A Session-Based Architecture for Internet Mobility
by
Mark Alexander Connell Snoeren

S.M. Computer Science, Georgia Institute of Technology (1997)
B.S. Applied Mathematics, Georgia Institute of Technology (1997)
B.S. Computer Science, Georgia Institute of Technology (1996)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2003

(© Massachusetts Institute of Technology 2002. All rights reserved.

AUthOT .. o e e B e e e e e

Dépaément of Electrical Engineering and Computer Science
December 12, 2002

Certified by e
Hari Balakrishnan

Associate Prefesser of/C()ﬁlputer/&%nce and Engineering
Thesis Supervisor

Certifiedby....
M. Frans Kaashoek

-Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .. fe e
- o Arthur C. Smith

Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTITUTE

OF TECHNOLOGY BARKER
MAY 1 2 2003

i IRRARIES

S

A Session-Based Architecture for Internet Mobility
by
Mark Alexander Connell Snoeren

Submitted to the Department of Electrical Engineering and Computer Science
on December 12, 2002, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

The proliferation of mobile computing devices and wireless networking products over the past
decade has led to an increasingly nomadic computing lifestyle. A computer is no longer an immo-
bile, gargantuan machine that remains in one place for the lifetime of its operation. Today’s personal
computing devices are portable, and Internet access is becoming ubiquitous. A well-traveled laptop
user might use half a dozen different networks throughout the course of a day: a cable modem from
home, wide-area wireless on the commute, wired Ethernet at the office, a Bluetooth network in the
car, and a wireless, local-area network at the airport or the neighborhood coffee shop.

Mobile hosts are prone to frequent, unexpected disconnections that vary greatly in duration. De-
spite the prevalence of these multi-homed mobile devices, today’s operating systems on both mo-
bile hosts and fixed Internet servers lack fine-grained support for network applications on inter-
mittently connected hosts. We argue that network communication is well-modeled by a session
abstraction, and present Migrate, an architecture based on system support for a flexible session
primitive. Migrate works with application-selected naming services to enable seamless, mobile
“suspend/resume” operation of legacy applications and provide enhanced functionality for mobile-
aware, session-based network applications, enabling adaptive operation of mobile clients and allow-
ing Internet servers to support large numbers of intermittently connected sessions.

We describe our UNIX-based implementation of Migrate and show that sessions are a flexible, ro-
bust, and efficient way to manage mobile end points, even for legacy applications. In addition,
we demonstrate two popular Internet servers that have been extended to leverage our novel notion
of session continuations to enable support for large numbers of suspended clients with only min-
imal resource impact. Experimental results show that Migrate introduces only minor throughput
degradation (less than 2% for moderate block sizes) when used over popular access link technolo-
gies, gracefully detects and suspends disconnected sessions, rapidly resumes from suspension, and
integrates well with existing applications.

Thesis Supervisor: Hari Balakrishnan
Title: Associate Professor of Computer Science and Engineering

Thesis Supervisor: M. Frans Kaashoek
Title: Professor of Computer Science and Engineering

To my dad. 1 read the book.

It takes a village to raise a child.

- African proverb

Acknowledgments

I cannot hope to enumerate, let alone repay, all those to whom I am indebted for assistance not
only in preparing this manuscript, but in helping me to survive and prosper during my years at MIT.
Despite the unavoidable omissions, I still insist on mentioning a few in print.

First, I thank my advisors, Hari Balakrishnan and Frans Kaashoek, for providing an incredibly
exciting and energizing work environment. I could not have asked for more supportive and engaging
mentors. Each sports a razor-sharp mind and wit, and an amazing ability to apply both in just the
right amount with impeccable timing. I remain astounded by their intuition, thoughtfulness, and
capacities for comprehension, synthesis, and presentation. Despite the dozens of other students
they advise, I have no doubt they understand the context and ramifications of the material presented
here better than L.

John Guttag, the final member of my thesis committee, was always ready with interested and en-
thusiastic counsel. While I fell victim to the all-too-common temptation to not solicit his advice on
this dissertation until far later than I should have, his career guidance and succinct comments on
countless practice talks throughout my graduate career have been invaluable.

The implementation described in this dissertation was built on top of TESLA, a toolkit built by
Jon Salz while working on his M.Eng. with me. I've undoubtedly pestered him with more bug
reports and feature requests than he could possibly have anticipated. I owe him for his unflagging
commitment to address each of them. Thanks also to Ken Steele and Jason Waterman at MIT,
and Dan Aguayo and Dimitris Kalofonos at Nokia for their willingness to try out not-quite-ready-
for-prime-time versions of Migrate and share their experiences with me. Much of the inspiration
for this dissertation came out of discussions with Brian Noble. Some of the material included in
Chapter 7 was co-authored with David Andersen, and Kyle Jamieson and Ken Steele assisted with
measurements of power consumption. My mother, in her least-significant role in my life as chief
copy editor, lovingly revised each and every chapter.

This dissertation reports on only a portion of my work at LCS. Several other faculty and staff as-
sisted me with the all-too-frequent distractions that made my stay enjoyable and rewarding. Thanks
to John Wroclawski, Karen Sollins, and David Clark for taking me in when I first arrived at MIT
without an advisor, office, research project, or direction. Victor Zue, Dorothy Curtis, and Ty Sealy
were instrumental in my early Hummer exploits. David Gifford’s boundless generosity, sympa-
thetic ear, and insightful guidance set me on a course to graduation. David Karger’s open door and
uncanny algorithmic insights were invaluable.

Day-to-day graduate student life would be quite monotonous were it not for the constant interac-
tions with my office mates, without whom I no doubt would have gone insane. Our spontaneous
discussions on topics technical and otherwise provided needed inspiration, analysis, and comic re-
lief. Thanks especially to Alex Hartemink, Dina Katabi, Jo Kulik, Allen Miu, and Stan Rost. Dave
Andersen deserves special note; despite our constant technical arguments, political rants, and oc-
casional personal outbursts—in fact, precisely because of them—he was in every way the perfect

office mate. I'll miss his big yellow ball. Jeremy De Bonet, my lifting partner and constant compan-
ion for the few years we overlapped at MIT, provided a sounding board for crazy ideas, implausible
theories, and general sophistry.

While we never shared an office, I learned a lot from the PDOS crew, particularly Eddie Kohler,
David Mazieres, Chuck Blake, John Jannotti, Benjie Chen, Doug De Couto, Kevin Fu, and Emit
Witchell. Similarly, my fellow NMS students were always ready and willing with helpful feed-
back. After hours, I appreciated being welcome at the various activities of the Al Lab, including
GSL, GSB, and Tuesday-night hockey. My erstwhile roommates, Chris Conklin, Matt Lau, Sam
Pearlman, and Bradley Weill provided much-needed escapes from my MIT world.

Graduate study is fraught with feelings of helplessness and self-doubt. Several students that went
before me provided guiding lights, reminding me it was possible to make it out the other end. They
likely never knew it, but David Wetherall, Dawson Engler, Danny Lewin and Charles Isbell were
each role models I strove to emulate. While I have doubtless fallen short, their examples instilled
confidence when it seemed I’d never finish.

I am indebted to my colleagues at BBN, especially Craig Partridge and Tim Strayer, for providing
me with an avenue of technical exploration outside the confines of MIT and exposing me to the
commercial realities of networking research in the private sector. I hope they found our years
together as rewarding as I. I also thank my future colleagues at the University of California, San
Diego, for their understanding in allowing me to take a leave of absence to finish this dissertation.

Finally, I cannot begin to properly thank Christine Alvarado, who was a continual source of joy in
my life as I suffered through the final stages of graduate school. Instead, I offer the pronouns in this
dissertation in deference to the women in computer science, of whom she is my favorite example.

Contents

1 Introduction 19
I.1 Thechallenges e 20
1.2 Amotivatingexample L. 22
1.3 Supporting session-based mobility with Migrate 23
1.4 Contributionso 25
15 Organization oo e e 27
2 Background & Related Work 29
2.1 Imtermetbasics 29
2.2 Network-layermobility L 30
2.3 Connection MIGration oo vttt 37
24 Sessionabstraction 40
25 Disconnectionl 45
3 A System Session Abstraction 49
3.1 Asessionlayer L 49
3.2 Attack-equivalent security 55
3.3 Anexample: Host mobility usingDNS 58
4 Connection Migration 61
4.1 Connection virtualization 61
4.2 Migrate TCP: A rebinding approach 65
4.3 Securing the migration L 71
4.4 Unconnected sockets 72
4.5 Deploymentissues 74
5 Session Continuations 77
5.1 Continuations 77
52 Continuation APT 82
5.3 Resource continuations 85
54 Garbagecollection 89
55 Summary ... e 91
6 Implementation 93
6.1 Migratedaemon 93
6.2 Session-layer library 99
6.3 Policyengine 101
6.4 Connectivity monitoring 102

6.5 Connection Migration 105

6.6 Cryptography e 108
Evaluating Migrate 115
7.1 Overhead e e e 115
7.2 MIgration e e 121
7.3 Session continuationso e 133
Conclusions 143
8.1 Contributions e e e e 143
8.2 Guidelines e 145
8.3 Open questionso 146
Policy File 149
Al Commands o e e e e 149
A2 Chaining e e 151
Application Session Continuations 153
B.1 FTPd e 153
B.2 SSHA e e e e e e 166

10

List of Figures

1-1

2-1

2-2

4-1

SSH establishes a TCP connection between the client and server application end
points. The system instantiates this connection by binding the application end points
to their current network attachment points as specified by an (IP address, port) pair.

The hourglass model of the Internet protocol stack. A network attachment point is
an interface between the network layer and a link layer. Anything above the network
attachment point can be construed asanend point.
Triangle routing in Mobile IP without route optimization. Correspondent nodes
send packets destined for a mobile node to its home address on its home network,
where a home agent intercepts the packets and tunnels them to the mobile node at
its care-of address in the foreign network. In some cases, a mobile node can send
packets directly to the correspondent node, avoiding the need to tunnel outgoing
packets back through the home agent.,
An Internet transport layer connection. In this example, a TCP connection has been
established between applications at IP address 169.229.60.64 and 18.31.0.139; the
connection uses port 2345 on the former and 22 onthe later.

A session between end points A and B containing three separate connections: two
TCP connections, TC Py and TC Ps, and an RTP/UDP stream.
A sample Migrate-aware application using the session abstraction
The C type signature of a Migrate LookupFunc structure
The session Finite State Machine (FSM). Sessions cannot be migrated or suspended
until they are successfully established.
A man-in-the middle attack. A masquerades as D to S and vice versa. A can then
impersonate D to S and bind D to a new network attachment point, A’.
Supporting Internet host mobility using DNS as the naming system. 1) The appli-
cation uses a DNS server to resolve the desired end point (host) name to a network
attachment point on the mobile node. The local end point is bound implicitly by the
host. 2) The application establishes a session between itself and an application run-
ning on the mobile node. 3) If the mobile node moves, it notifies the correspondent
node with a binding update, and 4) updates the DNS server with its new network
attachment point.

A virtualized connection. The virtual socket is dynamically re-mapped to ephemeral
network sockets by an indirection layer. A new network connection is established
for each change in attachment point. Here, the indirection layer has created a new
network connection to attachment point two, and destroyed the old connection to
attachment pointone.

