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Abstract

Differential heating and cooling can generate density-driven, lateral exchange flows in aquatic
systems. Despite the ubiquity of wetlands and other types of aquatic canopies, few studies have
examined the hydrodynamic effects of aquatic vegetation on these currents. This study inves-
tigates the dynamics of lock-exchange flows, a particular class of density currents, propagating
through rigid emergent vegetation. First, previous mathematical formulation is extended to
develop theoretical models of vegetated lock-exchange flows. The regime in which stem drag
is inversely proportional to velocity is considered as a special case.

Lock-exchange flows were generated in a laboratory flume with rigid cylindrical dowels
as model vegetation. Experimental observations were consistent with the theory. Under
high stem drag or low stem Reynolds number conditions, the interface deviated from the well-
documented block profile associated with unobstructed lock-exchange flows and approached a
linear profile. Criteria are developed to categorize all flow conditions as inertial or non-inertial
and the interface profile as linear, transitional, or non-linear, respectively, based on (a) the
evolution of the velocity of the leading edge of the undercurrent and (b) the interface shape.
Finally, the present model is enhanced to account for wind forcing and bed friction to better
describe conditions found in nature. The theory highlights the sensitivity of currents to wind
forcing.
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Chapter 1

Introduction

Wetlands, both coastal and freshwater, are important transition zones between land and water.

By providing physical obstructions to flow, wetlands buffer storm waters and mitigate floods.

From an ecological standpoint, wetlands provide a critical habitat for many birds and fish.

In addition, wetlands control the transport of many dissolved and sorbed substances between

land and water. Wetlands transform or remove from the water certain metals such as arsenic

and nutrients such as nitrogen and sulfates, thereby improving the quality of the water as it

flows through the system. For example, a wetland plant species has been observed to create

conditions that enhance the removal of arsenic [Keon, 2002]. In fact, artificial wetlands are

currently employed as economically feasible and environmentally benign treatment methods

for industrial, agricultural, and domestic wastewater. However, wetlands may also release

toxic substances into the environment. For example, wetlands have been observed to produce

methyl mercury [St. Louis et al., 1994]. In fact, a positive correlation was observed between

monomethylmercury yield and the fractional surface area of a watershed attributed to wetlands

[Hurley et al., 1995]. With an estimated 4−6% of Earth’s total land area covered by wetlands
[Mitsch & Gosselink, 2000], the ubiquity of these vegetated aquatic canopies exemplifies the

importance of enhancing our understanding of transport processes in these systems.

While many biological and chemical processes take place in wetlands, hydrodynamic para-

meters such as the residence time influence how long substances remain in the wetland system

and the physiochemical conditions these substances encounter during that period e.g., by dic-

tating nutrient loads. Thus, an understanding of the hydrodynamics of vegetated flow is critical
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in accurately predicting the biological, chemical, and physical interactions between constituents

in the water and the environment.

This study investigates one type of physical process commonly referred to as exchange flows

or gravity / density currents. The term “exchange flows” broadly refers to currents driven

by horizontal density gradients. These currents are not restricted to wetlands; in fact, they

occur in many natural and artificial systems, both atmospheric and aquatic. For example,

cold air outflows that are associated with thunderstorms result from density differences in

air temperature below a thunderstorm cell. Another atmospheric example is the sea breeze

generated by temperature gradients due to differential warming and cooling between the land

and sea [Simpson, 1997]. Aquatic examples include exchange flows in estuaries that form where

salt water flows inland and freshwater flows towards the sea [O’Donnell, 1993]. Many studies

have also examined convective currents — exchange flows driven by temperature differences — in

sidearms or littoral zones of reservoirs in the field [e.g., Adams & Wells, 1984], in the laboratory

[e.g., Lei & Patterson, 2002; Sturman & Ivey, 1998], and through modelling [e.g., Brocard &

Harleman, 1980; Farrow & Patterson, 1993; Horsch et al., 1994].

In inland aquatic systems density gradients commonly arise from differential heating and

cooling, which may be caused by spatial variability in water depth [e.g., Monismith et al.,

1990; Roget & Colomer, 1996], groundwater discharge [Roget et al., 1993], light compensation

depth [e.g., MacIntyre et al., 2002; Nepf & Oldham, 1997], shading due to floating macrophytes

[Coates & Ferris, 1994], or sheltering from the wind [MacIntyre et al., 2002]. The presence of

vegetation in an aquatic system may affect both the generation and behavior of exchange flows.

Because it can only be established in shallower regions of a water body, aquatic vegetation

enhances the spatial variability in an aquatic system. For example, water in the littoral zones

of lakes may warm and cool at a different rate than the pelagic zone not only because the

water is shallow, but also because of shading or inhibited evaporation due to sheltering by

the macrophytes. These effects may thus enhance or inhibit the temperature — and hence

density — gradient between different zones in the system. Also, vegetation may suppress an

exchange flow by exerting drag on the flow and dissipating its kinetic energy. In turn, exchange

flows may have a feedback effect on the vegetation by enhancing the transport of dissolved and

suspended nutrients and contaminants between different areas of the aquatic system, thereby
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creating conditions that either promote or inhibit vegetation growth [Kalff, 2002; Stefan et

al., 1989]. Observations by Oldham & Sturman (2001) demonstrate the significance of these

effects. The authors report a quadrupling of the residence time of the vegetated region in a

wetland mesocosm due to dense emergent vegetation suppressing the flow rate of convective

currents [Oldham & Sturman, 2001].

Ssea > 0
Sriver~ 0

Ssea > 0
Sriver~ 0

Figure 1-1: Schematic of gravity currents in an estuary. S denotes salinity.

This thesis specifically investigates exchange flows through rigid emergent vegetation, such

as is found in wetlands and salt marshes. In the laboratory, the density gradient was established

through differences in salinity instead of temperature. Such gradients are commonly found at

freshwater - salt water interfaces in tidal estuaries. Lock-exchange flows are one result of such

gradients. A salinity gradient that develops between the sea water and freshwater on opposite

sides of a closed lock gate drives such flows. When the gate is opened, the heavier sea water

collapses and flows along the bottom into the freshwater. The freshwater compensates for this

movement by flowing in the opposite direction along the surface [Simpson, 1997]. In this study,

wooden dowels, selected to model rigid plants because of their morphology, were introduced into

this flow. The dowels were a source of drag, and contributed to the dissipation of energy in the

system. Previous work has shown that the presence of dowels significantly alters the shape of

the interface between the two fluids [Deardon, 2003]. In this thesis, a method of classification

of the interface profile based on measurable parameters will be developed to explain Deardon

(2003)’s observations. Then, a mathematical model of the front will be developed for the

high vegetation drag regime. Subsequently, predicted front velocities will be compared to
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experimental observations over a range of density differences and vegetation densities. The

observations will be recorded with a Charge Coupled Devices (CCD) camera and processed

using the software MATLAB R°.
The remainder of this chapter introduces previous studies conducted on exchange flows.

In Chapter 2, mathematical descriptions of the exchange flow velocity are developed from the

conservation of energy and momentum. Chapter 3 describes the setup and procedure of the

laboratory experiments. Chapter 4 presents the results of these experiments and the analyses of

these results. First, Deardon (2003)’s observations are compared with theoretical predictions

to validate the mathematical models. Then, quantitative measures are developed to categorize

exchange flows as inertial or non-inertial and as having a nonlinear, transitional, or linear

interface profile. Finally, a stem drag constant C 0 is estimated from the experimental data. In

Chapter 5, the model is enhanced to examine the effects of wind forcing. Chapter 6 summarizes

the main findings of this study and identifies several aspects of the study that merit further

research.

1.1 Literature Review

1.1.1 Exchange flows in freshwater systems — convective currents

Convective currents have been studied extensively through both field measurements and nu-

merical modeling because of their importance as a large-scale transport mechanism in many

lentic systems. Because convective currents are induced by spatial variability, they tend to

span large distances, and may significantly enhance basin-scale mass transport.

A number of field studies have reported the impact convective currents have on the residence

time of lentic systems. This hydraulic parameter is a measure of the period that a volume of

water is exposed to the physical, chemical, and biological processes taking place in the system,

and thus dictates to some extent the magnitude of nutrient fluxes and productivity associated

with the system [Kalff, 2002]. For example, Roget et al. (1993) established from temperature

measurements that convective currents induced by differential cooling in a 1.11 km2, 42m-deep

lake was the dominant mode of water exchange between the two constituent lobes. The

convective current consisted of an undercurrent from the shallower and cooler lobe to the
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deeper lobe, whose speed fluctuated between 0.015m s−1 and 0.08m s−1 over a 27-day period

[Roget et al., 1993]. The authors determined that the flow rate of the exchange current was

more than an order of magnitude greater than the estimated total inflow into the lake, and that

the current reduced the residence time of the shallow lobe to 0.9% of what would be expected in

the absence of such currents [Roget et al., 1993]. Similarly, Monismith et al. (1990) estimated

the residence time in a reservoir sidearm to be 0.05% of the timescale for horizontal diffusion

based on observed flow velocities in the epilimnion, which were on the order of 0.02m s−1.

Furthermore, field studies suggest that these convective currents recur frequently. Based

on temperature profiles taken at various distances from the shore in a 6m-deep embayment in

a 275 km2 reservoir, James et al. (1994) found that conditions to induce convective currents

by differential heating were satisfied on 74% of the days over one month during which the

measurements were taken.

Residence times have also been predicted through modeling. A number of models based

on heat budgets have been developed [e.g., Stefan et al., 1989; Sturman et al., 1999], to which

field data may be applied to predict the convective flow rate. For example, Stefan et al. (1989)

estimated a residence time of 2 − 5 h in a 60m-long and 1.32m-deep sloping littoral zone.
Residence times of similar magnitudes were predicted by laboratory studies and numerical

simulations as well. Sturman et al. (1996) examined convective currents induced in a long,

rectangular flume with a cooling region at the top of one end of the tank and a warming region

at the bottom of the opposite end. The authors used scaling arguments to predict that, under

typical conditions found in a reservoir sidearm, the resulting steady-state convective current

velocity and the timescale for the entire system to reach steady state (defined as the filling

time) would be on the order of 0.04ms−1 and 6 h, respectively. Similarly, Horsch & Stefan

(1988)’s model for surface cooling, which is summarized below, predicted a maximum flow rate

of 2 l s−1 and a residence time on the order of 6 h for the littoral region of a 20m long and 4m

deep triangular domain. These predictions, together with field observations discussed above,

emphasize the importance of convective currents in promoting exchange between littoral and

pelagic zones.

It is necessary to mention here, as a caveat, that many of the field measurements in literature

that were obtained in the context of convective currents research were taken over a period of a

15



few days in a single lake. Consequently, the results cannot be generalized beyond anticipating

that similar temperature variations may occur in lakes of similar morphology that are situated

in a similar climate. Nonetheless, the studies mentioned here demonstrate that convective

currents are a significant transport mechanism in some natural systems.

1.1.2 Unsteady gravity currents

Previous studies have predominantly treated convective currents as steady flows. However,

under conditions found in nature, convective currents may display transient behavior. Wells

& Sherman (2001), for example, estimated the timescale of convective circulation formation to

be 16 h and 25 h in consecutive years in a sidearm whose length was 1500m and 3000m at the

respective times. Similarly, Sturman et al. (1999)’s model yielded a residence time on the order

of 21 h for the 3m-deep littoral region of a 0.684 km2 lake. These values are of the same order

as the timescale of the diurnal forcing (= 12h) and suggest that the forcing was not maintained

long enough for the convective currents to become steady. Also, Farrow & Patterson (1993)

examined the response time of convective currents to diurnal forcing in a triangular cavity and

found that the flow response may lag diurnal forcing by as much as 12 h in a sidearm of a

reservoir. Such delays were also observed in the field, which were partly attributed to the

fact that the water was in motion prior to the reversal of the forcing [Monismith et al., 1990].

Furthermore, Wells & Sherman (2001) postulated, based on the dependence of the timescale

of flow formation on the length of the sidearm, that steady flow may be established only in

reservoirs less than 2 − 3 km long. These estimates of flow development timescales strongly

suggest that diurnally forced convective currents are rarely steady in nature. Moreover, the

exchange flows recreated in the laboratory in the present study were unsteady, as lock-exchange

flows are in general. As such, unsteady convective currents are relevant in understanding both

the lock-exchange flows in the present study and convective currents in general.

Observing that the timescale of flow development in nature is often of a similar magnitude

to the period of diurnal forcing [e.g., Farrow & Patterson, 1993; Sturman et al., 1996; Wells &

Sherman, 2001], a number of numerical and experimental studies have recently examined the

transient behavior of exchange flows as they developed from an isothermal and stationary state

into a basin-scale circulation.
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One of the earlier works on unsteady convective currents was by Patterson & Imberger

(1980), in which the transient behavior of initially stationary and isothermal fluid in a rec-

tangular domain was modeled. The authors categorized transient flow behavior according to

the magnitude of the Rayleigh number
³
Ra = gα(T2−T1)∆l3

νκ

´
relative to the Prandtl number¡

Pr = ν
κ

¢
and the aspect ratio of the tank, where g is the gravitational acceleration, α is the

coefficient of expansion, ν is the kinematic viscosity, κ is the thermal diffusivity, and T1 and

T2 are temperatures separated by distance ∆l [Tritton, 1988]. Three categories defined the

mode of heat transfer associated with the flow: conductive, convective, and transitional, where

both conductive and convective mechanisms are significant. The authors found that flows

approached steady state differently depending on their classification; flows in the conductive

regime approached monotonically, whereas those in the convective regime oscillated. Accord-

ingly, the timescale for the approach to steady state differed between the categories as well

[Patterson & Imberger, 1980].

Horsch et al. (1994) also identified three Ra-dependent regimes of flow development in

a similar numerical study. Unlike Patterson & Imberger (1980)’s work, however, the domain

in Horsch et al. (1994)’s simulations was triangular instead of rectangular, and convective

currents were induced by surface cooling instead of differential heating of the end walls. Despite

the differences in the shape of the domain and the nature of the forcing, the approach to

steady state was similar to that observed by Patterson & Imberger (1980). Steady state was

achieved in low and intermediate Ra regimes, which consisted of a main cell that spanned the

entire domain [Horsch et al., 1994]. Similar to transient behavior in the convective regime in

Patterson & Imberger (1980)’s study, the approach to steady state velocities was oscillatory in

the intermediate Ra regime. In contrast, in the high Ra regime, only a time-averaged steady

state was achieved [Horsch et al., 1994].

Horsch & Stefan (1988) also developed a numerical model for the same configuration (i.e.,

continuously-cooled top boundary in a triangular domain) to describe the flow development

from the onset of surface cooling. The authors identified three phases in the flow development.

Following the onset of surface cooling, a horizontal temperature gradient developed locally at

the shallow end of the domain because the sloping bottom hindered the downward growth of

the surface boundary layer. Next, thermals sank from the surface boundary layer, mixing
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the cooler surface water with the deeper water. In the final phase of flow development, the

horizontal temperature gradient generated an undercurrent down the slope and a surface current

in the opposite direction. Similar to steady flow conditions observed by Patterson & Imberger

(1980) and Horsch et al. (1994), these currents created a single-cell circulation that spanned the

domain [Horsch & Stefan, 1988]. However, because of the continuous surface cooling, thermals

continued to form periodically, and were entrained by the undercurrent propagating down the

slope. The quasi-steady state that results was characterized by the periodic development of

thermals and the circulation [Horsch & Stefan, 1988].

Experimental work by Lei & Patterson (2002) identified three stages in the response of a

triangular cavity to solar radiation. Initially, a thermal boundary layer developed at the top and

the bottom of the system. The presence of the bottom layer, which arose because the incoming

radiation that was absorbed into the bottom was subsequently re-emitted, resulted in water at

the bottom of the tank being warmer than the water in the middle. Lei & Patterson (2002)

subsequently observed the development of rising thermals as a physical manifestation of the

instability in such temperature distributions. In this second stage of flow development, a return

flow also developed along the surface towards the deeper end of the cavity to compensate for the

rising thermals flowing up the sloping bottom. The up-slope flow transferred warmer water at

the bottom to the surface. Eventually, a quasi-steady state was achieved in which temperature

increased at a steady rate in response to the constant radiation [Lei & Patterson, 2002]. Also,

the thermals were markedly smaller. The same stages of transient response were identified in

subsequent numerical simulations [Lei & Patterson, 2003].

Coates & Patterson (1993) conducted a laboratory study with differential heating in a

rectangular cavity. In this study, differential heating was achieved through exposing only

one part of the surface to uniform surface radiation while the rest of the surface received

no radiation. Through scaling arguments, the authors identified five different timescales,

and observed that flow development depended on the relative magnitudes of the timescales

[Coates & Patterson, 1993]. These timescales characterize when (i) the isotropic lengthscale

of thermal diffusion exceeds the vertical radiation attenuation lengthscale; (ii) the (horizontal)

advective lengthscale exceeds the diffusive lengthscale; (iii) the viscous lengthscale exceeds the

radiation attenuation lengthscale; (iv) the advective lengthscale exceeds the horizontal length of
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the region exposed to surface radiation; and (v) the diffusion lengthscale exceeds the horizontal

length of the region sheltered from surface radiation [Coates & Patterson, 1993].

Sturman & Ivey (1998) examined the effects of temporal variability of the forcing in a

rectangular laboratory flume by switching the forcing from destabilizing to stabilizing after

some period of time. Steady conditions under stabilizing forcing is characterized by the balance

between conduction and convection [Sturman & Ivey, 1998]. Because the former is a diffusive

process, the discharge generated by stabilizing forcing is expected to be smaller than that

induced by destabilizing forcing. Indeed, the authors observed that the discharge induced by

cooling, which scaled as Q ∼ (Bl)1/3H, was greater than that by warming, which scaled as
Q ∼ (Bl)1/3 δ, where Q is the steady-state discharge, B is the buoyancy flux, l is the forcing

region length, H is the depth at the forcing plate, and δ is the thermal boundary layer thickness.

The boundary layer thickness is not expected to exceed the water depth, and H > δ in a given

system [Sturman & Ivey, 1998].

1.1.3 Effects of obstructions on gravity currents

Gravity currents are forced to flow through obstructions in many contexts. While the focus of

this thesis is restricted to the effects of aquatic vegetation, gravity currents encounter vegetation

in both aquatic and atmospheric systems. Artificial structures such as buildings and solid

boundaries such as walls or artificial structures for pollutant containment also interfere with or

even halt the propagation of gravity currents.

Studies of gravity currents through a cluster of obstacles offer insight into possible effects

aquatic vegetation may have on unsteady flows such as lock-exchange flows. For example,

Davies & Singh (1985) investigated the effect of porous screens on otherwise unobstructed

unsteady dense gas currents, where the screens represented localized obstacles such as a finite

number of rows of trees or buildings. As anticipated, with an introduction of any source of

energy dissipation, the longitudinal velocity of the gravity current decreased, with the reduction

in velocity increasing with the density of the obstacles (the number of screens, in this case).

Also, an increase in the vertical thickness of the current was observed [Davies & Singh, 1985].

Parallel to Davies & Singh (1985)’s report, Rottman et al. (1985) developed a mathematical

model to predict the effect of a porous screen on the shape of steady gravity currents and then
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qualitatively predicted the transient behavior of the gravity currents as they passed through

the screens. The authors described the slope of the interface between the heavy gas and the

ambient air for steady flows as:
dz

dx
= − CDF

2

1− F 2 (1.1)

where z is the elevation of the interface above the impermeable horizontal bed, x is the direction

of propagation of the gas, F 2 = (uz)2

g0z3 , g
0 = g

³
ρ1−ρ2
ρ2

´
, ρ1 and ρ2 are the densities of the heavy

and light fluid, respectively, and CD is the drag coefficient. Equation 1.1 demonstrates the CD-

dependence of the interface slope, and predicts that the slope of the interface will be steeper

when it travels through a region of high drag. Conversely, the slope vanishes as CD approaches

zero. In addition, Rottman et al. (1985) predicted that, when the gravity current front reached

the porous screen, a weak hydraulic jump would propagate upstream and the depth of the heavy

current would increase. These predictions were confirmed by qualitative observations during

laboratory studies of lock-exchange flows [Rottman et al., 1985].

