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Abstract

Piezoelectric Micro-Hydraulic Transducers are compact high power density transducers, which
can function bi-directionally as actuators/micropumps and/or power generators. They are

designed to generate 0.5-1W power at frequencies of ~10-20kHz, resulting in high power densities
approaching 500W/kg. These devices are comprised of a main chamber, two actively controlled

valves, a low-pressure reservoir and a high-pressure reservoir. This thesis reports on modeling

and design considerations for Micro-Hydraulic Piezoelectric Power Generators. Since these

devices are complex fluid and structural systems, comprehensive simulation tools are needed

for effective design. Operation of each subcomponent of the device is highly coupled and every

design decision should be made with remaining components in mind. A system level simulation
tool has been developed using Matlab/Simulink, by integrating models for different energy
domains, namely fluids, structures, piezoelectrics and circuitry. The simulation architecture

allows for integration of the elastic equations of structural members into the dynamic simulations

as well as monitoring of important parameters such as chamber pressure, flowrate, and various

structural component deflections and stresses. Using the simulation, the operation of the system

is analyzed and important design considerations are evaluated. Fluidic oscillations within the

system are analyzed and an optimization procedure for the membrane structure within the main

chamber is presented. Parameter studies are performed for different piezoelectric materials,
system compliances, and circuit topologies. Tradeoffs between operation conditions and their
effect on the performance are discussed. A design procedure is developed. Results indicate that
system efficiency is highly dependent on compliances within the device structure, the type of

piezoelectric material used and rectifier circuit topology.

Thesis Supervisor: Nesbitt W. Hagood, IV
Title: Associate Professor of Aeronautics and Astrtonautics

Departmental Reader: Alexander H. Slocum

Title: Professor of Mechancial Engineering, MacVicar Faculty Fellow
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Nomenclature

PHPR high pressure reservoir pressure

PLPR low pressure reservoir pressure

Pch main chamber pressure

APch main chamber pressure band

Pint-in inlet valve intermediate pressure

Pint-out outlet valve intermediate pressure

Qin inlet valve flow rate

Qout outlet valve flow rate

voin inlet valve opening

VOcat outlet valve opening

CS structural compliance of main chamber

Ceff effective compliance of the main chamber

Vo initial fluid volume of the main chamber

Of bulk modulus of working fluid

E Young modulus of Silicon

V Poissons ratio of silicon

p density of working fluid

Dch chamber diameter

Dpis piston diameter

Rvc valve cap radius

Wt tether width

Heh chamber height

7



Dp piezoelectric element diameter

LP piezoelectric element length

trop top support structure thickness

tbot bottom support structure thickness

tPis piston thickness

ttetop top tether thickness

ttebot bottom tether thickness

x~is piston deflection

Xte tether deflection

Xb bottom support structure deflection

AVtP volume swept by top support structure

AVPis volume swept by deflection of piston

A VP5 volume swept by bending of piston

AVe volume swept by tether bending

Fte force between piston and tethers

F, force on piezoelectric element

d 33 piezoelectric constant

D open circuit compliance of piezoelectric element

E closed circuit compliance of piezoelectric element

k33 coupling coefficient of piezoelectric element

keff effective coupling factor

V, voltage on piezoelectric element

I, current through piezoelectric element

V6  battery voltage

IA current through battery

QP charge on piezoelectric element

U-d depolarization stress of piezoelectric element

f operation frequency

7/ system efficiency

W generated power
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Chapter 1

Introduction

This chapter presents the configuration, operation and motivation of microhydraulic-piezoelectric

power generators. Preliminary design considerations are discussed. The objective, scope and

organization of the thesis are presented.

1.1 Microhydraulic Piezoelectric Transducers

Transducers are devices that convert physical energy from one form to another. Actuators

and power generators are examples of transducer devices. The performance and usefulness

of a transducer for most applications are highly dependent on two important characteristics:

compactness and power density, that is, power output of the transducer per its unit volume.

Conventional transducers, generally, not only tend to be heavy and bulky, but are also limited

in terms of power transduction capabilities because of their low bandwidths. For instance,

conventional hydraulic systems possess high single-stroke work, but their power densities are

greatly reduced by their large mass. Recent advances in active materials technology have

led to the development of many compact solid-state transducers. However, the power output

from these solid-state transducers is fairly limited for most macro applications. Although the

single-stroke work output of solid-state materials such as piezoelectric materials is relatively

small, such materials possess very high bandwidths, and as such, are capable of high power

output. However, since most applications do not require high frequency actuation, the high

bandwidth potential of piezoelectric materials is not fully utilized. Since a transducer's power
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Figure 1-1: (a) Configuration of power generator (b) Configuration of actuator/ micopump.
The actuator/micropump configuration can also be operated with check valves instead of active
valves, which are necessary for power generator configuration.

output is the product of its single stroke energy and its bandwidth, it is feasible to create high

performance transducers by combining high single-stroke force of a hydraulic system and high

frequency displacements of a piezoelectric element in a synergistic manner[1]. This concept

can be further exploited to create high performance transducers with very high power densities

by miniaturizing the transducer systems. The state-of-the-art micromachining (or MEMS)

technology has the potential to allow for the implementation of this concept at the micro scale.

Research and development of microfluidic devices has received a significant amount of inter-

est in the past years. The feasibility of micromachining many of the key building blocks (flow

channels, pumps, active/passive valves) of a micro-fluidic system including the integration of

solid-state materials such as piezoelectric materials to actuate valves has already been demon-

strated, and researchers are now striving to create complete microfluidic systems. However, the

microfluidic devices developed thus far mostly feature small flow conductance, limited stroke,

and low power density, and are mostly geared towards small flow/force applications such as

microdosing of fluids. An extensive literature review on microfluidic devices can be found in
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[2].

A unique feature of piezoelectric microhydraulic transducers is their ability to operate as

both an actuator and a power generator, by merely reversing the direction of their operation. As

actuators, these transducers transform electrical energy input into mechanical/hydraulic energy

output, and as power generators, the transducers transform mechanical/hydraulic energy input

into electrical energy that can be stored in a battery or a capacitor. These high performance

transducers can significantly enhance the scope of micromachined transducers technology by

enabling many novel applications. When utilized as actuators, they are capable of extending

the usefulness of active material based structural actuation beyond small strain applications [1].

These actuators can also be useful in miniature robotics. As power generators, the transducers

can extract electrical energy from wasted mechanical energy sources such as vibrations of oper-

ating machinery, heel strike of human gait, wind, sound and function as disposable batteries for

numerous small electronic devices in both civilian and military applications. A literature survey

about piezoelectric power generation will be presented in Chapter 2. Detailed information and

comparisons of various transducers can be found in [2] where a feasibility analysis of Micro

Hydraulic Transducers has been performed.

1.2 Configuration and Operation

The concept of piezoelectric micro-hydraulic transducer (MHT) is schematically illustrated in

Figure 1-1 for actuator and power generator configurations. The transducers are comprised of

the following generic components: the main chamber which houses a piezoelectrically driven

tethered piston, two actively controlled valves, a low-pressure fluid reservoir (LPR), and a high-

pressure fluid reservoir (HPR). The power generator configuration requires rectification circuitry

to rectify and store the voltage generated by the piezoelectric element. The two active valves,

one operating between the HPR and the main chamber and the other one operating between

the main chamber and the LPR regulate the fluid flow into and out of the main chamber. The

piezoelectric element within the pump chamber serves as the main energy transducing element.

A detailed drawing of the device is shown in Figure 1-2.

When operating as an actuator/pump, the electrical signal applied to the piezoelectric
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Figure 1-2: Device layout for power generator configuration. Top and bottom packaging pyrex
layers not shown.

element results in pressure fluctuations inside the main chamber. When operating as a power

generator, pressure fluctuations within the main chamber are converted to an electrical signal,

which is rectified and stored in a battery or capacitor. In the actuator configuration, the

voltage applied to the piezoelectric element induces a strain in the element resulting in a net

volume change in the pump chamber. A controller synchronized with the pump signal cycles the

active valves out of phase with each other in a specified duty cycle, transforming the volume

oscillations of the chamber into a net fluid flow from the low pressure reservoir to the high

pressure reservoir.

In the power generator configuration, the transducer operates in a manner that is reverse

of the actuator. The controller toggles the valves with a phasing that allows fluid flow from the

high pressure reservoir to the low pressure reservoir, thus transforming the static fluid pressure

into high frequency pulses on the piezoelectric element via the piston. Valve actuation at high

frequency creates a near sinusoidal cyclic stress on the piezoelectric element, thereby generating

electrical charge across the element. Coupled circuitry rectifies this electrical energy and stores

it in a battery or capacitor. It should be noted that, for the actuator/micropump configuration,

check valves can also be used, instead of active valves, which is demonstrated in [3]. However,

for the power generator configuration, active valves are necessary in order to convert the static

pressure differential into pressure fluctuations on the piston. Generic operation duty cycle of

the power generator configuration is shown in Figure 1-3.
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Figure 1-3: Generic operation duty cycle of the power generator.

Active valves are comprised of a similar chamber/piston structure, called hydraulic ampli-

fication chamber (HAC), which incorporates a fluid enclosed in the volume between the piston

and the valve diaphragm, which effectively serves to amplify the small displacements of the

piezoelectric material into significantly larger displacements of the valve cap and effectively

transmits the high force actuation capability of the piezoelectric material. As the piston in the

active valve is displaced by the piezoelectric element, the pressure of the compressed fluid acts

to deform the smaller area valve membrane located at the top of the chamber. Deflection of the

rigid cap at the center of the valve membrane blocks fluid flow through the corresponding fluid

orifice. The utilization of the hydraulic amplification chamber also leads to minimization of the

actuator material, and thus helps in achieving high power densities. The ability to microma-

chine the device provides the scope to further miniaturize the system to micro scales, leading

to higher valve frequencies and therefore enhanced device power densities.

As shown in Figure 1-2, in each chamber, namely inlet HAC, main chamber (energy har-

vesting chamber) and outlet HAC, a piezoelectric element is sandwiched between the device
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structure and a moveable piston plate. The piston plate is sufficiently thick for rigidity and

is tethered to the chamber wall through thin flexible diaphragms that extend radially from

the outer edges of the cylinder. The structure effectively constitutes a piston that can move

vertically up and down when a net force is applied to it.

The prototype MHT device consists of a 9-layer stack of pyrex and silicon micromachined

layers, as shown in Figure 1-2 and Figure 1-4. Sealing of the piston in the main chamber

is provided by annular tethers which are created through Deep Reactive Ion Etching (DRIE)

of a SOI wafer. The tether thickness (~10pm) is defined by the SOI device layer, and the

buried oxide acts as an etch stop. All glass layers are patterned by conventional diamond

core drilling. Piezoelectric cylinders are core drilled from piezoelectric substrate plates, onto

which a Ti-Pt-AuSn-Au multilayer film is sputter-deposited for eutectic bonding. The device

assembly is accomplished through anodic bonding of the glass layers to the silicon layers at

3000 C, a process which also enables the AuSn eutectic alloy to melt. Upon cooling, the alloy

solidifies, bonding the piezoelectric cylinders to the silicon layers. Detailed information about

the fabrication techniques developed for piezoelectric micro-hydraulic transducers can be found

in[3], [6], and [7].

1.3 Preliminary Design Considerations

The proposed MHT devices derive their enhanced performance from several inherent design

features. For efficient device operation, the compliances within the system, which result from

the deformations of the structural members like piston, tether and support structures, and com-

pression of the working fluid within the chambers should be minimum. This implies that the

chambers should have small volumes and the structural members should be as thick as possible.

This introduces trade-offs between fabrication limitations and design requirements. The type

of piezoelectric element also affects system efficiency since the coupling coefficient of the ele-

ment determines the electromechanical energy conversion work-cycle. For the power generator

configuration the rectifier circuit topology is another factor affecting system efficiency, since

it determines the electromechanical energy conversion work-cycle along with the piezoelectric

material.
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Figure 1-4: (a) 5-layer device for subcomponent testing (b) Complete 9-layer device (c) SEM
of micromachined tethered piston structure [7].

Design of the piston tether structure is very crucial for system operation. The tethers should

be flexible enough to allow sufficient motion of the piston, yet stiff enough to avoid introduction

of excessive compliance into the system. Similar design consideration is also valid for the valve

membrane. Achieving high power density critically depends on valves having high bandwidth

(frequencies in the tens of kilohertz), sufficient actuation force to overcome large pressures (~1-2

MPa) and large stroke (~20-30Qm). The valve membranes should be designed such that they

are flexible enough to allow for large valve stroke and stiff enough to operate against high

pressures and have high natural frequencies. Large stroke actuation of the valve cap generally

results in nonlinear membrane behavior.

Possible fluidic and structural oscillations within the system should be considered. For

example the fluid channels and the main chamber constitute a resonating system similar to

a Helmholtz resonator. Similarly, piezoelectric element and piston dynamics, which affect the

bandwidth of the device, should also be considered.

Important design limitations are maximum allowable stress in the membranes and the de-

polarization stress of the piezoelectric material. The stress in the tether structures shouldn't

exceed 1GPa [7]. Piezoelectric materials also differ in their depolarization stress, which deter-

mines the energy density of the material. If during the operation, the stress on the piezoelectric

element exceeds the depolarization stress, the element looses its functionality.

The choice of working fluid is also important since different fluids have different bulk moduli,
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densities and viscosities.

1.4 Objective, Scope and Organization of the Thesis

Since these devices are complex, comprehensive simulation tools are needed for effective de-

sign. Operation of each subcomponent of the device is highly coupled and every design decision

should be made with remaining components in mind. The simulation tool should allow for the

monitoring of important parameters such as chamber pressure, flowrate, and various structural

component deflections and stresses. A system level simulation tool is needed which should be

developed by integration of different energy domains, namely fluids, structures, piezoelectric

material and circuitry. The challenges in modeling and simulation are: microscale fluid flow,

incorporation of membrane behavior into dynamic simulation, prediction of structural compli-

ances and incorporation of the elastic equations of the structural members into simulation.

The MHT group at MIT Active Material and Structures Laboratory(AMSL) has obtained

good experimental correlation for subcomponent models from tests on piezoelectrically driven
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piston/tether structure, hydraulic amplification chamber structure and valve membrane [6],

flow tests through macro disc valves [4], and micropumps [3].

This thesis focuses on the modeling and design of piezoelectric microhydraulic transducers

used as power generators. The system architecture for a possible application, namely heel strike

power generation configuration is shown in Figure 1-5. The scope of the thesis is shown with

the dashed line in the system architecture. The heel package design will not be discussed. Also

design of the active valve structure will not discussed, which is detailed in [5]. Orifice models

developed in [4] are used for fluid flow through the valves.

The objectives of this thesis are:

- To develop a comprehensive system level model and simulation tool to analyze the main

chamber and the associated fluid channels and valves,

- To gain insight into system operation and understand the factors affecting the system

performance,

- Develop a design procedure, which should be complemented by the design of the active

valves.

The organization of the thesis is as follows: Chapter 2 presents an analysis of piezoelectric

power generation based on linear electromechanical energy conversion. Effect of circuitry and

piezoelectric material on energy density and effective coupling factor is discussed. Chapter 3

presents a simple model of the energy harvesting chamber, simulations with the coupled circuitry

and preliminary design considerations. The interaction of the main chamber and the circuitry is

discussed. The circuits presented in Chapter 2 and different piezoelectric materials are compared

in terms of flowrate and frequency requirements for a given pressure differential and power, and

in terms of system efficiency. Chapter 4 presents the detailed modelling of the energy harvesting

chamber and investigates the contribution of different structural components on the effective

compliance of the chamber. It also presents the simulation architecture used for integrating

elastic equations into system level simulation. Chapter 5 discusses further design considerations

for choosing chamber geometry with regard to operation conditions like maximum pressure,

operation frequency and flowrate. Parameter studies are performed and a design procedure

is developed. Chapter 6 summarizes important results and conclusions presented in previous

chapters and presents recommendations for future work.
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Chapter 2

Piezoelectric Power Generation and

Circuitry

This chapter presents an analysis of piezoelectric power generation based on linear electrome-

chanical energy conversion. Effect of circuitry and piezoelectric material on electromechanical

energy conversion and energy density is discussed.

2.1 Introduction

Piezoelectric materials are mostly used as sensors and actuators. Since they are capable of

electromechanical energy conversion and some have high coupling coefficients, which is an in-

dication of the efficiency of the electromechanical energy conversion, they can be also used as

power generators from ambient vibration or impact energy, and as structural vibration dampers.

The idea and the governing principles are the same for power generation and structural vibra-

tion damping, using piezoelectric elements and passive circuit elements. Damping of structural

vibrations with passive electrical circuit elements is discussed in [15] and [14]. This method

eliminates the need for viscoelastic materials or mechanical vibration absorbers attached to the

structure, or complex amplifiers which are required by the piezoelectric materials for active

structural control systems [15]. The coupling between mechanical and electrical domains pro-

vided by the piezoelectric effect allows the damping mechanism to be implemented as electrical

circuit elements rather than physical masses, springs and dampers. Most of the discussions
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which are valid for the structural damping applications with piezoelectric elements are valid

for the power generation from ambient vibration or impact energy with piezoelectric elements.

In both cases, the purpose is to transfer as much energy from the mechanical to the electrical

domain. The transferred energy to the electrical domain can be either dissipated or stored.

If a piezoelectric element is shunted with a resistor or with a resistor and inductor network,

the converted electrical energy is basically dissipated. However, if the piezoelectric element is

connected to a rectifier circuit, a diode bridge for example, with a capacitor or battery, the

converted electrical energy can be stored.

2.2 Previous Work

Structural damping with piezoelectric elements shunted with a resistor and a resistor-inductor

network is analyzed in [15]. In the resistive shunting the electromechanical energy conversion

efficiency depends on the operation frequency, and the optimum frequency depends on the

resistance value. In other words, optimum efficiency is obtained when the impedance of the

piezoelectric element is equal to the impedance of the resistance. Shunting with a resistor

and inductor introduces an electrical resonance, which can be optimally tuned to structural

resonances for maximum vibration damping.

Linear shunting components such as resistive elements or resistive-inductive-capacitive cir-

cuits produce behavior analogous to that of viscoelastic damping materials and tuned proof-

mass dampers. Nonlinear piezoelectric shunting for structural damping using a piezoelectric

element attached to a diode bridge and a DC voltage is presented in [14]. The rectified DC shunt

performs less well in terms of energy conversion efficiency compared with the resistive shunt at

optimum frequency. However, unlike the resistive shunt, the rectified DC shunt is independent

of frequency and the transferred energy can be recovered depending on the implementation of

the DC voltage source.

Power generation characteristics of piezoelectric elements in response to impact loads are

investigated in [9], [10] and [11]. In the first two, a ball is dropped from a certain height onto a

piezoelectric plate vibrator. In the first one, the piezoelectric vibrator is shunted with a resistor

and the efficiency of transformation from mechanical to electrical energy in terms of initial
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height and shunted resistance value is investigated. The efficiency is defined as the ratio of the

electrical energy dissipated in the resistor to the initial impact energy. The input mechanical

impact energy effects the efficiency due to nonlinearity in the vibrator and as expected there

is an optimum resistance value. They conclude that efficiency increases with decreasing input

impact energy, increasing mechanical quality factor Qm, increasing electromechanical coupling

coefficient k 2 and decreasing dielectric loss tan 6. They obtain a maximum efficiency of 52%.

The same authors of [9] investigate the power generation characteristics of the same sys-

tem attached to a diode bridge and capacitor instead of a resistor in [10]. In this case the

transformation efficiency is defined as the ratio of the impact energy to the energy stored in

the capacitor. As the capacitance of the capacitor increases, the electric charge increases be-

cause the duration of the oscillation becomes longer and the output voltage decreases. They

conclude that there exists an optimum capacitance value in terms of transformation efficiency.

They obtain a maximum efficiency of 35%. It should be noted that, if a force were imposed

on a piezoelectric element, the voltage on the capacitor would always increase until half of the

open circuit voltage which corresponds to the maximum stress on the piezoelectric element,

regardless of the capacitance of the capacitor. The value of the capacitance would change the

duration in which the maximum voltage is reached and the stored energy in the capacitor would

be proportional to its capacitance, since the maximum voltage is constant for a given maximum

stress. In the paper discussed above, the force on the piezoelectric element is not imposed, it

is determined depending on the impedances of the vibrator and the capacitor. In this case, the

impedance matching principle cannot be applied since the system is nonlinear because of the

diode bridge. No power density figures are reported in [9] and [10].

Piezoelectric power generation from thermal energy is presented in [20]. This paper discusses

an energy conversion system in which thermal energy is converted to high frequency, high voltage

electric a.c energy. The conversion system is composed of a thermal-acoustic natural heat engine

and a piezoelectric transduction system to convert the acoustic energy to electric energy.

Another system to convert acoustic energy to electric energy is presented in [35]. The

device is designed to convert waste acoustic energy, e.g. in automobile or airplane jet engines

to electrical energy in a predetermined frequency range. The system consists of a piezoelectric

bending element, means for mounting the piezoelectric bending element in an acoustic energy
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path and a tuning means mounted on to the piezoelectric bending element to set the resonant

frequency of oscillation of the piezoelectric bending element within the predetermined frequency

range.

The idea of piezoelectric power generation from- the ocean waves is patented in [27]-[32]

by Ocean Power Technologies, Inc. The motivation in these studies is to utilize the enormous

amount of mechanical energy present in the oceans. [27] relates to the generation of electrical

power from waves on the surface of bodies of water, and particularly to the conversion of the

mechanical energy of such waves to electrical energy by means of piezoelectric materials. The

system consists of piezoelectric elements in the form of one or a laminate of sheets, each sheet

having an electrode on opposite surfaces thereof, a support means for maintaining the structure

in a preselected position within and below the surface of the water. In certain embodiments, the

elements are designed to enter into mechanical resonance in response to the passage of waves

thereover, increasing the mechanical coupling efficiency between the waves and the elements.

Similar approaches are presented in [28] and [30]. In [28], a float on a body of water is mechani-

cally coupled to a piezoelectric material member for causing alternate straining and de-straining

of the member in response to the up and down movement of the member in response to passing

waves, thereby causing the member to generate electric energy. The output impedance of the

float is matched to the input impedance of the member for increasing the energy transfer from

the float to the member. In [30], the system comprises a weighted member supported from a

piezoelectric element for applying a preselected strain to the element. In one embodiment, the

element is supported by a float floating on the surface of the water. In another embodiment,

the element is supported above the surface of the water and the weighted member, of negative

buoyancy, is immersed in the water. Means are provided for tuning the natural frequency of

the system to cause it to enter into mechanical resonance in response to passing waves. Similar

approaches are presented in [29], [31] and [32].

Some circuitry considerations for piezoelectric power generation are presented in [33] and

[26]. [33] presents a DC bias scheme for improved efficiency for applications including elec-

trostrictive materials, which have very weak piezoelectric characteristics. However, if a DC

bias is applied, the piezoelectric characteristics can be significantly increased. [26] presents an

alternative rectifier circuit, which includes an inductor, a SCR(silicon controlled rectifier) and
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a voltage detection circuit in the conduction path between the piezoelectric element and the

storage element, a capacitor for example. The object is to optimize the transfer of the energy

produced by a piezoelectric transducer to a load. Another circuit designed for a wide variety

of applications is presented in [36].

Piezoelectric power generation for electronic wristwatch applications is presented in [23]-

[25]. [23] presents an electronic wristwatch having a piezoelectric generator in it. The generator

converts energy from mechanical to electrical energy to drive the electronic wristwatch. The

oscillation of a weight produces mechanical energy as it oscillates. A wheel train transmits

the mechanical energy to the generator by applying a torque to the generator. The generated

voltage is rectified with a diode bridge. Similar systems are presented in [24] and [25].

Piezoelectric power generation from wind energy is presented in [21] and [22]. The system

presented in [22] consists of a piezoelectric transducer mounted on a resilient blade which in

turn is mounted on an independently flexible support member. Fluid flow against the blade

causes bending stresses in the piezoelectric polymer which produces electric power.

Other piezoelectric power generation systems are presented in [34], [39], [38] and [37]. [34]

presents a piezoelectric fluidic-electric generator which consists of a piezoelectric bending ele-

ment, means for driving the piezoelectric bending element to oscillate with the energy of the

fluid stream, and electrodes connected to the piezoelectric element to conduct current generated

by the oscillatory motion of the piezoelectric element. [39] presents a system which consists of

a piezoelectric array which is mounted on one or more tires of a motor vehicle. As the vehicle

drives on the road, the tire is flexed during each revolution to distort the piezoelectric elements

and generate electricity.

Piezoelectric materials are also used in power electronics applications such as transformers.

Piezoelectric transformers are composite resonators made of two bonded piezoelectric parts.

The vibration of one part, excited by an input electric voltage, induces an output voltage

across the other part [40]. In other words, a piezoelectric transformer works by using the direct

and converse piezoelectric effects to acoustically transform power from one voltage and current

level to another [44]. Detailed information about the operational characteristics of piezoelectric

transformers can be found in [41] and [42].

Piezoelectric transformers have low-electric noise because they transmit power by mechan-
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ical vibration. They can also operate efficiently at high frequencies, whereas conventional

electromagnetic transformers are not efficient at high frequencies because of core loss and cop-

per loss. Other advantages over the electromagnetic transformers can be stated as high voltage

isolation between primary and secondary, high frequency operation leading to reduction in the

filter capacitors and low weight and size [43]. Since piezoelectric transformers have much higher

power densities than electromagnetic transducers, they are very promising as power electronic

components for miniature and lightweight electrical equipment.

