
The Television Pause Function
by

Michael R. Truog

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements of the Degree of

Bachelor of Science in Electrical' Engineering and Engineering

at the Massachusetts Institute of Technology

May 1989

Copyright Michael R. Truog 1989

The author hereby grants to M.I.T. the permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature of the Author

Department of Electrical Engineering and
Lael R. Truog

Computer Science
May 16, 1989

Certified by

Principle Research Scientist,
Walter Bender

Media Laboratory
Thesis Supervisor

Accepted by

Leonard A. Gould
Chairman, Department Committee on Undergraduate Theses

-CQH1 .VEs

AUNSSACPU'MS I1SITUTE
OF EC1NOLOG

JUN 16 189

UmIIPAR

I

. _ _ _

The Television Pause Function
by

Michael R. Truog

Submitted to the
Department of Electrical Engineering and Computer Science

May 16, 1989

In Partial Fulfillment of the requirements of the degree of
Bachelor of Science in Electrical Engineering and Engineering

ABSTRACT

A new pause function is designed and implemented which enables a television
viewer to pause a live television program for a variable length of time, and then
return at a later time and continue watching without missing any portion of the
program. The system uses three VCR's controlled by digital circuitry to provide
this feature.

Thesis Supervisor: Walter Bender
Title: Principle Research Scientist, Media Laboratory

This work was supported in part by I.B.M.

Table of Contents

1. Introduction...p. 1

2. Definitions and Explanation of Termsp. 2-4

3. Design Requirements p. 4

4. VCR Deficiencies pp. 5-6

5. Design Overview pp. 6-7

6. Software Design . ..pp. 7-16

6.1 Goals of the Softwarepp. 7-8

6.2 Software Organization pp. 6-16

6.2.1 Initialization.......................................p. 8

6.2.2 Pause 8-15

6.2.3 The Playback Loop pp.15-16

7. Hardware Design . ..pp. 16-21

7.1 Hardware Requirements pp. 16-17

7.2 Hardware Organization pp. 18-21

7.2.1 The Controller pp. 18-19

7.2.2 The Registers p. 19

7.2.3 The Switches pp. 19-20

7.2.4 The Synchronization Sectionp. 21

8. Implementation pp. 21-22
9. Applications ... p. 22

10. Possible Additions p. 23

Appendix A pp. 23-42

Appendix B...pp. 43-47

Appendix C pp........... 48-53

Acknowledgements p. 54

Chapter 1. Introduction

This thesis describes a circuit that adds a new pause option to

television. Often people are in a situation where they have just started

watching a television program when some minor interruption, such as a

phone call, takes them away from the viewing area for a short time. To

continue their viewing, there are two opdons. Their first option is to push

record when they leave, rewind the tape after the show is over, and watch

from where they had left off. The second option is simply to skip the portion

they missed. The new 'television pause' function I have designed is a third

option which will enable the viewers to continue watching the program from

where they left off to completion as soon as they return.

Although the television program continues to be broadcast, the

'television pause' feature leads the viewer to believe that the broadcast has

been put on hold. Since the broadcast does not stop, some method was

needed to store the video signal, so that it could be played back at any time.

Before describing my circuit, some background information on video signals

and their storage must be given.

Video signals are transmitted as electro-magnetic radiation from either

an antenna or a satellite. They are received by viewers though a receiving

antenna and are displayed as pictures on a television set (TV). The general

design of the video signal is such that it is composed of discrete packets of

information called frames. Each frame is 1/30th of a second in length and

corresponds to a TV picture 1/30th of a second in duration. Within each

frame, different frequencies and the amplitudes of these frequencies

1

determine what the picture looks like. The frequencies present in video

signals range from 30 Hz to 4.5M Hz.

There are two methods for storing these signals for later playback. One

is digitizing the signals and storing the information on a disk in the form of

bytes of video information. This method provides very easy access to video

data. Using conventional means it is extremely costly and also difficult to do

due to the high frequency at which the signals are broadcast. A much more

simple method for storing video signals is to record the video using a video

cassette recorder (VCR). The VCR stores the signal in its analog form on a

magnetic tape, which can be read at any time later. The VCR method is much

less expensive but is very awkward to use. (VCR functions and their inherent

problems are discussed in Chapters 2 and 4.) To make this function realizable

as a consumer product the cost of the function is very important, which

makes the choice of methods simple.

Chapter 2. Definitions and Explanation of Terms

VCR stands for video cassette recorder. The brand and model used for

this project was the JVC model HR-S5000U Super VHS recorder. The

following VCR functions are used to implement the 'television pause'

function:

Record -- This function causes the VCR to store the video signal on the

tape. It is analogous to a computer writing to memory. The signal is stored in

discrete packets, frames, similar to the way it is broadcast. Before each frame

2

is recorded, a signal is written on the tape to mark the start of a new frame.

On playback this signal informs the VCR that a new frame is ready to be read.

This signal is referred to as a control pulse. One other note to make about the

record function is that there is a delay between when record is pressed and the

VCR starts recording. This delay was important to account for in the design

of the 'television pause' feature. The delay results from the method used by

the VCR to either record or play. In its rest state, the tape is removed from

the recording/playback head. To write or read the video signal, the tape has

to be wrapped around the recording head so that the recording head is in

physical contact with the tape. The recording delay is the amount of time it

takes to wrap the tape around the recording head. The delay is approximately

three seconds.

Play -- This function reads the video information stored by the record

command and causes the recorded signal to be displayed on a TV. The

control pulses written by record are read by play and used to insure that each

frame is played back accurately. The tape must be touching the

recording/playback head to read the tape, so the same delay that is present in

recording is also found on playback.

Pause -- This function suspends the playback of a recorded video signal.

It is used only when the VCR is in 'play' mode.

Search Rewind -- This function is used to rewind the tape, while

always reading the video and control pulse information. It is invoked by

pressing rewind while the VCR is playing, causing the tape to be rewound

without removing it from the record/playback head. It is used instead of

3

straight rewind because tape position needs to be known by my circuit and

reading and counting control pulses is the only way to figure tape movement.

Search Forward -- This function is the fast forward version of search

rewind.

The Intel 8751 is an eight bit microprocessor. It has

programmable ROM on chip as well as 128 bytes of RAM.

Chapter 3. Design Requirements

There are five requirements that my circuit had to fulfill. First, there

should be only one button for the viewer to push to activate the television

pause function. One button makes the function easier to use for a public that

feels inundated with buttons and functions on entertainment equipment.

Second, the user should not have to wait to watch the program after he

returns. Upon returning, the only delay the user should have to wait for is

only the play function delay. Third, the user should be able to watch the

entire program from where he left off. No portion of the program should be

omitted. Fourth, the user should not be able to tell the difference between the

paused program and the original broadcast of the program other than the

lessened quality caused by playing from tape. It is extremely important that

the picture quality is not reduced by the use of the new pause function. The

final requirement is that the user should be able to catch up to actual time by

fast forwarding through commercials.

4

Chapter 4. VCR Deficiencies

To accomplish these goals, the software algorithm had to account for

three short comings that are inherent in home video recorders. The first is

that VCR functions do not react immediately. For instance, once the 'play'

button is pushed, a delay of approximately three seconds takes place before

any video is displayed on the screen. The software needed to plan for this

delay by allowing set up times after asserting any of the VCR's functions.

Second, keeping an accurate record of position on the video tape is very

difficult. The counter on most VCR displays is only accurate on a

macroscopic scale. Using this counter, real position will change by a few

seconds after a rewind or a stop function is used making it impossible to find

a certain frame. My circuit must be able to find the tape position within a

single frame accuracy, so another method was needed. This method was to

count the frames from where recording began and thus the relative distance

between any two frames would always be known. Counting frames is

accomplished by counting control pulses, since a control pulse is recorded

before each frame. Each VCR's tape position is extremely important in

deciding when to turn on or off VCR functions, so whenever the tape is

moving my circuit should know how far it has moved from the number of

control pulses read. This prohibits any tape movement that does not read

control pulses. The functions that do not read control pulses are rewind and

fast forward. Instead of these functions, search rewind and search forward are

5

used, since they read control pulses. The software keeps records of these

relative positions by counting the control pulses and storing them as

variables.

