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Abstract

Total on-chip interconnect length has been increasing exponentially with technology
scaling. Consequently, interconnect-driven design is an emerging trend in state-of-
the-art integrated circuits. Cu-based interconnect technology is expected to meet
some of the challenges of technology scaling. However, Cu interconnects still pose a
reliability concern due to electromigration-induced failure over time.

The major contribution of this thesis is a new reliability CAD tool, SysRel, for
thermal-aware reliability analysis with either Al or Cu metallization technology in
conventional and three-dimensional integrated circuits. An interconnect tree is the
fundamental reliability unit for circuit-level reliability assessments for metallization
schemes with fully-blocking boundaries at the vias. When vias do not block electro-
migration as indicated in some Cu experimental studies, multiple trees linked by a
non-blocking via are merged to create a single fundamental reliability unit. SysRel
utilizes a tree-based hierarchical analysis that sufficiently captures the differences be-
tween electromigration behavior in Al and Cu metallizations. The hierarchical flow
first identifies electromigration-critical nets or “mortal” trees, applies a default model
to estimate the lifetimes of individual trees, and then produces a set of full-chip reli-
ability metrics based on stochastic analysis using the desired lifetime of the circuit.

We have exercised SysRel to compare layout-specific reliability with Cu and Al
metallizations in various circuits and circuit elements. Significantly improved test-
level reliability in Cu is required to achieve equivalent circuit-level reliability. The
required improvement will increase as low-k dielectric materials are introduced and
liner thicknesses are reduced in future.

Thesis Supervisor: Donald E. Troxel
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Carl V. Thompson
Title: Stavros Salapatas Professor of Materials Science and Engineering
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Chapter 1

Introduction

In the pursuit of higher performance and integration, Integrated Circuit (IC) technol-

ogy is heading towards the nanotechnology era. The gate length of a state-of-the-art

active device, such as a metal oxide silicon field-effect transistor (MOSFET), is in the

range of 45 to 50 nm allowing millions of such devices to be fabricated in a single

chip [1]. In addition to achieving higher density, smaller devices increase speed due to

higher drive current during the “on” state. While more and more devices are desirable

for integrating more functionality in a single chip, interconnecting the devices using

metal wires takes up an even greater percentage of space. The on-chip metal lines

referred to as interconnects are fabricated by deposition of metal and dielectric mate-

rials, lithography of patterned features, and selective etching. ICs can have up to 14

layers of metal interconnects as predicted by the International Technology Roadmap

for Semiconductors (ITRS) 2003 edition (figure 1-1) [2]. The dielectric material, re-

ferred to as inter-layer dielectric (ILD), provides insulation between interconnects and

mechanical stability for the multi-level interconnect structure.

Concurrent to device dimension scaling, interconnect width is shrinking while total

interconnect length is increasing exponentially. According to the International Tech-

nology Roadmap for Semiconductors, 688 meters of active metal wiring per centimeter

square area are required to construct a high-performance chip in 2004. Interconnect

delay related to its resistance (R), capacitance (C), and in some cases inductance

(L) has become dominant over gate delay as shown in figure 1-2(a). Moreover, the
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Figure 1-1: Cross-section of an Integrated Circuit showing multi-layer metal intercon-
nects on top of a device layer. Source: the ITRS [2].

increased capacitance in interconnects leads to an increase in net switching power.

Since the invention of ICs, Aluminum (Al) and its alloys have been used in the met-

allization layers. Silicon Dioxide (SiO2) is used as the ILD material. Copper (Cu)

has been replacing Al as the material of choice for interconnects due to its lower

sheet resistance while new ILDs with lower dielectric constant (low-k dielectrics) are

under active study. However, as seen in figure 1-2(a), interconnect delay is still dom-

inant with the introduction of Cu and low-k dielectrics beyond 180nm technology

generations. Therefore, interconnect design and analysis have become as important

as device design [3].

1.1 Interconnect Reliability

From the interconnect design perspective, reliability is the extent to which the inter-

connects maintain signal integrity and produce desired functionality over the lifetime
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Figure 1-2: (a) Gate and interconnect delay in different technology generations [4].
(b) Interconnect reliability requirement versus total interconnect length in different
years. Here FIT refers to Failure Unit. Source: the ITRS 2001 edition [2].

of a chip. Stress conditions, such as current density and temperature, during cir-

cuit operation affect the interconnect reliability. As the performance of present day

ICs increases, a more stringent operating condition in the metal interconnects is ex-

pected with a service temperature of 105oC and maximum current density of 0.5

MA/cm2 [2]. In addition, the interconnect reliability requirement has become more

stringent as shown in figure 1-2(b). Electromigration is the primary interconnect

reliability concern.

1.1.1 Electromigration Phenomenon

Electromigration is the transport of atoms in a conducting material due to momentum

transfer from flowing electrons. When a difference in electrical potential is applied to

an interconnect, electrons flow from low potential (cathode) to high potential (anode)

terminal. The metal atoms start to diffuse along the electron flow direction due to

scattering. Assuming that the electron flow direction has a positive sign, the “electron

wind” force on atoms can be expressed as

Felec = −q∗E = −Z∗eρj (1.1)
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where q∗ = Z∗e is the effective atomic charge, Z∗ is the effective atomic charge

number, e is the fundamental electron charge, E = ρj is the electric field, ρ is the

electrical resistivity of the metal, and j is the current density. As current density

opposes the electron flow direction, a negative sign for j attributes to a positive sign

in Felec.

In an interconnect terminating at diffusion barriers such as Tungsten (W ) filled

vias or Tantalum (Ta) liners, the “electron wind” force creates tensile stress near the

cathode where the atoms deplete and compressive stress near the anode where the

atoms accumulate [5]. The resulting stress gradient leads to a mechanical driving

force, referred to as the back-stress force, which opposes the electromigration wind

force. The back-stress force is expressed as

Fmech = Ω
dσ

dx
(1.2)

where Ω is the atomic volume, σ is the stress, and x is the distance measured along

the length of the line. Due to a negative value of dσ
dx

, Fmech has a negative value which

is consistent with our sign convention here.

According to the 1-D Korhonen model [6], the atomic flux, Ja, can be expressed

as a function of Felec and Fmech using

Ja =
DCa

kT
(Felec + Fmech)

=
DCa

kT
(−Z∗eρj + Ω

dσ

dx
)

= −DCa

kT
(Z∗eρj − Ω

dσ

dx
) (1.3)

where Ca is the atomic concentration, D is the atomic diffusivity, k is the Boltzmann’s

constant, and T is the temperature. Equation 1.3 suggests that |Felec| > |Fmech| is

required to have a non-zero atomic flow for electromigration.
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1.1.2 Electromigration Failure Modes

A void nucleates at the cathode end of an interconnect line when the tensile stress ex-

ceeds the critical stress necessary for void nucleation, σcrit nuc. Once a void nucleates,

it can grow to larger volume even spanning the whole interconnect width as shown in

figure 1-3(a). In both Al and Cu metallization schemes, void nucleation and growth

would result in a resistance increase of the line. In the event of a fully spanning

void, conductive refractory metal under layers or over layers in Al technology will

shunt the current to prevent an open-circuit failure. An open-circuit failure is more

common in Cu technology due to the absence of conductive refractory layers. While

an open-circuit due to voiding would cause functional failure, the resistance increase

would add extra delay in signal propagation resulting in timing violations in timing

critical circuits.

Figure 1-3: Electromigration-induced failure modes; (a) Tensile stress at the cathode-
end of an interconnect can cause voiding [7]; (b) Compressive stress at the anode-end
can cause extrusion [8].

Compressive stress at the anode end of both Cu and Al interconnect lines can

cause metal extrusion where the atoms accumulate (figure 1-3(b)). However, extru-

sions are not observed in service operating condition for either Al or Cu as metal

interconnects are surrounded by rigid ILD material that suppresses the formation of

hillocks. Current densities greater than 5 MA/cm2 are required to observe extrusion

during electromigration testing condition [9]. Therefore, voiding is the primary mode
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of electromigration failure in ICs.

1.1.3 Immortality Condition

In steady state, the “electron-wind” force balances the back-stress force resulting

in zero atomic flux and a linear time-invariant stress along the interconnect line as

illustrated in figure 1-4 [10]. Equation 1.3 in steady state becomes

Z∗eρj = Ω
dσ

dx
(1.4)
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Figure 1-4: Immortality Condition in a straight line interconnect. (a) Side view (b)
Top view (c) Stress as a function of location along the interconnect at different times.

Rewriting equation 1.4 for a straight line interconnect with length, L, we can get
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an expression for current density and line length product (jL)

jL =
Ω∆σmax

ρeZ∗

(1.5)

where ∆σmax is the maximum stress difference between the cathode and anode ends.

If the stress at the cathode end is σcrit, ∆σcrit can be written as

∆σcrit = 2(σcrit − σo) (1.6)

Assuming the initial stress, σo, is zero,

∆σcrit = 2σcrit (1.7)

If the critical tensile stress for void nucleation, σcrit nuc, is greater than the maximum

steady state tensile stress, σcrit, developed at the cathode end, no void will form and

the line will not fail. Using equation 1.5, we can derive a critical current density line

length product (jL) that defines the immortality condition as

jL < (jL)crit nuc =
Ω∆σcrit nuc

ρeZ∗

(1.8)

which means short lines or lines stressed at low current densities that satisfy (jL) <

(jL)crit nuc are immune from void nucleation, and thus “immortal” from void nucle-

ation limited failure.

On the other hand, if (jL) exceeds (jL)crit nuc, a void will nucleate in the metal

line. However, if the void does not completely block the current flow, the void nucle-

ation will not be fatal. In the presence of conducting over layers and under layers, the

void can continue to grow as the current is shunted around it through the refractory

metal layers until the electron wind force and back-stress balance again. Under such

circumstances, the line is immortal if the resistance increase associated with the void

volume is lower than the maximum acceptable resistance increase, ∆Rmax

crit , and the

maximum compressive stress in the line does not cause yielding or fracture of the sur-
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rounding dielectric material. The immortality condition due to resistance saturation

is given by [11]

(jL)crit sat =
ρ

A
ρl

Al

∆Rmax

crit

R

2ΩB

Z∗eρ
(1.9)

where ρ and A are the resistivity and cross sectional area of the high-conductivity

metal, respectively, ρl and Al are the resistivity and cross sectional area of the shunt

layer, respectively, and R is the initial resistance of the line. It is apparent that

(jL)crit sat > (jL)crit nuc as resistance saturation will occur after void nucleation.

1.1.4 Electromigration Lifetime Model

Electromigration testing is conducted at accelerated conditions with temperatures

as high as 300oC and current densities greater than 2.0 MA/cm2. To estimate the

lifetime of a population of interconnects at service conditions, the well known Black’s

equation is used to extrapolate the median-time-to-failure (MTTF) to service condi-

tions [12]. Black’s equation is expressed as

t50 = Aj−ne
Ea
kT (1.10)

where A is a constant independent of temperature and current density, j is the current

density, n is the current density exponent, Ea is the activation energy for the rate-

limiting diffusion path, k is the Boltzmann’s constant, and T is the temperature. A

current density exponent n = 1 is consistent with void growth limited failure since

the rate of unconstrained void growth is proportional to the current density [13]. An

exponent n = 2 indicates void nucleation limited failure in the model based on the

Korhonen analysis [6]. Although variations of the original Black’s model have been

proposed in [14, 15], Black’s equation is still generally used to estimate the lifetime

of an interconnect due to electromigration.
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1.2 Interconnect Architecture Schemes

Al and Cu are the primary choices of metal for interconnects in modern day ICs.

IBM introduced Cu technology in commercial ICs in 1998. Since then, Cu has been

replacing Al as the material of choice for interconnects due to its lower sheet resis-

tance. While the electromigration behavior of Al interconnects is quite well under-

stood [16, 17], the reliability of Cu is still under active study. Due to the differences in

chemical properties between Cu and Al, the fabrication process for Cu interconnects

is drastically different from that for Al interconnects. The differences in processing

and architecture schemes lead to the differences in electromigration reliability.

1.2.1 Aluminum Metallization Technology

As illustrated in figure 1-1, metal interconnects are surrounded by ILD materials most

commonly SiO2. Al chemically reacts with SiO2 to form alumina, which eliminates

atomic diffusion of Al into the surrounding ILD and along the interface between

Al and SiO2. As a result, Al metallization is processed by a subtractive etching

method in which the patterned lines are formed by etching the deposited blanket Al

film. Architecturally, Al interconnects have thick, highly electromigration-resistant

refractory metal layers, which are usually made of Titanium Nitride (TiN), serving

as anti-reflection coatings at the top of the lines (see figure 1-5(a)). Similar under

layers have also been included, which serve as seed layers for the via-fill process.

Tungsten (W ) filled vias are used to connect layers of Al metallization. Metal under

and over layers serve as shunt for electron flow and W -filled vias serve as fully blocking

boundaries for electromigration.

1.2.2 Copper Metallization Technology

Cu does not chemically reduce SiO2 like Al does. Furthermore, a suitable etchant for

Cu thin films is unavailable for commercial use. Consequently, Cu interconnects are

fabricated by the damascene method, in which a trench is first etched into a blanket

layer of ILD before filling it with Cu by electroplating. Since Cu undergoes field
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Figure 1-5: Interconnect architecture schemes; (a) Al interconnect, with W -filled vias
and conducting shunt layers at the top and bottom of the interconnect line. (b) Dual-
damascene Cu interconnect, with Cu-filled vias, thin refractory liners at the sides and
bottom of the line, and a dielectric capping layer at the top of the line.

enhanced diffusion in most dielectric materials (including SiO2), in order to prevent

Cu atoms diffusing into the device layer, thin refractory metal layers consisting of

Tantalum (Ta) or Tantalum Nitride (TaN) are placed at the sides and bottom of the

Cu interconnect lines (See figure 1-5(b)). The Cu lines are capped with a dielectric

diffusion barrier, which is usually made of Silicon Nitride (Si3N4). Cu-filled vias are

used to connect multiple layers of metallization.

1.3 Fundamental Reliability Unit

An important concept in hierarchical reliability analysis is the classification of Funda-

mental Reliability Units (FRU). By definition, an FRU is a component in reliability

analysis, contributing to the underlying failure mechanism, which can be treated in-

dependently from other such components. During a hierarchical reliability analysis,

FRUs are first identified and extracted from a circuit layout. FRU based reliability

analysis reduces the complexity of the problem and provides the flexibility of adding

new failure units for different reliability phenomena.

Straight line via-to-via structures are used for most electromigration experimental
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work. However, in real circuits, multiple straight line segments are connected at junc-

tions and many such junctions are connected within the same layer of metallization.

An “interconnect tree” is a unit of continuously connected high-conductivity metal ly-

ing within one layer of metallization terminating at the vias or diffusion barriers [18].

An example of an interconnect tree is shown in figure 1-6.

Figure 1-6: Example of an interconnect tree, the fundamental reliability unit for elec-
tromigration analysis.

It has been established that an interconnect tree is the appropriate fundamen-

tal reliability unit for the circuit-level reliability assessment of Al-based metalliza-

tion [18]. The fully blocking boundaries formed at the W -filled vias confine atomic

diffusion within an interconnect. Materials within an interconnect tree can diffuse

freely between the segments and the stress evolutions in different segments of a tree

are coupled.

On the other hand, Cu-filled vias with thin liner material at the bottom in Cu

metallization technology may or may not act as fully blocking boundary for atomic

diffusion [10]. Liner ruptures have been observed in some experimental work which

allow materials to freely diffuse between different layers of metallization. In such

cases an interconnect tree cannot be treated as the fundamental reliability unit for

Cu-based technology.
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1.4 Three-Dimensional (3D) Integrated Circuit Tech-

nology

Technology scaling has posed limitations on overall system performance by degrading

the interconnect delay, increasing the power consumption due to interconnect capac-

itance, and increasing the number of longer global and semi-global lines in a chip.

The need for a long-term solution to enhance performance in successive technology

generations is apparent. One such long-term solution is the three-dimensional (3D)

Integrated Circuit technology.

1.4.1 Technology Concept

The main idea behind 3D integration is to form multiple device layers along the third

axis (z axis) and lower the interconnect lengths by connecting the devices in these

layers vertically. This has been accomplished by bonding multiple wafers fabricated

with different or similar technologies [19, 20] as well as by fabricating multiple device

layers on the same wafer [21, 22] using the epitaxial growth of Si. In a wafer bonding

technology, each device-interconnect layer is fabricated separately on different wafers

with the same or different technologies, and then the wafers are bonded with each

other using a bonding layer of Cu, polymeric adhesives, or plain oxide-to-oxide (ILD

material) bond.

The wafers in a 3D stack are electrically connected using high aspect ratio vias

or contacts. When bonding is complete, 3D ICs have vertical interconnects of sig-

nificantly longer length than vias or contacts in conventional or 2D ICs. Moreover,

the 3D circuits fabricated with a wafer bonding technology have two different types

of vertical interconnects as shown in figure 1-7. The Cu-filled inter-wafer vias con-

nect multiple interconnect trees from different wafers. At the bonding surface, the

adjacent metallization layers from two wafers can also be connected with vertical Cu

lines. The vertical Cu lines create a new type of trees, referred to as a “3D tree”,

which expands between two different wafers.
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Figure 1-7: Cross-section of a 3D IC with 3D trees and inter-wafer vias. Here DL
and MLs correspond to device and metal layers, respectively.

Although the concept of 3D integration emerged as early as 1979 [23], significant

research work was done only after the early 90’s as the limitations of technology

scaling became apparent. 3D integration is an attractive solution as it can signifi-

cantly reduce the number of long wires by mapping a 2D circuit into different lay-

ers [24]. Moreover, the total number of repeaters for long and intermediate wires will

also decrease, resulting in a higher density and lower interconnect-limited chip area.

Consequently, high-performance microprocessors and programmable logic devices are

attractive applications for 3D integration.

Another promising advantage of 3D integration is its ability to integrate heteroge-

neous technologies into a single 3D chip. Future system-on-chip (SOC) applications

will consist of digital, analog, RF, and optical components on the same die [25]. Using

3D integration, each unit can be fabricated on separate wafers with its own optimized

process technology, and then integrated vertically to form a 3D SOC [19, 20].

1.4.2 Layout Methodology for 3D Circuits

We developed a comprehensive layout methodology for 3D ICs and implemented it

in 3D-Magic [26, 27]. In order to facilitate the layout of 3D ICs, all inter-wafer vias

or contacts are generalized into three major categories. The three categories of vias

are sufficient for defining almost all types of interconnection between wafers in a 3D

IC. Figure 1-8 shows the three categories of vias; connected-to-top, connected-to-

bottom, and through-wafer vias. Categorizing vias in such a way allows the layout

methodology to be flexible enough to support different types of bonding schemes,
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such as face-to-face, face-to-back, or back-to-back1.

A 3D contact point

Connected-to-top Via

Through-Wafer Via

Connected-to-bottom Via

Top

Bottom

Figure 1-8: Different types of vias/contacts for 3D ICs.

The availability of 3D-Magic has led to interesting research with a wide range of

layout-specific circuit analyses, from performance comparison of 2D and 3D circuits

to layout-specific reliability analyses in 3D circuits. Using 3D-Magic, researchers have

designed and simulated an 8-bit encryption processor mapped into 2D and 3D FPGA

layouts [28]. The layout methodology has been adopted for 3D CAD tool research

at MIT [29] . It has built the bridge between synthesis and layout tools for 3D

circuits and allowed the demonstration of physical layouts of circuits produced by the

3D place and route tool. Moreover, it is an essential element of a novel Reliability

Computer Aided Design (RCAD) tool, ERNI-3D [26].

1.4.3 3D IC Technology with Thermal Management

While 3D IC technology has its advantages, extracting heat generated by power dissi-

pation in inner wafers is quite a challenge. Conventional packaging technology allows

heat extraction from one side, typically the Si-substrate side, by attaching a Cu heat

spreader and fin heatsink. When using such a method for heat extraction, heat flux

from wafers further away from the heatsink would flow through the 3D stack leading

1Face-to-face bonding refers to bonding metal interconnect side of a wafer to the metal intercon-
nect side of another wafer while forming the 3D IC stack. Back-to-back bonding refers to bonding
Si-substrate side of a wafer to the Si-substrate side of another wafer in forming the 3D IC stack.
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to an increased power density on a smaller footprint. Therefore, temperature rise in

3D circuits can be significantly higher than that in conventional ICs [30].

Flexibility in bonding schemes, such as back-to-back and face-to-face, can be ex-

ploited to address thermal management in 3D ICs. We proposed a vision for 3D IC

technology that efficiently incorporates thermal management [31]. Figure 1-9 presents

the main idea in such a 3D IC technology.

to External Pins

Through-wafer via

Heat

Sink

Device

Layer 4

Device

Layer 3

Device

Layer 2

Metal 

Layer

1 & 2

Device

Layer 1

       Top view of thermal

connect and through-wafer

              interconnect

Back-to-Back bond

-through-wafer electrical

connections and

-Thermal connects for

micro-channel fluid flow

Face-to-Face bond with

high density of bonded

interconnect

Figure 1-9: Thermal management using optimal placement of microfluidic thermal
connects in a face-to-face and back-to-back bonded 3D IC.

Starting at the bottom of the stack, there is a face-to-face bond between the first

two wafers. This face-to-face bond allows high-density inter-wafer connection and

eliminates area trade-off between through-wafer via and active devices that is present

in back-to-back (substrate-to-substrate) or face-to-back bonding. In the figure, there

are through-wafer vias through the substrate of the first wafer to get signals out for the

connections to external pins. The number of such through-wafer vias is comparable

to the number of pins and significantly lower than that of inter-wafer vias at a high-
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density face-to-face bond.

Next, wafer no. 2 is bonded with wafer no. 3 using a back-to-back bond. This back-

to-back or substrate-to-substrate bond results in a bonded silicon interface which can

be used to contain micro-channels, termed thermal connects, for heat removal with

fluid flow. The thermal connects or micro-channels are wet-etched in the back of

the individual substrates before bonding. The thermal connects can be criss-crossed

among through-wafer vias, as shown in figure 1-9, as well as laid out manually with

a higher density at the chip hotspots.

The 3D stack can grow further upward using a face-to-face bond with wafer no. 3.

In figure 1-9, the topmost wafer is wafer no. 4 and its substrate is connected to a heat

sink/heat removal device. As it is apparent from the structure, every wafer in the

3D stack except wafer no. 1, has a heat removal device connected to its substrate.

Therefore, thermal connects can also be placed in the substrate of wafer no. 1 while

bonding to the package. Thus, every wafer in a 3D stack has heat removed through

its substrate and the heat removal problem can be reduced to that of a conventional

2D IC.

1.4.4 Interconnect Reliability in 3D ICs

Electromigration phenomenon and reliability concerns described in section 1.1 are

equally applicable to 3D circuits. In addition to treating interconnect trees as the

fundamental reliability unit, special attention is required for the through-wafer and

inter-wafer vias in 3D circuits. Through-wafer vias can be significantly longer in

height than conventional vias as illustrated in figure 1-9. The reliability impact due

to increased height as well as the presence of a bonded interface is under active

investigation [32]. Depending on the failure characteristics observed in through-wafer

and inter-wafer vias, it may be necessary to treat them as additional fundamental

reliability units in 3D ICs.

As discussed earlier, the stack effect in 3D circuits can potentially increase the

service temperature of the interconnects. According to equation 1.10, MTTF of

an interconnect tree is exponentially dependent on its temperature. Due to high
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power dissipation, high temperature rise is already of great concern in modern day

conventional ICs. Consequently, the 3D counterparts of such chips are expected to

pose a greater reliability challenge due to higher temperature.

1.5 Circuit-Level Reliability Analysis

The conventional approach to meet reliability goals in an integrated circuit has been

to use simple and conservative design rules based on current density in a wire segment.

However, this simplicity and conservatism lead to limited performance in newer tech-

nology generations [18]. Models and techniques have been developed to make realistic

reliability assessments of interconnects during the design and layout process (Relia-

bility Computer Aided Design, RCAD), so that the reliability data can be fed back,

and changes can be made promptly before the fabrication process to achieve optimum

reliability and performance. BERT (BErkeley Reliability Tool) [33], iTEM [34], ERNI

(Electromigration Reliability in Networked Interconnects) [35], and ERNI-3D [27] are

examples of reliability analysis tools for Al-based interconnect technology that have

been previously developed.

BERT and iTEM calculate the overall reliability of a given layout based on the

reliability estimations from individual straight line segments. However, the reliabil-

ity of a segment depends strongly on the activities in the linked segments. In other

words, segments can not be treated as independent reliability units. Interconnect

trees need to be considered as the fundamental reliability units as discussed in sec-

tion 1.3. Another limitation in BERT and iTEM is the lack of immortality checking

in interconnect segments. As illustrated in section 1.1.3, not all interconnect trees

are prone to electromigration failure. Neglecting immortality condition in intercon-

nect trees leads to redundant computation in analysis, and more importantly, leads to

overly conservation and incorrect reliability estimates. ERNI and ERNI-3D addresses

the limitations of earlier tools.
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1.5.1 Electromigration Reliability in Networked Interconnects

(ERNI and ERNI-3D)

The RCAD tool ERNI (Electromigration Reliability in Networked Interconnects),

developed at MIT [35], allows process-sensitive and layout-specific reliability assess-

ments of a fully or partially laid-out integrated circuit. Figure 1-10 shows the flow

diagram of ERNI’s operations. First, the interconnect trees are extracted from a
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Figure 1-10: Flow diagram of the hierarchical circuit-level reliability analysis in ERNI.

circuit layout and categorized into mortal and immortal trees based on the current

density and line length product (jL). Further computation goes on with only the

mortal trees, and a reliability figure for each tree, in terms of MTTF, is obtained

after applying the default electromigration model [18].

The code for ERNI is written in Java 2 (JDK 1.2). It is a client extension to

MAJIC, a layout parser and viewer also written entirely in Java [36]. Lots of data-

structures and algorithms in MAJIC are based on MAGIC, an IC layout editor de-

veloped at UC Berkeley and widely used in academia [37]. Using MAJIC, users can

view a circuit layout, and apply reliability analysis by choosing different filtering algo-

rithms from the “ERNI” menu. Figure 1-11 shows a screen-shot of MAJIC with the

display of available options in the “ERNI” menu. ERNI operates on 2D IC layouts

with multiple metallization layers created using MAGIC.

The reliability analysis concept in ERNI has been extended to develop a distinct
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Figure 1-11: A screen-shot of MAJIC with a view of menu items for reliability analyses
in ERNI.

RCAD tool, ERNI-3D, for the reliability analysis of 3D circuits [27]. Using ERNI-

3D, circuit designers can get interactive feedback on the reliability of their circuits

associated with electromigration, 3D bonding, and joule heating. ERNI-3D parses 3D

circuit layouts from 3D-Magic and extracts both conventional and 3D interconnect

trees from the layouts. It employs the hierarchical reliability analysis approach used

in ERNI and applies a simplistic joint probability distribution method to report a

single reliability figure for the whole chip. The initial version of ERNI-3D treats 3D

circuits with two wafers or device-interconnect layers in the stack. Both ERNI and

ERNI-3D are capable of reliability analysis of only Al-based interconnect technology.

1.6 Thesis Statement

The goal of this thesis is to develop new methodologies for interconnect reliability

analysis and a reliability CAD tool, SysRel (System-level IC Reliability), for circuit-

level electromigration analysis with Cu as well as Al metallization technologies in

conventional and 3D circuits. Much insight has been gained through electromigration

experiments with Cu dual-damascene technology to identify its distinctive behaviors

and a set of circuit-level reliability rules [10]. SysRel is capable of reliability assess-

ment and comparison of Cu and Al metallizations in a circuit layout. As experimental

41



reliability work and lifetime models only deal with individual reliability units, a set

of full-chip reliability matrices, based on a joint probability distribution of individual

units, has been proposed and implemented in SysRel. Such a system-level view of

reliability analysis allows users to identify electromigration critical nets in a circuit

layout and quantify their impact on full-chip reliability.

While a comprehensive reliability analysis tool, such as SysRel, is desirable, it is

equally important to integrate the tool into existing IC design flows. Large ICs are

designed using a cell/module-based hierarchy. The concept of cell/module level reli-

ability characterization has been introduced in SysRel which, in addition to allowing

easy integration into existing design flows, significantly reduces the computational

load during reliability assessment of a large layout with numerous reliability units.

In other design scenarios where layout is fully custom and not necessarily cell-based,

SysRel and its methodologies are still applicable.

