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Abstract

A crystal-mechanics-based constitutive model for polycrystalline shape-memory ma-
terials has been developed. The model has been implemented in a finite-element
program. Finite-element calculations of polycrystal response were performed using
two methods: (1) The full-finite element method where each element represents a
single crystal chosen from a set of crystal orientations which approximate the initial
crystallographic texture; (2) A simplified model using the Taylor assumption (1938)
where each element represents a collection of single crystals at a material point. The
macroscopic stress-strain responses are calculated as volume averages over the entire
aggregate.

A variety of superelastic experiments were performed on initially-textured Ti-Ni
rods and sheets. The predicted stress-strain curves from finite-element calculations
are shown to be in good accord with the corresponding experiments.

For the Ti-Ni sheet, strain-temperature response at a fixed stress was also ex-
perimentally studied. The model was also shown to accurately predict the results
from these important experiments. Further, by performing superelastic experiments
at moderately high strain rates, the effects of self-heating and cooling due to the
phase transformations are shown to be captured well by the constitutive model. The
thermo-mechanically-coupled theory is also able to capture the resulting inhomoge-
neous deformations associated with the nucleation and propagation of transformation
fronts.

Finally, an isotropic constitutive model has also been developed and implemented
in a finite-element program. This simple model provides a reasonably accurate and
computationally-inexpensive tool for purposes of engineering design.

Thesis Supervisor: Lallit Anand
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

Shape-memory alloys (SMAs) are finding increased use as functional/smart-materials

for a variety of applications (see Figure 1-1). The individual grains in these polycrys-

talline materials can abruptly change their lattice structure in the presence of suitable

thermo-mechanical loading. This capability of undergoing a solid-solid, diffusionless,

displacive phase transformation leads to the technologically-important properties of

superelasticity and shape-memory.

Currently, the near-equiatomic Ti-Ni alloys are the most popular shape-memory

materials for applications. The reversible transformations between the various phases

observed upon changing the temperature, under zero stress, in the case of Ti-Ni are

as follows. The transformation sequence upon cooling from a high-temperature body-

centered-cubic superlattice, B2, austenite phase is first to a rhombohedral R-phase,

and then to a monoclinic martensite phase. Upon heating, the reverse transforma-

tion takes place; however, the R-phase is not observed. Under certain conditions,

the R-phase may be suppressed, and the only transformation in a specimen is the

cubic-to-monoclinic transition. Under zero stress, shape-memory materials are dis-

tinguished by the following four temperatures: Oms, martensite start temperature;

9 mf, martensite finish temperature; 0 as, austenite start temperature; and Oaf, austen-

ite finish temperature.

1Also called pseudoelasticity by transformation.
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As mentioned previously, an important characteristic response of shape-memory

materials is superelasticity. A schematic diagram for the superelastic response is

shown in Figure 1-2a. This is a consequence of a stress-induced transformation from

austenite to martensite and back when a sample is tested in cyclic uniaxial extension,

between zero and a finite but small (~5%) strain, under quasi-static conditions at a

constant ambient temperature above its austenite finish temperature, Oaf. There is

little or no permanent deformation experienced by the specimen in such a strain cy-

cle; this gives an impression that the material has only undergone elastic deformation,

and hence the term superelastic. However, there is hysteresis; the mechanism respon-

sible for the hysteresis is the motion of sharp interfaces between the two material

phases. For a given material, the size and other qualitative features of the "flag-

type" hysteresis loops usually change with the loading rate and the temperature at

which the test takes place. Superelastic response can also be triggered by a change

in temperature after a pre-stress is applied on the shape-memory material. This is

widely known as the strain-temperature cycling response. A schematic diagram for

the strain-temperature cycling response is shown in Figure 1-2b.

The shape-memory effect by transformation occurs when a material which is ini-

tially austenitic is first tested in isothermal uniaxial extension at a temperature

0 ms < 0 < Oaf. During forward loading, a transformation from austenite to marten-

site occurs, but upon reversal and unloading to zero stress, the transformation strain

does not recover until the temperature is subsequently raised to 0 > Oaf.

If the temperature is lower than the martensite finish temperature, 0 < Omf,

the material is initially in the martensitic state. In this condition SMAs can also

exhibit superelastic and shape-memory effects, but the inelastic strain is caused by

reorientation of the martensitic variants, and not by transformation (e.g. Saburi and

Nenno, 1981; Miyazaki and Otsuka, 1989; Otsuka and Wayman, 1999).

There is substantial activity worldwide to construct suitable constitutive models

for shape-memory materials, and several existing one-dimensional constitutive models

can capture the major response characteristics of SMAs reasonably well (e.g. Liang

and Rogers, 1990; Abeyaratne and Knowles, 1993; Ivshin and Pence, 1994; Bekker
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and Brinson, 1997).

Prominent amongst the three-dimensional models are the ones proposed by Sun

and Hwang (1993a,b), Boyd and Lagoudas (1994,1996), Patoor et al. (1996), Au-

ricchio and Taylor (1997), Lu and Weng (1998), Gao et al. (2000) and others, but

most of these models have been shown to work best for uniaxial loading. It is dif-

ficult to test the applicability of these models in real three-dimensional situations

because there is a lack of pedigreed multi-axial experimental data, although some

nice experiments have been recently reported by Lim and McDowell (1999). Indeed,

the predictions from these models which have been calibrated from data for simple

tension, have not even been verified for the case of simple shear. Also, these models

do not adequately capture the asymmetry observed between tension and compression

superelastic experiments, where it is found that at a given test temperature: (i) the

stress level required to nucleate the martensitic phase from the parent austenitic phase

is considerably higher in compression than in tension; (ii) the transformation strain

measured in compression is smaller than that in tension; and (iii) the hysteresis loop

generated in compression is wider (measured along the stress axis) than the hysteresis

loop generated in tension. These major differences between the tension and compres-

sion response of a Ti-Ni rod alloy in superelasticity experiments (to be described

more fully later) are shown in Figure 1-3. Anisotropic effects are even manifested in a

Ti-Ni sheet alloy, as shown in Figure 1-4 where the superelastic tensile response along

the rolling and transverse direction is shown. Further investigation on superelastic

behavior at various deformation rates also show that : (i) The stress-strain response

"hardens" more as the rate of deformation increases; and (ii) the hysteresis loops

get wider (measured along the stress axis) as the deformation rate increases. These

experimental results on a Ti-Ni sheet conducted at various deformation rates at the

same ambient temperature are shown in Figure 1-5.

It is now well recognized that shape-memory materials derive their unusual and

inherently nonlinear and anisotropic properties from the fine-scale rearrangements

of phases, or "microstructures," and that the strain produced by the superelastic-

ity effect depends on crystal orientations. Specially-oriented single crystals of some
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shape-memory materials can produce sizeable strains (~ 10%) due to phase trans-

formations. In applications, shape-memory materials are typically polycrystalline in

nature, and are usually processed by casting, followed by hot-working (drawing for

rods and wires, and rolling for sheet) and suitable heat treatments. Polycrystalline

SMAs so produced are usually strongly textured, and various researchers have recently

emphasized that crystallographic texture is very important in determining the overall

properties of SMAs (e.g. Inoue et al., 1996; Zhao et al., 1998; Shu and Bhattacharya,

1998; Gall and Sehitoglu, 1999).

Shu and Bhattacharya (1998) have developed an analytical geometric model to

estimate the effects of initial crystallographic texture on the amount of recoverable

strains in SMAs. They show that texture is important in determining the amount of

shape-memory effect in polycrystals. In particular, they qualitatively show that even

though Ti-Ni and Cu-Zn-Al based SMAs both undergo cubic-monoclinic transforma-

tions, and both have similar transformation strains at the single-crystal level, it is

the difference in the crystallographic texture between the two polycrystalline SMAs

in bulk sheet, rod, and wire forms which gives rise to a larger shape-memory effect

in Ti-Ni.

More recently, Gall and Sehitoglu (1999) have studied the stress-strain behav-

ior of polycrystalline Ti-Ni under tension versus compression. They used a micro-

mechanical model which incorporates single-crystal constitutive equations and exper-

imentally measured polycrystalline texture into a "self-consistent" model for poly-

crystals (Patoor et al., 1996) to argue that the tension/compression asymmetry in

Ti-Ni shape-memory alloys was related to the initial crystallographic texture of their

specimens2

An important feature of the superelastic response of Ti-Ni wires observed by Shaw

2We do not completely understand the model and computational procedure used by Gall and
Sehitoglu (1999) because sufficient details are not provided by the authors. It appears that these
authors consider a model in which the transformation rates are determinable only if the model
contains an invertible "interaction energy matrix" (their equation 11). They attribute the magnitude
of the tension-compression asymmetry in the superelasticity behavior of their Ti-Ni material to the
magnitudes of the terms of the interaction moduli. In contrast, we show in this work that the major
features of the tension-compression asymmetry in textured drawn bars of Ti-Ni are captured even
if the interaction matrix is set to zero.
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and Kyriakides (1997) was that the transformation from austenite-to-martensite did

not occur homogeneously in their specimens. Further investigations by Shaw and

Kyriakides [2] on Ti-Ni sheets also showed that the phase transformation occurred

by the nucleation and propagation of fronts, and that because of the exothermic

and endothermic nature of the austenite-to-martensite and martensite-to-austenite

transformations, respectively, there were substantial measurable temperature changes

in the gage section of their sheet tensile specimens. These temperature changes also

result in an "apparent hardening" of the nominal superelastic stress-strain curves, as

observed by Entemeyer et al. (2000).

With this brief introduction, the purpose of this thesis is to formulate and nu-

merically implement a crystal-mechanics-based constitutive model for shape-memory

materials, and to verify whether the model is able to capture the major features of

the experimentally-measured effects of crystallographic texture on superelasticity of

polycrystalline Ti-Ni alloy, and also to numerically capture the inhomogeneous de-

formation associated with the nucleation and propagation of transformation fronts,

and also the apparent hardening of the nominal stress-strain curves observed in the

experiments as the loading rate is increased.

The plan of this thesis is as follows: In Section 2.1, we formulate a rate-

independent single-crystal constitutive model, where the inelastic deformations occur

by phase transformations. We have implemented our constitutive model in the finite-

element program ABAQUS/Explicit (1999,2001); algorithmic details of the time-

integration procedure used to implement the model in the finite-element code are

given in Appendix A. This computational capability allows us to perform two types

of finite-element calculations: (i) where a finite-element represents a single grain

and the constitutive response is given through a single-crystal constitutive model,

and (ii) where a finite-element quadrature point represents a material point in a

polycrystalline sample and the constitutive response is given through a Taylor-type

polycrystal model.

In Section 2.2 the results from experimental measurements of crystallographic

texture of a Ti-Ni rod-alloy are described. Material parameters appearing in the
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constitutive model for this alloy have been evaluated. The procedure to determine

these parameters from differential scanning calorimetric (DSC) measurements, and a

room temperature isothermal superelasticity experiment in tension are also outlined in

Section 1-3. We show that our model is able to reproduce the stress-strain curve of the

initially-textured Ti-Ni alloy in simple tension. Next, with the model so calibrated,

we show that the predictions for the stress-strain curves from the model are in good

agreement with superelasticity experiments on the same pre-textured material in

simple compression, thin-walled tubular torsion, combined tension-torsion, and path

change tension-torsion.

To determine the degree to which the initial texture controls the macroscopic

asymmetry in the superelastic response in tension and compression, we have also

compared the predicted stress-strain responses in simple tension and simple compres-

sion if the initial texture is taken to be random. Our calculations show that in this

case the response in compression is very similar to that in tension. Accordingly, we

conclude that crystallographic texture is the prime cause for the observed tension-

compression asymmetry in shape-memory materials.

In Section 2.2.1, we evaluate the applicability of a Taylor-type model for inelastic

deformations by phase transformation. Some previous work done by Bhattacharya

and Kohn (1996,1997) shows that the Taylor model provides a good approximation in

estimating the transformation induced strain. Our calculations also show that such a

Taylor-type model is also able to predict reasonably well the macroscopic stress-strain

curves.

In Section 2.2.2 we examine the applicability of our model to another Ti-Ni al-

loy for which Shaw and Kyriakides (1995) have conducted careful experiments at a

variety of different temperatures. Unfortunately, these authors do not report on the

initial crystallographic texture of their material. However, since they conducted their

experiments on drawn Ti-Ni wires, we assume that their material has a texture sim-

ilar to our drawn rods. We estimate the constitutive parameters for their material

from their DSC results, and their stress-strain results from a pseudoleastic tension

test at representative temperature. We show that the predictions for the stress-strain
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response from our constitutive model are in good agreement with the results from

their superelastic experiments at a few temperatures, 0 > Oaf.

Shaw and Kyriakides (1995) also report on displacement controlled experiments

at temperatures in the range 0 ms < 0 < Oaf. In these experiments the martensite that

forms during forward deformation does not completely transform back to austenite

upon reversing the deformation and decreasing the stress to zero. Although Shaw

and Kyriakides (1995) did not subsequently increase the temperature at zero stress

to 0 > 0as to show the shape-memory effect, we have numerically simulated such an

experiment, and show that our model is able to also capture the shape-memory effect

by transformation.

In Section 2.3 we investigate the superelastic response of initially-textured Ti-Ni

sheet. Here we show the constitutive model, when suitably numerically implemented

and calibrated, is shown to accurately predict the anisotropic superelastic response of

tension specimens which were cut along different directions to the rolling direction of

the sheet. Also, the strain-temperature cycling experiments under different constant

axial stresses are predicted with reasonable accuracy. The effects of self-heating and

cooling due to the exothermic and endothermic nature of the austenite-to-martensite

and martensite-to-austenite transformations were investigated by performing supere-

lastic tension experiments at strain rates which are high enough to result in non-

isothermal testing conditions. The thermo-mechanically coupled theory is able to

capture the resulting inhomogeneous deformation associated with the nucleation and

propagation of transformation fronts, and also the "apparent hardening" of the nom-

inal stress-strain curves observed in the experiments.

In Section 2 we have successfully applied our crystal-mechanics-based theory to

model the superelastic behavior of Ti-Ni rods and sheets under various multi-axial and

thermo-mechanical loading conditions. However, as expected, the three-dimensional

crystal-mechanics-based theory for polycrystalline materials is computationally inten-

sive, and at present not ideally suited for application in routine engineering design.

Guided by the success of the crystal-mechanics theory, we formulate a simpler

"isotropic" theory in Chapter 3, in which the major difference is that the evolution
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equation for FP is now given by

FPFP-' = NP, (1.1)

where denotes a single transformation rate, and NP a suitable symmetric trans-

formation tensor which determines the direction of transformation and its magni-

tude. Unlike the crystal-mechanics theory in which the transformation tensors are

determined by crystallographically based dyads S', the transformation tensor in the

isotropic theory is based on considerations of the stress state during transformation.

Although a crystal-mechanics theory is more accurate, an isotropic theory based on

such a flow rule, when suitably numerically implemented and calibrated, and its range

of applicability verified, should be more immediately useful for the design of compo-

nents and systems made from shape-memory materials.

The plan of Chapter 3 paper is as follows. We develop the isotropic model

in Section 3.1; we have implemented the model in the finite element programs

ABAQUS/Explicit and ABAQUS/Standard (2001). Algorithmic details of the time-

integration procedure and Jacobian matrices for the numerical implementation are

given in Appendix E and F, respectively. In Section 3.2.1 and 3.2.2 we evaluate

the applicability of this isotropic model to reproduce the experimentally-measured

superelastic response of the polycrystalline Ti-Ni sheets and rods, which experimen-

tal results are reported in Chapter 2. The two manifestations of superelasticity -

stress-strain response at a fixed temperature and strain-temperature response at a

fixed stress - are explored. In Section 3.3 we use our computational capability to

show that it may be used to analyze the response of a technologically important

structure - a bio-medical stent.

We conclude and provide suggestions for future work in Chapter 4.
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(a)

(b)

Figure 1-1: (a) Shape-memory alloy-based actuation device (Baron et al., 1994). (b)
Scanning Electron Microscope (SEM) image of a Scimedt" artery stent (Serruys,
1997).
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Figure 1-3: Experimental stress-strain curves for Ti-Ni rod at 6 = 298 K in simple
tension and simple compression. For compression the absolute values of stress and
strain are plotted.
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Figure 1-4: Experimental stress-strain curves for Ti-Ni sheet at 0 = 300 K in simple
tension along the rolling and transverse direction
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Figure 1-5: Experimental stress-strain curves for a Ti-Ni sheet at 0 = 300 K in simple
tension at strain rates of 0.00003/sec, 0.00084/sec, and 0.002/sec.
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Chapter 2

Crystal-mechanics-based

constitutive model

2.1 Single-crystal constitutive equations

In this section we summarize the three-dimensional crystal-mechanics based constitu-

tive model of Thamburaja and Anand (2001,2002), which has recently been reformu-

lated by Anand and Gurtin (2002) to account for thermal influences within a rigorous

thermodynamic framework.1

The overall inelastic deformation of a crystal is always inhomogeneous at length

scales associated with the fine-scale microstructures accompanying the austenite-

martensite phase transformations. Thus, for the continuum level of interest here,

the inelastic deformation should be defined as an average over a volume element that

must contain enough transformed regions to result in an acceptably smooth process.

The such smallest volume element above which the inelastic response may be consid-

ered smooth, is labelled a representative-volume element (RVE). In our constitutive

model we choose a single-crystal as a representative volume element. The model

does not explicitly account for the fine-scale microstructures, but only for the volume

fractions of various types of fine structure. Thus the spatially continuous fields that

'This model is not intended to describe a material initially in the martensitic state and inelastic
deformation caused by reorientation and de-twinning of the martensitic variants.
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define the theory are to be considered as averages meant to apply at length scales

which are large compared to those associated with the fine structure.

Using the standard notation of modern continuum mechanics,2 we recall that

the deformation gradient F maps referential segments dX to segments dx = FdX

in the deformed configuration. We base the theory on the following multiplicative

decomposition of the deformation gradient:3 F = FeFP. Here (i) FP(X) represents

the local deformation of referential segments dX to segments dl = FP(X)dX in

the relaxed lattice configuration due to the generation, growth and annihilation of

austenitic/martensitic fine structure in a microscopic neighborhood of X. (ii) FI(X)

represents the mapping of segments dl in the relaxed lattice configuration into seg-

ments dx = F (X)dl in the deformed configuration due the "elastic mechanisms" of

stretching and rotation of the lattice.

In the equilibrium theory of austenite-martensite phase transitions the strain

energy minimizers (in the sense of minimizing sequences) generally appear in the

form of fine structure, involving abrupt transitions between austenite and twinned

martensite in which the transitions are jumps in the deformation gradient of the

form So = bo 0 mo, with bo a vector whose magnitude represents the transition

strain, and mo a unit vector normal to the habit plane (the plane of the transition).

A result of the equilibrium theory is a catalog of such rank-one tensors for various

shape-memory alloys (cf. James and Hane (2000) and the references therein). Here

we take, as a basic ingredient of the theory, a system of N such transformation ten-

sors S' = b Om', i = 1,2, ... , N, where b are vectors whose magnitudes represent

the transformation strains, and mi are unit vectors representing the corresponding

2 Notation: V and Div denote the gradient and divergence with respect to the material point
X in the reference configuration; grad and div denote these operators with respect to the point
x = y(X, t) in the deformed configuration, where y(X, t) is the motion; a superposed dot denotes
the material time-derivative. We write sym A, skw A, respectively, for the symmetric, and skew
parts of a tensor A. Also, the inner product of tensors A and B is denoted by A . B, and the
magnitude of A by JAl = VA -A. Here repeated indices do not imply a summation over all the
possible values the indices can take. For summation the E sign is used.

3This decomposition is identical in form to the classical decomposition used to formulate dislo-
cation based finite single-crystal plasticity. In this work we use the superscript p for two reasons: (i)
to stress similarities between the present theory and single-crystal plasticity; and (ii) as shorthand
for "phase transformation".
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habit-plane normals; these constant vectors are not necessarily orthogonal. We de-

note by $'(X, t), 0 < ' < 1, the local volume fraction of martensite at X associated

with the ith system at time t. The presumption that the phase transformations take

place through nucleation and growth of plate-like volume elements is based on the

hypothesis that the evolution of FP is governed by the transformation rates d via the

relation FP = LPFP, LP = E § . For system i, transformation from austenite to

martensite, abbreviated a -+ m, occurs when d' > 0; a transformation from marten-

site to austenite, abbreviated m -+ a, occurs when d < 0. We write = for

the (local) total volume fraction of transformed regions, and assume, as is natural,

that 0 < (t) K 1.

The underlying constitutive equations relate the following basic variables :4

free energy density per unit reference volume,

F, det F > 0, deformation gradient,

9, 6 > 0, absolute temperature,

T, T = TT, Cauchy stress,

FP, transformation deformation gradient,

(b', mb), transformation systems,

0 < C < 1, martensite volume fraction for the ith system,

0 < 1, total martensite volume fraction,

Fe = FFP~ 1, det F' > 0, elastic deformation gradient,

Ce = FeTFe, elastic right Cauchy-Green tensor,

Ee = (1/2) (Ce - 1), elastic strain,

Te = (det F)Fe-TFe~T, elastic stress.

The constitutive equations are:

4Using the notation of modern continuum mechanics, we write F'- 1 = (Fe)-l, FP-T = (FP) T,

etc. throughout.
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1. Free energy: The free energy is taken in the separable form5

O(Ee )7) = Oe (Ee, O,) + 4 (6) +4,tr(O,), with (2.1)

,e((Ee, 0, ) = (1/2)Ee - C( )[Ee] - (0 - 90)A(() C( )[Ee], (2.2)

0'9(0) = c(O - Oo) - c In (O/ 6 o), (2.3)

,tr (6 ) = (AT/OT) (0 - OT) . (2.4)

Here C( ) is the elasticity tensor and A() is the thermal expansion tensor at

the reference temperature 6 0. The constant c is the specific heat per unit vol-

ume of the reference configuration. The parameter OT is the phase equilibrium

temperature, AT is the latent heat per unit reference volume of the a + m

transformation at temperature OT. 6

2. Stress:

The elastic stress is given by

T e Ee =C()[El - A( )(O - Oo)]. (2.5)

We define the resolved force on the ith system by

= b. (Ce Te)mi. (2.6)

Note that since the magnitude of b' represents a transformation strain, T' has

units of energy per unit reference volume, and it is for this reason we call it a

resolved force rather than a resolved stress. Further, the derivative

b = (AT/OT)(0 - OT), (2.7)

represents an energetic back force,7 and the driving force for phase transforma-

tion on the ith system is given by

fi = (i - b). (2.8)

'A term of the form (1/2)>gi' ,3 where the scalar constants g'J = g3' characterize ener-
getic interactions between the transformation systems, may be included in the free energy ptr, but
we shall neglect such a contribution in our application of the theory to Ti-Ni.

6Here we are guided by the one-dimensional development of Abeyaratne and Knowles (1993). An
obvious generalization of ?p' would be to replace it by Z'(r/ar) (0 - Oir) (%.

'We use this terminology by analogy to the "back stress" in the crystal plasticity literature.
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From the second law of thermodynamics, the dissipation accompanying the

phase transformation is given by

(2.9)Zfili > 0.

From the inequality (2.9), we obtain for the individual transformation systems

that

fi i > 0. (2.10)

3. Transformation conditions:

In the rate-independent theory developed here, transformation is assumed to

be possible if the driving force fi reaches a critical value. From the inequality

(2.10) the transformation conditions are

fi f, for > 0,

fi =-f, for <0.

(2.11)

(2.12)

Here f, > 0 is the constant transformation resistance for the ith system. In the

rate-independent limit the bounds8 on the driving force for phase transformation

are

-f < ft < fcz. (2.13)

4. Flow rule:

FP={

with martensitic volume fractions consistent with 0 < < 1 and 0 < < 1.

Moreover,

(i) if -fe < fi < fc,

(ii) if fi = fj, 0 <

then ' = 0;

i <1 and 0 < 1, then

) ; 0 and (fi - fi) < 0;

8 This is analogous to the yield function in crystal-plasticity.
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0<$ <1 and 0< < 1, then

<- 0 and (f±i + fj) ) 0;

(iv) if fi = fR

(v) if fi =f

and ( = 1, or if fi = fi

and =1, then d=0.

and ( = 0, then ( 0;

The consistency conditions (2.14) and (2.15) serve to determine the transfor-

mation rates (.

5. Entropy; energy balance; heat flux:

The entropy 17 is given by

17 - O - c ln (O/6o) + Ee - C( )[A( )] - (AT/T) . (2.16)

The balance of energy may be written as

9?) = -Divq + Zfi +r, (2.17)

where r is the heat supply per unit volume of the reference configuration, and

the referential heat flux q is taken to be governed by Fourier's law

q = -K( )VO, (2.18)

where K(s) is the thermal conductivity tensor at 00. Using (2.16) and (2.18),

the energy balance (2.17) becomes

c = Div {K( )V6} + (AT/OT) 0 + E fi'i - 9Ee - C( )[A( )] + r,

To complete the theory for a particular material the constitutive parame-

ter/functions that need be specified are

C( ), A( ),7 b', mi, OT, AT, f,, c , K((

Finally, the standard partial differential equation for the stress referred to the

deformed configuration is

div T + J-f = 0, (2.20)
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where div represents the divergence operator in the deformed configuration, J =

det F, and f is the body force per unit volume in the reference configuration (the

body force f is assumed to include inertial forces). The differential equation for the

temperature referred to the deformed configuration is

J-1 c = div { J-FK( )F Tgrad 0} + J- (AT/OT) 0 a + J' fi

- J'OE -C( )[A( )] + J'r. (2.21)

The numerical simulations are carried out using the finite-element computer pro-

gram ABAQUS/Explicit (1999,2001), for which we have written a user material sub-

routine to implement our constitutive model. Algorithmic details of the numerical

implementation are given in Appendix A.
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2.2 Evaluation of the constitutive model for a

polycrystalline Ti-Ni alloy : Rod-texture

Suitably thermo-mechanically processed and heat-treated Ti-Ni at 55.96 wt.% Ti

drawn rods of 12.70mm diameter, intended for superelastic applications, were ob-

tained from a commercial source. Experimental measurements of crystallographic

texture of the as-received Ti-Ni were carried out by X-ray irradiation using a Rigaku

RU 200 diffractometer. Pole figures were obtained by using the Schultz reflection

method with copper-K radiation. To process the experimental data, the PoPLa soft-

ware package (Kallend et al., 1989) was employed. Each measured pole figure was

corrected for background and defocusing, and also extrapolated for the outer 150.