Fundamental limits on energy transfer of piezoelectric transformers are discussed in [44].

The discussion details similar considerations to those of the piezoelectric power generation con-

cept. One has to consider the work cycle of electromechanical energy conversion and associated

circuitry. Also the maximum electric field, the maximum surface charge density, the maximum

stress and the maximum strain of the piezoelectric element are important criteria to consider

when determining the limitations of power transfer in a piezoelectric transformer, as well as in

a piezoelectric power generation system.

2.3 Theoretical Background

The linear electromechanical energy conversion process with piezoelectric ceramics is by far the

easiest to handle, since the piezoelectric, dielectric and elastic constants can be applied directly

[8]. In linear analysis, the coefficients mentioned above are assumed to be constant during the

operation. The nonlinearity at high fields and hysteresis effects are ignored, i.e. the losses

due to nonlinear effects are not considered. It is also assumed that the operation frequency is

well below the lowest resonant frequency of the piezoelectric element, i.e. the operation can

be considered as quasi-static. The linear constitutive relationships for a general piezoelectric

element are:

D ET d E

(2.1)
S_ d sE T

where D is a vector of electric displacements or charge density(charge/area), S is the vector

of material engineering strains, E is the vector of electrical field in the material(volts/meter),
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T is the vector of material stresses (force/area), e is the matrix of dielectric constants, d

is the matrix of piezoelectric constants and s is the matrix of compliance coefficients of the

piezoelectric element. The superscripts ()T and ()E signify that the coefficients are measured

at constant stress and constant electric field respectively and the subscript ()t denotes the

matrix transpose. In this chapter, a specific case will be considered where the piezoelectric

element is subjected to compression parallel to the polarization of the element. It is assumed

that the lateral dimensions are small compared to the axial dimension, so that only the axial

stress T3 needs to be considered (T 1 =T2 ~ 0). Or, it can be assumed that, the element is free

to expand in lateral directions so that T3 is the only nonzero stress component. Under these

conditions, equation 2.1 reduces to

D3 Tf d33 E33 133E1(2.2)

S3 d33  s T3

where the first and second subscripts of the piezoelectric, dielectric and elastic constants

denote the orientation of the electric field and the stress respectively.

Quasi-static coupling factors, or coefficients, are very common and useful definitions for

piezoelectric energy conversion. The coupling coefficients are dimensionless and thus they pro-

vide a useful comparison between different piezoelectric materials independent of the specific

values of permittivity or compliance. The definition of the coupling coefficient described above

'is given in [18]. Figure 2-1 illustrates graphically the meaning of the coupling coefficient k3 3 .

The cycle shown is as follows: first, the piezoelectric element is compressed under short circuit

condition, then the compressive stress is removed under open circuit condition, and then the

cycle is completed under constant stress condition by applying an ideal electric load. As work is

done on the electric load, the strain returns to its initial state. For the idealized case illustrated

in Figure 2-1(a), the coupling coefficient is defined as:

(k33)2 _ W- _ s - s ET3 (2.3)
W + W2 SE SnETV~l+ I 2  33 8333

where W1 is the work done on the electric load and W2 is the part of the energy unavailable

to the electric load or the reversible stored elastic energy(strain energy).

Similarly, the coupling coefficient for energy conversion from electrical energy to mechanical
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Figure 2-1: Graphic illustration of electromechanical energy conversion and definition of the
piezoelectric coupling factor k33 given in [18] (a) Conversion of energy from a mechanical source
to electrical work (b) Conversion of energy from an electrical source to mechanical work.

energy can be derived using the idealized cycle illustrated in Figure 2-1(b). First, the element

is mechanically free when the electric source is connected. Then the element is blocked me-

chanically parallel to polarization before the electric source is disconnected. Then with E3 = 0

the mechanical block is removed and in its place a finite mechanical load is provided. For this

idealized cycle of work illustrated in Figure 2-1(b), the coupling coefficient is defined as:

W T_ s 3=0 d2
(k33)2 _ 33 - 33 ._ 3(2.4)

W1 + W2  -6 TsEET

where W1 is the work done on the mechanical load and W2 is the part of the energy

unavailable to the mechanical load.

The idealized work cycles illustrated in Figure 2-1 correspond to the standard definition of

the piezoelectric coupling coefficient. Berlincourt proposes alternative work cycles of reversible

electromechanical energy conversion in [8]. These cycles are shown in Figure 2-2. The first

one, which is illustrated in Figure 2-2(a) corresponds to a case where the element is compressed

with the electric load not connected, i.e. under open circuit conditions, then the electric load

is connected with stress maintained, then the mechanical stress is reduced to zero with the

electric load again disconnected and finally the electric load is connected and the element
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Figure 2-2: Alternative idealized work cycles given in [8].

returns to its initial state under constant stress. In the cycle illustrated in Figure 2-2(b), the

element is compressed under open circuit condition, then the electric load is connected with

stress maintained and finally the electric load is connected and the stress is reduced under

closed circuit condition and the element returns to its initial state. The cycle in Figure 2-2(c)

is identical to the cycle used for deriving the coupling coefficient in Figure 2-1. The cycle in

Figure 2-2(d) corresponds to a case where the energy conversion occurs at several intermediate

levels.

Berlincourt [8] defines an effective coupling factor, which is equal to

2WT 1k2ff = (2.5)
W1+ W2

He applies this definition to each of the different work cycles described above. Then he expresses

the effective coupling factors for each of the different cycles in terms of the standard coupling

coefficient given in Equation 2.3 as follows:
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keff(a) = k33  2/(1 + k') (2.6)

keff(b) = k33  1 + k3  (2.7)

keff(c) = k33 (2.8)

keff(d) = k33  2/(n + k 3) (2.9)

where k33 is the standard coupling coefficient and n is the number of intermediate levels in

Figure 2-2(d). From equation 2.6 it is apparent that the coupling coefficient corresponding to

the first case in Figure 2-2 is greater than the standard coupling coefficient defined previously.

It is important to note that, the cycles described so far are idealized or hypothetical cycles.

The energy conversion process occurs with the mechanical and electrical energy sources con-

nected and disconnected at will. However, no explanation has been given in terms of how these

cycles can be achieved or approximated in a real application. In other words, the mechanical

and electrical infrastructures which would allow these cycles to occur are not discussed. In this

chapter, conversion from mechanical to electrical energy is considered, with emphasize on the

circuitry used which basically determines the work-cycle. In other words, the rectifying cir-

cuitry is the electrical infrastructure in the power generation process. In the following sections

two different circuit topologies will be analyzed in detail in terms of the effective coupling factor

and energy density.

2.4 Circuitry Considerations

Although in the literature different mechanisms for piezoelectric power generation has been

presented and some studies performed for piezoelectric material characterization for power

generation, no detailed analysis has been presented in terms of effective coupling factor, energy

density and piezoelectric material comparison with regard to circuitry. This section analyzes two

different circuits for rectifying and storing the electrical energy generated by the piezoelectric

element. These circuits constitute examples of nonlinear shunting of piezoelectric elements. The

first one is a regular full bridge rectifier with a battery attached to it. The second circuitry is the

same circuit proposed in [26] for piezoelectric power generation, which consists of a full bridge
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(a) Full Bridge Rectifier

x k

r/N#' ~ '14 _
'4 k

(b) Full Bridge Rectifier and Voltage Detector

F , . x

4

VP 1 +V.- T

Figure 2-3: Alternative circuits to rectify and store the electrical energy generated by the

piezoelectric element.

rectifier, an inductor, a silicon controlled rectifier (SCR), a voltage detector and a capacitor to

store the electrical energy. The circuits are shown in Figure 2-3.

2.4.1 Modeling

This section presents the modeling of the piezoelectric element and the circuitry. The models

are same for the two circuits under consideration except some small differences.

Piezoelectric Element

Linear piezoelectric constitutive relationships are assumed. The form of the constitutive equa-

tions used here is as follows:

. A d33~- -

S 333 -T T

= d3 631 (2.10)

L33 633 .

where D is the charge field, S is the strain, E is the electric field, and T is the stress. For a

cross-sectional area of A and length of Lp, the expressions for the deflection of the piezoelectric

element and the voltage across it become:

P L(D F +3 PXP = (S33FP+ 6p T
P 633

(2.11)
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V, = TLP( F,- Q)(2.12)
P 633 33

where xP is the deflection, Q, is the charge, F, is the force applied on the piezoelectric

cylinder, and V, is the voltage across the piezoelectric cylinder. And the current through the

piezoelectric element is given by:

dQ,
I,= dt (2.13)

Diode Bridge

The model of the diode bridge rectifier is based on [52]. The governing equations can be

derived using Kirchoffs laws and diode equations. The notation in Figure 2-3 is used. Applying

Kirchoffs Current Law(KCL) in the junctions 1,2,3,and 4, we get:

I = i4 - i (2.14)

12 = il + i2

13 = i3 - i2

14 = -%3 - 74

The voltages across the diodes are given by:

vi = V-V2 (2.15)

V2 = V3-V2

V3 = V4-V3

V4 = V4-V

Applying Kirchoffs Voltage Law (KVL) around the loops corresponding to the cases where

V, > 0 and V1, <0 we get:
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-V +v-14-+va = 0 for V >0

Vp+v2+Vb-V4 = 0 for V<0

(2.16)

For the case where V > 0, the currents flowing through diodes #1 and #3 are the same,

and for the case where V, < 0, the currents flowing through diodes #2 and #4 are the same.

Since all the diodes have the same constitutive relationship, we can write:

V - V2 = V4 - V

V4 -V 1 = V -- V2

for V > 0

for V > 0

(2.17)

Recognizing that V, = V1 - V3 ,V2 = 1 b, V4 = 0(ground) and using equation 2.17 we can write:

(2.18)
2

14-Vp
V3  2

2

The voltage - current relationships (constitutive law) of the diodes are:

in = I[exp qv -
rkT

in = 0

Vn > 0 (2.19)

V,1 < 0

where the subscript (), denotes the diode number, q = 1.60 x 10-1 9 (C) is the electron

charge, k = 1.38 x 10- 23(J/K) is the Boltzman constant and T is the temperature(T = 300K).

1 and 1 are diode properties. For CS57-04 diode (Collmer Semiconductor, Inc.), whose values

will be used throughout the thesis, they are measured to be: I = 10-6 and q = 17.25 [19].
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Diode Bridge and Voltage Detection Circuit

For the diode bridge with the voltage detection circuit, the model is similar. The equations

2.14, 2.15, and 2.19 are valid. However because of the implementation of the voltage detection

circuit and SCR, the simulation architecture is different [53], which is shown in Appendix A.

The voltage detection circuit is not modeled. Only its function is implemented in Simulink.

The Kirchoffs Voltage Law can be written for this case using the notation in Figure 2-3 as:

-Vp+vl+v5+VcR+Vc+va = 0 for V,>0 (2.20)

Vp+V2+V5+VSCR+Vc+V4 = 0 for V<0

The voltage across the inductor is given by:

v tL (2.21)
dt

And we can also write

VC =hI 2  (2.22)

2.4.2 Simulation and Analysis

Simulations are performed using Matlab/Simulink. The Simulink blocks and additional details

are given in the Appendix A. The Simulink architecture is shown in Figure 2-4. The piezoelectric

element block includes the constitutive relationships and the circuit block includes the equations

corresponding to the circuitry. The piezoelectric element is excited with an imposed force on

it. The geometry and operation conditions chosen for the simulation are shown in Table 2.1.

The imposed force is sinusoidal with an offset, namely it fluctuates between zero and the

force corresponding to the maximum applicable stress, which is the depolarization stress of the

piezoelectric element. In the case of PZN-4.5%PT, the depolarization stress is measured to

be around 1OMPa [19]. For the chosen piezoelectric cylinder diameter, the maximum force is

31.4N. Detailed comparison of different piezoelectric materials will be presented in section 2.6.
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Figure 2-4: Simulation architecture used to simulate the piezoelectric element connected to the
full bridge rectifier. The force is imposed on the piezoelectric element.

Length of the piezoelectric element, Lp 1mm

Diameter of the piezoelectric element, DP 2mm

Operation frequency, f 20kHz
Maximum force, Fp 31.4N
Optimum battery voltage, Vb 90V
Piezoelectric material PZN - 4.5%PT

Table 2.1: Geometry and operation conditions used in simulation
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Full Bridge Rectifier

Simulation Simulation time histories are shown in Figure 2-5. The operation at steady state

can be summarized as follows: During the compression of the piezoelectric element the voltage

on it increases. If it reaches the battery voltage, current starts to flow through the battery and

in fact the piezoelectric element voltage is a little bit higher than the battery voltage during

this interval which causes the current to flow. The amount which the piezoelectric element

voltage exceeds the battery voltage during this interval depends on the diode properties and

other resistances in the system. When the force on the piezoelectric element begins decreasing,

the voltage decreases too and when it becomes less than the battery voltage current stops

flowing through the battery. As the force on the piezoelectric element keeps decreasing, the

voltage on the piezoelectric elements keep decreasing until it reaches the negative value of the

battery voltage. At this point, current begins to flow through the battery, now, however, from a

different branch of the diode bridge, namely through different diodes. Again during this interval

the voltage on the piezoelectric element exceeds the battery voltage a little bit (in this case it

is lower than the negative value of the battery voltage). When the force begins increasing, the

voltage begins increasing too and again no current flows through the battery. Throughout the

operation, the voltage on the piezoelectric element fluctuates between the negative and positive

values of the battery voltage.

In order to get insight into the energy conversion mechanism and to derive the governing

equations in the next section, it is worthwhile to look at the force vs. deflection and voltage vs.

charge plots of the piezoelectric element. These are plotted in Figure 2-6. The most important

observation is that there are two major regimes during the operation: Operation under open

circuit conditions, where the compliance of the piezoelectric element is small, i.e the piezoelectric

element is hard; and operation under closed circuit conditions, where the compliance of the

piezoelectric element is large, i.e the piezoelectric element is soft. The compliances in these

regimes are sD and sE for open circuit and closed circuit conditions respectively. The shaded

region in Figure 2-6 corresponds to the stored electrical energy in one cycle. The generated

power is then simply this energy times the operation frequency.

The battery voltage has an important effect on the performance. The simulation results

presented in Figure 2-5 and Figure 2-6 correspond to the optimum battery voltage (90V). The
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(a) Applied Force
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(b) Piezoelectric Element Deflection
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Figure 2-5: Time- histories from the simulation of the piezoelectric element connected to the
full bridge rectifier for the case of imposed force. The generated power is IbVb.
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(a) Force vs. Deflection of the Piezoelectric Element (b) Voltage vs. Charge on the Piezoelectric Element
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Figure 2-6: Force vs. deflection and voltage vs. charge plots of the piezoelectric element

compressed under the applied force for the case of full bridge rectifier.

force vs. deflection of the piezoelectric element for different values of battery voltage is shown in

Figure 2-7. It is found that, the maximum power is obtained with an optimum battery voltage

of:

Vb(opt) = Voc = 1 3(s3 (2.23)
4 4 d33

where Voc is the open circuit voltage of the piezoelectric element, sE and sD are the closed

circuit and open circuit compliances of the piezoelectric element respectively, d33 is the piezo-

electric coefficient, o- is the maximum stress on the piezoelectric element, and Lp is the length

of the piezoelectric element. Open circuit voltage at a given stress is the voltage generated

by the piezoelectric element when compressed under open circuit conditions. In fact the opti-

mum battery is the voltage which optimizes the shape of the force vs. displacement curve for

maximum enclosed area.

It should be noted that the above analysis is done for a case where the force on the piezoelec-

tric element is varying between zero and a maximum value which corresponds to the depolar-

ization stress of the piezoelectric element. In order to analyze the case where the force is biased,

the system is simulated for nonzero positive or negative minimum forces. It has been discovered
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Figure 2-7: Effect of battery voltage on power.
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Figure 2-8: Effect of bias force on the workcycle.

that the optimum battery voltage depends only on the stress band on the piezoelectric element,

namely on the difference of the maximum and minimum stresses on the piezoelectric element.

Figure 2-8 shows the workcycles for different applied forces which have the same peak to peak

values but different bias values. For each case the optimum battery voltage is the same since

the stress band resulting from each case is the same. Equation 2.23 can be rewritten as:

VAo-(st-stD)Lp
Vb 4 ) i d3

(2.24)

where Aa is the stress band on the piezoelectric element.

Analysis In order to investigate the work cycle of the piezoelectric element, we can analyze

the stress vs. strain and electric field vs.charge density plots of the piezoelectric element in

detail. Important features of the work cycle is shown in Figure 2-9 which corresponds to the

optimum battery voltage case. It is important to not that, the dashed line, which corresponds

to the case in which the piezoelectric element would be compressed in closed circuit conditions,

passes through the middle of the stress vs. strain curve. We also know the slopes of the curve
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in the two different regimes, namely open circuit and closed circuit regimes. Using simple

geometry, we can derive the coordinates of the corner points. From the voltage vs. charge

plot in Figure 2-6 we see that the voltage of the piezoelectric element fluctuates between the

positive and negative values of the battery voltage. Using constitutive relationships to calculate

the corresponding charge on the piezoelectric element at different states, we can get the electric

field vs. the charge density plot. These are shown in Figure 2-9.

The electrical energy stored (per piezoelectric element volume) in the battery in one cycle

for the case of optimum battery voltage, which is equal to the enclosed area by the stress vs.

strain or electric field vs charge density curve can obtained using simple geometry from Figure

2-9 as:

E=-( sgs)o3 (2.25)

where st and st are the closed circuit and open circuit compliances of the piezoelectric

element respectively and a- is the maximum stress on the piezoelectric element.

Then, the generated power by the piezoelectric element can be expressed as:

W = ( - st)aVPf (2.26)

where V is the volume of the piezoelectric element and f is the operation frequency. From the

above equation it can be seen that the power depends heavily on the stress on the piezoelectric

element. The most important limitation on piezoelectric power generation is the depolarization

stress. For stresses larger than this, piezoelectric element coefficients degrade and performance

decreases drastically. Each piezoelectric element has a different depolarization stress, which

constitute an important factor when determining their feasibility as power generators. Detailed

comparison of different piezoelectric elements will be presented in Section 2.6.

Effective coupling factor for an electromechanical energy conversion mechanism, in this case

a system which converts mechanical energy into electrical energy is defined as the ratio of the

mechanical work done on the system to the electrical energy stored in one cycle. This definition

is the same as the one used to derive the coupling coefficient. This is illustrated in Figure 2-10.

From the above definition we can write:
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Figure 2-9: General presentation of the work cycle of the piezoelectric element in terms of

stress, strain, electric field and charge density for the case of regular diode bridge.
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Figure 2-10: Illustration of the effective coupling factor for the case of regular diode bridge.

k2  - (2.27)
eff W1 + W2

Again using geometry, the effective coupling factor can be derived in terms of the piezoelec-

tric material compliances as:

k2 2(sE -8sD)
kef f=33 +3s (2.28)

The definition of the coupling coefficient of a piezoelectric element was given in section 2.3.

Using equations 2.3 and 2.28, the effective coupling factor for the full bridge rectifier case can

be expressed in terms of the coupling coefficient as:

2k 2

k 2 = 3k 3 2(2.29)
ff 33 +2

Full Bridge Rectifier and Voltage Detection Circuit

The operation of this circuit is as follows: The voltage detector circuit detects the voltage right

after the diode bridge (V2). Initially, the SCR is in "off" state. If V2 reaches its maximum and

begins decreasing, the voltage detector sends a current signal to SCR which turns it on. If the

detected voltage reaches zero, the voltage detector sends another signal to SCR which turns it
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off.

Simulation The simulation architecture is the same as in Figure 2-4. The implementation

of the switching of the SCR and additional details of the Simulink model are presented in

Appendix A. Again, the force is imposed on the piezoelectric element. The geometry, operation

frequency and the piezoelectric material are the same as in the previous section. The time

histories resulting from the simulation are shown in Figure 2-11.

Again, in order to get insight into the energy conversion mechanism and to derive the

governing equations, it is worthwhile to look at the force vs. deflection and voltage vs. charge

plots for the piezoelectric element. These are plotted in Figure 2-12. We can see that there are

two basic operation regimes. The first one is operation under open circuit conditions, where the

compliance of the piezoelectric element is low, i.e the piezoelectric element is hard. The second

operation regime is defined with the almost flat lines in Figure 2-12. This regime corresponds

to the time intervals, where the switch (SCR) is on. In this regime, the piezoelectric material

behaves as a very soft material.

Since the SCR is initially closed, the piezoelectric element is first compressed under open

circuit conditions, until the applied force reaches its maximum and begins to decrease (period

1-2). In this period, the voltage on the piezoelectric element reaches the open circuit voltage

corresponding to the maximum stress applied on the element. Once the force begins to decrease,

the detected voltage, which is the rectified piezoelectric element voltage, begins to decrease too,

which causes the switch to turn on. After the switch turns on, the voltage decreases very fast

and the piezoelectric element is compressed with a very small effective stiffness. The switch

turns again off once the voltage reaches zero. During the period when the switch is on (2-3),

the piezoelectric element is squeezed until the point, as if it was being squeezed under the same

stress and closed circuit conditions. We can verify this by looking to the voltage vs. charge

plot. In state 3, the voltage on the piezoelectric element is zero and the force on it is almost

the maximum force. Of course, this rapid compression occurs in finite time and during this

time interval, the force decreases a little bit, which results in the almost flat region in force vs.

deflection plot. The shorter the "on" state, the flatter will be the line. It can be concluded

that, the performance of the system with this cycle depends highly on the time history of the
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Figure 2-11: Time histories from the simulation of the piezoelectric element connected to the
full bridge rectifier and voltage detector circuit. The time intervals between the dashed lines
present the intevals where the switch(SCR) is in its "on" state.
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(b) Voltage vs. Charge on the Piezoelectric Element
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voltage vs. charge plots of the piezoelctric element
the case of full bridge rectifier and voltage detector

applied force.

Analysis After the observations done in the previous section, we can derive the equations

which determine the maximum strain and charge of the piezoelectric element, the energy stored

per cycle and the effective coupling factor. To keep the analysis more general, we again analyze

the work cycles in terms of stress vs. strain and electric field vs. charge density plots. Important

features of the idealized work cycles are shown in Figure 2-13. As mentioned earlier, there is a

finite time associated with the transition between states 2-3 and 4-1, where the force does not

remain at its maximum value. This time interval depends highly on the value of the inductor

used. In the simulation, an inductor of 20mH is used. It should be also mentioned that, the

capacitor has to be large enough to avoid saturation. The simulation results are very close to

the idealized cycles, which can be seen comparing Figure 2-12 and Figure 2-13. It should be also

mentioned that, the difference between these figures should be counted partly on a simulation

artifact. The switch operation and open circuit and closed circuit conditions are simulated

using very large and very small resistances respectively. It can be concluded that, the idealized

curves in Figure 2-13 are very good approximations to the actual work cycles.
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Figure 2-13: General presentation of the work cycle of the piezoelectric element in terms of
stress, strain, electric field and charge density for the case of the full bridge rectifier and voltage
detector circuit.

The derivation of the coordinates of the points in Figure 2-13 is straightforward. The strain

values can be found by using the slopes of the stress vs. strain curve. The maximum charge

can be calculated using the constitutive relationships for the condition of zero electric field and

maximum stress. The electrical energy stored in the capacitor in one cycle, which is equal to the

enclosed area by the stress vs.strain and electric field vs.charge density curve can be obtained

easily as:

E = (s - sD)a2 (2.30)

where s E and sD are the closed circuit and open circuit compliances of the piezoelectric

element respectively and o- is the maximum stress on the piezoelectric element.

Then, the generated power by the piezoelectric element can be expressed as:

W (s33 33)0 s Pf (2.31)

where V is the volume of the piezoelectric element and f is the operation frequency. From

the above equation it can be seen that the power depends heavily on the stress on the piezo-
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Figure 2-14: Illustration of the effective coupling factor for the full bridge rectifier and voltage

detection circuit.

electric element. The power generated with this circuitry is four times bigger than the power

generated using the full bridge rectifier under the same conditions, namely same applied force

and frequency.

Using the definition in equation 2.27 and from Figure 2-14, the effective coupling factor can

be obtained as:

k 2 W 2(s_ - s) (232)

effw±W 24.32)
e -W1 + W2 2s33-_S3

Using equations 2.3 and 2.32, we can express the effective coupling factor of the coupling

coefficient as:

2
k2ff =2k3 (2.33)

It is very interesting to note that the diode bridge and the voltage detection circuit proposed

by Smalser in (26] result in the hypothetical electromechanical energy conversion work-cycle

proposed by Berlincourt [8]. This cycle is shown in Figure 2-2(a). The expression in equation

2.6 is identical to equation 2.33.
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Figure 2-15: Other alternative circuits for piezoelectric power generation.

2.5 Other Circuits

This section discusses some other alternative circuits for piezoelectric power generation, shown

in Figure 2-15. The geometry, operation frequency and the piezoelectric material used for the

simulations are the same as in the previous section.

