
A COMPARISON OF ADAPTIVE PREDICTORS IN SUB-BAND CODING

by

PAUL NING

Submitted to the Department of
Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements

for the Degrees of

Master of Science

and

Bachelor of Science

at the

Massachusetts Institute of Technology

September 1987

© Paul Ning 1987

The author hereby grants to MIT permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature of Author
Department of Electrical

Certified by
Dennis

Departmen of Elertrical

Engieering and Computer Science
August 7, 1987

Klatt, Senior Research Scientist
Engineering and Computer Science

,Thesis Supervisor

Accepted by_ _

Department of Electrical

i

Arthur C. Smith, Chairman--.

Engineering and Computer Science

MASSACHUSEtTS INSUTITE
OF TECHNOLOY

MAR 2 2 1988

U0RA -

Archives

A COMPARISON OF ADAPTIVE PREDICTORS IN SUB-BAND CODING

by

PAUL NING

Submitted to the Department of
Electrical Engineering and Computer Science
on August 7, 1987 in Partial Fulfillment
of the Requirements for the Degrees of

Master of Science and Bachelor of Science

ABSTRACT

Adaptive Differential Pulse Code Modulation (ADPCM) and Sub-Band
Coding (SBC) are two efficient medium rate speech coding schemes. This
study investigates the benefits of applying the adaptive predictive
techniques of ADPCM to the encoding of subbands in SBC. The
performances of two well-known predictors, the least-mean-square
transversal and the least-squares lattice, are compared in the context
of an SBC-ADPCM system.

A floating point simulation is written for the sub-band coder,
which includes Quadrature Mirror Filters, dynamic bit allocation, an
adaptive quantizer, and adaptive predictors. Both predictive and non-
predictive versions of the coder at 16 kbps and 24 kbps are used to
process four phonetically balanced sentences spoken by two males and two
females. At each bit rate, the voice qualities of the non-predictive,
least-mean-square, and least-squares coders are judged with objective
signal-to-noise ratio measures as well as subjective listening tests.

The simulation results indicate that both predictors exhibit
similar behavior in tracking the subbands. However, overall signal-to-
noise ratio improvements due to prediction are very small, typically
less than 1 dB. Listening tests also support the conclusion that sub-
band coding quality is not significantly enhanced by either the least-
mean-square or least-squares algorithms.

Thesis Supervisor: Dennis Klatt
Title: Senior Research Scientist

Department of Electrical Engineering
and Computer Science

ii

ACKNOWLEDGEMENTS

I would like to thank ROLM Corporation for supporting this
research and providing a "Great Place to Work" for several rewarding co-
op assignments. In particular, I am grateful to the members of my
group, Tho Autruong, Kirk Johnson, Dan Lai, Mike Locke, and our manager,
Ben Wilbanks, for their helpful comments during the course of this work.

I would also like to thank Dennis Klatt of MIT's Department of
Electrical Engineering and Computer Science for supervising this study.

Most importantly, this thesis is dedicated to my parents and my
brother for their love and encouragement throughout my life.

iii

TABLE OF CONTENTS

PAGE

ABSTRACT ii

ACKNOWLEDGENENTS .. iii
TABLE OF CONTENTS .. iv

LIST OF FIGURES vii

LIST OF TABLES .. ix

1. INTRODUCTION .1...

1.1 Background 1
1.1.1 Digital Speech 1
1.1.2 Pulse Code Modulation 4
1.1.3 Coder Performance Measures 6
1.1.4 Differential Pulse Code Modulation 7
1.1.5 Sub-Band Coding 11
1.1.6 Sub-Band Coding With ADPCM 15

1.2 Problem .. 17
1.3 Goals .. 19
1.4 Approach .. 19
1.5 Equipment .. 19

2. DESIGN OF CODERS .. 20

2.1 Overview 20
2.2 Quadrature Mirror Filters 21

2.2.1 Two-Band Quadrature Mirror Filter 22
2.2.2 Tree vs. Parallel Implementation 24
2.2.3 Filter Design 28

2.3 Bit Allocation .. 36
2.3.1 Adjustment Algorithm 37
2.3.2 Average Bits Per Sample 39
2.3.3 Bit Allocation With Prediction 40

2.4 Adaptive Quantizer 40
2.4.1 Step Size Adaptation 40
2.4.2 Effects of Variable Bit Allocation 42
2.4.3 Sample-to-Sample vs. Block Adaptation 43

2.5 Adaptive Predictors 44
2.5.1 LMS Transversal 44

2.5.2 LS Lattice .. 46
2.5.2.1 Forward and Backward Prediction 47
2.5.2.2 Recursions 47
2.5.2.3 Time Initialization 49
2.5.2.4 Order Initialization 49
2.5.2.5 Predictor Output 49
2.5.2.6 Equation Summary 50

iv

2.5.3 Prediction and Bit Allocation

3. SIMULATION RESULTS

3.1 Test Overview
3.2 QMF Performance
3.3 Bit Allocation Stati
3.4 Quantizer Parameters
3.5 Predictor Optimizati

3.5.1 Figure of Meri
3.5.2 LMS Optimizati
3.5.3 LS Optimizatio
3.5.4 Frame-to-Frame

3.6 Predictor Performanc
3.7 Coder Performance

3.7.1 SNR and SSNR P
3.7.2 Listening Test

3.7.2.1 Test F

3.7.2.2 Test R

4. DISCUSSION

..................................... ,53

... 53
Lstics 54;.oo o . ·. .o . .. ·. 56
,on 56

it 56

,on 57
n 58
Predictor Performance 59
e With Quantization 62
....................................... 66
erformances 66
s 72
ormat 72
esults 73

74

4.1 Sub-Band Coding Without Prediction
4.2 Optimal Predictors

4.2.1 Optimal Order
4.2.2 LMS vs. LS
4.2.3 Cases of Beat Prediction
4.2.4 Prediction With Quantization

4.3 Sub-Band Coding With Prediction
4.3.1 Trends With Order
4.3.2 Objective Prediction Gain
4.3.3 Subjective Prediction Gain

S. CONCLUSIONS

REFERENCES

APPENDIX A: QMF COEFFICIENTS

A.1 Half-Band Filters
A.2 Parallel Bandpass FIlters

APPENDIX B: SOFTWARE DESIGN

B.1 Main Line
B.1.1 Walkthrough
B.1.2 Variables

B.2 Quadrature Mirror Filter Bank
B.3 Bit Allocation
B.4 Adaptive Quantizer
B.5 Adaptive Predictors

B.5.1 LMS Transversal
B.5.2 LS Lattice

B.6 Utilities

v

52

53

e.................. 74
........................ 75
........................ 75
........................ 75
........................ 76

...................... 76
........................ 76
........................ 76
........................ 77
........................ 79

80

82

86

86
88

100

100
100
103
104
106
107
108
108
108
109

B.6.1 Parallel QMF Bank Generator 109
B.6.2 Parallel QMF Truncation 111
B.6.3 Signal-to-Noise Ratio Calculation 111
B.6.4 Segmental Signal-to-Noise Ratio Calculation 112

APPENDIX C: PROGRAM LISTINGS 113

APPENDIX D: TEST DATA .. 167

D.1 Bit Allocation 167
D.2 Frame-to-Frame Predictor Performance 169
D.3 SNR and SSNR Performances 178

vi

LIST OF FIGURES

PAGE

1. CHAPTER 1

1-1
1-2
1-3

1-4
1-5

1-6
1-7
1-8

1-9
1-10
1-11
1-12
1-13
1-14

1-15
1-16
1-17

Speech Waveform
Types of Signals
PCM
Mid-Tread and Mid-Rise Quantizers
Quantizer Noise
B-law vs. linear
Reduced Quantization Noise With Smaller Sign
DPCM
Transversal Predictor
Lattice Predictor
Sub-Band Coding
Integer-Band Sampling
Decimation of a Subband
Interpolation of a Subband
Practical Bandpass Filters
SBC-ADPCM
CCITT Predictor

........... . 24

........ 5

.......... ; 4

. . e.....,.... 4

................ 6
lal Variance . 8

·8

. 9

... 9

................ 12

...... I......... 13

................ 13

............... .. 14

............... 15

............... 16

............... 17

2. CHAPTER 2 20

2-1 Two-Band QMF
2-2 Two-Band Sub-Band Coder
2-3 Tree Configuration (4-Band) ...
2-4 Tree QMF, Freq-:ency Domain (4-Ban
2-5 Multiplying Stage Responses ...
2-6 Parallel QMF (4-Band)
2-7 Half-Band Filters
2-8a Normalized Half-Band Filters (St
2-8b Normalized Half-Band Filters (St
2-8c Normalized Half-Band Filters (St
2-8d Normalized Half-Band Filters (St
2-9 16-Band QMF Bandpass Filters
2-10 Composite Response, 16-Band QMF
2-11 n(i) vs. i
2-12 Initial Allocation
2-13 Effect of Lowered Scale
2-14 5-bit Quantizer
2-15 Variable Bit Quantizers
2-16 Block Companded PCM
2-17 LMS Transversal Predictor
2-18 LS Lattice Predictor

22
.............. 23
.......................... 25
d) 26

.......................... 27
.......................... 28
.......................... 29
age 1) 31
age 2) 32
age 3) 33
age 4) 34
.......................... 35

......................... 36
.......................... 37
.......................... 38
.......................... 39
..........................41
.......................... 43.......................... .44
......................... 44
.......................... 46

3. CHAPTER 3

3-1 Average Bit Allocation (four sentences)

53

55

vii

1

3-2 Frame-to-Frame Prediction Error
3-3 Frame-to-Frame Prediction Error With 16 Kbps Quantization
3--4 SNR and SSNR (DARCI)

SNR and
SNR and
SNR and
SNR and

SSNR
SSNR
SSNR
SSNR

(BETH)
(GLENN)
(MIKE)
(all speak

....................................

. ,.. I

....................................

,....................................

ers)

4. CHAPTER 4

none

5. CHAPTER 5

none

A. APPENDIX A

none

B. APPENDIX B ..

B-1 SBC Block Diagram
B-2 CODN, DEC* Block Diagrams
B-3 Inverse QMF Strategy
B-4 LS Lattice Variable Dependencies
B-5 Lowpass and Highpass Ranges, 4-Stage QMF
B-6 SNR File Buffers ..

C. APPENDIX C ...

none

D. APPENDIX D

D-1 Frame-to-Frame Prediction Error
D-2 Frame-to-Frame Prediction Error
D-3 Frame-to-Frame Prediction Error
D-4 Frame-to-Frame Prediction Error

: DARCI

, BETH
: GLENN

: MIKE

viii

3-5
3-6
3-7
3-8

60
64
67
68
69
70

71

74

80

86

100

101
102

105

109
110
112

113

167

................. .170.................. .172

.................. 1174
.................. 176

LIST OF TABLES

PAGE

1. CHAPTER 1 . .. 1

none

2. CHAPTER 2 20

2-1 Recommended 5-bit Quantizer Multiplier Values 42
2-2 LS Lattice Equations 51

3. CHAPTER 3 ... 53

3-1 Isolated QMF Performance 54
3-2 Coder Performance With Constant Bit Allocation of 5 56
3-3 Optimal Reduction of Signal RMS (LMS Transversal) 58
3-4 RMS Reduction for Different Orders (LMS Transversal) 58
3-5 Optimal Reduction of Signal RMS (LS Lattice) 59
3-6 RMS Reduction for Different Orders (LS Lattice) 59
3-7a Signal RMS Reduction With 16 Kbps Quantization

(LMS Transversal) 62
3-7b Signal RMS Reduction With 16 Kbps Quantization

(LS Lattice) ... 62
3-8a Signal RMS Reduction With 24 Kbps Quantization

(LMS Trarsversal) 63
3-8b Signal RMS Reduction With 24 Kbps Quantization

(LS Lattice) 63
3-9 Listening Test Pairs 72
3-10 Listening Test Response Options 72
3-11 Listening Test Results 73

4. CHAPTER 4 ... 74

4-1 Quantization Degradation (No Prediction) 74
4-2 BCPCM Quantization Degradation (No Prediction) 75
4-3 Quantization Effects on Prediction 76
4-4 SNR and SSNR Prediction Gains 77

5. CHAPTER 5 ... 80

none

A. APPENDIX A .. 86

none

B. APPENDIX B 100

B-1 Filter Index Representations 111

ix

C. APPENDIX C

none

D. APPENDIX D

Subband
Subband
Subband
Subband
SNR and
SNR and
SNR and
SNR and

Characteristics and Bit Allocation
Characteristics and Bit Allocation
Characteristics and Bit Allocation
Characteristics and Bit Allocation
SSNR Performances (DARCI)
SSNR Performances (BETH)
SSNR Performances (GLENN)
SSNR Performances (MIKE)

(DARCI)
(BETH)
(GLENN)
(MIKE)

167

...... 167
....... .168
...... .168

....... .169
....... .178
....... 178
....... 179
....... .179

x

D-1

D-2
D-3
D-4
D-5
D-6
D-7
D-8

113

1

CHAPTER 1 - INTRODUCTION

The advent of modern, powerful computers has made possible the
practical implementation of a wide variety of digital signal processing
techniques. One of the many areas of application for this technology is
speech. Speech enhancement algorithms can improve voice signals
degraded by noise and help to remove echo effects. Methods for time
scale modification of speech enable recorded sentences to be played back
at variable rates while maintaining intelligibility. Speech synthesis
techniques allow machines to talk and speech recognition schemes enable
them to identify spoken words. Speech coders, in general, convert one
representation of speech into another. Compression algorithms are
coders which aim to reduce storage requirements or lower transmission
rates.

This thesis investigates a particular type of digital speech
compression method. In particular, our goal is to evaluate and compare
the performances of two adaptive predictors when used in a sub-band
coder. We will implement different versions of the sub-band coder,
process several sentences with them, and perform objective and
subjective tests on the results.

Sub-band coding 1,2] is a recently developed frequency domain
method for compressing speech. Adaptive prediction [3], which refers to
the estimation of current signal values based on past information, is
another technique used for speech compression. In this thesis, both
methods are combined in the same coder. The details of our coder will
be presented in Chapter 2. As an introduction, we will briefly review
some of the fundamentals of digital speech processing.

1.1 BACKGROUND

1.1.1 Digital Speech

Speech signals are inherently analog i.e. continuous in both time
and amplitude (Fig. 1-1). However, there are many advantages to
representing such a waveform as a sequence of binary digits (bits), each
of which can take on only two values. Such a signal is known as digital
and is the form of data used in all modern computers. Since bits are
restricted to just two discrete levels, digital signals degraded by
additive noise may be exactly recovered if the noise magnitude is below
a certain threshold. Analog representations do not have this property.
Digital data is also easily stored, generated, and manipulated.

2

I~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I i~~~~~~~~~~~~~~~~~~~ ,~

ID1~ I . ', I 'I I

"CHECK IT OUT"

Figure 1-1. Speech Waveform

There are two distinct operations involved in digitizing a
waveform - sampling and quantizing (Fig. 1-2). Sampling refers to the
measurement of a signal only at specific time instances. These time
instances are typically chosen to be multiples of a fundamental sampling
period, T. Waveforms which have been sampled are known as discrete-time
signals. Quantization constrains the amplitude of the signal to only a
finite number of values. A discrete-time waveform which has also been
quantized is digital.

86
7A

/~~~~ 76

t/

ZA

I j AlI0
0a

t :

I

) T ZT 3T 4T T 0 T 2T 3T 4-T ST

Analog Discrete-Time Digital
(sampled) (sampled and quantized)

Figure 1-2. Types of Signals

A desired feature of the analog-to-digital conversion process is
that it preserves the information in the original signal i.e. one can
recover the analog waveform from the digital data alone. This is, of
course, not true in general since sampling throws out all values between
samples and quantizing reduces the accuracy of the samples that are
saved. However, it has been proven that under certain conditions the
analog signal is nearly completely recoverable from the digital samples.

This is a fundamental result of signal processing theory and is
known as the sampling theorem. It states that any bandlimited signal
(no frequency components higher than some B Hz) can be reconstructed
from periodic samples alone provided that the sampling rate is at least
twice B. If the sampling rate is too low, the reconstructed output will
be characterized by what is known as 'aliasing' distortion. In
practice, sampling of an analog signal is preceded by a lowpass filter
stage which effectively constrains the bandwidth B of the analog signal
to half of the sampling rate. This stage is sometimes referred to as an
anti-aliasing filter. The quantizing of the sample values introduces an
approximation error which can be made as small as desired by increasing
the number of quantizer levels.

For a complete and rigorous exposition of the sampling theorem and
digital signal processing fundamentals, see [4] or [5].

.

�

4

1.1.2 Pulse Code Modulation

The sampling theorem guarantees that if an analog signal is
sampled often enough, the samples alone are sufficient to reconstruct
the signal. However, there are many ways to digitally code the samples
[6]. The first and most straightforward is Pulse Code Modulation (PCM)
[7], which is simply an amplitude quantizer.

In PCM, a binary code is assigned to each quantization level.
Input samples are identified with one of these levels and represented by
the corresponding sequence of bits. In this way, successive samples are
translated to a stream of O's and 1's. Figure 1-3 shows a three bit
quantizer that distinguishes between eight different amplitude levels.

x t Quant;zer> (n)
Sarnptts

011

00:1
ooi

110

101
100

tT 3 , ST CTE)/ i4T 1\ -

\jI

S(o) = 01o
S(1) = Oil
x(2)= 111
xy(.3)= ill
x%(4)=001

xC(5)= 110
N, (0 -III

Figure 1-3. PCM

The basic quantizer has levels which are equally spaced (linear)
and constant with time (fixed). The distance between adjacent levels is
known as the step size. Hence, linear, fixed quantizers are those with
uniform, constant step sizes. Quantizers may also be classified (Fig.
1-4) based upon whether zero is a valid level (mid-tread) or is halfway
between levels (mid-rise).

Quac t izt;orn
I vel

Quo,ntr-Z1ov
Levdt

SignAC
Amplitde

Mid-Tread

Amplittude

Mid-Rise

Figure 1-4. Mid-Tread and Mid-Rise Quantizers

l a

I

7J_1_I

Approximating the continuous amplitude range of a signal with a
set of discrete levels can result in two types of errors - clipping and
rounding (Fig. 1-5). Clipping occurs when the input falls outside the
range of the highest and lowest quantizer levels. Rounding takes place
when the signal falls between two levels (rounding error is sometimes
referred to as granular noise).

.I . I I

Hi Vest
QuQ-Nt;zaon -- -

Level-

t , s-

%*ow izIst~/
Lowes J

QLCft1vrCn - - -
Levzt

Clipping Rounding

Figure 1-5. Quantizer Noise

PCM performance can be improved by designing quantizers which are
adaptive (not fixed) or non-linear. Adaptive quantizers [8,9] are
designed to take advantage of changes in signal variance over different
segments of speech (the short-term statistics of speech are said to be
non-stationary). In particular, step sizes are allowed to adjust with
time in order to minimize clipping and rounding errors. To reduce the
incidence of clipping, the step size of the quantizer should increase
with the variance of the input. Likewise, granular noise can be
lessened by decreasing the step size for smaller short-term variances.
In effect, the quantizer adapts itself to match the input range.

Non-linear quantizers are commonly used in telephony applications.
The so-called Np-law curve 6] represents a combination of linear and
logarithmic relationships between quantization level and signal
amplitude (Fig. 1-6). The motivation for this is based on the fact that
a given amount of noise is less disturbing if the original signal level
is high. Thus, for larger inputs, we may allow greater quantization
noise, so we space the levels further apart. Correspondingly, for low
signal amplitudes the step size is smaller to reduce the quantization
noise. In terms of signal-to-(quantizing)-noise ratio or SNR, to be
defined shortly, the -law curve maintains a relatively constant SNR
over a wider range of input amplitudes, thereby increasing the dynamic
range of the quantizer.

6

(Norrrlo.ized)
Lveloat;zoion
Level

(Noroalizd) S;gnal Ampliud.

Figure 1-6. -law vs. linear

1 * 1 .3 Coder Performance Measures

The voice quality that a speech coder produces must ultimately be
judged by human listeners. However, it is useful to have some objective
measures of coder performance for standardized comparisons.

The most common yardstick is the signal-to-noise ratio mentioned
earlier. If x(n) is the input to a coder and y(n) is the output of the
decoder, then

<x2 (n)>(1-1) SNR = 10log1 0 <(x(n(n)>

where <> denotes time average or expected value. The numerator and the
denominator represent the powers of the original signal and coding error
signal, respectively. The logarithm converts the power ratio to a
decibel (dB) scale. In the case of -any coders, including PCM, the
error is simply the quantization noise (sub-band coders, as we shall
see, also have error contributions from other sources).

Another measure of coder quality is the segmental SNR, or SSNR.
The speech input is divided into contiguous segments, typically about 16
ms long [6], and a standard SNR (dB) is computed for each segment. The
individual SNR's are then averaged to obtain SSNR

M

(1-2) SSNR = (M) SNR(i) (dB)

i=1

where M is the total number of segments in the signal. The segmental
SNR was developed because the standard SNR tends to obscure poor
performance in segments with low input power. By averaging dB values,
weak segments have a greater effect on the overall measure.

7

In addition to voice quality, we are also interested in a coder's
information rate, or bandwidth, as measured by its bit rate. The bit
rate of a coder is the number of bits per second needed to represent the
input signal. In the case of PCM, the bit rate is equal to the sampling
rate times the number of bits per sam.ple used by the quantizer.

Finally, we should consider the computational requirements for the
implementation of the coding and decoding algorithms. This is
especially important in real-time (on-line) applications (i.e. where the
processing is done as quickly as the input is received or the output
needed).

The goal of speech compression algorithms is to code speech at a
low bit rate and minimum computational cost while maintaining good voice
quality. Of course, what is defined as 'good' is dependent upon the
particular application of the coder. As to be expected, achieving this
aim involves a compromise. For any particular coding scheme, the voice
quality tends to decrease as the bit rate is lowered. Different
algorithms can provide many levels of voice quality for the same bit
rate, but better fidelity sometimes comes at the expense of higher coder
complexity.

In standard telephony applications, an 8 kHz, 8 bit pi-law PCM
system is commonly used (the spectrum of a typical telephony channel
ranges from 300 Hz to 3200 Hz so the conditions of the sampling theorem
are satisfied). This yields a bit rate of 64 kbps. By using more
elaborate digital coding schemes, however, significant compression below
64 kbps is possible.

1.1.4 Differential Pulse Code Modulation

In order to compress speech and still maintain voice quality, we
must get more out of our bit resources. Adaptive quantization, for
example, takes advantage of time-varying speech variance to reduce
coding noise. Another important property of speech which can be
exploited is correlation between samples. In other words, voice signals
contain much redundancy. As a result, we can try to predict sample
values by considering past data alone. Prediction is the essential
concept used in Differential Pulse Code Modulation (DPCM) [10,11].

Let's see how prediction can improve coder performance. For a
given n-bit quantizer and input signal variance, a good quantizer is one
whose 2n levels match the range of the input. If the input signal
variance is reduced, the levels can be compressed, resulting in lower
absolute quantization noise for the same number of bits (Fig. 1-7).
DPCM exploits this idea by quantizing not the original signal but the
difference between the coder input and a prediction signal generated
based upon past samples. If the predictor is successful, the difference
signal will have a smaller variance than the input and can be quantized
with less noise. This translates to better voice quality for the same
bit rate, or alternatively, comparable voice quality at a lower bit
rate.

8

Quavrt;zer
Raqe

Compresse
ovwAtize-

IW__W~~~~~ =T_ -

Figure 1-7. Reduced Quantization Noise With Smaller Signal Variance

Fig. 1-8 is a block diagram of the DPCM coder and decoder. The
system has three main components - a quantizer which generates the pulse
code, an inverse quantizer which converts the pulse code to a level, and
a predictor which forms an estimate of the current input sample based on
past data. The coder and decoder both use the same types of predictor
and inverse quantizer so that their computations are consistent. Notice
that the coder input is no longer fed directly into the quantizer as in
plain PCM. Instead an error or difference signal is generated by
subtracting the predicted value from the input.

DECODER

Figure 1-8. DPCM

It is instructive to note that the input to the predictor is not
the coder input, x(n), but an approximate version, x(n) , that is
reconstructed from the predictor output and an error signal that has

CODER

J

12,

9

been degraded by quantization. This is best explained by considering
the design of the decoder portion of the DPCM system. Since the decoder
does not have access to the original error signal but only to a
c ntized version of it, the output of the decoder is only an
ap oximation to the coder input. Consequently, the decoder's predictor
cannot be provided with the original signal (indeed, if the decoder had
x(n), we wouldn't need the coder). Moreover, we want the outputs of the
two predictors to be identical. Therefore, we must also use quantized
inputs to the coder's predictor.

The design of the predictor is obviously important to the success
of any DPCI system. A linear Nth order predictor computes the estimate
as a weighted sum of the past N samples

N

(1-3) p(n) aixq(u-i)

i=l

where ai is the ith weight and xq(n-i) is a delayed and quantized
version of the input. A direct implementation of this uses a tapped
delay line, or transversal, structure (Fig. 1-9) [12]. Another possible
implementation uses a ladder, or lattice, configuration (Fig. 1-10)
[13,14]. In the lattice, the coefficients ai do not explicitly appear
as multipliers. However, the net effect of the computation is still a

linear combination of the past inputs.

Figure 1-9. Transversal Predictor

p(n)

'Ni1

Figure 1-10. Lattice Predictor

10

Just as quantizers can be made to adapt to their input, predictor
parameters can as well. Again, the motivation for this is that short-
term speech statistics are not stationary. A given set of predictor
coefficients may work adequately for some speech segments but poorly for
others. A DPCM system with an adaptive predictor is known as ADPCM
[3,15]. In general, an ADPCM system has both a variable quantizer and a
variable predictor.

Predictor adaptation algorithms are based upon minimizing some
error criterion. The two most commonly used are the least-mean-square
(LMS) [16,17] and least-squares (LS) 18]

T

(1-4) LMS : Ee 2 (n)] = im (T+1) 1 e2(n)

n=O

T

(1-5) LS wT-ne2) 0 < w < 1

n=O

where

N

(1-6) e(n) = x(n) - p(n) = x(n) - aixq(n-i)

i=1

is the prediction error. The LMS update algorithm attempts to minimize
the expected value of the squared prediction error. The LS method seeks
to minimize an exponentially weighted sum of squared errors.

Adaptive predictors are characterized by both their implementation
structure and coefficient update scheme. Thus, we may have LMS
transversal, LMS lattice, LS transversal, and LS lattice predictors.
They may also be classified as either forward or backward adaptive.

Forward adaptation uses actual coder inputs and is typically done
on a block basis. Unquantized inputs are buffered by the coder and new
coefficients are computed for the entire block of samples. The samples
are then differentially quantized using these coefficients. This is
done for each block of inputs. Since the predictor in the decoder only
has access to quantized data, identical adaptation is possible only if
the new coefficients are explicitly sent to the decoder. This adds some
overhead to the bit rate needed for the coded data itself.

Backward adaptation depends only on quantized samples that are
also available at the decoder, so no overhead transmission is required.
Furthermore, coefficient adaptation is done on a sample by sample basis,
thereby avoiding the inherent delays of input buffering. The
disadvantage of backward adaptation is that it is based on reconstructed
or quantized data instead of actual samples. It was found in [191 that
forward predictors outperform backward predictors at the same bit rate

11

if parameter overhead is ignored. However, when the transmission cost
of the forward predictor's side information is considered, the opposite
conclusion is reached.

In this study, we will implement backward adaptive least-mean-
square transversal and least-squares lattice predictors. Details of
their design, including coefficient update equations, will be provided
in Chapter 2.

1.1.5 Sub-Ban3 Coding

DPCM utilizes the redundancy of a speech signal to achieve
compression. Another important characteristic of voice is that it does
not have equal power at all frequencies. This fact is exploited by sub-
band coding.

Originally developed in 1] and [2], sub-band coding uses a bank
of bandpass filters to separate the voice signal into several frequency
bands which are then individually coded (Fig. 1-11a). The signal is
reconstructed by decoding each subband ad passing the results through
an inverse filter bank. There are two advantages to coding bands
separately. Since some of the subband signals will have more power than
others and are therefore more important to the overall speech quality,
they can be assigned more quantization bits. Also, any quantization
noise in one band does not affect the coding of others.

At first, it may seem counterproductive to split a signal into
many bands before coding. After all, the more bands there are, the more
samples there are to code. This is true if we assume the same sampling
rate for the subbands as for the full spectrum input. In practice, this
is not the case. Since each of the subbands has a smaller bandwidth
than the original signal, we can sample it at a lower rate (this is

known as sub-sampling or decimation [4]). For example, a decimation by
2 would mean every other output of each bandpass filter is ignored. If
a subband has bandwidth B, we need only sample at 2B in order to capture
all of its information. But this is strictly true only for baseband (0
Hz to B Hz) signals. Subbands are usually located at higher frequencies
(Fig. 1-1lb). So before we sample at 2B we must first modulate the
signal down to the baseband. This can be done by multiplying the
subband signal with a sinewave at an appropriate frequency.

An elegant way to obviate the modulation step is to choose the
bandpass filters so that they are all of the same bandwidth B and have
low and high frequency cutoffs that are integral multiples of B (Fig. 1-
12). The benefits of this 'integer-band sampling' are presented in [1].
Without modulation down to the baseband, the mth subband, which has
power from (m-1)B to mB, should normally be sampled at at least 2mB Hz
in order to avoid aliasing effects. However, due to the design of the
integer bands, the aliasing caused by decimation to the desired sampling
rate of 2B Hz is actually advantageous (Fig. 1-13). The decimation step
implicitly modulates each subband to 0 to B Hz without overlapping the
aliased copies of the spectrum. Therefore, the decimated output of each
bandpass filter is a baseband signal ready for coding. For a bank of k

12

integer bandpass filters spanning 0 to fs/2 Hz, where f is the input
sampling frequency, each subband has a bandwidth of fs/(2k) and can be
decimated by a factor of k. Since the input has been converted into k
subbands each of which has l/k as many samples as the input, the total
number of samples that need to be coded remains the same.

Power

Powe

FIte
kank

coded
subberdSrib~nA

Fe rl -

.resXe
Filter
Bank

reconitueted
ou+tpu

Rer
Onk

0 fF reaych s12

(a) Sulbbanc Splitting

i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FrecvenceS

(b) One Sbbad4

Figure 1-11. Sub-Band Coding

_F;

I;npuft
spierudr

6 __.'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I

I

- -r 7 7 73_l-

I

13

Subband Nvmbt-s

F m-r)s rec O2) Ck-1)5
Frauenc

Figure 1-12.

b d

cn Ki I , I 2Ku. i - .. sx14jn~~~~* 4 2,1L14.3

Integer-Band Sampling

A
-mB -Cr-I)3 0 mB fsjI

subsanpU3n
b K

1
Q.

C

-SB-3B-B B 3 SD {I

o rM t'r.bov,C

b Td

c.

1

-TT

Decimation of a Subband

i 2 3

?ower

k-i k

0 S3 · c .

· _

J - ! ! ! [,

! J

7- -- --- @ @ *@,

· · ·

- -

TT

Figure 1-13.

I

I

14

At the receiver end, each subband signal is decoded, upsampled to
the original sampling rate, and interpolated (Fig. 1-14). This is
implemented by putting k-1 zeros between every pair of decoded samples.
The resulting sequence is then passed through the appropriate integer
bandpass filter to complete the reconstruction of that subband. Thus
the baseband version of the subband signal is effectively modulated back
up to its original frequency range. The final task of the inverse
filter bank is to sum the outputs of its constituent filters.

b '

-Tr Tr

in zeros

C

-58 -3B B 3 /S

interpoo'ioC o

b d

|2 Ki Ko Kl1 21ZI 2 L 2 Ix4 r

-Figure 1-14. Interpolation of a Subband s/

Figure 1-14. Interpolation of a Subband

So far in our discussion we have assumed that the bandpass filters
have perfectly sharp cutoffs between passband and stopband. However,
ideal filters are not realizable. Irstead, we must deal with non-zero
transition bands and their consequences. If we still want to decimate
by k, each bandpass filter must have the same bandwidth B = fs/(2k).
But the transition regions between bands will leave annoying notches in
the composite frequency response of the coder (Fig. 1-15a). To remove

15

the notches, each bandpass filter should have a bandwidth B'>B (Fig. 1-
15b). But then the decimation rate would be f,/(2B')<k, producing more
samples than desired.

fr f

(&) (b)

Figure 1-15. Practical Bandpass Filters

Esteban and Galand [2] solved this dilemma by developing what are
known as Quadrature Mirror Filters (QMF). QMF's are specially designed
bandpass filters that have bandwidth greater than B (as in Fig. 1-15b)
and yet yield subband outputs that can be decimated by k=fs/(2B) without
producing irreparable aliasing. This works because the aliasing caused
by excessive decimation in the coder's QMF filter bank is actually
cancelled out when the voice signal is reconstructed from its subbands
by the receiver's inverse QMF filter bank. Since Esteban and Galand's
work, many additional studies have been done on QMFTs (e.g. [20-23]).

In order to take advantage of subband splitting, quantization bits
should be allocated to the bands based upon average power. This may be
done with a fixed allocation scheme based upon long-term speech
statistics or, more effectively, with an adaptive method using short-
term power- calculations. The dynamic allocation of bits tracks the
relative power in the subbands and makes sure that the strongest bands
are always given the most bits.

Early sub-band coders (SBC) used PCM with adaptive quantization to
encode the individual subband signals. At 32 kbps, SBC voice quality
was determined to be comparable to the standard 64 kbps p-law PCM [2].
However, later studies included predictors for even more compression.

1.1.6 Sub-Band Coding With ADPCM

The basic block diagram for an SBC-ADPCM system is shown in Figure
1-16. There are many choices to be made in the design of such a sub-
band coder. Several papers have experimented with variations in the bt

t G 213 Z6 T

16

allocation schemes, types of predictors, number of bands, filter bank
implementation, and kinds of quantizers 24-33].

F;!e
Gckl\k

CODER DECOER

Figure 1-16. SBC-ADPCM

Galand, Daulasim, and Esteban 27] implemented an eight band sub-
band coder with dynamic bit allocation and ADPCM to code the baseband
(up to 1000 Hz) of a Voice Excited Predictive Coder. They employed a
second order backward adaptive LMS transversal predictor to code each
subband and obtained 2-12dB SNR improvement over a non-differential
scheme.

In [33], Gupta and Virupaksha compared various types of sub-band
coders. They considered several adaptive non-linear quantizers with
dynamic bit allocation as well as differential coders with fixed bit
allocation. Not included in their report was the combination of dynamic
bit allocation with adaptive predictors. A four band QMF and overall
bit rate of 16 kbps was selected for the study. An eighth order
transversal predictor was used with some of the fixed bit allocation
methods. Both constant and LMS adaptive predictor coefficients were
tried. They found that adaptive quantization with dynamic bit
allocation (AQ-DBA) outperformed constant and adaptive prediction with
fixed bit allocation (DPCM-FBA and ADPCM-FBA) in objective SNR tests.
However, subjective listening tests revealed that ADPCM-FBA was actually
preferred over AQ-DBA, reinforcing the idea that SNR tests alone are not
a sufficient indicator of voice quality. Also, both objective and
subjective measures showed that ADPCM-FBA was much better than DPCM-FBA,
indicating the benefits of adapting predictor coefficients to the input.

4-~J

17

Hamel, Soumagne, and Le Guyader [32] simulated an SBC-ADPCM system
which utilized the LMS adaptive predictor recommended by the
International Telephone and Telegraph Consultative Committee (CCITT).
The CCITT predictor (Fig. 1-17) is different from the ones we have
discussed so far in that the output, p(n), is not a strict linear
combination of past reconstructed coder inputs, r(n). In addition,
there are terms corresponding to the quantized error signal, e (n).
This is the same predictor that is used in the standard 32 kbps DPCM
coder recognized by the American National Standards Institute (ANSI)
[34]. The eight coefficients are updated by an LMS (gradient) method on
a sample-to-sample basis. Hamel, et.al. ran their coder with an eight
band QMF, dynamic allocation of bits, and adaptive quantization at 16
kbps.

eCi)

, &C;

2

F)Ctl ' ~ EQ(n)Xn-) r~gC,(i)

Figure 1-17. CCITT Predictor

In 1985, Soong, Cox, and Jayant [28] published a comparative study
of various SBC-ADPCM building blocks. They found that in terms of
segmental SNR, a least-squares lattice predictor did better than both
the CCITT recommended one and a constant first order transversal
structure. Furthermore, coder performance improved with the number of
subbands and with the length of the QMF filters. Also, dynamic bit
allocation was judged to be superior to a fixed assignment.

1.2 PROBLEM

The two widely used adaptive predictors, LMS transversal [17] and
LS lattice [35,36], have not been compared in the context of a sub-band
coder. However, numerous papers [14,37-42] have addressed their

18

relative merits, which reflect the choice of both parameter update
algorithm and implementation configuration-

Referring to Figures 1-9 and 1-10 we see that the lattice
structure requires more computation per output point. Aside from this
drawback, lattices have three useful properties [39]. Whereas the
intermediate sums of the tapped delay line have no significance, the mth
sum of a ladder form represents the outut of the corresponding mth
order transversal predictor. Thus, an Nt order lattice automatically
generates all the outputs of tapped delay lines of order 1 to N. This
property of lattice structures allows predictor orders co be dynamically
assigned [431. A second feature of lattices is their modularity; longer
lattices can be constructed by simply adding on identical stages to
smaller ones. Finally, ladder forms have been found to be very
insensitive to roundoff noise.