The {111} , {100}, and {110} pole figures for the as-received Ti-Ni looking into the

rod-axis (X3) are shown in Figure 2-1. This figure also shows our numerical approx-

imation of this measured texture using 729 and 343 unweighted grain orientations.

The texture representation using 729 grain orientations is slightly better that that

using 343 grain orientations. In most of the calculations reported below we shall use

the 729 grain orientation representation of the initial texture. However, we note that

the computed stress-strain curves using the set of 343 grain orientations are very close

to those using the 729 grain orientations, and the smaller number of orientations may

be used for reasons of computational efficiency.

By using differential scanning calorimetric (DSC) techniques, we have determined

the transformation temperatures for our Ti-Ni bar-stock, Figure 2-2. They are:

Oms = 251.3 K, Omf = 213.0 K, Oas = 260.3 K, Oaf = 268.5 K. (2.22)

The volume fraction and temperature dependence of the anisotropic elastic con-

stants of Ti-Ni are not well-documented in the literature. Here, for simplicity, the

values of the elastic constants are taken to follow the rule of mixtures

C( , 0) = (1 - )Ca(o) + Cm (9).

The elastic constants for the cubic austenite phase in Ti-Ni at room temperature are

taken as (Brill et al., 1991) :
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C 1 =130 GPa, C"2 = 98 GPa, C44= 34 GPa.

We have been unable to find experimentally-measured values of the anisotropic elastic

moduli of single-crystal monoclinic martensite of Ti-Ni. Typically, the Young's Mod-

ulus of austenite is about two to three times that of martensite, while the Poisson's

ratios for the material in the two different phases are approximately equal to each

other. Guided by this information, we assume that anisotropic elastic constants of

the monoclinic martensite may be approximately treated as those of a cubic material,

and that the corresponding values of the stiffnesses, Cj, are one half as large as those

for the austenite:

Cm = 65 GPa, Cm = 49 GPa, C = 17 GPa.

We realize that this description for the composite elastic constants is rather simplified

and approximate. However, since the main purpose of this paper is to model the

inelastic response characteristics of shape-memory materials, we shall not further

pursue the matter of a more refined description of the elastic moduli of a two-phase

austenite-martensite mixture.

For cubic materials, the thermal expansion tensor is isotropic, A a = aal, with aa

denoting the coefficient of thermal expansion for the austenite phase. The thermal

expansion tensor for the martensite phase is also assumed to be isotropic i.e. Am =

am 1, with am denoting the coefficient of thermal expansion for the martensite phase.

Here, the composite thermal expansion tensor is taken to follow the rule of mix-

tures

A = al = (1 - )A a +Am,

with aa and am for Ti-Ni in the austenitic and martensitic conditions taken as (Boyd

and Lagoudas, 1996):

aa = 11 x 10- 6/K, a m = 6.6 x 10- 6/K.

The crystallographic theory of martensitic transformation (CTM) shows that

phase transformation in Ti-Ni can occur on 192 possible transformation systems
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Table 1. Transformation Systems
i m m m2 bZ bZ b,3
1 -0.8888 -0.4045 0.2153 0.0568 -0.0638 0.0991
2 -0.8888 0.4045 0.2153 0.0568 0.0638 0.0991
3 -0.8888 0.2153 -0.4045 0.0568 0.0991 -0.0638
4 -0.8888 0.2153 0.4045 0.0568 0.0991 0.0638
5 -0.8888 -0.2153 0.4045 0.0568 -0.0991 0.0638
6 -0.8888 -0.2153 -0.4045 0.0568 -0.0991 -0.0638
7 -0.8888 0.4045 -0.2153 0.0568 0.0638 -0.0991
8 -0.8888 -0.4045 -0.2153 0.0568 -0.0638 -0.0991
9 0.4045 -0.8888 0.2153 0.0638 0.0568 0.0991
10 -0.4045 -0.8888 0.2153 -0.0638 0.0568 0.0991
11 0.2153 -0.8888 -0.4045 0.0991 0.0568 -0.0638
12 0.2153 -0.8888 0.4045 0.0991 0.0568 0.0638
13 -0.2153 -0.8888 0.4045 -0.0991 0.0568 0.0638
14 -0.2153 -0.8888 -0.4045 -0.0991 0.0568 -0.0638
15 0.4045 -0.8888 -0.2153 0.0638 0.0568 -0.0991
16 -0.4045 -0.8888 -0.2153 -0.0638 0.0568 -0.0991
17 0.2153 0.4045 -0.8888 0.0991 0.0638 0.0568
18 0.2153 -0.4045 -0.8888 0.0991 -0.0638 0.0568
19 0.4045 0.2153 -0.8888 0.0638 0.0991 0.0568
20 -0.4045 0.2153 -0.8888 -0.0638 0.0991 0.0568
21 0.4045 -0.2153 -0.8888 0.0638 -0.0991 0.0568
22 -0.4045 -0.2153 -0.8888 -0.0638 -0.0991 0.0568
23 -0.2153 0.4045 -0.8888 -0.0991 0.0638 0.0568
24 -0.2153 -0.4045 -0.8888 -0.0991 -0.0638 0.0568

(Hane and Shield, 1999). The CTM theory is discussed and summarized in Appendix

B and C.

However, it is not clear whether all the 192 possible systems are actually operative

during thermo-mechanical loading. Here, we shall only consider the 24 transformation

systems which are unambiguously observed in experiments and used by a variety

of recent researchers (e.g. Matsumoto et al., 1987; Lu and Weng, 1998; Gall and

Sehitoglu, 1999). The components of the 24 transformation systems (mi, b') with

respect to an orthonormal basis associated with the parent cubic austenite crystal

lattice are given in Table 1.

Recall that the driving force on each transformation system is taken to be given
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by

fi = r- (AT/OT) (0 - OT).

Using the measured phase transformation temperatures (Figure 2-2), the value

for the phase equilibrium temperature, OT, is given by

OT = (1/2) {Oms + Oas} 256 K.

Further we assume that the the critical values of the driving force f, for the 24

systems are all equal and constant:

f= constant.

In principle, the values of the latent heat for phase transformation, AT, and the

critical value of the driving force, f,, should be determined from experiments per-

formed on single crystals of Ti-Ni. However, such single crystals are difficult to grow,

and we did not have access to single crystals of this material. Instead, the values of AT

and f, are estimated from experiments on polycrystalline Ti-Ni as follows. Consider

an idealized schematic stress-strain curve for a superelastic tensile test on a polycrys-

talline shape-memory material, Figure 2-3. Let o-am denote the value of the stress

at which martensite nucleates from austenite during the forward transformation, and

let oma denote the stress level at which austenite nucleates from martensite during

the reverse transformation. Following the analysis performed by Knowles (1999), the

value of the mean stress, defined as

1
0-o = (0-am + Oma) ,

is given by

O-o = (AP0'Y/0T ET) (0 - OT),

where AP2'Y is the one-dimensional polycrystalline counterpart of the parameter AT and

ET is the macroscopic transformation strain. Thus, if one knows 0 T from independent

DSC measurements, and one estimates 0-am, 0ma and ET from a superelastic tensile

test at a temperature 0, then the macroscopic value of the latent heat for phase

transformation, Apol, for a polycrystalline material is easily estimated. As shown in
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Knowles (1999), the critical value for the macroscopic driving force, fP1OY , is then

given by

fI'ly = CT (am - 0),

where ET is the value of the transformation strain in tension for a polycrystalline

material, see Figure 2-3.

Estimates of the values of the corresponding quantities (AT, fc) at the single crystal

level are then obtained from

AT ~ A' 1", and C~ frO_ Y

Figure 1-3 shows the stress-strain curve from a superelastic tension test performed

on our initially-textured Ti-Ni at 298 K. The geometry of the tension-compression

specimens is shown in Figure 2-4. The experiment was conducted at a very low

constant true strain rate in order to ensure isothermal testing conditions. An exten-

someter was used to obtain the macroscopic strain in the gage section of the specimen.

The experimental stress strain curve shows some residual deformation after unload-

ing. This is invariably observed in most experiments on commercial polycrystalline

SMAs; seldom is there complete recovery. From this figure,

ram ~ 470 MPa, ama ~ 170 MPa, ET ~ 0.054.

Using, the value O = 256K, estimated from our DSC experiments, we obtain

Agl =100 MJ/m 3, fPOY = 8.2 MJ/m 3

for the polycrystalline material. Hence, the estimates of the values of the correspond-

ing quantities at the single crystal level are

AT ~ 100 MJ/m 3 , and f, ~~ 8.2 MJ/m 3 .

In our finite-element model of a polycrystalline aggregate, each finite-element

represents one crystal, and a set of crystal orientations which approximate the initial

crystallographic texture of the shape-memory alloy are assigned to the elements.

The macroscopic stress-strain responses are calculated as volume averages over the
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entire aggregate. Calculations for simple tension on an aggregate of 729 unweighted

different grain orientations representing a polycrystalline material with the initial

crystallographic texture, Figure 2-1, were carried out using these estimates for the

material parameters. Figure 2-5a shows the initial finite-element mesh. The finite-

element mesh after 6% deformation in tension is shown in Figure 2-5b, together

with the contours of the martensite volume fraction. The quality of the curve-fit is

shown in Figure 2-5c. The numerically-computed stress-strain response is close to the

experimentally-observed one. Given the number of approximative assumptions used

to arrive at this curve-fit, the result is very encouraging.

Using these values of the material parameters and the numerical representation

of the measured initial texture, Figure 2-1, we have also carried out numerical sim-

ulations of simple compression and thin-walled tubular torsion, and compared the

calculated stress-strain curves against corresponding physical experiments at 298 K.

The initial finite-element mesh for the simple compression simulation is shown in

Figure 2-6a. The finite-element mesh after 5 % compression is shown in Figure 2-6b,

along with the contours of the martensite volume fraction. The prediction of the

stress-strain curve from the constitutive model is shown in Figure 2-6c, where it is

compared against corresponding experimental measurements. The experimentally-

measured superelastic stress-strain response is well-approximated by the predictions

from the constitutive model.

To demonstrate the numerically-predicted tension-compression asymmetry, we

plot the numerical stress-strain curves in tension and compression in Figure 2-7a.

On comparing the curves in this figure with the corresponding experimental curves,

Figure 1-3, we conclude that the constitutive model captures the following major

features of the observed tension-compression asymmetry rather well:

" The stress level required to nucleate the martensitic phase from the parent

austenitic phase is higher in compression than in tension.

" The transformation strain measured in compression is smaller than that in

tension.
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* The hysteresis loop generated in compression is wider (measured along the stress

axis) than the hysteresis loop generated in tension.

Figure 2-1 shows that the Ti-Ni bar has a strong {111} texture. Using our con-

stitutive model and the estimated single crystal material parameters, we have cal-

culated the stress-strain response for a single crystal subjected to tension and com-

pression along its [111]-direction. The calculated stress-strain response is plotted in

Figure 2-7b. Comparison of Figure 2-7a with Figure 2-7b clearly shows that the

tension-compression asymmetry in the polycrystalline specimen has its origins in the

crystallographic texture of the as-received Ti-Ni bar.

To confirm this conclusion we have repeated the tension and compression simula-

tions for a polycrystalline specimen using a set of 729 crystal orientations representing

a "random" texture, instead of the actual crystallographic texture in the Ti-Ni bar

shown in Figure 2-1. The {111} pole figure corresponding to this random initial tex-

ture is shown in Figure 2-8a. All other material parameters used in these simulations

were the same as those used in the previous calculations. The predicted tension and

compression superelastic stress-strain curves using the random texture are shown in

Figure 2-8b. This result shows that in comparison to the result from the calculation

using the actual initial texture, Figure 2-7a, there is not much asymmetry between

the compression and tension curves. Also, the small asymmetry in the stress levels

between tension and compression observed in the calculation using the random ini-

tial texture is in the reverse order. The experiments, Figure 1-3, and the numerical

simulations using the actual initial texture for the rod, Figure 2-7a, show that the

compression curves are higher than those for tension, whereas the calculation using

the random texture shows the reverse trend. Thus, we conclude that crystallographic

texture is the prime cause for the observed tension-compression asymmetry in shape-

memory alloys.

Finally, the specimen geometry for the thin-walled tubular torsion experiment is

shown in Figure 2-9. The initial mesh used in the simulation for tubular torsion is

shown in Figure 2-10a. The deformed mesh after a shear strain of 9% is shown in

Figure 2-10b, together with the contours for the martensite volume fraction. The
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predicted nominal shear stress-strain curve is shown in Figure 2-10c, where it is

compared against the corresponding experimentally-measured curve from a tubular

torsion experiment performed on a thin-walled specimen under a very low shearing

strain rate at 298 K. The prediction is in good accord with the experiment.

We have also evaluated the predictive capability of our model for (i) a proportional-

loading, tension-torsion experiment, and (ii) a path-change, tension-torsion experi-

ment. These experiments were also performed under isothermal testing conditions at

room temperature (0 = 298 K).

Proportional-loading tension-torsion experiment:

The strain-history imposed on a thin-walled tubular specimen during the proportional-

loading tension-torsion experiment is shown in Figure 2-11a. The axial strain E is

increased at a constant rate from 0% to 3% in 500 seconds, while the shear strain -y is

increased at a constant rate from 0% to 4.5% in the same time period. These strains

are then linearly reduced to zero, in another 500 seconds.

The initial finite-element mesh using an aggregate of 768 unweighted crystal ori-

entations for the combined tension-torsion simulation is shown in Figure 2-11b, and

the finite-element mesh after 3% strain in tension and 4.5% strain in shear is shown

in Figure 2-11c, along with the contours of the martensite volume fraction.

Predictions of the axial-stress versus axial-strain, and shear-stress versus shear-

strain from the constitutive model are compared against corresponding experimental

measurements in Figures 2-11d and 2-11e, respectively. The measured superelastic

stress-strain response in the tension-torsion experiment is well-approximated by the

predictions from the constitutive model.

Path-change tension-torsion experiment:

The strain-history imposed on a thin-walled tubular specimen during the path-

change tension-torsion experiment is shown in Figure 2-12a. First, the axial strain is

increased at a constant rate from 0% to 3% in 150 seconds, while the shear strain is

maintained at 0%. After this, the shear strain is linearly increased from 0% to 7%

in 350 seconds while the tensile strain is maintained at 3%. Next, the shear strain

43



is linearly reduced from 7% to 0% in 350 seconds, while still maintaining the tensile

strain at 3%. Finally, the tensile strain is linearly reduced from 3% to 0% in another

150 seconds, while maintaining the shear strain at 0%.

The initial finite-element mesh using an aggregate of 768 unweighted crystal orien-

tations for the path-change tension-torsion simulation is shown in Figure 2-12b, and

the finite-element mesh after 3% strain in tension and 7% strain in shear is shown in

Figure 2-12c, along with the contours of the martensite volume fraction.

Predictions of the axial-stress versus axial-strain, and shear-stress versus shear-

strain from the constitutive model are compared against corresponding experimental

measurements in Figure 2-12d and 2-12e, respectively. Again, the measured supere-

lastic stress-strain response in the tension-torsion experiment is well-approximated

by the predictions from the constitutive model.

Of particular note is the result that when the axial strain reaches 3% and is

maintained at this level, the axial stress drops when the specimen is subsequently

sheared. The axial stress rises again when the direction of shearing is reversed. As

shown by the arrows in Figure 2-12d, this response is remarkably well-captured by

the simulation.

Further, note from Figure 2-12e, that the shear stress has a negative value after

the shear strain has completed its cycle back to zero. This shear stress decreases back

to zero only when the axial strain is finally reduced back to zero. This response is

also well-predicted by the numerical simulation.
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2.2.1 Taylor model

For polycrystalline materials, a widely-used averaging scheme is based on the assump-

tion that the local deformation in each crystal is homogeneous and identical to the

macroscopic deformation gradient at the continuum material point (Taylor, 1938).

The compatibility between crystals is automatically satisfied in this approximation;

however, equilibrium holds only inside a crystal, but is violated across crystal bound-

aries. For such a model, with T (k) denoting the constant Cauchy stress in each crystal,

the volume-averaged Cauchy stress is given by

N

k=1

where v(k) is the volume fraction of each crystal in a representative volume element.

When all crystals are assumed to be of equal volume, the stress T is just the number

average over all the crystals:
N

k=1

Taylor model simulations in simple tension, simple compression, simple shear and

path-change tension-torsion were performed using a single ABAQUS-C3D8R element,

and using 729 unweighted grain orientations to represent the initial rod-texture, Fig-

ure 2-1. The material parameters used in the Taylor model simulations were the same

as those calibrated for the full finite-element simulations of the polycrystal discussed

in the previous section. Figures 2-13a, 2-13b and 2-13c compares the stress-strain

predictions from the Taylor model against the actual experiments, as well as the

full finite-element calculations. Figure 2-14 compares the stress-strain predictions

from the Taylor model against the actual path-change tension-torsion data, as well

as predictions from the full finite-element calculations. The Taylor model compares

very well to the full finite-element calculations, and therefore it provides a reasonably

accurate and computationally-inexpensive method for determining the response of

textured Ti-Ni in a multi-axial setting and moderately complex loading modes.
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2.2.2 Effect of temperature on the deformation of polycrys-

talline Ti-Ni

In this section we examine the applicablity of our model to another Ti-Ni alloy for

which Shaw and Kyriakides (1995) have conducted careful isothermal, low strain rate

experiments at a variety of different temperatures in the range 255.6 K < 0 < 373.2 K.

Unfortunately, these authors do not report on the initial crystallographic texture of

their material. However, since they conducted their experiments on drawn Ti-Ni wires

with a processing history similar to that of our own material, we assume that their

material has a texture which may be approximated' by the numerical representations

of the texture of our drawn rods, Figure 2-1.

We estimate the constitutive parameters for their material from their DSC results,

and their stress-strain results from a superelastic tension test at representative tem-

perature. The DSC measurements of Shaw and Kyriakides (1995) (their, Figure 1)

yield the following values for the transformation temperatures:

6ms = 272.2 K, 9 mf = 203.2 K, 0a, = 302.7 K, Oaf = 335.2 K. (2.25)

The material parameters for their Ti-Ni wire were calibrated by fitting the constitutive

model to the superelastic tension experiment conducted at 343.2 K using the method-

ology outlined in Section 2.2. The quality of the curve-fit is shown in Figure 2-15b.

The numerical calculations shown in this figure correspond to using the full finite ele-

ment model with 729 elements representing 729 grain orientations, as well as a corre-

sponding single element Taylor model calculation. The full finite element model of the

polycrystal was used to estimate the material parameters; the numerically-computed

stress-strain response from this calculation is close to the experimentally-observed

one.

The thermo-elastic constants used in our calculations are

Elastic moduli for austenite: Ca = 130 GPa, Ca = 98 GPa, CA4 = 21 GPa;

Elastic moduli for martensite: Cm = 65 GPa, Cm = 49 GPa, C4 = 10.5 GPa;

9Wire texture is expected to show a sharper {111} component than the rod texture.
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Coefficients of thermal expansion: aa = 11 x 10- 6 /K, am = 6.6 x 10 6 /K.

The single crystal material parameters used to obtain this fit for the polycrystalline

Ti-Ni wire of Shaw and Kyriakides are :

Phase equilibrium temperature: OT = 287 K;

Latent heat: AT = 112 MJ/m3 ;

Critical transformation resistance: f = 7.7 MJ/m 3 .

Figure 2-15a and 2-15c show the response predicted from the constitutive model com-

pared against the tension experiments at two different temperatures: 333.2 K, and 353.2K.

The experimentally measured temperature variation of the superelastic stress-strain

response is well-predicted by the constitutive model.

Shaw and Kyriakides (1995) also report on displacement controlled experiments

at temperatures in the range 0, < 0 < Oaf. In these experiments the martensite that

forms during forward deformation does not completely transform back to austenite

upon reversing the deformation and decreasing the stress to zero. Although Shaw

and Kyriakides (1995) did not subsequently increase the temperature at zero stress

to show the austenite-martensite-austenite shape-memory effect, we have numerically

simulated such an experiment. In our simulation we employ the Taylor model using

a single ABAQUS-C3D8R element with 343 grain orientations to represent the initial

texture. The calculation was performed by first imposing an isothermal, 0 = 303.2 K,

strain controlled tension to 5% tensile strain, and then reversing the deformation to

reach a state of zero stress. As shown in Figure 2-16, the numerical prediction from

the model for this part of the simulation is close to the experimental measurements

of Shaw and Kyriakides (1995). The temperature in the simulation was then linearly

ramped up from 303.2 K to 305.8 K by imposing the temperature ramp on the nodes

of the finite element. Figure 1-15 shows that the model is able to capture the shape-

memory effect by transformation; it predicts full recovery to the austenite phase after

the temperature is increased to 305.8 K.
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2.3 Evaluation of the constitutive model for a

polycrystalline Ti-Ni alloy : Sheet-texture

Suitably processed Ti-Ni sheet, 0.53 mm thick, intended for superelastic response was

obtained from a commercial source. Experimental pole figure measurements of the

initially-textured sheet were obtained using standard X-ray diffraction techniques.

The {111}, {110} and {100} experimental pole figures are shown in Figure 2-17a. A

numerical representation of the experimental pole figures using 48 weighted crystal

orientations was obtained by using the computer program PoPLa (Kallend et al.,

1989), Figure 2-17b. 10

The geometry of the tensile specimen used in the superelastic experiments is shown

in Figure 2-18a. Tensile specimens were cut for testing along three different direc-

tions: 00, 450 and 90' to the rolling direction. The finite element mesh comprising of

446 three-dimensional ABAQUS-C3D8R elements used in the numerical calculations

discussed below is shown in Figure 2-18b. Although not visible, the mesh has a very

slight taper such that the gage width at one end of the gage section is slightly nar-

rower than that of the other end. This geometric "imperfection" in the finite-element

mesh is introduced to provide an initiation site for phase transformation. We have

previously shown that use of the Taylor-model (1938) for simulating the response of

polycrystalline Ti-Ni rods produces results which are in reasonably good agreement

with experiments, as well as full finite element calculations which do not make this

assumption. Accordingly, for computational efficiency, all numerical simulations for

polycrystalline Ti-Ni sheet reported in this section have been performed using the

Taylor-model (1938).

The thermo-elastic constants used in our calculations are

Elastic moduli for austenite: Ca = 130 GPa, C"2 98 GPa, CA4 = 21 GPa;

Elastic moduli for martensite: C' = 65 GPa, C'") = 49 GPa, C44= 10.5 GPa;

1OThis small number of weighted grain orientations, which produces an acceptable representation
of the major components of the texture, is used for numerical efficiency. Use of a larger number of ori-
entations does not significantly improve the texture representation, but increases the computational
time.
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Coefficients of thermal expansion: aa = 11 x 10- 6 /K, am = 6.6 x 10- 6/K.

To obtain estimates of the phase transformation parameters a DSC measurement

needs to be conducted to obtain the phase equilibrium temperature, OT. Since there

was difficulty in obtaining pristine DSC experimental results for our polycrystalline

sheet Ti-Ni other methods of determining the material must be explored. Therefore an

estimate for the phase transformation parameters { T, AT, fc} for Ti-Ni single crystals

is obtained by fitting the constitutive model to a set of superelastic experiments

conducted on our polycrystalline sheet at different temperatures.

The variation of the superelastic forward nucleation resolved force (Trm) and re-

verse nucleation resolved force (Tia) on an active transformation system i with tem-

perature can be plotted in a graph schematically shown in Figure 2-19. The forward

nucleation resolved force is the first instance where austenite to martensite trans-

formation occurs. The reverse nucleation resolved force is the first instance where

martensite to austenite transformation occurs. From this, the intercept of the line

Tam versus 0 at zero stress defines the martensite start temperature is, while the

intercept of the line ~ri versus 0 at zero stress defines the austenite start temperature

0a,; the mean value
1

T= -(as + Oms) (2.26)
2

determines the phase equilibrium temperature.

From (2.8) and (2.11) the forward transformation conditions give us

T'm(0) - (AT/OT) (0 - OT) =f, (2.27)

and the reverse transformation conditions (2.12) yield

Tma(0) - (AT/OT) (0 - OT) = fc. (2.28)

By adding (2.27) to (2.28), the mean values of these nucleation resolved forces

vary linearly with temperature i.e.

1
--(Tm (0) + Tra(0)) = (AT/0T) (0 - OT).
2
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The slope of the line 2(Taim (0) + Tma(0)) versus 0 will give (AT/OT), which in turn

gives the latent heat of phase transformation, AT. The transformation resistance fc
is then given by subtracting (2.28) from (2.27)

fc = (1/2) (Tam(0) - rTa()).

To evaluate these phase transformations parameters superelastic tension experi-

ments were conducted on polycrystalline sheet specimens with the tension axis aligned

along the sheet rolling direction - the 0' orientation. The experiments were conducted

at three different temperatures, 289 K, 300 K and 306 K, under displacement control at

a very low nominal strain rate of 3 x 10-' /sec, to ensure (near) isothermal conditions.