A much simpler circuit than the ones presented in previous sections is that involving just

a resistor. Resistive shunting of piezoelectric elements for structural damping is discussed in

[15]. The resistive shunting exhibits frequency dependent behavior and the converted electrical

energy is dissipated, not stored. Figure 2-16 shows the force vs. deflection and voltage vs.

charge plots from the simulation of the piezoelectric element shunted by a resistor. It can be

seen that, for relatively small resistance values, the piezoelectric element behaves close to the

closed circuit condition, whereas for large resistance values, it behaves close to the open circuit

condition. It should be noted that the simulations presented in Figure 2-16 are performed at a

certain frequency. If one were to keep the resistance constant and change the frequency, similar

behavior would be observed. Namely, at very large frequencies the behavior would be close to

open circuit behavior, whereas at very low frequencies, the behavior would be close to closed
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Figure 2-16: Simulation results of the piezoelectric element shunted by a resistor for different
resistance values.

circuit behavior. Indeed, the maximum electromechanical energy conversion occurs when the

impedance of the load, which is the resistor, is matched to the impedance of the piezoelectric

element. In other words, for a given piezoelectric element and geometry, at any given resistance

value there exists an optimum frequency, or at any given frequency there exists an optimum

resistance value. The optimum resistance value is given as:

R ipt = 127r fCT
(2.34)

where f is the operation frequency and CT is the capacitance of the piezoelectric element

under constant stress, which can be expressed as:

CT - eLA
LP

(2.35)

where el is the dielectric constant and A and Lp are the cross-sectional area and the length

of the piezoelectric element respectively.

Figure 2-17 compares the resistive shunting (for optimum resistance value) with the circuits

presented in previous sections. Resistive shunting performs better compared to the full bridge

rectifier in terms of electromechanical energy conversion. However, as mentioned earlier, the
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(a) Stress vs. Strain Resistor
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Figure 2-17: Comparison of resistive shunting(at
and full bridge rectifier with voltage detector.
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optimum resistance) with full bridge rectifier

performance depends heavily on operation frequency and the electrical energy is not stored,

which make resistive shunting not a suitable option for power generation.

An alternative circuit can be full bridge rectifier and a capacitor connected to it, instead of

a battery or a DC voltage source as presented in section 2.4.2. This is actually the same circuit

configuration as presented in [10]. The simulation results are shown in Figure 2-18. As can

be seen from the plots, the behavior heavily depends on the value of the capacitor. Obviously,

energy cannot be transferred to the capacitor after the voltage of the capacitor nearly reaches

half of the open circuit voltage of the piezoelectric element, which corresponds to the maximum

stress. As expected, the higher the capacitance, the larger is the stored energy, since the final

voltage is the same regardless of the capacitance value. This statement contradicts with the

conclusion made in [10] because in this simulation the force is imposed on the piezoelectric

element. In [10], no force is imposed on the piezoelectric element. The dynamics of the system

(falling ball, vibration of the plate etc.) is determined by the circuitry, i.e. the capacitor and

there exists an optimum capacitance value for maximum energy transfer.

Another alternative would be to add an inductor to the full bridge rectifier in series with

the battery. The simulation results corresponding to the optimum inductor value are shown in

Figure 2-19. It can be seen that both the stored energy per cycle and the effective coupling
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Figure 2-18: Simulation results of the full bridge rectifier connected to a capacitor.

factor increases with the addition of the inductor. However, in order to get this behavior, the

value of the inductor should be tuned to the optimnum value at a given frequency and for this

particular example the required inductance is about lO0mH, which is physically very large and

not practical.

We can generally conclude that, the circuits discussed in the previous section are better

suited for piezoelectric power generation since they can store the electrical energy and the

behavior is not frequency dependent.

2.6 Piezoelectric Material Comparison

Section 2.4 presented an analysis of two different circuits and expressions derived for the effective

coupling factor and generated power. This section presents a comparison of different piezoelec-

tric materials in terms of energy density and effective coupling factor for different shunting

conditions, i.e. with different circuits connected, using the expressions derived in Section 2.4.

The important expressions for energy density and effective coupling factor are summarized in

Table 2.2. The effective coupling factors for the two circuits presented in Table 2.2 are plotted

as a function of the coupling coefficient in Figure 2-20. It can be seen that the effective coupling
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Figure 2-19: Force vs. deflection plot from the simulation of the full bridge rectifier with
additional inductor.

Rectifier Rectifier+Voltage Detector

Energy Density ED = ( - st)D ED = (s9E -SD2

2k 2 2k2
Effective coupling factor k 2 33 k2 33

eff =k2 + 2 eff k23 + 1

Table 2.2: Comparison of circuitry in terms of energy density and effective coupling factor

factor for the case of the diode bridge is always smaller than the coupling coefficient whereas

the effective coupling factor for the case of the diode bridge with voltage detector is always

larger than the coupling coefficient. This can be also presented with the following inequality:

2k2 2k2
3 < k33< k 3 3

k23 + 2rk 3 +4
(2.36)

which is valid since k33 < 1,

The energy density of a piezoelectric material, i.e. the maximum energy which can be

extracted from a piezoelectric element in one cycle is mostly limited by the depolarization stress

of the piezoelectric element, which means that if a stress higher than the depolarization stress
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Figure 2-20: Effective coupling factors of the diode bridge and the diode bridge with voltage
detector as a function of the couping coefficient.

is applied, the material begins to dipole and the piezoelectric, dielectric and elastic coefficients

begin to degrade. Behavior of different PZT ceramics and PZN-PT single crystal piezoelectric

elements under high stress are investigated in [46] and [19] respectively. The assumption for

the maximum stress limit, i.e. the assumed values for the depolarization stress are based on the

above mentioned references. Other studies about piezoelectric elements under high fields are

presented in [45]-[49]. Elastic and piezoelectric properties of different piezoelectric materials

along with depolarization stress values are compiled in Table 3.3.

Different piezoelectric materials are compared in terms of their energy densities and effective

coupling factors for different circuitry in Figure 2-10. It is interesting to note that, although

the single crystal piezoelectric material(PZN-PT) has very high effective coupling factor, it has

a very low energy density compared to PZT-8 or PZT-4S because of its small depolarization

stress. We can generally say that, the effective coupling factor is a function of the coupling

coefficient and the circuitry, whereas the energy density is a function of coupling coefficient,

circuitry and the depolarization stress. As mentioned earlier, for a piezoelectric element, the

energy density obtained with the diode bridge and voltage detector circuit is four times larger

than the energy density obtained with just the diode bridge.
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Figure 2-21: Piezoelectric Material Comparison: (a) Effective coupling factor (b) Energy den-

sity.
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PZT-4S PZT-5H PZT-8 PZN-4.5%PT

st [1-1 2m 2 /N] 15.5 .20.7 13.9 81

s3[110 2 m 2 /N] 7.9 9.01 8.2 17

k33 0.7 0.75 0.64 0.89

d33 [101 2 m/V] 350 593 250 1780

Depolarization Stress[MPa] 120 30 150 10

Table 2.3: Properties of different piezoelectric materials

2.7 Conclusion

This chapter presented an analysis of two different circuitries for piezoelectric power generation.

Analytical expressions are derived for the generated power and effective coupling factor for a

given piezoelectric material and circuitry. Different piezoelectric materials are compared in

terms of their power generation characteristics. Among the materials analyzed, PZT-8 has

the highest energy density. Despite its large coupling coefficient, the single crystal material

PZN-PT has very low energy density, which is a consequence of its low depolarization stress.

However, the coupling coefficient becomes an important criteria if the piezoelectric element is

considered along with its surrounding system, for example the infrastructure which provides

the force on the element, which is the energy harvesting chamber in the microhydraulic power

generation device. It should be remembered that in the analysis presented in this chapter a

prescribed force is imposed on the piezoelectric element. This issue will be addressed in the

next chapter.
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Chapter 3

Energy Harvesting Chamber and

Preliminary Design Considerations

This chapter presents a simple model of the energy harvesting chamber, simulations with the

coupled circuitry and preliminary design considerations. The interaction of the energy harvest-

ing chamber and the circuitry is discussed. The two circuits presented in Chapter 2 and different

piezoelectric materials are compared in terms of the flowrate and frequency requirements for a

given pressure differential and power, and in terms of system efficiency.

3.1 Configuration and Operation of the Energy Harvesting Cham-

ber

The Energy Harvesting Chamber consists of a fluid chamber, a piston and a piezoelectric

cylinder. The configuration of the energy harvesting chamber and its basic components are

shown in Figure 3-1.

The piston converts the pressure in the chamber to a force on the piezoelectric cylinder.

The inlet and outlet valves operate 1800 out of phase at high frequency and convert the static

pressure differential (PHPR -- LPR) into pressure fluctuations in the chamber. This results in

cyclic compression of the piezoelectric cylinder, which is coupled to the circuitry. The generic

operation and typical duty cycles are shown in Figure 3-2.
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Figure 3-1: Energy harvesting chamber configuration.
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Figure 3-2: Duty cycles of generic operation of the energy harvesting chamber. The valve

openings have the same duty cycle as the flowrates and are not shown here.
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In the chamber, the hydraulic energy is converted into mechanical energy, which is converted

into electrical energy in the piezoelectric element and then the electrical energy is stored in the

coupled circuitry. There is a strong coupling between the hydraulic/mechanical system and the

circuitry, in other words, the electrical circuit affects the behavior of the system dramatically,

an issue which should be analyzed in detail.

3.2 Modeling

In order to understand the interaction between the hydraulic, mechanical and electrical system,

a simple model of the energy harvesting chamber will be used to simulate a representative

system. The basic assumptions are:

- The effect of piston tethers on the motion of the piston is neglected perfect sealing between

the piston and the chamber walls is assumed

- An effective compliance, Ceff,is assigned for the chamber, which includes the combined

effect of the bending of the piston, chamber ceiling (top plate), bottom plate and piston tethers

as well as fluid compression inside the chamber. Ceff will be defined in section 3.2.2.

- Piston dynamics is neglected.

The detailed structural modeling and analysis of the compliance contributions of the struc-

tural members in the chamber will be presented in Chapter 4.

3.2.1 Piezoelectric Cylinder

The piezoelectric material is modeled using the same constitutive relationship given in Chapter

2, namely:

D d33
S 8333 -T8T

= d33  D(3.1)
L_ 33 33 ..

where D is the charge field, S is the displacement field (strain), E is the electric field, and T

is the stress. For a cross-sectional area of A and length of L, the expressions for the deflection
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of the piezoelectric element and the voltage across it become:

x, = (s33FP + QP)(3.2)
Ap 633

v =t d33 F -lQ) (3.3)
V P (33 33

where x, is the deflection, Qp is the charge, Fp is the force applied on the piezoelectric

cylinder, and V, is the voltage across the piezoelectric cylinder. And the current through the

piezoelectric element is given by:

I= dQp (3.4)
dt

3.2.2 Chamber Continuity

The chamber converts the hydraulic energy into mechanical energy via the piston, which applies

a force on the piezoelectric cylinder. In order to derive the expression for the chamber pressure,

continuity equation inside the chamber should be considered. Consider an initial fluid volume

inside the chamber. The time rate of the pressure change in the chamber is given by:

dP~h - I3f dV (3.5)
dt V dt

where #f is the bulk modulus of the fluid, V0 is the initial volume of the fluid inside the
dV

chamber and - is the volume change of the fluid. Sources of the volume change are:
dt

- Net flowrate into the chamber

- Piston Movement

- Additional volume created inside the chamber by the deformation of the structural mem-

bers due to chamber pressure

Then, the time rate of the total volume change in the chamber can be expressed as:

dV Qin - Qout - As - dV(3.6)
= dt ~dt

where x, is the displacement of the piston, which is equal to the deflection of the piezoelectric

cylinder, Api8 is the cross-sectional area of the piston, and V, is the total volume displaced by
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the deformation of the structural members inside the chamber. The source of this additional

volume might be the deformation of the top and bottom plate of the chamber, deformation of

the piston tethers and deformation of the piston itself. The individual sources of the structural

compliance of the chamber will be analyzed in detail in Chapter 4.

Combining equations 3.5 and 3.6, we get:

dPeh _5 fdx dV= h- fQin -- QOUI; xPApi dS (3.7)dt VO dt dt

We can define the overall structural compliance as:

dVs
CS= dVc (3.8)

From equations 3.7 and 3.8, we get the expression for the chamber pressure as:

dPch V.9 <'5s n dxpA
h s +n - 6out Apis (3-9)

For simplicity, we can define an effective compliance for the chamber, which represents all

the compliance sources as:

Ce = (>+ cS)(3.10)

where the first and the second terms correspond to the fluidic compliance and structural

compliance respectively, which act like parallel capacitors in electrical circuit analogy.

We can rewrite 3.9 as follows:

dPeh 1 dx~
d1 Qin - -Q d Apis (3.11)
dt Ceff d

It is important to note that, in the above analysis the initial fluid volume inside the chamber,

V0, is assumed to be much larger than the volume displaced by the piston and the volume

displaced due to the deformation of the structural members inside the chamber. If the deflection

of the piston becomes comparable to the chamber height, the volume displaced by the piston

becomes comparable with the initial volume of the chamber, and that effect should be taken

into consideration, which will result in nonlinear behavior, i.e nonlinear compliance.
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The generic duty cycle of the operation is shown in Figure 3-2. The average flowrate can

be calculated using the following relationship:

[T/2 fT

= /2 Qindt / 2 oUtd t

Qave T= = T/ T(3.12)

It is also important to note that:

T T/2

fTQindt = [ Qodt= 0 (3.13)

T
Integrating equation 3.11 from t = 0 to t = , using equation 3.12 and arranging terms,

2'
we get the expression for the average flowrate as:

Qave = Apis(Xmax - Xmin)f + Cef f(Pmax - Pmin)f (3.14)

where Aprs is the cross-sectional area of the piston and f is the operation frequency. The
T

same expression can be obtained by integrating equation 3.11 from I = - to I = T. The first
2

term in equation 3.14 corresponds to the flowrate required to move the piston and squeeze

the piezoelectric element. The second term corresponds to the flowrate required due to the

compliances in the chamber.

3.2.3 Fluid Model

The schematic of the device with pressures at different locations within the system is shown in

Figure 3-3 where Pit-in is the intermediate pressure at the exit of the inlet channel, and Pint-ost

is the intermediate pressure at the entrance to the outlet valve. Inlet and outlet channels have

the same geometry. Details of the Simulink architecture is given in the Appendix A.

Valve Orifice Flow Relations

Work by previous researches has shown that for small openings, poppet valves, such as the

valve cap in the active valves within the MHT systems, behave as long orifices in which the

effects of flow separation and subsequent re-attachement dominate the valve flow dynamics[5].
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Figure 3-3: Device schematics showing pressures at different locations.

Qualitatively, the valve flow can be approximated by a simplified order-of-magnitude valve

model. The valve orifice may be characterized as a flow contraction followed by a flow expansion

as shown in Figure 3-4(a) and (b). An integral analysis gives a relationship for the combined

effect of the flow expansion and contraction. The loss coefficient (oifice is defined as the total

pressure drop AP = PHPR - Pint (for the inlet valve) over the dynamic pressure based on the

orifice local mean velocity (L = A)

(orifice 1 A2 I A 1 ) + ( A2  (3.15)

where the upstream, throat and downstream flow areas can be approximated as:

A2 = 27RvcHc (3.16)

AO = 27rRvczxc (3.17)

A1 = rRVC (3.18)

respectively, where He is the height of the radial flow channel above the valve membrane,

xVC is the valve cap distance from the valve stop structure and R'c is the radius of the valve

cap.

This approximation, however, is independent of the Reynolds number and therefore holds

only for Re> 10, 000, where the flow is in fully turbulent regime. In the MHT power generator,

Reynolds numbers are expected to fluctuate between approximately 10 and 20, 000 as the valves
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Figure 3-4: Valve orifice representation:(a) Valve cap geometry and fluid flow areas, (b) Rep-

resentation of flow through the valve as a flow contraction followed by a flow expansion.

open and close. For this reason, correction factors obtained from experimental results need to

be employed to obtain better estimates of the loss coefficients for these low turbulence and

laminar flow regimes[4]. A loss coefficient for each of the contraction and expansion geometries,

(contraction and (exp ansion, respectively, is used to approximate the total loss coefficient through

the valve, as detailed in the following relation:

(orifice = (contraction(Re, A )+(expansion(Re (3.19)

where Reynolds number is defined as:

Re -Q (3.20)

Figure 3-5(a) plots (contraction as a function of Reynolds number and contraction area ratio

, and Figure 3-5(b) plots (exp ansion as a function of Reynolds number and the expansion

area ratio -l. As a result, the pressure-flow relation for the full valve orifice geometry can be

written as:

1 fQ
AP= P(*,ifice (3.21)

All subsequent fluid models discussed in this thesis incorporate these higher-order correction

factors to obtain an accurate estimation of the flow behavior. These flow models are based on

steady flow phenomenon and do not capture frequency dependent losses. For a specific value

of valve cap opening at a given time during the cycle, a relationship therefore exists for the
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instantaneous fluid flow through the valve as a function of the pressure drop across the valve.

Equation 3.21 can be rewritten for inlet and outlet valves using the notation in Figure 3-3

as:

PHPR - Pn i t = Ri Qn Vi)Q (3.22)

Pn-otW- PLPR = Rot g(Qout, V out) Q2~ (3.23)

where Rn and Rout represent the flow resistances of the inlet and outlet valves, respectively,

which are functions of the flowrate and the corresponding valve opening at a given instant of

time.

Flow in the Channels

Due to the high Reynolds numbers, the flow in the channels is expected to be inertia dominated.

Furthermore, the compliance in the fluid channels is usually negligible due to the fact that the

channels are surrounded by rigid walls and their volume is much smaller than that of the

chamber. Under this assumptions the flow inside the channels is modeled as one dimensional

inviscid and incompressible flow. The pressure-flowrate relationship in this case is given as:

AP=I--t = -c) - (3.24)
d Ac dt

where I is defined as the fluid inductance inside the channel, p is the fluid density and L

and Ac are the length and cross-sectional area of the fluid channel respectively. For the case of

inlet valve and outlet valve fluid channels, the pressure-flow relations can be written as:

Pint-in(t) - Pch(t) = d(c} cin (3.25)

AcN dto

Pch(t) - Pint-out(t) = (I c)cdQt (3.26)

For a long channel with small cross-sectional area, one can expect fluid inertial effects to
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play a significant role as the pressure difference builds up to accelerate the fluid slug into the

chamber. Conversely, for short channels with large cross-sectional areas, the inertial effects

are negligible and the pressure Pint-ij and Pch or Pch and Pmt-,t will not differ much. It

is important to consider inertial effects when designing hydraulic systems containing small

channels.

Governing Equations

Combining equations 3.22, 3.23, 3.25, and 3.26 we can obtain the governing equations for the

fluid flow in the system, which are integrated into the system level simulation, as:

PHPR - Pch(t) = Rjn(Qn, vo 1n) Q + ( c)dti (3.27)

Ph(t) - PLPR = R,+ (pL> dQ (3.28)R~tQ~tvo~)QL KA) dt

Although not explicitly seen, the intermediate pressures can be easily calculated and mon-

itored in the system level simulation, which are important in terms of stresses in the valve

membranes and power consumption in the active valves since they are assumed to act on the

valve cap, where the reservoir pressures are assumed to act on the membranes[6].

3.2.4 Circuitry

The same circuit models presented in Chapter 2 will be used.

3.3 Working Fluid

Fluid properties which are important in terms of system performance are listed in Table 3.3 for

alternative working fluids. The density of a working fluid effects the dynamic behavior of the

system because of the fluid inductance in the fluid channels. A low density fluid is desirable

since it would increase the bandwidth of the system. The viscosity of a working fluid effects

the energy dissipated in the valves. A more viscous fluid would provide the same amount of

flowrate with larger valves or valve openings, causing an increase in power consumption in the
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Density[kg/m3 Viscosity[Pa/s] Bulk Modulus[GPa]
Water 1000 1.0e-3 2.24

Mercury 13,570 1.5e-3 25.0
Silicone Oil 760 4.9e-4 2.0(degassed)

Table 3.1: Comparison of different working fluids

Length of the piezoelectric cylinder 1mm
Diameter of the piezoelectric cylinder 2mm

Diameter of the piston 4.5mm

Effective chamber compliance (Ceff) 2 x 10- 18 [m 3 /Pa]

PHPR 2MPa

PLPR OMPa
Operation Frequency 10kHz

Fluid channel length 1mm
Fluid channel cross-section 50pm x 100 pm
Piezoelectric Material PZN-4.5%PT

Table 3.2: The geometry and operation conditions used in the simulation

valves. The bulk modulus effects the system compliance. Silicone oil is chosen as the working

fluid because of its low density, low viscosity and a bulk modulus comparable to that of water.

3.4 Simulation and Analysis

The equations presented in the previous section will be simulated using Simulink. The coupled

equations used to simulate the system are 3.2, 3.3, 3.4, 3.11, 3.27, 3.28 and equations for the

circuitry, which were given in Chapter 2.

The simulation architecture is shown in Figure 3-6. For the analysis in this chapter, a

representative system will be analyzed, for which the geometry and operation conditions are

presented in Table 3.2.

In the following analysis, the valve openings are imposed and reservoir pressures are as-

sumed to be constant. The valve size and opening are adjusted such that the pressure in the

energy harvesting chamber attains the high pressure reservoir pressure (PHPR) and low pressure

reservoir pressure (PLPR) as its maximum and minimum pressures respectively. In other words,

the pressure inside the chamber fluctuates between PHPR and PLPR. The valves operate 1800

out of phase.
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Figure 3-6: Simulation architecture used in Simulink.

3.4.1 Energy Harvesting Chamber and Full Bridge Rectifier

This section presents the simulation and analysis of the energy harvesting chamber attached to

the full bridge rectifier using the model presented in the previous section. The time histories

of the chamber pressure, flowrate and piston deflection, which is equal to the deflection of the

piezoelectric element, are shown in Figure 3-7.

In order to understand the interaction between the hydraulic/mechanical system and the

circuitry, and its implications on flowrate and frequency for a given power requirement, it is

worthwhile to investigate the plot of force on the piezoelectric element vs displacement of the

piezoelectric element. This is shown in Figure 3-8. It is interesting to note that the curve in

Figure 3-8 has the exact same shape of the force vs. displacement curve presented in Chapter

2 for the case of the imposed force on a piezoelectric cylinder attached to a diode bridge.

From this we can conclude that the force vs. displacement curve of a piezoelectric element

attached to the full bridge rectifier does not depend on the time history of the applied force.

So, the equations derived in Chapter 2 for the full bridge rectifier will be used here to derive
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(a) Chamber Pressure

2.5 3 3.5 4 4.5 5

(b) Flowrate

2 2.5 3 3.5 4 4.5

(c) Piston Deflection

2.5 3 3.5
Time [104s]

4 4.5

Figure 3-7: Simulation of the energy harvesting chamber
circuit.

attached to the full bridge rectifier
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the governing equations for required frequency, flowrate and system efficiency.

For a given operation frequency and power requirement, the required cross-sectional area of

the piezoelectric element can be obtained from equation 2.25 as:

4W
A= (3.29)

(s -- s )Dc2 Lpf

where W is the generated power, LP is the length of the piezoelectric cylinder and f is the

operation frequency. Since the maximum pressure in the chamber is PHPR, the cross-sectional

area of the piston should be equal to:

Apis = dA(3.30)
PH PR

where 9d is the depolarization stress of the piezoelectric element. From the results derived

in Chapter 2, the total deflection of the piston/piezoelectric cylinder is given by:

AXp 2 OdLp(sE+%) (3.31)

Using equations 5.31, 3.29, 3.30, and 3.31, the required flowrate for a given power require-

ment and maximum chamber pressure can be derived as follows:

2(s4 + sg)W
Q = E 43)P _ Cef f PHPRf (3.32)

(St - s3')PHPR

The first term in equation 3.32 corresponds to the flowrate which is required just to move

the piston. The second term corresponds to the additional flowrate required due to the chamber

compliance. If we consider the ideal case, where the chamber is not compliant, i.e Ceff = 0,

the minimum required flowrate is given by

2(se + sD)WQrmin 33 t- 33)PFR(3.33)
s--8s )PH PR

In order to evaluate the performance of the energy harvesting chamber, we can define the

efficiency of the chamber as follows:
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Figure 3-8: Force vs. displacement curve of the piezoelectric element from the simulation of
the harvesting chamber attached to the full bridge rectifier.

Electrical Power Out(3 W
c =Hydraulic Power In - QPHPR

In the extreme case, where the effective chamber compliance is zero, the efficiency has its

maximum value, which can be obtained from equations 3.32 and 3.34 as:

(S D - s ) k33 -1=3 = 3(335)

"m 72(st + sD) 4 - 2k23 (

It is interesting to note that the maximum efficiency of the chamber depends only on the

coupling coefficient of the piezoelectric material. This suggests that, regardless of the geometry

and operation conditions, the above expression puts an upper bound on the system efficiency,

which is only a function of the piezoelectric element chosen. It is important to note that the

above definition of the efficiency corresponds only to the energy harvesting chamber. If the

overall system is considered, the electrical power consumption in the active valves should be

taken into consideration.
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3.4.2 Energy Harvesting Chamber and Full Bridge Rectifier with Voltage

Detector Circuit

This section presents the simulation and analysis of the Energy Harvesting Chamber attached to

the full bridge rectifier and voltage detector circuit. The geometry and the operation conditions

are the same as in the previous section. The time histories of the chamber pressure, flowrate

and piston deflection are shown in Figure 3-9.

It is interesting to note that there are sudden pressure drops inside the chamber and the

time histories of the chamber pressure and the piston deflection are quite different from the

time histories presented in the previous section. The most important observation is that during

the periods when the switch is on, the pressure decreases/increases suddenly because the fluid

cannot fill/evacuate the chamber immediately due to the fluid inertia of the fluid in the channels.

In order to understand the interaction between the hydraulic/mechanical system and the circuit,

and its implications on flowrate and frequency requirements for a given power, we can investigate

the force vs.displacement plot of the piezoelectric element which is shown in Figure 3-10.

In Figure 3-10, the force vs. displacement curve of the piezoelectric element for this case

is compared to the chamber attached to full bridge rectifier and to the case where the force is

imposed on the piezoelectric element attached to the regular diode bridge and voltage detector.