Reliability is a strong function of chip temperature. Therefore, a cell-based sub-

strate thermal profiling method is developed and implemented in SysRel to estimate

the non-uniform layout-level temperature due to cell power dissipations. Using the

non-uniform substrate temperature as a boundary condition, interconnect joule heat-

ing is taken into account while calculating the lifetimes of mortal reliability units.

In addition to a technology-generic feature, such as thermal analysis, SysRel has

the capability of non-blocking via analysis specific to Cu metallization technology.

Users can investigate the impact of non-blocking vias on full-chip reliability with

both stochastic and deterministic assignment of non-blocking vias in a layout. This

novel analysis has provided valuable insight into electromigration test structure design

in Cu dual-damascene technology.

1.7 Organization of Thesis

The thesis consists of ten chapters and four appendices. Chapter 2 describes the hi-

erarchical electromigration reliability analysis flow with fundamental reliability units

in the context of Cu and Al metallization technologies. After extracting fundamental
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reliability units from a circuit layout, (jL) product filtering algorithms with specific

properties for Cu and Al metallizations are applied to identify immortal trees. A

default model is applied to compute the lifetimes of individual mortal units. Chapter

3 describes the concepts in reliability mathematics that are applied to derive the pro-

posed full-chip reliability metrics using the lifetimes of individual failure units. The

reliability mathematics coupled with the full-chip metrics give rise to the concept of

reliability budget in circuit layout.

In Chapter 4, the electromigration behaviors of Cu and Al metallization technolo-

gies are compared. Using the current density and temperature projections from the

ITRS, relative reliability of the two metallization technologies is presented in detail.

Chapter 5 introduces the RCAD tool, SysRel, and presents the reliability simulation

results from a 2D and 3D 32-bit comparator circuit analysis.

Chapter 6 describes the methodology for cell-based reliability analysis in SysRel.

The advantages of cell-based reliability analysis are demonstrated using the simulation

results from the 32-bit comparator circuit’s hierarchical layout. Chapter 7 introduces

the non-blocking analysis in Cu metallization technology, and describes the related

capabilities and underlying algorithms in SysRel. Simulation results with the 32-bit

comparator layout with varying degrees of non-blocking vias are discussed.

Chapter 8 outlines a layout-level thermal profiling technique implemented in Sys-

Rel for estimating the temperature rise in 2D circuits. Device-level thermal simulation

work with ANSYS2, leading to insights for the proposed technique, is also discussed.

Chapter 9 describes the design of a significantly large circuit, 64-bit Arithmetic and

Logic Unit (ALU). The ALU circuit has been simulated to investigate the reliability

issues with various metallization technologies and the impact of temperature on full-

chip reliability. Future reliability issues with Cu/low-k interconnect technology are

also explored.

Finally, Chapter 10 summarizes the results of the thesis and outlines future re-

search directions in interconnect reliability CAD area. The appendices include rele-

vant Matlab code, information on Java classes in SysRel, and SysRel software release.

2ANSYS is a comprehensive engineering simulation tool available from ANSYS Inc.
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Chapter 2

Hierarchical Reliability Analysis

Flow

In actual integrated circuits, various types of interconnect trees exist and their com-

plexities can be greater than the test structures for electromigration experiments.

While it is impossible to fabricate and test all the possible interconnect trees found in

an IC, a set of rules and specifications can be developed to make realistic reliability

assessments of interconnects during the design and layout process. Based on insights

gained from the experimental work with various Cu interconnect trees, a hierarchical

reliability analysis approach for circuit-level and layout-specific reliability assessment

of any Cu interconnect network has been proposed in [10, 38].

This chapter briefly presents the experimental work for electromigration analysis

and summarizes the distinct reliability characteristics in Cu metallization technol-

ogy. The hierarchical reliability assessment flow is also discussed step-by-step and

compared with that of Al metallization technology.

2.1 Electromigration Experiments

Gan et al. conducted electromigration experiments with Cu dual-damascene tech-

nology [10, 39]. The experimental procedure for Cu electromigration was divided

into multiple stages: test structure design, sample fabrication, packaging, testing
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and failure analyses. Figure 2-1 shows a sample of test structures: straight via-to-

via interconnects (‘I’), straight via-to-via lines with an additional via at the center

(‘dotted-I’), straight via-to-via lines with an additional metal limb at the center (‘T’),

straight via-to-via lines with two additional metal limbs at the center (‘+’), straight

via-to-via lines with a transition in width along the interconnect (‘width-transition’)

and wider straight via-to-via lines with extra metal limbs nearer to one side of the

lines (asymmetrical ‘T’ transition). The test lines are either in the first (M1) or

second (M2) level of metallization.

Figure 2-1: Schematic diagrams of designed interconnect trees for electromigration
testing (a)‘I’ (b) ‘dotted-I’ (c) ‘T’ (d) ‘+’ (e) asymmetric ‘T’ transition (f) width-
transition.

Test samples were fabricated using a Cu dual-damascene process in IME and

SEMATECH. Sixteen samples of each test structure were stressed in a package-level

electromigration test system with a temperature range between 50oC and 400oC.

To reduce the possibility of temperature-induced failures and variation in diffusivity

due to joule heating, current densities were chosen to limit joule heating below 10oC

through out the experiments. The range of current density in the test structures was

between 0.5 to 5.0 MA/cm2.
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In addition to recording median-time-to-failure (t50) (defined as time to 30% in-

crease in resistance), resistance trends were observed for different structures. Various

failure analysis tools, such as Optical Microscopy, SEM, FIB and TEM, were used to

characterize the type of failure modes. In the experiments, all failures detected were

due to open-circuit failure from formation of voids in a line or via. Experimental

results and failure characteristics are presented in detail in [39, 40, 41, 42].

2.2 Via Asymmetric Failure Characteristics in Cop-

per Technology

In Cu interconnects, it has been widely reported that the Cu/Si3N4 interface acts

both as the dominant diffusion pathway for atoms and as the likely site for void

nucleation. Due to this fact, the lifetimes of M1 type interconnects are different from

that of M2 type interconnects [40]. Gan et al. experimentally demonstrated that

the lifetimes of the M2 test structures were always higher than those of the M1 test

structures, provided that both types of interconnects had the same length, width, and

number of vias at each end. The underlying phenomenon applies to all metal layers

and can be generalized using via-above and via-below definitions. The via-above test

structures refer to interconnect segments which lie in the first level of metallization,

and the vias are located above the test lines. Conversely, the via-below test structures

are in the second metallization level while the vias are located below the test lines

(see figure 2-2).

During electromigration in Cu interconnects, a tensile stress develops at the cath-

ode end, where the Ta liner underneath a via forms a blocking boundary to the

diffusing Cu atoms. For current Cu technology, the critical tensile stress for void

nucleation has been estimated to be 41 MPa or less [43]. In via-below structures,

voids preferentially nucleate at the Cu/Si3N4 interface due to the low critical stress

required for that interface. An open-circuit failure would occur only when the void

grows to span the whole thickness of the metal line, resulting in a very large void
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Figure 2-2: Side-view schematic of void formation in via-above and via-below inter-
connects. (a) A small-volume fatal void in via-above interconnects; (b) A large-volume
partially-spanning non-fatal void in via-below interconnects.

volume as shown in figure 2-2(b). On the other hand, in via-above structures the

maximum tensile stress develops at the Cu/Si3N4 interface near the cathode via.

Therefore, an open-circuit failure would occur if a small-volume void forms below the

via, such that the pathway for electron flow is blocked (see Figure 2-2(a)).

This asymmetry in the void volume required for failure not only accounts for

the asymmetry in lifetime but also contributes to the different (jL)crit products in

immortality conditions for via-above and via-below type of interconnects. The (jL)crit

values are directly related to the critical stresses required for interconnect failure.

The values are reported by Ho et al. to be 3700 A/cm for via-below [44, 45], and by

Hau-Riege to be 2100 A/cm for via-above type interconnects [43]. Therefore, in Cu

metallization technology, if the electrons are flowing into the line from a via on top, a

shorter lifetime and a smaller (jL)crit is expected compared to the condition in which

the electrons flow into the line from below.

48



2.3 Steps in Hierarchical Reliability Analysis for

Copper Metallization

The hierarchical reliability analysis is based on extracting interconnect trees, the

fundamental reliability units; applying various stages of filtering conditions to identify

mortal units; and then applying a default model to estimate lifetimes of the mortal

units. The input to this flow is a circuit layout with mask definitions. The steps for

hierarchical reliability analysis in Cu metallization technology are as follows.

(i) Extract interconnect trees from a layout: As defined in section 1.3, an in-

terconnect tree is a unit of continuously connected high-conductivity metal lying

within one layer of metallization. In addition to geometric properties, the lo-

cations of the vias/contacts are also identified in each interconnect tree. Given

an interconnect tree in Cu metallization, every via is classified as either “via-

above” or “via-below” depending on whether it is located above or below the

interconnect line, respectively.

(ii) Determine the longest terminating via-to-via distance, Lmax: When an in-

terconnect tree is constructed from multiple segments as shown in figure 2-3,

multiple terminating vias exist due to vias at the end of each segment. To find

the longest distance between two terminating vias in an extracted tree, an in-

terconnected graph needs to be created where vias and via-to-via distances are

represented as nodes and edges, respectively. The shortest path between the

vias are calculated using the Minimum Spanning Tree algorithm [46]. Then ter-

minating via-to-via distances are just the addition of via-to-via distances along

the path. Lmax is chosen to be the longest terminating via-to-via distance.

(iii) Filter interconnect trees using via-above (jL)crit nuc failure criterion: The

first step of the filtering algorithm assumes the worst case scenario. The maxi-

mum current density allowed by the design rule, jmax, can be obtained from the

International Technology Roadmap for Semiconductors [2]. Using the worst case

threshold of (jL)crit nuc = 1500A/cm [47] (i.e. the via is above the line at the
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Lmax

Figure 2-3: Calculating Lmax in an interconnect tree.

cathode end as in a M1 test structure), it is checked whether (jL)crit nuc/jmax >

Lmax for every interconnect tree. If the inequality is true, the tree is considered

immortal and is ignored during further analysis.

(iv) Filter mortal trees using via-below (jL)crit sat failure criterion: Determine

if either of the vias contributing to Lmax is a via-above. If at least one of the vias

happens to be via-above, then the interconnect tree may fail with a via-above

(jL)crit nuc failure criterion as determined in the previous step and the hierarchi-

cal flow proceeds directly to step (v). However, if both of the vias are via-below,

the via-below (jL)crit sat failure criterion of (jL)crit sat = 3700A/cm [44, 45] is

applied. The condition (jL)crit sat/jmax > Lmax is checked for such interconnect

trees. However, even if a tree passes this test, all the other vias in the tree must

be considered before classifying it as immortal. This is because via-above nodes

have a much smaller immortality value and thus shorter lengths may fail. The

longest distance in the graph from any via-above node to all other vias, Lmax va,

is determined. We again apply the test (jL)crit nuc/jmax > Lmax va to determine

whether the tree might fail.

(v) Estimate the current density, ji, in each segment: The Vdd and Gnd lines

in the circuit layout need to be identified as they have unidirectional current flow

and are most susceptible to electromigration failure. Most local interconnects

transmit signals between devices in the form of bidirectional or alternating cur-
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rent (AC). In these cases, an equivalent direct current (DC) which produces the

same electromigration damage [48], such as the root-mean-square (RMS) of the

AC, is assumed. On the other hand, clock signals usually operate with pulsed

DC. Experiments [48] and modeling [49] have shown that the equivalent DC is

given by the average of the pulsed DC, Iavg, which is given by the expression

Iavg = rI =

(

ton

ton + toff

)

I (2.1)

where I is the current during the “on” time and r is the duty ratio given by ton

and toff where ton is the pulse width and the sum of ton and toff equals the clock

period. The worst case loading of Vdd and Gnd lines can be identified using

power consumption reports from a circuit simulation tool. However, estimating

current flow at each segment in local interconnects is complicated and requires

detailed circuit-level simulation.

(vi) Filter mortal trees by detailed calculation of steady-state stresses: The

concept of steady-state stresses in interconnect trees is an extension of the im-

mortality condition in stud-to-stud straight lines. The maximum stress differ-

ence in an interconnect tree, ∆σmax, is given by the path that has the highest

sum of the (jL) products, summing over the limbs/segments in the path [18].

This is expressed by

∆σmax =
ρeZ∗

Ω
(jL)eff (2.2)

where

(jL)eff = max
all junction pairs i, j

(

∑

k

jkLk

)

(2.3)

where ∆σmax is the stress difference between the anode and the cathode, Z∗

is the effective charge number, e is the elementary charge, ρ is the electrical

resistivity of the metal, Ω is the atomic volume, i and j are two terminating

vias, and jk and Lk are the current density in, and length of, segment k along

the path between i and j, respectively. To filter the immune interconnect trees

using (jL)eff , repeat steps (iii) and (iv) by replacing (jL)max with (jL)eff .
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(vii) Analyze mortal trees with electromigration failure models: A conserva-

tive default electromigration model based on the analysis of individual nodes

(vias or contacts) in a tree is used to estimate the lifetime of a mortal tree. The

output of the model is taken to be the median-time-to-failure of a tree. The

default model is discussed in a later section. Furthermore, numerical methods

can be applied for detailed calculation of the time-dependent stress analysis.

Software programs, such as MIT/EmSim [9, 50] and CuEmSim [51] , allow the

calculation of stress evolution in multi-terminal interconnect trees.

(viii) Apply full chip stochastic reliability model: The median-time-to-failure

(MTTF) or t50 of each mortal interconnect tree is estimated using the de-

fault model or a micro-structure level electromigration simulation program (e.g.

MIT/EmSim). The full-chip reliability model combines the t50 of multiple inter-

connect trees from the same layout and provides a set of reliability metrics for

the overall chip. The stochastic model and underlying reliability mathematics

are discussed in the next chapter.

2.4 Contrast with Hierarchical Reliability Analy-

sis in Aluminum Metallization

Failure mechanisms in Cu and Al interconnects are significantly different due to

their different architectural schemes as described in section 1.2. In Al metallization

structures, the Al line has refractory metal layers above and below, and tungsten (W )

filled vias are used to connect interconnects from different levels. The W -filled vias act

as a perfect and symmetric diffusion barrier irrespective of the electron flow direction.

Therefore, lifetime differences were not observed for M1 and M2 type structures in

Al metallization.

Via classification is not required in hierarchical analysis flow for Al technology.

Steps (iii) and (iv) in the hierarchical reliability analysis are merged into one where a

single (jL) product threshold, (jL)sat = 4000A/cm, is applied to check for immortal-
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ity [11]. The reported (jL) product threshold for Al is also slightly higher than that of

Cu via-below type interconnects. This is because Al interconnect architecture allows

for top and bottom conducting shunt layers to divert electron flow around voids for

both M1 and M2 type of geometry.

2.5 Electromigration Default Model

While microstructure level simulation of electromigration in complex interconnect

trees is possible, less computationally-intensive analytical models are needed for

circuit-level reliability assessment.

A conservative model for the analysis of interconnect trees has been previously

proposed by Hau-Riege and Thompson [18] and verified for Al-based test structures.

Such a model is extended, by Gan, for Cu interconnect analysis [41]. The stress

evolution at a node (x = 0) in an interconnect tree has been conservatively estimated

as

σ(t) =

√

4t

π

ρeZ∗

Ω

√

BΩ

kT

∑

i Diji
∑

i

√
Di

+ σo (2.4)

where B is the bulk modulus of the material surrounding the migrating material, σo is

the initial hydrostatic stress in the tree, and Di and ji are the atomic diffusivity and

current density in segment i, respectively. Assuming a constant and time-independent

atomic diffusivity along the segment and initial hydrostatic stress, σo = 0, we can

estimate the time, tnucl, when the tensile stress is equal to the critical stress for void

nucleation, σnucl, at the node.

tnucl =





σnuclΩ

ρeZ∗

√

π

4

√

kT

BΩ

∑

i

√
Di

∑

i Diji





2

(2.5)

The above equation can be used to calculate time to extrusion, textru, using the critical

stress for extrusion, σextru, at the node.

textru =





σextruΩ

ρeZ∗

√

π

4

√

kT

BΩ

∑

i

√
Di

∑

i Diji





2

(2.6)
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At each via, the stress evolution of the whole subtree connected to the node is

considered. Each subtree is then replaced with a semi-infinite limb with an effective

diffusivity and current density. Once a void nucleates, it starts to grow and leads to

a resistance increase in one of the limbs. Assuming that the void spans the whole

width and thickness of the interconnect, the void length is written as a function of

time, using which, time to void growth, tgrow, to length Lv can be expressed as,

tgrow =
LvkT

ρeZ∗

1
∑

i Diji

(2.7)

Equations 2.5, 2.6, and 2.7 are described in detail in [41]. All the vias in an inter-

connect tree are evaluated individually using the equations. The methodologies for

estimating the lifetime of an interconnect tree, using the vias’ tnucl, tgrow, or textru,

for Cu and Al technologies are as follows.

Derivation of tree’s time-to-failure (TTF): Cu technology

1. For each via in a tree

2. if (via-above)

3. TTF = tnucl

4. if (via-below)

5. TTF = min(tnucl + tgrow, textru)

6. Tree’s TTF = min(all via TTFs)

Derivation of tree’s time-to-failure (TTF): Al technology

1. For each via in a tree

2. TTF = min(tnucl + tgrow, textru)

3. Tree’s TTF = min(all via TTFs)
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It is important to note that extrusion has not been observed to be the primary

cause of failure for both circuit operating and accelerated testing conditions (j <

5MA/cm2). Therefore, (tnucl + tgrow) is calculated as the TTF of via-below type

nodes in Cu technology and for all nodes in Al technology.

2.6 Summary

We have described a new hierarchical approach for predicting the reliability of Cu-

based interconnects in circuit layouts. Based on the differences in electromigration

failure mechanisms from Al technology observed in experimental work, a (jL) product

filtering algorithm with a classification of separate via-above and via-below treatments

are applied to Cu interconnects. Such a via classification is not required in Al met-

allization technology. After the filtering of immortal trees, a default model is applied

to the remaining trees to compute a reliability figure, in terms of time-to-failure, for

individual units.
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Chapter 3

Electromigration Reliability

Mathematics

Time-to-failure of an interconnect tree needs to be modelled as a stochastic variable.

The operating stress conditions leading to failure and degradation of physical environ-

ment, such as grain structure and texture, are not deterministic. In this chapter basic

probability terms essential for understanding stochastic reliability analysis are first

defined. Electromigration failure times are found in many studies to approximate a

lognormal distribution. While models and experiments aid in predicting the lifetime

of a single unit, it is more important to quantify the impact on full-chip reliability as

a large number of failure units can exist in a circuit. Therefore, probability theories

in series and parallel systems are reviewed and brought into the perspective of IC

reliability analysis. Finally, a set of reliability metrics, based on the desired lifetime

of the chip, has been proposed and demonstrated for full-chip reliability analysis.

3.1 Basic Definitions

There are four basic probability functions that are the fundamental building blocks

of reliability mathematics. These are cumulative distribution function, reliability

function, probability density function, and failure rate.

If time-to-failure, TTF, of a failure unit is a continuous time random variable, the
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probability that the unit will fail within time t is called the Cumulative Distribution

Function (CDF) and denoted by F (t). Mathematically,

F (t) = P(TTF ≤ t) (3.1)

Conversely, the probability that the unit will survive beyond time t is called the

Reliability Function and denoted by R(t). Mathematically,

R(t) = 1 − F (t) (3.2)

It is important to understand the physical meaning of the CDF from the perspective of

reliability experiments. Suppose that N identical components are put into operation

at the same instant (t = 0) and operate for a time t. If the number of components

failing is Nf (t) at time t, the fraction of population failing is Nf (t)/N . This ratio is

regarded as an attribution of a single such component by defining it as the CDF, i.e.

F (t) =
Nf (t)

N
(3.3)

The above statement can be made with the number of surviving components beyond

a time t to define the Reliability Function as equation 3.2. Both R(t) and F (t) are

dimensionless quantities between 0 and 1.

For a continuous random variable the Probability Distribution Function (PDF) is

defined as

f(t) =
dF (t)

dt
(3.4)

A TTF distribution model can be any probability density function defined over the

range of time from t = 0 to t = ∞. According to equation 3.4, f(t)dt is the probability

that a component will fail between time t and t + dt; and CDF F (t) can be derived

by integrating f(t) until a time t. Mathematically,

F (t) =
∫ t

0

f(x)dx (3.5)
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and therefore,
∫

∞

0

f(t)dt = 1 (3.6)

In light of the above discussion, the CDF F (t) can be described in the following

three ways.

Definition 1 F (t) = the area under the PDF f(t) from 0 to t.

Definition 2 F (t) = the probability that a single randomly chosen new unit will fail

by time t.

Definition 3 F (t) = the proportion of the entire population that fails by time t.

The latter two definitions are particularly useful in interpreting the joint CDF in the

presence of multiple failure units as we will see in a later section.

While Cumulative Distribution Function, Probability Distribution Function, and

Reliability Function are the fundamental building blocks of reliability mathematics,

most literature makes the greatest use of the Failure Rate. The Failure Rate is defined

for non repairable populations as the (instantaneous) rate of failure for the survivors

to time t during the next instant of time [52]. It is a rate per unit of time similar

in meaning to reading a car speedometer at a particular instant and seeing 45 mph.

The next instant the Failure Rate may change and the units that have already failed

play no further role since only the survivors count.

The Failure Rate is denoted by λ(t) and calculated as

λ(t) =
f(t)

1 − F (t)
=

f(t)

R(t)
(3.7)

As seen from the expression, it is the conditional probability that a t hour-old unit

will fail in an additional time dt. λ(t) has a unit of [time]−1. For a well-designed

system, Failure Rate, in terms of number of units per hour, can be very small. As a

result, special units are commonly used. In the IC industry, Failure Rates are most

commonly expressed in FITs, which is an abbreviation for Failure unIT [53]. By

definition, FIT is parts per million per thousand hours, also referred to as PPM/K.
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Therefore,

1 FIT = 1 in 1, 000, 000 failures per 1000 hours

1 FIT = 1 in 1, 000, 000, 000 failures per hour

When λ(t) is expressed in failures per hour, the Failure Rate in terms of FIT can be

obtained by

FIT ≡ λ(t) × 109 (3.8)

The typical Failure Rate of an integrated circuit generally varies as a function of

time in the manner illustrated in figure 3-1 [52, 53, 54]. During the early life of an

F
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time

Early Failure Steady State Wear Out

Figure 3-1: Failure rate versus time for typical Integrated Circuits (bathtub curve).

IC the failure rate is high and decreasing over time. This period is often referred

to as “early failure” or “infant mortality”. The cause of early failures are generally

manufacturing defects. Rigorous tests (burn-in tests) are performed on ICs right after

manufacturing to weed-out early failures and produce high quality chips. During the

steady-state period, the Failure Rate is fairly low and constant over time as a result

of large number of unrelated causes. Eventually ICs enter the wearout period where
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the Failure Rate is monotonically increasing. The electromigration induced failure of

interconnects is an example of a wearout process.

3.2 Lifetime Distribution Model

Several probability distribution functions have been successfully used to characterize

lifetimes arising from a wide range of failure mechanisms. Following are some widely

used lifetime distribution models.

• Exponential

• Weibull

• Extreme Value

• Lognormal

The lifetime distribution model can be chosen based on the physics of failure mecha-

nism and empirical success in fitting actual failure data. However, choosing a model

by fit alone is not sufficient as many distributions are flexible enough to fit a wide

range of failure analysis data.

Electromigration failure times are found in many studies to approximate a log-

normal distribution. Moreover, lognormal distribution is appropriate for a failure

mechanism with the multiplicative degradation property. If at any instant in time a

degradation process undergoes a small increase in the total amount of degradation

that is proportional to the current total amount of degradation, then it is reasonable

to expect the time to failure (i.e. reaching a critical amount of degradation) to follow

a lognormal distribution [55].

Let x1, x2, · · ·xn be measurements of the amount of degradation for a particular

failure process taken at successive discrete instants of time as the process moves

towards failure. Assume the following relationships exist between the xs:

xi = (1 + ǫi)xi−1 (3.9)
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where ǫi are small, independent random perturbations to the system that move the

failure process along. Equation 3.9 is referred to as the multiplicative degradation in

a failure mechanism. The total amount of degradation at the n-th instant of time

can be expressed by

xn =

(

n
∏

i=1

(1 + ǫi)

)

x0 (3.10)

where x0 is initial state and the ǫi are small random perturbations. Taking the natural

logarithm of both sides,

ln xn =
n

∑

i=1

ln(1 + ǫi) + ln x0 =
n

∑

i=1

ǫi + ln x0 (3.11)

Using the Central Limit Theorem argument we can conclude that ln xn has a normal

distribution, and therefore, xn will follow a lognormal distribution for any n or at any

t in continuous time [52]. Diffusion or migration of atoms are expected to follow the

multiplicative degradation property which in turn justifies the wide use of lognormal

distribution for electromigration.

3.2.1 Lognormal Distribution

When the natural logarithm of a random variable X is normally distributed with

mean µ and variance σ2, X is said to have a lognormal distribution. The relation-

ship between normal and lognormal distribution allows us to analyze lognormally

distributed data with methods for normal distributions. A lognormal random vari-

able X can be transformed to a standard normal variable Z where Z = (ln X −µ)/σ.

The Cumulative Distribution Function of the lognormal distribution, F (t), is then

F (t) = Φ

(

ln t − µ

σ

)

(3.12)

where Φ is the Cumulative Distribution Function of the standard normal distribution

defined by

Φ(t) =
1

2π

∫ t

−∞

e−
u2

2 du (3.13)
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The Probability Density Function, f(t), of the lognormal distribution is given by

f(t) =
1

σt
√

2π
e
−

1
2σ2

(

ln
t

t50

)2

(3.14)

and

t50 = eµ (3.15)

where t50 is the median-time-to-failure (MTTF). Therefore, two parameters are re-

quired to fully define a lifetime model with lognormal distribution: the t50 or median-

time-to-failure (MTTF) and σ standard deviation (STD).

3.3 Reliability Mathematics in Series and Parallel

Systems

Multiple failure units exist in a circuit layout each with its own lifetime distribution.

To derive a single lifetime distribution applicable to the whole layout, system level

reliability mathematics is required.

A series system is shown in figure 3-2(a). Each block represents an individual

failure unit. The following three assumptions are needed to apply a series system

reliability model.

1. Each component operates or fails independently of every other one, at least

until the first component failure occurs.

2. The system fails when the first component failure occurs.

3. Each of the n (possibly different) components in the system has a known lifetime

distribution model Fi(t).

Assumption no. 2 above suggests the time-to-failure of the system, tf , is the minimum

value of the individual times-to-failure, ti.

tf = min(t1, t2, t3, · · ·) (3.16)
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When the series model assumption holds, system Reliability Function, Rs(t), Cumu-

lative Distribution Function, Fs(t), and Failure Rate, λs(t) are computed as follows.

Rs(t) =
n

∏

i=1

Ri(t) (3.17)

Fs(t) = 1 −
n

∏

i=1

(1 − Fi(t)) (3.18)

λs(t) =
n

∑

i=1

λi(t) (3.19)

The subscript i refers to the i-th component in a series system with total n compo-

nents. If Fs(t) is the same type of function as Fi(t), it is said to be self-reproducing.

The lognormal distribution is not self-reproducing, so that if Fi(t) are lognormal, then

Fs(t) cannot be lognormal, and vice versa [54]. The distribution of the series system

with lognormal unit distribution is often called the multi-lognormal distribution [56].

(a) (b) (c)

Figure 3-2: Schematic illustration of various system reliability models; (a) series
model; (b) parallel model; (c) complex model.

In contrast to a series model, for which the first component failure causes the

system to fail, is a parallel model for which all the components have to fail before

the system fails. If there are n components, any (n − 1) of them may be considered

redundant to the remaining one (even if the components are all different). Figure 3-

2(b) shows a diagram of a parallel system. The following three assumptions are

needed to apply parallel system reliability model.

1. Each component operates or fails independently of every other one.

2. The system operates as long as at least one component is still operating. System
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failure occurs at the time of the last component failure.

3. Each of the n (possibly different) components in the system has a known lifetime

distribution model Fi(t).

Assumption no. 2 above suggests the time-to-failure of the system, tf , is the maximum

value of the individual times-to-failure, ti.

tf = max(t1, t2, t3, · · ·) (3.20)

When the parallel model assumptions hold, the system Cumulative Distribution Func-

tion, Fp(t) is calculated as follows.