A few studies have examined specifically the hydrodynamic effects of vegetation. One

approach was to incorporate vegetative drag retroactively in a mathematical model of unob-

structed exchange flows. Horsch & Stefan (1988) first developed a model for a non-vegetated

system, in which viscous drag contribution came from the shear stress at the bed and at the

interface of the undercurrent and the return flow. The undercurrent was subject to both

shear stresses, whereas the return current at the surface was only subject to the shear stress

at the interface. Horsch & Stefan (1988) then incorporated vegetation into their numerical

model by adding vegetative drag linearly to the mathematical expression for viscous drag in

the undercurrent and return flow. Vegetative drag was defined as 1
2CDρui

2dhi, where d is

the stem diameter, ρ is the density, CD is the stem drag coefficient, and hi and ui are the

depth and the local mean velocity of the undercurrent and return flow, respectively. The stem

drag was estimated as CD = 10.0√
Re
for 0.4 6 Re 6 40, where Re is the stem Reynolds num-

ber. To include the effect of vegetative drag retroactively, Horsch & Stefan (1988) replaced the

kinematic viscosity with a new parameter ε, the “apparent viscosity,” in the numerical model.

The linear sum of the viscous drag and the vegetative drag was equated with the viscous drag

expression with ε instead of ν, the kinematic viscosity. Solving this expression for ε yielded
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[Horsch & Stefan, 1988]:

εL = ν +
CDuLd

2 (1 + λ)G

µ
hL
s

¶2
(1.2)

and

εU = ν +
CDuUd

2λG

r
hL
hU

µ
hL
s

¶2
(1.3)

for the undercurrent and return flow, respectively, where λ is the ratio of the shear stress at the

interface and at the bed ( z = 0), G is a constant of proportionality G = hL
uL

∂u
∂z |z=0, and s is the

plant spacing. The subscripts L and U refer to the undercurrent (lower layer) and return flow

(upper layer), respectively. An average of εU and εL replaced ν in the numerical simulations.

Another approach was to model vegetation as porous media [Oldham & Sturman, 2001].

Their scaling analysis assumed steady conditions; as discussed earlier in this chapter, this

assumption deviates from lock-exchange flows, which are inherently unsteady. Nevertheless, the

model represents one method of incorporating vegetative drag into a mathematical description

of the convective flow rate [Oldham & Sturman, 2001]:

Q ∼
"
B

√
kx
c

µ
kx
kz

¶1/3#1/3
l tan θ (1.4)

where B is the buoyancy flux, c is the Forchheimer coefficient, kx and kz are the longitudinal

and vertical permeabilities of the vegetated region, respectively, l is the length of the forcing

region, and θ is the slope of the vegetated region. Since c√
kx

³
kz
kx

´1/3
corresponds to the drag

exerted by the vegetation, the model correctly predicts that an increase in drag results in a

decrease in the discharge [Oldham & Sturman, 2001].

Oldham & Sturman (2001) then compared model predictions with laboratory and mesocosm

observations in model wetlands with a solid volume fraction of 17% and 16%, respectively.

Note that the flushing timescale for the vegetated region in the mesocosm was approximately

4h, which was a third of that for diurnal forcing. The difference in magnitude of the timescales

was consistent with the steady state assumption of the model. However, the velocity profiles

were taken between 4AM and 10AM in April in Perth, Western Australia, and it is possible

that the measurements coincided with the diurnal reversal of the forcing (i.e., from cooling to

heating), and the exchange flows present at the time of recording may have been unsteady.
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Nonetheless, the model accurately predicted the convective current flow rates.

Most recently, Deardon (2003) investigated the speed of a lock-exchange flow as it prop-

agated through a random array of rigid dowels. A mathematical solution was developed for

toe velocity by applying a rectangular lock-exchange flow approximation to an energy bal-

ance analysis (see top figure in Figure 2-1). Most relevant to the present thesis, however, is

the observation of a linear interface under low density gradient-high stem density conditions

(ρ1 − ρ2 6 0.01 kg l−3 and a > 0.0855 cm−1, where a is the frontal area per unit volume)

[Deardon, 2003]. Moreover, Deardon (2003) reported that the disagreement between theo-

retical predictions and observed velocities increased as the stem density increased, suggesting

the need for modifications to the model when describing exchange flows in the linear interface

regime. To our knowledge, the impact of aquatic vegetation on the shape of exchange flows

has not been studied extensively. One of the goals of this study is to develop a mathematical

model to analyze exchange flows with such morphology.

To our knowledge, linear interfaces have not been reported in lock-exchange flows before.

However, such interfaces have been observed in the context of seawater intrusion into ambient

freshwater in coastal aquifers. As stated above, flows through porous media are analogous

to surface water flows through obstacles such as vegetation; the former has significantly higher

drag dissipation than the latter because the solid volume fractions in sand are much higher than

those associated with aquatic canopies. Indeed, Keulegan (1954) investigated the seawater-

freshwater interfaces in aquifers by examining lock-exchange flows in a partitioned laboratory

flume filled with sand. Dagan & Zeitoun (1998) later advanced Keulegan (1954)’s solution to

account for spatial heterogeneities.

The exchange flow in Keulegan (1954)’s experiments shared the same features as the high

stem density-low density difference lock-exchange flows in Deardon, 2003 and the present study.

First, Keulegan (1954) consistently observed a linear interface at all times and under all flow

conditions. The mean porosities in Keulegan, 1954 were 0.432 and 0.459, which are equivalent

to, in terms of equal porosity, stem densities approximately 8 times greater than the highest

stem density scenarios examined in Deardon, 2003. Keulegan (1954) also reports that the

linear interface rotated about a point on the interface at mid-depth and that the upper half of

the interface moved at the same speed as the bottom half of the interface, but in the opposite
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direction. That is, the interface was consistently symmetric about its middle, but in the oppo-

site direction. These two characteristics are assumed in the mathematical models developed in

the present study. Because of the flow visualization and imaging method used in the present

study, the position of the upper half of the interface is difficult to determine, and no effort

was made to quantitatively test these assumptions. While we observed qualitatively that the

rotation of the interface is about the mid-point, we could not resolve the vertical symmetry.
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Chapter 2

Extension of Theory to Vegetated

Exchange Flows

Deardon (2003)’s observations suggest that the interface can have a range of behavior depending

on flow and canopy conditions. Three regimes of front propagation can be identified from pre-

vious studies of lock-exchange flows: (a) the traditional inertia-dominated regime characterized

by a horizontal interface in the middle and a constant front velocity; (b) an intermediate regime

where velocity decreases due to drag and the interface is no longer perfectly horizontal; and

(c) a drag-dominated regime marked by a linear interface and decreasing velocity. Exchange

flows in the first scenario have traditionally been treated as “blocks,” where the longitudinal

cross-section is treated as rectangular (top image in Figure 2-1). In contrast, exchange flows

in the third scenario have a triangular cross-section (bottom image in Figure 2-1). One would

anticipate actual flows to fall within the continuum of possible interface shapes between the

two extremes.

2.1 Energy Balance

In modeling exchange flows in the linear interface regime, it is clearly more appropriate to

assume a linear velocity profile than the traditional block flow profile, which assumes a constant

velocity in each layer. A modified energy balance with a linear velocity profile assumption is

presented below as an alternative to Deardon (2003)’s model of flows propagating through a
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Figure 2-1: Three-dimensional sketch of the tank and the definition of the key parameters
included in the mathematical models. H is water depth; L is the longitudinal length of the
interface; B and Ltank are the width and length of the tank, respectively; and ρ1 and ρ2 are
the density of the two fluids. Top and bottom figures are associated with the block flow and
linear velocity profile assumptions, respectively. Not to scale.

canopy with a block interface profile.

The Cartesian coordinate system is defined with its origin (x = z = 0) at the bottom of the

tank. The x-axis is aligned with the direction of propagation of the undercurrent and the z-axis

is in the vertical direction normal to the bottom of the tank, where z = H is the free surface.

At time t, the potential energy in the system is the linear sum of the potential energy in

each fluid:

PE (t) = g
1

6
LH2B (ρ1 + 2ρ2) + g

(Ltank − L)H2B

4
(ρ1 + ρ2) (2.1)

where Ltank and B are the total length and width of the tank, respectively, H is the water
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depth, ρ1 (> ρ2) and ρ2 are the densities of the two fluids, and L(t) is the longitudinal length

of the interface between the two fluids (Figure 2-1). The time dependence of PE(t) comes

entirely from L(t).

The total kinetic energy at time t is:

KE (t) =

Z H

0

1

2
ρBLu2dz (2.2)

In this thesis, the flow is assumed to be purely horizontal. Accordingly, the velocity, u, is

treated as a horizontal scalar term. Although vertical speeds may be induced by the formation

of billows along the interface [Lowe et al., 2002], this is not a concern in the present study, as

the presence of vegetation has been observed to suppress any observable non-uniformities along

the interface [Deardon, 2003]. In the absence of turbulence along the interface, the horizontal

flow assumption is appropriate everywhere in the tank, except near the toe of the exchange flow

where the interface slope is the sharpest and fluid moving along the interface has the greatest

vertical velocity component [e.g., Figure 6, Kneller et al., 1999; Lowe et al., 2002; Figure 7,

Middleton, 1966]. Note that the assumption that the vertical component of the velocity is

small is more appropriate for runs where the interface is approximately linear, and is the least

appropriate when the run has a block interface profile. Preliminary observation indicates that

fluid in front of the leading edge of the undercurrent is stationary. Then, by conservation of

mass, there must be vertical movement of water at the toe. In an ideal block flow, the vertical

velocity must equal longitudinal velocity immediately in front of the toes. In contrast, in a

predominantly linear interface, the displaced fluid flows along the interface at an angle. Then,

assuming that ambient fluid flows upward along the interface as the undercurrent propagates

into it, the vertical component of the velocity immediately in front of the undercurrent may be

described as v = u sin θ where the angle between the interface and the bed is θ.

A linear velocity profile assumption yields:

u (z) = 2utoe

µ
1

2
− z

H

¶
(2.3)

Applying the Boussinesq assumption
³
the maximum (ρ1−ρ2)

ρ is 0.05
´
and Equation 2.3 to Equa-
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tion 2.2, the total kinetic energy can be expressed as:

KE (t) =
ρLHBu2toe

6
(2.4)

where ρ is the mean density of the two fluids. The total energy in the system at any given

time is the sum of the kinetic and potential energy of the system:

E(t) =
ρLHBu2toe

6
+ g

LH2B

6
(ρ1 + 2ρ2) + g

(Ltank − L)H2B

4
(ρ1 + ρ2) (2.5)

The rate of change in the total energy of the system can be evaluated from Equation 2.5:

∂E(t)

∂t
=

ρHB

6

∂
¡
Lu2toe

¢
∂t

− BH
2g (ρ1 − ρ2)

12

∂L

∂t
(2.6)

The only time-dependent variables are L and utoe. Equation 2.6 can be simplified by substi-

tuting ∂L
∂t = 2utoe:

∂E(t)

∂t
=

ρHB

3
utoe

·
L
∂utoe
∂t

+ u2toe

¸
− BH

2g (ρ1 − ρ2)

6
utoe (2.7)

Assuming quasi-steady conditions, ∂utoe
∂t ¿ u2toe

L , the above equation simplifies to:

∂E(t)

∂t
=

ρBH

3
u3toe − g

BH2 (ρ1 − ρ2)

6
utoe (2.8)

The validity of this assumption of quasi-steady conditions is explored in Appendix B with

experimental observations.

The time rate of change of the total energy in the system must equal energy dissipation.

Assuming that energy dissipation only arises from drag on the stems,

∂E(t)

∂t
= −Du (2.9)

where D = 1
2CDρu

2aHBL is the total drag force required to move adBL stems through a viscous

fluid with velocity u, a is the frontal area per unit volume, and d is the stem diameter. Let us
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assume that CD and a are independent of z. Then:

Du =
1

2
CDρaBL

Z H

0
u3dz (2.10)

The linear velocity profile assumption (Equation 2.3) describes the depth-dependence of u.

Substituting Equation 2.3 into Equation 2.10 and integrating over the depth yields:

Du =
1

8
CDρaBLu

3
toeH (2.11)

Substituting Equations 2.8 and 2.11 into Equation 2.9 yields:

u2toe +
3CDaL

8
u2toe − g

(ρ1 − ρ2)

ρ

H

2
= 0 (2.12)

This quadratic equation can be solved for velocity:

utoe = ±2
s

gH

8 + 3CDaL

(ρ1 − ρ2)

ρ
(2.13)

The energy balance derivation for the block flow regime is identical to this derivation except

for the difference in the z-dependence of the velocity. Readers are referred to the derivation

presented in Deardon, 2003. The equivalent solution for toe velocity under the block flow

assumption is:

utoe = ±
s

gH

4 + 2CDaL

(ρ1 − ρ2)

ρ
(2.14)

2.2 Momentum Balance

Because the energy balance assumes an interface shape, it cannot be used to predict the interface

shape, but only the velocity at z = 0. The interface can be modeled through conservation of

momentum, which does not make any a priori assumptions about the interface shape.

The Navier-Stokes equation in the longitudinal direction can be written as:

du

dt
bi = ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
= −1

ρ

∂P

∂x
− CDau

2

2
+ ν

∂2u

∂z2
(2.15)
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where P is the pressure, ν is the kinematic viscosity, and v and w are lateral and vertical

components of the fluid velocity. Several assumptions can be made that justify the omission

of some of the terms in Equation 2.15. First, viscous and turbulent stresses can be neglected

because their magnitudes are insignificant relative to the drag term for flow conditions examined

in this study. (An order-of-magnitude comparison of the viscous stress term and the drag term

is presented in Appendix A.) Second, the ∂
∂y term can be omitted when the longitudinal

length scale is significantly greater than the lateral scale, i.e., L > B. Additionally, because

the forcing mechanism is uniform in y, the resulting flow is expected to be uniform in y as well.

Third, w can be assumed to be negligible relative to u (t) based on a dimensional analysis. The

continuity equation for two-dimensional flow can be expressed as: ∂u
∂x +

∂w
∂z = 0, with

∂u
∂x scaling

as ∂u
∂x ∼ u(t)

L(t) . Then, the vertical component of the velocity scales as w ∼ u(t)
L(t)H. Accordingly,

w ¿ u if HL ¿ 1, i.e., when the horizontal length scale is greater than the vertical scale. Note

that, conversely, the assumption of horizontal flow is invalid where H & L. Fourth, and last,

∂u
∂t is removed by assuming quasi-steady conditions, as discussed in Section 2.1.

By applying these assumptions, Equation 2.15 can be simplified to:

u
∂u

∂x
= −1

ρ

∂P

∂x
− CDau

2

2
(2.16)

The familiar hydrostatic equilibrium assumption is applied to describe the horizontal pressure

gradient in terms of the density gradient. This entails the assumption that vertical acceleration

is negligible except for gravitational acceleration, which is consistent with the horizontal flow

assumption. Where there is a significant vertical velocity component, however, the hydrostatic

assumption is inappropriate. Substituting ∂P
∂z = −ρg into Equation 2.16 yields:

u
∂u

∂x
= −1

ρ

·
ρg

∂H

∂x
+ g (H − z) ∂ρ

∂x

¸
− CDau

2

2
(2.17)

where z (x, t) is the distance of the interface from the bottom. The longitudinal density

gradient can be scaled as ∂ρ
∂x (t) ∼ ρ2−ρ1

L(t) . Then,

u
∂u

∂x
= −g

ρ

·
ρ
∂H

∂x
− (H − z) (ρ1 − ρ2)

L (t)

¸
− CDau

2

2
(2.18)
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If the flow is in a closed basin, mass conservation dictates that there be no net flow, i.e.,RH
0 u dz = 0, which then yields u = 0 at z = H

2 . That is, the interface at x = 0 is always

at z = H
2 . Implicit in this derivation is the Boussinesq approximation, which assumes that

variations in density are small enough that they only affect buoyancy. Similarly, variations

in H are assumed to be insignificant for mass conservation purposes, i.e., no net-flux occurs.

This condition can be expressed mathematically as:

ρ
∂H

∂x
− H
2

(ρ1 − ρ2)

L (t)
= 0 (2.19)

By scaling the inertial term as u∂u
∂x ∼ u2

L(t) and applying Equation 2.19, Equation 2.18 can

be rewritten as:
u2

L (t)
+
CDau

2

2
= g

(ρ1 − ρ2)

ρL (t)

µ
H

2
− z
¶

(2.20)

The corresponding solution for the interface velocity u (z, t) is:

u (z, t) = ±
s

2g

(2 +CDaL (t))

(ρ1 − ρ2)

ρ

µ
H

2
− z
¶

(2.21)

and describes the velocity profile as a function of depth. According to our definition of the

Cartesian coordinates, the positive solution corresponds to the undercurrent. In addition, this

equation can be evaluated at z = 0 to describe the toe velocity:

utoe (t) =

s
gH

(2 + CDaL (t))

(ρ1 − ρ2)

ρ
(2.22)

2.3 Comparison of the Models

The three models can be compared by examining the respective solutions for the toe velocity.

Equations 2.13, 2.14, and 2.22 reveal that for any set of conditions, toe velocity predictions

based on the energy balance assuming a linear velocity profile are greater than or equal to

those based on the momentum balance. These predictions are in turn strictly greater than

that by the energy balance assuming a block profile. Thus, the momentum balance predic-

tions, by definition, always fall between the two energy balance predictions. This relationship
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between the energy balance predictions arises because a flow with a linear interface must elon-

gate to maintain the same flux, whereas a flow with a block interface may maintain its shape.

Consequently, the toe propagation must be faster for a linear interface.

With no drag, both the energy balance solution assuming a linear velocity profile (Equation

2.13) and the momentum balance solution (Equation 2.22) for the toe velocity collapse to:

utoe (a = 0) = ±
s
g
(ρ1 − ρ2)

ρ

H

2
(2.23)

On the other hand, the energy balance assuming a block profile becomes:

utoe (a = 0) = ±
s
g
(ρ1 − ρ2)

ρ

H

4
(2.24)

The lack of time-dependence is consistent with previous observations of unobstructed lock-

exchange flows [Simpson, 1997]. Also, Equation 2.24 agrees with the traditional result for

unobstructed lock-exchange flows, where uniform toe velocity is assumed in the two fluids [e.g.,

Yih, 1980]. This solution agrees well with previous experimental observations. For example,

the solution:

utoe = 0.462

s
g

µ
ρ1 − ρ2

ρ

¶
H (2.25)

was determined empirically, where ρ is the average density of the salt water and freshwater

[Keulegan, 1957].

It is less obvious why, in the absence of vegetation (a = 0), the momentum balance toe

velocity solution agrees with that for the linear velocity profile assumption and not the block

flow assumption. This may be explained in terms of differences in the suitability of the

hydrostatic assumption made in the momentum balance derivation. As stated above, the

hydrostatic assumption implies horizontal flows: since w = 0 at the bottom of the tank, if the

flow velocity has a vertical component at some point, then there is a finite vertical acceleration.

Obviously, lock-exchange flows in a finite tank must involve vertical fluid motion and, as stated

earlier, vertical flow is most prominent at the toe where the interface slope is the sharpest.

Because of their geometry, however, vertical flow is more significant for block flows than for

linear velocity profile flows for a given propagation speed. In idealized block flows, the slope of
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the interface is infinite everywhere except at z = H
2 , where the slope is zero. Therefore, fluid

motion at the interface immediately in front of the toe (the lighter fluid near the bottom and

heavier fluid near the free surface) is predominantly vertical. In contrast, a linear interface

has a constant slope, and the lighter fluid moves at an angle along the interface. As such,

the vertical acceleration is smaller than that for the block flow for a given toe velocity. In

summary, block flows deviate farther from the hydrostatic assumption. This argument offers a

physical explanation as to why the momentum balance solution approaches that for the linear

velocity profile energy balance model in the limit of a = 0.

Equations 2.13, 2.14, and 2.22 provide means of predicting the toe velocity of an exchange

flow given the density difference between the two fluids, water depth, stem density, and drag.

While the first three parameters are easily measurable in the environment, little data are avail-

able for drag in arrays in the Reynolds number and stem density ranges relevant to the present

study. Thus, a method for expressing CD, which is known to be a function of velocity, is nec-

essary to predict exchange flow behavior. In the following section, the energy and momentum

balance derivations presented earlier in this chapter are repeated for the special case where CD

is inversely proportional to the velocity.

2.4 Application of a Linear Drag Law Assumption to the The-

oretical Models

If CD ∝ u−1 a constant of proportionality can be defined as C 0 ≡ CDu. Because the velocity-
dependence of drag is then linear on a log-log scale, this scenario will be referred to as the

“linear drag” regime.