It is interesting to note that the new curve is much different than the imposed force case.

In the latter case, which was discussed in Chapter 2, during the interval when the switch is

on, the force is almost constant, and the portion of the curve corresponding to that period is

almost flat. However, for the chamber, during the interval when the switch is on, the piezo

becomes very soft, and the piston moves up or down very rapidly, which causes sudden pressure

drops/rises inside the chamber, as can be seen in Figure 3-9. In order to analyze the behavior

of the system, we can divide the time history into four periods, as shown in Figure 3-11.

In the periods 1-2 and 3-4 the piezoelectric element is open circuited, and the deflections

at the states 1 and 3 correspond to the deflection as if the material was short circuited and

the same force as in 1 and 3 was applied. In other words, F1 , F3 , x 1 , and x3 should satisfy the

following equations.
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Figure 3-9: Simulation of the energy harvesting chamber attached to the full bridge rectifier
and voltage detector circuit. The time intervals between the dashed lines present the intervals
where the switch(SCR) is in its "on" state.
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Figure 3-10: Force vs. displacement curve of the piezoelectric element from the simulation of
the energy harvesting chamber attached to the full bridge rectifier and voltage detector circuit.
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Figure 3-11: Time histories of the force and deflection of the piezolelectric element.
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X1 = F A331, (3.36)

A,

Since in the periods 1-2 and 3-4 the piezoelectric element is open circuited, the slope of the

force vs deflection curve in these periods is simply the open circuit stiffness of the piezoelectric

element and the following equations should be satisfied.

F2 - F1 A,, ( -I) (3.38)
s3LP

A
F3 - F4 = , (x3 - X4 ) (3.39)

stL,

In order to understand the behavior in the periods 2-3 and 4-1, let us consider the period

2-3. At state 2, the pressure is maximum and at state 3, the voltage on the piezoelectric element

is zero. In the period 2-3, there is almost no flowrate, which suggests that the pressure change

in the chamber in this period, which is the sudden pressure drop, is only because of the volume

change due to piston movement. In other words, the pressures at states 2 and 3 should satisfy

the following equation.

A,
P2 - P3 = (x3 - X2) A" (3.40)

Ceff

where

F
P = AF-(3.41)

From equations 3.40 and 3.41, we can write:

F2 - F3 = (3 - X2)A )2(3.42)
Cef f

Similarly for the period 4-1, we can write:

(Ai 8 )2 (.3F1 - F4 = (X4 - Xi) As 2(3.43)
Cef f
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Figure 3-12: Force vs. displacement curve of the piezoelectric element

periods of operations.

and slopes at different

We also know that:

F2 = UdAp and F4 = 0 (3.44)

where 0 -d is the depolarization stress of the piezoelectric element.

By solving equations 3.36, 3.37, 3.38, 3.39, 3.42, 3.43, and 3.44 we can determine the coor-

dinates of the force vs. deflection curve of the piezoelectric element and we can also calculate

the electrical energy stored per cycle, which is the area enclosed by the force vs. deflection

curve, the effective coupling factor and system efficiency in terms of chamber geometry, piezo-

electric cylinder geometry, chamber compliance and maximum pressure inside the chamber.

The force vs. displacement curve of the piezoelectric element and the slopes of the curve at

different periods are shown in Figure 3-12. It is interesting to note that in this case, the force

vs. deflection curve depends on the chamber compliance, whereas in the case of the energy

harvesting chamber attached to the full bridge rectifier, the slopes were determined only by the

piezoelectric material geometry and properties.
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The coordinates of the force vs displacement curve are as follows:

O-d A 2 -L 2sE(SE - SD) O A 2Lp Ap(s - 8sD)
(XI, Fi) pidAsLpS 33(S 33 - 3)3dAPAP(34 33(3)45Ce A A.s~( s-8D)'CE 8 L(2t- SD)\=CeffAp ± AfL+(2st - cfAp±A L(2s

O-dL 2(S E)2A 2 e5LASDa

(X2, F2) = (,dL 3 A).+adCffLPAp33 7-dA P (3.46)
Cef f Ap + AP,,Lp ( 2s E - SD P

'd L1( sEs)2 A ~s+ O-Cef f LpApsS' O-dAp Lp~, s'+ OaCeff A
(X3, F3) = 3 3 3(347)CeeAp + A% 8,Lp(2st - sD) 'Cej'jAp ± A%8L(2s D s?)

33-s SA3L+ f f5 LAp + sP s - 83

(X4 , F4 ) = ((dStA 8 Lp±JdCeffLpAp)(33 - S3)(348)
CeffAp+A j8 Lp (2s - sD)

Using the coordinates of the points given in the above equations, electrical energy stored

per cycle can be calculated as:

F - -2LAp(st_ - 4S%1)(ApCef f + St AP,sLp)(ApCeff + sDA;sLP (
[A% 3jL(2s - SD) + CeffAp] 2 (3.49)

From equation 5.31 we can write the expression for the flowrate as:

Qave = Ai 8(xs - x1) f + CeffPHPRf (3.50)

For a given power requirement W, we can determine the required frequency using:

W
(3.51)

The required flowrate for a given power requirement can be derived from equations 3.45,

3.47, 3.49, 3.50, and 3.51 as:

W~s~e5PHR UOPPS3 2 33 31
Qave -W CeffPkPR + a"LPAst(2t (3.52)

PHPR(CeffPH2 PR + ad A3)(StS3 - 3

WPHPRCeff[CeffPAPR + L 3 33)2
d- 3s3-%) (Cef f +4LPR Ad 3) (CeffPPR ± c APS3

In the extreme case where the effective chamber compliance is zero, namely Ceff = 0, the
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expression for the required flowrate simply reduces to

(2 -E-SD)W

QM ( P33 D33 (3.53)
(8333 - 533PHP R

From the above expression we can get the maximum system efficiency using the definition

given in equation 3.34 as

(ES D -D k2

ch(max s33(-s ) 33 (354)
c3max3)2s13+ 

kD23

where, as in the previous section, the maximum efficiency depends only on the coupling

coefficient of the piezoelectric material.

Figure 3-13 shows the force vs. deflection curve of the piezoelectric element for different

values of chamber compliance. It is interesting to note that, as the chamber compliance in-

creases, the curve approaches the curve for the case where the force is imposed. One might

think that having large compliance would have a positive effect on system performance, since

the area inside the curve, which is the electrical energy stored per cycle, increases with increas-

ing compliance. For a given power requirement lower frequencies and lower flowrates would be

required. However, as the compliance increases, the required flowrate increases dramatically

due to the second term in equation 3.50. This effect overwhelms the effect of decreased flowrate

due to lower frequency requirement and the maximum system efficiency occurs again for the

case where the chamber compliance is zero. The two extreme cases, namely Ceff = 0 and

Ceff = oo are shown in Figure 3-13 (b).

The effective coupling factor from mechanical to electrical energy was defined in Chapter 2

and the expressions were derived for different circuits for the imposed force case. For the case

of the energy harvesting chamber attached to the full bridge rectifier, the effective coupling

factor is the same as the one for the imposed force case since for the full bridge rectifier, the

force vs. displacement curve doesn't depend on the time history of the force on the piezoelectric

element. However, it was found that, the force vs. displacement curve for full bridge rectifier

and voltage detector depends on the time history of the force on the piezoelectric element, and

in this case the curve depends on the chamber compliance. The effective coupling factor was

defined in Chapter 2. From Figure 3-13 we can write:

89
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Figure 3-13: The effect of effective chamber compliance on force vs. deflection curve and

effective coupling factor.
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k 2  W1

(
eff W = W1 + W2 (3.55)

The effective coupling factor can be calculated using the coordinates of the force vs. de-

flection curve. For the case where the effective chamber compliance is infinity, the effective

coupling factor is:

00f= -Ik 2  2(st - $)3(3.56)
Ce5 = f ef= 2sE D 3.3

33 33

for which case the electrical energy stored per cycle is:

E(ceffc) = ( t - SD)o-'ApLp (3.57)

which is the same amount of energy stored for the case of imposed force on piezoelectric

element with the same circuitry.

For the case where the effective chamber compliance is zero, the effective coupling factor

becomes:

Ceff = 0 -- + k' 3 = 3 33 - 2s) (3.58)eff- s - 2sD

for which case the electrical energy stored per cycle is:

E ~ ApLd(s 3- 333 333ECf=O) = E(28 )2 (3.59)
(233 - 33)

3.5 Discussion

This section presents a comparison of circuitry and piezoelectric materials in terms of their effect

on important performance metrics such as flowrate, frequency and efficiency using the results

obtained in previous sections of this chapter. Let us consider the system analyzed in Section

3.4, for which the geometric parameters were given in Table 3.2. Now, however, the effective

chamber compliance will be varied and its effect on system performance will be investigated.

This could be accomplished, for example, by changing the thicknesses of the structural members

or by changing the chamber height. For a power requirement of 0.5W, the required frequency
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Figure 3-14: Flowrate and frequency requirement for 0.5 W power requirement.

and flowrate is plotted as a function of effective chamber compliance in Figure 3-14. It can be

noted from Figure 3-14 that the frequency requirement for the full bridge rectifier case does

not depend on effective chamber compliance since the force vs. displacement graph is the same

for any chamber compliance and the energy stored per cycle depends only on the maximum

stress on the piezoelectric element and piezoelectric material properties. However, since the

force vs. displacement curve for the rectifier with voltage detector case depends heavily on the

effective chamber compliance, the electrical energy stored per cycle depends on the compliance.

So, for a given power requirement, the required frequency depends on the effective compliance

as well. In terms of flowrate requirement, it can be easily seen that, as the system gets more

compliant, the required fiowrate increases dramatically. It should be pointed out that, for a

microfluidic device, even flowrates on the order of l/s can be considered very high, and

special high performance microvalves are needed. It is obvious that, prediction of the effective

chamber compliance will constitute a crucial part of the modelling and design process. This

will be addressed in Chapter 4.

The system efficiency, which was defined in equation 3.34 is plotted as a function of the

effective chamber compliance in Figure 3-15. It can be noted that, as the effective chamber

compliance gets smaller and smaller, in other words, as the chamber gets less and less compliant,

the efficiency values approach their maximum values which were given in equations 3.35 and
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Figure 3-15: System efficiency as a function of the effective chamber compliance.

3.54 for the rectifier and rectifier and voltage detector circuit cases respectively. As mentioned

earlier, these maximum efficiency values depend only on the piezoelectric material used.

Using the relations derived in previous sections, we can also compare different piezoelectric

materials in terms of flowrate and frequency requirements and system efficiency. Again, let's

consider the same system for the 0.5W power requirement. Figure 3-16 shows the required

flowrates for different piezoelectric materials and different circuitry as a function of effective

chamber compliance. It should be noted that for each piezoelectric material, the piezo diameter,

Dp, is adjusted such that at the maximum chamber pressure, the stress on the piezoelectric

element is equal to its depolarization stress, O-d. The required flowrates for the rectifier circuit

with voltage detector are significantly less than the case with just the rectifier. It can be also

observed that PZN-PT requires the least flowrate and PZT-8 requires the most flowrate at low

compliance values.

The required frequencies for different piezoelectric materials are shown in Figure 3-17. As

mentioned earlier the required operation frequency in the case of rectifier circuit is constant,

regardless of the effective chamber compliance. Since the force vs. displacement curve in the
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Figure 3-16: Required flowrates for 0.5 power generation. Comparison of different piezoelectric
elements and different circuitry.

case of the rectifier and voltage detection circuit depends heavily on the effective chamber

compliance, the required frequency for a certain power requirement depends on the effective

chamber compliance. Since the materials PZT-8 and PZT-4S have very high depolarization

stresses compared to PZT-5H and PZN-PT, the electrical energy stored per cycle for PZT-8

and PZT-4S is much larger, which means reduced frequency requirements for the same power

requirement. For example, although PZN-PT has the highest coupling coefficient(k 3 3 = 0.89)

among the piezoelectric materials discussed here, it requires higher operation frequencies due

to its low depolarization stress.

Figure 3-18 shows the system efficiency for different piezoelectric materials and circuitry. It

can be seen that, the chamber with the rectifier circuit and voltage detector is more efficient

than the case with the rectifier. As the effective compliance gets smaller and smaller, the

system efficiencies approach their maximum value, which are given by equations 3.35 and 3.54

for rectifier and rectifier with voltage detector cases respectively. As expected, PZN-PT is the

most efficient material due to its high coupling coefficient(ks3 = 0.89) and PZT-8 is the least

efficient material due to its low coupling coefficient(k 3 3 = 0.64). Although PZT-8 is the least

efficient one, it might be a better suited material since the system with PZN-PT has very high
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Figure 3-17: Required frequencies for the 0.5W power requirement. Comparison of different

piezoelectric materials and circuitry. Note that the required frequency in the case of regular

rectifier is independent of the chamber compliance.
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Figure 3-18: Comparison of different piezoelectric materials and circuitry in terms of system

efficiency.

frequency requirements. The material selection process should address the design trade-offs

and should take the remaining components of the system, for example the active valves, into

consideration. One might choose to use PZN-PT which requires very high frequencies, but

this frequency can exceed the bandwidth of the active valves. This issue will be addressed in

Chapter 5.

One should remember that the analysis of the chamber attached to the rectifier and the

voltage detector presented in this chapter assumed that the impedances(inductances) of the

fluid channels are large enough such that there are sudden pressure drops inside the chamber

and the governing equations are derived assuming that in the time interval where the SCR is

in its "on" state, there is no net flowrate into the chamber.

3.6 Summary and Conclusion

This chapter presented a simple analysis of the energy harvesting chamber and a case study

using a simulation for a predetermined chamber geometry and operating conditions. The in-

teraction between the chamber and the circuitry has been investigated. Some of the important

performance metrics derived in the previous sections are summarized in Table 3.3.
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2k2 2k2
Effective Coupling Factor ef2- k 3 3+ 2 kff(Ce3) 2k 3 ±1

(4 - 2k2 )2(1+ W
Minimum Required Flowrate Qmin = (424 W (min1= k)

kkPH3PR 43PHPR

k2 k2
Maximum System Efficiency3 = 3  1+k33

4 - 2k233 1+ k2

Table 3.3: Summary and comparison of circuitry in terms of performance indices

The first row summarizes the expressions obtained for the effective coupling factor for the

two circuits analyzed in this chapter. The second expression in the first row represents the effec-

tive coupling factor for the rectifier with voltage detection circuit for the case where Ceff = 0,

which corresponds to the most efficient operation condition for the energy harvesting chamber.

However, maximum effective coupling factor for this circuit occurs when Ceff = oo, which is

the same as the effective coupling factor of the same circuit for the applied force case, which

was presented in Chapter 2. The effective coupling factor for the full bridge rectifier case is the

same regardless of the effective compliance of the energy harvesting chamber. The second row

presents the minimum required flowrate for a given power requirement and maximum pressure

in the chamber. The third row represent the maximum system efficiency. The second and

third rows correspond to the case where Ceff = 0. As mentioned earlier, the maximum system

efficiency of the energy harvesting chamber depends only on the piezoelectric material chosen,

namely the coupling coefficient(k 3 3 ). The expressions are plotted as a function of the coupling

coefficient in Figure 3-19. A comparison of different piezoelectric materials is also made on the

same plot.

The expressions for the maximum system efficiency in Table 3.3 put an upper limit on the

system efficiency. It is interesting to note that, at k33 = 1 the two curves reach the same point,

which is 50% efficiency. This means that, even with a perfect piezoelectric material(k 3 3 = 1)

and zero effective compliance, which are not possible, the system efficiency cannot exceed 50%.

The most important conclusion of this chapter is that the performance of the energy har-

vesting chamber depends on
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Figure 3-19: Maximum system efficiency (which corresponds to the case where the effective
compliance of the chamber is zero)as a function of the coupling coefficient.

- Rectification circuit topology

- 'Piezoelectric material (k33,0-d)

- Chamber compliance(Ceff)

Again it should be emphasized that the efficiency definition in this chapter corresponds only

to the energy harvesting chamber. The electrical power consumption in the active valves is not

considered.
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Chapter 4

Detailed Model of the Energy

Harvesting Chamber

This chapter presents the detailed modelling of the energy harvesting chamber. In Chapter

3, an effective chamber compliance (Ceff) based on a typical MHT device was assumed to

be used in the simulation and the effect of compliance on system performance was analyzed.

This chapter investigates the contribution of different structural components on the effective

compliance of the chamber. It also presents the simulation architecture used for integrating

elastic equations into the system level simulation.

4.1 Analysis of a Simplified Chamber Structure

Consider a simple circular chamber structure consisting of a fluid chamber and rigid walls,

except the top portion of the chamber, as shown in Figure 4-1. The compliant portion can

be modeled as a clamped circular plate which deforms under the action of uniform pressure

underneath. For small deflections, the deformation of the top plate can be assumed to be linear

and can be analyzed using linear plate theory [50].

For a uniform pressure distribution P and a radius of a, the deflection of the top plate as a

function of the radial distance is given as:

w(r) = (a2 r2)2 (4.1)
64D
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Figure 4-1: (a) Simplified chamber structure consisting of a fluid chamber with a compliant

wall (b) Deformation of the top plate and swept volume.

where D is the flexural rigidity of the plate given by:

D = t 3

12(1 - V2)
(4.2)

where E and v is the Young Modulus and Poisson ratio of the material respectively, and t is

the thickness of the plate. The additional volume created in the chamber due to the deformation

of the plate can be calculated by integrating equation 4.1 over the plate:

AV = aw(r)27rrdr = Pra6 (1 2)
= w16Et

3

The structural compliance was defined in Chapter 3 as:

AV
SAP (4.4)

which represents the volume change of the chamber due to structural deformations in re-

sponse to a change in chamber pressure. In this simple example, the top plate is the only

compliant structural member. Using equations 4.4 and 4.3, the structural compliance can be

calculated as:

CS = 7ra 6(1 -- V2)
16Et

3

The effective chamber compliance can be obtained as:

(4.5)

100

(4.3)
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Figure 4-2: Comparison of fluidic and structural compiances for a generic chamber structure
at different chamber diameters for fixed chamber height and top plate thickness.

0 ef ( arc)=(h + 7ra 6 (1- v)(46

where V0 is the initial fluid volume inside the chamber, /3g is the bulk modulus of the fluid

and h is the height of the chamber.

Consider a chamber with top plate thickness of 500gm and chamber height of 200gm.

Figure 4-2 shows a comparison of fluidic and structural compliances for different chamber

diameters. It can be seen that, for small chamber diameters, the compliance of the chamber

is dominated by the fluidic compliance, whereas at large chamber diameters the structural

compliance dominates. However, it should be noted that, if all the geometric parameters are

scaled the same amount, the ratio of the fluidic and structural compliances will remain the

same. This issue will be discussed further in Chapter 5.
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4.2 Detailed Analysis of Structural Components

A simplified chamber structure consisting of a compliant top plate and a fluidic chamber has

been analyzed in the previous section. This section will present detailed analysis of individual

structural compliances of the energy harvesting chamber which will include the deformation of

the top and bottom support structures, deformation of the piston and bending of the tethers.

Figure 4-3 shows geometric parameters of the structural components, corresponding deforma-

tions and the free body diagrams which will be used in the formulations of the governing

equations.

These deformations inside the energy harvesting chamber can be adequately represented

by the linear plate theory [50]. Each component will be modeled as a plate with applied

loading and boundary conditions to determine the deflections and swept volumes. In general,

a symmetrically loaded circular plate will experience deflections due to bending as well as

shearing. If the plate thickness is small compared to the plate outer radius, the deflection due

to bending will be significantly larger than that due to shearing. Since the radii of the structural

components analyzed are larger than the corresponding thicknesses, deformations only due to

bending will be considered.

4.2.1 Top Support Structure

The top support structure is modeled as a clamped circular plate which deforms under the

action of a uniform pressure distribution underneath. The governing differential equation for

the symmetrical bending of a circular plate is given as:

d 1id dw(r) _Q(r)(4)I[d(r (4.7)dr [rdr di 21 D

where D is the flexural rigidity given in equation 4.2, w(r) is the deflection of the plate, and

Q(r) is the shear force per unit length. For a uniformly loaded circular plate the shear force

per unit length is given as:

Q(r) hr (4.8)
2

where P is the pressure. The boundary conditions are:
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w(r = a) = 0 (4.9)

dw
(r = a)-0 (4.10)

dw
r = 0 (4.11)

By integrating the governing differential equation and applying the boundary conditions,

the deflection of the plate w(r) can be determined as:

P ) h 2 22w1(r) =' (a2 - 9)2(4.12)

The deflection of the midpoint of the top support structure can be obtained by calculating

the deflection of the top plate at r = 0:

3Pcha4 (1 - v2 )
-tp -= 16Et3  = kdtPch (4.13)

where kdt, depends only on the chamber diameter and the top plate thickness.

The corresponding swept volume can be calculated by integrating equation 4.12 over the

plate as:

[a Pch7ra6(1 - v2 )

tP a w(r)27rrdr = h6Et3  =ktPch (4.14)

where ktp depends only on the chamber diameter and the top plate thickness.

Equations 4.12 and 4.14 are the same equations used in the previous section.

4.2.2 Bottom Support Structure

A rigid bottom structure beneath the piezoelectric element would ensure that all of the deflection

of the piston goes into the compression of the piezoelectric element. In reality, this structure is

not rigid and as a result this bottom structure deformation results in less compression of the

piezoelectric element at a given chamber pressure.
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Figure 4-4: Model of the bottom support structure: circular plate with a circular hole at its

center with guided boundary condition at inner radius b and clamped boundary condition at

outer radius a.

The bottom support structure is modeled as a circular plate with a circular hole at the

center which is clamped at its outer radius (r = a) and guided at its inner radius (r = b),

shown in Figure 4-4. In this case the shear force per unit length is given as:

Q(r) = -
27rr

(4.15)

where Fp is the force acting on the bottom support structure through the guided support in

the inner radius (r = b). The boundary conditions are:

(4.16)w(r = a) = 0

dw
-(r = a) = 0

dr

dw
(r = b) = 0

dr

(4.17)

(4.18)

The deflection of the bottom plate, Xb, can

applying the boundary conditions to obtain:

be calculated by integrating equation 4.7 and

Xb = kbFp (4.19)
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where kb is the stiffness of the bottom plate which depends on the thickness of the bottom

plate, tbot, inner radius (b = Dp/2), and outer radius (a = Deh/2).

4.2.3 Piston

The piston is modeled as a circular plate with a circular hole at the center which is simply

supported at its outer radius (r = a) assuming that the tethers exert insignificant bending

moments on the piston at its outer radius, and guided at its inner radius (r = b), shown in

Figure 4-5. In this case the shear force per unit length is given as:

Q(r) = F ch r
27rr 2

(4.20)

where Fp is the force acting on the piston through the guided support in the inner radius

(r = b).

The boundary conditions are:

w(r = a) = 0 (4.21)

d2 w(r = a)
M,(r = a) = -D ( r

v dw(r = a) 0
r dr /

(4.22)

a

r

b W(r) t

,t $F\ E,,
Piz|Clamped

Figure 4-5: Model of the piston: circular plate with a circular hole at its center with guided

boundary condition at inner radius b and clamped boundary condition at outer radius a.
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dw(r = b) =0 
(4.23)

dr

where M, denotes the bending moment per unit length along circumferential sections of the

plate. The deflection of the piston and the corresponding swept volume can be calculated by

integrating equation 4.7 and applying the boundary conditions to obtain:

Xpb = XjpiS - Xte = kp1F+ kp2Peh (4.24)

AV> = k F+ kp4Pch (4.25)

where k 1, kp2 , kp3,and kp4 depend on the thickness of the piston, tg,8 , inner radius (b =

D/2), and outer radius (a = Dpi/2). The dynamics of the piston can be represented using

the free body diagram in Figure 4-3 as:

Mris d = -ApisPcn + Fp - Fte = Fnet (4.26)dt2

4.2.4 Piston Tethers

In this section, tethers corresponding to a double layer piston structure will be analyzed which

consist of a top and bottom tether structure. In order to allow for flexibility in design, the

top and bottom tethers are defined to have different thicknesses (ttetoPt 6obot). The top tether

is modeled as a circular plate with a circular hole at the center which is clamped at its outer

radius and guided at its inner radius, shown in Figure 4-6. It experiences a concentrated force,

Ftetop, at its inner radius and a uniform pressure loading, Ph. The shear force per unit length

is given as:

Ftetop Pch(r 2 - b 2 )Q(r) = 2w r(4.27)
27rr 2r

The boundary conditions are:

w(r = a) 0 (4.28)
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Figure 4-6: Model of the top tether: circular plate with a circular hole at its center with guided
boundary condition at inner radius b and clamped boundary condition at outer radius a.

dw-(r = a) = 0 (4.29)
dr

dw
-(r = b) = 0 (4.30)
dr

The deflection of the top tether and the corresponding swept volume can be calculated by

integrating equation 4.7 and applying the boundary conditions to obtain:

Xte = kttiFtetop + ktt2Pch (4.31)

AVte = ktt3Ftetop + ktt4Pch (4.32)

where ktti, ktt2, ktt3,and, ktt 4 depend on the thickness of the top tether, ttetop, inner radius

(b = Dpi,/2), and outer radius (a = Deh/2).