Fp(t) =
n

∏

i=1

Fi(t) (3.21)

with the subscript i referring to the i-th component. The system Reliability Function,

Rp(t), and Failure Rate, λp(t), can be evaluated using basic definitions, once we have

Fp(t).

Systems encountered in real life are not often as simple as just a series or parallel

model. Rather they can be a combination of series and parallel models an example

of which is shown in 3-2(c). Such systems are analyzed with a bottom up approach

applying series or parallel model on components and sub-components.

3.4 Reliability Metrics for Full-chip Analysis

Electromigration failure dictates the long range lifetime of a chip as the underlying

mechanism is a wear out process. While the lifetimes of individual failure units are

assumed to have lognormal probability distribution, it is important to derive a set

of full-chip stochastic metrics useful to designers. Moreover, different chips would

have different reliability goals vis-a-vis their applications. For example, the reliability

target for a chip inside a mobile phone, typically used for 3 to 4 years, might be very

different than that of an ear implant chip.
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We propose a set of full-chip metrics based on the desired lifetime of a chip [38].

Given a target lifetime Tl, reliability metrics useful to designers are: probability of no

failure, FIT along lifetime, maximum FIT, and time to cumulative % failure. Tak-

ing the time-to-failure estimated using the default electromigration model (described

in section 2.5) as median-time-to-failure, t50, and standard deviation, σ, from ex-

perimental results, we model the lifetimes of individual interconnect trees using the

lognormal distribution. For full chip reliability analysis, it is conservatively assumed

that all the failure units are in series, i.e. the chip will fail when any one of the units

fails. Lognormal distribution is not self-reproducing for a series system and the pro-

posed metrics do not require any probability distribution assumption on the full-chip

lifetime. The derivation procedures for the metrics are described next.

3.4.1 Probability of no failure

The probability of no failure until lifetime Tl is essentially the value of the full-chip

Reliability Function Rf (t) at t = Tl. As a series system model is assumed, the full-chip

Reliability Function can be calculated as

Rf (t) =
n

∏

i=1

Ri(t) (3.22)

where Ri(t) is the Reliability Function of the i-th component in a circuit layout with

n mortal interconnect trees. Ri(t) of each component is derived using

Ri(t) = 1 − Fi(t) (3.23)

where the lognormal Cumulative Distribution Function Fi(t) of i-th component is

calculated using equation 3.12.

3.4.2 Failure Rate along chip lifetime

According to the series system model, the full-chip Failure Rate, λf (t), is the summa-

tion of each mortal interconnect tree’s Failure Rate, λi(t). The Failure Rate of each
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unit is calculated using the definition,

λi(t) =
fi(t)

1 − Fi(t)
(3.24)

where fi(t) and Fi(t) are the lognormal Probability Density and Cumulative Distri-

bution Functions, respectively. The full-chip failure rate is converted into FIT and

plotted against the desired lifetime of the chip. The maximum FIT along the lifetime

is also reported.

3.4.3 Time to cumulative % failure

Unlike the Failure Rate and Reliability Function, time to cumulative % failure does

not have a closed form expression particularly for a series system with lognormal

probability units. According to the definition no. 3 of the Cumulative Distribution

Function, F (t) is the proportion of the entire population that fails by time t. There-

fore, once the full-chip Cumulative Distribution Function Ff (t) is derived, time to

any cumulative % failure can be read from the plot where the x-axis range of 0 to 1

represents 0% to 100% of the population and y-axis is the time-to-failure.

3.5 Reliability Metrics in Use

Let us assume that a circuit layout has two types of trees, type 1 and type 2, with

median-time-to-failures (t50) and standard deviations (σ) for lognormal distribution

as defined in table 3.1. Given that the target lifetime, Tl, of the chip is 30 years,

probability of no failure Ri(Tl) and maximum FIT of each type of trees are shown as

well in the table.

The median-times-to-failure of the two types of trees are significantly larger in

comparison to the target lifetime of 30 years. However, the impact of an individual

unit becomes obvious only when full-chip reliability is considered. Full-chip probabil-

ity of no failure within target lifetime, Rf (Tl), is the product of Ri(Tl) (equation 3.22).

Rf (Tl) can be low with multiple type 2 trees in a layout. Full-chip FIT is the sum-
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mation of individual unit’s FIT which is also a large value with few type 1 trees in a

layout.

Table 3.1: Tree types with lognormal lifetime distribution.

t50 (years) σ Ri(Tl) max FIT
Tree Type 1 145 1.59 0.8391 747.40
Tree Type 2 2000 1.6 0.9957 30.4075

The two techniques for improving full-chip reliability, from a mathematical per-

spective, are increasing t50 and reducing σ. While t50 of individual trees can be in-

creased with circuit design and layout techniques, such as reducing current flow and

increasing line width, σ is often dictated by process variations and micro-structure of

materials. Circuit level reliability enhancement techniques will be further discussed

in chapter 5. Assuming that the t50 of type 1 tree is improved to 300 years and σ of

type 2 tree is reduced to 0.80, the new Ri(Tl) and max FITs are shown in table 3.2.

Now let us consider full-chip reliability of a circuit layout with a total of seven mortal

Table 3.2: Improved tree types with lognormal lifetime distribution.

t50 (years) σ Ri(Tl) max FIT
Improved Tree Type 1 300 1.59 0.9262 361.224
Improved Tree Type 2 2000 0.8 1.00 0.0020

units with combinations of three type 1, four type 2 trees and three improved type 1,

four improved type 2 trees. The full-chip reliability metrics are reported in table 3.3

for each combination. The improvement in full-chip reliability is significant.

The above example demonstrates the significance of the proposed full-chip metrics

Table 3.3: Full-chip reliability metrics of circuit layout with various types of mortal
trees. Here target lifetime of the chip is 30 years.

Mortal inter-
connect tree
combination

Probability
of no failure

max FIT time to 50%
failure

time to 0.2%
failure

3 Type 1 + 4 Type 2 0.5807 2315.3 37.88 years 0.875 years
3 Improved Type 1 +
4 Improved Type 2

0.7946 1083.7 81.5 years 1.82 years
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in identifying the impact of individual unit based on desired lifetime of the chip. More-

over, a designer has the flexibility to choose any particular metric, such as probability

of no failure, max FIT, or time to any cumulative % failure, as the figure of merit

depending on the chip’s application. FIT is more widely used in the ITRS predictions

while time to 0.02% failure is the figure of merit for selected applications [57].

3.6 Summary

This chapter gives an introduction to probability mathematics used in reliability

analysis and describes the lognormal probability distribution widely accepted for an

electromigration lifetime model. While models and experiments aid in predicting

the lifetime of a single unit, it is more important to quantify the impact on full-

chip reliability as a large number of failure units can exist in a circuit. Therefore,

probability theories in series and parallel systems are reviewed. To understand the

impact of an individual failure unit on full-chip reliability, it is important to have a

set of reliability metrics. Electromigration failure essentially dictates the long range

life-time of a chip. We propose to conduct full-chip reliability analysis based on a

target lifetime, Tl. Given a target lifetime Tl, reliability metrics useful to designers are:

probability of survival, FIT along lifetime, maximum FIT, and time to cumulative

% failed. These metrics are calculated using the series system model. Lognormal

distribution is not self-reproducing for a series system and the proposed metrics do

not require any assumption on the system’s failure distribution. The proposed metrics

successfully identify the impact of individual unit on full-chip reliability. Moreover,

a designer has the flexibility to choose any particular metric as the figure of merit

depending on the chip’s application.
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Chapter 4

Electromigration Reliability

Comparison of Aluminum and

Copper Interconnects

Under similar test conditions, electromigration reliability of Al and Cu metallization

interconnect trees demonstrate significant differences because of the differences in in-

terconnect architectural schemes presented in section 1.2. The low critical stress for

void nucleation at the Cu and inter-level diffusion barrier, such as Si3N4, interface

leads to asymmetric failure characteristics depending on the via position in a line.

Unlike Al technology, a (jL) product filtering algorithm with a classification of sep-

arate via-above and via-below treatments is required for Cu interconnect trees. In

this chapter, electromigration reliabilities of Al and Cu dual-damascene interconnect

lines are compared using the best estimates of material parameters and the default

model. Differences in atomic diffusivity mechanisms in Al and Cu metallization tech-

nologies are also described. Lifetimes of a straight line interconnect are calculated

using operating conditions from the ITRS projections for future technology nodes.
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4.1 Immortality Condition Filters

The (jL) product thresholds for immortality conditions are already mentioned in

earlier chapters. Table 4.1 summarizes reported (jL) products for Al and Cu tech-

nologies [44, 45, 47, 11].

Table 4.1: Reported (jL) product thresholds for immortality conditions in Al and Cu
technologies.

Metallization
technology

Critical (jL) product threshold

Al interconnects (jL)sat = 4000 A/cm
Cu interconnects (jL)crit nuc = 1500 A/cm (jL)crit sat = 3700 A/cm

(via-above) (via-below)

As seen in the table, Al has the highest (jL) product threshold for immortal-

ity. The interconnect architecture allows top and bottom conducting shunt layers to

divert electron flow around voids in both M1 and M2 type lines. As a result, the

tolerable non-fatal void volume in Al M1 and M2 structures is higher than that in

Cu interconnects. The asymmetry in void volume for failure in Cu metallization

technology accounts for the different (jL) products for the via-above and via-below

types of interconnects. As discussed in section 2.2, void volume in via-above type

interconnect is smallest for an open circuit or resistance failure, and hence the lowest

(jL) product for immortality is observed.

The International Technology Roadmap for Semiconductors projects maximum

current density (jmax), among other interconnect related parameters, for each technol-

ogy generation in the future. Using the jmax from the 2003 edition, we computed the

immortality length (length below which an interconnect tree is immortal) in various

technology generations as illustrated in table 4.2. As technology scaling progresses,

the immortality length is consistently decreasing for both Cu and Al technologies.

This suggests more and more interconnects trees will be prone to electromigration fail-

ure when stressed at their maximum current densities. Al metallization technology

has the longest immortality lengths due to the highest (jL) product threshold.
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Table 4.2: Immortality length in various technology generations (ITRS 2003) with Al
and Cu metallizations.

jmax Immortality Length (um)
Technology Node MA/cm2 Cu via-above Cu via-below Al

90nm 0.5 30.0 74.0 80.0
65nm 1.0 15.0 37.0 40.0
45nm 3.0 5.0 12.3 13.3
32nm 4.3 3.49 8.60 9.30
22nm 5.8 2.59 6.38 6.90

4.2 Diffusivity Mechanisms and Models

The electromigration-induced diffusion of metallic atoms in an interconnect can oc-

cur through different pathways. Due to the differences in architecture schemes and

material properties, diffusion pathways and values are significantly different for Al

and Cu metallization technologies.

4.2.1 Diffusion in Aluminum Interconnects

The dominant diffusion paths in Al interconnects can be represented by equation 4.1

following the convention presented by Hu et al. [58]

(DZ∗)eff = DSZ∗

SδS

(

2

h

)

+ DGBZ∗

GB

δGB

d

(

1 − d

w

)

(4.1)

Here, D is the diffusivity, which bears an Arrhenius or exponential form, Z∗ is the

effective charge, δ is the diffusion interface width, and d, h, and w, are the grain size,

line thickness, and line width, respectively. Subscript S denotes the Al/refractory

metal liner interfaces at the top and bottom of a line. Subscript GB represents

grain boundary inside a line. The other diffusion pathways, grain bulk and side wall

interfaces, are assumed to have negligible contributions.

When line width of an Al interconnect is larger than the Al grain size, for example

0.5um, multiple grain boundaries exist in the line as illustrated with a cross-section

view in figure 4-1(a). Then the dominant diffusion pathways come from the grain

boundaries. The microstructure in a wide line, where one of the grain boundary
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planes lie in the direction of the current flow, is referred to as polygranular. Such

lines are often termed Al polygranular type. The diffusivity, Dpoly, in Al polygranular

type lines can be expressed as

Dpoly = Do,GB × e−
EaGB

kT × δGB

d

(

1 − d

w

)

(4.2)

where Do,GB is the diffusion coefficient of polygranular type lines, EaGB is the acti-

vation energy, k is the Boltzmann’s constant, and T is the temperature.

Figure 4-1: Cross-section of an Al interconnect with schematic illustration of diffusion
pathways; (a) wide lines are referred to as polygranular type lines where dominant
diffusion paths are grain boundaries (δGB); (b) narrow lines are referred to bamboo
type lines where dominant diffusion pathways are top and bottom interfaces (δS).

Table 4.3 lists the parameter values used in equation 4.2 for calculating diffusivity

in Al polygranular type lines [59].

Table 4.3: Material parameters used for calculating diffusivity of Al polygranular type
lines.

Name Symbol Value
Diffusion coefficient Do,GB 1.9 × 10−5 m2/s
Activation energy EaGB 0.8 eV
Grain boundary thickness δGB 0.5 nm
Grain size d 0.5 um

As the line width decreases, the microstructure of the line changes from poly-

granular to bamboo type where grain boundary planes are normal to the direction of

current flow. In bamboo type Al interconnects, the dominating diffusion pathways

are the top and bottom interfaces between Al and Ti-based shunt layers as illustrated
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in figure 4-1(b). The diffusivity, Dbam, in Al bamboo type lines can be expressed as

Dbam = Do,S × e−
EaS
kT × 2δS

h
(4.3)

where Do,S is the diffusion coefficient of bamboo type lines, EaS is the activation

energy, k is the Boltzmann’s constant, T is the temperature, δS is the interface thick-

ness, and h is the line height. Diffusivity experiments were carried out by Srikar et

al. on 0.4 um thick lines, i.e. href = h = 0.4um [60]. Reported material parameters

are listed in table 4.4.

Table 4.4: Material parameters used for calculating diffusivity of Al bamboo type lines.

Name Symbol Value
Diffusion coefficient Do,S 1.49 × 10−4 m2/s
Activation energy EaS 0.9 eV

Interface thickness-height ratio 2δS

href
4 × 10−5

4.2.2 Diffusion in Copper Interconnects

In Cu interconnects, the Cu/Si3N4 interface is the dominant diffusion pathway [40]

as illustrated in figure 4-2.

Figure 4-2: Cross-section of a Cu interconnect with schematic illustration of diffusion
pathway (δS).

75



The Arrhenius model to calculate diffusivity in Cu is

D = Do,S × e−
Ea
kT × δS

h
(4.4)

It is important to note that atomic diffusivity has been modelled as independent of Cu

line width similar to that of Al bamboo type lines. In Cu interconnects, Cu diffusion

along the Cu/Si3N4 interface dominates even for polygranular microstructure [42].

The kinetic parameters associated with the effective diffusivity has been deter-

mined by Wei et al. through conventional package-level electromigration stress ex-

periments using fully-processed dual-damascene Cu interconnects (both via-above

and via-below structures) under constant current densities [61]. A significant fraction

of the test population exhibited steady resistance increase over time prior to failure.

This gradual resistance increase results from void growth and the rate of resistance

increase has been correlated to the drift velocity for electromigration [10]. Among

the results, the activation energy Ea for Cu electromigration has been determined to

be 0.80± 0.06eV , which is in very close agreement with the value found from lifetime

analysis for the same structures. With test structure thickness of href = h = 0.24um,

Do,S
δS

href
of equation 4.4 has been determined to be 1.3229 × 10−9m2/s. The mate-

rial parameters used for calculating diffusivity in Cu metallization are summarized

in table 4.5.

Table 4.5: Material parameters used for calculating diffusivity in Cu metallization
technology.

Name Symbol Value

Diffusion factor Do,S

(

δS

href

)

1.3229 × 10−9 m2/s

Activation energy Ea 0.8 eV

4.2.3 Diffusivity Comparison

Electromigration is the electron-flow induced atomic diffusion, and therefore, com-

paring the diffusivity of Al and Cu technologies would give us insight on relative

electromigration reliability. Al metallization has two regions for consideration, bam-
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boo and polygranular. For line width less than the grain size (0.5um), we observe

bamboo region’s diffusivity to be independent of line width. For line width greater

than the grain size, Al polygranular region’s diffusivity is a function of line width

and is higher than that of bamboo region. Although there is discontinuity in slope

at the point of conversion (line width=0.5um) from bamboo to polygranular region,

this composite model is a continuous step model in which polygranular diffusivity is

higher than that of bamboo region. On the other hand, atomic diffusivity in Cu is

independent of line width and is smaller than Al polygranular diffusivity. We have

compared atomic diffusivity for Al and Cu metallization technologies taking a straight

interconnect line in TSMC 0.18um technology with height h = 0.51um. Figure 4-3

shows diffusivity versus interconnect line width for Al and Cu technologies at the

maximum interconnect temperature T = 105oC as reported in the ITRS.
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Figure 4-3: A composite model of atomic diffusivity versus interconnect line width.

Figure 4-4 shows a plot of diffusivity versus temperature for different metallization

technologies. The interconnect line width is assumed to be 1.0um, twice the grain

size, while calculating Al polygranular diffusivity. As seen in the plot, Al polygranular

type line has the highest diffusivity. Comparing Al and Cu diffusivities, for a given

line width, Cu diffusivity is always about 1/15 of that for polygranular Al, due to the
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similarity in activation energies. Al bamboo diffusivity is lower than that of Cu only

for temperatures lower than 302oC, because the activation energy in Cu diffusivity is

lower than that in Al bamboo diffusivity.
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Figure 4-4: Atomic diffusivity of Al and Cu metallization technologies at different
temperatures.

During the introduction of Cu metallization, Cu interconnects were assumed to be

greater electromigration resistive [62]. Lower atomic diffusivity in Cu might have led

to such perception. However, figure 4-4 shows that Cu diffusivity is only significantly

lower than that of Al polygranular type lines; the difference is not significant when

compared to Al bamboo type lines. Therefore, a detailed analysis of lifetimes in

different technologies is required to quantify relative electromigration reliability.

4.3 Lifetime Comparison of Straight Line Inter-

connects

A default model that is applicable to both Cu and Al metallization to predict electro-

migration lifetime has been discussed in section 2.5. The model estimates the lifetime
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of a via considering current densities and diffusivity of connected segments. For a

straight line via-to-via interconnect, the equations for time-to-failure due to void nu-

cleation, extrusion, and time to void growth to length Lv at any of the two vias are

stated below.

tnucl =





σnuclΩ

ρeZ∗

√

π

4

√

kT

BΩ

√
D

Dj





2

(4.5)

textru =





σextruΩ

ρeZ∗

√

π

4

√

kT

BΩ

√
D

Dj





2

(4.6)

tgrow =
LvkT

ρeZ∗

1

Dj
(4.7)

where D is the atomic diffusivity in the straight line and j is the current density.

Current density j is fixed at 0.5 MA/cm2 for this analysis. Diffusivity, D, values for

Cu, Al polygranular, and Al bamboo types are calculated as described in section 4.2.3.

Table 4.6 lists the other parameter values used to estimate the time to void nucleation

and time to void growth in Cu and Al metallization technologies.

Table 4.6: Technology-specific parameter description and values for lifetime calcula-
tion.

Name Symbol Cu Al
Stress for void nucleation σnucl 40 MPa 500 MPa
Effective charge number Z∗ 1 4.3
Bulk modulus B 28 GPa 50 GPa
Atomic volume Ω 1.18 × 10−29 m−3 1.66 × 10−29 m−3

Electrical resistivity ρ 1.95 Ωµ − cm 2.67 Ωµ − cm
Void length Lv 0.2 um 0.2 um

Straight line interconnect’s lifetimes associated with Cu via-above, Cu via-below,

Al polygranular, and Al bamboo types are calculated from tnucl, tgrow, and textru using

the algorithms in 2.5. Figure 4-5 plots the lifetimes versus temperature for each type

of interconnects.

An Al polygranular type line (using width=1um) has the lowest lifetime. Via-

above type Cu interconnect has better lifetime than Al polygranular. Via-below

type Cu and Al bamboo type lines compete for the best lifetime depending on the
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Figure 4-5: Interconnect lifetimes of various types of lines in Cu and Al metallization
technologies.
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Figure 4-6: Cross-over temperature, defined as the temperature after which a via-
below type Cu line has better lifetime than an Al bamboo line, as a function of current
density.
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temperature. An Al bamboo type line has better lifetime than via-below type Cu

interconnect for temperatures less than 161oC. Defining this particular temperature

point to be the cross-over temperature, Tc, after which via-below Cu has the best

lifetime of all, we observe a decrease in Tc with increasing current density as illustrated

in figure 4-6.

We have defined a typical operating condition of interconnects to be current den-

sities below 0.5 MA/cm2 (j ≤ 0.5MA/cm2) and temperature range below 105oC

(T ≤ 105oC). Figure 4-7 shows the lifetimes of various types of interconnect lines op-

erating at the above condition. Al bamboo type lines have the best lifetime followed

by Cu via-below, Cu via-above, and Al polygranular type lines.
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Figure 4-7: Interconnect lifetimes of various types of lines in Cu and Al metallization
technologies in typical operating condition (j ≤ 0.5MA/cm2 and T ≤ 105oC).

4.4 Reliability Prediction Using the ITRS

The characteristics of cross-over temperature can be applied to assess interconnect

reliability direction in future technology generations. As the maximum current den-

sity increases in successive technology generations, according to figure 4-6, decreasing
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Table 4.7: Worst case interconnect lifetimes of various types of Cu and Al lines.
Technology generation data is from the ITRS 2003 edition [2].

Tech. jmax max lifetime of Cu (years) lifetime of Al (years)
Node MA/cm2 T (oC) via-above via-below bamboo polygran.
90nm 0.5 105 16.19 137.58 223.43 5.12
65nm 1.0 105 4.05 64.74 70.6 1.62
45nm 3.0 105 0.45 20.68 14.40 0.33
32nm 4.3 105 0.22 14.33 9.08 0.21
22nm 5.8 105 0.12 10.58 6.31 0.14

cross-over temperature indicates better lifetime for Cu via-below type lines. Table 4.7

lists the lifetimes of various types of interconnect lines in Al and Cu metallizations

using reported maximum current density and operating temperature values from the

ITRS 2003 edition [2]. Al polygranular type or wide Al lines have the worst life-

times in almost all technology generations. In the 90 and 65 technology nodes, Al

bamboo type or narrow Al lines have the best lifetimes. Via-below type Cu line

eventually emerges as the longest lifetime interconnect as current density increases in

later technology nodes. Table 4.7 also points out that Cu interconnects, particularly

with dual-damascene process with Si3N4 capping layer, are as susceptible to elec-

tromigration failure as Al interconnects considering the small differences in relative

lifetimes.

4.5 Summary

The differences in interconnect architecture between Al and Cu metallization tech-

nologies lead to different electromigration failure mechanisms. Unlike Al technology,

a (jL) product filtering algorithm with a classification of separate via-above and via-

below treatments is required for Cu interconnect trees. Different diffusivity mecha-

nisms also lead to the differences in electromigration lifetimes. Al lines wider than

the grain size (d = 0.5um) have polygranular microstructure with the highest atomic

diffusivity. On the other hand, narrow Al lines with bamboo type microstructure have

lower diffusivity comparable to that of Cu metallization. Diffusivity in Cu technology
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is dominant at the Cu/Si3N4 interface and is modelled as independent of line width.

Using the best estimates of material parameters and the default model, electro-

migration lifetimes of a via-to-via straight line interconnect are compared for four

configurations: Cu via-above, Cu via-below, Al bamboo, and Al polygranular. In

typical operating condition (j ≤ 0.5MA/cm2 and T ≤ 105oC), an Al bamboo type

line has the longest time-to-failure followed by Cu via-below, Cu via-above, and Al

polygranular type line. As the maximum current density in interconnect lines in-

creases in future technology generations according to the ITRS projections, a Cu

via-below type line emerges as the longest lifetime interconnect. However, the small

difference in relative lifetimes of Cu and Al technologies suggest that Cu metallization

is as susceptible to electromigration failure as Al. Moreover, the significant differ-

ences in failure characteristics outdates traditional techniques and tools for reliability

analysis with Al interconnects. A new sophisticated Reliability CAD tool is essential

for circuit level reliability analysis of Cu interconnects.
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Chapter 5

SysRel: Circuit-Level Reliability

CAD Tool

SysRel is a new reliability CAD tool for electromigration reliability analysis and com-

parison with Al and Cu metallization technologies in 2D and 3D circuit layouts.

SysRel utilizes the interconnect tree based hierarchical reliability analysis. The soft-

ware design approach in SysRel is detailed in this chapter. The chapter also contains

references to source code files wherever appropriate. The earlier sections present gen-

eral algorithms and data-structures for layout parsing and extracting interconnect

trees. Then the graphical user interface and reliability analysis flow in SysRel are

discussed. SysRel utilizes a set of joint stochastic reliability metrics based on the

desired lifetime of a chip and combines reliability figures from individual fundamen-

tal reliability units. Simulation results with a 32-bit comparator circuit layout are

discussed to demonstrate the functionality and significance of the tool.

5.1 Software Architecture

SysRel is written in Java for the Java 2 platform. The Java platform consists of three

components; Java Language, Java Virtual Machine (JVM), and Java Application

Program Interface (API). Java Language defines the semantics and syntax of writing

a program. JVM executes Java byte codes produced by compiling a Java program.
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The Java API is a set of predefined classes and methods1 provided with the Java

Development Environment. The Java API includes everything from data-structure

classes, such as Vector, ArrayList, and Hashtable, to Graphical User Interface (GUI)

development classes. SysRel makes extensive use of the APIs from Java Development

Kit version 1.3.1 [63]. SysRel consists of 32 classes which can be grouped into the

following six categories.

• Main application classes

• Graphical interface classes

• File parser classes

• Corner-stitched data-structure classes

• Layout and tree representation classes

• Core reliability engine

Appendix A defines each category listed above and briefly describes the major

classes in them. The code length of SysRel is approximately 9000 lines.

5.2 Graphical User Interface

SysRel is a stand-alone application with its own desktop. The GUI is developed

using the Java Swing2 package. Figure 5-1 shows the graphical interface with a

layout opened in the Layout Window. Menu items invoke selected operations in

SysRel and reports outcome in the Output Window. Table 5.1 lists the menu bars

and corresponding operations through available menu items.

1Functions defined inside classes for specific operations, such as construction of the class and
data-manipulation.

2Swing is the new package in Java 2 with GUI control classes such as window frames, dialog
boxes, menu items, check boxes, and buttons.
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Figure 5-1: Screen shot of SysRel’s desktop pane. Menu items and options are de-
scribed in table 5.1. At the top right corner are selection tabs to enable thermal
analysis and select either Cu or Al metallization. Inside the desktop pane, there are
Output Window, Layout Window, Plot Window, and Tree Rank Table.
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Table 5.1: Menu bars and corresponding operations in SysRel.

Menu Menu Items
File Open Magic layout file, Read EM parameters

(.emparam) file, Exit
Thermo-file Read Hierarchical Magic file, Read Power Distri-

bution (.cpower) file, Write Power Density Ma-
trix (currentpden.m) file, Read Temperature Pro-
file Matrix (tprofile.dat) file

Electromigration List EM parameters, Update selected EM param-
eters, Extract Failure Units, Apply JmaxL Filter,
Compute local jL, Apply jlocalL filter, Apply De-
fault Model

Non-blocking Via
Analysis

List via types, Assign non-blocking vias, Merge
trees

Reliability Budget Read Cell Reliability Characterization, Full Chip
Metric, Plot % failure, Rank Failure Units

Help Documentation, About

5.3 Circuit Layout Parsing

SysRel reads layout files in Magic format, referred to as .mag files, created with Magic

and 3D-Magic. A .mag file provides an ASCII file representation of a circuit layout

with coordinates of rectangular tiles representing mask layers [37]. A set of coordi-

nates has a header tag << layer >>, where “layer” defines the mask type of following

rectangles. Table 5.2 shows a sample .mag file. While parsing such a file, SysRel de-

composes rectangular elements into mask layers and their positions (source code:

ParseMAGFile.java). The mask information is stored in a data-structure known as

corner-stitching introduced in Magic [64]. According to the corner-stitching data-

structure, multiple planes, such as active, oxide, poly, and metal1, are superimposed

on each other to represent a layout. Each plane contains different types of non-

overlapping rectangular tiles with stitches at the four corners. Figure 5-2 illustrates

a representation of three corner-stitched solid tiles in a single plane.