2.4.1 Linear velocity profile energy balance model

Replacing CD with C0
u ,the total drag force can be rewritten as:

Dlinear =
1

2
C0ρuaHBL (2.26)

Then, Equation 2.10 becomes:
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Dlinearu =
1

2
C 0ρaBL2

Z H
2

0
u2dz (2.27)

Replacing u with the linear velocity profile assumption (Equation 2.3) to capture the depth-

dependence of the velocity, Dlinearu becomes:

Dlinearu = C
0ρaBL

H

6
u2F (2.28)

Applying Equation 2.28 to Equation 2.9 yields the quadratic equation:

u2toe +
C0aL
2
utoe − g (ρ1 − ρ2)

ρ

H

2
= 0 (2.29)

which can be solved for utoe:

utoe = −C
0aL
4

+
1

2

sµ
C 0aL
2

¶2
+ 2g

(ρ1 − ρ2)

ρ
H (2.30)

2.4.2 Momentum balance

The linear drag law assumption yields the modified momentum balance:

u2

L (t)
+
C 0au
2
− g (ρ1 − ρ2)

ρL (t)

µ
H

2
− z
¶
= 0 (2.31)

The solution for the interface velocity then becomes:

u (z, L (t)) = −C
0aL
4

+

sµ
C 0aL
4

¶2
+ g

(ρ1 − ρ2)

ρ

µ
H

2
− z
¶

(2.32)

and the solution at z = 0 is:

utoe (L) = −C
0aL
4

+
1

2

sµ
C 0aL
2

¶2
+ 2g

(ρ1 − ρ2)

ρ
H (2.33)

Note that with the linear drag law assumption, the toe velocity solutions in the linear velocity

profile energy balance and momentum balance models are identical with or without vegetation.
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When drag dominates, i.e., u
2

L ¿ C0au
2 , Equation 2.31 approaches:

C 0au
2
− (ρ1 − ρ2)

ρ

g

L

µ
H

2
− z
¶
= 0 (2.34)

which yields:

u (z, L) =
2g

C 0aL
(ρ1 − ρ2)

ρ

µ
H

2
− z
¶

(2.35)

Note that this solution is equivalent to Equation 2.3, and the velocity profile predicted from

the momentum balance, in the linear drag regime and at the limit where inertia is negligible,

exactly matches the assumed profile in the linear velocity profile energy balance model.

In conclusion, the solution for toe velocity derived from the momentum balance matches that

derived from a linear velocity profile energy balance if a linear drag law is assumed. Otherwise,

the two models match only in the absence of vegetative drag.

2.4.3 Drag coefficients in random arrays

As detailed above, the mathematical models employed in this study require the stem drag

coefficient as an input parameter to predict the exchange flow velocity. Unfortunately, not

enough is known about CD in arrays for a value to be estimated with great confidence. CD

for isolated cylinders may be estimated by applying the observed toe velocities to the empirical

equation [White, 1974]:

CD ≈ 1 + 10.0Re−2/3 (2.36)

However, complications arise for stem drag in an array of cylinders, which is more relevant to

the present study. Nepf (1999) observed previously that drag in an array is suppressed for

Re > 200, a dependence that is not captured in White (1974)’s equation. In contrast, the

presence of other stems appears to enhance drag in low Re ranges. An expression for cylinder

drag in a random array of 5% solid volume fraction for Re < 35 was obtained from numerical

simulation results [Figure 26, Koch & Ladd, 1997]:

CD ≈ 2

Re
(12 + 1.07Re) (2.37)

34



1

10

100

1000

0.1 1 10 100 1000
Re

C
_D

Figure 2-2: Re-dependence of the cylinder drag coefficient, CD. Solid line represents an ex-
pression for CD in a random cylinder arrays with a solid volume fraction of 5% presented in
Koch & Ladd, 1997 (Equation 2.37). Perforated line represents drag for an isolated cylinder
(Equation 2.36) from White, 1974.

which predicts a higher CD than Equation 2.36 for Re < 35, as shown in Figure 2-2. A solid

volume fraction of 5% is equivalent to a stem density of a = 0.1 cm−1 for stems used in this

study, and falls within the range of array conditions investigated in the laboratory.

In the Re range where both equations are valid, the difference in the CD values obtained

from these equations can be treated as a measure of uncertainty in the CD. However, because

Re > 35 in most scenarios, Equation 2.37 cannot be used to provide bounds on the drag in

most of the flow conditions covered in this study.
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Chapter 3

Experimental Methodology

As stated previously, lock-exchange flows is one type of gravity current that have been studied

extensively through both laboratory experiments and numerical modeling. These flows can be

reproduced easily in a laboratory tank by installing a removable partition in the middle. The

two reservoirs in the tank are filled with fluids of different densities. When the partition is

removed and the two fluids come in contact with each other, the resulting horizontal density

gradient generates an exchange flow. The heavier fluid propagates towards the lighter fluid

along the bottom of the tank and the lighter fluid compensates for this movement and propagates

along the free surface in the opposite direction [Simpson, 1997].

The purpose of the experiments presented in this section was to estimate the frontal velocity

and interface slope for a range of conditions. Specifically, the stem density and horizontal

density gradient were varied between experimental runs to investigate the sensitivity of exchange

flows to the presence of emergent vegetation under different flow velocities. The density

gradient was generated by filling one reservoir with salt water and the other with tap water.

By increasing the amount of salt added, a range of density differences could be tested.

3.1 Experimental Configuration

3.1.1 Tank and array characteristics

All experiments were conducted in a 71 in × 618 in × 8 in glass-walled tank with a horizontal

metal bottom (Figure 3-1). The tank was separated into two reservoirs by a removable 3
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±0.5mm thick vertical partition made of plastic that was positioned approximately 3514 in from
one end of the tank.

71”

8”

35 1/4”

Perforated sheets to hold dowels
Dowels

z

x y

Removable partition

71”

8”

35 1/4”

Perforated sheets to hold dowels
Dowels

z

x y

71”

8”

35 1/4”

Perforated sheets to hold dowels
Dowels

z

x y

Removable partition

Figure 3-1: Schematic of the experimental tank and dowel arrays. Dimensions are in inches.
Not to scale.

The Cartesian coordinate system used in this thesis is defined with its origin at the center

of the tank and level with the perforated sheet surface that is in contact with the water, as

illustrated in Figure 3-1. That is, all measurements of depth are relative to the perforated

sheets and not the bottom of the tank. The x-axis is aligned with the direction of the under-

flow (longitudinal) and the z-axis is in the vertical direction normal to the bottom of the tank.

This tank is modeled as a two-dimensional system.

Rigid maple dowels, d = 0.6 cm in diameter, were used as experimental models of aquatic

vegetation. The dowels spanned the water column and penetrated the free surface at all times.

Perforated polypropylene sheets with a density of 4 holes per in2, in which these dowels were

inserted, were placed at the bottom of the tank as a means of holding the dowels in place. Each

sheet was 14 in thick; two of these sheets were overlapped in each reservoir creating a
1
2 in-thick

base for the dowel array. The circular holes were 1
4 in in diameter with staggered centers. In

addition, as depicted in Figure 3-2, dowels were also glued onto the elevated portion at the

middle of the tank to minimize the gaps in the dowel array due to the presence of the pieces of

plastic that create the partition slot.

Under high density gradient and low stem density conditions, the exchange flow lifts the

perforated sheets and the dowel array, which interferes with the experiments [Deardon, 2003].
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Therefore, during experimental runs under such conditions, the dowel array was taped to the

sides of the tank to keep it in place. This taping did not interfere with the experiment in any

way.
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Figure 3-2: Sketch of the vertical partition at the middle of the tank. Dimensions are in cm,
with an uncertainty of ±0.05 cm. The top picture is a side view and the bottom picture is a
cross-sectional view. Because perforated sheets could not be placed on the elevated portion at
the middle of the tank, dowels were glued directly onto the plastic blocks that hold the partition
at the bottom of the tank. Not to scale.

3.2 Experimental Procedure

3.2.1 Experimental scenarios

A range of stem densities and density gradients were reproduced in the laboratory by changing

the total number of stems in the tank (N) and the amount of salt added (msalt). One reservoir
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was filled with salt water, the density of which (ρ1 [kg / l]) was a function of msalt and tem-

perature. The other reservoir was filled with unaltered tap water, and its density (ρ2 [kg / l])

varied only with temperature. The density difference between the two fluids is represented by

the reduced gravity
£
cm s−2

¤
:

g0 ≡ g (ρ1 − ρ2)

ρ
(3.1)

where g = 9.8×100 cm s−2 is the gravitational acceleration and ρ is the mean of ρ1 and ρ2. Its
fractional uncertainty was estimated from the uncertainty in the density measurements using

the Kline-McClintock (1953) uncertainty estimation method.

The stem density is described by the frontal area per unit volume
£
cm−1

¤
:

a ≡ Nd
A

(3.2)

where A
£
cm2

¤
is the horizontal footprint of the tank and d [cm] is the dowel diameter. The

fractional uncertainty of a is ±0.005 based also on the Kline-McClintock (1953) method and
assuming that the uncertainty in d is negligible. The estimated uncertainty in the mean water

depth (H [cm]) is ±0.6 cm, based on the maximum difference observed between the measured

depths in the two reservoirs. The source of this discrepancy between the water depths in the

two reservoirs is discussed in detail in the description of the experimental procedure.

The complete set of measurements taken during the experiments is tabulated in Chapter

4 (Table 4.1). Additionally, the relevant parameters that characterize the flow conditions in

each of the experimental runs are summarized in Table 3.1. Note that the g0 values presented

here have been corrected for temperature, and the density values used to calculate them were

slightly different from the uncorrected measurements presented in Table 4.1.

3.2.2 Comparison of flow and canopy conditions in the laboratory and the

environment

Experimental conditions in this laboratory study were selected to reproduce characteristics of

aquatic canopies and exchange flows that occur in the environment. Plant rigidity and height
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are irrelevant in the present study, which is restricted to rigid, emergent vegetation. Therefore,

the aquatic vegetation is characterized by its diameter and stem density. The plant diameter

is typically on the order of 10−1 to 1 cm in the environment [e.g., Leonard & Luther, 1995].

Accordingly, rigid circular dowels d = 0.6 cm in diameter were used in this study to model

cylindrical wetland plants such as Spartina alterniflora. The dimensionless stem Reynolds

numbers
¡
Re = ud

ν

¢
calculated in this project are computed using this value for d. In all

calculations, u is the longitudinal velocity of the denser fluid and ν is the mean kinematic

viscosity of the two fluids. Stem densities in the environment are commonly on the order of

ad = 0.01 − 0.1 [e.g., Kadlec, 1990; Kalff, 2002], where ad is the dimensionless stem density

parameter. Obviously, the lower limit on the stem density is ad = 0, which indicates the

absence of vegetation. The range of stem densities examined in this thesis, a = 0.0009 cm−1

to 0.115 cm−1, is equivalent to ad = 0.0005 − 0.07, which falls within the range observed in
nature.

Flow can be characterized by its depth and velocity. Depths of vegetated waters vary

significantly, but are typically on the order of 1 to 10 cm in natural aquatic systems [Kadlec,

1990; Leonard & Luther, 1995]. In this thesis, water depths were on average H = 13.5 cm.

Velocities of exchange flows also vary significantly depending on the morphology of the aquatic

system and the local conditions. Reported velocities for flows induced in shallow regions

of a lake by spatial variations in temperature vary from 0.5 to 15 cm s−1 [e.g., Kalff, 2002;

MacIntyre et al., 2002; Stefan et al., 1989]. Frontal velocities of up to 10 cm s−1 (Re = 600)

were investigated in this study. Hence, the flow conditions recreated in the laboratory were

within the range of conditions observed in nature.

As described in Chapter 1, density gradients are often driven by a gradient in salinity or

temperature in natural systems. In freshwater systems, differential heating and cooling can

generate spatial variability in temperature. For example, density gradients on the order of

10−8 kg cm−1 l−1 were observed between a littoral wetland and a lake based on temperature

differences of 1−2 ◦C [Andradóttir, 2000]. Salinity gradients typically develop across freshwater-
salt water interfaces such as is found in estuaries and fjords [e.g., Kalff, 2002; Simpson, 1997],

and generally create larger density gradients. For example, density differences observed in

oceans are 3% or less [Simpson, 1997]. The fractional density differences in the present study
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ranged from 1% to 5%, which are similar to salinity gradients found in nature. Consequently,

given that the length scale of the laboratory tank is several orders of magnitude smaller than

that in nature, one would anticipate the density gradient in the experiments to be significantly

larger than values typically observed in the environment. Indeed, the density gradients in the

present laboratory experiments were on the order of 10−6 to 10−3 kg cm−1 l−1.

3.2.3 Experimental procedure

The lock-exchange experiment requires two fluids of different densities. As stated above,

unaltered tap water and salt water were used as the light and heavy fluid, respectively. The

salt water was dyed with food coloring for flow visualization.

The initial step of the procedure was to prepare the dyed salt water fluid. For each run

(Table 3.1) approximately 18 l of tap water and msalt (CAS number: 7647-14-5) were added to

a 20±0.2 l plastic carboy. Then, approximately 2−10 g of food dye was weighed and carefully
rinsed into the carboy with tap water. Black dye was used in most of the experiment runs as it

appeared to produce the best contrast in black-and-white images. The carboy was filled with

tap water to the 20 l mark. Next, the carboy was placed on its side and rolled along the table

until the salt had dissolved completely. Visual observation confirmed that observable amount

of salt did not remain at the bottom of the tank, undissolved. Rolling the carboy for 2 minutes

was sufficient for solutions with less than 400g of salt. In contrast, solutions with more than

1000 g of salt were left in the carboy overnight to allow the salt to dissolve completely.

Once the solution was well-mixed, the density of the dyed salt water from the carboy (ρ1)

and tap water (ρ2) were measured using a hydrometer to ±0.00025 kg l−1 (half of the smallest
increment on scale). For tap water and salt water with density less than 1.040 kg l−1, a VWR

0.990 − 1.040 kg l−1 hydrometer (Cat. number 34780-020) was used. A ERTCOTM specific

gravity hydrometer with a range 1.000 to 1.070 (Cat. number 2560) was used to measure the

density of salt water when it exceeded 1.040 kg l−1. Because density is a function of tem-

perature, the fluid temperature was also measured to ±1 ◦C using a thermometer immediately
after the density measurement. Note that the density of the fluids was not measured in runs

conducted before July 10, 2003. However, because the density of each fluid in each run was

ultimately determined by a linear regression on the density and temperature measurements for
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each salt mass, the lack of density measurements for runs 6, 8, 9, 11, and 12 were not critical.

The temperature corrections of density measurements are discussed in detail in Section 3.4.

The carboy was emptied into the reservoir that is to the right from the camera’s perspective

(the side corresponding to negative x-coordinates in Figure 3-1). The other reservoir was filled

simultaneously with tap water at a similar rate.

Once the dyed salt water was completely emptied into the reservoir, the water level of the

tap water was adjusted to insure that the fluid level in the two reservoirs were the same. This

adjustment was made by adding and removing the tap water until its free surface was aligned

with that of the dyed salt water, taking advantage of the fact that the free surface of fluids are

always horizontal. This alignment of the free surfaces was performed in experiments conducted

after October 29th, 2003 (see Table 4.1 for a list of all experimental runs and the corresponding

dates). In prior runs, the water level was adjusted by filling the tap water reservoir until both

reservoirs had the same measured water depth.

Adjustment of water level was necessary because the free surfaces were discontinuous across

the partition when the water level was determined by setting the water depths to be equal

between the reservoirs. Under close inspection, it was observed that when the free surface

in the two reservoirs were aligned, the water depth, the distance between the array sheet and

the free surface, differed not only between the two reservoirs, but varied within each reservoir

as well. This variation is attributed to the non-uniformities in the perforated sheets that are

placed at the bottom of the tank. These flexible sheets do not lie perfectly flat at the bottom of

the tank because of the sealant around the perimeter of the tank bottom and the sealant used

to hold the plastic blocks that make the slot for the partition in place. Indeed, the elevation of

the perforated sheet above the bottom of the tank varies by about 5mm in each reservoir. For

the purposes of mathematical analysis, water depth was assumed to be constant at the mean

water depth with an uncertainty of ±0.6 cm to account for the spatial variations in the water

depth. The water depths were measured using a ruler to ±0.1 cm.
The fluids were left undisturbed for approximately 5 minutes to allow them to equilibrate

with the room temperature prior to measuring their temperature. However, persistent differ-

ences in temperature between the fluids in the two reservoirs were observed in some runs even

after half an hour. The cause of the temperature differences, which were as large as 3 ◦C in
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some runs, could not be determined. The temperature in both reservoirs were recorded using

a partially-submerged thermometer. The uncertainty in the temperature measurements were

±1 ◦C.
Each experimental run consisted of removing the partition in the middle of the tank and

capturing the propagation of the two fluids into each other’s reservoirs with the CCD camera.

An experimental run ended when the front was approximately one water depth away from the

end of the tank. This procedure was repeated for all experimental runs tabulated in Table 3.1.

3.3 Image Processing

The quality of the captured images was very sensitive to lighting. Four 40W, 48 in fluorescent

lamps were held horizontally behind the tank on clamp stands so that the tank was in between

the camera and the lights (see Figure 3-3). Two lights were positioned behind each reservoir:

one just below the free surface and one just above the perforated sheet. A layer of thin, white

craft paper was taped onto the side of the tank to diffuse the light and to provide a uniform

background in the images. This lighting format was only developed at the end of October

2003; experiments prior to October 28, 2003 (run numbers 20 and less) were conducted under

room lighting only.

camera
tankfluorescent 

lights

white sheet 
of paper

camera
tankfluorescent 

lights

white sheet 
of paper

Figure 3-3: Sketch of the relative positions of the lights and camera with respect to the tank.
Not to scale.

All experiments were recorded using a Pulnix TM-9701 CCD camera mounted on a tripod.

The camera and tripod were aligned visually to the tank and the free surface so that the camera
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axes were parallel with the free surface and the edges of the tank. Both the aperture and the

capture rate varied between runs. The amount of light that passed through the tank was

sensitive to the stem density, with dowels acting as obstructions between the light source and

the camera. After the aperture was set to maximize the contrast between the dowels and the

dyed fluid, the capture rate was selected for each experimental run by comparing the specific

experimental scenario to that of prior experiments and choosing a rate that was likely to capture

approximately 10 images during the course of the experiment. However, the maximum capture

rate available was 2 s per frame. With this restriction, only 6 images could be captured during

the highest density difference experiments.

A sequence of 640 × 480 bitmap images were captured by the CCD camera at the spec-

ified rate and transferred to a PC with a Windows NT operating system using the software

FlashBusTM MV Version 3.91 09/07/00 by Integral R° Technologies, Inc.. Image processing

was conducted entirely using MATLAB R° 6.5, the Optimization Toolbox 2.2, and the Image

Processing Toolbox 3.2 on a Dell Inspiron 8200 notebook with a Windows XP operating system.

First, the bitmap images were converted to binary images using a manually selected thresh-

old that appeared, by visual inspection, to most accurately identify the pixels corresponding

to the dyed fluid as black. This threshold varied between runs due to the sensitivity of the

images to small changes in lighting and stem densities. The position of the interface in each

image was extracted and stored in MAT files (*.mat) by a code that was modified from one

developed by Landry (2003). This code found the position closest to the free surface where

the pixels first changed their value from 1 (white) to 0 (black) or vice versa in each of the 640

columns. In this manner, the interface position in each column was converted to data points,

each with a x− and z− coordinate.

The presence of dowels greatly affected the appearance of the interface in the images. Its

most significant impact was the spatial variation in the lighting intensity that resulted from

dowels blocking the light along its longitudinal position. As can be seen in Figure 3-4, the

interface position appears lower where there are no dowels behind it because of the greater

light intensity in such positions. Because the data analysis assumes that the interface position

(z-coordinates of the data points) is monotonously decreasing with increasing x, data points

either in the parts where light intensity is reduced because of dowels or in the parts without
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Figure 3-4: Example of a bitmap image taken during an experimental run. This image was
taken during run 22: a = 0.0428 ±0.0002 cm−1 and g0 = 7.5± 0.5 cm s−2.

dowels had to be removed to ensure that the data points that were analyzed were obtained

with similar background light intensities. Which points were removed varied between each

run, and the method that removed the least number of data points were chosen. Where large

gaps in the interface formed as a result of this procedure, data points were added manually so

that the data points were as evenly distributed along the interface as possible. The addition

and removal of data points were performed manually using a MATLAB R° code developed by

Landry (2003).

Lastly, the images from each run were spatially calibrated by scaling the minimum and

maximum z-coordinates in all of the images in each run with the corresponding mean water

depth. Using the resulting spatial calibration, the interface positions were translated from pixels

into units of length [cm].