The LS lattice predictor generally converges faster and tracks
sudden changes in input better than the LMS transversal [14]. The
least-squares algorithm is an exact adaptation in the sense that for
each new sample, optimal predictor parameters are computed which
minimize the sum of the squared prediction errors up to that sample
[35]. The least-mean-square algorithm, however, is a gradient search
technique that updates the coefficients in the direction of the minimum
average squared error. This is only an approximate solution since the
actual gradient is never known [44].

More controlled comparisons of the LS and LMS methods have been
conducted by implementing both in lattice form. Satorius and Shensa
[39] developed lattice parameter adaptation equations based upon LS and
LMS criteria. They showed that the update equations were very similar
except for a variable gain factor in the LS adaptation that could be
interpreted as a 'likelihood' detector. For likely data samples, the
gain remains constant so parameter updates follow a fixed step size.
For unexpected samples corresponding to sudden input changes, the gain
variable becomes large, thereby increasing the adaptation speed for
improved tracking. Medaugh and Griffiths [37] derived a similar
relationship between the two sets of update equations but their
simulations of convergence behavior did not indicate a preferred
predictor.

The performances of different adaptive predictors have been
studied for ADPCM systems. Honig and Messerschmitt [41] considered five
predictors - fixed transversal, LMS transversal, LMS lattice, LS
lattice, and LS lattice with pitch prediction. Pitch predictors make
estimates by recalling samples from one pitch period earlier instead of
just the past few samples. Their simulations of ADPCM systems with
adaptive quantization and fifth and tenth order predictors showed no
significant differences in SNR or root-mean-square predictor error
between the four adaptive predictors. This was an unexpected result
since LS lattice algorithms are supposed to converge faster [14]. One
explanation they offered was that the LMS transversal predictor was
quick enough to adapt well to the test waveforms, so the extra speed of
the LS algorithm was not observable. In another paper, Reininger and
Gibson [42] looked at an ADPCM system with adaptive quantization and an

19

LMS transversal, Kalman transversal (which uses a least-squares
criterion), LMS lattice, or LS lattice predictor. The coder was run at
16 kbps on five sentences and the following subjective ranking (best to
worst) was obtained : LS lattice, Kalman transversal, LMS lattice, LMS
transversal..

1.3 GOALS

The purpose of this study is to compare the adaptive least-mean-
square transversal and least-squares lattice predictors in the context
of an SBC-ADPCM coder. In particular, we will consider 16 and 24 kbps
sub-band coders with either LMS, LS, or no predictor at all.' Results at
these bit rates will indicate the better SBC predictor as well as LMS
and LS improvements over a non-differential scheme. In addition,
performance trends with respect to predictor order will be determined.
Finally, cross comparisons between the two bit rates will show whether
the use of a predictor can maintain the same voice quality at a
bandwidth savings of 8 kbps.

1.4 APPROACH

The sub-band coding algorithm is implemented with and without
prediction at 16 kbps and 24 kbps. These coders are then used to
process several phonetically balanced sentences. Finally, the relative
performances of the coders are evaluated using SNR and SSNR values as
well as double-blind A-B listening tests.

1.5 EQUIPMENT

All simulation is done in FORTRAN on an IBM 1VM/SP mainframe at
ROLM Corporation (Santa Clara, CA). Quadrature Mirror Filter design
utilities are written in BASIC on the IBM PC-AT. A ROLM proprietary
voice card does the analog-to-digital and digital-to-analog conversions
of test sentences before and after SBC processing.

20

CHAPTER 2 - DESIGN OF CODERS

This chapter describes the components of the speech coders that
are implemented and tested.

2.1 OVERVIEW

All of the coders simulated are based on sub-band splitting (sub-
band coders are also known as split-band voice coding schemes). These
can be classified into three categories depending on the type of
predictor used : least-mean-square transversal, least-squares lattice,
or none.

The benefits of sub-band coding are due to two main features. The
first is the use of Quadrature Mirror Filters (QMF) to separate voice
into individual subbands. QMFs are designed so that the subband signals
they generate can be decimated and interpolated without introducing
aliasing distortion in the reconstructed signal. This permits the
coding of fewer subband samples, thereby improving performance at any
given bit rate. The second essential feature is the bit allocation
scheme. By recognizing the fact that power is unequally distributed
among subbands, coder performance can be optimized by using a
correspondingly unequal assignment of bits. Intuitively, the bands that
have more power are more important and are therefore allocated more
bits.

It was found in [28] that coder performance improves with the use
of more subbands, i.e. narrower bandpass filters. Also, a dynamic bit
allocation scheme, one that redistributes bits at regular intervals,
demonstrates superior results compared to a fixed assignment (this is to
be expected since the short-time power spectrum of speech, in addition
to being non-uniform with frequency, changes with time). With these
recommendations, this study implements a 16-band QMF with bit allocation
that is dynamically adjusted every 16ms frame (128 8KHz input samples).
The QMF bank is an integer-band structure (Chapter 1), with 250Hz wide
filters covering 0-4000Hz. As suggested in 29], the top three bands
are not coded, i.e. always assigned zero bits, since telephony channels
typically cut off around 3200Hz [6].

During any particular frame, each subband is allocated a certain
number of bits per sample. But how those bits are actually utilized
depends on the quantizing scheme for that subband. In this study,
adaptive PCM and ADPCM are used.

21

The coders without predictors employ uniform, mid-rise quantizers
with step size that is adapted on a sample-by-sample basis. The coders
with predictors use the same adaptive quantizer but feed it a difference
signal generated by subtracting the predictor output from the subband
sample (ADPCM). As discussed in the introduction, the smaller variance
of the difference signal should enhance the operation of the quantizer.

An Nth order predictor works only as well as there is correlation

between current samples and the N samples immediately preceding them.
Previous studies [31,32] have shown that bandpass signals of width 250Hz
or 500Hz located at frequencies higher than about 1000Hz have close to
zero correlation between samples (in other words, the autocorrelation
function of these subband signals have negligible values at all delays
except for zero). For this reason, predictors are used only in the
first four subbands.

Each of the remaining sections of this chapter focuses on one of
the four main components of the SBC-ADPCM system : the filter bank, bit

allocation algorithm, adaptive quantizer, and adaptive predictors.

2.2 QUADRATURE MIRROR FILTERS

The input signal to the coders is first processed by a 16-band

filter bank. Since band splitting creates several signals from only
one, this naturally tends to increase the number of samples that need to
be coded. In order to prevent this, each of the subband signals is
decimated by a factor of 16 (only one out of every 16 samples is
preserved). However, just as sampling an analog signal introduces
aliased components in the frequency domain (shifted copies of the
original spectrum), decimating a discrete-time signal produces aliasing
as well.

More precisely, if X(ejW) is the Discrete-Time Fourier Transform

of a sequence x(n)

00

(2-1) X(ejW) x(n)ejn

n =- oo

and y(n) is the result of decimating x(n) by a factor of M

(2-2) y(n) = x(nM)

then it can be shown that ([453)

M-1

(2-3) Y(eJW) = X e i W-2Ik) M

k=0

The spectrum of y(n) contains M-1 shifted copies of X(ejw) as well
as X(eJW) itself. Notice also the presence of a 1/M factor in the

22

exponent. This results from the fact that y(n) has 1/M as many samples
as does x(n).

The advantage of QF's over general bandpass filters is that the

additional spectrum copies (aliasing terms) which are introduced by

decimation are cancelled out when the subband signals are combined in a

related inverse QMF bank [46]. To see how this is achieved, it is

instructive to examine the simplest QMF, one with only two bands.

2.2.1 Two-Band Quadrature Mirror Filter

A two-band QMF consists of just a lowpass filter, H1 ((ejw), and a

highpass filter, H2 (eJw) (Fig. 2-1). The impulse responses of the

filters are related by the transformation

(2-4)

By direct substitution of (2-4) into (2-1), it can be shown that

H2 (eJW) = H (ej(w +T

IH,()I

0 TT
2

Figure 2-1. Two-Band QMF

In the two-band sub-band coder (Fig. 2-2), the outputs of the

lowpass and highpass filters are each decimated by a factor of two. To

reconstruct the coder input, the subband signals are upsampled by

inserting a zero between every two samples, filtered again, and then

added together. (For the purposes of this development, it is assumed

that the subbands are perfectly coded and decoded.) Note that the

inverse QMF, i.e. the bandpass filters used for reconstruction, are

identical to the analysis filters with the exception of a minus sign in

front of H2 (eJW).

(2-5)

I
i

rr ,

h2(n) (-,)nht(")

, N

I Huww +)J

23

Figure 2-2. Two-Band Sub-Band Coder

In terms of Discrete-Time Fourier Transforms (DTFTs),

(2-6a) Y1(eJw) - 1 [H(ejW/2)X(ejW/2) + H(ej(W/2-)X(ej(w/2-i))]2

(2-6b) Y2(ejW) =- 1 H(ej (W / 2+T))x(ejw/2) + H(ejw/2)X(e j (w/ 2 - f))]

where the second term in each expression represents the aliasing caused
by decimation. The upsampling of the subbands has the effect of a
2w transformation of the frequency response. Thus, the output Y(eJW),
is given by

24

(2-7) Y(ejw) = H(e3W)Yl(ej2) - H(eJ(W+1))Y2(eJ2 W)

= 2 [H(eJW)X(eJi)+H(e3(W-))X(ej(w- r))]H())

2 [EH(ej'(w+))X(ejW)+H(ejw)X(e (-r)) JH(e(W+T))

= lX(ejW)[H2(ejW)H2(ej(w+7))]

where the 2-periodicity of the DTFT is used to recognize that the
aliasing terms cancel. It only remains to show that H(eJw) can be
designed so that IH12 (ejW)-H1

2(eJ (w+l 1 1.

Symmetric, finite impulse response (FIR) filters with an even
number of taps, M, have a characteristic frequency response of the form

(2-8) H(ejW) = A(W)e - j W(M -1) / 2

where A(w) = IH(ejw)I. If H(eJw) is such an FIR filter, then (2-7)
becomes

(2-9) Y(ejw) = X(ejW)A2(w)e - jw(M-1)+A2(W+I)e-jW(M-1)]

= 1X(eJW)e-JW(M-1)[A2(w)+A2(w+7)]

2

A2 (w)+A2 (w+r) can be made close to 1 by designing the magnitude response
of h(n) to be very flat in the passband, highly attenuated in the
stopband, and at half power in he middle of the transition band. The
complex exponential corresponds to a real-time delay of M-1 samples.

If H(ejw) is designed according to these specifications, then the
output of the sub-band coder will be a delayed version of the input
scaled by a factor of 1/2. The inverse QMF bank typically scales all of
its outputs by two to correct for this attenuation.

2.2.2 Tree vs. Parallel Implementation

The two-band QMF be easily extended to yield N=2t bands. This can
be done with either a tree or parallel structure [46].

The more straightforward implementation is the tree configuration
(Fig. 2-3a). Separation into subbands is done in stages by repeated
application of the two-band QMF. The first stage splits the input into
a lowpass and a highpass version, which are decimated by two. Each of
these signals is then split into two more bands and again decimated.
The net effect of the two stages is that of a bank of four integer-band
bandpass filters (Fig. 2-3b). Since each of the two-band QMFs at any
stage insure aliasing cancellation for their inputs, the cascade of

25

analysis filters does as well. Thus, a 2t-band QMF can be implemented
with t stages of two-band QMFs.

(C)

1

.LL

Cb)

Figure 2-3. Tree Configuration (4-Band)

In Fig. 2-3, the same fundamental lowpass filter, Hl(eJW), is used
at each stage (in general this need not be true). It is clear that
Hl(ejW) separates lowpass and highpass components in the first stage,
but not as obvious is how the same filter can split each of these
signals into even narrower bands in the second stage.

As mentioned in Chapter 1, the decimation of an integer-band
signal implicitly performs a modulation to the baseband along with a
normalization of the frequency axis. This allows the use of H(eJW) in
the second stage. Fig. 2-4 illustrates this point. The subsampling
step (multiplying by an impulse train) achieves modulation down to the
baseband and throwing out the zero samples normalizes the sampling
frequency to the decimated rate. (Roughly speaking, shrinking in the
time domain corresponds to stretching in the frequency domain, and vice
versa.) Thus, the baseband version of each subband is stretched out so
that H(ejw) selects half of it. A consequence of this is that the
transition region of filters in the second stage are effectively twice
as narrow when considered at the original sampling rate. Therefore, to
achieve a specified transition bandwidth for the four net bandpass
filters of the QMF analysis, the second stage filters only need about

Xl

26

half as many taps as those in the first stage. For a t-stage QMF, the
filters in stage i are typically designed to be half as long as those in
stage i-1. This reduces computation costs and delay time.

-iT

rI' <'1

I

* W ,Tr

I Subsc.mpin9

Reiw)

XC '_

I. r

N/NI K/NA n
. . .

-IT W o e
IThrowrnj ovt ieroQs

-w ,W

7
} Yr '1

. W'T

I Thnig ovtzeoes

K
-TT

Figure 2-4. Tree QMF, Frequency Domain (4-Band)

To determine the frequency responses of the 2t composite bandpass
filters, we must cascade appropriate filters from each stage while
taking into account the differences in sampling rates (Fig. 2-5). Each

S L . - 5 - -

g
-

- I I - -- I 1 I· -I- · - ! --

t A)! ! - 2

S - = i -

. . . .- -

i %

ifiJ

I

.1

27

net bandpass filter is obtained by choosing a combination of t lowpass
or highpass filters,

LOoas h;ahoass

Stafe i

r

(owposs

iTfz or

1pss

Trlz OrI

rfz Tr TrjZ v

lopass hi VI CS3

. \ I 1

Ir/. . .

!r t tr;Z Tr

Figure 2-5. Multiplying Stage Responses

The parallel QMF (Fig. 2-6) directly implements the net bank of
bandpass filters, thereby avoiding the explicit cascading of stages.
The coefficients of the parallel filters are determined by recognizing
that multiplication of frequency responses is equivalent to convolution
of the impulse responses. However, Just as decimation must be
considered in the frequency domain, its effects cannot be overlooked in
the time domain. In other words, the impulse responses of the ;half-band
filters at each stage cannot be directly convolved with one another. To
compensate for the different sampling rates, 2i 1-1 zeroes must be
inserted between successive taps of the ith stage (upsampling by 2 i

- 1)
before convolution. It is easy to show that if Mi is the length of the
lowpass or highpass filter of the ith stage of a tree structure, then
the impulse response of the corresponding direct parallel implementation
has length

t

L = 1 + (Mi-1)2i - 1

i=1

St 9e 2

Net

(2-10)

· =

28

Galand and Nussbaumer have found that the result of this convolution
typically contains very small coefficients at the beginning and end of
the impulse response [46]. This permits truncation of the impulse
response to approximately L = L/t while still achieving adequate
aliasing cancellation.

x(n)

-m J 1
T •F.i h V

uei, i:H,

J;7L

Figure 2-6. Parallel QMF (4-Band)

Parallel implementations with truncated tap lengths have shorter
delays, require less storage, and are less complex than equivalent tree
structures while requiring about the same number of multiplications and
additions.

2.2.3 Filter Design

In this study a 16-band parallel QMF of length 72 taps is designed
by convolving, with decimation adjustment, impulse responses
corresponding to lowpass and highpass filters of an associated tree
structure.

The first step in designing the filter bank is to come up with a
half-band lowpass filter for each of the four stages. Coefficients of
the half-band filters were derived using the Remez exchange algorithm
for optimal linear phase FIR construction [5]. Filter lengths for
stages 1 to 4 were 64, 32, 16, and 10 taps. The actual coefficients are
listed in Appendix A. Their frequency responses, as well as those of
their mirror image highpass versions, are shown in Fig. 2-7.

1 r1 'LF~rf r

I

29

STAGE 1 - 64 taps

Za -aM-1010

-20
-30

-50
Z -60
Z -70

-80
0 f,/8 fs/4

FREQUENCY

STAGE 2 - 32 taps
*2 inlU

Cr 10

z -100
Q- -20

': -30
-40

= -50
Z -60
= -70

-80

3fs/8 f/2

0 f5/8 fs/4 3fs/8 fs/2
FREQUENCY

Figure 2-7. Half-Band Filters

30

STAGE 3 - 16 taps

fs/8 fs/4
FREQUENCY

3fs/8 fs/2

STAGE 4 - 10 taps

0 fs/8 f./4 3fs/8
FREQUENCY

fs/2

Figure 2-7. Half-Band Filters (continued)

/ '-,
I ;

I Ii I z--,, I 11 .~~~~~~~·- . . - .. / - "

III

I II I~II! I,
I.i

0

20
c 10
W. 00
z -l0
X -20
c -30
" -40
i -50
Z -60
z -70

-80

20
M 10
V.W 0
Li.I

z -10
X -20

c -30
L -40

~ -50
z -60
: -70

-80

-

- __ __~

!v X r

! I I I I

31

After normalization to the sampling frequency of stage 1, the
frequency responses become

STAGE 1 - LOIPASS

0 1000 2000 3000
FREQUENCY (Hz)

4000

STAGE 1 - HIGHPRSS

0 1000 2000
FREQUENCY

I

3000 4000
(Hz)

Figure 2-8a. Normalized Half-Band Filters (Stage 1)

20
01o= 10

z-10
X -20

cc -30
-40

I -50

z -60
= -70

-80

20
10

0
z -10
c -20
w -30

w -40
-50

Z -60
Z -70

-80

/ ~ ~ ~ ~~ _

II

YVI I 1'

-

1

· _ __
I I I l

32

STAGE 2 - LOIIIPASS

0 1000 2000 3000
FREQUENCY (Hz)

STAGE 2 - HIGHPRSS

0 1000 2000 3000
FREQUENCY (Hz)

Figure 2-8b. Normalized Half-Band Filters (Stage 2)

20
Ll 10

-1o

X -20
L,

= -30
L -40
- -50
Z -60
= -70

-80

20
v 1010

z -10
X -20
: -30

" -40
-50

Z -60
= -70

-80

4000

4000

33

STAGE 3 - LOWIPASS

0 1000 2000 3000
FREQUENCY (Hz)

STAGE 3 - HIGHPfISS

0 1000 2000 3000
FREQUENCY (Hz)

Figure 2-8c. Normalized Half-Band Filters (Stage 3)

20
10
0

z -10
. -20

w -30
a -40

-50
Z -60
= -70

-80

o 10

LU 0
z -10

. -20

: -30
-40

. -50
z -60

: -70

-80

4000

4000

34

STAGE 4 - LOWPASS

\ / 'N / /
11~ ~~1

I I

I I

2000
FREQUENCY

t I

' I I i

3000
(Hz)

STAGE 4 - HIGHPRSS

0 1000 2000 3000
FREQUENCY Hz)

Figure 2-8d. Normalized Half-Band Filters (Stage 4)

0
I

I000

20
10

LJJ 0
z -10
. -20
: -30

-40
z -50
Z -60:
0 -70

-80

20
2 10

10

T-o. -20
3 -30
w -40

-50
Z -60
1. -70

-80

4000

4000

__ _ _

- _ _ ___ __ I I
I I I I

35

These filters are convolved to form 16 bandpass filters each of

length 258 (see equation (2-10)). The first and last 93 coefficients
are truncated to leave 72 taps (see appendix A for coefficient values).

The frequency responses of the resulting filters are shown in Fig. 2-9.
The composite response of the QMF system, given by

N-1

(2-11) h(n) = fk(n)*gk(n)

k=0

where fk(n)xgk(n) is the convolution of the kth bandpass impulse
responses of N-band QMF and inverse QMF filter banks, respectively, is
plotted in Fig. 2-10.

ONE SUBBAND, F(ejrjL)6
20

10

z -10
a. -20

-30
w -40

-50
z -60
1Z -70-1

-80

20
10

0

z-1o
L -20
= 30
w -40

- -50
z -60
= -70

-80

0 1000 2000 3000
FREQUENCY (Hz)

PARALLEL BANIPASS FILTERS (16-BAND QMF)

0 1000 2000 3000
FREQUIENCY (liz)

Figure 2-9. 16-Band QMF Bandpass Filters

4000

4000

36

2.0
M 1.6

Z,. 1.2

z 0.8
° 0.4
I" 0.0

'i -0.4
= -0.8
Z -1.2
= -1.6

-2.0

COMPOSITE RESPONSE, H(eJw)

0 1000 ' 2000 3000
FREQUENCY (Hz)

4000

Figure 2-10. Composite Response, 16-Band QMF

The inherent symmetry of the half-band filters is manifested in
certain proper-ties of the parallel filters.

(2-12) fN1-k(n) = (-1)nfk(n)

(2-13) gk(n) = N(-1)kfk(n)

These relationships are useful in reducing the amount of computation
needed for QF analysis and reconstruction.

2.3 BIT ALLOCATION

The goal of the bit allocation algorithm is to determine the
number of bits available for sample encoding (from the specified coder
bit rate), and to distribute them among the 13 subbands based upon
relative power. Bit allocation is recalculated for every block of 128
input samples (16ms) to dynamically adjust to changes in the input power
spectrum.

It is shown in 47] that the total quantization error of a subband
coder is minimized with the following bit distribution

N-1

(2-14) n(i) = og2

j=0

37

where n i and Ei are the number of bits and energy, respectively, of the
it h band, 0 < i < N-1. M is the total number of bits available per
subband sampling interval.

(2-15)
N-1

M =n i

i=O

This algorithm requires the computation of the energy in each
subband. Esteban and Galand suggest a simple alternative [47]. They
estimate the energy of a subband during a particular block to be
proportional to the square of the maximum sample amplitude.

(2-16) E = a2Ci2i i for some constant a

where Ci = max Isi(j)I
j=l,p

C , the so-called subband characteristic, is the largest value in the
i h subband's current block of p samples. Substituting this into (2-14)
gives

N-1

(2-17) n(i) = - 1 log2C, + lo.C+ 2 i
j=0

2.3.1 Adjustment Algorithm

In this paper, n(i) is restricted to the range 0 < n(i) < 5 as
recommended in [48] and [49]. However, equation (2-17) does not always
produce integer values in the desired range. Fig. 2-11 illustrates such
a case. Clearly, an adjustment algorithm is needed to determine actual
bit allocation based upon the n(i) values.

r,(i)

5

4

3

2

1

o

-T-,/ '- j
I . I 1 - s-7o

T --

- =4~~~~~~~I

,,- ,1,o, -1 I,,.A./ 1 2 � 4 5 & I0 H ti

Subband. Nmrnber, i

Figure 2-11. n(i) vs. i

/////i �

38

The first step is to come up with an initial allocation by
assigning 5 bits to bands where n(i) > 5, 0 bits where n(i) < 0, and
rounding down the others to integers. Fig. 2-12, for example, shows the
preliminary assignments for the distribution of Fig. 2-11.

5

4

Bits

2

0
Subbcn& Number, i.

Figure 2-12. Initial Allocation

The next step is to check that the total number of bits
distributed matches the number that are available. If so, then the
allocation is done. If not, then a reassignment is necessary.

The adjustment algorithm used is related to that suggested by
Jayant and Noll [6,p.530]. The basic idea is to add or subtract the
same constant from all of the n(i) computed from (2-17). In this
manner, more or less bits can be allocated while still maintaining the
relative sizes of the n(i). Graphically, this corresponds to shifting
the vertical scale of Fig. 2-11 up or down until the bit allocation
equals the available supply. For example, if the initial calculation
gives out too many, then all of the n(i) are uniformly reduced (the
vertical scale is raised) until enough bits are removed from the bands.

The adjustment begins by determining how close the initial
allocation comes to the available bit rate. If there are extra bits
left to distribute, the scale is lowered by the minimum amount needed to
increase the bits given to any band by one. Fig. 2-13 demonstrates the
effect of this shift on Fig. 2-11. The bit assignment is then revised
based upon this new scale. If this gives additional bits to more than
one band, the lower bands (which tend to have more energy) receive them
first, until all the extra bits are used up. If the highest band is
reached and more bits are still available for distribution, the scale is
lowered again and the process repeated. Clearly, this algorithm must

39

terminate unless assigning the maximum of 5 bits to every band is not
sufficient to exhaust the bit resources. This special case is tested
for before the adjustment loop is entered.

K///
1 To~~~__
V1 C.

_ 1 1~~~~~~~~~~~~C A

I.

4 5 ' �1 to iZ.

SubbccnL Nombecr ,

Figure 2-13. Effect of Lowered Scale

A similar strategy is used when the initial bit allocation assigns
more bits than are available. When this happens, the vertical scale is
raised by the minimum needed to take bits away from the subbands. If
more than one band is affected by the shift, bits are first subtracted
from the higher frequencies. Additional shifts are performed if
necessary. This continues until enough bits have been subtracted from
the bands, or until all bands have no bits remaining, whichever comes
first.

An important consideration in the design of the adjustment
algorithm is that it should always converge. The proposed routine
insures this by providing a means for increasing or decreasing the bit
allocation by one bit at a time.

2.3.2 Average Bits Per Sample

Both quantized data and overhead information contribute to the bit
rate of a coder. In a sub-band coding system, overhead is needed by the
transmitter to somehow convey to the receiver the number of bits used to
code each band.

In some designs [27,47,50], the subband characteristics, C(i), are
sent to the receiver, which repeats the transmitter's bit allocation
calculation. In those coders, the C(i) are also used to direct the
adaptation of the quantizer. However, in this design, quantizer
adaptation is independent of the characteristics (see Section 2.4), so
actual bit allocation results can be sent instead of the C(i). This is

5

4
3

2Z

il
n~

I"C

7

;I

-I
I -. I , . I 7 _ II/ _ / _ , , ,I

40

desirable because the latter consumes more overhead. Since subband
characteristics are selected channel samples, they can take on many
different values and, hence, accurately quantizing them for transmission
requires many bits. On the other hand, actual bit assignments
(0,1,2,3,4,5) can be exactly specified with only three bits each. In
the simulated coder, this results in an overhead cost of

(13 bands)(3 bits per band)/(16 ms) = 2.4375 kbps

Therefore, the average number of bits available for quantizing each
subband sample is given by

(2-18) B. = ((SBC bit rate) - 2.4375 kbs(1bb-d 1
2-1 avg = number of coded bands subband sampling rate

where the number of coded bands is 13 and the subband sampling rate is
1/16 of the 8 kHz input rate, or 0.5 kHz. Thus, this implementation
allows 3.3 bits per sample at 24 kbps and 2.1 bits per sample at 16
kbps.

2.3.3 Bit Allocation With Prediction

For reasons that will become clear in Sections 2.4 and 2.5, proper
adaptation of the predictors requires that subbands which use
differential coding must be allocated at least two bits.

The bit allocation algorithm previously described does not
distinguish between bands that use prediction and those that do not. As
a result, some predicted bands may be assigned less than two bits. This
condition is checked for and, if found, corrected by drawing bits from
the higher frequencies. This may not be possible, however, if the
higher bands run out of bits. When this occurs, execution continues but
a warning message is issued.

2.4 ADAPTIVE QUANTIZER

Each subband has a distinct quantizer with an associated step size
and number of bits. The adaptive quantizer implemented in this thesis
is a uniform, mid-rise design based upon that of Hamel, Soumagne, and Le
Guyader [32].

The choice of quantizer involves two main issues. The first is
its method of adaptation, namely, how the step size is updated. The
second is its behavior in the presence of dynamic bit allocation.

2.4.1 Step Size Adaptation

For the purpose of discussing the step size update scheme, assume
for now that the bit allocation is always five.

41

Fig. 2-14 illustrates the 5-bit quantizer. The 32 levels occur at
odd multiples of A/2 where A is the step size. Each level is used to
represent the range of input values of width A centered around it. For
example, level 3 corresponds to 2.5A and covers inputs from 2A to 3A
(the lower bound, 2A, is included but not the upper bound, 3A). All
inputs greater than or equal to 15A are assigned to the highest level,
16. Similarly, all inputs less than or equal to -15A are represented by
the -16 level.

15'
14

I0
9

2
I.

-z
-3
-4
-5

-7
-
-9

-12
-13
-14
-i5
-1'

-14

t

-74

-al - IGa

-I~
$ -12

I '

I n-pLdt

R a ge

Figure 2-14. 5-bit Quantizer

Notice that positive and negative inputs are symmetrically rounded
away from zero. This prevents any bias in the quantizer operation, i.e.
inputs with average value zero will be quantized to an average of zero
as well. This is not the case, for example, if inputs are always
rounded down to obtain quantized levels; such a scheme would produce a
negative bias. An exception to this symmetry is the handling of zero
inputs. An ideal procedure would be to randomly pick either level 1 or
-1. However, since zero inputs are rare, level 1 is selected in all
instances.

Step sizes are adapted using Jayant's method [8]. After each
sample, the step size is multiplied by an update factor determined by
the value of the previous output level.

QNu aber'
Level

Number

42

(2-19) A(i) = A(i-1) x M(level(i-1)l)

where M is known as the multiplier function. The motivation behind this
is the observation that high output levels indicate too small a step
size whereas low outputs suggest too large a step. M is greater than 1
for high levels and less than 1 for levels close to zero. Recommended
values of M for a 5-bit quantizer are given in Table 2-1 [32].

Ilevell M(Ilevell)
16 1.70
15 1.62

14 1.54

13 1.46
12 1.39

11 1.31

10 1.24

9 1.18

8 1.12

7 1.06

6 1.01

5 .96
4 .93
3 .90

2 .88
1 .87

Table 2-1. Recommended 5-bit Quantizer Multiplier Values

Notice that step sizes can increase faster than they can decrease.
This is attributed to the similar behavior of speech signals.

Maximum and minimum values for the step size, PAax and kin' are
usually included as bounds on the adaptation process. In addition, an
initial value, Astart' is needed. These values depend on the power of
the inputs and are determined in Chapter 3.

2.4.2 Effects of Variable Bit Allocation

Since a quantizer is characterized by, among other things, the
number of bits it uses, and bits are allocated dynamically in the sub-
band coder, some procedure must be developed to easily switch between 0,
1, 2, 3, 4, and 5 -bit quantizers. Furthermore, it is desirable that

the transitions somehow preserve the step size adaptation process.

Hamel, Soumagne, and Le Guyader [32] present an elegant solution
to this problem using the 5-bit quantizer of Fig. 2-14 as a basis.
Quantizers of fewer bits are simply defined as level subsets of the 32
5-bit levels. The fundamental step size is retained between transitions
and is updated with the same multipliers used by the 5-bit quantizer
(Fig. 2-15). Inputs are still symmetrically rounded away from zero,
i.e. values which fall between two levels are assigned to the one that
is further from zero.

43

LEVEL SUBSETS
3 ;t 2 BiS

x

x yeV

3

2I-i
-2 _. -

Figure 2-15. Variable Bit Quantizers

An example will make this method clearer. Assume that after a
block of 8 subband samples has just been coded with 5 bits, the step
size is 2.0. Now consider the effect of only 3 bits being assigned to
that subband for the next block. The step size will initially remain
2.0. If the next quantizer input is, say, 15.3, then this would put it
between levels 2 and 3 of the 3-bit quantizer (corresponding to levels 6
and 10, respectively, of the original 5-bit quantizer). This is rounded
to level 3 and the step size is multiplied by M(10)=1.24 to obtain the
new step size, 2.48.

The 0-bit quantizer does not change A at all and always gives an
output of 0, which is not associated with any level.

2.4.3 Sample-to-Sample vs. Block Adaptation

Jayant's adaptation scheme updates step sizes from sample-to-
sample. An alternate method, known as Block Companded Pulse Code
Modulation (BCPCM), was developed by Galand [2,27,29,47,49].

In BCPCM, the step size is constant within each block of subband
samples and is given by

(.2-20) A = C/2 b- 1

4- 3,+s
16
I.
14

13
12

I

10
9
S
7
6
3-
4

A1 it

'-C

-3
-4
-5

i7l
Y.

)4 X4

-7
-5
-q
lto-10

-12
-13

-15
-I0

Y~~~~~~~~~~~~~~f

A-I

-A

44

where C and b are the characteristic and bit allocation, respectively,
of that subband (Fig. 2-16). In this way, the range of the quantizer
has the same limits as the range of the subband signal over that block.

C, :h

~* ~ Lowe*
…-......... Level

SubbXnd Signrc Qvcntder

Figure 2-16. Block Companded PCM

In this study, Jayant's sample-to-sample technique was chosen over
Galand's BCPCM because of the presence of predictors. In differential
coding, the quantizer input is not the subband signal but instead, the
prediction error. If BCPCM is used, the quantizer's range, which is
modeled from the subband characteristic, will probably be larger than
that of its input, the difference signal.

2.5 ADAPTIVE PREDICTORS

The two adaptive predictors compared in this study are the least-
mean-square transversal and the least-squares lattice. Each generates
predicted values that are linear combinations of past samples.

2.5.1 LS Transversal

The LMS transversal predictor [12] is conceptually very simple
(Fig. 2-17). The tapped delay line structure produces a weighted sum of
past inputs at every sampling period.

Figure 2-17. LMS Transversal Predictor

I- -- - - - - - - ·-3·'WLevel

45

For each new sample, the coefficients are updated in a direction
which tends to minimize the mean-square error of the prediction.

(2-21) am(n+l) = am(n) - c an <e2(n)>8am(n)

where c is some positive number that controls the rate of adaptation.

The form of (2-21) makes intuitive sense. If the derivative of
<e2(n)> with respect to am(n) is positive, then the mean-square error
increases with larger am(n). Hence, the coefficient should be decreased
to improve performance. (Since the derivative represents the gradient
of the mean-square error function, the LMS algorithm is said to use a
gradient search to find the optimal coefficients.)

In practice, (2-21) cannot be used without modification because
the gradient of the mean-square error is never known exactly. Instead,
the derivative of the instantaneous square error is used as an
approximation

(2-22) a -<e 2 (n)> a e 2 (n)
aam(n) aam(n)

This can be expressed as

(2-23) a e2 (n) = 2e(n) ()e(n)
aam(n) aam in

N

= 2e(n) aa(n) x(n) - ai(n)xq(n-i)
i=l

= -2e(n)xq(n-m)

Also, for stable adaptation, Widrow and Stearns [5!1 show that c
should be inversely proportional to the product of the input power and
the order of prediction

g/2
(2-24) c = (2 for some positive gain g

N<x (n)>

Substituting (2-23) and (2-24) into (2-21) yields

(2-25) a (n+1) = a (n) + g e(n)x(n-m)
m m N <xq(n)>

The input signal power is highly variable over time. To track
such changes, <x 2(n)> is calculated as an exponentially weighted sum
decaying backwards in time

46

(2-26) <Xq2(n)>T = (1-a) g q 2 (T-i)

i=0

Furthermore, a constant bias, , is added to the power estimate so
that c does not blow up during moments of silence. The complete
expression for LMS adaptation is then

g e(n)x (n-m)
(2-27) amm(+) = am(n) + -m

N (1c-al) 102 (n-i) +

With the exception of the 1/N factor, this is identical to the LMS
update equation used by Cohn and Melsa in their full band ADPCM system
[12].

2.5.2 LS Lattice

The LS lattice predictor (Fig. 2-18) differs from the LMS
transversal both in structure of implementation and n criterion of
adaptation. Whereas the LMS variables have obvious interpretations as
linear predictor coefficients, the meaning of the LS variables is less
apparent. In fact, predictor coefficients are never explicitly computed
in the LS lattice implementation.

p(O)

.

.r

Figure 2-18. LS Lattice Predictor

A formal derivation of the lattice variable interdependencies and
the least-squares recursive update equations is given in [35]. This
section describes the significance attached to these variables and their
recursions.

47

2.5.2.1 Forward and Backward Prediction

The lattice, which consists of two rows interconnected by weighted
cross-paths, resembles a ladder with rungs (hence the alternative name,
ladder form). The predictor output is the sum of values taken from the
cross-paths.

The variables in the top row, em(n), are referred to as the
forward prediction errors and are associated with the forward predictor
coefficients, ai(n).

m

(2-28) em(n) = Xq(n) - ai(n)xq(n-i)

i=l

These are the errors in predicting xq(n) using the m forward
coefficients of time n. This definition can be generalized to

m

(2-29) em(t,n) = xq(t) - ai(n)xq(t-i)

i=1

where em(t,n) is the error in predicting xq(t) with ai(n).

The variables in the bottom row, rm(n), are known as the backward
prediction errors. (In contrast to forward prediction, backward
prediction involves the estimation of sample values based upon future
inputs.)

m

(2-30) rm(n) = xq(n-m) - bi(n)xq(n-i+l)

i=l

where bi(n) are the backward coefficients. In general,

m

(2-31) rm(t,n) xq(t-m) - bi(n)xq(t-i+l)

i=1

represents the error in predicting xq(t-m) as a weighted sum of the m
samples immediately following it.

2.5.2.2 Recursions

It can be shown that the ai(n) and bi(n) which minimize the
accumulated errors

n

(2-32a) wntem 2(t,n) 0 < w < 1

t=O

48

n
(2-32b) wn rm (t,n) 0 < w < 1

t=O

also give prediction errors that obey the order recursions

(2-33a) em+l (t,n) = em(t,n) - K l(n)rm(t- ,n1)

(2-33b) rm+I(t,n) = rm(t-l,n-1) - K+l (n)em(t,n)

n) y 0tr m(t-1,n-1)em(t,n)
where K+ 1(n) =n) n)

l 1 (n)
tR wn-t ea2 t,n)

n
C (n) Z wn-tr m (t-l,n-)e m (tn)

and r W n) ~lm+1 n) t=1and Kl(n (n-l) n

t=1tz -r 2 (t- 1 n-)

are referred to as the reflection coefficients. By recognizing that
rm(n) = rm(n,n) and em(n) = em(n,n), and evaluating (2-33) for t=n, this
becomes

(2-34a) e+ l (n) = e (n) - + 1(n)r (n-1)m+1 m m-i+l m

(2-34b) rm+1(n) = rm(n-l) - Ke+1(n)em(n)

It is this set of order recursions that gives rise to the ladder
structure.

