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Abstract
Chemical mechanical polishing (CMP) has become a necessary processing step in the

fabrication of copper interconnects. Copper CMP is recognized to suffer from pattern dependent
problems such as dishing and erosion, which cause increased line resistance and non-uniformity
within the die. The non-uniformity on one metal level can lead to cumulative non-uniformity on
higher metal levels, leading to potential integration and manufacturing problems. Predictive
pattern dependent models of copper CMP processes are therefore highly desirable for predicting
dishing and erosion on random layouts, assessing the effectiveness of dummy fills in minimizing
within-die non-uniformity, aiding in the generation of smart interconnect design rules, and
identifying potential bulk copper clearing problems in multi-level metallization designs.

In this thesis, the first predictive semi-physical chip-scale pattern dependent model for
copper CMP processes is developed. A comprehensive model calibration methodology for any
multi-step copper CMP process is also developed. The model takes into account the initial long
range electroplated topography, the effective pattern density, and the initial local step heights
within the arrays. The model also accounts for the temporal evolution of the bulk copper thickness
during CMP, the temporal evolution of dishing and erosion, and the layout dependencies of
dishing and erosion. A three step conventional copper CMP process experiment and a single step
abrasive-free copper CMP process experiment are performed to test the accuracy of the model and
the calibration methodology. The results show that the model predicts the trends in the
experimental data accurately, and fits the data to within acceptable errors.

The model and the calibration methodology are integrated with an empirical pattern
dependent electroplating model and calibration methodology, to form a chip-scale copper
electroplating and CMP simulator. Once the models that form the simulator are calibrated for a
given copper CMP process, and a given copper electroplating process, the simulator can be used
to: (1) predict dishing and erosion across an entire chip, for a random layout; (2) assess the
effectiveness of dummy fills in minimizing within-die non-uniformity; (3) identify bulk copper
clearing problems in multi-level metallization designs; and (4) aid in the generation of smart
interconnect design rules. Preliminary experimental results show that the simulator predicts
dishing and erosion across an entire chip reasonably well, for a random layout.

Thesis Supervisor: Duane S. Boning
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

As critical dimensions shrink aggressively into the deep submicron regime, interconnect

delay, reliability, and manufacturability are becoming major issues in ultra large-scale integrated

circuit (ULSI) design and fabrication. Aluminum has been the metal of choice for interconnects

for more than three decades, while silicon dioxide has been the inter-level dielectric (ILD) of

choice in multi-level interconnect systems. The inherent high resistivity of aluminum and the high

permittivity of silicon dioxide cause very high interconnect delay in the deep submicron regime,

as illustrated in figure 1.1 [1]. In addition, aluminum has a low electromigration resistance, and

poses a difficult etching problem in the deep submicron regime. In an effort to reduce interconnect

delay, and improve interconnect reliability, the semiconductor industry is replacing aluminum

with copper, and aggressively looking for a lower permittivity material to replace silicon dioxide.

Copper has a much lower electrical resistivity and a higher electromigration resistance compared

to aluminum [1].

Unlike aluminum, copper is difficult to pattern with a subtractive RIE process. Instead,

copper requires a damascene process, which can either be single or dual. In a single damascene

process, ILD is deposited and patterned to define trenches where the copper lines or copper vias

will lie. A very thin barrier layer (Ta, TaN, Ti, or TiN) is then deposited typically by PVD,

followed by the deposition of a thin seed layer of copper by PVD. After the deposition of the seed

layer, a thicker copper film is deposited by electroplating. The barrier layer prevents the copper

film from diffusing into the dielectric and the silicon substrate, and it also serves as an adhesive
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for the copper film. The thin seed layer also serves as an electrically conducting surface for

electroplating to be carried out. Ultimately, chemical mechanical polishing (CMP) is used to

remove the bulk or overburden copper, and the barrier on top of the ILD in the spaces between the

copper lines. The process flow for a single damascene process is illustrated in figure 1.2. The main

difference between single damascene and dual damascene processes is that in dual damascene

processes, interconnect lines on a particular level and the vias connecting them to lower level

interconnects are formed at the same time. Thus, the number of CMP steps performed in dual

damascene processes is less than that performed in single damascene processes.

