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Abstract

Polarization Mode Dispersion (PMD) is considered to be one of the most serious
obstacles in the high speed optical telecommunication systems. This thesis focuses
on a deterministic approach to both compensation and emulation of PMD. Most
PMD compensation schemes in the literature rely on feedback loops to search for the
optimum control parameters in the compensator. These schemes often suffer from
slow response time and are limited to compensating the low orders of PMD. Adding
control parameters to enable higher-order PMD compensation further increases the
complexity of the feedback algorithm and its response time. As PMD can vary as
fast as on a millisecond time scale, a potential method to alleviate this problem is to
employ a deterministic approach to PMD compensation where the PMD parameters
are first diagnosed and the compensator then set accordingly.

One of the most challenging problems to this deterministic approach is the real-
time monitoring of the PMD information. We propose an improved version of the
PMD estimation technique using polarization scrambling and optical filtering. Once
the PMD parameters are characterized, for first order PMD compensation, we present
a novel module that can produce variable Differential Group Delay (DGD) without
any second order PMD. We also discuss a feed-forward PMD compensator for first
and second order PMD compensation. To allow for hybrid feed-forward and feedback
PMD compensation scheme, we propose to decouple the first and second order PMD
compensation by using a module that produces variable second order PMD without
any first order PMD. To extend the compensation to all orders of PMD, instead of
concatenating birefringent segments, we look into a compensator that is based on
four stages of flexible frequency-dependent polarization rotations. These stages can
be implemented using polarization beam splitting in combination with spatial light
modulators or all-pass filters. For transmission systems where Polarization Dependent
Loss (PDL) is an issue, we present a deterministic broadband PDL compensation.

Another important area of research in PMD is its emulation. Traditional PMD
emulators are built by cascading a large number of birefringent elements via polariza-
tion scramblers. There are two issues with these emulators. Firstly, they are costly
and bulky due mainly to the large number of polarization scramblers involved. We
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present a combinatorial approach to build polarization scramblers which significantly
reduce the number of phase-plates required. Secondly, it is difficult to use such em-
ulators to determine the system’s outage probability since we need to explore an
extremely large number of possible configurations to obtain a reliable estimate of the
outage probability. A deterministic approach to PMD emulation is therefore a better
option. The ability to “dial-in” a desired PMD state to an emulator allows one to
quickly examine a PMD compensator by investigating only PMD states that are of
interest. In this thesis, we present two deterministically controlled PMD emulators.
One of them has the dial-in feature for arbitrary set of first and second order PMD
while the other can accept arbitrary spectrum of PMD vectors.

Thesis Supervisor: Erich P. Ippen
Title: Elihu Thomson Professor of Electrical Engineering, Professor of Physics
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Chapter 1

Outline of Thesis

Polarization mode dispersion (PMD) is one of the most challenging problems when the

bit rate of a telecommunication channel approaches 10 Gbit/s and beyond. It broad-

ens and distorts the signal propagating through the fiber. This leads to inter-symbol

interference which causes detection errors. PMD has its origin in optical birefrin-

gence. Chapter 2 describes the various intrinsic and extrinsic perturbations on the

fibers that create the optical fiber birefringence. It also reviews the fundamental

concepts and basic theory of PMD using the Jones and Stokes space representation,

and shows the elegant use of Pauli spin matrices to connect the two spaces. Extrin-

sic perturbations, such as environment temperature and mechanical vibration, cause

these induced birefringences to vary stochastically in time. Due to this statistical

nature, PMD compensators (or emulators) have to be adjustable and adaptive. This

makes PMD particularly difficult to manage. Thus, we also discuss in Chapter 2 the

statistics of PMD, and gives a brief literature survey of the various technique used to

mitigate and/or compensate PMD.

Most current PMD compensation schemes rely on feedback loops to search for the

optimum control parameters in the compensator. The feedback configuration often

suffers from slow response time since it requires dithering of the signal to find an

optimal point. Most feedback compensators are therefore limited to using a small

number of control parameters (∼ 2-3 degrees of freedom) for mainly first-order PMD

compensation. However, as the bit rate of the channel increases, a compensator that
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cancels first order PMD is no longer sufficient since higher order PMD dominates

the signal’s degradation. Adding control parameters to enable higher-order PMD

compensation increases the complexity of the feedback algorithm and also lower its

response time. As PMD can vary as fast as on a millisecond time scale, there are

difficult tracking problems associated with too many search parameters and too little

feedback information. One potential method to alleviate this tracking problem is to

employ a deterministic approach to PMD compensation. A deterministic approach to

PMD compensation means that the PMD parameters have to be first characterized,

and then the compensator is set accordingly to compensate for the fiber PMD [2, 3].

This scheme is also known as feed-forward in contrast to the feedback scheme.

One of the most challenging problems in feed-forward PMD compensation schemes

lies in the real-time monitoring of the required information. In order to make this

monitoring non-intrusive to the operation of the telecommunication link, we utilize

the spectrum of the telecommunication signal. In Chapter 3, we present an in-line

monitoring of the output PMD vector that is based solely on the measurements carried

out at the output end of the fiber [4, 5]. One of the main advantages of this monitoring

technique is that no knowledge of the input polarization is required. This facilitates

the use of polarization scrambling at the input end which can substantially improve

the accuracy of the monitoring. The input polarization scrambling also helps to avoid

the case where the fiber has a large amount of PMD but the signal’s polarization is

aligned with one of the input Principal State of Polarizations (PSPs) so that no PMD

information can be deduced. After knowing the output PMD of the transmission

fiber, we need to operate the compensator appropriately in order to exercise the

PMD compensation. There are various versions of PMD compensation. One of them

relies on the principle of aligning the input state of polarization (SOP) with the

composite sum of the transmission fiber PMD and the local PMD in the compensator

transformed to the input plane. This version of compensation is not attractive in our

deterministic approach, especially if polarization scrambling is used in the real-time

PMD monitoring. This is because the compensator’s local PMD has to be adjusted at

the rate of the scrambling in order to maintain constant alignment of the composite
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PMD vector with the input SOP. And the rate of polarization scrambling used is

often a few times faster than the drift rate of the fiber PMD. The preferred version

of PMD compensation is the exact cancellation of the fiber PMD. In this case, the

composite PMD vector of the transmission fiber and the compensator is zero. And

the compensator only needs to be adjusted at the drift rate of the fiber PMD. In this

thesis, we will only concentrate on this exact cancellation of the fiber PMD.

A typical first order PMD compensator consists of a polarization controller with a

birefringence segment that has a tunable differential group delay (DGD). The common

approach to generating a variable DGD is to separate the two orthogonal polariza-

tion components using a polarization beam splitter and to introduce a path difference

between them. The two polarization components are then recombined using a polar-

ization beam combiner. This approach requires mechanical movements, and tends to

suffer from slow speed (sub-second), large output polarization fluctuation and poor

control stability. Alternatively, one can generate a variable DGD by concatenating

two fixed DGD segments via a polarization controller. However, this results in a sec-

ond order PMD vector perpendicular to the resultant 1st order PMD vector, which

causes rotation of the principal state of polarization as one moves away from the

center wavelength. In Chapter 4, we present a symmetrical way of concatenating 4

identical fixed DGD segments so that the resultant DGD is variable while no second

order PMD is produced [6, 7]. In addition, the third order PMD produced is only

half the value of the one produced in the concatenation of two fixed segments with

the same DGD tuning range.

As the channel’s bit rate increases, a compensator that cancels first order PMD

is inadequate. In Chapter 5, we look into a compensator that is capable of full

compensation for both 1st and 2nd order PMD [8]. This compensator consists of three

first order PMD segments, one of which is adjustable, concatenated via polarization

controllers. As this compensator works in a feed-forward manner, the 1st and 2nd order

PMD vectors need to be characterized before the compensator can act. However,

from Chapter 3, one can see that the 2nd order PMD may not be characterized as

accurately as the 1st order PMD. Thus, instead of trying to compensate both orders
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simultaneously in a feed-forward scheme, another viable option is to have a hybrid

feed-forward/feedback scheme, where the 1st order PMD compensation is carried

out in a feed-forward manner and feedback compensation is used for the second

order PMD. To decouple these compensation schemes, we also propose in Chapter

5 a module that produces a variable 2nd order PMD without generating any 1st

order PMD [9, 1]. This allows the second order PMD compensator to search for

the optimum without affecting the first order PMD compensation which is already

accomplished in a feed-forward manner.

For broadband PMD compensation, all orders of PMD need to be considered.

In Chapter 6, we propose the architecture of a broadband PMD compensator in a

feed-forward compensation scheme [10]. In this compensator, we avoid expressing

the PMD as a Taylor expansion about the center frequency, ωo, since this introduces

complicated higher-order PMD terms such as d~τ
dω

, d2~τ
dω2 etc. Instead we simply treat

the whole PMD spectrum as first order PMD vectors that vary from frequency to

frequency. For this reason, we choose to call the proposed scheme “All-Frequency”,

instead of “All-Order”, PMD compensator. It is comprised of three stages of flexible

frequency dependent polarization rotation. In Stokes space, the net effect of the

first two stages is equivalent to a frequency dependent polarization rotation that

aligns all PMD vectors into a common direction. The third stage compensates the

frequency dependent variable DGD. One practical implementation of this broadband

PMD compensator is based on Optical-integrated All-Pass Filters (APFs). APFs

are promising due to their compactness and economy of production. For broadband

applications, the number of APFs involved can be as large as 50. To find the optimum

of the large number of parameters involved, we need a fast and efficient algorithm

based on recursive equations. We also present in Chapter 6 a fast recursive algorithm

using complex cepstrums [11].

Another important area of research in PMD is its emulation. This area is in-

teresting because the evaluation of PMD mitigation techniques requires a method

of emulating PMD of installed fiber links, especially since “legacy” fiber with high

PMD installed in the 1980’s is no longer commercially available. Traditional PMD
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emulators are built by cascading a large number of birefringent elements via polar-

ization scramblers. There are two main issues with these emulators. Firstly, it is

bulky, costly and complicated to build and control such emulators due to the large

number of segments and scramblers involved. In Chapter 7, we present a novel PMD

emulator that adopts a combinatorial approach to build polarization scramblers be-

tween the birefringent elements [12]. This approach can reduce the required number

of phase-plates and their corresponding controls significantly, thus reducing the cost,

size and complexity. It exploits the fact that rotation matrices are non-commutative

which gives many different ways of building polarization controllers out of just a few

phase-plates. Although these polarization controllers are correlated, we show, nu-

merically and experimentally, that there is sufficient polarization scrambling between

segments to achieve the important key properties of a PMD emulator. Secondly,

these emulators often tend to lack in repeatability, unable to adjust for varying PMD

statistics and lacking a “dial-in” feature. The temporal variation of the optical fiber’s

birefringence produces penalties that change randomly with time. In system design,

a maximum penalty (∼1-3 dB) is usually assigned to PMD, and one would demand

that the probability of the PMD induced penalty exceeding this allowed value (also

known as the outage probability) to be very small, typically around 10−6. Because of

this stringent requirement, it is difficult to use an emulator that uses random polariza-

tion scrambling between segments to determine the system’s outage probability since

an extremely large number of possible configurations need to be explored in order to

obtain a reliable estimate. A deterministic approach to PMD emulation is therefore

a better option. The ability to “dial-in” a desired PMD state to an emulator allows

one to quickly examine a PMD compensator by investigating only PMD states that

are of interest. One useful way to employ such emulator with a “dial-in” feature is

to use Monte-Carlo simulation with importance sampling technique to generate the

extremely rare events that occur in the tail of PMD distribution, and then “dial-in”

these PMD states into the emulator which then produces them physically. In Chapter

8, we investigate a four-segment PMD emulator that can be deterministically con-

trolled to produce the desired 1st and 2nd order PMD vectors [13]. In Chapter 9,
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we present a deterministic broadband PMD emulator that can approximate a desired

PMD vector for every frequency within a certain band of interest. In the other words,

one can arbitrarily “dial-in” the spectrum of a PMD vector that comprises all orders

of PMD [14].

Until now, we have assumed negligible Polarization Dependent Loss (PDL) present

in the fiber. In reality, there are always distributed PDL from components at the am-

plifier sites in a multi-span system and from components at the receiver. In situations

where PDL is non-negligible, the system penalty due to the coexistence of PMD and

PDL is known to be higher than the summation of PMD-only penalty and PDL-only

penalty. In addition, the presence of PDL may discount the performance of some

PMD compensators. The physics of the mutual interaction of PMD and PDL is

complex. Fortunately, polar decomposition of the fiber transmission matrix allows

lumped PDL followed by lumped PMD compensation at the receiver’s end. Thus, we

present in Chapter 10, the architecture of a broadband PDL compensator in a feed-

forward compensation scheme [15]. This module consists of three stages. Stage 1 and

2 are the frequency-dependent polarization rotators that align all the different PDL

vectors into the {1, 0, 0} direction in Stokes space. Stage 3 eliminates both the PDL

magnitude and the frequency dependence of the isotropic attenuation by introduc-

ing different frequency-dependent variable attenuation to the linear horizontal and

vertical polarizations. By applying the known Mueller transformations of the PDL

compensator to the monitored polarimetric data, we show that the composite PMD

spectrum can be deduced for subsequent broadband PMD compensation described

in Chapter 6. Therefore no additional monitoring is required for PDL compensa-

tion since it utilizes the same set of polarimetric data measured in the case of PMD

compensation.
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Chapter 2

Polarization Effects in Lightwave

System

2.1 Background

Polarization effects, such as PMD and PDL, have historically played a minor role in

the development of lightwave system. The main reason is that commercial optical

receivers detect optical power rather than the field and are thus insensitive to polar-

ization. In recent years, the deployment of optical amplifiers together with numerous

improvements in the related optical transmission technologies, has led to a dramatic

increase in the capacity and distance of transmission. With the large increase in the

optical path length, and the number of optical elements that light encounters during

transmission, formerly small effects such as PMD and PDL can accumulate to a point

where they become significant sources of network impairment. This is especially true

when the carriers begin to deploy high bit rate transmission systems (> 10 Gbit/s

per channel) in older generation fibers. While fibers manufactured today can have

mean PMD coefficients less than 0.05ps/
√

km, these older generation fibers installed

in the 1980s may exhibit PMD coefficients higher than 0.8ps/
√

km.

There are three sources of polarization-related impairments: Polarization Mode

Dispersion (PMD) [16, 17, 18, 19], Polarization Dependent Loss (PDL) [20, 21, 22] and

Polarization Dependent Gain (PDG) [16, 23]. Of these, PMD is the main problem.
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PMD is caused by optical birefringence and the random variation of its orientation

along the fiber . It causes different group delays for different polarizations. When this

difference in delays approaches a significant fraction of the bit period, pulse distortion

and system penalties occur [24, 25, 26, 27, 28]. Environmental changes including

temperature and stress cause the PMD to vary stochastically in time [29, 30, 31],

making PMD particularly difficult to manage. This means a system can randomly

wander in and out of the high-penalty states. The goal of PMD compensation is to

reduce the probability that the penalty will exceed a certain level to a negligible value

(typically <1 minute per year) [32, 33, 34].

Research on PDL effects when it coexists with PMD is relatively recent and is

beginning to attract serious attention [20, 21, 35, 36, 37]. This area is especially

interesting since PDL can amplify the system penalties due to PMD . Various inline

optical components such as switches, isolators, couplers, filters, and circulators, may

have non-negligible PDL (i.e > 0.2 dB) [22]. When the optical pulse passes through

these optical components, it splits between two orthogonal polarization modes which

are attenuated differently for each polarization. Therefore, an obvious effect of PDL

is the optical power variation when there is polarization fluctuation due to the dy-

namically changing birefringence in the fiber. PDG, on the other hand, is due to the

anisotropic gain saturation in fiber amplifiers. Polarization hole burning arises in an

amplifier when a saturating signal causes selective de-excitation of erbium ions that

are aligned with the polarization of the saturating signal. This causes the gain seen

by the unpolarized ASE noise accompanying the signal to be reduced for the compo-

nents of the noise parallel to the signal and enhanced for components orthogonal to

the signal. This leads to the orthogonal noise component growing at the expense of

the signal power, which leads to a reduction in the signal-to-noise ratio at the receiver

[23] .

34



Geometrical

Stress

Intrinsic Extrinsic 

Lateral Stress 

Bending 

Twisting 

Optical Fiber Birefringence    Optical Fiber Birefringence    

Figure 2-1: Intrinsic and extrinsic birefringence in optical fiber

2.2 Origin of PMD

In a single mode fiber, an optical wave of arbitrary polarization can be represented

as the linear superposition of two orthogonally polarized HE11 modes [38, 39]. In an

ideal fiber, the two HE11 modes are indistinguishable (degenerate) in terms of their

propagation properties owing to the cylindrical symmetry of the waveguide. However,

in reality, fibers have some amount of asymmetry due to the imperfections in the

manufacturing process and or mechanical stress on the fiber after manufacture [40, 18,

16, 41, 42, 43]. This asymmetry breaks the degeneracy of the orthogonally polarized

HE11 modes, resulting in birefringence: a difference in the phase and group velocities

of the two modes. Both intrinsic and extrinsic perturbations can cause birefringence in

optical fiber. The manufacturing process sets up permanent, intrinsic perturbations

in the fiber. There are two main forms of intrinsic birefringence: geometrical and

stress birefringence as shown in Figure 2-1. Non-circular fiber geometry can usually
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be traced to the preform from which the fiber is drawn. In telecommunication fiber,

deviation of less than 1% in the circularity of the core can translate into noticeable

effects in lightwave systems. Consequently, even extremely small imperfections in the

processing of the preform can have a significant impact on the fiber performance.

Stress birefringence caused by a non-circularly symmetrical stress field in the

core region typically arises in combination with a non-circular fiber geometry. The

necessarily different chemical composition of the core relative to the cladding usually

results in slightly different thermal expansion coefficient for the two regions. This

gives rise to radially directed stresses when the fiber is cooled after being drawn. In

an ideal circularly symmetrical fiber, these stress fields are symmetrical and thus do

not cause anisotropy. However, if there is a noncircular shape to either the core and

cladding in the preform, the drawn fiber will have internal stress that are not circularly

symmetrical. Extrinsic birefringence, on the other hand, is created when the fiber is

spooled, cabled, or embedded in the ground. This is due to the extrinsic perturbations

such as lateral stress, bending, or twisting. These external perturbations vary due to

the changes in the environment, thus making PMD a stochastic process.

2.3 Representations of Polarization and its Evolu-

tion

As a preparation, we first examine the two common representations of polarization

in the 2-D complex-valued space of the Jones vector (known as Jones space) and the

3-D real-valued space of Stokes vector (known as Stokes space) and the connection

between the two [17, 44, 45]. In Jones space, the propagation through the fiber is

represented by a complex-valued 2×2 transmission matrix T, and the complex-valued

2-D output State of Polarization (SOP) |t〉 is related to the input SOP |s〉 by

|t〉 = T |s〉 = e−jφoU |s〉 (2.1)
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where the real part of φo represents the isotropic phase term while its imaginary part

represents the isotropic loss or gain term. U is the complex Jones matrix. If one

assumes no PDL, U will be unitary and has det(U) = 1. The equivalent of unitary

U in Stokes space is a real-valued 3×3 rotation matrix R. This is also known as

the Mueller matrix. The SOP is represented by a real-valued 3-D vector so that the

output SOP Stokes vector t̂ is related to the input SOP ŝ by

t̂ = Rŝ (2.2)

The isomorphic pairings of operators such as these are not new and have been widely

used elsewhere in mechanics, quantum mechanics and even in the unification of quan-

tum theory and general relativity. Pauli spin matrices and spin vectors are the key

to connect these two spaces. The 2×2 Pauli spin matrices are defined as

σ1 =


 1 0

0 −1


 (2.3a)

σ2 =


 0 1

1 0


 (2.3b)

σ3 =


 0 −j

−j 0


 (2.3c)

And they allow us to write the components si of the Stokes vector corresponding to

|s〉 in a compact form

si = 〈s|σi |s〉 (2.4)

If we define a Pauli spin vector in Stokes space as ~σ = (σ1, σ2, σ3), the Stokes vector

is simply

ŝ = 〈s|~σ |s〉 (2.5)
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Spin matrices are Hermitian and unitary (i.e σi = σ†i and σiσ
†
i = I) and have zero

trace. They obey the well-known multiplicative rules

σ2
i = I (2.6a)

σiσj = −σjσi (2.6b)

σiσj = jσk (2.6c)

The assumption of no PDL and isotropic loss/gain gives unitary T, U and R (i.e

TT† = I, UU† = I, RR† = I), normalized Jones vector (i.e 〈t | t〉 = 〈s | s〉 = 1)

and unit norm of the Stokes vector (i.e
∣∣t̂

∣∣ = |ŝ| = 1). It is worth noting that, in the

presence of PDL, T and U lose their unitary property and, in order to account for the

power intensity change in the Stokes Space, we need to use the complete 4×4 Mueller

matrix. Table 2.1 shows a few examples of SOP expressed in 2-D Jones vector |s〉 and

its corresponding representation in Stokes space ŝ related by equation (2.4). Stokes

space can give a good 3-D visualization of the SOP. Figure 2-2 shows the various SOPs

on the unit Poincaré sphere presented in Stokes space. For completely polarized light,

it lies on the unit Poincaré sphere. For partially polarized light, it lies within the unit

Poincaré sphere. Orthogonal polarizations are diagonally opposite one another on

the sphere. For example, horizontal linear polarization is in the {1,0,0} direction

while vertical linear polarization is in the {-1,0,0} direction. Linear SOPs lie on the

equator. The right-handed circularly polarized light occupies the north pole while

the left-handed circularly polarized light occupies the south pole. All other states

are elliptical. They are on the upper hemisphere if they are right-handed and on the

lower hemisphere if they are left-handed.

The evolution of SOP through a medium in Jones space is represented by the

Jones matrix U as in eqn. (2.1). The equivalent picture in Stokes space is a rotation

R of the Stokes vector as in eqn. (2.2). The rotation axis r̂ of R corresponds to

the slow eigen-states of U while the rotation angle ϕ corresponds to the difference in

the phase accumulated by the two eigen-states. This phase difference is often called

the retardation angle for the case of a birefringent element. For example, the change
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Jones Vector |s〉 Stokes Vector ŝ Description
∣∣∣∣

1
0

〉 


1
0
0


 Horizontal Linear

Polarization
∣∣∣∣

0
1

〉 

−1
0
0


 Vertical Linear

Polarization

1√
2

∣∣∣∣
1
1

〉 


0
1
0


 45o Linear Polar-

ization

1√
2

∣∣∣∣
1
−1

〉 


0
−1
0


 135o Linear Po-

larization

1√
2

∣∣∣∣
1

ejπ/2

〉 


0
0
1


 Right-Handed

Circular Polar-
ization

1√
2

∣∣∣∣
1

e−jπ/2

〉 


0
0
−1


 Left-Handed Cir-

cular Polarization
∣∣∣∣

sx

sy

〉 


sxs
∗
x − sys

∗
y

sxs
∗
y + s∗xsy

j
(
sxs

∗
y − s∗xsy

)


 General Elliptical

Polarization

Table 2.1: Example of SOPs in both Jones and Stokes Spaces
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Figure 2-2: Various SOPs in Poincaré sphere representation

of SOP when light propagates through a birefringent half-wave plate with horizontal

slow birefringence axis in physical space, corresponds to a 180o rotation about {1,0,0}
in Stokes space. If the slow axis is turned to 45o in physical space, the 180o rotation

is now about the {0,1,0} axis. If we now change the half-wave plate to a quarter-wave

plate but maintain the same orientation for the slow birefringence axis, the rotation

angle becomes 90o about the {0,1,0}. In terms of Pauli-spin matrices, the relation of

U and R can be shown [17] as

R~σ = U†~σU (2.7)

There are two convenient and useful equations to express U and R, if the rotational

axis r̂ = {r1, r2, r3} and the rotation angle ϕ [17] are known

U = I cos (ϕ/2)− jr̂.~σ sin (ϕ/2) (2.8)
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and

R = r̂r̂ + sin (ϕ) (r̂×) + cos (ϕ) (r̂×) (r̂×) (2.9)

where the 3D dyadic r̂r̂ is the projector operator

r̂r̂ =




r1r1 r1r2 r1r3

r2r1 r2r2 r2r3

r3r1 r3r2 r3r3


 (2.10)

and (r̂×) is the cross-product operator

(r̂×) =




0 −r3 r2

r3 0 −r1

−r2 r1 0


 (2.11)

Table 2.2 lists some useful examples of U and their corresponding R. In birefringent

elements, the retardation angle is expressed as

ϕ =
(ne − no)ωl

c
(2.12)

where (ne − no) is the birefringence, l is the length of the birefringent element, ω

is the angular frequency and c is the speed of light. The retardation angle has a

linear dependence on frequency if we assume negligible frequency dependence in the

birefringence. Even with fixed input polarization, there is a change with frequency

of the output polarization. This explains why zero-order wave-plate which has the

smallest length l, can be used for a broader bandwidth than higher-order wave-plates.

Another important consequence of equation (2.12) is that the concatenation of bire-

fringent elements can create frequency dependence in the eigenstates of the composite

U, even if the eigenstates of the individual birefringent element are independent of

frequency. Furthermore, the retardation angle of the composite U departs from a lin-

ear frequency dependence to acquire a more general dependence. It is this frequency

dependence in U (and R) that gives rise to PMD.
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Description Rotation
Axis r̂

Rot.
Angle
ϕ

Jones Mat. U Stokes Mat. R

a) Half-wave plate
with horizontal
slow birefringent
axis




1
0
0


 180o

( −j 0
0 j

) 


1 0 0
0 −1 0
0 0 −1




b)Quarter-wave
plate with slow
birefringent axis
oriented at 45o in
physical space




0
1
0


 90o 1√

2

(
1 −j
−j 1

) 


0 0 1
0 1 0
−1 0 0




c)Quarter-wave
Plate with slow
birefringent axis
oriented at -45o in
physical space




0
−1
0


 90o 1√

2

(
1 j
j 1

) 


0 0 −1
0 1 0
1 0 0




d)Birefringent
plate with tunable
retardation angle
θ and horizontal
slow birefringent
axis




1
0
0


 θ

(
e−jθ/2 0

0 ejθ/2

) 


1 0 0
0 cos θ − sin θ
0 sin θ cos θ




e)Birefringent
plate with tunable
retardation angle
and slow birefrin-
gent axis oriented
at 45o in physical
space




0
1
0


 θ

(
cos θ

2
−j sin θ

2

−j sin θ
2

cos θ
2

) 


cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ




Concatenation of
birefringent plates
(b)→(d)→(c)

Effectively


0
0
1




θ

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

) 


cos θ − sin θ 0
sin θ cos θ 0

0 0 1




Table 2.2: Useful examples of U and their corresponding R

42



Fixed phase-plates

4
λ

2
λ

4
λ

SOP A SOP B

Pol. Controller

Tunable phase-plates

x y

SOP A SOP B

Pol. Controller

x

SOP
A

2
λ

4
λ

4
λ

SOP
B

90o

180o

90o

SOP
A SOP

B

x y

yθ

xθ

'
xθ

Figure 2-3: Two typical types of polarization controller

2.4 Polarization Controller

There are two typical types of polarization controller for altering the polarization of

light [44, 46, 47]. One is based on a combination of three fixed phase-plates where

a half-wave plate is sandwiched between two quarter-wave plates, and the other is

based on a combination of three tunable phase-plates whose birefringence axes are

in {1,0,0}, {0,1,0} and {1,0,0} in Stokes space. The operation of each polarization

controller is obvious using the Stokes space representation as shown in Figure 2-3. For

a fixed phase-plate polarization controller, we can transform any polarization state

to any polarization state on the Poincaré sphere by changing the angular orientations

of their birefringent axes. For tunable phase-plate polarization controller, we fix the

birefringence axes, but tune their phase angles to carry out any polarization transfor-

mation on the Poincaré sphere. It is worthwhile to note that the rotation operation
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to map any input SOP to any output SOP is not unique and Figure 2-3 shows only

two of the more common configurations. To simplify practical implementation, either

the input or output SOP is fixed to {1,0,0}. This reduces the degree of freedom and

thus reduces the required number of phase-plates to two. Many practical phase-plates

often have a finite range of adjustments. The tunable phase-plate, for example, may

have a limited range of rotation on the sphere. As the SOP varies with time, such a

phase-plate may approach the end of its tunable range. To maintain an endless con-

trol, most polarization controllers include one or two more redundant phase-plates to

tackle this engineering issue [48, 49, 47]. The redundant phase-plates allow “unwind-

ing” of any of the phase-plates to the center of the operation range before they reach

their range limit. This “unwinding” is the key to endless control of the polarization

controller using phase-plates with finite tuning range.

2.5 Principal State Model

A fiber is often visualized or modeled as a sequence of random birefringent sections

whose birefringence axes and magnitude change randomly with z (along the fiber).

There are two different manifestations of PMD depending on the view taken. In

the frequency domain view one sees, for a fixed input polarization, a change with

frequency ω of the output polarization of the input pulse. In the time domain one

observes a mean time delay of a pulse traversing the fiber which is the function of the

polarization of the input pulse. The two phenomena are intimately connected.

In 1986, Poole and Wagner [19] introduced the Principal States model using the

Jones matrix and the frequency domain view. Equation (2.1) describes the relation-

ship of the input and output Jones vectors |s〉 and |t〉. As the pulses are described

by wave-packets with a finite frequency band, we need to consider the frequency

dependence of |t〉. We assume fixed input polarization and phase (|s〉ω = 0), as is

appropriate for a simple pulse entering the fiber at time zero. By differentiating eqn.
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(2.1) and eliminating |s〉, we obtain for the change of output Jones vector

|t〉ω = −j

(
dφo

dω
+ jUωU

†
)
|t〉 (2.13)

To first order, the output polarization |t〉 generally changes with frequency unless |t〉
is a eigenvector of jUωU

†. The frequency derivative of the common phase φo gives

a mean group delay τo common to all polarizations (τo = dφo/dω). One can show

[17] two important properties of the matrix jUωU
†: (1) it is hermitian and (2) it has

zero trace. Therefore both eigenvalues of jUωU
† are real and their sum is zero. If we

denote the eigenvalues as ±τg/2 and corresponding eigenvectors as |p±〉. When the

output polarization |t〉 happens to align with one of these eigenvectors, then

|p±〉ω = −j

(
dφo

dω
± τg

2

)
|p±〉 (2.14)

so that by first-order Taylor’s approximation,

|p±〉 (ω) ≈ |p±〉 (ωo) + |p±〉ω (ω − ωo) ≈ e−j( dφo
dω
± τg

2 )(ω−ωo) |p±〉 (ωo) (2.15)

In the time-domain view, the first order approximation shows that the effect of the

propagation through a fiber is simply a group delay when the output polarization is

in one of the eigenstates of jUωU
†. This special orthogonal pair of polarizations is

called the Principal State of Polarizations (PSPs) of the output. Light launched in a

PSP does not change polarization at the output to first order in ω. These PSPs have

group delays which are maximum and minimum mean time delays of the time domain

view. The difference between these two delays is called the Differential Group Delay

(DGD) τg. The PMD vector ~τ describes both the PSPs and the DGD in the fiber. It

is a Stokes vector ~τ pointing in the direction of the slow PSP p̂ = 〈p+ |~σ| p+〉 with a

length equal to the DGD, thus

~τ = τgp̂ (2.16)

As we have discussed earlier, in Stokes space, orthogonal polarizations are diagonally
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opposite in the Poincaré sphere, thus the fast PSP is given as 〈p− |~σ| p−〉 = −p̂.

Since the determinant of a Hermitian matrix is the product of its eigenvalues, we

have det
(
jUωU

†) = −τ 2
g

/
4. From this, noting that det (U) = 1, we can extract an

expression for

τg = 2
√

det (Uω) (2.17)

In general any 2×2 matrix M can be expanded in the form

M = aoI + ~a.~σ (2.18)

where ao = Trace (M)/2 and ai = Trace (σiM)/2. This is the well-known ~σ-

expansion of a matrix used commonly in quantum mechanics. Since the eigenvectors

|p+〉 and |p−〉 of the matrix jUωU
† constitute a complete orthogonal set of Jones

vectors, we can express jUωU
† using its eigenvalues ±τg/2 and its corresponding

eigenvector as |p±〉 as

jUωU
† =

τg

2
|p+〉 〈p+| − τg

2
|p−〉 〈p−| (2.19)

Using Trace (|q〉 〈p|) = 〈p | q〉 and with eqn. (2.19), one can see that

Trace
(
σi

(
jUωU

†)) = τgp̂i = ~τi (2.20)

Using the fact that jUωU
† has zero trace and equation (2.20), the ~σ-expansion of

jUωU
† yields

jUωU
† =

1

2
~τ .~σ (2.21)

This is a useful equation for the Jones Matrix characterization technique of PMD.

It is also worthwhile to note that the concepts such as group velocity and group

delay, as pointed out by Haus [50, 51] and Gordon [17], have a strict definition for an

individual mode only. Thus these concepts are appropriate only when the polarization

is aligned with the PSPs. For other polarizations, the PMD phenomenon can split

an input pulse into two or more pulses at the fiber output, leading to polarization-
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dependent pulse shapes. In these cases, the moments of the output signals are more

appropriate descriptions of the signal delays in systems involving two or more modes

of propagation [17]. In addition, the reader should not confuse the eigenstates of U

with the principal states of PMD. The principal states of PMD are the eigenstates

of jUωU
† at the output or eigenstates of jU†Uω at the input. Only for very special

cases, such as phase-plates, are these eigenstates the same as the principal states.