3.4 Analysis

3.4.1 Temperature corrections to density measurements

As explained previously, the density of the dyed salt water and tap water were measured prior

to each experimental run using a hydrometer. However, the temperatures of the fluids —
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hence their densities — often changed while the fluids settled in the tank after the density

measurements were taken. Linear regressions were performed on density measurements for each

msalt value with more than one measurement: msalt = 0g (tap water), 10.00 g, 50.00 g, 100.00 g,

190.00 g, and 300.00 g. Note that the linear regression for tap water and msalt = 100.00 g

solution was performed prior to runs 21, 23, 26-29. Note also that density and temperature

measurements not associated with runs that were analyzed in this study were also included

in the linear regressions. Linear functions were also fitted to measurements for salt water

with msalt = 500.00 g, 502.43 g, and 503.38 g (Equation 3.6) and msalt = 750.00 g and 750.76 g

despite the slight inconsistencies in the amounts of salt added. From observation, the minor

differences in salt masses appear to have had a negligible impact on the linear regressions, which

justifies the inclusion of measurements for slightly different salt masses in the linear regressions

for msalt ∼ 500 g and 750 g. Also, differences in the mass of dye added was assumed to have

had negligible impact on the density, which is consistent with Deardon (2003)’s observations.

Equations 3.3 - 3.6 describe the best-fit lines in the least-squared sense through the density

and the corresponding temperature measurements that were made for msalt values with four

or more density measurements. Temperature T is in units of [◦C] and density ρ1 is in units of£
kg l−1

¤
.

ρ1 (msalt = 0.00 g) = −1.3467× 10−4T + 1.0001 r2 = 0.86 (3.3)

ρ1 (msalt = 10.00 g) = −1.3998× 10−5T + 0.9987 r2 = 0.0025 (3.4)

ρ1 (msalt = 100.00 g) = −1.5784× 10−4T + 1.0046 r2 = 0.88 (3.5)

ρ1 (msalt ∼ 500 g) = −8.1822× 10−5T + 1.0185 r2 = 0.18 (3.6)

These linear regressions were then used to compute the temperature-adjusted densities of the

tap water and the dyed salt water in each run to correct for any changes in temperature that

occurred immediately before the runs. The slope of these linear regressions is consistent with

published work [UNESCO, 1987]. For example, a linear regression on density predictions for

water (msalt = 0.00 g) at linearly equally spaced temperatures in the range T = 5 ◦C to 25 ◦C

46



by UNESCO (1987)’s expression yields:

ρ (msalt = 0.00 g) = −1.48× 10−4T + 1.0011 r2 = 0.95 (3.7)

In contrast, robust linear regressions could not be derived for msalt values for which 3 or

less measurements were available. These were msalt = 50.00 g, 190.00 g, 300.00 g, 700.00 g,

750 g, 1000.00 g, 1393.80 g, and 1468.77 g. However, all twelve runs associated with these msalt

values (Table 3.1) experienced a temperature difference that was within the uncertainty range

of the thermometer. As such, the linear regressions obtained from the limited measurements

were used to estimate temperature-adjusted density values. For runs with msalt that were not

repeated (runs 1, 2, 16, and 17), temperature corrections were not made to the measurements.

The maximum difference in temperature observed during the preparation of any experi-

ment was 3 ◦C. This translates to a 0.04% density change in tap water. Figure 3-5 displays

hydrometer measurement data against their temperature and the corresponding linear regres-

sions. Note that not all density measurements taken during the experimental runs analyzed

were included in the linear regressions. The measurements taken in 2004 were excluded, as

the analysis was conducted prior to those runs. Furthermore, some of the measurements that

were included in the linear regressions were made during experiments that were later excluded

from analyses due to technical problems with imaging. Because these problems did not affect

density measurements in any way, the density data were included in the linear regressions to

improve the accuracy of the regressions.

3.4.2 Computation of the linear drag constant C 0 from the images

In Chapter 2, a constant of proportionality C 0 ≡ CDu was defined for the linear drag regime.
A best fit C 0 was computed for pairs of consecutive images in each experimental run that

exhibited a linear interface and non-inertial front propagation by the momentum balance model.

Because C 0 is independent of Re and z, the parameter was evaluated in a given run based on

the propagation of the interface between pairs of images, as described below.

Because the interface rotates about z = H
2 , the velocity near the middle of the interface is

very small and the fractional uncertainty correspondingly large. Also, the interface was clearer
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Figure 3-5: Temperature-dependence of density measurements. Key indicates msalt. Verti-
cal bars represent uncertainty in the hydrometer readings: ±0.00025 kg l−1. Horizontal bars
represent uncertainty in the temperature readings: ±1 ◦C. The four solid lines represent the
linear regressions for msalt = 0.00g, 10.00g, 100.00g, 500g (Equations 3.3 - 3.6).
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where dyed fluid was moving into clear water. Therefore, fitted data were restricted to z < H
4

to maximize the accuracy of the data.

Not all images available can be used to determine C 0. Because the toe position was required

to determine L, a necessary parameter in the momentum balance model, images in which the

presence of the stems interfered with the identification of the toe had to be neglected from the

analysis. Furthermore, to ensure that the initial disturbance from removing the partition and

the effects of the end of the tank do not manifest in the results, only images where the toe had

propagated a minimum of 1.5H but was more than H away from the ends of the tank were

considered.

The MATLAB R° code started at the fourth image (i = 4) and tested subsequent images

until an image with an extractable L that satisfied the condition 3H 6 L < 180 − 2H was

found. This image was now defined as icurrent. Then, the code searched images prior to the

present one for an image with an extractable L. To insure sensitivity, the search was restricted

to the three images prior to the present image. That is, the previous image i = icurrent−1 was
examined first. If L could not be determined, the code proceeded to the image i = icurrent− 2,
and then image i = icurrent − 3. If none of these three images satisfied the condition, the

process was repeated with the next image that has an extractable L until a pair of images

within 3 images of each other with known L were found. Then, the code calculated a C 0 that

best described the interface progression between the pair of images in the least-squares sense.

In the following description of this computation of C 0, the two images in the pair are referred

to as iprevious and icurrent.

First, the interface position in both images was determined. Because data points were not

necessarily available at the same depths in both images, the interface positions were interpolated

from the available data points. This was done by fitting a polynomial of degree 3 to the data

points in that image at z < H
4 and evaluating the polynomial at 10 specified depths.

Then, if L (icurrent) > L (iprevious), a C 0 that best predicted the interface position at the

10 specified depths was determined. The interface position was predicted by stepping from

image iprevious to icurrent with a given C 0. Starting at the interpolated interface position at

each of the specified 10 depths in image iprevious, the program stepped 60 times with a given

C 0 to predict the position of the interface in image icurrent. Note that doubling the number of
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time steps between images from 60 steps to 120 steps had negligible impact on the estimated

C 0: the difference in the two C 0 estimates as a fraction of their average ranged from −0.01%
to −0.29% across the runs. These differences are negligible compared to the variability in the

C 0 estimate within each run, with the standard deviation of C 0 estimates in individual runs

ranging from 5% to 44%. In each step, the velocities at the specified depths were calculated

using the solution for velocity u(z) derived from the momentum balance (Equation 2.32). The

expression for velocity in step n was:

u(z)n = −C
0aLn
4

+

sµ
C 0aLn
4

¶2
+ g0

µ
H

2
− z

¶
(3.8)

where L at step n was estimated by:

Ln = 2xn|z=0 (3.9)

xn|z=0 is the interface position at z = 0 for step n.
Then, the interface traveled a distance of ∆x(z)n = u(z)n×∆t where ∆t = ticurrent−tiprevious

60

was the time step between each incremental step. The new position of the interface was then

calculated to be:

x(z)n+1 = ∆x(z)n + x(z)n (3.10)

After n = 60 time steps the difference between the predicted and observed position was noted.

The entire process was iterated over a range of C 0 values with the initial guess at C 0 = 2 cms−1.

C 0 values were restricted to the range −0.5 cms−1 < C 0 < 30 cm s−1, which generously encom-
passed C 0 values that were anticipated based on previously published CD data. Moreover, an

increase in the specified upper limit of C 0 from C 0 < 30 cm s−1 to C 0 < 60 cm s−1 did not affect

the results in any way; this lack of sensitivity verifies that the chosen range for C 0 is conser-

vative. The value of C 0 giving the minimum difference between the observed and predicted

longitudinal position at the specified depths in the least-squared sense was chosen as C 0. In

this manner, a C 0 was determined for every pair of images analyzed in a run.

Figure 3-6 represents this algorithm graphically. In the example depicted in Figure 3-6,
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Figure 3-6: Schematic representation of the algorithm employed to determine C 0 values between
pairs of images. Each rectangle represents an image; the bold rectangle is the current image
for that pair of images. “X” indicates images from which the toe position, hence L, of the
front could not be extracted; the code neglected these images. The arrow indicates the pair of
images between which C 0 is determined.

the first image after i = 3 that has an extractable L is image icurrent = 5. The code searches

earlier images i < icurrent in descending order to find the closest image with an extractable L;

in this example image i = 2 is selected as the starting point. The code then determines the C 0

that best predicts the interface position in image i = 5. The code then proceeds to the next

image with an extractable L, icurrent = 6, and the process is repeated and a C 0 is estimated

between images i = 5 and i = icurrent. The next pair of images is images i = 6 and icurrent = 8,

because L could not be extracted from image i = 7. This procedure continues until the last

image in the sequence.
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run 
number

total number 
of stems, N

frontal area 
per unit 

volume, a
mass of salt 

added
reduced 

gravity, g'

uncertainty 
in g' as a 

fraction of g'
mean water 

depth, H
[stems] [stems/cm] [g] [cm/s2] [ ] [cm]

1 540 0.1155 1393.80 44.2 0.01 14.0
2 540 0.1155 1468.77 49.2 0.01 14.2
3 540 0.1155 500.00 19.1 0.03 13.5
4 400 0.0855 100.00 3.8 0.1 13.5
5 300 0.0642 100.00 4.0 0.1 13.7
6 100 0.0214 100.00 3.9 0.1 13.3
7 540 0.1155 100.00 3.9 0.1 13.9
8 20 0.00428 100.00 3.9 0.1 13.2
9 50 0.01069 100.00 3.9 0.1 13.3

11 4 0.000855 100.00 3.9 0.1 13.5
12 540 0.1155 10.00 1.2 0.4 13.9
13 400 0.0855 100.00 3.9 0.1 13.7
14 540 0.1155 502.43 18.9 0.03 13.7
16 540 0.1155 700.00 24.4 0.02 14.3
17 540 0.1155 1000.00 34.4 0.01 13.8
18 540 0.1155 500.00 18.9 0.03 13.9
19 540 0.1155 750.00 26.6 0.02 14.0
20 540 0.1155 100.00 4.0 0.1 14.0
21 200 0.0428 100.00 3.9 0.1 13.0
23 400 0.0855 100.00 4.2 0.1 13.4
26 50 0.01069 190.00 7.1 0.07 12.8
27 100 0.0214 190.00 6.5 0.07 12.9
28 20 0.00428 100.00 4.2 0.1 12.8
29 50 0.01069 100.00 4.4 0.1 13.0
30 300 0.0642 10.00 0.6 0.8 13.6
31 300 0.0642 10.00 0.5 1 13.4
32 300 0.0642 10.00 0.5 1 13.4
33 300 0.0642 50.00 2.2 0.2 13.4
34 300 0.0642 50.00 2.1 0.2 13.5
35 300 0.0642 50.00 1.9 0.3 13.3
36 300 0.0642 100.00 4.0 0.1 13.5
37 300 0.0642 100.00 4.0 0.1 13.4
38 300 0.0642 100.00 4.0 0.1 13.3
39 300 0.0642 300.00 13.3 0.04 13.1
40 300 0.0642 300.00 13.3 0.04 13.4
42 300 0.0642 500.00 18.3 0.03 13.3
43 300 0.0642 500.00 18.3 0.03 13.4
44 300 0.0642 500.00 18.3 0.03 13.3

Table 3.1: Summary of experimental conditions for each run.
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Chapter 4

Results and Discussion

4.1 Comparison of Experimental Observations and Theoretical

Predictions of Toe Velocity

This section presents a comparison between experimental observations and theoretical predic-

tions of toe velocity made by the mathematical models described in Chapter 2. Recall that the

mathematical expressions for toe velocity (utoe) were derived in Chapter 2 from the momentum

balance and energy balance models by evaluating them at z = 0 (Equations 2.13, 2.14, and

2.22). The expressions are reiterated here for convenience:

utoe =

s
g0H

2 + 3
4CDaL

(4.1)

utoe =

s
g0H

2 (2 + CDaL)
(4.2)

utoe =

s
g0H

2 + CDaL
(4.3)

Equations 4.1 and 4.2 were derived from energy conservation assuming a linear velocity profile

and block flow, respectively. Equation 4.3 was derived from momentum conservation. The

parameters g0, H, and a were controlled in each run (Table 3.1) and L is the length of the

density current, which varies from 0 cm to 180 cm in these experiments. In lock-exchange flows,
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Run 
Number Date N a salt dye water

dyed 
saltwater density : water T

density : dyed 
saltwater T

+- 0.5% +- 0.05g +- 0.05g +- 1 C +- 1 C +- 0.00025 kg/L +- 1 C +- 0.00025 kg/L +- 1 C
[stem s] [stem s/cm ] [g] [g] [C] [C] [kg/L] [C] [kg/L] [C

1 07/23/03 540 0.1155 1393.80 2.70 22.8 20.5 0.9970 23.0 1.0430 20.0
2 07/24/03 540 0.1155 1468.77 2.79 22.0 21.0 0.9970 23.0 1.0485 20.5
3 07/13/03 540 0.1155 500.00 2.22 21.5 21.0 0.9975 21.25 1.0170 21.0
4 07/12/03 400 0.0855 100.00 2.25 22.0 22.5 0.99675 23.0 1.00075 22.5
5 07/10/03 300 0.0642 100.00 2.07 23.0 22.5 0.9970 23.0 1.0005 22.5
6 07/09/03 100 0.0214 100.00 2.79 22.2 N/R N/R N/R N/R N/R
7 07/14/03 540 0.1155 100.00 2.24 22.0 22.0 0.99725 21.5 1.0011 22.75
8 07/09/03 20 0.00428 100.00 2.11 22.5 N/R N/R N/R N/R N/R
9 07/09/03 50 0.01069 100.00 2.60 22.5 N/R N/R N/R N/R N/R

11 07/08/03 4 0.000855 100.00 2.39 22.5 N/R N/R N/R N/R N/R
12 07/07/03 540 0.1155 10.00 N/R 22.0 N/R N/R N/R N/R N/R
13 07/11/03 400 0.0855 100.00 2.22 22.0 22.0 0.99725 22.0 1.0015 22.0
14 10/07/03 540 0.1155 502.43 2.08 19.0 19.0 0.9970 19.5 1.01875 19.0
16 10/07/03 540 0.1155 700.00 2.50 18.5 18.0 0.9975 19.5 1.02275 18.0
17 10/09/03 540 0.1155 1000.00 2.32 20.0 20.0 0.9975 19.5 1.0330 20.5
18 10/09/03 540 0.1155 500.00 2.11 19.0 19.0 0.9975 20.0 1.0160 19.0
19 10/09/03 540 0.1155 750.00 2.10 19.0 19.0 0.9978 19.5 1.0250 19.0
20 10/09/03 540 0.1155 100.00 2.01 19.0 19.0 0.9975 19.25 1.0020 19.5
21 02/04/04 200 0.0428 100.00 8.00 7.0 9.5 0.9990 8.75 1.0020 9.0
23 02/04/04 400 0.0855 100.00 N/R 7.0 7.5 0.9988 10.00 1.0025 8.0
26 01/29/04 50 0.01069 190.00 7.1 10.0 8.0 0.9990 8.0 1.0055 7.3
27 01/29/04 100 0.0214 190.00 9.6 9.0 7.0 0.9993 9.5 1.00625 7.8
28 01/29/04 20 0.00428 100.00 7.60 7.5 8.0 0.9990 7.5 1.0025 7.3
29 01/29/04 50 0.01069 100.00 6.45 8.5 7.0 0.9993 10.0 1.00225 7.0
30 10/28/03 300 0.0642 10.00 4.18 16.9 17.5 0.9975 17.1 0.9985 18.0
31 11/04/03 300 0.0642 10.00 8.44 16.0 16.3 0.9980 15.3 0.99825 16.8
32 11/04/03 300 0.0642 10.00 8.01 15.9 16.0 0.9978 15.5 0.99825 16.3
33 11/20/03 300 0.0642 50.00 8.93 14.0 13.0 0.9990 13.0 1.001 14.0
34 11/20/03 300 0.0642 50.00 8.61 13.0 13.0 0.9988 13.0 1.0005 13.0
35 12/02/03 300 0.0642 50.00 9.16 11.5 13.0 0.9990 11.5 1.0005 13.0
36 12/02/03 300 0.0642 100.00 8.58 10.5 11.5 0.9985 11.0 1.00275 11.5
37 12/09/03 300 0.0642 100.00 9.45 10.0 11.0 0.9993 9.5 1.00275 11.0
38 12/09/03 300 0.0642 100.00 9.05 9.0 10.0 0.9990 9.0 1.003 10.0
39 12/11/03 300 0.0642 300.00 8.64 9.0 11.0 0.9985 10.0 1.0125 11.0
40 12/11/03 300 0.0642 300.00 9.74 9.0 10.0 0.9985 9.0 1.0125 9.5
42 12/09/03 300 0.0642 500.00 9.25 9.0 10.0 0.9988 9.5 1.0175 11.0
43 12/09/03 300 0.0642 500.00 8.60 9.0 10.0 0.9990 9.8 1.01795 10.0
44 12/09/03 300 0.0642 500.00 8.64 9.0 10.0 0.9985 9.5 1.0175 10.0

temperature hydrometer (uncorrected)

N/R denotes not recorded.

Table 4.1: All measurements recorded during the experiments
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the latter increases monotonously with time; hence, L is analogous to time. For consistency

between cases, Equation 2.36 was used to calculate the drag coefficient, with an expectation

that as stem density (ad) increases, the actual drag coefficient diverges from the values for an

isolated stem, as discussed in Chapter 2. It should be noted that the disagreement may be

substantial: CD may drop as much as 50% between ad ≈ 0.01 and ad ≈ 0.1 at Re > 200

[Nepf, 1999]. Any disagreement in CD will contribute to the uncertainty in the predictions.

The toe velocity for each run is determined from experimental observations as the rate

of displacement of the toe. The current data are not ideal for this analysis, because the

images were recorded to allow for the observation of the shape of the interface. To satisfy this

requirement, the CCD camera was placed on a stationary tripod, as described in Chapter 3;

the entire length of the tank was captured in all runs except for runs 21, 23 and 26-29, in which

half of the tank was recorded. Accordingly, the precision of the images was decreased, with

pixel-to-length scales approximately in the range 3 pix cm−1 to 9 pix cm−1. Furthermore, the

toe was difficult to distinguish from a dowel in high stem density scenarios because the images

were captured from a distance and were not in color. Owing to these factors, the position

of the toe could not be determined in many of the images, and where the position could be

estimated, the anticipated uncertainty in L is large in magnitude and difficult to quantify.

Instead, data obtained by Deardon (2003) in the same laboratory facility were used in this

analysis. Contrary to the present study, Deardon (2003)’s work focused solely on observing

the toe velocity of the undercurrent. As a result, the toe was recorded with a camcorder

that moved with the front, and the position of the toe was obtained directly by a reading the

measuring tape that was glued to the bottom of the tank [Deardon, 2003]. Consequently,

Deardon (2003)’s toe velocity data are more accurate than the experimental observations in the

present study.

Deardon (2003)’s observed toe velocities are presented as discrete data points in Figures 4-1

− 4-4. First and foremost, note that the density current propagated with a constant velocity in
the absence of stems, as displayed in Figure 4-1, with a coefficient of determination of r2 = 0.04,

0.02, 0.12, 0.28, and 0.23 associated with the linear regression for g0 = 4.1 cm s−2, 8.9 cm s−2,

13.2 cm s−2, 18.5 cm s−2, and 24.0 cm s−2, respectively. These r2 values indicate that there

is insignificant evidence of a linear correlation between the toe velocity and L in the absence
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Figure 4-1: Toe velocity time series for runs with no vegetation. Five runs with different density
differences are presented: g0 = 4.1 cms−2 (♦); 8.9 cm s−2 (¤); 13.2 cm s−2 (4); 18.5 cm s−2
(×); and 24.0 cms−2 (◦). Vertical bars represent uncertainty in the toe velocity observations.
Numerical labels on the solid lines represent g0 [cm s−2]. Solid lines represent predictions
based on Equation 4.1. Dashed lines represent predictions based on Equation 4.2. Data from
Deardon, 2003.

of stems [Taylor, 1997]. This lack of variability of the toe velocity with L is consistent with

previous studies on lock-exchange flows, which have found the front velocity to be constant with

time in the absence of obstructions [Simpson, 1997]. This signifies that energy dissipation due

to friction is negligible, further supporting the removal of the stress term from the momentum

balance model. The experimental observations display better agreement with the block flow

energy balance model predictions than the other two models, consistent with previous studies

and the observed interface profile. Since the behavior of unobstructed lock-exchange flows has

been studied extensively, no further comments will be made on these non-vegetated runs.