The numerator and denominator of the reflection coefficients are
exponentially weighted sums that may be recursively calculated in time
as follows

(2-35a) Cm+i(n) = wCm+l(n-l) + rm(n-l,n-1)em(n,n)

wCm+1 (n- 1) + r(n-1)em(n)

(2-36a) Re+l(n) = wRm+(n-1) + e 1(nn)

= wR+l(n- 1) + e2+1(n)

(2-37a) Rm+1 (n) = wy+ 1 (n-l) + r+l1(n,n)

= wR+l(n-l) + rM+l(n)

Cm(n), which is the numerator of both reflection coefficients, is called
the partial correlation (PARCOR) variable since it (exponentially)
averages the product f the forward prediction error at time n and the
backward prediction e.ror at time n-1. Rmr(n) is roughly proportional
to the short-time variance of the backward error and, similarly, Rme(n),
measures the forward error variance.

49

An important feature of the least-squares algorithm is the
modification of the time update equations (2-35a)-(2-37a) by the
inclusion of a gain variable, m (n).

(2-35b) Cm+ (n) = wCm+(n-l) + rm (n-en)m+1 m+1 1-Wmlj (n-i

e2 1(n)
(2-36b) Rm+l(n) = w +l(n-1) + 1m (n-

r2+1(n)(2-37b) r (n) = w 1 (n - 1) + rm (n)

r2(n)
(2-38) where Tm(n) = i-l(n) + Rin)

rI(n)

T can be interpreted as a likelihood detector. It measures the
deviation of data from an expected Gaussian distribution. For data that
fits the assumed statistics, is close to zero, so it has little effect
on the update. For very unlikely data, will approach 1, which can
dramatically increase the update term. In this way, sudden changes in
inputs can be tracked very quickly. The presence of turns out to be
the main difference between lattice implementations of the LS and LMS
algorithms [37,39].

2.5.2.3 Time Initialization

Before the first input sample is received, the forward and
backward error variances at each of the N stages of the predictor are
set to some small positive number, 6, so that the corresponding
reflection coefficients are initially defined. Also, the PARCOR
variable starts at zero at each stage.

2.5.2.4 Order Initialization

The 0th order errors, e(n) and r(n), are always set to the value
of each new input sample. This makes sense since the error of a 0th
order predictor is simply the signal being predicted. Correspondingly,
the error variances, Re(n) and Rr(n), are updated with the square of
the input.

The likelihood variable, , is defined to be zero at stage -1.

2.5.2.5 Predictor Output

The Nth order forward prediction error is, from equation (2-34a),

eN(n) = eNl(n) - K(n)rNl(n-1)(2-39)

50

Repeated decomposition of the em(n) terms eventually gives

N

(2-40) eN(n) = e(n) - I (n)r 3-l(n-1)
m=1

N

= q(n) - K(n)rm-l(n-1)
m=1

But the prediction error is just the difference between the input and
the predictor output and so

N

(2-41) p(n) = K(n)rm- 1 (n-1)

m=1

Thus, the LS lattice comes up with p(n) without actually storing past
input samples or forward predictor coefficients.

2.5.2.6 Equation Summary

The basic equations for the LS lattice predictor are summarized in
Table 2-2.

51

Initialize

e0 (n)=r0 (n)=Xq (n)

-1 (n-1)=0

Iterate

Cm+l (n) = WCm+ l(n-) +

;+1tn) = wRe +l(n-1) +

+ 1 (n) = wR+ 1 (n-1) +

r (n-l)e (n)
1m- 1 (n-1)

e+1 (n)
1-'m (n-)

r2+ (n)
l-'m (n)

Tm(n) = Tm-l(n) + r2(n)
m mn)-1 :;+(n)

em+l(n) = e(n) - "+(n)rm(n-1)

rm+l(n) = r(n-l) - K +l(n)em(n)

where K+ l (n) = Cm+()
R;(n)

and KI 1 (n) = ,C+r(n1)

Output

K(n)rmi (n-1)

Table 2-2. LS Lattice Equations

TIME

Cm(-1)=0

ORDER

N

p(n =

m=l

e r)=6~()=

52

2.5.3 Prediction and Bit Allocation

The LMS predictor uses the error signal in updating its
coefficients (equation (2-27)). However, only a quantized :version of
the error signal is available (see Fig. 1-8), thereby making LMS
performance highly sensitive to quantizer accuracy.

In the extreme case of 0 bit allocation, the quantized error
signal is always zero, indicating to the LMS algorithm that its
prediction is perfect, regardless of its actual performance. Similarly,
a 1-bit quantizer has an output that is always decreasing in magnitude
(the step size multiplier is .88) so the error signal is represented as
continuously improving even if it is not. For this reason, -bands which
use LMS prediction should always be given at least two bits for
quant izat ion.

The LS lattice does not depend on the error signal as directly as
the LMS transversal and is therefore not as sensitive to 0 or 1-bit

quantizer degradation. However, for better representation of past
inputs, which the predictor sees as the sum of its output and the
quantized error, at least two bits are required for the LS predicted
bands as well.

53

CHAPTER 3 - SIMULATION RESULTS

The speech coding algorithms described in Chapter 2 are
implemented in FORTRAN and used to process voice samples on an IBM VM/SP
mainframe computer (see Appendix C for program listings). The results
of the simulations are presented below. The next chapter interprets and
discusses these data.

3.1 TEST OVERVIEW

Several aspects of the sub-band coders are evaluated. In
conjunction with the ultimate test of how good the processed sentences
sound, some diagnostic data is obtained to help analyze the behavior of
the coder components.

Four phonetically balanced sentences [53], two spoken by males and
two by females, are used as the basis for the simulations.

Female Speakers
DARCI : The frosty air passed through the coat.
BETH : The small pup gnawed a hole in the sock.

Male Speakers
GLENN : The meal was cooked before the bell rang.
MIKE : Hoist the load to your left shoulder.

(In the rest of this report, these sentences will be referred to by the
names of the speakers.)

The next two sections give performance data on the filter bank and
the bit allocation algorithm. This is followed by three sections
dealing with the quantizer and predictors, including the determination
of some of their parameters. Finally, objective and subjective measures
are given for overall coder quality using these parameters.

3.2 QMF PERFORMANCE

To isolate the performance of the Quadrature Mirror Filters, the
sub-band coder is run on the four test sentences without any
quantization. This is done by passing the output of the analysis QMF
directly to the reconstruction QMF.

Since there is no quantization, the bit rate of the coder is not
meaningful in this situation. SNR (signal-to-noise ratio) and SSNR

54

(segmental signal-to-noise ratio) values as defined in equations (1-1)
and (1-2) are obtained for each sentence

DARCI BETH GLENN MIKE

SNR (dB) 30.83 30.99 30.55 29.38

SSNR (dB) 26.51 25.96 26.47 27.22

Table 3-1. Isolated QMF Performance

Informal listening tests indicate that the filter bank alone introduces
very little distortion to the original sentences.

3.3 BIT ALLOCATION STATISTICS

The bit allocation algorithm distributes available bits to the
subbands on the basis of relative power. As explained in Section 2.3,
the power of each band is not actually calculated. Instead, the power
is estimated to be proportional to the square of the maximum sample
amplitude, Ci). These so-called characteristics determine the relative
bit distribution for each 16 ms block of input samples.

In the presence of prediction, the allocation is adjusted to make
sure that the first four subbands have at least two bits. At 24 kbps,
the adjustment is minor. At 16 kbps, these bands are more likely to get
fewer than two bits, so the modification is more pronounced.

Simulations demonstrate that mean bit allocations for the test
sentences are similar. Distributions averaged over all four speakers at
16 kbps and 24 kbps are illustrated in Fig. 3-1. Complete bit
allocation statistics for individual sentences, as well as minimum,
maximum, and average subband characteristic values, are given in
Appendix D.

55

BIT ALLOCATION
ALL SPEAKERS, 24KBPS

/

/X-

r

N

N

N

N
x,

'N

/

/

/
/
/
/

7

7
7
7
7/

N

N

N
NNrN

N

N
N

/
7

7

7

7<
/

N

I

I

7//

/

N
N
N

N
N
N

7
/

/
/ T 4

/

/
/
/
/
/
/
/

\
\

1 2 3 4 5 6 7 8 9 10 11 12 13

BAND NUMBER
NO PREDICTION =J WITH PREDICTION

BIT ALLOCATION
ALL SPEAKERS, 16KBPS

N ~]faN /

!ggA.Sst

2 3 4 5 6 7 8 9 10 11 12 13

/i NO PREDICTION
BAND NUMBER

____ WITH PREDICTION

Figure 3-1. Average Bit Allocation (four sentences)

Notice that the lower bands, especially numbers 2 and 3 (250 to
750 Hz), typically get the most bits. This is where the voice spectrum
has the most power.

4.5

4

3.5
j

z
0o

F-U
0

t

m
LI

'CU
>

3

2.5

2

1.5

/
/

/

/

/iN
A\

1

0.5

0

3.5

3

2.5

2

1.5

1

z
0

00
-J

M

U
C1H

LiC,

0.5

0

- 3
) -- I I | X I

.. . ..

I l

; _

"I

1

56

3.4 QUANTIZER PARAMETERS

The adaptive quantizer is a 5-bit (32-level) uniform mid-rise
design with level subsets used for smaller bit allocations. Adaptation
of the step size is handled by Jayant's multiplier rule (see Section
2.4).

The values of the multipliers, M(Ilevell), are taken directly from
those recommended in [321. The only other parameters necessary to
completely specify the quantizer are the maximum, minimum, and starting
step sizes (nax' in' tart) The selection of these values is, of
course, dependent upon the expected range of the inputs.

For the four sentences in the test set, values of Anax = 512 and

Ain =-1 were experimentally determined to provide sufficient range to
code the subband samples. Astart is chosen to be equal to in since
the beginnings of the test sentences are close to silence.

To determine the degradation in voice quality introduced by
quantization, independent of the effectiveness of the bit allocation
algorithm, the test sentences are coded without prediction using the
maximum of 5 bits per band. This may be achieved by running the sub-
band coder at 35 kbps or greater (see equation (2-18)). The results are
given in Table 3-2.

DARCI BETH GLENN MIKE

SNR (dB) 18.52 18.91 14.02 13.45

SSNR (dB) 14.39 15.69 15.21 14.10

Table 3-2. Coder Performance With Constant Bit Allocation of 5

These values represent the best that the quantizer can do without
prediction. Comparing these numbers with those of Table 3-1 shows a
loss of more than 10 db in both SNR and SSNR.

3.5 PREDICTOR OPTIMIZATION

Each of the two predictors has several parameters that can affect
its performance. In order to make a fair comparison between them,
parameters that are optimal in some sense should be found for both.

3.5.1 Figure of Merit

Parameter optimization requires a specific measure of predictor
quality. Such a figure of merit should not only indicate input tracking
ability but also consider the relative importance of the subbands.

57

Since a good predictor yields a difference signal that tends to be
much smaller than the input, a reasonable tracking measure is

NRMS
(3-1) r = x 100

where NRMS is the root-mean-square noise (prediction error) and SRMS is
the root-mean-square signal (predictor input). Thus, r represents the
percentage reduction in signal RMS.

In the sub-band coder, predictor performance should be weighted
more heavily in the bands with more power. This is incorporated in the
expression

4

i= (ri) (SRMSi)
(3-2) R =

X SRMS.
i- 1 i

where ri and SRMSi are the percentage RMS reduction and signal RMS,
respectively, of band i. Only the first four subbands are considered
since those are the ones which use prediction.

In order to optimize the predictors to all four test sentences,
the figure of merit which is minimized is

(3-3) Rag = (%ARCI + ETH + %LENN + 4IKE)

Although predictor inputs are quantized in the SBC-ADPCM system,
the figure of merit is calculated from exact subband samples. In this
manner, the optimization process is not tied to any particular bit rate.
Quantization effects are treated separately in a later section.

3.5.2 LMS Optimization

The LMS transversal has four parameters which may be adjusted to
improve performance. These are the order of prediction (N), the gain of
the update term (g), the exponential weighting factor for input power
estimation (a), and the constant bias term added to the power estimate
(a).

Minimizing Rav produces the optimal values N=6, g=.65, a=.72, and
5=3000. Table 3-3 lFists the RMS values that are achieved.

58

DARCI

Band, i NRMSi

BETH GLENN MIKE

SRMSi NRMSi SRMSi NRMSi SRMSi NRMSi SRMSi

1 19.77 67.90 8.91 33.00 12.48 33.39 31.94 73.30
2 97.18 197.97 28.66 68.12 93.06 151.86 333.89 447.74
3 146.76 266.92 32.03 65.69 106.21 133.34 279.45 320.73
4 255.75 430.06 48.82 97.61 73.31 85.94 211.99 229.83

R = 53.95% R = 44.78% R = 70.47% R = 80.00X

Ravg = 62.30%

Table 3-3. Optimal Reduction of Signal RMS (LMS Transversal)

To determine how LMS performance varies with order, the optimal g,
a, and are run with different orders on the test set (Note that for
orders other than 6, these three parameters may no longer be optimal.
However, experiments show them to be close.) The figure of merit is
calculated in each case.

Order

1

2
3
4
5
6
7
8
9
10

Ravg ()

101.04
81.67
74.95
65.64
63.35
62.30
63.06
64.01

64.92
65.70

Table 3-4. RMS Reduction for Different Orders (LMS Transversal)

3.5.3 LS Optimization

Just as in LMS optimization, parameter values are sought which
minimize Rav In this case, there are three variables : the prediction
order (N), he initial value of the forward and backward prediction
error variances (6), and the exponential weighting factor of the time
recursions (w). The optimal values turn out to be N=6, 6=1, and w=.95.
These reduce the signal RMS by about 35%, on the average (see below).

59

DARCI

Band, i NRMSi

BETH

SRMSi NRMSi SRMSi

GLENN MIKE

NRMSi SRMSi NRMSi SRMSi

1 16.21 67.90 5.92 33.00 9.44 33.39 26.64 73.30
2 117.68 197.97 36.30 68.12 111.39 151.86 365.85 447.74
3 128.84 266.92 40.41 65.69 103.87 133.34 267.45 320.73
4 272.92 430.06 50.72 97.61 78.41 85.94 215.75 229.83

R = 55.63% R = 50.43% R = 74.93X R = 81.72%

Ravg = 65.68%

Table 3-5. Optimal Reduction of Signal RMS (LS Lattice)

The same values of 6 and w are then used with different N to
demonstrate LS behavior at other orders.

Order

1

2

3

4
5

6

7
8

9
10

Ravg(%)

87.77
79.65
74.44
69.39
66.82
65.68
65.92
66.05
66.79
67.25

Table 3-6. RMS Reduction for Different Orders (LS Lattice)

It should be mentioned that in the optimization process as well as
in the operational coder, every subband's initial block of eight least-
squares outputs is set to zero. This is done because simulations reveal
consistently poor prediction for these samples and better performance
thereafter.

3.5.4 Frame-to-Frame Predictor Performance

So far, predictor performance has only been considered over entire
sentences. To see how inputs are tracked on smaller time scales, RMS
data is computed over sentence segments.

In [41], Honig and Messerschmitt conduct a frame-to-frame analysis
of prediction error RMS in an ADPCM system using a frame length of 500
samples. In SBC-ADPCM, predictors are applied to decimated subbands
instead of full-band signals. Hence, a similar analysis is done here
for frames of 32 subband samples (equivalent to 512 coder inputs).

60

Figure 3-2 shows frame-to-frame RMS values of the predictor input
along with LMS and LS prediction errors over all four bands for each of
the test sentences. Plots for individual subbands are given in Appendix
D.

PREDICTION ERROR
DARCI BANDS 1-4

5 10 15 20 25 30

FRAMES (32 subband samples per frame)
+ Ims error 0 predictor input

PREDICTION ERROR
BETH BANDS 1-4

5 10 15 20 25 30 35 40 45

FRAMES (32 subband samples per frame)
+ Ims error 0 predictor input

Figure 3-2. Frame-to-Frame Prediction Error

0.9

0.8

0.7

' cSo

Un3
0p-~

0.6

0.5

0.4

0.3

0.2

0.1

0 --
0

0 Is error

180
170
160

150
140
130

120
110

100
:2 90

80
70
50

50
40
30
20

10

0

0

0 Is error

ZbU

240

220

200

180

160

140

120

100

80

60

40

20

0

O is e

YuU

800

700

600

61

PREDICTION ERROR
GLENN BANDS 1-4

0 5 10 15 20 25 30 35 40

FRAMES (32 subband samples per frame)
rror + Ims error 0 predictor input

PREDICTION ERROR
MIKE BANDS 1-4

0 5 10 15 20 25 30 35 40 45 50

FRAMES (32 subband samples per frame)
rror + Ims error 0 predictor input

Frame-to-Frame Prediction Error (continued)
I

,A)
2

500

200

200

0

0 is e

Figure 3-2.

62

3.6 PREDICTOR PERFORMANCE WITH QUANTIZATION

In the previous section, optimal LMS and LS parameters are
determined with unquantized inputs. The following data shows how the
predictors perform with these parameters at 16 kbps and 24 kbps.

DARCI BETH GLENN - MIKE

Band, i NRMSi SRMSi NRMS i SRMSi NRMSi SRMSi NRMSi SRMSi

1 27.89 67.90 9.63 33.00 15.30 33.39 46.94 73.30
2 104.04 197.97 29.22 68.12 94.89 151.86 337.21 447.74
3 155.45 266.92 33.18 65.69 105.85 133.34 282.04 320.73
4 253.22 430.06 49.35 97.61 74.16 85.94 217.27 229.83

R = 56.15% R = 45.90% R = 71.74% R = 82.44%

Ravg = 64.06%;

Table 3-7a. Signal RMS Reduction With 16 kbps Quantization
(LMS Transversal)

DARCI BETH GLENN MIKE

Band, i NRMSi SRMSi NRMSi SRMSi NRMSi SRMSi NRMSi SRMSi

1 28.27 67.90 8.68 33.00 17.21 33.39 46.98 73.30
2 112.04 197.97 35.03 68.12 115.20 151.86 347.03 447.74
3 153.53 266.92 35.64 65.69 104.79 133.34 272.46 320.73
4 282.09 430.06 51.37 97.61 82.90 85.94 219.75 229.83

R = 59.82% R = 49.44%

Rayg

R = 79.13% R = 82.70%

= 67.77%

Table 3-7b. Signal RMS Reduction With 16 kbps Quantization
(LS Lattice)

63

DARCI

Band, i NRMSi

BETH

SRMSi NRMSi

GLENN MIKE

SRMSi NRMSi SRMSi NRMSi

1 30.78 67.90 9.45 33.00 15.25 33.39 40.73 73.30
2 95.33 197.97 28.68 68.12 93.93 151.86 334.64 447.74
3 149.44 266.92 33.11 65.69 104.80 133.34 281.70 320.73
4 275.21 430.06 50.72 97.61 72.25 85.94 211.07 229.83

R = 57.20% R = 46.12% R = 70.76% R = 81.01x

Ravg = 63.77%

Table 3-8a. Signal RMS Reduction With 24 kbps Quantization
(LMS Transversal)

DARCI BETH GLENN MIKE

Band, i NRMSi SRMSi NRMSi SRMSi NRMSi SRMSi NRMSi SRMSi

1 29.33 67.90 7.02 33.00 13.39 33.39 38.79 73.30
2 96.24 197.97 35.04 68.12 111.60 151.86 336.86 447.74
3 127.71 266.92 34.30 65.69 103.48 133.34 269.01 320.73
4 265.94 430.06 50.47 97.61 80.18 85.94 211.33 229.83

R = 53.93% R = 47.97%

Ravg

R = 76.30% R = 79.88%

= 64.52%

Table 3-8b. Signal RMS Reduction With 24 kbps Quantization
(LS Lattice)

A frame-to-frame RMS analysis identical to that for prediction
without quantization is done for 16 kbps and 24 kbps. Since results at
the two bit rates turn out to be very similar, only one set is plotted
(Fig. 3-3).

SRMSi

64

PREDICTION ERROR (WITH 16KBPS QUANT.)
DARCI BANDS 1-4

5 10 15 20 25 30

FRAMES (32 subbond samples per frame)
+ Ims error 0 unquontized input

PREDICTION

180
170

160

150

140
130

120
110

100
M 90

80

70

60

50

40

30

20'
10'

0

ERROR (WITH
BETH BANDS 1-4

16KBPS QUANT.)

0 5 10 15 20 25 30 35 40 45

FRAMES (32 subband samples per frame)
+ Ims error 0 unquantized input

Figure 3-3. Frame-to-Frame Prediction Error
With 16 Kbps Quantization

0.9

0.8

0.7

' C

o

0

.C
v

0.6

0.5

0.4

0.3

0.2

0.1

0

0 Is error

0 Is error

0 Is error

65

PREDICTION ERROR (WITH 16KBPS QUANT.)
GLENN BANDS 1-4

0 5 10 15 20 25 30 35 40

FRAMES (32 subbond samples per frame)
+ Ims error o unquantized input

PREDICTION ERROR (WITH 1 6KBPS QUANT.)
MIKE BANDS 1-4

5 10 15 20 25 30 35 40

FRAMES (32 subbond samples per frame)
+ Ims error 9 unquantized input

45 50

Figure 3-3. Frame-to-Frame Prediction Error
With 16 Kbps Quantization (continued)

.)UU

280

260

240

220

200

180

n 160

140

120

100

80

60

40

20

0

0 Is error

800UU

80O

700

600

500

400

300

200

100

G;

Is errcr

ann

66

3.7 CODER PERFORMANCE

The final group of tests involves judging the voice quality of the
processed sentences at 16 kbps and 24 kbps. Three versions of the sub-
band coder, one without prediction, one using LMS transversal, and one
using LS lattice, are each run on the test set. Each of the predictive
coders are simulated at orders 1, 6, 10, and 15 using the optimal
parameters determined in Section 3.5.

3.7.1 SNR and SSNR Performances

The following four figures are plots of SNR and SSNR vs.
prediction order for DARCI, BETH, GLENN, and MIKE at 16 kbps and 24
kbps. For all of the figures, an order of 0 indicates no prediction.
The SNR and SSNR values are listed in Appendix D.

67

SNR AND SSNR
DARCI, 16KBPS

0 2 4 6 8 10 12 14

PREDICTION ORDER
ns + SNR Is 0 SSNR Ims A SSJNRIs

SNR AND SSNR
DARCI, 24KBPS

1l.UU

14.00 -

13.00 -

12.00 -

2 4

+ SNR Is

6 8

PREDICTION ORDER
SSINR Ims

I i i I I
10 12 14

L. SSINR Is

Figure 3-4. SNR and SSNR (DARCI)

9.00

5.00

7.00

6.00
11)

LiJQ~

5.00

4.00

3.00

2.00

1.00

O SNR 1

ai
.J 11.00 -

10.00 -

9.00 -

8.00 -

0

Rs

" ^^

I.I.....""."il:3 ... i

7.C03 i

68

SNR AND SSNR
BETH. 16KBPS

4 6 8

+ SNR Is

I I I 14

10 t2 14

PREDICTION ORDER
0 SSNR Ims

SNR AND SSNR
BETH, 24KBPS

0 2 4 10 12 14

PREDICTION ORDER
0 SSNR Ims

Figure 3-5. SNR and SSNR (BETH)

14.00

13.00

12.00

Ltw
m
U
U
a

11.00

IT-

nm

10.00

9.00

5.00

O _ SIR Ir

17.50

17.00

16.50

16.00

A SStJR Is

1n
Li

LI

0

15.50

15.00

14.50

14.00

13.50

13.C00

0 SJR ITs SNIR Is A SSNIR Is

I

�-E"P�-�- �--�-

I

I I I I I I I I I I I I

69

SNR AND SSNR
GLENN, 16KBPS

O 2 4 6 8 10 12 14

PREDICTION ORDER
SNR Is 0 SSNR Ims

SNR AND SSNR
GLENN, 24KBPS

A SSNR Is

C; 2 4 6 8 10 12 14

PREDICTION ORDER
qpjR I 0 CSIR Irs A SSNR Is

Figure, 3-6. SNR and SSNR (GLENN)

8.40
8.30
8.20
8.10
8.00
7.90
7.80
7.70

v) 7.60
L 7.50

o 7.40
LJ
c 7.30

7.20
7.10
7.00
6.90
6.80
6.70
6.60
6.50
6.40

0 SNR Ims

12.90

12.80

12.70

12.60

12.50

12.40

u 12.30
-J

12.20

O 12.10

12.00C

11.90

11.80

11.70

11.60

11.50

' SeJP I, _ ..
I ., _......

70

SNR AND SSNR
MIKE, 16KBPS

2 4 6 8 10 12 14

PREDICTION ORDER
+ SNR Is 0 SSNR Ims a SSNR Is

SNR AND SSNR
MIKE, 24KBPS

0 2 4 6 8 10 12 14

PREDICTION ORDER
*.s + SNR Is 0 SSIJR Ims A SSJR Is

Figure 3-7. SNR and SSNR (MIKE)

8.60

8.40

8.20

8.00

7.80

7.60

v) 7.40
U
m 7.20

o 7.00

6.80

6.60

6.40

6.20

6.00

5.80

5.60
0

0 SNR Ims

s anoI .u

12.50

12.00

11.50

LI)
-J
LI
a

Li
0

11.00

10.50

10.00

9.50

9.00

8.50

8.00

O SfOR Inr

a an

71

The objective measures for all four sentences are averaged and
graphed in Fig. 3-8.

AVERAGE SR AND SSNR
FOUR SPEAKERS, 16KBPS

1 0.0U

9.50

9.00

8.50

8.00
-J
mU

7.50

0
7.00

6.50

6.00

5.50

5.00
2 4 6 8 10

PREDICTION ORDER
+ SNR Is 0 SSNR Ims

AVERAGE SNR AND SSNR
FOUR SPEAKERS, 24KBPS

12 14

A SSNR Is

2 4 6 8 10 12

PREDICTION ORDER
+ SNR Is o SSrJR Ims A

Figure 3-8. SNR and SSNR (all speakers)

14

SSNR Is

0

0 SIP 1rs

14.50

14.00

13.50

13.00

0 12.50

U
12. 03

11.50

11.00

10.50

I .
0

r 5:, i .s

72

3.7.2 Listening Tests

Subjective preference tests are conducted in which the relative
qualities of SBC without prediction, SBC with optimal LMS prediction,
and SBC with optimal LS prediction are judged at 16 kbps and 24 kbps.

3.7.2.1 Test Format

In order to include as many different listeners as possible, the
test is designed to be brief. Consequently, only two sentences are
used; one male (MIKE) and one female (BETH). Six versions of each are
recorded : no prediction, optimal LMS transversal, and -optimal LS
lattice at 16 kbps and 24 kbps. These are denoted by (NAME)(BIT
RATE).(PREDICTOR), e.g. BETH16.no refers to BETH processed at 16 kbps
with no prediction. Each subject hears the twelve pairs of sentences

A

BETH16.no
BETH16.no
BETH16.lms
BETH24.no
BETH24.no
BETH24.lms
MIKE16.no
MIKE16.no
MIKE16.lms
MIKE24.no
MIKE24.no
MIKE24.lms

B

BETH16.lms
BETHI16.ls
BETH16.ls
BETH24.lms
BETH24.ls
BETH24.ls
MIKE16.lms
MIKE16.ls
MIKE16.ls
MIKE24.lms
MIKE24.ls
MIKE24.ls

Table 3-9. Listening Test Pairs

and for each pair is asked to select one of five options indicating
which one sounds better

1 Phrase "A" Clearly Better
2 Phrase "A" Slightly Better
3 No Preference
4 Phrase "B" Slightly Better
5 Phrase "B" Clearly Better

Table 3-10. Listening Test Response Options

For every listener, the order of the 12 pairs is randomly chosen,
as is the order of the sentences within each pair. Also, the subjects
are not told which versions are being played. Such a test, known as
double-blind, attempts to protect against bias in the comparisons.

1

2

3

4

5

6

7

8

9

10

11

12

73

3.7.2.2 Test Results

A total of 60 people participate in the listening test, producing
the following distribution of responses.

16 kbps

24 kbps

A B A>>B A>B A=B A<B A<<B

Ims no 5% 22Z 58% 12x 3x

Is no 4% 28% 52% 13% 2%
is ims 7% 16% 59% 16% 2%

A B A>>B A>B A=B A<B A<<B

Ims no
Is no
Is lms

1 % 14%
1% 17%
1% 15%

Table 3-11. Listening Test Results

A total of 120 data points are gathered for each of
comparisons (two sentences, 60 listeners).

the six A-B

70%

67%
64%

14%

12%
19%

1%

2%
1 ;

74

CHAPTER 4 - DISCUSSION

The simulation results in this study allow several observations to
be made about the SBC-ADPCM system. These concern the -degradation
introduced by quantization, the behavior of the predictors, and the
effects of differential coding on voice quality.

4.1 SUB-BAND CODING WITHOUT PREDICTION

SBC without prediction employs only adaptive quantization to code
the subband signals. Table 4-1 summarizes the SNR and SSNR values
obtained by coding the test sentences with different bit rates.

DARCI BETH GLENN MIKE

QUANTIZATION SNR SSNR SNR SSNR SNR SSNR SNR SSNR

none 30.83 26.51 30.99 25.96 30.55 26.47 29.38 27.22
2 35 kbps 18.52 14.39 18.91 15.69 14.02 15.21 13.45 14.10
24 kbps 14.34 9.63 16.68 12.64 12.70 12.01 12.43 11.01
16 kbps 7.94 4.55 11.81 8.36 8.39 7.60 8.60 6.87

(all values in dB)

Table 4-1. Quantization Degradation (No Prediction)

It is evident that quantiza'tion, even at the maximum of 5 bits per
band (2 35 kbps), introduces a loss of 10 dB or more in both SNR and
SSNR. Further reduction to 24 kbps produces a smaller distortion of
about 1-5 dB. Finally, another 5 dB is lost in going down to 16 kbps.

The authorTs personal evaluation of the different bit rates is
that voice quality is good (acceptable for voice store-and-forward
applications) down to 24 kbps but at 16 kbps, the coded sentences sound
noticeably poor.

The SNR results are generally lower than some of the values
reported in the literature. For example, at 16 kbps, Barnwell [24]
achieves about 15 dB and Gupta and Virupaksha [33], 17 dB. At 32 kbps,
Esteban and Galand [471 measure 25 dB. These performances are 3-11 dB
better than those in Table 4-1. However, the 16 kbps sub-band coder of
Crochiere, Webber, and Flanagan [11] gives an SNR of 11.1 dB, which is
comparable to the values found in this study.

75

The disparity in SNR is caused by the use of different quantizers.
In both [24] and [33], the quantizer has a non-uniform step size which
is optimized to the probability density function of the input [55]. In
[47], Esteban and Galand employ block companded pulse code modulation
(BCPCM) (see Section 2.4). In this thesis as well as in [1], the
quantizer updates its step size based upon Jayant's simple multiplier
rule 8].

To confirm the benefits of using another quantizer, the BCPCM
method is simulated on the subbands of the four test sentences. Table
4-2 gives the SNR and SSNR results.

DARCI BETH GLENN MIKE

QUANTIZATION SNR SSNR SNR SSNR SNR SSNR SNR SSNR

> 35 kbps 24.37 19.22 23.83 18.98 20.68 19.41 20.95 18.55
24 kbps 21.57 16.76 22.61 17.78 19.18 17.49 19.39 16.82

16 kbps 14.40 10.70 17.81 13.24 12.94 11.80 13.02 11.27
(all values in dB)

Table 4-2. BCPCM Quantization Degradation (No Prediction)

Thus, the SNR and SSNR values of BCPCM are better than those of
Jayant's quantizer by about 5 dB.

4.2 OPTIMAL PREDICTORS

The predictor parameters are optimized to the four test sentences
by minimizing a figure of merit, Ravg . Tables 3-3 and 3-5 demonstrate,
however, that contributions to Rvg rom the different sentences have a
large variance. This indicates that conclusions reached from this data
might not be valid for other speech samples. With this qualification in
mind, the following observations can be made.

4.2.1 Optimal Order

The optimal order for both the LMS transversal and LS lattice
predictors is 6. Higher orders are not as effective in improving the
figure of merit, Ravg This suggests that the subband signals may not
have significant correlation at delays beyond 6.

4.2.2 LMS vs. LS

Comparisons of the two optimal predictors indicate very similar
performances. In terms of Ra , the LMS transversal does only slightly
better (3.38%). Tables 3-3 an3 3-5 show that BETH and GLENN contribute
the most to this discrepancy. The frame-to-frame RMS plots for these

76

sentences (Fig. 3-2) reveal that the least-squares error occasionally
overshoots the input during sudden increases in input RMS. Otherwise,
the LS and LMS algorithms follow similar tracking patterns.

4.2.3 Cases of Best Prediction

Both predictors do significantly better with the female speakers
than with the males - Rg for DARCI and BETH is 15-30% less than that
for GLENN and MIKE. A probable reason for this discrepancy is that
female voices have higher fundamental frequencies, which increases the
chance of having only one harmonic in a subband [56].

Another interesting observation is that for all four sentences,
the percentage RMS reduction, defined in equation (3-1), is greatest in
the first band. This agrees with the fact that there is more
correlation in lowpass signals than in higher bandpass ones [54, p.178].

4.2.4 Prediction With Quantization

The predictors are optimized using exact subband inputs. When
quantization is introduced, the adverse effect on predictor performance
turns out to be negligible. In fact, in some instances there is even a
small improvement (Table 4-3). Frame-to-frame plots also show that
quantization effects are insignificant (Figs. 3-2 and 3-3).

DARCI BETH GLENN MIKE

R(%) R(x) R(%) R(%) Ravg(%)

LMS no quantization 53.95 44.78 70.47 80.00 62.30
24 kbps 57.20 46.12 70.76 81.01 63.77
16 kbps 56.15 45.90 71.74 82.44 64.06

LS no quantization 55.63 50.43 74.93 81.72 65.68
24 kbps 53.93 47.97 76.30 79.88 64.52
16 kbps 59.82 49.44 79.13 82.70 67.77

Table 4-3. Quantization Effects on Prediction

4.3 SUB-BAND CODING WITH PREDICTION

4.3.1 Trends With Order

Fig. 3-8, which combines the performances of all four speakers,
shows two clear trends.

One is that additional orders of prediction beyond 10 degrade
coder performance. This may be caused by the introduction of
uncorrelated samples to the prediction calculation. Another possible

77

contribution is the fact that the LMS and LS parameters are optimal for
order 6 and not necessarily for others.

The other notable trend is that the LMS curve drops more sharply
than that of the LS. This is because the gradient estimate used in the
LMS update equation becomes noisier as the prediction order increases.
[17].

4.3.2 Objective Prediction Gain

The changes in SR and SSNR resulting from the addition of 6th
order optimal predictors to a non-differential sub-band coder are shown
below.

DARCI BETH GLENN MIKE AVERAGE

ASNR ASSNR ASNR ASSNR ASNR ASSNR ASNR ASSNR ASNR ASSNR

16 kbps
LMS +.86 +.37 +1.44 +.39 0 +.21 +.06 -.03 +.59 +.24
LS +.64 -.60 +1.15 +.20 -.37 -.10 +.14 -.21 +.39 -.18

24 kbps
LMS 0 +.19 +.39 +.38 +.05 +.14 +.20 +.18 +.16 +.22
LS +.42 -.46 +.51 +.35 -.15 -.09 +.54 -.10 +.33 -.08

(all values in dB)

Table 4-4. SNR and SSNR Prediction Gains

An unexpected result is that some of the gains are negative.
Indeed, Figs. 3-4 to 3-7 demonstrate that the optimal predictors do not
always give higher SNR and SSNR values than those of non-optimal orders.
A possible explanation for this is that additional distortion is
introduced by the adaptive quantizer. In other words, a (greater)
reduction in the RMS of the quantizer input does not in itself guarantee
better coding. Perhaps the quantizer step size does not adapt well to
some types of differential signals. As of yet, this idea has not been
experimentally confirmed.

All of the improvements in Table 4-4 are rather small and
typically less than 1 dB. The following argument demonstrates that this
is a direct consequence of using prediction in only the first four
bands. By building a simple model of the SBC-ADPCM system, an
expression for prediction gain in terms of subband RMS reduction can be
derived.

Suppose that the power of the SBC-ADPCM input, <sin2>, is equal to
the sum of the powers of its 13 subband signals, all of which have the

78

same power, <s 2 > (this isn't usually true, of course, but it simplifies
these calculations). Similarly, assume that the total quantization
noise power, <n 2>, is ust 13 times the noise in one band, <n2>. Then

(4-1a) <sin2> = 13 <s2 > and

(4-b) <nq2 > = 13 n2>

If the predictor in each of the first four bands manages to reduce the
subband signal RMS to r times its value, and this causes the quantizing
noise RMS to be attenuated by the same factor, then

(4-2) nRM, p = (r)(nRMS)

where nRSp and nRMs are the noise RMS's in each predicted and non-
predicted subband, respectively. Thus, the signal-to-noise ratio of the
coder is given by

<si2> _ <s 2> 13 <s2>

9nRMS + 4nRMSp 9<n> + 4r <n > 9 + 4rZ 13Zn >

Therefore, the prediction gain in dB is just

13(4-4) PREDICTION GAIN = 10log1 0 9 + 4r2

By plugging in r = 65%, which is about the average RMS reduction
achieved by the optimal predictors in this study, (4-4) yields an
expected gain of .85 dB. This is comparable to the gains actually
obtained.