Third, the VCR's have very slow seek times. Finding a certain packet

of information, such as a frame, can be long process. This is because the tape

is a one dimensional storage device. Thus, data can only be searched for in

two directions, forwards and backwards. Search forward and search rewind

are the VCR functions that correspond to these directions. Having a second

dimension to move makes reading much faster, since large portions of

information can be skipped over quickly. A good example of a two

dimensional storage medium is a computer disk. Not having this ability, my

circuit had to plan for search times that were on the same order of magnitude

as the write and read times. Normal search speeds are seven times play speed

in standard play and seventeen times play speed in extended play mode.

Chapter 5. Design Overview

The circuit must perform the 'television pause' function defined by the

design requirements but at the same time it needs to work around the VCR

deficiencies. The method I used to implement the television pause function

is fairly simple. One VCR is recording at all times after the 'television pause'

button is pushed. This makes sure the viewer is able to see the complete

program. Once the viewer returns, one VCR is playing at all times, so there

are no noticeable breaks on playback. Finally, when switching between VCR

6

playback outputs, the VCR next in line to play must be ready to play the

beginning of its recorded segment before the VCR that is playing is finished.

Three VCR's are needed to allow these three states to occur simultaneously

and my circuit has to control them. The system diagram is shown in figure

5.1. This method and its implementation are des-ribed in detail in the next

two sections.

] television pause
function

VCR VCR 2 ' VCR 3

Figure 5.1 System Diagram

Chapter 6. Software Design

6.1 Goals of the Software

In designing the software, I had the following goals: the state of each

VCR should be known at all times (this includes knowing the function each

7

VCR is performing and each tape position at any moment); signals sent by the

8751 software should be used by the hardware to cause the VCR's to perform

certain functions, and to combine the first two goals into a state machine

that produces the new pause function and would meet the five requirements

listed in section III.

6.2 Software Organization

The software is written in Intel 8051 assembler code. The code is

organized so that all the variables needed are placed in internal RAM. The

listing of variables, what they are for, and their RAM locations is on the first

page of the assembly code listing in Appendix A. The software has three

sections: initialization, the pause, and the playback loop.

6.2.1 Initialization

The initialization section is entered upon power up or an external

reset. The microprocessor reacts by resetting its program counter to location 0.

At this location, there is a jump command to the start of the program. Upon

power up or reset, the circuit should not be interacting with any of the VCR's.

The software clears all control registers at this point by writing four

initialization bytes.

6.2.2 Pause

After initializing the system, the software waits for the user to push the

pause button. Once pushed, the software reacts by switching control of the

8

VCR functions from the VCR control panel to my circuit. It then sends the

record signal for all the VCR's to the control registers. The VCR's begin

recording the program and the software counts the length of the pause.

However, the first VCR does not continue recording until the user returns.

Instead only 44 seconds of the program are recorded. By recording only a

short segment, the tape can be rewound and ready to play before the user

returns. The requirement that the user should not wait is fulfilled here, but

is subject to the constraint he is gone for at least one minute.

Three steps must be taken before rewinding the first VCR. First, to

simplify the switching between outputs of the VCR's, the recorded material

on the VCR's must contain an overlap. This overlap is taken care of by

recording on the second VCR during the first 44 seconds. However, VCR 2's

counter is set so that the code only thinks that it has recorded for six seconds.

This way VCR 2 will not be rewound passed the switch point. The second

step is to stop VCR 1. Once the 'stop' signal is sent, the software waits for two

seconds to insure that the VCR will have time to react to the 'stop' signal

before the software sends another signal. The third step is to send the 'play'

signal so that when the tape needs to be rewound, it will be in search rewind

mode instead of rewind mode. The difference may seem subtle but it is very

important. The first goal of the software, knowing each VCR's state, is

dependent upon receiving accurate control pulse inputs. The only way to

obtain accurate information from the video tape is to have the video head

touching the tape. In play and record modes, the head is always in contact

with the tape. So whenever the tape is being moaved, the VCR has to be in

9

either play, record, search forward, or search rewind. Figure 6.1 is a diagram

of these steps.

button
pushed 9 sec.

overlap35 sec.

RECXORD

beginning of

2 sl 7 sec. Rewind time tap reached

I I I

STOP PLAY REWIND
I

STOP
Time

Time
RECORD

RECXORD

Figure 6.1 Initial Record and Rewind Sequence

After another delay of seven seconds, VCR 1 is rewound. Each frame

that is encountered during the rewind is counted and compared to the

number of frames recorded. When they are equal, the beginning of the

recording has been found and the VCR is sent the signal to stop. The time it

Time

10

VCR 1

VCR 2

VCR 3

_
i

M--WM-M�

I-

I

I I

PLAY STOP

overlap I I

i
STOP

I

PLAY
I

REWIND

blank screen

PLAY

(A) Too much material was recorded to rewind in time
resulting in a break in the playback

In stop
mode

PLAY STOP

verlap| I I

I

STOP REWIND

(B) Recording limit was not exceeded resulting in
a smooth playback

Figure 6.2 Switching Timing Problem (A) and Solution (B)

11

PLAY PLAY

In stop
mode

VCR 1

recording

VCR 2

Time

Tme

Time

VCR 1

VCR 2 o

Time

! I l

r - -- J i i Z

I

V-
TimnI L~~~~~~~~~~A.

I

I

takes to rewind is stored for future use. Figure 6.1 also shows these actions.

At this point, the user could return and immediately view the portion he

missed.

By setting the minimum pause time at only one minute, not only have

I limited the amount of material that can be recorded on the first VCR but

also the second VCR. Since the first VCR only has 44 seconds of video to play

when the user returns, the second VCR only has 44 seconds to rewind. This

problem and its solution are illustrated in figures 6.2a and b. The amount of

material that can be recorded on VCR 2 is dependent upon the rewind speed.

The rewind speed is found by dividing the rewind length by the rewind time

found when VCR 1 was rewound. The limit for recording on VCR 2 in

seconds is:

(44 - 8) * rewind time

where the eight corresponds to the set-up time necessary to find the

beginning of each recorded section.

For very short pause times, this limit will not be reached (See figure

6.3a). For these cases, the first VCR is told to play while the third VCR records

the nine second overlap of VCR 2. After the overlap, the second VCR is

stopped and rewound using the same search rewind procedure that was used

for VCR 1.

When the pause times exceed the recording limit for VCR 2, a different

path is followed (figure 6.3b). Once this limit is reached, the overlap time for

the third VCR is set to be six seconds. VCR 2 is then stopped but not

rewound. Just as there was a minimum pause time, there is also a maximum

12

con't from I button pressed
fig. 4.1 igain

rewinding I

sor puE

short pause
Tim-

" Tima
STOP PLAY

ecording o :verlap

' Time
' STOP REWIND
' PLAY

I1

3cording

' * Time

Figure 6.3a User returns before VCR 2's recording limit

con't from con't on fig 4.4
button pressed

again

ewinding long pause

Time
STOP PLAY

overlap

ecording 'I __
Time

STOP PLAY REWIND

3cording ,

Time

Figure 6.3b User returns after VCR 2's recording limit

13

VCR 1

VCR 2

VCR 3

VCR 1

VCR 2

VCR 3

I

,on't on fig 4.4

k
k
I

r(

r(

rE

re

r(

pause time. This constraint results from using sixteen bit counters counting

thirty frames a second. 216 is reached in 36 minutes.

When the user finally returns, the first VCR is told to play and then the

second goes into search rewind. At this point, both paths will meet again.

Once the beginning of VCR 2's recorded segment is found, the signal

'play' is sent. This is unlike the first VCR because the second VCR needs to

find the exact frame where switching will take place. Finding this frame and

switching VCR's is a five step process shown in figure 6.4. The VCR is

con't from
fig. 4.3

con't on
fig. 4.5

playing

' ' Time

beginning of '
recorded segment '
found ,

rewinding 2 sec. -4 sec. of waiting 2 sec. ,

' Time
PLAY PAUSE PLAY SWITCH VCR

(VCR 3 is recording)
UUIMJI IU
VCR 2

Figure 4.4 Sequence to switch outputs of VCR's

allowed to play to the frame two seconds before the switching point, where it

is paused (the normal pause function). While VCR 2 is in pause mode, the

14

VCR 1

VCR 2

software waits for the segment playing on the first VCR to get near its end.