22

30

50

54

4-2 Adoublebuffer
4-3 TCP Connection Migration. Time flows downward. The migrating end point ini-
tiates migrateable TCP connection in message 1. The server accepts the Migrate-
Permitted option in message 2. The client completes the three-way handshake with
message 3, an ACK. The connection then proceeds until message 4, the last packet
from the remote end point to the migrating end point at its current attachment point.
At some time later the migrating end point sends a Migrate SYN (message 5) from
a new attachment point, including the previously computed connection token. The
sequence number of the Migrate SYN is the same as the last acknowledged byte
of data. The server responds in message 6 with a SYN/ACK using the sequence
number of its last acknowledged byteofdata.
4-4 Partial TCP state transition diagram with Migrate transitions (adapted from [123,
Figure 18.12]) e

5-1 Three separate continuations make up a complete session-continuation: a base con-
tinuation, Cj, an internal continuation C'y,;, and one that restarts the entire applica-
00, Capp: + « o o e
5-2 A Migrate continuation structure contains a set of file descriptors that must be pre-
served (commonly pipes to other applications), an attribute/value store, and the con-
tinuation function itself. Complete continuations also specify several parameters
used when restarting the application process.
5-3 A sample Migrate-aware application that exports a complete session continuation
upon disconnection but handles instantaneous mobility events directly.
5-4 The power consumption of common 802.11b and Bluetooth network interfaces. The
values shown are currents measured across the PCMCIA bus of an IBM ThinkPad
T21 when using a Cisco Aeronet 350 802.11b and a Brainboxes BL-500 Bluetooth
interface, respectively. L e e

6-1 The components of the Migrate architecture. Applications export sessions, which
are managed by the Migrate system daemon in collaboration with various connec-
tivity monitors and policy engines. Lo

6-2 The Migrate daemon’s internal session structure.

6-3 The Migrate daemon’s internal connection structure.

6-4 The library functions wrapped by TESLA. UDP (SOCK_DGRAM) sockets require
extra care, as they may demand per-datagram processing (e.g., address rewriting).
The current TESLA implementation does not yet support scatter/gather /O.

6-5 Dynamic library interposition for transparent operation with legacy applications.
When the session-layer library is interposed between a legacy application and the
system (either through relinking or TESLA’s run-time library interposition), the Mi-
grate handler transparently encapsulates network connections in Migrate sessions.
These sessions are managed according to local system policy.

6-6 A sample policy file. In this example, ethO is preferred to other eth interfaces,
which are preferred to ppp interfaces, which are preferred to all others. Sessions
containing TCP SSH connections to remote attachment points with IP addresses in
the 18.31.0 subnet have an increased affinity for eth interfaces, and TCP connec-
tions on local ports 3001-3010 actually prefer ethO less than other eth interfaces.
Finally, sessions containing TCP connections to HTTP or FTP server ports are never
migrated. L e e e

94

6-7 Connection status message format. Connectivity monitors use this message to in-
form Migrate of changes in connectivity status for an individual connection. The ad-
dresses and ports are the current connection end points. ConnUp specifies whether
the connection currently appears to have connectivity. IfUp indicates whether the
local network interface being used by the connection is currently available.

6-8 Interface connectivity monitor message format. The Interface Name is a 16-character
ASCII string reported by the kernel (e.g., 1o, ethO,etc.).

6-9 A directory listing showing open Migrate-capable TCP connections. There are cur-
rently three connections: A local SSH connection, a remote SSH login, and an
HTTPdownload. e

6-10 TCP Migrate-Permitted option

6-11 One possible set of TCP options. Our Linux Migrate TCP implementation sends
these forty bytes of TCP options by default in TCP SYN segments. Four options
are requested: maximum segment size (MSS) (four bytes), window scaling (three
bytes), selective acknowledgments (SACK) (two bytes), and Migrate (20 bytes).
The fields used to store the 200 bits of Migrate-Permitted keying material—64
bits of the Timestamp option and 136 bits from the Migrate-Permitted option—
are shaded. One byte of padding is inserted (a NOP option) to preserve 32-bit word
alignment. e e e

6-12 Migrate session migration with virtualized connections. Time flows downward. The
migrating end point establishes a TCP session control channel (step 1) over which
it sends a session resumption request (step 2). The remote end point responds with
a cryptographic challenge (step 3). The migrating end point authenticates itself by
decrypting the challenge (step 4). Upon validation of the response, the remote end
point sends a port mapping message for each connection included in the session
(step 5). The migrating end point then initiates new data connections as described
in Chapter 4 (step 6); virtualized TCP connections require further synchronization
(Step 7). . o o e

6-13 TCP Migrate option o v v vttt e e

7-1 Mean TCP throughput with and without Migrate on a shared 100-Mbps Ethernet
segment, as measured with ttcp. The receiver is an Intel 1.5-Ghz P4 running
FreeBSD 4.6-STABLE while the sender is an Intel 2.26-Ghz P4 running Linux
2.4.18. Each point represents the average of at least sixteen runs; error bars rep-
resent one standard deviation.o oL L

7-2 Mean TCP throughput with and without Migrate on a shared 802.11b wireless LAN,
as measured with ttcp. The receiver is an IBM ThinkPad T21 (600-Mhz P3)
running Linux 2.4.16 while the sender is an Intel 2.26-Ghz P4 running Linux 2.4.18.
Each point represents the average of at least sixteen runs; error bars represent one
standard deviation. L

7-3 Mean TCP throughput across the loopback interface of an IBM ThinkPad T21 (600-
Mhz P3) running Linux 2.4.16, as measured with t tcp. Results are presented with
and without Migrate, as well as for a dummy TESLA handler and a receiver that
touches every byte received. Each point represents the average of at least sixteen
runs; error bars represent one standard deviation.o

7-4 Cumulative distribution of the connection establishment latency of a TCP connec-
tton on the loopback interface of a 600-Mhz Intel P3 running Linux 2.4.1. Each
distribution results from 100 independent trials.

13

104

120

7-5

7-6

7-7

7-8

7-9

7-10

7-11

7-12

7-13

7-14

7-15

7-16

7-17

7-18

Cumulative distribution of the session migration latency of a session with a vary-
ing number of TCP connections on the loopback interface of a 850-Mhz Intel P3
running Linux 2.4.2. Each distribution results from 100 independent trials.
Median session migration latency of a session with one TCP connection between
two 850-Mhz Intel P3s running Linux 2.4.2 with varying RTTs.
Network topology used for virtualized connection synchronization and TCP con-
nection migration experiments. DummyNet [107] is used to emulate 1-Mbps access
links with 20ms of delay for the experiments in Section 7.2.2; actual 19.2-Kbps
serial lines were used in Section 7.2.5. oo oo
Mean connection synchronization latency and throughput degradation of a 524,288-
byte virtualized TCP transfer between two 850-Mhz Intel P3s running Linux 2.4.2
over a |-Mbps link with a RTT of 40 ms. The connection iss migrated to a loss-free
link after one second. The initial link loss rate varies from zero to 20 percent. Each
point is the average of fifty trials; error bars represent one standard deviation.

Mean number of bytes required to synchronize a virtualized TCP connection over a
1-Mbps link between two 850-Mhz Intel P3s running Linux 2.4.2 over the topology
in Figure 7-7. The initial link loss rate varies from O to 10 percent. Each point is the
average of fifty trials; error bars represent one standard deviation.
Network topology used to measure handoff performance for both virtualized TCP
connections (Section 7.2.3) and the Migrate TCP options (Section 7.2.5). Dum-
myNet is used to emulate 128-Kbps links with a one-way delay of 20 ms between
the attachment points.
Throughput vs. hard-handoff oscillation rates of a virtualized TCP connection.
Throughput measured at the receiver by timing the transfer of a 947,570-byte file.
A transfer conducted entirely from one attachment point achieves a throughput of
I19.4 Kbps. o o e e e e
Hard session handoff performance. Progress of a virtualized TCP transfer of a
947,570-byte file subjected to varying rates of receiver attachment-point oscillation.
The TCPreceive bufferis 64 KB..
Soft session handoff performance. Progress of a virtualized TCP transfer of a
947,570-byte file subjected to varying rates of sender attachment-point oscillation.
The TCPreceive bufferis 64 KB..
A TCP connection sequence trace showing the migration of an established con-
nection transferring data from a fixed server to a mobile client. The Migrate SYN
is generated by the migrating receiver; its value is unrelated to the sequence space
shown in this graph and is depicted as a dashed vertical line. The Migrate SYN/ACK
appears as the first data segment sent after migration.
A TCP Migrate connection (with SACK) sequence trace with losses just before
migration. As before, the Migrate SYN is depicted as a dashed vertical line, and the
SYN/ACK is shown as the first data segment after migration.
Throughput vs. oscillation rate with the TCP migrate options on a TCP connection
without SACK. A download conducted entirely from one attachment point achieves
athroughput of 11948 Kbps.
Connection ACK traces for varying rates of server attachment point oscillation using
the go-back-n policy. The TCP receive bufferis64 KB.
Sequence traces of oscillatory TCP migration behavior under the go-back-n policy.
These are the same traces shown in Figure 7-17.

14

123

124

127

7-19

7-20

7-21

7-22

The memory footprints of sample Migrate-aware servers. We report values observed
using gec version 2.96 with the -O2 option on a Linux 2.4.1 system with 256 MB
of RAMand 512MBofswap.
Complete continuation sizes. The sizes reported here include persistent application
state, buffered network connection data, and all associated Migrate control data
necessary to invoke the communication. L.
The instantaneous power consumption of a Compaq iPAQ 3600 over a ten-second
interval. Each grid line on the horizontal axis represents one second; the vertical
grid marks are 200 mA. Zero is marked on the vertical axes by the arrow on the left
hand side. Initially, the iPAQ is downloading a TCP stream using a Cisco Aeronet
350 802.11b interface. At time ¢t / 5 s, the transfer is migrated to a Brainboxes
BL-500 Bluetooth interface, and the 802.11b interface is powered down. The solid
horizontal line was manually placed to illustrate the average power consumption
after migration; it corresponds to 456 mA as shown in the upper right. Similarly,
the dashed horizontal line roughly corresponds to the average power consumption
before migration. The difference between the two lines, as also shown in the upper
right, s 328 mA.
The connection and resumption latency for sample Migrate-aware applications. The
resumption latency measures the time to invoke a complete continuation and restore
all suspended network connections. As in Figure 7-5, it does not include the time
necessary to resynchronize those connections.,

15

16

List of Tables

3.1
3.2

33
34

5.1

5.2

6.1

7.1

7.2

Session API exported by the Migrate session layer
The flags that may be passed to a session_create () call. M_ALWAYSLOOKUP
and M_DONTMOVE may not be passed simultaneously.
The flags that may be passed to a Migrate handler function
Extensions to the API to support policy-based resource control

Extensions to the Migrate session API to support session continuations and an at-
tribute/value store. L L e
The flags that may be passed to a Migrate session continuation. When a continuation
is selected for garbage collection, the continuation is invoked with the M_DISCARD
flag. The M_DISCARD flag is never set at any other time or in conjunction with any
otherflags. L

Defined Curve Name values and their corresponding mechanisms. The table shows
the corresponding elliptic curve parameters from the ANSI X9.62 standard [3]. This
list may grow to reflect further published elliptic curves with key lengths less than

The changes required to add session continuations to two popular Internet server
applications. The presented figure includes both the additional code required to
generate the continuations and any required changes to existing code.
The file descriptor usage of two popular Internet server applications. The first two
columns indicate the number of file descriptors used by an active session before
and after enabling Migrate support. The third column shows the number of these
descriptors corresponding to active network connections. The last two columns
present the number of file descriptors required for sessions suspended through a
continuation. The “Suspended” column indicates the number of descriptors in-
cluded within the continuation, and the “Compressed” column shows the actual
number held open by Migrate during disconnection after generating all available
rESOUrce COntinuAations.

A.1 The commands available to a Migrate Tcl policy script.

17

149

18

Dimidium facti, qui coepit, habet: sapere aude.
(To have begun is half the job: dare to be wise.)

- Horace

Chapter 1

Introduction

The proliferation of mobile computing devices and wireless networking products over the past
decade has led to an increasingly nomadic computing lifestyle. A computer is no longer an immo-
bile, gargantuan machine that remains in one place for the lifetime of its operation. Today’s personal
computing devices are portable, and Internet access is becoming ubiquitous. A well-traveled laptop
user might use half a dozen different networks throughout the course of a day: a cable modem from
home, wide-area wireless on the commute, wired Ethernet at the office, a Bluetooth network in the
car, and a wireless, local-area network at the airport or the neighborhood coffee shop.