Extending this argument to the case of predicting in all 13 bands
changes the gain expression to

(4-5) PREDICTION GAIN = 101og1 0 -

For the same value of r, the gain is now 3.74 dB.

As mentioned in Chapter 2, however, no prediction is used in the
higher bands because there is not enough correlation at those
frequencies.

In another study 27], Galand, et.al. cite prediction gains of 2-
12 dB using an LMS transversal predictor in sub-band coding. Their
coder, however, operated on signals bandlimited to 1000 Hz, allowing
prediction in all subbands. Furthermore, their QMF filters were 125 Hz
wide, half the width of those in this simulation, thereby providing more
correlation in each band. In addition, they coded only sustained voiced
sounds, which are easier to predict than phonetically balanced
sentences.

79

4.3.3 Subjective Prediction Gain

The results of the listening test (Table 3-11) support the
conclusion that the prediction gain is minimal.

At 16 kbps, the majority of the responses indicate no preference
among no prediction, LMS prediction, and LS prediction. However, a
noticeable minority perceive a slight improvement with the LMS and LS
algorithms over no prediction.

At 24 kbps, the overwhelming judgment is that all three versions
are indistinguishable.

80

CHAPTER 5 - CONCLUSIONS

The primary goal of this research was to compare the performances
of the least-mean-square transversal and least-squares lattice
predictors in the context of sub-band coding. Objective improvements
over non-differential SBC and trends with respect to prediction order
were to be measured. In addition, the feasibility of using predictive
techniques to lower the bit rate from 24 kbps to 16 kbps while
preserving voice quality was to be determined.

The LS lattice predictor generally tracks sudden changes in input
better than the LMS transversal [14]. This property is particularly
important in real-time speech coding since voice waveforms can change
very quickly. Despite the theoretical advantage of the least-squares
algorithm, the results of this study show that the two predictors, when
optimized to the test sentences, have very similar behavior in tracking
the subband signals.

For both LMS and LS algorithms the optimal prediction order is 6,
which achieves maximum SNR and SSNR gains of 1.44 dB and .39 dB,
respectively. Higher orders tend to perform slightly worse, especially
with LMS. However, both objective and subjective criteria clearly
indicate that any improvements over no prediction are marginal, at best,
and do not permit a savings of 8 kbps.

A simple model of an SBC-ADPCM system (Section 4.3.2) demonstrates
that the low values of prediction gain may be attributed to the
application of predictors in only the first four subbands. This design
decision is based upon the findings of Ramstad 31] and Hamel et.al.
[32] that higher bands do not have as much correlation. Although this
thesis does not confirm these claims, they are supported by studies
which show that the prediction gain of coders with prediction in all
bands is still only about 2 dB [24,28]. Another reason why prediction
is not as successful at higher bands is that fewer bits are usually
available, which increases the quantization noise of the predictor
input.

The overall performance of the simulated coder is lower than
previously published values by about 3-11 dB 24,33,47]. This is a
consequence of selecting a simple but inferior quantizer. Substitution
of a different quantizer achieves an SNR improvement of approximately 5
dB (Section 4.1). This result, in conjunction with the small prediction
gains, suggests that the design of the quantizer is more important to
overall coder quality than is the use of differential encoding.

81

As a final note, the findings of this study must be qualified by
the size of evaluation data base. Although the four test sentences are
phonetically balanced and include male and female voices of different
volumes, they are not necessarily representative of a larger sample of
speech. In order to make the conclusions of this thesis statistically
more significant, many more sentences should be processed and analyzed.

82

REFERENCES

£1] R.E. Crochiere, S.A. Webber, J.L. Flanagan, "Digital Coding of
Speech in Sub--Bands," Bell System Technical Journal, October 1976, pp.
1069-1085.

23] D. Esteban, C. Galand, "Application of Quadrature Mirror Filters to
Split-Band Coding," Proc. IEEE ICASSP, 1977.

C3] B.S. Atal, M.R. Schroeder, "Adaptive Predictive Coding of Speech
Signals," Bell System Technical Journal, October.1970, pp. 1973-1986.

£41 A.V. Oppenheim and R.W. Schafer, Digital Signal Processing,
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.

CS5 L.R. Rabiner and B. Gold, Theory and Application of Digital Signal
Processing, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.

£6] N.S. Jayant, Peter Noll, Digital Coding of Waveforms,
Prentice-Hall, Inc., Eglewood Cliffs, N.J., 1984.

[73 B.M. Oliver, J.R. Pierce, and C.E. Shannon, "The Philosophy of PCM,"
Proc. IRE, Vol. 36, November 1948, pp. 1324-1331.

C8 N.S. Jayant, "Adaptive Quantization with a One Word Memory," Bell
System Technical Journal, September 1973, pp. 1119-1144.

t93 P. Cummiskey, N.S. Jayant, and J.L. Flanagan, "Adaptive Quantization
in Differential PCM Coding of Speech," Bell System Technical Journal,
Vol. 52, No. 7, September 1973, pp. 1105-1118.

[10 P. Elias, "Predictive Coding," IRE Trans. on Information Theory,
Vol. IT-1, No. 1, March 1955, pp. 16-33.

£113 R.A. McDonald, "Signal-to-Noise Performance and Idle Channel
Performance of Differential Pulse Code Modulation Systems with
Particular Applications to Voice Signals," Bell System Technical
Journal, Vol. 45, No. 7, September 1966, pp. 1123-1151.

£123 D. Cohn, J. Melsa, "The Residual Encoder - An Improved ADPCM System
for Speech Digitization," IEEE Trans. on Comm., Vol. COM-23, No. 9,
September 1974, pp. 935-941.

t133 M. Morf, A. Vieira, and D.T. Lee, "Ladder Forms for Identification
and Speech Processing," Proc. IEEE Conference on Decision and Control,
1977, pp. 1074-1078.

t143 B. Friedlander, "Lattice Filters for Adaptive Processing," Proc.
IEEE, Vol. 70, No. 8, August 1982, pp. 829-867.

£153 J.D. Gibson, "Adaptive Prediction in Speech Differential Encoding
Systems," IEEE Proc. on Communications, Vol. COM-23, September 1975, pp.
935-941.

83

£16] B. Widrow and M. Hoff, Jr., "Adaptive Switching Circuits," IRE
WESCON Conv. Rec., pt. 4, 1960, pp. 96-104.

£17] B. Widrow, J.H. McCool, M.G. Larimore, and C.R. Johnson, Jr.,
"Stationary and Nonstationary Learning Characteristics of the LMS
Adaptive Filter," Proc. IEEE, Vol. 64, No. 8, August 1976, pp. 1151-
1162.

[18] M. Morf, D.T. Lee, J.R. Nickolls, and A. Vieira, "A Classification
of Algorithms for ARMA Models and Ladder Realizations," Proc. IEEE
ICASSP, 1977, pp. 13-19.

£19] J.D. Gibson and L.C. Sauter, "Experimental Comparison of Forward
and Backward Adaptive Prediction in DPCM," Proc. IEEE ICASSP, 1980, pp.
508-511.

E20] G. Pirani and V. Zingarelli, "An Analytical Formula for the Design
of Quadrature Mirror Filters," IEEE Trans. on Acoustics, Speech, and
Signal Processing, Vol. ASSP-32, No. 3, June 1984, pp. 645-648.

E21] V.K. Jain and R.E. Crochiere, "Quadrature Mirror Filter Design in
the Time Domain," IEEE Trans. on Acoustics, Speech, and Signal
Processing, Vol. ASSP-32, No. 2, April 1984, pp. 353-361.

E22] P.C. Millar, "Recursive Quadrature Mirror Filters - Criteria
Specification and Design Method," IEEE Trans. on Acoustics, Speech and
Signal Processing, Vol. ASSP-33, No. 2, April 1985, pp. 413-420.

£23] R.V. Cox, "The Design of Uniformly and Nonuniformly Spaced
Pseudoquadrature Mirror Filters," IEEE Trans. on Acoustics, Speech, and
Signal Processing, Vol. ASSP-34, No. 5, October 1986, pp. 1090-1096.

C241 Thomas P. Barnwell, III, "Subband Coder Design Incorporating
Recursive Quadrature Filters and Optimum ADPCM Coders," IEEE Trans. on
Acoustics, Speech, and Signal Processing, Vol. ASSP-30, No. 5, October
1982, pp. 751-765.

C25] R.E. Crochiere, "A Novel Approach for Implementing Pitch Prediction
in Sub-Band Coding," Proc. IEEE ICASSP, 1979, pp. 526-529.

£261 A.J. Barabell, R.E. Crochiere, "Sub-Band Coder Design Incorporating
Quadrature Filters and Pitch Prediction," Proc. IEEE ICASSP, 1979, pp.
530-533.

C27] C. Galand, K. Daulasim, D. Esteban, "Adaptive Predictive Coding of
Base-Band Speech Signals," Proc. IEEE ICASSP, 1982, pp. 220-223.

[28] F.K. Soong, R.V. Cox, N.S. Jayant, "Subband Coding of Speech Using
Backward Adaptive Prediction and Bit Allocation," Proc. IEEE ICASSP,
1985, pp. 1672-1675.

£29] C. Galand and D. Esteban, "16kbps Sub-Band Coder Incorporating
Variable Overhead Information," Proc. IEEE ICASSP, 1982, pp. 1684-1687.

84

C30] R.S. Cheung and R.L. Winslow, "High Quality 16 kb/s Voice
Transmission: the Subband Coder Approach," Proc. IEEE ICASSP, 1980, pp.
319-322.

£311 T.A. Ramstad, "Considerations on Quantization and Dynamic Bit-
Allocation in Subband Coders," Proc. IEEE ICASSP, 1986, pp. 841-844.

{32] P. Hamel, J. Soumagne, and A. Le Guyader, "A New Dynamic Bit
Allocation Scheme for Sub-Band Coding," Proc. IEEE ICASSP, 1985, pp.
1676-1679.

[33] V. Gupta and K. Virupaksha, "Performance Evaluation -of Adaptive
Quantizers for a 16-kbit/s Sub-Band Coder," Proc. IEEE ICASSP, 1982, pp.
1688-1691.

£343 CCITT Report, Study Group XVIII, Temp. Doc. 18, Draft
Recommendation G.7zz, Geneva, November 21-25, 1983.

[35] D.T.L. Lee, M. Morf, B. Friedlander, "Recursive Least-Squares
Ladder Estimation Algorithms," IEEE Trans. on Acoustics, Speech, and
Signal Processing, Vol. ASSP-29, No. 3, June 1981, pp. 627-641.

[36] M. Morf and D.T. Lee, "Recursive Least Squares Ladder Forms for
Fast Parameter Tracking," Proc. IEEE Conference on Decision and Control,
1978, pp. 1362-1367

[37] R.S. Medaugh and L.J. Griffiths, "A Comparison of Two Fast Linear
Predictors," Proc. IEEE ICASSP, 1981, pp. 293-296.

E38] D.D. Falconer and L. Lung, "Application of Fast Kalman Estimation
to Adaptive Equalization," IEEE Trans. on Communications, Vol. COM-26,
October 1978, pp. 1439-1446.

t39] E.H. Satorius and M.J. Shensa, "Recursive Lattice Filters - A Brief
Overview," Proc. IEEE Conference on Decision and Control, 1980, pp. 955-
959.

C40] E.H. Satorius and J.D. Pack, "Application of Least Squares Lattice
Algorithms to Adaptive Equalization," IEEE Trans. on Communications,
Vol. COM-29, No. 2, February 1981, pp. 136-142.

[41] M.L. Honig and D.G. Messerschmitt, "Comparison of Adaptive Linear
Prediction Algorithms in ADPCM," IEEE Trans. on Communications, Vol.
COM-30, No. 7, July 1982, pp. 1775-1785.

£42] R.C. Reininger and J.D. Gibson, "Backward Adaptive Lattice and
Transversal Predictors for ADPCM," Proc. IEEE ICASSP, 1984.

t43] F.L. Kitson and K.A. Zeger, "A Real-Time ADPCM Encoder Using
Variable Order Prediction," Proc. IEEE ICASSP, 1986, pp. 825-828.

85

E441 B. Widrow, et. al., "Adaptive Noise Cancelling : Principles and
Applications," Proc. IEEE, Vol. 63, No. 12, December 1975, pp. 1692-
1719.

C453 R.E. Crochiere and L.R. Rabiner, "Interpelation and Decimation of
Digital Signals - A Tutorial Review," Proc. IEEE, Vol. 69, No. 3, March
1981, pp. 300-331.

C46] Claude R. Galand and Henri J. Nussbaumer, "New Quadrature Mirror
Filter Structures," IEEE Trans. on Acoustics, Speech, and Signal
Processing, Vol. ASSP-32, No. 3, June 1984, pp. 522-531.

C47 D. Esteban, C. Galand, "32 kbps CCITT Compatible Split Band Coding
Scheme," Proc. IEEE ICASSP, 1978, pp. 320-325.

C483 D. Esteban and C. Galand, "Multiport Implementation of Real Time
16kbps Sub-Band Coder," Proc. IEEE ICASSP, 1981.

C493 C. Galand and D. Esteban, "16kbps Real Time QMF Sub-Band Coding
Implementation," Proc. IEEE ICASSP, 1980, pp. 332-335.

C503 C. Galand and D. Esteban, "Multirate Sub-Band Coder with Embedded
Bit Stream: Application to Digital TASI," Proc. IEEE ICASSP, 1983,
pp.1284-1287.

C51] B. Widrow and S.D. Stearns, Adaptive Signal Processing, Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1985.

C523 Ben Wilbanks, private communication, April 14, 1987.

t53] "IEEE Recommended Practice for Speech Quality Measurements," IEEE
Transactions on Audio and Electroacoustics, Vol. AU-17, No. 3, September
1969, pp. 225-246.

1543 L.R. Rabiner and R.W. Schafer, Digital Processing of Speech
Signals, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1978.

E55] J. Max, "Quantizing for Minimum Distortion," IRE Trans. on
Information Theory, Vol. IT-6, March 1960, pp. 7-12.

C563 Dennis Klatt, private communication, August 3, 1987.

86

APPENDIX A - QMF COEFFICIENTS

This appendix gives the impulse responses of the 16 parallel QMF
bandpass filters discussed in Chapter 2. In addition, it lists the
coefficients of the half-band filters from the corresponding tree
structure.

A.1 HALF-BAND FILTERS

The parallel QMF bank is generated from four half-band lowpass
filters, hl(n), h2(n), h3(n), and h4(n), from stages 1 to 4,
respectively, of a tree configuration. Each is a symmetric FIR filter
with an even number of taps. Because of decimation effects (see Section
2.2), the number of coefficients may be reduced by about half at each
stage.

Stage 1 - 64 taps

.0008710111
-.002555511
-.0004363039
.002222395
.0002690002

-.003230121
-.0001858207
.004394296

-.00007973524
-.005825718
.0005297959
.007542193

-.001228547
-.009589027
.002256642
.01203045

-.003727316
-.01496923
.005808109
.01858054

-.008769508
-.02318487

h1(32)
h1(33)
h1(34)
h1(35)
hl (36)
h1(37)
hl (38)

h1(39)
h1(40)
h1(41)
h1(42)
h1(43)
h1(44)
h1(45)
h1(46)
h1(47)
h1(48)
h1(49)
h1 (50)
h1(51)
h1(52)
h1(53)

.4575616

.1417411

-.09642129
-. 05521201

.05530956

.03117935
-.03876234
-.01976451
.02942451
.01309416

-.02318487
-.008769508
.01858054
.005808109

-.01496923
-.003727316
.01203045
.002256642

-.009589027
-.001228547
.007542193
.0005297959

hl(0)
hi(1)
h1(2)
h1(3)
h1(4)
h1(5)
h1(6)
h1(7)
h1(8)
h1 (9)

h1(10)
h1(11)
hl(12)
h1(13)
h1(14)
h1(15)
hl(16)
h1(17)
hl(18)
h1(19)
h1(20)
h1(21)

87

.01309416

.02942451
-. 01976451

-.03876234
.03117935
.05530956

-. 05521201
-.09642129
.1417411

.4575616

hl (54)
hl (55)
hl (56)
hl (57)
hl (58)
hl (59)
hl (60)
hl (61)
hl (62)
hl (63)

-.005825718
-. 00007973524

.004394296
-. 0001858207
-.003230121

.0002690002

.002222395
-. 0004363039
-.002555511

.0008710111

Stage 2 - 32 taps

.001125614
-.00459779
-.0007166802
.007749691

-.0002332937
-.01375898
.002733096
.02235853

-.008170245
-.03485896
.01920389
.05505545

-.0438903
-.0999044
.1321532
.4644493

h2(16)
h2(17)
h2(18)
h2(19)
h2(20)
h2(21)
h2(22)
h2(23)
h2(24)
h2(25)
h2(26)
h2(27)
h2(28)
h2(29)
h2(30)
h2(31)

= .4644493

= .1321532

= -.0999044
= -.0438903
= .05505545

= .01920389

= -.03485896
= -.008170245
= .02235853

= .002733096

= -.01375898
= -.0002332937
= .007749691

= -.0007166802
= -.00459779
= .001125614

Stage 3 - 16 taps

.002005465
-.01261604
.0006893994
.03872023

-.0196975

-.096956
.1096776
.4766322

h3(8)
h3(9)
h3(10)
h3(11)
h3(12)
h3(13)
h3(14)
h3(15)

.4766322

.1096776
-.096956
-.0196975
.03872023
.0006893994

-.01261604
.002005465

Stage 4 - 10 taps

= .01219983
= -.001423909
= -. 07799588
= .07888518

= .4890657

h4(5)
h4(6)
h4(7)
h4(8)
h4(9)

= .4890657
= .07888518
= -. 07799588
= -. 001423909
= .01219983

h (22)
h1(23)
h1(24)
h1 (25)
h1 (26)
h1(27)
h1(28)
h1(29)
h1(30)
h1 (31)

h2(0)
h2(1)
h2(2)
h2(3)
h2(4)
h2(5)
h2(6)
h2(7)
h2(8)
h2(9)
h2(10)
h2(11)
h2(12)
h2(13)
h2(14)
h2(15)

h3(0)
h3(1)
h3(2)
h3(3)
h3(4)
h3(5)
h3(6)
h3(7)

h4(0)
h4(1)
h4(2)
h4(3)
h4(4)

88

A.2 PARALLEL BANDPASS FILTERS

These 16 filters split signals into their subband components.
Each is a truncated version of a 258-tap filter obtained by convolving
(frequency normalized) half-band filters.

fO(n) - 0 to 250 Hz

= 1.053927E-03
= 1.841017E-03

= 2.063785E-03
= 2.345845E-03

= 1.506928E-03
= 1.367166E-03
= 7.006013E-04

= 2.67798E-04

= -1.244974E-03
= -2.206876E-03
= -3.523216E-03
= -4.592768E-03
= -6.402049E-03
= -7.726114E-03
= -8.812724E-03
= -9.322696E-03
= -9.782126E-03
= -9.669026E-03
= -8.836473E-03
= -7.254504E-03
= -5.01219E-03
= -2.034141E-03
= 1.987044E-03
= 6.86388E-03

= 1.258937E-02
= 1.885467E-02

= 2.570829E-02
= 3.276445E-02
= 3.989666E-02
= 4.672494E-02
= 5.310812E-02
= 5.874324E-02

= 6.351142E-02

= .067207

= 6.973638E-02

= .0710003

fO(36)
f0(37)
fO(38)
fO (39)
fO(40)
fO(41)
f0 (42)
fO(43)
fO(44)
fO(45)

fO(46)
fO(47)
fO (48)
f0(49)
fO(50)
fO(51)

fO(52)
fO(53)
fO(54)
fO(55)
f0(56)

fO(57)
fO (58)

fO(59)
fO(60)
fO(61)
fO(62)
fO(63)
fO(64)
fO(65)
f0(66)
f0(67)
fO(68)
fO(69)
fO(70)
fO(71)

= .0710003
= 6.973641E-02
= 6.720698E-02
= 6.351141E-02
= 5.874324E-02
= 5.310814E-02

= 4.672493E-02

= 3.989666E-02

= 3.276445E-02
2.570829E-02

= 1.885466E-02

= 1.258937E-02

= 6.863879E-03

= 1.987042E-03

= -2.034144E-03

= -5.012196E-03
= -7.254503E-03
= -8.83648E-03
= -9.669022E-03
= -9.782125E-03
= -9.322696E-03
= -8.812728E-03

= -7.726108E-03
= -6.402048E-03
= -4.592766E-03
= -3.523215E-03
= -2.206874E-03

= -1.244974E-03
= 2.677977E-04

= 7.006018E-04

= 1.367166E-03
= 1.506929E-03

= 2.345844E-03

2.063786E-03
= 1.841016E-03

= 1.053927E-03

fl(n) - 250 to 500 Hz

= 1.378243E-03
= 1.812966E-03

= 1.783216E-03

= 1.991476E-03

= 1.387367E-03

fl(36) = -1.226034E-02
f1(37) = -3.541158E-02
f1(38) = -.0545745
f1(39) = -.0677396
f1(40) = -7.368946E-02

fO(O)
fO(1)
fO(2)
fO(3)
fO(4)
fO (5)
f0(6)
fO(7)
fO (8)
fO(9)
fO(10)
f0(11)
fO(12)
fO(13)
fO(14)
f0(15)
fO(16)
fO(17)
fO(18)
f0(19)
fO(20)
fO(21)

f0(22)
fO(23)
fO(24)
fO(25)
f0(26)
fO(27)
fO(28)
f0(29)
fO (30)
fO (31)

fO(32)
fO (33)

fO(34)
f0(35)

fl (0)
fil(1)

fl (2)
fl (3)
f1 (4)

89

3.827771E-04
-4.39708E-04
-1.283091E-03
-1.361171E-03
-1.952853E-03
-1.66957E-03
-1.58957E-03
-7.449485E-04
-7.163259E-04
-1.431951E-03
-3.52007E-03
-6.858762E-03
-1.119207E-02
-1.658529E-02
-.0218821
-2.643268E-02
-.0285018
-2.744548E-02
-2.225322E-02
-1.289227E-02
4.631233E-04
.0166961
3.413435E-02
5.064122E-02
6.400694E-02
7.219621E-02
7.368946E-02
.0677396
5.457451E-02
3.541155E-02
1.226033E-02

f1(41) = -7.219621E-02
fl(42) = -6.400691E-02
fl(43) = -5.064121E-02
fl(44) = -3.413434E-02
fl(45) = -.0166961
fl(46) = -4.631148E-04
fl(47) = 1.289227E-02
fl(48) = 2.225322E-02
f1(49) = 2.744549E-02
fl(50) = 2.850179E-02
f1(51) = 2.643269E-02
fl(52) = 2.188209E-02
fl(53) = .0165853
fl(54) = 1.119206E-02
fl(55) = 6.858761E-03
fl(56) = 3.52007E-03
fl(57) = 1.43195E-03
fl(58) = 7.163236E-04
fl(59) = 7.449468E-04
f1(60) = 1.589569E-03
fl(61) = 1.66957E-03
fl(62) = 1.952853E-03
fl(63) = 1.36117E-03
fl(64) = 1.283091E-03
fl(65) = 4.397079E-04
fl(66) = -3.827774E-04
fl(67) = -1.387367E-03
fl(68) = -1.991475E-03
fl(69) = -1.783217E-03
fl(70) = -1.812965E-03
fl(71) = -1.378243E-03

f2(n) - 500 to 750 Hz

= 3.29006E-04

= 1.478735E-03

= 2.525595E-03

= 3.132475E-03
= 2.072552--03

= 8.003403E-04

= -1.449775E-03
= -2.877092E-03
= -3.464928E-03
= -2.881519E-03
= -6.880043E-04
= 1.339663E-03
= 3.083792E-03
= 2.334802E-03

= -7.400271E-04
= -5.686532E-03
= -1.096119E-02
= -1.369183E-02

= -1.236606E-02

f2(36)
f2(37)
f2(38)
f2(39)
f2(40)
f2(41)
f2(42)
f2(43)
f2(44)
f2(45)
f2(46)
f2(47)
f2(48)
f2(49)
f2(50)
f2(51)
f2(52)
f2(53)
f2(54)

= .079559

= 6.077661E-02

= 2.811491E-02

= -9.849666E-03

= -4.351676E-02

= -.0646829
= -6.899008E-02
= -5.683186E-02
= -. 0329204

= -4.698264E-03

= .0201566

= 3.592261E-02

= 4.007546E-02

.0339758
= 2.120152E-02
= 6.733697E-03
= -5.237205E-03

= -1.236606E-02

= -1.369183E-02

fl(5) =
fl(6) =

f1(7) =
fl(8) =
fl(9) =
fi(10) =

fl(ll) =
fl(12) =
fl(13) =

f1(14) =
fl(15) =

f1(16) =

fl(17) =

fl(18) =
fl(19) =

fl1(20) =

f1(21) =
fl(22) =

fl(23) =
fl(24) =
fl(25) =

fl(26) =
fl(27) =

fl(28) =
fl(29) =

fl1(30) =

fl(31) =

fl(32) =

fl (33) =

fl(34) =
fl(35) =

f2(0)
f2(1)
f2(2)

f2(3)
f2(4)
f2(5)
f2(6)
f2(7)
f2(8)
f2(9)
f2(10)
f2(11)
f2(12)
f2(13)
f2(14)
f2(15)
f2(16)
f2(17)
f2(18)

90

= -5.237201E-03
= .0067337
= 2.120153E-02
= 3.397578E-02

= 4.007546E-02
= .0359226
= .0201566
= -4.698269E-03

= -3.292041E-02
= -5.683185E-02

= -.0689901
= -.0646829

= -4.351676E-02
= -9.849658E-03

= 2.811493E-02
= 6.077661E-02

= 7.955902E-02

f2(55)
f2(56)
f2(57)
f2(58)
f2(59)
f2(60)
f2(61)
f2(62)
f2(63)
f2(64)
f2(65)
f2(66)
f2(67)
f2(68)
f2(69)
f2(70)

f2(71)

= -1.096119E-02

= -5.686531E-03

= -7.400276E-04

= 2.334805E-03

= 3.083793E-03

1.339663E-03
= -6.88005E-04

= -2.881518E-03

= -3.464929E-03

= -2.877092E-03

= -1.449774E-03

= 8.003408E-04

= 2.072552E-03
= 3.132475E-03

= 2.525596E-03
= 1.478734E-03

= 3.290059E-04

f3(n) - 750 to 1000 Hz

= 9.509069E-04
= 2.198731E-03
= 2.444318E-03

= 2.260582E-03
= 4.705371E-04
= -1.719627E-03
= -3.007549E-03

= -3.568226E-03
= -2.238392E-03
= -7.424812E-04
= 1.619965E-04
= 7.741133E-04
= 9.169444E-04

= 2.671274E-03

= 5.72768E-03
= 8.344388E-03
= 8.021514E-03

= 1.661141E-03
= -9.528253E-03
= -2.088413E-02

= -2.524926E-02
= -1.660141E-02
= 4.335092E-03

= 2.957347E-02
= .0459403

= 4.196692E-02
= 1.535783E-02

= -2.418964E-02
= -5.794703E-02

= -6.749693E-02
= -4.484322E-02
= 1.910017E-03
= 5.131537E-02

f3(36) = -2.781808E-02
f3(37) = -7.006082E-02
f3(38) = -7.894783E-02
f3(39) = -5.131538E-02
f3(40) = -1.910019E-03
f3(41) = 4.484323E-02
f3(42) = 6.749694E-02
f3(43) = 5.794703E-02
f3(44) = 2.418963E-02
f3(45) = -1.535784E-02
f3(46) = -4.196692E-02
f3(47) = -4.594031E-02
f3(48) = -2.957347E-02
f3(49) = -4.335095E-03
f3(50) = 1.660142E-02
f3(51) = 2.524926E-02
f3(52) = 2.088413E-02
f3(53) = 9.528255E-03
f3(54) = -1.661145E-03
f3(55) = -8.021516E-03
f3(56) = -8.344388E-03
f3(57) = -5.727682E-03
f3(58) = -2.671273E-03
f3(59) = -9.169448E-04
f3(60) = -7.741124E-04
f3(61) = -1.619955E-04
f3(62) = 7.424804E-04
f3(63) = 2.238393E-03
f3(64) = 3.568226E-03
f3(65) = 3.007549E-03
f3(66) = 1.719626E-03
f3(67) = -4.705373E-04
f3(68) = -2.260582E-03

f2(19)
f2(20)
f2(21)
f2(22)
f2(23)
f2(24)
f2(25)
f2(26)
f2(27)
f2(28)
f2(29)
f2(30)
f2(31)
f2(32)
f2(33)
f2(34)
f2(35)

f3(0)
f3(1)
f3(2)
f3(3)
f3(4)
f3(5)
f3(6)
f3(7)
f3(8)
f3(9)
f3(10)
f3(11)
f3(12)
f3(13)
f3(14)
f3(15)
f3(16)
f3(17)
f3(18)
f3(19)
f3(20)
f3(21)
f3(22)
f3(23)
f3(24)
f3(25)
f3(26)
f3(27)
f3(28)
f3(29)
f3(30)
f3(31)
f3(32)

91

f3(33) = 7.894785E-02
f3(34) = 7.006081E-02
f3(35) = 2.781808E-02

f3(69)
f3(70)
f3(71)

= -2.444318E-03
= -2.19873E-03

= -9.509069E-04

f4(n) - 1000 to 1250 Hz

= -1.547387E-03
= -9.403325E-04
= 1.705107E-03
= 3.284409E-03
= 1.735107E-03
= -1.119945E-03
= -3.47952E-03
= -2.938148E-03
= 3.449191E-04
= 2.521271E-03

= 1.901988E-03

= -8.933055E-04
= -2.754217E-03
= 2.375553E-04
= 5.720124E-03

= 7.077011E-03
= 3.851522E-04

= -1.148032E-02
= -1.787842E-02
= -9.341258E-03
= 1.172395E-02

= 3.035731E-02

= 2.841565E-02
= 8.673323E-04

= -3.505078E-02
= -5.028862E-02
= -2.725726E-02
= 2.227494E-02

= 6.195538E-02

= 5.818448E-02
= 8.692224E-03

= -. 0521258

= -7.794309E-02

= -4.672246E-02
= .020464

= .0741268

f4(36)
f4(37)
f4(38)
f4(39)
f4(40)
f4(41)
f4(42)
f4(43)
f4(44)
f4(45)
f4(46)
f4(47)
f4(48)
f4(49)
f4(50)
f4(51)
f4(52)
f4(53)
f4(54)
f4(55)
f4(56)
f4(57)
f4(58)
f4(59)
f4(60)
f4(61)

f4(62)
f4(63)
f4(64)
f4(65)
f4(66)
f4(67)
f4(68)
f4(69)
f4(70)
f4(71)

= 7.412682E-02
= 2.046397E-02

= -4.672247E-02
= -7.794309E-02

= -5.212579E-02
= 8.692244E-03
= 5.818448E-02
= 6.195537E-02

= 2.227494E-02

= -2.725728E-C2
= -5.028862E-02

= -3.505078E-02
= 8.673328E-04

= 2.841566E-02
= .0303573

= 1.172394E-02
= -9.341259E-03
= -1.787843E-02
= -1.148031E-02
= 3.851526E-04

= 7.07701E-03

= 5.720122E-03

= 2.375556E-04

= -2.754216E-03
= -8.933063E-04
= 1.901992E-03
= 2.521272E-03

= 3.44919E-04

= -2.938148E-03

= -3.479522E-03

= -1.119944E-03
= 1.735107E-03
= 3.284409E-03
= 1.705107E-03

= -9.403322E-04
= -1.547388E-03

f5(n) - 1250 to 1500 Hz

= -1.077484E-03
= 2.451781E-04

= 2.213019E-03

= 2.810156E-03

= 1.064582E-04

= -3.16625E-03
= -3.140288E-03

f5(36)
f5(37)
f5(38)
f5(39)
f5(40)
f5(41)
f5(42)

= -4.235782E-02
= -8.116985E-02
= -.0331005
= 4.783839E-02

= .0745233

= 2.244972E-02

= -4.794444E-02

f4(0)
f4(1)

f4(2)
f4(3)
f4(4)
f4(5)
f4(6)
f4(7)
f4(8)

f4(9)

f4(10)

f4(11)

f4(12)
f4(13)
f4(14)
f4(15)
f4(16)
f4(17)
f4(18)
f4(19)
f4(20)
f4(21)

f4(22)
f4(23)
f4(24)
f4(25)

f4(26)

f4(27)
f4(28)

f4(29)
f4(30)
f4(31)

f4(32)
f4(33)

f4(34)

f4(35)

f5(0)

f5 (1)
f5(2)

f5(3)

f5(4)

f5(5)

f5(6)

92

= -2.999361E-04
= 2.552159E-03

= 3.117862E-03
= 1.250884E-03

= -5.942435E-04

= -1.790009E-03

= -3.968694E-03

= -4.86335E-03
= 2.444199E-04

= 9.572948E-03

= 1.267051E-02
= 6.951014E-04
= -1.873709E-02

= -.0227665
= 8.331333E-04

= 3.186685E-02

= 3.342525E-02
= -5.206137E-03
= -4.728456E-02
= -4.266633E-02
= 1.264966E-02

= 6.243581E-02
= 4.794443E-02
= -2.244973E-02
= -. 0745233
= -4.783838E-02
= 3.310052E-02
= 8.116981E-02
= 4.235782E-02

f5(43)
f5 (44)
f5(45)
f5 (46)
f5(47)
f5(48)
f5 (49)
f5 (50)
f5(51)
f5(52)
f5(53)
f5(54)
f5(55)
f5(56)
f5 (57)
f5(58)
f5(59)
f5(60)
f5(61)
f5(62)
f5(63)
f5(64)
f5(65)
f5(66)
f5(67)
f5(68)
f5(69)
f5(70)
f5(71)

=-.0624358
= -1.264966E-02

= 4.266636E-02
= 4.728455E-02
= 5.206136E-03

=-3.342525E-02
=-3.186685E-02
= -8.331285E-04

= .0227665

= 1.873709E-02
= -6.951063E-04
= -1.267051E-02

= -9.572948E-03
= -2.444193E-04
= 4.863352E-03
= 3.968693E-03
= 1.790C107E-03

= 5.942436E-C4
= -1.250887E-03

= -3.117863E-03
= -2.552159E-03

= 2.99936E-04

= 3.140289E-03

= 3.166249E-03
= -1.064581E-04

=-2.810156E-03
= -2.213019E-03

= -2.451778E-04
= 1.077484E-03

f6(n) - 1500 to 1750 Hz

= -6.432538E-04
= -1.883458E-03
= 4.271868E-04
= 3.065246E-03
= 1.134626E-03
= -2.995892E-03
= -2.849876E-03
= 1.537185E-03
= 3.155873E-03
= -5.798835E-04
= -2.939913E-03
= 4.104597E-04
= 2.487659E-03
= -2.353335E-03
= -5.192677E-C3
= 3.052733E-03
= 1.108669E-02

= 1.369201E-03
= -1.678643E-02
= -1.293635E-02
= 1.603027E-02

f6(36)
f6(37)
f6(38)
f6(39)
f6(40)
f6(41)
f6(42)
f6(43)
f6(44)
f6(45)
f6(46)
f6(47)
f6(48)
f6(49)
f6(50)
f6(51)
f6(52)
f6(53)
f6(54)
f6(55)
f6(56)

= 6.598325E-02

= -2.667495E-02

= -8.000176E-02

= -2.054875E-02
= 6.387653E-02

= .0551661

= -2.748879E-02

= -. 0645323

= -1.098223E-02

= 4.958126E-02

= 3.548085E-02

= -2.221282E-02

= -3.979581E-02

= -2.705459E-03

= 2.888529E-02

= 1.603027E-02

= -1.293634E-02

= -1.678643E-02
= 1.369201E-03

= 1.108669E-02

= 3.052734E-03

f5(7)
f5(8)
f5(9)
f5(10)
f5(11)
f5(12)
f5(13)
f5(14)
f5(15)
f5 (6)
f5(17)
f5(18)
f5(19)
f5(20)
f5(21)

f5(22)
f5(23)
f5(24)
f5(25)
f5(26)
f5(27)
f5(28)
f5(29)
f5(30)
f5(31)
f5 (32)
f5(33)
f5(34)
f5(35)

f6(0)
f6(1)
f6(2)
f6(3)
f6(4)
f6(5)
f6(6)
f6(7)
f6(8)
f6(9)
f6(10)
f6(11)
f6(12)
f6(13)
f6(14)
f6(15)
f6(16)
f6(17)
f6(18)
f6(19)
f6(20)

93

= .0288853

= -2.705466E-03

= -.0397958

= -2.221282E-02
= 3.548085E-02
= 4.958124E-02
= -1.098222E-02
= -.0645323
= -2.748879E-02
= 5.516611E-02

= 6.387653E-02

= -2.054874E-02
= -8.000178E-02
= -2.667493E-02
= 6.598325E-02

f6(57)
f6(58)
f6(59)

f6(60)
f6(61)

f6(62)
f6(63)
f6(64)
f6(65)
f6(66)
f6(67)
f6(68)
f6(69)
f6(70)

f6(71)