When the frame on VCR 1 is eight frames behind VCR 2's position, VCR 2

continues playing. After two seconds, VCR 1 will have caught up to VCR 2

and the output to the TV is switched from VCR 1 to VCR 2. These switches

are fairly accurate so as to meet the fourth requirement of the circuit -- that

the user does not realize this is not a live broadcast. After the switch has been

made, VCR 1 is stopped.

6.2.3 The Playback Loop

The software then enters the third section, the loop. The loop is a

series of eight steps that are repeated until the stop button on my circuit is

pressed (See figure 6.5). The process consists of recording an overlap, search

rewinding, finding the frame upon which switching will take place, then

switching the VCR outputs, and finally stopping the VCR that finished

playing. This process is very similar to that used for VCR 2. After each pass

through the loop, the commands are switched so that each VCR cycles

through this process. In figure 6.5, the commands given for the second pass is

given in parentheses beneath the first pass commands.

During the loop, the user is allowed to fast forward through parts of the

recorded video, thus fulfilling the fifth requirement. To fast forward, the fast

forward button on my circuit is pushed to start the fast forward mode, and it

is pushed again to end this mode. However, there are restrictions. If any

VCR is rewinding or is within eighteen seconds of rewinding, the fast

forward function is not possible, since breaks would develop when the VCR's

are switched.

15

EXITS LOOP ON
STOP BUTTON J
PUSHED BY THE
USER AT ANY
TIME IN THE LOOP

i

PLAY 3
PLAY 1

4
STOP 2

(STO P 3)

Figure 6.5 Flowchart of the loop

Chapter 7. Hardware Design

7.1 Hardware Requirements

The hardware has two duties: implementing the control signals

generated by the software to work the VCR and receiving and configuring the

inputs to a form the software can use. To implement the control signals, the

circuit was connected to the internal circuits of the VCR. For the VCR to react

16

RECORD 1

(RECORD 2)

STOP 3
IQT'D 1\

PAUSE 3
(PAUSE 1) I

(PLAY I

1PY 14

REWIND 3
REWIND 1

VIDEO 3
(VIDEO 1)

PLAY 3
(PLAY 1)

-- -.

_I

__tV r vi l

-

I

ilI I

I.

. _ _

to my circuit's control, the signals that are used by the VCR to produce certain

functions had to be duplicated. The duplication had two requirements. The

first is that my circuit needed to output the correct voltages. Thus to produce:

a 'stop' command, a signal of zero volts needed to be sent to the VCR. The

voltage requirements are listed in table 7.1. The second requirement for

Table 7.1
Voltages That Produce VCR Functions

FUNCTION VOLTAGE

Stop 0.00 V
Pause 0.50 V
Play 1.00 V
Rewind 1.50 V
Fast Forward 2.30 V
Record 3.50 V
No Function 5.10 V

duplication was that the voltages needed to be stable for a at least a quarter of

a second. The reason for this is to insure that the VCR will have enough

time to see the command. This means that a voltage cannot be generated and

replaced within a quarter of a second. The second duty of the hardware also

has two requirements. These are that the software should receive all inputs

and that the software should only have to look at each input once. When

these two requirements are met, the amount of code necessary is greatly

reduced.

17

7.2 Hardware Organization

7.2.1 The Controller

The hardware is implemented in four sections that are shown in a

block diagram in figure 7.1 (Also see appendix B for the schematics). The first

STOP BUTTON c

PAUSE BUTTON -4

FAST FORWARD -

BUTTON

SYNCHRONI

SIGNALS

CONTROL

PULSES

OONTrROL

SKaNALS
sus~~~a

ZED

SWITCH
CONROL
SIGNAL

CONTROL

SIGNALS

I

FUNCTION
VIOLTAGES

Figure 5.1 Hardware Block Diagram

18

CONTROLLER REGISTERS

YNCHRONIZATION SWITCHES

VCR'S

I

_mr= .l tt I1

tt I

A
i

I

II

section is the controller. This section is comprised of the Intel 8751

microprocessor and a 16R8 pal. Its function is to keep track of the state of each

of the VCR's and output certain signals based on these states. The state of

each VCR is determined by the software encoded in the 8751. The software

also produces the output signals. It does this by writing data to its output

ports. The pal produces the load signals used to store these signals in the

second section. The pal also determines whether my circuit should have

control of the VCR's functions or not though its output 'cntl on.'

7.2.2 The Registers

The second section is made up of four registers. The sole purpose of

these registers is to hold the control signals sent from the microprocessor. As

explained above, any inputs to the VCR's need to be stable for a least a quarter

second. It is impossible for the microprocessor to meet this requirement by

itself since the written data is only valid for a very short time (approximately

one microsecond). The registers can hold the data for a much longer period

and thus provide the stability that is necessary.

7.2.3 The Switches

The third section uses the output of the registers to produce a signal the

VCR's can understand and will react to. The signals that need to be produced

are the voltages listed in Table 7.1. To produce these voltages, a set of resistors

in series with switches placed at each of the nodes are used. Three resistor-

switch groups were used, each one corresponding to one VCR. The resistors

are connected to pins within the VCR and each switch has its 'on' input

19

connected to ground. The resistors form one half of a voltage divider, with

the other half inside the VCR. By turning on any of the switches and thus

connecting a node to ground, the voltage divider is changed as is the voltage

sent to the VCR. Each switch produces a voltage corresponding to a VCR

function such as 'play' or 'rewind', so turning on the 'record' switch is the

same as pushing the 'record' button on the VCR control panel.

This section must also be able to switch control from the VCR control

panel to my circuit, and vice versa. My circuit should be connected to the

VCR circuitry when the pause function is in use, but the VCR should

maintain control of its functions when the pause function is not being used.

To be able to electronically choose between control sources, switches are

connected to both the VCR and my circuit and are controlled by the 'cntl on'

output of the pal. This arrangement is shown in figure 7.2.

VCR input (In this postion
when circuit is not in use
so that the VCR control

·t.3F L'~ panel is usable)
VCR input

My circuit hook up (gives
N control of VCR functions

to my circuit. It is only
connected when pause function
is in use)

Figure 5.2 VCR Function Control Switch

20

7.2.4 The Synchronization Section

Aside from outputting signals, my circuit is constantly receiving

signals both from the VCR and the user. The VCR sends control signals to

my circuit so that position information can be determined. The user can send

three signals to my circuit. These signals are 'television pause', 'fast forward',

and 'stop.' The duration and occurrence of these signals can vary greatly.

The software is written so that each signal is only seen once, so the final

section of the hardware is used to synchronize and configure the inputs to a

form that can be used by the software. The section uses four pals to

accomplish the synchronization. The pals use a scheme where the input is

held until the software wants to use it. The pals wait until the input signal is

unasserted before they look at the signal again, thus eliminating the problem

of multiple reads of the same signal.

8. Implementation

In implementing the 'television pause' function, I had to transfer

control from each VCR to my circuit, assemble the assembler code, and debug

my circuit. Debugging the circuit and assembling the code are fairly standard

and do not need to be explained. In transferring control to my circuit, wires

within each VCR needed to be cut and rewired within my circuit. The VCR

schematics in figures 6.1 and 6.2 show the connections made to the insides of

the VCR's. The switches shown on board 29 in figure 6.1 are buttons on VCR

control panel. The lines were cut at the input of board 30 because the wires

21

were the most accessible at this point. Emulating the functions of board 29

and 30 required little more than relays, resistors and a diode making this

board a good choice. By cutting these wires I disabled many of the buttons on

the control panel, but by hooking them up as shown in figure 7.2, the buttons

were reactivated when the 'television pause' function is not in use. All the

functions that my circuit needed to use, were controlled by placing signals on

the five lines shown in figure 6.1. Figure 6.2 shows the point where I

soldered to get the record and play control pulses.