Armed with her portable computing device and readily-available Internet access, today’s user ex-
pects seamless operation for network applications. Yet her sporadic movement and occasional dis-
connection due to lack of network connectivity or device power-down place a considerable burden
on applications that communicate across the network. These network applications receive little as-
sistance from today’s operating systems or Internet protocols in managing host movement or periods
of disconnection. While a small number number of modermn, mobile-aware applications have been
designed to handle these adverse conditions in an ad-hoc fashion, the vast majority of applications
have not.

This dissertation recognizes the importance of moving end points and the inevitability of periods of
disconnection, and defines a set of system primitives to assist applications in dealing with these two
challenges. We propose a solution based on the session abstraction. A session is a durable, long-
term relationship between application end points that may span multiple network connections and
application transactions; today’s network connections, on the other hand, are ephemeral relation-
ships between network attachment points. Everyday examples of sessions include interactive logins
by users of remote hosts, sets of Web transactions between browsers and servers, multimedia confer-
ences between remote peers, etc. These applications, along with many others, have found sessions a
useful construct for managing complex interactions between remote network end points. In partic-
ular, sessions afford the opportunity to amortize certain expensive operations such as authorization,
initialization, and synchronization across multiple, individual network connections. Unfortunately,
current applications cannot describe their networking needs to the operating system in terms of ses-
sions; instead, applications must describe each network connection individually and manage each
one independently.

We propose elevating the session from common application construct to first-class system abstrac-
tion: an operating system-supported building block for mobile network applications. We present

19

Migrate, an end-to-end mobility architecture that supports session-based mobility, and enables so-
phisticated disconnection management through the use of session continuations, a mechanism that
allows mobile-aware applications to efficiently suspend operation during periods of disconnection
yet adapt to changed network conditions upon resumption.

The rest of this chapter is organized as follows. In the first section, we describe the challenges
posed by portable Internet devices. The second section demonstrates, through an example, the
shortcomings of today’s network infrastructure when attempting to support Internet communication
on portable devices. The following section then gives a brief overview of our approach, and how
it ameliorates these issues. We conclude this chapter by summarizing the goals, contributions, and
organization of this dissertation.

1.1 The challenges

One of the critical realizations leading to this dissertation was the observation that portable Internet
hosts introduce two distinct, but inter-related challenges: first, end points move between network
locations during communication, and, second, end points disconnect from the network without prior
notice. Preserving communication between two moving end points on the Internet is difficult be-
cause one end point may not know to where the other end point has moved nor be able to describe
or properly authenticate it if its location is discovered. In particular, remote end points may not
know how to address packets destined for a moving end point. Furthermore, because Internet end
points are commonly referred to by their locations in the network, a mobile end point that moves
to a new location needs some way to identify itself as the node formerly at its previous location.
Unexpected disconnection is particularly problematic for session-based applications (e.g., stream-
ing media [114], file transfer applications [94], X windows [112], SSH (Secure SHell) [144], etc.)
that maintain state and consume resources on behalf of remote end points. Deciding how long to
wait for a remote end point to reconnect is not obvious; giving up too early results in a poor user
experience (e.g., aborted downloads, canceled transactions, etc.), waiting too long wastes precious
system resources such as power, memory, and bandwidth.

1.1.1 Moving end points

A requirement of Internet mobility support is the need to allow network applications to continue to
function as hosts change attachment point—the location in the network where hosts send and receive
packets. Applications on such hosts should be able to continue communication from where they left
off at previous attachment points. More generally, this problem affects not only portable hosts
but all classes of mobile end points, whether they be the hosts themselves, individual applications,
services, processes, or even users. Traditionally, researchers have categorized movement based on
the end-point being considered:

e Host or terminal mobility refers to the common case where an entire host, such as a laptop or
handheld, changes its network attachment point {49, 89].

e Personal mobility ignores the computing device(s), instead, focusing on the user as she moves
between Internet hosts [65, 113]. For example, a user may start reading her email on a PDA,
but wish to continue reading from her desktop PC when she arrives at her office.

e Session mobility tracks communication sessions as they move, either coincident with one of
the above forms of mobility or not. For example, a Web server farm may wish to move a
client’s session to a different server to balance load across the available servers.

20

The third class, session-based mobility, is the most general, as the first two classes can be cast as
specific instances of the third. A host movement can be viewed as the simultaneous movement of all
sessions terminating at that host but not vice versa. For example, a user may be both reading email
and browsing the Web on her PDA but wish to move only one of the sessions (her Web browsing,
say) to her office PC. Similarly, a Web session may be moved to a new server for failover or load-
balancing concerns. Hence, this dissertation focuses on session-based mobility, but many of the
ideas apply equally well to the other two cases. For the most part, we will restrict our examples
to the case of host mobility, but the session-based approach is designed to handle migration across
hosts. Such migration, however, requires significant additional support and will be discussed only
briefly in Chapter 8.

For the purposes of this dissertation, we are concerned with movements that are evident to other
hosts on the Internet, namely, changes to the network attachment point. Such movements may
or may not be coincident with an actual physical movement in any of the above models. In fact,
there are many common reasons why Internet end points may appear to move without any physical
change whatsoever. Two common reasons are readdressing and multi-homing. Internet attachment
points may receive new addresses from time to time due to configuration changes in the network
(e.g., DHCP [31] lease expiration or NAT [122] reconfiguration). Multi-homed hosts have multi-
ple, distinct network attachment points and may communicate using different attachment points at
various instances or even multiple points concurrently.

The process of managing moving end points entails two issues: before communication can begin, a
moving end point must be located; then, once an initial location is determined, the end point must be
tracked as it moves. Both issues depend on how applications describe end points. Applications must
somehow name the remote end point they wish to locate and track. Depending on the mechanism
used to describe the end point, however, this tracking procedure may or may not rely on the initial
location mechanism.

1.1.2 Unexpected disconnection

As mobile hosts change network attachment points there are often accompanying periods of dis-
connectivity. Despite improvements in technology and the increasingly widespread deployment
of so-called 3G wireless technologies [33], we expect devices will continue to operate under non-
negligible periods of disconnection due to resource constraints. Wireless communication consumes
power, a resource that is in limited supply in untethered mobile devices and shows no signs of
dramatically improving anytime soon. Similarly, commercial wireless access costs money—a con-
strained resource for most users.

Furthermore, disconnection is frequently unexpected, from the points of view of both the user (e.g.,
the wireless interface moves out of range of a basestation) and the system (e.g., a network cable
comes unplugged). Disconnection also occurs with surprising frequency in many wire-line net-
works due to routing failures and other network instabilities [4]. Additionally, because it is often
unanticipated, the duration of disconnection—regardless of cause—is often unknown, highly vari-
able (across several orders of magnitude), and frequently long (e.g., several hours).

To manage intermittent connectivity, we adopt a “suspend/resume’” model of interaction for network
applications because this model is already prevalent among laptop users. Mobile laptop users have
grown accustomed to suspending their activities at arbitrary points and being able to resume the
interaction from the points at which they were suspended, despite arbitrary periods of inactivity
during which the laptops enter a resource conservation mode. Unfortunately, as demonstrated in the

21

SSH SSH
Client TCP TGP Server
| |
| |
| |

<169.229.60.64, 2345> <18.31.0.139, 22>

Figure 1-1: SSH establishes a TCP connection between the client and server application end points.
The system instantiates this connection by binding the application end points to their current net-
work attachment points as specified by an (IP address, port) pair.

example in the next section, today’s Internet hosts lack support for seamless operation of session-
based network applications across periods of disconnectivity. Disconnection, when discovered by
today’s Internet protocols, is considered a permanent failure and communication is aborted. Hence,
contemporary operating systems do not provide “suspend/resume” support for network applications.
Instead, disconnection events are either concealed inside the network or exposed as communication
failures to the application, which is then forced to abandon open communication sessions and begin
new ones.

1.2 A motivating example

One need look no further than interactive terminal applications like SSH [144] or telnet [98], mem-
bers of the Internet’s oldest class of applications, for a practical example of the lack of support for
mobility in the Internet. A user with an open SSH session might pick up her laptop and disconnect
from the network. After traveling for some period of time, she reconnects at some other network
location and expects that her SSH session will continue where it left off. Sadly, the user will find
the SSH application has aborted, and she is unable to resume her session. This occurs because the
remote end point (the SSH server) was unable to determine the new attachment point and unsure
that the session would continue. The following section deconstructs the technical reasons for these
limitations.

1.2.1 Current network abstraction

Most contemporary applications and operating systems use the Berkeley Sockets API [67], which
exports a connection abstraction. Figure 1-1 illustrates the connection between an SSH client and
server. A connection defines a communication channel between two network attachment points that
an application uses to transfer data packets between two remote end points. Unfortunately, since
the connection end points are specified in terms of their network attachment points, the operating
system has no way of naming or locating an application end point that changes attachment points.
Therefore, any change in attachment point at either end point terminates the connection because
the previously specified attachment points no longer correspond to the current location of the end
points. Perhaps even more frustratingly, the connection abstraction, when used in conjunction with
reliable transport protocols like the Internet-standard Transmission Control Protocol (TCP) [97],
is unable to accommodate periods of disconnection longer than a few round-trip times. Rather
than blithely consume resources while waiting for the remote end point to return, current Internet

22

protocols expose the disconnection after some period of time by aborting the connection. Hence,
unless explicit mobility and disconnection support is provided by the application, it will be unable
to survive any changes in attachment points or even a brief period of disconnection.

The inability of transport protocols to handle changes in attachment points over the duration of a
connection has led to attempts to conceal attachment-point changes and periods of disconnection
from the end points. These efforts can be broadly grouped into two categories: those that manage
changes in attachment point inside the network, and those that enable transport connections to sur-
vive periods of disconnection. While these approaches are discussed in detail in the next chapter
(“Related Work™), we briefly explain why they are inadequate for the current example.

1.2.2 Network-layer techniques

Network-layer mobility techniques that handle changes in attachment point inside the network rout-
ing layer are unable to handle the scenario described above due to the associated period of discon-
nection. For example, even if the Internet protocols allowed end points to change their attachment
points, the user would still find her SSH session aborted upon reconnection if there was any ac-
tivity at all on the session during the period of disconnectivity. This failure is due to the transport
protocol’s inability to handle the extended period of packet loss experienced during disconnection.
Furthermore, by concealing changes in attachment point from applications, network-layer tech-
niques make it difficult for applications to adapt to dynamic network conditions. For example, the
security parameters selected by SSH may have been conditioned on the user’s initial attachment
point. If she later moves to a more hostile network, SSH may wish to increase the strength of its se-
curity measures (e.g., by increasing key length or using a stronger cipher). However, if the change in
attachment point is hidden inside the network, SSH will be unaware that such a change is warranted.

1.2.3 Transport-layer techniques

A complimentary approach could equip transport connections to survive periods of disconnection.
Consider, for example, if the user’s TCP connection were to silently persevere across periods of
disconnection. The user would then be able to resume her session, but that doesn’t speak to the
server’s activity in her absence. Using this transparent approach, the remote application end point
is oblivious to the disconnection, likely resulting in a considerable waste of resources (in the form
of power, processing, memory, kernel buffers, network ports, file descriptors, etc.), decreased per-
formance, and, perhaps, even loss of data or incorrect operation depending on the application at
hand. For example, an application may invoke a default operation unless instructed otherwise by a
remote end point before some pericd of time elapses. If the remote end point is disconnected—and,
therefore, unable to inform the application of its desires in a timely fashion—but the disconnec-
tion is concealed by the transport layer, the application may incorrectly assume silence represents
ascension and invoke the default operation.

As discussed at length in the next chapter, network- and transport-layer proposals to handle Internet
mobility address only some of the issues, do not allow mobility-aware applications to adapt to
changes in network conditions, or require application-specific point solutions.