2.6 The Law of Infinitesimal Rotation

A useful law of infinitesimal rotation relates the change of polarization of light at fiber

location z due to a small length increment dz of the fiber. Over this small length

increment, the birefringence [40] can be assumed to be constant in magnitude and

direction . As mentioned in Section 2.3, the evolution of SOP through a constant

birefringent element corresponds to a rotation of the Stokes vector in Stokes space.

The rotation axis corresponds to the slow birefringent axis β̂ while the rotation angle

corresponds to the retardation angle (ne−no)ωdz
c

. Thus the change of polarization with

distance z over this small increment length can be written in the form of a precession

about β̂ with
dt̂

dz
= ~β × t̂ (2.22)

where
∣∣∣~β

∣∣∣ = (ne−no)ω
c

. This is the law of infinitesimal rotation for birefringence with

distance. On the other hand, the change of the output SOP t̂ with frequency can be

expressed as

t̂ω = 〈t|ω ~σ |t〉+ 〈t|~σ (|t〉)ω (2.23)

Combining (2.13) and (2.21) into (2.23), and applying the spin vector identities

~σ (~a.~σ) = ~aI + j~a× ~σ (2.24a)

(~a.~σ)~σ = ~aI− j~a× ~σ (2.24b)

〈s|~a× ~σ |s〉 = ~a× 〈s|~σ |s〉 (2.24c)
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we can derive the important law of infinitesimal rotation [17]

dt̂

dω
= ~τ × t̂ (2.25)

This precession equation describes the evolution of the output SOP with frequency

in Stokes space. The geometrical interpretation of this simple law is a rotation of the

output Stokes vector on the Poincaré sphere as frequency changes. The rotation axis

is the PSP p̂ and the rate of rotation is the DGD τg. This infinitesimal rotation law

allows us to express the PMD vector in term of the rotation (Mueller) matrix R that

relates the input and output Stokes vector ŝ and t̂. We differentiate eqn. (2.2) with

frequency (while keeping fixed input ŝ) and obtain

t̂ω = Rωŝ = RωR
†t̂ (2.26)

The comparison of (2.25) and (2.26) yields the useful operator relationship

~τ× = RωR
† (2.27)

The above discussion has focused on expressions for the PMD vector at the fiber

output. There are practical cases where the corresponding PMD vector at the input

is needed. This can be obtained by a simple transformation. The relation between

the PSPs in Jones space is

|pout〉 = T |pin〉 (2.28)

and in Stokes space

~τout = R~τin (2.29)
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Figure 2-4: Concatenation of two fiber segments

2.7 PMD Concatenation Rule and Dynamical PMD

Equation

The PMD vector concatenation rules are a powerful set of simple tools that allow the

determination of the PMD vector of an assembly of concatenated fiber sections when

the PMD vectors of the individual sections are known [17, 52, 53]. Among their uses

are the analysis of the evolution of the PMD vector with fiber length, statistical PMD

modeling, PMD simulation, and the design of multi-section PMD compensators.

Consider two concatenated fiber sections with Muller rotation matrices Ra and

Rb as shown in Figure 2-4. The output PMD vectors of each of the individual sections

are ~τa and ~τb. There is a polarization rotator at their junction whose rotation matrix

is denoted as C. The rotation matrix C is assumed to be frequency independent over

the frequency range of interest. Our goal is to determine the output PMD vector of

the combined assembly. The rotation matrix R of the two-section concatenation is

the matrix product

R = RbCRa (2.30)

Combining this with (2.27), we find that the PMD vector ~τ of the assembly that

~τ× = RωR
† = Rωb(CRa)(CRa)

†R†
b + (RbC)RωaR

†
a(RbC)† (2.31)

Applying (CRa)(CRa)
† = I, equation (2.27) for the individual sections, and a trans-
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formation of matrix operation of

(RbC)RωaR
†
a(RbC)† = (RbC)(~τa×)(RbC)† = (RbC~τa)× (2.32)

we can simplify equation (2.31) into the form

~τ = ~τb + RbC~τa (2.33)

This is the basic concatenation rule for the first order PMD vector. The rule is very

similar to that for the impedances of a transmission line. To get the PMD vector of an

assembly, transform the PMD vectors of each individual section to a common reference

plane and take the sum of all those vectors. It can be transformed to the input of

the fiber. It can also be generalized to multiple sections as well as differentially small

sections. When it is applied to the case of differentially small sections, it gives the

dynamical PMD equation [53].

To be more specify, we apply the two-section concatenation rule to a long piece

of fiber with output PMD vector ~τ and a differentially small fiber addition of length

∆z as shown in Figure 2-5. From equation (2.22), the change ∆t̂ of the Stokes vector

t̂ entering the element is

∆t̂ = ∆z~β × t̂ (2.34)
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The output Stokes vector t̂+ ∆t̂ can be expressed in terms of rotation matrix R∆ as,

t̂ + ∆t̂ = R∆t̂ (2.35)

Substitute equation (2.34) into equation (2.35) gives

R∆ = (I + ∆zβ×) (2.36)

The corresponding PMD vector ~τ∆ of this small element can be found from R∆ and

its derivative as in equation (2.27). By dropping the second order term in ∆z, we

obtain

~τ∆ = ∆z~βω (2.37)

Using the PMD concatenation rule equation (2.33), in combination with equation

(2.36) and equation (2.37), we get

~τ + ∆~τ = ~τ∆ + R∆~τ = ∆z~βω +
(
I + ∆z~β×

)
~τ (2.38)

And this simplifies to give the dynamical PMD equation

∆~τ

∆z
= ~βω + ~β × ~τ (2.39)

2.8 Higher-Orders PMD

In first order approximation, ~τ in eqn. (2.25) can be approximated as a constant

vector over a small bandwidth about the center frequency. In this approximation,

~τ is commonly known as the first-order PMD and the bandwidth over which the

approximation holds is called the bandwidth of the principal state of polarization or

PSP bandwidth ∆ωPSP . The concept of PSP bandwidth is important for frequency-

domain measurement of PMD vectors where measurements of the output SOP at

two or more frequencies are required. These frequencies have to be confined to the

PSP bandwidth in order to reduce inaccuracy caused by higher-order PMD. On the
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Figure 2-6: A vector diagram of the second order PMD and its components

other hand, in statistical PMD measurements, the samples of ~τ (ω) are deemed to be

statistically independent if their frequencies are at least six times the PSP bandwidth

apart. While different constants have been reported [54, 55, 56, 57], a good practical

estimate for ∆ωPSP is given by

∆ωPSP · τ̄DGD =
π

4
(2.40)

where τ̄DGD is the mean DGD of the fiber. The correlation function of the PMD

vectors ~τ (ωo) and ~τ (ωo + ∆ω) recently reported in [56, 58] provides an elegant con-

firmation and interpretation of the ∆ωPSP concept and its practical implications.

When the bandwidth of interest is larger than ∆ωPSP , the first order PMD approx-

imation no longer holds and ~τ varies with the optical frequency. This frequency

dependence in ~τ causes the precession direction and the precession rate in equation

(2.25) to change with frequency. This gives rise to higher-order PMD. A Taylor ex-

pansion of ~τ (ω) about the carrier frequency ωo has been commonly used to describe

this frequency dependence [59],

~τ (ωo + ∆ω) = ~τ (ωo) + ~τω (ωo) ∆ω +
1

2
~τωω (ωo) ∆ω2 + ... (2.41)
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where the subscript ω indicates differentiation. ~τ (ωo), ~τω (ωo) and ~τωω (ωo) are com-

monly called the first-, second-, and third- order PMD. Using eqn. (2.16), the second-

order PMD can be expressed as

~τω (ωo) =
d~τ

dω

∣∣∣∣
ωo

=
dτg

dω

∣∣∣∣
ωo

p̂ (ωo) + τg (ωo) p̂ω (ωo) (2.42)

It has two terms. The first term on the right-hand side of equation (2.42) is ~τω||,

the component of ~τω that is parallel to ~τ (ωo), whereas the second term ~τω⊥ is the

component of ~τω that is perpendicular to ~τ (ωo). Figure 2-6 shows a vector diagram of

the second order PMD vector and its components. The magnitude of the first term,

dτg/dω|ωo
is the change of the DGD with frequency. This term creates polarization-

dependent chromatic dispersion [60] which, in the presence of chirp, can cause either

pulse compression or broadening depending on the polarization. The second term

in equation (2.42), ~τω⊥, describes the PSP depolarization, a rotation of PSP with

frequency. Pulse distortions caused by PSP depolarization include overshoots and

generation of satellite pulses [18]. It can also have a detrimental effect on first order

PMD compensators. Second- and third- order PMD can also be concatenated. By

differentiating eqn. (2.33), we get

~τω = ~τωb + RbC~τωa + RωbC~τa = ~τωb + RbC~τωa + RωbR
†
bRbC~τa (2.43)

By using ~τb× = RωbR
†
b, we obtain the concatenation rule for the second order PMD,

~τω, as

~τω = ~τωb + RbC~τωa + ~τb ×RbC~τa = ~τωb + RbC~τωa + ~τb × ~τ (2.44)

By differentiating equation 2.44, we get

~τωω = ~τωωb + RωbC~τωa + RbC~τωωa + ~τωb × ~τ + ~τb × ~τω (2.45a)

= ~τωωb + RωbR
†
bRbC~τωa + RbC~τωωa + ~τωb × ~τ + ~τb × ~τω (2.45b)
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By using ~τb× = RωbR
†
b, we obtain the concatenation rule for the third order PMD,

~τωω, as

~τωω = ~τωωb + RbC~τωωa + ~τb ×RbC~τωa + ~τωb × ~τ + ~τb × ~τω (2.46)

2.9 PMD Characterization Technique

The three most common PMD characterization techniques used in the laboratory

are: 1) Jones Matrix Eigenanalysis, 2) the Mueller Matrix Method and 3) Poincaré

Sphere Analysis. Jones Matrix Eigenanalysis [61] uses a set of pre-determined input

polarization states to determine the complete Jones Matrix U of the fiber at each

frequency. By measuring the Jones matrix at closely spaced frequency intervals, one

can compute its frequency derivative Uω, and then determine the matrix product

jUωU
†. Using the σ-expansion in equation (2.21), one can determine the full PMD

vector.

The Mueller Matrix Method [57] measures PMD in much the same way as the

Jones matrix method. The difference is it works entirely in Stokes space, and measures

the rotation matrix R as a function of frequency. In this way, one can compute Rω

and the matrix product RωR
†. Using equation (2.27) and the matrix form of the

cross-product operator similar to equation (2.11), one can determine the full PMD

vector.

The Poincaré Sphere Analysis [30] measures the precession of an output SOP

about ~τ as a function of frequency as seen in equation (2.25). Using two different

input SOPs, the corresponding output SOP t̂i and t̂j are measured at each frequency.

The PMD vector can then be computed using eqn. (2.25) and the vector identity

~a×~b× ~c = (~a.~c)~b−
(
~b.~a

)
~c to be

~τ =
dt̂i
dω
× dt̂j

dω∣∣∣dt̂i
dω
· t̂j

∣∣∣
(2.47)

The main difference between the Poincaré Sphere Analysis and the other two tech-

niques is that no knowledge of the input SOP is required to determine the output
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PMD vector. This is evident in equation (2.47).

The above three techniques belong to the generic class of “polarimetric techniques”

in the frequency domain. They find both the DGD and the PSP by measuring the

frequency-dependent rotation of the output polarization state. To measure the output

polarization, a polarimeter is needed. Figure 2-7 shows the schematic of a polarimeter.

In order to understand the working principle of a polarimeter, we need to know the

transmission through a perfect polarizer in Stokes space. For an incoming light of

polarization ~r passing through a perfect polarizer whose transmission axis is p̂, the

intensity transmission [17] expressed in Stokes space representation is given by

T =
1

2
(1 + ~r · p̂) (2.48)

To measure an unknown polarization ~r = {r1, r2, r3}, three polarizers are needed, one

for each component: for r1, a polarizer with horizontal transmission axis p̂ = {1, 0, 0};
for r2, a polarizer with transmission axis aligned at 45o with p̂ = {0, 1, 0}; for r3, a

polarizer with p̂ = {0, 0, 1}. This can be achieved by a quarter-wave plate with

vertical slow axis followed by a polarizer with transmission axis oriented at 45o. By

measuring the intensity transmission through each polarizer (i.e. Ii

I0
), we can deduce

the respective component of the polarization using eqn. (2.48). This should explain

the required layout of the polarimeter shown in Figure 2-7.

For perfectly polarized light, ~r has a unit norm and lies on the surface of the unit

Poincaré sphere. The degree of polarization (DOP) defined as

DOP =
√

r2
1 + r2

2 + r2
3 (2.49)

is unity for this case. In general, due to the response time of detectors, the polarimeter

intrinsically measures the SOP averaged over the pulse duration (or equivalently, over

the pulse spectrum). Thus ~r is in fact a weighted average of the Stokes vector ŝ(ω)

across the spectrum of the signal given by

~r =

∫
dω

2π
|H(ω)|2 ŝ(ω) (2.50)

55



4-way 
Beam 

Splitter

Polarizer 
(0 deg)

Polarizer 
(45 deg)

Polarizer 
(45 deg)

QuarterWave
Plate (Vertical 

Slow Axis)

Photo-
detectors

0I

1I

2I

3I

( )1

0

1 1
2

1
r

I

I +=

( )2

0

2 1
2

1
r

I

I +=

( )3

0

3 1
2

1
r

I

I +=

�
�
�

�

�

�
�
�

�

�

=

3

2

1

r

r

r

r
�

Incident 
SOP

Figure 2-7: Schematics of a polarimeter

where |H(ω)|2 is the signal spectrum normalized to
∫

dω |H(ω)|2/2π = 1. This makes

~r generally lies inside the unit Poincaré sphere with DOP less than 1. An exception

is when ŝ(ω) = ŝ(ωo) for all frequency in the pulse, which results in ~r = ŝ(ωo).

2.10 Statistics of PMD

Compared to other system impairments, the impairment due to PMD is much more

challenging to deal with since it is changing stochastically with wavelength and time.

This means that one cannot predict the impairment of the system at any particular

wavelength and time but resort to a statistical description. Tolerance of worst-case

impairment is rarely possible when PMD is a significant source of impairment. The

probability densities for PMD in most situations have asymptotic tails extending to

unacceptably large impairment. Hence, the system cannot be designed to handle

the worst-case PMD impairment and must instead be designed for a specified out-

age probability. For similar reasons, the goal of PMD compensation cannot be to

eliminate the impairment but rather to reduce the PMD outage probability. To un-

derstand and predict the system outage probabilities, to design compensators, and
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to accurately measure PMD in systems, one must understand the statistics of the

phenomena associated with PMD.

The first statistical property of PMD to attract interest was the mean DGD [19,

62]. It is time consuming and tedious to obtain an accurate estimate of the mean

DGD by repeatedly measuring the DGD at one wavelength over time. Instead, the

DGD is averaged over wavelength and the result is assumed to be equal to the time

average. This assumption is of crucial importance. Virtually every measured mean

DGD value quoted in the literature was obtained by wavelength averaging.

The probability density of the DGD is shown in Figure 2-8. For fully random

PMD, the problem can be reduced to that of the probability density of the magnitude

of the sum of 3-D vectors having random orientation and length. The result is the
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well-known Maxwellian distribution for the DGD shown in Figure 2-8 given by [59]

pdf (|~τ |) =
8

π2 〈|~τ |〉
(

2 |~τ |
〈|~τ |〉

)2

e−(2|~τ |/〈|~τ |〉)2/π (2.51)

and each of its vector components, ~τi, follows a Gaussian function

pdf (|~τ i|) =
2

π 〈|~τ |〉e
−(2|~τi|/〈|~τ |〉)2/π (2.52)

where 〈|~τ |〉 is the mean DGD of fiber. Statistical properties of the higher-order PMD

can be found in [63].

The required speed of the PMD compensators depends on the time rate of change

of the PMD in the fiber. A number of groups [29, 31, 64, 65] have made long-term

PMD measurements. The consensus is that temperature changes in embedded fibers

are slow in general, and thus cause slow PMD variations on the time scale of hours

to days. On the other hand, human operation in buildings, mechanical vibrations,

or wind for aerial fibers can cause much rapid PMD fluctuations on the timescale of

milliseconds [29] to seconds [64] depending on the mechanism of the perturbation.

2.11 System effects of PMD

Fiber PMD can cause a variety of impairments in optical fiber transmission systems.

For a single channel, intersymbol interference impairment is caused by the DGD

between the two pulses propagating in the fiber when the input polarization of the

signal is not aligned to the fiber’s PSP [66]. For larger signal bandwidth, systems

impairments can occur due to second- and higher-order PMD, particularly when these

PMD components combine with the chromatic fiber dispersion or signal chirp [60, 55].

The outage criterion is defined as the maximum ratio of mean DGD to bit interval

(i.e τ̄ /T ) that one can tolerate without any compensation. The generally accepted

value for this outage criterion is approximately τ̄ /T 6 0.1. As the signal bandwidth

∆f is roughly equal to ∼ 1/T , and τ̄ is related to the PSP bandwidth by eqn. (2.40),

the outage criterion is roughly equivalent to ∆f 6 ∆fPSP . Since the effects of second
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order PMD are insignificant as long as the bandwidth of the signal ∆f is smaller

than the PSP bandwidth. This implies that second order penalties are negligible as

long as the first order outage criterion is met. This important observation has been

confirmed repeatedly by experiments and simulations [67]. In the other words, it

means that there is no worry about second order PMD as long as there is no need for

first order PMD compensation. However, when the outage criterion is not met, there

is a need for PMD compensation as well as a need for concern about second order

PMD impairments.

The system impacts of the second order PMD have been studied in Ref. [60, 55,

67, 68, 69]. The simplest second-order impairment is the polarization dependent chro-

matic dispersion. The PCD increases or decreases the effective chromatic dispersion

of the transmission system depending on the input state of polarization. However,

statistically this effect is a relatively minor component of the second order PMD. The

dominant impairment mechanism is caused by the PSP depolarization term [60, 55].

This depolarization term leads to pulse overshoots and satellite pulses. Statistical

analyses and numerical simulations of system impairments indicate a strong interac-

tion between chromatic dispersion in the fiber and its second order PMD in general

[60]. Similarly, it has been found that chirp in the transmitted signal has a significant

impact on second order PMD impairments [67].

The stochastic fluctuations of PMD in optical fibers compel systems designers to

allocate a power margin (typically 1 or 2dB) in their link budget in order to avoid

error bursts caused by large signal distortions due to PMD. However, there is always

a finite probability (often called the outage probability) that distortions exceed the

allocated margin. The outage probability increases with τ̄/T , the ratio of the mean

DGD and the bit interval of the transmitted signal. When the outage probability

exceeds the value specified by the system operator, larger margin should be allo-

cated or PMD mitigation technique is required. PMD can also cause impairments

in WDM systems because it changes the relative polarization of the different wave-

length channels as they propagate along the fiber. Thus in WDM systems where

adjacent wavelength channels are launched with orthogonal polarizations to suppress
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nonlinear impairments such as cross-phase modulation or four wave mixing, PMD

destroys the orthogonality of these polarizations [70]. Another example is in system

where polarization multiplexing is used for close packing of WDM channels in order

to achieve high bandwidth efficiency. Here PMD induces coherent cross-talk between

multiplexed channels leading to system impairments [71, 72].

2.12 PMD Mitigation

One of the simplest and potentially least costly ways of reducing PMD impairment

is to deploy fiber having low PMD. For example, fiber link having DGD less than

2% of the current bit rate would have sufficiently low PMD for the current systems,

as well as the next generation systems assuming that the bit rates will increase by a

factor four. Since less than 1% core ellipticity and the associated stress can result in

significant birefringence, much work in fiber manufacturing has focused on reducing

deviations in the circularity of the fiber preform. Much of this work is proprietary

information. As further reduction in the intrinsic fiber birefringence becomes difficult,

attention is shifted to mitigating it. One method used to reduce the effect of intrinsic

birefringence is spinning [73]. An intuitive explanation of how spinning reduces PMD

uses the model of fiber being a cascade of N randomly oriented birefringent element

∆τ . The mean DGD of the concatenation is ∆τ
√

N [74]. Spinning the fiber during

the drawing process decreases the coupling length of the fiber. For the same length

of fiber, this gives smaller ∆τ but larger N . However, the mean DGD scales as
√

N and linearly as ∆τ , therefore spinning results in a smaller mean DGD. These

efforts devoted to the reduction of fiber PMD have been rewarded with great success.

Field measurements indicate that some production fiber manufactured in the late

1980’s had PMD well beyond 1ps/
√

km [18]. It is currently possible to purchase large

quantities of fiber having PMD less than 0.1ps/
√

km on the spool and considerably

less than that when cabled.

Other approaches that are actively pursued to mitigate the PMD effect include

the use of novel modulation formats than the conventional NRZ format [26, 75, 76],
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soliton transmission [77, 78], Forward Error Correction [79, 80], and simply increasing

the power margin. Data formats such as RZ, carrier-suppressed RZ, chirped NRZ,

chirped RZ, phase-shaped binary transmission are more resistant to PMD than the

conventional NRZ format [81]. Generally, there seems to be a consensus that formats

with low duty cycle (eg. Chirped RZ and RZ) are more resistant to PMD as it takes

more DGD for these pulses to leak out into the neighbouring bit slots while data

formats with small spectral width such as NRZ are more effectively compensated in

optical compensators.

The use of FEC is another way to improve the system performance when it is

already suffers from a high BER. Even though FEC is not a PMD compensator

technique it can mitigate the effects of PMD in terms of outage probability in a

similar way as an increased power margin. The use of FEC in systems limited by

PMD has been studied [79, 80].

Soliton transmission was first introduced to compensate for chromatic dispersion

by taking advantage of the nonlinear effects. However, solitons are also resistant to

other kinds of perturbations, such as PMD. The two orthogonal polarization states

that are differentially delayed as an effect of PMD, induce a nonlinear phase shift

due to cross-phase modulation that mutually shifts one-another frequencies in oppo-

site directions. Through the chromatic dispersion, the two polarization states will

travel at different speeds that fortunately counteract the PMD-induced delay. This

phenomenon is sometimes referred to as soliton trapping and works optimally in po-

larization maintaining fibers. However, in real telecom fibers, where the solitons must

adapt to the random birefringence, the solitons will shed some of their energy to dis-

persive wave radiation. The inherent robustness of soliton to PMD has been studied

in both conventional and dispersion-managed systems [77, 78].

2.13 PMD Compensation

In some cases, the mitigation techniques discussed in the above section are inadequate

and active PMD compensation must be employed. The main challenge in active PMD
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compensation lies in the fact that the temporal drift of the PMD parameters forces

any active compensation technique to dynamically adapt to changes while the system

is in operation.

There are a number of optical [82, 83, 84] and electronic [85, 86] PMD compen-

sators being proposed. Integrated electronics solutions have the advantage that they

consist of small and fast circuits that can be incorporated in the receiver, which can

also compensate for other types of distortions such as chromatic dispersion. Electron-

ics PMD mitigation is preferred over optical PMD compensation at 10 Gbit/s due to

its lower cost. However, when the bit rate is increased to 40Gbit/s per channel and

beyond, the required electronics is still immature. This makes its implementation

difficult and expensive. Furthermore, even though the components in the electrical

domain are generally faster and more flexible than bulk optics, the phase information

is lost after detection. This results in non-zero dispersion penalty even when optimal

equalizers are used. Therefore optical PMD compensators may have larger potential

as the PMD, in theory, can be completely compensated in the optical domain. For

optical domain compensation, compensators generally fall into three main categories:

(1) PSP transmission method, (2) Post compensation in feedback scheme, (3) Post

compensation in feed-forward scheme.

The PSP transmission method is obtained by aligning the input SOP to one of the

input PSP [81] of the transmission fiber. This scheme effectively has two degree of

freedoms (DOF). The main disadvantage of this method is that it requires a control

signal to be fed from the receiver all the way back to the input, and thus making this

scheme inherently slow. Post-compensation at the receiver’s end is therefore desirable

and has been an active research field.

Most post-compensation techniques in the literature [87, 88, 81, 89, 90] work in a

feed-back scheme. They vary in the degree of freedom (DOF) used in the compensator

and the type of feedback control signal used. The most commonly demonstrated

method is of the polarization controller + fixed DGD type. It has two degrees of

freedom from the polarization controller [89]. Its advantage lies in its simplicity and

the small number of DOF. With a fixed DGD in the compensator, it cannot cancel
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the complete PMD vector. Instead, its working principle is to effectively create an

appropriate combined PMD of the transmission line and the compensator so that

when this combined PMD is transformed to the input plane, it is aligned with input

SOP. The main disadvantage is that the compensator may create a large combined

PMD, thus introducing more higher-order PMD to the system. Another variation

employs an additional DOF by replacing the fixed DGD by a variable one [88]. Other

variety increases the DOF to account for higher-order PMD [87, 91].

Some of the most common feedback signals used are (1) Degree of Polarization [92]:

from equation (2.25), PMD introduces different polarizations for different spectral

components in the signal thereby reducing the DOP as seen in equation (2.50). The

feedback algorithm works to increase the DOP; (2) “Spectral line” feedback: it is

based on the analysis of the electrical spectrum. Since PMD generates a minimum in

the spectrum at the frequency 0.5/DGD [88], the maximization of spectrum samples,

eg. at 1/4 or 1/2 of the bitrate, indicates a decrease in the residual PMD distortion, and

(3) Eye-diagram: the analysis of the detected eye diagram at decision time provides

a measure with the best correlation to the BER. This can be accomplished by an

electronic eye monitor which allows one to extract the eye opening or to estimate the

Q-factor at PMD output [93].

The inherent challenge in PMD compensation based on feed-back schemes lies in

finding the global optimum and tracking it in all situations. There is often a risk

that the compensator loses track and ends up in an unfavourable position, either

because it is too slow or because the error signal is associated with sub-optima.

Therefore, feedback schemes are often restricted to the use of a small number of

DOF and compensation is mainly for the first-order PMD. As the bit rate of a single

channel increases, a compensator that cancels first order PMD is no longer sufficient

since higher order PMD dominates the signal’s degradation. Typical higher order

PMD compensators are multistage devices that have many degrees of freedom [87,

91, 8]. If the compensation scheme relies on feedback loops, the complexity involved in

searching the optimum of many parameters may hinder the development of a fast and

stable compensator. Thus, a feed-forward approach to PMD compensation appears
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more desirable when higher- order PMD has to be compensated. In this thesis, we

focus on this deterministic approach that diagnoses the PMD vectors and use this

information to carry out the appropriate compensation.

2.14 PMD Emulation

Although modern fibers have PMD values ∼0.1ps/
√

km, many of the previously in-

stalled fiber spans have higher PMD values. A critical problem for designers of high

performance systems is to measure the performance degradations due to the high-

PMD fiber spans [22]. Unfortunately, these high-PMD fibers are not readily available.

Moreover, even if they are available, it would be hard to rapidly explore the large

number of different fiber ensembles that is required to determine the distribution of

penalty due to PMD. For testing of optical systems that may be affected by PMD

and especially for the performance study of PMD compensators, it is critical to be

able to accurately emulate the first and higher-order PMD and quickly cycle through

a large number of different fiber states.

The fiber is typically modelled as a concatenation of randomly coupled linear bire-

fringent sections. Consequently, a device to emulate fiber PMD may be constructed

by concatenating many birefringent elements [94, 95]. These elements may be sections

of polarization maintaining fiber, birefringent crystals or any other device that pro-

vides a differential group delay between the two orthogonal polarization axes (e.g. a

polarization beam splitter followed by two paths of differing lengths and a polarization

beam combiner). To achieve different PMD states, some properties of the emulator

must be varied between samples, such as the polarization coupling between sections

or the birefringence of each section. With a sufficient number of these sections, the

PMD statistics of the emulator will mimic those of a real fiber. Reference [95] con-

cludes that a 15-section emulator with rotatable sections presents a good compromise

between meeting the theoretical design criteria and practical implementation. For

example, to obtain an emulator of root mean square DGD of DGDrms using a con-

catenation of N birefringent element (for N > 15), the required DGD per element
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∆DGD is given by [74]

∆DGD =
DGDrms√

N
(2.53)

To avoid an undesired periodicity in the frequency autocorrelation function [56], the

DGD of each section is randomly chosen from a Gaussian distribution with a mean

of ∆DGD and a standard deviation that is 20% of ∆DGD.

However, the main disadvantage of the above many-element emulator is that it is

too time consuming to perform enough trials to evaluate the effects of extremely rare

PMD events that cause outage probability of 10−6 (<1 min/yr) or less. Therefore,

the tool of importance sampling [32, 33, 34] has recently attracted much attention.

Importance sampling is a powerful tool for obtaining very low probability events with

relatively few sample points. This is accomplished by altering the method of obtaining

the random samples to concentrate the measured results in the area of interest in the

sample space. This distorts the probability distribution of the measured results, so

that each sample must then be appropriately weighted to map the measured values

back onto the proper distribution function. With this importance sampling technique,

one is strongly motivated to develop a programmable PMD emulator that has the

ability to “dial-in” any PMD state [96, 13, 14] so that one can quickly investigate

the PMD states of interest. One useful way to employ such emulator with a “dial-in”

feature is to use Monte-Carlo simulation with importance sampling to generate the

extremely rare events that occur in the tail of PMD distribution, and then “dial-in”

these PMD states into the emulator and produce them physically. In this thesis we

focus on this deterministic approach of emulation.

2.15 PMD in the presence of PDL

Polarization-Dependent Loss (PDL) of various inline optical components, such as

switches, isolators, couplers, filters and circulators can be as high as 0.3 dB or more.

When the optical pulse passes through an optical component with non-negligible

PDL, it splits between two orthogonal polarizations that attenuate each optical pulse

replica differently. Therefore in the presence of PDL, the full 4-parameters Stokes
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vector {S0, S1, S2, S3} and the 4×4 Mueller matrix have to be employed in the Stoke

space representation.

Pure PDL can cause deleterious effects in fiber links including: 1) optical power

fluctuations resulting from OSNR variation due to polarization state wandering dur-

ing propagation [97], induced gain ripple [98], and 3) limited PMD compensator

performance [99]. Recent publications have also showed via theoretical and experi-

mental results that the mutual interaction between PMD and PDL leads to significant

performance degradation in long distance systems [36, 21]. These degradations are ag-

gravated when low-frequency polarization scrambling (∼ 20 kHz) is used at the trans-

mitter end [100, 101, 102]. Polarization scrambling of the input State-Of-Polarization

(SOP) may be applied for various reasons: to suppress the polarization-hole burning

in erbium-doped fiber amplifiers [100, 101], and to facilitate the real-time monitoring

of PMD in feed-forward PMD compensation schemes [103, 2, 4, 104]. In terms of

real-time monitoring of PMD, the presence of PDL also has its deleterious effects.

It causes the loss of orthogonality between the two Principal States-of-Polarization

(PSPs), and makes them no longer represent the fastest and slowest propagating po-

larization states [20]. This affects the accuracy of the PMD characterization and thus

compromises the effectiveness of the feed-forward PMD compensation.

Due to the complexity of PDL interacting with PMD, most works on PMD com-

pensation ignore the presence of PDL to simplify the physics. However, studies show

that PDL may compromise the effectiveness of some PMD compensators [99] and

magnify the PMD-alone induced penalty [36]. In this thesis, we adopt the same ap-

proach of first ignoring the presence of PDL, and then in the last chapter of the thesis,

we show how to account for, and compensate for, PDL.
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Chapter 3

Real-Time PMD Monitoring

3.1 Background

One of the most challenging problems in feed-forward PMD compensation schemes

is the real-time monitoring of the PMD information. Previous graduate students

(Patrick Chou and John Fini) had proposed a method [2] that estimates the Principal

State of Polarization (PSP) of the fiber, using polarization scrambling of the input

State of Polarization (SOP). The measured values of the output averaged SOP were

fitted to an ellipsoid in Stokes space. The intersection of the major axis of the ellipsoid

with the unit Poincaré sphere gives the orientation of the PSP.

In this chapter, we present an improved version of the PMD estimation technique

[4]. Figure 3-1 shows the schematic of the measurement. It involves a sequence of

optical filtering of the tapped output signal, before the averaged SOP is measured

using a polarimeter. It makes use of the spectrum of telecommunication signals.

Three filters are used: a high-pass filter, a low-pass filter and a narrowband filter.

The averaged SOP’s of the filtered signals are then measured using a polarimeter.

We repeat the measurement for several different input SOPs using a polarization

scrambler at the input of the fiber. From these measurements, we deduce the first

order PMD, and subsequently the second order PMD. Instead of fitting the output

averaged SOP to an ellipsoid, we make use of the vectors that lie in the planes

perpendicular to the PSP.
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By numerical simulations, we show major improvements over the previous ellip-

soid method [2]: (i) We substantially reduce the number of input SOPs required to

achieve at the similar estimation accuracy of the PMD parameters. For example, to

estimate the PSP within an angle deviation of ∼9o, the previous ellipsoid method

[2] required at least forty input SOPs. However, in the current PMD estimation

technique, we can achieve comparable estimation accuracy by using only three input

SOPs. This implies faster characterization and a lower required scrambling rate of the

polarization scrambler; (ii) We can distinguish the fast and slow PSP in the current

PMD estimation technique, which is not possible in the previous method; (iii) We can

accurately estimate the DGD; (iv) With a polarimeter of adequate accuracy, second

order PMD estimation is possible; (v) The current PMD estimation technique uses a

simple search algorithm that requires little computation time.