The nominal stress-strain curves from these experiments are shown in Figures 2-20a,

2-20b and 2-20c, respectively". The corresponding numerical simulations at the three

different temperatures were carried out on the finite-element mesh shown in Figure 2-

18b using 446 ABAQUS-C3D8R elements. For the tension simulation, one end of the

finite-element mesh is fixed in all its displacement degrees of freedom, while the other

end is subjected to a displacement history corresponding to a nominal axial strain

rate of ±3 x 10-5 /s.

Following the procedure outlined above the value of the fitted phase transforma-

tion parameters are :

Phase equilibrium temperature: 6 = 271 K;

Latent heat: AT = 110 Mj/m3 ;

Critical transformation resistance: f, = 4.7 MJ/m.

The resulting nominal superelastic stress-strain curves using the material param-

eters listed above are also shown in Figures 2-20a, 2-20b and 2-20c. The quality of

the fit is very encouraging.

As mentioned previously, phase transformation during superelasticity typically

occurs by the nucleation and propagation of phase transformation fronts (Shaw and

"The permanent set observed in the experiment at 306 K is probably due to some plastic defor-
mation at the higher stresses in this experiment.
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Kyriakides, 1997). Figure 2-21 shows such a phenomenon in our numerical simula-

tions. This figure shows the numerical stress-strain curve from the simulation for

300 K, along with the contours of the martensite volume fraction keyed to instances

(a) through (j) at different points along the superelastic stress-strain curve. The

contours for (a) through (e) show that martensite nucleates at the right end of the

specimen where the gage width is the narrowest, and the transformation front propa-

gates to the left until the gage section is fully transformed to martensite by stage (e).

The martensite volume fraction contours for (f) through (j) show that upon reversal

of imposed deformation the phase front recedes until the gage section is once again

fully austenitic by stage (j).

The results of experiments and corresponding finite-element predictions for supere-

lastic experiments conducted at 300 K on sheet tensile specimens with axes oriented

along 450 and 900 to the rolling direction1 2 are shown in Figure 2-22a and 2-22b, re-

spectively. The small amount of anisotropy in the superelastic stress-strain response

in these differently oriented specimens is well-captured by the predictions from the

constitutive model.

An important manifestation of the superelastic response of a shape-memory ma-

terial is the strain-versus-temperature response at a fixed stress level. By cycling

the temperature over a narrow range at a fixed stress, one can obtain a recoverable

strain cycle. Figures 2-23a and b show experimental strain-temperature curves from

00-oriented specimens which were first subjected to fixed axial stress levels of 150 MPa

and 250 MPa, and then subjected to a temperature history where the temperature is

decreased at a constant rate of 0.016 K/s, and then increased back at the same rate.

With respect to Figure 2-23a, the initial elastic strain of ~ 0.005 is due to the axial

stress of 150 MPa. The material is initially in the austenitic state. As the temperature

is decreased from 315 K, the strain first decreases slightly due to thermal contraction,

and then at ~~ 276K the austenite-to martensite-transformation occurs and there is a

1
2 We have also investigated the behavior of Ti-Ni sheets which were thermo-mechanically processed

differently from the sheets studied in this section. In Appendix H we show that our constitutive
model is able to predict the anisotropy exhibited in the superelastic tension experiments on sheet
Ti-Ni conducted by Shan and Sung (2001) to good accord.
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sudden burst of strain of the order 4%. Upon heating, there is at first a slight increase

in the strain due to thermal expansion, and then at ~ 302K the martensite transforms

back to austenite with a strain recovery of the order 4%. The temperatures at which

the transformations occur can be controlled by the initial stress bias. As shown in

Figure 2-23b, an increase in the initial stress increases the austenite-to-martensite

as well as the martensite-to-austenite transformation temperatures. Figure 2-23 also

shows that the corresponding predictions from the theory are in good agreement with

the experiments.

We next consider the coupled thermo-mechanical superelastic response of the

initially-textured Ti-Ni sheet. In order to examine the effects of heat generation

and conduction, we have performed superelastic tension experiments at three differ-

ent nominal strain rates on 0W-oriented specimens at an initial temperature of 300 K.

In addition to the test at the "low" nominal strain rate of 3 x 10-5/sec reported previ-

ously, Figure 2-20b, where the response was expected to be (close to) isothermal, we

have conducted two additional experiments at slightly "higher" rates of 8.4 x 10 4 /sec

and 2 x 10-3/sec, where we expect to see some effects of the changes in temperature.

The superelastic stress-strain curves for all three strain rates are shown in Figure 2-24.

Note that as the strain rate increases, the stress-strain curves at the two higher strain

rates show a "hardening response". This apparent hardening due to thermal effects

is qualitatively similar to that reported previously by Entemeyer et al. (2000), who

have argued that the major contribution to the apparent hardening is due to tem-

perature changes associated with the exothermic a -- m, and endothermic m -+ a

transformations.

Recall that the energy balance (2.21) requires computation of the term

div {J-1FK( )FTgrad 0}.

The finite-element program ABAQUS/Explicit (currently) limits user access to mod-

ify the computer code, and allows input of only a single scalar value for the thermal

conductivity. We have accordingly made several approximations in our calculations.

For the cubic austenite the thermal conductivity is isotropic, K' = 01. For the
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monoclinic martensite the anisotropic thermal conductivities are not known, and as

with the elastic constants, these are also approximated as that for cubic materials,

K m 1 . We shall use a constant value of K = (K" ± m)/ 2 in our numerical calcu-

lations. Further, since the superelastic strains are small, we neglect the contributions

from the J and FFT terms, and make the approximation div {J-1FK( )FTgrad 0}

r div grad 0. We also neglect the terms J-O Ee - C( )[A( )] + J-1 r in (2.21). Under

these approximative assumptions the equation governing the change in temperature

becomes

c Kdiv grad 0 + Ai0 + fl. (2.29)
OT

Based on values published in the literature, we use the following values of

c = 2.1 MJ/m3 K, s = 13W/m K

for Ti-Ni in our calculations. The calculations were carried out for a Ti-Ni sheet spec-

imen modelled using the mesh shown in Figure 2-18b, this time using 446 C3D8RT

ABAQUS elements. Regarding the thermal boundary conditions, the whole mesh is

initially at 300K. The nodes at the grip ends are kept at 300K throughout the calcu-

lation to simulate massive hard grips which act as constant temperature baths. The

heat flux from the remaining faces of the tension strip due to convection in air is taken

to be governed by boundary conditions on the heat flux h in the deformed configu-

ration, of the form h = h(6 - 0O)n, with a film coefficient h and a sink temperature

0. In our calculations we take the film coefficient to have a value h = 12 W/m 2 K,

and a sink temperature of 300K. Figure 2-24 also shows the resulting superelastic

stress-strain curves for all three strain rates. The hysteresis loop corresponding to

the lowest strain rate is very similar to that obtained from the isothermal calcu-

lation, Figure 2-20b, while the stress-strain curves calculated for the higher strain

rates show the experimentally-measured hardening response. Recall that we have

set f, -= f, - --constant." Thus, the hardening response is entirely due to thermal

effects associated with the phase transformations. Figure 2-25 shows evolution of the

13The interaction terms g3. have also been set to zero in our calculations.
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contours of the martensite volume fraction at representative instances during the for-

ward and reverse transformations for the test at the highest strain rate. Note that

because of the boundary conditions, both the forward and reverse transformations

start from the grip-ends and propagate as "fronts" towards the center of the spec-

imen. Figure 2-26 shows contours of the temperature at representative instances

during the forward and reverse transformations. During forward transformation the

temperature increases by as much as 22K from the ambient temperature of 300K due

to the exothermic austenite-to-martensite transformation, while it decreases by as

much as 22K from the ambient temperature during the reverse endothermic trans-

formation from martensite-to-austenite. The nucleation and propagation of phase

transformation fronts and the associated temperature changes in our calculations,

are qualitatively similar to the results reported by Shaw and Kyriakides (1997) for

their polycrystalline sheet tensile specimens.

The effects of heat conduction into and out off the gage section were further studied

by performing a superelastic tension-hold experiment. A representative strain-time

profile for such an experiment is as follows: the specimen is extended at a strain rate

of 1.25 x 10-3/sec with an intermediate hold of 10 sec, and then after the desired total

strain level the straining direction is reversed at a rate of -1.25 x 10-3 /sec, again with

an intermediate hold of 10 sec, Figure 2-27a. The experimental nominal stress-strain

curve and the corresponding finite-element prediction of this experiment are shown in

Figure 2-27b. The finite-element simulation nicely reproduces the stress-dip observed

in the experiment during the forward transformation, and the stress-increase during

the reverse transformation. The major cause for the stress-dip and stress-increase is

the heat conduction out of and into the specimen, respectively, during the forward

and reverse transformations.
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Figure 2-1: (a) Experimentally-measured texture in the as-received Ti-Ni rod, (b)
its numerical representation using 729 unweighted discrete crystal orientations, and
(c) its numerical representation using 343 unweighted discrete crystal orientations.
Pole-figure data were obtained using PoPLa.
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Figure 2-4: Specimen geometry for tension and compression experiments.
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Figure 2-5: (a) Undeformed mesh of 729 ABAQUS C3D8R elements. (b) Deformed
mesh at a tensile strain of 6%. Contours of martensite volume fraction are shown.
(c) Superelastic stress-strain curve in tension. The experimental data from this test
was used to estimate the constitutive parameters. The curve fit using the full finite
element model of the polycrystal is also shown.
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Figure 2-6: (a) Undeformed mesh of 729 ABAQUS C3D8R elements. (b) Deformed
mesh at a compressive strain of 5%. Contours of martensite volume fraction are
shown. (c) Superelastic stress-strain curve in compression. The absolute values of
stress and strain are plotted. The prediction from the full finite-element model for
the polycrystal is also shown.
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Figure 2-8: (a) {111} pole figure corresponding to a random initial texture. (b)

Comparison of the predicted stress-strain response in tension and compression using

a random initial texture.
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Figure 2-10: (a) Undeformed mesh of 720 ABAQUS C3D8R elements. (b) Deformed
mesh at a shear strain of 9%. Contours of martensite volume fraction are shown. (c)

Superelastic stress-strain curve in torsion. The prediction from the full finite-element
model for the polycrystal is also shown.

64

(a)

o EXPERIMENT
- FULL FEM

0l)

(0
0

w)
cc
F-
X0

W

0' Q01 0.02 0.03 0.04 0.05 0.06
SHEAR STRAIN

(c)



- Axial strain
Shear strain

., -

.'-

\-

20 300 400 500 600 700 800 900 1000
TIME [s]

(a)

( b)
ROn

0 0.005 0.01 0.015 0.02 0.025 0.03
STRAIN

(d)

(c)
350

300
c

250

U,

200
50)

w 150

100

50

0.035 0.04 o 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
SHEAR STRAIN

(e)

Figure 2-11: (a) Loading program for combined tension-torsion experiment. (b) Un-
deformed mesh of 768 ABAQUS C3D8R elements. (c) Deformed mesh at a tensile
strain of 3% and a shear strain of 4.5%. Contours of martensite volume fraction are
shown. (d) Superelastic stress-strain curve in tension. (e) Superelastic stress-strain
curve in shear. The prediction from the full finite element model for the polycrystal
is also shown.
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Figure 2-12: (a) Loading program for the path change tension-torsion experiment. (b)
Undeformed mesh of 768 ABAQUS C3D8R elements. (c) Deformed mesh at a tensile

strain of 3% and a shear strain of 7%. Contours of martensite volume fraction are

shown. (d) Superelastic stress-strain curve in tension. (e) Superelastic stress-strain
curve in shear. The prediction from the full finite element model for the polycrystal

is also shown.
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Figure 2-14: Response of the Taylor Model compared against the path change tension-
torsion experiment and full finite element calculation in (a) tension and (b) shear.
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Figure 2-15: Superelastic stress-strain curves in tension (Shaw and Kyriakides, 1995)
at three temperatures (a) 6 = 333.2 K, (b) 0 = 343.2 K, and (c) 0 = 353.2 K.
Full finite-element and Taylor model prediction from the constitutive model are also
shown. The material parameters for the Ti-Ni of Shaw and Kyriakides is obtained
from the data at 343.2 K.
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Undeformed finite-element mesh of the tensile specimen using 446 ABAQUS three-
dimensional elements. The gage width of the specimen is linearly tapered from
3.85 mm to 3.65 mm as shown in (a).
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Figure 2-20: Nominal superelastic stress-strain curves from tension tests on 0'-
oriented specimens. The tests were conducted under isothermal conditions at (a)
289 K, (b) 300 K, and (c) 306 K. The experimental data from these tests were used to
estimate the phase transformation parameters. The curve fit from the finite-element
simulations is also shown.
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Figure 2-21: A superelastic finite-element simulation of an experiment conducted
under isothermal conditions at 300 K. Contour plots of the martensite volume frac-
tion are also shown. The set of contours on the left shows the transformation from
austenite-to-martensite during forward transformation, while those on the right show
the transformation from martensite-to-austenite during reverse transformation. Note

that because of the slight taper in the gage width, the austenite-to-martensite trans-
formation nucleates at the right grip-end and propagates toward the opposing grip-
end.
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Figure 2-22: Experimental superelastic stress-strain curves in tension at 300 K: (a)
450 orientation; (b) 90 orientation. The corresponding predictions from the finite-
elerment simulations are also shown.
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Figure 2-23: Strain-temperature cycling experiments conducted on 0-oriented speci-
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finite-element simulations are also shown.
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Figure 2-24: Superelastic stress-strain curves in tension along the rolling direction at
nominal strain rates of 2 x 10-3 /sec, 8.4 x 10-4 /sec, and 3 x 10' /sec ("isothermal
condition"). The predictions from the theory are also shown.
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Figure 2-25: A superelastic finite-element simulation of an experiment conducted at
a nominal strain rate of 2 x 10-3 /sec. The set of the martensite volume fraction con-
tours on the left show the transformation from austenite-to-martensite during forward
transformation, while those on the right show the transformation from martensite-to-
austenite during reverse transformation. Note that because of the boundary condi-
tions, both the forward and reverse transformations nucleate from the grip-ends and
propagate towards the center of the specimen.
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Figure 2-26: A superelastic finite-element simulation of an experiment conducted

at a nominal strain rate of 2 x 10-3 /sec. The set of contours on the left shows the

temperature increase during transformation from austenite-to-martensite, while those

on the right show the temperature decrease during transformation from martensite-

to-austenite. During forward transformation the temperature increases by as much

as 22'K above the ambient temperature of 300 K due to the exothermic austenite-

to-martensite transformation, whereas it decreases by as much as 22'K below the

ambient temperature during the reverse endothermic transformation from martensite-

to-austenite.
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Figure 2-27: (a) Nominal strain versus time profile for the tension-hold experiment
at a baseline nominal strain rate of 1.25 x 10' /sec and initial temperature of 300 K.
(b) Superelastic stress-strain curve measured in the experiment. The prediction from
the finite-element simulation is also shown.
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Chapter 3

Isotropic-based constitutive model

3.1 Constitutive model

In this section we summarize our three-dimensional constitutive model for the

isotropic superelastic response of shape-memory materials. This model is meant to

characterize small elastic strains in the presence of temperature fields close to a fixed

reference temperature 60. The constitutive framework is similar in spirit to the crystal-

mechanics based theory of Anand and Gurtin (2002).

Using the standard notation of modern continuum mechanics, 1 we recall that the

deformation gradient F maps referential segments dX to segments dx = FdX in the

deformed configuration. We base the theory on the following multiplicative decompo-

sition of the deformation gradient: F = FeFP. Here (i) FP(X) represents the local de-

formation of referential segments dX to segments dl = FP(X)dX in the relaxed lattice

configuration due to the generation, growth and annihilation of austenitic/martensitic

fine structure in a microscopic neighborhood of X. (ii) F (X) represents the mapping

of segments dl in the relaxed lattice configuration into segments dx = FI(X)dl in

'Notation: V and Div denote the gradient and divergence with respect to the material point
X in the reference configuration; grad and div denote these operators with respect to the point
x = y(X, t) in the deformed configuration, where y(X, t) is the motion; a superposed dot denotes
the material time-derivative. Throughout, we write Fe 1 = (Fe)-', FP-T = (FP) T, etc.. For any
tensor A, symA = (1/2)(A + AT), skwA = (1/2)(A - A T), and A0 , the deviatoric part of A, is
defined by Ao = A - (1/3)(tr A)1; A is deviatoric if tr A = 0. Also, the inner product of tensors
A and B is denoted by A -B, and the magnitude of A by JAl = v'A - A.
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the deformed configuration due the "elastic mechanisms" of stretching and rotation

of the lattice.

We denote by (X, t), 0 < < 1, the local volume fraction of martensite at X.

The evolution of FP is taken to be governed by the transformation rate via the

relation FP = DPFP, DP = NP. where NP is a symmetric transformation tensor

with magnitude INPI = 3/2ET, where ET is the transformation strain in simple

tension. Transformation from austenite to martensite, abbreviated a -+ m, occurs

when c > 0; and transformation from martensite to austenite, abbreviated m -* a,

occurs when < 0. Shape-memory materials show a slight inelastic volume change

during transformation, and this is well-described by the crystal-mechanics theory.

However, for the phenomenological isotropic theory under consideration, we shall

neglect any small inelastic volume changes and assume that det FP = 1; accordingly

tr NP = 0.

The underlying constitutive equations relate the following basic fields:

free energy density per unit referential volume,

F, det F > 0, deformation gradient,

0, 0 > 0, absolute temperature,

T, T = TT, Cauchy stress,

q, heat flux per unit referential area,

FP, det FP = 1 transformational part of the deformation gradient,

0 < K 1, martensitic volume fraction,

Fe = FFP-, det Fe > 0, elastic part of the deformation gradient,

Ce = FeTFe, elastic right Cauchy-Green strain,

E = (1/2) (Ce - 1), elastic strain,

T = ReTTRe, stress conjugate to E .

The constitutive equations are:
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1. Free energy: The free energy is taken in the separable form

O(Ee,O, ) = Oe(Eeo, )+ 0(O) +,Otr(o, ), with (3.1)

e(Ee, 0, () = (1/2)Ee - C()[Ee]( - 00)A( ) - C( )[Ee], (3.2)

V)O(0) = c(0 - Oo) - cO In (0/0o) , (3.3)

V)tr(0, ) = (AT/0r) (0 - OT) (. (3.4)

Here

E(() v(() 101,(C(O) = E() + O 1 0 1 (3.5)
(I + V(0))I (1 - 2V( ))_'

with E and v the Young's modulus and Poisson's ratio is the elasticity tensor,

and

A( ) = a(c) 1, (3.6)

with a the thermal expansion coefficient is the thermal expansion tensor, at the

reference temperature 60. The constant c is the specific heat per unit volume

in the reference configuration. The parameter 0 T is the phase-equilibrium tem-

perature, AT is the 'latent heat of the a +-+ m transformation at temperature

OT.

2. Stress: The elastic stress-strain relation has the form

Te - -~ C( )[E' - A( )(O - 00)]. (3.7)

3. Resolved force. Back force. Dissipative force: The quantity

5= Te - NP (3.8)

is a resolved force, with NP the transformation tensor (defined below). The

derivative

b = = (AT/OT)(O - OT) (3.9)

defines an energetic backforce. Let

f= (- b), (3.10)
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then thermodynamic considerations show that

f ;> 0; )(3.11)

accordingly f is called the dissipative force2 associated with the phase transfor-

mation.

4. Transformation conditions: The transformation conditions are

f = f, for > 0, (3.12)

f = -f, for < 0, (3.13)

with ft > 0 a constant transformation resistance.

5. Flow rule: The flow rule is defined by an evolution equation for FP of the form

FP = DPFP,
(3.14)

DP = JNP,
with martensitic volume fractions consistent with 0 < < 1, and where the

transformation tensor NP is given by

Te
V (3/2) ET if =0,

NP =(3.15)

Te(tc)
(3/2) ET 0 if 0 < < 1.

ITe (tc) I

Here ET is a constant transformation strain in simple tension. Also, beginning in

an austenitic state ( = 0), the time t, denotes the instant when the martensite

volume fraction becomes positive. 3 Moreover,

2 Also called the driving force for phase transformation.
31n Appendix G we show that if following classical isotropic plasticity we take

ITe INP = f(3/2)Te for all O 5( 1,

then we get spurious results in superelastic deformations in simple shear. Whereas, by fixing the
transformation direction during a superelastic forward and reverse event to be determined by the
stress at the first instance of transformation, yields acceptable results, at least for the proportional
loading conditions tested in this section.
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(i) if -fc < f < fe, then = 0;

(ii) if f = f, and 0 < ' < 1, then

and (f - fc) < 0;

(iii) if f = -f, and 0 < < 1, then

and (f + fc) ; 0;

(iv) if f=fc and =1, or if f = -f, and = 0, then = 0.

The consistency conditions (3.16) and (3.17) serve to determine the transfor-

mation rates .

6. Entropy; energy balance; heat flux:

The entropy rq is given by

- ) -= cln (9/9) + Ee -C( )[A(()J - (AT/OT) ,09
(3.18)

the balance of energy may be written as

0 = -Divq + f + r, (3.19)

where r is the heat supply per unit volume of the reference configuration, and

the referential heat flux q is taken to be governed by Fourier's law

q = -K( )VO, (3.20)

where K() is the thermal conductivity tensor at 00. Using (3.18) and (3.20),

the energy balance (3.19) becomes

c O = Div {K( )VO} + ((AT/OT) 0 + f) - 0 Ee -C( )[A( )] + r.

To complete the theory for a particular material the constitutive parame-

ter/functions that need be specified are

{ E (), v ( ), a ( ), CT, OT, AT, fc, C, K(D
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Finally, the standard partial differential equation for the stress referred to the

deformed configuration is

div T + J-1 f = 0, (3.22)

where div represents the divergence operator in the deformed configuration, J = det F

and f is the body force per unit volume in the reference configuration (the body force

f is assumed to include inertial forces). The differential equation for the temperature

referred to the deformed configuration is

J- 1 cO = div J-'FK( )Fgrad 0} + J-1 ((AT/OT) 0 + f)

- J-1 OEe -C( )[A( )] + J- 1 r. (3.23)

We have implemented our constitutive model in the finite-element computer pro-

grams ABAQUS/Explicit and ABAQUS/Standard (2001)' by writing user material

subroutines. Algorithmic details of the numerical implementation are given in Ap-

pendix E. 5

4All the calculations performed in this work were done using ABAQUS/Explicit (2001) unless
stated otherwise. The results using both schemes match identically e.g. the finite-element simula-
tions using ABAQUS/Explicit and ABAQUS/Standard for the coupled-temperature displacement
analysis for the polycrystalline sheet material in Section 3.2.1 is shown in Figure 3-1.

'All calculations reported in this section were performed using ABAQUS/Explicit, while those
reported in Section 3.3 were performed using ABAQUS/Standard.
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3.2 Evaluation of the constitutive model for poly-

crystalline Ti-Ni alloy

3.2.1 Sheet material

Suitably processed 0.53 mm thick Ti-Ni sheets, intended for superelastic behavior at

room temperature, were obtained from a commercial source. Recall that the material

parameters that need to be specified for the theory are

1. The thermo-elastic parameters {E( ), v(s), a( )}.

2. The phase transformation parameters {ET, OT, AT, fc}.

3. The specific heat c and the thermal conductivity s().

The values of {E, v, a} for the austenitic and martensitic phases of Ti-Ni are well-

documented in the literature. We have used the following values in our calculations:

Young's modulus and Poisson's ratio for austenite: Ea = 62 GPa, Va = 0.33,

Young's modulus and Poisson's ratio for martensite: Em = 31 GPa, Vm = 0.33,

Coefficients of thermal expansion: aa = 11 X 10- 6/K, 0m = 6.6 x 10- 6 /K,

and assumed a simple rule-of-mixtures dependence for the dependence of E( ) and

a( ) on the volume fraction of martensite .

An estimate for the phase transformation parameters {ET, 6 T, AT, fc} for Ti-Ni is

obtained by fitting the constitutive model to a set of superelastic tension experiments

at (at least) three different temperatures spanning the range of temperatures of inter-

est. With reference to Figure 3-2, an operational procedure to estimate the material

parameters is as follows:

First, estimate the transformation strain eT from the superelastic tension exper-

iments at each temperature. The measured transformation strains ET will typically

be a a function of temperature. However, for applications, a constant value of ET
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which represents an average over the range of temperatures is usually an adequate

approximation.

Next, estimate the stress a-am for forward transformation, and the stress oma for

reverse transformation at each temperature. A schematic plot of the variation of -am

and Uma with temperature 9 is shown in Figure 3-2b. From this, the intercept of the

line aam versus 9 at zero stress defines the martensite start temperature 0ms, while the

intercept of the line -ma versus 9 at zero stress defines the austenite start temperature

0as; the mean value
1

OT= (as + Oms) (3.24)
2

determines the phase equilibrium temperature. From (3.9), (3.10), (3.12) and (3.13)

we note that during forward transformation

am(() - ( - OT (3.25)
(CT OT CT

holds, while during reverse transformation

Uma(0) - ( T (9 - OT) = (3.26)
(ET OT) ET

holds. Thus, the transformation resistance fc at each temperature is given by

1
f, = CT X - (Cam(9) - 0ma(9)). (3.27)

2

Further, the mean values of -am and ..na at each temperature vary linearly with

temperature, i.e.

I(-am() + Uma(9)) (A ( - T). (3.28)
2 ET OT

Thus, the slope of the line 1(0-am(9) + oma()) versus 9 gives T which in turn
2 \ET6T /

gives the latent heat of phase transformation, AT.

To evaluate these phase transformation parameters for the Ti-Ni sheet, superelas-

tic tension experiments were conducted on polycrystalline sheet specimens with the

tension axis aligned along the sheet rolling direction, 0W-orientation. The geometry of

the tension specimens is shown in Figure 2-18a. The experiments were conducted at

three different temperatures, 289 K, 300 K and 306 K, under displacement control at a
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very low nominal strain rate of 3 x 10 5 /sec, to ensure (near) isothermal conditions.