1.3 Supporting session-based mobility with Migrate

In this dissertation, we propose addressing both challenges—moving end points and unexpected
disconnection—in a consistent, unified fashion based on the session abstraction. We present an
overview of our approach, called Migrate, by way of describing our solution to three separate prob-
lems:

23

e Applications describe network end points and their interactions through a system session
abstraction.

e On-going connections between moving end points are preserved via connection migration.

e Applications specify desired session resumption functionality through session continuations,
enabling resource conservation during periods of disconnection and intelligent adaptation to
new network characteristics upon resumption.

While addressing each of these issues, Migrate attempts to remain neutral with respect to both se-
curity and policy. Because different applications and users have widely varying security goals and
mechanisms, Migrate provides an attack-equivalent environment, which we define to mean an envi-
ronment in which any attack that can be launched against the application can be shown to be equiv-
alent in power to one that could have been launched in an environment without Migrate. Because
this guarantee does not depend on the particular mechanisms employed by the application, it does
not suffer from the inadequacies (or benefit from the strengths) of any particular implementation—
each application is left to choose the mechanisms most appropriate for it. Similarly, Migrare allows
applications and their users to set their own mobility policy. In conjunction with system-wide rules
regarding resource usage, available network interfaces, and so on, a user’s mobility policy specifies
her preference for particular attachment points, resource consumption tolerance, network access
restrictions, and so forth.

1.3.1 Describing network end points

Migrate adopts the session abstraction, defining an Application Programming Interface (API) that
enables applications to describe their sessions to the operating system. The API is sufficiently flex-
ible to allow applications to specify remote end points using whatever naming mechanism they find
convenient, but we expect that users will typically use the Domain Name Service (DNS) [68]. Mi-
grate separates the task of end-point location from tracking, enabling applications to specify their
own naming mechanisms for location operations while leveraging system support for the straightfor-
ward tracking operation. Further, this separation often enables Migrate to preserve communication
between moving end points in the absence of an available location service.

1.3.2 Migrating open connections

One of the difficulties in preserving communication between moving end points is maintaining the
semantics of standard transport protocol connections. In particular, today’s connection-oriented
transport protocols do not support migrating connections—that is, changing attachment points mid-
connection. We propose two distinct solutions, virtualization and rebinding, each with different
advantages and disadvantages.

In the virtualization approach, an indirection layer presents the application with a virtual connection
to the remote end point. The indirection layer dynamically maps the virtual connection to ephemeral
transport connections between the current attachment points by creating and destroying transport
connections as necessary to support different attachment points; the layer creates a new connection
each time an end point moves to a new attachment point. The advantages of this approach are
that it can be applied to any transport protocol and carried out entirely at user-level, requiring no
extensions or modifications to existing operating systems; the major drawback is the virtualization
overhead.

24

The second approach involves extending transport protocols such as TCP to support rebinding the
connection to new attachment points. We modify TCP to support a set of TCP options that allow
TCP connections to continue across changes in either attachment point. This migration is transpar-
ent to an application that expects uninterrupted reliable communication with the peer. Using this
approach, there is no overhead outside of mobility events. However, since many operating sys-
tems implement TCP inside the kernel, deploying this approach will require kernel modifications to
support the new TCP options.

1.3.3 Supporting disconnection

We observe that the challenge of suspending a session upon disconnection and resuming it later
bears resemblance to the problems encountered by a compiler when handling returns from procedure
calls. In both cases, naming scopes, environment settings, and mutable state must be saved and
restored. This management can be avoided completely if procedures never return. Instead, every
procedure can maintain a notion of “the rest of the computation,” or continuation, and simply invoke
(or call) the continuation upon completion. Hence, procedure calls can be replaced by jumps, and
many of the complications of managing activation records and call stacks go away. Continuations
provide abstractions that simplify the constructions of many compilers and have been applied in
other domains [30, 36].

We propose session continuations as a generic mechanism for supporting the conservation of system
resources during periods of disconnection and the resumption of session processing upon restora-
tion of connectivity. A session continuation contains all the state and functionality necessary to
compute the “rest of the session,” including any required reconciliation between the state of the
suspended session and prevailing network conditions. Upon reconnection, a disconnected session
simply invokes its continuation. Since such continuations never implicitly depend on previous state
the system can safely discard resources consumed by disconnected sessions. When a session re-
sumes, its continuation generates all the state and resources necessary to complete it.

In Migrate, an application handles disconnection in one of two ways. In the preferred method,
applications specify a session’s resumption context as a session continuation that allows them to
conserve resources during disconnection and adapt to possibly changed network conditions present
at reconnection. When generating a session continuation is unnecessary or difficult, however, appli-
cations may choose to simply preserve the session state and system resources and rely on transparent
Migrate services to conceal periods of disconnection. This transparent support allows unmodified,
legacy applications to function in a mobile environment, but may waste resources during discon-
nection.

1.4 Contributions

This dissertation postulates that unexpected end-point movement and temporary periods of discon-
nection are unavoidable in the mobile Internet. It then explores the hypothesis that system support
for a robust session abstraction can enable mobile operation of legacy applications and provide
enhanced functionality for mobile-aware, session-based network applications, allowing servers to
support large numbers of dormant sessions. Further, this dissertation shows end-to-end protocols
are sufficient to provide adequate connectivity monitoring and graceful handling of host movement,
session suspension, and their subsequent reactivation. It demonstrates that location tracking and
session security can both be efficiently decoupled from baseline mobility support. Along the way,
this dissertation makes the following specific contributions:

25

e The development of an end-to-end approach to Internet mobility that is based on a system-
supported session abstraction, along with a specific architecture, Migrate, that implements
this approach.

o The design and implementation of Migrate options that extend TCP to support the migration
of TCP connections to new attachment points.

e Session continuations, extensions to the session abstraction that enable application-specific
suspend/resume handling. By providing system support for session continuations, hosts can
realize significant resource savings during periods of disconnection. Session continuations
also have applications to problems outside of host mobility such as load balancing and ap-
plication migration. Carefully crafted continuations can be executed in environments (hosts)
other than those that created them, enabling a form of inter-host session migration.

e An application-agnostic, attack-equivalence security model that ensures any attacks enabled
by mobility support reduce to ones already present in a non-mobile environment.

e A proposed session API that allows mobile-aware applications to specify intelligent discon-
nection handling through the use of continuation-passing style, and an understanding of how
a variety of network-based applications can use the API to provide application-specific func-
tionality.

e An evaluation of the efficiency of our prototype Migrate implementation. Our results show
that the throughput impact of connection virtualization is small (2% or less for moderate
block sizes) for sessions operating over common access link technologies. The overhead can
be considerably larger, however, when virtualizing extremely-high bandwidth (> 350-Mbps)
connections or those using small (< 200-byte) block sizes. When used in conjunction with
the TCP Migrate options, Migrate’s overhead becomes almost negligible and is restricted to
session establishment and migration events.

e A demonstration of the effectiveness, flexibility, and ease-of-use of our session continuation
abstraction. We show that servers for two popular Internet applications, SSH and FTP, require
only small modifications to support session continuations, and that suspended sessions for
both applications consume only a few tens of bytes of secondary storage and between one
and three file descriptors.

The current version of Migrate has two main limitations which arise from our restrictive definition
of a session. In particular, we consider a session to be a stateful relationship between two appli-
cation end points. While our abstraction proves useful for a large class of applications, there are
popular network applications that violate this definition in two important ways. First, some applica-
tions form sessions between three or more end points. Examples include multi-party conferencing,
gaming, and multi-cast based content distribution applications. We have restricted our definition to
sessions containing exactly two end points because the semantics of disconnection, suspension, and
resumption are straightforward. The appropriate semantics for disconnection and end-point tracking
in a group scenario are more complicated and extending our session abstraction to consider multiple
remote end points remains an area for future work.

In contrast, some popular applications do not maintain any stateful relationships between applica-
tion end points. Such so-called stateless network applications often use non-connection oriented
transfer protocols (e.g., UDP) and asynchronous remote procedure calls (RPC) [14]. (Transport

26

protocol alone does not necessarily indicate whether an application is session-oriented or not, how-
ever. We present Migrate’s support for non-connected UDP sockets used in a session-oriented
fashion in Section 4.4). These communication paradigms have little to gain from session-based
mobility handling. While Migrate does not interfere with the operation of such applications, the
additional mobility support provided by Migrate is generally extraneous and introduces unneces-
sary overhead. When used in conjunction with stateless legacy applications which do not opt-out of
Migrate support themselves, users can disable Migrate through the use of the system-wide policy
file (see Section 6.3).

1.5 Organization

The remainder of this dissertation presents the session-based mobility model and a prototype im-
plementation, Migrate. Chapter 2 motivates our work by describing related work in the fields of
network-layer Internet mobility, connection migration, disconnected operation, application check-
pointing, and resource management and adaptation. We describe our session-based approach to
mobility in Chapter 3, including the session abstraction, end-point naming, attack-equivalent se-
curity model, and details of the API. Chapter 4 presents two approaches to connection migration,
one based on virtualization and the other based on rebinding. We present session continuations
in Chapter 5, discussing their implementation in Migrate. Chapter 6 describes the implementa-
tion of Migrate, including the API, network connectivity monitors, and policy engines. We evaluate
Migrate in Chapter 7 by benchmarking its performance and showing how several well-known appli-
cations can be extended to support session continuations. Finally, Chapter 8 presents a summary of
the dissertation and concludes with a discussion of both specific contributions and general principles
that can be extracted from the work.

27

28

It is what we think we know already that often prevents us from learning.

— Claude Bernhard

Originality is nothing but judicious imitation.

Chapter 2

— Voltaire

Background & Related Work

Mobility has been a fertile area of research for many years. In this chapter, we provide an introduc-
tion to basic networking concepts and discuss the issues raised by mobility. By surveying previous
approaches to address these issues, we motivate the three focusing problems of this thesis: handling
changes in session attachment points, migrating open connections, and supporting disconnection in
session-based applications.

We begin in Section 2.1 with a brief tutorial on Internet concepts. Section 2.2 presents previous pro-
posals to support mobile Internet hosts and argues that network-layer solutions fail to fully address
the needs of mobile end points. We then explore alternative approaches, beginning in Section 2.3
with a discussion of connection migration. Section 2.4 describes the session abstraction and ex-
plains how it can be used to support mobile end points. Finally, the chapter concludes in Section 2.5
with a discussion of the impact of disconnection on Internet hosts and the need for session-based
suspend/resume support.

2.1 Internet basics

A packet-switched network consists of end points that can send packets to each other. Depending
on one’s perspective, end points can be variously construed to be hosts, applications, services, pro-
cesses, or even users. In most places in this dissertation, we will not distinguish among the different
kinds of end points. Instead, we will consider the general case of an application process running on a
particular host providing a service to a user. In some cases we will distinguish between applications
and hosts.

2.1.1 End-point addressing

Each end point connects to the network at one or more network attachment points. End points
without a current attachment point are said to be detached or disconnected. Network attachment
points are the locations in a network where end points send and receive packets. Each packet sent
by an end point must be addressed to a network attachment point. In the Internet, attachment
points are identified by IP addresses (e.g., 18.31.0.100). An IP address is a hierarchical name
that reflects the topological location of an attachment point in the Internet and enables the Internet
routing infrastructure to deliver packets destined to network attachment points.

29

Application

Figure 2-1: The hourglass model of the Internet protocol stack. A network attachment point is an
interface between the network layer and a link layer. Anything above the network attachment point
can be construed as an end point.