3.2 Theory of First Order PMD Characterization

We neglect the effect of polarization dependent loss. Due to the response time of

detectors, the polarimeter intrinsically measures the SOP averaged over the pulse

duration (or equivalently, pulse spectrum). We denote the averaged SOP as ~r and it

is given as a weighted average of the Stokes vector ŝ(ω) across the spectrum of the

signal,

~r =

∫
dω

2π
|H(ω)|2 ŝ(ω) (3.1)

where |H(ω)|2 is the signal spectrum normalized to
∫

dω|H(ω)|2/2π = 1, so that for

the case of ŝ(ω) = ŝ(ωo) for all ω, ~r = ŝ(ωo). The PMD Stokes vector, ~τ(ω) [17],

describes the motion on the Poincaré sphere of the output SOP, ŝ(ω), as a function

of angular frequency ω
dŝ(ω)

dω
= ~τ(ω)× ŝ(ω) (3.2)

The magnitude |~τ | is the DGD while its direction τ̂ is the PSP direction. Taking a

Taylor expansion of ŝ(ω) around the center angular frequency, ωo, up to second order,
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Figure 3-1: Schematics of the new PMD estimation technique. At the output end of
fiber, signal is tapped and filtered. Its averaged SOP is measured using a polarimeter.
Various input SOP are generated using a polarization scrambler at the input end of
fiber.

substituting into (3.1) and making use of (3.2), we obtain the averaged SOP as

~r ∼= ŝ(ωo) + ∆ω [~τ(ωo)× ŝ(ωo)] + 1
2
∆ω2 [~τ × [~τ × ŝ(ωo)] + ~τω × ŝ(ωo)] + ..... (3.3)

where ∆ω =
∫

dω |H(ω)|2 (ω − ωo)
/
2π, ∆ω2 =

∫
dω |H(ω)|2 (ω − ωo)

2
/
2π and ~τω =

d~τ
dω

is the second order PMD.The polarimeter intrinsically measures the SOP ~r, as

given by (3.3). To measure the narrowband output SOP, ŝ(ωo), one has to place a

narrowband filter about ωo before the polarimeter.

This PMD estimation technique makes use of the filtered signal spectrum [105,

106, 107]. Figure 3-2 shows a typical optical spectrum of a 10Gbit/s RZ pseudo-

random bit sequence of length 27-1. Each ‘1’ bit is a Gaussian pulse of 30ps FHWM

pulse-width. This approximates the spectrum of the real telecommunication signal. In

this figure, the signal spectrum is symmetrical about the carrier frequency. However,

our estimation technique is equally valid when the signal spectrum is asymmetrical.

For simplicity, we shall first consider this symmetrical signal spectrum.

The signal is tapped at the output of the fiber as shown in Figure 3-1. For every

SOP generated by the polarization scrambler at the input of the fiber, we carry out
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Figure 3-2: Optical Spectrum of a 10 Gbit/s RZ pseudo-random bit sequence of length
(27-1 ). Each ’1’ bit is a Gaussian pulse of 30ps FWHM pulse-width.

three polarimeter measurements: 1) we measure the output ŝ(ωo) with a narrowband

filter about ωo, and 2) the averaged SOP of signal filtered by a high-pass optical filter

and (3) the averaged SOP of signal filtered by a low-pass optical filter. For simplicity,

we assume the transmission curves of these filters are of rectangular profiles with the

same transmission frequency bandwidth ∆fF as shown in Figure 3-3. A discussion

of the use of realistic filter transmission profiles is given in the later portion of the

chapter. The high-pass filter transmits frequency f within the range fo < f 6
fo + ∆fF while the low-pass filter transmits fo − ∆fF 6 f < fo. We assume these

optical filters are polarization insensitive. Figure 3-4 shows the simulated normalized

average power transmitted by the high-pass (or low-pass) optical filters for various

∆fF . The normalized average power within the peak of the carrier frequency, fo,

is calculated to be 32%. Since the transmission of the high-pass (or low-pass) filter

excludes fo, the upper limit of the normalized averaged powers transmitted by the

filter is therefore 34% for this symmetrical spectrum.

The transmitted signal using the high-pass filter has ∆ω = ∆ωT and ∆ω2 = ∆ω2
T
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Figure 3-3: Transmission profiles of the high-pass filter and low-pass filter used in the
PMD estimation techniques

while, the filtered signal using the low-pass filter has ∆ω = −∆ωT and ∆ω2
T = ∆ω2

T .

Thus the polarimeter measures the averaged SOP of these filtered signals as

~rHP = ŝ(ωo) + ∆ωT [~τ × ŝ(ωo)] +
1

2
∆ω2

T [~τ × [~τ × ŝ(ωo)] + ~τω × ŝ(ωo)] + ..... (3.4)

for the high-pass filter and

~rLP = ŝ(ωo)−∆ωT [~τ × ŝ(ωo)] +
1

2
∆ω2

T [~τ × [~τ × ŝ(ωo)] + ~τω × ŝ(ωo)] + ..... (3.5)

for the low-pass filter. By taking the difference of ~rHP and ~rLP , we obtain a vector

~τ(ωo)× ŝ(ωo) ∼= (~rHP − ~rLP )

2∆ωT

(3.6)

which lies in the plane normal to ~τ(ωo). Polarization scrambling of the input SOP

gives us several vectors (~rHP − ~rLP )i lying in different planes normal to ~τ(ωo). By

using a simple search algorithm to find the unit vector p̂ that is perpendicular to all

these (~rHP − ~rLP )i, we determine the orientation of the PSP (i.e.τ̂(ωo) = p̂). Ideally,
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(~rHP − ~rLP )i.p̂ = 0. Because of errors in measurements, the p̂ that satisfies

All Input SOP∑
i

((~rHP − ~rLP )i.p̂)2 = minimum (3.7)

is the optimal estimate of the PSP τ̂(ωo). Since the search involves only two parame-

ters, it requires little computational time, and therefore it is suitable for fast real-time

PMD characterization. In addition, since we know (~rHP − ~rLP ) and ŝ(ωo), we can

also distinguish the fast and slow PSP from equation (3.6),

After the PSP τ̂(ωo) is determined, the angle subtended by ~rHP and ~rLP is pro-

jected onto the plane perpendicular to the PSP. This projected angle is given as

cos (θ) =
~rHP⊥.~rLP⊥
|~rHP⊥| |~rLP⊥| (3.8)

where ~rHP⊥ = ~rHP − (~rHP .τ̂)τ̂ and ~rLP⊥ = ~rLP − (~rLP .τ̂)τ̂ . The DGD is then given

as

DGD = |~τ(ωo)| = θ

2∆ωT

(3.9)
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Figure 3-5: Graphs in the top row show the estimated DGD versus the emulator’s
DGD while the graphs in the bottom row show the errors in the estimation of the
output PSP (in terms of degrees of arc length from the emulator’s output PSP). PMD
estimation using various numbers of input SOP: a) 3, b) 5 and c) 10. The standard
deviation, σpolarimeter, of the polarimetric measurement is kept constant at 0.01.

We estimate the final DGD of the fiber by averaging the DGD values measured for

the various input SOPs. When the input SOP happens to be close to the input PSP,

we have small |(~rHP − ~rLP )|, thus equation (3.8) tends to be more sensitive to errors

in the polarimetric measurements. With this in mind, the averaging of the DGD is

weighted by a factor of |(~rHP − ~rLP )| to improve the accuracy in the estimation.
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3.3 Theory of Second Order PMD Characteriza-

tion

Second order PMD is defined as ~τω(ωo) ≡ d~τ/dω. By adding equation (3.4) and

equation (3.5), we obtained

~rHP + ~rLP = 2ŝ(ωo) + ∆ω2
T [~τ (ωo)× [~τ (ωo)× ŝ(ωo)] + ~τω(ωo)× ŝ(ωo)] + ..... (3.10)

Thus

~τω(ωo)× ŝ(ωo) ∼= (~rHP + ~rLP )− 2ŝ(ωo)

∆ω2
T

− (~τ(ωo)× [~τ(ωo)× ŝ(ωo)]) (3.11)

Since we have already determined the first order PMD, ~τ(ωo), the R.H.S. of equation

(3.11) is a known quantity. Therefore we have obtained a vector that lies in the plane

normal to ~τω(ωo). As in the case of first order PMD characterization, polarization

scrambling gives us different ~τω(ωo) × ŝ(ωo) for the various input SOPs. Thus using

a least-squared fit algorithm in similar form to that of equation (3.7), we can find

the vector that is perpendicular to all these ~τω(ωo) × ŝ(ωo). This determines the

orientation of the ~τω(ωo). The magnitude of second order PMD for each input SOP

can also be obtained from equation (3.9). Similarly, we estimate the final magnitude

of second order PMD by averaging the second order PMD magnitudes measured for

the various input SOPs.

3.4 Simulations

Figure 3-5 shows the Monte Carlo simulations of our current PMD estimation tech-

nique. These computer simulations were carried out with 10Gbit/s RZ pseudo-

random bit sequences of Gaussian pulses of 30ps (FHWM) pulse-width. For each

graph, 1000 PMD states are randomly “generated” using an emulator of 10 fixed

DGD segments. The DGD of each segment is 5.15ps and polarization scramblers

are placed between segments. This emulator produces a mean DGD of 15ps. This
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Figure 3-6: Estimation of the second order PMD using a) 10 and b) 25 input SOP’s.
Standard deviation σpolarimeter used in the simulation is 0.001. The filter bandwidth
∆fF is 5 GHz.

corresponds to a PSP bandwidth of 8.3 GHz. Different input SOP’s are randomly

generated to simulate the polarization scrambling at the input end of the emulator.

For each input SOP, the signal is filtered after propagating through the emulator with

three rectangular optical filters: a high-pass filter, a low-pass filter (see Figure 3-3)

and a narrowband filter. In order to capture second order PMD without much varia-

tion in the first order PMD, we choose the total transmission bandwidth covered by

both high- and low-pass filters to be ∼1.2 times the PSP bandwidth. Thus in these

simulations, ∆fF of both filters is 5 GHz. The normalized averaged powers transmit-

ted by these high- and low-pass filters are ∼14% (see Figure 3-4). The narrowband

filter has a frequency bandwidth of 0.5 GHz centered at the carrier frequency.

To simulate the polarimetric measurement, the averaged SOPs of the filtered sig-
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nals after propagating through the emulator are computed. In addition, to simulate

the random noise in the polarimetric measurements, we introduce independent ran-

dom Gaussian distributed errors of standard deviation σpolarimeter to each component

of the computed averaged SOP vector. Based on these randomly perturbed averaged

SOP, we carry out the PMD estimation using equations (3.6), (3.8), (3.9) and (3.11)

and the algorithms discussed in the previous section.

This standard deviation σpolarimeter could be used to include other noise sources

in the fiber link. However, for the following discussion, we simply assume the noise

originates mainly from the polarimetric measurements. Currently, polarimeters of

accuracy of σpolarimeter ∼ 0.01 with sub-millisecond measurement speed are commer-

cially available. This corresponds to a standard deviation of SOP angular errors of

0.81o. Thus we choose σpolarimeter= 0.01 for our simulations. We assume the errors of

measuring ∆ωT and ∆ω2
T are small.

The graphs in the top row of Figure 3-5 show the estimated DGD versus the

emulator’s DGD while the graphs in the bottom row show the errors in the output

PSP estimation (in terms of degrees of arc length from the emulator’s output PSP).

The number of input SOPs used for each PMD characterization are (a) 3, (b) 5, (c)

10. By increasing the number of input SOP’s from 3 to 10, the standard deviation of

the errors of the estimated DGD improves from 2.6ps to 0.26ps while the standard

deviation of the PSP angular errors improves from 8.3o(corresponding to polarization

extinction ratio of –22.8dB) to 2.8o (corresponding to polarization extinction ratio of

-32.2dB). By using three input SOPs, we have achieved accuracy in PSP estimation

in Figure 3-5a comparable to that in Reference [2] where forty input SOP’s were used.

Generally, we would expect less accurate PMD estimation when the emulator’s

DGD is small. This is due to the reduced magnitude of |(~rHP − ~rLP )| which tends to

be more sensitive to noise in the polarimetric measurements, thus leading to relatively

large deviation of the PMD estimation from the actual value when the DGD is small.

Occasionally, one can also observe large deviations of the PMD estimation even when

the DGD of the emulator is large. These are mainly due to random occurrences of the

input SOPs that are too close to the input PSP, which result in reduced |(~rHP − ~rLP )|.
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Figure 3-7: Estimation of first order PMD when Lorentzian filters are used. The
low-pass filter has a bandwidth of 3 GHz (FWHM) while the high-pass filter has a
bandwidth of 2.5 GHz (FWHM). Both filters are centered 3.5 GHz away from fo. The
narrowband filter has a bandwidth of 0.5 GHz (FWHM) centered at fo. Standard
deviation σpolarimeter used in the simulation is 0.01. The number of input SOP’s used
are (a) 3 and (b) 10.

This situation improves significantly when we increase the number of input SOPs used

in the PMD estimation, as shown in Figure 3-5. In principle, the minimum number

of input SOP’s needed for PMD characterization is two. However, due to i) the

possibility of the input SOP being too close to the input PSP and ii) measurement

inaccuracy of the polarimeter and other sources of noise, better estimation can be

achieved with a larger number of input SOPs.

Estimation accuracy of second order PMD is expected to be less than that of

first order PMD characterization. This is because second order PMD is a second

order effect in averaged SOP (see equation (3.3)), and, in addition, its estimation

depends on how well the first order PMD had been determined. Therefore, a larger
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number of input SOP’s and more precise polarimetric measurements are required.

We have only managed to achieve reasonable accuracy in the estimation of second

order PMD when σpolarimeter is reduced to < 0.003. Figure 3-6 shows the estimation

of the second order PMD with σpolarimeter of 0.001 when the number of input SOPs

used for each PMD characterization are a) 10 and b) 25. When the number of input

SOP’s increases from 10 to 25, the standard deviation of the errors of the estimated

magnitude of second order PMD improves from 13.3ps2 to 11.2ps2 while the standard

deviation of the angular errors of the second order PMD direction improves from

10.2o (corresponding to polarization extinction ratio of –21 dB) to 9o (corresponding

to polarization extinction ratio of –22 dB).

As mentioned earlier, for simplicity in illustrating our estimation technique, we

considered a symmetrical signal spectrum about the carrier frequency with identical

rectangular high- and low- pass filters as shown in Figure 3-3. In the case of an

asymmetrical signal spectrum or non-identical high and low-pass filters, equation

(3.6) must be modified

(
∆ω2

LP

∆ω2
HP

(~rHP − ŝ(ωo))

)
− (~rLP − ŝ(ωo)) ∼= [~τ(ωo)× ŝ(ωo)]

(
∆ωHP

∆ω2
LP

∆ω2
HP

−∆ωLP

)

(3.12)

while equation (3.9) becomes

DGD = |~τ(ωo)| = θ

(∆ωHP −∆ωLP )
(3.13)

where ∆ωHP and ∆ω2
HP are defined in the same manner as ∆ω and ∆ω2 (see equa-

tion (3.3)) but evaluated using the transmitted spectrum of the high-pass filter, while

∆ωLP and ∆ω2
LP are evaluated using the transmitted spectrum of the low-pass filter.

The remaining procedures for PMD characterization are the same. The technique

works with filters of any transmission profiles as long as they are polarization insen-

sitive. Figure 3-7 shows a simulation where the filters are of Lorentzian transmission

profiles. The low-pass filter has a bandwidth of 3 GHz (FWHM) centered at 3.5 GHz

from the carrier frequency fo while the high-pass filter has a bandwidth of 2.5 GHz
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(FWHM) centered at 3.5 GHz from fo. The narrowband filter has a bandwidth of

0.5 GHz (FWHM) centered at fo. The standard deviation σpolarimeter is 0.01 and

the number of input SOP’s used for each PMD estimation are (a) 3 and (b) 10.

Equations (3.12) and (3.13) were used instead of equations (3.6) and (3.8) in the

simulation. From Figure 3-7, when the number of input SOP is increased from 3 to

10, the standard deviation of the errors of the estimated DGD improved from 1.88 ps

and 0.47 ps while the standard deviation of the PSP angular errors improved from

8.98o(corresponding to polarization extinction ratio of –22dB) to 3.7o(corresponding

to a polarization extinction ratio of –29.8dB). Thus, this shows that comparable es-

timation accuracy is achievable with non-identical realistic high- and low-pass filters.

3.5 Broadband PMD Monitoring

The above sections focus on the real-time characterization of 1st and 2nd order PMD

vectors. However, for broadband applications such as a multi-channel WDM system

or fiber with large mean DGD, compensation of PMD up to second- order may not

be sufficient and all orders of PMD have to be considered. To avoid the complexity of

introducing higher-order PMD terms, we do not express the PMD vector as a Taylor

expansion about the center frequency ωo. Instead we simply treat the whole PMD

spectrum as 1st order PMD vector that varies from frequency to frequency. This

results in the All-Frequency PMD compensation scheme described in Chapter 6. To

diagnose the PMD vector spectrum over a certain frequency range of interest, we

utilize the same non-intrusive SOP monitoring schemes shown in Figure 3-1.

For a frequency ω and its nearby frequencies ω ± ∆ω, the trajectories of the

polarimetric output state of polarization (SOP) can be approximated by an arc on

the Poincaré sphere. The axis of the arc is along the direction of the output principal

state of polarization (PSP) τ̂f (ω) and the arc length is proportional to the differential

group delay (DGD) |~τf (ω)|. So, in principle, the knowledge of the output SOP as

a function of frequency is sufficient to determine the output PMD vector ~τf (ω) as a

function of frequency.
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A portion of the telecommunication signals is tapped out at the output end of

the fiber for measurements. This tapped signal then passes through an optical filter

placed before a polarimeter. The averaged output SOP of this filtered signal is ~r(ω).

By scanning the optical filter through the spectrum of interest, the averaged output

SOP ~r(ω) can be measured as a function of frequency. From equation (3.6), the output

PSP at frequency ωo can then be obtained by the direction of the cross product of

differential SOP vectors (~r(ωo)− ~r(ωo −∆ω)) and (~r(ωo + ∆ω)− ~r(ωo)). The DGD

at frequency ωo can be deduced from the length of these differential SOP vectors.

In practice, this cross-product often does not give a good estimation of ~τf (ω) due

to the presence of higher order PMD and the fact that it is difficult to measure

the small change in the differential SOP vectors with frequency. To improve the

estimation accuracy, we make use of the random scrambling of the launched SOP at

the transmitter end of the fiber. Since the input polarization scrambling does not

change the fiber’s properties, it will not affect the PMD of the fiber. On the other

hand, the trajectory of the averaged output SOP of the filtered signal changes to

~r(ω)
′
. For a given frequency, the trajectories of ~r(ω) and ~r(ω)

′
produce different arcs,

however, both arcs possess a common axis. This common axis gives the PSP at that

frequency, and can be found by the cross product of (~r(ωo + ∆ω) − ~r(ωo − ∆ω))

and (~r(ωo + ∆ω)
′ − ~r(ωo − ∆ω)

′
). Once the PSP is determined, the DGD can be

deduced from the arc length of (~r(ωo + ∆ω) − ~r(ωo − ∆ω)). Often, more than two

different input SOPs are used to improve the estimation. Using equation (3.7), one

can find the optimum unit vector that is normal to all the various differential SOP

vectors, (~rj(ωo + ∆ω) − ~rj(ωo − ∆ω)). Thus this determines their common axis

(which is aligned to the PSP) with much better accuracy. The DGD estimation can

also be improved by averaging the individual DGD value deduced from the various

(~rj(ωo + ∆ω)− ~rj(ωo −∆ω)).

With the above monitoring scheme, it is clear that we do not need to know the

input SOP. Thus, the polarization scrambling at the transmitter end can be arbitrary

and need not be in a pre-arranged sequence. This is a major advantage of charac-

terizing the output PMD in Stokes Space as compared to characterizing the Jones
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Matrix of the fiber, since the latter requires the knowledge of the input SOP. In the

case of Jones Matrix characterization, even if the input SOP can be scrambled in a

pre-arranged sequence, the detected output SOP must still be synchronized with the

input SOP. On the other hand, for the case of the output PMD characterization in

Stoke space, there is no need for such synchronization except that the measurement

of ~r(ω)for the entire frequency range of interest, has to be completed before the next

input SOP is launched. In other words, if the time to measure ~r(ω) over a certain

band of interest is TSOP , the scrambling rate cannot be faster than 1/TSOP .

Since this PMD monitoring scheme utilizes the telecommunication spectrum, the

accuracy of the SOP measurement naturally depends on the power spectral density

of the frequency components. Due to the signal-to-noise ratio, frequency components

that have large power spectral density are expected to be monitored with better

accuracy than those of lower power spectral density. However, frequency components,

that do not have sufficient power spectral density for accurate SOP measurement, are

also components that have lesser impact on the signal’s degradation. Therefore, their

PMD compensation is less important.

The accuracy of the PMD estimation also depends on the DGD values. Frequency

components that have larger PMD are expected to be monitored with better accuracy

due to the larger differential SOP vectors (~rj(ωo + ∆ω) − ~rj(ωo − ∆ω)). However,

frequency components that have small DGD are components that have little impact

on the signal’s degradation. Thus, their PMD compensation is also immaterial.

Since feed-forward PMD compensator acts after the characterization, there is a

time lag between the monitoring and the compensation. For the case of continu-

ous monitoring and compensation, this time lag is determined by the time required

to measure the PMD spectrum. To avoid data loss due to the delayed action of

the compensator, the time lag must be smaller than the time scale over which the

PMD spectrum changes significantly. This time scale varies from few ms to few min-

utes [29, 31, 64] depending on the environment in which the fiber is being deployed

(whether aerial or buried fiber). To speed up the polarimetric SOP measurement,

instead of scanning the optical filter through the frequency range of interest, one can
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Figure 3-8: Measured DGD and PSP as a function of wavelength. The calibrated
emulator’s DGD setting is 5ps

build a polarimeter that uses dispersive elements to spatially disperse the frequency

components onto detector arrays. Reference [108] has recently demonstrated that

such a scheme allows SOP measurements of 256 different wavelengths within 1 ms.

It may be useful to estimate the time required for the characterization of the

spectrum of PMD vectors. The optical frequency step size ∆f required for the char-

acterization depends on the bandwidth of the PSP. This PSP bandwidth [18] is given

as ∆fPSP = 1/8τ̄ where τ̄ is the mean DGD value. Over this bandwidth, the PMD

vector stays reasonably constant. Thus the maximum value of the step size ∆f is

limited by ∆fPSP . A conservative step-size is ∼ ∆fPSP /8 and this step-size is typ-

ically used in simulations discussed in Chapter 6. For a single channel, we need to

monitor the PMD spectrum for an optical frequency range of 3/T about the center

frequency of the channel. Note that T is the bit period. If we require Npol different

input SOPs for every PMD spectrum characterization, the total number of polari-

metric SOP measurements needed for a single characterization of the PMD spectrum

is 192Npolτ̄ /T. For example, if one uses 3 input SOPs for each characterization of

the PMD spectrum of a fiber whose mean DGD is 50% of the bit period, the total

required number of polarimetric SOP measurements is ∼288. In practice, it may be
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Figure 3-9: Measured DGD and its errors for the various emulator’s DGD setting

feasible to achieve this many polarimetric SOP measurements on a millisecond time

scale since Reference [108] has demonstrated 256 polarimetric SOP measurements

in 1 ms. In summary to the real-time monitoring, we believe real-time monitoring

of PMD vectors is comparatively easier than the monitoring of the complete Jones

Matrix (as required in Reference [109]) since no knowledge of the input SOP is re-

quired. However, to perform it on a millisecond time scale may be challenging but

still feasible.

3.6 Experimental Demonstration

We first demonstrate the accuracy of the characterization technique for first-order

PMD using a calibrated JDS Uniphase PE4 PMD emulator which generates pure

first order PMD by separating the two orthogonal polarization components using a

polarization beam splitter, introducing a path difference between them in free space

and then recombining them using a polarization beam combiner. In the measurement

setup, instead of optically filtering a telecommunication signal at the output end as

described in Section 3.2, we use a Santec scanning wavelength laser at the input

end. The polarization of the laser is randomly scrambled with a General Photonics

polarization scrambler (Polarite II) before launching into the emulator. The output

polarization is measured with a HP 8509B polarimeter. From the SOP measurements
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Figure 3-10: Vector diagram showing the precession of the resultant PMD vector with
wavelength for a two-segment concatenation

with frequency, we deduce the spectrum of the PMD vectors using the same algo-

rithms described in Section 3.2. Figure 3-8 shows the measured DGD as a function

of wavelength. The calibrated emulator’s DGD setting is 5ps. In principle, the pure

first-order PMD is independent of wavelength. In fact, the variation in the DGD

spectrum is due to the measurement errors that mainly arise from the reading of the

Santec laser wavelength. Its manufacturer warrants an accuracy of wavelength read-

out up to ∼ ±0.02 nm. This translates to a ∼ ±5 % error in the DGD measurements

when a wavelength step-size of 0.4 nm is used, thus explaining the observed DGD

variation in the spectrum. On the other hand, the PSP can be characterized more

accurately since it is based solely on the polarimetric measurements (see equation

3.7). The measured PSP is shown on the Poincaré sphere in Fig 3-8 for the various

wavelengths. As expected, the PSP does not vary with the wavelength. Figure 3-9

shows the measured DGD and the corresponding errors for the various emulator’s

DGD setting. It shows good agreement with the calibrated emulator’s DGD. In our

experiment, we use a smaller wavelength step-size for the larger DGD setting, thus

producing a larger error for these larger DGD settings. Since all orders of PMD can

be generated simply by concatenating two first-order PMD segments [51], we verify

the characterization technique for the higher-order PMD using a two-segment con-
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Figure 3-11: The measured PSP and DGD as a function of wavelength for a two-
segment concatenation

catenation. By PMD concatenation rule, the resultant PMD of this concatenation

is

~τR = ~τ2 + R2~τ1 (3.14)

where ~τ1 and ~τ2 are the first order PMD for the first and second segment respec-

tively. They have negligible wavelength dependence. R2 is the rotation due to the

second segment. The rotation axis is along the slow birefringent axis of the second

DGD segment, and the rotation angle is the retardation angle of segment 2 and is

wavelength dependent. As a result, when the wavelength varies, the resultant PMD

vector precesses about the birefringent axis of the second segment as shown in Fig-

ure 3-10. The rate of precession with frequency is determined by the DGD of the

second segment. On the other hand, the magnitude of the resultant PMD vector is

wavelength-insensitive for this two-segment concatenation. Another interesting point

to make about equation 3.14 is that a change in the first segment’s DGD may change

the resultant PMD vector but it has no effect on the precession of the resultant PMD

vector. In the experiment, we use a variable DGD for the first segment and a fixed

DGD for the second segment. The variable DGD is produced by the JDS Uniphase

85



���������	
	���

5ps

1ps

Figure 3-12: Measured resultant PSP as a function of wavelength for different setting
of the first segment’s DGD

PE4 PMD emulator while the fixed DGD is a fixed length of 3M Tiger polarization

maintaining fiber. The measured DGD of the Tiger PM fiber is 1.27ps. Figure 3-11

shows the measured resultant PMD vector of the concatenation. As expected, we

observed the precession of the PSP of the resultant PMD. In addition, the measured

DGD of the resultant PMD vector remain constant at 5.8 ps (within the measure-

ment errors) when the wavelength changes. Figure 3-12 shows the measured resultant

PMD vector when we vary the DGD of the first segment. It matches our expectation

that the rate of precession and precession axis remain constant despite the change in

the resultant PMD vector. To check the capability of the technique for characterizing

higher-order PMD, we deduce the DGD of the second segment from the precession

rate and its PSP from the precession axis of the resultant PMD vectors. After know-

ing the PMD of the second segment, we deduce the DGD of the first segment from

the measured resultant PMD vector. These are then compared to the known DGD
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Figure 3-13: Deduced DGD of the individual segment

values of each segment. Figure 3-13 shows the deduced DGD of the first segment and

the second segment using various DGD settings of the JDS emulator. The deduced

DGD value of segment 1 agrees well with the known calibrated values from the JDS

emulator. In addition, for all the various DGD settings of the JDS emulator, the

deduced DGD of the second segment is constant at 1.28ps. This value also agrees

well with the measured 1.27 ps for the Tiger PM fiber. Therefore we have verified the

accuracy of the characterization technique for the prediction of first and higher-order

PMD.

3.7 Conclusion

We have presented a real-time estimation technique to predict the first order and sec-

ond order PMD parameters. At the output end of the fiber, the signal is tapped and

filtered. Three filters are used: a high-pass filter, a low-pass filter and a narrowband

filter. The averaged SOP of the filtered signals are then measured using a polarime-

ter. We repeat the measurement for several different input SOP’s using a polarization

scrambler at the input end of the fiber. From these measurements, we deduce the

first order PMD, and subsequently the second order PMD. Using Monte Carlo sim-

ulations, we have shown that this technique offers significant improvements over the

previous ellipsoid method [2] in terms of measurement accuracy, lower required polar-

ization scrambling rate and capability to estimate more PMD parameters. The search
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algorithm used is simple and requires little computation time, thus making the tech-

nique feasible for real-time PMD characterization. In addition, we discuss how to

extend the scheme to monitor the spectrum of the PMD vector which is required for

All-Frequency PMD compensation discussed in Chapter 6. We also demonstrate the

accuracy of the characterization technique experimentally using well-calibrated first-

and higher-order PMD sources.
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Chapter 4

A Variable DGD Module for First

Order PMD

4.1 Background

Due to the statistical nature of polarization mode dispersion (PMD), PMD compen-

sators and emulators have to be adjustable. For first order PMD, a typical compen-

sator [88] or emulator [74] consists of a polarization controller and a birefringence

segment that has a tunable differential group delay (DGD). To generate the variable

DGD, a common approach is to separate the two orthogonal polarization compo-

nents using a polarization beam splitter, introduce a path difference between them

and then recombine them using a polarization beam combiner [88, 8, 87, 110, 111].

This approach requires mechanical movements and therefore suffers from slow speed

(sub-second), large output polarization fluctuation and poor control stability. An-

other popular option is to concatenate two fixed DGD segments via a polarization

controller to generate the tunable DGD. However, this results in a second order PMD

vector perpendicular to the resultant 1st order PMD vector, which causes rotation

of the principal state of polarization as one moves away from the center wavelength

[17, 68]. The most recent approach to variable DGD is based on concatenation of 6

birefringent crystals whose lengths increase in a binary power series [112]. Neverthe-

less, there remains a substantial amount of 2nd order PMD (∼80ps2).

89



1C

Block

Rτ�

)0( =Rωτ�

)( 0RRCRB =
Tunable 

PhasePlate

Block

'
ωτ�'τ�'

ωτ�'τ�

Tunable 
PhasePlate

R

0Cτ�

R

τ�

Tunable 
PhasePlate

R

0Cτ�

R

τ�1C

Figure 4-1: Schematic of the variable DGD module. It consists of two identical blocks
concatenated via C1. Each block itself consists of two identical fixed DGD segments
concatenated via C0.

In this chapter, we propose a symmetrical way of concatenating 4 identical fixed

DGD segments so that the resultant DGD is variable while no second order PMD is

produced. In addition, the third order PMD produced is only half the value of the

one produced in the concatenation of two fixed segments with the same DGD tuning

range.

4.2 Theory

The schematic of the module is shown in Figure 4-1. Two identical blocks are con-

catenated via a tunable phase-plate, C1, whose rotation axis is the x-direction in

Stokes space (equivalent to horizontal linearly polarized birefringence axis). Each

block consists of two identical fixed DGD segments of negligible second order PMD.

They are concatenated via C0, which is a tunable phase-plate whose rotation axis is

the y-direction (equivalent to a 45o linearly polarized birefringence axis). In Stokes

space representation, each fixed DGD segment has first order PMD, ~τ = {|~τ | , 0, 0},
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′
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′
ω in Stokes space. Step 1 is the C0 transformation

of ~τ , which correspond to a rotation of θC0 about y-axis. Step 2 is the R transformation
of C0~τ which corresponds to a rotation of θR about x-axis. In Step 3, vector addition
of ~τ and RC0~τ gives ~τ

′
while vector product ~τ of and RC0~τ give ~τ

′
ω .

and a rotation matrix, R, whose rotation axis is the x-direction and rotation angle is

θR. The block produces first order PMD, ~τ
′
, and second order PMD,~τ

′
ω

~τ
′
= ~τ + RC0~τ (4.1)

~τ
′

ω = ~τ × ~τ
′

(4.2)

Note that ~τ
′

and ~τ
′

ω are perpendicular to each other. We will make use of this

property to cancel the second order PMD of the entire structure. Figure 4-2 illustrates

the construction of ~τ
′
and ~τ

′
ω in Stokes space. Step 1 is the transformation via C0 of ~τ

which corresponds to a rotation of θc0about the y-axis. Step 2 is the R transformation

of C0~τ which corresponds to a rotation of θR about the x-axis. In Step 3, vector

addition of ~τ and RC0~τ gives ~τ
′
while the vector product of ~τ and RC0~τ give ~τ

′
ω . The

rotation matrix of the block is RB = RC0R.
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Since the module is constructed with tunable phase-plates, which can either be

electro-optic or magneto-optic, high speed tuning of DGD is possible as shown in

[112]. Moreover, instead of using polarization-maintaining fibers as fixed DGD seg-

ments, one could use birefringent crystals, which promise compactness and stability.

Alternatively, one could integrate the whole variable DGD module on a wafer based

on MEMS technology, since the fixed DGD segments are simply fixed delay lines in

free space while the tunable phase-plates are finely-adjustable delay lines in free space

as shown in [113].