= -5.192679E-03

= -2.353336E-03
= 2.487661E-03

= 4.104598E-04
= -2.939915E-03

= -5.798837E-04
= 3.155871E-03
= 1.537185E-03

= -2.849877E-03

= -2.995891E-03

= 1.134625E-03

= 3.065246E-03

= 4.271869E-04

= -1.883458E-03

= -6.43254E-04

f7(n) - 1750 to 2000 Hz

= -1.33i422E-03

= -1.441063E-03
= 1.728595E-03
= 3.060151E-03

= -6.35885E-04
= -3.31489E-03

= -2.920494E-05
= 3.459125E-03
= 1.365859E-03

= -1.986201E-03
= -1.81656E-03

= -1.80667E-04
= 1.912382E-03
= 4.147828E-03
= 1.639933E-04

= -8.536899E-03
= -4.304379E-03

= 1.301442E-02

= 1.101988E-02

= -1.652823E-02
= -.0201946
= 1.812278E-02

= 3.150683E-02

= -1.662893E-02

= -4.401699E-02
= 1.093587E-02

= 5.576927E-02

= -1.135718E-03
= -6.501156E-02

= -1.210748E-02
= 7.002083E-02

= 2.711673E-02

= -7.001066E-02

= -4.209617E-02
= 6.484275E-02

f7(36)

f7(37)
f7(38)

f7(39)
f7(40)

f7(41)
f7(42)
f7(43)
f7(44)
f7(45)
f7(46)
f7(47)
f7(48)
f7(49)
f7(50)
f7(51)
f7(52)
f7(53)
f7(54)
f7(55)
f7(56)
f7(57)
f7(58)

f7(59)
f7(60)

f7(61)
f7(62)
f7(63)
f7(64)
f7(65)
f7(66)

f7(67)
f7(68)

f7(69)
f7(70)

= -5.516587E-02

=-6.484276E-02
= 4.209616E-02

= 7.001066E-02

= -2.711672E-02

= -7.002083E-02
= 1.210748E-02

= 6.501156E-02

= 1.13572E-03

= -5.576929E-02

= -1.093587E-02
= 4.401698E-02

= 1.662893E-02

= -3.150684E-02
=-1.812277E-02
= .0201946

= 1.652823E-02

= -1.101988E-02

= -1.301442E-02
= 4.304378E-03
= 8.536899E-03

= -1.639954E-04
= -4.147826E-03

=-1.912382E-03
= 1.806667E-04

= 1.816562E-03

= 1.986202E-03

=-1.365858E-03
=-3.459125E-03
= 2.920572E-05
= 3.31489E-03

= 6.358855E-04

=-3.060151E-03
= -1.728594E-03
= 1.441063E-03

f6(21)

f6(22)
f6(23)
f6(24)
f6(25)
f6(26)
f6(27)
f6(28)
f6(29)
f6(30)
f6(31)
f6(32)
f6(33)
f6(34)
f6(35)

f7(0)

f7(1)
f7(2)
f7(3)
f7(4)
f7(5)
f7(6)

f7(7)
f7(8)
f7(9)
f7(10)

f7(11)
f7(12)
f7(13)
f7(14)
f7(15)
f7(16)
f7(17)
f7(18)
f7(19)
f7(20)
f7(21)
f7(22)

f7(23)
f7(24)
f7(25)
f7(26)
f7(27)
f7(28)
f7(29)
f7(30)
f7(31)

f7(32)
f7(33)
f7(34)

94

f7(35) = 5.516587E-02 f7(71) = 1.331422E-03

f8(n) - 2000 to 2250 Hz

f8(0) = -1.331422E-03
f8(1) = 1.441063E-03
f8(2) = 1.728595E-03
f8(3) = -3.060151E-03
f8(4) = -6.35885E-04
f8(5) = 3.31489E-03
f8(6) = -2.920494E-05
f8(7) = -3.459125E-03
f8(8) = 1.365859E-03
f8(9) = 1.986201E-03
f8(10) = -1.81655E-03
f8(11) = 1.80667E-04
f8(12) = 1.912382E-03
f8(13) = -4.147828E-03
f8(14) = 1.639933E-04
f8(15) = 8.536899E-03
f8(16) = -4.304379E-03
f8(17) = -1.301442E-02
f8(18) = 1.101988E-02
f8(19) = 1.652823E-02
f8(20) = -.0201946
f8(21) = -1.812278E-02
f8(22) = 3.150683E-02
f8(23) = 1.662893E-02
f8(24) = -4.401699E-02
f8(25) = -1.093587E-02
f8(26) = 5.576927E-02
f8(27) = 1.135718E-03
f8(28) = -6.501156E-02

f8(29) = 1.210748E-02
f8(30) = 7.002083E-02
f8(31) = -2.711673E-02
f8(32) = -7.001066E-02
f8(33) = 4.Z09617E-02
f8(34) = 6.484275E-02
f8(35) = -5.516587E-02

f8(36) = -5.516587E-02
f8(37) = 6.484276E-02
f8(38) = 4.209616E-02
f8(39) = -7.001066E-02
f8(40) = -2.711672E-02
f8(41) = 7.002083E-02
f8(42) = 1.210748E-02
f8(43) = -6.501156E-02
f8(44) = 1.13572E-03
f8(45) = 5.576929E-02
f8(46) = -1.093587E-02
f8(47) = -4.401698E-02
f8(48) = 1.662893E-02
f8(49) = 3.150684E-02
f8(50) = -1.812277E-02
f8(51) = -.0201946
f8(52) = 1.652823E-02
f8(53) = 1.101988E-02
f8(54) = -1.301442E-02
f8(55) = -4.304378E-03
f8(56) = 8.536899E-03
f8(57) = 1.639954E-04
f8(58) = -4.147826E-03
f8(59) = 1.912382E-03
f8(60) = 1.806667E-04
f8(61) = -1.816562E-03
f8(62) = 1.986202E-03
f8(63) = 1.365858E-03
f8(64) = -3.459125E-03
f8(65) = -2.920572E-05
f8(66) = 3.31489E-03
f8(67) = -6.358855E-04
f8(68) = -3.060151E-03
f8(69) = 1.728594E-03
f8(70) = 1.441063E-03
f8(71) = -1.331422E-03

f9(n) - 2250 to 2500 Hz

= -6.432538E-04
= 1.883458E-03
= 4.271868E-04
- -3.065246E-03
= 1.134626E-03

= 2.995892E-03
= -2.849876E-03
= -1.537185E-03
= 3.155873E-03

f9(36)
f9(37)
f9(38)
f9(39)
f9(40)
f9(41)

f9(42)
f9(43)
f9(44)

= 6.598325E-02

= 2.667495E-02
= -8.000176E-02
= 2.054875E-02
= 6.387653E-02
= -. 0551661

= -2.748879E-02

= .0645323

= -1.098223E-02

f9(0)

f9(1)
f9(2)
f9(3)

f9(4)
f9(5)
f9(6)

f9(7)
f9(8)

95

= 5.798835E-04
= -2.939913E-03

= -4.104597E-04
= 2.487659E-03
= 2.353335E-03

= -5.192677E-03
= -3.052733E-03
= 1.108669E-02

= -1.369201E-03
= -1.678643E-02
= 1.293635E-02
= 1.603027E-02

= -.0288853
= -2.705466E-03
= .0397958

= -2.221282E-02
= -3.548085E-02
= 4.958124E-02
= 1.098222E-02

= -.0645323
= 2.748879E-02

= 5.516611E-02
= -6.387653E-02
= -2.054874E-02
= 8.000178E-02

= -2.667493E-02
= -6.598325E-02

f9(45)
f9(46)
f9 (47)
f9(48)
f9(49)
f9(50)
f9(51)

f9(52)
f9(53)
f9(54)
f9(55)
f9(56)
f9 (57)
f9(58)
f9 (59)

f9(60)
f9(61)

f9(62)
f9(63)
f9(64)
f9(65)
f9(66)
f9(67)
f9 (68)
f9(69)
f9(70)
f9(71)

=-4A.58126E-02
= 3.548085E-02

= 2.221282E-02
= -3.979581E-02

= 2.705459E-03
= 2.888529E-02

=-1.603027E-02
= -1.293634E-02
= 1.678643E-02
= 1.369201E-03
= -1.108669E-02
= 3.052734E-03
= 5.192679E-03

= -2.353336E-03
= -2.487661E-03
= 4.104598E-04

= 2.939915E-03

= -5.798837E-04
= -3.155871E-03
= 1.537185E-03
= 2.849877E-03

= -2.995891E-03
= -1.134625E-03
= 3.065246E-03

= -4.271869E-04
=-1.883458E-03
= 6.43254E-04

flO(n) - 2500 to 2750 Hz

= -1.077484E-03
= -2.451781E-04
= 2.213019E-03

= -2.810156E-03
= 1.064582E-04

= 3.16625E-03

= -3.140288E-03
= 2.999361E-04

= 2.552159E-03

= -3.117862E-03
= 1.250884E-03

= 5.942435E-04

= -1.790009E-03
= 3.968694E-03

= -4.86335E-03

= -2.444199E-04
= 9.572948E-03

= -1.267051E-02
= 6.951014E-04

= 1.873709E-02

= -.0227665
= -8.331333E-04
= 3.186685E-02

f 10(36)

f10(37)
f 10(38)

f 10(39)

f10(40)
f10(41)
f 10(42)

f 10(43)
f 10(44)
f10(45)
f 10(46)
f10(47)
f 10(48)
f 10(49)
f10(50)
f10(51)
f 10(52)
f 10(53)
f 10(54)
f 10(55)
f 10(56)
f10(57)
f10(58)

= -4.235782E-02
= 8.116985E-02

=-.0331005
= -4.783839E-02
= .0745233

= -2.244972E-02

= -4.794444E-02

= .3624358

=-1.264966E-02
= -4.266636E-02
= 4.728455E-02
=-5.206136E-03
= -3.342525E-02
= 3.186685E-02
= -8.331285E-04
= -. 0227665
= 1.873709E-02
= 6.951063E-04

=-1.267051E-02
= 9.572948E-03
= -2.444193E-04
= -4.863352E-03
= 3.968693E-03

f9(9)
f9(10)
f9(11)
f9(12)
f9(13)
f9(14)
f9(15)
f9(16)
f9(17)
f9(18)
f9(19)
f9(20)
f9(21)
f9(22)
f9(23)
f9(24)
f9(25)
f9(26)
f9(27)
f9(28)
f9(29)
f9(30)
f9(31)

f9(32)
f9(33)
f9(34)
f9(35)

flO(0)
f10(1)
f10(2)
f10(3)
f10(4)
flO(5)
f10(6)
f10(7)
flO(8)
f10(9)
flO(10)
f 1 0 (11)
flO(12)
flO(13)
flO(14)
f10(15)
flO(16)
flO(17)
flO(18)
flO(19)
flO(20)
f10(21)
f10(22)

96

= -3.342525E-02

= -5.206137E-03

= 4.728456E-02

= -4.266633E-02

= -1.264966E-02
= 6.243581E-02

= -4.794443E-02
= -2.244973E-02
= .0745233

= -4.783838E-02
= -3.310052E-02
= 8.116981E-02

= -4.235782E-02

f10(59)
flO(60)
f10(61)

f 10(62)

f 10(63)
f 10(64)
f10(65)
f 10(66)

f 10(67)
f 10(68)
f 10(69)

f10(70)
f10(71)

= -1.790007E-03
= 5.942436E-04
= 1.250887E-03

= -3.117863E-03
= 2.552159E-03
= 2.99936E-04

= -3.140289E-03

= 3.166249E-03
= 1.064581E-04
= -2.810156E-03

= 2.213019E-03

= -2.451778E-04
= -1.077484E-03

fll(n) - 2750 to 3000 Hz

= -1.547387E-03
= 9.403325E-04
= 1.705107E-03

= -3.284409E-03
= 1.735107E-03

= 1.119945E-03

= -3.47952E-03
= 2.938148E-03

= 3.449191E-04

= -2.521271E-03
= 1.901988E-03
= 8.933055E-04

= -2.754217E-03
= -2.375553E-04
= 5.720124E-03
= -7.077011E-03
= 3.851522E-04
= 1.148032E-02

= -1.787842E-02
= 9.341258E-03

= 1.172395E-02
= -3.035731E-02
= 2.841565E-02
= -8.673323E-04
= -3.505078E-02
= 5.028862E-02

= -2.725726E-02

= -2.227494E-02
= 6.195538E-02

= -5.818448E-02
= 8.692224E-03

= .0521258

= -7.794309E-02
= 4.672246E-02

= .020464

= -.0741268

f 11(36)
fl 1(37)
f 11(38)
fl 1(39)
fl 1(40)
fl 1 (41)
fl (42)

fl 1(43)
fl 1(44)
fl 1(45)
fl 1(46)
f 11(47)

fl 1(48)
fl 1 (49)

fl 1 (50)
fl 1(51)
fl 1(52)
fl 1(53)
fl 1(54)
fl 1(55)
fl 1(56)
fl 1(57)
fl 1(58)
fl 1(59)
fl 1(60)
fl 1(61)
fl 1(62)
fl 1(63)

f 11(64)

fl 1 (65)
fl 1(66)
fl 1(67)
fl 1(68)
f 1 (69)
fl 1(70)
fl 1(71)

= 7.412682E-02

= -2.046397E-02

= -4.672247E-02
= 7.794309E-02

= -5.212579E-02
= -8.692244E-03

= 5.818448E-02
= -6.195537E-02
= 2.227494E-02

= 2.725728E-02

= -5.028862E-02

= 3.505078E-02

= 8.673328E-04

= -2.841566E-02
= .0303573

= -1.172394E-02
= -9.341259E-03
= 1.787843E-02
= -1 .148031E-02

= -3.851526E-04

= 7.07701E-03
= -5.720122E-03
= 2.375556E-04
= 2.754216E-03

= -8.933063E-04

= -1.901992E-03
= 2.521272E-03

= -3.44919E-04
= -2.938148E-03

= 3.479522E-03

= -1.119944E-03

= -1.735107E-03
= 3.284409E-03

= -1.705107E-03
= -9.403322E-04

= 1.547388E-03

f10(23)
f10 (24)
f 10(25)

f10(26)
f10(27)
f10(28)
f10(29)
flO(30)
f10(31)
f 10(32)
flO(33)
flO(34)
f10(35)

fl (0)
f11(1)
f11(2)
f11(3)
f11(4)
f11(5)
f 1 (6)
fl 1(7)
f 11(8)

f 1 (9)
fll(10)
fll(l1)
fl1(12)
f11(13)
fl1(14)
f11(15)
f11(16)
f11(17)
f11(18)
f11(19)
f11(20)
fl 1(21)
fl 1(22)
fl 1(23)
fl 1(24)
fl 11(25)
fl 1(26)
fl 1(27)
f 11(28)

fl 1 (29)

fl 1 (30)

f 1 (31)

f 1 (32)
fl 1(33)
fl 1 (34)
f 11(35)

97

f12(n) - 3000 to 3250 Hz

= 9.509069E-04
= -2.198731E-03
= 2.444318E-03
= -2.260582E-03
= 4.705371E-04
= 1.719627E-03
= -3.007549E-03
= 3.568226E-03
= -2.238392E-03
= 7.424812E-04
= 1.619965E-04
= -7.741133E-04
= 9.169444E-04
= -2.671274E-03
= 5.72768E-03
= -8.344388E-03
= 8.021514E-03
= -1.661141E-03
= -9.528253E-03
= 2.088413E-02
= -2.524926E-02
= 1.660141E-02
= 4.335092E-03
= -2.957347E-02
= .0459403
= -4.196692E-02

= 1.535783E-02
= 2.418964E-02
= -5.794703E-02
= 6.749693E-02
= -4.484322E-02
- -1.910017E-03
= 5.131537E-02
= -7.894785E-02
= 7.006081E-02
= -2.781808E-02

f12(36)
f12(37)
f12(38)
f12(39)
f12(40)
f12(41)
f12(42)
f12(43)
f 12(44)
f 12(45)
f 12(46)
f12(47)
f12(48)
f12(49)
f 12(50)
f12(51)
f 12(52)
f 12(53)
f12(54)
f 12(55)
f 12(56)

f 12(57)

f12(58)
f 12 (59)
f12(60)
f 12(61)
f 12(62)

f 12(63)

f 12(64)
f12(65)
f 12(66)

f12(67)
f12(68)
f12(69)
f12(70)
f12(71)

= -2.781808E-02
= 7.006082E-02
= -7.894783E-02
= 5.131538E-02
= -1.910019E-03
=-4.484323E-02
= 6.749694E-02

= -5.794703E-02
= 2.418963E-02

= 1.535784E-02
= -4.196692E-02
= 4.594031E-02

= -2.957347E-02
= 4.335095E-03

= 1.660142E-02

= -2.524926E-02
= 2.088413E-02

= -9.528255E-03
= -1.661145E-03
= 8.021516E-03

= -8.344388E-03
= 5.727682E-03
= -2.671273E-03
= 9.169448E-04
= -7.741124E-04
= 1.619955E-04
= 7.424804E-04
= -2.238393E-03
= 3.568226E-03
=-3.007549E-03
= 1.719626E-03
= 4.705373E-04
= -2.260582E-03
= 2.444318E-03

= -2.19873E-03
= 9.509069E-04

f13(n) - 3250 to 3500 Hz

= 3.29006E-04
= -1.478735E-03
= 2.525595E-03
= -3.132475E-03
= 2.072552E-03
= -8.003403E-04
= -1.449775E-03
= 2.877092E-03
= -3.464928E-03
= 2.881519E-03
= -6.880043E-04

f13(36)
f13(37)
f13(38)
f13(39)
f13(40)
f13(41)
f 13(42)
f 13(43)

f 13(44)

f13(45)
f13(46)

.079559
= -6.077661E-02

= 2.811491E-02

= 9.849666E-03

= -4.351676E-02
.0646829

= -6.899008E-02
= 5.683186E-02
= -. 0329204

= 4.698264E-03

= .0201566

f12(0)
f12(1)
f 12(2)
f 12(3)
f12(4)
f 12(5)
f12(6)
f 12(7)
f 12(8)
f 12(9)
f12(10)
f 12(11)
f12(12)
f12(13)
f 12(14)
f12(15)
f12(16)
f 12(17)
f12(18)
f12(19)
f12(20)
f12(21)
f 12(22)
f12(23)
f12(24)
f 12(25)
f12(26)
f12(27)
f 12(28)
f12(29)
f12(30)
f12(31)
f12(32)
f 12(33)
f12(34)
f12(35)

f13(0)
f 13(1)
f13(2)
f 13(3)
f 13(4)
f13(5)
f 13(6)
f 13(7)
f13(8)
f13(9)
f13(10)

98

f13(11) =
f13(12) =
f13(13) =
f13(14) =
f13t15) =
f13(16) =
f13(17) =
f13(18) =
f13(19) =

f13(20) =
f13(21) =
f13(22) =
f13(23) =

f13(24) =
f13(25) =

f13(26) =

f13(27) =
f13(28) =

f13(29) =
f13(30) =

f13(31) =
f13(32) =
f13(33) =

f13(34) =
f13(35) =

-1.339663E-03
3.083792E-03
-2.334802E-03
-7.400271E-04
5.686532E-03
-1.096119E-02
1.369183E-02

-1.236606E-02
5.237201E-03
.0067337

-2.120153E-02
3.397578E-02
-4.007546E-02

.0359226
-.0201566
-4.698269E-03
3.292041E-02
-5.683185E-02
.0689901

-.0646829
4.351676E-02
-9.849658E-03
-2.811493E-02
6.077661E-02
-7.955902E-02

f 13(47)
f13(48)
f 13(49)
f13(50)
f13(51)
f 13(52)
f 13(53)
f 13(54)
f 13(55)

f 13(56)

f13(57)
f 13(58)
fl3(59)
f13(60)
f!3(61)
f 13(62)
f 13(63)

f13(64)
f 13(65)
f13(66)
f13(67)
f13(68)
f13(69)
f13(70)
f13(71)

= -3.592261E-02
= 4.007546E-02
=-.0339758
= 2.120152E-02

= -6.733697E-03
= -5.237205E-03

= .236606E-02
= -1.369183E-02

= 1.096119E-02
= -5.686531E-03
= 7.400276E-04
= 2.334805E-03
= -3.083793E-03
= 1.339663E-03
= 6.88005E-04
= -2.881518E-03

= 3.464929E-03

= -2.877092E-03
= 1.449774E-03
= 8.003408E-04
=-2.072552E-03
= 3.132475E-03
=-2.525596E-03
= 1.478734E-03

=-3.290059E-04

f14(n) - 3500 to 3750 Hz

= 1.378243E-03
= -1.812966E-03
= 1.783216E-03

= -1.991476E-03
= 1.387367E-03
= -3.827771E-04
= -4.39708E-04
= 1.283091E-03
= -1.361171E-03
= 1.952853E-03
= -1.66957E-03
= 1.58957E-03

= -7.449485E-04

= 7.163259E-04

= -1.431951E-03

= 3.52007E-03
= -6.858762E-03
= 1.119207E-02

= -1.658529E-02
= .0218821

= -2.643268E-02

= .0285018

= -2.744548E-02
= 2.225322E-02
= -1.289227E-02

f14(36) =
f14(37) =
f14(38) =
f14(39) =
f14(40) =

f14(41) =

f14(42) =
fi4(43) =
f14(44) =

f14(45) =
f14(46) =
f14(47) =

f14(48) =

f14(49) =

f14(50) =

f14(51) =

f14(52) =

f14(53) =

f14(54) =

f14(55) =

f14(56) =

f14(57) =
f14(58) =

f14(59) =
f14(60) =

-1.226034E-02
3.541158E-02
-.0545745

.0677396
-7.368946E-02
7.219621E-02
-6.400691E-02
5.064121E-02
-3.413434E-02
.0166961

-4.631148E-04
-1.289227E-02
2.225322E-02
-2.744549E-02
2.850179E-02
-2.643269E-02
2.188209E-02
-.0165853
1.119206E-02

-6.858761E-03
3.52007E-03
-1.43195E-03
7.163236E-04
-7.449468E-04
1.589569E-03

f 14(0)

f14(1)
f 14(2)

f 14(3)
f 14(4)
f14(5)
f 14(6)
f14(7)
f 14(8)
f 14(9)
f14(10)
f 14(11)

f 14(12)

f14(13)
f14(14)
f14(15)
f14(16)
f 14(17)

f 14(18)

f14(19)
f14(20)
f14(21)
f 14(22)

f 14(23)

f 14(24)

99

= -4.631233E-04
= .0166961

= -3.413435E-02
= 5.064122E-02
= -6.400694E-02
= 7.219621E-02

= -7.368946E-02
= .0677396
= -5.457451E-02
= 3.541155E-02
= -1.226033E-02

f14(61)
f 14(62)

f 14(63)
f14(64)
f 14(65)
f14(66)
f14(67)
f14(68)
f14(69)
f14(70)
f14(71)

= -1.66957E-03
= 1.952853E-03
= -1.36117E-03
= 1.283091E-03
= -4.397079E-04
= -3.827774E-04
= 1.387367E-03
= -1.991475E-03
= 1.783217E-03
= -1.812965E-03
= 1 .378243E-03

f15(n) - 3750 to 4000 Hz

= 1.053927E-03
= -1.841017E-03
= 2.063785E-03
= -2.345845E-03
= 1.506928E-03
= -1.367166E-03
= 7.006013E-04
= -2.67798E-04
= -1.244974E-03
= 2.206876E-03
= -3.523216E-03
= 4.592768E-03
= -6.402049E-03
= 7.726114E-03
= -8.812724E-03
= 9.322696E-03
= -9.782126E-03
= 9.669026E-03
= -8.836473E-03
= 7.254504E-03
= -5.01219E-03
= 2.034141E-03
= 1.987044E-03
= -6.86388E-03
= 1.258937E-02

= -1.885467E-02
= 2.570829E-02

= -3.276445E-02
= 3.989666E-02

= -4.672494E-02
= 5.310812E-02

= -5.874324E-02
= 6.351142E-02

= -.067207
= 6.973638E-02

= -.0710003

f15(36)
f15(37)
f15(38)
f 15(39)
f15(40)
f 15(41)
f15(42)
f 15(43)

f15(44)
f15(45)
f 15(46)

f15(47)
f 15(48)
f15(49)
f15(50)
f 15(51)
f 15(52)

f 15(53)

f 15(54)
f 15(55)
f 15(56)
f15(57)
f 15(58)

f 15(59)
f15(60)
f 15(61)
f 15(62)
f 15(63)
f 15(64)

f 15(65)
f15(66)
f 15(67)

f 15(68)
f 15(69)

f 15(70)
f15(71)

= .0710003
= -6.973641E-02
= 6.720698E-02
= -6.351141E-02
= 5.874324E-02
= -5.310814E-02
= 4.672493E-02
= -3.989666E-02
= 3.276445E-02
= -2.570829E-02
= 1.885466E-02
= -1.258937E-02
= 6.863879E-03
= -1.987042E-03
= -2.034144E-03
= 5.012196E-03
= -7.254503E-03
= 8.83648E-03

= -9.669022E-03
= 9.782125E-03

= -9.322696E-03
= 8.812728E-03

= -7.726108E-03
= 6.402048E-03

= -4.592766E-03
= 3.523215E-03
= -2.206874E-03
= 1.244974E-03

= 2.677977E-04

= -7.006018E-04

= 1.367166E-03

= -1.506929E-03

= 2.345844E-03

= -2.063786E-03
= 1.841016E-03

= -1.053927E-03

f14(25)
f14(26)
f14(27)
f14(28)
f14(29)
f14(30)
f14(31)

f 14(32)
f 14(33)

f14(34)
f 14(35)

f15(0)
f15(1)
f 15(2)
f15(3)
f15(4)
f15(5)
f 15(6)

f 15(7)
f15(8)
f 15(9)
f15 (10)
f15(11)
f15 (12)
f15 (13)
f 15(14)
f15(15)
f15 (16)
f15(17)
f15(18)
f15(19)
f 15(20)
f15(21)
f 15(22)

f15(23)
f 15(24)

f 15(25)
f 15(26)

f 15(27)
f 15(28)

f 15(29)

f15(30)
f 15(31)
f 15(32)

f 15(33)

f15(34)
f 15(35)

100

APPENDIX B - SOFTWARE DESIGN

Computer imulation was used to compare the coding algorithms
presented in this thesis. The software can be classified into two
categories : those programs that actually perform the SBC-ADPCM
processing and those utilities that help develop and evaluate the
coders.

With the exception of the QMF utilities, FQMFBANK and TRUNCATE,
all code was written in FORTRAN and run on an IBM VM/SP mainframe. The
QMF programs were used during the initial phase of this project and were
written in BASIC for an IBM AT personal computer.

Listings of the actual programs are included in Appendix C. The
remainder of this appendix describes the organization and approach taken
in their development.

B.1 MAIN LINE

Programs: SBC, CODN, CODLMS, CODLS, DECN, DECLMS, DECLS

The main line is a top level view of the sub-band coding process.
A block diagram of the SBC process is shown in Fig. B-1. Decompositions
of CODN, CODLMS, CODLS, DECN, DECLMS, and DECLS are in Fig. B-2. This
standard top-down approach allows the details of module implementation
to be filled in after main line coding, provided that the modules have
been adequately specified.

B.1.1 Walkthrough

The first task of the SBC main program is to prompt the user for
coder bit rate, choice of predictor, and, if a predictor is selected,
the order of the prediction desired.

SBC takes 8 KHz inputs and processes them 128 samples at a time
(16ms blocks). These are first passed through the analyzing Quadrature
Mirror Filter Bank (QMF), the coefficients of which are read in by INIT,
producing 16 channels of 8 samples each (recall that each of the
subbands is decimated by 16 before being quantized). Only the first 13
bands, covering 0 to 3250Hz, are actually coded. The last three bands
are assumed to be zero at the inverse QMF bank. This is in recognition
of telephony bandwidth constraints (typically around 3200Hz).

101

The next step is determine the maximum amplitude of each subband
signal over that block, known as the subband characteristic, in
preparation for the bit allocation computation (see CMPCHR, DAB, and
PDAB in Section B.3).

QMF

I

DAB
PDAB

TR A\NSM 1T I

I

TQMF

RECEIVE

Figure B-1. SBC Block Diagram

'OF:

I (PII) I

I I _

CODLS or CODLMS

an -I---

DECLS or DECLMS

- - - - - -

I .__________J- - -i L_____I- -J

Figure B-2. CODN, DECM Block Diagrams

102

r - - - - - - - -

p

- - - - - - _ _ -_

CO DN DECN

I

I

.

I

iI

!
I

I! I

103

Using the output of the dynamic bit allocation module, and the
type of prediction selected, the 13 sets of 8 subband samples are coded
by either CODN (plain adaptive quantizer), CODLMS (adaptive quantization
with LMS transversal predictor), or CODLS (adaptive quantization with LS
lattice predictor).

Once all 13 bands have been coded, each is then processed with the
appropriate decoding block (DECN, DECLMS, or DECLS). The only data that
these blocks share with the corresponding coding modules are the coded
subband samples and the bit allocation information.

The final task for SBC is to call the inverse QMF routine, IQMF,
to reconstruct the 16ms block from the 13 sets of 8 decoded samples.
The entire block of 128 output samples is then written to file.

Successive blocks of samples are read in and processed in the same
way. This continues until the end of the input file is reached.

B.1.2 Variables

Input blocks come in 2-byte (16-bit) integer format. Output
values are rounded to a the same format when written to file. However,
internal calculations are made primarily with real, floating point
values (e.g. all of the filter bank coefficients are real). Finite-
length register limitations of practical hardware implementations are
not considered. The only exceptions to this are the integer variables
used to represent bit allocation and quantized subband data. This is
necessary in order to simulate the effects of different coder bit rates.

Just as in actual voice store-and-forward systems, the internal
variables of the coding and decoding halves are kept separate. In fact,
the receiver has access only to the encoded data and not to any of the
internal variables used during coding. (If we assume no transmission
errors then corresponding data in the transmitter and receiver will turn
out to be identical but, in general, this may not be true.) In this
implementation, the names of variables used by the receiver half are
derived by prefixing the analogous transmitter variable names with a
'd'.

Most of the variables declared in the SBC main routine are in the
form of labelled COMMON statements. This FORTRAN construct simply
identifies the global variables, those that subroutines can access even
if they are not explicitly passed as arguments. Since the subroutine
modules generally operate on many variables (consider, for example,
CODLS), it is not practical to pass all of these variables in subroutine
calls. Instead, each subroutine simply repeats the COMMON declaration
for the labelled block that it needs and automatically can read and
write to those same memory locations. FDr example, the adaptive
quantizer declares 'COMMON /QNT/STEP(13;' in order to use the latest
step sizes. Note that the availability of labels for COMMON areas of
memory is particularly helpful here since different subroutines need
different groups of variables.

104

One consequence of making a distinction between transmitter and
receiver variables is that it is not practical to use COMMON in the
QUANT, IQUANT, PRDLMS, and PRDLS routines. These modules appear in both
the coder and decoder halves of the system and must be allowed to access
the two sets of variables. Passing the appropriate set of arguments at
each call was chosen over always reading both types of COMMON variables
and determining which to use every time.

B.2 QUADRATURE MIRROR FILTER BANK

Programs: INIT, QMF, IQMF

INIT is called by SBC to read in the QMF coefficients from a file.
Only tap values for the first eight analysis bandpass filters, f(n) to
f7(n), are needed since the impulse responses of the other eight filters
are related to these by

(B-i) f15-k(n) = (-1)nfk(n) 0 < k < 15

Note that the code uses slightly different indices than (B-1) since
arrays in FORTRAN must start with index 1 instead of 0.

The analysis bandpass filters (implemented by the QMF subroutine)
all operate on the same tapped delay line. Since the output of the
analysis bank is decimated by 16, computation can be reduced by shifting
16 samples at a time into the delay line and only calculating the output
point that is saved.

The inverse QMF bank (implemented by IQMF), which adds the outputs
of its 16 bandpass filters, is more complicated than the analyzing bank
since the different subband signals require multiple tapped delay lines.
However, some simplification is possible with the following observations
about the reconstruction bandpass filters gk(n).

(B-2) gk(n) = 16(-l)kfk(n)

g15_k(n) = 16(-1)15-kf15_k(n)

= 16(-l)k+l(-I)nfk(n)

= 1 6(-1)n+l(-1)kfk(n)

= (-)n+lgk(n)

Thus,

B-3 gk(n) for even n

5-k(n) = k(n) for odd n

and so the effect of adding the outputs of two mirror image filters,

gk(n) and g15 _k(n), is

105

gk(n)~[sk(n)-sl5_k(n)] for even n
(B-4) gk(n)*sk(n)+915-k(n)Xs 5 k(n) =

gk(n)X[sk(n)+s15 -k(n)] for odd n

The inverse QMF must also upsample the subband signals before
filtering. One way to do this is to insert 15 zeroes between every two
samples. A better alternative is to recognize that this is equivalent
to shifting the decimated subband signals down a tapped delay line and,
for each shift, compute 16 outputs by multiplying the contents of the
delay line with an appropriate subset of the filter impulse response.
These subsets pick out every 16 of the 72 filter coefficients, ignoring
those that would have been multiplied with zero if the subband were
explicitly upsampled before filtering.

Fig. B-3 illustrates this technique for a symmetric pair of
subbands, including the separate delay lines for odd and even indexed
coefficients. Notice that the parity of the diagram is opposite to that
of equation (B-4), reflecting the use of FORTRAN arrays that begin with
1, not 0. Thus, in the actual implementation, even indexed coefficients
operate on a delay line corresponding to the sum of the subband signals
while odd indexed coefficients use the difference.

S (17-K,J)

T U

Q (j)

K V,l,) 'Y(K, ,2) Y(K,1,3) Y(K,,) Y(K, 1,5)
=, I ,

0ok)t

.'

Q(3+4))
Q (6) Q C5Z)

a .qZ

2 .f

__I YLK,2)z,3) Y Z) Y(K,'2,5)

I - -'17r -fI

QO) Q0 (7)'(3 Df Q . 1.(q)> qC65)Q35 1 GINsQ67) c~3IG) o7)

< 3 v 3 K An-- >

(LABELS REFER TO FORTRPN VARIALES)

Figure B-3. Inverse QMF Strategy

DS(CK,J)

I Q(6)
Q (69)

I

h ~

I

L a
1-7-L q -±-' F I

106

As part of the reconstruction process, IQMF scales all outputs by
16. It also makes sure that values outside the range of a 2-byte
integer (the format of OUTBUF) are clipped to the maximum positive
(32767) or negative (-32768) value.

B.3 BIT ALLOCATION

Programs: CMPCHR, DAB, PDAB

The bit allocation code consists of three subroutines - CMPCHR,
which selects the maximum sample amplitude of a subband block; DAB,
which determines the bit assignments based upon the characteristics and
bit rate; and PDAB, which modifies the bit distribution in the presence
of prediction.

CMPCHR is straightforward. It simply finds the maximum amplitude
of the eight subband samples in a given block.

DAB implements the algorithm described in Section 2.3, with the
aid of two functions, RDOWN and BLEVEL. RDOWN rounds down a real number
to the largest integer not greater than it. BLEVEL converts the n(i)
computed from equation (2-17) to an integral bit assignment between 0
and 5, inclusive.

A special case that must be considered is a band with
characteristic value 0. Since log20 is not computable, these bands
cannot be included in the calculation of the n(i)

P-1

(B-5) n(i) -BITS I log2Cj + log2BSP P1 Z 1g2CJ+ 92Ci
j=0

where P is the number of bands with nonzero power and BITS is the total
number of bits available for sample quantization per subband sampling
period,

(B-6) BITS = RDOWN(2x(KBPS-2.4375)).

KBPS is the coder bit rate expressed in 103 bits/second.

Based on the values of P and BITS, it is determined whether or not
there are enough nonzero bands to use up all the available bits. If
not, then each of the P bands is assigned 5 bits and the allocation is
complete. Otherwise, the calculation of the n(i) and initial bit
distribution proceed normally. The remainder of DAB contains sections
that deal with the separate cases of having extra bits lef, to allocate
and having too many given out.

If there are additional bits available for distribution, all of
the n(i)'s are increased by the minimum amount, SHIFT, needed to add at
least one to the total allocation. To determine SHIFT, each band is

107

associated with a scale change, DELTA, representing the minimum needed
to add one bit to that band. SHIFT is then just the minimum of the
DELTA's. If SHIFT is 0, then all nonzero bands already have the maximum
5 bits; an infinite loop is avoided by terminating execution when this
happens. If SHIFT is greater than zero but still not enough to use up
the extra bits, a new value of SHIFT is computed for the updated n(i).

The program flow for the case of the bands being given too many
bits proceeds in the same manner. Whenever the current allocation
equals the total allowed by the coder rate, the temporary assignments
are written to B(i). Bands which had zero power (flagged by CZERO), are
always given 0 bits.

The third and final subroutine whi etermines bit allocation,
PDAB, is called by the main program, SBC, if the coder is run with
prediction. PDAB looks at the output of DAB and checks to see that all
bands with prediction have at least two bits. Each predicted band, i,
that needs more is allowed to take one at a time from any band higher in
frequency. Bits are taken from different bands before one band loses
two. If the predicted band still has less than two but all higher
frequencies are exhausted of bits, then a warning message is issued.

B.4 ADAPTIVE QUANTIZER

Programs: QUANT, LEVELS, IQUANT

QUANT and IQUANT are the quantizer and inverse quantizer
subroutines used by CODN, DECN, CODLMS, DECLMS, CODLS, and DECLS.
LEVELS is called by QUANT to help determine level assignments for
different bit allocations.

QUANT converts a sample amplitude to a level number. It first
checks to see if the bit allocation is zero. If so, then no further
calculation is necessary. If not, then the input is quantized to a 5-
bit level as a preliminary result. LEVELS is then called to convert the
5-bit level to the appropriate n-bit level (n = 1, 2, 3, 4, or 5).
Finally, the step size is updated according to the level of the output,
making sure that A always stays between 4nin and ax inclusive.