2.1.2 Layering

End points on the Internet communicate using a suite of composable protocols, typically referred
to as the Internet protocol stack. Within the stack, each protocol uses the lower layers to provide
a well-understood service to higher layers. Intuitively, the protocol stack is commonly pictured as
an hourglass as shown in Figure 2-1. The hourglass shape emphasizes the “layered” structure of
the protocol stack, where each protocol provides a well-defined interface to those above it, and the
simplicity of the network layer. At the lowest level of the stack are the link-layer protocols employed
by various networking devices like Asynchronous Transfer Mode (ATM), Ethernet (defined by IEEE
standard 802.3 [47]), the Point-to-Point Protocol (PPP) [117], and many others. The link layer
enables point-to-point communication between network interfaces connected to the same physical
medium. The network layer abstracts away the vagaries of actual network topology and routes
packets between any two end points regardless of whether or not they are both on the same physical
network. The Internet is defined by the use of one particular network-layer protocol: the Internet
Protocol (IP) [96].

2.2 Network-layer mobility

End points may, from time to time, associate with different attachment points; we call end points
that move from one attachment point to another mobile end points. Similarly, architectures that
support mobile end points are generally said to support end-point mobility. End points may change
attachment point for a variety of reasons:

An Internet host may physically move to a new location

An application may be migrated from one host to another [38, 83]

An Internet service may fail-over from one server to another server [85]

An end point with multiple attachment points may choose to use a new one

30

¢ A network interface may be assigned a new IP address (thus becoming a different attachment
point).

Regardless, the identity of a mobile end point does not change—only its attachment point to the
network does. Communicating with a mobile end point is problematic, however, as correspondent
end points—those end points currently communicating with the mobile end point—must address
packets to a particular attachment point, which may or not be the current location of the mobile end
point. Recognizing this difficulty, a number of researchers have proposed solutions focused on the
common case of portable Internet hosts that move from place to place in the network—so called
mobile hosts.

Many proposed approaches work by inserting a layer of indirection between an IP address and its
corresponding network attachment point, allowing the same IP address to refer to varying network
attachment points, depending on which attachment point is currently being used by the host [13].
We describe proposals based on six different techniques: Nimrod [18, 102], Mobile IP [49, 89],
the Host Identity Payload (HIP) [72], IP-based redirection (41, 128, 132, 143], Network Address
Translators (NATs) [128] and Virtual Private Networks (VPNs) [22], and multicast [43, 76].

2.2.1 Nimrod

Castifieyra, Chiappa, and Steenstrup proposed the Nimrod architecture as a choice for the next-
generation of the Internet [18]. Nimrod introduces the notion of persistent end-point identifiers
(EIDs) that are separate from network attachment point addresses. In Nimrod, each host has its own
EID which can be used to address data packets; EIDs are mapped to current network attachment
points by the routing infrastructure itself. To support mobility within Nimrod, Ramanathan proposes
the concept of a Dynamic Association Module (DAM), an abstract entity that manages changes
in the mapping between EIDs and network attachment points [102]. The problem addressed by
the DAM is not unlike the standard IP mobility problem, however, and Ramanathan’s proposed
implementation is actually based upon Mobile IP.

2.2.2 Mobile IP

Mobile IP {49, 89] is the current Internet Engineering Task Force (IETF) standard for supporting
host mobility on the Internet. It provides transparent support for host mobility by inserting a level
of indirection into the routing architecture, similar to Nimrod. Unlike Nimrod, however, Mobile IP
does not require a redesign of the IP routing infrastructure. Mobile IP introduces a notion of a home
network—the network to which a mobile host “belongs” (conversely, all other networks are known
as foreign). The assumption is that whenever a host is connected to its home network, it will always
use the same network attachment point. Hence, a host using Mobile IP has a well-defined home
address, which is the IP address of the host’s network attachment point on its home network.

Mobile IP elevates the mobile host’s home address from its traditional function as a network at-
tachment point identifier to an end-point identifier. A mobile host always uses its home address as
the source address in any packets it transmits; Mobile IP ensures that packets addressed to a mo-
bile host’s home address are delivered to the host’s current network attachment point, regardless of
where that attachment point might be. Hence, correspondent end points see only the host’s home
address and have no indication that the host is mobile, or what its current network attachment point
might be.

Mobile IP manages packet delivery by placing a home agent on the local-area network correspond-
ing to the mobile host’s home address—its home network—which listens for packets destined for

31

Home Agent
(home network)

Correspondent node

Mobile Node
(foreign network)

Figure 2-2: Triangle routing in Mobile IP without route optimization. Correspondent nodes send
packets destined for a mobile node to its home address on its home network, where a home agent
intercepts the packets and tunnels them to the mobile node at its care-of address in the foreign
network. In some cases, a mobile node can send packets directly to the correspondent node, avoiding
the need to tunnel outgoing packets back through the home agent.

the mobile host and forwards them on to the host when it is attached to a foreign network. Concep-
tually, the home agent takes over the mobile host’s attachment point in its home network when the
host moves to a foreign network. A mobile host in a foreign network acquires a care-of address (the
IP address of the host’s network attachment point in the foreign network), which the home agent
uses to forward packets; a mobile host notifies its home agent of its new care-of address any time it
changes attachment points.

To forward a packet to a mobile host’s care-of address, a home agent encapsulates [88] the packet
in an IP runnel. The home agent prepends an additional IP header to the packet; the new packet is
addressed from the home agent to the mobile host’s care-of address. Once the encapsulated packet is
received at the mobile host’s foreign attachment point, it is unwrapped and delivered to the mobile
host in its original form. The original packet is said to be funneled since it is routed from home
agent to foreign attachment point based upon the addresses included in the encapsulating packet,
not those in the original packet itself. Hence, packets destined for a mobile host attached to a foreign
network first travel from source to the host’s home agent and then from the home agent to the mobile
host itself. This often circuitous path is referred to as triangle or dog-leg routing and is depicted in
Figure 2-2.

Further compounding the triangle routing problem is the widespread deployment of ingress fil-
ters [34], promoted by the IETF as a “Best Current Practice.”” Ingress filtering was developed to
prevent address spoofing, where a network attachment point places an IP address other than its own
into outgoing packets in an attempt to obscure its identity from the packets’ recipient. Ingress filters
prevent the forwarding of packets with source addresses that are not “appropriate™ for the network
from which they were received. Conceptually, an address is appropriate if it is received from a
network that is on the reverse-forwarding path for packets destined for that address. In other words,

32

from the point of view of router R, a source address .S is appropriate for network N if R might route
packets destined for S to network /N. Unfortunately for Mobile IP, mobile hosts use their home ad-
dresses as the source IP addresses for all packets, regardless of their current network attachment
points. In foreign networks with ingress filtering, the ingress filter will block the packets sent by a

mobile host.

To work around this problem, Mobile IP advocates the use of reverse tunneling, which tunnels pack-
ets originating at a mobile host currently in a foreign network back to the host’s home agent (using
the host’s care-of address as a source address), which then forwards them on to their destination
(using the mobile host’s home address as the source address) [69]. Thus, when a mobile host visits
a foreign network with ingress filtering, triangle routing occurs in both directions.

Route optimization

Perkins and Johnson present a secure route optimization option for Mobile IP to avoid triangle
routing [91]. Here, correspondent hosts cache the care-of addresses of mobile hosts, allowing com-
munication to proceed directly. It requires the home agent to send an authenticated update to cor-
respondent hosts [90], notifying them of the mobile host’s current care-of address. The resulting
Mobile IP scheme eliminates triangle routing in the forward direction but requires modifications to
the IP layer of all end hosts (regardless of whether they are mobile or not) and the existence of some
authentication mechanism to validate the care-of address updates—a task that Perkins and Johnson
note is far from trivial: “One of the most difficult aspects of Route Optimization for Mobile IP
in the Internet today is that of providing authentication for all messages that affect the routing of
datagrams to a mobile node” [91, pp. 23].

IPv6

The IETF has standardized the next version of the IP protocol, IPv6, which provides a number of
enhancements [26]. (The current version, which we refer to simply as IP, is properly known as [Pv4.)
Because IPv6 provides native support for multiple simultaneous host addresses, route optimization
does not require further modifying IPv6 hosts—of course, IPv6 itself requires a massive overhaul of
the entire unicast infrastructure; deployment has been understandably slow. If deployed, however,
IPv6 extensions allow for the specification of a care-of address, which explicitly separates the role of
the EID (the host’s home IP address) and routing location (the care-of address). The rest of Mobile
IP stays largely the same. In particular, Mobile IPv6 continues to require a home agent, resident on
the mobile node’s home network, that intercepts packets destined to the mobile node and tunnels
them to the remote, care-of address. In addition, IPv6 does not simplify the task of securing the
care-of address update in any way.

2.2.3 Host Identity Payload

Recently, Moskowitz has proposed to name each Internet host by a cryptographic Host Identity [72].
In this scheme, every packet includes a source Host Identity, which is the public half of a pub-
lic/private key pair. When applied to host mobility, the Host Identity is similar to a home address
in Mobile IP in that it remains constant, regardless of a host’s current network attachment point.
Rather than replace the source address of an IP packet with their home addresses, however, mobile
hosts use their care-of addresses as the source, but also include their Host Identity using the Host
Identity Payload (HIP) protocol [73]. Furthermore, the payload of the packet is signed with the
corresponding private key. Hence, the recipient can discern not only the originating end point, but

33

also its current network attachment point, and verify that the packet was actually sent by the end
point. This approach obviates the need for any form of tunneling, but still requires some mechanism
for locating a mobile host’s current attachment point.

2.2.4 1P redirection

Teraoka, Yokote, and Tokoro proposed a Virtual Internet Protocol (VIP) that extends the IP protocol
to consider two distinct addresses: a virtual network address (VN) and a physical network address
(PN) [132]. The virtual network address serves as an EID, while the physical network address is
the traditional IP address. As in Mobile IP, hosts are assumed to have a home network where the
VN and PN are identical—the VN can be thought of as corresponding to the home address and
the PN the care of address. Routers within the network maintain an address mapping table (AMT)
that caches recently observed VN—PN pairs. A packet with identical destination VN and PNs (i.e.,
addressed to a mobile host on its home network) can be redirected by any router with an entry in its
AMT for the VN.

In the VIP scheme, a mobile host notifies a router on its home network of its new attachment
point (PN) when it attaches to a foreign network. This router then acts as a home agent for the host,
forwarding any packets addressed to the mobile hosts’ VN to its current PN by replacing the original
(home) PN with the current (care-of) PN. As the packet travels from the home network toward the
mobile host all the on-path routers cache the current PN of the mobile hosts VN. Hence, any of
these routers will serve as a home agent for the mobile host when they observe a packet destined
for the mobile host on its home network. AMT cache entries are expired in order to avoid routing
loops and misdirected packets. While more efficient than Mobile IP, VIP requires changes not only
to the IP layer of the end hosts, but network routers as well. Also, as the number of mobile hosts
grows large, AMTs at interior routers may grow prohibitively large.

Gupta and Reddy propose a redirection mechanism for IPv4 that can support mobility in a fashion
similar to Mobile IP with routing updates [41]. Originally proposed to support service replication,
the IP Redirection Protocol (IPRP) allows hosts to maintain and update care-of addresses for remote
hosts. A redirector performs the functions of a home agent in Mobile IP. Hosts wishing to contact the
mobile host first contact the redirector, which uses IPRP to provide the mobile host’s current care-
of address. Binding updates are accomplished by cascading redirections—after receiving a new
care-of address from the mobile host (using a mechanism not described in the original proposal),
the redirector would further redirect all correspondent end points to the new care-of address. The
proposed implementation of IPRP requires the modification of all IP stacks to support managing
care-of addresses.

Yalagandula er al. propose a similar redirection-approach that allows a mobile host to serve as
its own redirector [143]. When a mobile host moves to a new attachment point, it sends binding
updates to all of its correspondent hosts (which it tracks on an active partner list). The absence of
a home agent requires correspondent nodes to obtain a mobile node’s current attachment point on
their own, however.

2.2.5 NAT & VPN-based solutions

Standard NAT [122] software can accomplish similar redirection without modifying the IP stack.
By interposing a NAT between an end point and its network attachment point, NAT software can
translate home IP addresses into appropriate care-of addresses. This approach, termed Virtual Net-
work Address Translation (VNAT), was recently proposed by Su and Nieh [128]. VINAT does not

34

use a redirector or home agent, however, and does not discuss how the address of the mobile host’s
current network attachment point 1s obtained.