In contrast, the density currents exhibit a significant decrease in toe velocity with L when

propagating through stems, as shown in Figures 4-2 − 4-4. This decrease in velocity observed
in the runs with a > 0.0428 cm−1 can be ascribed to the stem drag and the associated energy

dissipation.
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Figure 4-2: Toe velocity time series for runs with stem density a = 0.0428 cm−1. Five runs
with different density differences are presented: g0 = 4.3 cm s−2 (♦; black); 9.2 cm s−2 (¤; pink);
13.7 cm s−2 (4; blue); 18.0 cm s−2 (×; red); and 22.1 cm s−2 (◦; green). Vertical bars represent
uncertainty in the toe velocity observations. Solid lines represent predictions based on Equation
4.1. Perforated lines represent Equation 4.3, and dashed lines represent the traditional energy
balance solutions assuming a block flow (Equation 4.2). Data from Deardon, 2003.

Predictions of toe velocity were made by applying the experimental conditions of each run

to Equations 4.1, 4.2, and 4.3, and the results were superimposed on Figures 4-1 − 4-4 as solid,
dashed, and perforated curves, respectively. Note that only the momentum balance model and

the linear velocity profile energy balance model predictions are presented in Figures 4-3 and

4-4 because they display better agreement with experimental observations than the block flow

energy balance model, which confirms that the current interface in these high stem density runs

were closer in shape to a linear profile than a block profile. As discussed in Chapter 2, Deardon

(2003)’s observations suggest that predictions based on a linear velocity profile assumption will

agree better with data from high a runs. In contrast, the predictions based on a block front are

expected to have better agreement with data from runs with low or zero stem density. Figure

4-5 presents the percentage difference between Deardon (2003)’s experimental observations and

predictions based on the linear velocity profile and block flow energy balance models. Only
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Figure 4-3: Toe velocity time series for runs with stem density a = 0.0855 cm−1. Five runs
with different density differences are presented: g0 = 4.4 cms−2 (♦; black); 9.2 cms−2 (¤; pink);
14.8 cm s−2 (4; blue); 18.2 cm s−2 (×; red); and 23.0 cm s−2 (◦; green). Vertical bars represent
uncertainty in the toe velocity observations. Numerical labels on the solid lines represent g0

[cm s−2]. Solid and perforated lines represent predictions based on Equations 4.1 and 4.3,
respectively. Data obtained from Deardon, 2003.

the last observation in each run is plotted
¡
L
H ≈ 10

¢
, because these measurements were least

affected by the initial disturbance created by the removal of the partition.

For the highest stem density runs, the energy balance prediction assuming a linear velocity

profile fits well with the observed data, with an average difference of −9% across the different g0,
as opposed to 33% average disagreement for the block flow energy balance model predictions.

As a decreases from a = 0.1497 cm−1, the discrepancy between the linear velocity profile model

predictions and the observed data increases to −15% for a = 0.0428 cm−1. In contrast, the

average discrepancy for a = 0.0428 cm−1 is 27% for the block flow model predictions. This

trend may be attributed to a similar trend in the deviation of the flow shape from the ideal

linear profile: as a approaches zero, the exchange flow shape approaches the traditional block

shape that is well-documented in previous studies [Simpson, 1997]. For Deardon (2003)’s data,

the toe velocity was more accurately described by the linear velocity profile energy balance
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Figure 4-4: Toe velocity time series for runs with stem density a = 0.1497 cm−1. Five runs
with different density differences are presented: g0 = 5.1 cm s−2 (♦; black); 9.3 cm s−2 (¤; pink);
14.1 cm s−2 (4; blue); 18.0 cms−2 (×; red); and 22.4 cm s−2 (◦; green). Vertical bars represent
maximum uncertainty in the toe velocity observations for that run. Numerical labels on the
solid lines represent g0 [cm s−2]. Solid lines represent predictions based on the energy balance
assuming a linear velocity profile (Equation 4.1). Perforated lines represent predictions by
Equation 4.3. Data obtained from Deardon, 2003.

model than the block flow energy balance model for all a > 0 runs, with the exception of

g0 = 18 cm s−2 runs through stem densities a = 0.0428 cm−1 and a = 0.0855 cm−1 (Figure 4-5).

The cause of the poor agreement of the linear velocity profile model for these two experimental

conditions were not identified.

In this context, the two energy balance models may be treated as two limits on the possible

interface behavior, with exchange flows falling between the respective predictions under any

condition. Recall from the discussion in Section 2.3 that the linear velocity profile energy

balance model predictions are strictly greater than those by the block flow energy balance model.

As displayed in Figure 4-5, with the exception of one run, the linear velocity profile energy

balance model consistently overpredicts the toe velocity, which is consistent with this theory.

In contrast, the block flow energy balance model consistently underpredicts the undercurrent
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Figure 4-5: Difference between observed toe velocites and predictions based on the energy bal-
ance with the linear velocity profile assumption (Equation 4.1) and the block flow assumption
(Equation 4.2). The discrepancy is calculated as the difference between the observation and
prediction as a percentage of the observation. A positive and negative percentage indicates
underprediction and overprediction, respectively. Each run is represented by a single data
point at L

H = 10.1− 10.3. The data point shapes represent different g0 £cm s−2¤, as indicated
in the key. Solid markers and × represent predictions by Equation 4.1. Open markers and u
represent predictions by Equation 4.2. Data taken from Deardon, 2003.

propagation through stems, a > 0. For example, for a = 0.0428 cm−1, the linear velocity profile

energy balance and the momentum balance models both overpredict the toe velocities, while

the block flow energy balance model underpredicts. Thus, the observed toe velocities fall in

between the two energy balance predictions, as anticipated (Figure 4-2).

In addition, an overprediction may, to some extent, be a manifestation of unidentified sources

of energy dissipation [Deardon, 2003] or an underestimated drag coefficient. Deardon (2003)

attributes the overestimation in the a = 0 runs to turbulence. However, turbulence was not

observed in higher stem density runs, which suggests that turbulence had little impact on these

runs. While the CD estimates have significant uncertainty at higher stem densities, the use
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of drag coefficients for isolated cylinders can not be responsible for the overprediction of toe

velocity. As discussed above, previous studies suggest that stem drag in an array is suppressed

at Re > 200 [Nepf, 1999] which, in Deardon (2003)’s experimental conditions, translates to a

velocity of u > 3 cm s−1. In this range, the use of drag coefficients for an isolated cylinder

tends to overestimate the actual drag in the array, and therefore underpredict the toe velocity.

Thus, inaccuracies in the drag coefficients used in the predictions contribute negatively to the

overprediction for most of Deardon (2003)’s runs, suggesting that the actual overprediction may

in fact be more significant.

The difference in the three velocity solutions complicates the behavior of exchange flows that

transition between interface regimes during its propagation. All runs are theoretically inertial

immediately after the partition is removed, as the density gradient is theoretically infinite at the

instance of partition removal. While the flow is inertial, its toe velocity may be best described

by the block flow equation (Equation 4.2). As the exchange flow propagates, the density

gradient decreases and energy is dissipated through drag. Once the velocity has diminished

such that the system enters the linear drag regime, a sufficiently vegetated flow is anticipated to

approach a linear interface, at which point the toe velocity will behave according to the linear

velocity profile model (Equation 4.1), which, for the same set of parameters, predicts higher

velocities than the block flow model. Consequently, the transition from the block flow regime

to the linear interface regime temporarily suppresses the decrease in toe velocity. (Note that

the depth-averaged velocity of the advancing front — which reflects the energy of the system —

decreases continuously, as required.) This delay makes the regime transition harder to identify

from experimental observation. First, the period of velocity measurements must be able to

resolve the regime transition. Second, sufficient measurements are required in both regimes to

identify the transition point.

This transition from one regime to the other offers one possible explanation for the increase

in velocity observed in Deardon (2003)’s data for the run a = 0.0428 cm−1, g0 = 9.2 cm s−2

(Figure 4-6). At the beginning ( LH 6 4.2) the observed toe velocities agreed within uncertainty

with the block flow energy balance model predictions. As the exchange flow propagated, the

toe velocity did not decrease as quickly as the block flow model predicts, and it deviated from

the block flow predictions and approached the linear velocity profile energy balance model
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Figure 4-6: Toe velocity time series for Deardon (2003)’s run with a = 0.0428 cm−1 and g0 =
9.2 cm s−2. Vertical bars represent uncertainty in the toe velocity observations. Horizontal
bars represent the displacement over which the average velocity was calculated. Solid line
represents predictions based on the energy balance assuming a linear velocity profile (Equation
4.1). Dashed line represents the traditional block flow energy balance predictions (Equation
4.2). Data from Deardon, 2003.

predictions. At L
H = 10.3, the toe velocity agrees with the linear velocity profile model within

uncertainty.

4.2 Classification of Inertial and Non-inertial Flows based on

the Variation in Toe Velocity

As discussed above, previous studies have observed that the toe velocity is independent of

time in the absence of obstructions [Simpson, 1997], whereas it decreases with time in the

presence of vegetation [Deardon, 2003]. In this section, the variation in toe velocity is examined

quantitatively as a function of density difference and stem density, and a criterion is developed

to categorize all flow conditions as inertial or non-inertial.
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4.2.1 Formulation of a dimensionless velocity variation parameter

The fractional change in toe velocity during the time that the toe propagates from x1 =
L1
2 to

x2 =
L2
2 is:

utoe
¡
L1
H

¢− utoe ¡L2H ¢
utoe

¡
L1
H

¢ (4.4)

The substitution of the solution derived from the momentum balance (Equation 4.3) into this

definition yields:
utoe

¡
L1
H

¢− utoe ¡L2H ¢
utoe

¡
L1
H

¢ = 1−
r
2 + CDaL1
2 + CDaL2

(4.5)

Note that Equation 4.5 may be derived from the block flow energy balance solution (Equation

4.2) as well. However, the linear velocity profile energy balance solution (Equation 4.1) results

in a slightly different expression:
utoe

L1
H

−utoe L2
H

utoe
L1
H

= 1−
q

8+3CDaL1
8+3CDaL2

. The expression derived

from the momentum balance solution is employed here for the analysis instead of that derived

from the linear velocity profile energy balance solution, because the former describes the toe

velocity evolution most accurately for ten out of the fifteen vegetated (a > 0) runs studied by

Deardon (2003). Furthermore, this parameter is used to develop a criterion to identify the

transition from inertial to drag-dominated flows. As such, the use of Equation 4.5, which

satisfies both the block flow (inertial) model and the momentum model, is most appropriate.

Let us define a dimensionless parameter ∆u characterizing the fractional toe velocity change

as the difference in the velocities interpolated at L1
H = 3 and L2

H = 10.5 normalized by the

velocity interpolated at L1H = 3:

∆u =
utoe

¡
L
H = 3

¢− utoe ¡ LH = 10.5¢
utoe

¡
L
H = 3

¢ (4.6)

Then, according to Equation 4.5, ∆u is a function of CD, a, and H:

∆u = 1−
r

2 + 3CDaH

2 + 10.5CDaH
(4.7)

To calculate ∆u from the experimental data, utoe at L
H = 3 and L

H = 10.5 must first be

extracted. Toe velocities are calculated from the images for each run as the displacement

of the toe between two consecutive images that have an identifiable toe position divided by
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the difference in time between the two images. This procedure is repeated for each run.

utoe
¡
L
H = 3

¢
and utoe

¡
L
H = 10.5

¢
are interpolated from a linear regression performed on the

toe velocity measurements and the averages of the L
H of each pair of images between which

the toe velocities were computed. Note that some experimental scenarios were repeated; for

example, runs 42 − 44 have a corresponding stem density and reduced gravity of a = 0.064

cm−1 and g0 = 18.3 cm s−2. The toe velocity data from runs with identical a and msalt such

as these are computed for individual runs separately. Subsequently, when calculating ∆u, the

velocity data are combined and treated as if they were obtained from a single run by non-

dimensionalizing the relevant parameters to account for the minor differences in H. Note that

the data could not be adjusted to account for differences in g0 that result from variations in

the temperature between runs. However, Figure 3-5 identifies msalt as the dominant factor in

the differences in the density of the salt water between experimental runs. This suggests that

differences in g0 between runs with identical msalt are negligible, and justifies the treatment of

runs with the same a and msalt as duplicate runs. Finally, the uncertainty in ∆u is estimated

as:

W∆u ≈ σu

"
1

utoe
¡
L
H = 3

¢ + 1

utoe
¡
L
H = 10.5

¢# ¯̄̄̄¯utoe
¡
L
H = 10.5

¢
utoe

¡
L
H = 3

¢ ¯̄̄̄
¯ (4.8)

where σu is the uncertainty in the observed toe velocities as estimated from the linear regression

as defined by Equation 8.15 in Taylor, 1997.

4.2.2 High vegetative drag conditions

The theory predicts that where CDaL1 and CDaL2 are negligible (CDaL1, CDaL2 ¿ 2), ∆u

approaches zero (Equation 4.5). Conversely, where CDaL1, CDaL2 À 2, and CD is approxi-

mately the same between the two points, ∆u approaches a constant ∆u = 1 −
q

L1
L2
which is

independent of a and g0.

Thus, drag is expected to become comparable to inertia when

a ≈ 2

CDL
(4.9)

As discussed above, both the block flow energy balance model and the momentum balance

model yield this relationship. This agreement between the two models emphasizes the validity
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of Equation 4.9 as a criterion for the transition between inertia-dominated and drag-dominated

regimes. Following the definition of ∆u and taking L
H ≈ 3, this condition is theoretically

satisfied when a ∼ 2
CDL1

= 2
3CDH

. CD is generally on the order of 1, and the average water

depth was H ≈ 13.5 cm. Then, Equation 4.9 is satisfied when a ' 0.05 cm−1. Thus, for runs

with stem density a > 0.05 cm−1, Equation 4.7 predicts that ∆u approaches ∆u = 1−
q

L1
L2
=

0.47.

Experimental observations are consistent with the theory. ∆u for runs with a = 0.0642 cm−1

and a = 0.1155 cm−1 are illustrated in Figure 4-7. Linear regressions on these high stem

density runs, presented as perforated lines in the figure, yield ∆u = 0.46 − 0.010g0 and ∆u =
0.48−0.00072g0, respectively, for a = 0.0642 cm−1 and a = 0.1155 cm−1 runs, with a correlation
coefficient of r = −0.25 and r = −0.10. The 95% confidence interval for the slope of the

linear regressions is −0.010 ± 0.07 and −0.00072 ± 0.008, respectively, which implies that the
slope of both regressions is not significantly different from zero. This demonstrated lack of

g0-dependence is consistent with Equation 4.7. Moreover, with the exception of two data

points, the observed ∆u equal the predicted value of ∆u = 0.47 within uncertainty. The good

agreement of the data with the theory demonstrates that these high stem density runs were

drag-dominated.

4.2.3 Drag-dependence of the evolution of the toe velocity

∆u for each scenario is plotted in Figure 4-8 as a function of CDaL, defined for all experimental

scenarios from the present study and Deardon, 2003 at L
H = 8 where CD is estimated by

applying to Equation 2.36 the toe velocity interpolated at L
H = 8 using the results of the linear

regressions on the observed velocities.

If a linear drag is assumed and the inertial term in Equation 2.31 is neglected, the momentum

balance yields a toe velocity solution in terms of C 0:

utoe =
g0H
C 0aL

(4.10)

Under these conditions, the predicted ∆u is ∆u = 1 − L1
L2
= 0.71. This corresponds to the

horizontal dash-dot line in Figure 4-8.
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Figure 4-7: Fractional toe velocity difference (∆u) as a function of g0 [cm s−2] for high stem
density runs. Data for a = 0.0642 cm−1 and a = 0.1155 cm−1 are presented in the top and
bottom plots, respectively. Toe velocity data from duplicate runs were combined before ∆u
were computed. Vertical bars represent the uncertainty associated with the linear regression
from which ∆u were computed (±W∆u as calculated in Equation 4.8). Run 17 is excluded
from the bottom plot because it has an insufficient number of toe velocity data points. The
perforated lines are linear regressions. The solid lines are ∆u = 0.47.
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The dashed curve represents the momentum balance prediction of ∆u from Equation 4.7

based on the assumption that CD is constant between L
H = 3 and L

H = 10.5. In comparing the

data to this curve, it should be noted that where the toe velocity is decreasing, CD at L
H = 3

would have been smaller than that at L
H = 10.5. As such, the assumption of constant CD

implicitly underestimates the true theoretical ∆u. As an example, let us examine the scenario

a = 0.1155 cm−1 and msalt = 500 g. The experimentally observed ∆u and CDaL
¡
L
H = 8

¢
for

this scenario is ∆u = 0.41 and CDaL
¡
L
H = 8

¢
= 16.8, respectively. Based on experimental

observations, CD at L
H = 3 and L

H = 10.5 were 1.25 and 1.35, respectively and, accordingly, the

predicted ∆u is ∆u = 0.43. This is approximately 5% higher than the the prediction based

on a constant CD assumption derived by applying CDa = 16.8
8H to Equation 4.7. However,

the assumption of a constant CD yields a difference in the predicted ∆u of approximately 50%

for the scenario a = 0.0642 cm−1 and msalt = 10.00 g. Thus, within uncertainty the data are

consistent with the predictions.

The momentum balance prediction agrees reasonably well with the data. The theory

captures the rapid increase in ∆u under low drag conditions, which indicates that the presence

of vegetation can dramatically affect the behavior of convective currents even at low densities.

The deviation of ∆u from the predicted values at low CDaL suggests that turbulence may be

a significant dissipative mechanism at these a ≈ 0.
Note the anomalous data point at ∆u = −0.05, which corresponds to Deardon (2003)’s

a = 0.0428 cm−1, g0 = 9.2 cm s−2 run (Figure 4-6). As discussed in Section 4.1, an increase in

velocity was observed for this run which is attributed to the flow having transitioned from the

non-linear interface profile regime to the linear profile regime as it propagated. As a result, a

linear regression on the toe velocity data and L
H yields a line of best fit with a positive gradient

and, accordingly, ∆u < 0.

Hereafter, runs with ∆u < 25% are defined as inertial runs; all other runs are classified as

non-inertial (Table 4.2). Based on this criterion, all but one scenarios that have a corresponding

CDaL
¡
L
H = 8

¢
< 5 are classified as inertial.
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Figure 4-8: Fractional toe velocity difference (∆u) as a function of CDaL at L = 8H
(= 8CDaH). Duplicate runs are combined. Dots indicate Deardon (2003)’s data. Key for
present data summarized in Table 4.2. Horizontal dash-dot line represents ∆u = 1− L1

L2
= 0.71.

Perforated curve represents Equation 4.7, where CDaH = CDaL
8 given L = 8H and CD is as-

sumed constant.
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4.3 Classification of Linear and Non-linear Interface Regimes

based on the Interface Gradient

In the previous section, a criterion was developed to classify flow conditions as either inertial

or non-inertial. A run may also be categorized based on the shape of the interface. Here, a

criterion is developed to classify all runs into these three categories based on the gradient of

the interface: linear, non-linear, or transitional profile.

4.3.1 Theoretical analysis

The gradient of the interface may be predicted from the momentum balance model, which does

not assume a priori an interface profile. The gradient of the interface at x = 0 is:

dz

dx
|x=0 = dz

du

du

dx
|x=0 (4.11)

Differentiation of Equation 2.21 yields:

du

dz
=

1

2u

du2

dz
(4.12)

=
1

2u

d

dz

"
2g

0

2 +CDaL

µ
H

2
− z

¶#
(4.13)

= − g
0

(2 + CDaL)u
(4.14)

As discussed in Section 2.2, the velocity at x = 0, z = H
2 is zero; the gradient of the velocity

profile at this point is:
du

dz
|x=0 = −g

0

0
(4.15)

Assuming g0 6= 0 (i.e., that there is a finite horizontal density gradient), the slope of the interface
is zero:

dz

dx
|x=0 = − 0

g0
du

dx
|x=0 = 0 (4.16)

and the interface is horizontal at x = 0. Note that this calculation assumes that CD is not

a function of z, which implies that the velocity is also independent of z. This is the case in

the idealized block flow regime, where velocity is vertically uniform in the undercurrent (Figure
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2-1).

