from a photograph of a

roller-straightened Cr-V rail which fractured in service. Visual estimates of the radii

of curvature of the split sections from the photograph gave a stress intensity KA' of

approximately 44 NMPaVm (40 ksix/in), well above K1 for chromium-vanadium rail.

4.5 Usefulness of this test and other methods of residual
stress quantification

The saw-cutting test can give a quantitative estimate of the stress intensity K

acting on a web) crack at. the saw-cut location. Therefore it is a more useful and

direct test for tendency to web fracture than the drop-weight impact ("whomper")

test or a saw-cutting test where the cut opening only is measured, both of which

give at best only a qualitative indication of the residual stresses present in the rail.

Also, the saw-cutting test is simple to perform, requiring a longitudinal saw cut,

curvature measurements, and an algebraic calculation. The test is further simplified

by using a device we have developed consisting of a dial gage mounted on a bar

with aligning guides (Fig. 3). A calculator has been programmed to accept input

data and calculate KA.

Another promising method of residual stress measurement uses the DEBRO ul-

trasonic stress meter (1989). This device can measure the near-surface longitudinal

residual stresses around the periphery of the rail and provides a quick, nondestruc-

tive method of residual stress measurement useful for production quality control.
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However, it does not measure residual stresses within the head and base, which also

contribute to KI .

4.6 Conclusions

1. Calculation of stress intensity II from the saw-cutting test is relatively simple,

requiring measurement of local radii of curvature of the saw-cut rail ends and

an algebraic calculation to estimate KI. The amount of uncertainty in stress

intensity K using this technique can be brought to less than +20%.

2. Data from three roller-straightened rails split by the AAR were used to esti-

mate stress intensity K1 due to residual stresses. The resulting stress intensi-

ties were comparable to the fracture toughness KI¢ for carbon and alloy rail,

suggesting that there was indeed danger of spontaneous fracture in these rails.

3. Curvature measurement can be simplified by using a dial gage mounted on a

bar with guides to align it on the rail head and base.
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Table 1. Summary of procedure for estimating stress intensity from saw-cutting
test.

1. Measure local radius of curvature R before and after saw cutting, for upper
and lower split sections, at same distances from rail end.

Saw-cut length should be > Measuring length (of at least 100 mm) + 2 split
section heights at start and end of cut.

2. Calculate the stress intensity KI(:

[2tweb(1 - ) /2 RH after RH before

(RB after RB before) 

where

E = elastic modulus of rail steel

v = Poisson's ratio
t web = web thickness at saw-cut

IH, IB = moments of inertia of head and base split sections

RHbefore, RHafter = radii of curvature, head split section, before and after
cutting

RBbefore, RBafter = radii of curvature, base split section, before and after
cutting
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Fig. 1. The saw-cut rail.
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Fig. 2. Fitting a parabola to three points on a curve of dial gage deflection (8)
versus position (x) along the rail.
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(c) on head

in = 127 mm 

(a) top

(b) side

Vli w A-A

(d) on base

Fig. 3. Curvature measurement device for the saw-cutting test.
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Fig. 4. Calculated stress intensity KI versus position along the rail for Specimen 1.

Error bars represent estimated (20:1) uncertainty in Kidue to measurements for

local curvature.
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Fig. 5. Calculated stress intensity KI versus position along the rail for Specimen 2.
Error bars represent estimated (20:1) uncertainty in Kdue to measurements for
local curvature.
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Fig. 6. Calculated stress intensity KI versus position along the rail for Specimen 3.
Error bars represent estimated (20:1) uncertainty in KI due to measurements for
local curvature.
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Chapter 5

Conclusions and
Recommendations

The goals of this study were to investigate the creation and modification of the

unfavorable longitudinal residual stress due to roller-straightening, to determine

the stress transients at a cut rail end, where the longitudinal stress must go to

zero, and to develop a simple test to determine the tendency of residual stress to

cause web fracture in a given rail. In Chapter 2 of this work, models for residual

stress formation during roller-straightening were developed. Then, the effects of

process parameters (applied roll -load or displacement, roll diameter and spacing)

were investigated in order to suggest ways to minimize unfavorable residu-alstresses.-

1. The deformation of the rail in the straightener is really a three-dimensional

problem. However, plane stress models of the straightener are adequate to

model the resulting residual stresses.