LEVELS utilizes an 8x4 matrix, QTABLE, to store the level subset
information. QTABLE(i,j) represents the 5-bit level corresponding to
the ith j-bit quantizer level. If the j-bit quantizer does not have the
ith value then the table entry is set to 17, which is out of the 5-bit
range. This is to insure that the correct n-bit level is selected by
branching on QTABLE entries (see code). LEVELS also checks that n-bit
levels lie between -2n-1 and 2n-1, inclusive. For example, a 5-bit
value of 16 should be clipped to 4 in a 3-bit quantizer.

IQUANT reverses the quantization process by converting a level
number to an actual sample amplitude by scaling with the step size.
Since different bit counts require somewhat different scaling, IQUANT
first translates all levels to the corresponding 5-bit level (using
QTABLE) as an intermediate step. This result can then be scaled

108

independently of the actual number of bits. Just as QUANT updates STEP,
IQUANT updates ISTEP. Although STEP and ISTEP should be equal after
each sample is processed, they are separately defined and handled to
simulate actual coder operation.

B.5 ADAPTIVE PREDICTORS

Programs: PRDLMS, PRDLS

B.5.1 LMS Transversal

PRDLMS maintains 13 by 30 ar. ays to hold the predictor
coefficients and tapped delay line values for up to 13 subbands with LMS
prediction of up to 30 orders each. The implementation of this
predictor is straightforward.

First the current signal power approximation is updated. Because
of the exponentially decaying nature of estimate, PWRQS can be
recursively computed as

(B-7) <Xq2 (n)>T+ =<x2(n) T + (1-a){x2(Tq+)}

where <q 2 (n)>T is defined in equation (2-26).

This estimate can then be plugged into the coefficient update
formula (2-27) to obtain the new tap weights. Finally, the latest
sample is shifted in and used to calculate the prediction of the next
input.

It should be noted that the LMS coefficients are initialized to
zero before the first block of voice samples is processed, thereby
forcing the predictor output to start at zero.

B.5.2 LS Lattice

The implementation of this predictor is complicated by the nature
of the recursion equations. Since both order updates and time updates
are necessary, and many cross dependencies exist, some care must be
exercised in their coding.

Fig. B-4 illustrates the interdependencies of the lattice
variables in the time and order dimensions.

From this, a consistent variable update order may be arrived at.
A valid one is

Cm+l(n) (n) 4 em+(n) r+ (n) rm+ (n) +(n) R+ 1 (n)

FORTRAN name : PCOR G E R VARE 'VARR

109

0 RD FR

n-Il

TIME

Figure B-4. LS Lattice Variable Dependencies

Notice that values of r, Rmr, and at time n-1 are also needed
for the update of other variables. In order to avoid writing over these
past values, additional arrays RM1, VARRM1, and GM1 are kept which hold
delayed versions of R, VARR, and G, respectively. The order of variable
update then becomes

PCOR - GM1 - G - E - RM1 R -+ VARE - VARRM1 -+ VARR

PRDLS has three sections. The first performs the initialization
of some of the lattice variables. The second goes through the heart of
the least-squares recursions in the order just developed. To avoid
division by zero, the likelihood variable, , is not allowed to equal 1.
The third and final section computes the prediction of the next input.

B.6 UTILITIES

B.6.1 Parallel QMF Bank Generator

Programs: FQMFBANK

This BASIC routine takes as input up to five lowpass filters
representing the half band filters of a tree QMF. These impulse
responses are then normalized in frequency b interspersing 21-1-1
zeroes between every two coefficients of the i stage. Finally, the

110

normalized impulse responses are convolved to get the coefficients of
the corresponding parallel QMF bandpass filters. In addition, the
highpass filters of each stage are generated from the lowpass inputs
(they are mirror images reflected about /z2 in the frequency domain),
and the composite response

15

(B-8) h(n) = fk(n)*gk(n)

k=O

is determined, as well. For h(n), the program does not compute (B-8)
but an equivalent expression derivable from QMF symmetry properties.

0 for even n

(B-9) h(n) = 7 L-1
2kC (-1)k[tofk(t)fk(n-t)] for odd n

where L is the filter length

Each of the analysis filters, fk(n), is formed by choosing a
lowpass or highpass filter from each stage of the associated tree
structure. For example, the first bandpass of a four-stage QMF, f(n),
is the convolution of the four (frequency normalized) lowpass filters
from each stage. If we label the choice of lowpass or highpass with 0
and 1, respectively, we can say f(n) is derived from 0000 (stage 1
choice, ... , stage 4 choice). Similarly, the second bandpass filter,

fl(n), is obtained from 0001. It is tempting to conclude from these
examples that fk(n) is derived from the base two representation of k.
However, this is not the case.

Fig. B-5 shows the positions of the (normalized) frequency
responses of the lowpass and highpass filters of a 4-stage QMF
(O=lowpass, l=highpass).

S-t45e

StCge 3

State 4

Fig. B-5 Lowpass and Highpass Ranges, 4-Stage QMF

111

Table B-1 lists the indices, k, of the 16 parallel bandpass
filters, their binary representations, and the actual code corresponding
to the lowpass/highpass filters from which they were generated.

Bandpass Index, k
0

1

2

3
4

5

6

7

8

9
10
11
12

13

14

15

Binary k)
0000
0001
0010
0011
0100
0101

0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Code(k)
0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

Table B-1. Filter Index Representations

The pattern of code(k) turns out to be a well-known sequence
called the Gray code [52]. It has the property of exactly one bit
changing between successive entries. The FQMFBANK program determines
which filters need to be convolved for bandpass fk(n) by first
converting k to binary and then from binary to Gray code.

B.6.2 Parallel QMF Truncation

Programs: TRUNCATE

The first step in generating parallel QMF's from a tree structure
is to convolve the impulse responses of the filters from each stage.
This is handled by FQMFBANK. The next step is to throw away leading and
trailing coefficients of the convolution result, which are usually very
small. This is done by TRUNCATE.

Bandpass filters are read from the files f.cof and their
shortened versions are written to tfr.cof. After each filter is
processed, the composite response of the truncated QMF is updated using
equation (B-9). When all input files are completed, the composite
response is written to tg.cof.

B.6.3 Signal-to-Noise Ratio Calculation

Program: SNR

This program computes the signal-to-noise ratio of a voice file,
f2, with respect to another voice file, fl. F1 is interpreted as the

112

pure signal component of f2. Any variation from fl is considered noise.
This comes in handy when a voice sample is coded and decoded and some
quality measure of the process is desired. By using the original voice
sample as fl and the processed version as f2, the fidelity of algorithm
can be judged.

In addition to the names of the two files, SNR needs as input a
positive integer representing the delay between the two files. To
enable corresponding samples to be compared when nonzero delay values
are specified, an additional buffer of 128 samples for f2 must be used.
By always having the current and next block of f2 available, the samples
in the current block of f can be matched with f2 samples at delays up
to 128 (Fig. B-6).

C. : signal

p2.Po-IsseA2. Signs

r

S CZ2) |DELAY

P S 1 (12 8) PS2(128)

Figure B-6. SNR File Buffers

B.6.4 Segmental Signal-to-Noise Ratio Calculation

Program: SSNR

The segmental SNR calculation simply averages the SNR (dB) values
obtained for each 16ms frame. It is essentially the same program as
SNR.

113

APPENDIX C - PROGRAN LISTINGS

The following programs are included in this appendix.

SBC-ADPCM PROGRAMS

Description Name Language

Main Line SBC FORTRAN

Subroutines:
Read block from input file INBLK FORTRAN
Write block to ouput file OUTBLK FORTRAN
Code subband (no pred.) CODN FORTRAN
Decode subband (no pred.) DECN FORTRAN
Code subband with LMS CODLMS FORTRAN
Decode subband with LMS DECLMS FORTRAN
Code subband with LS CODLS FORTRAN
Decode subband with LS DECLS FORTRAN
QMF initialization INIT FORTRAN
QMF filter bank QMF FORTRAN
Inverse QMF filter bank IQMF FORTRAN
Characteristic computation CMPCHR FORTRAN
Dynamic allocation of bits DAB FORTRAN
Adjust bit alloc. for pred. PDAB FORTRAN
Adaptive quantizer QUANT FORTRAN
Level conversion for QUANT LEVELS FORTRAN
Inverse adaptive quantizer IQUANT FORTRAN
LMS transversal predictor PRDLMS FORTRAN
LS lattice predictor PRDLS FORTRAN

UTILITIES

Description Name Language

Parallel QMF Bank Generator FQMFBANK BASIC
Parallel QMF Truncation TRUNCATE BASIC
SNR computation SNR FORTRAN
Segmental SNR computation SSNR FORTRAN

Subroutine:
INBLK routine for SNR and SSNR IN FORTRAN

114

C 3XXEEE3 3(3(E36EXJE6 XX XWQCC X XiXp C
C

C PROGRAM : SBC
C

C BY : PAUL NING
C

C DATE : 7/24/87

C

DESCRIPTION : MAIN LINE OF SUB-BAND CODER. PROCESSES INPUT FILE
WITH OR WITHOUT PREDICTION AND WRITES RESULT TO
OUTPUT FILE. ALSO KEEPS TEST STATISTICS ON THE
CODER'S PERFORMANCE.

C CALLS : INIT, INBLK, QMF, CMPCHR, DAB, PDAB, CODN, DECN, CODLMS,
C DECLMS, CODLS, DECLS, IQMF, OUTBLK.

KEY VARIABLES :

COMMON LABELS :

KBPS - CODER BIT RATE IN 1000 BITS/SECOND
WHICHP - PREDICTOR SELECTOR
ORDER - ORDER OF PREDICTION
PHIGH - HIGHEST BAND WHICH USES A PREDICTOR
INBUF - INPUT BUFFER
OUTBUF - OUTPUT BUFFER
B - NUMBER OF BITS ALLOCATED
CODDIF - CODED DIFFERENCE SIGNAL
S - SUBBAND SIGNAL
DS - DECODED SUBBAND SIGNAL
C - SUBBAND CHARACTERISTIC
BAVG - AVERAGE BIT ALLOCATION
CAVG - AVERAGE CHARACTERISTIC
CMAX - MAXIMUM CHARACTERISTIC
CMIN - MINIMUM CHARACTERISTIC
K - SUBBAND NUMBER (1 TO 16)

/BPF/ - INPUT AND OUTPUT BANDPASS FILTERS; USED BY
INIT, QMF, IQMF

/CODE/ - CODING BLOCKS; USED BY CODN, CODLS, CODLMS
/DECODE/ - DECODING BLOCKS; USED BY DECN, DECLS,

DECLMS
/QNT/ - QUANTIZER STEP SIZE; USED BY QUANT, CODN,

CODLS, CODLMS
/IQNT/ - INVERSE QUANTIZER STEP SIZE (CODING

BLOCKS); USED BY CODLS, CODLMS
/DIQNT/ - INVERSE QUANTIZER STEP SIZE (DECODING

BLOCKS); USED BY DECN, DECLS, DECLMS
/LMS/ - LMS PREDICTOR VARIABLES (CODING BLOCK);

USED BY CODLMS
/DLMS/ - LMS PREDICTOR VARIABLES (DECODING BLOCK);

USED BY DECLMS
/LS/ - LS PREDICTOR VARIABLES (CODING BLOCK);

USED BY CODLS
/DLS/ - LS PREDICTOR VARIABLES (DECODING BLOCK);

USED BY DECLS
/TEST/ - DIAGNOSTIC VARIABLES FOR FRAME-TO-FRAME

AND CUMULATIVE PREDICTION PERFORMANCE

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

115

C STATISTICS; USED BY CODLS, CODLMS C
C C
C 3*3X**E3*3 E*3(3(3E***X*3(XXXXX*X*3 EX)E*X**XXXX*EXX C

C

C DECLARATION OF VARIABLES
C

INTEGERS2 KBPS, WHICHP, ORDER, K, T, PHIGH
INTEGERS2 INBUF(128), OUTBUF(128), B(13), CODDIF(13,8)
REAL S(16,8), DS(16,8), C(16)
REAL BAVG(13), CAVG(13), CMAX(13), CMIN(13)

DATA INBUF/128X0/, OUTBUF/128X0/, B/13E0/, CODDIF/104EO/
DATA S/128*0.0/, DS/128X0.O/, C/16X0.0/, PHIGH/4/
DATA BAVG/13*0.0/, CAVG/13O0.0/, T/O/

COMMON /BPF/X(72), Y(8,2,5), Q(8,72)
REAL X, Y, Q

COMMON /CODE/DIF(13), IQDIF(13), P(13), QS(13), QDIF(13)
REAL DIF, IQDIF, P, QS
INTEGERs2 QDIF

COMMON /DECODE/DIQDIF(13), DP(13), DQS(13), DQDIF(13)
REAL DIQDIF, DP, DQS
INTEGERs2 DQDIF

COMMON /QNT/STEP(13) /IQNT/ISTEP(13) /DIQNT/DISTEP(13)
REAL STEP, ISTEP, DISTEP

COMMON /LMS/LMSQS(13,30), A(13,30), PWRQS(13)
REAL LMSQS, A, PWRQS

COMMON /DLMS/DLMSQS(13,30), DA(13,30), DPWRQS(13)
REAL DLMSQS, DA, DPWRQS

COMMON /LS/PCOR(13,30), VARE(13,30), VARR(13,30), VARRM1(13,30)
COMMON /LS/G(13,30), GM1(13,30), E(13,30), R(13,30), RM1(13,30)
COMMON /LS/LSON(13)
REAL PCOR, VARE, VARR, VARRM1, G, GM1, E, R, RM1
INTEGER LSON

COMMON /DLS/DPCOR(13,30), DVARE(13,30), DVARR(13,30)
COMMON /DLS/DVARR1(13,30), DG(13,30), DGM1(13,30), DE(13,30)
COMMON /DLS/DR(13,30), DRM1(13,30)
COMMON /DLS/DLSON(13)
REAL DPCOR, DVARE, DVARR, DVARR1, DG, DGM1, DE, DR, DRM1
INTEGER DLSON

COMMON /TEST/MSN(13), MSS(13), NRMS(13), SRMS(13), N(13)
COMMON /TEST/MSNF(13), MSSF(13), NRMSF(13), SRMSF(13), NF(13)
REAL MSN, MSS, NRMS, SRMS
REAL MSNF, MSSF, NRMSF, SRMSF

116

INTEGER N
INTEGER NF

C

C PROMPT FOR CODER BIT RATE, TYPE, AND PREDICTOR ORDER
C

PRINT 100
100 FORMAT(' BIT RATE')

READ (5,) KBPS

PRINT 200
200 FORMAT(T CHOICE OF PREDICTOR (O=NONE,1=LMS,2=LS)')

READ (5,)3 WHICHP

IF (WHICHP.EQ.0) GO TO 5
PRINT 300

300 FORMAT (' ORDER OF PREDICTOR')
READ (5,3) ORDER

C

C INITIALIZATION OF QMF COEFFICIENTS
C
5 CALL INIT

C
C MAIN LOOP - PROCESS VOICE FILE BLOCK BY BLOCK
C

C READ 128 INPUT SAMPLES FROM FILE NUMBER ?
10 CONTINUE

CALL INBLK(INBUF,ISTAT)
IF (ISTAT.EQ.1) GO TO 1000

C DIVIDE INPUT SIGNAL INTO SUBBAND SIGNALS
CALL QMF(INBUF,S)

C COMPUTE MAXIMUM AMPLITUDE CHARACTERISTIC FOR EACH BAND
CALL CMPCHR(S,C)

C ALLOCATE BIT RESOURCES
CALL DAB(C,KBPS,B)
IF (WHICHP.EQ.0) GO TO 12
CALL PDAB(B,PHIGH)

C UPDATE DIAGNOSTIC VARIAB3LES

12 DO 16 I = 1,13

IF (T.EQ.O) GO TO 13
CMIN(I) = AMIN1(C(I),CMIN(I))
CMAX(I) = AMAX1(C(I),CMAX(I))
GO TO 14

13 CMIN(I) = C(I)

117

CMAX(I) = C(I)
14 CAVG(I) = (T/(T+1.O))NCAVG(I) + (1.O/(T+1.O))*C(i)
16 BAVG(I) = T/(T+1.O))NBAVG(I) + (1.O/(T+1.O0)xB(I)

T=T+ 1I

C CODE AND DECODE EACH SUBBAND SIGNAL
DO 90 K = 1, 13

IF ((WHICHP.EQ.2).AND.(K.LE.PHIGH)) GO TO 20

IF ((WHICHP.EQ.1).AND.(K.LE.PHIGH)) GO TO 30
CALL CODN(S,K,B,CODDIF)
CALL DECN(CODDIF,B,K,DS)
GO TO 90

20 CALL CODLS(S,K,B,CODDIF,ORDER)
CALL DECLS(CODDIF,B,K,DS,ORDER)
GO TO 90

30 CALL CODLMS(S,K,B,CODDIF,ORDER)
CALL DECLMS(CODDIF,B,K,DS,ORDER)

90 CONTINUE

C RECOMBINE DECODED SUBBAND SIGNALS
CALL IQMF(DS,OUTBUF)

C WRITE 128 PROCESSED VOICE SAMPLES TO FILE NUMBER 9
CALL OUTBLK(OUTBUF,ISTAT)
IF (ISTAT.EQ.1) GO TO 1000

C SIGNAL COMPLETION OF ONE BLOCK
PRINT 400

400 FORMAT (' .')
G0 TO 10

C

C PRINT DIAGNOSTICS
C

1000 DO 17 I = 1,13

17 PRINT , I, CMIN(I), CAVG(I), CMAX(I), BAVG(I)
DO 18 L = 1,PHIGH

18 PRINT *, L, S(L,8), P(L), NRMS(L), SRMS(L)

STOP
END

C

C INITIAL VALUES FOR LABELLED COMMON VARIABLES
C

BLOCK DATA

COMMON /BPF/X(72), Y(8,2,5), Q(8,72)
REAL X/72*0.0/, Y/80*0.0/

COMMON /CODE/DIF(13), IQDIF(13), P(13), QS(13), QDIF(13)

118

REAL DIF/13O.O/, IQDIF/130.0/, P/130.0/, QS/1330.0/
INTEGER*2 QDIF/13KO/

COMMON /DECODE/DIQDIF(13), DP(13), DQS(13), DQDIF(13)
REAL DIQDIF/13*0.0/, DP/1330.0/, DQS/13*0.0/
INTEGERs2 DQDIF/13*0/

COMMON /QNT/STEP(13) /IQNT/ISTEP(13) /DIQNT/DISTEP(13)
REAL STEP/13XO.1/, ISTEP/13XO.1/, DISTEP/13*0.1/

COMMON /LMS/LMSQS(13,30), A(13,30), PWRQS(13)
REAL LMSQS/3900.0/, A/390*0.0/, PWRQS/13*0.0/

COMMON /DLMS/DLMSQS(13,30), DA(13,30), DPWRQS(13)
REAL DLMSQS/390*0.O/, DA/3900.O/, DPWRQS/13X0.O/

COMMON /LS/PCOR(13,30), VARE(13,30), VARR(13,30), VARRM1(13,30)
COMMON /LS/G(13,30), GM1(13,30), E(13,30), R(13,30), RM1(13,30)
COMMON /LS/LSON(13)
REAL PCOR/39030.0/, VARE/3901. ./, VARR/3901.0/
REAL VARRM1/390i1.0/, G/3900O.0/
REAL GMI/3900.O/, E/390*0.0/, R/390X0.0/, RM1/390m0.0/
INTEGER LSON/13*0/

COMMON /DLS/DPCOR(13,30), DVARE(13,30), DVARR(13,30)
COMMON /DLS/DVARR(13,30), DG(13,30), DGM1(13,30), DE(13,30)
COMMON /DLS/DR(13,30), DRM1(13,30)
COMMON /DLS/DLSON(13)
REAL DPCOR/390XO0.0/, DVARE/390E1.0/, DVARR/390*1.0/
REAL DVARR1/390*1.0/, DG/390*0.O/
REAL DGM1/3900.0/, DE/3900.0/, DR/3900O.O/, DRM1/3900.0/
INTEGER DLSON/13NO/

COMMON /TEST/MSN(13), MSS(13), NRMS(13), SRMS(13), N(13)
COMMON /TEST/MSNF(13), MSSF(13), NRMSF(13), SRMSF(13), NF(13)
REAL MSN/13*O./, MSS/13*O./, NRMS/13N0./, SRMS/130O./
REAL MSNF/13N0./, MSSF/13*0./, NRMSF/13NO./, SRMSF/13N0./
INTEGER N/13*0/
INTEGER NF/13*0/

END

119

C 33*3(X X*33XJE3*3(*3E3(E3E3EXXXXX3OEX*ddddddddddXXdOOO C
C Cc C
C PROGRAM : INBLK C
C C

C BY : DAN LAI C
C C

C DATE : 7/24/87 C
C C
C DESCRIPTION : SUBROUTINE TO READ 128 SAMPLES FROM INPUT FILE C
C C
C CALLED BY : SBC C
C C

C KEY VARIABLES : INBUF - INPUT BUFFER C
C ISTAT - I/O STATUS C
C C

C C 3 X3X3E3f3EX003X3OEd X XX X C##dM XdyX00 C

SUBROUTINE INBLK(INBUF,ISTAT)

INTEGER*2 INBUF(128)

READ (8,100,END=200,ERR=200) (INBUF(I),I=1,128)
ISTAT = 0
RETURN

100 FORMAT(128(Z4))
200 ISTAT = 1

RETURN
END

120

C _3E063 0*306X3I303 3 3363333 X3E3E3fZ3E33E333X3333 C
C

C PROGRAM : OUTBLK

C

C BY : DAN LAI

C

C DATE : 7/24/87

C

C DESCRIPTION : SUBROUTINE TO WRITE 128 SAMPLES TO OUTPUT FILE
C

C CALLED BY : SBC
C

C KEY VARIABLES : OUTBUF - OUTPUT BUFFER
C ISTAT - I/O STATUS
C
C 3

C

C

C

C

C

C

C

C

C

C

C

C
C

C

SUBROUTINE OUTBLK(OUTBUF,ISTAT)

INTEGERS2 OUTBUF(128)

WRITE (9,300,ERR=400) (OUTBUF(I),I=1,128)
ISTAT = 0

RETURN
300 FORMAT(128(Z4))
400 ISTAT = 1

RETURN
END

121

C X3E33EXX 33E*)3O3O3EX3E*XX3E XX3OO3 C
C

C PROGRAM : CODN

C
C BY : PAUL NING
C

C DATE : 7/24/87
C

C DESCRIPTION : SUBROUTINE TO CODE A BLOCK OF SUBBAND SAMPLES
C WITHOUT PREDICTION
C
C CALLED BY : SBC
C

C CALLS : QUANT
C
C COMMON LABELS ACCESSED : /CODE/, /QNT/

C KEY VARIABLES :
C
C
C
C
C
C
C

DIF - DIFFERENCE SIGNAL
QDIF - QUANTIZED DIFFERENCE SIGNAL
STEP - QUANTIZER STEP SIZE
S - SUBBAND SIGNAL
K - SUBBAND NUMBER

B - NUMBER OF BITS ALLOCATED
CODDIF - CODED DIFFERENCE SIGNAL (ARRAY OF QDIF

VALUES)

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C MXy6xX6X ndydXX XXXiX3X6XX6X C

SUBROUTINE CODN(S,K,B,CODDIF)

COMMON /CODE/DIF(13), IQDIF(13), P(13), QS(13), QDIF(13)
REAL DIF, IQDIF, P, QS
INTEGERs2 QDIF

COMMON /QNT/STEP(13)
REAL STEP

REAL S(16,8)
INTEGERS2 K, B(13), CODDIF(13,8)

DO 10 J = 1,8
DIF(K) = S(K,J)
CALL QUANT(K,DIF,B,STEP,QDIF)

10 CODDIF(K,J) = QDIF(K)

RETURN
END

122

C

C PROGRAM : DECN
C

C BY : PAUL NING
C

C DATE : 7/24/87
C

C DESCRIPTION : SUBROUTINE TO DECODE A BLOCK OF SUBBAND SAMPLES
C WITHOUT PREDICTION
C

C CALLED BY : SBC
C

C CALLS : IQUANT

C
C COMMON LABELS ACCESSED : /DECODE/, /DIQNT/
C

C KEY VARIABLES
C

C

C

C

C

C

C

C

C

DIQDIF - DECODER'S INVERSE QUANTIZED DIFFERENCE
SIGNAL

DQDIF - DECODER'S QUANTIZED DIFFERENCE SIGNAL
DISTEP - DECODER'S INVERSE QUANTIZER STEP SIZE
CODDIF - CODED DIFFERENCE SIGNAL (ARRAY OF DQDIF

VALUES)
B - NUMBER OF BITS ALLOCATED
K - SUBBAND NUMBER

DS - DECODED SUBBAND SIGNAL (ARRAY OF DIQDIF VALUES)

C X 3 E X X X 3 W X X 3 E 3 E 3 (3 E 3 E 3 E X X X X 3 (X X X X C

SUBROUTINE DECN(CODDIF,B,K,DS)

COMMON /DECODE/DIQDIF(13), DP(13), DQS(13), DQDIF(13)
REAL DIQDIF, DP, DQS
INTEGERS2 DQDIF

COMMON /DIQNT/DISTEP(13)
REAL DISTEP

INTEGERS2 CODDIF(13,8), B(13), K
REAL DS(16,8)

DO 10 J = 1,8
DQDIF(K) = CODDIF(K,J)
CALL IQUANT(K,DQDIF,B,DISTEP,DIQDIF)

10 DS(K,J) = DIQDIF(K)

RETURN
END

C
C
C
C
C
C
C
C

C
C
C

C

C

C

C

C

C

C
C

C

C
C

C

C

C

C

�lrYYMCY�CrYYY#�E7FWW�CWWW3eYWW�C#WW3�#�
I ��---��-�-i-��--------------
- ---rw I_, __ . x-rs _ _, ___ __ _ _ _ __ _C

. _ _ _ -- __- - - - - -___ __ ____ __ __ __ __

----------------------------------- # FT1

123

C 3EXX3EXXX3(XXXX XX3E3O3E3O300E3OEXX3(XX C

C C
C PROGRAM : CODLMS
C

C BY : PAUL NING
C

C DATE : 7/24/87
C

DESCRIPTION : SUBROUTINE TO CODE A BLOCK OF SUBBAND SAMPLES
WITH LMS PREDICTION. ALSO MAINTAINS PREDICTOR
PERFORMANCE DIAGNOSTICS.

C CALLED BY : SBC
C

C CALLS QUANT, IQUANT, PRDLMS
C

C COMMON LABELS ACCESSED : /CODE/, /QNT/, IQNT/, /LMS/, /TEST/

KEY VARIABLES : DIF - DIFFERENCE SIGNAL
IQDIF - INVERSE QUANTIZED DIFFERENCE SIGNAL
P - PREDICTOR OUTPUT
QS - SUM OF PREDICTOR OUTPUT AND INVERSE

QUANTIZED DIFFERENCE (ERROR) SIGNAL
QDIF - QUANTIZED DIFFERENCE SIGNAL
STEP - QUANTIZER STEP SIZE
ISTEP - INVERSE QUANTIZER STEP SIZE
LMSQS - TAPPED DELAY LINE VALUES OF QS
A - LMS PREDICTOR COEFFICIENTS
PWRQS - POWER ESTIMATE OF QS
S - SUBBAND SIGNAL
K - SUBBAND NUMBER

B - NUMBER OF BITS ALLOCATED
CODDIF - CODED DIFFERENCE SIGNAL (ARRAY OF QDIF

VALUES)
ORDER - ORDER OF PREDICTION
MSN - MEAN SQUARE VALUE OF NOISE (PREDICTION ERROR)
MSS - MEAN SQUARE VALUE OF SUBBAND SIGNAL
NRMS - SQUARE ROOT OF MSN
SRMS - SQUARE ROOT OF MSS
N - NUMBER OF SUBBAND SAMPLES SINCE START OF FILE
MSNF - MEAN SUARE VALUE OF NOISE DURING FRAME OF

32 SUBBAND SAMPLES (4 INPUT BLOCKS)
MSSF - MEAN SQUARE VALUE OF SUBBAND SIGNAL DURING

FRAME OF 32 SAMPLES
NRMSF - SQUARE ROOT OF MSNF
SRMSF - SQUARE ROOT OF MSSF
NF - NUMBER OF SUBBAND SAMPLES SINCE START OF

CURRENT FRAME
FILNOF - FILE NUMBER TO WHICH FRAME-TO-FRAME

DIAGNOSTICS ARE RECORDED

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C M XX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXXXXXX C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

124

SUBROUTINE CODLMS(S,K,B,CODDIF,ORDER)

COMMON /CODE/DIF(13), IQDIF(13), P(13), QS(13), QDIF(13)
REAL DIF, IQDIF, P, QS
INTEGERS2 QDIF

COMMON /QNT/STEP(13) /IQNT/ISTEP(13)
REAL STEP, ISTEP

COMMON /LMS/LMSQS(13,30), A(13,30), PWRQS(13)
REAL LMSQS, A, PWRQS

REAL S(16,8)
INTEGER*2 K, B(13), CODDIF(13,8), ORDER

COMMON /TEST/MSN(13), MSS(13), NRMS(13), SRMS(13), N(13)
COMMON /TEST/MSNF(13), MSSF(13), NRMSF(13), SRMSF(13), NF(13)
REAL MSN, MSS, NRMS, SRMS
REAL MSNF, MSSF, NRMSF, SRMSF
INTEGER N
INTEGER NF, FILNOF

C

C PROCESS 8 SUBBAND SAMPLES
C

DO 10 J = 1,8
DIF(K) = S(K,J) - P(K)

C

C UPDATE PREDICTION DIAGNOSTICS
C

MSN(K) = (N(K)/(N(K)+1.0))*MSN(K) + (.O/(N(K)+1.))DIF(K)3X2
MSS(K) = (N(K)/(N(K)+1.0))*MSS(K) + (1.O/(N(K)+1.O))*S(K,J)*2
NRMS(K) = SQRT(MSN(K))
SRMS(K) = SQRT(MSS(K))
N(K) = N(K) + 1

C

C UPDATE FRAME-TO-FRAME PREDICTION DIAGNOSTICS
C

MSNF(K) = (NF(K)/(NF(K)+1.0))NMSNF(K) +
X (1.0/(NF(K)+1.0))XDIF(K)**2
MSSF(K) = (NF(K)/(NF(K)+1.O))*MSSF(K) +

X (1.O/(NF(K)+1.O))NS(K,J)X2

NRMSF(K) = SQRT(MSNF(K))
SRMSF(K) = SQRT(MSSF(K))
NF(K) = NF(K) + 1
IF (NF(K).LT.32) GO TO 20
NF(K) = 0

MSNF(K) = 0.0
MSSF(K) = 0.0

125

FILNOF = 10 + K

WRITE (FILNOF,X) NRMSF(K), SRMSF(K)

C

C CODE A SAMPLE
C

20 CALL QUANT(K,DIF,B,STEP,QDIF)
CODDIF(K,J) = QDIF(K)
CALL IQUANT(K,QDIF,B,ISTEP,IQDIF)
QS(K) = IQDIF(K) + P(K)

10 CALL PRDLMS(QS,LMSQS,A,PWRQS,K,ORDER,IQDIF,P)

RETURN
END

126

C ~OE3EX G 330300043EX3E* *3 XX 3 X 30 C

C
C PROGRAM : DECLMS

C

C BY : PAUL NING
C

C DATE : 7/24/87

C

C DESCRIPTION : SUBROUTINE TO DECODE A BLOCK OF SUBBAND SAMPLES
C WITH LMS PREDICTION
C
C CALLED BY : SBC
C

C CALLS : IQUANT, PRDLMS
C

C COMMON LABELS ACCESSED : /DECODE/, /DIQNT/, /DLMS/
C

KEY VARIABLES : DIQDIF - DECODER'S INVERSE QUANTIZED DIFFERENCE
SIGNAL

DP - DECODER'S PREDICTOR OUTPUT
DQS - DECODER'S SUM OF PREDICTOR OUTPUT AND INVERSE

QUANTIZED DIFFERENCE SIGNAL
DQDIF - DECODER'S QUANTIZED DIFFERENCE SIGNAL
DISTEP - DECODER'S INVERSE QUANTIZER STEP SIZE
DLMSQS - TAPPED DELAY LINE VALUES OF DQS
DA - DECODER'S LMS PREDICTOR COEFFICIENTS
DPWRQS - POWER ESTIMATE OF DQS
CODDIF - CODED DIFFERENCE SIGNAL (ARRAY OF DQDIF

VALUES)
B - NUMBER OF BITS ALLOCATED
K - SUBBAND NUMBER

ORDER - ORDER OF PREDICTION
DS - DECODED SUBBAND SIGNAL (ARRAY OF DQS VALUES)

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C 33 X3 E3E3 X3E363E3E3X X X X NE3 X:~XXE3 X3 X3 EX X C

SUBROUTINE DECLMS(CODDIF,B,K,DS,ORDER)

COMMON /DECODE/DIQDIF(13), DP(13), DQS(13), DQDIF(13)
REAL DIQDIF, DP, DQS
INTEGERS2 DQDIF

COMMON /DIQNT/DISTEP(13)
REAL DISTEP

COMMON /DLMS/DLMSQS(13,30), DA(13,30), DPWRQS(13)
REAL DLMSQS, DA, DPWRQS

INTEGER*2 CODDIF(13,8), B(13), K, ORDER
REAL DS(16,8)

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

127

C DECODE 8 SUBBAND SAMPLES
C

DO 10 J = 1,8

DQDIF(K) = CODDIF(K,J)
CALL IQUANT(K,DQDIF,B,DISTEP,DIQDIF)
DQS(K) = DIQDIF(K) + DP(K)
DS(K,J) = DQS(K)

10 CALL PRDLMS(DQS,DLMSQS,DA,DPWRQS,K,ORDER,DIQDIFDP)

RETURN
END

128

C

C

C PROGRAM : CODLS

C

C BY : PAUL NING
C

C DATE : 7/24/f87

C

C

C

C

DESCRIPTION : SUBROUTINE TO CODE A BLOCK OF SUBBAND SAMPLES
WITH LS PREDICTION. ALSO MAINTAINS PREDICTOR
PERFORMANCE DIAGNOSTICS.