Since the tethers are much thinner than the support structures and the piston, it is important

to consider the stress in the tethers and make sure that they don't exceed the critical value of

1GPa [7]. For a circular plate subject to symmetrical bending, the two stress components can

be calculated as:

6Mr- -h2 (4.33)
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t =6M (4.34)

where Mr and Mt are the bending moment per unit length along the circumferential sections

of the plate and along the diametral section of the plate respectively, and h is the thickness of

the plate. The bending moments are obtained as:

(d2 w v dwN
Mr=- D + (4.35)

dr2 r dr

M -D 1 dw d 2

t ~r dr dr2

where D is the flexural rigidity of the plate. Using the equations 4.33, 4.34, 4.35, 4.36, the

stress components can be calculated after the governing plate equation 4.7 is integrated using

appropriate boundary conditions and the deflection of the plate, w, is determined. As will be

seen later in the next chapter, o-, is generally bigger than ot and the maximum stress occurs at

a = Dch/2. Then we can write the maximum stress in the top tether as:

6M,(r = Des/12) (-7(-max = Ott = -- 6 2 (4.37)
tetop

which can be alternatively expressed as:

-tt = sttiFtetop + Stt2Pch (4.38)

where stti and Stt2 depend on the thickness of the top tether, tetop, inner radius (b =D,/2),

and outer radius (a = Dch/2).

The bottom tether is modeled in the same way as the top tether, except it experiences only

a concentrated force, Ftebot, at its inner radius and no pressure loading. The shear force per

unit length is:

Q(r) = 2irr (4.39)

The boundary conditions are the same as the boundary conditions for the top tether. The
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deflection of the bottom tether, which is equal to the deflection of the top tether can be obtained

by integrating equation 4.7 and applying the boundary conditions to obtain:

Xte = ktbFtebot (4.40)

where kt 6 depends on the thickness of the bottom tether, ttebot, inner radius (b =Dpi,/2),

and outer radius (a = Dch/2).

Similarly, the stress in the bottom tether can be calculated as:

(tb = StbFtebot (4.41)

where SOt depends again on the thickness of the bottom tether, ttebot, inner radius (b =

Di,/2), and outer radius (a = Dch/2)

We can also write:

Fte = Ftetop + Ftebot (4.42)

which represents the force balance at the connection point of the tethers with the piston.

Detailed derivations of the elastic equations of the structural components are detailed in

Appendix C.

4.3 Simulation Architecture

This section will present the simulation architecture used for integrating the elastic equations

into the system level simulation.

Chamber Continuity

The continuity equation was derived in the previous chapter. In this section a more detailed

equation will be derived considering the volume displaced in the chamber due to deformations

of individual structural members. In the previous chapter, all the volume displaced by de-

formations was analyzed as a bulk value, namely AV, and was used to define the structural

compliance, C. Rewriting equation 3.5, we have:
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dP~h _-/Of dV (4.43)
dt V dt

where 1f is the bulk modulus of the fluid, V0 is the initial volume of the fluid inside the
dV

chamber and -- is the rate of the volume change of the fluid. Sources of the volume change
dt

are net flowrate into the chamber, piston movement and additional volume created inside the

chamber due to structural deformations. Considering these effects and integrating equation

4.43, we can write:

Pch = (Qin -- Qnt)dt + AVis + AVb + AVte - AV) (4.44)

where AVpi 8, AVpb, AVte, AVtp represent the swept volume due to the motion of the piston,

deformation of the piston, deformation of the top tether and deformation of the top support

structure respectively. The swept volume due to the motion of the piston is simply equal to:

V pis= xpisApis (4.45)

where Apis is the area of the piston. By arranging equation 4.44 we can obtain:

Pch = + CtP -(f(Qin - Qout)dt + xpisApis + AVpb + AVte (4.46)

where Ctp represents the structural compliance corresponding to the deformation of the top

support structure, which is given by equation 4.5.

Piezoelectric Cylinder

For a cross-sectional area of A, and length L,, the net deflection of the piezoelectric element

and the voltage across it can be expressed using linear constitutive relationships as:

Xb - = +(St3FP , T P(4.47)
Ap 833

V = p( F- QP) (4.48)
p 633 633
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where Q, is the charge on the piezoelectric element.

Equations 4.13, 4.14, 4.19, 4.24, 4.25, 4.26, 4.31, 4.32, 4.38, 4.40, 4.41, 4.42, 4.44, 4.47, and
4.48 (15eqns) can be solved for the 15 unknowns, namely V,,, t, AVp, AVte, AV2 , Xb, Xte,

Ffe, Fte-top, Fte-bot, ott, atb, Fp, Ph, and Fact in terms of Q,, pis, and Qnet where

Qnet = j(Qin - Qout)dt (4.49)

which tepresents the net fluid volume change inside the chamber due to the fluid flow into

and out of the chamber [52]. The elastic equations along with the chamber continuity equation

and piezoelectric element constitutive relationships are solved in Maple and the coefficients

(A 11, A1 2 ...) of the 15x3 matrix required by the simulation architecture, shown in Figure

4-7, is calculated. The coefficients are then processed in a Matlab code to generate the 15x3

matrix, which is fed to Simulink. The details are presented in Appendix B and Appendix C.

The Simulink blocks of the system model are presented in Appendix A.

The matrix equation solved in Simulink is as follows:

V A 11  A1 2  A 1 3

xtP A2 1  A2 2  A23

A Vt A31  A32  A33

AVte41 A42  A4 3

A Vb A5 1  A5 2  A5 3

Xb -A6 1  A 6 2  A6 3

Xte A71  A7 2  A73  Q .
Fte = A81  A82  A8 3  XjS (4.50)

Fte-top A91  A9 2  A93  [ Qet

Fte-bot A10o A10 2 A103

Ott A11 1  A1 12 A11 3

cltb A1 21  A1 22 A1 23

Fp A1 31  A1 32 A1 33

Pch A141  A14 2 A14 3

Fnet A1 5 1 A15 2 A1 53
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where the matrix coefficients are calculated using Maple.

The simulation architecture allows for integration of the elastic equations into the dynamic

simulations as well as for monitoring important parameters like deflections and swept volumes

of the individual structural components and stresses in the tethers.

4.4 Conclusion

This chapter presented detailed analysis of the energy harvesting chamber in terms of the

deformations of individual structural components. The deformations are analyzed using linear

plate theory. It is assumed that the deflections due to bending are significantly larger than

those due to shearing. A simulation architecture is presented to be included in the overall

system level simulation, which allows for inclusion of the elastic equations into the dynamic

simulation and allows for monitoring important parameters.
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Chapter 5

Further Design Considerations and

Design Procedure

This chapter presents further design considerations in addition to those issues discussed in

Chapter 3. These are fluidic oscillations within the system, chamber filling and evacuation,

tether structure optimization and the effect of operation conditions and geometry on system

performance. At the end of the chapter, a design procedure along with two design examples

and simulation results will be presented. The system is analyzed only for the case where the

chamber is attached to the regular bridge.

5.1 Further Design Considerations

5.1.1 Fluidic Oscillations

Inertial effects should be considered when designing hydraulic systems containing small chan-

nels. In fact, in the MHT devices, the fluid channels and the main chamber constitute a

resonating system similar to a Helmholtz resonator, shown in Figure 5-1, which comprises a

fluid channel and a chamber with an effective compliance C. The natural frequency of the

Helmholtz resonator can be calculated by considering the free-body diagram of the fluid slug

within the channel. The equation of motion of the fluid slug can be written as:
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Figure 5-1: Helmholtz Resonator.

c c dt d' + PAC = 0 (5.1)

where P is the pressure inside the chamber which builds up as a result of the additional

fluid flow into the chamber, which can be expressed as:

P = Pc(5.2)C

Combining equations 5.1 and 5.2 we can obtain the governing equation for the Helmholtz

resonator as:

X + ( CL,) = 0 (5.3)

onator within the system depends on the channel geometry(-L-7 ratio), the compliance of the

AA,

chamber and the density of the working fluid. The chamber compliance here refers to the over-

all chamber, including the compression of the piezoelectric element. In Chapter 3, an effective

chamber compliance, Ceff, was defined which took only the structural deformations and fluid

compression into account, but not the compression of the piezoelectric element. In the context

of this discussion, it is convenient to define an overall chamber compliance, C, which includes
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the structural deformations, fluid compression, and the deformation of the piezoelectric element.

The overall chamber compliance in this case can be defined as:

AVf_ fA(Qn - Qt)dt
APch APch

(5.5)

where AVf is the fluid volume change in the chamber due to the fluid flow. In fact, this

compliance is not a constant value in the actual power generator since the stiffness of the

piezoelectric element changes constantly (the stiffness flips between open-circuit and close-

circuit stiffnesses of the piezoelectric element) during the operation, as discussed in Chapter 2

and Chapter 3. In the following two subsections, the fluidic oscillations will be analyzed for two

cases. In the first case, a constant overall chamber compliance will be assumed for simplicity

and in order to get insight, and in the second case the actual system, i.e. the chamber attached

to the rectifier circuit will be analyzed in terms of fluidic oscillations.

Analysis with Constant Overall Chamber Compliance

Consider a chamber with constant overall chamber compliance, C - 10-[m3 /Pa], as defined in

equation 5.5. Figure 5-2 shows the simulation of the system for different chamber geometries, i.e.

for different LC/AC ratios. In the simulation, the operation conditions, valve size and openings

are adjusted such that the chamber pressure fluctuates between PHPR and PLPR for the case

where the inertial effects in the channels are negligible. These conditions are: PHPR = 2MPa,

PLPR = 0, f = 10kHz, R,, = 200pm, voj, = vOt = 20gm, and the working fluid is silicon-oil.

It can be see that there exists an optimum LC/AC value for which the difference between

the maximum and minimum pressures, i.e. the pressure band, APch, is maximum. This value

is approximately 25000(1/m). The pressure band is not very sensitive to LC/AC around the

optimum value, i.e. LC/AC = 24000 or Lh/AC = 26000 results pretty much in the same pressure

band. In fact, the optimum value of the LC/AC can be approximated using equation 5.4. Figure

5-3 shows the inlet flowrate time histories from the simulation. It can be seen that, the fluid

inductance in the channel causes the flow to lag, i.e. the flowrate reaches its maximum at a

later time compared to the case where the fluid inductance is negligible.
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Figure 5-4: Simulation of the chamber attached to circuitry for different channel geometries.

Analysis of the chamber attached to circuitry

Consider the chamber geometry, effective compliance and operation conditions presented in

Table 3.2 of Chapter 3. Figure 5-4 shows the simulation of the same geometry for different

Lc/Ac ratios. Again, the valve size and opening is adjusted such that the chamber pressure

fluctuates between PHPRand PPafor the case where the inertial effects in the channels are

negligible. These conditions are: PHPR = 2MPa, PLPR = 0, f = 10kHz, R,,, = 200pim,

VOin= Mou = 20p~m, the working fluid is silicon-oil, and the battery voltage, V, is 90V, which

is optimized for a pressure band of 2MPa. Similar to the case where a constant overall chamber

compliance was assumed, there exists an optimum Lc/Ac value for which the difference between

the maximum and minimum pressures, i.e. the pressure band, APch, is maximum.

Figure 5-5 shows the effect of Lc/Ac ratio on pressure band and generated power. Through-

out the simulations the battery voltage was not changed. In fact, in a design, the battery

voltage should be determined according to the expected pressure band, which determines the

stress band on the piezoelectric element. For example, for the optimum Lc/Ac ratio, the pressure

band is 2.435MPa, which suggests a battery voltage of approximately 125V. If the simulation

is repeated with this value, the pressure band is now 2.472MPa, which is slightly different than
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Figure 5-5: Effect of L/A ratio on pressure band and generated power.

the previous value, and the generated power is 0.1068W The slight change in the pressure band

suggests that the change in the battery voltage caused a small change in the overall chamber

compliance, because it basically determines the voltage level where the piezoelectric element

will change its stiffness, and therefore effects the time intervals in which the piezoelectric ele-

ment posses the different stiffnesses. The expression for the optimum battery voltage was given

in Chapter 2 as:

Vb = -~~s (5.6)
4 d3

which can be written in terms of the pressure band in the chamber as:

1 APChA?is (st - (5)L)
4 A4da

where A1,i and A, are the piston area and the cross-sectional area of the piezoelectric

cylinder respectively, and Aa- is the stress band on the piezoelectric element. It should be

noted that, when writing equation 5.7 the effect of tethers and piston dynamics is neglected. In

other words, static force balance between the piston and piezoelectric element is assumed and

the force applied by the tethers on the piston is neglected. This issue will be addressed later.

We can conclude that, for a given overall chamber compliance there exists an optimum

LC/AC ratio at a certain operation frequency, or similarly, there exists an optimum operation
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frequency for a certain overall compliance and L/AC ratio. The fluidic oscillations should be

considered in any design procedure and the channels should be designed accordingly. This will

be addressed later in the discussion of the design procedure.

The overall chamber compliance was defined as the compliance of the chamber including

the compliances due to structural deformations and fluidic compliance, which is represented by

the effective compliance, Ceff, and the compliance due to the deflection of the piezoelectric

element. The compliance due to the deflection of the piezoelectric element can be calculated

considering the volume displaced by the piston due to the deflection of the element as a response

to the pressure change in the chamber:

Cp tts t A (APA A A% 8  (5.8)
APeh APeh APeh k

where kp is the stiffness of the piezoelectric element, which can be expressed as:

kp 8=Ap (5.9)
s33LP

where A, and Lp are the cross-sectional area and the length of the piezoelectric element

respectively, and 833 is the compliance coefficient of the element. As mentioned earlier, the

stiffness of the piezoelectric element changes constantly during the operation between the open

circuit and closed circuit stiffnesses, which should be calculated using st and s respectively.

Therefore the system is highly nonlinear and it is impossible to express the resonant frequency,

or the optimum L4/AC ratio analytically. However we can get a first order estimation of the

resonant frequency using one of the stiffnesses above. For example using the open circuit

compliance coefficient, sg, and from equations 5.4, 5.8, and 5.9 we obtain:

1 Ac 1 Ac 5.0
fn =--D 2(5.10)2r Lp (Ceff + C) 27 LpV s LpA 2

where Ceff is the effective chamber compliance.

It is very important to note that in the simulations presented in this and the previous
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sections (Figures 5-2 and 5-4), the pressure in the chamber overshot the reservoir pressures

(PHPR and PLPR) in the resonance conditions, which resulted in negative pressures, which

should be avoided because of cavitation. In the design procedure, the operation conditions

should be adjusted such that there won't be any cavitation. For example the system can be

biased, i.e. the reservoir pressures can be increased keeping the difference the same. Or, the

valve openings can be adjusted accordingly. The motivation for operating at resonance condition

is that the same pressure band can be achieved with smaller valve cap sizes or valve openings

compared to the case of negligible or very large fluid inductance in the channels, resulting in

reduced power consumption in the active valves.

5.1.2 Chamber filling and evacuation

In order to attain the desired pressure bands inside the chamber, it is important to design the

valve sizes, openings and the operation frequency accordingly. Consider the chamber attached

to the circuitry discussed in the previous section. Figure 5-6 shows the effect of valve opening on

pressure band in the chamber. A valve opening of 20pm provides perfect filling and subsequent

evacuation of the chamber in the required time interval and the chamber pressure fluctuates

between the reservoir pressures. A small valve opening of 51m results in poor(slow) filling

and evacuation, resulting in a reduced pressure band. A large valve opening of 50pm provides

very fast filling and evacuation, which causes the chamber pressure to retain its maximum

and minimum values for long time intervals. The latter results in the same power generated,

however it also results in more power consumption in the active valves due to the higher stroke.

A similar result would be obtained by keeping the valve opening the same, but increasing the

valve cap size. Again more power would be consumed in the active valves.

Figure 5-7 shows the effect of operation frequency on the pressure band in the chamber.

It can be seen that, for a fixed valve opening, different operation frequencies result in system

behaviors similar to the ones in Figure 5-6. At high frequency, there is not enough time for

the valve to fill and evacuate the chamber in the required time interval. Similarly, at low

frequency, there is more than enough time for the valves to fill and evacuate, which results in

similar behavior to the case of large valve opening. This implies that, the valve opening can

be reduced for reduced power consumption in the active valve and yet the same power can be
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generated as long as the pressure band in the chamber is kept at the desired level.

In the two cases analyzed above, the valve cap size could be analyzed instead of valve

opening, which would lead to the same conclusions. The combination of the valve size and the

valve opening define the overall valve resistance. We can conclude that, for a designed operation

frequency and pressure band, it is important to design the valve size and opening such that they

will provide just enough filling and evacuation of the chamber in the required time interval,

which is defined by the operation frequency, so that the chamber pressure fluctuates between the

reservoir pressures in the most economical way. As will be addressed later, the pressure band

is a very important design parameter, since the power generated is proportional to the square

of the stress band on the piezoelectric element. Additional design considerations concerning

the design of the valve size and opening is not within the scope of this thesis. The design

optimization of the active valves is detailed in [5].

5.1.3 Tether Structure Optimization

Design of the piston tether structure is very crucial for system operation. The tethers should

be flexible enough to allow sufficient motion of the piston, yet stiff enough to avoid introduction

of excessive compliance into the system. The tethers have to be designed to allow maximum

piezoelectric element compression for a given net fluid volume into the chamber, which occurs

basically at every cycle during system operation. To analyze the tether structure, consider a

simple hypothetical chamber which consists of a fluid chamber with rigid walls, a single layer

piston attached to the wall with a single tether providing sealing, and a piezoelectric element.

Figure 5-8 illustrates the hypothetical chamber and different tether designs. Figure 5-8(b)

illustrates a good tether design where the tethers allow large piezoelectric element compression.

Figure 5-8(c) illustrates a poor design where the tether is either too thin or the tether width,

t.,,, is very large (tw = [Dch - Dis]/2). This results in low pressure in the chamber and small

compression of the piezoelectric element since the compliance introduced by the tether is very

large. In other words, pressure doesn't built up inside the chamber because of the excessive

bending of the tether. Figure 5-8(d) illustrates another poor design where the tether is either

too thick or the tether width, t , is very small. In this case the pressure in the chamber is high

but the compression of the piezoelectric element is still very small since the very stiff tethers
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Figure 5-8: (a) Schematic illustrating the hypotethical chamber (b) good tether design providing
large piezoelectric element compression (c) poor tether design, either too thin or large width,
resulting in low chamber pressure and small piezoelectric element compression (d) poor tether
design, either very thick or small width, resulting in large pressures but small piezoelectric

element compression.

do not allow the piston to move although they introduce very small additional compliance into

the system. This suggests that for a design where the chamber diameter(or piston diameter) is

determined, the tether structure has to be optimized in conjunction with fabrication limitations,

such as thickness of the tether, which is determined by the SOI wafer, or the maximum tether

width which can be etched.

Consider a chamber of the following geometric parameters: Deh = 5mm, Dp = 1mm, Lp=

1mm, and Heh = 200pm. An additional fluid volume, AVf = 10 1 1 M 3 , is introduced into the

chamber. Figure 5-9 shows piston deflection/piezoelectric element deflection, pressure in the

chamber and the compliance of the chamber for different tether thicknesses and widths. The

tether width is varied by keeping the chamber diameter the same and changing the piston

diameter. Since the tether width is very small compared to chamber or piston diameter, it

doesn't matter which parameter is kept constant, i.e. the the piston diameter could be kept

constant and the chamber diameter could be varied alternatively. Thus we can generalize this

study for a nominal chamber diameter of 5mm. It can be seen that for a tether thickness, there

exists a range of values for tether widths where maximum deflection of the piston occurs. It
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Figure 5-9: (a) Piston deflection for different tether thicknesses and widths,(b) corresponding

pressures in the chamber (c) compliance of the chamber. The dashed line corresponds to the
hypotethical case where piston diameter is equal to chamber diameter and there is perfect
sealing.
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(a)

(b)

Figure 5-11: (a) SEM picture of micromachined piston structure [7](b)detailed view of the

tether and the fillet.

can be also seen that for those values, the additional compliance introduced by the tethers is

negligible.

Figure 5-10 illustrates the stresses and deflected shapes of the tether with a thickness of

10pm for three different cases. Figure 5-10(b) illustrates a good design where the tether width

is optimized. Figure 5-10(c) illustrates a poor design where the tether width is very large and

therefore the pressure in the chamber and piston deflection are small. Figure 5-10(d) illustrates

another poor design where the tether width is small and therefore the tether is very stiff, which

results in small piston deflection even though the pressure built up in the chamber is high. It

can be also seen that the stresses in this case are very large compared to the previous two cases.

It should be noted that linear plate theory is used for this analysis which means that the

neutral axis coincides with the central axis of the tether. In general, in a well-designed tether

structure, the bottom surface of the tether experiences compressive stress near the chamber

wall and tensile stress near the piston, which is the case in Figure 5-10(b), and the maximum

stress occurs at the point where the tether is attached to the wall. The top surface experiences

stresses with opposite signs.

It is also very important to consider the effect of the fillet on the stress and to note that

the stresses calculated from the linear plate theory should be corrected using the proper stress

concentration factor. However the stresses calculated using linear theory give a reasonable

estimate and provide first order prediction about stresses during the design procedure. A
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detailed study of the fillet radius and stress concentration factors can be found in [7]. A

fabricated piston structure and the fillets are shown in Figure 5-11.

5.1.4 Operation Conditions and Trade-offs

In most of the analysis performed so far the basic parameters of the chamber, such as chamber

diameter, and operation conditions such as reservoir pressures and operation frequency were

fixed. This section will discuss how to choose chamber geometry and operation conditions for a

given power requirement and will discuss trade-offs between operation conditions. The general

design guidelines can be summarized as follows:

- The operation frequency should be kept as small as possible due to the bandwidth limita-

tions imposed by the active valve structure,

- The flowrate should be kept as small as possible to minimize valve size and reduce power

consumption in the valves,

- The maximum pressure in the chamber should be kept as small as possible in order to

avoid high stresses in the tethers and active valve membranes.

For the analysis of this section, a relatively simple chamber structure will be assumed,

namely the effect of the tethers, the deformation of the piston, and the deformation of the

bottom plate will be ignored. This means that the effective compliance will be comprised of

the fluidic compliance and structural compliance only due to the deflection of the top sup-

port structure. These assumptions are done for simplification of the analysis without loss of

generality.

Fixed geometric parameters in this analysis are: chamber height, Hh = 200p, length of

piezoelectric element, LP = 1mm, and top support structure thickness, tt0,p = 1mm. For each

design point considered, piston area and cross-sectional area of the piezoelectric element satisfy

the following relationship.

Apis =UdAp (5.11)
PH PR

which represents the static force balance between the piston and the piezoelectric element.

The areas of the piston and the piezoelectric element are designed such that maximum stress on

the piezoelectric element is equal to the depolarization stress, Od, for maximum power output.
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It is assumed that the maximum and minimum pressures attained in the chamber are equal

to the high and low pressure reservoirs respectively, where PLPR is assumed to be zero for

simplicity.

Required operation frequency for a given power requirement

The required frequency in order to generate a certain amount of power, W, for the case of the

chamber attached to regular diode bridge is given by:

4W
f4W(5.12)(st - sff)a ApL~

where st and sQ are the closed circuit and open circuit compliances of the piezoelectric

element respectively. Figure 5-12 compares different piezoelectric materials in terms of required

frequency for a 0.5W power requirement at different chamber diameters and reservoir pressures.

It can be seen that, PZT - 4S and PZT - 8 require lower frequencies because of their very

high depolarization stress, even though they have smaller coupling coefficients compared to

PZT - 5H and PZN - PT. It should be noted that, the required frequency does not depend

on the chamber compliance, as can be seen from equation 5.12.

It is important to note that there is a trade-off between the maximum chamber pressure(PHPR)

and the operation frequency. For lower chamber pressures, higher operation frequencies are

needed. In fact, for a given piston diameter the required frequency is inversely proportional to

the reservoir pressure, as can be easily seen from equations 5.11 and 5.12. It can be also seen

that, for larger chamber diameters, the required operation frequency is smaller since for larger

chamber diameters, piezoelectric elements having larger diameter are used to satisfy equation

5.11, which results in lower frequency requirement due to the increased piezoelectric element

volume.

Required flowrate for a given power requirement

The required flowrate is given by the following equation, which was derived in Chapter 3:

2(sE + SD)WQ= 2+-CW ePHPRf(5.13)
(S3t - sQ )PHPR
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where f is the required operation frequency corresponding to the power requirement at the

particular chamber diameter and reservoir pressure, as discussed in the previous subsection.

Figure 5-13 shows a comparison of different piezoelectric materials in terms of required flowrate

at different reservoir pressures and chamber diameters.

It can be seen that PZN - PT requires the least flowrates due to its high coupling co-

efficient, which translates into higher system efficiencies as discussed in Chapter 3. It can

be also noted that, for larger chamber diameters, higher flowrates are required. This can be

explained by considering equation 5.13. There are in fact two competing effects. For larger

chamber diameters, lower frequencies are needed, as shown in Figure 5-12, which suggest lower

flowrates. However, larger chamber diameters result in increased chamber compliance, which

is the dominating factor resulting in higher flowrates.

In this case, a trade-off exists between the required flowrate and maximum chamber pressure,

namely for lower chamber pressures, higher flowrates are required.

Efficiency

The efficiency of the system is given by:

W
77 (5.14)

QPHPR

where the power consumption in the active valves is not considered. Figure 5-14 shows a

comparison of different piezoelectric elements in terms of system efficiency for different reservoir

pressures and chamber diameters. It can be seen that PZN - PT provides the most efficient

power generation due to its high coupling coefficient. For larger chamber diameters, the effi-

ciency is lower due to the fact that the flowrate is higher at larger chamber diameters, as shown

in Figure 5-13. It is also important to note that the efficiency decreases as the reservoir pressure

increases. This can be explained considering equations 5.11, 5.12 and 5.13. Combining these

equations we get:

2(s+ sg)W 4CffW
(S = 3 +3(5.15)

3 3- st)PHP ± (s33 - s )adApisLp(

which is the explicit form of equation 5.13. Using equation 5.14 we get:
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Figure 5-14: Comparison of different piezoelectric elements in terms of system efficiency for
different reservoir pressures and chamber diameters.