9. Applications

This circuit has two main uses. One use is that it allows the user to

miss a portion of a television program and be able to view the remaining

program upon returning. The circuit can also be used as a commercial

eliminator. By pushing the 'pause' button at the beginning of the show and

returning ten minutes later, the user will be viewing the show from video

tape. When a commercial is reached, the 'fast forward' button should be

pushed. My circuit will then tell the VCR to search in fast forward mode.

When the commercials are over, the 'fast forward' button is pushed again, so

that my circuit knows to end the search mode. By allowing the user to fast

forward through unnecessary portions, he will be able to approach real time

and thus save viewing time.

22

10. Possible Additions

One feature that could be added to this circuit is a multiple pause

feature. Using this feature the user could miss a section of the program,

return to watch a portion of the program, then repeat this process as many

times as needed. A good deal of software would have to be written but it

would not require any additional hardware since the 'pause' button could be

used.

Once digital encoding of video becomes more prevalent and less

expensive, a digital recording technique should be used in place of the VCR's.

If the search time of a disk became fast enough to switch within a time much

less than the vertical sync of a TV signal, then only two or only one disk(s)

would be needed for storage and much of the guess work as to timing would

be eliminated. This would be a clear advantage over the slow and inaccurate

VCR's.

23

Appendix A: Assembler Code Listing

24

FUNCTION

setb PSW.3
setb PSW.4

2 byte
counter

frame count
for vcr 1

frame count
for vcr 2

rev. frame count
for vcrl

amount of time the
vcr plays for (in frames)

point at which vcr
must rewind

the beginning of the
vcr's recorded segment

frame count
for vcr 3

rev. frame count
for vcr 2

pass through the loop

rewind speed

;use only registers in
;register bank 3

countl
counth

vcrll
vcrlh

vcr21
vcr2h

vcrlrl
vcrlrh

ptimel
ptimeh

RO

R1

R2
R3

R4
R5

R6
R7

30H
31H

32H
33H

34H
35H

38H
39H

3AH
3BH

3CH

3DH

rpointl
rpointh

startptl
startpth

vcr31
vcr3h

vcr2rl
vcr2rh

cycle

rspeed

ORG 0000

25

VARIABLE LOCATION

;vcrl, vcr2, and vcr3 count the distance from the
;time record is initiated on each respective vcr.
;By storing these as variables, the software always
;knows where each vcr is in relation to its record point.
;First, the processor initializes the circuit. It does
;this by loading the registers and setting vcrl to 0.

mov R2, #0
mov R3, #0
mov DPTR, #0
mov A, #0
movx @DPTR, A
mov A, #8
movx @DPTR, A

;vcrl=0

;clear regsl-2

;load videol into regs3-4

;After the set-up, the processor waits for the user to
;push the television pause button.

get_button: movx A, @DPTR
mov P1, A
mov C, P1.7
jnc get_button

;read the inputs
;put in bit addressable mem.
;move pause button to carry
;loop if button not pressed

;Once the user pushes the pause button, the processor
;tells all the vcr's to record. All three record because
;this saves alot of time in the early stages of the
;function. Also the time between switching is small
;in the early stages.

mov DPTR, #14336
mov A, #64
movx @DPTR, A

mov DPTR, #0
mov A, #8
movx @DPTR, A

;load regsl-2 with rec.1, rec2,
;and rec3. Also switch control of
;functions to my circuit

;load regs3-4 with videol

;The first vcr records for 44 sec., after which it rewinds
;and gets ready to play when the user gets back.
;The user is not allowed to push the pause button
;again within a minute because of this recorded segment.
;By adjusting this record time, the length of time the
;user must wait is also adjusted.

movx A, @DPTR ;read inputs

26

wait44:

mov P1, A
mov C, P1.1
jnc wait44
;increment vcrl
cjne R2, #255, wait44a
inc R3
inc R2

;mov cprl to carry
;loop if not cpulse

;see if high byte needs inc
;inc high byte
;inc low byte

;see if 44 sec have been recorded

cjne R2, #40, wait44
cjne R3, #5, wait44

;see if low byte is equal
;see if high byte is equal

;set vcrl and vcr2

mov A, R2
add A, #90
mov R2, A
mov A, R3
addc A, #0
mov R3, A

mov R4, #180
mov R5, #0

;vcrl =vcrl +60+30
;low byte

;high byte
;just add carry

;vcr2=180 six seconds of recording

;stop vcr 1 so that it can be rewound

mov DPTR, #0
mov A, #1
movx @DPTR, A
mov A, #8
movx @DPTR, A

;load rl-2 with stopl

;load r3-4 with videol

;figure the amount of time vcr 1 has of recorded
;material to playback (actually it is already known:
;[44sec. + 1 sec. -.5 sec.]*30=1335. The 1 sec. refers
;to the inevitable over-rewind distance that must be
;played back. The .5 sec. refers to the fact that the
;outputs must be switched before the end of the recorded
;segment.
;distance from the

mov 30H, 55
mov 31H, 5

;ptime=1335

;Before the vcr comes to a full stop, there is

27

wait44a:

;a delay. The processor waits for two seconds before
;giving any other commands. The stop delay is larger
;than 2 sec. but the vcr's will accept another command
;at this time.

mov RO, #0

movx A, @DPTR
mov P1, A
mov C, P1.2
jnc wait2

inc RO
cjne RO, #60, wait2

;set count=0

;read inputs

;move cpr2 to carry
;loop if no cpulse

;count=count+l
;loop if 2 sec. have not elapsed

;update vcr2 since count was used instead of vcr2

mov A, R4
add A, #60
mov R4, A
mov A, R5
addc A, #0
mov R5, A

;vcr2=vcr2+1
;low byte
;now add carry to high byte

;start vcrl playing(to get ready for search rewind)

mov DPTR, #256
mov A, #0
movx @DPTR, A
mov DPTR, #0
mov A, #8
movx @DPTR, A

;wait for 6 sec. before
;is playing)

mov RO, #0

movx A, @DPTR
mov P1, A
mov C, P1.2
jnc wait6

inc RO
cjne RO, #180, wait6

;load rl-2 with playl

;load r3-4 with videol

rewinding (to make sure vcr

;set count=0

;read inputs

;move cpr2 to carry
;if not cpulse, loop

;count=count+l
;loop if 6 sec. have not passed

28

wait2:

wait6:

;Now vcrl is ready to be rewound
;Rewind vcrl

mov DPTR, #0
mov A, #0
movx @DPTR, A
mov A, #9
movx @DPTR, A

;don't send any signals to rl-2

;load r3-4 with rewindl and videol

;update vcr2

mov A, R4
add A, #180
mov R4, A
mov A, R5
addc A, #0

;vcr2=vcr2+180
;low byte

;add carry to high byte

;rewind vcrl to the beginning of its recorded segment

mov RO, #0
mov R1, #0

mov R6, #0

mov R7, #0

rewind: movx A, @DPTR
mov P1, A
mov C, P1.2
jnc rewindb

cjne RO, #255, rewinda
inc R1

rewinda: inc RO

rewindb: mov C, P1.4
jnc rewind

cjne R6, #255, rewindc
inc R7

rewindc: inc R6

;check to see if beginning
;has been found

mov A, R2

;set count=0

;set vcrlr=0(this variable counts
;back to vcrl=0

;read inputs

;mov cpr2 to carry
;if not cpr2 check cppl
;count=count+l
;if low byte of count will overflow
;then increment high byte
;increment low byte

;mov cppl to carry
;jmp if no cppl
;vcrlr=vcrlr+l
;if low byte of count will overflow
;then increment high byte
;increment low byte

of recorded segment

;compare with vcrl

29

mov P3, R6
cjne A, P3, rewind
mov A, R3
mov P3, R7
cjne A, P3, rewind

;beginning of tape
;stop vcrl

mov DPTR, #0
mov A, #1
movx @DPTR, A
mov A, #8
movx @DPTR, A

;update vcr2

mov A, R4
add A, RO
mov R4, A
mov A, R5
addc A, R1

;first low byte
;then second byte

has been found

;load rl-2 with stopl

;load r3-4 with videol

;vcr2=vcr2+count
;low byte

;now high byte

;find out what speed the vcr's are rewinding at

;slowest they will rewind at is 5x so this is the default

mov A, R1
jz find_rspeed6
mov 3DH, #5
jmp find_rpoint

;mov high byte of
;if count>256 then
;rewind is slow so
;skip find_rspeed

count to A
figure speed
set default at 5

;figure out the speed (can be 5x, 6x, 7x, 14x, 15x, or 16x)

find_rspeed5:cjne RO, #235, find_rspeed5a
findrspeed5a:jc find_rspeed6

mov 3DH, #5 ;rsp
jmp findrpoint ;ski]