The indirection provided by NAT can also be provided through Virtual Private Network (VPN)
products. Several commercial products (like Columbitech’s WVPN solution [22]) use Transport
Layer Security (TLS) {27] to create secure VPN tunnels between mobile hosts and their home
agents. Rather than forward packets using IP encapsulation, as in Mobile IP, home agents in these
schemes use TLS tunnels and VPN address re-mapping to affect the same triangle routing.

2.2.6 Multicast mobility

Mysore and Bharghavan propose an approach to network-layer mobility that avoids the need for
a home agent or a new protocol for binding updates entirely [76]. They issue each mobile host
a permanent Class D IP multicast address [25] that serves as an end-point identifier. If multicast
were widely deployed, this approach might hold promise; because a multicast EID has the benefit
of being directly routable by the routing infrastructure, it removes the need for an explicit care-
of address. Instead, it places the burden of managing updates of end point bindings squarely on
the routing infrastructure. The binding issue remains the same, however. The mobile node must
send a binding update—it just takes the form of a multicast group join message. Similarly, the
home agent functionality is replaced by whatever entity is in charge of multicast tree rendezvous.
In this scenario, the multicast distribution tree for a host’s EIDs must be reconstructed each time
a node moves, requiring an extremely agile and efficient tree-building protocol. A later proposal
by Helmy [43] uses a traditional, non-multicast IP address as a mobile host’s home address, but
uses multicast for packet delivery. As noted by the designers, however, both schemes require a
secure, robust, scalable, and efficient multicast infrastructure for a large number of sparse groups—
a hypothetical protocol not yet available in the Internet.

2.2.7 Summary

Supporting changes in attachment point inside the network has one main advantage: end points need
not be concerned with the current network attachment point of remote end points—the network will
deliver packets appropriately regardless of an end point’s current location. However, these host
mobility schemes have several significant limitations:

1. Network-layer mobility schemes constrain the granularity of mobility. In particular, multi-
ple, distinct applications and services may exist on a host with only one attachment point.
Under the traditional IP addressing model, all of these end points share the same IP address;
hence, network-layer mobility schemes would require these end points to move in concert.
Increasing support for application migration [38, 63, 83] and service redirection [85, 119]
ensures that the end points may in fact move independently, however. This fine-grained
mobility requires each end point to have its own EID or home address, resulting in an in-
crease in the number of addresses that must be managed by the IP routing infrastructure and
severely stressing the scaling properties of many of the schemes. Indeed, the developers of the
Amoeba operating system—which supported process migration—cite the need to name indi-
vidual process end points as one of the main motivations for the development of FLIP [53],
a network-layer protocol that can assign location-independent EIDs to individual processes.
FLIP maps EIDs to network attachment points upon packet transmission.

35

2. Many network-layer mobility schemes incur unnecessary packet routing overhead (in terms
of increased latency, additional bandwidth usage, or end point processing). Some mobility
support schemes add additional packet addressing or routing overhead for all packets, regard-
less of their destination [18, 72, 76, 128]. In home-agent-based schemes, mobile end points
incur overhead when attached to a foreign attachment, regardless of whether or not they ever
move from that attachment point [41, 49, 89]. Ideally, overhead would only be incurred im-
mediately proceeding, during, or following a change in attachment point—once an end point
has “settled” at a new attachment point, an efficient scheme would treat it similarly to an end
point that had never moved.

3. Since network-layer mobility schemes conceal changes in attachment point inside the network
layer, it is often difficult for end points to detect mobility events, which often significantly
impact their operation. For example, a TCP sender attempts to estimate the properties of the
network path for the connection. A significant change in the network attachment point often
implies that previously discovered path properties are invalid, and need to be rediscovered.
This consequence is not limited to classical TCP congestion management. For example, many
Internet services are replicated at various locations throughout the Internet; these services
often attempt to serve clients from “near-by” servers (where “distance” is measured between
the client’s and server’s attachment points). If either a client or a server changes attachment
point, the service may wish to change the client-to-server assignments. Other applications
perform even more sophisticated adaptation to changing network conditions. For example,
Odyssey [81] demonstrated significant performance gains by allowing applications to adjust
their fidelity in response to a change in available network bandwidth—a common side-effect
of a change in attachment point.

4. Disconnection is not addressed. In particular, packets addressed to a currently disconnected
mobile host are discarded. Hence, end points must be prepared to handle extended periods of
disconnection that may accompany changes in attachment point.

In light of these limitations, many researchers continue to question whether network-layer mobil-
ity solutions are appropriate [21, 60, 83, 148] or sufficient {40, 45, 81, 128, 129, 145]. Cheshire
and Baker examined the various network-layer mobility approaches available to a mobile Internet
host [21] and noted that none were suitable for all classes of applications. Zhao, Castelluca, and
Baker implemented a system to allow mobile hosts to select between mobility schemes (i.e., utilize
Mobile IP or not) on a case by case basis through a Mobile Policy Table at a mobile host [148]; the
Mobile Policy Table specifies whether or not to employ network-layer mobility support between a
particular pair of end points.

Regardless of their strengths or limitations, none of the network-layer mobility proposals have yet
found widespread deployment. Hence, for the remainder of this dissertation, we will assume the
absence of such schemes. Instead, we explore methods that operate in the absence of network-
layer mobility and, in many cases, provide improved functionality and performance compared to
the network-layer schemes described above. In particular, this dissertation addresses all four of the
limitations listed above. Our approach:

o Allows end points to be arbitrarily fine-grained,

e Imposes minimal overhead on sessions that do not change attachment point, and almost all of
the overhead is incurred upon a change in attachment point, not afterward,

30

App TCP TCP App

<169.229.60.64, 2345> <18.31.0.139, 22>

Figure 2-3: An Internet transport layer connection. In this example, a TCP connection has been
established between applications at IP address 169.229.60.64 and 18.31.0.139; the connection uses
port 2345 on the former and 22 on the later.

e Exposes changes in network attachment point to interested applications,
e Provides applications with sophisticated means of adapting to periods of disconnection, and

e Can function in conjunction with network-layer techniques when present.

2.3 Connection migration

When two end points wish to exchange data packets, they employ a transport layer protocol to
manage delivery. Connection-oriented transport protocols establish a communication channel, or
connection, between two end points and exchange packets over the connection; packets sent by
one end point are delivered to the other, and vice versa. One of the main tasks of a transport
protocol is to multiplex communication channels between end points—that is, to provide end points
with more than one channel at a time and demultiplex incoming packets onto different channels.
Some transport protocols may provide additional services such as reliability for connections. For
example, Transmission Control Protocol (TCP) connections reliably deliver packets to applications
in the order in which they were transmitted [97].

Conceptually, an application forms a connection between two end points. Due to the constraints
imposed by the layered nature of the Internet stack, transport protocols must interface with the
network layer using addresses understandable by that layer—IP addresses. Hence, connections in
the Internet are communication channels between two network attachment points, not end points.
Multiplexing is supported through the use of ports; a port is simply a tag used to separate incoming
traffic into distinct channels. Hence, an Internet transport connection end point is specified in terms
of a port on an attachment point, or (/P address, port) pair, as shown in Figure 2-3. This naming
mechanism proves problematic if an end point changes network attachment point.

Once a connection is established between two attachment points, the local end point will only accept
packets addressed from the remote attachment point. Hence, connections established by an end
point at one attachment point cannot be used at another attachment point, even by the same end
point. In order to continue communications between the same two end points, a new connection
must be established between the new attachment points. Creating a new connection gives rise to
two complications. First, each end point much discover a new attachment point and somehow
communicate it to the remote end point. Second, after both end points agree on the new attachment

37

points, the end points must abort the old connections and establish new ones. For reliable transport
protocols, the process of changing attachment points may result in the loss of packets that were not
yet successfully transmitted on the initial connections.

A number of researchers have proposed mechanisms to allow connections to adapt to changes in
attachment points. The act of moving a connection from one attachment point to another is referred
to as connection migration. Most connection migration proposals have focused on TCP, and have
either introduced a higher-level mechanism to stitch together multiple separate TCP connections
into one virtualized connection [60, 64, 82, 99, 145, 147] or extended the TCP protocol itself [37, 44,
129]. In addition, a number of recently-proposed transport protocols support connection migration
as a standard feature [57, 126]. We briefly describe the essence of these approaches below.

2.3.1 Virtualized connections

Zhang and Dao proposed a Persistent Connection model for TCP where the connection end points
are described in terms of location-independent EIDs [147]. In their model, a Persistent Connection
exists between two end points, not their attachment points. The mappings between global EIDs and
current network attachment points are stored in a global clearinghouse. When an end point changes
network attachment point, it notifies the clearinghouse, which in turn notifies all end points in the
system of the change in attachment point. To avoid unnecessary notifications, a mobile end point
can provide to the notification service the set of correspondent end points to notify. Despite this
optimization, Zhang and Dao observe that their global EID scheme continues to suffer from poor
performance and scalability properties due to its reliance on a single, centralized clearinghouse.

In the Persistent Connection model, changes in attachment point are handled by a Persistent Sup-
port Module at each end point. The support module uses the new attachment points to establish re-
placement TCP connections for existing connections invalidated by the change in attachment point.
Unfortunately, data that has not yet been delivered on previous connections is lost—violating TCP’s
reliable delivery semantics. Qu, Yu, and Brent later proposed a similar virtualization scheme that
preserves TCP’s delivery semantics [99]. In their Mobile TCP solution, end points use a proprietary
interface to the operating system to extract from the original connection any bytes that have not
yet been successfully delivered to the remote end point, which it then retransmits [100]. Okoshi
et al. proposed a functionally similar solution called MobileSocket that does not require access
to operating system buffers [82]. Implemented in Java, MobileSocket buffers all outgoing data at
user level and establishes a separate control channel between connection end points. End points
in MobileSocket exchange application-layer acknowledgments as the TCP connection progresses,
allowing both ends to remove data from their MobileSocket buffers as it is successfully received at
the correspondent end point.

In all three virtualization approaches—Persistent Connections, Mobile TCP, and MobileSocket—
connection reestablishment is managed by a software library interposed between applications and
the operating system. The library conceals the connection virtualization from the application, mak-
ing it appear as if the original connection continues uninterrupted. This interposition approach
was recently revisited by Reliable Sockets (Rocks) [145]. Similar to the previous approaches,
Rocks allow TCP connections to support changes in attachment points. In contrast, Rocks pre-
serve TCP’s reliable delivery semantics without requiring any changes to the operating system or
explicit application-layer acknowledgments, and safely inter-operates with end points that do not
support Rocks. Rocks were developed concurrently with our work, and, indeed, many of the me-
chanics of Rocks implementation bear considerable similarity to the TCP virtualization approach
described in Chapter 4. Unlike our approach, however, Rocks impose TCP-like delivery semantics

38

on connections and cannot provide unreliable, out-of-order, or unconnected delivery semantics such
as those provided by UDP.

The home agent approach has also been applied at the transport layer. MSOCKS [64] proposes using
a SOCKS proxy [61] to forward transport connections to a mobile end point. Correspondent end
points establish front-end TCP connections with the proxy; the proxy then establishes a separate,
back-end connection with the mobile end point. The proxy splices the two connections together,
copying all incoming traffic on the front-end connection to the back-end connection and vice versa.
If an end point moves, it establishes a new back-end connection with the proxy, which splices
it to the old front end connection. Hence, the mobile end point’s change in attachment point is
concealed from the correspondent end point. As before, the SOCKS library conceals the connection
virtualization from applications on the mobile end point. NetMotion has a similar commercial
product that uses a proprietary proxy to support host mobility [79].