The Java source files defining the corner-stitching data-structure in SysRel are

Plane.java, PlaneType.java, Tile.java, and TileType.java. Layout.java implements

the class that puts together multiple Tile and Plane objects to provide an internal
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Table 5.2: A sample .mag layout file.
magic
tech scmos
timestamp 962374816
<< polysilicon >>
rect -21 -4 -12 -1
rect -8 -4 10 -1
<< metal1 >>
rect -27 35 -21 36
rect 8 35 20 50
<< polycontact >>
rect -12 -4 -8 0
<< labels >>
rlabel polysilicon -1 -3 -1 -3 1 opa
rlabel metal1 -10 2 -10 2 1 m1th
<< end >>

Figure 5-2: Corner-stitched representation of a single plane with multiple tiles in a
Magic layout. The gray areas are solid tiles that are corner-stitched to neighboring
space tiles.
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representation of a layout. While plotting the layout on a window, the Planes are

accessed in a serial fashion, and the corner-stitched Tiles in each Plane are painted

using an appropriate color (source code: LayoutPanel.java).

A .mag file only provides the coordinates of mask layers in a layout. Therefore,

further information on the connectivity and type of mask layers is retrieved from

the technology file, scmos3D.tech27. While parsing a .mag file, the tiles that also

represent contacts and inter-wafer vias are specially tagged. A contact tile has mul-

tiple representations, one at every plane that it connects. For example, m2contact

connects metal interconnects from metal1 and metal2 planes, and has one tile rep-

resentation at the metal1 plane and another at the metal2 plane. The Java source

file, TechDB.java, parses the technology file to retrieve such crucial connectivity in-

formation for contacts. It also identifies the inter-wafer vias specific to 3D integration

technology.

5.4 Interconnect Tree Extraction

The corner-stitching data-structure enables several key operations of a CAD layout

tool in a very efficient manner. Two critical operations are locating a tile in a given

area and searching for its neighboring tiles in a plane. Both operations are at the

heart of extracting interconnect geometries from a layout. Given a particular tile, all

adjacent tiles are retrieved from the corner-stitches implemented as an ArrayList3.

The adjacent tiles are then stored in a Vector4 (source code: ITree.java) [63]. Using a

depth-first search algorithm, the top left-most tile is identified, and the whole tree is

built via a depth-first walk on adjacent tiles [46]. Figure 5-3 illustrates an interconnect

tree extraction from corner-stitched representation of tiles.

Setting the top left-most tile as a starting point facilitates the computation of

several useful interconnect parameters including via-to-via paths in an interconnect

tree. SysRel calculates the length of all possible via-to-via paths using the coordinates

3The ArrayList class in Java implements a resizable array.
4The Vector class is similar to ArrayList except that this implementation is synchronized in case

of simultaneous element accesses.
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Figure 5-3: Extraction of an interconnect tree from corner-stitched representation of
tiles. Tiles marked with a cross are contact tiles and are the starting and terminating
points for this particular tree.

of rectangular tiles. Moreover, the parameters are calculated at the same time when a

tree is being built with the depth-first walk algorithm. An ITree object, the internal

representation of an interconnect tree, stores the parameters in a path-table for future

uses. For the interconnect tree shown in figure 5-3, the path-table contains data for

two paths, starting at the top left-most contact tile and ending at the two terminating

contact tiles.

5.5 Reliability Analysis Flow

The reliability analysis flow diagram in SysRel is based on the hierarchical reliabil-

ity analysis approach discussed in sections 2.3 and 2.4 for Cu and Al metallizations,

respectively. Figure 5-4 shows the flow diagram for reliability analysis in SysRel. In

addition to a layout file in Magic format, SysRel requires input for process parameters

and critical stress numbers for use in the default model. Current estimates in inter-

connects trees are based on simulation results from commercial power analysis tools,

such as Spice or PowerMill. While Vdd and Gnd lines are stressed at DC currents

computed from total average power dissipation of the circuit, current flow in signal

networks are assigned from average cell power dissipations. This gives conservative

current estimates in the interconnect trees. Detail current flow information including

current directions in different segments of an interconnect tree is not available from
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any power analysis tool, and more importantly, associated computation is often not

feasible in a large circuit layout. The electromigration parameters, .emparam, file de-

fines necessary parameters for immortality filtering thresholds, metallization specific

parameters in the default model, and power dissipation in the circuit.
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Figure 5-4: Reliability analysis flow diagram in SysRel. The steps boxed in dashed
rectangles apply only to reliability analysis in Cu metallization technology.

SysRel is a GUI based interactive tool requiring user input before initiating a

process in the flow diagram. A technology selection tab allows a user to choose ei-

ther Cu or Al metallization technology for current analysis. A user can select all

or any particular metallization layer in a layout for tree extraction. Extracted trees

are high-lighted along a display of statistics. While a single (jL) product threshold

is used for the immortality condition in Al metallization technology, via-based im-

mortality filtering with separate treatments for via-above and via-below types in Cu

metallization requires extra steps as marked in the flow diagram. After each filter-

ing stages, the immortal trees are highlighted in green and discarded from further
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analysis. The maximum current density, jmax is read from the emparam file. Local

current density jlocal is conservatively calculated using current flow estimation from

average cell power dissipations. As mentioned earlier, segment-based current density

values and directions5 are unavailable. The worse case reliability occurs when cur-

rents from all connected segments are flowing into a via-above junction and flowing

out of a via-below junction in Cu metallization, and either flowing into or out of a

W -filled via junction in Al metallization [10]. We conservatively assume the worst

case current directions during the (jL)eff filtering stage and time-to-failure calcula-

tions. Time-to-failures (t50) of mortal trees are computed using the default model

discussed in section 2.5. Finally, times-to-failure from different trees are combined

using a joint stochastic process of series elements of lognormal lifetime distribution

with standard deviation (σ) as reported in experimental work. Given a target lifetime

of the chip, the full-chip reliability metrics for output are probability of no failure,

maximum failure rate in FIT, and time to any cumulative % failure.

As illustrated in figure 5-4, there exists a link to MIT-Emsim or Cu-Emsim which

is in parallel to full-chip reliability analysis. MIT-Emsim and Cu-Emsim are mi-

crostructure level electromigration simulators currently under development [50, 51].

Microstructure level simulations involve detail numerical analysis. Although mi-

crostructure level simulations are computation intensive, a more accurate estimate

of stress evolution with various current directions in interconnect trees and electro-

migration lifetimes are derived using such simulations. Only the least reliable trees,

as indicated by SysRel, would be passed to MIT-Emsim or Cu-Emsim.

5.6 Simulation with 32-bit Comparator Layout

A 32-bit comparator circuit layout is used to verify functionality and accuracy of the

reliability flow in SysRel. The 32-bit unsigned integer comparator is designed using

a design flow from behavioral description with VHDL to physical layout. The tools

used in the flow are Design Analyzer (analysis and synthesis tool), Silicon Ensemble

5All signal networks, except for Vdd, Gnd, and clock, carry bidirectional currents.
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(place and route tool), and Magic (layout editor). An IIT standard cell library for

TSMC 0.18um process is used for synthesis [65]. Total dynamic power reported in

Design Analyzer using the library cell characterization data is 26.6mW at V dd = 5V .

It is also possible to use a circuit simulator, such as HSpice, for estimating power

dissipation. For this reliability analysis, we used the power dissipation as calculated by

Design Analyzer. The layout has up to five layers of metallization; metal1 and metal2

for intra-cell routing, and all metal layers for inter-cell routing. Power delivery lines

are in metal1 and metal2 in a ring format (figure 5-5). The layout size is approximately
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Figure 5-5: The 32-bit comparator circuit layout analysis in SysRel. Eight mortal
trees come from the power delivery rings as marked in the layout.

164um × 164um. According to the ITRS, a jmax value of 0.96 MA/cm2 and worst

case interconnect temperature of 105oC are used. While the signal lines in the design

are stressed with bidirectional currents, the Vdd and Gnd lines have the worst case

unidirectional current density of 0.42 MA/cm2.
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5.6.1 Copper Metallization Technology

Table 5.3 shows the results of hierarchical reliability analysis with Cu metallization

technology in the 32-bit comparator circuit layout. After applying the first immortal-

ity filtering with via-based jmaxL thresholds, 1023 out of 1143 trees are found to be

immortal. The second filtering step using the tree’s jlocalL products finds 112 more

trees to be immortal. Figure 5-5 shows the layout after the final simulation step

when the mortal trees are marked. According to the analysis, only eight interconnect

trees in Vdd and Gnd lines in the power delivery rings are prone to electromigration

failure. Four metal1 trees are via-above type with lifetimes of 23.2 years. The other

four trees are metal2 via-below type lines with lifetimes of 168.7 years. The resulting

full-chip reliability metrics are shown in step 5 of table 5.3.

Table 5.3: SysRel simulation results of hierarchical reliability analysis with Cu met-
allization in the 32-bit comparator circuit layout.

Step 1 Layout Extraction (total # of interconnect trees=1143)
Metal Plane # of interconnects

metal1 580
metal2 438
metal3 102
metal4 20
metal5 3

Step 2 Via-based (jmaxL) filter
Number of immortal
trees identified

1023

Step 3 Via-based (jlocalL) filter
Number of immortal trees identified 112

Step 4 Default Model (with σnucl = 40MPa) on 8 mortal trees
t50 of 4 mortal tees in metal1 (via-above) 23.2 years
t50 of 4 mortal tees in metal2 (via-below) 168.7 years

Step 5 Full chip stochastic analysis (σ = 0.81, lognormal)
Target chip lifetime 10 years
Probability of no failure 0.524
max FIT 15.4k 10th year
t50 for full chip 10.35 years
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5.6.2 Aluminum Metallization Technology

Table 5.4 shows the results of hierarchical reliability analysis with Al metallization

technology in the 32-bit comparator circuit layout. After applying the first immortal-

ity filtering with a single (jL) product threshold, 1093 out of 1143 trees are identified

as immortal. The second filtering step using the tree’s jlocalL products finds 42 more

trees to be immortal. The default model is applied to the same eight mortal trees

in power delivery lines shown in figure 5-5. As no via-classification is required in

Al technology, all the trees have lifetimes of 4.39 years. The lifetimes are very low

as the 2.5um wide lines, wider than an Al grain size of 0.5um, have Al polygranu-

lar microstructure. The full-chip metrics are significantly lower than those from Cu

metallization analysis.

Table 5.4: SysRel simulation results of hierarchical reliability analysis with Al metal-
lization in the 32-bit comparator circuit layout.

Step 1 Layout Extraction (total # of interconnect trees=1143)
Step 2 (jmaxL) filter

Number of immortal
trees identified

1093

Step 3 (jlocalL) filter
Number of immortal trees identified 42

Step 4 Default Model (with σnucl = 500MPa) on 8 mortal trees
t50 of mortal tees 4.39 years

Step 5 Full chip stochastic analysis (σ = 0.81, lognormal)
Target chip lifetime 10 years
Probability of no failure 3.309 × 10−7

max FIT 205k
t50 for full chip 1.43 years

5.7 Implications of SysRel

Reliability simulations with the 32-bit comparator layout clearly demonstrate the

basic functionality of SysRel. More importantly, SysRel identifies electromigration

critical (mortal) trees and allows a designer to focus on those trees while ignoring

numerous other immortal trees. “What-if” analysis is possible on selected mortal
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trees to observe the impact on full-chip reliability. In reliability simulation with Cu

metallization in the comparator circuit layout, the worst lifetimes of 23.2 years in

four mortal trees are due to via-above type Cu line in metal1. Increasing only those

line widths from 2.5um to 5um and running the reliability simulation again, SysRel

predicts lifetime improvement in the worst case lines from 23.2 years to 92.9 years

and the new full-chip reliability metrics are t50 = 37.5 years, FIT 563, and probability

of survival=0.98.

In reliability simulation with Al metallization, all eight mortal trees are Al poly-

granular type lines due to their 2.5um widths. As discussed in section 4.3, narrow

Al lines (width ≤ grain size=0.5um) have bamboo type microstructure and higher

electromigration lifetimes due to lower diffusivity. Using a track layout method with

narrow (0.5um) metal lines, as illustrated in figure 5-6, we can convert the mortal

lines in the power supply rings from polygranular type to bamboo type. Using such a

technique, the lifetime of each metal line can be improved to 306.82 years and the new

full-chip reliability metrics are t50 = 99.8 years, FIT 5.9, probability of survival= 0.99.

2.5um

0.5um

Polygranular Al

Bamboo Al

3.7um

Figure 5-6: Layout technique for Al polygranular to bamboo type conversion in an
interconnect line. Let current through the interconnect line is I A. Then current
densities, jpolygranular = I/(2.5 × h), jbamboo = (I/5)/((2.5/5) × h) = I/(2.5 × h).
Current density remains the same in this conversion. We can treat the bamboo Al
track line as a single tree.

5.8 Three-Dimensional IC Analysis in SysRel

A 3D 32-bit comparator circuit is laid out from the 2D version using data-path folding

technique. The 2D circuit is first synthesized with four rows of cells. Then the data-

path is folded to create two wafers in the 3D circuit such that each wafer contains
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two rows. 3D-Magic is used to place inter-wafer vias and power delivery rings in each

wafer. The layout sizes corresponding to top and bottom wafers are 141.6um×75.5um

and 141.6um × 79.7um. Figure 5-7 shows the layout view in SysRel.

Table 5.5 lists the reliability simulation results of the 3D 32-bit comparator layout

with Cu metallization technology. Out of 1115 trees from two wafers, a total of eight

trees, four from each wafer, are mortal as marked in figure 5-7. The mortal trees

are in metal1 in the power delivery rings. The default model predicts lifetimes of

each tree to be 92.97 years. The full-chip reliability metrics as shown in the table are

better than those of the 2D layout. As total power dissipation is distributed in two

wafers in the 3D circuit, current densities in the mortal lines are approximately scaled

by half. In 2D layout, metal2 lines in the power delivery rings were mortal. However,

due to data-path folding, those metal2 lines in the 3D circuit layout have lower Lmax

and get filtered out. Thus the 3D circuit demonstrates reliability improvement due

to wire length reduction and power distribution in two wafers.

Table 5.5: SysRel simulation results of hierarchical reliability analysis with Cu met-
allization in the 3D 32-bit comparator circuit layout.

Step 1-3 Layout Extraction (total # of interconnect trees=1115,
# of mortal trees=8)

Step 4 Default Model (with σnucl = 40MPa) on 8 mortal trees
t50 of mortal trees 92.97 years

Step 5 Full chip stochastic analysis (σ = 0.81, lognormal)
Target chip lifetime 10 years
Probability of no failure 0.976
max FIT 1020
t50 for full chip 30 years

During the reliability simulation of the 3D circuit, a worst case interconnect tem-

perature of 105oC, as reported by the ITRS, was used for both wafers. Temperature

in 3D circuits are expected to be higher than that in 2D circuits due to higher power

density in a smaller foot-print [30]. Electromigration lifetime is exponentially depen-

dent on temperature. Therefore, reliability improvement illustrated in this analysis is

not necessarily conclusive and is highly dependent on thermal management techniques

used in the 3D circuit. In addition, reliability of inter-wafer vias in the presence of
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Figure 5-7: The 3D 32-bit comparator circuit layout for SysRel reliability simulation.
Mortal trees in each wafer are marked in the layout.
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bonded interface are under active study. No lifetime models for inter-wafer vias are

yet available for application to SysRel.

5.9 Summary

A new reliability CAD tool, SysRel, has been developed for circuit-level electromi-

gration analysis with either Cu or Al metallization technology in conventional and

3D circuits. SysRel is written on the Java 2 platform. SysRel is an interactive

graphical user interface based RCAD tool that treats circuit layouts from Magic and

3D-Magic. The basic reliability analysis in SysRel is based on hierarchical reliability

analysis with interconnect trees as the fundamental reliability units. Based on the

differences in electromigration failure mechanisms observed in experimental work, we

present a (jL) product filtering algorithm with a classification of separate via-above

and via-below treatments in Cu metallization. After the filtering of immortal trees,

a default model is applied to the remaining trees to compute reliability figures for in-

dividual units. SysRel utilizes new reliability metrics based on the desired lifetime of

a chip and combines reliability figures from individual fundamental reliability units.

A 32-bit comparator circuit layout in 2D and 3D technology is analyzed in SysRel

to demonstrate its functionality and significance. SysRel identifies electromigration

critical (mortal) trees and allows a designer to focus on those trees while ignoring

numerous other immortal trees. “What-if” analysis is possible on selected mortal

trees to investigate the impact on full-chip reliability.
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Chapter 6

Cell-Based Reliability Analysis in

SysRel

Large digital circuits, such as microprocessors and application specific ICs (ASICs),

are often designed and laid out using a hierarchical scheme with blocks or modules.

The hierarchy is crucial in managing the design complexity as well as facilitating

parallel design efforts in the design team. Each block or module is thus designed and

laid out taking the requirements into account from neighboring blocks and overall

product specification. Characterization for power and timing are often done block-

by-block before the full-chip is integrated. To integrate electromigration analysis into

such an IC design flow, we have introduced the concept of cell-based reliability analysis

in SysRel. According to this concept, each cell or module layout is characterized for

electromigration reliability using SysRel. When a large cell-based layout is analyzed

that uses pre-characterized cells, SysRel reuses reliability results of those particular

cells.

Cell-based reliability analysis is ideal for integrating electromigration analysis into

a conventional IC design flow. A block or module can be characterized for reliability

while it is characterized for power and timing. Moreover, reusing cell characterization

data reduces computational load while analyzing a very large circuit. Treating a

large flattened layout, such as that of a microprocessor, is impractical in most CAD

tools. Block level abstraction is already in use to manage the computation load
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of CAD applications. This chapter outlines the infrastructure in SysRel for cell-

based electromigration reliability analysis. The accuracy and advantages of cell-based

analysis with SysRel are demonstrated using adder and comparator circuits.

6.1 Cell Characterization in SysRel

According to the cell-based reliability analysis, first, a cell or module layout is ana-

lyzed for electromigration reliability using SysRel. The output is formatted to record

the number of mortal units in the cell and corresponding lifetimes. The outputs from

each cell are stored in a cell characterization file, sysrelcell.char file, in a format shown

in table 6.1.

Table 6.1: Cell reliability characterization data format in sysrelcell.char file
# example cell data for immortal cell
Cellname xor2x1
Number-of-mortal-FRU 0

# example cell data for mortal cell with 4 FRUs
Cellname or2x1
Number-of-mortal-FRU 4 20 21 22.3 54 years

A standard cell library developed at Illinois Institute of Technology (IIT) with 27

basic cells, such as nand, nor, inv, and aoi gates, is used in this work to synthesize

cell-based circuit layouts [65]. All the cells have been characterized using SysRel

to create the sysrelcell.char file. Due to short line length in cell layouts (maximum

cell size is approximately 13um × 4um), all the cells are immortal after the (jmaxL)

product filter with both Al and Cu metallizations. Figure 6-1 shows immortality

after (jmaxL) product filter in the largest cell, FAX11, in the cell library.

1FAX1 implements a binary adder with Y C = ((A&B)|(B&C)|(C&A)) and Y S = (A ⊕ B ⊕ C)
with inputs A, B, and C.
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Figure 6-1: The largest cell, FAX1, characterization with SysRel. All trees highlighted
in green indicates immortality after the (jmaxL) product filter.

6.2 Hierarchical Layout Support in SysRel

A hierarchical Magic layout file instantiates different types of cells in the layout with

references to separate layout files corresponding to those cells. SysRel identifies cell

instantiations in a hierarchical root layout, and then reads the corresponding layout

file. In the case of multiple instantiations of the same cell, cell layout is read only

once. SysRel Output Window lists the statistics on the types and number of cells

used in a layout. The hierarchy levels are preserved after reading the root layout. The

number of levels is shown in the “Hierarchy” menu of the Layout Window. Figure 6-2

shows a cell-based layout with three levels of hierarchy.

Using the radio buttons in the “Cell View” menu, users can select any particular

hierarchy level for display. The flat root level displays the metal layers from cells in

all levels as shown in figure 6-2. When any particular level is selected via a radio

button, all lower levels including the selected one get hidden in the layout window.

Hidden cells are outlined and their instance names appear at the center.

While extracting interconnect trees from a hierarchical layout, SysRel extracts

trees only from the metal layers that are visible in the Layout Window. Thus, ex-

tracting trees at the flat root level would extract trees from metal layers in all cells

including the topmost level. If the cells are already characterized for reliability, a user
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Root

Level 2

Level 3

Figure 6-2: Hierarchical layout view in SysRel.

can exclude those from tree extraction by selecting their hierarchy level. In that case,

interconnect trees are extracted from higher levels and fed into the basic reliability

analysis flow diagram described in section 5.5. After the lifetimes of mortal trees

are computed, SysRel reads the cell characterization file to include lifetimes for any

mortal units in the hidden cells. The “Read Cell Characterization (.cellparam) file...”

menu item in the “Reliability Budget” menu invokes a file chooser dialog box to select

the .cellparam file. The full-chip reliability is computed using a series system model

of all mortal units, as described in section 3.4.

6.3 Cell-based Reliability Simulation

A simple 4-bit adder, synthesized using the IIT cell library, is first used to debug

and verify accurate cell-based reliability analysis in SysRel. The adder layout has

two levels of hierarchy: root level consisting of inter-cell routing and power delivery

lines, and level 2 consisting of 18 cells from the library. Figure 6-3 illustrates level

2 view of the layout in SysRel. Extracting interconnect trees from this view will

extract trees from inter-cell routing and power lines only. Table 6.2 lists the statistics

of interconnect trees and cells in the adder circuit layout.
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Extraction level

Hidden cell rows

Figure 6-3: Cell-based adder layout’s level 2 view in SysRel.

Table 6.2: Statistics of Fundamental Reliability Units in the 4-bit adder layout.

Total # of trees in flat layout 317
# of trees from inter-cell routing 116
% of trees from cells 63.4
Total number of cells 18

Cell Report
Cell name # of instances
nand3x1 1
and2x1 1
nand2x1 5
or2x1 2
fill 2
xor2x1 7

Data in table 6.2 illustrate that 63.4% of the interconnect trees come from cells.

Thus the cell-based full-chip reliability analysis is expected to increase computational

efficiency in SysRel. Moreover, the cell report also suggests that only a few types of

cells are used multiple times in the circuit layout. SysRel full-chip reliability analysis

with the 4-bit adder circuit predicts immortality in both cell-based and fully flattened

layout analyses.

Section 5.6 presented SysRel reliability simulations with a fully-flattened 32-bit

comparator circuit layout. The hierarchical version of the same layout is analyzed

here using the cell-based approach. Table 6.3 lists the statistics of interconnect trees
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and cells in the comparator circuit layout.

Table 6.3: Statistics of Fundamental Reliability Units in the 32-bit comparator circuit
layout.

Total # of trees in flat layout 1143
# of trees from inter-cell routing 678
% of trees from cells 40.7
Total number of cells 132

Cell Report
Cell name # of instances
oai21x1 48
aoi21x1 14
nand2x1 1
invx1 55
fill 14

Table 6.3 illustrates that 40.7% of the interconnect trees come from cells in this

circuit. Similar to the adder circuit layout, only few types of cells are used multiple

times in the comparator circuit. SysRel reliability analysis with the 32-bit comparator

circuit predicts the same eight trees from power delivery lines to be mortal in cell-

based analysis with both Al and Cu metallizations. Therefore, the full-chip reliability

results are the same as presented in section 5.6.

6.4 Computational Efficiency

The two metrics used to investigate the computational efficiency with cell-based relia-

bility analysis are the times required for layout drawing and interconnect tree extrac-

tion. Layout drawing in the Layout Window entails painting a collection of rectangles

using the Java Graphics2D class. Rectangles are drawn in different colors to repre-

sent different mask layers. When a cell-based layout is viewed in any hierarchy level

other than root level (figure 6-3), cell layouts are hidden in outlined boxes. Table 6.4

lists the time required for layout drawing with the 4-bit adder and 32-bit comparator

circuit layouts. The layouts are drawn while zoomed to fit the Layout Window of

approximately 3inch× 3inch. The time recorded is the average time computed using

a few trials.
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Table 6.4: Time required for layout drawing in SysRel.

4-bit adder circuit 32-bit comparator circuit
Analysis mode time (ms) Analysis mode time (ms)
Cell-based 125 Cell-based 563
Flattened layout 313 Flattened layout 1250

Interconnect trees are extracted from the layout using only the visible tiles in the

Layout Window. During a cell-based analysis, interconnect trees inside a cell are not

extracted as the cell layouts are just outlined. Table 6.5 lists the time required for

extracting interconnect trees in the 4-bit adder and 32-bit comparator circuit layouts

during different modes of analysis.

Table 6.5: Time required for extracting interconnect trees in SysRel.

4-bit adder circuit 32-bit comparator circuit
Analysis mode time (ms) Analysis mode time (ms)
Cell-based 94 Cell-based 265
Flattened layout 172 Flattened layout 485

We observe significant reductions in times required for layout drawing and inter-

connect tree extraction in tables 6.4 and 6.5, respectively. Table 6.6 summarizes the

percentage improvement using the two metrics to quantify computational efficiency

in cell-based reliability analysis in SysRel.

Table 6.6: Computational efficiency with cell-based reliability analysis in SysRel.

% improvement
Layout drawing tree extraction

4-bit adder 60 45
32-bit comparator 55 45

6.5 Summary

Large circuits are often designed using a hierarchical flow where individual blocks or

cells are first designed and characterized. In this chapter, we have introduced cell-level

reliability characterization and computationally efficient full-chip reliability analysis
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in SysRel. Cell layouts can be characterized for reliability while they are characterized

for power and timing. The outcome of reliability characterization is the number of

mortal trees and the lifetimes. An IIT standard cell library has been characterized

using SysRel to create the reliability characterization file sysrelcell.char. SysRel reads

and retains the hierarchy levels in a hierarchical Magic layout. Reliability simulation

results with two hierarchical Magic layouts, a 4-bit adder and 32-bit comparator,

demonstrate the proper functionality and significance of cell-based reliability analysis

in SysRel.

Statistics from the hierarchical layouts suggest that only a few cells are used

multiple times and a large percentage (minimum 40% found in the 32-bit comparator

layout) of total extracted interconnect trees are internal to cells. Therefore, cell-based

reliability analysis, where cells are pre-characterized and hidden in a hierarchical

layout, significantly reduces simulation time in SysRel. The two metrics used to

investigate the computational efficiency with cell-based reliability analysis are the

times required for layout drawing and interconnect tree extraction. The maximum

improvement in times required for layout drawing and interconnect tree extraction of

60% and 45%, respectively, have been demonstrated with the 4-bit adder and 32-bit

comparator layouts. Both cell-based and flattened layout analyses produce the same

full-chip reliability results.
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Chapter 7

Non-blocking Via Analysis in

Copper Metallization Technology

An interconnect tree is the fundamental reliability unit for circuit-level reliability

assessments for metallization schemes with fully-blocking boundaries at the vias. A

tree is composed of linked segments in a single layer of metallization, in which metal

atoms can freely diffuse and lead to coupled stress evolution in its segments. Because

of blocking boundaries at vias, stress in a tree is not affected by stress in other trees.

The tree-based hierarchical reliability analysis flow described in section 5.5 applies

to circuit-level reliability assessments with fully-blocking vias. In Al metallization

technology, tungsten-filled vias always block electromigration. In Cu metallization

technology, refractory liners at the bottom of vias generally block electromigration.

However, some experimental studies suggest that this is not always the case, and as

liner thicknesses are decreased, fully-blocking liners at vias become less certain due

to liner ruptures. When Cu-filled vias are not fully blocking, an interconnect tree is

connected to other metallization layers. While liner ruptures can lead to increased

lifetimes in test structures, the impact of tree linking on circuit-level reliability is not

clear. Therefore, we have incorporated in SysRel a capability for making reliability

analysis with non-blocking vias in a layout [66].
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7.1 Non-blocking Via Due to Liner Ruptures

Cu interconnects are fabricated by the dual-damascene method, in which a trench

is first etched into a blanket layer of dielectric material (usually SiO2) before filling

it with Cu by electroplating. Since Cu undergoes field enhanced diffusion in most

dielectric materials (including SiO2), in order to prevent Cu atoms from diffusing

into the device layer, thin refractory metal layers, referred to as liners, consisting of

Tantalum (Ta) or Tantalum Nitride (TaN) are placed at the sides and bottom of the

Cu line. When vias are filled with Cu, there exists a liner at the bottom of a via.