The nominal stress-strain curves from these experiments are shown in Figures 3-3a,b,

and c, respectively 6 . Following the procedure outlined above, the value of the esti-

mated phase transformation parameters is

Phase equilibrium temperature: OT = 271 K;

Latent heat: AT = 110 Mj/m 3 ;

Critical transformation resistance: f, = 4.15 MJ/m 3 ;

Transformation strain: ET = 0.047.

Corresponding numerical simulations of these superelastic experiments, using the

material parameters listed above, were carried out on the finite-element mesh (446

ABAQUS-C3D8R elements) shown in Figure 2-18b. The numerically-calculated nom-

inal stress-strain curves are also shown in Figure 3-3. Although, as anticipated, a

constant value of ET over the three temperatures results in some discrepancy, the

overall quality of the fit using a simple isotropic model is very encouraging.7

As mentioned previously, phase transformation during superelasticity typically

occurs by the nucleation and propagation of phase transformation fronts. Figure 3-

4 shows such a phenomenon in our numerical simulations.8 This figure shows the

numerical stress-strain curve from the simulation for 300 K, along with the contours

of the martensite volume fraction keyed to instances (a) through (j) at different points

along the superelastic stress-strain curve. The contours for (a) through (e) show that

martensite nucleates at the right end of the specimen where the gage width is the

narrowest, and the transformation front propagates to the left until the gage section is

fully transformed to martensite by stage (e). The martensite volume fraction contours

for (f) through (j) show that upon reversal of imposed deformation the phase front

recedes until the gage section is once again fully austenitic by stage (j).

'We use nominal values of stress and strain since the phase transformation occurs in an inhomoge-
neous fashion along the gage section of the specimen. The permanent set observed in the experiment
at 306K is probably due to some plastic deformation at the higher stresses in this experiment.

7The crystal mechanics model used in Chapter 2 gives a much better agreement with experiments,
but at a higher computational expense.

8A geometric "imperfection" in the form of a slight taper along the gage section is given to
provide an initiation site for phase transformation.
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An important manifestation of the superelastic response of a shape-memory ma-

terial is the strain-versus-temperature response at a fixed stress level. By cycling

the temperature over a narrow range at a fixed stress, one can obtain a recoverable

strain cycle. Figures 3-5a and b show experimental strain-temperature curves from

0 0-oriented specimens which were first subjected to fixed axial stress levels of 150 MPa

and 250 MPa, and then subjected to a temperature history where the temperature is

decreased at a constant rate of 0.016 K/s, and then increased back at the same rate.

With respect to Figure 3-5a, the initial elastic strain of ~ 0.005 is due to the axial

stress of 150 MPa. The material is initially in the austenitic state. As the temperature

is decreased from 315 K, the strain first decreases slightly due to thermal contraction,

and then at ~~ 279K the austenite-to martensite-transformation occurs and there is a

sudden burst of strain of 4.7%. Upon heating, there is at first a slight increase in the

strain due to thermal expansion, and then at ~ 300K the martensite transforms back

to austenite with a strain recovery of 4.7%. The temperatures at which the transfor-

mations occur can be controlled by the initial stress bias. As shown in Figure 3-5b,

an increase in the initial stress increases the austenite-to-martensite as well as the

martensite-to-austenite transformation temperatures.

We next consider the coupled thermo-mechanical superelastic response of the Ti-

Ni sheet. In order to examine the effects of heat generation and conduction, we have

performed superelastic tension experiments at three different nominal strain rates

on 0-oriented specimens at an initial temperature of 300 K. In addition to the test

at the "low" nominal strain rate of 3 x 10- 5 /sec reported previously, Figure 3-3b,

where the response was expected to be (close to) isothermal, we have conducted two

additional experiments at slightly "higher" rates of 8.4 x 10-4/sec and 2 x 10 3 /sec,

where we expect to see some effects of the changes in temperature. The superelastic

stress-strain curves for all three strain rates are shown in Figure 3-6. Note that as

the strain rate increases, the stress-strain curves at the two higher strain rates show a

"hardening response". This apparent hardening due to thermal effects is qualitatively

similar to that reported previously by Entemeyer et al. (2000), who have argued that

the major contribution to the apparent hardening is due to temperature changes
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associated with the exothermic a -> m, and endothermic m --+ a transformations.

Recall that the energy balance (3.23) requires computation of the term

div J-1FK( )FTgrad0}.

The finite-element program ABAQUS/Explicit and ABAQUS/Standard (currently)

limits user access to modify the computer code, and allows input of only a single

scalar value for the thermal conductivity. We have accordingly made several approx-

imations in our calculations. We shall use a constant value of thermal conductivity

k = (k' + k')/2 in our numerical calculations, where ka and km is the polycrystalline

thermal conductivity coefficient for the austenite and martensite phase, respectively.

Further, since the superelastic strains are small, we neglect the contributions from

the J and FFT terms, and make the approximation div{ J 1 FK( )FT grad }

k div grad 0. We also neglect the terms J-lOEe -C( )[A(()] + J--1 r in (3.23). Under

these approximative assumptions the equation governing the change in temperature

becomes

c k div gradO + ( + f .(329)
(OT ) (.9

Based on values published in the literature, we use the following values of

c = 2.1 MJ/m3 K, k = 13W/m K

for Ti-Ni in our calculations. The calculations were carried out for a Ti-Ni sheet spec-

imen modelled using the mesh shown in Figure 2-18b, this time using 446 C3D8RT

ABAQUS elements. Regarding the thermal boundary conditions, the whole mesh is

initially at 300K. The nodes at the grip-ends are kept at 300K throughout the calcu-

lation to simulate massive hard grips which act as constant temperature baths. The

heat flux from the remaining faces of the tension strip due to convection in air is taken

to be governed by boundary conditions on the heat flux h in the deformed configura-

tion, of the form h = h(9 - OO)n, with a film coefficient h and a sink temperature 0 0.

In our calculations we take the film coefficient to have a value h = 12 W/m 2 K, and

a sink temperature of 300K. Figure 3-6 also shows the resulting superelastic stress-

strain curves for the two higher strain rates. The stress-strain curves calculated for
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the higher strain rates show the experimentally-measured hardening response. Recall

that we have set fc to be constant. Thus, the hardening response is entirely due to

thermal effects associated with the phase transformations. Figure 3-7 shows evolution

of the contours of the martensite volume fraction at representative instances during

the forward and reverse transformations for the test at the highest strain rate. Note

that because of the boundary conditions, both the forward and reverse transforma-

tions start from the grip-ends and propagate as "fronts" towards the center of the

specimen. Figure 3-8 shows contours of the temperature at representative instances

during the forward and reverse transformations. During forward transformation the

temperature increases by as much as 25K from the ambient temperature of 300K due

to the exothermic austenite-to-martensite transformation, while it decreases by as

much as 25K from the ambient temperature during the reverse endothermic trans-

formation from martensite-to-austenite. The nucleation and propagation of phase

transformation fronts and the associated temperature changes in our calculations,

are qualitatively similar to the results reported by Shaw and Kyriakides (1997) for

their polycrystalline sheet tefisile specimens.

The effects of heat conduction into and out of the gage section were further studied

by performing a superelastic tension-hold experiment. A representative strain-time

profile for such an experiment is as follows: the specimen is extended at a strain rate

of 1.25 x 10-3/sec with an intermediate hold of 10 sec, and then after the desired total

strain level the straining direction is reversed at a rate of -1.25 x 10-3 /sec, again with

an intermediate hold of 10 sec, Figure 3-9a. The experimental nominal stress-strain

curve and the corresponding finite-element prediction of this experiment are shown in

Figure 3-9b. The finite-element simulation nicely reproduces the stress-dip observed

in the experiment during the forward transformation, and the stress-increase during

the reverse transformation. The major cause for the stress-dip and stress-increase is

the heat conduction out of and into the specimen, respectively, during the forward

and reverse transformations.
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3.2.2 Rod material

Suitably thermo-mechanically processed and heat-treated Ti-Ni at 55.96 wt.% Ti

drawn rods of 12.70 mm diameter, intended for superelastic applications, were ob-

tained from a commercial source.

The thermo-elastic constants for the rod-material is chosen to be the same as in

Section 2.3.1. Using the measured phase transformation temperatures (Figure 2-2),

the value for the phase equilibrium temperature, OT, is given by

T =(1/2) {Oms + 0,} = 256 K.

To obtain the remaining values of the phase transformation constants {AT, 6 T, fc},

the constitutive model is fitted to a superelastic experiment in simple tension at

0 = 298 K, Figure 3-10a. The experiment is conducted at a very low strain rate to

ensure near-isothermal testing conditions.

The finite-element simulation in simple tension is performed using a single

ABAQUS-C3D8R element. Using the procedure for material parameter determi-

nation outlined above the fitted phase transformation parameters are

Latent heat: AT = 100 MJ/m3 ;

Critical transformation resistance: f, = 7.6 MJ/m 3;

Transformation strain: CT = 0.05.

The resulting superelastic stress-strain curve using the material parameters listed

above are also shown in Figure 3-10a. The quality of the fit is very encouraging.

With the material parameters calibrated we proceed to perform a tubular-torsion

experiment on a thin-walled specimen performed at a very low shearing strain rate.

The stress-strain response in torsion at 0 = 298 K is shown in Figure 3-10b. The

finite-element simulation in simple shear is conducted using a single ABAQUS-C3D8R

element. The predicted nominal shear stress-strain curve is shown in Figure 3-10b,

where it is compared against the corresponding experimentally-measured curve from

a tubular torsion experiment. The prediction is in good accord with the experiment.

Proportional-loading tension-torsion experiment:
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The strain-history imposed on a thin-walled tubular specimen during the proportional-

loading tension-torsion experiment is shown in Figure 3-1 la. The axial strain c is

increased at a constant rate from 0% to 3% in 500 seconds, while the shear strain -y is

increased at a constant rate from 0% to 4.5% in the same time period. These strains

are then linearly reduced to zero, in another 500 seconds.

The initial finite-element mesh using 768 ABAQUS-C3D8R elements for the com-

bined tension-torsion simulation is shown in Figure 3-11b, and the finite-element mesh

after 3% strain in tension and 4.5% strain in shear is shown in Figure 3-11c, along

with the contours of the martensite volume fraction.

Predictions of the axial-stress versus axial-strain, and shear-stress versus shear-

strain from the constitutive model are compared against corresponding experimen-

tal measurements conducted at 0 = 298K in Figures 3-11d and 3-11e, respectively.

The measured superelastic stress-strain response in this tension-torsion experiment is

moderately well-approximated by the predictions from the constitutive model.

95



3.3 Deformation of a Ti-Ni biomedical stent

The superelastic response of Ti-Ni, along with its bio-compatibility and corrosion

resistance, makes it an attractive material for many medical applications including

stents which are used to counteract the effects associated with vascular diseases, such

as narrowing of blood vessels due to plaque-build-up. A "self-expanding" superelas-

tic stent is a cylindrical metal mesh (typically made by laser-cutting of a tube to

the desired pattern, and subsequently electro-polishing to remove any burrs) which

is compressed to a smaller diameter than its as-manufactured strain-free diameter,

inserted into the problem area in an artery, and allowed to self-expand to its original

diameter while exerting a gentle radial force on the wall of the artery to keep it open.

An electron-micrograph of a Sci-Med" stent (Serruys, 1997) with struts which have

a square cross-section of 0.15 mm by 0.15 mm is shown in Figure 3-12; this stent has

an expanded diameter of 3.8 mm.

A simple way to experimentally study the mechanics of a stent is to analyze

the response of its struts. Diamond-shaped strut test specimens, Figure 3-13a, were

electro-discharge-machined from our sheet Ti-Ni material. The specimens were de-

formed in in-plane tension and compression using a special micro-tensile testing device

developed by Gudlavaletti et al. (2002). The forces were measured using a built-in

load cell, while the relative displacements of the end-sections were measured using a

non-contact optical extensometer devised by Su and Anand (2002). To ensure near-

isothermal testing conditions, the tests were conducted at a very low loading rate.

The experimentally-measured force-displacement curves in tension and compression

conducted at room temperature (0 = 298K) are shown in Figure 3-14. Note, that

the experiment shows that for the same magnitude of extension in tension and com-

pression, the maximum tensile load is ~ 15 N, while it is ~ -13 N in compression.

The initial finite-element mesh used to model the specimen is shown in Figure 3-13b;

because of the symmetry of the specimen and the loading conditions, only one quarter

of the specimen is modelled. The prediction of the superelastic response based on

the material parameters determined in the previous section for the sheet Ti-Ni is also
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shown in Figure 3-14. The prediction is in good accord with the experiment. Of par-

ticular note is that the experimentally observed tension-compression asymmetry of

the load-displacement response is picked up by the numerical simulation. Figure 3-15

compares numerically-predicted deformed geometries of the specimen in tension and

compression against photographs of the corresponding experimental configurations.

The numerical result also shows the contours of the martensite volume fraction. As

expected, the martensite volume fraction is maximum at the corners where bending

effects are dominant.

Next, to demonstrate the capability of our model to perform complex three-

dimensional superelasticity simulations in a reasonable time, we report on a numerical

simulation of the deformation response of a Ti-Ni stent using the implementation of

our model in ABAQUS/Standard.9 A 4 mm long link of the Sci-Medt" stent is meshed

using 5,562 ABAQUS-C3D8 elements. The initial finite-element mesh is shown in Fig-

ure 3-16a. Representative nodes at the tips of the five V-shaped segments at one end

of the link of the stent are fixed so as not to move in the axial direction, while a

forward-and-reverse axial displacement is prescribed at corresponding nodes at the

other ends of the V-shaped segments. The material parameters in the analysis are

taken to be the same as the ones used in the previous section. Figure 3-16b shows

the fully extended state of the stent together with the contours of martensite vol-

ume fraction. As expected, the largest volume fraction of martensite occurs at the

cross-sections where the bending strains are the highest. The final diameter of the

stent in the extended state is about four times smaller than the diameter in the initial

state. Note that because of the geometric design of the stent there is only a relatively

small axial extension ~ 0.16 mm, even for such a large reduction in diameter. The

numerically calculated load-displacement curve is shown in Figure 3-16c; due to its

geometric design the stent stiffens considerably as it is being extended. Of course,

9 Recently, Rebelo and co-workers (e.g., Rebelo and Perry, 2000) have implemented a version of
the superelasticity model of Auricchio and Taylor (1996, 1997) in ABAQUS and used it to simulate
the deformation response of Ti-Ni stents. Details of the precise constitutive model used and its
implementation are not publically known. Simulations of some other medical applications of Ti-Ni
using this computer program have also been recently reported by Gong and Pelton (2002).
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since the stent material is superelastic, the load returns back to its original position

of zero load at zero extension. This reasonably complex three-dimensional calcula-

tion took approximately two hours to complete on a present-day workstation-class

machine.
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Figure 3-1: Comparison of the implicit and explicit finite-element solution of the
tension specimen shown in Figure 2-18b at a tensile strain-rate of 0.002/s at an
initial temperature of 6 = 300 K using the material parameters in Section 3.2.1.
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Figure 3-3: Nominal superelastic stress-strain curves from tension tests on 00-oriented
specimens. The tests were conducted under isothermal conditions at (a) 289 K, (b)
300 K, and (c) 306 K. The experimental data from these tests were used to estimate the
phase transformation parameters. The curve fit from the finite-element simulations
is also shown.
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Figure 3-4: A superelastic finite-element simulation of an experiment conducted under

isothermal conditions at 300 K. Contour plots of the martensite volume fraction are

also shown. The set of contours on the left shows the transformation from austenite-

to-martensite during forward transformation, while those on the right show the trans-

formation from martensite-to-austenite during reverse transformation. Note that be-

cause of the slight taper in the gage width, the austenite-to-martensite transformation
nucleates at the right grip-end and propagates toward the opposing grip-end.
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Figure 3-5: Strain-temperature cycling experiments conducted on 00-oriented speci-
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finite-element simulations are also shown.
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Figure 3-7: A superelastic finite-element simulation of an experiment conducted at a
nominal strain rate of 2 x 10-3 /sec. The set of the martensite volume fraction con-
tours on the left show the transformation from austenite-to-martensite during forward
transformation, while those on the right show the transformation from martensite-to-
austenite during reverse transformation. Note that because of the boundary condi-
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propagate towards the center of the specimen.
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Figure 3-8: A superelastic finite-element simulation of an experiment conducted at
a nominal strain rate of 2 x 10-3 /sec. The set of contours on the left shows the
temperature increase during transformation from austenite-to-martensite, while those
on the right show the temperature decrease during transformation from martensite-
to-austenite. During forward transformation the temperature increases by as much
as 25'K above the ambient temperature of 3000 K due to the exothermic austenite-
to-martensite transformation, whereas it decreases by as much as 25 0K below the
ambient temperature during the reverse endothermic transformation from martensite-
to-austenite.
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Figure 3-9: (a) Nominal strain versus time profile for the tension-hold experiment at
a baseline nominal strain rate of 1.25 x 10- /sec and initial temperature of 300 K.
(b) Superelastic stress-strain curve measured in the experiment. The prediction from
the finite-element simulation is also shown.
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Figure 3-10: (a) Superelastic stress-strain curve in tension. The experimental data
from this test were used to estimate the constitutive parameters. The curve fit us-
ing the constitutive model is also shown, and (b) Superelastic stress-strain curve in
torsion. The prediction from the constitutive model is also shown.
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Figure 3-11: (a) Loading program for combined tension-torsion experiment. (b) Un-
deformed mesh of 768 ABAQUS C3D8R elements. (c) Deformed mesh at a tensile
strain of 3% and a shear strain of 4.5%. Contours of martensite volume fraction are
shown. (d) Superelastic stress-strain curve in tension. (e) Superelastic stress-strain
curve in shear. The prediction from the constitutive model is also shown.
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Figure 3-12: (a) Illustration of the SciMed stent. The 14-mm stent consists of five
segments attached to each other at three sites. This design allows for good support
without gaps, and high flexibility, and (b) Scanning electronic microscopic picture of
the SciMed stent with full expansion. (Taken from the Handbook of coronary stents,
(Serruys, 1997)).
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Figure 3-13: (a) Geometry of diamond-shaped strut test specimens; all dimensions
are in millimeters. The sheet form which the specimens were machined is 0.53 mm
thick. (b) Initial finite-element mesh of one-quarter of the specimen.
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corresponding finite-element mesh with contours of the martensite volume fraction.
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Figure 3-16: (a) Initial finite-element mesh of a segment of the stent. (b) The fully
crimped state of the stent with contours of martensite volume fraction. (c) Predicted
axial load-displacement curve from the finite-element simulation.
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Chapter 4

Conclusion and future work

A crystal-mechanics-based constitutive model to describe the superelastic response

of polycrystalline shape-memory alloys has been developed and implemented in a

finite-element program. It is shown (to within the idealization of no plastic defor-

mation of austenite and of no de-twinning of martensite) to quantitatively predict

the superelastic response of initially-textured polycrystalline Ti-Ni rod and sheet in a

variety of tension, compression, torsion and combined tension-torsion experiments to

good accord. In particular we have shown that crystallographic texture is the main

cause for the anisotropic response in shape-memory materials. We have also showed

the applicability of the Taylor-type model (1938) as a reasonably accurate and com-

putationally inexpensive method for determining the response of textured Ti-Ni in

multi-axial setting.

The non-isothermal and non-homogeneous deformation exhibited by initially-

textured Ti-Ni was also investigated. Coupled temperature-displacement analysis

to predict the response of non-isothermal superelastic experiments at higher defor-

mation rates were successfully performed. Furthermore the constitutive model is also

able to qualitatively capture the phenomena of nucleation and propagation of trans-

formation fronts under isothermal and non-isothermal conditions. The trend of the

temperature field in the gage section after a loading and reverse loading step for a

specimen conducted under non-isothermal testing conditions were also predicted to
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good accord.

Some of the future work includes

* As the size of a shape-memory material sample becomes very small (<~ lAm),

in the case of very thin sputter-deposited SMA films, further analysis by James and

Hane (2000) show the possible existence of new types of microstructures such as

the "tent" and "tunnel" structures. This has also been experimentally observed in

very small specimen sizes but not observed in macroscopic sample sizes which we

have investigated here. These additional microstructures have accompanying habit-

plane normals and transformation directions which can be calculated according to

the theory of James and Hane (2000). This information can be readily incorporated

into the constitutive model in its present form.

* As discussed in Chapter 2, shape-memory materials will be in the fully martensitic

state below 0 mf. In this state, the inelastic strains due to stressing is caused by

the motion of the twin boundaries between the martensitic plates and within the

martensitic plates itself. This phenomena is called re-orientation and de-twinning,

respectively. De-twinning can even occur during superelasticity if the material is

stressed significantly after complete austenite to martensite has occurred. Once re-

orientation and de-twinning is completed an increase of temperature to above its

austenitic finish temperature 9 af will cause complete recovery to back to its parent

state without any residual deformation. This phenomenon is called the shape-memory

effect. A constitutive model that comprehends the re-orientation and de-twinning of

the martensitic variants, and the shape-memory effect needs to developed.

Since there is a significant computational expense in implementing crystal-

mechanics-based constitutive models for design purposes an isotropic constitutive

model for numerical simulation of thermo-mechanically-coupled superelastic response

of shape-memory materials has been developed and implemented in a finite-element

program. In addition to the standard thermo-elastic material parameters, our sim-

ple model contains only four material parameters {ET, OT, AT, fc} to characterize the

austenite +-+ martensite phase transformations, and these parameters are easily de-

termined from isothermal superelastic experiments at a few different temperatures.
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Representative isothermal and thermo-mechanically coupled superelastic experiments

on polycrystalline Ti-Ni sheet are shown to be predicted with reasonable accuracy by

the constitutive model and computational capability. The superelastic behavior of a

diamond-section stent has also been experimentally and numerically studied.

The simulation capability demonstrated in Section 3, holds the promise of greatly

reducing the time required to design a new device made from a superelastic shape-

memory material. The new capability should allow device-designers to relatively

rapidly carry out numerous design iterations, and to computer-test their devices be-

fore any actual prototypes are built.
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Appendix A

Time-integration procedure :

Crystal-mechanics-based

constitutive model

In this appendix we summarize the time-integration procedure that we have used for

our rate-independent single-crystal constitutive model. With t denoting the current

time, At is an infinitesimal time increment, and T = t + At, the algorithm is as

follows:

Given: (1) {F(t), F(T), 6(t), 0(r)}; (2) {T(t), FP(t)}; (3) {b', mn, f,}; (4) the accu-

mulated martensite volume fractions (t).

Calculate: (a){T(T), FP(T)}, (b) the accumulated martensite volume fractions V(T),

and (c) the inelastic work increment AwP(r) and march forward in time.

The steps used in the calculation procedure are:

Step 1. Calculate the trial elastic strain Ee(T)trial:

Fe (T)trial = F(r)(FP(t))

ce(r)trial = (Fe (T)trial)T Fe (T)trial,

Ee(T)trial = (1/2) {Ce (T)trial _ 1}.
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Step 2. Calculate the trial stress Te(,)trial:

Te (T) t rial = C(t)[Ee(T) t rial - A(t)(O(T) - 00)].

Step 3. Calculate the trial resolved force ri()trial on each transformation system.

The resolved force was defined as Tr(T) = {Ce(T)Te(r)} - (bi 0 m'). The resolved

force Ti(T) may be approximated at by T(T) Te(r) - (b' 0 m') for infinitesimal

elastic stretches. Accordingly, the trial resolved force is calculated as

ri(T)trial = Te(T)trial . (bi 0 m').

Step 4. Calculate the trial driving force for phase transformation fi (T)trial:

fi(T)frial = Ti(T)trial - (AT/OT) (O(T) - OT).

Step 5. Determine the set PA of potentially active transformation systems which

satisfy

fi(T)trial _ f > 0, 0 < '(t) < 1 and 0 < E '(t) < 1

for the a - m transformation, and

fi(T)trial + fc < 0, 0 < i(t) < 1 and 0 < Ei (t) < 1

for the m - a transformation.

Step 6. Calculate

FP(T) =A~ bi 0 mi FP(t), j = 1, ..., N, (A.1)
jEPA

where N is the total number of potentially transforming systems. Of the N potentially

active systems in the set PA, only a subset A with elements M < N, may actually be

active (non-zero volume fraction increments). This set is determined in an iterative

fashion described below.
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During phase transformation, the active systems must satisfy the consistency con-

ditions

fi() f = 0, (A.2)

where the - sign holds during a - m transformation and the + sign holds during

m -+ a transformation, and where

f'(T) = Tr(T) - (AT/OT) (0(T) - OT). (A.3)

Retaining the terms of first order I in A 3, it is straightforward to show that

7'(T) = Ti(T) t'ial - S (b' ® m') -C(t)[sym(Ce(r) trial(bi ® mi))]a.
jEPA

Use of equations (A.3) and (A.4) in the consistency conditions (A.2) give

I:
jEPA

A xi = bi, i E'PA,

(A.4)

(A.5)

A = {(b' 0 mi) . C(t)[sym(Ce(r) trial(bj 0 mi))]}

and x' A > 0 for a -+ m transformation,

and x _= AV < 0 for m -* a transformation.

(A.6)

(A.7)

(A.8)

Equation (A.5) is a system of linear equations for the martensite volume fraction

increments xi = Aj.

The following iterative procedure based on the Singular Value Decomposition

(SVD) of the matrix A is used to determine the active transformation systems and

the corresponding martensite volume fraction increments (Anand and Kothari, 1996).