In contrast, if we assume CD ∝ u−1, then Equation 4.12 becomes:

du

dz
=
1

2

d

dz

−C 0
aL

2
+

sµ
C 0aL

2

¶2
+ 4g0

µ
H

2
− z
¶ (4.17)

where C
0
= CDu. Evaluating this expression at x = 0, z = H

2 yields:

du

dz
|z=H

2
=
−2g0
C 0aL

(4.18)

and the slope of the interface is:

dz

dx
|x=0 = −C

0
aL

2g0
du

dx
|x=0 (4.19)

Hence, in the linear drag regime, the slope of the interface is expected to be non-zero at x = 0,

since du
dx |x=0 6= 0 as long as the exchange flow is propagating.

In summary, the momentum balance predicts that the interface will have a non-zero slope

at x = 0 in the linear drag regime, whereas flows that approach the idealized block flow profile

have a horizontal interface. These differences allow for a quantitative method of distinguishing

these flows.

4.3.2 Progression of the interface profile

Figure 4-9 displays the progression of the interface and highlights the differences in the inter-

face shape that result from differences in the stem density and density differences. As stated

previously, only the bottom half of the interface is presented because of the difficulty in dis-

tinguishing the interface where transparent fluid is propagating into dyed fluid. The interface

subject to turbulent mixing (Figure 4-9 (a)) are particularly difficult to analyze. In addition,

in Figure 4-9 (a) and (b), Benjamin (1968)’s solution for energy-conserving gravity currents are

fitted to the leading edge of the experimental data.

Figure 4-9 (a) depicts a regime with sparse vegetation, and demonstrates that the interface

at any given time is mostly horizontal at z ≈ 0.5H. In contrast, near the leading edge of the
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undercurrent, the interface bends sharply to the bed (z = 0) over approximately one water depth

in the longitudinal direction, which creates the curved head. The head of the interface exhibits

good agreement with Benjamin (1968)’s solution after L & 8. Also, the horizontal profile

immediately upstream of the head was maintained as the toe propagated. These observations

are consistent with the weak time-dependence of the velocity profile predicted by the present

theory and with observations reported for traditional, unobstructed lock-exchange flows (see

Simpson, 1997 for a description), and characterize the inertia-dominated regime.

In Figure 4-9 (b), the general shape of the interface remains similar to the inertia-dominated

regime, but the interface is now at a slight angle to the bed. Also, the height of the head —

the depth over which the interface rapidly curves towards the bed — decreases slightly as the

undercurrent propagates. This suggests that at large L, the head may become negligible

in size and the interface may approach a linear profile. The differences between the regimes

represented in Figures 4-9 (a) and (b) are highlighted by the poor agreement of the experimental

data illustrated in (b) with Benjamin (1968)’s solution.

A similar decrease in the size of the head is observed in Figure 4-9 (c). However, contrary to

the images (a) and (b), most of the interface displays a constant non-zero slope, and the head,

while still identifiable, is much less prominent. Consequently, for the same interface length, the

gradient at around x ≈ 0 is greater in magnitude than in (a) and (b). The progression of the
interface in this image clearly represents a linear profile regime. Note that one implication of

a spatially uniform, non-zero slope is that the slope gradually decreases as the toe propagates

and the interface elongates.

Finally, observe that the interface in each plot in Figure 4-9 rotates approximately about

mid-depth, which is consistent with the present theory.

4.3.3 Progression of the interface slope

The slope of the interface in each image was estimated by performing a linear regression on

the data points that fall within the range 1.25H − xtoe < x < xtoe − 1.25H for runs with

a stem density of a = 0.0642 cm−1, a = 0.0855 cm−1, or a = 0.1155 cm−1, and the range

0 < x < xtoe − 1.25H for the less densely vegetated runs. The respective ranges were selected

to capture as much of the interface as possible to reduce the influence of anomalous data points
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Figure 4-9: Progression of the interface with time. The profiles are separated by the period
indicated at the top of each plot. The horizontal axes span 0 6 x 6 Ltank

2 . (a) Run 9:
a = 0.01069 cm−1 and g0 = 3.9 cm s−2; (b) Run 42: a = 0.0642 cm−1 and g0 = 18.3 cm s−2; (c)
Run 31: a = 0.0642 cm−1 and g0 = 0.5 cm s−2. Dashed curves represent Benjamin (1968)’s
solution for energy-conserving gravity currents.
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without capturing the head of the current at the free surface and the bed. The linear regression

was restricted to the lower half of the interface, x > 0, for the less densely vegetated runs

because of turbulence, which blurs the interface and makes it difficult to identify in the images.

Furthermore, inertial runs tend to exhibit a jump at x ≈ 0; the interface is horizontal on either
sides of this jump at different depths (Figures C-8-C-10 and C-24). To prevent the turbulence

and the jump from interfering with the estimate of the gradient, the linear regression was only

applied to x > 0. Note that the linear regression on xtoe and time for run 35 were employed to

calculate L
H for replicate runs 33 and 34, for which toe data were not available. Only images

where the extracted data points have a longitudinal spread greater than H and where some

of those points fall within x < H are analyzed, to insure that the data points represent the

interface near x = 0 and to minimize the effects of anomalous points. Furthermore, only

images where the toe is a minimum of H away from both x = 0 and the end of the tank are

analyzed to minimize the influence of the initial disturbance and the end walls of the tank on

the analysis. The uncertainty in the gradient of the regression is calculated according to the

definition in Chapter 8 of Taylor, 1997.
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Figure 4-10: Example of a positive interface gradient. Run 11. Dots represent interface data
points. Line indicates linear regression.

In the present study, positive gradients were extracted from runs 8, 9, 11, and 28, which
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correspond to the lowest stem density conditions and, consequently, were identified as inertial

runs according to the classification developed in Section 4.2. The cause of the positive gradients

can be identified in the interface profiles for these runs (Figures C-8-C-10, and C-23) which show

that the tallest part of the head interferes with the linear regression by providing data points at

high z. Because these inertial runs have a mostly horizontal slope, as highlighted in Figure 4-9

and observable in Appendix C, the data points at the head are sufficient to yield a positive line

of best-fit gradient (Figure 4-10). Because such positive gradient estimates are an artefact of

the algorithm and do not accurately reflect the gradient of the interface around x ≈ 0, positive
dz
dx measurements are plotted as

dz
dx = 0 in Figure 4-11.

Figure 4-11 presents the progression of the interface slope at x ≈ 0 for all runs. The

negative of the gradient of the linear regression is plotted as the slope for that image, i.e.,

a positive value on the plot represents a negative gradient. The idealized solution for the

perfectly linear interface, dzdx = −HL , and the block flow, dzdx = 0, provide an upper and lower

limit for the gradient. Observe the significant spread of the gradient data for L/H . 5.5 and

the high uncertainties associated with the individual data points in this range, which may be

interpreted as a physical manifestation of the initial unsteadiness of the system.

Dimensionless slope parameter

For ease of analysis, a characteristic dimensionless parameter S is defined for each run as the

average ratio of the gradient at x ≈ 0 at L
H = 8± 1 and the theoretical gradient for a perfectly

linear interface at the same L
H :

S =

dz
dx |x≈0, L

H
∼8±1

−HL
(4.20)

For each run, all data points with an associated interface length in the range 7 < L
H < 9 were

extracted from Figure 4-11. (For runs 4, 8, and 23, which did not have data points in this range,

the data point closest to this range at L
H > 9 were selected.) Each of the selected data points

was normalized by the theoretical gradient for the perfectly linear interface corresponding to

its L
H , as defined by Equation 4.20, and their average value is defined as the parameter S. A

criterion is developed later that characterizes the shape of the interface based on S. Ultimately,

the dependence of S on Re and stem drag are examined.
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Figure 4-11: Progression of the gradient of the interface at x ≈ 0. L
H -dependence of the negative

of the gradient of the linear regression on the interface, − dzdx . The sign of the gradient is reversed
in this plot: a negative gradient, as defined by the present Cartesian system, is plotted as a
positive data point. The black perforated line represents the theoretical progression of a
perfectly linear interface: − dzdx = H

L . The shape of the data points represents the stem density:
a = 0.1155 cm−1 (+); 0.0855 cm−1 (¤); 0.0642 cm−1 (◦); 0.0428 cm−1 (∆); 0.0214 cm−1 (♦);
0.01069 cm−1 (pentagram); 0.00428 cm−1 (×); and 0.000855 cm−1 (*), and their color the mass
of salt added: msalt = 10.00g (green); 50.00 g (yellow); 100.00 g (red); 190.00 g and 300.00 g
(cyan); 500 g (black); 700.00 g (magenta); and ≥ 1000 g (blue). This information is summarized
in Table 4.2. The vertical error bars represent the uncertainty in the gradient of the linear
regression as defined by Taylor (1997). Note that positive interface gradients

¡− dzdx < 0¢ are
plotted as − dzdx = 0 without error bars.
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Characteristic stem drag and Re

Two additional parameters were defined for each run: CDaL8 and Retoe8, which characterize the

stem drag and Re, respectively. To minimize the effect of anomalous xtoe measurements as well

as the poor resolution of the toe velocity values obtained by measuring the rate of displacement

between pairs of images attributable to the sparsity of measurements, the parameters were

estimated by fitting a pre-selected mathematical expression to the toe position data from each

run, differentiating with respect to time to obtain the corresponding expression for toe velocity,

and finally interpolating the toe velocity at the appropriate L
H .

For runs that were classified as inertial (Table 4.2), Retoe8 is calculated from the velocity

of the toe, estimated as the gradient of the linear regression on xtoe data extracted from the

images. Note that Retoe8 for runs 33 and 34, for which toe positions are not available, are

estimated from the toe velocity for their replicate, run 35, and treated as inertial runs.

For non-inertial runs, the process is more complicated. Neglecting the inertial term in the

momentum balance and assuming linear drag yields the following relationship for xtoe:

³xtoe
H

´2
=

g0

C 0aH
t (4.21)

Because this function forces the toe position at t = 0 to be zero, the definition of t = 0 is

critical.

It was observed during the experiments that a period on the order of a fraction of a second to

a few seconds passed after the removal of the vertical partition before the density current began

propagating. Since the mathematical formulation does not account for this initial behavior,

t = 0 is redefined so that the data are consistent with the model. To define t0, the effective

zero time for non-inertial behavior, a linear regression is performed on
¡
xtoe
H

¢2 and t for each
run: ³xtoe

H

´2
= A+Bt (4.22)

where A and B are the fitted constants. From this regression, the correction time, t0, is:

t0 = −A
B

(4.23)
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It should be noted that this regression assumes that xtoe ∝
√
t− t0; the transformation of t to

t− t0 tends to shift the measurements to improve their agreement with this t-dependence.
Next, a power function is fitted to the xtoe data:

log
³xtoe
H

´
= C +D log (t− t0) (4.24)

which is equivalent to:
xtoe
H

= 10C (t− t0)D (4.25)

and a function for toe velocity is estimated by differentiating this fitted function with respect

to time:

utoe = H
d

dt

xtoe
H

(4.26)

= 10CHD (t− t0)D−1 (4.27)

= 10CHD

µ
1

2× 10C
L

H

¶D−1
D

(4.28)

where C and D are the fitted constants. The expression is evaluated at each L
H corresponding

to a relevant data point — i.e., 7 < L
H < 9 for all runs except runs 4, 8, and 23, as discussed

previously. Then, the result is averaged to determine the characteristic Retoe8 = utoe8
d
ν for

that run. CDaL8 values are then determined by applying the toe velocity estimates to White

(1974)’s equation to obtain the corresponding CD, then multiplying those estimates with the

corresponding a and L. The resulting values for CDaL are then averaged to obtain a single

value for each run, CDaL8.

Sensitivity of the interpolated toe velocity to the effective zero-time The definition

of the correction term t0 in the aforestated calculation of Retoe8 and CDaL8 tends to redefine

the data to fit the momentum balance and the linear drag relationship. The sensitivity of the

interpolated toe velocity, hence Retoe8 and CDaL8, to t0 may be described by the fractional

difference in the interpolated toe velocity that results when t0 is halved,

utoe0 = 10
C0HD0

µ
1

2× 10C0
L

H

¶D0−1
D0

(4.29)
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Then, the fractional difference is:

utoe − utoe0
utoe

= 1− utoe0
utoe

(4.30)

= 1− 10(C0−C)D0
D

µ
L

H

¶ 1
D
− 1
D0

¡
2× 10C¢(1− 1

D )

(2× 10C0) 1−
1
D0

(4.31)

The fractional differences were evaluated at L
H = 8 for each run designated as non-inertial.

The difference ranged from −27% to 5%, with an average of −6%. Of the twenty eight non-

inertial runs, only six have an associated fractional difference greater than 10% in magnitude,¯̄̄
utoe−utoe0

utoe

¯̄̄
> 0.1. These results suggest that the interpolated toe velocities do not exhibit

strong sensitivity to the definition of t0. Moreover, the actual values of t0 varies from −0.2±2 s
to 7.5±1 s, which are comparable to the inverse frame rate for image acquisition, which ranged
from 2 s per frame to 10 s per frame (Table 4.1). Thus, the use of the characteristic Retoe8 and

CDaL8 to represent the present experimental data is justified.

Figure 4-12 illustrates that Equation 4.21, which is associated with the assumptions of linear

drag and negligible inertia, agrees well with runs in the linear interface regime (Figure 4-12 (c)).

However, for runs that are not fully in the linear interface regime Equation 4.21 overpredicts

the toe velocity, and thus the toe position. The overprediction is due to the neglect of the

inertia term which is still significant in the transitional regime.

It is interesting to note that Hatcher et al. (2000) developed similarity solutions for turbulent

gravity currents through an array of obstacles by assuming ∂u
∂t +u

∂u
∂x to be negligible compared

to the array drag and the buoyancy forcing. Their solutions also describe the toe velocity as

u(z = 0) ∼ t−1/2. However, this t-dependence is predicted only in the case where the volume of
the gravity current is constant with time, which is not applicable to our experiments or model

formulation.

Figures 4-13 and 4-14 plot the normalized interface gradient S (Equation 4.20) against

CDaL8 and Retoe8, respectively. Recall that negative S data points are plotted as S = 0 in

the figures. As anticipated, S approaches 1 as CDaL8 increases (Figure 4-13), demonstrating

that the interface approaches a linear interface as the stem drag increases. The interface

also exhibits a Re-dependence (Figure 4-14). As anticipated, for a given stem density a, S
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Figure 4-12: Evolution of the toe with time in the three regimes: (a) inertial flow (run 29);
(b) non-inertial flow and transient interface (run 44); and (c) non-inertial and linear inter-
face regimes (run 31), according to the classification criteria developed in this chapter. Non-
dimensionalized toe position is plotted against time. The dash-dot line is the best-fit line in the
least squares sense for (a): xtoeH = A+Bt where A and B are the fitted constants. For (b) and
(c), the x-axis is the corrected time, t− t0, and the dash-dot lines represent xtoeH =

p
B(t− t0),

where t0 = −AB , as calculated from the linear regression Equation 4.22, where A and B are fitted
constants. t0 = 0.44±0.4 s and t0 = 7.4±5 s for runs 44 (b) and 31 (c), respectively. The solid
lines are xtoeH =

q
g0(t−t0)
C0aH and the perforated lines reflect ±1 standard deviation in C 0 estimates

calculated for each run from the momentum balance in Section 4.5: C 0 = 5.2 ± 1 cm s−1 and
2.8± 0.7 cm s−1 for (b) and (c), respectively.
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progressively decreases as Retoe8 increases. This trend reflects the deviation from the idealized

perfectly linear interface shape as inertia becomes increasingly significant. For the ease of

discussion, runs with S > 0.70 and S < 0.30 are classified as having a linear and a non-linear

interface, respectively. Runs with 0.30 6 S 6 0.70 are classified as being in the transitional

regime. Observe that runs with a < 0.02 cm−1 (CDaL8 < 2 in Figure 4-13) appear to not have

sufficient drag to reach the linear interface regime, regardless of Retoe8. In contrast, runs with

a > 0.04 cm−1 exhibited Retoe8-dependence such that a linear interface profile was observed for

at least one run for each a tested in the laboratory. Note that in each a for which a linear

interface is observed, the highest Retoe8 at which S > 0.70 is in the range 45 < Retoe8 < 100.

It is possible that the critical Retoe8 at which S = 0.7 is a-sensitive, but there is insufficient

data to assess this. There is also insufficient data to comment on whether a linear interface

can be achieved in a = 0.0214 cm−1 conditions. To highlight these trends, the eight runs with

a < 0.04 cm−1, CDaL8 < 5 are depicted with dots in Figure 4-14.

4.3.4 Images for a progression of stem densities and density gradients

Figures 4-15 and 4-16 depict the interface profile for a progression of stem densities with msalt =

100.00 g and a progression of density differences with a = 0.0642 cm−1, respectively. As

discussed previously, only the lower half of the interface
¡
i.e., 0 6 z 6 H

2

¢
will be examined.

The a-dependence in the interface profile is clearly observable in Figure 4-15. At low stem

densities (Figure 4-15 (a) - (c)), the interface is predominantly horizontal, with uniform depth

of undercurrent behind the head, i.e., dzdx = 0. These stem densities are also characterized by

turbulence. Also, an elevated nose at the toe of the undercurrent can be seen in images (b)

and (c). These characteristics are consistent with well-documented observations from previous

works on unobstructed gravity currents. Images (d) and (e) of Figure 4-15 depict a transitional

stage between the block flow regime and the linear interface regime. The head is still visible,

but the rest of the interface has a spatially uniform non-zero slope. At even higher stem

densities (images (f) and (g)), the head is smaller, and thus, most of the interface appears

linear.

This sequence of images highlights the complexity of the system. The interface changes
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Figure 4-13: Normalized interface slope S and CDaL8 for each run. All runs presented: each
run is identified by their CDaL8. The shape of the data points represents the stem density:
a = 0.1155 cm−1 (+); 0.0855 cm−1 (¤); 0.0642 cm−1 (◦); 0.0428 cm−1 (∆); 0.0214 cm−1 (♦);
0.01069 cm−1 (pentagram); 0.00428 cm−1 (×); and 0.000855 cm−1 (*). The color of the data
point represents the mass of salt added: msalt = 10.00 g (green); 50.00 g (yellow); 100.00 g (red);
190.00 g and 300.00 g (cyan); 500 g (black); 700.00 g (magenta); and > 1000 g (blue). Solid line
represents the slope of the perfectly linear interface: S = 1. The vertical bars represent twice
the uncertainty in the gradient of the linear regression on the interface. Note: Measured S
for runs 8 and 11 are negative (S = −0.26± 0.02 and −0.19± 0.04, respectively). These data
points are set to zero and the error bars are removed.
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Figure 4-14: Normalized interface slope S as a function of Retoe8 for each run. The shape of the
data points represents the stem density: a = 0.1155 cm−1 (+); 0.0855 cm−1 (¤); 0.0642 cm−1
(◦); 0.0428 cm−1 (∆); 0.0214 cm−1 (♦); 0.01069 cm−1 (pentagram); 0.00428 cm−1 (×); and
0.000855 cm−1 (*), with the exception of the eight runs for which CDaL8 < 5, which are denoted
by dots. The color of the data point represents the mass of salt added: msalt = 10.00 g (green);
50.00 g (yellow); 100.00 g (red); 190.00 g and 300.00 g (cyan); 500 g (black); 700.00 g (magenta);
and > 1000 g (blue). Note: Measured S for runs 8 and 11 are negative (S = −0.26± 0.02 and
−0.19± 0.04, respectively). These data points are set to zero and the error bars are removed.
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Figure 4-15: Variations in the interface profile for a progression of stem densities with msalt =
100.00 g. (a) Run 11: a = 0.000855 cm−1; (b) Run 28: a = 0.00428 cm−1; (c) Run 29:
a = 0.01069 cm−1; (d) Run 21: a = 0.0428 cm−1; (e) Run 38: a = 0.0642 cm−1; (f) Run 23:
a = 0.0855 cm−1; (g) Run 7: a = 0.1155 cm−1. Images (b), (c), (d), and (f) only captured
the bottom half of the interface, whereas the other images captured the entire length of the
interface.
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Figure 4-16: Variations in the interface profile for a progression of density differences with
a = 0.0642 cm−1: (a) Run 32: g0 = 0.5± 0.5 cm s−2; (b) Run 35: g0 = 1.9± 0.5 cm s−2; (c) Run
38: g0 = 4.0±0.5 cm s−2; (d) Run 40: g0 = 13.3±0.5 cm s−2; (e) Run 44: g0 = 18.3±0.5 cm s−2.
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its shape continuously as stem density varies, making the definition of regimes based on the

interface profile difficult. The transition from a non-linear (block) interface to a linear interface

appears to occur around a = 0.04− 0.07 cm−1 at this density difference, which agrees well with
Deardon (2003)’s observations.