2.3.2 Modified TCPs

Some researchers have proposed modifying TCP itself to support changes in attachment point.
Huitema proposed ETCP [44], an extended TCP protocol that includes a flow identifier in the TCP
header. By assigning each TCP connection a unique connection identifier, end points can associate
incoming packets with the appropriate connection regardless of what attachment point was used to
transmit them. Hence, while mobile hosts continue to require a home agent to forward along initial
packets from a new remote end point, route optimization can be performed implicitly by the corre-
spondent end points. Correspondent end points respond to mobile end points by simply addressing
subsequent packets to the address used most recently by the mobile end point. If the mobile host
fails to respond, packets can always be retransmitted to the home agent.

An alternative TCP extension, TCP-R sends explicit attachment point updates to correspondent
end points [37]. If a mobile end point using TCP-R changes attachment point, it sends a special
“Redirect Request” or RD_REQ message containing the IP address of its previous attachment point
and the 1P address of its current attachment point. Because of TCP-R’s explicit specification of IP
addresses and inability to change port numbers, it cannot work across NATs. Furthermore, many
firewalls and stateful proxies may not properly handle redirected TCP-R connections because they
do not conduct a traditional TCP connection establishment between the new attachment points.
We present a TCP connection migration scheme in Chapter 4 that remedies these deficiencies as
well as several others. After its original development as an approach to handle host mobility [120]
and subsequent extension to support service fail-over [119], other researchers adapted (e.g., M-
TCP {129]) and extended (e.g., support for concurrent migration {136]) our approach.

2.3.3 New transport protocols

A number of proposed transport protocols have begun to incorporate rudimentary support for mobile
or even multi-homed end points but have not yet found wide-spread acceptance. The Datagram
Congestion Control Protocol (DCCP) [57] allows end points to notify correspondent end points of
a new network attachment point. An end point simply sends a special DCCP-Move packet from its
new attachment point, and the remote end point addresses all further packets on that connection to
the new attachment point; further packets from the previous attachment point are ignored. As noted
by DCCP’s authors, however, “DCCP’s support for mobility is intended to solve only the simplest
multi[-thoming and mobility problems. For instance, DCCP has no support for simultaneous moves.
Applications requiring more complex mobility semantics, or more stringent security guarantees,
should use an existing solution like Mobile IP or [the one presented in this thesis].” [57, pp. 52]

39

The Stream Control Transport Protocol (SCTP) [126] also allows end points to change attachment
points. It further allows end points to use multiple attachment points simultaneously. In its current
form, however, SCTP requires end points to specify all the attachment points they wish to use
during the duration of a connection at connection establishment. A proposed extension [125] allows
end points to introduce new attachment point bindings on-the-fly (i.e., after a change in attachment
point) in order to make SCTP more useful in mobile environments [105].

2.4 Session abstraction

Many Internet applications are architected using the notion of sessions—Ilong-term relationships
between application end points that typically span multiple transport connections. Examples of this
approach include interactive Web sessions, file transfer applications, interactive log-in sessions, and
multi-modal conferencing sessions. Sessions typically consist of one or more transport connections
and provide a convenient abstraction with which to manage coordinated application state between
end points. In general, a session can encompass any number of end points; in this dissertation, we
will consider sessions encompassing exactly two end points.

Application-layer protocols often use the session abstraction to efficiently manage application state
relevant to multiple connections. Similar to connections, sessions create a context for packet ex-
change that allows end points to coordinate state relating to the packets they are exchanging. While
connection state is restricted to issues of sequencing and retransmissions with a particular con-
nection, applications often use session state to provide a framework for additional services that
may span multiple connections, such as checkpointing, compression, authentication and confiden-
tiality (e.g., TLS [27]), unified congestion management (e.g., the Congestion Manager (CM) [7]),
and multi-party conferencing (e.g., the Session Initiation Protocol (SIP) [108]). Some sessions last
only long enough to send a short packet in one direction; others last for much longer periods of
time during which the end points exchange a significant amount of information. As the length and
complexity of a packet exchange increases, the session abstraction becomes increasingly powerful.
Providing enhanced services via a session abstraction often results in resource savings; by defining
service parameters at session establishment, end points amortize the cost of any required negotiation
across the duration of the session. Other session services enhance the user experience. For exam-
ple, SSH agents [144] manage user credentials for the duration of an interactive session. A user
authenticates herself to the agent only once (e.g., by typing a password); the agent then performs all
further authentication requests on behalf of the user, freeing her from tedious, repeated password
entry.

The Internet protocol stack provides no explicit support for the session abstraction. The now-defunct
Open Systems Interconnection (OSI) communications model [149], however, defines an explicit
session layer to provide synchronized message exchange [48]. In addition to the setting up and
tearing down of session associations, token exchange, and duplex negotiation, the OSI session layer
allows for the definition of synchronization points within the session, the interruption of a session,
and session resumption from an agreed upon synchronization point.

2.4.1 Session-layer mobility

Because of the inability of connections to cope with changes in end point attachment point, appli-
cations have been forced to develop their own application-specific mechanisms for handling mo-
bile end points. Many applications have found it convenient to leverage the session abstraction to
coherently aggregate multiple connections from disparate network attachment points into one rela-
tionship. HTTP cookies [35] for Web-based applications is a good example of this approach: By

40

including HTTP cookies in both HTTP requests and responses, Web clients and servers exchange
session state that survives the termination of a particular HTTP exchange or transport connection.

In fact, researchers have previously proposed providing mobility as a general session-layer ser-
vice [60, 139], although the design and implementation are significantly different from our Mi-
grate architecture. One of the main issues in designing a session-layer mobility scheme—indeed,
any mobility scheme—is deciding how to identify the end points. In the Session Layer Mobil-
ity (SLM) scheme [60], end points use a new global naming service—a so-called User Location
Server—to provide an end point’s current attachment point; end points change connection attach-
ment points through an undocumented TCP-specific protocol extension, presumably similar to the
virtualization approaches described above. Other researchers have proposed extensions to the IETF-
standardized Session Initiation Protocol (SIP) [108], originally developed to help establish tele-
phone and conference sessions, to track end-point attachment points [139]. SIP uses email-like
addresses (such as snoeren@lcs.mit.edu)to define end points.

2.4.2 End-point naming

By binding end-point names to IP addresses, a naming system allows an end point to be identified by
a more descriptive name than its network attachment point [109]. An end point wishing to establish
a session with another end point must first resolve the remote end point’s name into an IP address to
use for communication. A session is said to be bound when the names of its end points are resolved
to network attachment points.

Networked applications have long eschewed IP addresses in favor of their own naming systems
to describe remote end points. For example, Internet applications often refer to end points using
Domain Name System (DNS) hostnames (e.g., www.lcs.mit . edu) [68], service records (e.g.,
DNS “MX-records”), or content-based schemes like Intentional Naming System (INS) intentional
names [1] and distributed hash table keys [127]. Each of these naming systems uses a different
namespace, but they all provide a resolution mechanism that returns the binding for a particular
name (e.g., DNS will resolve www. lcs.mit . eduto an IP address like 18.24.10.46). The naming
system resolves the end-point name used by the application to an [P address that specifies a partic-
ular network attachment point before packets are sent. The IP address can then be used to deliver
data to the network attachment point used by the end point of interest. In some cases, a name may
resolve to multiple addresses; the semantics of multiple bindings are application-specific, but in
most cases any of the addresses can be used.

The end-point binding stored in the naming system could become out of date because the named
end point is no longer located at the network attachment point specified by the naming system.
Such a binding is termed inconsistent, since it is no longer consistent with the current mapping
between the end point and its network attachment point. Dynamic naming systems like dynamic
DNS [141] allow the replacement of inconsistent bindings with new, up-to-date bindings reflecting
an end point’s current network attachment point.

Naming systems use widely varied methods to store and retrieve name bindings. Internet naming
systems usually use a distributed set of resolvers (often called name servers) that store (or are
responsible for computing) subsets of the mappings. An end point that wishes to resolve a particular
name must then contact these name servers across the network. Most end points attempt to avoid
the cost of repeated queries (both in terms of time and consumed bandwidth) by caching bindings.
Hence, multiple packets destined for the same end point are addressed using the IP address resulting
from only one resolution.

41

Cached bindings may become inconsistent in a dynamic environment. Despite the ability of a dy-
namic naming system to update its bindings to reflect changes in an end point’s network attachment
point, end points using a cached binding will remain oblivious to the change. Hence, some mech-
anism must be employed to invalidate the inconsistent cached binding and re-resolve the end point
name to its new network attachment point.

2.4.3 Avoiding inconsistency

In general, there are at least three ways to avoid binding inconsistency:

e The first approach is for applications to use a late binding technique, where the end-point
name is not resolved to a network attachment point until as late as possible—just before a
packet must be sent—and is not cached. In its simplest form, the remote end point’s name is
freshly resolved for each new packet to be sent.

e A second approach is for applications to resolve end-point names at the beginning of a session
and cache the bindings for the duration of the session. This technique introduces a window
of vulnerability when session bindings can become inconsistent, but the window can be kept
small by using only short sessions. When sessions are sufficiently short, and the interval
between them correspondingly large with respect to the frequency of changes in attachment
point, an end point is unlikely to change network attachment points during a session. Hence,
a binding obtained at the beginning of a session remains consistent throughout the session’s
lifetime.

e The third approach is for end points to asynchronously update the end-point bindings upon
changing network attachment points. Rather than periodically polling for new bindings as
described in the first approach, a binding update can be used to notify end points of the
inconsistency of the previous binding, and to provide the current, consistent binding.

Each approach is most appropriate under different conditions, depending primarily on the frequency
with which end points change attachment points. Researchers typically consider two classes of
mobility and describe them in terms physical displacement, but they correspond equally well to
frequency of change:

e Micro- or link-local mobility refers to the case when end points move inside a confined local
area, typically behind a single base station or access point, generally using the same network
technology and provider. Time scales can be quite small, even on the order of a round trip
time (RTT).

e Macro- or wide-area mobility, in contrast, deals with the more general case of movement
across subnets, providers, and network technologies. Changes typically occur on coarser
time scales (i.e., 10s of RTTs or more) than micro-mobility.

Late binding avoids end-point binding inconsistency by delaying resolution until the last possible
moment and re-resolving the binding at every possible opportunity. Hence, late binding is appropri-
ate in the micro-mobility case, when end points change attachment point frequently. Late binding
was employed by Adjie-Winoto ef al. in the Intentional Naming System (INS) [1]. INS integrates

42

name resolution and message routing to track highly mobile services and nodes. The TRIAD ar-
chitecture {40]) proposes a similar approach. Similarly, wireless networks often conceal extremely
rapid changes in attachment point across a homogeneous link technology from the network layer
through late binding at the physical and link layers (e.g., via link-layer bridging and roaming [46]).

The significant polling overhead typically incurred by late binding can be avoided, however, when
changes are less frequent (i.e., multiple consecutive resolution operations return the same binding).
When attachment points are stable enough to allow bindings to remain consistent for some period of
time, end points can resolve the remote end point name only at the beginning of a session and keep
session lengths short; the likelihood of an end point changing network attachment point during the
session is low. Unfortunately, this approach eliminates much of the benefit of sessions—the shorter
the session duration, the less benefit there is to negotiating session services, as their costs will not be
favorably amortized. While there may be little penalty for those applications that do not use session
services, there remains the possibility that an end point may occasionally change attachment points
during even short sessions, leaving the session in an inconsistent state.

Studies suggest that Internet end points do not move frequently in the wide area, even when hosts
are mobile [131]. Binding updates are the best choice in this case, as they use caching to avoid
the polling overhead of late binding but enable sessions to recover from the occasional change in
attachment point. (In situations when attachment points change rapidly in a confined area, such as a
cellular network, and the binding update overhead may become excessive, binding updates may be
usefully combined with late binding micro-mobility approaches [16].)