Hu et al. carried out Cu electromigration studies with different liner thicknesses

and blocking materials at the cathode and anode ends of the lines [67]. Figure 7-1

illustrates three layers of Cu metal interconnects, used in their experiments, connected

by vias V1 and V2. The liner thicknesses at the bottom of a via are 3nm and 10nm

for thin and thick liners, respectively. The study demonstrated that a 3nm thick liner

can lead to an increase in mean-time-to-failure by more than an order of magnitude.

thin liner

(3nm)

thick liner

(10nm)

Figure 7-1: Multi-level Cu interconnects with different liner thicknesses [67].

Wei et al. conducted electromigration experiments with straight line via-to-via

Cu dual-damascene test structures as shown in figure 7-2 [68]. Few 1000um long lines

tested at j = 2.0MA/cm2, and 800um long lines tested at j = 2.5MA/cm2 never

failed even though analytically computed mechanical stress values in the lines were

high enough for void nucleation. The apparent immortality of a sub-population of

110



long lines is postulated to be the result of stress-induced ruptures of the Ta liners

at the vias. In a test structure in figure 7-2, liner ruptures would allow continuous

flow of Cu to and from the lead lines and contact pads, which serve as large sinks

and reservoirs for Cu atoms. Therefore, the liner ruptures would cause immortality

in those types of lines.

V V

I I

Figure 7-2: Straight line via-to-via Cu dual-damascene test structure for electromi-
gration experiments.

7.2 Non-blocking Via Assignment in Circuit Lay-

out

In Cu metallization technology, metal1 to poly-silicon gate, diffusion, such as source/drain,

substrate, and well contacts are tungsten (W ) filled similar to vias in Al metalliza-

tion. Those vias always block electromigration. On the other hand, Cu-filled vias

connecting two metal layers have Ta-based liners at the bottom. Vias with liners may

or may not block electromigration depending on the liner thickness, stress build-up,

and other material properties. Therefore, non-blocking via assignment in SysRel is

designed to be stochastic in nature. Table 7.1 illustrates the input parameters for

non-blocking via analysis defined in sysrel.emparam file.

The first line in table 7.1 is “stochastic 90” indicating that 90% of potentially non-

blocking vias in the circuit layout will be assigned to be non-blocking. The stochastic

value needs to be greater than 0% and can be as high as 100%. The 100% value would

indicate a deterministic assignment of non-blocking boundaries in all metal-to-metal
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Table 7.1: Input parameters for non-blocking via analysis defined in sysrel.emparam
file.

# Non-blocking via analysis in Cu
Stochastic 90
random seed 123412342
force blocking 5 polycontact ndcontact pdcontact
psubstratepcontact nsubstratencontact

vias in the layout. The second parameter in table 7.1 is a random seed that needs

to be a maximum of 9 digit number for the pseudo-random number generator in

SysRel. During stochastic non-blocking via assignment, SysRel tags each potentially

non-blocking via with a random number. The random numbers are sorted, and then

a cut-off value is picked from the sorted list that would assign the desired percentage

of vias to be non-blocking. The same random seed value during multiple SysRel

sessions will assign the same set of vias in a circuit layout to be non-blocking. The

final parameter for non-blocking via analysis allows a user to list a set of vias to be

treated as fully blocking. The entry in table 7.1 lists five W -filled gate, source/drain,

and substrate contacts that need to be treated as fully blocking in Cu metallization

technology. A user can also list any particular metal-to-metal vias, such as metal2

to metal3 via, to be fully-blocking. Such flexibility would allow a user to selectively

investigate the impact of non-blocking boundaries at different metal-to-metal vias.

7.3 Steps for Non-blocking Via Analysis in SysRel

The “Non-Blocking Via Analysis” menu bar in SysRel provides three menu items for

the core operations in non-blocking via analysis (figure 7-3). The “List via types”

menu item displays the number and types of vias used in the circuit layout. The

“Assign Non-blocking Vias” assigns non-blocking vias in the layout. The “Merge

trees” links the trees from different metallization layers connected by non-blocking

vias. The tree merging process is described in detail in the next section.

The steps for reliability analysis in SysRel with the presence of non-blocking vias

in a layout are as follows.
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Figure 7-3: Menu options for reliability analysis in SysRel with non-blocking vias in
a circuit layout.

1. Open a circuit layout in SysRel using “File→ Open Magic layout file” menu op-

tion. The Magic layout needs to be fully flattened. Non-blocking via assignment

and analysis are not possible with a cell-based hierarchical Magic layout.

2. Read the sysrel.emparam file into SysRel using the menu option “File→ Read

EM parameters file”. The technology selection tab in SysRel needs to be set to

Cu metallization.

3. Extract interconnect trees from the layout using the menu option “Electromigration→
Extract Failure Units”.

4. List and investigate different types of vias used in the circuit layout using the

menu option “Non-blocking Via Analysis→ List via types”.

5. Assign non-blocking vias in the circuit layout using the menu option “Non-

blocking Via Analysis→ Assign non-blocking vias”. The Output Window will

list the number of vias assigned to be non-blocking.

6. Merge the interconnect trees connected by non-blocking vias using the menu

option “Non-blocking Via Analysis→ Merge trees”. The Output Window will

list the number of trees in the layout after the tree linking process.

7. Continue conventional reliability analysis flow (section 5.5) with the (jmaxL)

product filter, (jlocalL) product filter, lifetime calculation of mortal trees, and

then full-chip reliability budget.
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7.4 Interconnect Tree Merging

The interconnect trees connected by a non-blocking via are merged to create a single

interconnect tree spanning multiple layers of metallization. Interconnect tree merging

is a fairly complicated process as all via-to-via paths need to be updated and new

via-to-via paths need to be extracted in a merged tree. Figure 7-4 illustrates the tree

merging algorithm with two simple straight line trees A and B.

V1 V2V3

V3 V4

Tree A

Tree B

V1 V2

V4

Tree C

(a)

(b)

Figure 7-4: Schematic illustration of interconnect tree merging with a non-blocking
via. (a) Tree A and B are linked by non-blocking via V3. (b) Tree C is created after
the two trees are merged and V3 is removed. The longest path in tree C, used as the
effective length, Lmax, in the immortality condition filter, is now from V2 to V4.

The effective length used in the (jL) product filters, in tree A and B are from

V1-to-V2 and V3-V4, respectively. Via-to-via paths in tree A are V1-to-V3, and V3-

to-V2. Via-to-via path in tree B is V3-V4. Assuming that V3 is a non-blocking via,

V3 is removed from both trees. New paths from V1-to-V4, V2-to-V4, and V1-V2 are

created. Tree A and B are combined to create a single tree C with the new paths

and tile representations from two layers of metallization (figure 7-4(b)). The effective

length of tree C is from V2-V4 which is longer than those of tree A or B. The effective

length in a merged tree either increases or remains unchanged.

Interconnect trees are merged recursively until all assigned non-blocking vias are

114



exhausted in a layout. During this process if a non-blocking via is found in a single

via tree1, the via is converted to be fully blocking. For example, both vias in a

serpentine ring structure in metal2 and metal1 in figure 7-5(a) can be assigned as

non-blocking. However, when the trees are merged, at least one via is required to

apply the via-based default model in the merged tree (figure 7-5(b)).

(a)

(b)

Figure 7-5: Dynamic conversion of a non-blocking via to fully blocking via in a merged
tree. (a) A serpentine ring in metal1 and metal2 with two vias assigned to be non-
blocking. The longest paths are drawn in the trees. (b) One of the vias is converted
to fully blocking in the merged tree. The non-blocking via is marked in ‘X’.

The proper functionality of interconnect tree merging has been carefully traced in

SysRel using simple circuit layouts. Figure 7-6 illustrates interconnect tree merging

and its effect in a 3-input nand gate layout with interconnect routing connected to its

output. The three inputs are in poly-silicon lines. When all vias are fully blocking,

there are eight trees extracted from the layout; one from Vdd, one from Gnd, and

the rests from interconnect routing at the output (figure 7-6(a)). After assigning all

1A single via tree is defined as continuous metal segments in one metallization layer with just
one via.
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possible vias to be non-blocking and merging the trees accordingly, there are three

trees in the layout; one from Vdd, one from Gnd, and one from output routing. The

three trees and their longest paths are shown in figure 7-6(b).

(a) (b)

Figure 7-6: Illustration of interconnect tree merging in a 3-input nand gate layout. (a)
There are eight trees in the layout. (b) With all possible vias assigned as non-blocking,
the number of tree goes down to three. The longest paths are marked.

7.5 Line-length Effect on Reliability

As illustrated in the previous examples, merging interconnect trees linked with a

non-blocking via either increases the effective length in the merged tree or keeps the

effective length unchanged. The increase in effective line length can influence the

outcome of immortality condition filters based on (jL) products. Multiple trees that

would be immortal with blocking vias can be linked to form mortal trees. However,

two or more mortal trees can be linked to form a single mortal tree with a longer

effective length. Therefore, the presence of non-blocking vias and interconnect tree

merging can lead to either an increase or decrease in the number of mortal trees.

In the hierarchical reliability analysis flow, a default model is applied to compute

the lifetime of mortal trees. As described in section 2.5, the lifetime of each via in

a tree is derived using the equations for time to void nucleation, extrusion, and void

growth. The equations in the default model do not take into account the segment-

lengths connected to a via; rather a semi-infinite length is assumed that leads to

conservative lifetime estimates. Therefore, when the default model is applied to
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compute the lifetime of a merged tree, the lifetime is unchanged despite an increase

in the effective line length.

The effect of interconnect length on lifetime is obvious in experimental work with

Al metallization technology. The lifetime of a straight via-to-via Al line as a function

of its length has a trend as shown in figure 7-7(a). At a fixed stress condition, its

lifetime (time-to-failure) increases as the length decreases. This is due to the fact that

the compressive stress developed at the anode end of the line can interact with, and

thus slow down the rate of tensile stress increase at the cathode end over a shorter

distance. Figure 7-7(b) shows the time-to-failure of a Cu M1 line as observed in

experimental work reported in [10]. Cu interconnects have a minimum lifetime for

intermediate lengths, as the effects of backstress and non-fully blocking boundaries

in vias are assumed to increase the lifetime in short and long lines respectively.
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Figure 7-7: Time-to-failure dependence on interconnect length. (a) Al interconnects
have a minimum TTF for long lines due to absence of the backstress effect; (b) M1
Cu interconnects have a minimum TTF for intermediate lengths, as the effects of
backstress and non-fully blocking boundaries in vias increase the TTF in short and
long lines, respectively. Source: [10].

To incorporate one possible impact of increased interconnect length during non-

blocking via analysis in SysRel, we have assumed that the time-to-failure in Cu

interconnect is inversely proportional to line length i.e. TTF ∝ (1/L). If a via at the

end of an Lref long segment produces a lifetime of TTFref using the default model,
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the same via when connected to an Lnew long segment (due to tree merging) would

have a lifetime TTFnew computed as

TTFnew =
(

Lref

Lnew

)

× TTFref (7.1)

Thus a longer interconnect after tree merging would decrease the lifetime according

to the increase in line length.

7.6 32-bit Comparator Layout Simulation

The 32-bit comparator circuit layout discussed in section 5.6 is simulated here to in-

vestigate circuit-level reliability impact with non-blocking vias in the layout. Full-chip

reliability figures, both including and excluding line length dependence on lifetime of

the mortal trees, are computed with the percentage of non-blocking via ranging from

0% to 100%. The seed for random number generator during non-blocking via assign-

ment is set to 223123223. The target lifetime of the chip of 10 years and an uniform

temperature of 105oC are used for these simulations. Table 7.2 lists the simulation

results.

When all vias are fully-blocking, the 32-bit comparator circuit layout has eight

mortal trees; all from the power delivery, Vdd and Gnd, rings. As the percentage of

non-blocking vias is gradually increased to 90%, the number of mortal trees decreases.

This is because non-blocking vias in the power delivery rings merge multiple trees

from metal1 and metal2 planes, and eventually results in one mortal tree for Vdd

and another for Gnd ring. If we ignore the line-length effect on interconnect lifetime,

full-chip reliability, in terms of probability of no failure and failure rate, improves

because of fewer mortal units as illustrated in table 7.2. However, if the line-length

effect is taken into account, the time-to-failure of mortal units decreases according to

the relation in equation 7.1, and the full-chip reliability degrades.

When non-blocking via percentages in the layout are set to 90% and 100%, in

addition to the two mortal trees from the power delivery rings, few immortal trees for
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Table 7.2: Reliability simulation with various degrees of non-blocking vias in the 32-bit
comparator circuit layout.

NB Total # of No line-length dependence With Line-length dependence
via # of mortal TTF (#) Prob. of max TTF (#) Prob. of max

trees trees years no fail. FIT years no fail. FIT
0% 1143 8 23.2 (4) 0.5242 15418 23.2 (4) 0.5242 15418

168.7 (4) 168.7 (4)
10% 1059 8 23.2 (4) 0.5242 15418 23.2 (4) 0.5242 15418

168.7 (4) 168.7 (4)
30% 891 7 23.2 (4) 0.5244 15405 12.21 (1) 0.3680 20694

168.7 (3) 23.2 (3)
168.7 (3)

50% 721 3 23.2 (2) 0.7242 7696.1 8.4 (2) 0.1720 26785
168.7 (1) 168.7 (1)

70% 555 3 23.2 (2) 0.7242 7696.1 8.4 (2) 0.1720 26785
168.7 (1) 168.7 (1)

90% 393 3 23.2 (2) 0.7244 7683.3 6.42 (2) 0.0854 35037
517.8 (1) 517.8 (1)

100% 311 4 23.2 (2) 0.7244 7683.4 6.42 (2) 0.0854 35037
517.8 (2) 517.8 (2)

signal routing get merged and become mortal due to an increase in effective length

(figure 7-8). The new mortal trees, however, have fairly high lifetimes due to small

current density in the signal lines, and thus do not degrade the full-chip reliability

significantly.

7.7 Discussion of Results

The reliability simulation results with the 32-bit comparator layout demonstrate that

the presence of non-blocking vias overall decreases the number of mortal units. How-

ever, merging interconnect trees linked by non-blocking vias increases the effective

line length of the merged trees. If the default model for estimating the lifetime of

a mortal tree assumes semi-infinite segment lengths, there is a predicted reliability

improvement with non-blocking boundaries. However, if the impact of line length is

taken into account according to equation 7.1, the full-chip reliability would degrade.

The impact of non-blocking vias depends on how reliability depends on length, and
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1

3

4

Figure 7-8: Mortal trees in the 32-bit comparator circuit layout when all vias are
assigned non-blocking. Tree no. 1 and 2 comprise power delivery rings. Tree no. 3
and 4 comprise signal routing nets.

how non-blocking vias affect the line length dependence of reliability. Figure 7-9 shows

two proposed test structures for investigating line-length dependence of reliability in

Cu interconnects.

7.8 Summary

Some electromigration experimental studies postulate that Ta-based liners at the

bottom of Cu filled vias in dual-damascene Cu technology do not always block elec-

tromigration. Moreover, as the liner thicknesses are decreased in future technology

generations, fully-blocking liners at vias become less certain due to liner ruptures.

We have incorporated into SysRel the capability of reliability simulation with the

presence of non-blocking vias in a circuit layout. Users can stochastically or deter-

ministically assign non-blocking vias in the design. Multiple trees, when linked by

a non-blocking via, are merged to create a single tree, which is then treated as the

fundamental reliability unit. The presence of non-blocking vias leads to either an in-
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without blocking boundaries

(a) (b)

Figure 7-9: Test structures to investigate the line length dependence of reliability in
Cu interconnects. (a) A long serpentine line in one layer of metallization, and (b) a
serpentine line in two layers of metallization linked by multiple non-blocking vias. The
two end vias are fully blocking. This structure is to investigate line length dependence
in the presence of non-blocking vias.

crease or decrease in the number of mortal trees. Trees that would be immortal with

blocking vias can be linked to form mortal trees. However, two or more mortal trees

can be linked to form a single mortal tree with a longer effective length. The latter

effect results in an overall reduction in the number of mortal trees, as illustrated in

SysRel simulation using a 32-bit comparator circuit layout.

If the default model for estimating the lifetime of a mortal tree assumes semi-

infinite segment lengths, there is a predicted reliability improvement with non-blocking

boundaries. However, if the impact of line length is taken into account (e.g., the

lifetime to be inversely proportional to line length), the full-chip reliability would de-

grade. These results from SysRel demonstrate the critical need for understanding and

accurately modeling the line length dependence on reliability. We have proposed the

development and use of long multiple metal level test structures with non-blocking

vias for inter-metal connections and blocking vias at the ends. The results from

such test structures would demonstrate line length dependence in the presence of

non-blocking vias and allow accurate circuit-level reliability assessments with Cu

metallization.
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Chapter 8

Thermal-Aware Reliability

Analysis in SysRel

Traditionally, thermal analysis in ICs has been confined to chip-level packaging where

careful consideration is required for heat sink design [69, 70]. However, as the tech-

nology scaling continues, the factors contributing to temperature rise, such as total

power consumption, power density, and interconnect current density, are consistently

becoming more and more significant [71]. Consequently, thermal effects have become

inseparable aspects of IC design and analysis [34, 72]. Interconnect lifetime due to

electromigration is exponentially dependent on inverse temperature. Joule heating

in an interconnect due to its current density can increase the temperature, and thus

reduce interconnect reliability. Using a worst case temperature for reliability analysis,

and then setting a reliability goal may lead to excessive conservatism in IC design.

Therefore, accurate thermal analysis is a prerequisite to circuit-level reliability anal-

ysis and reliability-aware IC design. This chapter describes fundamentals of thermal

analysis in the perspective of ICs. Finite element simulations using ANSYS have

been conducted to investigate thermal effects in transistors. Based on our findings, a

cell-based technique for estimating layout-level temperature profile is described and

implemented in SysRel. Using the layout-level temperature profile as a boundary

condition, SysRel then incorporates joule heating in interconnects while calculating

the lifetimes of mortal trees. The 32-bit comparator circuit has been reanalyzed with
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thermal capabilities and the results are discussed here.

8.1 Fundamental Concepts for Thermal Analysis

There are three modes of heat transfer: conduction, convection, and radiation [73].

Conduction is the mode of heat transfer where energy is exchanged within a solid

body or between two solid bodies in contact due to temperature gradient.

Convection is the mode of heat transfer where energy is exchanged between a solid

body and a surrounding fluid.

Radiation is the mode of heat transfer from a body or between two bodies by

electromagnetic waves.

Thermal analysis in ICs typically involves conduction and convection. While

conduction is the mode of heat transfer within a die and package, convection is the

primary mode for package-level cooling. Fourier’s law of heat conduction states heat

flux, ~q, as following

~q = −ki

∂T

∂i
(8.1)

where ki is the thermal conductivity and (∂T/∂i) the thermal gradient in direction

i. The negative sign indicates that heat flows in the opposite direction of the gra-

dient. The SI units for heat flux and thermal conductivity are Watt/meter2 and

Watt/meter ·o C, respectively. When heat conducts a distance L from a high to low

temperature in a body, Fourier’s law is written as

~q = k
△T

L
= k

Thigh − Tlow

L
(8.2)

Multiplying both sides with cross-sectional area of the conductor, A,

~q × A =
kA

L
△T (8.3)

Q =
1

Rth

△T (8.4)
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where Q is the heat flow in Watts and Rth is the thermal resistance of the material

in oC/Watt. Equation 8.4 forms the basis of electrical and thermal analogy for

conduction as illustrated in table 8.1.

Convection is typically applied to heat flow from a surface to neighboring fluid.

Newton’s law of cooling states the heat flux due to convection as

~q = hf (TS − TB) (8.5)

where hf is the convective film coefficient or heat transfer coefficient in Watt/meter2 ·o C,

TS is the surface temperature, and TB is the bulk fluid temperature. Considering a

surface area, A, for heat flux, we can derive an equation for heat flow, Q, as following

~qA = Ahf (TS − TB) (8.6)

Q =
1

Rth

(TS − TB) (8.7)

where Rth is the thermal resistance for convection. Table 8.1 outlines the electrical

and thermal analogy for both conduction and convection.

Table 8.1: Electrical and thermal analogy for modeling steady-state heat flow.

Electrical Thermal
Current Flow (I) Heat Flow (Q)

Voltage Drop △V = (Vhigh − Vlow) Temperature Drop △T = (Thigh − Tlow)
Electrical Resistance (R) Thermal Resistance (Rth)

△V = IR △T = QRth

R = L
σA

Conduction Rth = L
kA

Convection Rth = 1

Ahf

σ : electrical conductivity k : thermal conductivity
L : length of conductor L: length of conductor
A : cross-sectional area A : cross-sectional area

hf : convective film coefficient

In steady heat transfer problems, thermal resistance is the most significant phys-

ical variable. Modeling unsteady or transient heat transfer problems require thermal

capacitance of an object in addition to its thermal resistance. The rate at which the

temperature of an object rises or decreases is determined by its thermal resistance
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and capacitance. The thermal capacitance of an object with volume, V , is expressed

as

Cth = ρmcpV (8.8)

where ρm is the material’s density and cp is the heat capacity. The units in SI system

for Cth, ρm, cp, and V are joule/oC, kg/meter3, joule/kg ·o C, and m3, respectively.

The thermal capacitance is considered to be analogous to electrical capacitance to

complete the electrical and thermal analogy stated in table 8.1.

According to the first law of thermodynamics, energy in an object needs to be

conserved at any instant. For thermal energy, we can write the energy conservation

law as

Ein + Egen = Eout +
dEst

dt
(8.9)

where Ein is the thermal energy entering the object, Egen is the thermal energy

generated in the object, Eout is the thermal energy exiting the object, and dEst
dt

is the

rate of change in the stored thermal energy. Equivalently,

qout − qin = qgen − dEst

dt
(8.10)

∇q = qgen − ρmcp

dT

dt
(8.11)

∇ · (−k∇T ) = qgen − ρmcp

dT

dt
(8.12)

Assuming the thermal conductivity is uniform in the object

−k∇2T = qgen − ρmcp

dT

dt
(8.13)

where

∇T =
∂T

∂x
+

∂T

∂y
+

∂T

∂z
(8.14)

Equation 8.13 is a simple form of the heat diffusion equation often solved numerically

by using finite difference method for thermal analysis in ICs [74]. The heat diffusion

equation is the governing equation for heat conduction problems. The following three

boundary conditions can be applied to the object depending on the surrounding

126



environment:

Isothermal (Dirichlet) : T = f(x, y, z, t) (8.15)

Adiabatic (Neumann) : ~q = 0 (8.16)

Convective (Robin) : k~q = h(T − Ta) (8.17)

where Ta is the ambient temperature.

In Finite Element Method (FEM), the governing differential equation, derived

using the conservation law, is first transformed to an equivalent integral equation. The

geometric model is discretized into simple shapes, such as rectangles and/or triangles

in 2D, and tetrahedrons, pyramids or hexahedrons in 3D, in which the governing

equations are solved [75]. Most FEM tools are capable of non-uniform discretization

or meshing and evaluation of mesh discretization error. Thus, simulation results from

FEM tools are often used as benchmarks for other approaches in IC thermal analysis.

In this work, a commercial FEM tool, ANSYS, is used for thermal analysis.

The ability to analyze both steady-state and transient conduction and convection

problems using thermal resistors and capacitors has led to Spice-based thermal sim-

ulation of ICs [76]. The substrate is discretized into volumes which is replaced with

an equivalent thermal RC network. The power dissipations in devices are represented

as current sources in the network. The interconnect lines are replaced with thermal

RC transmission lines. T. Chiang et al. have shown that Spice-based simulation

results demonstrate good agreement with Finite Element thermal simulations with

ANSYS [76]. However, Spice-based simulation is computation intensive and often

impractical for large circuit layouts.

8.2 Thermal Simulation with ANSYS

ANSYS, like any FEM simulator, requires geometric input defined by points, lines,

areas, or cubes. IC layouts have numerous elements which make it very difficult to

draw 3D geometries in ANSYS. Therefore, a program/script is developed to port a
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Cadence circuit layout to ANSYS after adding z-dimensions as illustrated in figure 8-

1. A user can specify substrate height as an input to the script. The z-dimensions

are derived for 0.18um process technology using metal and via aspect ratios reported

in the ITRS [2]. The script is written in perl, and named cds2inp. The instructions

for using cds2inp and the script are included in Appendix B.

M1

Si substrate

Figure 8-1: Z-axis dimensions with a substrate height of 10um in cds2inp.

In addition to a geometric model, ANSYS requires definitions of several material

parameters. Table 8.2 lists the required material parameters used in this work. The

parameter values are used from [77, 78]. A heat sink is attached to the substrate

in conventional ICs. Therefore, the substrate is assumed to be the sole heat flow

path to the ambient. Adiabatic boundary conditions are applied at the four sides

and top of the chip, whereas the bottom of the substrate has either convective or

isothermal boundary condition. This is a reasonable and widely used assumption

as the chip is enclosed in a thermally insulated packaging material with the bottom

surface attached to a heat sink.

A CMOS device from 0.18um process technology with width W = 2um, channel

length L = 0.2um, and power dissipation P = 6mW has been simulated in ANSYS.
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Table 8.2: Material parameters for thermal simulation in ANSYS.

Material Defined properties
ILD SiO2 k = 1.4e − 6 W/um − C

ρm = 2650e − 18 kg/um3

cp = 753.1 J/kg − C
Cu k = 390e − 6 W/um − C

ρm = 8960e − 18 kg/um3

cp = 385 J/kg − C
Bulk Si k = 120e − 6 W/um − C

(for substrate) ρm = 2330e − 18 kg/um3

cp = 705 J/kg − C
Silicide k = 40e − 6 W/um − C
(for PC) ρm = 2330e − 18 Kg/um3

cp = 753 J/Kg − C
Tungsten (W ) k = 170e − 6 W/um − C

ρm = 19300e − 18 kg/um3

cp = 132 J/kg − C

Figure 8-2(a) shows the 3D geometry of the layout with diffusion contacts and metal

routing in ANSYS. The substrate dimension is 20um×20um×10um with an isother-

mal (0oC) boundary condition at the bottom. Adiabatic boundary conditions are

applied to the rest of the surfaces. The maximum temperature in the transistor chan-

nel, referred to as the junction temperature, is recorded to be 17.3oC from ANSYS

simulation. Figure 8-2(b) and (c) illustrate the temperature profile at the horizontal

and vertical cross-sections at the transistor plane, respectively. We see that the tem-

perature profile at the top surface of the substrate (transistor plane) in figure 8-2(b)

is axisymmetric despite asymmetric metal routing. This is because Si substrate has

approximately 100 times better thermal conductivity than the ILD material on top.

Transistor junction temperature due to self heating is usually reported in terms

of oC/mW/um (oC per 1mW power dissipation per 1um width of the transistor)

for a fixed channel length. The number is referred to as the thermal resistance of

a device. Using the result from ANSYS, we compute the thermal resistance of the

simulated device to be 5.76oC/mW/um for L = 0.2um. Using reported data from [79],

the thermal resistance of a bulk CMOS device with L = 0.2um is calculated to be

4.28oC/mW/um which is in close agreement with our simulation result.
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(a)

(c)

(b)

0oC

17.9oC

0oC

Axisymmetric

T profile in 

substrate

Figure 8-2: ANSYS thermal simulation with a bulk CMOS transistor; (a) 3D geometry
of the transistor with metal routing in ANSYS, temperature profile (b) at the top
surface of the substrate (transistor plane), and (c) at the vertical cross-section of the
IC.
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8.3 Transient Thermal Behavior in Integrated Cir-

cuits

Steady-state thermal analysis represents the temperature during static or DC power

dissipation in a circuit. Assuming that the “off” current of a transistor is not high

enough to cause self heating, the energy that contributes to a temperature rise is

dissipated in digital circuits only when a transistor is switching a node. Figure 8-

3 illustrates the power dissipation at the NMOS transistor of an inverter when the

output node is switching at different frequencies.

output

outputoutput

energy

NMOS

energy

NMOS

½ CV2

power=P’

power=1.7 P’

Figure 8-3: Energy dissipation in the NMOS transistor of an inverter at different
output frequencies.

To simulate the transient thermal behavior of a transistor, a square wave is used

to define volumetric heat generation rate over time in the channel. The area under

the “on” period in the square wave would represent the amount of energy dissipation.

During the “on” period of the square wave, the device temperature increases due

to self heating, and conversely, the “off” period permits cooling. Transient thermal

behavior can be modelled using a thermal time constant, τ , defined as the time

required for the temperature of a device to increase or decrease by 36.78% (1/e).