2 E D) -1
(S33 + S33 + 4Cef f PHPR

(SE _ SD) (SE _ SD
33 33 33 33) Crd Api, Lp

w - -
QPHPR

(5.16)

from.which it can be easily seen that at a certain chamber diameter, the efficiency decreases

with increasing reservoir pressure. It is also possible to observe that efficiency does not depend

on the generated power.
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Figure 5-15: Required operation frequency and flowrate for different power requirements at
different chamber diameters (PHPR = 2MPa, piezoelectric material: PZN - PT).

Effect of power requirement

As can be seen from equations 5.12 and 5.16, the required operation frequency and flowrate

are directly proportional to the generated power. Figure 5-15 illustrates the effect of power

requirement on frequency and flowrate for the case where PHPR = 2MPa and piezoelectric

material: PZN - PT.

5.1.5 Bias Pressure

As discussed in section 5.1.1, negative pressure in the chamber should be avoided due to cavita-

tion. Even though the chamber is designed for positive pressure fluctuations, cavitation could

occur due to unexpected fluidic resonances. Also the active valve design imposes minimum

pressure requirements for the low pressure reservoir due to cavitation considerations inside the

hydraulic amplification chamber. For a conservative design, the chamber pressure can be biased

by a certain amount, by keeping the pressure differential PHPR - PLPR the same, aiming for

the same power as would be generated with PLPR = 0. However, since the depolarization stress

of the piezoelectric element cannot be exceeded, the effective stress band reduces, even though

the pressure band remains the same. For the case where PLPR = 0, the stress band, i.e. the

difference between the maximum and minimum stress on the piezoelectric element is equal to
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(a) (b)

Figure 5-16: Schematic illustrating the effect of bias pressure.(a) not biased case (b) biased case

the depolarization stress, given by:

AO- (Aps ) APch = 9d (5.17)
Ap

However, for the biased case, where PLPR -# 0, the stress band is given by:

(AT) b - (AP ) APh < o-d (5.18)

which is smaller than the depolarization stress of the piezoelectric material. Figure 5-16

illustrates the effect of bias pressure. This means that for the same pressure differential, higher

frequencies and flowrates are required, which can be seen from the following equations which

are derived for the general case:

4W
fA (SE SD (5.19)

(s3 -3 s(Ao) ApLp

2(s E + sD)W
Qb = 3 33 + C (5.20)

(S D3 )A hCef fAPchfb(33 -- s33)APeh

or

Qb (SE + s3) 4Ceff W (5.21)
Q s3 s) APh+ (s - 33)(Ao)bA 8 LP (2

Figure 5-17 illustrates the effect of bias pressure on required frequency, flowrate and effi-

ciency for the case of 0.5W power requirement, where APeh = PHPR - PLPR = 2MPa, and
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Figure 5-17: Effect of bias pressure on required frequency, flowrate and efficiency.
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piezoelectric material is PZN - PT. It is important to note that the generated power is pro-

portional to the square of stress band and therefore the bias pressure should be kept as small

as possible. It can be easily shown that, for a given chamber diameter, the required frequency

for the biased case and for the case where PLPR = 0 are related by:

f APegh
/ (APch(5.22)

A APch - Pb

where Pb is the bias pressure. It is assumed that in both cases the pressure differential in

the chamber is the same. Equation 5.22 implies that if the bias pressure is much smaller than

the pressure band in the chamber, its effect is negligible. However for typical MHT devices this

is not the case and the effect of bias pressure should be considered.

5.1.6 Scaling Issues

One of the many advantages of MEMS devices is their ability to operate at very high frequencies.

In other words, they allow operation with much larger bandwidth due to their high natural

frequencies. For linear systems, the scaling law for natural frequency can be obtained by

considering a very simple system consisting a cantilever beam and a proof mass attached to the

tip of the beam. The stiffness corresponding to the tip deflection of the beam in response to a

force applied to the tip can be obtained from beam theory:

EW H3
k = 3 (5.23)

4L3

where E is the Youngs modulus, and W, H, and L are the width, the height and the length

of the beam respectively. The natural frequency of this system can be calculated by:

m
Wn k (5.24)

where m is the mass of the proof mass. If we define the scale factor, A, as the ratio of the

new scaled dimensions divided by the nominal, the dependence of the stiffness of the beam and

the mass of the proof mass on the system scale are:

k ~ A and M ~ A, (5.25)
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where the scale dependence of the stiffness of the beam is obtained from equation 5.23.

The natural frequency of the system is then related to its size by:

A 1 =(5.26)

which can be generalized to any linear structure.

Similarly we can obtain the scaling laws for the power generator considering the dependence

of the natural frequency, required operation frequency and compliance of the system on system

scale. Consider the simple chamber structure described in Section 4.1, which consists of a fluid

chamber and a compliant top support structure. Here we assume that in the energy harvesting

chamber the top support structure is the only compliant structure, and the piston is rigid and

perfectly sealed to piston walls without tethers. The effective compliance for this case was

derived in Section 4.1 as:

VO 7rD'2 Hch 7TD6 (1 - V/2))

Ceff= -+ CS ch ± h (5.27)' 340f 1024Et 3
(Oftop/

where Dch is the chamber diameter, Hch is the chamber height, and ttop is the thickness of

the top support structure. The dependence of the effective chamber compliance on the system

scale is then

Ceff A3  (5.28)

which suggests that as the system gets smaller, the compliance gets smaller. Lets consider

a case where PLPR = 0 and the effective chamber compliance is given by equation 5.27. For a

certain power requirement, the required operation frequency can be calculated as:

4W
f ) 2ApLp (5.29)

where (- is the stress band on the piezoelectric element, which is equal to the maximum stress

since PLPR = 0. As discussed earlier, in a design procedure, the chamber diameter and the

piezo diameter are chosen such that the maximum stress on the piezoelectric element is equal to

the depolarization stress of the piezoelectric element. If we assume that for any design scenario
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this condition will be satisfied, then the dependence of the required frequency on system scale

can be obtained as:

freq ~ (5.30)

which suggests that as the system gets smaller, larger frequencies are required due to the

reduced piezoelectric element volume. The required flowrate is given by:

Q 92(stE+s )W
(s- Sf3=PHPR + Ceff PHPRfreq (5.31)

3s 3 s)PHPR

From equations 5.28 and 5.30 we can obtain the dependence of the required fiowrate on the

system scale as:

Qr-~'A 0  (5.32)

which suggests that the required flowrate does not depend on the system scale. In smaller

scale, although the system compliance reduces, the required frequency increases in the same

amount which results in the same required flowrate. Since this results were derived for constant

PHPR and required power, W, the system efficiency does not depend on the system scale either,

which can be expressed as:

w
=7Q~ A0  

(5.33)
PHPRQ

It should be noted that this analysis relies on the assumption that the active valves can

operate at very high frequencies and the valves and channels can provide the required flowrates

even when the system gets very small.

Consider a design case where the operation frequency is equal to the maximum bandwidth of

the device. If we make the system 10 times smaller and keep the required power and PHPR the

same, we will need 1000 times the frequency to generate the same power from the smaller device.

However we can increase the operation frequency only 10 times since the natural frequency is

inversely proportional to the system scale, which is expressed in equation 5.26. This implies

that we can extract only one percent of the required power from the small device. However
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we can fit 1000 small devices inside the original volume, which means that we can generate

10 times the original power from the same volume. This suggests that the power density is

inversely proportional to the system scale, which can be expressed as:

1
PD - 1 (5.34)

A

This suggests that, as the system gets smaller, the power density increases. Again, it should

be mentioned that, this analysis assumed that, in the smaller scale the valves and channels

can provide the required flowrate regardless of the system scale. However, it is expected that

viscous losses in the valves will begin to dominate beyond a certain scale and scaling further

down will not be more efficient. In order to perform this study, more detailed fluid models are

needed. Nevertheless, the above analysis provides a general understanding about the scaling of

the system.

5.2 Design Procedure

This section will present a design procedure for designing the microhydraulic piezoelectric power

generator. First, the design decisions made considering the issues discussed in previous sections

as well as those imposed by the active valve design and fabrication process will be presented.

Then, the design procedure will be described and two design examples will be presented along

with simulation results.

5.2.1 Preliminary design decisions

As discussed in Chapter 3, the working fluid is chosen to be silicone oil due to its low viscosity

and low density. It also has a comparable bulk modulus to that of water. Choice of piezoelectric

element is done considering the results in sections 5.1.4, 5.1.4, and 5.1.4. From Figure 5-12 it

can be seen that the piezoelectric material PZT - 5H has very high frequency requirements,

PZT - 4S, PZT - 8 have lower and very similar frequency requirements, and PZN - PT

has comparable frequency requirements to those of PZT - 4S and PZT - 8. If we examine

Figures 5-13 and 5-14, we can see that PZN - PT requires much lower flowrates and provides

much efficient power generation compared to other piezoelectric materials. In Chapter 2 it was
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concluded that PZN - PT has the smallest energy density among the piezoelectric elements

considered, which is a result of its low depolarization stress. However due to its very high

coupling coefficient it provides very efficient electromechanical energy conversion and requires

the lowest flowrate for a given power requirement. It should be noted that, the implication of

the low energy density of PZN - PT is that, larger piezoelectric material volume is needed

compared to other piezoelectric materials for the same power output. However, the weight

of the piezoelectric element constitutes only a small fraction of the overall system weight and

the increased efficiency of PZN - PT due to its much higher coupling coefficient would still

overwhelm the effect of increased weight in terms of the overall system power density. The

chamber height is chosen to be 200pm. A preliminary study has shown that chamber heights

smaller than this could cause squeeze film damping effect inside the chamber and can result in

undesired losses. And, larger chamber heights would increase the chamber compliance, which

would decrease the efficiency of the system. The length of the piezoelectric element is chosen to

be 1mm. This parameter is basically determined considering the actuation in the active valves,

since all the piezoelectric cylinders within the system, namely the ones in the active valves and

the one in the energy harvesting chamber, have the same length because of the layered structure

of the device, which was explained in Chapter 1. Larger lengths would decrease the stiffness of

the piezoelectric elements inside the active valves, which reduces the actuation capability, and

smaller lengths could cause dielectric breakdown.

5.2.2 Parameters imposed by active valve design

The basic limitation of the active valves is their bandwidth. Current active valve designs

predict bandwidths in the order of 10 - 20kHz. Typical trade-offs in the active valve design

are stroke, bandwidth and force, which are detailed in [5]. Another important limitation is the

pressures that the active valves can work against, which basically imposes the maximum high

reservoir pressure possible. They can typically work against pressures of 2 - 3MPa. Also the

active valves impose a minimum pressure requirement due to cavitation considerations in the

hydraulic amplification chamber(HAC) within the active valve structure. In the design example

presented, the low pressure reservoir pressure, PHPR is chosen as 0.5MPa.
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5.2.3 Parameters imposed by fabrication process

As briefly described in Chapter 1, the device consists of silicon and pyrex micromachined

layers. The thickness of the layers basically dictate the thicknesses of individual components.

For example, a double layer piston structure, which consist of two silicon layers bonded to each

other, will have a thickness of tpi8 = 80 0 Mm, which is the case in the design example. Since the

tethers are created through deep reactive ion etching(DRIE) of a SOI wafer, the tether thickness

is defined by the SOI layer. Also, the fillet radius control during the fabrication process imposes

some limitations on the tether width. For example narrow tethers would be very stiff due to the

relatively large fillet radius and the predictions of the linear theory used for the optimization

would not valid beyond a certain tether width. The top tether thickness, tetp, is chosen to

be 1Opm, whereas the bottom tether thickness is chosen to be thinner, namely, 5am, because

the bottom tether does not have any functionality and therefore it should be kept as thin as

possible so that it won't cause significant resistance to piston motion. The thicknesses of the

top and bottom support structures are determined by the number of layers used, including the

packaging layers on top and bottom portions of the device. As discussed in Chapter 3, the

compliance of the system is very important in terms of system performance and they should be

kept as small as possible. Therefore it is desirable to have very thick top and bottom support

structures. The effective thickness would also depend on the structure of the auxiliary system

in which the device is packaged. In the design examples, the top and bottom structures are

assumed to have the same thicknesses, namely ttp = tbot = 2.5mm, and they are assumed to

comprise of all silicon layers.

5.2.4 Design Procedure

Figure 5-18 presents a design procedure, which will be followed after the initial design decisions

are made using above considerations. The first part consists of analytical design calculations.

The pressure band in the chamber is dictated by the bias pressure, Pb, and high pressure reser-

voir pressure, PHFR. The piston diameter and piezo diameter are calculated using equations

5.11 and 5.19, and the battery voltage is calculated using equation 5.6.

These calculations are followed by the tether structure optimization, which determines the

optimum tether width, wt, for the given tether thicknesses and piston diameter. The designed
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Figure 5-18: Design procedure.

144

simulation
(dynamic)

layout
mask design I



tether width also determines the chamber diameter, Dch. The geometric parameters along with

the operation conditions are then fed to the system level-simulation. The simulation architecture

is shown 5-19 and the Simulink block diagrams are given in Appendix A.

First, simulations are performed to determine the optimum length to area ratio of the fluid

channels, using arbitrary valve resistance, i.e. arbitrary valve cap size or valve openings. It

is helpful to run these simulations with very small valve resistance, namely with very large

valve opening or very large valve cap, since the fluidic oscillations are much more pronounced

with lower valve resistances and it is easier to determine the optimum length to area ratio of

the channels. Then, the valve cap size and valve opening are designed such that the chamber

pressure fluctuates between reservoir pressures, namely between PHPR and PLPR. At this stage,

it is important to consider structural limitations, which might be imposed by the active valves.

For example, a large valve cap size requires a large membrane to allow sufficient valve motion,

however this may cause excessive stresses in the membrane. Or, a very large valve opening can

cause the same problem. Since the same effective valve resistance can be achieved with different

combinations of valve opening and valve cap size, coupled iterations may be necessary with the

active valve design procedure, which is not within the scope of this thesis. Detailed information

about the active valve design procedure can be found in [5].

Finally, the system is simulated, stresses in the tethers and on the piezoelectric element are

checked, and design iterations are performed if necessary. Although the valves are designed to

achieve the desired pressure band in the chamber, the stress band may be a little bit different

than expected. This can be explained by considering equation 5.11. This equation assumes

static force balance between the piezoelectric cylinder and the piston. Also, the effect of the

tether is neglected since the force exerted by the tethers on the piston is generally very small

compared to the force exerted by the piezo and force due to chamber pressure. As will be seen

in the design examples, the dynamics of the piston does not have a significant effect on system

performance and it is reasonable to assume quasi-static force balance. However, if the operation

frequency is much higher, the dynamics of the piston will be important and equation 5.11 will

not be valid. The design procedure presented above is followed by the layout and mask design

for the fabrication.

For the piston dynamics, a damping ratio of 5% is assumed, considering the piezoelectric
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Figure 5-19: (a) System layout (b) System level simulation architecture (c) The chamber and

piezo block in the overall system architecture which was developed in Chapter 4.
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Design Decisions

Piezoelectric material PZN-PT lowest flowrate requirement

Working fluid silicone oil low viscosity and density

Piezoelectric element length, LP 1mm active valve actuation
Chamber height, H~h 200gim squeeze film damping

Parameters imposed by fabrication process

Piston thickness, t 800m double layer piston

Top and bottom support structure thickness 2.5mm packaging layers

Top tether thickness, ttetop 10Pm fabrication feasibility

Bottom tether thickness, tiebot 5ym fabrication feasibility

Material Limitations

Depolarization stress of piezoelectric element, O }1OMPa shouldn't be exceeded

Maximum allowable stress in tethers jGPa shouldn't be exceeded

Damping

Damping ratio of piston 5% assumed

Table 5.1: Summary of preliminary design decisions applied to the design examples.

element as the effective spring. Namely the damping coefficient is calculated as:

c=2(/mis kp =2C m iA (5.35)

where C is the damping ratio and sD is the open circuit compliance compliance of the piezo-

electric element.

5.3 Design Examples

This section will present two design examples who have different operational requirements due

to the limitations imposed by the active valves. The preliminary design decisions, parameters

imposed by fabrication process and material limitations, which are valid for both examples are

summarized in Table 5.1.

5.3.1 Design Example 1

The parameters imposed by the active valves, the design parameters obtained by applying the

design procedure discussed in the previous section, and performance parameters are summarized

in Table 5.2. Simulation results are shown in Figure 5-21, Figure 5-22 and Figure 5-23. The
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Figure 5-20: Tether structure design. Piston deflection shown for different tether widths.

tether structure optimization is shown in Figure 5-20 where the piston deflection is plotted as

a function of the tether width for an added fluid volume of AVf = 1t 1 0 m 3 .

Figure 5-22 shows simulation results for the deflections and swept volumes of individual

structural components. It can be seen that, as expected, the deflection of the bottom sup-

port structure is much smaller than the piston deflection, which is desirable for maximum

piezoelectric element compression. Also, it can be seen that the volume swept due to tether

bending, piston deformation and top support structure deformation is much smaller than the

volume swept by the piston motion, which is again desirable for maximum piezoelectric element

compression.

5.3.2 Design Example 2

The parameters imposed by the active valves, design parameters and performance parameters

are summarized in Table 5.3. In this example, the performance of the active valves are very

limited, which results in very small power output compared to the first example. Simulation

results are shown in Figure 5-24, Figure 5-25 and Figure 5-26. The observations done for the

deflections and swept volumes of the individual structural members in the first design example

are also valid for this example. Namely, the deflection of the bottom support structure is
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Power Requirement 0.25W Electrical power output
Parameters imposed by active valve design

Operation frequency, f 20kHz bandwidth of active valves

Bias Pressure, P 0.5MPa cavitation in HAC chamber
High Pressure. Reservoir Pressure, PHPR 3MPa membrane stress limitation

Important parameters resulting from operation conditions
Pressure band in the chamber, APch 2.5MPa -
Stress band on piezoelectric element, Ao- 8.33MPa -

Designed parameters

Piston Diameter, Dis 6.95mm

Piezoelectric cylinder diameter, Dp 3.8mm

Battery voltage, V6  74.9V

Tether width, Wt 125pm optimization

Chamber diameter, Dch 7.2mm

Fluid channel length to area ratio, La 5000m 1  same for inlet and outlet

Valve cap radius, R, 400pm same for inlet and outlet

Valve opening, voi, voot 24pm same for inlet and outlet

Performance parameters
Net flowrate, Qnet 0.52ml/s -

Hydraulic power input 1.3W (PHPR - PLPR)Qnet

Efficiency, r I19.2% Electrical power output
Hydraulic power input

Table 5.2: Summary of design and performance parameters of design example 1.
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Figure 5-21: Simulation time histories of the design example 1.
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Figure 5-22: Simulation time histories of the design example 1.
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Figure 5-23: Simulation time histories of the design example 1.
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Power Requirement f0.01W j Electrical power output
Parameters imposed by active valve design

Operation frequency, f 5kHz bandwidth of active valves
Bias Pressure, Pb 0.5MPa cavitation in HAC chamber

High Pressure Reservoir Pressure, PHPR 1.5MPa membrane stress limitation
Important parameters resulting from operation conditions

Pressure band in the chamber, APch 1MPa __

Stress band on piezoelectric element, Au- 6.67MPc _

Designed parameters

Piston Diameter, Dpis 4.89mm -

Piezoelectric cylinder diameter, D, 1.89mm _

Battery voltage, Vb 59.9V -

Tether width, Wt 125pm optimization

Chamber diameter, Dch 5.19mm -

Fluid channel length to area ratio, 11000m same for inlet and outlet

Valve cap radius, Rt 150pm same for inlet and outlet

Valve opening, von, voost 9.3pm same for inlet and outlet
Performance parameters

Net flowrate, Qnet 0.042ml/s -
Hydraulic power input 0.042W (PHPR - PLPR)Qnet
Efficiencyr7 23.8% Electrical power output

Hydraulic power input

Table 5.3: Summary of design and performance parameters of design example 2.

much smaller than the piston deflection, which is desirable for maximum piezoelectric element

compression and the volume swept due to tether bending, piston deformation and top support

structure deformation is much smaller than the volume swept by the piston motion, which is

again desirable for maximum piezoelectric element compression.

As discussed in the previous chapters, the generated power is a strong function of the stress

band on the piezoelectric element and the operation frequency. As the maximum operating

frequency reduces due to active valve design limitations, much larger piezoelectric elements

and chamber structures are needed to generate the same amount of power. In the second

design example, in order to generate the same power as in design example 1, huge chamber

diameters, larger than 20mm, is needed, which is not feasible due to the increased compliance

and size constraints. As discussed earlier in Section 5.1.6, it is feasible to make smaller and

multiple devices which would fit in the original volume. In section 5.1.6 it was concluded that

the efficiency does not depend on system scale. As can be seen from Tables 5.2 and 5.3 the
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Figure 5-24: Simulation time histories of the design example 2.
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Figure 5-25: Simulation time histories of the design example 2.
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(b) Volume swept by piston movement(AVj,)
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Figure 5-26: Simulation time histories of the design example 2.
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second device, which is smaller than the first one, has higher efficiency. This is due to the fact

that in the example, only the chamber diameter and piezo diameter are smaller. The length

of the piezoelectric element, chamber height and structural thicknesses are kept constant. This

resulted in a stiffer chamber compared to the case where all the dimensions were reduced. The

explicit relationships and effect of geometric parameters on system scale can be seem in equation

5.27, which represents a simpler case than the actual chamber.

5.4 Summary

This chapter presented further design considerations and a design procedure along with two de-

sign examples. Fluidic oscillations within the system and conditions for sufficient chamber filling

and evacuation is analyzed. An optimization procedure for the tether structure is presented.

Trade-offs between operation conditions and their effect on the performance is discussed. Effect

of system scale on the performance is discussed. Effect of the fabrication process and the active

valves on the design is discussed.
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Chapter 6

Conclusions and Recommendations

for Future Work

6.1 Summary

The objectives of this thesis were:

- To develop a comprehensive system level model and simulation tool to analyze the main

chamber and the associated fluid channels and valves of piezoelectric microhydraulic power

generation devices

- To gain insight into system operation and understand the factors affecting the syster

performance

- Develop a design procedure, which should be complemented by the design of the active

valves.

Chapter 1 presented the configuration, operation and motivation of ruicrohydraulic-piezoelectric

power generators. Primary challenges and preliminary design considerations is discussed.

Chapter 2 presented an analysis of piezoelectric power generation based on linear electrome-

chanical energy conversion. Effect of circuitry and piezoelectric material on energy density and

effective coupling factor is discussed. Models for two different circuit topologies are developed,

simulations are performed and analytical expressions are derived for the generated power and

effective coupling factor. Different piezoelectric materials are compared in terms of their en-

ergy densities and energy conversion efficiencies for different circuitry. It has been concluded
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that, although the single crystal piezoelectric material(PZN-PT) has very high effective cou-

pling factor, it has a very low energy density compared to PZT-8 or PZT-4S because of its

small depolarization stress. Another important conclusion of this chapter is that, for a piezo-

electric element, the energy density obtained with the diode bridge and voltage detector circuit

is four times bigger than the energy density obtained with only the diode bridge. The effective

coupling factor is a function of the coupling coefficient and the circuitry, whereas the energy

density is a function of coupling coefficient, circuitry and the depolarization stress. Indeed, the

effective coupling factor becomes an important criteria if the piezoelectric element is considered

along with its surrounding system, for example the infrastructure which provides the force on

the element, which is the energy harvesting chamber in the microhydraulic power generation

device. It should be remembered that in the analysis presented in this chapter a prescribed

force is imposed on the piezoelectric element. This issue is addressed in Chapter 3.

Chapter 3 presented a simple model of the energy harvesting chamber, simulations with the

coupled circuitry and preliminary design considerations. The interaction of the energy harvest-

ing chamber and the circuitry is discussed. The two circuits presented in Chapter 2 and different

piezoelectric materials are compared in terms of the flowrate and frequency requirements for a

given pressure differential and power requirement, and in terms of system efficiency. Analytical

expressions are derived for the generated power, required flowrate, effective coupling factor and

system efficiency. The most important conclusion of this chapter is that the performance of the

energy harvesting chamber depends on

- Circuit topology

- Piezoelectric material(k 3 3 , ad)

- Chamber compliance(Ceff).

It is also concluded that, as k 3 3 approaches 1 and Ceff approaches 0, the system efficiency

for the two circuits analyzed approaches 50%. This means that, even with a perfect piezoelectric

material(k33 = 1) and zero effective chamber compliance, which are not possible, the system

efficiency cannot exceed 50%. It should be emphasized that the efficiency definition throughout

the thesis corresponds only to the energy harvesting chamber. The electrical power consumption

in the active valves is not considered.

Chapter 4 presented detailed modelling of the energy harvesting chamber. In Chapter 3,
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an effective chamber compliance (Ceff) was assumed to be used in the simulation and in the

following analysis. This chapter investigated the contribution of different structural components

on the effective compliance of the chamber. Deformations of individual structural members are

calculated using linear plate theory. It is assumed that the deflections due to bending are

significantly larger than that due to shearing. A simulation architecture is presented to be

included in overall system level simulation, which allows for inclusion of the elastic equations

into dynamic simulation as well as monitoring important parameters.