2.4.4 Managing updates

Issues with a binding update scheme include determining when, to whom, and from where to send
updates. Clearly, end points should issue binding updates immediately following a change in attach-
ment point. With regard to whom to send updates, end points can be classified into two categories
with respect to a mobile end point: those that have cached the end point’s binding, and those that
have not. The first class must receive a binding update; the second, however, need not be notified
so long as it can be assured that any future bindings will be resolved to the new network attachment
point. If bindings are resolved by a naming system that allows dynamic updates, it is necessary only
to notify those end points that have cached the mobile end point’s binding; updating the naming
system suffices to handle the rest.

The last issue is determining from where the binding updates should be sent. Since updates need to
be sent to the set of end points currently in communication with a mobile end point, the mobile end
point itself is in the best position to generate the updates. A mobile end point can directly notify all
correspondent end points upon any change in attachment point by sending them a binding update.
Directly updating correspondent end points of changes in attachment point has two advantages:

1. The binding update shares fate with session connectivity. The binding update can be delivered
to the remote end point if and only if the session can continue. An end point may not always
have connectivity to the naming system; hence, direct binding updates ensure that established
sessions can continue if at all possible.

2. Direct binding updates can be implicit. The updates need not explicitly specify a new at-
tachment point; instead, the attachment point may be inferred from source IP address of the
binding update itself. This implicitness is especially important on the Internet when NAT is

43

used to provide global connectivity for private networks [24]. For example, packets originat-
ing from a network attachment point with an IP address from a private address space [103]
may be rewritten by a NAT to have a globally-routable address before being forwarded to the
Internet. Hence, the end point using that attachment point believes it to have one IP address
(e.g., 192.198.1.10) while remote end points must address packets to it using a different IP
address (e.g., 24.147.17.155).

Further, some network address translation schemes (e.g., AVES [80]) are not “stable,” meaning the
network attachment point used to communicate with one remote network attachment point cannot be
used to communicate with a different remote attachment point. In this case, the IP address seen by
each correspondent end point may be different from those seen by other correspondent end points.
Hence, the only way to ensure that end points determine the correct IP addresses is to send binding
updates directly between the two communicating end points.

The major limitation of direct updates is the inability to recover from concurrent changes in the
attachment points of both end points. If an end point changes attachment point before the delivery
of a binding update from the remote end point, neither end point has an up-to-date binding of the
other end point. The end points cannot recover without a third party to broker the binding updates.
While a reachable third party is strictly necessary in this case, the naming system suffices. The end
points can recover the session by re-resolving the remote end point using the same naming system
used during session establishment.

Assuming that each end point resolves a remote end point’s name at the beginning of a session and
caches the binding for the duration of the session, the set of end points that have cached a given
mobile end point’s binding is at least the set of end points currently engaged in a session with the
mobile end point. Because of a race condition between naming system updates and resolutions,
there may be additional end points that have already resolved the mobile end point’s name to its
previous attachment point but not yet succeeded in initiating a session. These end points will not
see any updates to the naming system.

When the naming update arrives after the binding has been resolved by the naming system, the
querying end point will unsuccessfully attempt to initiate a session to the remote end point’s old at-
tachment point. End points can keep the number of such cases small by performing resolution at the
last possible moment and not caching bindings across sessions. Ultimately, to ensure correctness,
end points should attempt to re-resolve a remote end point’s name if initial session establishment
fails. In practice, the trend toward dynamic naming systems has already caused such retries to find
their way into applications—for instance, current FreeBSD telnet and rsh applications try to contact
alternate network attachment points if the naming system returns multiple bindings for an end point.

2.4.5 Controlling change

So far, we have assumed that changes in attachment point were an inevitable occurrence, and have
not explored why they happen. In practice, deciding when an end point should change its attachment
point, and where it should move to, are complicated issues. Often, these decisions are based on user
policy rather than network constraints (e.g., a user may prefer a less expensive network attachment
point or one with higher bandwidth). This decision is especially complicated for multi-homed end
points, as different attachment points often have varying characteristics.

Inouye, Binkley and Walpole observe that the metrics of interest are application-dependent, and vary
greatly both in terms of dimension (e.g., bandwidth, latency, loss rate) and acceptable ranges. They

44

propose Physical Media Independence (PIM) [45], an architecture for supporting multiple physical
interfaces on multi-homed Internet hosts. PIM supports policy-based attachment point selection but
relies on Mobile IP to provide network-layer mobility support for applications unable to explicitly
handle address changes.

As an additional complication, an end point may wish to select a new remote end point when the
local network attachment point changes—perhaps because the new network attachment point is ill-
suited for continued communication with the previous remote end point (i.e., the network path has
limited bandwidth, high loss rate, or long latency). This intervention is particularly appropriate for
end points communicating with replicated servers. In such cases, clients may often select between
multiple potential remote end points, some more capable of providing efficient service to particular
network attachment points than others. Hence, a practical session abstraction must incorporate a no-
tion of connectivity quality and allow for arbitration between multiple potential network attachment
points, both local and remote.

2.5 Disconnection

One of main the challenges for applications operating in a mobile environment is an end point
that disconnects [111]. A significant amount of research has focused on allowing mobile clients
to continue to function while disconnected. Applications that do not require network connectivity
clearly require no additional support. Other applications do not explicitly utilize network resources
themselves but access files stored on a networked file system. In this case, the networked file system
must support disconnected operation. For example, the Coda file system [74] allows disconnected
clients to use locally cached copies of files and reconciles any conflicts upon reconnection. Coda
proactively hoards copies of files that are likely to be needed while disconnected, allowing most file
operations to proceed even while disconnected.

Network applications—those that explicitly communicate with remote application end points—-
require a far greater level of support. In some instances, applications can defer communication
yet continue to provide a user with some level of functionality. In particular, applications based
on the Remote Procedure Call (RPC) model [14], where each communication is a request-reply
exchange, have been successfully adapted for disconnected operation using the Rover toolkit [51],
which queues RPC for later delivery. In addition to queuing RPCs, the Rover toolkit can emulate
Coda’s hoarding process; instead of copying or relocating files, Rover relocates the remote session
end point to the mobile host through the use of dynamic objects. When both end points are located
on the same mobile host, no network communication is needed. Similar ideas appear in the HTTP-
based Mobile Extensions proposed by Dahlin ez al. {23], which allow HTTP session end points to
be hosted at proxies throughout the network, or in the case of disconnection, at the mobile client
itself.

2.5.1 Suspend/resume

Unfortunately, the hoarding approach does not apply when the remote end point cannot be cached
or relocated to the disconnected host. We are particularly interested in session-based applications
whose remote end points cannot be easily relocated. Hence, we focus on resuming the session once
connectivity is reestablished. In our model, sessions are suspended when the end points become
disconnected, and resumed when connectivity returns.

To enable a form of suspend/resume operation, some network-layer mobility schemes [128] and
connection migration proposals [37, 60, 82, 145] conceal periods of disconnection from applica-

45

tions. In addition to being problematic to implement, concealment often yields sub-optimal perfor-
mance, and results in significant amounts of wasted resources. In particular, concealing disconnec-
tivity becomes extremely difficult when applications require periodic communication or keep-alive
messages. Further, if concealment is successful, the application is unable to adapt to changes in net-
work conditions and continues consuming system resources (CPU, memory, kernel buffers, timers,
file descriptors, etc.) while disconnected. Many of these resources are scarce, and cannot be effi-
ciently multiplexed.

Systems like Rover and Coda assume an asymmetric resource balance between client and server,
and view “servers being the true home of data and clients merely being caches.” As an increasing
portion of Internet hosts become mobile and themselves resource-poor, and the notion of peer-to-
peer computing expands, this asymmetry assumption becomes increasingly tenuous. It is becoming
unreasonable to assume the correspondent end point of a mobile end point is neither mobile nor re-
source poor. Hence, we consider resource conservation on both of the hosts involved in the session.

Applications are traditionally suspended by creating snapshots, or checkpoints, of their process
execution state, which can later be restored in order to resume process execution from the same
state. This technique has been applied to migrate applications from one host to another [63], or to
restore applications after a system crash. Unfortunately, many applications handle several sessions
inside of one process; traditional process-based checkpointing does not allow individual sessions to
be independently suspended or resumed.

2.5.2 Session management

Researchers have proposed several specialized techniques to enable the management of individual
sessions within a process. For example, the Java Servlet Specification v2.3 [130] supports the
notion of explicitly storing application state inside session data structures, which can be individually
passivated, resumed, and shuttled between replica servers using the native Java serialization and
RMI mechanisms. Servlet sessions include only application state, however, and do not reference
any network connections or system resources (e.g., files, locks, timers, etc.) that may be needed.

In contrast, Resource Containers [10] and Scout paths [71] both provide mechanisms to associate
application and system resources, allowing system resources to be charged to individual sessions.
IO-Lite [86] goes one step further by blurring the distinction between system and application state.
Network buffers in IO-Lite are at once application and system state—only one physical copy of
transmitted data exists in memory. None of these approaches allow system resources to be sus-
pended or removed from active use. Hence, while they may be charged to a particular application
session, they cannot be safely released when a session is suspended.

2.5.3 Pervasive computing platforms

Mobility and disconnectivity support are two aspects of the larger vision of pervasive computing
in which both communication and computation migrate across heterogeneous platforms. In order
to support such powerful operations, pervasive computing platforms typically define specific pro-
gramming and inter-process communication (IPC) models. One.world [39] defines a Java-based
environment in which to build pervasive applications and supports both host and fine-grain appli-
cation or session mobility through the use of specific RPC mechanisms [38]. One.world’s tuple
spaces allow names to be dynamically bound to different values, depending on the current environ-
ment; all bindings are invalidated when end points change location and are resolved again from the
new location. This dynamic binding is similar to the concept of contextual objects, introduced by

46

Kermarrec et al., which allow one name to correspond to a variety of data objects based upon the
current context {56]. This concept also exists in Active Names, which map names to a chain of
mobile programs that can customize how a service is located [138].

The main drawback of pervasive computing platforms is that they require a complete redesign of
existing applications. This dissertation focuses on providing many of their benefits, in terms of
support for mobile and disconnected session end points, while preserving the traditional POSIX
API. By doing so, legacy applications can realize much of the benefits and programmers can design
new, mobile-aware applications in traditional, session-oriented style by leveraging our expanded
APL

47

48

A worker may be the hammer’s master, but the hammer still prevails.
A tool knows exactly how it is meant to be handled,
while the user of the tool can only have an approximate idea.

Chapter 3 — Milan Kundera

A System Session Abstraction

This chapter presents the first component of the Migrate mobility architecture: a system session
abstraction. Migrate elevates the session relationship from an internal application construct to a
first-class entity described by the application but managed and maintained by the system. Appli-
cations employ a novel Application Programing Interface (API) to name two session end points
using any naming system of their choice, and Migrare preserves the relationship and communica-
tions between them in the face of any changes in network attachment point. This preservation is
a two step process: First, the session relationship must be maintained by ensuring each end point
has an accurate understanding of the other end point’s current network attachment point. Second,
any established communication channels between the end points must continue to operate in the
face of changes in attachment point. This chapter focuses on maintaining the session relationship;
preserving communications is discussed in the following chapter.

The rest of this chapter is organized as follows. It begins by introducing Migrate’s session ab-
straction, its API, and accompanying control protocol in Section 3.1. Section 3.2 discusses the
additional security concerns introduced by the session layer. The chapter concludes in Section 3.3
with a demonstration of how Migrate sessions enable host mobility.

3.1 A session layer

Migrate introduces a session layer to the Internet protocol stack. This layer presents a simple
abstraction—a session—to the application to handle changes in network attachment points. In Mi-
grate, a session is an association between two communicating end points, consisting of one or more
connections. Figure 3-1 shows a session consisting of three connections. Rather than name end
points by their attachment points—as connections do with IP addresses—or prescribe some novel
naming system, Migrate allows applications to name session end points using an arbitrary nam-
ing system of their choice (e.g., Domain Name System (DNS) hostnames); they simply provide
Migrate with the names and a method to resolve them. Migrate sessions track the end points as
they change network attachment points, maintaining the end-point relationship requested by th