When the two identical blocks of ~τ
′
and ~τ

′
ω are concatenated via C1, the resultant

first order PMD vector, ~τR, and resultant second order PMD vector, ~τωR, are

~τR = ~τ
′
+ RBC1~τ

′
(4.3)

and

~τωR = ~τ
′

ω + RBC1~τ
′

ω + ~τ
′ × ~τR (4.4)

Now, if we tune C1 so that

RBC1~τ
′
= ~τ

′
(4.5)

and

RBC1~τ
′

ω = −~τ
′

ω (4.6)

Then

~τR = 2~τ
′

(4.7)

and

~τωR = 0 (4.8)

Thus, our approach to produce variable DGD without second order PMD can be

summarized as follows: For any designated DGD value, we tune C0 so that each

block produces half of the designated DGD value, and then we tune C1 so that the

first order PMD vectors of the two identical blocks add to give the designated DGD

value, while their second order PMD vectors cancel one another. The total tunable
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Figure 4-3: ~τ
′
and ~τ

′
ω under RBC1(= RC0RC1) transformation in Stokes space. Point

(1) to Point (2): ~τ
′
and ~τ

′
ω are transformed by C1 which corresponds to a rotation

of θC1 about x-axis. Point (2) to Point (3): R transformation which corresponds
to a rotation of θR about x-axis. Point (3) to Point (4): C0 transformation which
corresponds to a rotation of θC0 about y-axis. Point (4) back to Point (1): another
R transformation.

DGD range of the module is 4|~τ |. For any designated DGD value, |~τR| = 2
∣∣~τ ′∣∣, we

can solve the required rotation angle of C0 using simple vector algebra (see Figure

4-2),

cos

(
θC0

2

)
=
|~τR|
4 |~τ | (4.9)

Note that ~τ
′
and ~τ

′
ω are perpendicular to each other. Thus equations (4.5) and (4.6)

are satisfied by a rotation transformation, RBC1, that uses ~τ
′
as its rotation axis and

rotation angle of π. Since we know RB and ~τ
′
, we can compute C1 as

C1 = R†
BT = (RC0R)†T (4.10)

where T is a rotation by π about ~τ
′
. In general, to implement C1 to satisfy equation

(4.10), one would require at least three tunable phase-plates due to the 3 parameters
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Figure 4-4: DGD produced by the 4-segment module for various designated DGD
values.

contained in an arbitrary rotation transformation. However, due to the symmetry

involved in our configuration and our selection of the rotation axes of C0 and R, C1

is a rotation about the x-axis with fixed rotation angle of

θc1 = π − 2θR (4.11)

This angle remains constant independent of changes in C0 needed to achieve different

DGD. The simplicity of the solution of C1, favors practical implementation of the

module. Figure 4-3 depicts visually the vector transformation, RBC1(= RC0RC1) of

~τ
′
and ~τ

′
ω in Stokes space to explain the solution of C1 in equation (4.11). From point

(1) to point (2), ~τ
′
and ~τ

′
ω are transformed by C1 which corresponds to a rotation of

θc1 about the x-axis. They are further transformed by R from point (2) to point (3),

which corresponds to a rotation of θR about the x-axis. This is followed by a rotation

of θc0 about the y-axis via C0 from point (3) to point (4) and, finally, from point (4)

back to point (1) via R. With the rotation angle of C1 given by equation (4.11), ~τ
′
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Figure 4-5: Higher-orders PMD produced the 4-segment module. (a) Magnitude of
second order PMD vector. (b) Magnitude of third order PMD vector. For comparison
purposes, we have also plotted higher-orders PMD produced by the conventional
concatenation of two 25 ps DGD segments via a polarization controller, to produce
the same DGD tuning range of 50 ps.

acquires its original direction while ~τ
′

ω is reversed in direction. Therefore the first

order PMD vectors of the two identical blocks add to give the designated DGD value,

while their second order PMD vectors cancel. Now, if C0 is varied to achieve another

different DGD value, one can repeat the whole transformation procedure visually to

see that the same rotation angle of C1, as in equation (4.11), again satisfies both

equations (4.5) and (4.6). Thus, to vary the DGD of the 4-segment module, we only

need to control the rotation angle of C0.

4.3 Simulations

Figure 4-4 shows the DGD values produced by 4-segment module for various desig-

nated DGD values using the method discussed above. The DGD, |~τ |, is 12.5ps for

all four identical segments. Obviously, the 4-segment module can produce the desig-

nated DGD within the whole tuning range of zero to 4|~τ |, which, in this case, is 50ps.

Figure 4-5a shows the second order PMD produced by the 4-segment module. For
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comparison, we have also plotted the second order PMD produced by concatenating

two 25ps DGD segments via a polarization controller, to produce the same DGD tun-

ing range of 50 ps. The 4-segment module does not produce any second order PMD

while the maximum magnitude of second order PMD produced by the conventional

2-segment concatenation is ∼ 625 ps2. The result for third order PMD is shown

in Figure 4-5b. The 4-segment module produces half the value of the conventional

two-segment concatenation.

In practical implementation, to get identical ~τ for all four segments may not be

an issue but one may have difficulty in achieving the same rotation angle, θR, for all

the segments. Thus, for cases where we have different rotation angles for the various

segments, the solution of C1 can be worked out to be

θc1 = π − θSeg2
R − θSeg3

R (4.12)

Again the solution is a constant over the whole DGD tuning range, and it is inde-

pendent of the rotation angle of the first and last segment. Figure 4-6a shows the

numerical solution of the required rotation angle of C0 for the various designated

DGD values. Obviously, for zero DGD, the rotation angle of C0 has to be π so that ~τ

of each segment in the block must cancel and produce no DGD for the segment block.

On the other hand, to produce the maximum DGD value, which is 50ps in this case,

~τ of each segment must be aligned, thus the rotation angle of C0 has to be zero. Also

note that the solution of C0 is continuous, and there is no transient DGD fluctuation

[112] when one changes the DGD settings. Figure 4-6b shows the required rotation

angle of C1 for three different cases: (1) Rotation angle of all segments are equal to

2.23 rad; (2) –2.8 rad (first segment), -1.7 rad (second segment), 3.3 rad (third seg-

ment), 5.1 rad (fourth segment); (3) 4.5 rad (first segment), 2.5 rad (second segment),

-3.5 rad (third segment), 1.5 rad (fourth segment). For case (2) and (3), the rotation

angles are randomly chosen for illustration of equation (4.12). These solutions of C1

in the figure are numerically computed using equation (4.10) and they agree with

equation (4.12). And more importantly, they remain constant for the whole DGD
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Figure 4-6: (a) Numerical solutions of rotation angle of C0 for various designated
DGD values using equation (4.9). (b) Numerical solution of rotation angle of C1 for
three different cases: case (1): Rotation angle of all segments are equal to 2.23 rad;
case (2): -2.8 rad (first segment), -1.7 rad (second segment), 3.3 rad (third segment),
5.1 rad (fourth segment); case (3): 4.5 rad (first segment), 2.5 rad (second segment),
-3.5 rad (third segment), 1.5 rad (fourth segment). Solutions are computed using
equation (4.10).

tuning range. However, the above discussion is only valid when the rotation angles of

these segments do not drift over time. If there are drifts in these angles, continuous

tuning of C1 is necessary using equation (4.12). One should avoid these drifts so that

the rotation angle of C0 is the only variable control for the module. Drifts could be

avoided by a temperature controlled and mechanically stabilized environment.

In the control of C0 to produce the designated DGD, there are bound to be some

inaccuracies in the setting, especially since it is dynamically changing. Thus, for

practical purposes, it is useful to know the sensitivity of our module to these deviations

and to know the required angular accuracy in the rotation of C0. We assume we have

successfully aligned C1 and the rotation angles of all segments do not vary with time.

To study this angular sensitivity, we first solve exactly the required angle of C0. We

then introduce random Gaussian distributed angular errors of standard deviation
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Figure 4-7: First and second order PMD generated for various angle standard devia-
tion σangle of (a) 0.01o, (b) 0.1o and (c) 1o. All segments have identical |~τ | of 12.5ps
and R.

σangle to the C0 in both blocks. Their perturbations are independent. Using these

perturbed angles, we calculate the first and second order PMD produced by the 4-

segment module. Figure 4-7 shows the 1st and 2nd order PMD magnitudes generated

for various standard deviation σangle of (a) 0.01o, (b) 0.1o and (c) 1o. All segments

have identical |~τ | of 12.5ps and R. For each designated DGD, we perform 500 Monte-

Carlo simulations. From these figures, one may conclude that for reasonable practical

implementation, σangle of 0.1o may be sufficient, as the DGD is close to the designated

value while the magnitude of the second order PMD is still tolerably small (∼ 4 ps2)

when compared to the 625 ps2 of conventional two-segments concatenation.

The DGD of a variable delay line in free space has no frequency dependence.

However, due to the presence of third and higher orders of PMD, the 4-segment
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module has structure in its spectra of DGD and second order PMD magnitude, as

shown in Figure 4-8. For these graphs, each segment in the module has |~τ | of 5ps and

the total DGD tuning range is 20ps. From the graphs, the DGD and the magnitude of

second order PMD of the module are oscillatory functions of frequency. Their periods

are 1/2 |~τ |, for this case, 100GHz. To explain this frequency dependence, one has to

note that equation (4.11), which maintains the condition of variable DGD without

second order PMD, is only satisfied at a particular center frequency. While θc1 can

be assumed to be frequency-independent since the phase-plate has a negligible DGD,

the rotation angle of the fixed DGD segment, θR, depends on the optical frequency,

and has a periodicity of 1/ |~τ |, Thus when the optical frequency moves away from

this center frequency, equation (4.11) is no longer satisfied, and the first order PMD

vectors from the two blocks are not aligned. This leads to variation of DGD with

optical frequency as shown in Figure 8a. Moreover, the second order PMD of the

module appears as in Figure 4-8, since the vectors of the blocks no longer cancel one

another completely. However, equation (4.11) is again satisfied when the rotation

angle of the fixed DGD segment becomes θR + mπ (where m is an integer). This

explains the periodicity of 1/2 |~τ | in Figure 4-8.

To show that the module has sufficient bandwidth for PMD compensation, we per-

form a simulation of first order PMD compensation at 10GHz using 27 pseudo-random

Gaussian pulse trains. The Gaussian pulses have pulse-widths of 40ps (FWHM). A

variable delay line in free space is used as a first order PMD emulator. The first order

PMD compensator consists of the 4-segment module and a polarization controller,

which is placed between the emulator and the module. The 4-segment module pro-

duces the necessary DGD while the polarization controller carries out the necessary

alignment for complete cancellation of first order PMD. In Figure 4-9, the emulator’s

DGD is set at 15ps. The input state of polarization is chosen to be perpendicular to

the input principal state of polarization (in Stokes Space), which corresponds to the

worst case scenario. Each segment in the 4-segment module has |~τ | of 5ps and the

total DGD tuning range is 20ps. The simulation is carried out with three different fre-

quency chirps of the pulse: i) no chirp, ii) positive frequency chirp of 245 GHz/ns and
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iii) negative frequency chirp of 245 GHz/ns. Figure 4-9a shows that the 4-segment

module can restore the pulse to its original shape regardless of the frequency chirp.

For comparison, we have also simulated in Figure 4-9b, the performance of the con-

ventional two-segment concatenation when it is used for PMD compensation under

the same frequency chirp conditions. The DGD of each segment is 10ps so that it

can produce the same tuning range of 20ps. The 2-segment concatenation can fully

restore the pulse only when there is no frequency chirp. When there is either a neg-

ative or positive 245 GHz/ns frequency chirp, the pulse, after passing through the

compensator, is distorted from the input pulse-shape, and the distortion depends on

the chirp. This chirp-dependence distortion is due to the substantially large second

order PMD generated by the 2-segment concatenation. When the first order PMD of

the system is compensated, the second order PMD of the system effectively becomes

a polarization dependent chromatic dispersion. Poole and Giles [60] have shown that

this effect is more significant when the signal is chirped. C. Vassallo [28] had derived

similar results theoretically. So when there is a positive frequency chirp, we observe

pulse compression while we observe pulse broadening when there is negative chirp.
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Figure 4-9: a) 4-segment module used in first order PMD compensation; b) Conven-
tional 2-segment concatenation used in first order PMD compensation. Due to the
15ps DGD presented in the first order emulator, the pulses after emulator are dis-
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pulse-shape. Triangles are for the case of positive 245 GHz/ns frequency chirp, circles
are for the case of negative 245 GHz/ns frequency chirp while crosses are for the case
of zero frequency chirp. For 4-segment module, full restoration of the pulse is ob-
served regardless of the frequency chirp while chirp-dependent distortion is observed
for the conventional 2-segment concatenation.

For the case of zero chirp, the effect of second order PMD is not so significant and

thus the compensator manages to restore the pulse to its original shape. In the case

of the 4-segment module, no second order PMD is generated, thus full compensation

is achieved regardless of the frequency chirp. From Figure 4-9, in the presence of

frequency chirp, we have illustrated the better performance of the 4-segment module

over the conventional 2-segment concatenation in first order PMD compensation.
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4.4 Conclusion

We presented a way to concatenate four identical fixed DGD segments so that the

resultant DGD is variable while no second order PMD is produced. In addition, the

third order PMD is only half the value of the one produced by two fixed segments

achieving the same DGD tuning range. Since the 4-segment module is based totally

on tunable phase-plates and fixed DGD segments, there are two practical implemen-

tations that promise high speed, compactness and stability: (1) using birefringent

crystals with electro-optic or magneto-optic tunable phase-plates and (2) integrating

the whole variable DGD module on a wafer based on MEMS technology. We also

analyzed the required accuracies of the tunable phase-plates used in this variable

DGD module and illustrated that the 4-segment module has better performance in

PMD compensation than the conventional two-segment concatenation, when there is

frequency chirp presented in the system.
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Chapter 5

PMD Compensation Up to Second

Order

5.1 Background

As the channel’s bit rate increases from 10 Gbit/s and beyond, a compensator that

cancels first order PMD may no longer be sufficient. This is especially true in the

upgrading of existing transmission lines where high PMD values are common. The

mostly discussed optical techniques to compensate PMD are based on the first-order

approximation. This can be assumed valid for a narrow bandwidth. When the trans-

mitted bandwidth of the optical signal and the transmission distance become large,

the effects of the higher-order PMD need to be taken into account. Thus in this chap-

ter, we propose a compensator that is capable of full compensation for both 1st and

2nd order PMD. As a set of 1st and 2nd order PMD vectors have six degrees of freedom,

to avoid the complexity of tracking the optimum of such many free parameters in a

feedback scheme, we propose to diagnose the transmission fiber’s 1st and 2nd order

PMD vectors using the technique described in Chapter 3. This information is then

fed forward to the compensator to eliminate the PMD. This deterministic approach

may have an advantage over currently used feedback schemes [88, 93, 90] that adjust

a compensator in a way to achieve maximum system performance such as the min-

imum Bit Error Rate (BER). The many adjustable parameters of the compensator
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may lead the compensation to a local minimum of BER that is not the real optimum

during the PMD tracking process. The feed-forward scheme avoids this and calls

for action only when the PMD becomes excessive. Particularly, the rarely occurring

catastrophic accumulations of PMD can be anticipated and compensated.

A two-segment PMD compensator [114, 111] cannot compensate the full second

order PMD because of its frequency-independent differential group delay (DGD) char-

acteristic. This frequency-independent DGD characteristic results from the fact that

the second order PMD vector generated by a two-segment compensator is always

normal to its first order PMD vector. Thus, we need at least three concatenated first

order PMD segments for full PMD compensation up to second order. In this chap-

ter, we study a particular compensator consisting of three first order PMD segments,

one of which is adjustable, concatenated via polarization rotators. And, for the feed-

forward technique we need to know how to set this compensator after determining the

PMD parameters. Thus, in the following section, we solve analytically the required

individual rotation matrices of the polarization rotators and the required DGD for

the variable delay line in the compensator.

5.2 Theory

The compensator consists of three pure first order PMD concatenated segments as

shown in Figure 5-1. {~τ1,R1}, {~τ2, R2} and {~τ3,R3} are the first order PMD vectors

and the Mueller rotation matrices for each segment. They are fixed parameters of

the compensation system, except for |~τ1| which is adjustable. The adjustable first

order PMD segment can be a variable delay line in free space. We assume negligible

second order PMD for each of the individual segments. Thus segments 2 and 3 could

be fixed group velocity delay lines in free space or polarization maintaining fiber with

negligible second order PMD. There are two polarization rotators in the compensator

whose rotation matrices are given by C1, and C2. The resulting PMD vectors for the

compensator are represented by ~τc for first order PMD, ~τωc for second order PMD and

Rc for its rotation matrix (which is equal to R3C2R2C1R1). C0 is the rotation matrix
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Figure 5-1: The three-segment compensator consisting of three first order PMD seg-
ments and two polarization rotators. The first segment is of adjustable DGD. ~τf

and ~τωf are the first and second order PMD of transmission cable while ~τc and ~τωc

are those of the compensator. For PMD compensation, we need to set C0 and the
compensator appropriately so that the net PMD vectors, ~τ and ~τω, equal to zero.

of the polarization rotator between the transmission cable and the compensator. The

rotation matrices, C0, C1, and C2, are assumed to be frequency independent over the

frequency range of interest.

In this paper, we neglect polarization-dependent loss or gain in the link, and we

assume we have monitored the first order PMD, ~τf , and second order PMD, ~τωf , of

a long haul transmission cable in real time. After knowing ~τf and ~τωf , we need to

work out the Mueller rotation matrices for the required polarization rotations, C0,

C1, C2, and the DGD, |~τ1|, of the variable delay line in order to achieve the necessary

compensation. From Figure 5-1, the total first and second order PMD vectors, {~τ ,

~τω} for both the transmission cable and the compensator together, are found using

the PMD vector concatenation rules,

~τ = ~τc + RcC0~τf (5.1)

~τω = ~τωc + RcC0~τωf + ~τc × ~τ (5.2)
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For total PMD compensation, we require ~τand ~τωto be zero. This implies

~τc = −RcC0~τf (5.3)

~τωc = −RcC0~τωf (5.4)

Since ~τf and ~τωf are known from our real time PMD characterization technique, the

compensator just needs to generate a pair of ~τc and ~τωc vectors, such that ~τc.~τωc =

~τf .~τωf , |~τc| = |~τf | and |~τωc| = |~τωf |. And again from PMD vector concatenation rules,

the PMD vectors of the three-segment compensator can be expressed as

~τc = ~τ3 + R3C2~τ2 + R3C2R2C1~τ1 (5.5)

~τωc = (~τ3 × ~τc) + R3C2~τ2 ×R3C2R2C1~τ1 (5.6)

To simplify notation, we denote

~B = R3C2~τ2 (5.7)

~A = R3C2R2C1~τ1 (5.8)

Thus equations (5.5) and (5.6) become

~τc − ~τ3 = ~B + ~A (5.9)

~τωc − (~τ3 × ~τc) = ~B × ~A (5.10)

The vector ~B is adjustable in orientation using the rotation matrix C2. The vector ~A

is arbitrarily adjustable in orientation and magnitude using the rotation matrix C1

and the adjustable group delay |~τ1|. Our aim is to solve for ~A and ~B, so that we can

compute their respective rotation matrices, C2 and C1, from equation (5.7) and (5.8),

since we know R3, ~τ2 and R2 of the individual segment. We also know the direction of

~τ1. However, its magnitude is only known when we have solved for ~A (i.e. |~τ1| =
∣∣∣ ~A

∣∣∣).
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The procedure is simplified if we use another available degree of freedom, the rotation

matrix C0 of the polarization rotator preceding the compensator. For any given ~τf

and ~τωf of the fiber cable to be compensated, C0 can be used to turn ~τc and ~τωc into

a plane containing ~τ3, according to equation (5.3) and (5.4). Thus, we can arbitrarily

fix ~τc and ~τωc to lie on any convenient plane that contains ~τ3 while maintaining the

condition of ~τc.~τωc = ~τf .~τωf , |~τc| = |~τf | and |~τωc| = |~τωf |. However, from equation

(5.9) and (5.10), we also know that ~τc − ~τ3 and ~τωc − (~τ3 × ~τc) must be perpendicular

to one another. Thus by taking the dot product of ~τc − ~τ3 and ~τωc − (~τ3 × ~τc), and

setting it to zero, we get the condition,

(~τωc − (~τ3 × ~τc)).(~τc − ~τ3) = ~τωc.(~τc − ~τ3) = 0 (5.11)

Therefore, the compensator can only produce pairs of ~τc and ~τωc that satisfy condition

(5.11). Denote by θω3 the angle between ~τωc and ~τ3, and by φ the angle between ~τc

and ~τωc (which is required to be the same as that between ~τf and ~τωf ) (See Figure

5-2a). Then we find from (5.11)

cos θω3 =
|~τc|
|~τ3| cos φ =

|~τf |
|~τ3| cos φ (5.12)

This fixes the vectors ~τc and ~τωc in that chosen plane. Thus now we know what 1st

and 2nd order PMD vectors, ~τc and ~τωc, need to be produced by the compensator

so that, by applying a suitable rotation matrix, C0, we can satisfy both equations

(5.3) and (5.4) and eliminate the net 1st and 2nd order PMD. With the known ~τc and

~τωc, we can now solve for ~A and ~B, and thus the corresponding C1 and C2 for the

compensator to produce them. To visualize that solutions of ~A and ~B exist, we have

also illustrated the relative orientations of vectors that are discussed above in Figure

5-2a. Due to C2, ~B can be of any direction with fixed magnitude |~τ2| while, due to

C1and variable |~τ1|, ~A can be of any direction and of any magnitude. In Figure 5-2a,

the solutions of ~A and − ~B point from the center of spheres to a common point on

the ring of intersection of the two spheres so as to satisfy equation (5.9) and (5.10)

simultaneously.
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Figure 5-2: (a) Relative orientations of ~τc , ~τωc, ~τ3, ~A and ~B. φ is the angle between
~τc and ~τωc which is required to be the same as that between ~τf and ~τωf . Condition
(5.11) requires ~τωc to be perpendicular to ~τc − ~τ3. C0 allows us to arbitrarily fix ~τc

and ~τωc on any arbitrary plane that contains ~τ3. Vectors ~A and − ~B point from centre
of spheres to a point on the ring of intersection of the two spheres so as to satisfy
equation (5.9) and (5.10) simultaneously. (b) The cross product of ~B and ~τc−~τ3 gives
~τωc−(~τ3×~τc). Vector q̂ is the unit vector in the direction of [(~τc−~τ3)×(~τωc−(~τ3×~τc)]
while p̂ is the unit vector in the direction of (~τc − ~τ3).
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Thus from Figure 5-2a, one should be able to see geometrically that solutions of

~A and ~B always exist (under the assumption that the required magnitude |~τ1| is

available in the set-up). Mathematically, we can solve for ~A and ~B in the following

way. Substitute equation (5.9) into (5.10), we have

~τωc − (~τ3 × ~τc) = ~B × (~τc − ~τ3) (5.13)

Note that according to equation (5.7)
∣∣∣ ~B

∣∣∣ = |~τ2|. Thus the solution of ~B is

~B = |~τ2| (cos ψp̂ + sin ψq̂) (5.14)

where p̂ is the unit vector in the direction of (~τc − ~τ3), q̂ is the unit vector in the

direction of [(~τc − ~τ3) × (~τωc − (~τ3 × ~τc)] and ψ is the angle between ~B and (~τc − ~τ3)

(see Figure 5-2b) given by

sin ψ=
|(~τωc − (~τ3 × ~τc)|
|~τ2| |~τc − ~τ3| (5.15)

After solving for ~B, we solve for ~A using equation (5.9). Since we are using a variable

DGD segment for ~τ1, we can accommodate whatever magnitude ~A is needed to satisfy

equation (5.9). And the magnitude of
∣∣∣ ~A

∣∣∣ solution gives the required DGD setting,

|~τ1|, of the segment 1. It is worth noting that to ensure robust PMD compensation,

we need to choose the magnitude of ~τ2 and ~τ3 appropriately so that we can always

have solutions for equation (5.12) and (5.15) with any anticipated magnitude of ~τf

and ~τωf . Since we know R3, ~τ2, R2, ~τ1 of the individual segments, using equation

(5.7), we can solve for the rotation matrix C2 from

C2~τ2 = R†
3
~B (5.16)

And then, using equation (5.8), we can solve for C1

C1~τ1 = (R3C2R2)
† ~A (5.17)
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Figure 5-3: Block diagram of two PMD blocks concatenated via polarization con-
troller.

Now we can compute

Rc = R3C2R2C1R1 (5.18)

and using equations (5.3), (5.4) and (5.18), we can solve for C0 that satisfies both

C0~τf = −(Rc)
†~τc (5.19a)

C0~τωf = −(Rc)
†~τωc (5.19b)

so that the net 1st and 2nd order PMD are eliminated. Thus we have found all the

required rotation matrices, C0, C1, and C2 (from equation (5.16), (5.17), and (5.19) of

the 3 polarization rotators as well as the required DGD value for segment 1, in order

to compensate any 1st order PMD, ~τf , and 2nd order PMD, ~τωf , of the transmission

cable. It should be noted that this 3-segments compensator is expected to introduce

loss of several dB, especially since a variable DGD is used. Hence, an optical amplifier

may be needed.

5.3 Hybrid Feed-forward and Feedback Scheme

In the feed-forward PMD compensation scheme, one needs accurate PMD characteri-

zations of both first and second order PMD in order to carry out PMD compensation

for both orders. However, from Chapter 3, one can see that the second order PMD
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cannot be characterized as accurately as the first order PMD. Thus, instead of com-

pensating both orders simultaneously in a feed-forward scheme, an alternative is a

hybrid feed-forward and feedback PMD scheme, where first-order PMD compensa-

tion is carried out in a feed-forward manner and feedback compensation is used for

the second order PMD. To decouple these compensation schemes, a module that pro-

duces variable second order PMD without generating any first order PMD is needed.

This allows the second order PMD compensator to search for the optimum with-

out affecting the first order PMD compensation which is already accomplished in a

feed-forward manner. In this section, we present a module that can be controlled to

produce variable magnitude of second order PMD without generating any first order

PMD. When it is used with an additional polarization controller, it can generate an

arbitrary second order PMD vector within its designed operation range. Another

application of such a module is in PMD emulation. In some studies, one may need

to investigate the effects of first and second order PMD separately, thus decoupling

of first order and second order PMD emulation is necessary.

Figure 5-3 shows the schematics of the module. Two blocks are concatenated via

polarization controller C. Block 1 has first order PMD, ~τ1, and second order PMD,~τω1

while Block 2 has first order PMD, ~τ2, second order PMD, ~τω2, and a polarization

rotation matrix, R2. By PMD concatenation rules, the resultant first order PMD

vector, ~τR, of the module is

~τR = ~τ2 + R2C~τ1 (5.20)

while the resultant second order PMD, ~τωR, is

~τωR = ~τω2 + R2C~τω1 + ~τ2 × ~τR (5.21)

Now if we control the polarization controller C so that

R2C = I (5.22)
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Figure 5-4: Schematic of our proposed module that produces variable magnitude of
second order PMD without first order PMD. It consists of 4 identical fixed DGD
segments arranged in a symmetrical manner. The first and second fixed DGD seg-
ments of PMD ~τ are concatenated via Co to form the Block 1 while Block 2 is formed
by the third and fourth segment of PMD −~τ , concatenated using another Co. The
polarization controller C between the two blocks is made up of two fixed phase plates
and one tunable phase-plate C†

o .

and if the blocks are adjusted so that

~τ2 = −~τ1 (5.23)

~τω2 = ~τω1 , (5.24)

the resultant first order PMD vanishes while the second order PMD is given by

~τωR = 2~τω2 (5.25)

Figure 5-4 shows the detailed composition of each block and of the polarization con-

troller. All four identical fixed DGD segments are assumed to have negligible second

order PMD. The first and second fixed DGD segments are concatenated via C0 to

form Block 1. In Stokes space representation, these fixed DGD segment have first

order PMD, ~τ = {|~τ | , 0, 0}, equivalent to having the slow birefringence axes oriented

in the horizontal direction in physical space. They have rotation matrices, R, whose
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rotation axis is in the x-direction in Stokes space. C0 is a tunable phase-plate whose

rotation axis is along the y-direction in Stokes space (equivalent to a 45 degree lin-

early polarized birefringence axis). Block 2 is formed of another two segments (i.e.

the third and fourth segment) concatenated using another C0. Both of these seg-

ments have first order PMD, −~τ . This is equivalent to having the same birefringence

segments as Block 1 except that their slow birefringence axes are now in the vertical

direction in physical space. Thus, these segments have rotation matrices, R†. With

this arrangement, we can compute for Block 1,

~τ1 = ~τ + RC0~τ (5.26)

~τω1 = ~τ ×RC0~τ (5.27)

And for Block 2

~τ2 = −~τ −R†C0~τ = −R†R†(RR~τ + RC0~τ) = −R†R†~τ1 (5.28)

~τω2 = −~τ ×R†C0(−~τ) = R†R†(RR~τ ×RC0~τ) = R†R†~τω1 (5.29)

We have made use of the fact that the rotation transformation of R has no effect on

~τ since its rotation axis is along ~τ (the x-axis in Stokes Space). Substituting equation

(5.28) into (5.20) and (5.29) into (5.21), we obtain

~τR = ~τ2 −R2CRR~τ2 (5.30)

~τωR = ~τω2 + R2CRR~τω2 + ~τ2 × ~τR (5.31)

So if R2CRR = I, we have successfully removed the first order PMD while the

resultant second order PMD of the module becomes

~τωR = 2~τω2 (5.32)
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Figure 5-5: (a) Magnitudes of second order PMD produced by our module for various
designated magnitude values. (b) Magnitude of third order PMD vector produced by
our module when it is controlled to produce the designated magnitude of second order
PMD. For comparison purposes, we have also plotted the third order PMD produced
by our previous 3-segments configuration (see Ref. [1]) for the same tuning range of
312.5 ps2.

And since R2 = R†C0R
†, the solution of C is

C = RC†
0R

† (5.33)

To implement this polarization controller C, we need three phase plates as shown

in Figure 5-4, where the rotation of fixed phase-plate 1 and fixed phase-plate 2 are

R† and R respectively, while the rotation of the second phase-plate is tunable as

C†
0. Therefore, our approach to produce variable magnitude of second order PMD

without any first order PMD can be summarized as follows: We arrange four identical

fixed DGD segments (such as birefringence crystals) as shown in Figure 5-4. For any

designated second order PMD magnitude, we adjust the rotation angle of C0 as the

only control parameter. Each of the blocks produces half of the designated magnitude

of second order PMD, so that they add to give the designated value while their first

order PMD cancel. The total tunable range of the magnitude of second order PMD
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is 2|~τ |2. To produce any arbitrary second order PMD vector, we need an additional

polarization controller to control the direction of the vector. Thus this polarization

controller provides the other two degrees of freedom of the second order PMD vector.

Since the module is constructed with tunable phase-plates, which can either be

electro-optic, magneto-optic or liquid crystal wave-plates, high speed tuning of the

magnitude of second order PMD is possible. Moreover, instead of using polarization-

maintaining fibers as fixed DGD segments, one could use birefringent crystals, which

promise compactness and stability. Alternatively, one could integrate the whole vari-

able DGD module on a wafer based on MEMS technology, since the fixed DGD

segments are simply fixed delay lines in free space while the tunable phase-plates are

finely-adjustable delay lines in free space as shown in [113].

In practical implementation, one may have difficulty in achieving the same rotation

angle, θR, for all rotation matrices of the segments. Thus, for cases where we have

different rotation angles for the various segments, the solution for C can be worked

out to be

C = R†
3rdSegC

†
0R

†
2ndSeg (5.34)

where R†
2ndSeg is the transpose of the rotation matrix of the second fixed DGD segment

while R†
3rdSeg is the transpose of the rotation matrix of the third fixed DGD segment.

This means that we need the rotation of the fixed phase-plate 1 and fixed phase-plate

2 in polarization controller, C, to be fixed as the transpose of the rotation matrices

of the second and third segment of the module respectively. The rotation of the

tunable phase-plate in polarization controller, C, is still C†
0. Note that the solution

of C is independent of the rotation matrices of the first and last segment. If there

are drifts in the rotation angles of the segments, the rotation of fixed phase-plate 1

and fixed phase-plate 2 can no longer be static but need to be tunable according to

equation (5.34). However, drifts could be avoided by a temperature controlled and

mechanically stabilized environment.

For any designated second order PMD magnitude, |~τωR| = 2 |~τω2|, we can solve
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Figure 5-6: First and second order PMD generated by our module when there are
angle standard deviations σangle of (a) 0.1o, (b) 0.25o and (c) 0.5o in the rotation
angles of the phase-plates together, with DGD standard deviation σDGD of 0.06ps for
all the DGD segments. All segments have identical |~τ | of 12.5ps.

the required rotation angle of C0 using simple vector algebra,

sin (θC0) =
|~τωR|
2 |~τ |2 (5.35)

Since the rotation angle of C0 is the only control parameter for the module, and from

equation (5.35), the solution of C0 is continuous, there is no issue of transient fluctu-

ation when one changes the settings of the module’s second order PMD magnitude,

|~τωR|.
Figure 5-5a shows the magnitudes of the second order PMD produced by our

module for various designated values using the method discussed above. The DGD,

|~τ |, is 12.5ps for all four segments. Clearly, our module can produce the designated

magnitude of second order PMD within the whole tuning range of zero to 2|~τ |2, which,

in this case is 312.5ps2, while always maintaining zero first order PMD. Figure 5-6b

shows the magnitude of third order PMD produced by our module. For comparison,

we have also plotted the third order PMD produced by our previous 3-segments
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configuration discussed in Ref. [1]. In this 3-segments configuration, we rely on two

fixed DGD segments to generate the required second order PMD and then use the

variable DGD segment to cancel the unwanted first order PMD generated by these

two fixed DGD segments. Thus, in order to produce the same second order PMD

tuning range of 312.5ps2, the DGD of the two fixed DGD segments are 17.68ps each.