C

C CALLED BY : SBC
C

C CALLS : UANT, IQUANT, PRDLS
C

C COMMON LABELS ACCESSED /CODE/, QNT/, IQNT/, LS/, /TEST/
C
C
C
C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

KEY VARIABLES : DIF - DIFFERENCE SIGNAL
IQDIF - INVERSE QUANTIZED DIFFERENCE SIGNAL
P - PREDICTOR OUTPUT
QS - SUM OF PREDICTOR OUTPUT AND INVERSE

QUANTIZED DIFFERENCE (ERROR) SIGNAL
QDIF - QUANTIZED DIFFERENCE SIGNAL
STEP - QUANTIZER STEP SIZE
ISTEP - INVERSE QUANTIZER STEP SIZE
PCOR - PARTIAL CORRELATION
VARE - VARIANCE OF FORWARD PREDICT'ON ERROR
VARR - VARIANCE OF BACKWARD PREDICTION ERROR
VARRM1 - ONE SAMPLE DELAY OF VARR
G - LIKELIHOOD VARIABLE
GM1 - ONE SAMPLE DELAY OF G
E - FORWARD PREDICTION ERROR
R - BACKWARD PREDICTION ERROR
RM1 - ONE SAMPLE DELAY OF R
LSON - ENABLE FOR LS OUTPUT
S - SUBBAND SIGNAL
K - SUBBAND NUMBER
B - NUMBER OF BITS ALLOCATED
CODDIF - CODED DIFFERENCE SIGNAL (ARRAY OF QDIF

VALUES)
ORDER - ORDER OF PREDICTION
MSN - MEAN SQUARE VALUE OF NOISE (PREDICTION ERROR)
MSS - MEAN SQUARE VALUE OF SUBBAND SIGNAL
NRMS - SQUARE ROOT OF MSN
SRMS - SQUARE ROOT OF MSS
N - NUMBER OF SUBBAND SAMPLES SINCE START OF FILE
MSNF - MEAN SQUARE VALUE OF NOISE DURING FRAME OF

32 SUBBAND SAMPLES (4 INPUT BLOCKS)
MSSF - MEAN SQUARE VALUE OF SUBBAND SIGNAL DURING

FRAME OF 32 SAMPLES
NRMSF - SQUARE ROOT OF MSNF
SRMSF - SQUARE ROOT OF MSSF
NF - NUMBER OF SUBBAND SAMPLES SINCE START OF

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C
C
C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

3�C#�t�C��C30��3C�3C�000C3C�3��C�3CP�C�M

129

C CURRENT FRAME C

C FILNOF - FILE NUMBER TO WHICH FRAME-TO-FRAME C

C DIAGNOSTICS ARE RECORDED C

C C
C 330EEE3(3J3XEO330fXX33X3XJ3*EXXX360(3E3E3 C

SUBROUTINE CODLS(S,K,B,CODDIF,ORDER)

COMMON /CODE/DIF(13), IQDIF(13), P(13), QS(13), QDIF(13)
REAL DIF, IQDIF, P, QS
INTEGERS2 QDIF

COMMON /QNT/STEP(13) /IQNT/ISTEP(13)
REAL STEP, ISTEP

COMMON /LS/PCOR(13,30), VARE(13,30), VAPR(13,30), VARRM1(13,30)
COMMON /LS/G(13,30), GM1(13,30), E(13,30), R(13,30), RM1(13,30)
COMMON /LS/LSON(13)
REAL PCOR, VARE, VARR, VARRM1, G, GM1, E, R, RM1
INTEGER LSON

REAL S(16,8)
INTEGER*2 K, B(13), CODDIF(13,8), ORDER

COMMON /TEST/MSN(13), MSS(13), NRMS(13), SRMS(13), N(13)
COMMON /TEST/MSNF(13), MSSF(13), NRMSF(13), SRMSF(13), NF(13)
REAL MSN, MSS, NRMS, SRMS
REAL MSNF, MSSF, NRMSF, SRMSF
INTEGER N
INTEGER NF, FILNOF

C

C PROCESS 8 SUBBAND SAMPLES; PREDICTOR OUTPUT ENABLED FOR LSON = 1
C

DO 10 J = 1,8

IF (LSON(K).EQ.0) P(K) = 0
DIF(K) = S(K,J) - P(K)

C

C UPDATE PREDICTION DIAGNOSTICS
C

MSN(K) = (N(K)/(N(K)+1.0))NMSN(K) + (1.0/(N(K)+1.0))mDIF(K)XX2
MSS(K) = (N(K)/(N(K)+1.0))mMSS(K) + (1.0/(N(K)+1.0))AS(K,J)E*2
NRMS(K) = SQRT(MSN(K))
SRMS(K) = SQRT(MSS(K))
N(K) = N(K) + 1

C

C UPDATE FRAME-TO-FRAME PREDICTION DIAGNOSTICS
C

130

MSNF(K) = (NF(K)/(NF(K)+I.O))*MSNF(K) +
X (1.O/(NF(K)+I.O))*DIF(K)X2
MSSF(K) = (NF(K)/(NF(K)+1.0))*MSSF(K) +
X (1.O/(NF(K)+1.O))*S(K,J)3*2
NRMSF(K) = SQRT(MSNF(K))
SRMSF(K) = SQRT(MSSF(K))
NF(K) = NF(X) + 1
IF (NF(K).LT.32) GO TO 20
NF(K) = 0
MSNF(K) = 0.0
MSSF(K) = 0.0
FILNOF = 14 + K
WRITE (FILNOF,*) NRMSF(K), SRMSF(K)

C
C CODE A SAMPLE
C

20 CALL QUANT(K,DIF,B,STEP,QDIF)
CODDIF(K,J) = QDIF(K)
CALL IQUANT(K,QDIF,B,ISTEP,IQDIF)
QS(K) = IQDIF(K) + P(K)

10 CALL PRDLS(QS,PCOR,VARE,VARR,VARRM1,G,GM1,E,R,RM1,K,ORDERP)

C

C ENABLE FREDICTOR OUTPUT AFTER FIRST 8 SUBBAND SAMPLES
C

LSON(K) = 1

RETURN
END

131

C

C

C PROGRAM : DECLS

C

C BY : PAUL NING
C

C DATE = 7/24/87
C

C DESCRIPTION : SUBROUTINE TO DECODE A BLOCK OF SUBBAND SAMPLES
C WITH LS PREDICTION
C

C CALLED BY : SBC
C

C CALLS : IQUANT, PRDLS
C

C COMMON LABELS ACCESSED : /DECODE/, /DIQNT/, /DLS/
C

KEY VARIABLES : DIQDIF - DECODER'S INVERSE QUANTIZED DIFFERENCE
SIGNAL

DP - DECODER'S PREDICTOR OUTPUT
DQS - DECODER'S SUM OF PREDICTOR OUTPUT AND INVERSE

QUANTIZED DIFFERENCE SIGNAL
DQDIF - DECODER'S QUANTIZED DIFFERENCE SIGNAL
DISTEP - DECODER'S INVERSE QUANTIZER STEP SIZE
DPCOR - PARTIAL CORRELATION (DECODER)
DVARE - VARIANCE OF FORWARD PREDICTION ERROR

(DECODER)
DVARR - VARIANCE OF BACKWARD PREDICTION ERROR

(DECODER)
DVARRM1 - ONE SAMPLE DELAY OF DVARR
DG - LIKELIHOOD VARIABLE (DECODER)
DGM1 - ONE SAMPLE DELAY OF DG

DE - FORWARD PREDICTION ERROR (DECODER)
DR - BACKWARD PREDICTION ERROR (DECODER)
DRM1 - ONE SAMPLE DELAY OF DR

DLSON - ENABLE FOR LS OUTPUT (DECODER)
CODDIF - CODED DIFFERENCE SIGNAL (ARRAY OF DQDIF

VALUES)
B - NUMBER OF BITS ALLOCATED
K - SUBBAND NUMBER
ORDER - ORDER OF PREDICTION
DS - DECODED SUBBAND SIGNAL (ARRAY OF DQS VALUES)

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C
C C
C X X X X X X M X X)EXX3E3E3(XX3E3000EXXM M JOEX3EXXXX300(X C

SUBROUTINE DECLS(CODDIF,B,K,DS,ORDER)

COMMON /DECODE/DIQDIF(13), DP(13), DQS(13), DQDIF(13)
REAL DIQDIF, DP, DQS
INTEGERX2 DQDIF

COMMON /DIQNT/DISTEP(13)
REAL DISTEP

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

YY�CYY96Y�I��S�9F�Y�C�F�6YPFY�CMCYYYY3F�

132

COMMON /DLS/DPCOR(13,30), DVARE(13,30), DVARR(13,30)
COMMON /DLS/DVARR1(13,30), DG(13,30), DGM1(13,30), DE(13,30)
COMMON /DLS/DR(13,30), DRMI1(13,30)
COMMON /DLS/DLSON(13)
REAL DPCOR, DVAREA DVARR, DVARR1, DG, DE, DR, DRM1
INTEGER DLSON

INTEGERX2 CODDIF(13,8), B(13), K, ORDER
REAL DS(16,8)

C

C DECODE 8 SUBBAND SAMPLES
C

DO 10 J = 1,8
IF (DLSON(K).EQ.O) DP(K) = 0
DQDIF(K) = CODDIF(K,J)
CALL IQUANT(K,DQDIF,B,DISTEP,DIQDIF)
DQS(K) = DIQDIF(K) + DP(K)
DS(K,J) = DQS(K)

10 CALL

XPRDLS(DQS,DPCOR,DVARE,DVARR,DVARR1,,DG,DGM1,DE,DR,DRM,K,ORDER,DP)

C

C ENABLE PREDICTOR OUTPUT AFTER FIRST 8 SUBBAND SAMPLES
C

DLSON(K) - 1

RETURN
END

133

C 3X X3 Xd XXM X3Xd3XXX(XEX3333OEX3 C

C C

C PROGRAM : INIT C

C C

C BY : PAUL NING C
C C

C DATE : 7/24/87 C

C C

C DESCRIPTION : SUBROUTINE TO READ IN QMF COEFFICIENTS FROM A FILE C
C C

C CALLED BY : SBC C
C C

C COMMON LABELS ACCESSED : /BPF/ C

C C

C KEY VARIABLE : Q - QMF COEFFICIENTS C
C C

C d3(3F~ ~ ~ ~ ~~"3~3{33X3E3EXX X� XCXX XX~X3XX C

SUBROUTINE INIT

COMMON /BPF/X(72), Y(8,2,5), Q(8,72)
REAL X, Y, Q

C

C READ COEFFICIENTS FROM FILE NUMBER 10

C

DO 10 I = 1,8
DO 10 J = 1,72

10 READ (10,3) Q(I,J)

RETURN
END

134

C 33E* E3 X3E XX(X XXX#X X X X3(XXXJXXXX C

C

C PROGRAM QMF
C

C BY : PAUL NING
C

C DATE : 7/24/87
C

C DESCRIPTION : SUBROUTINE TO PRODUCE 16 SUBBAND SIGNALS FROM
C A BLOCK OF INPUT SAMPLES
C

C CALLED BY : SBC
C

C COMMON LABELS ACCESSED /BPF/
C

C KEY VARIABLES : X - ANALYSIS QMF TAPPED DELAY LINE
C Q - QMF COEFFICIENTS
C INBUF - INPUT BUFFER
C S - SUBBAND SIGNAL
C

C

C

C
C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C 30X006E33E 3O3EXOfO3EX3EXX 3EXXXXXX33E3XX3EXXXXX C

SUBROUTINE QMF(INBUF,S)

COMMON /BPF/X(72), Y(8,2,5), Q(8,72)
REAL X, Y, Q

INTEGERS2 INBUF(128), T
REAL S(16,8), TERM

C

C GENERATE 8 SAMPLES FOR EACH SUBBAND FROM THE 128 INPUTS
C

DO 30 I = 1,8

C

C SHIFT IN 16 SAMPLES FROM INBUF
C

DO 20 J = 1,16
DO 10 L = 1,71

10 X(73-L) = X(73-L-1)
20 X(1) = INBUF(16x(I-1)+J)

C

COMPUTE ONE SUBBAND SAMPLE FOR EACH BAND

DO 30 K = 1,8

S(K,I) = 0
S(17-K,I) = 0

DO 30 T =1,72

C
C

135

TERM = Q(K,T)*X(T)
S(K,I) = S(K,I) + TERM

30 S(17-K,I) = S(17-K,I) + TERM*(-1)X(T-1)

RETURN
END

136

C 3E3E3 3OE*X3OEMX 30E33E33(0E3 MX 3E3E6(3EXXXy C

C

C PROGRAM : IQMF
C

C BY PAUL NING
C

C DATE : 7/24/87
C

C DESCRIPTION : RECONSTRUCT A BLOCK OF OUTPUT SAMPLES FROM SUBBANDS
C

C CALLED BY : SBC
C

C COMMON LABELS ACCESSED : /BPF/
C

C KEY VARIABLES : Y - RECONSTRUCTION QMF TAPPED DELAY LINES
C Q - QMF COEFFICIENTS

C OUTBUF - OUTPUT BUFFER
C DS - DECODED SUBBAND SIGNALS
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C 63C(9x]((3 XXX3X XXX 3X(3(XXXXXX c

SUBROUTINE IQMF(DS, OUTBUF)

COMMON /BPF/X(72), Y(8,2,5), Q(8,72)
REAL X, Y, Q

INTEGERX2 OUTBUF(128), T
REAL DS(16,8), TERM, OUT

C

C PROCESS 8 DECODED SAMPLES FROM EACH SUBBAND
C

DO 40 I = 1,8
C

SHIFT IN THE CURRENT SAMPLE SUMS AND DIFFERENCES
(K IS THE SUBBAND NUMBER)

DO 30 K = 1,8

J IS AN INDEX ONTO THE DELAY LINES OF SUMS AND DIFFERENCES

DO 20 J = 1,4

L DISTINGUISHES THE TWO DELAY LINES

DO 20 L = 1,2
Y(K,L,6-J) = Y(K,L,6-J-1)

Y(K,1,1) = DS(K,I) + DS(17-K,I)
Y(K,2,1) = DS(K,I) - DS(17-K,I)

C

C

C

C

C

C

C

C

C

20

30

137

C

C COMPUTE 16 OUTPUTS FOR CURRENT I VALUE
C

DO 40 T = 1,16
TERM = 0

C ADD CONTRIBUTIONS FROM EACH PAIR OF SUBBANDS
C

DO 10 K = 1,8

C

C GO DOWN APPROPRIATE TAPPED DELAY LINE
C

DO 10 J = 1,5
M = T + 16X(J-1)

C

C USE TSUM' FOR T EVEN, 'DIFFERENCE' FOR T ODD
C

IF (M.LE.72)
XTERM = TERM + (-1)*x(K-1)Q(K,M)*Y(K,1.5+.5*(-)E(T-1),J)

10 CONTINUE

C

C AS PART OF INTERPOLATION, OUTPUT MUST BE SCALED UP BY 16;
C ALSO CHECK FOR CLIPPING OF INTEGER*2 RANGE
C

OUT = 16WTERM
IF (OUT.GT.32767) OUT = 32767
IF (OUT.LT.(-32768)) OUT = -32768

40 OUTBUF(16*(I-1) + T) = OUT

RETURN
END

138

C C

C C
C PROGRAM : CMPCHR C

C C

C BY : PAUL NING C
C C

C DATE : 7/24/87 C

C C

C DESCRIPTION : SUBROUTINE TO COMPUTE SUBBAND CHARACTERISTICS C
C C

C CALLED BY : SBC C
C C

C KEY VARIABLES : S - SUBBAND SIGNAL C
C C - SUBBAND CHARACTERISTIC C
C C

C C3E3]]E3E:3E*E3E30E3](3E3(3OE EfeX3 X3E3 33XC

SUBROUTINE CMPCHR(S,C)

REAL S(16,8), C(16)

DO 10 I = 1,16
C(I) = ABS(S(I,1))
DO 10 J = 2,8

10 IF (ABS(S(I,J)).GT.C(I)) C(I) = ABS(S(I,J))

RETURN
END

139

C 3*(3E3(3EXX33EX3 33OEXXXXXcwXX3(X36x6xxxM C
C

C PROGRAM : DAB
C

C BY : PAUL NING
C

C DATE : 7/24/87
C

C DESCRIPTION : SUBROUTINE TO ALLOCATE BITS TO 13 SUBBANDS BASED UPON
C THEIR CHARACTERISTICS
C

C CALLED BY SBC
C

C CALLS : (FUNCTIONS) RDOWN, BLEVEL

KEY VARIABLES : C - SUBBAND CHARACTERISTIC
KBPS - CODER BIT RATE IN 1000 BITS/SECOND
B - NUMBER OF BITS ALLOCATED
DELTA - MINIMUM SCALE ADJUSTMENT NEEDED TO

INCREASE/DECREASE BIT ALLOCATION OF A
BAND BY 1

N - VALUES COMPUTED FROM BIT ALLOCATION EQUATION
SHIFT - MINIMUM OF THE DELTAS
BITS - NUMBER OF BITS AVAILABLE EVERY SUBBAND

SAMPLING INTERVAL
CZERO - FLAG WHICH INDICATES BANDS WITH C=O
TEMPB - TEMPORARY BIT ALLOCATION FOR NONZERO BANDS
P - NUMBER OF NONZERO BANDS (CZERO=O)

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C XX *X X XX XX XX E XX X X3 XX X 3X X (X XX)*X 3~ O X3 E X~ 3 C

SUBROUTINE DAB(C,KBPS,B)

REAL C(16)
INTEGERs2 KBPS, B(13)

REAL DELTA(13), SUMLOG, N(13), LOGC(13), SHIFT
INTEGERs2 BITS, CZERO(13), TEMPB(13)
INTEGERS2 RDOWN, BLEVEL, P, POSFND, NEWB

C

C INITIALIZATION

C

SUMLOG = 0.0
SHIFT = 0.0
P = 13

DO 170 I = 1,13
170 CZERO(I) = 0

C
C COMPUTE AVAILABLE BITS PER SUBBAND SAMPLING INTERVAL

C

C

C

C

C

C

C

C
C
C

C

C
C

C

C

140

C
BITS = RDOWN(2*(KBPS-2.4375))

C

C DETECT C(I) = 0 TO AVOID LOG(0) ERRORS;
C ALSO COMPUTE LOGC(I) FOR C(I) NOT ZERO;
C P IS THE NUMBER OF SUBBANDS WITH NONZERO POWER
C

J=1
DO 20 I = 1,13
IF (C(I).NE.O) GO TO 10
CZERO(I) = 1

P = P - 1
GO TO 20

10 LOGC(J) = LOG(C(I))/LOG(2.0)
SUMLOG = SUMLOG + LOGC(J)
J = J + 1

20 CONTINUE

C

C IF P IS TOO SMALL TO USE UP BITS, GIVE ALL NONZERO BANDS 5 BITS;
C IF P IS ZERO, NO BITS ARE ALLOCATED
C

IF (P.GE.(BITS/5.)) GO TO 40

IF (P.EQ.O) GO TO 5000
DO 30 J = 1,P

30 TEMPB(J) = 5
GO TO 1000

C

C FOR THE P NONZERO BANDS, CALCULATE N(J)
C

40 DO 50 J = 1,P
50 N(J) = (1./P)N(2*KBPS - 4.875 - SUMLOG) + LOGC(J)

C

C CALCULATE INITIAL BIT ALLOCATION ESTIMATE, TEMPB(J),
C FOR NONZERO BANDS; UPDATE AVAILABLE BITS
C

DO 60 J = 1,P
TEMPB(J) = BLEVEL(N(J))

60 BITS = BITS - TEMPB(J)

C

C BRANCH BASED UPON HOW MANY BITS ARE LEFT
C

IF (BITS.EQ.O) GO TO 1000
IF (BITS.GT.O) GO TO 70

IF (BITS.LT.O) GO TO 120

141

C - EXTRA BITS TO ALLOCATE -
C FOR EACH N(J), FIND THE MINIMUM DISPLACEMENT TO GAIN A BIT
C (EXCEPT WHEN N(J)>=5, IN WHICH CASE DEFINE DELTA(J)=O)
C POSFND DETECTS NONZERO DELTA(J)'S
C

70 POSFND = 0

DO 100 J = 1,P
IF (N(J).GE.5) DELTA(J) = 0
IF (N(J).LT.O) DELTA(J) = -N(J) + 1
IF ((N(J).LT.5).AND.(N(J).GE.O)) DELTA(J) = RDOWN(N(J)+1) - N(J)

C

C UPDATE SHIFT = MINIMUM OF THE DELTA(J)'S
C POSFND IS SET TO 1 WHEN A NONZERO DELTA(J) IS FOUND
C

80 IF (POSFND.EQ.1) GO TO 90
IF (DELTA(J).EQ.O) GO TO 100
SHIFT = DELTA(J)
POSFND = 1
GO TO 100

90 IF (DELTA(J).NE.O) SHIFT = AMIN1(DELTA(J),SHIFT)
100 CONTINUE

C

C IF ALL BANDS HAVE MAXIMUM 5 BITS ALREADY, THEN QUIT ADDING BITS
C

IF (SHIFT.EQ.O) GO TO 1000

C

C INCREASE N(J) BY AMOUNT OF SHIFT AND ADD BITS BEGINNING AT J=1
C

DO 110 J = 1,P
N(J) = N(J) + SHIFT
NEWB = BLEVEL(N(J))
IF (NEWB.GT.TEMPB(J)) BITS = BITS - 1
TEMPB(J) = NEWB
IF (BITS.EQ.O) GO TO 1000

110 CONTINUE
GO TO 70

C - TOO MANY BITS ALLOCATED -
C FOR EACH N(J), FIND THE MINIMUM DISPLACEMENT TO LOSE A BIT
C (EXCEPT WHEN N(J)<1, IN WHICH CASE DEFINE DELTA(J)=O)
C POSFND DETECTS NONZERO DELTA(J)'S
C

120 POSFND = 0

DO 150 J = 1,P
IF (N(J).GE.5) DELTA(J) = N(J) - 5 + .001
IF (N(J).LT.1) DELTA(J) = 0
IF ((N(J).LT.5).AND.(N(J).GE.1))

142

X DELTA(J) = N(J) - RDOWN(N(J)) + .001
C

C UPDATE SHIFT = MINIMUM OF THE DELTA(J)'S
C POSFND IS SET TO 1 WHEN A NONZERO DELTA(J) IS FOUND
C

130 IF (POSFND.EQ.1) GO TO 140
IF (DELTA(J).EQ.O) GO TO 150
SHIFT = DELTA(J)
POSFND = 1
GO TO 150

140 IF (DELTA(J).NE.O) SHIFT = AMIN1(DELTA(J),SHIFT)
150 CONTINUE

C

C IF ALL BANDS HAVE MINIMUM 0 BITS ALREADY, THEN QUIT TAKING BITS
C

IF (SHIFT.EQ.O) GO TO 1000

C

C DECREASE N(J) BY SHIFT AND SUBTRACT BITS STARTING AT HIGH BANDS
C

DO 160 J = 1,P
K = P + 1 -J

N(K) = N(K) - SHIFT
NEWB = BLEVEL(N(K))
IF (NEWB.LT.TEMPB(K)) BITS = BITS + 1
TEMPB(K) = NEWB
IF (BITS.EQ.O) GO TO 1000

160 CONTINUE
GO TO 120

C

C ALLOCATION COMPLETE - WRITE TEMPB(J) TO B(I)
C

1000 J = 1

DO 2000 I = 1,13
IF (CZERO(I).EQ.1) GO TO 1500
B(I) = TEMPB(J)
J =J+ 1
GO TO 2000

1500 B(I) = 0
2000 CONTINUE

5000 RETURN
END

143

C

C DEFINE FUNCTION TO ROUND DOWN A REAL, R, TO MAX INTEGER I<=R
C

INTEGER FUNCTION RDOWNX2 (R)
REAL R
I = INT(R)

C

C NOTE THAT HFIX(FLOATO)) CONVERTS INTEGERs4 TO INTEGERs2
C

IF (R.EQ.I) RDOWN = HFIX(FLOAT(I))
IF (R.NE.I) RDOWN = HFIX(FLOAT(INT(I - .5 + IGN(.5,R))))
RETURN
END

C
C DEFINE FUNCTION TO FIND BIT LEVEL OF INPUT ON A 0 TO 5 SCALE
C

INTEGER FUNCTION BLEVELX2 (R)
REAL R
INTEGERS2 RDOWN
IF (R.GE.5) BLEVEL = 5
IF (R.LE.0) BLEVEL = 0
IF ((R.LT.5).AND.(R.GT.0)) BLEVEL = RDOWN(R)
RETURN
END

144

C O*3OE3E3333E333X3 C
C C

C PROGRAM : PDAB C
C C

C BY : PAUL NING C
C C-
C DATE : 7/24/87 C
C C

C DESCRIPTION : SUBROUTINE TO ADJUST BIT ALLOCATION IN THE PRESENCE C
C OF PREDICTION. A WARNING MESSAGE IS ISSUED IF THIS C
C IS NOT POSSIBLE. C
C C

C CALLED BY : SBC C
C C

C KEY VARIABLES : B - NUMBER OF BITS ALLOCATED C
C PHIGH - HIGHEST BAND WHICH USES A PREDICTOR C
C NEXT - FIRST BAND FROM WHICH BITS CAN BE TAKEN C
C BZERO - FLAG TO INDICATE ZERO BIT ALLOCATION C
C C
C 3EX3E3E3E3E3(*3E 38EEXE3*3X3XX(XEX0E3XX EE0EEEEX033E63 C

SUBROUTINE PDAB(B,PHIGH)

INTEGERN2 B(13), PHIGH
INTEGER NEXT, BZERO

C

C FOR BANDS WITH PREDICTOR, MAKE SURE BIT ALLOCATION IS AT LEAST 2
C THIS IS NOT POSSIBLE WHEN HIGHER BANDS RUN OUT OF BITS
C

DO 10 I = 1,PHIGH
NEXT = I + 1
IF (NEXT.EQ.14) GO TO 10
IF (B(I).GE.2) GO TO 10

C

C ADD BITS TO B(I) UNTIL IT GETS 2, OR BITS RUN OUT AT HIGHER BANDS
C

60 BZERO = 0
DO 20 J = NEXT,13
K = 13 + NEXT - J
IF (B(K).EQ.O) GO TO 50
B(K) = B(K) - 1
B(I) = B(I) + 1
IF B(I).EQ.2) GO TO 10

GO ro 20

50 BZER'O = BZERO + 1
20 CONTINUE

IF (BZERO.EQ.(13-I)) GO TO 30
GO ro 60

10 CONTINUE

GO TO 40

145

C

C ISSUE WARNING MESSAGE
C

30 PRINT 100
100 FORMAT (' WARNING : PREDICTED BAND WITH LESS THAN 2 BITS')

40 RETURN
END

146

C M X X3XX3EX)3OE3E3EX 3 X3(XMXX3E33 OE3 XXX#X3XX XX C
C
C PROGRAM : QUANT
C

C BY : PAUL NING
C

C DATE : 7/24/87
C
C DESCRIPTION : SUBROUTINE TO CONVERT AN INPUT VALUE TO A QUANTIZER
C LEVEL NUMBER. ALSO UPDATES STEP SIZE.
C

C CALLED BY : CODN, CODLMS, CODLS
C

C CALLS (FUNCTION - SEE DAB SUBROUTINE LISTING) RDOWN,
C (SUBROUTINE) LEVELS
C

KEY VARIABLES : DIF - SUBBAND DIFFERENCE SIGNAL
STEP - QUANTIZER STEP SIZE
K - SUBBAND NUMBER
B - NUMBER OF BITS ALLOCATED
QDIF - QUANTIZED DIFFERENCE SIGNAL
QLEVEL - B-BIT QUANTIZER LEVEL
LEVEL - INITIAL 5-BIT QUANTIZER LEVEL
NLEVEL - NEW 5-BIT LEVEL CORRESPONDING TO QLEVEL
M - STEP SIZE MULTIPLIERS
MAX - MAXIMUM STEP SIZE
MIN - MINIMUM STEP SIZE

C

C

C

C

C

C

C

C

C

c
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C C3X3CX F 3(AE (3(3 X3E)X(X X3EXXCXXXXXXXXX C

SUBROUTINE QUANT(K,DIF,B,STEP,QDIF)

REAL DIF(13), STEP(13)
INTEGERs2 K, B(13), QDIF(13)

INTEGERS2 QLEVEL, LEVEL, NLEVEL, RDOWN
REAL M(16), MAX, MIN

DATA M/.87, .88, .90, .93, .96, 1.01, 1.06, 1.12,
X 1.18, 1.24, 1.31, 1.39, 1.46, 1.54, 1.62, 1.70/
DATA MAX/512.0/, MIN/.10/

C

C CHECK FOR ZERO BIT QUANTIZER
C

IF (B(K).EQ.0) GO TO 10

C
C CONVERT DIF(K) TO 5-BIT, -16 TO 16 SCALE
C

IF (DIF(K).NE.0)

I

C

C

C

C

C

C

C

C

C

C

C

C

147

X LEVEL = HFIX(SIGN(RDOWN(ABS(DIF(K))/STEP(K))+1.0,DIF(K)))
IF (DIF(K).EQ.0) LEVEL = 1
IF (LEVEL.GT.16) LEVEL = 16

IF (LEVEL.LT.-16) LEVEL = -16

C

C CONVERT TO APPROPRIATE N-BIT LEVEL
C

CALL LEVELS(B(K),LEVEL,QLEVEL,NLEVEL)
QDIF(K) = QLEVEL

C

C UPDATE STEP SIZE
C

STEP(K) = M(ABS(NLEVEL+0.0))*STEP(K)
IF (STEP(K).GT.MAX) GO TO 20
IF (STEP(K).LT.MIN) GO TO 30
GO TO 10

20 PRINT , K
PRINT 100

100 FORMAT (' MAXIMUM STEP SIZE REACHED')
STEP(K) = MAX
GO TO 10

30 STEP(K) = MIN

10 RETURN

END

148

C XX XXXXXXX3OOX33 3E XXf X XX XOXXXXXXX3X C
C C
C PROGRAM : LEVELS C
C C

C BY : PAUL NING C

C C

C DATE : 7/24/87 C
C C

C DESCRIPTION : SUBROUTINE TO QUANTIZE 5-BIT LEVEL NUMBER TO C
C 4-, 3-, 2-, OR 1-BIT LEVEL NUMBERS. C
C C

C CALLED BY QUANT C
C C
C KEY VARIABLES : NBIT - NUMBER OF BITS C
C LEVEL - INITIAL 5-BIT QUANTIZER LEVEL C
C QLEVEL - NBIT QUANTIZER LEVEL C
C NLEVEL - NEW -BIT LEVEL CORRESPONDING TO QLEVEL C
C QTABLE - MATRIX WITH LEVEL SUBSET DATA C
C C
C 3X3 XXXXFXFXXX3EXXXXXX6XEZf6#yf3OXX3CXX C

SUBROUTINE LEVELS (NBIT,LEVEL,QLEVEL,NLEVEL)

INTEGERS2 NBIT, LEVEL, QLEVEL, NLEVEL, QTABLE(8,4)

DATA QTABLE/2,7X17, 3,9,6X17, 2,6,10,14,417, 2,4,6,8,10,12,14,16/

C

C CHECK FOR TRIVIAL CASE NBIT = 5
C

IF (NBIT.NE.5) GO TO 5
QLEVEL = LEVEL
NLEVEL = LEVEL
GO TO 200

C

C BRANCH ON QTABLE ENTRIES

C

5 IF (ABS(LEVEL+O.0).GT.QTABLE(7,NBIT)) GO TO 10
IF (ABS(LEVEL+O.0).GT.QTABLE(6,NBIT)) GO TO 20
IF (ABS(LEVEL+0.0).GT.QTABLE(5,NBIT)) GO TO 30
IF (ABS(LEVEL+0.0).GT.QTABLE(4,NBIT)) GO TO 40
IF (ABS(LEVEL+O.0).GT.QTABLE(3,NBIT)) GO TO 50

IF (ABS(LEVEL+0.0).GT.QTABLE(2,NBIT)) GO TO 60
IF (ABS(LEVEL+0.0).GT.QTABLE(1,NBIT)) GO TO 70

QLEVEL = HFIX(SIGN(I.0,LEVEL+0.0))
NLEVEL = HFIX(SIGN(QTABLE(1,NBIT)+O.O,LEVEL+0.0))
GO TO 160

10 QLEVEL = HFIX(SIGN(8.0,LEVEL+0.0))
NLEVEL = HFIX(SIGN(QTABLE(8,NBIT)+0.0,LEVEL+0.0))
GO TO 160

149

20 QLEVEL = HFIX(SIGN(7.0,LEVEL+0.0))
NLEVEL = HFIX(SIGN(QTABLE(7,NBIT)+O.O,LEVEL+O0.))
GO TO 160

30 QLEVEL = HFIX(SIGN(6.0,LEVEL+O.O))
NLEVEL = HFIX(SIGN(QTABLE(6,NBIT)+O.O,LEVEL+O.O))
GO TO 160

40 QLEVEL = HFIX(SIGN(5.0,LEVEL+0.0))
NLEVEL = HFIX(SIGN(QTABLE(5,NBIT)+O.O,LEVEL+0.0))
GO TO 160

50 QLEVEL = HFIX(SIGN(4.0,LEVEL+0.0))
NLEVEL = HFIX(SIGN(QTABLE(4,NBIT)+O.O,LEVEL+O0.0))
GO TO 160

60 QLEVEL = HFIX(SIGN(3.0,LEVEL+0.0))
NLEVEL = HFIX(SIGN(QTABLE(3,NBIT)+O.O,LEVEL+0.0))
GO TO 160

70 QLEVEL = HFIX(SIGN(2.0,LEVEL+0.0))
NLEVEL = HFIX(SIGN(QTABLE(2,NBIT)+O.O,LEVEL+0.0))
GO TO 160

C

C CHECK THAT LEVEL ASSIGNMENT IS WITHIN N-BIT RANGE
C

160 IF (ABS(QLEVEL+O.O).LE.2~X(NBIT-1)) GO TO 200
QLEVEL = HFIX(SIGN(2.0*6(NBIT-1),QLEVEL+O.0))
NLEVEL = HFIX(SIGN(QTABLE(2.0x3(NBIT-1),NBIT)+O.O,QLEVEL+O.O))

200 RETURN
END

150

C X X3XXX*3X3X XXXXX XXXXXXEXX*X3dXyXX C

C

C PROGRAM : IQUANT
C

C BY PAUL NING
C

C DATE : 7/24/87
C

DESCRIPTION : SUBROUTINE TO CONVERT A LEVEL NUMBER TO A SIGNAL
AMPLITUDE. ALSO UPDATES STEP SIZE OF INVERSE
QUANTIZER.

C
C CALLED BY CODLMS, CODLS, DECN, DECLMS, DECLS

C

KEY VARIABLES :

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C
C

K - SUBBAND NUMBER
QDIF - QUANTIZED DIFFERENCE SIGNAL
B - NUMBER OF BITS ALLOCATED
ISTEP - STEP SIZE OF INVERSE QUANTIZER
IQDIF - INVERSE QUANTIZED DIFFERENCE SIGNAL
LEVEL - B-BIT LEVEL NUMBER
QTABLE - MATRIX WITH LEVEL SUBSET DATA
M - STEP SIZE MULTIPLIERS
MAX - MAXIMUM STEP SIZE
MIN - MINIMUM STEP SIZE

SUBROUTINE IQUANT(K,QDIF,B,ISTEP,IQDIF)

INTEGERS2 K, QDIF(13), B(13)
REAL ISTEP(13), IQDIF(13)

INTEGERS2 LEVEL, QTABLE(8,4)
REAL M(16), MAX, MIN

DATA M/.87, .88, .90, .93, .96, 1.01, 1.06, 1.12,

X 1.18, 1.24, 1.31, 1.39, 1.46, 1.54, 1.62, 1.70/

DATA MAX/512.0/, MIN/.10/

DATA QTABLE/2,7X17, 3,9,6x17, 2,6,10,14,4x17, 2,4,6,8,10,12,14,16/

C

C CHECK FOR ZERO BIT QUANTIZER
C

IF (B(K).NE.O) GO TO 5
IQDIF(K) = 0
GO TO 30

C

C CONVERT QDIF TO 5-BIT (-16,16) LEVEL
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C YY�LYYYYYYY�YYYYYYYYYYYYYYYYYYYYYYYYYY�L

151

5 IF (B(K).NE.5) GO TO 10

LEVEL = QDIF(K)
GO TO 20

10 LEVEL = HFIX(SIGN(QTABLE(HFIX(ABS(QDIF(K)+O.O)),B(K))+0.0,
X QDIF(K)+0.0))

C

C SCALE LEVEL BY ISTEP SIZE
C

20 IQDIF(K) = (LEVEL - SIGN(0.5,LEVEL+0.0)) d ISTEP(K)

C

C UPDATE ISTEP SIZE
C

ISTEP(K) = M(ABS(LEVEL+0.0)) X ISTEP(K)
IF (ISTEP(K).GT.MAX) ISTEP(K) = MAX
IF (ISTEP(K).LT.MIN) ISTEP(K) = MIN

30 RETURN
END

152

C nnX E3003 E X3OE 6 X X3EMOE3E3OX)E3E3OO#w C

C
C PROGRAM PRDLMS
C

C BY : PAUL NING
C

C DATE : 7/24/87
C

C DESCRIPTION : SUBROUTINE TO COMPUTE SINGLE OUTPUT OF LEAST-MEAN-
C SQUARE TRANSVERSAL PREDICTOR.