;if count>235 then rspeed is 5
;if count<235 then jmp to next check

eed=5
p other checks

find_rspeed6:cjne RO, #201, find_rspeed6a ;if count>201 then rspeed is 6
find_rspeed6a:jc find_rspeed7 ;if count<201 then jmp to next check

mov 3DH, #6 ;rspeed=6
jmp find_rpoint ;skip other checks

find_rspeed7:cjne RO, #100, find_rspeed7a ;if count>100 then rspeed is 7
find_rspeed7a:jc findrspeedl4 ;if count<100 then jmp to next check

30

mov 3DH, #7
jmp find_rpoint

;rspeed=7
;skip other checks

find_rspeedl4:cjne RO, #94, find_rspeedl4a ;if count>94 then rspeed is 14
find_rspeedl4a:jc findrspeedl5 ;if count<94 then jmp to next check

mov 3DH, #14 ;rspeed=14
jmp findrpoint ;skip other checks

find_rspeedl5:cjne RO, #88, find_rspee
findrspeedl5a:jc findrspeedl6

mov 3DH, #15
jmp findrpoint

find_rspeedl6:mov 3DH, #16

dl5a ;if count>88 then rspeed is 15
;if count<88 then jmp to next check

;rspeed=15
;skip other checks

;the highest rewind speed is 16

;figure out where to start rewinding vcr2

find_rpoint:mov A, #57
mov B, 3DH
mul AB
mov 32H, A
mov 33H, B

mov A, #3
mov B, 3DH
mul AB
add A, 33H
mov 33H, A

mov A, 32H
add A, #225
mov 32H, A
mov A, 33H
addc A, #0
mov 33H, A

;rpoint=825*rspeed+60+135-30+60
=825*rspeed+225

;825*rspeed (low byte first)
;store low byte of mul in rpoint
;temp store overflow

;high byte next

;add overflow to high byte
;store high byte in rpoint
;B will be 0 so it is not used

;+225

;found and stored low byte of rspeed
;figure high byte

;found and stored high byte of rspeed

;reset variables vcrlr, vcr2r, and count

mov R6, #0 ;vcrlr=0
mov R7, #0

mov 3AH, #0 ;vcr2r=0
mov 3BH, #0

mov RO, #0 ;count=0

31

;vcr2 can only record for a finite amount of time
;based on how fast it can rewind. Once rpoint (figured
;above) is reached vcr2 must be stopped. The following
;section finds this point

fillvcr2:

fillvcr2a:

fillvcr2b:

movx A, @DPTR
mov P1, A
mov C, P1.2
jnc fill_vcr2b

cjne R4, #255, fill_vcr2a
inc R5
inc R4

mov C, P1.7
jc button2

;read inputs

;move cpr2 to carry
;if not cpr2 check if button pushed

;inc vcr2
;inc high byte if necessary
;inc low byte

;move button input to carry
;jmp if viewer returned

;if viewer doesn't return

mov
mov
cjne
mov
mov
cjne

A, 32H
P3, R4
A, P3, fill_vcr2
A, 33H
P3, R5
A, P3, fill_vcr2

;check if vcr2 has reached its
;recording limit (vcr2=rpoint)
;loop if this point is not reached

;vcr2 has reached its limit
;it is stopped and vcr3 is set

mov DPTR, #0
mov A, #2
movx @DPTR, A
mov A, #8
movx @DPTR, A

;load rl-2 with stop2

;load r3-4 with videol

mov 38H, #180 ;vcr3=180
mov 39H, #0 ;this corresponds to 6 sec.

;vcr 3 is recording while 1 and 2 have recorded
;segments and are stopped
;At this point, the code waits for the user to
;push the pause button again.

movx A, @DPTR
mov P1, A

;read inputs

32

return:

;

mov C, P1.3
jnc returnb

mov A, 38H
cjne A, #255, returna
inc 39H
inc 38H

mov C, P1.7
jnc return

;check if cpr3
;if no cpulse see if button is pressed

;inc vcr3 (first check if
;low byte is going to overflow)
;inc high byte
;inc low byte

;move button input to carry
;loop if not pushed again

;Viewer has returned. Start playing back program
;from vcr 1. Also tell vcr 2 to play so that it
;can be rewound.

mov DPTR, #768
mov A, #0
movx @DPTR, A
mov DPTR, #0
mov A, #8
movx @DPTR, A

;vcr 2 must wait for 4
;it has already started

movx A, @DPTR
mov P1, A
mov C, P1.4
jnc wait4b

cjne R6, #255, wait4a
inc R7
inc R6

mov C, P1.3
jnc wait4

inc RO
cjne RO, #120, wait4

;load rl-2 with playl and play2

;load r3-4 with videol

sec. before rewinding (so that
playing before rewinding)

;read inputs

;move cppl to carry
;if not cppl then see if cpr3

;inc vcrlr (high byte if
;necessary, then
;low byte)

;move cpr3 to carry
;if not cpr3 then loop

;inc counter
;loop if 4 sec. have not elapsed

;vcr2 is now ready to be rewound. Rewind vcr 2.

mov DPTR, #0
mov A, #0
movx @DPTR, A
mov A, #10

I

;no signals for rl-2

33

returna:

returnb:

wait4:

wait4a:

wait4b:

;load r3-4 with rewind2 and videol

;update vcr3

mov A, #120
add A, 38H
mov 38H, A
mov A, 39H
addc A, #0
mov 39H, A

;vcr3=vcr3+120

;jump over the other path

jmp paths_meet

;This path is followed when vcr 2 is not filled before
;the viewer returns. In the following code, vcr 1
;starts to play, while vcr 2 and vcr 3 are recording.
;The point at which vcr 2 must rewind so that it can
;record as much as possible but still be able to
;rewind in time to switch is searched for.

;First vcr 1 is told to play.

button2: mov DPTR, #256
mov A, #0
movx @DPTR, A
mov DPTR, #0
mov A, #8
movx @DPTR, A

;load rl-2 with playl

;load r3-4 with videol

;Second the rewind point for vcr 2 is looked for.

movx A, @DPTR
mov P1, A
mov C, P1.4
jnc finishb

cjne R6, #255, finisha
inc R7
inc R6

;read inputs

;check if cppl
;if not cppl see if cpr2

;inc vcrlr (high byte if
;necessary then
;low byte)

;refigure the point at which vcr 2 rewinds
;because vcr 1 has moved

clr C ;clear the carry

34

finish:

finisha:

movx DPR, A

mov A, 32H
subb A, 3DH
mov 32H, A
mov A, 33H
subb A, #0
mov 33H, A

mov C, P1.2
jnc finishd

cjne R4, #255, finishc
inc R5
inc R4

;rpoint=rpoint-rspeed
I

;check if cpr2
;jmp to check if rpoint is reached

;inc vcr2 (high byte if
;necessary, then
;low byte)

;check if rewind point has been reached

dr C
mov A, R4
subb A, 32H
mov A, R5
subb A, 33H
jnc finish

;clear carry

;is vcr2< rpoint

;loop if this point has not been
;reached

;vcr 2 must be rewound now. Order to do this
;is stop2, play2, then rewind.

mov DPTR, #0
mov A, #2
movx @DPTR, A
mov A, #8
movx @DPTR, A

;load rl-2 with stop2

;load r3-4 with videol

;vcr3 must be given a reference count

mov 38H, #180
mov 39H, #0

;wait 2 sec. for vcr2 to stop

wait2_2: movx A, @DPTR
mov P1, A
mov C, P1.4
jnc wait2_2b

cjne R6, #255, wait2_2a

;read inputs

;move cppl to carry
;if not cppl check cpr3

;inc vcrlr (high byte if

35

finishb:

finishc:

finishd:

;vcr3=180

inc R7
wait2_2a: inc R6

wait2_2b: mov C, P1.3
jnc wait2_2

inc RO
cjne RO, #60, wait2_2

;now tell vcr 2 to play

mov DPTR, #512
mov A, #0
movx @DPTR, A
mov DPTR, #0
mov A, #8
movx @DPTR, A

;wait 6 sec to make sure v(

wait6_2: movx A, @DPTR
mov P1, A
mov C, P1.4
jnc wait6_2b

cjne R6, #255, wait6_2a
inc R7

wait6_2a: inc R6

wait6_2b: mov C, P1.3
jnc wait6_2

inc RO
cine RO, #240, wait6_2

;now vcr 2 can be rewoun

mov DPTR, #0
mov A, #0
movx @DPTR, A
mov A, #10
movx @DPTR, A

;update vcr3

mov A, #240

;necessary then
;low byte)

;move cpr3 to carry
;loop if not cpr3

;inc count
;loop if 2 sec. have not elapsed

;load rl-2 with play2

;load r3-4 with videol

cr 2 begins playing

;read inputs

;mov cppl to carry
;if not cppl check cpr3

;inc vcrlr (high byte if
;necessary, then
;low byte)

;move cpr3 to carry
;loop if not cpr3

;inc count
;loop if 6 sec. have not elapsed

;don't load anything into rl-2

;load r3-4 with rewind2 and videol

;vcr3=vcr3+240

36

add A, 38H
mov 38H, A
mov A, 39H
addc A, #0
mov 39H, A

I

;The two paths that split as to whether vcr 2
;was filled or not when the viewer returned
;meet again here. Both paths just told vcr 2 to
;start rewinding. In the following sections, the
;point where vcr 2 needs to stop rewinding is found.

;figure out the start point of its recorded section

paths_meet:clr C
mov
subb
mov
mov
subb
mov

;clear the carry
;start point=vcr2-135A, R4

A, #135
34H, A
A, R5
A, #0
35H,A

I

I

;this point is searched for

movx A, @DPTR
mov P1, A
mov C, P1.4
jnc pathsb

cjne R6, #255, pathsa
inc R7
inc R6

mov C, P1.3
jnc pathsd

mov A, 38H
cjne A, #255, pathsc
inc 39H
inc 38H

mov C, P1.5
jnc paths

mov A, 3AH
cjne A, #255, pathse

;get inputs

;move cppl to carry
;if not cppl check cpr3

;inc vcrlr (high byte if
;necessary, then
;low byte)

;move cpr3 to carry
;if not cpr4 check cpp2

;inc vcr3 (high byte if
;necessary

;then low byte)

;mov cpp2 to carry
;loop if not cpp2

;inc vcr2r (high byte
;if

37

paths:

pathsa:

pathsb:

pathsc:

pathsd:

I

;necessary then
;low byte)

mov A, 34H

cjne A, 3AH, paths
mov A, 35H
cjne A, 3BH, paths

;see if beginning of segment is
;found (vcrlr=startpt)
;loop if low byte is not equal

;loop if high byte is not equal

;the beginning of vcr 2's recorded segment has been
;found. To get out of search rewind mode it is signalled
;to play.

mov DPTR, #512
mov A, #0
movx @DPTR, A
mov DPTR, #0
mov A, #8
movx @DPTR, A

;load rl-2 with play2

;load r34 with videol

;reset count

mov RO, #0 ;count=0

;vcr 2 is allowed to play for 2 sec. then it is paused

movx A, @DPTR
mov P1, A
mov C, P1.4
jnc playb

;get inputs

;move cppl to carry
;if not cppl, check cpr3

cjne R6, #255, playa
inc R7
inc R6

mov C, P1.3
jnc play_for2

inc RO
cjne RO, #60, playfor2

;inc vcrlr (high byte if
;necessary then
;low byte)

;move cpr3 to carry
;loop if not cpr3

;inc count
;loop if 2 sec. have not elapsed

;vcr 2 should now be paused to wait for the end
;of vcr l's segment to be played out

mov DPTR, #0
mov A, #16

38

pathse:
inc 3BH
inc 3AH

play_for2:

playa:

playb:

;

movx @DPTR, A
mov A, #8
movx @DPTR, A

;load rl-2 with pause2

;load r3-4 with videol

;update vcr3

mov A, 38H
add A, #60
mov 38H, A
mov A, 39H
addc A, #0
mov 39H, A

;vcr3=vc3+60

;

;At this point vcr 2 is in pause mode, vcr 3 is recording,
;and vcr 1 is just about to finish playing its recorded
;segment. vcr 2 will stay in pause mode until 2 sec.
;before vcr 1 is finished.

;this point is
;in count

dr C
mov
subb
mov
mov
subb
mov

A, 30H
A, #60
RO, A
A, 31H
A, #0
R1, A

figured next and temporarily stored

;the carry is cleared
;count=ptime-60

;Now this point is looked for:

movx A, @DPTR
mov P1, A
mov C, P1.3
jnc pauseb

mov A, 38H
cjne A, #255, pausea
inc 39H
inc 38H

mov C, P1.4
jnc pause

cjne R6, #255, pausec
inc R7

;get inputs

;mov cpr3 to carry
;if not cpr3, check cppl

;inc vcr3 (high byte if
;necessary, then
;low byte)

;move cppl to carry
;loop if not cppl

;inc vcrlr (high byte if
;necessary, then

39

pause:

pausea:

pauseb:

;low byte)

mov A, R6
mov P3, RO
cjne A, P3, pause
mov A, R7
mov P3, R1
cjne A, P3, pause

;Play point for vcr2 has b
;vcr 2 to play is given nex

mov DPTIR, #512
mov A, #0
movx @DPTR, A
mov DPTR, #0
mov A, #8
movx @DPTR, A

;see if play point is reached

found. The command for

;load rl-2 with play2

;load r3-4 with videol

;reset count

mov RO, #0 ;count=0

;The actual switching doesn't take place here
;since it takes play a little time to get up
;to speed. Switching does take place after a
;2 sec. delay.

movx A, @DPTR
mov P1, A
mov C, P1.3
jnc switch

inc RO
cjne RO, #60, switch

;get inputs

;mov cpr3 to carry
;loop if not cpr3

;inc count
;loop if 2 sec have not elapsed

;The switch point has been reached. The outputs are
;switched and vcr 1 is stopped.

mov DPTR, #0
mov A, #1
movx @DPTR, A
mov A, #16
movx @DPTR, A

;

;load rl-2 with stopl

;load r3-4 with video2

;update vcr3

40

switch:

inc R6pausec:

mov A, 38H
add A, #60
mov A, 39H
addc A, #0

;vcr3=vcr3+60

;figure play time of vcr 2 (for vcr 3 to use)

clr C
mov A, R4
subb A, #240
mov 30H, A
mov A, R5
subb A, #0
mov 31H, A

;clear carry
;ptime=vcr2-240

;figure rewind point for vcr 3

dr C
mov A, 30H
subb A, #12
mov 32H, A
mov A, 31H
subb A, #3
mov 33H, A
mov A, 32H
subb A, 3AH
mov 32H, A
mov A, 33H
subb A, 3BH
mov 33H, A
mov A, 32H
mov B, 3DH
mul AB
mov 32H, A
mov RO, B
mov A, 33H
mov B, 3DH
mul AB
add A, RO
mov 33H, A
mov A, 32H
add A, #239
mov 32H, A
mov A, 33H
addc A, #1

;dear carry
;rpoint=(ptime-780-vcr2r)rspeed+495
;ptime-780

;ptime-780-vcr2r

;(ptime-780-vcr2r)rspeed

;temp store overflow

;add in overflow

;+495

/

41

mov 33H, A

;the program loops here until the user pushes the stop button

mov A, 3CH ;cycle=cycle+l max 2
cjne A, #2, cyclel
mov 3CH, #0
jmp loop ;loop

cyclel: inc 3CH ;inc cycle
jmp loop ;loop

end

42

Appendix B: Hardware Schematics

I-. :.-

I- I·r-:r

I j.. 1.1,

I I I~/ ·)-'~1'l~

�-4 -4 .� � LU
�L. .X I:k�

* 1 II
* I
I I I I I
I I I Ii&

I -,..I I I I I
I I I I

i3 I If r ' il

.I

-I
,¥l ._. _ _ _ .. . 1.~t- = I.. _ - .. . -

tI _ " "t 1

I I

I I I
1 1 1 1 1 I ~ ~ c

I I I I
I I I I

I II.