Calculate

x = x+ = A+b,

'Terms such (C"' - Ca) ZjCPA A~j and (A' - A") EjEPA A~j are neglected because (C" -

Ca) A A << C(t) and (A m - Aa) EPA j << A(t) for IA~'I << 1.
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T = fi(T)trial - fe > 0,

b = fi(T)trial + fj < 0,



where A+ is the pseudo-inverse matrix of the matrix A; if the matrix A is not sin-

gular, then the pseudo-inverse, A+, is the true inverse, A- 1 . If for any system the

solution x = A < 0 when b' > 0 (during a -> m transformation), then this system

is inactive, and it is removed from the set of potentially active systems PA, and a

new A matrix is calculated. Similarly, if xJ = Aj > 0 when 6' < 0 (during m -- a

transformation), then this system is also inactive, and it is also not included in the

set PA used to determine the new A matrix. This iterative procedure is continued

until all xi = A~j > 0 for a -> m transformation, and xi = Adi < 0 for m -- a

transformation. The final size of the matrix A is M x M, where M is the number of

active systems in the set A.

Step 7. Update the inelastic deformation gradient FP(r):

FP(T) = 1 + 0A bi 0 m} FP(t). (A.9)
jE A

Step 8. Update the martensite volume fraction for each system $(Tr) and the total

martensite volume fraction for the single crystal (T):

( = (t) + A ', (A.10)

N

() = (0 ). (A.11)
j=1

If $ (r) > 1, then set $j (T) = 1 and if j (r) < 0, then set $j (T) = 0. Similarly, if

(r) > 1, then set (T) = 1 and if (T) < 0, then set (T) = 0.

Step 9. Update the effective elastic modulus C(T) and thermal expansion A(r):

C(T) = {1 - (T)} C' + (T)C m ,

A(T) = {1 - (r)} A' + (T)Am .
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Step 10. Compute the elastic deformation gradient Fe(T) and the stress Te(T):

Fe(T) = (r)(FP(r))

Ce(T) = (Fe(T)) TFe (,),

Ee(T) = (1/2) {Ce(T) - 1},

Te(T) = C(r)[Ee(r) - A(r)(9(T) - 00)].

Step 11. Update the Cauchy stress T(T):

T(T) = (detF(T))- {Fe(T)Te(T)(Fe(r)) T}.

Step 12. Calculate the driving force for phase transformation f2(T) and inelastic

work fraction AwP(T):

T'(T) -=Te (T) - (b' (D m'),

fi(T) = Tr(r) - (AT/OT)(O(T) - OT),

AwP(r) = { E f'(7-)A } + (AT/OT) 9(T)A .
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Appendix B

Crystallographic theory of

martensite

This theory neglects any elastic strains and assumes that the martensites have

stretches U and the austenite is unstrained, even in the presence of stresses. These

stretches depend on the constants a, 3, -y and V, which are related to the lattice

constants of the two phases and will be discussed shortly. Since the stretch in the

direction normal to the shearing plane is in general not equal 1.0, the transformation

is not a pure shear. Thus it is not possible to kinematically match a single variant

with stretch U to undeformed austenite. Therefore the analysis of Ball and James

(1987) show that the martensite must then be twinned in order to allow approximate

kinematic compatibility at a planar austenite-martensite interface. This analysis is a

formulation of the crystallographic theory of martensite (CTM).

The alloy of Ti-Ni considered here exhibits a structural phase transformation

from the cubic austenite phase to a low temperature monoclinic martensite phase at

the transformation temperature 0ms. There are twelve possible ways to transform

the cubic structure to the monoclinic structure. From Hane and Shield (1999) the

stretches U2 are given by
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0 p p 0 -p -p 0 -p p

U= p o r ,U2= -p 0- p U= p O -T

pr j p - a

0 p -p a p T O -p T

U4= P a -r , =U = p ,U6 -P 0 -p

-p -T T T p or -p or

0- -p -- ( p - O-r pT

U7= -P 0 P ,U8= p 0 -P , U9- T

-( -P or - -p U p p 0

S) -p OE -T P )o( -T -P

U10= U- -p ,ull= -r O- -p ,U12= -T o- p -

-p -p 0 ) p -p 0 -p p 0

These stretches depend on the transformation stretches, a, 3 and y, and the

monoclinic angle, 79. The specific components of the stretches Uj are

0 = a(a + - sin(79))
a 2 + -y2 + 2aysin(79)

aycos(79)

a2 + 2 + 2crysin(9)

I yy + asin(79 ))
2 a2 + 72+ 2aysin(P)

T=( -y(-y + asin(,9))
2 a 2 + 7y2 + 2aysin(O)

The transformation stretches are given as a = a/aO, # = b/(v' ao), and y =

c/ (v2 ao), where the lattice parameter of the cubic cell is ao and the lattice parameters

129



of the monoclinic cell are a, b and c, and V is the angle between the edges with lengths a

and c. The lattice parameter for the austenite phase is measured to be a, = 3.015 A.

The lattice parameters of the monoclinic phase are measured to be a 2.889 A,

b = 4.120 A, c = 4.622 A and 79 = 96.80'. Therefore the transformation stretches are

a = 0.9582, #3 = 0.9663 and y = 1.0840.

The structure of an austenite-twinned martensite interface is shown in Figure B-1.

Displacements must be continuous across the two types of interfaces(twin boundaries

and the A-M interface) in this structure. Mathematically, this reduces to the state-

ment that the deformation gradients in each region must differ by a rank-one tensor.

That is if FA and FB are the deformation gradients on either side of a planar interface

with normal n (in the reference configuration ) then the difference between these two

deformation gradients must be of the following form,

FA - FB = a 0 n, (B.1)

where a is the shearing vector. The interface between the two variants of martensite

is a twin boundary and kinematic compatibility across this interface requires,

RABUB - UA = a on, (B.2)

where RAB is an orthogonal tensor and represents the relative rotation between the

two twins. The polar decomposition of a deformation gradient, F, into a rotation

times a pure stretch , RU, has also been used. In this equation A and B represent

different choices of the integers {1..12}. The rotation is unknown because the trans-

formation only specifies the stretches. This equation admits three types of solutions

which are known as compound, Type I and Type II twins. These types are defined

by the number of symmetries the crystal structures exhibits across the twin plane.

Compound twins have two planes of symmetry and this gives solutions for a and n

whose components are integers in the cubic basis. However, compound twins only

occur between variants that have shears in the same plane. This results in an average

deformation in the martensite region that has a stretch of 3 in the direction normal

to the shear plane. Thus it is impossible for compound twins to be kinematically
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compatible with austenite. Therefore, Types I and II solutions can exist and will be

allowed.

Because both of these twins are composed of variants that have shears in different

planes, it is possible to pick a volume fraction, A for variant B (so that variant A has

volume fraction (1 - A)) such that the average deformation in the martensite, given

by

FAB = RH(ARABUB + (1 - A)RA) (B.3)

is kinematically compatible with the undeformed austenite. The rotation of this

average deformation is RH. Requiring kinematical compatibility between the average

martensite deformation and the austenite is termed approximate compatibility. It is

useful to use B.2 to write

FAB = RH(UA + Aa 0 n). (B.4)

The requirement that the twinned martensite be kinematically compatible with

the austenite can then be written,

FAB- I = b & m (B.5)

where I is the identity matrix, which is the deformation gradient in the undeformed

austenite. In B.5 b and m are the shearing and normal vectors for the A-M interface,

respectively.

A solution to the crystallographic theory of martensite (CTM) problem is the

quantities a, n, b, m, RAB, RH and A such that B.2 and B.5 are satisfied for a given

choice of A and B. If a matrix C, is known to be of the form

C = (I + n'® a')(I + a' 0 n') (B.6)

and it is positive definite with a middle eigenvalue of 1 then Proposition 4 of Ball and

James (1987) gives the vectors a' and n' to be

A3(1- A) (A3 - 1)a' = p ei + e3 (B. 7)
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and

n' = p-1 (- 3 -VA 1 e 1+ K A- l-1 e3), (B.8)

where A, < (A2 = 1) A3 are the eigenvalues of C with the corresponding el,

e2 and e 3. The constant p represents an invariant scaling of the solution and will be

used to chose unit normal vectors. The constant n can take on the values ±1. The

procedure is to solve B.2 first and then solve B.5 by constructing matrices of the form

B.6. Equations B.7 and B.8 then give explicit solutions.

To solve for the interface between the martensite twins, we form the matrix

C = U-'U2 U-. (B.9)

If B.2 is satisfied then C has the form B.6 and following identifications are made,

a = a', (B.10)

and

n =UAn'. (B.11)

In this case p is chosen such that n is a unit vector. the two solutions B.7 and B.8

provide to B.2 represent Type I and Type II twins. Once B.7, B.8, B.10 and B.11

are used to find a and n then the rotation RAB is found from B.2 directly for a given

choice of r,. The value of K used in B.7 and B.8 for the solution to B.2 will be called

i1.

Once the twin interface is known then we can proceed to apply Proposition 4 of

Ball and James (1987) to determine the A-M orientation. In this case the matrix

CO(A), given by

Co(A) = (UA + An ® a)(UA + Aa ® n), (B.12)

is of the form

C = (I+ m 0 b)(I + b 0 m) (B.13)

if kinematic compatibility as represented by B.6 is satisfied. Here A needs to be

solved. Propositions 5 and 6 of Ball and James (1987) state that a matrix of the form

132



B. 13 has eigenvalues that satisfy the requirement of Proposition 4 of Ball and James

(1987) if the value of A is root of the function

g(A) = det(Co(A) - I). (B.14)

Simplifying B.14 yields to equation 5.56 in Ball and James (1987),

g(A) = det1(U -I) + (A2 - A)(ja 21 - (det U2) U1a12IU-1 n12 ). (B.15)

Once the roots of g(A) are founds then the application of Proposition 4 proceeds

as above and

b-( A(1 -A 1 ) 1(A3 - 1)b = p ( A(I el + K , A e3 (B. 16)
A3 -A, A3- A, B.

m- =X-: -A- (- /1 - A, el + K x/h - e3). (B. 17)

Note that the solution of A must be in [0,1]. Equations B.3 and B.5 are then used

to determine RH. Again the value of K in B.7 and B.8 determines which of the two

solutions to B.5 for a given value of A is found. The value of K used in B.7 and B.8

when solving B.5 will be called '2. Thus there are two roots of g(A) in [0,1] and each

root results in two solutions corresponding to the two values of K2 . Thus, there are

four A-M interfaces possible for a given martensite twin. There are 24 choices for A

and B (omitting the compound twin case) and each pair can form either a Type I

or Type II twinned martensite corresponding to the two values of K1. Thus we have

24 x 2 x 4 = 192 A-M interfaces possible in this material.
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Figure B-1: (a) Schematic diagram of an austenite-twinned martensite transformation

system, and (b) a magnified schematic diagram of the twinned martensite.
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Appendix C

Algorithm to calculate the

austenite-martensite

transformation systems using the

crystallographic theory of

martensite

In this appendix we summarize the algorithm to calculate the austenite-martensite

transformation systems using the crystallographic theory of martensite. For further

details refer to Ball and James (1987) and Hane and Shield (2001).

Given: {UA, UB, K1 = ±1, K2 = ±1}.

Calculate: {a, n, b,m, A, RAB, RH}-

The steps used in the calculation procedure are:

Step 1. Construct the CAB matrix:

CAB =UA UB AU.

Step 2. Perform spectral decomposition of CAB to calculate its eigenvalues A1,

with A, < A2 = 1 < A3, and eigenvectors ej :

CAB A, el 0 e 1 + A2 e 2 9 e 2 + A3 e 3 0 e3 .
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Step 3. Calculate n' and a':

//A
n = (- /I -i ei + , - I e3),

,7 FA( I- A1)e + ,(A3 - 1) e
A3- A, A3~A,

Step 4. Calculate p and scale n' and a' to choose unit normal vectors

p= In', n'=p n' and a'= pa'.

Step 5. Calculate n and a:

n = UA n',

a'.

Step 6. Using equation 5.56 from Ball and James (1987) construct the quadratic

function g(A) and calculate the roots A, and A2 of g(A):

g(A) = det (U2 - 1) + (A2 - A) (Jat 2 - (det U2) IU-' a 2 IU- n12 ).

Step 7. Construct the C(Aj) and C(A2 ) matrices :

C(AI) = (UA+ A, n 9 a) (UA+ A, a 0 n),

C(A2 ) = (UA+ A2 n 0 a) (UA+ A2 a O n).

Step 8. Perform spectral decomposition of C(AI) to calculate its eigenvalues A1,

with A A2 = 1 < A3 , and eigenvectors ej :

C(AI) = A, el 0 el + A2 e 2  e2 + A3 e3  e3 .

Step 9. Calculate m and b:

m ( A(1 -)
b= (F3A

(- -A, e1 + A2N 3-1l e3 ),

1) _ (__ -_ 1)

el+K2 A,3 e3
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Step 10. Calculate p and scale m and b to choose unit normal vectors

p=Im, m=p' m and b=pb.

Step 11. Calculate the relative rotation RAB:

RAB = (UA + A2 aon)UB1

Step 12. Calculate the rotation RH of the average austenite-martensite defor-

mation:

RH= (1+ b 0 m) (UA+ A, a 0 n)-1 .

Repeat steps 8-12 for the C(A2) matrix.

C.1 Results of the CTM theory

The crystallographic theory of martensite (CTM) can be used to calculate the trans-

formation and twinning systems for different alloy systems. For example Titanium-

Nickel (Ti-Ni) alloys undergo a cubic to monoclinic transformation. Copper-based

alloys such as Cu-Al-Ni undergo a cubic to orthorhombic transformation whereas

Indium-Thalium (In-Th) alloys undergo a cubic to tetragonal transformation.

Shield (1995) has calculated the transformation systems for Cu-Al-Ni systems

undergoing cubic to orthorhombic transformation. For Cu-Al-Ni undergoing cubic

to orthorhombic transformation there are six different variants i.e U 1 ..U 6 . Corre-

sponding to these six different variants are a possibility of 96 different transformation

systems. These transformation systems are documented in Shield (1995).

Transformation systems for Ti-Ni alloys have also been calculated by Hane and

Shield (1999). The resulting 192 transformation systems for Ti-Ni alloys are calcu-

lated here using the CTM theory and the results are summarized from Tables 2 to

25. Each table has 8 possible transformation systems for a particular variant pair-

ing. The 24 transformation systems which are experimentally observed and used in

our calculations are labelled with an asterisk (*). The 192 possible transformation

systems for Ti-Ni alloys are :

137



Table 2. UA= U 1 and UB = U 3

rno,1
-0.9087
-0.9087
-0.3464
-0.3464

* -0.8888
* -0.8888
-0.3762
-0.3762

MO,2
-0.3334
0.3334
0.4334

-0.4334
-0.4045
0.4045
0.5137
-0.5137

rnO,3
0.2514
0.2514
-0.8320
-0.8320
0.2153
0.2153
-0.7711
-0.7711

bo,2
0.0527
0.0527
0.1211
0.1211
0.0568
0.0568
0.1195
0.1195

bo,2

-0.0535
0.0535
0.0397

-0.0397
-0.0638
0.0638
0.0485

-0.0485

bo,3
0.1060
0.1060
-0.0257
-0.0257
0.0991
0.0991

-0.0216
-0.0216

Table 3. UA = U 1 and UB = U 4

Mo,1  rnO,2  rnO,3  bo,1  bO, 2  bo,3
* -0.8888 0.2153 -0.4045 0.0568 0.0991 -0.0638
* -0.8888 0.2153 0.4045 0.0568 0.0991 0.0638
-0.3762 -0.7711 0.5137 0.1195 -0.0216 0.0485
-0.3762 -0.7711 -0.5137 0.1195 -0.0216 -0.0485
-0.9087 0.2514 -0.3334 0.0527 0.1060 -0.0535
-0.9087 0.2514 0.3334 0.0527 0.1060 0.0535
-0.3464 -0.8320 0.4334 0.1211 -0.0257 0.0397
-0.3464 -0.8320 -0.4334 0.1211 -0.0257 -0.0397

Table 4. UA = U 2 and UB = U3

mo,1  nMO, 2  rMO,3  bo,1  bo,2  bo, 3

-0.3762 0.7711 -0.5137 0.1195 0.0216 -0.0485
-0.3762 0.7711 0.5137 0.1195 0.0216 0.0485

* -0.8888 -0.2153 0.4045 0.0568 -0.0991 0.0638
* -0.8888 -0.2153 -0.4045 0.0568 -0.0991 -0.0638
-0.3464 0.8320 -0.4334 0.1211 0.0257 -0.0397
-0.3464 0.8320 0.4334 0.1211 0.0257 0.0397
-0.9087 -0.2514 0.3334 0.0527 -0.1060 0.0535
-0.9087 -0.2514 -0.3334 0.0527 -0.1060 -0.0535
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Table 5. UA = U 2 and UB = U 4

rno,1
-0.3762
-0.3762

* -0.8888
* -0.8888
-0.3464
-0.3464
-0.9087
-0.9087

MO,2
-0.5137
0.5137
0.4045

-0.4045
-0.4334
0.4334
0.3334

-0.3334

rMO,3
0.7711
0.7711
-0.2153
-0.2153
0.8320
0.8320
-0.2514
-0.2514

bo, 1
0.1195
0.1195
0.0568
0.0568
0.1211
0.1211
0.0527
0.0527

bo,2
-0.0485
0.0485
0.0638

-0.0638
-0.0397
0.0397
0.0535
-0.0535

bo,3
0.0216
0.0216
-0.0991
-0.0991
0.0257
0.0257

-0.1060
-0.1060

Table 6. UA = U 5 and UB = U7

m, 1  rMO,2  MO,3  bo,1  bo,2  bo,3
-0.3334 -0.9087 0.2514 -0.0535 0.0527 0.1060
0.3334 -0.9087 0.2514 0.0535 0.0527 0.1060
0.4334 -0.3464 -0.8320 0.0397 0.1211 -0.0257
-0.4334 -0.3464 -0.8320 -0.0397 0.1211 -0.0257
0.5137 -0.3762 -0.7711 0.0485 0.1195 -0.0216

* 0.4045 -0.8888 0.2153 0.0638 0.0568 0.0991
* -0.4045 -0.8888 0.2153 -0.0638 0.0568 0.0991
-0.5137 -0.3762 -0.7711 -0.0485 0.1195 -0.0216

Table 7. UA = U 5 and UB = U 8

Mn, 1  nMO, 2  MO,3  bo, 1  bo,2  bo,3
* 0.2153 -0.8888 -0.4045 0.0991 0.0568 -0.0638
* 0.2153 -0.8888 0.4045 0.0991 0.0568 0.0638
-0.7711 -0.3762 0.5137 -0.0216 0.1195 0.0485
-0.7711 -0.3762 -0.5137 -0.0216 0.1195 -0.0485
0.2514 -0.9087 -0.3334 0.1060 0.0527 -0.0535
0.2514 -0.9087 0.3334 0.1060 0.0527 0.0535
-0.8320 -0.3464 0.4334 -0.0257 0.1211 0.0397
-0.8320 -0.3464 -0.4334 -0.0257 0.1211 -0.0397
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Table 8. UA = U 6 and UB = U 7

Mo, 1  rnO,2  MO,3  b0, bo,2  bo,3

0.7711 -0.3762 -0.5137 0.0216 0.1195 -0.0485
0.7711 -0.3762 0.5137 0.0216 0.1195 0.0485

* -0.2153 -0.8888 0.4045 -0.0991 0.0568 0.0638
* -0.2153 -0.8888 -0.4045 -0.0991 0.0568 -0.0638

0.8320 -0.3464 -0.4334 0.0257 0.1211 -0.0397
0.8320 -0.3464 0.4334 0.0257 0.1211 0.0397
-0.2514 -0.9087 0.3334 -0.1060 0.0527 0.0535
-0.2514 -0.9087 -0.3334 -0.1060 0.0527 -0.0535

Table 9. UA = U 6 and UB = U8

rMo, 1  rnO,2  rMO,3  bo,1  bo,2  bo,3
* 0.4045 -0.8888 -0.2153 0.0638 0.0568 -0.0991
0.5137 -0.3762 0.7711 0.0485 0.1195 0.0216
-0.5137 -0.3762 0.7711 -0.0485 0.1195 0.0216

* -0.4045 -0.8888 -0.2153 -0.0638 0.0568 -0.0991
-0.4334 -0.3464 0.8320 -0.0397 0.1211 0.0257
0.4334 -0.3464 0.8320 0.0397 0.1211 0.0257
0.3334 -0.9087 -0.2514 0.0535 0.0527 -0.1060
-0.3334 -0.9087 -0.2514 -0.0535 0.0527 -0.1060

Table 10. UA = U9 and UB = U1 1

Mo,1  nO,2  rMO,3  bo, 1  bo,2  bo,3
-0.7711 0.5137 -0.3762 -0.0216 0.0485 0.1195
* 0.2153 0.4045 -0.8888 0.0991 0.0638 0.0568
* 0.2153 -0.4045 -0.8888 0.0991 -0.0638 0.0568
-0.7711 -0.5137 -0.3762 -0.0216 -0.0485 0.1195
0.2514 -0.3334 -0.9087 0.1060 -0.0535 0.0527
0.2514 0.3334 -0.9087 0.1060 0.0535 0.0527
-0.8320 0.4334 -0.3464 -0.0257 0.0397 0.1211
-0.8320 -0.4334 -0.3464 -0.0257 -0.0397 0.1211
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Table 11. UA = U9 and UB = U 1 2

no,1  MO,2  rnO,3  bo,1  bo,2 bo,3

0.5137 -0.7711 -0.3762 0.0485 -0.0216 0.1195
* 0.4045 0.2153 -0.8888 0.0638 0.0991 0.0568
* -0.4045 0.2153 -0.8888 -0.0638 0.0991 0.0568
-0.5137 -0.7711 -0.3762 -0.0485 -0.0216 0.1195
-0.3334 0.2514 -0.9087 -0.0535 0.1060 0.0527
0.3334 0.2514 -0.9087 0.0535 0.1060 0.0527
0.4334 -0.8320 -0.3464 0.0397 -0.0257 0.1211
-0.4334 -0.8320 -0.3464 -0.0397 -0.0257 0.1211

Table 12. UA = U1 o and UB = U1 1

mo,1  MO,2  MO,3  bo,1  bo, 2  bo,3
* 0.4045 -0.2153 -0.8888 0.0638 -0.0991 0.0568
0.5137 0.7711 -0.3762 0.0485 0.0216 0.1195
-0.5137 0.7711 -0.3762 -0.0485 0.0216 0.1195

* -0.4045 -0.2153 -0.8888 -0.0638 -0.0991 0.0568
-0.4334 0.8320 -0.3464 -0.0397 0.0257 0.1211
0.4334 0.8320 -0.3464 0.0397 0.0257 0.1211
0.3334 -0.2514 -0.9087 0.0535 -0.1060 0.0527
-0.3334 -0.2514 -0.9087 -0.0535 -0.1060 0.0527

Table 13. UA = U1 o and UB = U 12

rno,1  MO,2  rnO,3  bo,1  bo,2  bo,3
* -0.2153 0.4045 -0.8888 -0.0991 0.0638 0.0568

0.7711 0.5137 -0.3762 0.0216 0.0485 0.1195
0.7711 -0.5137 -0.3762 0.0216 -0.0485 0.1195

* -0.2153 -0.4045 -0.8888 -0.0991 -0.0638 0.0568
0.8320 -0.4334 -0.3464 0.0257 -0.0397 0.1211
0.8320 0.4334 -0.3464 0.0257 0.0397 0.1211

-0.2514 0.3334 -0.9087 -0.1060 0.0535 0.0527
-0.2514 -0.3334 -0.9087 -0.1060 -0.0535 0.0527
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= U1 and UB = U5

rn, 1

-0.0008
-0.8138
-0.8589
-0.2779
0.0419
-0.8887
-0.9098
-0.2012

rnO,2
-0.8138
-0.0008
-0.2779
-0.8589
-0.8887
0.0419
-0.2012
-0.9098

MO,3
0.5811
0.5811

-0.4302
-0.4302
0.4565
0.4565

-0.3629
-0.3629

bo,1
0.0934
0.0350
0.0052
0.0901
0.1008
0.0278
0.0010
0.0999

bo,2

0.0350
0.0934
0.0901
0.0052
0.0278
0.1008
0.0999
0.0010

bo,3
0.0433
0.0433
-0.0607
-0.0607
0.0375
0.0375
-0.0485
-0.0485

Table 15. UA = U1 and UB = U 9

mo,1  MO,2  MO,3  bo,1  bo,2  bo,3
-0.0008 0.5811 -0.8138 0.0934 0.0433 0.0350
-0.8138 0.5811 -0.0008 0.0350 0.0433 0.0934
-0.8589 -0.4302 -0.2779 0.0052 -0.0607 0.0901
-0.2779 -0.4302 -0.8589 0.0901 -0.0607 0.0052
0.0419 0.4565 -0.8887 0.1008 0.0375 0.0278
-0.8887 0.4565 0.0419 0.0278 0.0375 0.1008
-0.9098 -0.3629 -0.2012 0.0010 -0.0485 0.0999
-0.2012 -0.3629 -0.9098 0.0999 -0.0485 0.0010