Chapter 5 presented further design considerations in addition to the design issues discussed

in Chapter3. These were fluidic oscillations within the system, chamber filling and evacuation,

tether structure optimization, effect of operation conditions on system performance and trade-

offs, and scaling issues. The system is analyzed only for the case where the chamber is attached

to the regular bridge. A design procedure along with two design examples is presented. The

design decisions made considering the issues discussed in previous chapters as well as those

imposed by the active valve design and fabrication process is discussed. Simulation results

are shown. In Chapter 2 it was concluded that PZN - PT has the smallest energy density

among the piezoelectric elements considered, which is a result of its low depolarization stress.

However due to its very high coupling coefficient it provides very efficient electromechanical

energy conversion and requires lowest flowrate for a given power requirement. It should be

noted that, the implication of the low energy density of PZN - PT is that, larger piezoelectric

material volume is needed compared to other piezoelectric materials for the same power output.

However, the weight of the piezoelectric element constitutes only a small fraction of the overall

system weight and the increased efficiency of PZN - PT due to its much higher coupling

coefficient would still overwhelm the effect of increased weight in terms of the overall system

power density.

This thesis developed a framework to analyze piezoelectric microhydraulic power generators.

Insight into system operation is gained and important factors affecting system performance are

analyzed.
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6.2 Recommendations for Future Work

Recommendations for future work in terms of modeling and design can be summarized in the

following subgroups:

Piezoelectric Element

The analysis presented in this thesis is based on linear electromechanical energy conversion.

More detailed analysis including nonlinear effects is required to obtain better predictions for

system performance. Also, piezoelectric element coefficients only in 3-3 direction is used since

the piezoelectric element is subjected to compression parallel to the polarization of the element

and assuming that the element is free to expand in lateral directions, so that T3 is the only

nonzero stress component. However, this is not the case since the piezoelectric cylinder is

bonded to the piston and bottom support structure. Finite element analysis is required to

calculate the effective coefficients in 3-3 direction, namely effective d3 3 , S t and s.

Fluid Structure Interaction

The system is analyzed for relatively low frequencies where the fluid channels were the only

components whose dynamic behavior was important for system performance. At higher fre-

quencies, the modal behavior of the piezoelectric element and the piston structure along with

the fluid contained in the chamber might be important (added mass effect of the fluid). De-

tailed finite element models are needed to investigate the fluid structure interaction within the

chamber.

Fluid model

In this thesis, a simple fluid model based on discharge coefficients taken from published data is

used. These models do not provide accurate estimation of the power consumption in the valves

since it is not possible to predict the force exerted on the valve cap and valve membrane by the

flow. Detailed CFD analysis can provide more insight into the fluid flow in the valve. This is

very important because of the complicated geometry of the valves.
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Squeeze film damping

Squeeze film damping is a common problem in MEMS devices. Although not presented in this

thesis, a preliminary analysis has shown that, for the chamber height used in the design, squeeze

film effects are not important. However, for smaller devices, squeeze film damping can effect

system performance significantly. Detailed analytical models and/or finite element studies are

required to investigate this effect.

Scaling Study

As the system size gets smaller, the power density increases, however, only until a certain scale.

Beyond that scale, it is expected that viscous losses in the valves will begin to dominate and

scaling further down will not be more efficient. In order to perform this study, more detailed

fluid models are needed as mentioned earlier.

System level analysis

This thesis concentrated on the main chamber, also called the energy harvesting chamber, of the

piezoelectric microhydraulic power generators. System level simulations, including full active

valve structure, should be performed to obtained better predictions about system performance

and efficiency. However, it should be emphasized that, these simulations would provide realistic

predictions provided that good fluid models exist, as discussed above.
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Appendix A

Simulink Block Diagrams

This section presents the simulink models used in this thesis. Figure A-1 shows the model of

the piezoelectric element model used in Chapter 2 in order to simulate the case of applied force.

Later in the thesis, namely in Chapter 4 and Chapter 5, the piezoelectric element constitutive

equations are solved along with the elastic equations of the structural members of the main

chamber and incorporated into the simulation architecture with a 15x3 matrix, as described in

Chapter 4. Figures A-2 and A-3 present the simulink models of the regular diode bridge and the

diode bridge attached to the voltage detector, respectively, used throughout the thesis. Figure

A-4 presents the simulink blocks used to implement the function of the voltage detection circuit.

Figure A-5 shows the simulink architecture of the full system including the main chamber, fluid

models and circuitry, used in Chapter 5. Simulations in Chapter 3 are performed with a similar

model. Figures A-6, A-7 and A-8 present the simulink models for the main chamber presented

in Chapter 4 and the fluid models presented in Chapter 3. The circuit model used for the

simulations in Chapter 5, where the system is simulated only with regular diode bridge, is the

same as in Figure A-2.

Implementation of the voltage detector circuit and silicon controlled rectifier The

operation of the voltage detection circuit was described in Chapter 2. The function of the

voltage detector is implemented as follows: The voltage detector block in the Simulink model

sends a signal to the switch/resistor block which is either I or zero depending on the detected

voltage, V2. The logic is as follows:

171



< 0 and V2 > 0

> 0 and V2 > 0

signal=1 (switch on)

signal=0 (switch off)

< 0 and V2 < 0 signal=0 (switch

> 0 and V2 < 0 signal=0 (switch

The switch function is implemented with a resistor in the place of the SCR, whose value

depends on the signal. If the signal value is 1, the value of the resistor is very small and the

switch is in "on" state. If the signal value is 0, the value of the resistor is very large and the

switch is in "off" state. The following parameter values are used:

Large resistance: 10 6 Ohm, small resistance: 10-6Ohm, capacitance value: 10~ 7F, inductor

value: 20mH, m = 5, K = 107 , w = 5 x 1012.

22

Force Disp0acemnent
P, K

'u current 1-, chamrge Q Unear constitutive Voltage
law for plezoelectrkms

Plazo diarge

Figure A-1: Simulink model of the piezoelectric element.
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Figure A-3: Simulink model of the diode bridge attached to an inductor, voltage detector and

SCR(Silicon Controlled Rectifier).
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Figure A-4: Implementation of the voltage detector circuit.
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Figure A-6: Simulink model of the main chamber and the piezoelctric element.
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Figure A-7: Simulink model of the inlet valve and fluid channel.
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Figure A-8: Simulink model of the outlet valve and fluid channel.
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Appendix B

Matlab Files

This section presents important Matlab codes used in the thesis.

Figure B-1presents the code used in Chapter 3 to calculate the required frequency, flowrate

and efficiency for different circuitry.

Figure B-2 presents the code used to calculate the required frequency, flowrate and efficiency

of the system attached to regular diode bridge for different reservoir pressures and chamber

diameters in Chapter 5.

Figure B-3 presents the Matlab code used in Chapter 5 for tether optimization. The elastic

equations and equations governing the chamber behavior are solved in Maple, which is presented

in Appendix C.

Figure B-4 presents the Matlab code used in Chapter 5 which writes the operational and

some of the geometric parameters into the Matlab workspace, which can be read by the Simulink

model for the system level simulation. Also, the 15x3 matrix required by the Simulink model

(Appendix A) is generated, whose coefficients are calculated by Maple, which is presented in

Appendix C.
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% This code calculates the required frequency, flowrate and efficinecy for two different circuitries.
& Effect of tethers is neglected and perfect sealing between the piston and the chamber walls is assumed.

clear all;

e PicZo properties (PZN-4 SPT)

s33R - ale-12 ; Closed circuit compliance
s33D - 17e-12 ; 1 Open circuit compliance
Sd - 1leg; I Depolarization stress
PHPR . 2e6 ; High pressure reservoir
W . 0.5 ; SPower requirement

t Dimensiona

Dpis . (4.Se-3); & Piston diameter(.chamber diameter since the effect of tethers is neglected)
Apis - (Dpi&^2)pi/4; & Piston area
Ap - Apia*PEPR/Sd; * Piezo area
0p - sqrt (4eAp/pi); S Piezo diameter
ip - (le-3) ; & Piezo length
Vp - Ap*Lp ; & Piezo volume

% 'hamber atiffnes

Keff - lleis,2e15,3e15,4eiS,5els,Gels,7eiS,BelS,9elslel6,2ei6,3e16,4e16,Sel6,...
Gel6,7el6,8e16,9el6,1e17,2e17,3e17,4e17,5e17,6ei7,7e17,8e17,9e17,lel,2e18....
3e1,4elg, elS,6e15,7e10,aels,9ele,lelQ,2e19,3e19,4e19,5el9,6e19,7e19,Re19,9e19,1e20];

SRECTIFIER

energy stored per cycle
Er - ((s33E-s33D)(Sd).^2.*Vp)./4;

% Required frequency [kHzl

fr - W./Er./1000;

& Required flowrate [ml/al
Or - (2.a(s33E+a33D).aw./((s33E-a33D)aPEPR)+(PHPR.*fr.*1000./Keff)).le6 p

& Efficiency
eayer - (W./((Qr.e-e) .CPHPR)).l0O;

& RECTIFIER+VOLTACE DETECTOR

& Energy stored per cycle

es - -(s33D-33E).*Sd.^2.*Lp.Ap-(a33E.Lp.*Keff.Apis.^2+Ap).*(s33D.Lp.*Keff.*Apis.^2+Ap)./...

((Ap+2.s33E.*Lp.Keff.*Apis.^2-s33D.*Ip.*Keff.*Apisa.^2).^2);

Required frequency(kz]

fe - W./Es./1000 ;

& Required flowrate ml/sI

Os - (.(PHPE.^2.*s33E.eIc.*KeffCSd.^2.5Ap-s2D.*Lp.eKeff.Sd.2.*p) ....

(3.*s33R.*Lp.*Keff.*Sd.^2.*Ap.*PEPR.^2+s33H.-Lp.^2.*Kaff.^2. Bd.^4.*Ap.^2. s33D+PHPR.^4-PHPR.^2.*s33D.*Lp.*Kaff.*Sd.^2.*Ap)./...
(PHPR.*(o33R.*Lp.*Kaff.*Sd.^2.*Ap+PHPR.^2).*(-s33D+s33R).*Ap.*Sd.^2.*Lp.*(PEPR.^2+o33D.*Lp.*Keff.*Sd.^ 2.*Ap).*Keff)).*le6;

* Efficiency

Boyne - ({s33E.*Lp.*Keff.*Sd.^2.-Ap+PHPR.^2).*(-a33D+s339). Ap.*Sd^2.*L.--(PliPR.^2+,23D.*Lp.*Keff.*Sd.^2.*Ap) 3Keff./. ..
((PHPR.^2+2.ns33E.eLp.*Keff.OSd.^2.*Ap-s33D.Lp.Kaff.efd.'2.*Ap)....
(3.*a33R.-Ip.-Keff.*Sd.^2.*Ap.*PHPR.^2+8233.*Lp.^2.*Keff ^2.*Sd.^4.-Ap.^2.*823D+PRPR.^4-PHPR.^2.-s23D.*Lp. Keff.*Sd.^2.*Ap)))*100;

Ceff-l./Keaff; Effective compliance

figure (i)
hesemilogx(CeffQr,'b--,,Ceff,Os,'r-');
set(h,'LineWidth',2)
title('Study3')
xlabel('Ceff[m^3/Pa] '
ylbel ('ilowrate [ml/si')
legend('Rectifier','Rctifier+Voltage Detector')
grid on
axis(Els-20 le-15 0 101)

figure (2)
h.semilogx(Cefffr,'b--',Ceff,fs,'r-')p

set (h, 'LineWidth' ,2)
xlabel ('aCeG f m^3/Pal ')

ylabel ('Frequency [kHzl')

grid on

figure (3)
h-semilogx(Ceff,Eaysr,'b--',Ceff,Eayss,'r-');

set(h, 'LineWidth' ,2)
xlabel('Ceff[m^3/Pa ')

ylabel('Systsm Efficiency[ml/sl')
legend('Rectifier','Rectifier+Voltage Detector')
grid on

Figure B-1: Matlab code ised in Chapter 3 to calculate the required frequency, flowrate and

efficiency for different circuitry.

182



1 This code calculates the required frequency, flowrate and efficiency of
I the system for different reservoir pressures and chamber diameters

clear alli

k Power requirement

W - 0.5 ; * Power ra

t Piezo properties(PZN-PT)

s33E - ale-12 'a closed c
s33D = 17e-12 ; 4 Open ci
Sd = lOe6; ' Depolari

* Silicon material properties

v = 0.22, V Poissons
E - 165e9 &k Youngs s

t Silicon oil bulk modulus

Bf = 2e9 I 4 Fluid bu

* Operation condition: varying PHR

for PEPR - ls6:leE6;46;

* Geometric dimensions

n = 1:0.1:10y

Dch - le-3-n 'a Chamber

Hch - 200e-6 ; & Chamber
Ach -(Dch.^2)*pi/4: 'a Chamber
Ap - Ach.*PHPR./Sd; ' Piezo
IP - le-3 ; ' Piezo 1
htp - l-S : ' Top pl

t Calculation of compliances

Cs - (F6.*N.htp.3./(pi.*(l-v.^2) .(Dch./2).6)).^-l; a Top ple
cf - (Bf./(Ach.*ch)).^-l ; & Fluidic
Ceff- Cs+Cf; 'a Effecti

1k Calculation of required frequency, flowrate and efficiency

f - 4.*w./((s33E-s33D).*Sd.^2.*Lp.*Ap); 4a Require

Q - 2.*(33E+s33D).*w./((s33E-s33D).PPR)+Ceff.*PHPR.*f, % Require

Eff - w./(Q.*PHPR); ' Efficie

]k Plotting results

figure (1)
grid
plot (Dch/le-3, f/le3)
title('Required frequency vs. piston diameter')
xlabel ('Dpis am] )
ylabel('f[kHzl ')

hold on

figure (2)
grid
plot (Dch/le-3,0/le-5)
title('Required flowrate vs. piston diameter')
xlabel ('Dpis [m ')

ylabel ('Q ml/s' )

hold on

figure (3)
grid
plot (Dch/le-3 ,Eff100)
title('Efficiency vs. piston diameter')
xlabel ('Dpis (ml')
ylabel('Eff [W]')

hold on

end

quirement

ircuit compliance
rcuit compliance
zation stress

ratio
ndulus

lk modulus

diameter

height
area

rea

snght
te thickness

te compliance
compliance

vs compliance

d frequency

d flourate

ncy

Figure B-2: Matlab code used in Chapter 5 to calculate the required frequency, flowrate and

efficiency of the system attached to regular diode bridge for different reservoir pressures and

chamber diameters.
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% Matlab code used in tether structure optimization. (Double layer piston)
% The expressions for kxf, kxp, kvf, kvp, xpt, P, Fpt and Ceff are obtained using Maple.

clear all;

dVf - ic-10; t Input flow volume into the chamber

Dah - 7.2e-3; t Chamber diameter
Dp = 3.8e-3; t Piezo diameter
Lp - ic-3; t Piezo length
Ap = Dp^2*pi/4; k Piezo area
Hch = 200e-6; t Chamber height

E - 165e9; t Youngs modulus
v - 0.22; t Poisson ratio
Bf - 2e9; t Bulk modulus
s33D = Se-12; t Open circuit compliance

a - Dch/2;
kp Ap/s33D/Lp; t Piezo stiffness
Vo = Hch*Dch^2*pi/4; t Initial volume of chamber

ttopte - ile-6;
thotte - Se-6;

d - E*ttopte^3/(12*(l-v^2));
do E*tbotte^3/(12*(-V^2));

for k- i1:2e3;

Dpis - (Dh)-k*0.0005e-3;

b = Dpis/2;
Apis - Dpis^2*pi/4;

* Top tether

kxf = -1/16* (b4-2*b^2*a^2+4*b^2*a^2*log (a/b) 'log (b)+a^4 -4*a2*log (a)^2*b^2+4*a^2*log(a) *b2*log(b)) / (d*pi* (b2-a^2));
kxp - -1/64* (3*b^6-7*b^4*a^2+4*b^4*log (b) *a^2+5*b^2*a^A4-4*b^4*a^2*log (a) -4*b^2*log(b) *a4+16*b^4*log (b) *a2*log (a/b) ...

-a^6+4*a^4*b'2*log(a) -16*a^2*log (a)^2*b^4+16*a^2*log (a) *b4*log (b) )/ (d* (b^2-a^2));

kvf - 1/64*pi' (16*b^4*log (b) *a'2*log (a/h)+16*a^2*log (a) *b^4*1g (b)+S*b^2*a'4-4*b4*log (b) *a^2+4*b^4*aA2*log (a)+4*b^2*...

log (b) *a^4-4*a^4*b^2*log (a) -16*a^2*log (a)^2*b^4 -a^6-7*b^4*a^2+3*b^6-16*a^4*log (a) *b'2*log (b) -*b^4*a'2*log (a/b) ...

+16*a^4*log (a)^2*b^2+8*a^4*b^2*log (a/b) -16*a^4*b^2*log(a/b) *log (a) ) / (d*pi* (b^2-a^2));
kvp - 1/192*pi* (24*a^4*b^4*og (a/b)+24*a^4*b'4-22*b^6*a^2+a^8+7*b'8-48*a^4*b^4*og (a/b) *log (a) -4*a4*lg (a) *b^4*log (b) ...

+48*a^4*log (a)^2*b^4+48*b'6*a^2*log (a/b) *log (b)+4*b^6*aA2*log (a) *log (b) -48*b6*a^2*log(a)^2-24*b^6*a^2*log (a/b)-..-
10*r^6*b^2)/(d*(b^2-a^2));

t Bottom tether

kxfb - 1/8*b^2*log(b) / (pi*ds) -1/8*b^2/ (pi*ds) +1/16* (-2*a^2*log (a)+a^2+2*b^2*log (b) -b2) *b^2/ (pi*ds* (a^2-b^2) )+1/4*b2*...
a^2*log (a/b) *log (b) /(pi*ds*(a^2-b^2))+1/16*a^2*(a^2-2*b^2*log(b)-b^2-4*b^2*log(a)'2+2*b^2*log(a)+4*b^2*log(a)*...
log(b) ) / (pi'ds* (a'2-b^2));

t Overall equations

xpis - -kxfb*(kxf*Apia-kxp)*dVf*Bf/(kxfb*Vo+kxfb*Bf*kvf*Apie-kxfb*Bf*kvp+kxf*Vo-kxf*Bfekvp+kxf*kp*kxfb*Vo-kxf*kp*kxfb* .
Bf*kvp+kxf*Apis^2*Bf*kxfb+kxp*Bf*kvf+kxp*Btf*kvf*kp*kxfb-kxp*BfIkxfb*Apis);

P - Bf*dVf*(kxfb+kxf+kxf*kp*kxfb)/(kxfb*Vo+kxfb*Bf*kvf*Api-kxfb*Bf kvp+kxf*Vo-kxf*Bfekvp+kxf*kp*kxfb*Vo-kxf*kp*kxfb*Bf .
*kvp+kxf*Apis^2*Bf*kxfb+kxp*Bft*kvf+kxp*Bf'kvf*kp*kxfb-kxp*Bf*kxfb*Apis);

Ceff - Vo/Bf+ (kxf b*kvf*Apis+kxp*kvf+kxp*kvf*kp*kxfb-kxfb*kvp-kxf*kvp-kxf*kp*kxfb*kp) / (kxfb+kxf+kxf*kp*kxfb);

xp(k) - xpis;
Pch(k) - P;
Comp(k) - Ceff;
Dpion(k) - Dpis;

end

figure(2)
subplot(3,1,1)
plot ( (Dch-Dpisn) *le6/2,xp/le-6)

hold on
title('Dah fixed,Dpis varied')
ylabel ('Piston Deflection fuml ')

grid
subplot(3,1,2)
plot ((Dch-Dpion) *1e6/2, Pch/le6)
hold on
ylabel('rCamber Pressure[MPa]')
grid
subplot (3 , 1, 3)
semilogy ((Dch-Dpian) *1e6/2,Comp)
hold on
ylabel ('Ceff [m3/Pal ')
xlabel('tether width')
grid

Figure B-3: Matlab code used for tether optimization.

184



I This code writes the system parameters to the Matlab workspace to be read by Simulink.
S It also generates the 15x3 matrix used in Simulink, whose coefficients are calculated using Maple.

clear all,

& cluid Properties

rho - 760 % 9 fluid density [kg/m^3]p
nu fluid - 0.65e-6; W viscosity [m^2/sacl;
mufluid - rhoenu fluid; S viscosity [Pa/sec];

W Valve geometry

d_discin - 2*400e-6 p 5 inlet valve cap diameter[m];
4_discout- d discin ; 1 outlet valve cap diameterms];

hi - 10cc-6;
eta - 0.965 ;

4 Valve Channel Goeometry

lk - 5Se-7 p t Leakage [m]

La - 5000; V Channel length
Ac - 1; t Channel area

& Note: Since only L/A ratio is important in this study,
* no exact channel geometry is defined, only the ratio is determined.

I Diode Properties for the rectifier circuit

T - 300;
k - 1.38e-23;
eta- -l.25/S;

q - 1.6e-19;
In - le-6p

t Operation Conditions

voi - 24e-6 p V Inlet valve opening[m]

voo - 24e-6 ; t Oulet valve openingm]

Wn - 20000 ; Operation frequency[Hz]

Vb - 74.9; & Hattery Voltage [VI

PfPR - 306; S High Presure Reservoirs Pressure

PLPR - 0.5e6; S Low Presure Reservoire Pressure

I Expansion look-up table

Re - [0, 0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.9] ;

Ce - [1,10,15,20,30,40,50,100,2e2,5e2,1e3,2e3,3e3,lelS] p

Te - [33,3.1,3.5,3.04,2.7,2.42,2.32,1.92,1.94,2.07,2.45,1.92,1.25,0.98;
33,3.1,3.3,3.02,2.56,2.29,2.13,1.83,1.79,1.89,2.23,1.76,1.13,0.9;
33,3.1,3.2,3,2.4,

2
.15,1.95,1.7,1.6S,1.7,

2
,1.

6
,1,0.lp

33,3.1,3.2,2.8,2.2,1.85,1.65,1.4,1.3.1.3,1.6,1.25,0.7,0.64;
33,3.1,3.1,2.6,2.,1.6,1.4,1.2,1.1,1-1,1.3,0.95,0.6,0.5;
33

,
3

.1,
3

.0,
2

.4,1.8,1.5,1.
3
,1.1,1.,l..S,1.05,0.8,0.4,0.

3 6

33,3.1,2.0,2.3,1.65,1.35,1.15,0.9,0.75,0.65,0.9,0.65,0.3,0.25;
33,3.1,2.7,2.15,1.55,1.25,1.05,0.0,0.6,0.4,0.6,0.5,0.2,0.16;
33,3.1,2.6,2,1.4,1.1,0.9,0.4,0.3,0.1,e-2,5e-2,2e-2,1.8e-2] p

* Contraction look-up table

Ro - [0,0.l,0.2,0.3,0.4,0.5,0.6,1 p

Cc - [1,10,20,30,40,50,1e2,2e2,5e2.1e3,2e3,4e3,5e3,1e4,lels] ;

Tc - [30,5,3.3,2.5,2.16,1.98,1.4,1.13,0.94,0.77,0.6,0.97,0.92,0.6,1;
30,5,3.2,2.4,2,1.8,1.3,1.04,0.2,0.64,0.5,.,0.75,0.50,0.45;
30,5,3.1,2.3,1.4,1.62,1.2,0.95,0.,0.5,0.4,0.6,0.6,0.4,0.4
30,5.,2.95,2.15,1.7,1.5,1.1,0.-5,0.6,0.44,0.30,0.55,055,0.3,0.35;
30,5.,2.8,2.0,1.6,1.4,1,0.78,0.5,0.35,0.2S,0.45,0.5,0.3,0.3j
30,5,2.7,1.8,1.46,1.3,0.9,0.65,0.42,0.3,0.2,0.4,0.42,0.25,0.25;
30,5,2.6,1.7,1.35,1.2,0.8,0.56,0.35,0.24,0.15,0.35,0.35,0.20,0.20;
30,5,2.6,1.7,1.20,0.8,0.6,0.40,0.15,0.01,0.05,0.15,0.15,0.10,0.10] p

0 Preparation of the matrix to be fed into Simulink

Thesisgileatrix; I Read in matrix values from Thesisfi4atrix.s

for 1-1:15
for j-1:3

eval (['Amatrix(i,j) -A, nnmstr(i)num2str(j) 'p']),

and

Figure B-4: Matlab code used for writing system parameters into the workplace to be read by
the Simulink model for the system level simulation.
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Appendix C

Maple Files

This section presents important Maple files used in the Thesis.

The first two codes are the Maple files used for tether optimization in Chapter 5. The first

one solves the elastic equations of the tether structures. The second one solves the governing

equation for the chamber behavior. The coefficients calculated are then fed to the Matlab code

used for tether optimization presented in Appendix B.

The third code solves the elastic equations of all the structural components within the

system along with the equations governing the chamber continuity and piezoelectric element

behavior. The equations are solved and the coefficients for the 15x3 matrix required by the

Simulink model architecture, which is described in Chapter 4, are calculated. These coefficients

are written in a Matlab m.file which are then read by another Matlab code (Appendix B) to

generate the 15x3 matrix. The assumptions and derivation of these equations are presented in

Chapter 4.
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E This file solves the elastic equations corresponding to the tether structure.

Double layer piston is considered.
It is assumed that everything except the tethers are rigid.