'I
Lu =

Ca C*K 9 . I? ~L : 0
r V ,llr A.1.L:

= = = = = = = = , L

i7- : i~ - = =
t.I) :) ;) 3) S) 5) :) SlAWWWWWznw

I IIIIIIIII
III

II

I II I II III
I II

I
I I
I I

I I , _. , -. ..

- I
iI o- 1 ._

-J r-l - , --

I I

i i
I II I

I I.....I....I.. I..�.i I

I
I rl

=1 rbi
I CrI

., c-t

0

.4i`

I ,-
Il

IjI .1

I I ; C. G G

-I I II l
1 oI =1

. _ *C.- _ _ _

I i T., t 9, I
'"'' I ' .

I
.

a-4

4

4

4

1 1 1 1
I I I I" I' I I' ' V'

1111 I ~ -L f'I ' 1 1 1 1 I~~~~1·
111111~ ~ c

I I I I

1 1 1 1 1 1 ~ ~ ~ ·L

II I

I O0S
C ;

4

4

4_4

q:

C0S,cfm0

r4

1.

4

Ir Ila

II
I I

. I I

JI · 1I_- IZ twi/ia~I--_1. 2. ru

I III~~~~~~~~~~~~~~_t~I~~ I
- -I~'1 -- "lc tLIrDF ~) 1(

I':, Itl= i~~l~f

I -*~- I i t; iI,.~ -.. c1i ~ v n~ rl r, .t ! I I I I t I I~.tnlstlu~alm~cl-.lam!-I-~l,4 I -~lualsll ~,lW Il- I-l--l--I-'llOto~t~

I

I 'Iut IM_ ._ § _ P,
I _ _

t{. A ,

Ir _, D

_

T 'U' T

I t IL.-I-

ra-il-
I-
Iz
IL=

I I II I

Io ^ .I Ii I1 I
vI I I,,, . , I

.~ .,R ' .' .6-'- -'

f

f
c0 1 I1 I- i- I 1 I II I lu' II II
I' I Io 1° 10 10 10 10 10 I' Z

1 _l l
I 5- -i i-; -I·I , I , -. -- · I~~1

I I I I I i I I .-aT
I '- 1 ' I Il It'I')'10 -l
, , 1 4'I * I II~~~~I I I -g .

.I l Il

t y 171

,,-,I ~ ~ ,..,r-l I

-' 1 rk ~,I
'

I I ' t I
".1 I Ir" cr ''I I I

.. I I .Ithlm I
'tr'r'

4

4

a

,.... ..

iL;

.I....-...-

-

i Z r
-

-

- m

!

| --·I do I I ! ! I l Il l l
z '

-

I_

l l

I _

l I 1

I _

l

. I _

l

1, .

.I ._I

l

I _.nllro 11 | . _ . | _ | . t _ | _tSlIi.^lrl,I-nlstimllœnl.nlrl.alinlstlenifsallleoIrsu1r I;,, - 11 lu i~l 11 ; i ; i ̀ i vrl -;"-I, I-, i u r· i r P- ri C4i -r i' l
m . .l I I . Iulr

,

$r

I

I

11
.iI
11

Ad

'P

l!

- ! I . . .

i -- i I
I -II
I

r_
1..F

, -'
., ''

I
I .. . "'' '"'~'

ll

l

I

uu- eqC. Ca.

Q L

In (n

i i
I I

I II Io c

I IirioY~~~,~~
I I~'' '~~

1? r

Q!
x xi
U) -r aCa. Ca

I I u"- I D I. W I CIA I

U u u u u u u uIVICO IC11

C4 c

· o

3 '

i
I I
I I
I I
I II I

I I

1ioll r-I olm"I m! l
..- ~--'.-'J-'i-",-.- ?

!II i~I iri~lnl~(trl·~lcl I I·I i .. I i :I~h~lE vI~ [n I.-, I- ,. .. , I= I~, I.-, ~I,-, 1,, ,-,1 i" IY I, , I,- , I,'1I,-
~l I , n[, = ,, ~ =J ~i ~i .. i .41~l i ..eI i

1 v Im a1%' I= al v I=) ¢1 v e
cL-t4 m , -,nco V La r- ,wI "1,.4 s, -,4. m'q'unDr-.I,- (I .l,. cD,-,~' m'~'~; ' -JU.' OD 0 o~U - Iw

I - - - - - -I I -- -' - - - - .. - . .~' - - -_ A- - - - . - - - - .- - I -I - '~- -'- - " ::';" ~if:''11~l
I I I I I I I I .I.

_1 ,.I L, . h .,I,,I, 1-

I. . . . II I
I i
I I

I I I I I I I I 1 .9-1 ______ I,,,I. h..I.. .
I I

I I
I I
I I

I ¢l II .I . -. .A

i~i~i i1~fF

II_ _ l--,.:-_, -itl1- - -- -- 1I
I I I I- lTl

a'1(1 M~ IM I..- I1z
- ~ I

0: C: ~ a- I I I- - ' III

I z II

I - U. A,- i ¢,
PZ~~~~~~~~~IL ~ ~ ~ l CL

ii it a a a l..'.. · ..,

~~~~~~~~~~~~~~~~~~~~~~~~. ,i.. i i z i i i 
t t I I

-a=5~ ~ ~ ~ ~ a

TlT~'"1"1'I'~t-

I I I I II I

t u t ! N "
aN

(N 

Z1- 5 ra I
o
Ca 0 0 
U.-L.5

IIIIIIIIII I I

-~ aN- CVCa Ca. Ca.

I I I I I I I I 
,.., I,, I .? -h I . I, ,,11

-I---- I
I I
I I
I I

I I

I I I I I I I, .
,I I -a-1 -I l I. I Zr h4m I;;

I
I

II 

M
0

- c -z~wv .. 1~-rr

,o.,- -'LU

r.-,

5

.. ,Z2~
.. 

I I
I I
I I
I 1

II

P;

1=
i.

o a-~~~~~~~~~I.

0- a-
afl~~~~ ~ ~ ~ ~ ' *j, ';. ..

a an a a a a m (I Z 'Z ' '.

I .I I I i a - " 'I I.~ .l,... I - -- " ' I I I II IT' = ..-3l~~l~,i._ - i -m.-
I ~~~~~~~~~~~~I1 ~ -I I IZrI-5~- 1 . .

.I.'- I- eL.

1''..I ... . i
I I I I I I I I --.cI , I~~7 i .. CL i · ·S~~~~~~~~ ,

~,~ t .
('4 ,-4 --- i · I

- .i a 

(a4 ' ,- - -

- ..,'T -.

L. E- . -* .. -

- - ' 

-3 - - - 5 r·
- -. l .

1.,1

iZ LL

z i

I
I]

to I
I

I
Q I.,

ico~iillr UV l
4

i

I

lu - - - - - - . - - __ I - - -- -- - -- · - . . - - . . . 1. . . .

A I

!r

II
I
II

I
I

II ,, ,

I-'.

t/i

J1

1.X!

t _ -' _. _L:__;_.i

II

II

II

II

- I

I

I
"1

i
I

I

I



" I I I I

zf I o-. I, )

al L-z IZ ·

I I "'"i ~
I kol l

- I II
I if L

- I~~~~~L

w j

I

I i
I - I I t I

V I I . , 
_I = , I - -_ I ;-5, A w _=.

I V 9-i-----,II
' I. 'I ( O I I

I W Ik 0f 

'I IY Y I
- (.I1I

5, 1 ~II c

Nj@ - j - _ ' "
'1~z~ I= "1

I -I -u - I- ' aE 

I I'j- o I II'I-ocI
~ mljll ' j
- ' '' . ' -

+ : If
(s _ z , i { | IS | h.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I 

II z, ! 

e.¢- , |- 'jI I ., - 7 If ..

Il- - I

I I

*1

'fI f~~~~~~~~~~-