Table 16. UA = U 2 and UB = U 7

Mo,1  nMO, 2  MO,3  bo,1  bo, 2  bo,3
0.9098 -0.2012 -0.3629 -0.0010 0.0999 -0.0485
-0.2012 0.9098 0.3629 0.0999 -0.0010 0.0485
-0.0419 -0.8887 0.4565 -0.1008 0.0278 0.0375
-0.8887 -0.0419 -0.4565 0.0278 -0.1008 -0.0375
0.8589 -0.2779 -0.4302 -0.0052 0.0901 -0.0607
-0.2779 0.8589 0.4302 0.0901 -0.0052 0.0607
0.0008 -0.8138 0.5811 -0.0934 0.0350 0.0433
-0.8138 0.0008 -0.5811 0.0350 -0.0934 -0.0433
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UA = U 2 and UB = U 12

mo,1
-0.0419
-0.2012
0.9098

-0.8887
0.0008

-0.2779
0.8589
-0.8138

MO,2
0.4565
0.3629
-0.3629
-0.4565
0.5811
0.4302
-0.4302
-0.5811

rnO,3
-0.8887
0.9098
-0.2012
-0.0419
-0.8138
0.8589
-0.2779
0.0008

bo,1
-0.1008
0.0999
-0.0010
0.0278
-0.0934
0.0901
-0.0052
0.0350

bo,2

0.0375
0.0485
-0.0485
-0.0375
0.0433
0.0607
-0.0607
-0.0433

bo,3

0.0278
-0.0010
0.0999
-0.1008
0.0350
-0.0052
0.0901
-0.0934

Table 18. UA = U 3 and UB = U 6

M ,1  rnO,2  rmo,3  bo,1  bo, 2  bo,3
0.8589 -0.2779 0.4302 -0.0052 0.0901 0.0607
-0.8138 0.0008 0.5811 0.0350 -0.0934 0.0433
0.0008 -0.8138 -0.5811 -0.0934 0.0350 -0.0433
-0.2779 0.8589 -0.4302 0.0901 -0.0052 -0.0607
0.9098 -0.2012 0.3629 -0.0010 0.0999 0.0485
-0.2012 0.9098 -0.3629 0.0999 -0.0010 -0.0485
-0.0419 -0.8887 -0.4565 -0.1008 0.0278 -0.0375
-0.8887 -0.0419 0.4565 0.0278 -0.1008 0.0375

Table 19. UA = U 3 and UB = U1 1

mr, 1  MO,2  rMO,3  bo,1  bo,2 bo,3
-0.8589 0.4302 -0.2779 0.0052 0.0607 0.0901
-0.2779 0.4302 -0.8589 0.0901 0.0607 0.0052
-0.0008 -0.5811 -0.8138 0.0934 -0.0433 0.0350
-0.8138 -0.5811 -0.0008 0.0350 -0.0433 0.0934
-0.9098 0.3629 -0.2012 0.0010 0.0485 0.0999
-0.8887 -0.4565 0.0419 0.0278 -0.0375 0.1008
0.0419 -0.4565 -0.8887 0.1008 -0.0375 0.0278
-0.2012 0.3629 -0.9098 0.0999 0.0485 0.0010
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Table 20. UA = U 4 and UB = U 8

rno,1
0.0419
-0.8887
-0.9098
-0.2012
-0.0008
-0.2779
-0.8589
-0.8138

rnO,2
-0.8887
0.0419
-0.2012
-0.9098
-0.8138
-0.8589
-0.2779
-0.0008

rnO,3
-0.4565
-0.4565
0.3629
0.3629

-0.5811
0.4302
0.4302
-0.5811

bo,1
0.1008
0.0278
0.0010
0.0999
0.0934
0.0901
0.0052
0.0350

bo,2

0.0278
0.1008
0.0999
0.0010
0.0350
0.0052
0.0901
0.0934

bo,3
-0.0375
-0.0375
0.0485
0.0485
-0.0433
0.0607
0.0607
-0.0433

Table 21. UA = U 4 and UB = U 10
no,1  MO,2  rnO,3  bo,1  bo,2  bo,3

0.9098 0.3629 -0.2012 -0.0010 0.0485 0.0999
-0.2012 -0.3629 0.9098 0.0999 -0.0485 -0.0010
-0.0419 -0.4565 -0.8887 -0.1008 -0.0375 0.0278
-0.8887 0.4565 -0.0419 0.0278 0.0375 -0.1008
0.8589 0.4302 -0.2779 -0.0052 0.0607 0.0901
-0.8138 0.5811 0.0008 0.0350 0.0433 -0.0934
0.0008 -0.5811 -0.8138 -0.0934 -0.0433 0.0350
-0.2779 -0.4302 0.8589 0.0901 -0.0607 -0.0052

Table 22. UA = U 5 and UB = U 9

mr, 1  MO,2  MO,3  bo,1  bo,2  bo,3
0.5811 -0.0008 -0.8138 0.0433 0.0934 0.0350
0.5811 -0.8138 -0.0008 0.0433 0.0350 0.0934
-0.4302 -0.8589 -0.2779 -0.0607 0.0052 0.0901
-0.4302 -0.2779 -0.8589 -0.0607 0.0901 0.0052
0.4565 0.0419 -0.8887 0.0375 0.1008 0.0278
0.4565 -0.8887 0.0419 0.0375 0.0278 0.1008
-0.3629 -0.9098 -0.2012 -0.0485 0.0010 0.0999
-0.3629 -0.2012 -0.9098 -0.0485 0.0999 0.0010
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Table 23. UA = U 6 and UB = U1 1

m, 1
0.4565
0.3629
-0.3629
-0.4565
0.5811
0.4302

-0.4302
-0.5811

nO,2
-0.0419
-0.2012
0.9098
-0.8887
0.0008
-0.2779
0.8589
-0.8138

nO,3
-0.8887
0.9098
-0.2012
-0.0419
-0.8138
0.8589
-0.2779
0.0008

bo,1
0.0375
0.0485
-0.0485
-0.0375
0.0433
0.0607

-0.0607
-0.0433

bo,2

-0.1008
0.0999
-0.0010
0.0278
-0.0934
0.0901
-0.0052
0.0350

bo,3
0.0278
-0.0010
0.0999
-0.1008
0.0350
-0.0052
0.0901
-0.0934

Table 24. UA = U7 and UB = U 1 2

no,1  MO,2  rnO,3  bo, bo,2  bo,3
0.3629 -0.9098 -0.2012 0.0485 0.0010 0.0999
0.3629 -0.2012 -0.9098 0.0485 0.0999 0.0010

-0.4565 0.0419 -0.8887 -0.0375 0.1008 0.0278
-0.4565 -0.8887 0.0419 -0.0375 0.0278 0.1008
0.4302 -0.8589 -0.2779 0.0607 0.0052 0.0901
0.4302 -0.2779 -0.8589 0.0607 0.0901 0.0052

-0.5811 -0.0008 -0.8138 -0.0433 0.0934 0.0350
-0.5811 -0.8138 -0.0008 -0.0433 0.0350 0.0934

Table 25. UA = U8 and UB = U10

rMn, 1  rnO,2  rnO,3  bo,1  bo,2  bo,3
0.4302 0.8589 -0.2779 0.0607 -0.0052 0.0901
0.5811 -0.8138 0.0008 0.0433 0.0350 -0.0934
-0.5811 0.0008 -0.8138 -0.0433 -0.0934 0.0350
-0.4302 -0.2779 0.8589 -0.0607 0.0901 -0.0052
0.3629 0.9098 -0.2012 0.0485 -0.0010 0.0999
0.4565 -0.8887 -0.0419 0.0375 0.0278 -0.1008
-0.4565 -0.0419 -0.8887 -0.0375 -0.1008 0.0278
-0.3629 -0.2012 0.9098 -0.0485 0.0999 -0.0010
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Appendix D

Example of a fortran code to

calculate the austenite-martensite

transformation systems using CTM

PROGRAM MAIN

C+***** **** **** ********** **** *** ** ****** **************** *** *

C THIS PROGRAM CALCULATES THE A USTENITE/MARTENSITE

C SYSTEMS FOR TI-NI

C ** ****** * * * * ********** *** ***** *** *** *********** ** *** * ***

IMPLICIT REAL*8(A-H,O-Z)

PARAMETER(THETA = 0.9563DO, SIGMA = 1.0243DO,TAU = 0.05803DO,

+ RHO = -0.04266DO )

REAL*8 Ul(3,3),U2(3,3),U3(3,3),U4(3,3),U5(3,3),U6(3,3),

+ U7(3,3),U8(3,3),U9(3,3),U1O(3,3),U11(3,3),U12(3,3),

+ UA(3,3),UB(3,3),AVEC(3),NVEC(3),UAINV(3,3),

+ BVEC1(3),MVEC1(3),BVEC2(3),MVEC2(3),NTILDE(3)
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Open file for writing output

OPEN (UNIT=21,FILE=' systems. dat',STATUS='UNKNOWN')

WRITE(21,*) 'RESULTS FROM CRYSTALLOGRAPHIC THEORY OF MARTENSITE'

WRITE(21,*) '--------------------------------------------------

WRITE(21,*)' 192'

WRITE(21,*)' B(1) B(2) B(3) M(1) M(2) M(3)'

U1(1,1) = THETA

U1(1,2) = RHO

U1(1,3) = RHO

U1(2,2) = SIGMA

U1(2,3) = TAU

U1(3,3) = SIGMA

U1(2,1) = U1(1,2)

U1(3,1) = U1(1,3)

U1(3,2) = U1(2,3)

U2(1,1) = THETA

U2(1,2) = -RHO

U2(1,3) = -RHO

U2(2,2) = SIGMA

U2(2,3) = TAU

U2(3,3) = SIGMA

U2(2,1) = U2(1,2)

U2(3,1) = U2(1,3)

U2(3,2) = U2(2,3)

U3(1,1) = THETA

U3(1,2) = -RHO
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U3(1,3)

U3(2,2)

U3(2,3)

U3(3,3)

U3(2,1)

U3(3,1)

U3(3,2)

U4(1,1)

U4(1,2)

U4(1,3)

U4(2,2)

U4(2,3)

U4(3,3)

U4(2,1)

U4(3,1)

U4(3,2)

U5(1,1)

U5(1,2)

U5(1,3)

U5(2,2)

U5(2,3)

U5(3,3)

U5(2,1)

U5(3,1)

U5(3,2)

U6(1,1)

U6(1,2)

= RHO

= SIGMA

= -TAU

= SIGMA

= U3(1,2)

= U3(1,3)

= U3(2,3)

= THETA

= RHO

= -RHO

= SIGMA

= -TAU

= SIGMA

= U4(1,2)

= U4(1,3)

= U4(2,3)

= SIGMA

= RHO

= TAU

= THETA

= RHO

= SIGMA

= U5(1,2)

= U5(1,3)

= U5(2,3)

= SIGMA

= -RHO
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U6(1,3)

U6(2,2)

U6(2,3)

U6(3,3)

U6(2,1)

U6(3,1)

U6(3,2)

U7(1,1)

U7(1,2)

U7(1,3)

U7(2,2)

U7(2,3)

U7(3,3)

U7(2,1)

U7(3,1)

U7(3,2)

U8(1,1)

U8(1,2)

U8(1,3)

U8(2,2)

U8(2,3)

U8(3,3)

U8(2,1)

U8(3,1)

U8(3,2)

U9(1,1)

U9(1,2)

= TAU

= THETA

= -RHO

= SIGMA

= U6(1,2)

= U6(1,3)

= U6(2,3)

= SIGMA

= -RHO

= -TAU

= THETA

= RHO

= SIGMA

= U7(1,2)

= U7(1,3)

= U7(2,3)

= SIGMA

=RHO

= -TAU

= THETA

= -RHO

= SIGMA

= U8(1,2)

= U8(1,3)

= U8(2,3)

= SIGMA

=TAU
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U9(1,3) = RHO

U9(2,2) = SIGMA

U9(2,3) = RHO

U9(3,3) = THETA

U9(2,1) = U9(1,2)

U9(3,1) = U9(1,3)

U9(3,2) = U9(2,3)

U10(1,1) = SIGMA

U10(1,2) = TAU

U10(1,3) = -RHO

U10(2,2) = SIGMA

U10(2,3) = -RHO

U10(3,3) = THETA

U10(2,1) = U10(1,2)

U10(3,1) = U10(1,3)

U10(3,2) = U10(2,3)

U11(1,1) = SIGMA

U11(1,2) = -TAU

U11(1,3) = RHO

U11(2,2) = SIGMA

U11(2,3) = -RHO

U11(3,3) = THETA

U11(2,1) = U11(1,2)

U11(3,1) = U11(1,3)

U11(3,2) = U11(2,3)

U12(1,1) = SIGMA

U12(1,2) = -TAU

150



U12(1,3) = -RHO

U12(2,2) = SIGMA

U12(2,3) = RHO

U12(3,3) = THETA

U12(2,1) = U12(1,2)

U12(3,1) = U12(1,3)

U12(3,2) = U12(2,3)

C PAIR 1 (Example using variant 1 and variant 3)

C REPEAT FOR ALL OTHER VARIANT COMBINATIONS (Appendix C)

WRITE(20,*) '-------------------------- PAIR 1'

C

C SELECT THE MATRICES UA AND UB

C

DO 10 I=1,3

DO 10 J=1,3

UA(I, J) = U1(I, J)

UB(I, J) = U3(I, J)

10 CONTINUE

C---------------------------------------------------

AKAPPA1 = 1.DO

AKAPPA2 = 1.D0

CALL ZEROV(NVEC,3)

CALL ZEROV(AVEC,3)

CALL ZEROV(MVEC1,3)

CALL ZEROV(BVEC1,3)

CALL ZEROV(MVEC2,3)
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CALL ZEROV(BVEC2,3)

CALL COMPUTE(UA,UB,AKAPPA1,AKAPPA2,NVEC,AVEC,

+ ROOT1,ROOT2,MVEC1,BVEC1,MVEC2,BVEC2)

C---------------------------------------------------

AKAPPA1 = 1.DO

AKAPPA2 = -1.DO

CALL ZEROV(NVEC,3)

CALL ZEROV(AVEC,3)

CALL ZEROV(MVEC1,3)

CALL ZEROV(BVEC1,3)

CALL ZEROV(MVEC2,3)

CALL ZEROV(BVEC2,3)

CALL COMPUTE(UA,UB,AKAPPA1,AKAPPA2,NVEC,AVEC,

+ ROOT1,ROOT2,MVEC1,BVEC1,MVEC2,BVEC2)

C---------------------------------------------------

AKAPPA1 = -1.DO

AKAPPA2 = 1.DO

CALL ZEROV(NVEC,3)

CALL ZEROV(AVEC,3)

CALL ZEROV(MVEC1,3)

CALL ZEROV(BVEC1,3)

CALL ZEROV(MVEC2,3)

CALL ZEROV(BVEC2,3)

CALL COMPUTE(UA,UB,AKAPPA1,AKAPPA2,NVEC,AVEC,
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ROOT1,ROOT2,MVEC1,BVEC1,MVEC2,BVEC2)

C--------------------------------------------------

AKAPPA1 = -1.DO

AKAPPA2 = -1.DO

CALL ZEROV(NVEC,3)

CALL ZEROV(AVEC,3)

CALL ZEROV(MVEC1,3)

CALL ZEROV(BVEC1,3)

CALL ZEROV(MVEC2,3)

CALL ZEROV(BVEC2,3)

CALL ZEROV(SVEC1,3)

CALL ZEROV(SVEC2,3)

CALL COMPUTE(UA,UB,AKAPPA1,AKAPPA2,NVEC,AVEC,

+ ROOT1,ROOT2,MVEC1,BVEC1,MVEC2,BVEC2)

C---------------------------------------------------

STOP

END

C----------------------------------------------------

SUBROUTINE COMPUTE(UA,UB,AKAPPA1,AKAPPA2,NVEC,AVEC,

+ ROOT1,ROOT2,MVEC1,BVEC1,MVEC2,BVEC2)

IMPLICIT REAL*8(A-H,O-Z)

REAL*8 UA(3,3),UB(3,3),RAB(3,3),RH(3,3),

+ AVEC(3),NVEC(3),

+ APRIME(3),NPRIME(3),E1(3),E2(3),E3(3),

+ UAINV(3,3),C(3,3),CO(3,3),AUX1(3,3),AUX2(3,3),

+ EIGVAL(3),EIGVEC(3,3),AIDEN(3,3),NTILDE(3),

+ ATILDE(3),CLAMBDA1(3,3),CLAMBDA2(3,3),
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+ BVEC1(3),MVEC1(3),BVEC2(3),MVEC2(3)

C

C CONSTRUCT THE MATRIX C

C

CALL MPROD(UB,UB,AUX1)

CALL M3INV(UA,UAINV)

CALL MPROD(AUX1,UAINV,AUX2)

CALL MPROD(UAINV,AUX2,C)

C

C CALCULATE THE EIGENVALUES AND EIGENVECTORS OF C

C

CALL SPECTRAL(C,EIGVAL,EIGVEC)

C

C

C

C

NOTE THAT SPECTRAL CALCULATES THE EIGENVALUES IN

DESCENDING ORDER. REORDER THE EIGENVALUES AND EIGENVECTORS

ALAMBDA1 = EIGVAL(3)

ALAMBDA2 = EIGVAL(2)

ALAMBDA3 = EIGVAL(1)

DO 20 I = 1,3

E1(I) = EIGVEC(I,3)

E2(I) = EIGVEC(I,2)

E3(I) = EIGVEC(I,1)

20 CONTINUE

CALL ZEROV(NPRIME,3)

CALL ZEROV(APRIME,3)
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DO 30 I=1,3

NPRIME(I) =

+ ((DSQRT(ALAMBDA3)-DSQRT(ALAMBDA1))/DSQRT(ALAMBDA3-ALAMBDA1))

+ * ( - DSQRT(1.DO - ALAMBDA1)*E1(I)+

+ AKAPPA1*DSQRT(ALAMBDA3 - 1.DO)*E3(I) )

30 CONTINUE

CALL DOTPV(NPRIME,NPRIME,RHO)

RHO = DSQRT(RHO)

RHOINV = 1.DO/RHO

DO 40 I=1,3

NPRIME(I) = RHOINV*NPRIME(I)

40 CONTINUE

DO 50 I=1,3

APRIME(I) = RHO*(

+ DSQRT(ALAMBDA3*(1.DO-ALAMBDA1)/(ALAMBDA3-ALAMBDA1))*E1(I)+

+ AKAPPA1*

+ DSQRT(ALAMBDA1*(ALAMBDA3-1.DO)/(ALAMBDA3-ALAMBDA1))*E3(I))

50 CONTINUE

DO 60 I=1,3

AVEC(I) = APRIME(I)

60 CONTINUE

DO 70 I=1,3

DO 70 J=1,3

NVEC(I) = NVEC(I) + UA(I,J)*NPRIME(J)
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70 CONTINUE

CALL DOTPV(NVEC,NVEC,AMAG)

AMAG = DSQRT(AMAG)

C

C NORMALIZE SO THAT NVEC HAS UNIT NORM

C

DO 80 I=1,3

NVEC(I) = NVEC(I)/AMAG

AVEC(I) = AVEC(I)*AMAG

80 CONTINUE

C

C CONTRUCT THE FUNCTION G(LAMBDA), EQUATION 5.56 OF BALL AND JAMES

C

CALL ZEROM(AUX1)

CALL ONEM(AIDEN)

CALL MPROD(UA,UA,AUX1)

CALL MDET(AUX1,DETUA2)

DO 90 I=1,3

DO 90 J=1,3

AUX2(I,J) = AUX1(I,J)-AIDEN(I,J)

90 CONTINUE

CALL MDET(AUX2,CQUAD)

CALL ZEROV(NTILDE,3)

CALL ZEROV(ATILDE,3)

DO 100 I=1,3

DO 100 J=1,3
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NTILDE(I) = NTILDE(I) + UAINV(I,J)*NVEC(J)

ATILDE(I) = ATILDE(I) + UAINV(I,J)*AVEC(J)

100 CONTINUE

CALL DOTPV(NTILDE,NTILDE,AMAGNTILDE2)

CALL DOTPV(ATILDE,ATILDE,AMAGATILDE2)

CALL DOTPV(ATILDE,ATILDE,SMAG1)

CALL DOTPV(AVEC,AVEC,AMAGAVEC2)

DO 236 I=1,3

ATILDE(I) = ATILDE(I)/DSQRT(SMAG1)

236 CONTINUE

AQUAD = AMAGAVEC2 - DETUA2*AMAGATILDE2*AMAGNTILDE2

BQUAD = - AQUAD

DISCRIM = DSQRT(BQUAD*BQUAD - 4.DO*AQUAD*CQUAD)

ROOT1 = (- BQUAD + DISCRIM)/(2.DO*AQUAD)

ROOT2 = (- BQUAD - DISCRIM)/(2.DO*AQUAD)

C

C CONSTRUCT THE MATRICES CLAMBDA1 AND CLAMBDA2

C

CALL ZEROM(AUX1)

CALL ZEROM(AUX2)

DO 110 I=1,3

DO 110 J=1,3

AUX1(I,J) = UA(I,J) + ROOT1*NVEC(I)*AVEC(J)

AUX2(I,J) = UA(I,J) + ROOT1*AVEC(I)*NVEC(J)

110 CONTINUE
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CALL MPROD(AUX1,AUX2,CLAMBDA1)

CALL ZEROM(AUX1)

CALL ZEROM(AUX2)

DO 120 I=1,3

DO 120 J=1,3

AUX1(I,J) = UA(I,J) + ROOT2*NVEC(I)*AVEC(J)

AUX2(I,J) = UA(I,J) + ROOT2*AVEC(I)*NVEC(J)

120 CONTINUE

CALL MPROD(AUX1,AUX2,CLAMBDA2)

C

C CALCULATE THE EIGENVALUES AND EIGENVECTORS OF CLAMBDA1

C

CALL SPECTRAL(CLAMBDA1,EIGVAL,EIGVEC)

NOTE THAT SPECTRAL CALCULATES THE EIGENVALUES IN

DESCENDING ORDER. REORDER THE EIGENVALUES AND EIGENVECTORS

C

C

C

ALAMBDA1 = EIGVAL(3)

ALAMBDA2 = EIGVAL(2)

ALAMBDA3 = EIGVAL(1)

DO 130 I = 1,3

E1(I) = EIGVEC(I,3)

E2(I) = EIGVEC(I,2)

E3(I) = EIGVEC(I,1)

130 CONTINUE

CALL ZEROV(NPRIME,3)
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CALL ZEROV(APRIME,3)

DO 140 I=1,3

NPRIME(I) =

+ ((DSQRT(ALAMBDA3)-DSQRT(ALAMBDA1))/DSQRT(ALAMBDA3-ALAMBDA1))

+ *( - DSQRT(1.D0 - ALAMBDA1)*E1(I)+

+ AKAPPA2*DSQRT(ALAMBDA3 - 1.DO)*E3(I) )

140 CONTINUE

CALL DOTPV(NPRIME,NPRIME,RHO)

RHO = DSQRT(RHO)

RHOINV = 1.DO/RHO

C WRITE(20,*)' RHO = ',RHO,' RHOINV = ',RHOINV

DO 150 I=1,3

NPRIME(I) = RHOINV*NPRIME(I)

150 CONTINUE

DO 160 I=1,3

APRIME(I) = RHO*(

+ DSQRT(ALAMBDA3*(1.DO-ALAMBDA1)/(ALAMBDA3-ALAMBDA1))*E1(I)+

+ AKAPPA2*

+ DSQRT(ALAMBDA1*(ALAMBDA3-1.DO)/(ALAMBDA3-ALAMBDA1))*E3(I)

+ )

160 CONTINUE

DO 170 I=1,3
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BVEC1 (I) = APRIME(I)

MVEC1(I) = NPRIME(I)

170 CONTINUE

C

C CALCULATE MVEC2 AND BVEC2 CORRESPONDING TO CLAMBDA2 AND ROOT2

C

C CALCULATE THE EIGENVALUES AND EIGENVECTORS OF CLAMBDA1

C

CALL SPECTRAL(CLAMBDA2,EIGVAL,EIGVEC)

C

C

C

C

NOTE THAT SPECTRAL CALCULATES THE EIGENVALUES IN

DESCENDING ORDER. REORDER THE EIGENVALUES AND EIGENVECTORS

ALAMBDA1 = EIGVAL(3)

ALAMBDA2 = EIGVAL(2)

ALAMBDA3 = EIGVAL(1)

DO 180 I = 1,3

E1(I) = EIGVEC(I,3)

E2(I) = EIGVEC(I,2)

E3(I) = EIGVEC(I,1)

180 CONTINUE

CALL ZEROV(NPRIME,3)

CALL ZEROV(APRIME,3)

DO 190 I=1,3

NPRIME(I) =
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+ ((DSQRT(ALAMBDA3)-DSQRT(ALAMBDAl))/DSQRT(ALAMBDA3-ALAMBDA1))

+ * ( - DSQRT(1.D0 - ALAMBDA1)*E1(I)+

+ AKAPPA2*DSQRT(ALAMBDA3 - 1.DO)*E3(I) )

190 CONTINUE

CALL DOTPV(NPRIME,NPRIME,RHO)

RHO = DSQRT(RHO)

RHOINV = 1.DO/RHO

C WRITE(20,*)' RHO = ',RHO, ' RHOINV = ',RHOINV

DO 200 I=1,3

NPRIME(I) = RHOINV*NPRIME(I)

200 CONTINUE

DO 210 I=1,3

APRIME(I) = RHO*(

+ DSQRT(ALAMBDA3*(1.DO-ALAMBDA1)/(ALAMBDA3-ALAMBDA1))*E1(I)+

+ AKAPPA2*

+ DSQRT(ALAMBDA1*(ALAMBDA3-1.DO)/(ALAMBDA3-ALAMBDA1))*E3(I))

210 CONTINUE

DO 220 I=1,3

BVEC2(I) = APRIME(I)

MVEC2(I) = NPRIME(I)

220 CONTINUE

WRITE(21,7)BVEC1(1),BVEC1(2),BVEC1(3),

+ MVEC1(1),MVEC1(2),MVEC1(3)
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WRITE(21,7)BVEC2(1),BVEC2(2),BVEC2(3),

+ MVEC2(1),MVEC2(2),MVEC2(3)

7 FORMAT(F7.4,4X,F7.4,4X,F7.4,4X,F7.4,4X,F7.4,4X,F7.4)

RETURN

END

C **********************************************************************

C

C THE FOLLOWING SUBROUTINES CALCULATE THE SPECTRAL

C DECOMPOSITION OF A SYMMETRIC THREE BY THREE MATRIX

C

C **********************************************************************

SUBROUTINE SPECTRAL(A,D,V)

C THIS SUBROUTINE CALCULATES THE EIGENVALUES AND EIGENVECTORS OF

C A SYMMETRIC 3 BY 3 MATRIX [A].