[ > restart;
[ > Digita:=40:

Top tether

Define governing DE for bending of circular plate and shear force

Governing DE
> eqn:='diff(1/r*diff(r*diff(w(r),r),r),r)=Q(r)/d':

F Shear force in terms of Pch(chamber pressure) and Fpt (force applied by the piston on the top tether)

L > Q (r) :=Fpt/ (2*Pi*r) - (1/2) *P* (r^2-b^2) /r:

Integrate the DE

F > Q1(r):=(int(Q(r)/d,r)+C1)*r:
F > Q2(r):=(int(Q1(r),r)+C2)/r:
E > v (r):=int (Q2 (r) ,r) +C3:

Apply BC's
[ > BC1:-subs({r=a},w(r)).O:

E > BC2:=subs ({r=a}, dif f (w (r) , r) )=0

[ > BC3:=subs ((r=b), diff (w (r),r))=0:

E > Bet:=solve({BC1,BC2,BC3},{C1,C2,C3}):
F > W(r) :=subs (Set,w(r))

Calculation of linear coefficients for deflection and swept volume

[ > kxf:=ubs((P=O,Fpt-1),subs({r.b},W(r))):
[ > kxp e auba((P=1,Fpt=O},subS({rmb),W(r))):
F > kvf g=subs((P=O,Fpt=),collect(siplify(int(2*pi*r*W(r) ,r=b..a)) ,(d,P))) :

F > kvp:=subs((P=1,Fpt=O},collect(sinplify(int(2*pi*r*W(r) ,r=b..a)) ,(d,P})):

Bottom tether

_' Define governing DE for bending of circular plate and shear force

Governing DE
> eqn:='diff (1/r*diff (r*diff (w(r) ,r) ,r) ,r)=Q(r) /ds':

F Shear force in terms of Fpb (force applied by the piston on the bottom tether)
L > Q (r) :=Fpb/ (2*Pi*r):

Integrate the DE

F > Q1(r):r=(int(Q(r)/ds.r)+C1)*r:

[> Q2(r):m(int(Q1(r),r)+C2)/r:

[ > w(r):mint(Q2(r),r)+C3:

Apply BC's
F > BC1:=subs ((r=a},w(r))=0:
F > BC2±muba({rma},diff(w(r),r))=O:

F > BC3:=subs ((r=b},dif f (w(r),r))=0:
F > Set:=solve({BC1,BC2,BC3},{C1,C2,C3)):
F > W (r) :=subs (Set, w (r) ) :

Calculation of linear coeflicient for deflection

F > kxfb:maubm((P=O,Fpbsl),ub8({rmb),W(r))) :
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- File: Compl.mws
This file solves the overall equations governing the chamber behavior including piston deflection, swept volume, chamber pressure,
force on piezo and fbrce on tethers.
Also the effective compliance of the system is calculated. The elastic equations governing the tether behavior are calculated using
another maple file.

L The results of both maple files are then fed to Matlab for tether structure optimization.
E > restart;
[ > Digits:=40:

9 Equations Governing top tether deflection
E > eanql:xpiawkxf*Fpt+kxp*P:
E > eqn2:=dVt=kvf*Fpt+kvp*P:

Equation Governing bottom tether deflection
L > eqn3:=xpis=kxfb*Fpb:

Force Balance at piston-tether connection
L- > eqn4:-Fp=Fpt+Fpb:

Fluid Compliance

E > eqnS:=P=((dVf+dVt+xpis*Apia) / (Vo) ) *Bf:

Piston and Piezo

L > eqn6:=P*Apis+Fp+kp*xpis=O:

Solve equations for input dVf

[ aya:=olve({eqnl,eqn2,eqn3,eqn4,eqnS,eqn6),{xpis,Fp,dVt,P,Fpt,Fpb)):

[ > assign (sys) ;
[ > Ceff:=collect(simplify( (dVf+xpia*Apia) /P) ,{Vo,Bf}) :



Fie: ThesSimComp.mmw
Within the simulink model, an 15 x 3 matrix is needed, which takes as inputs (Qp, Qnet, xpis) and solves for the outputs (Vp, xtp,
DVtp, DVte, DVpb, xb, xte, Fte, Fte-top, Fte-bot, Stt, Stb, Fp, Pch, Fnet).
This code calculates the coeficienta of this matrix.

[ > restart;
[ > Digits:=40:

Governing Equations

Top support structure
E EQN1 := x [tp]=k [dtp] *P [ch]:

E > RQN2 : - DV [tp] =k [tp] *P [chl:

Bottom Support Stucture
[ > EQN3 := x[b] = k[b]*F[pl :

Mison
S> EFQN 4  = x[pis] -x [te] =k [p1] *F[p] +k [p2] *P [ch]:

E > EQN5 := DV [pb =k [p3] *F [p +k [p4] *P [oh] :
[ > XQN6 := F [net] =-A [pis] *P [ch] +F [p) -F [to]:

Piston Tethers
EQN7 := x[te]=k [ttl] *F [tetopl+k [tt2l *P [ch]:

[ > EQN8 = DV[tel=k[tt3]*F[tetop]+k[tt4]*P[ch]:
[ > XQN9 := Str[tt]=a[ttl] *F [tetop]+8 [tt2] *P[ch]:

E > QN10 : [to] k [thl *F [tebot] :

[ > NQN11 := Str[tb] = [t]*F[tebot]:

L > EON12 : F[te]=F[tetop]+F[tebot]:

Chamber continuity
E > ZQN13 := P[ch]=B[fl/V[ol*(Q[net]+x[pin]*A[pin]+DV[pb]+DV[tel -DV[tp]):

Piezoelectric Material
[ Linear constituive relations.
[ > EQN14 := x [b] -x [pis] = L [p] /A [p] * (sD [33] *F [p] +d [33] /eT [33] *Q [p]):
[ > EQN15 V[p] = L[p]/A[pl*(d[33]/eT[33]*F[p]-1/eT[33]*Q[p] ):

Geometric and Material Parameters
[ Geometric Parameters:
[ > L[p]:=le-3: d[p]:w3.8e-3: A[p]:=(Pi*d[p]^2)/4:

[> d[pis]:=6.95e-3: w~t]:=125e-6:- d~ch]:=dl~pia]+2*w~t]: t[pis]:-=800e-6:.

I A [pia]:= (Pi*d [pis] ^2) /4:
[ > t[tetop:=10-6: t[tebot]:=5-6:
[ > t[bot] :=2500e-6: t[top] :=2500e-6:
[ > H[ch] =200e-6.: V[o] :=Pi*(d[ch]^2/4)*H[ch]:

[ Material Parameters:
> d[33] :=1780e-12± sD[33]:=17e-12: sE[33]:=81e-12: eT[33] :=d[33]^2/(aE[33]-sD[33]):
> E[ai] :=16Se9: nu[sil:-0.22: B[f]:-2e9: rho[ai]:-2230: M[pis]:=rho[si]*A[pis]*t[pis]:

IN Calculate Linear Plate Coefficients

Is Top Support Structure
Circular plate clambed at its outer radius(r=a).
Positive deflection is upward.

[ > eqn:=' diff(1/r*diff(r*diff(Z(r),r),r),r)=Q(r)/DB':
[ > Q(r):=P[ch]*r/2:
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> Q1(r):=(int(Q(r)/Ds,r)+C1)*r:
[ > Q2(r):=(int(Q1(r),r)+C2)/r:

[ > wtp(r):=subs{{C2=0},int(Q2(r),r)+C3):
[ > BC1:=subs({r=a),wtp(r))=

[ > BC2:-subs({r-a},diff(wtp(r),r))mO:
[ > Bet:=solve((BC1,BC2},{C1,C3)):

[ > Wtp:=simplify(subs(Set,wtp(r))):
[ > DVtp:=int(2*Pi*r*Wtp,r=O..a):

[ > Wtpo:=subs((r=O),Wtp) .
[ > k[dtpl:=subs({P[ch]=1),Wtpo):
[ > k[dtp] :=evalf(subs( {a=d[ah]/2, Dm=E[sil*t[top]^3/(12*(1-nu[sil^2))},k[dtpl)):

[ > k[tp]:=subs({P[ch]=1},DVtp)*:
[ > k[tp] :evalf(subs{a=d[chJ/2, Da=nE[sil *t topV 3/(12*(1-nu[sil^2))},k[tp])):

Bottom Suport Structure[ Circular plate with a circular hole at the center which is clamped at its outer radius(r=a) and guided at its inner radius(r=b).
Positive deflection is upward.

[ > eqn:=diff(1/rdiff(r*diff(Z(r),r),r),r)=Q(r)/Da':
[ > Q(r):=-F[p]/2/Pi/r:
[ > Q1(r):=(int(Q(r)/Ds,r) +C1)*r:

E > Q2(r):=(int(Q1(r),r)+C2)/r:
[ > wb (r) :=int (Q2 (r) , r)+C3:
E > BC1:=aubs({r=a},wb(r))=O:

[ > BC2:=aubs({r=a},diff(wb(r),r))=O:

E > BC3:=subs({r=b},diff(wb(r),r))=O :

[ > Set:=solve((BC1,BC2,BC3},{C1,C2,C3)):
[ > Wb:=simplify(subs(Set, wb(r))):
[ > k[bI :usimplify(subs({F[p] =1},aubm((rmb),Wb))) :

[ > k[bI :=evalf (subs ((a=d [h] /2, b=d[pl/2, Ds=[sil *t[bot] ^3/ (12* (1-nu [il ^2)) },k[b])):

Pihton
Circular plate with a circular hole at the center which is simply supported at its outer radius(r=a) and guided at its inner

radius(r=b).
Positive deflection is upward.

E > eqn:='diff (1/r*diff (r*diff (Z (r) ,r) ,r) ,r)=Q (r)/Da':
E > Q(r):.F[pl/2/Pi/r-P[chl*r/2:
E > Q1(r):=(int(Q(r)/Ds,r)+C1)*r:
C > Q2(r):=(irnt(Q1(r),r)+C2)/r:
[ > wp (r) :=int (Q2 (r) , r)+ C3 :

[ > BC1:=sub({rua}, wp(r))mO:
E > BC2:=suba({r=a),diff(wp(r),r$2)+nu/r*diff(wp(r),r))=O:
[ > BC3:=suba({rub},diff(wp(r),r))mO:
E > Set:=aolve({BC1,BC2,BC3),(C1,C2,C3)) :
[ > Wp:=simplify(subs(Set,wp(r))):
[ > DVpb:=simplify(int(2*Pi*r*Wp,r=O. .a)):

[ > k[pll:usimplify(subs({P[ch]=O,F[pll},sub({rmb),Wp))) :[ > k [pl] :=evalf (subs ((aud [pis] /2, bud [p1/ 2, D=n t[ail *t [pial ̂ 3/ (12* (1-nu [il ̂ 2)),

nu=nu [siI ), k [pll ) :

[ > k [p2] :-simplify (subs ((P [ch]=1, F [p] =0}, subs ((rbWp)) ):
> k [p2] :evalf (subs ({a-d [pisl /2, bud [p1/2, Da-E [i] *t [pis] A3/ (12* (1-nu [ai]A2)),

I nu=nu [oil ),k[p21)):
[ > k[p3]:-=simplify(subs({P[ch]O,F[pl-1},DVpb)) :[ > k[p3] :=evalf (subs ({a=dEpis /2, b=d[pl/2, Ds=H [sil *t [pis] ^3/ (12* (1-nu [sil ^2)) ,

numnu[sil),k[p31)):

E > k[p4l:=simplify(subs((P[ch]=1,F[p]=O},DVpb)):
> k [p4 :=evalf (subs ((aud [pis] /2, bad [p1/2, Ds=E [sil *t [pi] A^3/ (12* (1-nu [il A2)),

nu=nu[sil},k[p41)):2
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Drive Element Tethers
Top Tether
Annular plate clamped at outer radius (r=a) and guided at inner radius (r-b) with pressure applied
downward over tether and concentrated force applied upward at inner radius (r=b).

[ > eqn:='diff(1/r*diff(r*diff(Z(r),r),r),r)=Q(r)/Da':
[ > Q (r) :=F [tetopi / (2*Pi*r) -P [chl] * (rA2-b^2) / (2*r):

[ > Q1(r):=(int(Q(r)/Ds,r)+C1)*r:
[ > Q2(r):-(int(Q1(r),r)+C2)/r:
[ > wtt(r):=int(Q2(r),r)+C3:
F > BC1:=subs({r=a},wtt(r))=O:
E > EC2:=subn( {r=a},diff(wtt(r),r))=O:
[ BC3:=nubs({r-b},diff(wtt(r),r))=O:
[ > Set:=aolve({BC1,BC2,BC3},(C1,C2,C3}) :
[ > Wtt:=simplify(subs(Setwtt(r))):
L > D/tt:=2implify(int2(2*Pi*r*Wtt,r=b..a)):
[ > k[ttl] :m-implify(subs({P[ch]l0,F[tetop]=O),subsa({r-b},Wtt))):

> k[ttI]:=evalf0(ubs{{a=d[ch]/2, b=d[pi±]/2,
I DanE[si]*tftetop]^3/(12*(1-nu[siI^2))),k[ttl])):
E > k[tt2l :=nimplify(sub((P[chl-=1,F[tetop]=1},ubs((r=b),Wtt))):

L > k [tt2] :=eva1f (sub{((a=d [ch] /2, b=d[pis] /2,
IDa=E [si] *t [tetoP] ̂ 3 /(12* (1-nu [SjA ^2) )), k[tt2 ) ) :

[ > k [tt3] :=aimplify (oub ({P [ch]=0, F[tatop]=l}, DVtt) ):
> k [tt3] : evalf (gubs ({a-d[ch] /2, b=d [Piz]/2,

I Du=En[sil *t[tetop] 3/(12*l(-nu)[)i2)),k[tt3])):
[ > k[tt4] :=mimplify(sub((P[chl=1,F[tetop]=O},(DVtt)() a t

> k [tt4] :=evalf (eub9({a=d[ch3 /2, b=d[pis] /2,
l D =e [ila*t[tetop] ^3d/ (12*a (-nu[si ^a2) ) ), ktt4 )r):

[ > Stt:simplify(6* (Ds* (diff (Wtt,r$2)+nu/r*di ff(wtt,r)))/(h2)):
E > a( [tt:=aimpli fy (ub({P[ch]=,Ftetop]=l),sub({rma},Stt))):

[> a [ttI] :=ev&If (nubn ({=d [ch3 /2, b=d [Pia]/2, Dn=E [oi]*t [tstop] ̂ 3/ (12* (1-nu [si] ̂ 2)) ,

I nu=nu [i, h=t[tetop(),Q[tt1))):
[ > aB[tt2: = aimplify(subs(Pch 1,Ftetop]=)),Oubz({rma}, tt))):

L > [tt2]:=evalf(n ub (( a=d[ch /2, b=d [pin] /2, Dn=N [ail *t [tetop]^3/ (12* (1-nu [ni]^2)),
nu=nu [il, h=t[tetop},a[tt2])):

Bottom Tether
Annular plate clamped at outer radius (r=a) and guided at inner radius (r=b)
with concentrated force applied upward at inner radius (r=b).

E > egn:mldiff (l/r*diff (r*diff (z(r),r),r) ,r)=Q(r) /Dol:
[ > Q (r) :=F [tebot] /(2*Pi*r) :
[ > Q1 (r) := (int (Q (r) /D , r)+C1) *r:
E > Q2 (r) := (int (Q1(r) ,r)+C2) /r:.
[ > wth (r) : =int (02 (r) , r) +r3:
[ > BC1:-=euba (r=a}, wth (r) ) =O:
[ > BC2:=soubs {{rua},diff (wtb(r),r))mO-:
[ > BC3:=ouba ({r=b}, dif f(wtb(r) ,r))=0:
[ > Set :msolve ({BC1, BC2, BC3), (Cl, C2, C3)) :
E > Wth:-=simplify (subs (But,wth (r))) :

E > k [tb] :=aimpli fy (suba ({F [tebot]=l}, subs ({r=b}, Wtb) )) :

[> k[tb]:-=ev&lf (xubz({&=d[ch]/2, b=d[pinl/2, Dgi=glsi]*tltebotl^3/(12*(l-nUlai]^,2)),
1nu=nu[sil},k~tb])):

[ > Sth:-=oinplify(6*(Ds*(diff {Wth,r$2)+nu/r*diff (Wth,r))) /(h^2)) :

E > a [tb] :=aimpli fy (suba{{F [tebotl=l}, suba {{r=a),Sth) ) ):
> a [tb]:-eva f (sub9 ({awd [ch] /2, bod [pia] /2, Ds= [Bi] * t[tebot] ̂ 3 /(12* (1-nu [ai] ^2)) ,

I nu=nu[ni], h=t~tebot1},5[tb])):

ESolve Equations
In the Simulif model, the inputs to the matrix block are Qn. Onet and xpis. It is desired to solve for each of the output variables in
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terms of these inputs. The output variables are VpxtpDVtpDVteDVpb xb,xte,FteFte-topFt -botSttStbFpPchFnet. Once
solved, each of the coefficients is assigned to the proper location in the matrix.
All the matrix coefficients are then fed to matlab matrix file, which is then called by a matlab preparation file to run the Simulink
model.
> Solutions:=solve({EQN1,EQN2,EQN3, EQN4,EQN5,EQN6,EQN7,QN8S,EQN9,EQN10,EQN11,EQN12,EQN13

,NQN14, EQN15},{Vtp] ,x[tp] ,DV[tp] ,DV[te] ,DV[pbj ,x[b] ,x[te] ,F[te] ,F[tetop] ,F[tebot] ,Str[

tt],Str[tb],F[p],P[chlF[net]}):
F > A11:=evalf(subs({Q[p]=1,Q[net]=,x[pis]=o),subs(Solutiona,V[p]))):

F > k12:.evalf(subs((Q[p]-0,Q[net]m1,x[pia]=0),subs(BolutionB,V[p1))):
F > A13:=evalf(subs((Q[p]=O,Q[net]=,x[pia]1},ub(SolutionV [p]))):

[ > A21:=evalf(subs((Q[p]=1,Q[net]=o,x[pi]=O),subs(Solutiona,x[tpl))):
F > A22:=evalf(subs({Q[p]=O,Q [net=l,x[pis=O},subs(olutions,x[tpl))):
F > A23:=evalf(subs((Q[p]=O,Q[net]=O,x[pial=1),ubs(SolutionB,x[tp))):
F > A31:=evalf(suba((Q[p]=1,o[net]mO,x[pis]-0),suba (8olutiona ,DV[tp]))):

F > A32:=evalf(suba((Q[p]=O,Q[net]s1,x[pia]=O), subs(olutions,DV[tp]))):
E > A33:=evalf(muba((Q[p]=,Q[net]=,x[pia]=1},subs(olutiona,DV[tp]))):
F > A41:=evalf(suba({Qlp]=1,Q[net]=,x[pie]=O},aubs(Solutions,DV[te]))) :

F > A42:=evalf(subs({Q[p]=,Q[net]=1,x[pie]=O},aubs(Solutiona,DV[te]))):
F > A43:-evalf(subs({Q[p]=O,Q[net]=Ox[pislml), subs(Solutions,DV[te]))) :

F > A51:=evalf(subs((Q[p]=1,Q[net]=O,x[pis]=O},subs(Solutiona,DV[pb))):
F > A52:-evalf(uuba{{Q[p]-O,Q[net -1,x[pi]-O},aub(olutiona,DV[pbl))):
F > A53:=evalf(suba(fQ[p]=O,Q[net]=O,x[pia]=1),sub(olutions,DV[pb))):
F > A61:mevalf(suba((Q[p]l1,Q[net]=O,x[pi]=}O),subs(olutions,x[b))):
F > A62:=evalf(subs({Q[p]=O,Q[net]=1,x[pial=O),subs(Solutiona,x[b]))):
F > A63:=evalf(sub({Q[p]=O,Q[net]=O,x[pial=1}aubs(Solution,x[b]))):
E > A71:=evalf(suba((Q[p]=1,Q[net]=O,x[pis]=O),subs(Solutiona,x[te))):
F > A72:=evalf(subs({Q[p]-O,Q[net]=1,x[pis]=O),subs(olutionn,x[te))):
F > A73:=evalf(subs({Q[p]=O,Q[net]=O,x[pislul),subs(olutions,x[te]))):
F > A81:=evalf(subs({Q[p]=1,Q[net]=O,x[pis]=O},subs(Solutions,F[te]))):
F > A82:-=evalf(suba((Q[p]=O,Q[net]=1,x[pis]=}O), uba(Solutiona,F[te]))):
F > kA3:=evalf(suba ((Q[p]=O,Q[net]=O,x[pi]=1}asub (olution,F[te)))):
F > A91:mevalf(ubs ((Q[p]m1,Q[net]=O,x[pis]0O},ubs(SolutionzF[tetop]))):
F > A92:=evalf(suba ((Q[p]=O,Q[net]=1,x[pia]=O),aub(golutions,F[tetop))):
F > A93:=rvalf(suba({Q[p]=O,Q net]=,xpisl=1},aubs(Solution,F[tetop]))) :

F > A1O1:evalf(sub({Q[p-1,[net]-O,x[pi]=O},subs(olutions,F[tebot])))):
F > A102:=evalf(suba({Q[p]=O,Q[net=1,x[pi]=O), tub(Solution,F[tebotj))):
F > A103:mevalf(subs({Q[p]-.,Q [net]bO,x[pis]1},Subs(Solutions,F[tebot))):
F > k111:=evalf(subs({Q[p]=1,Q[net]=O,x[pis]=O},subs(Solutions,tr[tt))):
F > kl12:=evalf(suba({Q[p]=,Q[netl=,x[pis]=O},ubs(Solutionn,Str[tt]))) :

F > k113:-=evalf(suba({Q[p]=O,Q[net]=O,x[pia]=1},suba(solutions,str[tt))) :
F > A121:evalf(sub({[p=1,Q[net]=O,x[pia]-0},ubs(olution,tr[tb]))):

F > A122:=evalf(suba({Q[p]=,Q[net]=,xtpis]=),subs(olution,tr[tb]))) :

F > A123:=evalf(subs({Q[p]=D,Q[net]=O,x[pi]=1}),sub(Solutiona,Str[tb]))):
F > A131=evalf(suba({Q[p=1,Q[net]=O,x[pi]=O,ubs(Solutiona,P[p))) :

F > A132:-evalf(subsa({Q[pJ=0,O[netl1,x[pia]=O},subs(SolutionF[p))):
F > A133:=evalf(subs({Q[p]=OQ[net]=O,x[pil=1},suba(Solution,F[pl))):
F > A141:=evalf(suba({Q[p]=1,Q[net]=O,x[pis]=O},suba(Solution,P[ch] ))):
F > k142:=evalf(suba({Q[p]=O,Q[net]m1,x[pis]=O},subS(Solution,P[Ch]))):
F > A143:=evalf(suba({Q[p]=OQ[net]=O,x[pin]=l),aubs(olutiona,P[ch))) :
F > A151:-evalf(subs({Q[p]m1,Q[net]-O,x[pi]O0},subs(olutiona,F[netl))) :

F > A152:=evalf(subs({Q[p]=,Q[net=1,x[pia]=O},ubs(Solution,F[netj))):
F > A153=evalf(subs({Q[p]=O,Q[net]=O,x[pia]=1},ubs(Solution,F[neti))):

Generation of output matrix to Matlab fiej Output matrix coefficiente values to a file which Matlab/Simulink can read.
F > interface(echo=O);
F > writeto('ThesisSiwatrix.m');
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printf ('A1

printf(-A12

priritf(-A13

printf UA21

printf(-A22

printf ('A23

printf(-A31

printf (A.32

printf (A33

printf (A41

printf (-A42

printf(-A43

prirxtf(-AS1

printf(VAS2

printf(-AS3

printf(UAg1

printf UA62

printf (A63

printf(-A71

printf ('A72

printf(-A73

printf('A81

printf(-A82

printf ('A83

printf (A91

printf(-A92

printf(UA93

printf UA1O1

printf(UA102

printf(UA103

printf ('A11

printf ('A112

priutf(UA113

printf ('A12

printf(UA122

printf(UA123

printf (-A31

printf ('A32

printf(UA133

printf(UA14l

printf (-A42

printf (A143

printf (-A11

printf(UA152

printf(UA153

%+2. 08e;-,All);
%+2.08e;-,A12);

%+2.O8e;-,A13);

%+2.08e;-,A21);

%+2.08e;-,A22);

%+2.O8e;-,A23);

%-.2. 08e; ,A31);-
%+2.08e;',A32};

%+2.08e;-,A33);

%+2.O8e;V,A41);

%+2.08e;-,A42) ;
%+2.08e;-,A43),

%+2.08e;X-AS1);-

%+2.08e;-,A52);

%+2.08e;-,A53);

%+2.08e;',A6l);

%+2.O8e;-,A62);

%+2.O8e;-,A63);

%+2.08e; ',A71) ;

%+2.O8e;',A71);

%+2.08e;-,A73);

%+2.08e;',A91);

%+2.08e;-,A82);

%+2.O8e;',A83);

%+2. 08e; -A91) ;

*%+2.08e;-,A92) ;

*%+2.08e;-,A13);

%+2.08e;-,A111);

%+2.08e;',A112);

%+2.O8e;-',A113);

%i2.08e;-,All1);

%+2.08e;>,A122);

%+2.08e;-,Al23);

%+2.08e;-,A131);

%+2.08e;>,A132);

%+2.0Se;-,A133);

%+2.O8e;-,A141);

%+2.08e;',A42);

%+2.O8e;',Al43);

%+2.O8e;',A151);

%.2.08e;',A152);

%+2.08e;',A153);

printf(-Ap =%+2.0Se;-,evalf(A[p]));

printf('Apis= 1%+2.8ef,evalf(A~pin]));

printf (MDpia= %-i2.O8e; ,evalf (M[pia]));

writeto(terminal);
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