From a simple transient cooling simulation in ANSYS, we found the thermal time

constant of the particular bulk CMOS device to be 17.55ns or approximately 20ns

used for simplicity in later calculations. When the heat generation square wave in
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ANSYS has low enough frequency such that there is enough time for cooling between

two pulses, the transient behavior in the device temperature is prominent as shown

in figure 8-4. Figure 8-4 illustrates the junction temperature of the device when the

input square has a pulse width 20 times the thermal time constant.

Figure 8-4: MOSFET transient temperature plot at 2.5MHz square wave heat gener-
ation frequency corresponding to “on” pulse width= 10 × τ . Here, τ = 20ns.

As we increase frequency of the heat generation square wave in ANSYS, the time

between heat generation pulses decreases while the representative energy dissipation

(total area under “on” periods) per unit time, i.e. the average power, remains un-

changed. When the pulse width is (1/40) of the thermal time constant, corresponding

to 1GHz frequency of the input square wave, the device temperature reaches a steady

state value over time as illustrated in figure 8-5. By changing the duty cycle of the

heat generation square wave, we can represent different average power dissipations of

the device corresponding to the change in operating frequency of a circuit (figure 8-3).

Figure 8-5 shows the device temperature plots at the DC power, average power 1/5 of

DC power, and 1/2 of DC power. With 20% duty cycle, the steady-state temperature
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is 3.35 ± 0.68 oC that can be approximated by

Tavg =
Pavg

PDC

TDC =
1

5
× 17.3 = 3.49oC

Similarly, with 50% duty cycle,

Tavg =
Pavg

PDC

TDC =
1

2
× 17.3 = 8.65oC

whereas the simulation shows 8 ± 0.89 oC.

Figure 8-5: MOSFET transient temperature plot at 1GHz square wave heat generation
frequency corresponding to “on” pulse width= τ/40. Here, τ = 20ns.

The above simulation results indicate that it is possible to accurately model tran-

sient temperature in digital circuits using temperature rise due to DC/static power.

When the circuit is operating at a high enough frequency such that there is mini-

mal cooling between energy dissipation periods in a device, the device temperature

reaches a steady-state value proportional to the average power. For the simulated

NMOS transistor with thermal time constant of 20ns, an inverter would need to op-

erate at 2GHz to maintain τ/40 = 0.5ns between two energy dissipation pulses as

used in figure 8-5. If the thermal time constant of a device is higher, for example
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50−100 ns reported for silicon-on-insulator devices [80, 81], the circuit operating fre-

quency, for which we can accurately model average temperature from average power,

would be even lower than 2GHz. Thermal effects are often of major concern and need

to be modelled for chips during high frequency operations. Therefore, the method

described here for estimating the steady average temperature from average power

dissipation can by applied to most high performance circuits with excellent accuracy.

8.4 Cell-based Thermal Profiling Technique

FEM simulation or any type of numerical approach for thermal analysis is only ap-

plicable to analysis with devices and small circuits. Due to computational cost and

limitation on the number of nodes and memory usage in FEM simulation, ANSYS can-

not be used for full 3D analysis with any circuit layout analyzed in SysRel. Therefore,

a layout-level temperature profiling technique has been developed and implemented

in SysRel. The proposed technique first computes temperature at the top of the sub-

strate using the average power dissipation in a cell-based layout, and then, estimates

the interconnect temperature using a conservative joule heating model.

Given the total power dissipation of a circuit, the uniform temperature at the

bottom of the substrate is first computed using a simple thermal resistance based

model for the heat sink. Figure 8-6 illustrates a conventional heat sink attached to

the bottom of the substrate. The heat sink is replaced with an equivalent 1D thermal

resistance, Rhs, connected between the ambient temperature, Ta, and substrate tem-

perature, Tsub. The thermal resistance of thermal interface material, used to attach

the heat sink to the chip, can also be placed in series. As reported in [82], an Rhs of

0.26oC/W is used in this work for a fin heat sink with air volume flow of 0.006m3/s.

Tsub is calculated using equation 8.4 where Q is the total power dissipation of the

chip.

The uniform substrate temperature at the bottom can now be applied as the

isothermal boundary condition to compute the temperature at the transistor plane

on top of the substrate. Based on our observations in ANSYS thermal simulations,
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Figure 8-6: Package-level thermal modeling to compute uniform temperature at the
bottom surface of a substrate.

the temperature profile due to a power source at the top surface of a substrate is ax-

isymmetric and linearly dependent on power. Therefore, temperature can be treated

as a linear and spatially independent variable. We define an impulse response as the

temperature rise at the top of the substrate (transistor plane) due to 1mW of power

dissipation in a unit area (um × um). The impulse response has been constructed

from ANSYS as shown in figure 8-7. Given a power density profile in a circuit layout,

in terms of mW/um2, we can compute the temperature distribution at the top surface

of the substrate by convolving the impulse response with the power density profile.

Convolution is an O(n2) computational process. Therefore, frequency domain calcu-

lation using Fast Fourier Transform (an O(n log
2
n) process) can be done to reduce

computational load in large circuit layouts.

A cell-based approach, compatible with existing IC design flows, has been adopted

to compute the power density profile in a layout. During a large circuit design,

cell libraries are typically used where the cells are already characterized for power.

Moreover, automated design flows with behavioral level description to synthesis, such

as the one used for designing circuits in this work, explicitly report cell-level power

dissipations using switching activity factors at the nets. The non-uniformity in cell-

level power dissipations allows us to capture the non-uniform power distribution in

a circuit layout. To compute the power density profile in mW/um2, the average

cell power dissipation is evenly distributed within the cell’s boundary. Ideally, power

dissipation or equivalently heat generation needs to be concentrated into the transistor

channels to capture device self-heating accurately. However, for the sole purpose

of modeling interconnect temperature, capturing uniform average temperature in a
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Figure 8-7: Thermal impulse response at the top surface of a substrate.

cell is computationally efficient. Cell-level uniform temperature assignment has been

traditionally used for fast thermal analysis and temperature driven cell placement [83].

The cell-based temperature estimation technique is implemented in a Matlab pro-

gram TProfile. The source code for TProfile is included in Appendix C. TProfile

accepts the temperature impulse response and power density matrix as its inputs.

The program uses a 2048-pt FFT and inverse-FFT for computing the temperature

profile matrix. The power density matrix of a single inverter cell (2um × 8um) with

a power consumption of 12mW is used to compare TProfile’s temperature estimates

with that from ANSYS simulation. Figure 8-8 and 8-9 show the power density ma-

trix and corresponding temperature profile, respectively, in the single inverter cell in

a 30um× 30um substrate. The average cell temperatures from TProfile and ANSYS

simulation are 36.3oC and 39.7oC, respectively. The difference is less than 10%.
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Figure 8-8: Power density profile of an inverter cell in a 30um × 30um substrate.
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Figure 8-9: Temperature profile calculated using TProfile of an inverter cell in a
30um × 30um substrate.
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8.5 Interconnect Joule Heating

Interconnect joule heating causes the temperature rise due to current flow through

the metal. As technology scaling progresses, interconnect joule heating effects are

becoming significant due to the increase in current density and number of wiring

levels [84]. In [76], temperature distribution has been modelled in a straight line

interconnect in the first metal level with two end vias connecting it to the substrate

(figure 8-10). Assuming that the substrate temperature is To, via temperature is also

To

To

∆Tmax

ILD

metal1

x

T(x)

Substrate

Figure 8-10: Modeling the temperature profile in a straight line interconnect connected
to a substrate at temperature To.

To due to higher thermal conductively of the vias. Ignoring the effect of variation in

metal resistivity, ρ, with temperature, we can write the diffusion equation as

d2T

dx2
− T − To

L2

H

= −ρj2

rms

kM

(8.18)

and

LH =

[

kMHtILD

kILD

(

1

s

)

]
1
2

(8.19)

where LH is the thermal characteristic length, kM and H are the thermal conductivity

and height of the metal line, and kILD and tILD are the thermal conductivity and

thickness of the ILD material underneath. The heat spreading factor, s, is used to

correct the deviation from 1D heat flow between the metal line and the underlying
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layer. s = 1 ignores any heat spreading effect and accounts for the worst case tem-

perature. It has been shown that within the range of thermal characteristic length,

LH , heat can flow through the via. Beyond LH , heat flows through the ILD causing

the maximum temperature rise, △Tmax, at the metal line. △Tmax has been derived

in [76] as following.

△Tmax =
j2ρL2

H

kM

(8.20)

=
j2ρHtILD

kILDs
(8.21)

=
j2ρHtILD

kILD

(8.22)

Using equation 8.22, we have computed △Tmax in global interconnect lines in

different technology generations as illustrated in table 8.3. The technology generation

parameters are as reported in the ITRS 2003 edition [2]. Interconnect height, H, and

ILD thickness, tILD, are computed using the minimum global wiring pitch and aspect

ratio of Cu lines and vias. △Tmax values are computed with two cases of ILD thermal

conductivity, kILD; one with projected kILD values used in [84] associated with low-k

materials, and the other where a fixed kILD value for SiO2 is used in all technology

generations. The computed △Tmax values in the table suggest that interconnect joule

heating is not significant in near term technology generations; however, it can be

severe in future technology generations particularly with low-k ILD materials.

Multi-level complex shaped interconnects exist in actual circuit layouts. In Sys-

Rel, we model the worst case joule heating at a via while applying the default model

to compute its lifetime. Figure 8-11 illustrates the method for computing via tem-

perature at different metal levels. The non-uniform substrate temperature is first

computed using the cell-based approach described in the previous section. A via con-

nected to the substrate is modelled to be at the same temperature. A higher metal

level via is at a temperature above the substrate temperature by multiples of △Tmax.
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Table 8.3: Maximum temperature increase due to interconnect joule heating in differ-
ent technology generations.

Technology Node 90nm 65nm 45nm 32nm 22nm
jmax (MA/cm2) 0.5 1 3 4.3 5.8
H (um) 0.4305 0.3190 0.2357 0.1680 0.1250
tILD (um) 0.3895 0.2900 0.2153 0.1540 0.1150
ρ (µΩ − cm) 2.2 2.2 2.2 2.2 2.2

kILD (W/cmoC) 1.4e − 2 1.02e − 2 0.54e − 2 0.19e − 2 0.12e − 2
(projected)
△Tmax (oC) 0.0659 0.1995 1.8607 5.5391 8.8655

kILD (W/cmoC) 1.4e − 2 1.4e − 2 1.4e − 2 1.4e − 2 1.4e − 2
(SiO2)
△Tmax (oC) 0.0659 0.1454 0.7177 0.7517 0.7599

To (x,y)

Calculating via temperature

1

2

3

m1

m2

m3
Via 1:   Tvia = To

Via 2:   Tvia = ∆Tmax + To
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Figure 8-11: Modeling the temperature rise due to joule heating in multi-level inter-
connects.

8.6 Thermo-file Implementation in SysRel

SysRel has a menu bar, named Thermo-file, that adds thermal analysis capabilities

and a selection tab to disable or enable the thermal-aware analysis using the estimated

temperature profile. Figure 8-12 shows the menu options available in Thermo-file.

Before invoking Thermo-file menu operations, a user needs to open a flattened or

hierarchical layout and read the sysrel.emparam file using the “File” menu items in

SysRel. The “Read Hierarchical Magic file...” menu item invokes a file chooser dialog

box to allow a user to select the corresponding hierarchical Magic layout file. A

Thermo-file layout window appears with a cell-level view of the layout. The “Read

Power Distribution (.cpower) File...” menu item invokes a file chooser dialog box to

select a cell-level power report file with the extension .cpower. The .cpower file is an

ascii text file. Cell-level power dissipation can be computed using either Synopsys
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Design Analyzer or Nanosim. The .cpower file, for circuit layouts used in this work,

is constructed using cell-level power analysis with Synopsys Design Analyzer.

Figure 8-12: Thermo-file menu options in SysRel for thermal-aware reliability analy-
sis.

The “Write Power Density Matrix (currentpden.m) File” menu item creates a

power density map for the cell-based layout using the methodology discussed in sec-

tion 8.4. The currentpden.m file is written in user’s current directory. This file serves

as an input to TProfile while calculating the layout-level temperature profile using

the temperature impulse method. TProfile writes an output file, tprofile.dat, that

can be ported to SysRel using the “Read Temperature Profile Matrix (tprofile.dat)

file..” menu item. When the temperature profile is read, the Thermo-file window

updates the cell-based layout with a color plot of its temperature. The selection tab

“Use Thermo-file” in SysRel consequently becomes active. A user can either select to

incorporate temperature profile and interconnect joule heating into electromigration

lifetime calculations with “Use Thermo-file: YES” or just use a fixed temperature as

defined in sysrel.emparam file with “Use Thermo-file: NO” option. The reliability

analysis follow continues using the “Electromigration” menu.

8.7 Thermal-Aware Reliability Simulation with 32-

bit Comparator

The 32-bit comparator circuit described in section 5.6 is used for thermal-aware relia-

bility analysis in SysRel. The power density matrix is generated from SysRel and fed

into TProfile to compute the layout-level non-uniform temperature profile as shown
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in figure 8-13. With an average power dissipation of 26.6mW , the mortal intercon-

nect temperature is only 27.078oC. The lifetimes of mortal trees are significantly

higher due to such a low temperature rise (table 8.4). Full-chip probability of no

failure within a target lifetime of 10 years is 1. The thermal-aware reliability simu-

lation results suggest that full-chip reliability can be pessimistic using a worst case

interconnect temperature leading to unnecessarily conservative designs.
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Figure 8-13: Layout-level non-uniform temperature profile in the 32-bit comparator
circuit layout.

8.8 Summary

Interconnect lifetime due to electromigration is exponentially dependent on the inverse

temperature. Using a worst case temperature for reliability analysis, and then setting

a reliability goal may lead to excessive conservatism in IC design. Therefore, accurate

thermal analysis is a prerequisite to circuit-level reliability analysis and reliability-

aware IC design. We have conducted ANSYS thermal simulations with a bulk CMOS

device with metal routing and diffusion contacts. The junction temperature due

to self-heating is in close agreement with reports in other literature. We have also

conducted transient thermal simulations with the device. It is possible to accurately
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Table 8.4: Thermal-aware reliability simulation results with Cu metallization in the
32-bit comparator circuit layout.

Step 1 Layout Extraction (total # of interconnect trees=1143)
Step 2 Via-based (jmaxL) filter

Number of immortal
trees identified

1023

Step 3 Via-based (jlocalL) filter
Number of immortal trees identified 112

Step 4 Default Model (with σnucl = 40MPa) on 8 mortal trees
t50 of 4 mortal tees in metal1 (via-above) 17484 years
t50 of 4 mortal tees in metal2 (via-below) 103467 years

Step 5 Full chip stochastic analysis (σ = 0.81, lognormal)
Target chip lifetime 10 years
Probability of no failure 1
max FIT 8e − 15
t50 for full chip ≫ 10 years

model the transient temperature in digital circuits using the temperature rise due to

DC/static power. When the circuit is operating at a high enough frequency such that

there is minimal cooling between energy dissipation periods in a device, the device

temperature reaches a steady-state value proportional to the average power.

Based on our observations from ANSYS thermal simulations, temperature profile

due to a power source at the top surface of a substrate is axisymmetric and linearly

dependent on power. Treating temperature as a linear and spatially independent

variable, we define an impulse response as the temperature rise at the top surface

of a substrate (transistor plane) due to 1mW of power dissipation in a unit area

(um × um). Thus it is possible to compute the temperature distribution at the top

surface of the substrate by convolving the impulse response with the power density

profile of a layout. A Matlab program TProfile has been developed to compute tem-

perature profile using the proposed method in frequency domain. TProfile estimates

the average temperature of a cell within 10% of that from ANSYS simulation. Us-

ing the layout-level temperature profile as a boundary condition, SysRel computes

the interconnect temperature using a conservative joule heating model. The 32-bit

comparator circuit has been reanalyzed with thermal capabilities. While reliability

simulation with the worst case interconnect temperature of 105oC predicts full-chip
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probability of no failure to be 0.524 for Cu metallization technology, thermal-aware

reliability simulation indicates no failure within the chip’s target lifetime.
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Chapter 9

Reliability Analysis with

Arithmetic and Logic Unit

SysRel reliability simulations discussed in earlier chapters are of rather small adder

and comparator circuits. To demonstrate SysRel’s capability and to investigate relia-

bility behavior in large circuit layouts, a 64-bit Arithmetic and Logic Unit (ALU) has

been designed and analyzed for full-chip reliability. The ALU circuit has been used

to investigate the relative reliability with Al and Cu metallization technologies and

to predict future reliability direction with low-k Cu interconnect technology. This

chapter describes the design and analysis work with the 64-bit ALU.

9.1 Arithmetic and Logic Unit Design and Syn-

thesis

An ALU is the computational core of a processor. A typical ALU performs basic

arithmetic functions, such as addition, multiplication, and comparison, as well as ba-

sic logic operations, such as AND, OR, and EXOR. The data in an ALU is arranged

as a collection of bits. For instance, a 32-bit ALU operates on 32 bits wide inputs, and

produces a 32 bits wide output. 32-bit datapath is widely used in modern day pro-

cessors, although 64-bit datapath is available for very high performance applications.
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A 64-bit ALU has been designed and synthesized using a behavioral-level description

to synthesis flow. The input instruction is 132-bit wide where the four most signif-

icant bits are the opcode1 followed by two 64-bit operands. The input operands, A

and B, and output, C, are signed integer numbers. The behavioral-level descrip-

tion of the ALU is written in VHDL modelled after Tiny64, a simple configurable

microprocessor [85]. Table 9.1 lists the opcodes and their corresponding operations.

Table 9.1: Operations in the 64-bit Arithmetic and Logic Unit.

Opcode Instruction Description
0000 mov Move B to C.
0001 and C is A and B.
0010 or C is A or B.
0011 xor C is A xor B.
0100 add C is A + B.
0101 sub C is A − B.
0110 ror Rotate right A by 1 bit and store in C.
0111 lsr Right shift A by 1 bit, pad with 0, and store in C.
1000 lsra Right shift A by 1 bit, keep sign unchanged, and store in C.
1001 swap Swap most and least significant 32 bits in A and store in C.
1010 swapb Swap most and least significant 32 bits in B and store in C.
1011 inc C is A + 1.
1100 dec C is A − 1.
1101 rorb Rotate right A by 8 bits and store in C.
1111 mul C is A(31 − 0) × B(31 − 0).

Using the VHDL description of the ALU, a Verilog gate-level netlist is synthesized

in Synopsys Design Analyzer with the TSMC 0.18um cell library. The Verilog netlist

is then placed and routed to create the layout in Silicon Ensemble. Silicon Ensemble

outputs layout in gds2 format which is converted to a Magic format using Magic

layout editor. The 64-bit ALU layout’s dimension is 1035um × 1036um (figure 9-1).

Up to five metal levels are used for interconnect routing. The layout has 4193 cells

(including filler cells). Table 9.2 shows the number of cells of various types in the

layout.

1An opcode is a sequence of bits to indicate designated operations in ALU.
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Figure 9-1: The 64-bit Arithmetic and Logic Unit layout in Magic.

Table 9.2: The number of cells of various types in the 64-bit ALU circuit.

Cell Name Number Cell type Number
XOR2X1 147 XNOR2X1 4
OAI21X1 32 NAND3X1 2
AOI22X1 136 AND2X1 67
INVX1 447 OR2X1 3
AOI21X1 14 BUFX2 75
NAND2X1 110 FAX1 994
NOR2X1 1133 MUX2X1 832
INVX2 196 AND2X2 1
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9.2 Reliability Simulation with Different Metal-

lization Technologies

The 64-bit ALU circuit is analyzed in SysRel using the cell-based hierarchical layout

from Magic. Total power dissipation of 2.129W is estimated using Design Analyzer

during synthesis. The maximum current density in the power delivery lines is ap-

proximately 0.46MA/cm2. The worst case interconnect temperature of 105oC and

full-chip target lifetime of 20 years are used for following simulations with the 64-bit

ALU circuit. The number of tiles representing different mask layers in the layout is

807124. Therefore, layout drawing is switched off to minimize simulation time. SysRel

reports 89176 interconnect trees in the layout initially outlined in red (figure 9-2(a)).

In Cu/SiO2 based interconnect technology, 81619 trees are first identified to be ‘im-

mortal’ using the (jmaxL) filter (figure 9-2(b)). Another 6415 trees are filtered out

using the (jlocalL) filter. As illustrated in figure 9-2(c), only 1142 trees are reported

to be mortal in Cu/SiO2 based interconnect technology.

(a) (b) (c)

Figure 9-2: Immortality in interconnect trees in the 64-bit ALU circuit with Cu met-
allization. (a) 89176 trees are extracted from the layout. (b) 81619 trees are identified
as immortal and outlined in green after (jmaxL) filter. (c) 6415 additional trees are
identified as immortal after (jlocalL) filter. 1142 mortal trees are outlined in red.

The 64-bit ALU circuit has been analyzed for full-chip reliability with various

interconnect technologies. The material parameters used here for diffusivity and

lifetime calculations in Al bamboo, Al polygranular, and Cu/SiO2 interconnects are
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as reported in tables 4.3, 4.4, 4.5, and 4.6 in Chapter 4. Table 9.3 lists the intermediate

results from immortal tree filtration as well as full-chip reliability in various metrics.

Due to higher (jL) product thresholds in Al metallization, only 179 trees are identified

as mortal. Consistent with our previous analysis, full-chip reliability is the best with

Al bamboo type interconnects and worst with Al polygranular type interconnects.

On the other hand, lower (jL) product thresholds in Cu/SiO2 based interconnects

identify 1142 trees to be immortal and predict full-chip reliability to be worse than

that with Al bamboo type interconnects (row 3 in table 9.3).

Table 9.3: Full-chip reliability analysis with the 64-bit ALU in different metallization
technologies. Here (jL)M1 and (jL)M2 correspond to (jL)via−above and (jL)via−below,
respectively.

# of Critical # of # of # of Full-chip reliability
trees parameters imm. imm. mortal Prob. of Max t50

= 89176 trees trees trees no fail. FIT (years)
(jmaxL) (jlocalL)

1 Al bam (jL)M1 =
(jL)M2 =
4000A/cm

84724 4273 179 0.994 153 84.1

2 Al poly σnuc = 500MPa,
B = 50GPa

84724 4273 179 8.68E − 16 272k 1.07

3 Cu/SiO2 (jL)M1 =
1500A/cm,
(jL)M2 =
3700A/cm,
σnuc = 40MPa,
B = 28GPa

81619 6415 1142 0.048 25623 8.51

4 Cu (jL)1 (jL)M1 =
(jL)M2 =
1500A/cm,
σnuc = 40MPa,
B = 28GPa

78381 9653 1142 0.048 25623 8.51

5 Cu (jL)2 (jL)M1 =
(jL)M2 =
700A/cm,
σnuc = 40MPa,
B = 28GPa

67941 18496 2739 0.044 27809 8.50

6 Cu/low-k (jL)M1 =
(jL)M2 =
375A/cm,
σnuc =
12.5MPa,
B = 10GPa

55134 28710 5332 3.42E − 25 839k 2.33

To decrease interconnect delay, a wide range of materials with a low dielectric

constant, κ, generally referred to as low-k dielectrics, are being investigated as re-

placements for SiO2. Lower (jL) product thresholds are observed for such ILD ma-

terials [86]. Therefore, we have conducted (jL) product sensitivity analysis on the

full-chip reliability of the 64-bit ALU using lower (jL) product thresholds as indicated
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in rows 4 and 5 in table 9.3. The number of mortal trees increases with lower (jL)

product thresholds which in turn degrades the full-chip reliability.

Hau-Riege et al. reported electromigration experimental work on straight line

via-to-via Cu interconnects with a particular low-k dielectric material [87]. They ex-

perimentally reported the upper limit of the (jL) product threshold to be 375A/cm

and the corresponding critical stress for void nucleation σcrit nuc ≤ 12.5MPa when

initial stress in the line is zero. In addition, the decrease in dielectric constant cor-

responds to a decrease in the elastic moduli of the dielectric material which in turn

reduces the effective bulk modulus, B, of the metal-dielectric system. B = 10GPa

is reported for the Cu/low-k interconnects in [87]. Using the Cu/low-k interconnect

system in the 64-bit ALU layout, we have analyzed the impact on full-chip reliability

as illustrated in row 6 in table 9.3. The full-chip reliability is the worst among all our

simulation results. Following are the two contributing factors.

• The (jL) product threshold of 375MPa leads to 5332 mortal trees in the 64-

bit ALU layout with the Cu/low-k interconnects. The number of mortal trees

is approximately 30 times and 5 times more than that with Al and Cu/SiO2

interconnects, respectively.

• According to equation 2.5, time to void nucleation, tnucl ∝ (sigma2

crit nuc/B).

A comparatively lower (sigma2

crit nuc/B) factor, as computed using the experi-

mentally reported data, leads to shorter time to void nucleation in mortal trees

in Cu/low-k interconnects. Table 9.4 lists the tnucl and tgrowth values using equa-

tions 2.5 and 2.7 of the default model for different interconnect technologies.

In void nucleation limited failures, for example, a small void blocking electron

flow in Cu via-above type interconnect trees, the lifetime of a mortal tree in

Cu/low-k is affected most.

During SysRel simulations, it is possible to vary any material parameters and

investigate the impact on full-chip reliability. The reverse is also possible and partic-

ularly useful in predicting material and process parameters required to achieve desired

full-chip reliability. We have conducted similar studies with the 64-bit ALU circuit
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Table 9.4: Times to void nucleation and void growth in various interconnect technolo-
gies. Here j = 0.5MA/cm2 and T = 105oC.

Interconnect technology tnucl tgrowth

(years) (years)
Al bamboo 164.44 58.99
Al polygranular (w = 4um) 2.15 0.77
Cu/SiO2 16.19 121.39
Cu/low-k 4.42 121.39

to investigate the required Cu atomic diffusivity, a parameter that can be controlled

during process development. The full-chip reliability goal is set to the best case prob-

ability of 0.994 of no failure within the target lifetime achieved with Al bamboo type

interconnects. The atomic diffusivity of Cu is varied during simulations using the

prescaler, Do, in equation 4.4. The lower the atomic diffusivity, the better the life-

time. Initially the diffusivity ratio DAl bamboo/DCu is 0.35. As illustrated in table 9.5,

Cu diffusivity needs to be reduced by approximately 12 times to achieve the equiva-

lent reliability with Cu/SiO2 based interconnects. With Cu/low-k interconnects, the

required improvement in atomic diffusivity is even higher. Approximately 44 times

decrease in Cu atomic diffusivity is required with Cu/low-k interconnects.

Table 9.5: Cu atomic diffusivity requirements for equivalent circuit-level reliability in
the 64-bit ALU with Al and Cu metallizations.

# of Critical # of Prob. Desired Required Required
trees parameters mortal of no prob. of diff. ratio decrease in

= 89176 trees failure no fail. DAl bam/DCu DCu

Al poly (jL)M1 =
(jL)M2 =
4000A/cm

179 0.994 0.994 0.3495

Cu/SiO2 (jL)M1 =
1500A/cm,
(jL)M2 =
3700A/cm,
σnuc = 40MPa,
B = 28GPa

1142 0.048 0.995 4.3214 12.36×

Cu/low-k (jL)M1 =
(jL)M2 =
375A/cm,
σnuc =
12.5MPa,
B = 10GPa

5332 3.42E − 25 0.995 15.41 44.10×

Electromigration tests are usually done with simple interconnect structures. Test-

level reliability can be engineered using different fabrication processes and materials,
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for example using a different capping layer other than Si3N4 on top of Cu [88], that

impact critical parameters such as atomic diffusivity and effective modulus. Data

in table 9.5 conveys a profound message on the required test-level reliability target

for Cu metallization technology. Significantly improved test-level reliability in Cu

is required to achieve equivalent circuit-level reliability with Al bamboo type inter-

connects. Moreover, the required improvement will increase as low-k/low-modulus

dielectrics are introduced.

9.3 Thermal-Aware Reliability Analysis with the

64-bit ALU

Cell-level power dissipations in the 64-bit ALU are calculated in Design Analyzer

during gate-level netlist synthesis. The default input toggle rate in Design Analyzer

is 0.5 in 1ns which corresponds to an operating frequency of 250MHz. Total power

dissipation is reported to be 2.129W when V dd = 5V . Using the cell-level power

dissipations, the layout-level nonuniform power density matrix of the 64-bit ALU

is first computed in SysRel. Using the power density matrix in conjunction with a

temperature impulse response, the nonuniform temperature profile is calculated in

TProfile. Figure 9-3 illustrates the temperature profile in the 64-bit ALU in bulk

CMOS technology. There are few hot spots where the temperature rise is as high as

4.5oC above the ambient.