From Figure 4b, we can see that the present module produces a lower magnitude of

third order PMD than the previous 3-segment configuration [1].

In practical implementation, there are three main considerations: (a) the toler-

ance in choosing DGD, (b) the errors in the rotation angles of the three tunable

phase-plates in the phase plates, (c) the temperature changes that affect the rotation

matrices of the fixed DGD segments. To study these tolerances, we have carried out

Monte Carlo simulations, the results of which are shown in Figure 5-6. For a given

magnitude of second order PMD, we first solve exactly the required rotation angle

of C0 using equation (5.35). We then introduce independent random Gaussian dis-

tributed angular errors of standard deviation σangle to all five phase-plates. At the

same time, random Gaussian distributed DGD errors of standard deviation σDGD

are introduced independently to all four segments. Using these perturbed angles and

DGD, we calculate the first and second order PMD produced by our module. Figure

5-6 shows the first and second order PMD magnitudes generated for various standard

deviations σangle of (a) 0.1o, (b) 0.25o and (c) 0.5o together with σDGD of 0.06ps. All

segments have identical |~τ | of 12.5ps. For each designated magnitude of second order

PMD, we perform 1000 Monte-Carlo simulations. From these simulations, we can

infer that the required tolerance of the DGD for each crystal is < ±0.06ps and the

required accuracy of the rotation angle of all the five phase plates are ∼ ± ∼0.25o.

With these tolerances, the magnitude of second order PMD produced is reasonably

close to the designated value while the DGD is still tolerably small at < 0.6 ps. These

parameters are realistic for practical implementation. For example, to build a pure

second order PMD module that can generate a range of second order PMD from 0

to 312.5 ps2, the required DGD of each segment is 12.5ps. For birefringence crystals,

such as YVO4, whose birefringence is 0.2039, the required length of each crystal is
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17.76mm. Commercial crystal suppliers can readily promise a dimension tolerance

of ±0.05mm. This corresponds to DGD tolerance of ±0.035 ps for YVO 4, which is

better than the required tolerance of 0.06ps. For the tunable phase plates, one has

the choice of a liquid crystal variable wave-plate or an electro-optic phase modulator.

The required rotation angle accuracy of ± ∼0.25o is achievable with commercially

available phase plates.

Temperature drifts can cause significant changes in the rotation angles of the

birefringence crystals, and this is undesirable for the module. These drifts have to be

avoided using a temperature controlled environment. Commercially available thermal

electric cooler can provide temperature stability of better than ±0.005oC. Thus, for

birefringence crystals such as YVO4, (whose thermal optical coefficients are dn/dT

= 8.5x10−6/K and dn/dT = 3.0x10−6/K), the drift in the birefringence will be less

than 2.75x10−8, when it is temperature controlled. This corresponds to a polarization

rotation angle drift of < 0.1o. which is acceptable. Alternatively, one can also achieve

low temperature dependence of the rotation angle by using a DGD segment that is

a combination of birefringence crystals that have opposite temperature dependences.

In summary, with existing commercially available components and careful design, it

is practical to implement our module within the required tolerance.

5.4 Conclusion

We have described a procedure to exercise complete PMD compensation up to second

order when the information of the first order PMD, ~τf , and second order PMD, ~τωf ,

of a long haul communication cable are known. Moreover, we have solved analytically

the required rotation matrices of the polarization rotators and the required DGD of

a variable delay line in a 3-segment compensator. The approach here is necessary for

a PMD compensation system that uses feed-forward correction. In addition, we have

also presented a module that generates variable second order PMD without producing

any first order PMD. It is based on four identical fixed DGD segments arranged in

a symmetrical manner. Only one control parameter varies the magnitude of second
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order PMD. This module is useful in a hybrid feed-forward/feedback compensation

scheme, where first-order PMD compensation is carried out in a feed-forward manner

and feedback compensation is used for the second order PMD.
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Chapter 6

All-Frequency PMD Compensation

in Feed-Forward Scheme

6.1 Background

Most PMD compensation techniques reported in the literature [88, 114, 2, 104], in-

cluding those discussed in Chapter 4 and 5, are designed to compensate the first-

and second- order PMD in a single channel. In general, regardless of single or multi-

WDM channels, as long as the bandwidth of interest is much larger than the PSP

bandwidth, all orders of PMD are important. In high PMD link where the PSP band-

width is less than the WDM channel spacing, the PMD vectors of the different WDM

channels are independent of each other. To compensate such WDM system, channels

have to be demultiplexed and compensated individually. This results in an increased

cost and complexity. To reduce cost, several authors [115, 116, 109, 10] proposed

various broadband PMD compensators. Such inline broadband compensation over a

tera-hertz bandwidth is attractive since it can achieve simultaneous compensation for

several channels without the need of wavelength demultiplexing cum multiplexing. In

such broadband applications, all orders of PMD need to be accounted for.

Most of the previous broadband compensators aim to generate the inverse of

transmission fiber’s Jones matrix over a range of frequency. They concentrate on

the synthesis of a filter response to approximate the inverse of this unitary matrix
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[115, 116, 109]. Recently, C.K. Madsen proposed an architecture using all-pass filters

[109] to invert the complete Jones matrix U(ω). The approach is promising as it can

be compactly integrated using planar waveguides. However, in terms of compensat-

ing for the PMD-induced signal’s degradation, such inversion of the complete Jones

matrix is not necessary since it also produces the same output polarizations as that of

the input [117]. To avoid pulse distortion, what one really needs is to make the Jones

matrix of the fiber/compensator combination independent of frequency (i.e. invert

the ”difference” of Jones matrices). This is equivalent to the cancellation of the PMD

vectors. In [51], H.A. Haus discussed the three equivalent representations of PMD:

Jones Space, Stokes Space and Energy Space and mentioned that, although the infor-

mation about the isotropic dispersion is suppressed in the Stokes space formulation,

the knowledge of the output PMD vector, ~τf (ω), as a function of frequency is suf-

ficient for the construction of an all-frequency PMD compensator (AFPMD). Thus,

in this chapter, we present the architecture of a compensator that can compensate

PMD for all frequencies based solely on the knowledge of the output PMD vector.

Unlike previous works that concentrated on Jones Space representation, we propose

to solve the all-frequency PMD compensation in Stokes space. This representation

not only gives us good 3-D visualization of PMD vectors on the Poincaré sphere, it

also offers us simple PMD concatenation rules when designing an all-frequency PMD

compensator or emulator. In terms of PMD emulation, this preference is also rea-

sonable since PMD statistics are mainly understood in terms of PMD vectors. In a

feed-forward PMD compensation scheme [2, 4], there is also the advantage of real-

time monitoring. In Madsen’s approach, the complete Jones matrix U(ω) needs to

be characterized as a function of frequency, while in our approach only the output

PMD vector, ~τf (ω), needs to be characterized as a function of frequency. The latter

is comparatively easier since it does not require any knowledge of the input state of

polarization (SOP) and is monitored solely based on the measurements obtained at

the receiver’s end [4]. This also facilitates the use of random polarization scrambling

of the input SOP to improve the estimation accuracy of the output PMD vector as

discussed in Chapter 3.
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Figure 6-1: a) Schematic of our 4-stage all-frequency PMD compensator; b) PMD
spectra after fiber, and composite PMD spectra after Stage 2 and 3 of compensator.

Our compensation scheme, as shown in Figure 6-1a, employs three stages of flexible

frequency-dependent polarization rotation in Stokes space. These three stages provide

the three degrees of freedom for compensating the PMD vector at each frequency.

Intuitively, the net effect of the first two stages is equivalent to a frequency dependent

polarization rotation that aligns all PMD vectors into a common direction, and the

third stage compensates the frequency dependent variable DGD. The fourth stage

basically compensates for the isotropic dispersion created by the first three stages.

6.2 Synthesis of Rotation Angle Profiles

Since there are so many degrees of freedom in a broadband compensator, the most

viable approach is to carry out the compensation in a feed-forward manner. We

assume that with the real-time PMD monitoring scheme proposed in Chapter 3, we
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have the required information of the fiber’s output PMD vector, ~τf (ω), as a function

of frequency. For simplicity, we neglect polarization-dependent losses. While the

most common definitions of PMD orders is based on the Taylor expansion of the

PMD vector in frequency [59], there is no reason to believe that this is the most

useful description when the first order approximation is insufficient. We avoid the

Taylor expansion since this introduces the complicated higher-order PMD terms such

as d~τ/dω, d2~τ/dω2. Instead we simply treat the whole PMD spectrum as first order

PMD vectors that vary from frequency to frequency. For this reason, we choose to call

the proposed scheme “All-Frequency”, instead of “All-Order”, PMD compensator.

Figure 6-1a shows the schematic of the proposed architecture. A portion of the

signal is tapped at the fiber output for real-time PMD monitoring. Based on the

knowledge of the PMD vector data, we control the 4-stage compensator. At each

angular frequency ω (ω = 2πf where f is the optical frequency), the fiber’s output

PMD vector, ~τf (ω), has three parameters {τfx (ω) , τfy (ω) , τfz (ω)}. The first three

stages of the compensator provide the three degrees of freedom at each frequency

for the PMD cancellation. In Stokes space, Stage 1 is a rotation about {1,0,0} with

rotation angle θ1(ω) as a function of frequency while Stage 2 is a rotation about the

{0,0,1} with rotation angle θ2(ω) which is also a function of frequency. The combined

effect of stage 1 and 2 is equivalent to that of a frequency-dependent polarization

controller that aligns the PMD of various frequencies into a common direction, in

this case, we choose it to be {1,0,0}. Figure 6-1b illustrates this rotation effect.

After aligning the PMD vectors, Stage 3 provides the necessary frequency dependent

variable DGD τ3(ω) = dθ3 (ω)/dω in the {1,0,0} direction to cancel the PMD. Finally,

Stage 4 compensates for the isotropic dispersion introduced by the first three stages

due to imperfect fitting of the rotation angles, which will be discussed in later section.

Since the rotation angles of Stage 1 and 2 are flexible functions of frequency, they

possess substantial DGD that cannot be neglected. This is in contrary to polarization

controllers that employ low-order wave-plates.

With the knowledge of the spectrum of the fiber’s output PMD vector ~τf (ω), we

need to synthesize the appropriate rotation angle profiles of the various stages for
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complete cancellation of the PMD vector at every frequency. This task is greatly

simplified using the Stokes space representation. And we propose to use the PMD

concatenation rules for this synthesis. In Stokes space, the rotation matrix of Stage

1 is

R1(ω) =




1 0 0

0 cos θ1 (ω) − sin θ1 (ω)

0 sin θ1 (ω) cos θ1 (ω)


 (6.1)

and the rotation matrix of Stage 2 is

R2(ω) =




cos θ2 (ω) − sin θ2 (ω) 0

sin θ2 (ω) cos θ2 (ω) 0

0 0 1


 (6.2)

Since ~τ× = dR
dω

R† [17], the corresponding PMD vectors of stage 1 and 2 are ~τ1 (ω) ={
dθ1(ω)

dω
, 0, 0

}
and ~τ2 (ω) =

{
0, 0, dθ2(ω)

dω

}
respectively. We assume the fiber’s PMD is

known to be ~τf (ω) = {τfx (ω) , τfy (ω) , τfz (ω)}. Using PMD concatenation rule, the

PMD after Stage 2, ~Γ2(ω), is

~Γ2(ω) = ~τ2 (ω) + R2 (ω)~τ1 (ω) + R2 (ω) R1 (ω)~τf (ω) (6.3a)

=




cos θ2

(
dθ1

dω
+ τfx

)− sin θ2 (τfy cos θ1 − τfz sin θ1)

sin θ2

(
dθ1

dω
+ τfx

)
+ cos θ2 (τfy cos θ1 − τfz sin θ1)

dθ2

dω
+ (τfy sin θ1 + τfz cos θ1)


 (6.3b)

Since we want the PMD vector of all frequency to be aligned to {1,0,0} after Stage

2, we need

sin θ2

(
dθ1

dω
+ τfx (ω)

)
+ cos θ2 (τfy (ω) cos θ1 − τfz (ω) sin θ1) = 0 (6.4)

and
dθ2

dω
+ (τfy (ω) sin θ1 + τfz (ω) cos θ1) = 0 (6.5)

Solutions of equation (6.4) and (6.5) yield the required rotation angles θ1(ω) and
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θ2(ω). To solve these equations, the following step-wise algorithm is proposed. At an

initial frequency, ωinitial, we determine the rotation angles of Stage 1 and 2 to bring

~τf (ωinitial) aligned to {1,0,0}. These θ1(ωinitial) and θ2(ωinitial) serve as the starting

points for the algorithm. For subsequent frequency, we find the rotation angles in a

step-wise manner:

θ1 (ω + ∆ω) ≈ θ1 (ω) +
dθ1

dω
(ω) ∆ω (6.6)

θ2 (ω + ∆ω) ≈ θ2 (ω) +
dθ2

dω
(ω) ∆ω (6.7)

where dθ1/dω and dθ2/dω are given by equation (6.4) and (6.5) as

dθ1

dω
(ω) = cot θ2 (ω) [τfz (ω) sin θ1 (ω)− τfy (ω) cos θ1 (ω)]− τfx (ω) (6.8)

and
dθ2

dω
(ω) = − [τfy (ω) sin θ1 (ω) + τfz (ω) cos θ1 (ω)] (6.9)

In this way, we successively synthesize the rotation angles of Stage 1 and 2 to align

all the PMD vectors into {1,0,0} and the PMD vector after Stage 2 becomes

~Γ2(ω) =




cos θ2

(
dθ1

dω
+ τfx

)− sin θ2 (τfy cos θ1 − τfz sin θ1)

0

0


 (6.10)

Since Stage 3 is a rotation about {1,0,0}, its rotation matrix has no effect on ~Γ2(ω).

The PMD vector of Stage 3 is ~τ3 (ω) =
{

dθ3(ω)
dω

, 0, 0
}

. After passing through Stage 3,

the resultant PMD vector ~Γ3(ω) becomes

~Γ3(ω) = ~τ3 (ω) + R3 (ω) ~Γ2(ω) = ~τ3 (ω) + ~Γ2(ω) (6.11a)

=




dθ3(ω)
dω

+ cos θ2

(
dθ1

dω
+ τfx

)− sin θ2 (τfy cos θ1 − τfz sin θ1)

0

0


(6.11b)

To have zero resultant PMD for all frequencies after Stage 3, ~Γ3(ω) must be zero for
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all frequencies. Making use of equation (6.8), this gives

dθ3 (ω)

dω
= csc θ2 (ω) [τfy (ω) cos θ1 (ω)− τfz (ω) sin θ1 (ω)] (6.12)

Together with θ1(ω) and θ2(ω), θ3 (ω) is synthesized by arbitrary fixing θ3 (ωinitial) = 0

and subsequent frequency by

θ3 (ω + ∆ω) ≈ θ3 (ω) +
dθ3

dω
(ω) ∆ω (6.13)

In summary of the synthesis algorithm, with equation (6.6)-(6.9) and (6.12)-(6.13),

we can synthesize the required rotation angle of θ1(ω), θ2(ω) and θ3(ω) for the com-

plete PMD compensation at all frequency.

6.3 Simulations to verify synthesis algorithm

PMD concatenation rules are commonly used to calculate the resultant PMD of the

concatenation of birefringent elements. In this section, we show that it is equally valid

for our concatenation of flexible frequency-dependent polarization rotation stages.

And we verify our synthesis algorithm of the rotation angles by simulating the signal-

degradation before and after the compensation

To test the synthesis algorithm, random fibers were generated with a mean DGD

of 20 ps by cascading 20 randomly oriented birefringence sections. The birefringence

of these sections was Gaussian distributed with a mean value of 4.85 ps and standard

deviation of 20% of the mean. The input signal was a 40 Gbit/s RZ pseudo-random bit

sequence (26-1) of Gaussian pulses of 10 ps (FHWM) pulse-width. For each generated

fiber, we computed the output PMD vector, ~τ(ω), as a function of frequency with an

optical frequency step-size of ∆f =1.26 GHz. Based on this PMD vector spectrum,

we synthesized the required rotation angles θ1(ω), θ2(ω) and θ3(ω) using equation

(6.6)-(6.9) and (6.12)-(6.13). For illustration purpose, we randomly chose a fiber and

the required rotation angles for the various stages are shown in Figure 6-2a-c. They
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Figure 6-2: Required rotation angles of various stages for a randomly chosen fiber:
(a) θ1(ω) of Stage 1 (b) θ2(ω) of Stage 2, (c) θ3(ω) of Stage 3. Solid curves are
exact rotation angles computed using the synthesis algorithm while dashed curves
are rotation angles approximated using APFs. fo is the carrier’s optical frequency.
(d) shows the output optical signal before and after compensation. Thin solid curve
is the input signal to fiber. Thick solid curve is output from fiber. Curve of unfilled
triangles is after compensation using the exact rotation angles while the curve of filled
circles is based on approximated rotation angles using APFs.

are presented in solid curves. Figure 6-2a is for θ1(ω) of Stage 1, Fig 6-2b is for θ2(ω)

of Stage 2, and Fig 6-2c is for θ3(ω) of Stage 3. For the same chosen fiber, we show in

Figure 6-2d the output signal from the fiber before compensation. It is the thick solid

curve. For reference, the input signal is also shown in thin solid curve. Using the

rotation angles θ1(ω), θ2(ω) and θ3(ω) calculated from our synthesis algorithm, the

optical signal after passing through the AFPMD compensator is given by the curve

of unfilled triangles. The compensation is nearly perfect.

To have a quantitative measure of the performance of the AFPMD compensator,

we simulated the bit error rate (BER) by sending the output optical signals through
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Figure 6-3: Cumulative Probability distribution of exceeding a certain BER value.
Dashed curve is the uncompensated case. Performances of compensation using dif-
ferent ∆f for the synthesis algorithm are investigated: Solid line curve is for ∆f =
0.63 GHz, curve of squares is for ∆f = 2.54 GHz and curve of crosses is for ∆f =
6.3 GHz.

a 1 nm optical filter and an EDFA-preamplifier receiver (with noise figure of 3 dB) for

detection. The electrical data was then low-pass filtered with an electrical fifth-order

Bessel filter with a bandwidth of 0.5 B where B is the bit rate. Assuming the signal-

spontaneous beat noise and spontaneous-spontaneous beat noise dominate, the noise

variance in the detected signal was calculated analytically [118]. Only PMD and the

signal-to-noise ratio were taken into account. Chromatic dispersion and nonlinearities

were neglected. By assuming Gaussian noise statistics, the BER was calculated as the

sum over all 26-1 bits, and as a function of the decision level and sampling time. We

assume that the decision level and sampling time are optimized simultaneously to give

the lowest BER for the bit sequence. Figure 6-3 shows the cumulative probability

distribution of exceeding a certain BER value for a set of 5000 samples. This set

was created by randomly generating 1000 fibers. For each fiber realization, there

are 5 different random input SOPs. The power was set at 3 dB above the power
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Figure 6-4: Performance of compensation when there are monitoring errors in the
spectrum of PMD vectors. Curve of squares is for the case with error variance σPMD

= 10ps. For reference, the compensated case without error is shown as the solid curve.
The numerical simulation was carried out with ∆f = 0.63 GHz, and the mean DGD
was 20ps for the fiber ensemble.

that provides a BER of 10−9. The dashed curve is for the uncompensated case while

the curves of squares is for the compensated case. With a mean DGD value of the

fiber ensemble set at 80% of the bit period, one would expect the presence of large

amount of higher order PMD. The significant improvement of the signal quality after

compensation indicates that the AFPMD compensator can handle the higher order

PMD. The optical frequency resolution ∆f required for the characterization of the

spectrum of PMD vectors depends on the bandwidth of the PSP, which, in turn,

depends on the mean DGD of the fiber ensemble. This frequency resolution affects

the speed of monitoring. The step size used in the synthesis algorithm is equal to

this frequency resolution. Therefore, it is interesting to study the performance of the

compensation as a function of this step size.

The solid line curve in Figure 6-3 shows the compensated case when ∆f is reduced

to 0.63 GHz and the curve of crosses shows the compensated case when ∆f is increased
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Figure 6-5: Cumulative probability distribution of BER curve for multi-channel PMD
compensation over 1 Tera-Hertz bandwidth. The center wavelength of the 40 Gbit/s
Gaussian pulse was randomly chosen within this 1 THz bandwidth. The numerical
simulation was carried out with ∆f = 0.63 GHz, and the mean DGD was 20ps for
the fiber ensemble. The solid line curve is for the compensated case while the dashed
curve is for the uncompensated case.

to 6.3 GHz. As expected, the performance of the compensation improves as the step-

size is reduced. Since the mean DGD of the fiber ensemble is 20 ps, its corresponding

PSP bandwidth ∆fPSP is ∼6.25 GHz. From Figure 6-3, the required frequency

resolution for good compensation is around ∆fPSP /8. In our numerical simulations,

we restricted the value of dθi/dω to a maximum value of 100 ps in the synthesis

algorithm. This is to avoid the singularity when θ2 approaches 0 (see equation (6.8)

and (6.12)). The significant improvement after compensation (as shown in Figure 6-

3) indicates that this restriction has little impact on the performance of the AFPMD

compensation.

In practice, there are always errors in the monitoring of the PMD vector spectrum.

Therefore, it is useful to study the performance of the compensation in the presence of

such errors. To simulate these monitoring errors, we first computed the exact output

PMD vector, ~τ(ω), as a function of frequency for each randomly generated fiber.
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Figure 6-6: Implementation of PMD compensator using spatial arrays of liquid crystal
polarization rotators with dispersive grating elements.

Then we introduced independent random Gaussian distributed errors of standard

deviation σPMD to each component of the computed PMD vector. The perturbation

was carried out independently for each frequency. Based on this perturbed spectrum

of PMD vectors, we synthesized the required rotation angles θ1(ω), θ2(ω) and θ3(ω)

using equation (6.6)-(6.9) and (6.12)-(6.13). The curve of squares in Figure 6-4 is

for the case when σPMD= 10 ps. For comparison, the compensated case without

monitoring error is shown in solid-line curve. The mean DGD of the fiber ensemble

used in Figure 6-4 is 20 ps and the step-size ∆f used is 0.63 GHz. This result shows

that the performance of the AFPMD is quite tolerant of the monitoring errors.

Until now, our main focus has been on the application of our synthesis algorithm

to the “All-frequency” compensation of a single channel. However, it is worthwhile to

mention that our synthesis algorithm can be applied well across many channels, and

it is suitable for broadband Tera-Hertz bandwidths. To simulate this, we computed

the output PMD vector, ~τ(ω), as a function of frequency across a 1 THz bandwidth

for each generated fiber. This is equal to a frequency range that spans 10 WDM

channels. The optical frequency step-size used was ∆f = 0.63 GHz. Based on

this PMD vector spectrum, we synthesized the required rotation angles θ1(ω), θ2(ω)
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Figure 6-7: A possible implementation of Figure 1a using All-Pass filters integrated
on planar waveguides.

and θ3(ω) using the same equation (6.6)-(6.9) and (6.12)-(6.13) for the whole tera-

hertz bandwidth. We then sent 40 Gbit/s RZ pseudo-random bit sequences (26-1) of

Gaussian pulses of 10 ps (FHWM) pulse-width. For each simulated fiber, in order

to show that PMD was compensated across the whole Tera-Hertz range, the center

wavelength of the Gaussian pulses was randomly chosen within this 1 THz bandwidth.

Figure 6-5 show the cumulative probability distribution of the BER curve with and

without compensation. The performance of the compensation is comparable to that

of the single channel case (compare with the solid line curve in Figure 6-5). This

illustrates that the synthesis algorithms can be applied for broadband multi-channel

PMD compensation.

6.4 Practical implementations of AFPMD compen-

sator

There are a few physical implementations of the proposed 4-stage AFPMD compen-

sator. The first two implementations can be adapted from the femto-second pulse

shaping schemes demonstrated experimentally by A. Weiner [119] using a spatial

light modulator and by Zeek et al [120] using a deformable mirror. For stage 1 and 3,

the light is polarization beam split into horizontal and vertical polarization. One po-

larization is then dispersed spatially by a diffraction grating to form a line spectrum
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across the deformable mirror or spatial light modulator. The mirror (or modulator)

is programmed to produce the desired changes in the spectral phase across the band-

width. When the two polarizations are combined using a polarization beam combiner,

this creates frequency-dependent rotation about {1,0,0} in Stokes space. Stage 2 has

the same setup as stage 1 and 3 except for two additional quarter-wave plates placed

before and after the setup. The slow birefringent axis of the first quarter-wave plate

is aligned at 45o degree while the second is aligned at -45o degree in physical space.

This make stage 2 an equivalent rotation about {0,0,1} in Stokes space. Thus by

programming appropriate spectral phase, we can produce the required rotation an-

gles θ1(ω), θ2(ω) and θ3(ω) calculated from equation (6.6)-(6.9) and (6.12)-(6.13). An

alternative setup using spatial arrays of liquid crystal polarization rotators with dis-

persive elements is shown in Figure 6-6. Another promising implementation is based

on All-Pass Filters (APFs) integrated on a planar lightwave circuit as shown in Figure

6-7. In the next section, we focus on this particular implementation since they can

be compactly integrated onto a chip. C.K. Madsen had demonstrated experimentally

chromatic dispersion compensation using APFs in several papers [121, 122, 123].

6.5 AFPMD based on All-Pass Filter

An all-pass filter (APF) has unity magnitude response. By cascading them, one can

engineer the phase response to approximate any desired response. This approach is

common in the field of electrical circuit design and digital signal processing [124] and

has been used extensively for phase equalization in these fields. C.K Madsen had ex-

tended it for optical filter application [121, 122, 123]. Two common implementations

of optical APF are a) a ring resonator coupled to a straight waveguide [121, 122, 123]

and b) an etalon that has a perfect mirror on one side [125]. The former is preferred

for compact integrated optics. The latter is also known as a Gires-Tournois interfer-

ometer. The power coupling coefficient into the resonator and the resonant frequency

are the two main filter parameters to adjust when engineering the phase response.

C.K Madsen had demonstrated that the tuning of these two filter parameters is fea-
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sible using thermal heaters in a Mach-Zehnder interferometer configuration of APF

[122]. In general, the phase response of a set of Ni APF is given by [124]:

Φi(ω) = Ni (π − ωT )−
Ni∑

k

(
φk + 2 tan−1

(
rk sin (ωT + φk)

1− rk cos (ωT + φk)

))
(6.14)

where φk determines the cavity’s resonant frequency, rk is the partial reflectance and

is related to the power coupling ratio into the cavity, κk, by rk =
√

1− κk and T is

the feedback path round trip delay and is related to the free spectral range (FSR) by

T = 1/FSR. Any phase response can be engineered by varying the filter parameters

φk and rk.

The scheme shown in Figure 6-7 may look similar to that proposed by C.K. Madsen

in Reference [109]. However, our synthesis algorithm of the phase responses of these

filters is distinctly different from hers. Madsen’s approach is to approximate the

inverse Jones matrix while ours aims to compensate only its frequency-dependent

part (i.e. jU †Uω(ω) ). In terms of signal distortion, the inversion of the Jones matrix

is really not necessary as it also produces output polarizations that are equal to that

of the input [117]. Our compensation of the output PMD vector is sufficient since it

cancels the frequency dependent part of the Jones matrix. In this scheme, the output

signals from the fiber are split into two waveguides (waveguide 1 and waveguide 2)

by a polarization beam splitter. The polarization in waveguide 2 is rotated by 90o

[126] so that identical waveguide structures can be used for both polarizations. Stage

1 is comprised of a set of N1 APFs for each of the waveguides to generate phase

response of Φ1H(ω) for waveguide 1 and Φ1V (ω) for waveguide 2. The same number

of APFs is used for both polarizations in an effort to minimize PDL. In Stokes space,

transmission through Stage 1 corresponds to a rotation about {1,0,0} with rotation

angle (Φ1V (ω)− Φ1H(ω)). Stage 2 is comprised of a 50/50 directional coupler with

matched propagation constants, followed by another set of N2 APFs for each of the

waveguides, and then by another 50/50 directional coupler with matched propagation

constants. For the same coupling constant, the length of the second 50/50 directional

coupler is 3 times greater than that of the first 50/50 directional coupler. This
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Figure 6-8: Cumulative probability distribution of BER curve when APFs are used
to approximate the rotation angles calculated by the synthesis algorithm. The curve
of crosses is for the compensated case using N1 = N2 = N3 = 3 APFs, the curve of
square is for the compensated case using N1 = 15, N2 = 10, and N3 = 15 APFs, the
solid line curve is for the compensated case using the exact rotation angles computed
by the synthesis algorithm and the dashed curve is for the uncompensated case. The
numerical simulation was carried out with ∆f = 1.26 GHz, and the mean DGD was
11.5 ps for the fiber ensemble.

set of APFs generates a phase response of Φ2H(ω) for waveguide 1 and Φ2V (ω) for

waveguide 2. In Stokes space, the first 50/50 directional coupler gives a 90o rotation

about {0,1,0}, the APF portion of Stage 2 is a rotation about {1,0,0} with rotation

angle (Φ2V (ω)− Φ2H(ω)) and the second 50/50 directional coupler is designed to

give a 270o rotation about {0,1,0}. Thus the combined transformation of Stage 2

is equivalent to a rotation about {0,0,1} with rotation angle of (Φ2V (ω)− Φ2H(ω)).

Stage 3 is again another set of N3 APFs for each of the waveguides to generate

phase response of Φ3H(ω) for waveguide 1 and Φ3V (ω) for waveguide 2. Transmission

through Stage 3 again corresponds to a rotation about {1,0,0} with rotation angle

(Φ3V (ω)− Φ3H(ω)). After Stage 3, the two polarizations are recombined on a single

waveguide via a polarization rotator and a polarization beam combiner. Stage 4 is
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comprised of another set of APFs to compensate the isotropic dispersion accumulated

through Stage 1 to 3. After knowing the required rotation angles of θ1(ω), θ2(ω)

and θ3(ω) for all-frequency PMD compensation using equation (6.6)-(6.9) and (6.12)-

(6.13), the corresponding ΦiH(ω) and ΦiV (ω) can be derived from

ΦiV (ω)− ΦiH(ω) = θi(ω) (6.15)

We arbitrarily choose

ΦiV (ω) + ΦiH(ω) = 2Ni (π − ωT ) (6.16)

for i = 1, 2, 3 so that the net isotropic dispersion introduced by the APFs in both

waveguides is simply a group delay. From equations (6.15) and (6.16), we get

ΦiV (ω) = Ni (π − ωT ) +
θi(ω)

2
(6.17)

ΦiH(ω) = Ni (π − ωT )− θi(ω)

2
(6.18)

To obtain the parameters φkand rk for each APF in each waveguide, we fit equa-

tion (6.14) with equations (6.17) and (6.18) using a nonlinear fit subroutine that is

available in standard mathematical software packages such as Mathematica. With

small Ni, this nonlinear fit can be fast and efficient. Note that if the fitting is per-

fect, from equation (6.16), the first three stages only introduce isotropic dispersion

(ΦiV (ω) + ΦiH(ω))/2 in the form of group delay. Thus Stage 4 is redundant. How-

ever, in reality, since the fitting is done separately for equation (6.17) and (6.18), this

isotropic dispersion often deviates from a simple group delay, and Stage 4 is needed

for compensating these accumulated isotropic dispersions.

To illustrate that the rotation angles calculated by our synthesis algorithm are

feasible and can be approximated using APFs, we show the rotation angles pro-

duced by the APFs for the same randomly chosen fiber used in Figure 6-2. They

are shown as dashed-line curves in Figure 6-2(a-c). The APF parameters used to
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approximate these rotation angles are found by fitting equation (6.17) and (6.18)

using the “NonlinearFit” subroutine in Mathematica. The number of APFs used

are N1 = N2 = N3 = 3. To show that these approximated rotation angles are

good enough for compensating pulse distortion, we simulated the signal after passing

through the compensator using these APFs. The compensated signal is shown as the

curve of filled circles in Figure 6-2d. The signal is almost recovered to its original

shape. To obtain more statistics on the performance of the AFPMD compensator

based on APFs, we created 1000 random fibers with mean DGD of 11.5 ps by cascad-

ing 20 randomly oriented birefringence sections. For each fiber realization, 5 different

random input SOPs were used. Figure 6-8 shows the cumulative probability distribu-

tion of the BER for this set of 5000 samples. The power is set at 3 dB above the power

that provides a BER of 10−9. The step-size used is ∆f =1.26 GHz. The dashed-line

curve is for the uncompensated case and the curve of crosses is for the compensated

case. There is a significant improvement in the signal quality after compensating

using APFs, However, as one would expect, there is a drop in the performance when

compared to the compensated case which uses the exact rotation angles profiles (see

the solid line curve). This is reasonable since APFs can only approximate the rota-

tion angles calculated from the synthesis algorithm. To improve the approximation

of the rotation angles, one can introduce more APFs. For example, if we increase the

number of APFs used to N1 = 15, N2 = 10, and N3 = 15, the performance improves

as shown by the curve of squares. It is worthwhile to note that, despite the simulation

is performed with 40 Gbit/s RZ signal, all orders of PMD is also important in the

case of in-line broadband compensation of 10 Gbit/s NRZ WDM system.

6.6 Fitting Algorithm for Broadband APF Appli-

cation

The “NonlinearFit” subroutine in Mathematica used in Figure 6-2 is a simple fitting

algorithm that is not optimized for our application. It lacks a weighting function
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Figure 6-9: A common building block in the broadband PMD compensator

that allows flexibility in distributing APFs to maximize the approximation accuracy

in certain frequency regions that have both large PMD and spectral power density.