C

C THE OUTPUT CONSISTS OF A VECTOR D CONTAINING THE THREE

C EIGENVALUES IN ASCENDING ORDER, AND

C A MATRIX [V] WHOSE COLUMNS CONTAIN THE CORRESPONDING

C EIGENVECTORS.

C ----------------------------------------------------------------------

IMPLICIT REAL*8 (A-H,O-Z)

PARAMETER(NP=3)

DIMENSION D(NP),V(NP,NP)

DIMENSION A(3,3),E(NP,NP)

DO 2 I = 1,3

DO 1 J= 1,3
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E(I,J) = A(I,J)

1 CONTINUE

2 CONTINUE

CALL JACOBI(E,3,NP,D,V,NROT)

CALL EIGSRT(D,V,3,NP)

RETURN

END

C **********************************************************************

SUBROUTINE JACOBI(A,N,NP,D,V,NROT)

C

C COMPUTES ALL EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC

C MATRIX [A], WHICH IS OF SIZE N BY N, STORED IN A PHYSICAL

C NP BY BP ARRAY. ON OUTPUT, ELEMENTS OF [A] ABOVE THE DIAGONAL

C ARE DESTROYED, BUT THE DIAGONAL AND SUB-DIAGONAL ARE UNCHANGED

C AND GIVE FULL INFORMATION ABOUT THE ORIGINAL SYMMETRIC MATRIX.

C VECTOR D RETURNS THE EIGENVALUES OF [A] IN ITS FIRST N ELEMENTS.

C [V] IS A MATRIX WITH THE SAME LOGICAL AND PHYSICAL DIMENSIONS AS

C [A] WHOSE COLUMNS CONTAIN, ON OUTPUT, THE NORMALIZED

C EIGENVECTORSOF [A]. NROT RETURNS THE NUMBER OF JACOBI ROTATIONS

C WHICH WERE REQUIRED.

C

C THIS SUBROUTINE IS TAKEN FROM "NUMERICAL RECIPES", PAGE 346.

C ----------------------------------------------------------------------

IMPLICIT REAL*8 (A-H,O-Z)

PARAMETER (NMAX =100)

DIMENSION A(NP,NP),D(NP),V(NP,NP),B(NMAX),Z(NMAX)
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C

C INITIALIZE [VI TO THE IDENTITY MATRIX

C

DO 12 IP = 1,N

DO 11 IQ = 1,N

V(IP,IQ) = O.DO

11 CONTINUE

V(IP,IP) = 1.DO

12 CONTINUE

C INITIALIZE B AND D TO THE DIAGONAL OF [A], AND Z TO ZERO.

C THE C VECTOR Z WILL ACCUMULATE TERMS OF THE FORM T*APQ AS

C EQUATION (11.1.14)

DO 13 IP = 1,N

B(IP) = A(IP,IP)

D(IP) = B(IP)

Z(IP) = O.DO

13 CONTINUE

NROT = 0

DO 24 I = 1,99

C

C SUM OFF-DIAGONAL ELEMENTS

C

SM = 0.DO

DO 15 IP = 1, N-1
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DO 14 IQ = IP + 1, N

SM = SM + DABS ( A(IP,IQ ))

14 CONTINUE

15 CONTINUE

C

C IF SUM = 0., THEN RETURN. THIS IS THE NORMAL RETURN

C WHICH RELIES ON QUADRATIC CONVERGENCE TO MACHINE

C UNDERFLOW.

C

IF( SM .EQ. 0.DO) RETURN

C IF( SM .LT. 1.0D-15) RETURN

C IN THE FIRST THREE

C SWEEPS CARRY OUT THE PQ ROTATION ONLY IF

C IAPQI > TRESH, WHERE TRESH IS SOME THRESHOLD VALUE,

C SEE EQUATION (11.1.25). THEREAFTER TRESH = 0.

IF( I .LT. 4) THEN

TRESH = 0.2DO*SM/N**2

ELSE

TRESH = 0.DO

END IF

DO 22 IP = 1, N-1

DO 21 IQ = IP+1,N

G = 100.DO*DABS(A(IP,IQ))

C

C AFTER FOUR SWEEPS, SKIP THE ROTATION IF

C THE

C OFF-DIAGONAL ELEMENT IS SMALL.
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C

IF((I .GT. 4) .AND. ( DABS(D(IP))+G .EQ. DABS( D(IP)) )

+ .AND. ( DABS(D(IQ))+G .EQ. DABS( D(IQ)) ) )THEN

A(IP,IQ) = 0.DO

ELSE IF( DABS(A(IP,IQ)) .GT. TRESH) THEN

H = D(IQ) - D(IP)

IF(DABS(H)+G .EQ. DABS(H)) THEN

T= 1./(2.*THETA), EQUATION (11.1.10)

T =A(IP,IQ)/H

ELSE

THETA = 0.5DO*H/A(IP,IQ)

T =1.DO/(DABS(THETA)+DSQRT(1.DO+THETA**2))

IF(THETA .LT. 0.DO) T = -T

END IF

C = 1.DO/DSQRT(1.DO + T**2)

S = T*C

TAU = S/(1.DO + C)

H = T*A(IP,IQ)

Z(IP) = Z(IP) - H

Z(IQ) = Z(IQ) + H

D(IP) = D(IP) - H
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D(IQ) = D(IQ) + H

A(IP,IQ) = O.DO

C

C

C

CASE OF ROTATIONS 1<= J < P

DO 16 J = 1, IP-1

G = A(J,IP)

H = A(J,IQ)

A(J,IP) = G - S*(H + G*TAU)

A(J,IQ) = H + S*(G - H*TAU)

16 CONTINUE

C

CASE OF ROTATIONS P < J < QC

C

DO 17 J = IP+1, IQ-1

G = A(IP,J)

H = A(J,IQ)

A(IP,J) = G - S*(H + G*TAU)

A(J,IQ) = H + S*(G - H*TAU)

17 CONTINUE

C

CASE OF ROTATIONS Q < J <= NC

C

DO 18 J = IQ+1, N

G = A(IP,J)

H = A(IQ,J)

A(IP,J) = G - S*(H + G*TAU)

A(IQ,J) = H + S*(G - H*TAU)

18 CONTINUE
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DO 19 J = 1,N

G = V(J, IP)

H = V(J,IQ)

V(J,IP) = G - S*(H + G*TAU)

V(J,IQ) = H + S*(G - H*TAU)

19 CONTINUE

NROT = NROT + 1

END IF

21 CONTINUE

22 CONTINUE

C UPDATE D WITH THE SUM OF T*APQ, AND REINITIALIZE Z C

DO 23 IP = 1, N

B(IP) = B(IP) + Z(IP)

D(IP) = B(IP)

Z(IP) = 0.DO

23 CONTINUE

24 CONTINUE

C

C IF THE ALGORITHM HAS REACHED THIS STAGE, THEN

C THERE ARE TOO MANY SWEEPS, PRINT A DIAGNOSTIC

C AND EXIT

C

WRITE (6, '(/1X,A/)')'FROM JACOBI: 99 ITERS. SHOULD NEVER HAPPEN'

STOP

RETURN

END

C **********************************************************************

168



SUBROUTINE EIGSRT(D,V,N,NP)

C GIVEN THE EIGENVALUES D AND EIGENVECTORS [V] AS OUTPUT FROM

C JACOBI, THIS ROUTINE SORTS THE EIGENVALUES INTO ASCENDING ORDER,

C AND REARRANGES THE COLUMNS OF [VI ACCORDINGLY.

C

C THIS SUBROUTINE IS TAKEN FROM "NUMERICAL RECIPES", P. 348.

C ----------------------------------------------------------------------

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION D(NP),V(NP,NP)

DO 13 I = 1,N-1

K= I

P = D(I)

DO 11 J = I+1,N

IF(D(J) .GE. P) THEN

K= J

P = D(J)

END IF

11 CONTINUE

IF(K .NE. I) THEN

D(K) = D(I)

D(I) = P

DO 12 J = 1,N

P = V(J,I)

V(J,I) = V(J,K)

V(J,K) = P

12 CONTINUE

END IF

13 CONTINUE
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RETURN

END

C **********************************************************************

C

C THE FOLLOWING SUBROUTINES ARE UTILITY ROUTINES

C

C **********************************************************************

SUBROUTINE ZEROV(V,SIZE)

C

C THIS SUBROUTINE STORES THE ZERO VECTOR IN A VECTOR V

C ----------------------------------------------------------------------

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER SIZE

REAL*8 V(SIZE)

DO 1 I = 1,SIZE

V(I) = 0.DO

1 CONTINUE

RETURN

END

C **********************************************************************

SUBROUTINE ZEROM(A)

C

C THIS SUBROUTINE SETS ALL ENTRIES OF A 3 BY 3 MATRIX TO O.DO

C ----------------------------------------------------------------------

REAL*8 A(3,3)

DO 1 I=1,3

DO 1 J=1,3
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A(I,J) = 0.DO

1 CONTINUE

RETURN

END

C **********************************************************************

SUBROUTINE ONEM(A)

C

C THIS SUBROUTINE STORES THE IDENTITY MATRIX IN THE

C 3 BY 3 MATRIX [A]

C ----------------------------------------------------------------------

REAL*8 A(3,3)

DO 1 I = 1,3

DO 1 J = 1,3

IF (I .EQ. J) THEN

A(I,J) = 1.ODO

ELSE

A(I,J) = O.ODO

END IF

1 CONTINUE

RETURN

END

C **********************************************************************

SUBROUTINE MTRANS(A,ATRANS)

C THIS SUBROUTINE CALCULATES THE TRANSPOSE OF AN 3 BY 3

C MATRIX [A], AND PLACES THE RESULT IN ATRANS.

C ----------------------------------------------------------------------
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C VARIABLES

C

REAL*8 A(3,3), ATRANS(3,3)

C ----------------------------------------------------------------------

C COMPUTATION

C

DO 1 I = 1, 3

DO 1 J = 1, 3

ATRANS(I,J) = A(J,I)

1 CONTINUE

RETURN

END

C **********************************************************************

SUBROUTINE MPROD(A,B,C)

C THIS SUBROUTINE MULTIPLIES TWO 3 BY 3 MATRICES [A] AND [B],

C AND PLACE THEIR PRODUCT IN MATRIX [C].

C ----------------------------------------------------------------------

C VARIABLES

C

REAL*8 A(3,3), B(3,3), C(3,3)

C ----------------------------------------------------------------------

C COMPUTATION

C

DO 2 I = 1, 3

DO 2 J = 1, 3

C(I,J) = 0.DO

DO 1 K = 1, 3

C(I,J) = C(I,J) + A(I,K) * B(K,J)

1 CONTINUE
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2 CONTINUE

RETURN

END

C **********************************************************************

SUBROUTINE MPRODVEC(D,E,F)

C THIS SUBROUTINE MULTIPLIES A 3 BY 3 MATRIX [E] WITH VECTOR [F],

C AND PLACE THEIR PRODUCT IN VECTOR [D].

C ----------------------------------------------------------------------

C VARIABLES

C

REAL*8 D(3), E(3,3), F(3)

C ----------------------------------------------------------------------

C COMPUTATION

C

DO 21 I = 1, 3

D(I) = 0.DO

DO 11 J = 1, 3

D(I) = D(I) + E(I,J) * F(J)

11 CONTINUE

21 CONTINUE

RETURN

END

SUBROUTINE DOTPM(A,B,C)

C

C THIS SUBROUTINE CALCULATES THE SCALAR PRODUCT OF TWO

C 3 BY 3 MATRICES [A] AND [B] AND STORES THE RESULT IN THE

C SCALAR C.

C ----------------------------------------------------------------------
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C VARIABLES

C

REAL*8 A(3,3),B(3,3),C

C= O.DO

DO 1 I = 1,3

DO 1 J = 1,3

C = C + A(I,J)*B(I,J)

1 CONTINUE

RETURN

END

C **********************************************************************

SUBROUTINE DOTPV(A,B,C)

C

C THIS SUBROUTINE CALCULATES THE SCALAR PRODUCT OF TWO

C 3-VECTORS [A] AND [B] AND STORES THE RESULT IN THE

C SCALAR C.

C -----------------------------------------------------

C VARIABLES

C

REAL*8 A(3),B(3),C

C= O.DO

DO 1 I = 1,3

C = C + A(I)*B(I)

CONTINUE

RETURN

END
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C **********************************************************************

SUBROUTINE MDET(A,DET)

C THIS SUBROUTINE CALCULATES THE DETERMINANT

C OF A 3 BY 3 MATRIX [A].

C ----------------------------------------------------------------------

C VARIABLES

C

REAL*8 A(3,3), DET

C ----------------------------------------------------------------------

C COMPUTATION

C

DET = A(1,1)*A(2,2)*A(3,3)

+ + A(1,2)*A(2,3)*A(3,1)

+ + A(1,3)*A(2,1)*A(3,2)

+ - A(3,1)*A(2,2)*A(1,3)

+ - A(3,2)*A(2,3)*A(1,1)

+ - A(3,3)*A(2,1)*A(1,2)

RETURN

END

C **********************************************************************

SUBROUTINE M3INV(A,AINV)

C THIS SUBROUTINE CALCULATES THE THE INVERSE OF A 3 BY 3 MATRIX

C [A] AND PLACES THE RESULT IN [AINV].

C IF DET(A) IS ZERO, THE CALCULATION

C IS TERMINATED AND A DIAGNOSTIC STATEMENT IS PRINTED.

C ----------------------------------------------------------------------

C VARIABLES
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C

REAL*8 A(3,3), AINV(3,3), DET, ACOFAC(3,3), AADJ(3,3)

C A(3,3) -- THE MATRIX WHOSE INVERSE IS DESIRED.

C DET -- THE COMPUTED DETERMINANT OF [A].

C ACOFAC(3,3) -- THE MATRIX OF COFACTORS OF A(I,J).

C THE SIGNED MINOR (-1)**(I+J)*M\{IJ\}

C IS CALLED THE COFACTOR OF A(I,J).

C AADJ(3,3) -- THE ADJOINT OF [A]. IT IS THE MATRIX

C OBTAINED BY REPLACING EACH ELEMENT OF

C [A] BY ITS COFACTOR, AND THEN TAKING

C TRANSPOSE OF THE RESULTING MATRIX.

C AINV(3,3) -- RETURNED AS INVERSE OF [A].

C [AINVI = [AADJ]/DET. C

CALL MDET(A,DET)

IF ( DET .EQ. 0.DO ) THEN

WRITE(6,10)

STOP

END IF

CALL MCOFAC(A,ACOFAC)

CALL MTRANS(ACOFAC,AADJ)

DO 1 I = 1,3

DO 1 J = 1,3

AINV(I,J) = AADJ(I,J)/DET

1 CONTINUE
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C ----------------------------------------------------------------------

C FORMAT

C

10 FORMAT(5X, '--ERROR IN M3INV--- THE MATRIX IS SINGULAR',!,

+ 1oX, 'PROGRAM TERMINATED')

C---------------------------------------------------------------------

RETURN

END

C

SUBROUTINE MCOFAC(A,ACOFAC)

THIS SUBROUTINE CALCULATES THE COFACTOR OF A 3 BY 3 MATRIX [A],

AND PLACES THE RESULT IN ACOFAC.

----------------------------------------------------------------------

VARIABLES

REAL*8 A(3,3), ACOFAC(3,3)

----------------------------------------------------------------------

COMPUTATION

ACOFAC(1,1)

ACOFAC(1,2)

ACOFAC(1,3)

ACOFAC(2,1)

ACOFAC(2,2)

ACOFAC(2,3)

ACOFAC(3,1)

ACOFAC(3,2)

= A(2,2)*A(3,3) - A(3,2)*A(2,3)

= -(A(2,1)*A(3,3) - A(3,1)*A(2,3))

= A(2,1)*A(3,2) - A(3,1)*A(2,2)

= -(A(1,2)*A(3,3) - A(3,2)*A(1,3))

= A(1,1)*A(3,3) - A(3,1)*A(1,3)

= -(A(1,1)*A(3,2) - A(3,1)*A(1,2))

= A(1,2)*A(2,3) - A(2,2)*A(1,3)

= -(A(1,1)*A(2,3) - A(2,1)*A(1,3))
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ACOFAC(3,3) = A(1,1)*A(2,2) - A(2,1)*A(1,2)

RETURN

END

C **********************************************************************

SUBROUTINE INVAR(A,IA,IIA,IIIA)

C

C THIS SUBROUTINE CALCULATES THE PRINCIPAL INVARIANTS

C IA, IIA, IIIA OF A TENSOR [A].

C ----------------------------------------------------------------------

C VARIABLES

C

REAL*8 A(3,3), AD(3,3),AD2(3,3), DETA, IA,IIA,IIIA

C

C COMPUTATION

C

DO 1 I=1,3

DO 1 J=1,3

AD(I,J) = A(I,J)

1 CONTINUE

IA = AD(1,1) + AD(2,2) + AD(3,3)

CALCULATE THE SQUARE OF [AD]

CALL MPROD(AD,ADAD2)

IIA =0.5DO * ( IA*IA - ( AD2(1,1) + AD2(2,2) + AD2(3,3) ) )
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CALL MDET(AD,DETA)

IIIA = DETA

RETURN

END

C **********************************************************************

SUBROUTINE TRACEM(A,TRA)

C

C THIS SUBROUTINE CALCULATES THE TRACE OF A 3 BY 3 MATRIX [A]

C AND STORES THE RESULT IN THE SCALAR TRA

C ----------------------------------------

C VARIABLES

C

REAL*8 A(3,3),TRA

TRA = A(1,1) + A(2,2) + A(3,3)

RETURN

END

C **********************************************************************

SUBROUTINE DEVM(A,ADEV)

C

C THIS SUBROUTINE CALCULATES THE DEVIATORIC PART OF A

C 3 BY 3 MATRIX [A]

C ----------------------------------------------------

C VARIABLES

C

REAL*8 A(3,3),TRA,ADEV(3,3),IDEN(3,3)
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CALL TRACEM(A,TRA)

CALL ONEM(IDEN)

CALL ZEROM(ADEV)

DO 1 I = 1,3

DO 1 J = 1,3

ADEV(I,J) = A(I,J) - (1.DO/3.DO)*TRA*IDEN(I,J)

1 CONTINUE

RETURN

END

C

SUBROUTINE EQUIVS(S,SB)

C

C THIS SUBROUTINE CALCULATES THE EQUIVALENT TENSILE STRESS SB

C CORESSPONDING TO A 3 BY 3 STRESS MATRIX [S]

C -------------------------------------------

C VARIABLES

C

REAL*8 S(3,3),SDEV(3,3),SDOTS,SB

SB = O.DO

SDOTS = 0.DO

CALL DEVM(S,SDEV)

CALL DOTPM(SDEV,SDEV,SDOTS)

SB = DSQRT(1.5DO* SDOTS)

RETURN
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END

SUBROUTINE PRTMAT(A,M,N)

INTEGER M,N

REAL*8 A(M,N)

DO 10 K=1,M

WRITE (23, '(2X,6F12.6,2X) ') (A(K,L), L=1,N)

10 CONTINUE

RETURN

END

SUBROUTINE PRTVEC(A,M)

INTEGER M

REAL*8 A(M)

WRITE (20, '(2X,6F12.6,2X)' ) (A(K), K=1,M)

RETURN

END

SUBROUTINE SKINEM(F,R,U,ITERERR)

C

C THIS SUBROUTINE PERFORMS THE RIGHT POLAR DECOMPOSITION
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C [F]=[R] [U] OF THE DEFORMATION GRADIENT [F] INTO

C A ROTATION [R] AND THE RIGHT STRETCH TENSOR [U].

C IS ALSO CALCULATED.

C ----------------------------------------------------

C VARIABLES

C

IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 F(3,3),DETF,FTRANS(3,3),

+ C(3,3), OMEGA(3),EIGVEC(3,3), EIGVECT(3,3),

+ U(3,3),UINV(3,3),R(3,3),TEMP(3,3)

C -------------

C COMPUTATION

C

C

C STORE THE IDENTITY MATRIX IN [R], [U], AND [UINV]

C

CALL ONEM(R)

CALL ONEM(U)

CALL ONEM(UINV)

C

C STORE THE ZERO MATRIX IN [E]

C

CALL ZEROM(E)

C

C CHECK IF THE DETERMINANT OF [F] IS GREATER THAN ZERO.

C IF NOT, THEN PRINT DIAGONOSTIC AND EXIT.

C
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CALL MDET(F,DETF)

IF (DETF .LE. 0.DO) THEN

ITERERR = 1

RETURN

END IF

C

C CALCULATE THE RIGHT CAUCHY GREEN STRAIN TENSOR [C]

C

CALL MTRANS(F,FTRANS)

CALL MPROD (FTRANS, F, C)

C

C CALCULATE THE EIGENVALUES AND EIGENVECTORS OF [C]

C

CALL SPECTRAL(C,OMEGA,EIGVEC)

C

C CALCULATE THE PRINCIPAL VALUES OF [U] AND [E]

C

U(1,1) = DSQRT(OMEGA(1))

U(2,2) = DSQRT(OMEGA(2))

U(3,3) = DSQRT(OMEGA(3))

C

C CALCULATE THE COMPLETE TENSORS [U] AND [El

C
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CALL MTRANS(EIGVEC,EIGVECT)

CALL MPROD(EIGVEC,U,TEMP)

CALL MPROD(TEMP,EIGVECT,U)

C

C CALCULATE [UINV]

C

CALL M3INV(U,UINV)

C CALCULATE [R]

CALL MPROD(F,UINV,R)

C ----------------------------------------------------------------------

C FORMATS

C ----------------------------------------------------------------------

RETURN

END
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Appendix E

Time-integration procedure :

Isotropic-based constitutive model

In this appendix we summarize the time-integration procedure that we have used for

our rate-independent isotropic-based constitutive model. With t denoting the current

time, At is an infinitesimal time increment, and T = t+At, the algorithm is as follows:

Given: (1) {F(t), F(T), 0(t), O(r)}; (2) {T(t), FP(t)}; (3) the accumulated martensite

volume fractions (t).

Calculate: (a){T(r), FP(T)}, (b) the accumulated martensite volume fractions (T),

and (c) the inelastic work increment Aw (T) and march forward in time.

The steps used in the calculation procedure are:

Step 1. Calculate the trial elastic strain Ee()trial:

Fe (T)trial = F(T)(FP(t))

ce (T)trial = (Fe (T)trial )TFe (r)trial,

Ee(T)trial - (1/2) {Ce(T)trial 1}.

Step 2. Calculate the trial stress Te(T)trial:

Te(T)trial = C(t)[Ee(T)trial - Cf(t)(O(T) - 00)1].
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Step 3. Calculate the phase transformation flow direction NP and the trial resolved

force &(T)trial :

NP = (3/2)T e

NP = V/(3/2) IET (IetcI 0T(t)

if (t) = 0,

if 0 < (t) < 1.

The trial resolved force is given by

&(, trial Te ()trial - NP.

Step 4. Calculate the trial driving force for phase transformation f(r)trial:

f(T)frial = a(T)triaI - (AT/OT)(O(T) - OT).

Step 5. Calculate

FP(T) = {1 + A NP} FP(t). (E.1)

During phase transformation, the consistency conditions must be satisfied :

f(7) - f, = 0, (E.2)

where the - sign holds during forward transformation and the + sign holds during

reverse transformation, and where

f (T) = &(7) - (AT/OT)(0(T) - OT). (E.3)

Retaining the terms of the first order in A , it is straightforward to show that

&(,) = ()tria - 2p(t)A sym(Ce(T) rialNP) . NP (E.4)

Using (E.3) and (E.4) in the consistency conditions (E.2) we can calculate AZ.

Step 6. Determine the increment of the martensite volume fraction AL :

If f(T)trial - f, > 0 and 0 < (t) < 1 then for the forward austenite to martensite

transformation

f(r)trial - fc

2p(t) sym(Ce(T)trialNP) - NP'
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If f(,tri" + fc < 0, and 0 < (t) < 1 then for the reverse martensite to austenite

transformation

f(T) trial + fc

2p(t) sym(Ce (T)trialNP) - NP

Or else there is no phase transformation

A\ = 0.

Step 7. Update the inelastic deformation gradient FP(r):

FP(r) = {1 + A NP} FP(t).

Step 8. Update the total martensite volume fraction (r):

(T) = (t) + Az.

If (r) > 1, then set (T) = 1 and if (T) < 0, then set (T) = 0.

Step 9. Update the effective elastic modulus C(T) and the coefficient of thermal

expansion a(T):

C(T) = {1 - (T)} Ca + (r)Cm

a(T) = {1 - ()} aa + (),m.

Step 10. Compute the elastic deformation gradient Fe(T) and the stress Te(r):

Fe (T) = (r)(FP(T))-',

Fe(r) = Re(T)Ue(T),

Ce(T) = (Fe(r)) TFe (T),

E e (T) = (1/2) {Ce (T) - 1},

Te(T) = C(-)[Ee(,) - A(T)(6(T) - 00)].

Step 11. Update the Cauchy stress T(T):
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T(r) = Re(T)Te(T)Re(T) ' .