C

C CALLED BY s CODLMS, DECLMS

C

KEY VARIABLES : LMSQS - TAPPED DELAY LINE VALUES OF QS
A - LMS PREDICTOR COEFFICIENTS
PWRQS - POWER ESTIMATE OF QS
QS - SUM OF PREDICTOR OUTPUT AND INVERSE

QUANTIZED DIFFERENCE (ERROR) SIGNAL
IQDIF - INVERSE QUANTIZED DIFFERENCE SIGNAL
P - PREDICTOR OUTPUT
K - SUBBAND NUMBER

ORDER - ORDER OF PREDICTION
ALPHA - EXPONENTIAL WEIGHT FOR PWRQS COMPUTATION
BETA - CONSTANT BIAS TERM TO ADD TO PWRQS

GAIN - GAIN OF UPDATE TERM
G - GAIN ADJUSTED TO ORDER OF PREDICTION;

G GAIN FOR ORDER = 10
C

C 3 O 3 E X X 3E)X) O O O E 3 O E X

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

SUBROUTINE PRDLMS(QS,LMSQS,A,PWRQS,K,ORDER,IQDIF,P)

REAL LMSQS(13,30), A(13,30), PWRQS(13)
REAL QS(13), IQDIF(13), P(13)
INTEGERs2 K, ORDER

REAL ALPHA, BETA, GAIN, G

DATA ALPHA/0.720/, BETA/3000./, GAIN/.065/

C

C ADJUST GAIN TO ORDER
C

G = GAIN (10.0/ORDER)

C

C UPDATE POWER ESTIMATE, PWRQS(K)
C

PWRQS(K) = ALPHANPWRQS(K) + (1.0-ALPHA)mQS(K)**2

C

C

C

C

C

C

C

C

C

C

C

C

C

C

153

C

C UPDATE COEFFICIENTS
C

DO 10 I = 1,0RDER
10 A(K,I) = A(K,I) + GIQDIF(K)*LMSQS(K,I)/(PWRQS(K)+BETA)

C

C SHIFT IN QS(K) AND CALCULATE TAPPED DELAY LINE OUTPUT, P(K)
C

P(K) = 0
DO 20 I = 1,ORDER
J = ORDER + 1 - I

IF (J.EQ.1) LMSQS(K,J) = QS(K)
IF (J.NE.1) LMSQS(K,J) = LMSQS(K,J-1)

20 P(K) = P(K) + A(K,J)LMSQS(K,J)

RETURN
END

154

C *o3O3O6(X3E3E f 3f3E60 XX XX XX*XXX XXXXXXXXXXc C
C

C PROGRAM : PRDLS
C

C BY : PAUL NING
C

C DATE : 7/24/87
C
C DESCRIPTION : SUBROUTINE TO COMPUTE SINGLE OUTPUT OF LEAST-SQUARES
C LATTICE PREDICTOR.
C

C CALLED BY : CODLS, DECLS
C
KEY VARIABLES : PCOR - PARTIAL CORRELATION

VARE - VARIANCE OF FORWARD PREDICTION ERROR
VARR - VARIANCE OF BACKWARD PREDICTION ERROR
VARRM1 - ONE SAMPLE DELAY OF VARR
G - LIKELIHOOD VARIABLE
GM1 - ONE SAMPLE DELAY OF G
E - FORWARD PREDICTION ERROR
R - BACKWARD PREDICTION ERROR
RM1 - ONE SAMPLE DELAY OF R
QS - SUM OF PREDICTOR OUTPUT AND INVERSE

QUANTIZED DIFFERENCE (ERROR) SIGNAL
P - PREDICTOR OUTPUT
W - EXPONENTIAL WEIGHT FOR TIME UPDATES
K - SUBBAND NUMBER
ORDER - ORDER OF PREDICTION

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C XX3EX3OX 3O3EOE33 33]33 (XXX3E3X3 E XX~~XXXX~XXXX C

SUBROUTINE PRDLS(QS,PCOR,VARE,VARR,VARRM1,G,GM1,E,R,RM1,K,ORDER,P)

REAL PCOR(13,30), VARE(13,30), VARR(13,30), VARRM1(13.30)
REAL G(13,30), GM1(13,30), E(13,30), R(13,30), RM1(13,30)
REAL QS(13), P(13), W
INTEGERX2 K, ORDER

DATA W/.950/

C

C INITIALIZE STAGE 0, CORRESPONDING TO ARRAY INDEX 1
C

E(K,1) = QS(K)
RM1(K,1) = R(K,1)
R(K,1) = QS(K)
VARE(K,1) = WVARE(K,1) + QS(K)*32
VARRM1(K, 1) = VARR(K,1)
VARR(K, 1) = VARE(K,1)

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

155

C ITERATE THROUGH STAGES I = 1 TO ORDER,
C WHICH CORRESPOND TO ARRAY INDICES 2 TO ORDER+1;
C THE MAXIMUM ORDER IS 29
C

DO 10 I = 1,ORDER

IF (I.NE.1)
X PCOR(K,I+1) = WPCOR(K,I+1) + RMI(K,I)*E(K,I)/(1.O-GM1(K,I-1))
IF (I.EQ.1)
X PCOR(K,I+1) = WPCOR(K,I+1) + RM1(K,I)*E(K,I)
GM1(K,I) = G(K,I)
IF (I.NE.1) G(K,I) = G(K,I-1) + (R(K,I)*Fi2)/VARR(K,I)

IF (I.EQ.1) G(K,I) = (R(K,I){x2)/VARR(K,I)
IF (G(K,I).LT.1) GO TO 30

PRINT 300
300 FORMAT (' LS LIKELIHOOD VARIABLE >= 1, SET TO .9999999')

G(K,I) = .9999999
30 E(K,I+1) = E(K,I) - (PCOR(K,I+1)/VARRMI(K,I))iRM1(K,I)

RM1(K,I+I) = R(K,I+1)
R(K,I+1) = RM1(K,I) - (PCOR(K,I+1)/VARE(K,I))XE(K,I)
VARE(K,I+1) = WVARE(K,I+1) + (E(K,I+1)*X2)/(1-GM1(K,I))
VARRM1(K,I+1) = VARR(K,I+1)

10 VARR(K,I+1) = WVARR(K,I+1) + (R(K,I+1)X32)/(1-G(K,I))

C

C CALCULATE PREDICTOR OUTPUT USING R, NOT RM1, SO WE USE CURRENT INPUT
C (WE WANT TO PREDICT THE NEXT INPUT, NOT THE CURRENT ONE)
C

P(K) = 0

DO 20 I = 1,ORDER
20 P(K) = P(K) + (PCOR(K,I+1)/VARRM1(K,I))R(K,I)

RETURN
END

156

10 REM XOE~X9X300E3(M3(~~X3 33E300fX3(X3X~~XM 0xx
20 REM 3 d
30 REM 3 PROGRAM : FQMFBANK X

40 REM d x
50 REM 3 BY s PAUL NING X
60 REM 3
70 REM) DATE : 7/24/87 3
80 REM 3
90 REM 3 DESCRIPTION : PROGRAM TO GENERATE PARALLEL FILTER BANK 3

100 REM d BANDPASS COEFFICIENTS FROM LOWPASS FILTERS w
110 REM 3 OF CORRESPONDING TREE STRUCTURE. ALSO *

120 REM d COMPUTES THE COMPOSITE FREQUENCY RESPONSE d

130 REM * OF THE PARALLEL QMF. 3i
140 REM d X

150 REM d CALLS : SUBROUTINE TO CONVERT TO BINARY AND GRAY CODES d

160 REM X
170 REM d KEY VARIABLES : M - TAP LENGTHS OF LOWPASS FILTERS *

180 REM C - ARRAY OF COEFFICIENTS FOR FREQUENCY *

190 REM * NORMALIZED LOWPASS AND HIGHPASS FILTERS X
200 REM d STAGES - NUMBER OF STAGES 3
210 REM X N - TAP LENGTHS OF FREQUENCY NORMALIZED E
220 REM * HALF-BAND FILTERS X
230 REM d G - COMPOSITE IMPULSE RESPONSE w
240 REM X B - GRAY CODE ARRAY X
250 REM 3 BTWO - BASE TWO (BINARY) ARRAY X
260 REM d X, Y, Z - ARRAYS FOR HANDLING CONVOLUTIONS d

270 RE4M * (X*Y=Z) *
280 REM 3
290 REM * FORMAT OF COEFFICIENT FILES X E
300 REM 3
310 REM d - THIS FORMAT HANDLES A GENERAL POLE-ZERO COMPLEX X

320 REM X IMPULSE RESPONSE. THE FIRST LINE OF THE FILE IS d

330 REM X THE NUMBER OF ZEROES IN THE FREQUENCY RESPONSE. 6
340 REM * THIS IS FOLLOWED BY THE REAL AND IMAGINARY PARTS, d

350 REM RESPECTIVELY, OF THESE COEFFICIENTS. SIMILARLY,
360 REM * THE NUMBER OF POLES IS GIVEN, FOLLOWED BY THEIR *

370 REM 3 COEFFICIENTS IN COMPLEX FORM.
380 REM X
390 REM X THIS PROGRAM DEALS ONLY WITH REAL FIR FILTERS.
400 REM d IN THE FORMAT JUST DESCRIBED, THE NUMBER OF TAPS
410 REM * IS GIVEN AT THE BEGINNING OF THE FILE, AND THE d

420 REM 3 COEFFICIENTS (EACH FOLLOWED BY A ZERO IMAGINARY X

430 REM PART) ARE LISTED NEXT. THE FILE ENDS WITH A
440 REM * ZERO REPRESENTING THE NUMBER OF POLES.
450 REM
460 REM * *x3(3K*6ddwd((i33333(3((((33 33((((((3(
470 CLS

480 PRINT "*x Parallel QMF Bank Generator 6x666"
490 REM
500 REM x maximum 5 stages, maximum 128 taps per stage
510 REM *
520 DIM F$(5), N(5), C(5,2,128)
530 REM d

540 REM X get coefficient filenames

157

550 REM X

560 INPUT "How many stages in analogous tree structure "; STAGES
570 FOR S = 1 TO STAGES
580 PRINT "Coefficient file for lowpass filter of stage";S;"-<fn>.cof."
590 INPUT " Enter <fn> ";F$ (S)
600 NEXT S
610 REM 3
620 REM W make coefficient arrays and get filter lengths
630 REM
640 FOR S = 1 TO STAGES
650 OPEN F$(S)+".cof" FOR INPUT AS #1
660 OPEN F$(S)+nmir.cof" FOR OUTPUT AS 2
670 INPUT 1t,M(S)
680 PRINT #2,M(S)
690 REM d

700 REM initialize arrays (original and mirror) to all zeroes
710 REM X

720 N(S) = 2(S-1)*(M(S)-1)+1
730 FOR I = 0 TO N(S)-1
740 C(S,O,I) = 0
750 C(S,1,I) = 0
760 NEXT I

770 REM
780 REM read coefficients and write to correct array positions
790 REM
800 FOR J = 0 TO M(S)-1
810 INPUT #1,C(S,0,J*(2^(S-1)))
820 INPUT #1,IMAGJUNK
830 C(S,1,J*(2^(S-1))) = (-1)'J*C(S,0,JX(2-(S-1)))
840 PRINT 2, C(S,1,J*(2^(S-1))), IMAGJUNK
850 NEXT J
860 PRINT 2,0
870 CLOSE 1,#2
880 NEXT S
890 REM *
900 REM X prepare for composite response calculation, g(u)
910 REM *
920 L = 1
930 FOR S = 1 TO STAGES
940 L = L + N(S) - 1
950 NEXT S
960 DIM G(2*L-1)
970 REM X

980 REM *
990 REM *
1000 REM X convolve the stages to get bandpass filters
1010 REM x (only half of the them need explicit convolution,
1020 REM X the other half are mirror images)
1030 REM
1040 REM *
1050 REM *
1060 FOR K = 0 TO 2(STAGES-1)-1
1070 DIM B(STAGES)
1080 DIM BTWO(STAGES)

158

GOSUB 2000
FOR R = STAGES-1 TO 0 STEP -1
PRINT B(R);
NEXT R
PRINT
REM *
REM x loop to convolve one stage at a time, x(j)xy(j)=z(j)
REM x x = latest convolved result
REM E y = current stage response
REM X z = new convolved result
REM N

LENGTH = 1

DIM X(LENGTH)
X(O) = 1
FOR S = 1 TO STAGES
PRINT S
DIM Y(N(S)),Z(LENGTH+N(S)-1)
FOR I = 0 TO N(S)-1
Y(I) = C(S,B(STAGES-S),I)
NEXT I

FOR J = 0 TO LENGTH+N(S)-2
Z(J) = 0
FOR A = 0 TO LENGTH-1
IF J-A < N(S) AND J-A >= 0 THEN Z(J) = Z(J) + X(A)KY(J-A)
NEXT A
NEXT J
ERASE X

REM

REM write z to x in preparation for another convolution
REM

LENGTH = LENGTH+N(S)-1
DIM X(LENGTH)
FOR T = 0 TO LENGTH-1
X(T) - Z(T)
NEXT T
ERASE Y,Z
NEXT S
REM i

REM write bandpass coefficients to files
REM e

NUM$ = STR$(K)
NUMMIR$ = STR$(2STAGES-1-K)
DS = MID$(NUM$,2,2)
DMIR$ = MID$(NUMMIR$,2,2)
Fl$ = "f" + DS
N1$ = F1$ + ".cof"
F2$ = "f" + DMIR$
PRINT
PRINT F1$,F2$
N2$ = F2$ + ".cof"
OPEN N1$ FOR OUTPUT AS t1
OPEN N2$ FOR OUTPUT AS t2
PRINT 1tl, LENGTH
PRINT t2, LENGTH

1090
1100
1110
1120
1130

1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260

1270

1280

1290
1300
1310

1320
1330

1340
1350

1360

1370

1380
1390
1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510
1520

1530

1540
1550
1560

1570
1580

1590
1600

1610
1620

159

1630 FOR T = 0 TO LENGTH-1
1640 PRINT t1, X(T), 0

1650 PRINT #2, (-1)^T*X(T), 0
1660 NEXT T
1670 PRINT #1, 0
1680 PRINT #2, 0
1690 CLOSE t1,t2
1700 REM m

1710 REM X update g(u)
1720 REM *
1730 FOR U = 1 TO 2L-3 STEP 2
1740 SUM = O0

1750 FOR T = 0 TO L-1
1760 IF U-T < L AND U-T >= 0 THEN SUM = SUM + X(T)*X(U-T)
1770 NEXT T
1780 G(U) = G(U) + 2((-1)K)ESUM
1790 NEXT U
1800 REM
1810 REM get ready for next bandpass calculation
1820 REM
1830 ERASE B,X,BTWO
1840 NEXT K
1850 REM
1860 REM write g(u) to file
1870 REM x
1880 OPEN "g.cofn FOR OUTPUT AS 1

1890 PRINT 1, 2L-1
1900 FOR U = 0 TO 2L-2
1910 PRINT #1, G(U), 0
1920 NEXT U
1930 PRINT #1, 0
1940 CLOSE #1

1950 SYSTEM
1960 END
1970 REM 3

1980 REM 3E

1990 REM 3E

2000 REM * subroutine to convert to base two (btwo) and gray code (b)
2010 REM
2020 REM *
2030 REM *
2040 D = K

2050 PAR = O0
2060 FOR R = STAGES-1 TO 0 STEP -1
2070 IF D >= 2R THEN BTWO(R)=1: D=D-2^R ELSE BTWO(R)=O
2080 IF PAR=O THEN B(R)=BTWO(R): PAR B(R) ELSE B(R)=l-BTWO(R):PAR=1-B(R)
2090 NEXT R
2100 RETURN

160

10 REM 3w(33EJE3KoE3E3GIEm0X#0#0E3iX 33EX3OEG
20 REM 3d
30 ,REM x PROGRAM TRUNCATE x
40 REM X x
50 REM X BY : PAUL NING
60 REM X

70 REM x DATE : 7/24/87
80 REM
90 REM X DESCRIPTION PROGRAM TO TRUNCATE IMPULSE RESPONSES OF
100 REM * PARALLEL BANDPASS FILTERS GENERATED BY 3E

110 REM X FQMFBANK. ALSO CALCULATES COEFFICIENTS
120 REM K OF NEW COMPOSITE RESPONSE. *

130 REM *w
140 REM d KEY VARIABLES : K - NUMBER OF BANDPASS FILTERS *

150 REM * N - ORDER OF TRUNCATED FILTERS *
160 REM X L - ORDER OF FILTERS BEFORE TRUNCATION
170 REM
180 REM * FORMAT OF COEFFICIENT FILES
190 REM
200 REM d THIS FORMAT HANDLES A GENERAL POLE-ZERO COMPLEX d

210 REM * IMPULSE REPONSE. THE FIRST LINE OF THE FILE IS d

220 REM * THE NUMBER OF ZEROES IN THE FREQUENCY RESPONSE. d

230 REM d THIS IS FOLLOWED BY THE REAL AND IMAGINARY PARTS, d

240 REM * RESPECTIVELY, OF THESE COEFFICIENTS. SIMILARLY, *

250 REM d THE NUMBER OF POLES IS GIVEN, FOLLOWED BY THEIR *

260 REM * COEFFICIENTS IN COMPLEX FORM.
270 REM *i
280 REM * THIS PROGRAM DEALS ONLY WITH REAL FIR FILTERS. d

290 REM X IN THE FORMAT JUST DESCRIBED, THE NUMBER OF TAPS
300 REM X IS GIVEN AT THE BEGINNING OF THE FILE, AND THE *
310 REM * COEFFICIENTS (EACH FOLLOWED BY A ZERO IMAGINARY d

320 REM * PART) ARE LISTED NEXT. THE FILE ENDS WITH A d

330 REM * ZERO REPRESENTING THE NUMBER OF POLES. x
340 REM * X
350 REM * INPUT BANDPASS FILES FO.COF, F1.COF, ... , F(K-1).COF x
360 REM * X

370 REM)E TRUNCATED BANDPASS FILES TFO.COF, TF1.COF, ... ,TF(K-1).COFN
380 REM * X

390 REM * NEW COMPOSITE RESPONSE FILE : TG.COF X

400 REM X d

410 REM *J* JE*3O~ ~~(*~X3*****X *
420 CLS
430 PRINT "*e* Parallel QMF Truncation Program 3EEO"
440 INPUT "How many bandpass filters are there in the QMF bank ";K
450 INPUT "Truncate the filters to what order ";N
460 REM X
470 REM * read in half of bandpass filters and truncate
480 REM *
490 DIM TG(2*N-1)
500 FOR I = 0 TO K/2-1

510 DIM X(N)
520 OPEN "f"+MID$(STR$(I),2,2)+".cof" FOR INPUT AS #1
530 INPUT t1, L

,540 FOR J = 0 TO L-1

161

550 INPUT 1,C,IMAGJUNK
560 IF J>(L-N)/2-1 AND J<(L+N)/2 THEN X(J-(L-N)/2) = C
570 NEXT J
580 CLOSE l1
590 REM X

600 REM X update tg(u)
610 REM *
620 FOR U = 1 TO 2N-3 STEP 2

630 SUM = 0
640 FOR T = 0 TO N-1

650 IF U-T < N AND U-T >= 0 THEN SUM = SUM + X(T)*X(U-T)
660 NEXT T
670 TG(U) = TG(U) + 2((-1)^I)*SUM
680 NEXT U
690 REM
700 REM write truncated coefficients to files
710 REM
720 OPEN "tf"+MID$(STRS(I),2,2)+".cofn FOR OUTPUT AS 1
730 OPEN "tf"+MID$(STR$(K-I-1),2,2)+".cof" FOR OUTPUT AS 12
740 PRINT 1, N

750 PRINT 2, N
760 FOR J = 0 TO N-1

770 PRINT 1, X(J), 0
780 PRINT 2, (-1)^J*X(J), 0
790 NEXT J

800 PRINT #1, 0
810 PRINT #2, 0
820 CLOSE 1, #2
830 REM X

840 REM get ready for next bandpass calculations
850 REM
860 ERASE X

870 NEXT I

880 REM
890 REM write truncated tg(u) to file
900 REM
910 OPEN "tg.cof" FOR OUTPUT AS #1
920 PRINT #1, 2N-1
930 FOR U = 0 TO 2N-2
940 PRINT 1, TG(U), 0
950 NEXT U
960 PRINT t1, 0
970 CLOSE 1

980 SYSTEM
990 END

162

C 33X3EX3*X3 O3EEE((EXX33E(X 3EX3a daf 3(X X X3E3fE303E3fX360(f C
C

C PROGRAM : SNR

C

C BY PAUL NING
C

C DATE : 7/24/87
C

C DESCRIPTION :
C
C

C

C CALLS : IN
C

C KEY VARIABLES :
C

C

C

C

C

C

PROGRAM TO COMPUTE SIGNAL-TO-NOISE RATIO FROM TWO

FILES, ASSUMING THE FIRST IS THE PURE SBGNAL AND
THE SECOND IS THE SIGNAL PLUS NOISE.

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

DELAY - DELAY BETWEEN ORIGINAL AND PROCESSED FILES
S - BUFFER FOR FIRST FILE (SIGNAL)
PS1 - BUFFER 1l FOR SECOND FILE (PROCESSED SIGNAL)
PS2 - BUFFER 2 FOR SECOND FILE
PWRS - SIGNAL POWER
PWRN - NOISE POWER
SNR - SIGNAL-TO-NOISE RATIO

C C

C *X3E3X X XX((X(3E*X3X XE3*XXIO3OEEXXE~f~ C

INTEGER*2 DELAY, S(128), PS1(128), PS2(128)
REALX8 PWRS, PWRN, SNR
REAL R
DATA PWRS/O.O/, PWRN/0.0/

C

C PROMPT FOR DELAY VALUE
C

PRINT 100
100 FORMAT (' DELAY (< 128)')

READ (5,3) DELAY

C

C READ INITIAL BLOCK FROM SECOND FILE (FILE NUMBER = 9)
C

CALL IN(9,PS1,ISTAT)
IF (ISTAT.EQ.1) GO TO 300

C

C LOOP TO READ BLOCKS FROM FIRST FILE (FILE NUMBER = 8) AND SECOND FILE
C

10 CALL IN(8,S,ISTAT)
IF (ISTAT.EQ.1) GO TO 300
CALL IN(9,PS2,ISTAT)
IF (ISTAT.EQ.1) GO TO 300

C

163

C PROCESS 128 SAMPLES

C

DO 50 I = 1,128
PWRS = PWRS + S(I)*x2
J = DELAY + I
IF (J.GT.128) GO TO 20
PWRN = PWRN + (S(I)-PS1(J))N*2
GO TO 50

20 PWRN = PWRN + (S(I)-PS2(J-128))mX2
50 CONTINUE

C

C PUT ALL PS2 DATA INTO PSI SO PS2 CAN BE USED AGAIN
C

DO 30 I = 1,128
30 PSI1(I) = PS2(I)

GO TO 10

C

C COMPUTE SNR
C

300 IF ((PWRS.EQ.0).OR.(PWRN.EQ.0)) GO TO 40
R = PWRS/PWRN
SNR = 10LOG10(R)
PRINT , SNR
GO TO 60

C

C PRINT MESSAGE IF SIGNAL OR NOISE POWER IS ZERO
C

40 PRINT 500
500 FORMAT(T SNR OUT OF BOUNDS')

60 STOP
END

164

C X330E303(333X3E3E30EC~33(3(3(X 6 3(O3XXXXXd dXX6XXX C

C

C PROGRAM : SSNR
C

C BY : PAUL NING
C

C DATE : 7/24/87
C

DESCRIPTION PROGRAM TO COMPUTE SEGMENTAL SIGNAL-TO-NOISE RATIO
FROM TWO FILES, ASSUMING THE FIRST IS THE PURE SIGNAL
AND THE SECOND IS THE SIGNAL PLUS NOISE. SEGMENTS
ARE 16 MS LONG (128 SAMPLES).

C CALLS : IN
C
KEY VARIABLES = DELAY - DELAY BETWEEN ORIGINAL AND PROCESSED FILES

S - BUFFER FOR FIRST FILE (SIGNAL)
PSI - BUFFER #1 FOR SECOND FILE (PROCESSED SIGNAL)
PS2 - BUFFER 2 FOR SECOND FILE
PWRS - SIGNAL POWER (RECOMPUTED EACH SEGMENT)
PWRN - NOISE POWER (RECOMPUTED EACH SEGMENT)
SSNR - SEGMENTAL SIGNAL-TO-NOISE RATIO

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

INTEGERS2 DELAY, S(128), PS1(128), PS2(128)
REALM8 PWRS, PWRN, SSNR
REAL R, T
DATA PWRS/O.O/, PWRN/O.0/, SSNR/O.0/, T/O.O/

C

C PROMPT FOR DELAY VALUE
C

PRINT 100
100 FORMAT (I DELAY (< 128)')

READ (5,*) DELAY

C

C READ INITIAL BLOCK FROM SECOND FILE (FILE NUMBER = 9)
C

CALL IN(9,PSJ,ISTAT)
IF (ISTAT.EQ.1) GO TO 300

C

C LOOP TO READ BLOCKS FROM FIRST FILE (FILE NUMBER = 8) AND SECOND FILE
C

10 CALL IN(8,S,ISTAT)
IF (ISTAT.EQ.1) GO TO 300
CALL IN(9,PS2,ISTAT)
IF (ISTAT.EQ.1) GO TO 300

C

C

C

C

C

C

C

C

C

C

C

C

C
C YYYYWYWYWW#HYYYYYYYYYYYYYWYY�YYYYYYWWWWW

165

C

C PROCESS 128 SAMPLES
C

DO 50 I = 1,128
PWRS = PWRS + S(I)X2
J = DELAY + I
IF (J.GT.128) GO TO 20
PWRN = PWRN + (S(I)-PS1(J))**2
GO TO 50

20 PWRN = PWRN + (S(I)-PS2(J-128))~*2
50 CONTINUE

C

C UPDATE SSNR AND RESET PWRS, PWRN
C

IF ((PWRS.EQ.0).OR.(PWRN.EQ.0)) GO TO 40
R = PWRS/PWRN
SSNR = (T/(T+1))*SSNR + (1/(T+l))*1OLOGO1(R)
PWRS = 0
PWRN = 0

C

C PUT ALL PS2 DATA INTO PS1 SO PS2 CAN BE USED AGAIN
C

DO 30 I = 1,128
30 PS1(I) = PS2(I)

T=T+ 1

GO TO 10

C

C PRINT SSNR RESULT
C

300 PRINT , SSNR
GO TO 60

C

C PRINT MESSAGE IF SIGNAL OR NOISE POWER IS ZERO
C

40 PRINT 500
500 FORMAT(' SSNR OUT OF BOUNDS')

60 STOP
END

166

C 3E33E*3(XX* XX XXX XXX XX 3XXXX C
C C

C PROGRAM : IN C
C C

C BY : PAUL NING C
C C

C DATE : 7/24/87 C
C C

C DESCRIPTION : SUBROUTINE TO READ IN BLOCKS OF 128 SAMPLES. C
C IDENTICAL TO INBLK EXCEPT FOR THE FLEXIBILITY OF C
C SPECIFYING THE INPUT FILE NUMBER. C
C C

C C

C CALLED BY : SNR, SSNR C
C C

C KEY VARIABLES : INBUF - INPUT BUFFER C
C ISTAT - I/O STATUS C

C N - INPUT FILE NUMBER C
C C
C XXXX(~(~ ~ ~ ~N~ ~ X ~ ~ X~XXXXX 3E X C

SUBROUTINE IN(N, INBUF, ISTAT)

INTEGERX2 INBUF(128)

READ (N,100,END=200,ERR=200) (INBUF(I),I=1,128)
ISTAT = 0
RETURN

100 FORMAT(128(Z4))
200 ISTAT = 1

RETURN
END

167

APPENDIX D - TEST DATA

This appendix contains some simulation data associated with the
tests discussed in Chapter 3.

D.1 BIT ALLOCATION

Tables D-1 to D-4 show subband characteristic ranges and average
bit allocations for each of the four test sentences at the two bit
rates, 16 kbps and 24 kbps.

DARCI

Band, i C(i)min C(i)avg C(i)max Bav(no pred.)
16 vbps 24 kbps

1

2
3
4
5
6
7
8
9

10
11
12
13

.7

1.5

1.0
.5

1.0
1.0
.8
.7

.6

1.3
.6

.5

.6

60.4
195.6
245.8
314.7
197.4
177.6
190.5
164.0
118.3
100.1
91.4
84.5
60.0

284.0
1141.0
2094.6
3493.4
2016.9
2259.8
1580.3

1336.0

921.6
957.1
793.2
734.5
363.0

1.6

2.8
2.7
2.4
2.4
2.3
2.3
2.3
1.8
1.8

1.6
1.6

1.3

2.8
3.9
4.0
3.7
3.7
3.5
3.5
3.5
3.2
3.1

2.8
2.8
2.5

Bay (with pred.)
16 ~bps 24 kbps

2.3
2.9
2.8
2.6
2.4
2.3
2.3
2.3
1.8
1.8
1.5
1.3

.7

3.0

3.9
4.0
3.7
3.7

3.5

3.5

3.5

3.2
3.1

2.8
2.8

2.3

Subband Characteristics and Bit Allocation (DARCI)Table D-1.

168

BETH

Band, i C(i)mi n C(i)avg C(i)max Bavg (no pred.)
16 bps 24 kbps

1

2

3

4

5
6

7

8

9
10
11
12

13

1.7
1.2

1.0
.5
.7
.3
.4
.6

.5
.9
.4

.4

.4

32.6
67.3
65.3
80.4
72.4
54.0

31.5
16.6

9.9

7.9

7.5

8.2
10.0

165.0
320.5
318.4
500.7
711.5
542.2
463.6
192.7
70.0
72.8
56.9
43.0
80.0

2.8
3.4
3.2
2.7
2.6
2.2
2.0
1.7

1.4

1.4

1.2

1.1
1.2

4.0
4.4

4.2
3.7
3.7
3.5

3.4

3.1

2.7
2.7
2.4

2.5

2.6

Bav (with pred.)
16 ps 24 kbps

3.1

3.4
3.2
2.9
2.6
2.2
2.0
1.7

1.4

1.4

1.2

1.0
.9

4.0
4.4

4.2

3.7
3.7
3.5

3.4
3.1

2.7
2.7

2.4
2.5

2.6

Table D-2. Subband Characteristics and Bit Allocation (BETH)

GLENN

Band, i C(i)min C(i)avg C(i)max Bavg(no pred.)
16 ps 24 kbps

1

2
3
4
5

6

7
8

9
10
11
12

13

.5

1.7

1.0
.6

.7

.5

.5

.4

.6

1.2

.6

.6

.5

35.1
172.0

140.9

91.0
73.7
86.2
75.1

54.0
49.8
47.6
58.6
46.2
33.9

137.2
785.1

791.8
562.8
659.7
881.2
945.7
794.5
596.4
529.3
758.4
506.6
580.5

2.2

3.5

3.1

2.4

2.2

2.2
2.0

1.5
1.6

1.9
1.7

1.6

1.3

3.4
4.5
4.1
3.6
3.4
3.5
3.2
2.9
2.9
3.2

2.9
2.8
2.5

Ba (with pred.)
16 gbps 24 kbps

2.6

3.6
3.1

2.6
2.2

2.2
2.0

1.5

1.6

1.9
1.6

1.3

.8

3.5
4.5
4.1

3.6
3.4
3.5
3.2
2.9
2.9
3.2
2.9
2.8
2.4

Subband Characteristics and Bit Allocation (GLENN)Table D-3.

169

MIKE

Band, i C(i)min C(i)avg C(i)max Bav (no pred.)
16 bps 24 kbps

1

2

3
4
5
6

7

8

9
10
11
12
13

1.7
2.2
1.1

.4

.9
1.0

.7

.8

.6

1.1
.6
.8
.6

80.0
484.8
276.9
189.8
217.7
154.5

112.5
101.9

111.5

113.4
85.9
67.0
66.1

381.5
2789.5
2500.4
2464.6
4040.1
2246.3
1591.8
1938.1

1928.4
1253.5
955.3
401.1
594.8

2.0
3.6
2.7
2.3
2.3
2.1
1.9
1.8

1.7

2.1
1.7
1.5
1.3

3.3
4.4
3.9
3.5
3.5
3.4

3.2
3.1

3.0

3.3
3.0
2.8
2.6

Bay (with pred.)
16 ~bps 24 kbps

2.5
3.6
2.8
2.6
2.3
2.1
1.9
1.8

1.7

2.1
1.7

1.2
.7

3.4
4.4
3.9
3.5
3.5
3.4
3.2
3.1
3.0

3.3
3.0
2.8
2.5

Table D-4. Subband Characteristics and Bit Allocation (MIKE)

It can be seen that the four sentences are of somewhat different
volumes. DARCI and MIKE are louder than BETH and GLENN. By presenting
this variety, the robustness of the test set is enhanced.

D.2 FRAME-TO-FRAME PREDICTOR PERFORMANCE

As an indication of how well the LMS transversal and LS lattice
track their inputs, RMS values are calculated for the subband signals
and prediction errors over successive frames of 32 subband samples.
Graphs of these values for the four bands of the four test sentences are
shown below. Combined plots of all four subbands for each sentence are
given in Chapter 3.

170

PREDICTION ERROR
DARCI BAND1

0 5 10 15 20 25 30

FRAMES (32 subbond samples per frame)
+ Ims error O predictor input

PREDICTION ERROR
DARCI BAND2

0 5 10 15 20 25 30

FRAMES (32 subband samples per frame)
+ Ims error O predictor input

Frame-to-Frame Prediction Error : DARCI

ZUU

190
180

170
160

150
140

130

120
110

u 100

90
80
70
60
50
40
30
20
10
0

0 Is error

600

500

400

300

200

100

0

0 Is error

Figure D-1.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 Is e

1.6

1.5

1.4

1.3

1.2

1.1

171

PREDICTION ERROR
DARCI BAND3

0 5 10 15 20 25 30

FRAMES (32 subband srmples per frame)
rror + Ims error 0 predictor input

PREDICTION ERROR
DARCI BAND4

0 5 10 15 20 25 30

FRAMES (32 subband samples per frame)
0 is error + Ims error 0 predictor input

Figure D-1. Frame-to-Frame Prediction Error DARCI (continued)

C

o
0a
o

i-

-o
Ino

o

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

3

172

PREDICTION ERROR
BETH B/ND1

5 10 15 20 25 30 35 40 45

FRAMES (32 subbond samples per frame)
+ Ims error 0 predictor input

PREDICTION ERROR
BETH BAND2

5 10 15 20 25 30 35 40 45

FRAMES (32 subband samples per frame)
+ Ims error 0 predictor input

Frame-to-Frame Prediction Error : BETH

1UU

90

80

70

60

0E 50

40

30

20

10

0
0

O Is error

zuu

190
180
170
160
150
140
130
120
110

2 100
90
80
70
60
50
40
30
20
10

0

0

0 Is error

Figure D-2.

173

PREDICTION ERROR'
BETH BAND3

5 10 15 20 25 30 35 40 45

FRAMES (32 subbond samples per frame)
-+ Ims error 0 predictor input

PREDICTION ERROR
BETH BAND4

5 10 15 20 25 30 35 40 45

FRAMES (32 subbond samples per frame)
- Ims error 0 predictor input

Figure D-2. Frame-to-Frame Prediction Error : BETH (continued)

180
170

160
150

140
130
120
110

100
M 90

80
70

60

50
40
30

20
10

0

0

O Is error

260

240

220

200

180

160

140

120

100

80

60

40

20

0
0

0 Is error

HA

174

PREDICTION ERROR
GLENN BAND1

0 5 10 15 20 25 30 35 40

FF
+

RAMES (32 subband samples per frame)
Ims error o predictor input

PREDICTION ERROR
GLENN BAND2

5 10 15 20 25 30 35 40

FRAMES (32 subbond samples per frame)
+ Ims error 0 predictor input

Figure D-3. Frame-to-Frame Prediction Error : GLENN

90

80

70

60

ua
2
wr

50

40

30

20

10

0

0 Is error

340

320

300

280

260

240

220

200

, e180

a: 160

140

120

100

80

60

40

20

0

0

0 Is error

_-

175

PREDICTION ERROR
GLENN BAND3

5 10 15 20 25 30 35 40

FRAMES (32 subbond somples per frame)
+ Ims error 0 predictor input

PREDICTION ERROR
GLENN BAND4

10 15 20 25 30 35 40

FRAMES (32 subband samples per frame)
+ Ims error 0 predictor input

Figure D-3. Frame-to-Frame Prediction Error : GLENN (continued)

400

350

300

250

M 200

150

100

50

0
0

O Is error

280

260

240

220

200

180

160

:E 140

120

100

80

60

40

20

0

0

O Is error

176

PREDICTION ERROR
MIKE BAND1

5 10 15 20 25 30 35 40 45 50

FRAMES (32 subband samples per frame)
+ Ims error C, predictor input

PREDICTION ERROR
MIKE BAND2

5 10 15 20 25 30 35 40 45 5'

FRAMES (32 subband samples per frame)
- Ims error O predictor input

Figure D-4. Frame-to-Frame Prediction Error MIKE

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0
0

O Is error

1.4

1.3

1.2

1.1

1

0.9

c 0.8
vC

zi A 0.7

. 0.6

0.5

0.4

0.3

0.2

0.1

0
I

0 Is error

177

PREDICTION ERROR
MIKE BAND3

10 15 20 25 30 35 40 45 50

FRAMES (32 subbaond samples per frome)
+ ims error o predictor input

PREDICTION ERROR
MIKE BAND4

5 10 15 20 25 30 35 40 45 50

FRAMES (32 subbaond samples per frame)
Ims error 0 predictor input

Figure D-4. Frame-to-Frame Prediction Error MIKE (continued)

1.2

1.1

1

O.9

0.8

0.7
Co

e, 0.5

! 0.5

0.4

0.3

0.2

0.1

o
0

0 Is error

. i

1

0.9

0.8

0.7

0.6
i o

0 0.5

0.4

0.3

G.2

0.1

C;

0

O Is error

178

D.3 SNR AND SSNR PERFORMANCES

The following tables list objective measures of voice quality for
the four sentences as processed by different versions of the sub-band
coder. This data is graphed in Figs. 3-4 to 3-7.

16 kbps
Predictor Order

none

LMS

LS

SNR(dB) SSNR(dB) SNR(dB) SSNR(dB)

0 7.94

1 7.73

6 8.80
10 8.81

15 6.43

1 8.15

6 8.58
10 8.60

15 8.27

Table D-5. SNR and SSNR Performances (DARCI)

16 kbps
Predictor

24 kbps
Order SNR(dB) SSNR(dB) SNR(dB) SSNR(dB)

0 11.81

1 11.39

6 13.25
10 13.06
15 12.70

1 11.89

6 12.96
10 13.09

15 13.00

8.36

8.27
8.75
8.74
8.41

8.46
8.56
8.29
8.01

16.68 12.64

16.71

17.07

16.85
16.62

16.77

17.19
17.04
17.06

12.74
13.02
12.97
12.79

12.80
12.99
12.76
12.70

SNR and SSNR Performances (BETH)

24 kbps

4.55

4.35
4.92
4.77
1.08

4.50
3.95
3.62
2.94

14.34

14.00
14.34
14.51
14.13

14.46

14.76

14.43

14.56

9.63

9.44
9.82
9.61

7.46

9.48
9.17
8.62
8.26

none

LMS

LS

Table D-6.

Predictor Order

0 8.39

1 7.82

6 8.39

10 8.47

15 8.29

1 8.24

6 8.02

10 8.08
15 6.96

Table D-7.

7.60

7.31

7.81
7.84

6.83

7.55
7.50

7.15
6.43

12.70 12.01

12.53
12.75
12.84
12.54

12.57
12.55
12.46
12.46

11.77
12.15
12.26
11.56

11.95
11.92
11.66
11.72

SNR and SSNR Performances (GLENN)

16 kbps
Predictor Order

24 kbps
SNR(dB) SSNR(dB) SNR(dB) SSNR(dB)

0 8.60

1

6
10
15

1

6
10
15

8.38
8.66
8.43
8.13

8.76
8.74
8.73
8.40

6.87

6.60
6.84
6.59
5.63

6.78
6.66
6.31

6.09

12.43 11.01

12.69
12.63

12.40
8.36

12.89
12.97
12.70
12.41

10.95
11.19
11.02
8.50

11.08
10.91
10.72
10.55

SNR and SSNR Performances (MIKE)

179

16 kbps
SNR(dB) SSNR(dB)

24 kbps
SNR(dB)

none

LMS

LS

SSNR(dB)

none

LMS

LS

Table D-8.