As shown in Figure 6-5, the same 4-stage architecture can be used without any de-

multiplexing for multi-channel broadband PMD compensation. However, to maintain

a continuous PMD compensation over this broad bandwidth, we would need a large

number of APFs for each stage since the approximation of the rotation angle spectra

now spans a broader bandwidth. Thus the algorithm to find the optimum parameters

of these APFs needs to be efficient and fast. This is especially true in the case of

compensating for PMD, which are dynamically changing with time. Optimization al-

gorithms, such as the “NonlinearFit” subroutine in Mathematica, tend to get trapped

in local optima when the number of search parameters is large. For this reason, they

are efficient only when a small number of APFs is involved

Fast fitting algorithms that based on recursive equations are desired. References

[127, 128, 129] presented a simple and fast recursive method for designing digital all-

pass filters satisfying a given group delay specification using complex cepstrum [124].

The term cepstrum was introduced by Bogert et al. in 1963 [130] and has come to be

accepted terminology for the inverse Fourier transform of the logarithm of the power

spectrum of a signal. Cepstrum techniques have been applied extensively in speech

analysis. The fundamental principle of these algorithms [127, 128, 129] is based on the

relationship between the group delay of the minimum-phase denominator of a stable

APF and the complex cepstral coefficients arising from its discrete Hilbert transform.
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The main difference among the three algorithms lies in how the cepstral coefficients are

computed. Reference [127] uses four Fast-Fourier Transforms (FFT) while [128] uses

one FFT to approximate the cepstral coefficients in a least-square sense. Reference

[129] requires no FFT and uses a weighted-least-square approximation.

To present the essence of the fitting algorithm, we focus on its application on a

common building block in the broadband PMD compensator as shown in Figure 6-9.

It is a frequency-dependent polarization rotator. The light is polarization beam-split

into horizontal and vertical polarizations. Using cascaded APFs, different frequency-

dependent phase profiles are created for the two polarization arms, ΦH(ω) for the

horizontal and ΦV (ω) for the vertical. When the two polarizations are combined

using a polarization beam combiner, this creates frequency-dependent rotation θ(ω)

about {1,0,0} in Stokes space. This rotation profile θ(ω) corresponds to the differential

phase profile of the two arms (i.e. θ(ω) = ΦV (ω)−ΦH(ω)). The first derivative of θ(ω)

gives the Differential Group Delay (DGD) of the frequency-dependent polarization

rotator. Fitting algorithms proposed in [127, 128, 129] are not optimized for fitting

such a differential phase profile θ(ω) for two reasons. Firstly, these algorithms assume

pairs of poles that are complex conjugate to one another. Thus, the APFs have to

mirror-image one another about the center frequency resulting in the group delay

response of even-symmetry about the center frequency. This reduces the working

frequency range to half of the Free Spectral Range (FSR) of the filters and doubles

the number of APFs required. One common implementation of APFs in an optical

integrated circuit is a ring resonator coupled to a waveguide [123]. The FSR of the

APF is inversely proportional to the ring radius. Since rings with small radii tend

to have more loss and are more difficult to fabricate, we would like to utilize as

much of the FSR as possible. Secondly, these algorithms concentrate on the higher

dispersion without accounting for the linear frequency dependence of the response.

In applications such as chromatic dispersion compensation, this may not be an issue

since this linear dependence corresponds to a group delay which does not distort

the signal. However, in PMD compensation, the difference of the linear dependence

in the two polarization arms, shown in Figure 6-9, creates a first order PMD. This
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will introduce polarization-dependent signal distortion if it is unaccounted for. In this

section, we show how to rectify these two issues, and enhance the algorithms [128, 129]

to efficiently fit the rotation angle profile of the frequency–dependent polarization

rotator shown in Figure 6-9. This algorithm is equally valid for fitting the differential

phase profile required for the frequency-dependent variable attenuator proposed in

Chapter 10.

6.7 Group delay of APFs, Minimum-Phase De-

nominator and DGD

The transfer function in the z-transform domain of an all-pass filter of order N is

given by

H(z) = z−N N(z)

D(z)
= z−N

N∑
n=0

a∗nz
n

N∑
n=0

anz−n

(6.19)

with ao = 1. There are N poles and zeros. The zeros of H(z) are reciprocal complex

conjugates of its poles. In [127, 128, 129], an is taken as a real number resulting in a

pair of poles that are complex conjugates of one another. This limits the fitting algo-

rithm to accept only group delay that has even symmetry about the center frequency.

In general, an is complex. From equation (6.19), when z = ejω,

H(ejω) = e−jωN

N∑
n=0

a∗ne
jωn

N∑
n=0

ane−jωn

(6.20)

where ω is the normalized frequency given by 2π (f − fo)/FSR and fo is the center

optical frequency of the band of interest. Since the numerator N(ejω) is the complex

conjugate of the denominator D(ejω), H(ejω) has unity magnitude response for all

frequencies. Moreover, the phase response of the overall filter H(ejω) is given by

φH(ω) = −Nω + φN(ω)− φD(ω) = −Nω − 2φD(ω) (6.21)
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where φN(ω) and φD(ω) denote the phase response of the numerator N(ejω) and the

phase response of the denominator D(ejω), respectively. The normalized group delay

of the overall filter is given by

τH(ω) =
−dφH(ω)

dω
= N + 2φ

′
D(ω) (6.22)

where φ
′

D(ω) = dφD(ω)/dω = −τD(ω) is the negative group delay of the denominator

D(ejω). Hence, the group delay response of the denominator can be obtained from

the group delay response of the all-pass filter using the relation

τD(ω) =
−τH(ω)

2
+

N

2
(6.23)

The coefficient an of the denominator D(z) and hence the filter H(z) are completely

determined from τD(ω). From equation (6.19), for a stable APF, H(z) has all its poles

within the unit circle in the complex z-plane. This implies that the denominator D(z)

is a minimum phase function. A function is defined to be minimum phase when all

its zeros and poles lies within the unit circle [124]. A minimum phase function is

known to have zero average group delay over the FSR. From (6.23), this implies that

the average group delay of a N th -order APFs over a FSR is fixed at N .

To approximate a desired rotation angle profile θ(ω) of the frequency-dependent

polarization rotator shown in Figure 6-9, we cascade NHor APFs in the horizontal

polarization arm to generate the phase response ΦHor(ω) and NV ert APFs in the

vertical polarization arm to generate the phase response ΦV ert(ω) so that

ΦV ert(ω)− ΦHor(ω) = θ(ω) (6.24)

Differentiating equation (6.24) with respect to ω, we obtain their corresponding nor-

malized group delay as

τV ert(ω)− τHor(ω) = τDGD(ω) (6.25)
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which is the Differential Group Delay (DGD) of the frequency-dependent polariza-

tion rotator. We assume all APFs have the same FSR. Since the average group delay

of an N th order APF over the FSR is fixed at N , the average DGD over the FSR

is fixed at NV ert − NHor which is an integer. On the other hand, since PMD is a

stochastic process, the required rotation angle profile θ(ω) for compensation is dy-

namically changing with an arbitrary non-integer value of the average DGD τ̄DGD

over the frequency range of interest ∆fint. To overcome this incompatibility, the FSR

of the APFs must be larger than ∆fint. We then express the required average DGD

over ∆fint as τ̄DGD = Ndiff + ∆τ̄DGD where Ndiff is an integer. Since the frequency

range outside ∆fint has no impact on the compensation, we appropriately extrapo-

late τDGD(ω) outside the frequency range ∆fint to cancel ∆τ̄DGD, thus rounding the

average value of τDGD(ω) over the FSR to an integer value of Ndiff . To account

for this Ndiff average DGD, we change the order of the APFs accordingly so that

NV ert − NHor = Ndiff . One way to implement this is to have the same number of

APFs in both polarization arms, and to “de-activate” Ndiff APFs in the appropriate

arms, depending on the sign of Ndiff . From (6.25), if Ndiff is a positive (negative)

integer, we “de-activate” Ndiff APFs from the horizontal (vertical) polarization arm,

and vice versa. To “deactivate” an APF in an optical integrated circuit, we shift its

resonant frequency out of ∆fint and decrease the power coupling of the ring resonator

to the waveguide so that it does not contribute any group delay within ∆fint. The

FSR of the APF is inversely proportional to the ring radius, and we would like to

utilize the most of the FSR as ∆fint in order to reduce the ring bending loss and

ease its fabrication. In our simulations, we typically choose the FSR to be ∼10%

larger than ∆fint. After accounting for the linear frequency dependence of the rota-

tion angle, we now focus on fitting its higher order differential dispersion. We have

the freedom to choose ΦHor(ω) and ΦV ert(ω) so that the isotropic dispersion of the

frequency dependent polarization rotator is a group delay.

τV ert(ω) + τHor(ω) = NV ert + NHor (6.26)
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Using (6.25) and (6.26), we get

τV ert(ω) =
NV ert + NHor

2
+

τDGD(ω)

2
(6.27)

and

τHor(ω) =
NV ert + NHor

2
− τDGD(ω)

2
(6.28)

which are the corresponding desired group delays for the respective polarization arms.

We show in the following how to fit the desired group delay for the vertical polar-

ization, and the same procedures apply to the horizontal. For a desired group delay

function τV ert(ω), we use equation (6.23) to determine the corresponding group delay

response τDV (ω) of its minimum phase denominator function as

τDV (ω) =
−τV ert(ω)

2
+

NV ert

2
(6.29)

We then decompose it into a sum of even function τ even
DV (ω) and odd function τ odd

DV (ω)

of the form,

τ even
DV (ω) =

τDV (ω) + τDV (−ω)

2
(6.30)

τ odd
DV (ω) =

τDV (ω)− τDV (−ω)

2
(6.31)

6.8 Relationship between Minimum-Phase Response

and Cepstral Coefficients

Let D(ω) be a minimum phase frequency response. Since D(ω) is minimum phase with

all its zeros and poles inside the unit circle, its natural logarithm D̂ (ω) = ln D(ω) also

has all its poles inside the unit circle. Thus D̂ (ω) is a stable and causal frequency

response. In addition, the inverse Fourier transform of D̂ (ω) (also known as the

cepstrum) yields a causal sequence of cepstral coefficients c(k). In terms of c(k), we

can express

D̂ (ω) = ln D(ω) = c(0) +
∞∑

k=1

c(k)e−jkω (6.32)
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From D(ω) = |D(ω)| ejφ(ω), we see that the imaginary part of D̂ (ω) gives the phase

term as

φ (ω) + 2υπ = −
∞∑

k=1

Re[c(k)] sin kω+
∞∑

k=1

Im[c(k)] cos kω (6.33)

where v is an integer. Its corresponding group delay is

τ (ω) =
∞∑

k=1

kRe[c(k)] cos kω +
∞∑

k=1

kIm[c(k)] sin kω (6.34)

, and the real part of D̂ (ω) is given by

ln |D(ω)| = c(0) +
∞∑

k=1

Re[c(k)] cos kω +
∞∑

k=1

Im[c(k)] sin kω (6.35)

From (6.34), we can see that the real part of c(k) gives group delay of even symmetry

while the imaginary part gives group delay of odd symmetry. In Reference [127,

128, 129], c(k) is real since its group delay is only of even symmetry. For a given

desired group delay τV ert(ω), we determine the corresponding group delay τDV (ω) of

its minimum phase denominator response using (6.29). Then we decompose it into a

sum of even group delay τ even
DV (ω) and odd group delay τ odd

DV (ω) using equations (6.30)

and (6.31). Using equation (6.34), the even group delay function determines the real

part

τ even
DV (ω) =

∞∑

k=1

kRe[c(k)] cos kω (6.36)

while the odd delay determines the imaginary part of the complex cepstral coefficients

τ odd
DV (ω) =

∞∑

k=1

kIm[c(k)] sin kω (6.37)

To compute the cepstral coefficients c(k) from equations (6.36) and (6.37), we can

either use an inverse Fast Fourier transform (IFFT) [128] or compute them using

a weighted-least-square approximation [129]. From the computed complex cepstral

coefficients c(k), we can now derive the coefficients an of the denominator D(z) using
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the recursive nonlinear difference equation [124] given by

an =
n∑

k=0

(
k

n

)
c(k)an−k n > 0 (6.38)

where c(0) = 0 and a0 = 1. To prove equation (6.38), we first differentiate D̂(z) =

ln (D (z)) with respect to z so that

dD̂(z)

dz
=

1

D(z)

dD(z)

dz
(6.39)

Using the z-Transform pairs,

nx [n] ⇔ −z
dX (z)

dz
(6.40)

and

x1 [n] ∗ x2 [n] ⇔ X1 (z) .X2 (z) , (6.41)

the inverse z-transform of (6.39) gives the recursive nonlinear difference equation in

(6.38). Once the sequence ak is known, the parameters of the APFs are determined

by finding the roots of the denominator D(z). The magnitude of each root gives the

reflection coefficient of each APF and its argument gives the resonant frequency of

the APF.

6.9 Summary of fitting algorithm

The implementation procedure can be summarized as follows: let τDGD(ω) be the

desired differential group delay function over a frequency range ∆fint.

(1) Compute average τDGD(ω) over ∆fint and express it in terms of an integer Ndiff

and ∆τ̄DGD. Ndiff determines the required difference in orders of APFs used in the

vertical and horizontal polarization arm. Since the frequency range outside does not

affect the compensation, we extrapolate τDGD(ω) outside ∆fint to cancel ∆τ̄DGD.
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(2) From equation (6.27) and (6.28), compute the respective desired group delay for

each polarization arm: τV ert(ω) and τHor(ω).

(3) For τV ert(ω) in the vertical polarization arm, use equation (6.29) to compute the

corresponding group delay of the minimum phase denominator τDV (ω).

(4) Perform an even-odd decomposition of τDV (ω) using equations (6.30) and (6.31):

τ even
DV (ω) and τ odd

DV (ω).

(5) Compute the complex cepstral coefficients c(k) using equations (6.36) and (6.37).

The real part of c(k) is computed using the even function τ even
DV (ω) while the imaginary

part using the odd function τ odd
DV (ω). This can be implemented using an IFFT [128]

or computed in a weighted-least-square sense using a weighting function as in [129].

(6) Compute the denominator coefficients an using the recursive relation in equation

(6.38).

(7) Compute the roots of the denominator D(z). The magnitude of each root gives

the reflection coefficient of each APF, and its argument gives the resonant frequency

of each APF.

(8) Repeat Step 3 to 7 for the horizontal polarization arm.

6.10 Simulation

Figure 6-10 shows a sample of the rotation angle profile θ(ω) required for one of the

frequency dependent polarization rotators used in the broadband PMD compensator.

The fiber to be compensated has a mean DGD of 6.75 ps. The desired rotation angle

profile of θ(ω) is shown by the solid curve while the profile approximated by the APFs
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Figure 6-10: A random sample of the rotation angle profile θ(ω) required for one of the
frequency dependent polarization rotators used in the broadband PMD compensator.
The desired rotation angle profile of θ(ω) is shown by the solid curve while the profile
approximated by the APFs is shown by the dashed-curve. The number of APFs used
for each polarization arms is 10 for (a), 20 for (b) and 30 for (c).

is shown by the dashed-curve. The cepstral coefficients were computed using IFFT

as in [128]. The number of APFs used for each polarization arms is 10 for Figure

6-10a, 20 for Figure 6-10b and 30 for Figure 6-10c. As expected, the approximation

improves as the number of APFs increases. The FSR of the APFs is 1.0 THz while

the frequency range of interest ∆fint is 0.9 THz. This broadband compensator is

capable of covering nine 100 GHz-spaced WDM channels simultaneously. Rings with

such Tera-Hz-scale FSR have been demonstrated in [131].

Since PMD is a stochastic process, the required rotation angle profile θ(ω) for

compensation is dynamically changing. To gain statistics on the performance of

the APFs in approximating the rotation angle profile, we generated an ensemble of
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Figure 6-11: The cumulative probability distribution of the Bit Error Rate (BER)
curve with and without PMD compensation.

1000 random fibers by cascading 20 randomly oriented birefringence sections. The

mean DGD of the ensemble is of 6.75 ps. For each fiber, the input signal is a 40

Gbit/s RZ pseudo-random bit sequence (26-1) of Gaussian pulses of 10 ps (FHWM)

pulse-width. PMD compensation is carried out at the fiber output. The broadband

PMD compensator is comprised of three stages of frequency-dependent polarization

rotators as shown in Figure 6-7, and the method to synthesize the required rotation

angle profile θ(ω) for each stage is described in Section 6.2. We then find the optimum

parameters of the APFs to approximate these required rotation angle profiles using

the recursive algorithm proposed here. The number of APFs used is 40 for each

arm of the polarization rotators. In order to show that PMD was compensated

across the whole Tera-Hertz range, the center wavelength of the Gaussian pulses was

randomly chosen within this 0.9 THz bandwidth. Figure 6-11 shows the cumulative

probability distribution of the Bit Error Rate (BER) curve with and without the

PMD compensation. The power was set at 3dB above the power that provides a

BER of 10−9. The dashed curve is for the uncompensated case while the solid curve

is for the compensated case. There is significant improvement in the signal quality
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after compensation, therefore illustrating the capability of the recursive algorithm in

finding for the optimum fitting parameters of such large number of APFs.

6.11 Conclusion

We have presented the architecture of an All-Frequency PMD compensator in a feed-

forward compensation scheme. It is comprised of 4 stages. The first two stages give

an equivalent frequency dependent polarization rotation effect, the third stage pro-

vides the frequency dependent variable DGD while the last stage compensates for the

isotropic dispersion created by the first three stages. In Stokes space formulation,

we describe the algorithm to find the required rotation angles of each stage using

the PMD concatenation rules. This synthesis algorithm is verified by simulating the

PMD-induced signal degradation before and after the compensation. We discuss three

possible practical implementations of the AFPMD compensator but only concentrate

on the integrated optics approach of using APFs. We also show that the profiles of the

rotation angles are practical and can be approximated using APFs. Again, through

simulations, significant improvement of the signal quality was demonstrated using

such 4-stage architecture based on APFs. To extend the architecture for broadband

compensation, the number of APFs involved can be as large as 50 per stage. Thus

we proposed a fast and efficient algorithm based on recursive equations to find the

optimum of the large number of free parameters involved. This APF design algorithm

is based on the complex cepstrum commonly used in digital signal processing.
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Chapter 7

Combinatorial Polarization

Scramblers for Many-Segment

Emulator

7.1 Background

As the telecommunication industry continues to deploy higher bandwidth fiber optic

systems, Polarization Mode Dispersion (PMD) becomes one of the major obstacles in

10Gbit/s and higher transmission systems. The evaluation of PMD mitigation tech-

niques requires a method of emulating the PMD of the installed fiber links, especially

since fiber with high PMD installed in the 1980’s is no longer commercially available.

PMD emulation has thus become an active area of research since the last few years.

Much work has focused on emulating PMD using a concatenation of many birefrin-

gent segments with random coupling at each junction [95, 96, 132, 133]. There are

various methods to achieve random coupling at the junctions: (i) several segments

of Polarization Maintaining (PM) fiber can be connected using either mechanically

rotatable connectors [95] or polarization controllers using fiber squeezers [134]; (ii) a

series of free-space birefringence crystals separated by wave-plates mounted on motor-

controlled rotation stages [96]; (iii) a long PM fiber with fiber-twisters placed period-
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ically along the fiber to vary the polarization coupling between segments [133]; (iv)

an electrically-controlled all-fiber PMD emulator constructed using thin-film micro-

heaters to temperature tune the birefringence of the PM fiber segments [132]. One

important feature of these emulators is that the number of segments concatenated

has to be large. This is to give the key properties of a good PMD emulator [74]

which include (i) a Maxwellian distributed DGD, (ii) accurate higher-order PMD

statistics and (iii) a frequency autocorrelation function that tends toward zero after

a frequency range that spans a few times the bandwidth of the principle state of po-

larization (PSP). On the other hand, practical considerations such as the size of the

emulator, the cost of building it, the ease of implementation, the complexity involved

in the controls and the insertion loss often limit the number of segments to typically

∼15 [95]. A polarization scrambler placed between segments is the one of the ma-

jor components that determines its cost, size and complexity. Since the number of

polarization scramblers required is linearly proportional to the number of segments

used, these factors scale up linearly with the number of segments. Waddy [134] had

demonstrated a dynamic PMD emulator using a total of 36 squeezers (3 squeezers

in each of the 12 polarization controllers) while Noe used 64 motors to control the

64 fiber twisters in his experiment [133]. The cost to build and the complexity to

control such many squeezers are substantial. In this paper, we investigate the com-

binatorial approach of building polarization scramblers, with the aim to reduce the

number of phase-plates and the controls required in building a many-segment PMD

emulator. This approach exploits the simple principle that the rotation matrices are

non-commutative and there exist a large number of combinations involving just a

few phase-plates in building polarization controllers. For instance, given 6 different

phase-plates, one can build 6! = 720 different polarization controllers. Thus, just by

randomly varying the parameters of these 6 phase-plates, we effectively ”scramble”

hundreds of polarization controllers. Moreover, if duplicated use of each phase-plate

is allowed, the total number of possible polarization controllers can be further in-

creased. Although these hundreds of polarization controllers may be correlated to

one another, we show in this paper, by numerical simulations and experiment, that
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with as few as 6 phase-plates for a 20-segment concatenation, there is sufficient polar-

ization scrambling between segments to achieve the various key properties of a good

emulator discussed earlier. This combinatorial approach to build polarization scram-

blers between birefringent segments allows us to reduce the number of phase-plates

required, thus reducing the size, the cost, the complexity of building and controlling

such emulator. In addition, it may now be relatively easier and cheaper to scale up

the number of segments to 45-60 so as to further reduce the background correlation

and improve the PMD statistics at the low-probability tails of the distributions [132].

7.2 Numerical simulation

Figure 7-1 shows a numerical simulation of concatenating 20 birefringent segments.

The birefringence of these segments is Gaussian distributed with a mean value of 1.2

ps and with a standard deviation of 20% of this mean value. The unequal length of

the segments is necessary to avoid the undesired periodicity in the frequency auto-

correlation function of the PMD [74]. Random combinations of 6 phase-plates are

chosen to form the 19 polarization scramblers. Each phase-plate is assumed to have

a fixed birefringence axis while its retardation angle is tunable. In Stokes space rep-

resentation, the birefringence axes of these phase-plates are randomly chosen on the

Poincaré sphere; but, once chosen, they are fixed throughout the simulation. The

number of phase-plates used to form a scrambler is randomly chosen from 6 to 9.

It allows duplicated usage of any phase-plate. We generate random combinations

of these phase-plates to form the polarization scramblers. Once the random set of

polarization scramblers is chosen, it is also fixed throughout the simulation. The

retardation angles of the six phase-plates are then randomly tuned for the different

realizations of the fibers. The first- and second- order PMD of the concatenation are

then computed using the PMD concatenation rule as a function of frequency. 100,000

random fiber realizations are used to generate the necessary statistics, as shown in

Figure 7-1, for (a) one component of the first-order PMD vector, (b) the DGD, (c)

the magnitude of the second order PMD and (d) the PMD frequency autocorrelation
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Figure 7-1: Simulated statistics of 100,000 random fiber realizations using the combi-
natorial polarization scramblers. Circles show the simulated distributions of (a) one
of the components of the PMD vector, (b) the DGD, (c) magnitude of second order
PMD. The number of bins used is 400. (d) shows the normalized frequency autocor-
relation function. The corresponding theoretical curves are shown in solid line curves.
The mean DGD used for fitting these theoretical curves is 4.9 ps.

function. One can see that the simulated statistics are in good agreement with the

corresponding desired distributions [59] shown in the solid line curves. This result is

encouraging as we can now generate the required PMD statistics using an order of

magnitude fewer phase-plates. This would significantly reduce the cost, the size and

the complexity of the emulator.
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Figure 7-2: Top: Schematic of an all-fiber PMD emulator using combinatorial po-
larization scramblers. After each PM fiber loop, a different polarization scrambler is
built by passing different sequence of the 6 fiber squeezers which are labelled letter
”A” to ”F”; Bottom: A photograph of such emulator

7.3 Experiment

There are a variety of ways to build an emulator with combinatorial polarization

controllers. Figure 7-2 shows an all-fiber implementation using the fiber squeezing

technique. A long 3M Tiger polarization maintaining fiber is arranged in loops. Be-

tween each loop, the fiber passes through a different sequence of the six fiber squeezers,

this equivalently creates different polarization scramblers between loops of the PM

fiber. For illustration purpose, after the first loop, the first polarization scrambler

is built by passing through the squeezers in an arrangement C→B→B→A→A and
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after the second loop, the second polarization scrambler is built by passing through

F→E→E→D→C→B→A and so on. We restrict the maximum number of squeezers

experienced by any polarization controller to 7. This is to avoid excessive insertion

loss. When a squeezer applies mechanical stress on the fiber, it induces stress birefrin-

gence and creates the equivalent of a tunable phase-plate and an effective polarization

scrambling between the PM fiber loops. In the experiment, the DGD of each loop

is randomly chosen with a Gaussian mean of 1.2 ps and a standard deviation 20%

of this mean value. The total number of PM fiber loops is 16. The measured loss

of the emulator is 5±2 dB depending on the stress applied to the squeezers. The

polarization dependent loss is ∼ 0.2 dB. We manually vary the stresses applied by

the 6 squeezers to generate different fiber realization. For each fiber realization, we

characterize the spectrum of the PMD vectors by using the technique described in

Chapter 3. Instead of using optically filtered telecommunication at the output end

as described in Chapter 3, we use a Santec scanning wavelength laser at the input

end. The polarization of the laser is randomly scrambled with a General Photonics

polarization scrambler (Polarite II) before launching into the emulator. The output

polarization is measured with a HP 8509B polarimeter. From measurements of the

SOP versus frequency, we deduce the spectrum of the PMD vectors using the same

algorithm described in Chapter 3. In this algorithm, we first compute the differen-

tial output SOP vectors for the various scrambled input polarization states and find

the optimum normal axis to these differential SOP vectors in a least-square sense.

This gives the PSP direction. Using this PSP direction, we then determine the DGD

value from the length of the differential SOP vectors. Once the information of the

PMD vectors with frequency is known, the higher-order PMD can then be computed.

We verified experimentally the accuracy of this characterization using well-calibrated

first- and higher-order PMD sources. For each fiber realization, we measured the

PMD vectors over a range of 1440 nm to 1510 nm with a step size of 0.2nm. This

step-size corresponds approximately to the PSP bandwidth of this emulator. The

measured mean DGD of the emulator is 5 ps and its corresponding PSP bandwidth

is ∼ 25 GHz. A hundred random fiber realizations were characterized. For each
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Figure 7-3: (a) Variation and distribution of DGD with fiber realizations at fixed
wavelength; (b) Variation and distribution of DGD with wavelength for fixed fiber
realizations

fiber realization, the DGD fluctuates with wavelength while, for each wavelength, the

DGD fluctuates with the fiber realizations. In general, the observed distribution of

the DGD at fixed wavelength or at fixed fiber realization has a trend that approx-

imates a Maxwellian distribution with these limited statistics. Figure 7-3a shows

a typical variation of DGD with fiber realization at a fixed wavelength while Fig-

ure 7-3b shows the DGD variation with wavelength for a fixed fiber realization. To

improve the statistics, we combine the 350 wavelength samples of all the 100 fiber

realizations to get a sample size of 35, 000. Figure 7-4a shows the distribution of one

of the components of the PMD vector. It agrees well with the expected Gaussian

distribution shown in the solid curve. Similarly, the other components of the PMD

vector also follow this Gaussian distribution. Figure 7-4b shows the distribution of

the DGD which agrees very well with the theoretical Maxwellian distribution depicted

in the solid curve. Figure 7-4c shows the distribution of the magnitude of the second
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Figure 7-4: Measured statistics of the all-fiber PMD emulator using the combinatorial
polarization scramblers. The sample size is 35000 and the number of bins used is
300. Circles show the simulated distributions of a) one of the component of the
PMD vector, b) the DGD, c) the magnitude of second order PMD. Figure 3d) shows
the measured frequency autocorrelation function in cricles. All the corresponding
theoretical curves are shown in solid line curves. The mean DGD used for fitting
these theoretical curves is 5ps.

order PMD which also agrees well with the theoretical distribution reported in [59].

All of the theoretical distributions shown as solid curves use the same mean DGD

value of 5ps as their fitting parameter. The frequency autocorrelation function of the

emulator, as shown in Figure 7-4d, indicates that outside the bandwidth of 1.2 nm,

the PMD vectors are no longer correlated, thus the emulator is suitable for WDM

applications. This 1.2 nm corresponds to between 6 and 7 times the PSP bandwidth

of the emulator which is in good agreement with the theoretical results [18].
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7.4 Conclusion

We have proposed a new approach for doing polarization scrambling between segments

in a many-segment PMD emulator. It exploits the principles that rotation matrices

are non-commutative and that numerous combinations are possible using only a few

phase-plates for use in generating a polarization scrambler. With this combinatorial

polarization scrambler approach, we demonstrated numerically and experimentally

that good PMD statistics are still achievable when we reduce the number of phase-

plates by as much as an order of magnitude. This can substantially reduce the cost,

the size and the complexity of controlling the emulator. The ease of implementation is

also shown by the fact that our emulator was built in less than 3 hours. Although our

current setup utilizes manual squeezing, it can be readily implemented using auto-

matic electrically controlled transducers to give a high speed operation. Furthermore,

this combinatorial approach can also be adapted for emulation using thermal tuning,

wave-plates and polarization controllers using paddles.
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Chapter 8

Deterministic Emulator for First

and Second Order PMD

8.1 Background

PMD emulators, including the one presented in Chapter 7, are built by physically

concatenating as many as 15 segments of polarization maintaining fiber (PMF) with

random polarization coupling between segments. The reason for using so many seg-

ments is to generate statistical distributions of PMD parameters that resemble those

present in the real optical communication fiber. Previous research [95, 74] shows that

a small number of concatenated PMF segments is not adequate to produce the tail

in the Maxwellian distribution of the differential group delay (DGD) if only the po-

larization is scrambled between these segments. However, many-segment emulators

tend to lack in repeatability and are unable to adjust for varying PMD statistics. In

addition, they lack a “dial-in” feature. The ability to “dial-in” any PMD state is

particularly useful, since it allows one to quickly examine a PMD compensator by

investigating only PMD states that are of interest.

In this chapter, we propose an emulator that can be programmed to generate an

arbitrary set of first and second order PMD emulators within its designed range. It

is based on a configuration of 4 segments: one variable DGD segment concatenated

with 3 fixed DGD segments. There are three polarization rotators, one at each junc-
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Figure 8-1: Schematics of 4-segment emulator. Segment 1, 2, and 3 have fixed DGD
while Segment 0 has variable DGD.

tion of the segments. Instead of polarization scrambling at each junction, we set

these polarization rotators according to a statistical schedule so as to produce the

probability density functions (pdf) of first and second order PMD vectors that re-

semble those present in long haul transmission cable. The essence of this approach is

to randomly select a pair of isotropically distributed 1st and 2nd order PMD vectors

in Stokes space chosen to follow the pdf of real transmission cables. The 4-segment

emulator is controlled to produce these PMD vectors. Thus, over a large number of

independent samplings, the 1st and 2nd order PMD vectors generated by the emu-

lator, will follow the pdf of the real transmission cable. In addition, since this is a

deterministically controlled emulator, it can also be used with importance sampling

[32, 33] to intentionally produce those low-probability events that create outages. In

this approach to PMD emulation, we need to control the polarization rotators deter-

ministically. Therefore, we need to solve the required 3× 3 Mueller rotation matrices

of polarization rotators to produce any given pair of 1st and 2nd order PMD vec-

tors. In the following section, we discuss how to solve analytically for these required

rotation matrices.

8.2 Theory

The emulator consists of 4 segments: one variable DGD segment and three concate-

nated segments of fixed DGD as shown in Figure 8-1. {~τ0, R0}, {~τ1, R1}, {~τ2, R2}
and {~τ3, R3} are the first order PMD vectors and the 3× 3 Mueller rotation matrices

for each segment. They are fixed parameters, except for |~τ0| which is adjustable.
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We assume negligible second order PMD for each of the individual segments. Thus

segment 1, 2 and 3 could be fixed group velocity delay lines in free space or polar-

ization maintaining fibers with negligible second order PMD while segment 0 could

be a variable delay line. There are three polarization rotators in the emulator whose

rotation matrices are given by C0, C1 and C2. These rotation matrices are assumed

frequency independent over the frequency range of interest. In order for the emula-

tor to generate a given first order PMD, ~τ , and second order PMD, ~τω, we need to

work out the Mueller rotation matrices for the required polarization rotations, C0,

C1, C2, and the DGD (|~τ0|) of the variable delay line in the emulator. We analyse the

emulator’s PMD parameters by lumping segments together and calculate the PMD

parameters using the PMD vector concatenation rules. From Figure 8-2a,

~τ
′′

= ~τ1 + R1C0~τ0 (8.1)

~τ
′′

ω = ~τ1 × ~τ
′′

(8.2)

And from Figure 8-2b,

~τ
′
= ~τ2 + R2C1~τ

′′
(8.3)

~τ
′

ω = R2C1~τ
′′

ω + ~τ2 × ~τ
′

(8.4)

The concatenation of all the segments produces the first order PMD vector ~τ and

second order PMD vector ~τω as shown in Figure 8-2c.