A similar but reverse progression in the size of the head is visible in Figure 4-16, which

presents runs with constant a and a progression of density differences: the head appears larger

at higher g0. However, no turbulence is visible at this stem density in the range of density

differences tested. Moreover, the interface, with the exception of the head, appears to have

a spatially uniform non-zero slope in all of the cases, which is consistent with the calculated

S values (Figure 4-14), confirming the appropriateness of the definition of S and its use as a

characteristic parameter for the interface profile.

Note that, contrary to our theoretical models, the interface does not appear to be strictly

symmetric about x = 0. The height of the head at the bed appears to be consistently greater

than that of the head at the free surface where the interface bends towards the free surface.

Unfortunately, the poor vertical resolution in the present set of images prevents quantitative

analysis of the differences. The apparent asymmetry may be attributed to the fact that

the bed is a no-slip boundary unlike the free surface, a condition that was not incorporated

into the present model. In addition, as mentioned previously, the difference between the

dark undercurrent propagating into transparent water and the transparent surface return flow

propagating into dark fluid may create a false sense of asymmetry. Entrainment of ambient

water into the undercurrent does not interfere with the appearance of the interface in the images

because the entrained fluid is not visible through the dyed fluid. In contrast, ambient dyed

fluid that is entrained into the transparent surface return flow remains visible as dyed patches

of fluid and, as a result, the interface may appear to shift toward x = 0 near the free surface,

z > H
2 . These factors are likely to have contributed to the apparent asymmetry of the interface

profile in the images.
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Figure 4-17: Graphic representation of the three regimes as a function of toe Re and CDaL
evaluated at L = 8H. Solid markers represent data from Deardon, 2003. Red, blue, and black
markers indicate linear, transitional, and non-linear interface profile designations, respectively.
Because the slope was not recorded in Deardon, 2003, the classification of the four runs as having
linear interface profiles are based on Deardon (2003)’s direct observation during the experiments.
Also, blue markers for Deardon (2003)’s data indicate runs for which no observation on the
interface profile were made. The pentagrams and circles indicate inertial and non-inertial
runs, respectively. For inertial runs in the present study, Retoe |L=8H were determined from the
gradient of the linear regression on toe position data. For non-inertial runs in the present study,
Retoe |L=8H are based on interpolated toe velocities based on Equation 4.25. Retoe for the data
points extracted from Deardon, 2003 are interpolated at L = 8H from the linear regression
performed on the toe velocity measurements for each run. CD is estimated by Equation 2.36.
The horizontal perforated line Retoe |L=8H = 72 and the vertical dash-dot line CDaL|L=8H = 5
defines the empirical boundaries below which all runs are linear and all non-linear interface
runs are confined, respectively.
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4.4 Synthesis of the Criteria

Figure 4-17 confirms that experimental runs are consistent with the theory: under high stem

drag conditions, the interface approaches a linear profile; under low stem drag conditions,

the flow exhibits the traditional inertia-dominated behavior. As discussed previously, the

theory predicts that the stem drag becomes comparable to inertia when CDaL|L=8H ≈ 2, and
experimental observations agree with this criteria within uncertainty. However, the critical

Retoe |L=8H = 72 which marks the transition between the linear and transitional interface

profile regimes in Figure 4-17 is purely empirical; the transition was defined as the Retoe |L=8H
below which the runs from the present study are all linear. Similarly, CDaL|L=8H ≈ 5, which,
based on Figure 4-13, marks the transition between an inertia-dominated and a drag-dominated

regime, is also empirical.

Deardon (2003)’s data exhibit reasonably good agreement with the present study. All

inertial runs from the present study and all non-linear runs from both Deardon, 2003 and the

present study are confined to CDaL|L=8H < 5, as anticipated. However, Deardon (2003)’s data
appear to transition from the linear interface to the transitional interface regime at a higher

Retoe |L=8H of about Retoe |L=8H ≈ 150 (Figure 4-17). The difference may be attributed in

part to the difference in the criterion by which a run is defined to be in the linear interface

profile regime. The classification of the four runs from Deardon, 2003 as exhibiting a linear

interface is based on visual observation by Deardon (2003) during experimentation. In contrast,

the classification for the runs from the present study is based on a quantitative parameter, as

developed in Section 4.3. It is possible that the interface in the four runs from Deardon, 2003

that were classified as linear would be classified as transitional by the criterion applied to the

present study. If this were the case, Deardon (2003)’s data would be consistent with the critical

Retoe |L=8H extracted from the present data. Alternatively, the difference in the apparent

transition point between the linear and transitional interface regimes may be a reflection of the

sensitivity of the critical Re to a. Recall from Section 4.3 that the normalized interface gradient,

S, (Figure 4-14) appears to exhibit a weak a-dependence. Such a functionality may account

for the apparent differences between the trends in the present study and Deardon (2003)’s data.
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4.5 Prediction of Toe Velocity in the Linear Interface Regime

Assuming Linear Drag

4.5.1 Computation of the linear drag constant, C 0
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Figure 4-18: Average C 0 and CDaL8. Solid markers indicate non-inertial runs with a linear
interface profile: 7, 12, 21, 30, 31, 32, and 36. Run 23 excluded. Vertical bars depict ±1
standard deviation of the valid C 0 estimates for that run.

An average C 0 was extracted from each run according to the procedure detailed in Section

3.4. Only values from runs with two or more C 0 estimates are presented in Figure 4-18

to minimize the influence of anomalies and to allow for a non-zero standard deviation as a

quantitative measure of uncertainty. As such, runs 2, 17, 23, and 33 are excluded from Figure

4-18 because only one C 0 estimate could be extracted. In addition, runs 1, 3, 11, 19, and 34
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did not yield a valid C 0 estimate and are also absent from the figure.

The constant C 0 appears to be relatively uniform for CDaL8 > 5 in Figure 4-18, as expected.

However, the estimated C 0 increases as CDaL8 approaches zero in the range CDaL8 < 5 and

the system deviates from the non-inertial, linear interface regime. The trend in C 0 as illustrated

in Figure 4-18 is consistent with that in S, as illustrated in Figure 4-13 which shows that at

CDaL8 ≈ 0, the interface is horizontal, indicating an inertial, non-linear regime, and that as
CDaL8 increases the interface begins to deviate towards a linear interface.

Conversely, to predict the velocity of exchange flows using Equation 2.32, C 0 must be known.

The average C 0 across the seven runs identified as both non-inertial and linear (runs 7, 12, 21,

30, 31, 32, 36) is C 0 = 3.4 ± 1.1 cm s−1 (±1 standard deviation). This value agrees well at

Re ≈ 100 with published values for CD displayed in Figure 4-19 and described in Section 2.4.
While the estimate deviates from Equation 2.36 at lower Re, the direction of the deviation is

consistent with that of Equation 2.37, which was discussed in Chapter 2. The magnitudes

of CD predicted by the present C 0 estimate and Equation 2.37 relative to those predicted by

Equation 2.36 suggest that cylinder drag is enhanced in arrays at low Re < 100. In contrast,

extrapolating these relationships to Re > 100 suggests that CD in arrays is suppressed at high

Re, which is consistent with previous observations [Nepf, 1999].

Also, an order of magnitude estimate of CD = 3.8 ± 0.8 was extracted from experimental

observation in Re range 230 < Re < 600 in Hatcher et al., 2000 based on the study’s simi-

larity solutions. While the authors’ model assumes that CD is independent of Re, a lack of

functionality not verified in the study, the observed CD is consistent with the present data.

We lack the experimental observations to confirm that this value extracted for C 0 is univer-

sal. Here, the conditions for Deardon (2003)’s experimental runs for which a linear interface was

observed are applied to the model with the linear drag constant defined as C 0 = 3.4±1.1 cm s−1

to verify that the predictions are consistent with the observed toe velocities documented in

Deardon, 2003. The predictions display good agreement with the experimental observations

(Figure 4-20). With the exception of a few measurements, the predictions are within uncer-

tainty of the observed toe velocities. In addition, the predictions presented in Figure 4-20

highlight the significance of the uncertainty associated with the C 0 estimate. The precision

of the predictions is significantly restricted by the uncertainty associated with the estimated
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Figure 4-19: Re-dependence of CD. Solid thick line represents CD = C0
u = 3.4 cms−1

u[cm s−1] , and the

two thin solid lines reflect the uncertainty on the C 0 estimate: CD = 3.4±1.1 cms−1
u[cm s−1] . The Re

range over which the curve is plotted reflects Retoe8 of the seven runs from which the constant
was estimated. Dash-dot curve represents Equation 2.37, an expression for CD in a random
cylinder array with a solid volume fraction of 5% [Koch & Ladd, 1997], which is equivalent to
a = 0.1 cm−1 for stems used in this study. Perforated curve represents Equation 2.36, CD for
an isolated cylinder [White, 1974].

C 0. Nonetheless, the agreement between the predictions and the observations suggest that our

estimate of C 0 is reasonable.

4.5.2 Asymmetry of the linear drag momentum balance model

Recall that both the momentum balance and the linear velocity profile energy balance models

yield the same solution for toe velocity when the linear drag assumption is applied (Equation

2.30). This expression yields a real solution only when
³
C
0
aL
4

´2
+ g0

¡
H
2 − z

¢
> 0. Where

H
2 − z > 0, this relation will always hold. Where H2 − z < 0, however, the flow conditions must
satisfy: Ã

C
0
aL

4

!2
> g0

¯̄̄̄
H

2
− z

¯̄̄̄
(4.32)
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Figure 4-20: Observed (*) and predicted (◦) toe velocities for Deardon (2003)’s linear interface
runs. Images (a) and (b): a = 0.0855 cm−1; images (c) and (d): a = 0.1497 cm−1. g0 for each
plot are indicated on the plot. Vertical bars represent experimental uncertainty for observed
data and the uncertainty in C 0 = 3.4 ± 1.1 cm s−1 for the predictions (i.e., the lower limit
indicates predictions based on C 0 = 4.4 cm s−1).
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Thus, for a valid solution to span the entire depth,
³
C
0
aL
4

´2
> g0H2 . The parameters a and g0

describe the experimental scenario and are constant during each run; C
0
is a constant. Thus,

only L varies with time in this equilibrium expression. The criterion states that the interface

behavior can be fully described by Equation 2.32 only if:

L

H
> 2
√
2

C 0a

r
g0

H
(4.33)

It is interesting to note the implication of Equation 2.32 — that the velocity profile of the surface

current is not a simple mirror image of that for the undercurrent. For example, the flow speed

at z = H differs from that at z = 0, as shown in Figure 4-21.

4.5.3 Linear drag model predictions

To examine more closely the shape of the interface predicted by the linear drag momentum

balance model, conditions for run 31 and C 0 = 3.38 cm s−1, as estimated above, are applied,

and the predicted interface profile is compared with experimental observations (Figure 4-21).

The model captures the general profile of the interface reasonably well, with the exception of

the head of the undercurrent. Note that the uncertainty in g0 appears to have minimal effect

on predicted profiles. However, with the smaller g0, it takes approximately twice as long for

the undercurrent to propagate the same distance. Specifically, the predictions in Figure 4-21

required a simulation time of 78 s and 156 s, respectively, for g0 = 0.98 cms−2 and 0.49 cm s−2.

Thus, the uncertainty in g0 affects the velocity predictions, with higher g0 resulting in higher

velocity predictions.
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Figure 4-21: Observed and predicted interface position for run 31 at L ≈ 9.6H. Dots indicate
experimental observation at L ≈ 9.6H. The solid and perforated lines represent predictions
based on Equation 2.32, with C 0 = 3.38 cm s−1 . The former applied g0 as calculated, and the
latter applied the upper limit of g0 within experimental uncertainty.
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Run 
Number

Linear / 
Nonlinear / 
Transitional

Inertial / 
Noninertial Pattern Color

1 T + blue
2 T + blue
3 T + black
4 T square red
5 T circle red
6 N I diamond red
7 L + red
8 N I x red
9 N I pentagram red

11 N I * red
12 L + green
13 T square red
14 T + black
16 T + magenta
17 T + blue
18 T + black
19 T + magenta
20 T + red
21 L ^ red
23 L square red
26 N pentagram cyan
27 T I diamond cyan
28 N I x red
29 T I pentagram red
30 L circle green
31 L circle green
32 L circle green
33 L circle yellow
34 L circle yellow
35 L I circle yellow
36 L circle red
37 T circle red
38 T circle red
39 T circle cyan
40 T circle cyan
42 T circle black
43 T circle black
44 T circle black

Data Points

L, N, and T denote linear, nonlinear, and transitional regimes as indicated by the slope at x = 0. I
indicates inertial runs, based on the variation in the toe velocity across that run. Toe velocity data
were not available for runs 33 and 34. All other runs are noninertial. The pattern and color column
indicate the marker symbols and their color in each figure. The marker shape and color indicate
the stem density and msalt, respectively.

Table 4.2: Classification of the experimental runs
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Chapter 5

Interaction of Wind Forcing and

Density Gradients

Our analyses thus far have neglected stresses and treated currents as if they were driven purely

by density gradients. Accordingly, the present model (Equation 2.16) is a balance only of

inertia, vegetative drag, and the pressure gradient (Chapter 2). In real systems, however,

wind-induced stress may significantly enhance or inhibit convective circulation, depending on

its magnitude and direction. In this chapter, a new model is developed from the Navier-Stokes

equation, in which wind stress and bed friction are incorporated as boundary conditions. This

enhanced model describes the interaction of wind and convective forcing, which, in many real

systems, dictate the behavior of convective circulation.

5.1 Formulation

The assumptions of quasi-steady conditions, negligible vertical velocity, and two-dimensionality

used to obtain Equation 2.16 in Section 2.2 are applied here as well. Coriolis effects are ne-

glected, taking into consideration the short timescales associated with both forcing mechanisms.

However, in this derivation, the stress term in the Navier-Stokes equation is retained:

u

g

∂u

∂x
= − 1

gρ

∂P

∂x
− CDau

2

2g
+

ν

g

∂2u

∂z2
(5.1)
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where ν is the kinematic viscosity [L2T−1].

For simplicity, the system is assumed to be in the linear drag regime (i.e., stem drag is

assumed to be inversely proportional to velocity, such that CD = C0
u ). This formulation is

consistent with Koch & Ladd (1997)’s numerical simulations for cylinder drag in a random

array of 5% solid volume fraction for Re < 35 [Figure 26, Koch & Ladd, 1997]. Equation 2.36,

which describes the drag for an isolated cylinder, also approaches a similar relationship at low

Re:

CD →
10
¡
ν
d

¢2/3
u2/3

(5.2)

Then, Equation 5.1 can be rewritten as:

∂2u

∂z2
−
³
∂u
∂x +

C0a
2

´
ν

u =
1

ρν

∂P

∂x
(5.3)

This expression can be solved as a homogeneous ordinary differential equation by treating

∂u
∂x as a constant:

uh = c1e
(∂u∂x+C0a

2 )
ν

z + c2e
− ( ∂u∂x+C0a

2 )
ν

z (5.4)

A particular solution for Equation 5.3 is:

up = −1
ρ

∂P

∂x

1¡
∂u
∂x +

C0a
2

¢ (5.5)

Then, the solution for velocity is the linear sum of up and uh:

u = c1e
(∂u∂x+C0a

2 )
ν

z + c2e
− ( ∂u∂x+C0a

2 )
ν

z − 1
ρ

∂P

∂x

1¡
∂u
∂x +

C0a
2

¢ (5.6)

For convenience, let us define a constant B ≡ 1
ν

³
∂u
∂x +

C0a
2

´
such that:

u = c1e
√
Bz + c2e

−√Bz − 1

Bν

1

ρ

∂P

∂x
(5.7)

Then, the application of the hydrostatic assumption ∂P
∂x =

∂
∂xρg (H − z) = g

h
(H − z) ∂ρ

∂x + ρ∂H
∂x

i
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yields:

u = c1e
√
Bz + c2e

−√Bz − g

Bν

·
(H − z)

ρ

∂ρ

∂x
+

∂H

∂x

¸
(5.8)

Boundary conditions are applied at the bed and at the free surface. First, velocity is defined

to be zero at the bed:

u (z = 0) = c1 + c2 − g

Bν

·
H

ρ

∂ρ

∂x
+

∂H

∂x

¸
= 0 (5.9)

Then,

c2 =
g

Bν

·
H

ρ

∂ρ

∂x
+

∂H

∂x

¸
− c1 (5.10)

Next, the stress at the free surface is defined as the wind stress τw. That is,

τw = νρ
∂u

∂z
|z=H (5.11)

where τw is related to the wind velocity as:

τw = ρairC10w10 |w10| (5.12)

and ρair = 1.2× 10−3 g cm−3 is the air density, C10 ≈ 10−3 is a drag coefficient, and w10 is the
wind speed. Differentiating Equation 5.8 with respect to z and evaluating the result at z = H

yields:
∂u

∂z
|z=H = c1

√
BeH

√
B − c2

√
Be−H

√
B +

g

Bν

µ
1

ρ

∂ρ

∂x

¶
(5.13)

Substituting this expression into Equation 5.11 yields:

τw = νρ

·
c1
√
BeH

√
B − c2

√
Be−H

√
B +

g

Bν

µ
1

ρ

∂ρ

∂x

¶¸
(5.14)

which can be rewritten as:

τw = νρ

·
c1
√
BeH

√
B −

·
g

Bν

µ
H

ρ

∂ρ

∂x
+

∂H

∂x

¶
− c1

¸√
Be−H

√
B +

g

Bν

µ
1

ρ

∂ρ

∂x

¶¸
(5.15)
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Solving Equation 5.15 for c1 yields:

c1 =

τw
ρ − g

Bρ
∂ρ
∂x +

g√
B

³
H
ρ
∂ρ
∂x +

∂H
∂x

´
e−H

√
B

ν
√
B
³
2 coshH

√
B
´ (5.16)

Since total discharge must be zero in a closed steady-state system, conservation of mass:

Z H

0
u dz = 0 (5.17)

is the third condition that must be satisfied. Evaluating this expression and solving for c1

yields:

c1 =

g
Bν

³
H
ρ
∂ρ
∂x +

∂H
∂x

´³
e−H

√
B − 1

´
+ g√

Bν
H
h
∂H
∂x +

H
2ρ

∂ρ
∂x

i
2
h
coshH

√
B − 1

i (5.18)

Equating Equations 5.16 and 5.18 yields:

∂H

∂x
=
−τw

ρg +
1
B
1
ρ
∂ρ
∂x +H

1
ρ
∂ρ
∂x

h
coshH

√
B

coshH
√
B−1

³
H
2 +

e−H
√
B−1√
B

´
− e−H

√
B√

B

i
e−H

√
B√

B
+ coshH

√
B

1−coshH√B

³
H + e−H

√
B−1√
B

´ (5.19)

which describes the slope of the free surface as a function of specified parameters. As in

Chapter 2, the density gradient is scaled as ∂ρ
∂x ∼ (ρ2−ρ1)

L < 0. Substituting Equations 5.10,

5.16, and 5.19 into Equation 5.8 yields a momentum balance model that accounts for wind

stress.

5.1.1 Comparison of the predicted profiles

To compare this model with the momentum balance model derived in Section 2.2, the ex-

perimental conditions for run 32, a linear profile, non-inertial run (Table 4.1), were applied

to Equations 2.21 and 5.8. Observe that in the absence of wind stress, the velocity profiles

predicted by the two models are similar but not identical in shape, as shown in Figure 5-1.

The differences between the two profiles illustrate the effect of neglecting stresses. Because

the no-slip boundary condition is not applied in deriving Equation 2.21, u monotonically de-

creases with increasing z. In contrast, the depth of maximum velocity in the undercurrent is

approximately z ∼ H
10 when modeled by Equation 5.8.
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Run 32: L = 8H, wind = 0
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Figure 5-1: Effect of bed friction on the velocity profile as illustrated by the two momentum
balance models. Perforated and solid lines represent the predicted velocity profiles for run 32 at
L = 8H based on Equations 2.21 and 5.8, respectively, with C 0 = 1 cms−1 and τw = 0. CD was
determined by applying velocity predictions to Equation 2.36. The velocities were recalculated
based on the new CD estimates, and the process was reiterated until the predictions converged.