2. A plane stress, "single-roll" model for the first two loaded rolls in the straight-

ener gives qualitative agreement with strain gage data taken at three locations

on the rail. Disparities between experimental and calculated residual stresses

appear to result from idealization of boundary conditions and material behav-

ior in the finite element model, and from the coarse mesh used.

3. The unfavorable, U-shaped longitudinal residual stress distribution found in

roller-straightened rail arises from the last straightener rolls, where the bending
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moment is relatively low and most of the plastic deformation occurs under the

roll, due to the high contact stresses there.

4. Increasing the roll diameter by 20% has no effect on residual stresses, both

in the initial, heavier loaded rolls, and in the final rolls producing the U-

shaped stress distribution. This is not surprising since the amount of plastic

deformation is too great for the elastic (Hertz) theory of contact to apply.

5. A straightener that maintained high bending moments throughout would avoid

the U-shaped residual stress distribution, giving instead a Z-shape from bend-

ing deformation. This may mean that the spacing to the last roll must be

very large, so that there can be a small force on the last roll and still a large

moment at the next-to-last roll. Further investigation is needed to determine

the combinations of roll force and bending moment to avoid the U-shaped

residual stress distribution.

6. The best solution to the problem of unfavorable residual stresses from straight-

ening must be based on the overall process of rail manufacture. It may be more

economical to avoid the need to straighten, or to use an alternate method of

straightening, than to redesign the roller-straightener.

In Chapter 3, rail with a self-equilibrating longitudinal residual stress field having

maximum and minimum values of ±138 MPa (±20 ksi), representative of that found

in roller-straightened rail, was modelled to determine the stress transients near a

cut rail end and the location and severity of the worst possible end-crack.

1. Stress transients at a cut end of roller-straightened rail- consist of a decrease

to zero of longitudinal stress at the end and a vertical tensile residual stress

in the web at the end. Finite element models for both a free end and an end

with a fixed base gave the lengths to reach 95% of the mid-rail stress field to

be 1.10 and 1.12 rail heights, respectively. The maximum vertical stresses at

the end were 1.35 and 1.10 times the maximum value of mid-rail longitudinal
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residual stress. Beam-on-elastic-foundation models give algebraic estimates of

such stress transients agreeing within 30% of the finite element results.

An estimate of the stress intensity II on a short web crack at the rail end,

in the (uncracked) vertical residual stress field there, gives KI increasing with

crack length and reaching 22 MPax/m (20 ksigin) for cracks 13 mm (0.5 in)

long. Although KI on short cracks may not be sufficient in itself to drive a web

crack, in the presence of service loads the risk of fracture is greatly increased.

2. When a length of roller-straightened rail is taken from mid-rail the changes in

longitudinal displacements can be large enough to affect subsequent residual

stress measurements. For example, if the uneven length changes on cutting a

460 mm (18 in) Mheier section are not accounted for, there may be an under-

estimate of the magnitude of measured longitudinal residual stress of as much

as 48 MPa (7 ksi), significant compared to typical maxima of 138 MPa (20

ksi) for roller-straightened rail.

Chapter 4 describes a saw-cutting test for quantifying the severity of residual

stress in a given rail.

1. Calculation of stress intensity KI1 from the saw-cutting test is relatively simple,

requiring measurement of local radii of curvature of the saw-cut rail ends and

an algebraic calculation to estimate K. The amount of uncertainty in stress

intensity KIs using this technique can be brought to less than ±20%.

2. Data from three roller-straightened rails split by the AAR were used to esti-

mate stress intensity lK, due to residual stresses. The resulting stress intensi-

ties were comparable to the fracture toughness It for carbon and alloy rail,

suggesting that there was indeed danger of spontaneous fracture in these rails.

3. Curvature measurement can be simplified by using a dial gage mounted on a

bar with guides to align it on the rail head and base.
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