~τ = ~τ3 + R3C2~τ
′

(8.5)

~τω = R3C2~τ
′

ω + ~τ3 × ~τ (8.6)

Applying rotation transformation, (R3C2R2C1), on equations (8.1) and (8.2),

R3C2R2C1~τ
′′

= R3C2R2C1~τ1 + R3C2R2C1R1C0~τ0 (8.7)

R3C2R2C1~τ
′′

ω = R3C2R2C1~τ1 ×R3C2R2C1~τ
′′

(8.8)
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Applying (R3C2) on equations (8.3) and (8.4),

R3C2~τ
′
= R3C2~τ2 + R3C2R2C1~τ

′′
(8.9)

R3C2~τ
′

ω = R3C2R2C1~τ
′′

ω + R3C2~τ2 ×R3C2~τ
′

(8.10)

Substituting (8.9) and (8.10) into (8.5) and (8.6), we obtain

~τ − ~τ3 = R3C2~τ2 + R3C2R2C1~τ
′′

(8.11)

~τω − (~τ3 × ~τ) = R3C2R2C1~τ
′′

ω + R3C2~τ2 ×R3C2R2C1~τ
′′

(8.12)

To simplify notation, we denote

~A = R3C2R2C1R1C0~τ0 (8.13)

~B = R3C2R2C1~τ1 (8.14)

~D = R3C2~τ2 (8.15)

Substituting (8.7) into (8.11), and making use of the above notations,

~τ − ~τ3 = ~A + ~B + ~D (8.16)

Similarly, substituting (8.7) and (8.8) into equation (8.12), we get

~τω − (~τ3 × ~τ) = ( ~B + ~D)× ( ~B + ~A) (8.17)

Vector ~B and ~D are adjustable in orientation using rotation matrices C1 and C2

respectively. Vector ~A is arbitrarily adjustable in orientation and magnitude using

rotation matrix C0 and the adjustable group delay |~τ0|. Our aim is to solve for ~A,

~B and ~D from (8.16) and (8.17), so that we can compute their respective rotation

matrices, C0, C1 and C2 and |~τ0|, since we know R3, ~τ2, R2, ~τ1, R1 of the individual

segment. We also know the direction of ~τ0. However, its magnitude is only known
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Figure 8-2: Sequences of combining segments for PMD analysis

when we have solved for ~A (i.e. |~τ0| =
∣∣∣ ~A

∣∣∣). Substitute (8.16) into (8.7) and with

some algebraic manipulation, we obtain

(~τω − (~τ3 × ~τ)− ~D × (~τ − ~τ3)) = ~B × (~τ − ~τ3 − ~D) (8.18)

From (8.18), it is obvious that (~τω − (~τ3 × ~τ) − ~D × (~τ − ~τ3)) and (~τ − ~τ3 − ~D) are

perpendicular and thus by taking their dot product and set it to zero, we obtain a

vector equation for ~D

(~τω − (~τ3 × ~τ)) · (~τ − ~τ3 − ~D) = 0 (8.19)

To emulate any given ~τ and ~τω, we just have to choose ~D such that (~τ − ~τ3 − ~D)

is perpendicular to (~τω − (~τ3 × ~τ)). Figure 8-3a helps us visualize the orientation of

these vectors.
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Figure 8-4: Monte Carlo simulation of 1st and 2nd order PMD generated by a con-
catenation of 100 1-ps DGD segments. (a) Probability density function (pdf) of DGD,
|~τ |; (b) pdf of vector components, ~τi , of ~τ . The pdf are identical for all the 3 vector
components; (c) pdf of |~τω|; and (d) pdf of vector components, ~τωi, of ~τω. Dots are
simulation results while solid lines are the fitting curves.

It is worthwhile to note that the magnitude of ~D is fixed at |~τ2| (see (8.15)) and

that equation (8.19) does not uniquely define ~D. For convenience, we fix ~D onto the

plane containing (~τ − ~τ3) and (~τω − (~τ3 × ~τ)). Thus we solve for ~D as

~D = |~τ2| (cos γµ̂− sin γv̂) (8.20)

where µ̂ is a unit vector in the direction of (~τω − (~τ3 × ~τ)), v̂ is a unit vector per-

pendicular to µ̂ in the plane of (~τ − ~τ3) and (~τω − (~τ3 × ~τ)) as shown in Figure 8-3a

(which is parallel to (~τ − ~τ3 − ~D)). The angle γ, as in Figure 8-3a, is given by

γ = cos−1

[
((~τ − ~τ3) · µ̂)

|~τ2|
]

(8.21)

To ensure that a solution always exists for equation (8.21), we need to choose |~τ2| to

be larger than any anticipated magnitude of |~τ − ~τ3|. Once we know ~D, we solve ~B
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using (8.18). The solution is unique since the magnitude of ~B is |~τ1|. Thus ~B, as in

Figure 8-3b, is given by

~B = |~τ1| (cos ψ v̂ + sin ψ ρ̂) (8.22)

where v̂ is the unit vector in the direction of (~τ − ~τ3 − ~D), ρ̂ is the unit vector in

the direction of v̂ × [~τω − (~τ3 × ~τ)− ~D × (~τ − ~τ3)] and ψ is the angle between ~B and

(~τ − ~τ3 − ~D) given by

sin ψ=

∣∣∣(~τω − (~τ3 × ~τ)− ~D × (~τ − ~τ3))
∣∣∣

|~τ1|
∣∣∣~τ − ~τ3 − ~D

∣∣∣
(8.23)

Similarly, it is important to note that to ensure robust operation of the emulator, we

need to choose an appropriate |~τ1| so that a solution of equation (8.23) always exists

for an anticipated range of the ~τ and ~τω. After solving for ~D and ~B, ~A is uniquely

specified by equation (8.16) as

~A = ~τ − ~τ3 − ~D − ~B (8.24)

The magnitude of ~A gives the required DGD setting, |~τ0|, of segment 0 (refer to

equation (8.13). Using the known R3 and ~τ2, and employing equation (8.15), we can

now solve for the rotation matrix C2 from

C2~τ2 = R†
3
~D (8.25)

After we have solved C2, with known R2 and ~τ1, and equation (8.14), we can find C1

from

C1~τ1 = (R3C2R2)
† ~B (8.26)

Similarly, using the known R1 and known orientation of ~τ0 (and whose magnitude

from equation (8.23)), and (8.13), we can find C0 from

C0~τ0 = (R3C2R2C1R1)
† ~A (8.27)
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Figure 8-5: Monte Carlo simulation of 1st and 2nd order PMD generated by a con-
catenation of 4-DGD segments with polarization scramblers between them. The DGD
values are 76.3 ps for segment 1, 73.5 ps for segment 2, 2.5 ps for segment 3 while the
DGD for segment 0 is randomly chosen from 0 ps to 50 ps.

Thus we have found all the required rotation matrices, C0, C1, and C2 (from equation

(8.25), (8.26) and (8.27)) of the 3 polarization rotators as well as the required DGD

value for segment 0, in order to generate any given pair of 1st order PMD, ~τ , and 2nd

order PMD, ~τω from the 4-segment emulator.

8.3 Simulations & Discussions

Real transmission fiber can be modeled as a concatenation of many randomly oriented

birefringent elements. In Figure 8-4, we show the probability density functions (pdf)

of the magnitudes of 1st and 2nd order PMD vectors, and of their respective vector

components. The solid curves are the analytic results from Reference [53, 59, 63],
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Figure 8-6: Monte Carlo simulation of 1st and 2nd order PMD generated by the same
concatenation of 4-DGD segments used in Figure 8-5. However, here, the polarization
rotators and DGD value of Segment 0 are controlled deterministically to produce the
realistic pdf in Figure 8-4. (a) Probability density function (pdf) of DGD, |~τ |; (b)
pdf of vector components, ~τi, of ~τ . (c) pdf of |~τω|; and (d) pdf of vector components,
~τωi, of ~τω.

the points are obtained using Monte Carlo simulations based on a concatenation of

100 randomly oriented 1-ps segments with polarization scramblers between segments.

They are generated over 50000 independent samples. The magnitude |~τ | of 1st order

PMD, ~τ , follows a Maxwellian function,

8

π2 〈|~τ |〉
(

2 |~τ |
〈|~τ |〉

)2

e−(2|~τ |/〈|~τ |〉)2/π (8.28)

while each of its vector components, ~τi, follows the Gaussian function

2

π 〈|~τ |〉e
−(2|~τi|/〈|~τ |〉)2/π (8.29)

〈|~τ |〉 is the mean DGD of the pdf function [53, 59, 63]. Indeed, our simulation re-

sults in Figure 8-4a and Figure 8-4b fit well to a Maxwellian and Gaussian function
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Figure 8-7: Probability density function (pdf) of the 3rd order PMD magnitude, |~τωω|
generated by 4-segments emulator when generating the 1st and 2nd order PMD shown
in Figure 8-6. For comparison purposes, we also plotted the 3rd order PMD pdf
generated by the concatenation of 100 1-ps segments when generating the 1st and 2nd

order PMD shown in Figure 8-4.

respectively, with 〈|~τ |〉 of 9.3 ps. From Figure 8-4c and Figure 8-4d, we can see that

the pdf of the magnitude of 2nd order PMD, |~τω|, follows the function of

8

π 〈|~τ |〉2
(

4 |~τω|
〈|~τ |〉2

)
tanh

(
4 |~τω|
〈|~τ |〉2

)
sec h

(
4 |~τω|
〈|~τ |〉2

)
(8.30)

while each of its vector components, ~τωi, follows the hyperbolic secant function of

4

π 〈|~τ |〉2 sec h

(
4 |~τωi|
〈|~τ |〉2

)
(8.31)

From Ref. [95, 135, 136], it is already known that a smaller number of concatenated

segments, such as four segments, is not adequate to produce the ideal Maxwellian

distribution of the DGD by polarization scrambling between the segments. We have

once again verified this fact in Figure 8-5, which shows the results of a Monte-Carlo

simulation of 4 concatenated segments with polarization scramblers between them.

For this simulation, the DGD for the first segment is randomly chosen from 0 ps to 50

ps while the DGD values are 76.3 ps for second segment, 73.5 ps for third segment, 2.5

ps for last segment. The choice of these values will be discussed later. It is obvious,
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from Figure 8-5, that these pdfs’ of 1st and 2nd order PMD are very different from the

realistic pdfs of the transmission cable (shown in Figure 8-4). However, in Figure 8-6,

we are able to produce these realistic pdf using the same four concatenated segments.

This is achieved by controlling the polarization rotator in a deterministic manner,

instead of randomly scrambling it. We first randomly select a pair of 1st and 2nd

order PMD vectors whose directions are isotropically distributed over the Poincaré

sphere and whose magnitudes are randomly chosen to follow their respective pdf

over a large sample size. With this randomly chosen pair of 1st and 2nd order PMD

vectors, we solve the required DGD for segment 0, |~τ0|, and the rotation matrices of

the three polarization rotators, C0, C1, and C2, as described in Section 8.2. These

solutions are then used to set the polarization rotators and segment 0 of the emulator,

so as to generate these vectors. The whole procedure is repeated independently

over a large sample size, and eventually, we achieve the realistic pdf for the PMD

vector magnitudes and their respective vector components. Figure 8-6 shows the

probability distribution function of the magnitudes and the vector components of 1st

and 2nd order PMD generated by this 4-segment emulator if it is controlled in the

abovementioned manner. Comparing this with Figure 8-4, we see that it is obviously

as good as a concatenated 100 1-ps segment. This approach is attractive since we

can now generate realistic 1st and 2nd order distribution functions using a compact

and simplified emulator. It is noteworthy that, for consistent comparison of results

in Figure 8-5 and 8-6, we use the same four concatenated segments for simulations.

The DGD for the first segment is adjusted from 0 ps to 50 ps while the DGD values

are 76.3 ps for second segment, 73.5 ps for third segment, 2.5 ps for last segment.

The choice of the DGD values for the fixed segments and the variable DGD range for

segment 0, is to ensure solutions of C0, C1, and C2, and |~τ0|, always exist for all values

of DGD, |~τ |, ranging from 0 to 50 ps and second order PMD magnitude, |~τω|, ranging

from 0 to 600 ps2, for the case of Figure 8-6. While we control the 4-segment emulator

to produce realistic 1st and 2nd pdfs of transmission fiber, there are insufficient degrees

of freedom to control the 3rd order and higher order PMD. Thus this emulator is more

suitable for PMD study of single channel systems than for multi-channel wavelength
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Figure 8-8: 1st and 2nd order PMD probability density functions generated by 4-
segments emulator using fixed phase-plates polarization rotators when there is a ran-
dom Gaussian distributed angular error of standard deviation σangle in the rotation
of the birefringence axes. (a) σangle = 0.3 arc min degree, (b) σangle = 1.5 arc min
degree and (c) σangle = 4.5 arc min degree. For all these cases, a random Gaussian
distributed error of standard deviation 0.12 ps is also introduced to the DGD value
in the variable DGD segment 0.

division multiplexing systems. Particularly, it is useful to know the type of 3rd order

PMD, ~τωω, pdf generated by this 4-segment emulator as compared to the realistic pdf

of the 3rd order PMD. Figure 8-7 shows the pdf of the 3rd order PMD magnitude,

|~τωω|, generated by the 4-segment emulator when it is producing the pdf of 1st and

2nd order PMD shown in Figure 8-6. For comparison purposes, we have also plotted

the 3rd order PMD pdf generated by the concatenation of 100 1-ps segments while it

is generating the 1st and 2nd order PMD shown in Figure 8-4. The 3rd order PMD

generated by this 4-segment emulator pdf is generally larger than its 100-segments

counterpart, and its maximum magnitude is around 4 times larger. This is expected

since we are now using fewer segments of larger DGD values and also because this

4-segment emulator is designed to produce a larger range of 1st and 2nd order PMD

than those in Figure 8-4. From Figure 8-7, it is also evident that, even if we do not

control the 3rd order PMD generated from the 4-segment emulator, we are not going
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to generate excessively large value of 3rd order PMD with a proper selection of the

DGD value for the segments. Thus, another objective in selecting the DGD values

for the fixed segments and the variable DGD range for segment 0, is to minimize the

3rd order PMD generated while trying to achieve sufficient working range for the 1st

and 2nd order PMD.

When we instruct the polarization rotators to carry out the rotation transforma-

tions solved in Section 8.2, there are bound to be some inaccuracies. Therefore, for

practical purposes, it is useful to know the sensitivity of our 4-segment emulation to

these deviations. In this study, we consider two types of polarization rotator: (1)

polarization rotators that consists of a combination of three fixed phase-plates where

a half-wave plate is sandwiched by two quarter-wave plates, and (2) polarization rota-

tors that consists of a combination of three tunable phase-plates whose birefringence

axes are in {1,0,0}, {0,1,0} and {1,0,0} in Stokes space. For a fixed phase-plate polar-

ization rotator, we can transform any polarization state to any polarization state on

the Poincaré sphere by changing the angular orientations of their birefringent axes.

For a tunable phase-plate polarization rotator, we fix the birefringence axes, but tune

its phase angle to carry out any polarization transformation on the Poincaré sphere.

Thus, our goal is to know the required angular accuracy in the rotation of birefrin-

gence axes for the case of fixed phase-plate polarization rotator, and in the tuning of

phase angle for the case of tunable phase-plate polarization rotator. To study this

angular sensitivity, we first solve exactly the angles of all phase-plates in the three

polarization rotators of the emulator required to generate the randomly selected pair

of PMD vectors. We then introduce a random Gaussian distributed angular error of

standard deviation σangle to the angles of all phase plates. Using these perturbed an-

gles, we calculate the 1st and 2nd order PMD produced. Figure 8-8, shows the 1st and

2nd order PMD pdf generated by the 4-segment emulator using fixed phase-plate ro-

tators, for various standard deviation σangle of 0.3, 1.5 and 4.5 arc min degree. Figure

8-9 shows the 1st and 2nd order PMD pdf generated by the emulators using tunable

phase-plate polarization rotators, for various standard deviation σangle of 6, 9 and

12 arc min degree. For all these cases, we have also introduced a random Gaussian
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Figure 8-9: 1st and 2nd order PMD probability density functions generated by 4-
segments emulator using tunable phase-plates polarization rotators when there is a
random Gaussian distributed angular error of standard deviation, σangle, in the tuning
phase angle. The birefringence axes of the three tunable phase-plates are fixed at
1,0,0, 0,1,0 and 0,0,1 direction in the Stokes space. (a) σangle =6 arc min degree, (b)
σangle = 9 arc min degree and (c) σangle = 12 arc min degree. For all these cases, a
random Gaussian distributed error of standard deviation 0.12 ps is also introduced
to the DGD value in the variable DGD segment 0.

distributed error of standard deviation 0.12ps to the DGD value in the variable DGD

segment 0. From Figure 8-8, we know that if we built our 4-segment emulators based

on fixed phase-plate polarization rotators, we would need an angular accuracy of ∼
1.5 arc min degree for the birefringence axes rotation. On the other hand, if we build

it based on tunable phase-plate polarization rotator, we would require an accuracy of

∼ 9 arc min degree in the tuning of the phase angle. From Figure 8-8 and 8-9, we can

note that the first order PMD pdf is not so sensitive to angular errors and remains

a Maxwellian function for all the considered σangle. Second order PMD pdf, on the

other hand, is less tolerant to angular errors. This is expected since second order

PMD is the sum of vector cross-products, which is more sensitive to angle variations

between vectors.

It is worthwhile to note that small length changes of fixed DGD segments would

result in different rotation matrices, Ri, for each DGD segment. And this will affect
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the generated 1st and 2nd order PMD vectors. Thus accurate prior knowledge of Ri of

each fixed DGD segment must be obtained by measuring the output SOP of each DGD

segment for known input SOP. And, subsequent changes of Ri should be minimized,

for example, by having a temperature controlled environment. Alternatively, we may

recalibrate Ri when need arises. In principle, we could also use a three-segment

emulator to perform the same function since it has sufficient degrees of freedom.

However, our experience with 3-segments emulator is that, when it produces the

same range of 1st and 2nd order PMD, it produces a larger third order PMD statistics

than its 4-segments counterpart. The reason of using a variable DGD element as a

first segment in our emulator is to simplify the analytical solution. We could replace

the variable DGD segment with fixed DGD segments, but we could only manage to

solve the solution analytically with more segments (∼6 to 8).

8.4 Conclusion

We have proposed a new concept of PMD emulation where the first and second order

PMD vectors are generated using 4 concatenated segments (1 variable DGD segment

and 3 fixed DGD segments). The emulator is deterministically controlled to produce

the probability density functions of the 1st and 2nd order PMD of a real transmission

cable. To control the emulator deterministically, we have solved analytically the re-

quired rotation matrices of the polarization rotators and DGD value of the variable

delay line in the emulator. Through Monte Carlo simulations, we have demonstrated

that our emulator is, indeed, capable of generating realistic probability density func-

tions for the 1st and 2nd order PMD. While we do not control the 3rd order PMD

generated by the emulator, we have shown that the 3rd order PMD is somewhat larger

than the realistic distribution. In addition, we have also studied the sensitivity of the

emulator to angular inaccuracy in the polarization rotators.
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Chapter 9

Deterministic Broadband PMD

Emulator

9.1 Background

In Chapter 8, we describe a deterministically controlled PMD emulator for generating

an arbitrary set of 1st and 2nd order PMD vectors. In this chapter, we extend the

same concept to broadband emulation. This Deterministic Broadband PMD emulator

(DBPMD) can approximate a desired PMD vector for every frequency within a certain

band of interest. In the other words, one can “dial-in” the spectrum of an arbitrary

PMD vector that comprises all orders of PMD. This emulator employs three stages

of flexible frequency-dependent polarization rotation in Stokes space, which provide

the three degrees of freedom for emulating the PMD vector at each frequency. The

fourth stage compensates for the isotropic dispersion created by the first three stages

as shown in Figure 9-1.

9.2 Theory

At each angular frequency ω ( ω = 2πf where f is the optical frequency ), the “dial-

in” PMD vector ~τe(ω) has three parameters. In Stokes space, Stage 1 and 3 are

rotations about {1,0,0} with rotation angle θ1(ω) and θ3(ω) respectively. Stage 2 is
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Figure 9-1: a) Block diagram of the 4-stage All-Frequency PMD emulator; b) A
practical implementation using All-Pass filters integrated on planar waveguides.

a rotation about the {0,0,1} with rotation angle θ2(ω). Rotation angles θ1(ω), θ2(ω)

and θ3(ω) are general functions of frequency, in contrast to the linear dependence on

frequency of a birefringent element. The rotation matrices of Stage 1 and 3 are

Ri(ω) =




1 0 0

0 cos θi (ω) − sin θi (ω)

0 sin θi (ω) cos θi (ω)


 (9.1)

for i = 1 and 3 and the rotation matrix of Stage 2 is

R2(ω) =




cos θ2 (ω) − sin θ2 (ω) 0

sin θ2 (ω) cos θ2 (ω) 0

0 0 1


 (9.2)

Since ~τ× = (dR/dω) R+, the corresponding PMD vectors of Stage 1, 2, and 3 are this

is ~τ1 (ω) =
{

dθ1

dω
, 0, 0

}
, and ~τ2 (ω) =

{
0, 0, dθ2

dω

}
and ~τ3 (ω) =

{
dθ3

dω
, 0, 0

}
respectively.

To account for the input state of polarization (SOP), we transform the concatenated
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Figure 9-2: Required rotation angles of various stages for a randomly chosen fiber:
θ1(ω) of Stage 1, θ2(ω) of Stage 2 and and θ3(ω) of Stage 3. Solid curves are exact
rotation angles calculated using the synthesis algorithm while curves of crosses are
those approximated using N1 = N2 = N3 = 3 AFPs. fo is the carrier’s optical
frequency and corresponds to a wavelength of 1550nm.

PMD to the input plane. With the PMD concatenation rule, the PMD vector after

Stage 3 is transformed to the input plane of the emulator is given as

~Γ3s(ω) = ~τ1 (ω) + R+
1 (ω)~τ2 (ω) + R+

1 (ω) R+
2 (ω) (9.3a)

=




dθ1

dω
+ cos θ2

dθ3

dω

sin θ1
dθ2

dω
− cos θ1 sin θ2

dθ3

dω

cos θ1
dθ2

dω
+ sin θ1 sin θ2

dθ3

dω


 (9.3b)
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Figure 9-3: Output signals of simulated fiber of 30 sections and the DBPMD emulator.
The dashed line is for the input signal. The solid line curve is the output from a
simulated fiber of 30 sections while the curve of filled circles is the output from the
DBPMD emulator using the approximated rotation angles by APFs shown in Figure
9-2

Given a ”dial-in” PMD vector spectrum ~τe (ω) = {τex (ω) , τey (ω) , τez (ω)}, we set

~Γ3s (ω) = ~τe (ω) and obtain

dθ1

dω
(ω) = cot θ2 (ω) [τey (ω) cos θ1 (ω)− τez (ω) sin θ1 (ω)] + τex (ω) (9.4a)

dθ2

dω
(ω) = τey (ω) sin θ1 (ω) + τez (ω) cos θ1 (ω) (9.4b)

dθ3

dω
(ω) = csc θ2 (ω) [τez (ω) sin θ1 (ω)− τey (ω) cos θ1 (ω)] (9.4c)

Note that this “dial-in” PMD vector spectrum ~τe (ω) is for the input plane. The

synthesis algorithm for the required rotation angles of the three stages is similar to

that in Chapter 6. It is as followed: At an initial frequency, ωinitial, we arbitrarily

fix the rotation angles of Stage 1, 2 and 3 to be 0, π/2 and 0 respectively. These

θ1(ωinitial), θ2(ωinitial) and θ3(ωinitial) serve as the starting points for the algorithm.

178



For subsequent frequencies, we find the rotation angles in a step-wise manner:

θi (ω + ∆ω) ≈ θi (ω) +
dθi

dω
(ω) ∆ω (9.5)

for i = 1, 2 and 3 where the dθi

dω
are given by equation (9.4). In this way, we successively

synthesize the required profiles of the rotation angles of the first three stages to

generate the desired PMD vector spectra ~τe (ω) within a certain band of interest.

As described in Chapter 6, there are at least three practical implementations of

the proposed 4-stage DBPMD emulator: 1) using a spatial light modulator, 2) us-

ing a deformable mirror and 3) using All-Pass Filters (APFs) integrated on a planar

lightwave circuit as shown in Figure 9-1b. A broadband spectral phase profile may be

achieved by cascading multiple APFs with appropriately displaced resonant frequen-

cies and appropriately adjusted Q’s over a frequency range that is less than the free

spectral range of any of the individual APF’s. As in Chapter 6, we only concentrate

on the implementation that based on APFs. The optimum parameters for the APFs

are found using the fitting algorithm described in Chapter 6.

9.3 Simulations and Discussions

To test the DBPMD emulator, we randomly simulated fibers by cascading 30 ran-

domly oriented birefringence sections. The birefringence of these sections is Gaussian

distributed with a mean value of 0.86 ps and with a standard deviation of 20 % of this

mean value. This corresponds to a mean differential group delay of 4.35 ps. The con-

catenated PMD vectors of this simulated fiber are computed over a frequency range

of ±230GHz about the carrier’s optical frequency fo with a step-size ∆f=2.54 GHz.

The PMD vectors are transformed to the input plane. This spectrum serves as the

“dial-in” PMD vector spectrum for the DBPMD emulator. Based on this spectrum,

we computed the required rotation angles θ1(ω), θ2(ω) and θ3(ω) using the synthesis

algorithm ( i.e. equation (9.4) and equation (9.5)). Figure 9-2 shows the rotation

angles required for a simulated fiber randomly chosen from the ensemble. The solid
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Figure 9-4: Average rms difference of DBPMD emulator’s output signal and that of
the simulated fiber taken over an ensemble of 1000 randomly chosen fiber states as a
function of the mean DGD.

line curves are the rotation angles computed using the synthesis algorithm while the

curves of crosses are the rotation angles approximated by the APFs. The number of

APFs used are N1 = N2 = N3 = 3. All APFs have the same FSR of 500 GHz. It

is worthwhile to note that the frequency band of interest corresponds to slightly less

than one FSR of the filters. In the synthesis algorithm, we restrict the value of dθi

dω
to

a maximum value of 100 ps to avoid the singularity when θ2 approaches 0, as can be

seen in equation (9.4). This restriction is determined from our simulations to have

little impact on the fidelity of the emulation.

If the emulator were built experimentally, a reasonable way to check its fidelity

would be to measure its PMD spectrum and compare that with the “dial-in” spec-

trum. However, since the work presented here is still only theoretical, the PMD

produced by our emulator can only be computed. To calculate the emulator’s PMD,

we can use the inverse of the same PMD concatenation rule (equations (9.3)) that

we used to synthesize the required rotation angle of the stages in our emulator. If

the fitting is perfect, it is obvious that the emulator will reproduce the same PMD

spectrum. Such comparison of the PMD spectrum is therefore not convincing, espe-
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cially since the way we apply the PMD concatenation rule to the stages of flexible

frequency-dependent polarization rotation itself needs verification. So, instead, we

investigate the performance of the DBPMD emulator by generating an input train

of 160 Gbit/s RZ pseudo-random bit sequence (26-1) of Gaussian pulses of 2.5 ps

(FHWM) pulse-width and sending it through the simulated fiber and also through

the DBPMD emulator using the same input SOP. We then compare the PMD-induced

signal degradation of the two cases. The difference of the two temporal output signals

is used to gauge the fidelity of the DBPMD emulator. This is a reasonable way of

checking fidelity since the signal degradation is ultimately the main concern in PMD

emulation.

For the same randomly chosen fiber used in Figure 9-2, we show the output signals

of this particular fiber versus that of the DBPMD emulator. Both cases have the same

input SOP. They are presented in Figure 9-3. The solid line curve is for the simulated

fiber of 30 sections while the curve of filled circles is for the DBPMD emulator which

uses N1 = N2 = N3 = 3 AFPs to approximate the rotation angles calculated by

the synthesis algorithm. For reference, the input signal is shown as the dashed curve.

The two output signals match closely, thereby illustrating that the DBPMD emulator

is capable of approximating an arbitrary PMD spectrum. Good agreements are also

observed for other fiber realizations in our simulations. To obtain a quantitative

measure of the match, we compute the root mean square (rms) difference of the

two output signals for the whole (26-1) bit sequences. If the match is perfect, this

rms difference should be zero. Figure 9-4 shows the average rms difference of the

DBPMD emulator’s output signal with that of the simulated fiber taken over an

ensemble of 1000 randomly chosen fiber states. It is presented as a function of the

mean DGD (normalized to the bit period) of the ensemble. We use a true first-order

PMD emulator as a benchmark. For every random state of the simulated fiber, this

first-order PMD emulator is set to produce the PMD vector at the carrier frequency

fo. The curve of unfilled triangles is for the first-order PMD emulator. As expected,

this first-order PMD emulator performs well when the mean DGD of the ensemble is

less than ∼ 15 % of the bit period, but its performance degrades significantly as the
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mean DGD increases. The curve of filled circles is for the DBPMD emulator using the

exact rotation angles profiles of θ1(ω), θ2(ω) and θ3(ω) calculated from the synthesis

algorithm. The match is nearly perfect even for large mean DGD value. While the

PMD concatenation rule is commonly used for cascading birefringent elements, the

near-perfect match shows that it is equally valid for our concatenation of flexible

frequency-dependent polarization rotation stages. This result not only verifies our

synthesis algorithm of the rotation angles, it also confirms that the restriction on the

maximum value of dθi

dω
in the algorithm has little impact on its performance. The curve

of unfilled squares is for the DBPMD emulator which employs N1 = N2 = N3 = 3

APFs to approximate the rotation angle profiles calculated by the synthesis algorithm.

The reasonably good emulation shows that the rotation angle profiles generated by

the synthesis algorithm are feasible and can be approximated using a practical number

of APFs even at large mean DGD value. It is also worthwhile to mention that the

total rotation angle accumulated by a single APF is fixed at 2π over a frequency

range of FSR. Thus, if the fluctuation rate of the PMD spectrum is too large for a

given number of APFs to handle, one has to either increase the number of APFs or

decrease the frequency range of fitting. This is the fundamental trade-off between the

group delay and the bandwidth of APFs [123].

In conclusion, we have presented the architecture of a deterministic broadband

PMD emulator based on a four-stage architecture. By numerical simulations, we

demonstrated good fidelity of this DBPMD emulator in approximating arbitrary spec-

trum of PMD vectors over a wide frequency band of interest.
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Chapter 10

Deterministic Broadband PDL

Compensator

10.1 Background

Until now, for the sake of simplicity, we have assumed negliglible Polarization De-

pendent Loss (PDL) present in the fiber. However, the deployment of optical am-

plifiers in lightwave systems has significantly increased the number and variety of

optical components distributed along the link. As a result, small polarization effects,

such as polarization dependent loss (PDL) [21, 20, 22, 23, 36], associated with the

individual components may accumulate to produce noticeable performance degrada-

tion. These optical components include optical isolators, add/drop filters, switches,

WDM multiplier, and couplers, which could have PDL up to 0.3 dB. The presence

of non-negligible PDL induces the signals to be attenuated in a way that differs from

that of the unpolarized noise, resulting in OSNR fluctuations at the end of the link.

This leads to a potential system degradation effect. This degradation is aggravated

when low-frequency polarization scrambling (∼ 20 kHz) is used at the transmitter

end [35, 102, 101, 100] . Polarization scrambling of the input State-Of-Polarization

(SOP) may be applied for various reasons: to suppress the polarization-hole burning

in erbium-doped fiber amplifiers [101, 100], and to facilitate the real-time monitoring

of PMD in feed-forward PMD compensation schemes [2, 103, 104, 4]. In terms of
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real-time monitoring of PMD, the presence of PDL also has its deleterious effects. It

causes the principal states of polarization (PSP) to become complex vectors in Stokes

space. As a result, the PSPs are no longer orthogonal to one another and no longer

represent the fastest and slowest propagating polarization states [20]. This affects the

accuracy of the PMD characterization and thus compromises the effectiveness of the

feed-forward PMD compensation.

In addition, the system penalty due to the coexistence of PMD and PDL is found

to be higher than the summation of the PMD-only penalty and the PDL-only penalty

[21, 36]. The presence of PDL may also discount the performance of some PMD com-

pensators discussed in [99]. Therefore, in cases where PDL becomes non-negligible,

a compensation scheme for PDL may be desired. Although the PDL of an indi-

vidual component is relatively constant in time and frequency, when they interact

with polarization mode dispersion (PMD) present in the fiber, the global PDL be-

comes frequency-dependent and time-varying on the same time-scale as PMD. This

makes the compensation of both PMD and PDL [20, 22] particularly challenging.

The physics of the mutual interaction of PMD and PDL in the fiber is complex as

evidenced in Reference [20]. Fortunately, the polar decomposition theorem of a com-

plex matrix provides a simple way to separate the effects of PMD and PDL [137, 21],

making it feasible to perform lumped compensation of the global PDL and PMD

at the receiver’s end. Based on this theorem, we propose in this chapter a module
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Figure 10-2: Schematic of the broadband PDL compensation module

that can compensate PDL for a broadband frequency range. We then show that by

performing appropriate transformations on the monitored polarimetric data, we can

determine the composite PMD of the fiber and the PDL compensator that is needed

for the subsequent lumped PMD compensation described in Chapter 6.