~~~~I - -I·~

- - o I OL

_ - I I tI i
- 1 --oo -I

I tI

-v;j

1t

.'
_

_t _i. -

U_ rr.
X _ ,_,c

_ :T ~ ~ -

r i~~~~·
r; i~~f

o

i CtI I . I/

' r4 i s

!I -Ieq= I
,I _---L- ~ , I _

I CL '! - - 15 r

_1 ,,, z,> I-, .

~~~j . ..

, Q 

I {J r.

I .. .

I/ V r h '
I I

0, I ·i' I I\

I I I
-,: 

I I _

;

-

(c.

I ~ L -I, -- - I =z I= 

I _

1. ,z
_ !

iI
! oz-- · · ·

C 



L
0 ,o

- z

u) -
I 

I t 
L I~~~~~~~~~~~~~~~~~I _l I-e K 

.t l--t jjZ L-~-

_ ~l '_ T , I _ ~4' .

f.~, I o _* I~~~I

I=J"m
I ~ cz

I .

t

t

i

'e

i I I
I t

l Y - '1 I-l))J
irI - ,- .l

--*i . I_ 
-

t _ (t . . . }~

s -'1 -- I

* .. Z.. W J 
- ' 

.:o -l --tu~t~ 4 , I lt-- 

--i'- I--l-10-----i--t-J ¢- j ,~'~ '"1' ~l u ) ,.',~-C.-r ! ~ =lu~~ 

I I I Ii t Si

+--ert-' III b [ s
! r p I a -

r

*i-r
'7" 

L E
:: C. :

i- L-L



Appendix C: Pal Programs



MODULE vcrcntl
FLAG '-R3';
TITLE 'Control pal for the television pause function

Mike Truog
Electronic Publishing Group May 23, 1989'

vcrpal

"inputs
clk
switch
wr
reset

DEVICE 'P16R8';

PIN 1;
PIN 2;

PIN 3;
PIN 4;

"outputs
WRIN PIN 1!
SYNCWR PIN
CNTLON PIN
ST PIN 16=
LD1 PIN 14-
LD2 PIN 13 =

9 = 'reg, feed_pin';
18 = 'reg, feed_pin';
17 = 'reg, feed_pin';
'reg, feed_pin';
- 'reg, feed_pin';
= 'reg, feed_pin';

" constants

H, L, X, C, Z = 1, 0, .X., .C., .Z.;
h, 1, x, c, z = 1, 0, .X., .C., .Z.;

Equations

WRIN := !wr;
SYNCWR := !wr & !WRIN;
CNTLON := SYNCWR & switch & !CNTLON & !reset

# CNTLON & !switch & !reset
# CNTLON & !SYNCWR & !reset;

LD1 := !ST & SYNCWR;
LD2 := ST & SYNCWR;
ST := !ST & SYNCWR & !reset # ST & !SYNCWR & !reset;

"WRIN and SYNCWR synchronize WR (write from the microprocessor)
"so that it is only seen for one clock pulse.
"STATE is a two state state machine. It toggles so that
"the first two registers are loaded on one write
"then the second two are recorded on the next write and back again.



test_vectors 'Test Synchronization and Load Signals'

( cdk, reset, switch, wr ] -> [ WRIN, SYNCWR, CNTLON, LD1, LD2, ST ])

[C, H, L,H ]-> L, L, L, X,X,L ];
[C, L, L, H ] -> [ L, L, L, L, L, L ];
[C, L, H, H]-> [L, L, L, L, L,L ];
[C, L,H, L] ->[, H, L,L, L, L ];
[C,L,H,L]-> [H, L, H, H, L, H];
[C, L, H, L]-> [H, L, H, L, L, H ];
[C, L, H, L] ->[H, L, H, L, L,H];
[C, L, L, H ]->[L, L, H, L, L, H ];
[C, L, L, H]->[L, L, H, L, L, H ];

[C,L,L, L]-> [H,H,H,HL,L,H];
[ C, L, L, L ]->[H, L, H, L, H, L ];
[ C, L, L,L ]-> [ H, L, H,L,L, L, L];
[C, L, L, H]-> [L, L, H, L, L, L];
[ c, L,L, H ]-> [ L,L,H, L,L L];

END vcrcntl



MODULE vcrsync
FLAG '-R3';
TITLE 'Synchronization pal for the television pause function

Mike Truog
Electronic Publishing Group May 23, 1989'

vcrpal2 DEVICE 'P16R8';

"inputs
clk PIN 1;
cprl PIN 2;
cpr2 PIN 3;
rd PIN 4;
reset PIN 5;

"outputs
READYR1 PIN 19 = 'reg, feed_pin';
OUTR1 PIN 18 = 'reg, feed_pin';
USEDR1 PIN 17 = 'reg, feed_pin';
READYR2 PIN 16 = 'reg, feedpin';
OUTR2 PIN 15 = 'reg, feed_pin';
USEDR2 PIN 14= 'reg, feed_pin';

" constants

H, L, X, C, Z = 1, 0,.X., .C., .Z.;
h, 1, x, c, z = 1, 0, .X., .C., .Z.;

Equations

READYR1 := !cprl # READYR1 & !rd;
OUTR1 := !READYR1 & !USEDR1 & !reset # OUTR1 & !rd & !reset;
USEDR1 := OUTR1 & !rd & !reset # USEDR1 & cprl & !reset;
READYR2 := !cpr2 # READYR2 & !rd;
OUTR2 := !READYR2 & !USEDR2 & !reset # OUTR2 & !rd & !reset;
USEDR2 := OUTR2 & !rd & !reset # USEDR2 & cpr2 & !reset;

"This pal synchronizes input signals such that the data is
"valid a short time after the signal is first seen, but is
"not enabled until the microprocessor executes a read command.
"Data is held stable for the length of the read plus a short
"time after the read is finished. The data is then unasserted
"and is not reasserted until after the signal goes low (thus it
"only outputs each signal once.



test_vectors 'Test Synchronization'

([ clk, cpr2, rd, reset I -> [ READYR2, OUTR2, USEDR2 ])

[C,L,L,H -> [H,L,L];
[C,L,L,L]-> [H,L,L];
[C,H,L,L]-> [H,L,L];
[C,H,L,L]-> [H,L,L];
[C,H,H,L]-> [L,L,L];
[C H,H,L]-> [L,H,L];
[C,H,H,L]-> [L,H,L];
[C,H,L,L ]-> [L,H,H];
[C,H,L,L]-> [L,H,H];
[C,H,H,L]-> [L,L,H];
[C,H,H,L]-> [L,L,H];
[C,L,H,L]-> [H,L,L];

[C,L,H,L]-> [H,L,L];
[C,H,L, L-> [H,L,L];
[C,H,L,L]-> [H,L,L];
[C,H,L, L-> [H,L,L];
[C,H,H,L]-> [L,L,L];
[C,H,H,L-> [L,H,LI;
[C, H,H,L]-> [L,H,LI;
[C, H, L,L]-> [L,H, H;
[C,H,L,L]-> [L,H,H];
[C,H,H,L]-> [L,L, H;
[C,H,H,L -> [L,L, HI;
[C,L,H,L]-> [H,L,L];

[C,L,H,L]-> [H,L,L];
[C,H,H,Ll-> [L,L,L];
[C,H,H,L]-> [L,H,L];
[C,H,L, L]-> [L,H, H;
[C,H,H,L -> [L,L,H];
[C,H,H,L -> [L,L, H;
[C,H,L,L]-> [L,L, H];
[C,L,L,LL]-> [H,L,L];

END vcrsync



Acknowledgements

To Walter for providing me with a project that I could enjoy the long nights I
spent working on it and for not giving up on me.

To Foof for helping me out in every way possible.

To Wad for answering a whole range of stupid questions.

To Scott F. for all the advice during all stages of the design and debugging.

To my parents, who wanting to see me graduate, gave me alot of support and
encouragement.

To Alexis for everything. You made the tough times much better.



MlTLibraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.5668 Fax: 617.253.1690
Email: docs@mit.edu
http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY
Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

Some pages in the original document contain pictures,
graphics, or text that is illegible.