The average dynamic power consumed in a digital circuit operating at a frequency

f is expressed by the well known relation

P = α0→1 × Cload × V dd2 × f (9.1)

where Cload is the capacitive load, V dd is the operating voltage, and α0→1 the proba-

bility that a power consuming transition occurs at the output [89]. Assuming that the

leakage power component does not contribute to significant temperature rise and the

dynamic power consumption is dominant, we can estimate power density matrices in
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Figure 9-3: Nonuniform temperature profile of the 64-bit ALU circuit in bulk CMOS
technology at V dd = 5V and operating frequency= 250MHz.

the 64-bit ALU at higher operating frequencies using the linear relation depicted in

equation 9.1. The power density matrices can then be used to compute layout-level

temperature profiles at those frequencies. It is important to note that the ALU circuit

may need to be pipelined to operate at higher frequencies and associated circuitry

will add to the total power consumption.

Thermal-aware full-chip reliability simulation of the 64-bit ALU circuit has been

carried out in SysRel using Cu/SiO2 based interconnects in the layout. The simula-

tions are at various circuit operating frequencies in both bulk CMOS and silicon-on-

insulator (SOI) technologies. The temperature impulse response for bulk CMOS tech-

nology has been calculated from ANSYS simulation results as discussed in Chapter 8.

The thermal resistance of a bulk CMOS device is estimated to be 5.76oC/mW/um.

Using the thermal resistance of an SOI device of 50oC/mW/um as reported in [78, 90],

we would expect the junction temperature rise in SOI technology to be approximately

nine times of that in bulk CMOS technology. Therefore, the temperature impulse re-

sponse is scaled accordingly for estimating temperature profile of the 64-bit ALU in
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SOI technology. In addition, circuits in SOI technology can operate at a faster fre-

quency than those in comparable bulk CMOS technology due to lower capacitance

in SOI devices [91]. As reported in [91], a 64-bit PowerPC in SOI technology has a

maximum operating frequency, fMAX , that is approximately 1.24 times the fMAX in

bulk CMOS technology. Therefore, we scale the power dissipation in SOI technology

by a factor of 1/1.24 while estimating the power dissipation of the 64-bit ALU circuit

operating at the same frequency as in bulk CMOS technology. Using the estimated

power dissipation and scaled temperature impulse response for SOI technology, we

compute the temperature profile of the 64-bit ALU circuit for thermal-aware reliabil-

ity analysis.

Tables 9.6 and 9.7 list the thermal-aware full-chip reliability results in bulk CMOS

and SOI technology, respectively, with Cu/SiO2 interconnects in the 64-bit ALU. Tmax

is the maximum temperature at a hot-spot on the substrate. Tavg is the average tem-

perature at the top surface of the substrate. The Tmax and Tavg values are stated here

for record. The nonuniform layout-level temperature profile computed for each oper-

ating frequency is used during full-chip reliability analysis with SysRel. As indicated

Table 9.6: Thermal-aware full-chip reliability report for the 64-bit ALU with Cu/SiO2

metallization in bulk CMOS technology. Here the target lifetime of the chip is 20 years.

Operating Bulk CMOS Technology
Frequency Tmax Tavg Full-chip Max

(oC) (oC) prob. of FIT
no failure

250MHz 31.56 27.84 ≈ 1 1.01E − 10
1GHz 45.26 30.36 ≈ 1 7.56E − 10
2GHz 63.51 33.72 0.9999 9.6E − 9
3GHz 81.77 37.07 0.9999 1.41E − 7
4GHz 100.0 40.43 0.9999 2.95E − 4

in table 9.6, the circuit is highly reliable at low operating frequencies in bulk CMOS

technologies. We notice a temperature rise significant enough to degrade reliability

as indicated by a lower Max FIT only at frequencies such as 3 and 4 GHz. On the

other hand, an increased temperature rise in SOI technology significantly affects full-

chip reliability at frequencies as low as 1GHz (table 9.7). The maximum hot-spot
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temperature reaches higher than the ITRS reported Tmax of 105oC indicating that

active hot-spot management is required in SOI technology.

Table 9.7: Thermal-aware full-chip reliability report for the 64-bit ALU with Cu/SiO2

metallization in SOI technology. Here the target lifetime of the circuit is 20 years.

Operating SOI Technology
Frequency Tmax Tavg Full-chip Max

(oC) (oC) prob. of FIT
no failure

250MHz 55.94 28.91 ≈ 1 8.88E − 11
1GHz 142.76 34.63 0.997 68.04
2GHz 258.51 42.25 2.81E − 27 395k

Simulation results in tables 9.6 and 9.7 reiterate the importance of thermal-aware

reliability analysis. Electromigration lifetime is exponentially dependent on the in-

verse of temperature. At low operating frequencies when power dissipation is not

high enough, predicted full-chip reliability in the 64-bit ALU is very high. As the

temperature increases with higher performance and power dissipation in the circuit,

only then do we observe some degradation in reliability. The reliability degradation

is more pronounced in SOI technology where the temperature rise is higher due to an

oxide layer underneath the devices.

9.4 Summary

A 64-bit Arithmetic and Logic Unit (ALU) has been designed and analyzed for full-

chip reliability to demonstrate SysRel’s capability as well as to investigate reliability

behavior in large circuit layouts. The layout is 1035um by 1036um in dimension

and consists of 4193 cells. The cell-based layout with various Al and Cu intercon-

nect technologies has been analyzed in SysRel. The number of trees is 89176. The

immortality condition filters indicate that a significant number of trees are indeed

immortal. Moreover, the number of mortal trees is sensitive to the (jL) product

threshold. The higher (jL) product threshold in Al metallization identifies only 179

trees to be mortal. On the other hand, the lower (jL) product thresholds in Cu/SiO2
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based interconnects lead to 1142 mortal trees. Consistent with our earlier findings,

the best full-chip reliability is achieved with Al bamboo type interconnects.

The 64-bit ALU circuit has been used to explore future reliability direction with

Cu/low-k based interconnects. Using experimentally reported parameters for a par-

ticular low-k material, we find that the lowest (jL) product threshold in the Cu/low-k

based interconnects leads to the highest number of mortal trees in the layout. In addi-

tion, lower lifetimes in the mortal trees generate the worst full-chip reliability metrics

among other types of Al and Cu interconnects. SysRel has been used to investigate

the required improvement in Cu atomic diffusivity such that full-chip reliability can

be matched with the best case with Al bamboo type interconnects. Test-level reli-

ability can be engineered by changing parameters, such as Cu atomic diffusivity, in

the interconnects. Our simulation results indicate that significantly improved test-

level reliability in Cu is required to achieve equivalent circuit-level reliability with

Al bamboo type interconnects. Moreover, the required improvement will increase as

low-k/low-modulus dielectrics are introduced.

Thermal-aware full-chip reliability simulation of the 64-bit ALU circuit has been

carried out in SysRel using Cu/SiO2 based interconnects in the layout. The operating

frequency is varied in the circuit in both bulk CMOS and SOI technologies. The

electromigration lifetime decreases exponentially with temperature increase. At low

operating frequencies when the power dissipation is not high enough to generate

significant temperature rise, predicted full-chip reliability in the 64-bit ALU is very

high. As the temperature increases with higher performance, only then do we observe

notable degradation in reliability. The reliability degradation is more pronounced in

SOI technology where the temperature rise is higher due to an oxide layer underneath

the devices. The simulation results establish that reliability is indeed a concern in high

performance circuits and technology. Moreover, SysRel can demonstrate performance-

reliability trade-off in high performance circuits and facilitate reliability-aware circuit

design.

156



Chapter 10

Conclusions and Future Work

In the pursuit of higher performance and integration, Integrated Circuit (IC) technol-

ogy is heading towards the nanotechnology era. The gate length of a state-of-the-art

active device, such as a metal oxide silicon field-effect transistor (MOSFET), is in the

range of 45 to 50 nm allowing millions of such devices to be fabricated in a single

chip. In addition to achieving higher density, smaller devices increase speed due to

higher drive current during the “on” state. While more and more devices are desirable

for integrating more functionality in a single chip, interconnecting the devices using

metal wires takes up an even greater percentage of space. Interconnect delay related

to its resistance (R), capacitance (C), and in some cases inductance (L) has become

dominant over gate delay. Cu has been replacing Al as the material of choice for

interconnects due to its lower electrical resistance and expected improved resistance

to electromigration-induced failures. However, with the present fabrication technol-

ogy and interconnect architecture scheme, the reliability of Cu interconnects is not

as high as it could be.

Electromigration experimental work often focuses on via-terminated straight line

interconnects (figure 10-1(a)). However, in circuit layouts, straight line segments are

linked through junctions to other segments in the same layer or different layers of met-

allization. Such junctions are often complex involving multiple linkage to segments

with different dimensions and current densities. It has been established that an inter-

connect tree, a continuously connected piece of metal within one layer of metallization
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(figure 10-1(b)), is the appropriate fundamental reliability unit for circuit-level reli-

ability assessments for metallization schemes with fully blocking boundaries at the

vias. Metal atoms within an interconnect tree can diffuse freely among the segments,

and the stress evolutions and atomic fluxes in the segments are coupled. However,

most circuit-level reliability assessment tools are still based on breaking up inter-

connect trees into individual segments and assessing the reliability of each segment

separately, using the results from straight via-to-via test lines [33, 34]. This method

is generally inaccurate.

 

 

Figure 10-1: (a) A simple via-terminated segment used in tests, (b) an example of a
more complex interconnect tree on a single level of metallization.

Another shortcoming in most existing tools is the treatment of all interconnect

lines as being equally prone to electromigration failure. Via-terminated intercon-

nect lines can be immune to electromigration-induced failure when operated below a

critical product of current density and line length (jL)crit. Rigid vias block electromi-

gration and prevent the build-up of high enough mechanical stresses causing failure.

Consequently, many interconnects in circuits with either Cu or Al metallization are

‘immortal’. Immortality conditions need to be accounted in order for circuit-level

reliability assessments to accurately predict full-chip reliability as well as to manage

158



workload from numerous interconnect trees in circuit layouts.

The present fabrication technology and interconnect architecture scheme for Cu

interconnects lead to distinct electromigration failure characteristics. Cu intercon-

nects are fabricated by the damascene method, in which a trench is first etched into a

blanket layer of dielectric material before filling it with Cu by electroplating. To pre-

vent Cu atoms diffusing into the device layer, thin refractory metal layers consisting

of Tantalum (Ta) or Tantalum Nitride (TaN) are placed at the sides and bottom of

the Cu interconnect lines. Cu-filled vias are used to connect multiple layers of metal-

lization. The Cu lines are capped with a dielectric diffusion barrier, which is usually

made of Silicon Nitride (Si3N4). It has been widely reported that the Cu/Si3N4

interface acts both as the dominant diffusion pathway for atoms and as the likely site

for void nucleation. Gan et al. experimentally demonstrated that, due to this fact,

the lifetimes of the M2 test structures were always higher than those of the M1 test

structures with the same length, width, and number of vias at each end [40]. The

underlying phenomenon applies to all metal layers and has been generalized using

via-above and via-below definitions.

During electromigration in Cu interconnects, a tensile stress develops at the cath-

ode end, where the Ta liner underneath a via usually forms a blocking boundary

to diffusing Cu atoms. In via-below structures, voids preferentially nucleate at the

Cu/Si3N4 interface due to the low critical stress (41 MPa or less) required for that

interface [43]. An open-circuit failure would occur only when the void grows to span

the whole thickness of the metal line, resulting in a very large void volume. On

the other hand, in via-above structures the maximum tensile stress develops at the

Cu/Si3N4 interface near the cathode via. Therefore, an open-circuit failure would

occur if a small void forms below the via, such that the pathway for electron flow is

blocked. This asymmetry in the void volume required for failure not only accounts

for the asymmetry in lifetime but also contributes to the different (jL)crit products

in immortality conditions for via-above and via-below type of interconnects.
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10.1 Summary and Implications of Results

In this work, we have developed a new reliability CAD tool, SysRel, that addresses

the shortcomings of existing tools and incorporates the circuit-level reliability anal-

ysis with Cu metallization technology. SysRel applies an interconnect tree based

hierarchical reliability analysis flow with either Al or Cu metallization technology in

both conventional and 3D circuit layouts. Along the tool development work, we have

proposed and implemented various methodologies, such as full-chip reliability anal-

ysis, cell-based reliability analysis, layout-level temperature profiling, and reliability

analysis with non-blocking via analysis in Cu metallization. Information on SysRel

software release is available in Appendix D.

10.1.1 SysRel: Interactive Reliability CAD Tool

SysRel is an operating system independent stand-alone application written in Java 2.

It treats circuit layout files in magic format created with Magic and 3D-Magic. It is an

interactive tool initiating the steps in reliability simulation after receiving user inputs

via menu bars. SysRel has its own desktop which hosts the output window, layout

window, and reliability statistics reports after simulation (figure 10-2). A user can

seamlessly migrate between Al and Cu metallization technologies in a circuit layout

using the technology selection tab. Other significant features in SysRel include cell-

based and thermal-aware reliability analysis.

SysRel utilizes the hierarchical flow for reliability analysis using interconnect trees

extracted from circuit layouts as the fundamental reliability unit (FRU). The FRUs

are filtered out for immortality in two stages, first using a current density of jmax

from the ITRS, and then using jlocal from circuit simulation. Via-type based (jL)

product thresholds are applied in the filtering stages for Cu technology. However, no

such via classification is required for Al technology as a single (jL) product threshold

is sufficient. After the filtering stages, a default model is applied to the mortal FRUs

to compute the expected lifetimes due to electromigration failure. Lifetimes are com-

bined using a joint stochastic process with a series combination of all FRUs. Given a
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Figure 10-2: Screen shot of SysRel desktop pane. At the top right corner are selection
tabs to enable thermal analysis and to select either Cu or Al metallization. Inside
the desktop pane, there are Output Window, Layout Window, Plot Window, and Tree
Rank Table.
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target lifetime for the chip, the full-chip reliability metrics for output are: probability

of survival, FIT (failure unit) along lifetime, maximum FIT, and time to cumulative

% failure. A 32-bit comparator circuit layout in 2D and 3D technology is analyzed in

SysRel to demonstrate its basic functionality and significance. SysRel identifies elec-

tromigration critical (mortal) trees and allows a designer to focus on those trees while

ignoring numerous other immortal trees in the layout. Thus, a “what-if” analysis is

possible on selected mortal trees to observe the impact on full-chip reliability. The

hierarchical reliability flow in SysRel is crucial not only for computational efficiency,

but also for accuracy in full-chip reliability analysis. Simulation results with a 64-bit

ALU circuit demonstrate that 99.8% and 98.7% of the interconnect trees are immortal

in Al and Cu metallization, respectively. Therefore, the lack of filtering algorithms

in the flow would produce inaccurate full-chip reliability results.

Large circuits are often designed in a hierarchical flow where individual blocks or

cells are first designed and characterized. We have developed and implemented in Sys-

Rel the concept of cell-level reliability characterization and computationally efficient

full-chip reliability analysis. An IIT standard cell library has been characterized using

SysRel. SysRel reads and retains the hierarchy levels in a hierarchical Magic layout.

Reliability simulation results with the hierarchical Magic layouts of a 4-bit adder and

32-bit comparator demonstrates the significance of cell-based reliability analysis in

SysRel. Statistics from the hierarchical layouts suggest that only a few cells are used

multiple times and a large percentage of extracted interconnect trees are internal to

cells. Therefore, cell-based reliability analysis, where cells are pre-characterized and

hidden in a hierarchical layout, improves computational efficiency. The maximum

improvement in times required for layout drawing and interconnect tree extraction of

60% and 45%, respectively, have been demonstrated with the 4-bit adder and 32-bit

comparator layouts. The cell-based reliability assessment approach has allowed the

simulation with the fairly large and complex 64-bit Arithmetic and Logic circuit.
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10.1.2 Thermal-Aware Reliability Analysis in SysRel

Interconnect lifetime due to electromigration is exponentially dependent on the inverse

temperature. Therefore, accurate thermal analysis is a prerequisite to circuit-level

reliability analysis and reliability-aware IC design. We have conducted both steady

state and transient thermal simulations with bulk CMOS transistors using ANSYS.

It is possible to accurately model the transient temperature in digital circuits using

the temperature rise due to DC/static power. When the circuit is operating at a

high enough frequency such that there is minimal cooling between energy dissipation

periods in a device, the device temperature reaches a steady state value proportional

to the average power.

Based on our observations from ANSYS thermal simulations, the temperature

profile due to a power source at the top surface of a substrate is axisymmetric and

linearly dependent on power. Treating temperature as a linear and spatially inde-

pendent variable, we define an impulse response as the temperature rise at the top

surface of the substrate (transistor plane) due to 1mW of power dissipation in a unit

area (1um × 1um). Thus it is possible to compute the temperature distribution at

the top surface of the substrate by convolving the impulse response with the power

density profile of a layout. A Matlab program TProfile has been developed to com-

pute temperature profile using the proposed method in frequency domain using Fast

Fourier Transform. TProfile estimates the average temperature of a cell within 10%

of that from ANSYS simulation.

Given a cell-based circuit layout and cell-based average power dissipation, SysRel

outputs a power density matrix for TProfile. TProfile computes the non-uniform

temperature profile at the top surface of the substrate. Using the layout-level tem-

perature profile as a boundary condition, SysRel computes interconnect temperature

using a conservative joule heating model. Thermal-aware reliability simulation with

the 32-bit comparator layout suggests that using a worst case temperature for relia-

bility analysis, and then setting a reliability goal may lead to excessive conservatism

in IC design. While reliability simulation with the worst case interconnect temper-
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ature of 105oC predicts low full-chip reliability, thermal-aware reliability simulation

indicates no failure within the chip’s target lifetime due to low temperature rise.

Using the thermal-aware capability in SysRel, we have investigated the thermal

effect from high performance operation and technology, such as silicon-on-insulator

(SOI). The operating frequency is varied in the 64-bit ALU circuit in both bulk CMOS

and SOI technologies. The electromigration lifetime decreases exponentially due an

increase in temperature. At low operating frequencies when the power dissipation

is not high enough, predicted full-chip reliability in the 64-bit ALU is very high.

As temperature increases with higher performance, only then do we observe some

degradation in reliability. The reliability degradation is more pronounced in SOI

technology where the temperature rise is higher due to an oxide layer underneath the

devices. The simulation results establish that reliability is indeed a concern in high

performance circuits and technology. Moreover, SysRel can demonstrate performance-

reliability trade-off in high performance circuits and facilitate reliability-aware circuit

design.

10.1.3 Reliability Comparison of Copper and Aluminum Met-

allizations

Under similar test conditions, electromigration reliability of Al and Cu metallization

interconnect trees demonstrate significant differences because of the differences in in-

terconnect architectural schemes. Using SysRel, we have been able to compare for

the first time circuit-level reliability with the two metallizations. SysRel differenti-

ates between Cu and Al technologies during immortality filtering and lifetime esti-

mation. Unlike Al technology, a (jL) product filtering algorithm with a classification

of separate via-above and via-below treatments is required in Cu interconnect trees.

Different diffusivity mechanisms lead to the differences in electromigration lifetimes.

Al lines wider than the grain size (d = 0.5um) have polygranular microstructure with

the highest atomic diffusivity. On the other hand, narrow Al lines with bamboo type

microstructure have lower diffusivity comparable to that of Cu metallization.
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Using the best estimates of material parameters, electromigration lifetimes of a

via-to-via straight line interconnect are compared for four configurations: Cu via-

above, Cu via-below, Al bamboo, and Al polygranular. In typical operating con-

dition (j ≤ 0.5MA/cm2 and T ≤ 105oC), an Al bamboo type line has the longest

time-to-failure followed by Cu via-below, Cu via-above, and Al polygranular type

lines. Circuit-level reliability simulations with the 32-bit comparator and 64-bit ALU

circuits affirm that the best full-chip reliability is indeed achieved with Al bamboo

type interconnects. The lower (jL) product thresholds in Cu/SiO2 based intercon-

nects lead to an increased number of mortal trees in circuit layouts. Cu/low-k based

interconnects are reported to have even lower (jL) product thresholds. As predicted

using the default model as well as reported experimentally, mortal trees have shorter

lifetimes than Cu/SiO2 based interconnects. Both effects contribute to the worst

reliability prediction in the 64-bit ALU circuit with Cu/low-k interconnects.

Electromigration tests are done with simple interconnect structures. Test-level

reliability can be engineered using different fabrication processes and materials that

impact critical parameters, such as atomic diffusivity and effective modulus. Circuit-

level reliability comparisons using various circuits and circuit elements in Al and Cu

metallizations convey a profound message on the required test-level reliability target

for Cu. Significantly improved test-level reliability in Cu is required to achieve the

equivalent circuit-level reliability with Al bamboo type interconnects. Moreover, the

required improvement will increase as low-k/low-modulus dielectrics are introduced.

10.1.4 Non-blocking Via Analysis with Copper Metallization

An interconnect tree is the fundamental reliability unit for circuit-level reliability

assessments for metallization schemes with fully-blocking boundaries at the vias. Via-

terminated interconnect lines in Al metallization can be immune to electromigration-

induced failure when operated below a critical product of the current density and line

length. Tungsten-filled vias block electromigration and prevent the build-up of the

mechanical stress required to cause failure. In Cu metallization, refractory liners at

vias generally block electromigration. However, some experimental studies suggest
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that this is not always the case, and as liner thicknesses are decreased, fully-blocking

liners at the vias become less certain due to liner ruptures. When Cu-filled vias are

not fully blocking, an interconnect tree is connected to other metallization layers.

While liner ruptures can lead to increased lifetimes in test structures, the impact

of tree linking on circuit-level reliability is not clear. Therefore, we incorporated

in SysRel a capability for making reliability analysis with non-blocking vias. Users

can stochastically or deterministically assign non-blocking vias in a circuit layout.

Multiple trees, when linked by non-blocking vias, are merged to create a single tree,

which is then treated as the fundamental reliability unit.

The presence of non-blocking vias leads to either an increase or decrease in the

number of mortal trees. Trees that would be immortal with blocking vias can be

linked to form mortal trees. However, two or more mortal trees can be linked to form

a single mortal tree with a longer effective length. The latter effect results in an overall

reduction in the number of mortal trees, as illustrated with the 32-bit comparator

circuit layout. If the default model for estimating the lifetime of a mortal tree assumes

semi-infinite segment lengths, there is a predicted reliability improvement with non-

blocking boundaries. However, if the impact of line length is taken into account

(e.g., the lifetime to be inversely proportional to line length), the full-chip reliability

would degrade. The impact of non-blocking vias depends on how reliability depends

on length, and how non-blocking vias affect the line length dependence of reliability.

SysRel simulation results demonstrate the importance of development and use of long

test structures with non-blocking vias for accurate circuit-level reliability assessments

with Cu metallization.

10.2 Potential Applications of SysRel

SysRel is a circuit-level reliability assessment tool. Therefore, circuit designers can use

SysRel to get interactive feedback on full-chip reliability during design time. SysRel

identifies mortal trees in a circuit layout. Circuit designers can then perform “what-if”

analysis with the mortal trees to investigate different methods for potential reliability
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improvement. The chief consequences of this research are a design-in reliability tool

and associated methodologies. If circuit layouts are not compatible for analysis with

SysRel due to layout format, one can still implement the methodologies from SysRel

in other circuit-level analysis tools.

SysRel is a valuable tool for reliability and process engineers. One can conduct

sensitivity analysis of material parameters, such as atomic diffusivity, critical stress,

and bulk modulus, on full-chip reliability. This would help identify critical process

parameters that impact full-chip reliability and allow process engineers to focus on

those for optimum reliability improvement. In addition, SysRel is an ideal tool for

predictive assessment of future technologies currently in development. It is possi-

ble to incorporate preliminary models and material parameters for new interconnect

technologies and investigate the impact on circuit-level reliability.

10.3 Future Directions

The Reliability CAD tool, SysRel, and associated research work provide the frame-

work of future research in various directions.

10.3.1 Optimization of SysRel

SysRel is written in Java 2. Java programs have been reported to be slow relative

to other languages, such as C++. However, with the advent of just-in-time (JIT)

compilers and several source code optimization techniques, the performance of Java

programs can be significantly improved [92]. As SysRel has been developed as a pilot

RCAD tool, only a few critical operations, such as Magic layout out parsing, are

optimized for speed and memory usage. Further optimization is possible and would

be essential for analysis with large fully flattened circuit layouts. In fact, non-blocking

via analysis with the 64-bit ALU circuit was not feasible with the current version of

SysRel due to long simulation time. Performance bottlenecks in SysRel need to be

identified using a Java profiler tool, for example JProfiler [93]. Data-structures and

algorithms can be optimized for fast interconnect tree extraction and layout drawing.
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Several pointers for optimizing Java codes for speed and memory usage are available

at [94, 95].

Another venue for improvement in SysRel is the development of sophisticated

methodologies for local current density calculation in interconnect trees. While cur-

rent density calculation in power delivery lines (unidirectional current flow) are rela-

tively straight forward, segment-based current density estimation in signal networks

is an active area of research [57]. Signal networks carry a combination of bidirectional

and unidirectional currents in different segments. Detail current flow information in-

cluding current directions in different segments of an interconnect tree is not available

from any power analysis tool, and more importantly, simple algorithms are often not

computationally feasible for application in a large circuit layout.

10.3.2 Enhanced Electromigration Lifetime Model

SysRel uses a default model for estimating electromigration lifetime at the vias origi-

nally developed for Al metallization, and then extended for Cu metallization technol-

ogy [18, 41]. When compared to experimental lifetime results, the default model gives

a conservative lifetime prediction for an interconnect tree. Moreover, the model as-

sumes semi-infinite segment lengths while calculating the lifetime of a via connecting

those segments. As indicated in this work, the line length effect on electromigration

lifetime is a significant factor for accurate assessment of the impact of non-blocking

vias in Cu metallization technology. Therefore, the line length dependence needs to

be investigated for incorporation into the default model.

The default model for computing the lifetime of a via is appropriate for a single

via at junctions as shown in figure 10-1(b). While such single via junctions are more

common in signal lines, power delivery and clock lines are often wider with multiple

vias at a junction. As illustrated in figure 10-3, multiple vias are used to reduce

the current density through each via and to reduce the electrical resistance of the

junction. Current implementation in SysRel lumps all vias into one and uses the

current density computed for a single via. This is a conservative approach that does

not take into account the effect of parallel paths in the junction. Experimental work
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is required to characterize the impact of multiple vias on electromigration lifetime.

The default model needs to be upgraded accordingly.

Figure 10-3: Multiple vias at a junction in wide metal interconnects.

The electromigration failure mechanisms and characteristics may change in future

with the advent of low-k dielectric materials in Cu metallization technology. It has

been reported that the electromigration lifetime of Cu/low-k interconnects is shorter

than Cu/SiO2 and that extrusions are more frequently seen at the anode end of the

line during failure analysis [96]. The electromigration lifetime needs to be remodelled

to account for new findings in future interconnect technologies. New models can be

easily incorporated into SysRel to assess circuit-level reliability.

10.3.3 Thermal Analysis and Management in 3D IC Tech-

nology

SysRel currently has the capability for thermal-aware reliability analysis with conven-

tional or 2D circuits. Thermal modeling and analysis that incorporates new thermal

management strategies in 3D ICs is a promising area of research. SysRel provides the

framework for layout-level thermal profiling in 3D circuit layouts created using 3D-

Magic. A new 3D integration scheme with face-to-face bonds for high density inter-

wafer connections and back-to-back bonds with embedded micro-channels (thermal
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connects) at the Si interface has been proposed in section 1.4.3. Future research work

with the 3D integration scheme can include fabrication and experiments with bonded

wafers to quantify bonding strength in the presence of micro-channels. In addition,

new thermal modeling techniques need to be developed that generate layout-level

temperature profiles in 3D. The layout-level temperature profile in 3D circuits needs

to incorporate nonuniform power dissipation in both horizontal and vertical planes.

One can also develop methodologies for the optimal placement of micro-channels in

the presence of nonuniform power dissipation. It would be interesting to incorporate

thermal analysis capabilities for 3D ICs into SysRel and investigate the reliability

impact from the proposed thermal management technique.