Figure 10-1 shows the schematic of the overall feed-forward compensation scheme

for both PDL and PMD. We employ polarization scrambling at the transmitter’s end

for characterizing the feed-forward information. A portion of the optical signal is

tapped at the fiber output for real-time spectrally resolved polarimetric SOP moni-

toring [105, 106, 107, 4] as described in Chapter 3. Reference [108] reported such a

spectrally resolved polarimeter using dispersive elements together with detector ar-

rays. From these polarimetric measurements, we know the maximum and minimum

attenuation and its associated polarization states. Thus we can characterize the PDL

of each frequency component. Yan et al. demonstrated the feasibility of this real-time

PDL monitoring technique in Reference [35]. Based on this information, we compen-

sate the global PDL using the broadband PDL compensation module shown in Figure

10-2. This module consists of three stages. Stage 1 and 2 comprise the frequency-

dependent polarization controller that aligns all the different PDL vectors into the
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{1,0,0} direction in Stokes space. Stage 3 involves polarization beam splitting, differ-

ent frequency-dependent variable attenuation for each polarization, and subsequent

polarization beam combining. This stage eliminates both the PDL magnitude and

the frequency dependence in the isotropic attenuation. Using the Poincaré sphere

representation, we illustrate in Figure 10-3 the motion of the PDL vectors of different

frequencies after each stage of compensation. By applying the known transformation

of each stage to the monitored polarimetric data, we then use the transformed SOP to

deduce the composite PMD as a function of frequency by the method given in Chap-

ter 3. The composite PMD spectrum serves as the input parameter for subsequent

broadband PMD compensation as described in Chapter 6. It is worthwhile to note

that in this compensation scheme, the PDL compensation utilizes exactly the same

polarimetric data required in the case of PMD compensation as described in Chapter

6 [10]. Thus no additional monitoring is required. Moreover, all real-time polarimet-

ric monitoring is carried out solely at the fiber’s output without any knowledge of the

input SOP.

The organization of the chapter is as followed: In Section 10.2, we present the

theory of PDL compensation both in Jones space and Stokes space. Using the

Stokes space representation, we synthesize the required rotation angle profiles of the

frequency- dependent polarization rotators, Stage 1 and Stage 2, and the required

transmission profiles of the frequency-dependent variable attenuators in Stage 3 once

the information on the PDL is gathered. In Section 10.3, we verify this synthesis

algorithm by simulating the PDL as a function of frequency before and after compen-

sation. And we also verify our method to deduce the composite PMD of the fiber and

the PDL compensator by simulating the PMD-induced signal distortion. In Section

10.4, we discuss the various practical implementations of the PDL compensator using

a) a deformable mirror [120], b) a spatial phase modulator [119] or c) an All-Pass

Filter (APF) [121, 122, 123]. We concentrate on the integrated optics approach of

using APFs and show that the computed phase difference profiles using the synthesis

algorithm are practical, and can be approximated using APFs.
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10.2 Synthesis Algorithm

Without PDL, the transmission matrix of the fiber is always unitary. However, when

the fiber PMD is intertwined with PDL elements, the transmission matrix loses its

unitary property. Nevertheless, by the polar decomposition theorem [137], we can

always decompose a complex 2 by 2 matrix T(ω) into

T(ω) = A(ω)U(ω) (10.1)

where A(ω) is a positive definite Hermitian (self-adjoint) matrix (i.e. A(ω) = A†(ω))

and U(ω) is a unitary matrix (i.e. U(ω)U†(ω) = 1). A(ω) represents the effective

PDL while U(ω) represents the effective PMD. U(ω) is not equal to the concatenation

of all the PMD elements nor is A(ω) equal to the concatenation of the PDL elements.

In terms of compensation, this is an important result since it indicates the feasibility

of lumped compensation of the global PDL followed by a lumped compensation of the

global PMD all carried out at the receiver’s end. Since A(ω) is a hermitian matrix,

we can always diagonalize it to

A(ω) = P (ω)D (ω)P† (ω) (10.2)

where D (ω) is a diagonal matrix with diagonal elements given by the eigenvalues (i.e.

αmax (ω) and αmin (ω)) of A(ω), while P(ω) is an unitary matrix whose columns are

formed by the corresponding eigen-axes of A(ω). A(ω) is always invertible, except for

perfect polarizer, which is not considered here. It is also easy to show that A−1(ω) has

the same eigen-axes as A(ω) and its eigen-values are the reciprocals of the eigenvalues

of A(ω). To verify that all the PDL information is embedded in the matrix A(ω), we

compute

〈sin | sin〉 = 〈sout|
(
TT†)−1 |sout〉 = 〈sout|

(
A2

)−1 |sout〉 (10.3)

where |sin〉 and |sout〉 are the 2-D complex Jones vectors in bra-ket notation for the

input and output of the fiber respectively. From equation (10.3), the eigen-axes

of matrix A(ω) correspond to the two orthogonal output polarization states that
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have maximum and minimum transmission. Therefore these eigen-axes correspond

to the PDL axes at the output. Moreover, the square of the eigenvalues of A(ω)

(i.e. α2
max (ω) and α2

min (ω)) correspond to the maximum and minimum intensity

transmission of the fiber. Thus the PDL value in dB is

PDL(dB) = 10Log10

(
αmax (ω)

αmin (ω)

)2

(10.4)

The frequency dependence of matrix A(ω) results in the PDL axes and its magnitude

changing with frequency. To be consistent with previous literature [20, 21], we define

the PDL vector ~Γ(ω) as parallel to the least-attenuated polarization state on the

Poincaré sphere and of magnitude defined by

∣∣∣~Γ (ω)
∣∣∣ =

α2
max − α2

min

α2
max + α2

min

(10.5)

Moreover, we also defined the transmission coefficient for depolarized light as

Tdepol =
α2

max + α2
min

2
(10.6)

Since all PDL properties of the system T(ω) are given by A(ω)alone, if we are able to

monitor the global PDL at the output, we can determine the matrix A(ω) regardless

of the PMD of the system. Yan et al. have demonstrated such a real-time monitoring

scheme for PDL [35]. Using spectrally resolved polarimetric measurements [105, 106,

107, 4], one can extend the monitoring spectrally to obtain the complete matrix

A(ω) and its frequency dependence. With this information gathered, we can perform

lumped PDL compensation at the output by applying the unitary transformation

P†(ω) followed by the inverse of D (ω). From equation (10.1) and (10.2), we get

D−1 (ω)P† (ω)T(ω) = P† (ω)U(ω) (10.7)

We define V (ω) ≡ P† (ω)U(ω) as the resultant transmission matrix after the lumped

PDL compensator. Since U(ω) and P†(ω) are both unitary, V (ω) is also unitary; and

188



)( 2ωfΓ
�

At fiber’s output After Stage 2

)( 22 ωΓ
�

)( 12 ωΓ
�

After Stage 3

0)()( 2313 =Γ=Γ ωω
��

)( 1ωfΓ
�

Figure 10-3: The motion of PDL vectors of different frequency after each stage of
compensation in Poincaré sphere representation

it is related to the composite PMD ~τc (ω) of the fiber system and the PDL compensator

(at the plane just after the PDL compensator) by ~τc (ω) = j (dV/dω)V†.

In Stokes space representation, one obtains an equivalent but more intuitive pic-

ture of the transformations carried out by the lumped PDL compensator. This rep-

resentation is particularly useful since all the real-time polarimetric monitoring infor-

mation is gathered using this representation. A unitary transformation in Jones space

corresponds to a rotation in Stokes space [17]. The matrix P†(ω) applied by the PDL

compensator is a unitary transformation that maps the eigen-axes of matrix A(ω)

into the horizontal and vertical polarization axes in physical space. Since the eigen-

axes of A(ω) are the PDL axes at the output and since P†(ω) is frequency-dependent,

in Stokes space representation, P†(ω) corresponds to a frequency-dependent polariza-

tion controller that rotates the output PDL axes of different frequency components

to align with the {1,0,0} direction in Stokes space. To build this frequency-dependent

polarization controller, we use two stages: Stage 1 and Stage 2 in Figure 10-2. Stage 1

is a rotation about {1,0,0} axis with frequency-dependent rotation angle θ1(ω) while

Stage 2 is a rotation about {0,0,1} with frequency-dependent rotation angle θ2(ω).

Stage 1 rotates the different output PDL axes onto the equatorial plane while Stage 2

subsequently rotates them into {1,0,0} direction. In Stokes space, the rotation matrix
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of Stage 1 is

R1(ω) =




1 0 0

0 cos θ1 (ω) − sin θ1 (ω)

0 sin θ1 (ω) cos θ1 (ω)


 (10.8)

and the rotation matrix of Stage 2 is

R2(ω) =




cos θ2 (ω) − sin θ2 (ω) 0

sin θ2 (ω) cos θ2 (ω) 0

0 0 1


 (10.9)

Through the real-time monitoring, we assume we have the knowledge of the spectrum

of the fiber’s output PDL vector ~Γ (ω) = {Γx (ω) , Γy (ω) , Γz (ω)}. To synthesize the

appropriate rotation angle profiles to align the PDL vectors, ~Γ (ω) of all frequencies

with the {1,0,0} direction, we need,

R2(ω)R1(ω)~Γ (ω) =
∣∣∣~Γ (ω)

∣∣∣




1

0

0


 (10.10)

Solving equation (10.10) yields the required rotation angles

θ1(ω) = cos−1


 Γy (ω)√

Γ2
y (ω) + Γ2

z (ω)


 for Γz (ω) 6 0 (10.11a)

= π + cos−1


 −Γy (ω)√

Γ2
y (ω) + Γ2

z (ω)


 for Γz (ω) > 0 (10.11b)

and

θ2(ω) = π + cos−1


−Γx (ω)∣∣∣~Γ (ω)

∣∣∣


 (10.12)

After Stage 2, the linear horizontal polarization becomes the least-attenuated po-

larization state while the linear vertical polarization becomes the most-attenuated

polarization state for all frequencies. Note that we have assumed that the PDL com-
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on both arms (b) A frequency-dependent polarization rotation about {0,1,0} sand-
wiched between two perfect polarizers oriented in the {1,0,0} ( or {-1,0,0} ) direction
in Stokes space.

pensator produces small PDL compared to that of fiber so that, after Stage 2, the

orientation of ~Γ(ω) may be changed but its magnitude is preserved. From the defini-

tions (10.5) and (10.6), the horizontal polarization now has a maximum transmission

of Tmax (ω) = Tdepol (ω)
(
1 +

∣∣∣~Γ (ω)
∣∣∣
)

while the vertical polarization has a minimum

transmission of Tmin (ω) = Tdepol (ω)
(
1−

∣∣∣~Γ (ω)
∣∣∣
)
. The goal of Stage 3 is to make

these transmissions independent of polarization and of frequency. Stage 3 consists of

a polarization beam splitter to split the polarization into horizontal and vertical, and

then introduce separate frequency-dependent variable attenuations to each polariza-

tion arm (see Figure 10-2) so that the transmissions for both polarizations become

a constant value Tconst for all frequencies within the range of interest. Unless a gain
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medium is used in a PDL compensator, the compensation introduces attenuation

in order to compensate for PDL. Thus the value for Tconst has to be appropriately

chosen to account for the statistics of the PDL and, at the same time, not to intro-

duce excessive loss to the system. Figure 10-4 shows two possible configurations to

accomplish a frequency-dependent variable attenuation: (a) a Mach-Zehnder inter-

ferometer (MZI) with programmable frequency-dependent phases in both arms [138];

(b) a frequency-dependent polarization rotation about {0,1,0} sandwiched between

two perfect polarizers oriented in the {1,0,0} ( or {-1,0,0}) direction in Stokes space.

In terms of transmission profiles, these two configurations are equivalent. Figure

10-5 depicts an example of configuration (b) using a spatial array of liquid-crystal

polarization rotators with polarizers.

In the following, we consider only the MZI and calculate the required phase dif-

ference between its two arms for any given attenuation profile. The output field Eout

of this 4-port MZI system is related to the input field Ein by

Eout

Ein

= −ie
−i

(
θa+θb

2

)
sin

(
θa − θb

2

)
(10.13)
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Thus the “transmission” of this MZI is given by

∣∣∣∣
Eout

Ein

∣∣∣∣
2

(ω) = sin2

(
θdiff (ω)

2

)
(10.14)

where θa,b (ω) are the phases of the two MZI arms and θdiff (ω) is their phase differ-

ence. Since the transmission of the MZI depends only on the phase difference between

the two arms, if we can program arbitrary profile of θdiff (ω) versus frequency, we can

engineer the frequency-dependent attenuation profile of the MZI to eliminate PDL

and the frequency dependence in Tdepol (ω). The required phase difference profile for

the MZI in the horizontal polarization branch is

θHor
diff (ω) = 2 sin−1

(√
Tconst

Tmax (ω)

)
(10.15)

and for the MZI in the vertical polarization branch is

θV ert
diff (ω) = 2 sin−1

(√
Tconst

Tmin (ω)

)
(10.16)

With equations (10.11), (10.12), (10.15) and (10.16), we have now synthesized the

required phase difference profiles of all the three stages to compensate for any PDL

spectrum ~Γ (ω) and also the frequency dependence in the isotropic attenuation given

by Tdepol (ω). After the PDL compensation, what remains to be compensated is

the composite PMD spectrum ~τc (ω) of the fiber and the PDL compensator. To

deduce the composite PMD spectrum ~τc (ω), we transform the Stokes vectors ~Sf (ω) =

{S0, S1, S2, S3} that we have monitored at the output of the fiber, by the known

transformations of the PDL compensator

~Sc (ω) = M3 (ω)M2 (ω)M1 (ω) ~Sf (ω) (10.17)

where M1 (ω) is the 4-by-4 Mueller matrix for the rotation transformation of Stage 1
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given as

M1 (ω) =




1 0 0 0

0 1 0 0

0 0 cos θ1 (ω) − sin θ1 (ω)

0 0 sin θ1 (ω) cos θ1 (ω)




(10.18)

and M2 (ω) is Mueller matrix for the rotation transformation of Stage 2 given as

M2 (ω) =




1 0 0 0

0 cos θ2 (ω) − sin θ2 (ω) 0

0 sin θ2 (ω) cos θ2 (ω) 0

0 0 0 1




(10.19)

and M3 (ω) is Mueller matrix of Stage 3, which acts like a partial polarizer [45], given

as

M3 (ω) =
1

2




KH + KV KH −KV 0 0

KH −KV KH + KV 0 0

0 0 2
√

KHKV 0

0 0 0 2
√

KHKV




(10.20)

where KH = sin2
(
θHor

diff

/
2
)

and KV = sin2
(
θV ert

diff

/
2
)
. The transformed ~Sc (ω) is then

normalized onto the unit Poincaré sphere to give ŝc (ω). Once ŝc(ω) is known, the

corresponding composite PMD ~τc (ω) can be deduced. In principle, the principal state

of polarization (PSP) of the composite PMD at frequency ωo can be obtained by the

direction of the cross product of differential SOP vectors (ŝc(ωo)− ŝc(ωo −∆ω)) and

(ŝc(ωo + ∆ω) − ŝc(ωo)). The DGD at frequency ωo can be deduced from the length

of these differential SOP vectors. In practice, these changes in the differential SOP

vectors with frequency may be too small for accurate estimation of ~τc (ω), especially

in the presence of high-order PMD. To improve the estimation accuracy, random

scrambling of the launched SOP is carried out at the transmitter end of the fiber

[4]. Since the input polarization scrambling does not change the fiber’s properties,

it will not affect the PMD of the fiber, and therefore the composite PMD. On the
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difference profiles approximated by APFs.

other hand, the trajectory of the transformed SOP changes to ŝ
′

c (ω). For a given

frequency, the trajectories of ŝc(ω) and ŝ
′

c (ω) produce different arcs, however, both

arcs possess a common axis. This common axis gives the composite PSP at that

frequency, and can be found by the cross product of (ŝc(ωo + ∆ω) − ŝc(ωo − ∆ω))

and (ŝ
′

c (ωo + ∆ω) − ŝ
′

c (ωo − ∆ω)). Often more than two different scrambled input

SOPs are used. By finding a unit vector that is normal to all the various differential

SOP vectors, (ŝj
c(ωo + ∆ω) − ŝj

c(ωo − ∆ω)), one can determine their common axis

(which is aligned to the PSP) with much better accuracy. The DGD estimation can

also be improved by averaging the individual DGD values deduced from the various

(ŝj
c(ωo + ∆ω)− ŝj

c(ωo −∆ω)) [4].

10.3 Simulations to verify synthesis algorithm

To verify our synthesis algorithm for θ1(ω), θ2(ω), θV ert
diff (ω), θHor

diff (ω), random fibers

were generated with a mean DGD of 10 ps and a mean global PDL of 2.5 dB by cas-

cading 20 segments. Each segment contains a randomly oriented birefringent element

and a randomly oriented PDL element of 0.54 dB. The birefringence of these segments

was Gaussian distributed with a mean value of 2.42 ps and standard deviation of 20%
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of the mean. For each segment, we assume the transmission for the depolarized light

is unity. We then sent input signals with randomly scrambled polarization through

each randomly generated fiber and simulate the Stokes SOP ~Sf (ω) at the output

as a function of frequency with an optical frequency step-size of ∆f =0.63 GHz.

Following the Power Max-Min method, we determine the global PDL vector, ~Γ(ω),

and the transmission for depolarized light, Tdepol (ω), as a function of frequency. Two

hundred randomly scrambled input polarization states were used for each spectrum

characterization. The frequency band of interest is ±60 GHz about the optical carrier

frequency fo. Based on this PDL vector spectrum, we synthesized the required θ1(ω),

θ2(ω), θV ert
diff (ω), θHor

diff (ω) using equations (10.11), (10.12), (10.15) and (10.16). For

illustration purpose, the PDL spectrum of a randomly generated fiber, and its trans-
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mission of depolarized light Tdepol (ω) are shown as dashed curves in Figure 10-6. The

corresponding required phase difference profiles for this particular fiber are shown as

solid curves in Figure 10-7a-d. Figure 10-7a is for θ1(ω) of Stage 1, Figure 10-7b is

for θ2(ω) of Stage 2, and Fig 10-7c for θHor
diff (ω) of the horizontal polarization branch

of Stage 3 and Fig 10-7d for θV ert
diff (ω) of the vertical polarization branch of Stage 3.

The value of Tconst used in the Stage 3 of the compensator is 0.45. Using these phase

difference profiles, we performed the lumped PDL compensation. We then determine

the PDL spectrum and the transmission spectrum for depolarized light after compen-

sation, using the same Power Max-Min method. Figure 10-6 shows that the PDL is

clearly compensated and that the frequency dependence of depolarized light trans-

mission is removed. Using these phase difference profiles, we also transformed Stokes

vectors ~Sf (ω) into ~Sc (ω) to deduce the composite PMD of the fiber and the PDL

compensator at the plane just after the PDL compensator. This information serves

as the input parameters for subsequent broadband PMD compensator proposed in

Chapter 6. To verify that the composite PMD spectrum is correctly deduced, we sent

a gaussian pulse of 10 ps (FHWM) pulse-width through the same fiber used in Figure

10-6 and studied its signal distortion. The dashed curve in Figure 10-8 shows the

output signal from the fiber. The optical signal after passing through both the PDL

and PMD compensator is given by the solid curve. The Gaussian shape is restored

almost perfectly except for the fact that the power of the pulse is reduced by Tconst.

To further confirm that PDL is compensated, we randomly scrambled the input polar-

ization of this gaussian pulse, and observed that the power of the pulse is insensitive

to the input polarization. To present this result, we overlap the output signals of

20 different input polarizations (each output signal is plotted in dots). Figure 10-9a

shows the overlapped signals before compensation. As expected, due to the presence

of PMD and PDL, there is no distinct pattern in the overlapped output signal. On the

other hand, the overlapped signal after both PDL and PMD compensation in Figure

10-9b preserves a distinct Gaussian shape with a constant peak power, regardless of

the input polarization. This showed that PDL is compensated and the information

on the composite PMD spectrum is accurate for subsequent PMD compensation. To
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show that the same result is applicable to arbitrary fibers, we repeated the same

simulations for another 500 randomly generated fibers (with 5 different input polar-

izations for each fiber) and then overlapped the output signals in the same manner.

Figure 10-10 confirms that the PDL is compensated and the composite PMD spec-

trum is determined accurately for all the 500 fibers. Figure 10-11 shows the mean

PDL spectrum and its standard deviation for the 500 fibers ensemble before and after

compensation.

10.4 Practical Implementations

As in Chapter 6, there are at least three physical implementations of the proposed

3-stage PDL compensator. The first two implementations can be adapted from the

femtosecond pulse shaping schemes using a spatial light modulator [119] or using a

deformable mirror [120]. With diffraction gratings, one can disperse the various fre-
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PMD compensation using exact phase difference profiles, (c) for after both PDL and
PMD compensation based on approximated phase difference profiles using APFs.

quency components spatially onto the spatial phase modulator (or deformable mirror)

and program appropriate spectral phase to achieve the required phase difference pro-

files of θ1(ω), θ2(ω) and θV ert
diff (ω) and θHor

diff (ω). The third promising implementation

is based on All-Pass Filters (APFs) integrated on a planar lightwave circuit as shown

in Figure 10-12. In this chapter, we focus only on this particular implementation

since they can be compactly integrated onto a chip. In this scheme, the output sig-

nals from the fiber are split into two waveguides (waveguide 1 and waveguide 2) by a

polarization beam splitter. The polarization in waveguide 2 is rotated by 90o. Stage

1 is comprised of a set of N1 APFs for each of the waveguides to generate a phase

response of Φ1H(ω) for waveguide 1 and Φ1V (ω) for waveguide 2. In Stokes space,

transmission through Stage 1 corresponds to a rotation about {1,0,0} with rotation

angle (Φ1V (ω)− Φ1H(ω)). Stage 2 is comprised of a 50/50 directional coupler with

matched propagation constants, followed by another set of N2 APFs for each of the
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Figure 10-10: Overlapped signals of 2500 cases (500 random fibers with 5 random
input polarizations per fiber): (a) for before compensation, (b) for after both PDL
and PMD compensation using exact phase difference profiles, (c) for after both PDL
and PMD compensation based on approximated phase difference profiles using APFs.
The number of APFs for the various stages of the PMD compensator [16] is N1 =
15, N2 = 10, N3 = 15.

waveguides, and then by another 50/50 directional coupler with matched propagation

constants. For the same coupling constant, the length of the second 50/50 directional

coupler is 3 times greater than that of the first 50/50 directional coupler. This set of

APFs generates a phase response of Φ2H(ω) for waveguide 1 and Φ2V (ω) for waveg-

uide 2. In Stokes space, the first 50/50 directional coupler gives a 90o rotation about

{0,1,0}, the APF portion of Stage 2 is a rotation about {1,0,0} with rotation angle

(Φ2V (ω)− Φ2H(ω)) and the second 50/50 directional coupler is designed to give a

270o rotation about {0,1,0}. Thus the combined transformation of Stage 2 is equiv-

alent to a rotation about {0,0,1} with rotation angle of (Φ2V (ω)− Φ2H(ω)). Stage

3 consists of a Mach-Zehnder interferometer (MZI) on each of the waveguide. Each

MZI has set of N3 APFs in each of its arms. For the MZI on waveguide 1, the APFs

generate phase response of ΦHor
3a (ω) on one arm and ΦHor

3b (ω) on the other. This
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Figure 10-11: Mean and standard deviation of the PDL as a function of frequency for
the 500 fibers ensemble. Dashed curve for before PDL compensation, curve of circles
for after PDL compensation using exact phase difference profiles, solid curve for after
PDL compensation using phase difference profiles approximated by APFs

gives a frequent-dependent attenuation of sin2
((

ΦHor
3a (ω)− ΦHor

3b (ω)
)/

2
)
. Similarly,

for the MZI on waveguide 2, its APFs generate a phase response of ΦV ert
3a (ω) on

one arm and ΦV ert
3b (ω) on the other, and thus a frequency-dependent attenuation of

sin2
((

ΦV ert
3a (ω)− ΦV ert

3b (ω)
)/

2
)
. After Stage 3, the two polarizations are recombined

into a single waveguide via a polarization rotator and a polarization beam combiner.

To illustrate that the phase difference profiles calculated by our synthesis algorithm

are feasible and can be approximated using APFs, we show the phase difference pro-

files produced by the APFs for the same randomly chosen fiber used in Figure 10-7.

They are shown as dashed-line curves in Figure 10-7(a-d). The APF parameters used

to approximate these phase differences are found by the fitting algorithm described

in Chapter 6. The number of APFs used are N1 = N2 = N3 = 3. All APFs have

the same FSR of 150 GHz. It is worthwhile to note that the frequency band of

interest corresponds to less than one FSR of the filters. Using these approximated

phase difference profiles, the curves showing the respective performance of the APF

compensation can also be found in the Figure 10-6-10-11. All these results show the

feasibility of implementing the compensation scheme using APFs.

Until now, our main focus has been on the PDL compensation of a single channel.
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Figure 10-12: A possible implementation of broadband PDL compensator using All-
Pass filters integrated on planar waveguides.

However, it should be apparent that the compensation can be extended to cover many

channels simultaneously. The same compensation scheme and synthesis algorithms

apply except that more APFs are needed and the FSR of the APFs has to be increased,

in order to cover a broader spectral range. It is also worthwhile to mention that, by

combining with the deterministic broadband PMD emulator presented in Chapter 9,

this architecture can be used for deterministically controlled PDL+PMD emulation.

10.5 Conclusion

In this chapter, we have proposed a method for compensating PDL and PMD in a

feed-forward scheme. By the polar decomposition theorem, we showed that lumped

PDL followed by PMD compensation at the receiver’s end is feasible. Our proposed

PDL compensator consists of three stages: Stage 1 and 2 are the frequency-dependent

polarization rotators that align all the different PDL vectors into the {1,0,0} direc-

tion in Stokes space. Stage 3 eliminates both the PDL magnitude and the frequency

dependence in the isotropic attenuation by introducing different frequency-dependent

variable attenuation to each polarization. For real-time monitoring, we use random

polarization scrambling at the input end of the fiber and measure the SOP at the out-

put of the fiber as a function of frequency. We then determine the PDL spectrum by

finding the polarization states with the maximum and minimum attenuation. Using
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this monitored PDL spectrum, we synthesize the required phase difference profiles

of the three stages of the PDL compensator using equations (10.11), (10.12), (10.15)

and (10.16) to compensate for the PDL over a certain frequency range of interest.

The resultant intensity transmission after passing through the PDL compensator is

polarization- and frequency-insensitive. We then apply the known Mueller transfor-

mations of the PDL compensator to the same set of monitored SOP data to deduce the

composite PMD as a function of frequency. This composite PMD spectrum provides

the input parameters for the subsequent broadband PMD compensator described in

Chapter 6. By numerical simulations, we verified the synthesis algorithm of the re-

quired phase difference profiles and the procedure to deduce the composite PMD

spectrum. We also showed that these phase difference profiles are practical and can

be approximated by APFs.
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Chapter 11

Conclusion

In this thesis, we presented a deterministic approach to both PMD compensation and

emulation. Despite the fact that most of the PMD compensation schemes, demon-

strated in the literature, rely on feedback scheme, there is an emerging interest of

compensating PMD in a deterministic manner, especially in the presence of the

higher-order PMD. This is because adding control parameters in feedback scheme

to enable higher-order PMD compensation increases the complexity of the feedback

algorithm and also lowers its response time. As PMD can vary as fast as in a mil-

lisecond time scale, there are difficult tracking problems associated due to too many

search parameters with too little feedback information. In terms of PMD emulation,

a deterministic approach is attractive because it allows one to quickly evaluate a par-

ticular PMD compensator by investigating only the PMD states that are of interest,

especially those in the tail of the PMD distribution.

A deterministic approach to PMD compensation means that the PMD parame-

ters have to be first characterized, and then the compensator are set appropriately

to compensate for the fiber PMD. In Chapter 3, we presented a real-time estimation

technique to predict the first- and second- order PMD parameters. At the output end

of the fiber, the signal is tapped and filtered. Three filters are used: a high-pass filter,

a low-pass filter and a narrowband filter. The averaged SOP of the filtered signals are

then measured using a polarimeter. We repeat the measurement for several different

input SOP’s using a polarization scrambler at the input end of the fiber. From these
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measurements, we deduce the first order PMD, and subsequently the second order

PMD. Using Monte Carlo simulations, we have shown that this technique offers sig-

nificant improvements over the previous ellipsoid method [2] in terms of measurement

accuracy, lower required polarization scrambling rate and capability to estimate more

PMD parameters. The search algorithm used is simple and requires little computa-

tion time, thus making the technique feasible for real-time PMD characterization. We

also discussed how to extend the scheme for broadband monitoring of PMD vectors.

We also demonstrated the accuracy of the characterization technique experimentally

using well-calibrated first- and higher- order PMD sources.

In terms of building PMD compensator, we presented in Chapter 4 a variable DGD

module which is useful for first-order PMD compensation. It is based on a novel way to

concatenate four identical fixed DGD segments so that the resultant DGD is variable

while no second order PMD is produced. In addition, the third order PMD generated

is only half the value of the one produced by the conventional two fixed segments

concatenation. The 4-segment module is based totally on tunable phase-plates and

fixed DGD segments. By simulation, we analyzed the required accuracies of the

tunable phase-plates used in this variable DGD module and illustrated that the 4-

segment module has better performance in PMD compensation than the conventional

two-segment concatenation, when there is frequency chirp presented in the system.

In Chapter 5, we described a procedure to exercise complete PMD compensation

up to second order when the information of the first order PMD and second order

PMD of a long haul communication cable are known. Moreover, we have solved

analytically the required rotation matrices of the polarization rotators and the re-

quired DGD of a variable delay line in a 3-segments compensator. The approach

here is necessary for a PMD compensation system that uses feed-forward correction.

To allow for a hybrid feed-forward/feedback compensation scheme, where first-order

PMD compensation is carried out in a feed-forward manner and feedback compensa-

tion is used for the second order PMD. We also presented a module that generates

variable second order PMD without producing any first order PMD. It is based on

four identical fixed DGD segments arranged in a symmetrical manner. Only one con-
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trol parameter varies the magnitude of second order PMD. This module is useful to

decouple the compensation of second- order PMD from first- order PMD.

In Chapter 6, we presented the architecture of an All-Frequency PMD compen-

sator in a feed-forward compensation scheme. This scheme can handle the compen-

sation of all orders of PMD. It is comprised of 4 stages. The first two stages give

an equivalent frequency-dependent polarization rotation effect, the third stage pro-

vides the frequency dependent variable DGD while the last stage compensates for the

isotropic dispersion created by the first three stages. In Stokes space formulation,

we described the algorithm to find the required rotation angles of each stage using

the PMD concatenation rules. This synthesis algorithm is verified by simulating the

PMD-induced signal degradation before and after the compensation. We discussed

three possible practical implementations of the AFPMD compensator but only con-

centrated on the integrated optics approach of using APFs. We also showed that the

profiles of the rotation angles are practical and can be approximated using APFs.

Again, through simulations, significant improvement of the signal quality is demon-

strated using such 4-stage architecture based on APFs. To extend the architecture

for broadband WDM compensation, the number of APFs involved can be as large

as 50 per stage. Thus we presented a fast and efficient algorithm based on recursive

equations to find the optimum of the large number of APFs parameters involved.

This APFs design algorithm is based on the complex cepstrum commonly used in

digital signal processing.

For many-segment PMD emulator, we presented in Chapter 7 a new approach of

doing polarization scrambling between segments. It exploits the principle that rota-

tion matrices are non-commutative and there are numerous possible combinations of

using a few phase-plates to generate polarization controller. With this combinatorial

polarization scrambler approach, we demonstrated numerically and experimentally

that good PMD statistics is still achievable when we reduce the number of phase-

plate by as much as an order of magnitude. This can substantially reduce the cost,

the size, the complexity of building and controlling such many-segment PMD emula-

tor.

206



We presented in Chapter 8 a new concept of PMD emulation where the first and

second order PMD vectors are generated using 4 concatenated segments (1 variable

DGD segment and 3 fixed DGD segments). The emulator is deterministically con-

trolled to produce the probability density functions of 1st and 2nd order PMD of a

real transmission cable. To control the emulator deterministically, we have solved an-

alytically the required rotation matrices of the polarization rotators and DGD value

of the variable delay line in the emulator. Through Monte Carlo simulations, we

demonstrated that our emulator is, indeed, capable of generating realistic probability

density functions for the 1st and 2nd order PMD. In addition, we have also studied

the sensitivity of the emulator to angular inaccuracy in the polarization rotators.

In Chapter 9, we presented the architecture of a deterministic broadband PMD

emulator based on a four-stage architecture. We show how to synthesize the required

rotation profile of the stages for arbitrary ”dial-in” spectrum of PMD vectors. By

numerical simulations, we demonstrated good fidelity of this broadband PMD emu-

lator.

In Chapter 10, we account for PDL which has often being neglected in the PMD

compensation for simplicity sake. We proposed a method for compensating PDL and

PMD in a feed-forward scheme. By the polar decomposition theorem, we showed

that lumped PDL followed by PMD compensation at the receiver’s end is feasible.

Our proposed PDL compensator consists of three stages: Stage 1 and 2 are the

frequency-dependent polarization rotators that align all the different PDL vectors into

the {1,0,0} direction in Stokes space. Stage 3 eliminates both the PDL magnitude

and the frequency dependence in the isotropic attenuation by introducing different

frequency-dependent variable attenuation to each polarization. For real-time moni-

toring, we use random polarization scrambling at the input end of fiber, and measure

the SOP at the output of the fiber as a function of frequency. We then determine the

PDL spectrum by finding the polarization states with the maximum and minimum

attenuation. Using this monitored PDL spectrum, we show how to synthesize the

required phase difference profiles of the three stages of the PDL compensator in order

to compensate for the PDL over a certain frequency range of interest. The resultant
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intensity transmission after passing through the PDL compensator is polarization-

and frequency- insensitive. We then apply the known Mueller transformations of the

PDL compensator to the same set of monitored SOP data to deduce the composite

PMD as a function of frequency. This composite PMD spectrum provides the input

parameters for the subsequent broadband PMD compensator. By numerical simula-

tions, we verified the synthesis algorithm of the required phase difference profiles and

the procedure to deduce the composite PMD spectrum. We also showed that these

phase difference profiles are practical and can be approximated by APFs.
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