Step 12. Calculate the driving force for phase transformation f(T) and inelastic

work fraction AwP(T):

d(T) = Te(F) - NP,

f(r) = &(T) - (AT/OT)(O(r) - OT),

AwP(T) = {f (r) + (AT/OT) 6(-r)} A.
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Appendix F

Hypo-elastic form for the

isotropic-based constitutive

equations

In this appendix the isotropic-plasticity-based constitutive equations for superelas-

tic shape-memory materials is formulated in the hypo-elastic rate-form. This is

done to facilitate the derivation of the Jacobian matrices to be implemented in

the ABAQUS/Standard (1999,2001) finite-element package. The solution of the two

methods (hyper-elastic vs. hypo-elastic) is identical because the elastic strains expe-

rienced in these materials are very small.

The advantage of using an implicit finite-element formulation (ABAQUS/Standard)

is that large time steps can be taken while maintaining quasi-static loading condi-

tions. For example the Ti-Ni bio-medical stent calculation performed in Chapter

2 took just 2 hours to complete using ABAQUS/Standard (1999,2001). Performing

the same calculation using the ABAQUS/Explicit (1999,2001) finite-element program

took 25 hours. This is because large time steps cannot be used while maintaining

quasi-static loading conditions.

With that, the governing variables in the hypo-elastic constitutive model are taken

to be
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T

L = D+W

0

De - D - DP

TV =t-WT+TW

Cauchy stress

Velocity gradient

Absolute temperature

Inelastic stretching

Martensite volume fraction

Elastic stretching

Jaumann derivative of T

Constitutive equation for stress

TV = C [D

C = 2pI+ (i, - (2/3)L) 1 0 1,

- AO - DPI

K = k( , 0)

A = al, a = &( , 0)

Elasticity tensor

Thermal expansion tensor

Vol. Frac of Martensite

Transformation criteria

Let

f

denote the driving force for transformation, and

fc > 0
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a critical value for the driving force. Then the transformation criteria are taken as

f = f, for austenite to martensite, > 0,

and

f = -fc for martensite to austenite, < 0.

The driving force for transformation is defined by

f = F - (AT/OT)(O - OT),

where
Resolved tensile force

AT Latent heat per unit volume

ET Transformation strain

OT Phase equilibrium temperature.

The resolved tensile force is defined by:

& = T - NP.

Here NP is the transformation direction after the transformation criterion f = f, for

forward transformation is first satisfied and there is a non-zero . That is, the stress

used to evaluate the transformation direction NP is the stress at the time t, at which

the forward transformation criterion is first satisfied.

transformation the direction NP is fixed.

Flow rule

DP= NP.

The transformation direction NP is

For a given forward-reverse
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NP= eT (To) if =,

NP = e () if 0 <( <1.

Here, t, is the critical instant when the martensite volume fraction first becomes

non-zero.

For forward transformation:

(f - fC) 0, and (f- fc)=O

For reverse transformation:

< 0, (f + fc) ;> 0, and (f+ fc)=0

Consistency conditions

During forward transformations

~( -fc) = 0 if (f - fc) = 0

During reverse transformations :

(f + fc) = 0 if (f + fc) = 0

The consistency conditions serve to determine the transformation rates d.

For transformation

0 = (f ± fc)

=cr- (AT/T)( - OT) ± fc)

= a - (AT/OT)O

= T NP - (AT/OT) 0

=''-NP - (AT/OT)O

=TV - NP - (AT/OT) 0

= C [D - A - DP] - NP - (AT/OT) 0
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Let

T* = C [D - A]

denote a trial stress rate,

=C D - AI -NP = C [D] -NP = C [NP] -D,

= 2NP - D,

and a trial resolved force, and

= b*- (AT/O)

the rate of change of a trial driving force. Then

0 = - C [DP] NP

0 = - C [NP] DP

0 = - 2 P N-

0 = -2NP ( NP)

0 = /i- T7 e ,

or

( CT)
3 1*
3 y T
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TV =C D - A - DP

= C [D - DP] - C [A]O

=C[D- (D

=C D

=C [D] -

NP) -6C [A]

( NP) -C [A]

3 p 2T)2pNP) -O C [A]

)T) }NP) - aC [A]

NP) + {(2/3) (AT/ TOT) NP - C [A]}

(
= C [D]- (f NP) C[A]

= C [D] - ((2/3) {* (

= C [D] - (4p/3E) (NP -D)

TV =,C [D] + {(2/3) (AT/e TOT) NP - C [A]}

where

c = C - (4p/3eT)N ®NP.

F.1 Incremental form

Let

Ft(T)= F(T)(F(t))-1

Ft(T) = Rt(T)Ut(r)

Et(r) = ln Ut(w)

T(T) = (Rt ()) T(T(T))(Ret(r))
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(F.14)

(F.15)

(F.16)

(F.17)

(F.18)

(F.19)

(F.20)

(F.21)

or

(F.22)

(F.23)

(F.24)

(F.25)



Constitutive equation for stress

T(T) = T(t) + C(t) [Et(T) - A(t) (0(T) - 0(t)) - E'(T)]

C(t) = 2p(t)T + (K(t) - (2/3)p(t)) 1 0 1

A(t) = j(((t), 0(

A(t) = a(t)l,

E'(7) = A NP,

K ) = k((), 0(t))

Elasticity tensor

Elastic moduli

Thermal expansion tensor

Inelastic strain increment,

where the stress used to evaluate the transformation direction NP is the stress at the

time t, at which the forward transformation criterion f* (r) > f, is first satisfied; see

below.

Trial driving force for phase transformation

Trial value of stress:

T*(T) = T(t) + C(t) [Et(T) - A(t) (0(T) - 0(t))]

Trial value of driving force:

f*(T) = &*(T) - (AT/OT)(O - OT),

where

Trial resolved force

Transformation strain

Latent heat per unit volume

Phase equilibrium temperature
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The trial resolved force is defined by:

&* (T)= T*(r) - NP

Here NP is the transformation direction after the transformation criterion f* (r) > fc

for forward transformation is first satisfied at time t t. That is, the stress used

to evaluate the transformation direction NP is the stress at the time tc at which the

forward transformation criterion is first satisfied, and becomes positive valued. For

a given forward-reverse transformation the direction NP is fixed. The transformation

direction NP is

NP= 'E ! if 0(t) =0,

Jio(t)

NP - To(t) if 0< (t)<1.
2 T ITo(tc)I

Transformation criteria

If 0 < (t) < 1 then, for austenite to martensite, j > 0:

f*(r) > fc.

If 0 < (t) < 1 then, for martensite to austenite, j < 0:

f*(T) < -fc.

Consistency conditions

f(7) = 5(-) - (AT/OT)(0 - OT)
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Resolved force,

Latent heat per unit volume,

Transformation strain,

Phase equilibrium temperature.

During forward transformations :

f(T) = fc

During reverse transformations :

The consistency conditions serve to determine the transformation increments A .

F.2 Time integration procedure

Here we suppress the argument t in p(t) until the end.

Ef (r) = A NP, NP = V/(3/2) CT o(t,)
|To (tc)|

T(T) = T(t) + C(t) [Et(r) - A(t)(0(r) - 6(t))] - A C(t) [NP]

T(T) = T(t) + C(t) [Et(T) - A(t)(0(r) - 0(t))] - 2p A NP

T*(T) = T(t) + C(t) [Et(T) - A(t)(6(T) - 6(t))]

T(T) = T*(T) - 2p A NP

T(T) - NP = T*(T) -NP - 2pANP- NP

F(T) = &*(r) -3PA E2

(F.26)

(F.27)

(F.28)

(F.29)

(F.30)

(F.31)

(F.32)
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Consistency condition for forward transformation:

f (T) = f, (F.33)

(T) - 3pA E' - (AT/OT) (0(T) - OT) = fc (F.34)

(-) - (AT/ET) (0(F) - T) -- fc = 3pA e (F.35)

&*(T) - (AT/6T) (0(T) - 0T)} - fc = (F.36)
3p 6

(*eT) = - f (F.37)
3,a(t) ET

where

f*(T)= d*(r) - (AT/OT)(0(T) - OT)

is trial driving force for phase transformation.

Consistency condition for reverse transformation:

f (T) =-f (F.38)

(-) - 3pA1 E2 - (AT/OT) (O(T) - OT) -- fc (F.39)

(T)- (AT/ET) (0(T) - OT) + fc = (3p) A E2e (F.40)

{d*(T) - (AT/OT) (0(T) - OT)} + fc = (F.41)
3p E 2

(AET f*(T)fc (F.42)I\ ZecT) 3/,a(t) ET
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F.3 Jacobian Matrices

For a coupled temperature-displacement analysis four Jacobian matrices need to be

supplied into the numerical algorithm. They are

0T(r)

M(t) = T(T)
aAO

ST(r)

a0(T)

.Af(t) = a(RPL(T))
aAE

O(t) 0(RPL(r))
OAO

_(RPL(r))

06(T)

where RPL(r) is the rate of volumetric heat generation at end of the step. It is given

by

RPL(T) = {f(r) + (AT/OT) 0(r)} (Ac/At).

Here we suppress the argument t in p(t) until the end.

Derivation of L(t)

T*(T) = T(t) + C(t) [Et(-r) - A(t)(0(T) - 0(t))]

NP = V/(3/2)T (To(tc)

* (T) = T*(r) -NP

T(T) = T*(T) - 2pA NP

(F.43)

(F.44)

(F.45)

(F.46)

(F.47)

Let

AE = Et(7),
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then the Jacobian is

A)(T)
DAB

_ D*(r)
DAE

C(t) - 21L

/f(AF(NP)
2p 

A
aAE

Recall that

A fT= 3 ) fC

f*(T) + fC
A~3TET

for forward transformation

for reverse transformation.

_ 1

1

1
3 perT

Df* (T)

DAE

Da* (T)

DAE

- (AT/OT) (6(T) -

DAE

1 D(T*(T) - NP)
3 pET DAE

Note that for a function f(T(E))

Df

d f
OT
Of

( T
DB

Of O (T

(T(E + aA))} Ia=o

d {T(E + aA)} la=o
DT
O [A]
T [ f 1A

)T[ DT ] .A)[9T
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(F.48)

(F.49)

(F.50)
.

Thus

(F.51)

(F.52)

D(A ET)
DAE

a(A ET)
DAE

a(A ET)
DAE

a(A IET)
DAE

OT) )

(F.53)

(F.54)

(F.55)

(F.56)

(F.57)

(F.58)

(F.59)

(F.60)

(F.61)



T(i*(T) - NP)

aAE
aT*(T)
aAE ) T

~[o (T*(T ) -NP)

OT*(T)

= C(t) [NP]

= 2A NP.

0( ~CT) 1 &(*(T) - NP)

aAE 3 pT r AE

a(A T) = (2/3T) NP,

and the Jacobian is

C(t) = C(t) - (2/CET) [NP 0
O(A CT)

aA2E

= C(t) - (2pl/6') [NP 0 (2/3) NP]

L(t) = C(t) - (4pL(t)/3 2) NP ON.

Derivation of A4(t)

From equation F.47 the Jacobian matrix A4(t)

M(t) =

DT*(2) a(A NP)
09(T) 2 6(T)

= -C(t)[A(t)] - 2M [(1/ET) a

From equations F.51 and F.52

M(t) = -C(t)[A(t)] - (2ft) (1/3p 6)

L\ ET)

06(T)

-f */(T)
-= -A/T
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I
Hence

(F.62)

(F.63)

(F.64)

(F.65)

(F.66)

or finally

I (F.67)

(F.68)

(F.69)

(F.70)

(F.71)

(F.72)

Since

NP].

NP]. (F.73)

(F.74)



We obtain

M(t) = -3K(t)a(t)1 + (2/3) (AT/OT6T) NP. (F.75)

Derivation of Af(t)

From equation F.43 the Jacobian matrix Af(t)

Af(t) = (RPL(r)) (F.76)
&9AE

- fT)(A /At) + {f(r) + (AT/OT) O(T)} (1/ETAt) .AT (F.77)

From the consistency conditions, f(T) = Ff' - constant. Therefore

f(T) = 0. (F.78)

Using equations F.66 and F.78 yield :

Af(t) = (2/3) (1/6'At) {f(r) + (AT/OT) 9(r)} NP. (F.79)

Derivation of O(t)

Again from equation F.43 the Jacobian matrix O(t):

O(t) = 9(RPL(T)) (F.80)
aO(-r)

9{ Of() + (AT/OT) (A /,At) + {f (T) + (AT/OT) (T)} (1/ETLAt)

(F.81)

From the consistency conditions, f(T)= -FfC = constant. Therefore

f =(T) =0 (F.82)
99(T)

From equations F.51, F.52 and F.74 we obtain

aA T - -(1/3pET) (AT/ 6 T). (F.83)

Therefore using equations F.82 and F.83 the Jacobian matrix O(t) is

O(t) = (AT/OTAt) [A - (1/3p(t)E2) {f (T) + (AT/OT) 0(r)}] . (F.84)
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Appendix G

Simple shear problem in the

isotropic-based constitutive model

Consider the simple shear of a single element in the (1, 3)-plane, Figure G-1a. Velocity

boundary conditions are applied to the top nodes to result in a shear strain rate of

+0.001/sec for 110 sec, and reverse deformation is prescribed to take place at a

shear strain rate of -0.001/sec in another 110 sec. The material parameters for the

constitutive model are taken to be the same as in Section 3, but this time a standard

Mises-type flow rule is used in which the direction of plastic flow is taken to be given

by
Te

NP = V/(3/2) IT 0 for all 0 < < 1, (G.1)

instead of (3.15). The solution for the non-zero components of the Cauchy stress T as

a function of time is shown in Figure G-1b. Note that in addition to the shear stress

T13, non-zero and substantially large values of normal stresses T33 and T11 develop

during the reverse deformation.

This stress history results in a shear stress versus shear strain response shown

in Figure G-1b, which does not have the character of a closed flag-type superelastic

response. Figure G-1c also shows the result of a calculation for the same problem,

but upon using the non-standard flow rule (3.15) used in the body of the paper; this

time one obtains the expected closed hysteresis loop.
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The spurious result using the standard flow rule (G. 1) occurs due to subtle normal-

stress effects that arise upon using a large deformation theory in simple shear. The

non-standard flow rule (3.15) predicts full recovery of stress upon complete reversal

of deformation, at least for the proportional loading conditions tested in this section.

1

'A non-standard flow rule with a stress-based flow direction for forward transformation, and
a strain-based flow direction for reverse transformation has been previously used by Qidwai and
Lagoudas (2000), but they do not provide a discussion or a motivation for why they made their
particular choice.
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Figure G-1: Comparison of the shear-stress versus shear-strain response in simple
shear predicted by the non-standard flow rule versus that predicted by the standard-
Mises type flow rule. The nonstandard flow rule predicts the expected closed flag-type
hysteresis loop.
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Appendix H

Anisotropic superelasticity of

textured sheet Ti-Ni

Here we shall evaluate our recently developed crystal-mechanics-based constitutive

model to examine the in-plane anisotropic response shown by another polycrystalline

Ti-Ni sheet. Shan and Sung (2000) have conducted extensive superelastic tension

experiments on Ti-Ni sheets along different directions, and the experimental results

show the in-plane anisotropic superelastic response. The purpose of this section is

to show that our developed crystal-mechanics-based constitutive model adequately

captures the in-plane anisotropy for a different Ti-Ni sheet.

Superelastic Ti-Ni sheets were obtained from a commercial source. Tensile speci-

mens were cut along different directions and tested, ranging from 0' (rolling direction)

to 900 (transverse direction) at 100 intervals. Superelastic tension experiments were

conducted at room temperature (6 = 298K) under displacement control at very low

strain rates to ensure near isothermal testing conditions.

Experimental pole figure measurements of the initially-textured sheet were ob-

tained using a Rigaku 200 X-ray diffraction machine. The {111}, {110} and {100}

experimental pole figure is shown in Figure H-la. A numerical representation of the

experimental pole figures using 420 discrete unweighted crystal orientations was ob-

tained by using the computer program PoPLa (Kallend et al., 1989). The numerical
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representation of the experimental pole figures is shown in Figure H-1b.

The initial finite-element mesh used to model a representative volume element

(RVE) of the polycrystalline material is shown in Figure H-2a. In our finite-element

model of a polycrystal, each element represents a single crystal, and it is assigned a

crystal orientation from the set of crystal orientations which approximate the initial

crystallographic texture of the material shown in Figure H-la.

The material parameters in the constitutive model were calibrated to the tension

experiment conducted along the rolling direction. The procedure to determine the

material parameters is outlined in Section 2.2.

The thermo-elastic constants used in our calculations are

Elastic moduli for austenite: Ca = 130 GPa, C"2 = 98 GPa, CL4= 22 GPa;

Elastic moduli for martensite: C' = 65 GPa, C'") = 49 GPa, Cm = 11 GPa;

Coefficients of thermal expansion: aa = 11 x 10-6/K, a m = 6.6 x 10-6/K.

An estimate for the phase transformation parameters {OT, AT, fc} for Ti-Ni single

crystals is obtained by fitting the constitutive model to tension experiment conducted

along the rolling direction. Since the experiments were only done at one partic-

ular temperature we can obtain the temperature dependence of the driving force

(AT/OT)(0 - GT) for the aforementioned temperature.

The single-crystal material parameters used to obtain this fit are:

Temperature dependence of driving force : (AT/Ocr) (0 - OT) = 13.3 MJ/m 3 at 0 =

298 K.

Critical driving force: f, = 6.9 MJ/m 3 .

The fit of the constitutive model to the tension experiment conducted along the rolling

direction is shown in Figure H-2b. With the constitutive model calibrated to the

rolling direction, the superelastic tensile response along other directions (Figures H-3

to H-7) can be predicted. The superelastic response in all these orientations is well-

approximated by the predictions from the constitutive model. Of particular note,

the anisotropic response between the rolling and transverse direction, as shown in

Figure H-7b, is captured by the model. In Figure H-8 we plot the nucleation stresses

during forward and reverse transformation for the differently-oriented specimens at a

207



representative strain of 2%. Note that the nucleation stresses in the middle-oriented

specimens i.e. the 400 and 50' specimen lies in between of the rolling and transverse-

direction specimens. This effect is also predicted reasonably well by the constitutive

model.

To the best of our knowledge, this is the first time such calculations have been

reported in the literature.
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Figure H-1: (a) Experimentally-measured texture in the as-received Ti-Ni sheet, and
(b) its numerical representation using 420 discrete unweighted crystal orientations.
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Figure H-2: (a) Undeformed mesh of 420 ABAQUS C3D8R elements used to represent

a textured polycrystal aggregate. (b) Superelastic stress-strain curve in tension along

the rolling direction. The experimental data from this test were used to estimate

the constitutive parameters. The curve fit using the full finite-element model of the

polycrystal is also shown.
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(a) Superelastic experiment conducted along the (a) 10' and (b) 200

direction. The prediction from the finite-element simulations are also shown.
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(a) Superelastic experiment conducted along the (a) 300 and (b) 400

direction. The prediction from the finite-element simulations are also shown.
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(a) Superelastic experiment conducted along the (a) 500 and (b) 60'

direction. The prediction from the finite-element simulations are also shown.
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(a) Superelastic experiment conducted along the (a) 70' and (b) 800
direction. The prediction from the finite-element simulations are also shown.
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(a) Superelastic experiment conducted along the transverse direction.
The prediction from the finite-element simulations is also shown, and (b) Superelastic
experiment along the rolling direction compared with the transverse direction. The
finite-element simulation along the transverse direction is also shown.
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Figure H-8: Comparison of the nucleation stresses of the differently-oriented speci-
mens during the forward and reverse transformation at 2% strain with respect to the
prediction from the finite-element simulations.
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Appendix I

Operating procedure for the

RigaKu200 & 300 X-ray

Diffraction machine

Operating procedures for the RU200 & 300:

1. Check the status of the x-ray generator: Determine whether the x-rays are ON

or OFF by observing the tube tower and the RED light on the front of the HIGH

VOLTAGE CONTROLLER. Make sure that the SHUTTER is closed! Do not open

the door in any circumstances if the SHUTTER is not turned off.

2. If the X-RAYS are NOT ON, CHECK the status of the TUBE TOWER VAC-

UUM. The THREE GREEN LIGHTS on the VACUUM CONTROLLER indicate

the quality of the vacuum. If all three green lights are on, then the vacuum is o.k. If

not, report this immediately to the person in charge of the machines.

3. If the X-RAYS are ON determine if either of the X-RAY SHUTTERS are OPEN

by observing the RED lights ON EITHER SIDES OF THE TUBE TOWER. If a

SHUTTER is OPEN, determine whether or not that DIFFRACTOMETER is RUN-

NING. If neither diffractometer is in the process of COLLECTING DATA, something

is WRONG. X-RAYS SHOULD BE ON and the SHUTTERS OPEN ONLY WHEN
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THE DIFFRACTOMETERS ARE COLLECTING DATA.

4. You may open the diffractometer doors when the X-RAYS are ONLY under these

following conditions: (a) There is a shield in between the two sides, (b) Your shutter

is closed, (c) You must survey your diffractometer area with the hand held Geiger

counter, (d) The intensity of the background around your diffractometer should be

close to that outside the enclosure.

5. If you are the only one using the X-RAY generator, you must turn off the X-RAYS

every time you enter the enclosure to change samples etc.

Start-up procedure:

1. Make sure of the experiment you intend to conduct. Different experiments re-

quire different slits to be used. The slits that exist are the DIVERGENCE slits,

SCATTER slits, RECEIVING slits and the SCHULTZ slits.

2. The DIVERGENCE slit is the one closest to the TUBE TOWER. The SCATTER

slit has the same size as the DIVERGENCE slit. The SCATTER slit is the next slit

in the diffracted slit path. It is in the front of the receiving SOLLER slits and is the

next one after the sample.

3. Check the RECEIVING slit. It is located on the back side of the SOLLER slits af-

ter the SCATTER slit. Different experiments require different combinations of these

slits the type of slits used will be discussed later.

4. INSERT the SAMPLE. This ia done by mounting the sample on a aluminum

mounter. After mounting it, make sure it is tight against the post. You can use

scotch to anchor the specimen mounter to the post BUT do not anchor the scotch

tape to the STEEL part of the machine because it is stationary.

5. Before starting up the X-RAY, make sure that the SHUTTER is CLOSED! To

start-up the X-RAY generator, press the T-REV button. The AMBER LIGHT on

the HIGH VOLTAGE CONTROLLER should come ON. If the light does not come

on, check that the doors are closed and the KV and Ma selector switches are fully at

their minimum positions. Then press the ON button to activate the X-RAYS.
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6. Turn up the KV slowly and wait for the meter stabilize before turning it up again.

7. Then turn up the MA slowly. The selection of KV and MA depends on you and the

operator of the other machine. DO NOT USE COMBINATIONS WHICH BRING

EITHER METERS TO THE RED ZONE!

8. INITIALIZE the DIFFRACTOMETER. Although this is not necessary, it is done

to assure that the THETA and 2THETA are properly coupled.

9. Now it is ready to take data. Proceed to either the POSITION GONIOMETER

program, the FIXED TIME COUNT or the MEASUREMENT program.

Shutting off procedure:

1. The shutting off procedure is the exact opposite of the starting up procedure.

First turn the MA down.

2. The turn the KV down slowly and turn it down one step a time. Do this after the

meter stabilizes.

3. TURN THE SHUTTER OFF.

4. Press the OFF button.

5. To get the specimen, turn the FAILSAFE key first. You will hear a beeping sound.

Then open the door.

6. Then check the radiation level in the equipment by using the Geiger counter work-

ing your way into the chamber. If it is safe enough to do so, take off the specimen.

For 2THETA measurements:

1. Use the 1 degree DIVERGENCE slit, 1 degree SCATTER silt and the 0.3 mm

RECEIVING slit.

2. Repeat the start-up procedure.

3. Once the start-up procedures have been performed, turn the SHUTTER to EXT.

4. Start-up JADE program by C>MENU from the computer.

5. Once the opening window appears go to QUALITATIVE PROGRAMS.
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6. Go to the SET DATUM program. Normally, let the datum remain the same as

before. Exit the window by pressing ENTER until you get out of this window.

7. Then go to the SET HV/PHA program. Normally, the values given on the window

should not be tampered with. Exit the window by pressing ENTER until you get

out.

8. Then proceed to the SCAN CONDITIONS menu. When the cursor appears on

the SET NUMBERS just enter to get to the next menu.

9. Then go to the AXIS menu and make sure that is says 2 THETA/THETA-REFL.

This can be changed using the arrow keys on the keyboard.

10. Then choose the START and STOP angles. The angle ranges from 15 degrees to

120 degrees.

11. Change the SAMPLING INTERVAL to the interval which you want.

12. Leave the DATA TYPE and FULL SCALE range to the default value. To exit

this menu press Ctrl Z. After all of these steps, go to the MEASUREMENT menu to

start data acquisition.

For POLEFIGURE measurements:

1. The divergence slit will remain at 1 degree but the scatter slit must one size

larger than the size of the receiving slit (in mm). The Schultz slit must be fixed as

well. DO NOT FORGET THIS.

2. From the main menu, go to the POLE FIGURE DATA COLLECTION PRO-

GRAM. Do not set the datum but go straight to the SET SCAN CONDITIONS

menu.

3. To obtain the pole figure values, use the beta step to be 5 degrees, beta speed to

be 360 degrees per minute and the alpha step at 5 degrees.

4. Then exit this menu to go to the MEASUREMENT menu to start collecting data

of the pole figure measurements.

5. To obtain the values for the background measurements, the procedure is the same

except that data is taken approximately 2 degrees away from the peaks. This is done
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at a place where the values obtained from the 2THETA measurements are relatively

flat. This is due to the background radiation.

6. Go back to the SET SCAN CONDITIONS in the POLE FIGURE DATA COL-

LECTION PROGRAM.

7. Change the beta step to 360 degrees with beta speed of 640 degrees per minute.

8. Then go the MEASUREMENT menu to start collecting the data for the back-

ground emission.

9. Always remember the name of files you are working on because there are always

many files which are saved into the hard disk.
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