5.2 Comparison of Wind and Convective Forcing

The relative importance of wind forcing and density difference may be defined in terms of the

critical wind stress required to counteract the convective forcing so that the velocity at the free

surface becomes zero. This condition — u(z = H) = 0 — is satisfied when:

c1e
H
√
B + c2e

−H√B − g

Bν

∂H

∂x
= 0 (5.20)

which simplifies to:

∂H

∂x
=
2c1

Bν
g sinhH

√
B + H

ρ
∂ρ
∂xe

−H√B³
1− e−H

√
B
´ (5.21)

where c1 is defined by Equations 5.16 and 5.18 and ∂H
∂x is described by Equation 5.19. Both

parameters are functions of wind stress.
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Replacing c1 yields:

∂H

∂x

³1− e−H√B −H√B´ sinhH
√
B³

coshH
√
B − 1

´ + ³1− e−H√B´


=
H

ρ

∂ρ

∂x

Ãe−H√B − 1 + H√B
2

!
sinhH

√
B³

coshH
√
B − 1

´ + e−H√B
 (5.22)

Substituting the expression for ∂H
∂x yields an expression for the ratio of wind and convective

forcing:

−τwB
g ∂ρ∂x

= −1 +H
√
B


e−H

√
B +

e−H
√
B− coshH

√
B

(1−coshH
√
B)

1−e−H
√
B−H√B

(1−e−H
√
B−H√B) sinhH

√
B

(coshH
√
B−1)+1−e

−H√B

×
·

sinhH
√
B

(1−coshH
√
B)

³
1− e−H

√
B − H

√
B

2

´
+ e−H

√
B

¸
− coshH

√
B

(1−coshH
√
B)

³
1− e−H

√
B − H

√
B

2

´


(5.23)

Let us define the left hand side of Equation 5.23 as a dimensionless parameter W :

W ≡ −τwB
g ∂ρ∂x

(5.24)

The expression on the right hand side of Equation 5.23 describes the critical value for W ,

Wcritical, for a given set of conditions H, C 0, and a, when the velocity at the free surface is

exactly zero:

Wcritical = H
√
B


e−H

√
B +

e−H
√
B− coshH

√
B

(1−coshH
√
B)

1−e−H
√
B−H√B

(1−e−H
√
B−H√B) sinhH

√
B

(coshH
√
B−1)+1−e−H

√
B

×
·

sinhH
√
B

(1−coshH
√
B)

³
1− e−H

√
B − H

√
B
2

´
+ e−H

√
B

¸
− coshH

√
B

(1−coshH
√
B)

³
1− e−H

√
B − H

√
B

2

´


− 1 (5.25)

Accordingly, the wind stress is sufficiently strong to reverse the direction of the current at the
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free surface when the following criterion is satisfied:

W > Wcritical (5.26)

The sign of W reflects the direction of the wind, given our definition of the Cartesian

coordinates
³
∂ρ
∂x 6 0

´
. Because the right hand side of Equation 5.26 is positive when H

√
B

corresponds to typical conditions found in nature, the wind must be blowing against the surface

current, i.e., τw > 0, for Equation 5.26 to be satisfied.

5.2.1 Characteristic velocity profiles

Figures 5-2 and 5-3 display characteristic velocity profiles for positive and negative wind veloc-

ities, respectively.

In the absence of wind, the density gradient creates a two-layered system with an under-

current and surface current propagating in the positive and negative direction, respectively, as

shown in Figure 5-2 (a). As mentioned above, one difference between predictions by Equation

2.21 and these profiles is the no-slip condition enforced at the bed. The resulting asymmetry in

the profile implies that for conservation of mass to be satisfied, the depth at which the velocity

is zero is not fixed at mid-depth, as was assumed in deriving Equation 2.21.

Wind forcing against convective currents

As the wind velocity increases in magnitude against the direction of propagation of the surface

convective current (τw > 0), the current velocity at the free surface decreases until it becomes

zero atW =Wcritical (Figure 5-2 (b)). At higher wind velocities, a three-layered system, which

consists of a shallow current at the surface which propagates in the direction of the wind, a layer

below it which propagates in the opposite direction, and the undercurrent which propagates in

the positive direction, develops (Figure 5-2 (c)).

Eventually, the wind velocity exceeds a critical value after which the undercurrent reverses

direction and the system returns to a two-layered system, but with the surface and bottom

layers flowing in the opposite direction to that when the system is driven by convective forcing

alone. The velocity profile associated with this regime (Figure 5-2 (c): ν = 10 cm2 s−1) has the
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same qualitative shape as purely wind-driven currents.

Figure 5-2 also highlights the sensitivity of the model to ν. By definition of the parameter

B, doubling ν is has the equivalent effect on B as halving the a or C 0; both operations result

in the halving of B. Wcritical is affected according to its dependence on B, as expressed in

Equation 5.25. In the example shown in Figure 5-2, a larger ν corresponds to a lower Wcritical

and a higher critical wind velocity. Furthermore, Figure 5-2 (c) shows that a larger ν is

associated with a lower W
Wcritical

at which the system transitions from a three-layered flow to a

reversed two-layered flow. The predicted velocity profiles for ν = 0.01 cm2 s−1 and 0.1 cm2 s−1

are clearly three-layered. At ν = 1cm2 s−1 the profile is very close to the transition, and at

higher ν, the flow returns to a two-layered system.

Wind forcing promoting convective currents

When τw 6 0 and the wind blows in the direction of the convective surface current, the wind

forcing is expected to strengthen the convective circulation. The model correctly captures

this trend: as |W | becomes larger, the current velocity at the surface increases such that at
W = −100Wcritical, the velocity is approximately 2 orders of magnitude greater than when

W = 0, as illustrated in Figure 5-3 (c). To compensate for this increased surface flow in the

negative direction, the free surface slope and the velocity of the undercurrent must become

more negative and positive, respectively; this anticipated behavior is also reproduced by the

model.

As expected, when the wind enhances the convective surface current, the surface current

speed is larger for a given |W | than if the wind were blowing in the positive direction with the
same magnitude, as can be seen by comparison of Figures 5-2 (c) and 5-3 (b).

5.3 Summary

This momentum balance model accurately captures the anticipated qualitative response of con-

vective currents to wind forcing, which is also consistent with field observations [Roget et al., 1993].

This model enables us to better predict the occurrence of convective circulation in the pres-

ence of wind forcing, and enhances our ability to describe basin-scale circulations influenced
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Figure 5-2: Characteristic velocity profiles under three wind conditions that oppose convective
currents (a) W = 0; (b) W = Wcritical; and (c) W = 10Wcritical for ν = 0.01 cm2 s−1 (perfo-
rated), 0.1 cm2 s−1 (solid), 1 cm2 s−1 (dash-dot), and 10 cm2 s−1 (dashed). The first and second
number for each data set in the key indicates the corresponding ν and W , respectively. The
flow conditions are: H = 50 cm; C 0 = 1cms−1; a = 0.1 cm−1; L = 10000 cm; T1 = 18 ◦C; and
T2 = 20

◦C.

103



-2 -1.5 -1 -0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

W = -100 W critical

u [cm/s]

z 
/ H

0.01cm2 s- 1. W = -5490
0.1cm2 s- 1. W =  -1668
1  cm2 s- 1. W = -459.0
10cm2 s- 1. W = -87.39

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1
0

0.2

0.4

0.6

0.8

1
W = -10 W critical

u [cm/s]

z 
/ H

0.01cm2 s- 1. W = -549
0.1cm2 s- 1. W =  -167
1  cm2 s- 1. W = -45.9
10cm2 s- 1. W = -8.74

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02
0

0.2

0.4

0.6

0.8

1
W = -W critical

u [cm/s]

z 
/ H

0.01cm2 s- 1. W = -54.9
0.1cm2 s- 1. W =  -16.7
1  cm2 s- 1. W = -4.59
10cm2 s- 1. W = -0.874

(a) 

(b) 

(c) 

Figure 5-3: Characteristic velocity profiles for three wind conditions that promote convective
currents: (a) W = −Wcritical; (b) W = −10Wcritical; and (c) W = −100Wcritical for ν =
0.01 cm2 s−1 (perforated), 0.1 cm2 s−1 (solid), 1 cm2 s−1 (dash-dot), and 10 cm2 s−1 (dashed).
The first and second number for each data set in the key indicates the corresponding ν and W ,
respectively. The flow conditions are: H = 50 cm; C 0 = 1cms−1; a = 0.1 cm−1; L = 10000 cm;
T1 = 18

◦C; and T2 = 20 ◦C.
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by a number of forcing mechanisms. For example, let us consider the system investigated by

Andradóttir (2000). The following site parameters are applied: H = 170 cm, L = 6000 cm,

T1 = 7 ◦C; T2 = 8.5 ◦C, as reported in Andradóttir, 2000. While the vegetation in the wet-

lands is identified as water lilies and coontail in Andradóttir, 2000, their stem densities are

not documented. Therefore, as a first order approximation, a stem density a = 0.012 cm−1

is chosen based on documented observations of Spartina alterniflora (salt-marsh cordgrass)

[Valiela et al., 1978], a common salt marsh grass with an approximately cylindrical morphol-

ogy. The linear drag constant estimated in Section 4.5, C 0 = 3.38 cms−1, is employed here. The

similarity in the exchange flow velocities measured in the field (0−5 cm s−1 [Andradóttir, 2000])
and those measured in the laboratory in the present study justifies this extrapolation. Then, the

critical wind velocity necessary to set the velocity at the free surface to zero is w10 = 0.46m s−1,

0.80ms−1, and 1.3m s−1 for ν = 0.1 cm2 s−1, 1 cm2 s−1, and 10 cm2 s−1, respectively. These ve-

locities are approximately one order of magnitude smaller than wind velocities measured in the

field by Andradóttir (2000)
¡
order of 1− 10m s−1¢. These results indicate that when present,

wind forcing may dominate convective forcing.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

Mathematical descriptions of the velocity profile of exchange flows propagating through rigid

cylindrical stems were derived from the conservation of energy and momentum. Predictions

based on these expressions were compared with previously made experimental observations of

frontal velocity. The theory accurately predicted the velocities in high stem density scenarios,

but overestimated velocities in low stem density scenarios. The results indicate that the

momentum balance solution most accurately describes the toe velocity of vegetated exchange

flows (a > 0). For non-vegetated flows (a = 0), the well-documented block flow energy balance

solution is the most accurate, as anticipated.

Experimental results show that the interface profile and exchange flow behavior may be

predicted from the conditions of the flow and the vegetation. If CDaL < 5 when L
H ≈ 8, the

exchange flow was inertial, regardless of the magnitude of g0. For runs with greater CDaL,

the vegetative drag had significant effect on the toe velocity and the flow was non-inertial.

Furthermore, linear interfaces were observed in experiments where Re|z=0 < 72 and CDaL > 5
at L

H ≈ 8. These results may be interpolated to predict of the interface shape and toe velocity
from easily measurable and controlled flow conditions and stem density.

A linear drag regime, in which CD ∝ u−1, was proposed in response to Deardon (2003)’s
observations of a linear interface profile under high stem density, low g0 scenarios. Present

experimental observations suggest that the constant of proportionality is C 0 = 3.4± 1.1 cm s−1.
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Predictions based on the linear drag assumption agree well with experimental observation of

non-inertial and linear interface flows.

Finally, a mathematical model that accounted for wind forcing and bed friction was de-

veloped to examine the potential importance of wind forcing in typical systems. When wind

stress acts in the direction of propagation of the surface current (driven by convective forcing),

it merely strengthens the existing convective circulation. When wind stress opposes the sur-

face current, three regimes emerge. When wind stress is small, the wind only suppresses the

velocity of the water at the free surface, and the structure of the velocity profile is essentially

unchanged by the wind: a two-layered system with the undercurrent and the surface return flow

propagating in opposite directions. At wind forcing increases, the current at the free surface

reverses direction and flows in the direction of the wind, generating a three-layered system.

Under even stronger wind forcing, the system returns to a two-layered system but with the

undercurrent and surface current propagating in opposite directions as the purely convective

scenario. Application of a typical wetland condition to the model shows that under typical

conditions, the system may be dictated by wind forcing.

6.2 Future Research

The duration of the present experimental runs were restricted by the length of the laboratory

flume, which was only 13.5 water-depths long. As such, it would be instructive to repeat some

of the experiments in a longer tank that will allow the density current to propagate over long

distances. Since the density gradient decreases continuously as the current propagates, the

differences observed between runs with different g0 should also be observable as a function of

time in a single run. That is, if an exchange flow is allowed to propagate through sufficiently

dense vegetation for a long distance, its interface should eventually transition from a non-

linear profile to a linear profile. It would be interesting to identify and compare the critical

Re and L (hence the density gradient) at which the transition occurs with the experimental

observations in the present study. Additionally, as the system transitions from being inertia-

dominated to drag-dominated, its rate of propagation is also expected to shift from the block

flow energy balance solution to the linear velocity profile solution. Experimental confirmation
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of this transition in the exchange flow regime would further support the present mathematical

formulation.

The precision of the present models depends on the accuracy of the parameters CD and C 0.

Our poor understanding of the Re-dependence of CD as a function of stem density a introduces

significant uncertainty in the velocity predictions. Further experimental or numerical work is

necessary to determine CD for Re and a ranges relevant to aquatic canopies. Moreover, exten-

sive data of CD and Re will identify the conditions under which CD is inversely proportional

to Re, if such a relationship does indeed exist, and the corresponding C 0 may be estimated.

Preferably, a more extensive experimental study will be conducted, in which unsteady tem-

perature differences, and not salinity differences, generate the density gradient. As discussed in

Chapter 1, lock-exchange flows are unsteady, with the density gradient monotonously decreas-

ing. Convective forcing, in contrast, is periodic, and generates convective currents through

differential heating and cooling. It is clear that a mathematical description of the density

gradient becomes significantly more complicated. The system no longer consists of two dis-

tinct fluids that remain unmixed such that each fluid retains their original density; instead,

a continuous range of temperatures and densities are likely to be observed. Depending on

the scale of the experiment facility and the forcing, the density currents may be unsteady or

quasi-steady. Finally, for differential heating or cooling to occur, the basin must exhibit some

form of spatial heterogeneity, as stated in Chapter 1. While the mathematical formulation will

become complex, density currents driven by convective forcing will more accurately reproduce

environmental conditions.
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Appendix A

Comparison of Viscous Stresses and

Stem Drag

As stated in Chapter 5, the Navier-Stokes equation for a lock-exchange flow may be written as:

u
∂u

∂x
= −1

ρ

∂P

∂x
− CDau

2

2
+ ν

∂2u

∂z2
(A.1)

In the momentum balance model Equation 2.21 derived in Section 2.2, the stress term was

neglected. This chapter confirms the validity of that assumption through a simple scaling

analysis.

The viscous term can be scaled as:

ν
∂2u

∂z2
∼ ν

u¡
H
2

¢2 = 4νu

H2
(A.2)

Thus, for the viscous term to be negligible relative to the drag term the following inequality

must apply:
4νu

H2
¿ CDau

2

2
(A.3)

The value for u is interpolated from the linear regression of the toe velocity observations for

each run. This equation can be rewritten in terms of Re by rewriting CD and u in terms of Re
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(Equation 2.36): ³
1 + 10.0Re−2/3

´
ReÀ 8d

aH2
(A.4)

The flow velocity must satisfy this condition for viscous stresses to be negligible.

The value for 8d
aH2 for runs 11 and 12 are presented in Table A.1, along with the ob-

served toe Re at L
H = 6.75, which corresponds to approximately half of the length of the tank,

and the corresponding
³
1 + 10.0Re−2/3

´
Re. Runs 11 and 12 correspond to the lowest stem

density scenario and the highest stem density and lowest density difference scenario in the

present study, respectively. For both runs, 8d
aH2 is at least an order of magnitude greater than³

1 + 10.0Re−2/3
´
Re. These results justify the removal of the viscous stress term from the

governing equations in analyzing our experimental data.

Run a
£
cm−1

¤
8d
aH2 Toe Re @ L

H = 6.75
³
1 + 10.0Re−2/3

´
Re

11 0.000855 30.8 199 257
12 0.1155 0.215 30 61

Table A.1: Comparison of observed Re and the minimum Re necessary for viscous stresses to
be negligible relative to the drag.
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Appendix B

Analysis of the Quasi-Steady

Assumption

To examine the appropriateness of the quasi-steady assumption, DuDt was determined from ex-

perimental data for four runs and compared with the magnitude of the other terms in the

momentum balance: u∂u
∂x ,

1
ρ
∂P
∂x ,

CDau
2

2 , and ν ∂2u
∂z2
, which scale as u

2

L , g
1
ρ
(ρ1−ρ2)

L

¡
z − H

2

¢
, CDau

2

2 ,

and 4νu
H2 , respectively. For the purpose of this analysis, these terms were evaluated at z = 0 and

with the average observed toe velocity was used as a characteristic u. White (1974)’s Re-CD

relationship was employed to evaluate CD (Equation 2.36) in the vegetative drag term.

The results are presented in Table B.1. With the exception of run 11, DuDt is one to two

orders of magnitude smaller than u2

L . The method of estimating
Du
Dt as the rate of displacement

of the toe between consecutive pairs of images may be regarded as a Lagrangian observation

of an Eulerian velocity, as the toe positions in one pair of consecutive images have progressed

from those in the previous pair. From this perspective, DuDt is effectively analogous to
∂u
∂t , and

the relative magnitudes of DuDt and
∂u
∂t are consistent with the removal of the

∂u
∂t term from our

models.

Incidentally, the results in Table B.1 reaffirm that the shear term 4νu
H2 is consistently one

or more orders of magnitude smaller than the other terms and is thus negligible as we had

assumed in Section 2.2.
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Run
2 11 31 44

Du
Dt -0.3 -0.03 -0.004 -0.2
u2

L 6 1 0.01 3
CDau

2

2 3 0.005 0.008 0.8
1
ρ
∂P
∂x -50 -4 -0.4 -20

ν ∂2u
∂z2

10−3 6×10−4 8×10−5 10−3

Table B.1: Comparison of magnitudes of the terms in the momentum balance.
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Appendix C

Progression of the Interface in Each

Experimental Run

Each of the 38 figures in this section represents a progression of the interface over the course

of the experimental run indicated in the caption. The dots are data points that represent the

position of the interface in each image. These data were captured using a set of MATLAB R°

codes developed by Landry (2003) and modified by the present author. The horizontal and

vertical axes represent the x- and z-positions of the interface, respectively, normalized by the

water depth, H. The run number (Table 3.1), scale [pixels cm−1], and the time [s] between

each pair of consecutive images are indicated at the top of each figure.
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Figure C-1: Run 1.
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Figure C-2: Run 2.

119



-6 -4 -2 0 2 4 6
0

0.5

1
Run 3.     Scale 3.9028pix / cm.     Time step 2s.

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

x / H

Figure C-3: Run 3.
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Figure C-4: Run 4.
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Figure C-5: Run 5.
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Figure C-6: Run 6.
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Figure C-7: Run 7.
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Figure C-8: Run 8.
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Figure C-9: Run 9.
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Figure C-10: Run 11.
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Figure C-11: Run 12.

128



-6 -4 -2 0 2 4 6
0

0.5

1
Run 13.     Scale 3.9127pix / cm.     Time step 3s.

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

x / H

Figure C-12: Run 13.
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Figure C-13: Run 14.
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Figure C-14: Run 16.
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Figure C-15: Run 17.
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Figure C-16: Run 18.
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Figure C-17: Run 19.
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Figure C-18: Run 20.
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Figure C-19: Run 21.
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Figure C-20: Run 23.
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Figure C-21: Run 26.
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Figure C-22: Run 27.
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Figure C-23: Run 28.
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Figure C-24: Run 29.
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Figure C-25: Run 30.
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Figure C-26: Run 31.
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Figure C-27: Run 32.
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Figure C-28: Run 33.
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Figure C-29: Run 34.
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Figure C-30: Run 35.
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Figure C-31: Run 36.
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Figure C-32: Run 37.
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Figure C-33: Run 38.
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Figure C-34: Run 39.
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Figure C-35: Run 40.
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Figure C-36: Run 42.

153



-6 -4 -2 0 2 4 6
0

0.5

1
Run 43.     Scale 3.4727pix / cm.     Time step 2s.

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

-6 -4 -2 0 2 4 6
0

0.5

1

x / H

Figure C-37: Run 43.
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Figure C-38: Run 44.
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