10.3.4 Impact of Process Variations

Due to process variations in advanced technologies, interconnect parameters, such as

ILD thickness, metal height, and metal resistivity, are stochastic in nature [97]. Con-

sequently, CAD simulation results may vary from Si implementations if the process

variation effects are not taken into account. According to [98], the most common

examples of deviations related to interconnect technology include reliability effects

such as signal electromigration, power electromigration and IR drop, crosstalk glitch,

and crosstalk delay. If the uncertainly is not taken into account, circuit design may

lead to be either less reliable than expected or excessively conservative trading off

maximum attainable performance. SysRel, being a layout-level analysis tool, has the

framework to incorporate the effects of process variations. Interconnect pattern den-

sity, a contributing factor in interconnect parameter variations, is readily available

from circuit layouts in SysRel [98]. Instead of using fixed values for ILD thickness,

metal height, and metal resistivity, one can extend SysRel to include associated dis-

tributions for stochastic analysis. Using the extended SysRel, it will be interesting to

quantify circuit-level reliability impact in the presence of process variations.
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Appendix A

SysRel Source Code Overview

This appendix contains an overview of SysRel’s source code in Java. The source code

is available from Prof. Donald E. Troxel or Prof. Carl V. Thompson at MIT [99].

The code is written in Java 2. The Java classes are categorized into functional groups.

The major functionalities and features of the classes, defined in the java file, class-

name.java, are briefly described under each category.

A.1 Main Application Classes

The main application classes are responsible for starting the SysRel application when

it is invoked from the command line or by double clicking the jar file. These classes

also define global variables for use in the rest of the application.

SysRel.java SysRel.java is the topmost class of SysRel. The primary function of

SysRel is to invoke the graphical user interface. Menu bars and corresponding action

listeners are defined in SysRel.java. SysRel uses multiple document interface (MDI)

functionality to keep the internal modules, such as layout window, thermo-file window,

and output window, centrally contained within the master application’s window.

Globals.java This class contains the declaration for global constants, runtime vari-

ables, and debugging flags for use in the entire SysRel application.
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A.2 Graphical Interface Classes

The graphical interface classes are developed using the Java Swing package avail-

able in Java Development Kit (JDK) version 1.3 [63]. Swing supports everything

from creating menus, dialog boxes, and buttons in a Graphical User Interface (GUI)

application.

MyLayoutFrame.java The MyLayoutFrame class extends or inherits from JIn-

ternalFrame class in Swing. This class is responsible for creating the layout window

inside the SysRel desktop. MyLayoutFrame defines and supports basic menu opera-

tions for viewing a layout, such as zoom in, zoom out, zoom fit, and pan left, right,

top, and bottom. Other menu operations include selecting different levels of hierar-

chy if a cell-based hierarchical Magic layout file is opened in the layout window. The

third menu option lists all metal levels used in the layout and allows a user to elect

either all levels or any one level for interconnect tree extraction.

LayoutPanel.java The LayoutPanel class inherits from the Swing JPanel class and

provides infrastructure to display a layout in a scrollable window. The class has its

own Graphics2D1 object and a paint method to handle all rectangle drawing tasks.

MyThermoFrame.java The MyThermoFrame class extends JInternalFrame. The

purpose of this class is to create a thermo-file window in SysRel that displays cell-

level view of the layout with its temperature profile. Similar to MyLayoutFrame,

MyThermoFrame defines and supports basic menu operations for viewing the layout,

such as zoom in, zoom out, zoom fit, and pan left, right, top, and bottom.

ThermalPanel.java The ThermalPanel is equivalent to LayoutPanel class respon-

sible for displaying the cell-based layout and temperature profile in the thermo-file

window. The class has its own Graphics2D object and a paint method.

1The Graphics2D class is the abstract base class of Java for all graphics contexts that allows an
application to draw onto components.
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MyOutputFrame.java The MyOutputFrame class extends JInternalFrame and

is responsible for creating the output window in SysRel’s desktop pane. The class

supports a scrollable text area in the output window.

A.3 File Parser Classes

The file parser classes primarily serve two purposes, parsing the Magic technology

and layout files. While creating a layout window, MyLayoutFrame instantiates the

file parser objects.

TechDB.java The TechDB class implements a recursive parser for reading Magic’s

technology file. The main constructor for the class is called with a string represen-

tation of technology file’s Uniform Resource Locator (URL2). This allows SysRel to

incorporate a technology file from anywhere in a networked system. An InputStream3

object is created from the URL for reading the ASCII representation of a technology

file. Then all the sections in a technology file are parsed using the parser meth-

ods, and information on different planes, tiles, and contacts are stored in Hashtable4

data-structures.

ParseMAGFile.java The ParseMAGFile class implements the recursive parser for

reading a Magic layout or a .mag file, and works in a similar fashion as TechDB. Given

an URL, it opens a .mag file, and conditionally calls its parser methods, ParseSec-

tion(), ParseRect(), or ParseRLabel(), depending on what ParseLine() interprets from

the current line in the file. All parsed information is “cached” internally to reduce

the amount of time required for parsing large layouts. Following classes implement

the cached representation of layout data.

2An URL is a pointer to a “resource” on the World Wide Web. A resource can be something as
simple as a file or a directory.

3A superclass of all classes representing an input stream of bytes in Java.
4Hashtable is a Java data-storage class that maps distinct keys to stored values.
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CachedSection.java This class implements the object representation of a “sec-

tion” in a .mag file. A section in a Magic file is defined to start with a “<< foo

>>”, where “foo” is the name of a mask layer (e.g. polysilicon, metal1, etc.) or some

control sections (e.g error s, checkpaint, end). A CachedSection object contains all

the coordinates of rectangular tiles that follow the section header tag.

CachedStmt.java The CashedStmt class implements the cached representation of

any statement that is in .mag file’s sections. It is an abstract type that must be

subclassed to CachedRect, CachedRLabel, or CachedUse.

CachedRect.java This class extends the CachedStmt class. Given the parsed co-

ordinates from the “rect ll lr ul ur” statement in a “section” of a .mag file, it defines

a rectangular tile representing a mask layer.

CachedRlabel.java The CachedRlabel class extends CachedStmt, and implements

the object representation for an “rlabel” statement in a section. The “rlabel” state-

ment assigns user defined text labels to mask layers in a layout file.

CachedUse.java The CachedUse class also extends CachedStmt, and implements

the object representation for an “use” statement in a .mag file. The “use” statement

allows users to import instances of another .mag file into the layout.

CachedCell.java Finally, the CachedCell class implements the cached representa-

tion of the entire .mag file. A CachedCell contains multiple instances of Cached-

Section, CachedStmt, CachedRect, CachedRlabel, and CachedUse to fully define a

layout. In a hierarchical layout, where a .mag file imports other .mag files, the

CachedCell object for the parent layout has pointers to other CachedCell objects for

the sub-layouts.
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A.4 Corner-stitched Data-structure Classes

These classes define corner-stitched data-structure for the internal representation of

a layout file. The corner-stitched data-structure is described in section 5.3.

Tile.java The Tile class implements the basic representation of a corner-stitched

“tile” object in a layout. A “tile” is a rectangle corresponding to either a mask layer

or, in case of a “space tile”, absence of it. The Tile class contains “pointers” to eight

tiles adjacent to the corner-edges. The neighboring tiles are stored in an array to

facilitate faster search algorithms.

TileType.java The TileType class implements different categories of tiles in a par-

ticular layout. The different categories are defined according to the input from “types”

and “contact” sections in a technology file. For every instance of a Tile class, there

is a TileType object to represent its mask layer, such as metal1, poly, and metal2.

Plane.java The Plane class inherits from Tile, and represents a collection of Tile

objects, including “space”, that exists in any particular plane of a layout. Initially, a

plane is a large “space tile” representing the absence of mask layers. As a layout is

parsed, solid tiles are added to this large space plane at the proper positions.

PlaneType.java Similar to the TileType class, this class implements different cat-

egories of planes in a particular layout. The planes are defined according to the input

from the “planes” section in a technology file.

A.5 Layout and Tree Representation Classes

The layout and tree representation classes implement the internal representation of

a parsed .mag file with the corner-stitched data-structures. These classes also store

the interconnect trees for further analysis.
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Layout.java The Layout class defines a layout as a stack of multiple Plane objects

where an individual Plane object has different types of Tiles to represent the mask

layers. The constructor for this class takes CachedCell and TechDB objects as its

input parameters for creating such a representation.

ITree.java This class represents an interconnect tree built from corner-stitched

layout representation. An interconnect tree is stored as a collection of adjacent tiles

that would form a continuous electrical path in one layer of metallization.

ISegment.java The ISegment class implements a Tile that is a part of an ITree.

The ISegment class allows differentiation of Tile objects based on whether they form

an interconnect tree or not. An ISegment object is specially tagged if it is a contact

tile in a tree.

ISurface.java This class implements the surface area between adjacent ISegments

in an ITree. The ISurface class can be used for generating tree input data for MIT

EMSIM [50].

Path.java The Path class inherits a Vector5 class and defines a specific path along

an ITree object. It consists of a sequence of ISurfaces between starting and end-

ing ISegments. An ITree object can have multiple paths as more than one ending

ISegments can exist in an interconnect tree.

CellView.java The CellView class supports the cell representation in a hierarchical

cell-based magic layout. In a cell-based layout, each cell has a CellView object with

its own Tiles and Planes arrays. Multiple CellView objects are linked to the root

Cellview. In case of a flattened layout, only one CellView object is created to represent

the root layout.

5The Vector class in Java implements a growable array of objects. Like an array, it contains
components that can be accessed using an integer index.
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A.6 Reliability Computation Class

The reliability computation class is responsible for defining the methods and associ-

ated algorithms for reliability analysis. Only this class needs to be extended to add

more features and new models in future.

Reliability.java The Reliability class implements the methods that operate on

ITree objects and apply different filtering algorithms to isolate mortal interconnect

trees. Methods, such as applyJmaxLfilter(), applyRandomBC(), and applyExtrac-

tion(), are called when the main application invokes reliability analyses from the

“Electromigration” menu. The Reliability class contains values for technology-specific

material parameters. Using the values, the method applyDefaultModel() computes the

lifetime of mortal trees in Cu or Al metallization technology depending on the current

technology selection. The Reliability class also supports non-blocking via analysis.

The methods generateNBvias() assigns non-blocking vias in a flat layout with Cu

metallization and joinTrees() creates merged trees linked by non-blocking vias.
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Appendix B

Cadence to ANSYS Geometric

Model Conversion: cds2inp

This appendix contains the perl script, cds2inp, that converts a Cadence circuit layout

to ANSYS input file defining a 3D geometric model. Figure B-1 shows an example

of the conversion using a transistor layout with diffusion contacts and metal routing.

The Cadence circuit layout needs to be saved in an ascii text file. The instructions

for using cds2inp are as follows:

1. Draw an outline or ESEXCL layer in the Cadence layout to indicate a boundary

for the substrate in ANSYS simulation.

2. Move the origin to the lower left corner of the outline. Use menu operations:

Edit→Other →Move Origin.. (to define a simple coordinate system in ANSYS)

3. Select layers, including the outline, for converting to ANSYS geometry. To

select all layers in the layout, use menu operations: Edit→Select All.

4. From the Window menu in Cadence, select “Show Selected Set”. This will open

a new window with the text representation of selected layers.

5. Save the text in a file, such as file1.out, as text format (default) using the File

menu in the opened window. Copy the saved file to cds2inp script’s directory

location.
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6. Run “cds2inp file1.out file2.inp [optional arguments]”. Run “cds2inp” to see a

list of all optional arguments. File2.inp is the output file name to be created.

7. cds2inp reads material properties from /materials/*.mat files. A single .mat file

defines desired material properties for a give material.

8. After starting ANSYS, read “file2.inp” using the File menu’s “read from file”

option. This would create the geometry and define material properties auto-

matically.

ANSYS GeometryCadence Layout

Figure B-1: Cadence circuit layout to ANSYS geometry conversion demo with a tran-
sistor with diffusion contacts and metal routing.

Perl script for cds2inp

use strict;

use warnings;

print "\n\n";

print "Starting the Cadence layout to ANSYS input geometryconverter\n";

print "Author: Syed M. Alam\n";

print "Last Modified @ MIT:November 7, 2003\n";
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print "Usage: cds2inp ascii_layout outputfile [sub1_thickness in um]

[3d] [ff/bb/fb] [sub2_thickness in um]\n";

print "Bulk CMOS Technology\n"; print "----------------------------\n";

my $sub1_h; #default substrate_1 height is 10um

$sub1_h=10;

if ($ARGV[2] && $ARGV[2]>0) {$sub1_h=$ARGV[2];}

#Add more layers and z-dimensions here in um

my @layers=qw(ESEXCLDIFF CONT POLY1 METAL1 ILD);

#original layers, working for these layers as well

#my @layers=qw(OUTLINE RX CA PC M1 ILD);

# thickness of layers

my %layer_h= ( ESEXCL => 0,

DIFF => 0.12,

CONT => 0.68,

POLY1 => 0.34,

METAL1 => 0.50,

ILD => 2.00);

my %layer_z1= ( ESEXCL => 0,

DIFF => ($sub1_h-$layer_h{DIFF}),

CONT => $sub1_h,

POLY1 => $sub1_h,

METAL1 => ($sub1_h+$layer_h{CONT}),

ILD => $sub1_h);

my %layer_z2= ( ESEXCL => $sub1_h,

DIFF => $sub1_h,

CONT => ($sub1_h+$layer_h{CONT}),

POLY1 => ($sub1_h+$layer_h{POLY1}),
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METAL1 => ($sub1_h+$layer_h{CONT}+$layer_h{METAL1}),

ILD => ($sub1_h+$layer_h{ILD}) );

if (!$ARGV[0]) {print "Thank you for using cds2inp. See usage for

command line arguments\n\n"; exit;}

my $temp_v = 0; my $inputfile=$ARGV[0]; my $outputfile=$ARGV[1];

my $tdic; my $tdic_bond; my $sub2_h;

# default substrate 2 height is 10um $sub2_h=10; # dafault bonding

scheme is fb $tdic_bond="ff";

if ($ARGV[3] && $ARGV[3] eq "3d") {$tdic=1;} else {$tdic=0;} if

($ARGV[4]) {$tdic_bond=$ARGV[4];} if ($ARGV[5] && $ARGV[5]>0)

{$sub2_h=$ARGV[5];}

# z-dimensions for face-to-face bonding

my %layer_ff_z1= ( ESEXCL => ($layer_z2{ILD}+$layer_h{ILD}),

DIFF => ($layer_z2{ILD}+$layer_h{ILD}),

CONT => ($layer_z2{ILD}+$layer_h{ILD}-$layer_h{CONT}),

POLY1 => ($layer_z2{ILD}+$layer_h{ILD}-$layer_h{POLY1}),

METAL1 => ($layer_z2{ILD}+$layer_h{ILD}

-$layer_h{CONT}-$layer_h{METAL1}),

ILD => $layer_z2{ILD} );

my %layer_ff_z2= ( ESEXCL => ($layer_z2{ILD}+$layer_h{ILD}+$sub2_h),

DIFF => ($layer_z2{ILD}+$layer_h{ILD}+$layer_h{DIFF}),

CONT => ($layer_z2{ILD}+$layer_h{ILD}),

POLY1 => ($layer_z2{ILD}+$layer_h{ILD}),

METAL1 => ($layer_z2{ILD}+$layer_h{ILD}-$layer_h{CONT}),
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ILD => ($layer_z2{ILD}+$layer_h{ILD}) );

# z-dimensions for face-to-back bonding

my %layer_fb_z1= ( ESEXCL => $layer_z2{ILD},

DIFF => ($layer_z2{ILD}+$sub2_h-$layer_h{DIFF}),

CONT => ($layer_z2{ILD}+$sub2_h),

POLY1 => ($layer_z2{ILD}+$sub2_h),

METAL1 => ($layer_z2{ILD}+$sub2_h+$layer_h{CONT}),

ILD => ($layer_z2{ILD}+$sub2_h) );

my %layer_fb_z2= ( ESEXCL => ($layer_z2{ILD}+$sub2_h),

DIFF => ($layer_z2{ILD}+$sub2_h),

CONT =>($layer_z2{ILD}+$sub2_h+$layer_h{CONT}) ,

POLY1 => ($layer_z2{ILD}+$sub2_h+$layer_h{POLY1}),

METAL1 =>($layer_z2{ILD}+$sub2_h+

$layer_h{CONT}+$layer_h{METAL1}),

ILD => ($layer_z2{ILD}+$sub2_h+$layer_h{ILD}) );

# z-dimensions for back-to-back bonding

my %layer_bb_z1= ( ESEXCL => -$sub2_h,

DIFF => -$sub2_h,

CONT => (-$sub2_h-$layer_h{CONT}),

POLY1 => (-$sub2_h-$layer_h{POLY1}),

METAL1 => (-$sub2_h-$layer_h{CONT}-$layer_h{METAL1}),

ILD => (-$sub2_h-$layer_h{ILD}) );

my %layer_bb_z2= ( ESEXCL => 0,

DIFF => (-$sub2_h+$layer_h{DIFF}),

CONT => -$sub2_h,

POLY1 => -$sub2_h,

METAL1 => (-$sub2_h-$layer_h{CONT}),

ILD => -$sub2_h );
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print "Openning File: $inputfile\n"; open RFILE, "< $inputfile" or

die "Can’t open input file:\n$!"; print "Openning File to Write:

$outputfile\n"; open WFILE, "> $outputfile" or die "Can’t open

output file:\n$!"; writeheader(); while (my $line=<RFILE>) {

$line=~ s/:/ /;

$line=~ s/:/ /;

my @larray = split(" ",$line);

if ($larray[0] && $larray[0] eq "rect") {

my $wline = block(@larray);

if ($wline) {

print "Write: $wline";

print WFILE "$wline"; $temp_v=1;}

}

} writefooter(); close WFILE; close RFILE; if($temp_v==0) {

print "WARNING: No geometric data in $outputfile\n";

print "WARNING: Removing $outputfile\n";

#rm $outputfile;

} else

{ print "$outputfile written properly for ANSYS\n" }

sub block {

my @larray=@_;

my $solid = $larray[1];

if ($solid eq "PC") {$solid="POLY1";}

if ($solid eq "M1") {$solid="METAL1";}

if ($solid eq "RX") {$solid="DIFF";}
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if ($solid eq "OUTLINE") {$solid="ESEXCL";}

if ($solid eq "CA") {$solid="CONT";}

if (!grep(/$solid/, @layers)){ return;}

print "Read: @larray\n";

my $x1=$larray[4];

$x1=~ s/://;

my $x2=$larray[6];

$x2=~ s/://;

my $y1=$larray[5];

my $y2=$larray[7];

my $z1=$layer_z1{$solid};

my $z2=$layer_z2{$solid};

if ($solid eq "ESEXCL") {

if ($tdic) {

if ($tdic_bond eq "ff")

{ return "block,$x1,$x2,$y1,$y2,$z1,$z2\nblock,$x1,$x2,$y1,$y2,

$layer_z1{ILD},$layer_z2{ILD}\nblock,$x1,$x2,$y1,$y2,

$layer_ff_z1{ESEXCL},

$layer_ff_z2{ESEXCL}\nblock,$x1,$x2,$y1,$y2,

$layer_ff_z1{ILD},$layer_ff_z2{ILD}\n"; }

if ($tdic_bond eq "fb")

{ return "block,$x1,$x2,$y1,$y2,$z1,$z2\nblock,$x1,$x2,$y1,$y2,

$layer_z1{ILD},

$layer_z2{ILD}\nblock,$x1,$x2,$y1,$y2,$layer_fb_z1{ESEXCL},

$layer_fb_z2{ESEXCL}\nblock,$x1,$x2,$y1,$y2,

$layer_fb_z1{ILD},$layer_fb_z2{ILD}\n"; }

if ($tdic_bond eq "bb")

{return "block,$x1,$x2,$y1,$y2,$z1,$z2\nblock,$x1,$x2,$y1,$y2,

$layer_z1{ILD},$layer_z2{ILD}\nblock,$x1,$x2,$y1,$y2,
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$layer_bb_z1{ESEXCL},

$layer_bb_z2{ESEXCL}\nblock,$x1,$x2,$y1,$y2,

$layer_bb_z1{ILD},$layer_bb_z2{ILD}\n"; }

}

else

{ return "block,$x1,$x2,$y1,$y2,$z1,$z2\nblock,$x1,$x2,$y1,$y2,

$layer_z1{ILD},$layer_z2{ILD}\n";}

}

if ($tdic) { #if tdic then have 2 block statements for each solid

if($tdic_bond eq "ff")

{return "block,$x1,$x2,$y1,$y2,$z1,$z2\nblock,

$x1,$x2,$y1,$y2,$layer_ff_z1{$solid},$layer_ff_z2{$solid}\n"; }

if($tdic_bond eq "fb")

{ return "block,$x1,$x2,$y1,$y2,$z1,$z2\nblock,$x1,$x2,$y1,$y2,

$layer_fb_z1{$solid},$layer_fb_z2{$solid}\n"; }

if($tdic_bond eq "bb")

{ return "block,$x1,$x2,$y1,$y2,$z1,$z2\nblock,$x1,$x2,$y1,$y2,

$layer_bb_z1{$solid},$layer_bb_z2{$solid}\n"; }

}

#not a tdic, just return one block statement

return "block,$x1,$x2,$y1,$y2,$z1,$z2\n";

}

sub writeheader {

print WFILE "/TITLE,Thermal Analysis File\n";

print WFILE "KEYW,PR_SET,1\n";

print WFILE "KEYW,PR_STRUC,0\n";

print WFILE "KEYW,PR_THERM,1\n";
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print WFILE "KEYW,PR_FLUID,0\n";

print WFILE "KEYW,PR_ELMAG,0\n";

print WFILE "KEYW,MAGNOD,0\n";

print WFILE "KEYW,MAGEDG,0\n";

print WFILE "KEYW,MAGHFE,0\n";

print WFILE "KEYW,MAGELC,0\n";

print WFILE "KEYW,PR_MULTI,0\n";

print WFILE "KEYW,PR_CFD,0\n";

print WFILE "/GO\n";

print WFILE "!*\n";

print WFILE "/COM,\n";

print WFILE "/COM,Preferences for GUI filtering set to display:\n";

print WFILE "/COM, Thermal\n";

print WFILE "!*\n";

print WFILE "/PREP7\n";

print WFILE "!*\n";

print WFILE "ET,1,SOLID90\n";

print WFILE "!*\n";

print WFILE "mat,1\n";

print WFILE "mpread,materials/SiO2.mat,,,\n";

print WFILE "mat,2\n";

print WFILE "mpread,materials/Cu.mat,,,\n";

print WFILE "mat,3\n";

print WFILE "mpread,materials/bulkSi.mat,,,\n";

print WFILE "mat,4\n";

print WFILE "mpread,materials/channelSi.mat,,,\n";

print WFILE "mat,5\n";

print WFILE "mpread,materials/poly.mat,,,\n";

print WFILE "mat,6\n";

187



print WFILE "mpread,materials/W.mat,,,\n";

}

sub writefooter {

print WFILE "/VIEW, 1 ,1,1,1\n";

print WFILE "/ANG, 1\n";

print WFILE "/REP,FAST\n";

print WFILE "/GRAPHICS,POWER\n";

print WFILE "!*\n";

print WFILE "/TYPE,1,8\n";

print WFILE "/CPLANE,1\n";

print WFILE "/SHADE,1,1\n";

print WFILE "/REPLOT\n";

print WFILE "VOVLAP,ALL\n";

print WFILE "NUMM,KP\n";

print WFILE "!*\n";

print WFILE "/PNUM,KP,0\n";

print WFILE "/PNUM,LINE,0\n";

print WFILE "/PNUM,AREA,0\n";

print WFILE "/PNUM,VOLU,1\n";

print WFILE "/PNUM,NODE,0\n";

print WFILE "/PNUM,TABN,0\n";

print WFILE "/PNUM,SVAL,0\n";

print WFILE "/NUMBER,0\n";

print WFILE "!*\n";

print WFILE "/PNUM,ELEM,0\n";

print WFILE "/REPLOT\n";

print WFILE "VPLOT\n";

}
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Appendix C

Matlab Source Code for TProfile

0001 function TProfile(xd, impulse, size I, PD)

0002 % xd: length axis in um for impulse response

0003 % required step (delta xd) = 0.02um

0004 % impulse: temperature (oC) from impulse response as a function of xd

0005 % size I: discrete radius (unit 1um) of the impulse response for use in

0006 % analysis

0007 % PD: power density matrix, unit: mW/um^2

0008 % Outputs:

0009 % - Calculates and plots the temperature profile of the layout

0010 % - Plots the impulse response matrix

0011 % - Saves the temperature profile in ascii file: tprofile.dat

0012

0013 % Author: Syed M. Alam

0014 % Last updated: April 17, 2004

0015

0016 %transpose PD for same viewing axis as SysRel

0017 PD=PD’;

0018 %plot PD;

0019 figure;

0020 imshow(PD,[min(PD(:)) max(PD(:))]);colorbar;
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0021 title(’Power Density (mW/um^2) Profile of the Layout’)

0022 xlabel(’x dimension, um’)

0023 ylabel(’y dimension, um’)

0024

0025 % create impulse response matrix

0026 I=zeros(2*size I+1);

0027 center = size I+1;

0028 Id=[];

0029 % read temperature at 1um offsets upto size I

0030 for w=0:size I

0031 index = find(xd == w);

0032 Id = [Id impulse(index)];

0033 end

0034 % fill in the I matrix using axi-symmetric property

0035 for w=0:size I

0036 for y=-w:w

0037 I(center-w,center+y)=Id(w+1);

0038 I(center+y,center+w)=Id(w+1);

0039 I(center+w,center+y)=Id(w+1);

0040 I(center+y,center-w)=Id(w+1);

0041 end

0042 end

0043

0044 % get row and column length of PD

0045 [nrow ncol]=size(PD);

0046

0047 % number of elements after convolution in row

0048 convlen row = nrow+2*size I+1-1;

0049 convlen col = ncol+2*size I+1-1;

0050
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0051 % use pt-point FFT, pt need to be power of 2 for FFT speed

0052 pt=2048;

0053 if(max(convlen row,convlen col)>pt)

0054 disp(’ERROR: PD or I matrix size is greater than FFT points’);

0055 return;

0056 end

0057

0058 C=ifft2(fft2(PD,pt,pt).*fft2(I,pt,pt));

0059 C=C(1:convlen row,1:convlen col);

0060 % truncate extra points from 4 sides

0061 T=C(size I+1:convlen row-size I,size I+1:convlen col-size I);

0062 T=real(T);

0063

0064 %conventional heat sink technology

0065 Rth=0.26; %oC/W size 12cmX26cmX10cm with air vol. 0.066m^3/s

0066 Tamb = 27; %oC

0067 totalP=sum(sum(PD)); %mW

0068 Tsub=Tamb+totalP*10^-3*Rth;

0069 T=Tsub + T;

0070

0071

0072 figure;

0073 imshow(T,[min(T(:)) max(T(:))]);colorbar;

0074 title(’Temperature (^oC) Profile of the Layout’)

0075 xlabel(’x dimension, um’)

0076 ylabel(’y dimension, um’)

0077

0078 figure;

0079 surf(T);colormap(jet);colorbar;

0080 title(’Temperature (^oC) Profile of the Layout’)
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0081 xlabel(’x dimension, um’)

0082 ylabel(’y dimension, um’)

0083 zlabel(’temperature (^oC)’)

0084

0085 figure;

0086 surf(I);colormap(jet);colorbar

0087 title(’Impulse Response Matrix of Temperature (^oC)’)

0088 xlabel(’x dimension, um’)

0089 ylabel(’y dimension, um’)

0090 zlabel(’temperature (^oC)’)

0091

0092 %need to transpose T as power density matrix is transpose

0093 T=T’;

0094

0095 save tprofile.dat T -ascii;

0096 %fid=fopen(’tprofile.dat’,’w’);

0097 %fprintf(fid,’%3.4f ’,T);

0098 %fclose(fid);

0099 disp(’tprofile.dat file is written with temperature profile matrix’);
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Appendix D

SysRel Release

D.1 SysRel v1.1

An internal release of SysRel v1.1 was made at MIT on March 6, 2004. The release

consists of an installation CD and User Guide. Except for the thermal-aware analysis,

SysRel v1.1 has all other capabilities as described in this thesis.

D.2 SysRel v2.0

SysRel v2.0 was released on August 20, 2004. A new version of the User Guide is

available in SysRel v2.0 installation CD. SysRel v2.0 has all the capabilities described

in the thesis. Users will be able to reproduce many simulation results and create more

using the tutorials in User Guide v2.0.

SysRel release can be obtained by contacting [99].
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