2.5

a) 2 

CD interconnect delay (RC)
1.5

- 1 Intrinsic gate delay

CD0.5

0

0 0.5 1 1.5 2 2.5 3 3.5

Feature Size (pm)

Figure 1.1: Delay versus feature size (from [1])

Copper CMP is known to suffer from pattern dependent problems such as dishing and

erosion, which lead to increased line resistance and within die non-uniformity. Dishing and

erosion on a given metal level could lead to cumulative non-uniformity on higher metal levels,

which might cause integration, yield, and manufacturing problems. There is an urgent need for an

accurate and efficient predictive chip-scale model of dishing and erosion for copper CMP

processes. In this thesis, such a model is developed, and it is used to form the backbone of a chip-

scale copper CMP simulator.
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This chapter briefly discusses pattern dependent issues in copper CMP. Section 1.1 gives a

brief description of the CMP process in general, and section 1.2 deals with copper CMP

processes. Section 1.3 discusses the thesis goals, and section 1.4 describes the thesis organization.

Barrier Copper

& ILD

Si 3N4  Si
Substrate

Figure 1.2: Single damascene process flow

1.1 Chemical Mechanical Polishing (CMP) Processes

CMP is a complex process with a large number of variables. In CMP a wafer is held face

down by a carrier and pressed into a platen that is covered with a polyurethane material known as

the pad. The platen and carrier move relative to each other, in a rotary, linear or orbital fashion,

with the motion type categorizing the tool (linear tools, orbital tools, and rotary tools). A slurry

containing a combination of chemicals, fluids, and abrasive particles is deposited on the pad

during polishing. Over time, the pad surface becomes glazed, resulting in a decrease in the polish

rate. To minimize this effect during the effective lifetime of the pad, a diamond-tipped

conditioning head is often used to scratch the surface of the pad to expose a fresh pad surface

during polishing.

Rotary CMP tools are the most common in the industry. For such tools, the platen and

carrier are circular, and they both rotate in the same direction, but about different centers as shown

in figure 1.3. The axis of rotation of the carrier changes from time to time during the polishing.
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The Applied Materials Mirra-Mesa and the SpeedFam-IPEC 472 are examples of rotary tools

available in the market. Orbital and linear tools also exist, although they are less common. In

linear tools, the carrier rotates in the x-y plane, while the pad is setup like a belt that moves

linearly in the x-direction. The LAM Research Terres is an example of a linear tool, and a

simplistic version of it is illustrated in figure 1.5 [2].

Carrier Slurry Feed

WaferA10
Slurry

e - * Feed

Holder Platen

Polishing Pad

atn

(a) Side View (b) Top View

Figure 1.3: A sample rotary CMP tool

CMP is widely used for the planarization of inter-level dielectrics (notably silicon

dioxide), the planarization of bare silicon wafers, and in the formation of shallow trench isolation

(STI). It has also become a critical process in the formation of tungsten studs/vias, the formation

of copper interconnects, and in the polishing of other materials [1, 3]. Despite the increased use of

CMP in the semiconductor industry, the fundamental mechanisms involved in the process remain

a topic of much debate. Generally, the chemicals in the slurry react with the work piece to form a

modified surface film, which is abraded by the pad and the abrasive particles. The abraded or

dislocated portions of the work piece are either dissolved in the slurry, or swept away by its

turbulent motion [1, 4, 5]. What is clear, however, is that the mechanical action exerted the pad

(directly or indirectly) largely determines the evolution of pattern features during polishing.
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Figure 1.4: A simplified version of the Lam Teres (from [2])

1.2 Copper CMP Processes and Issues

Copper CMP has been described as a heterogeneous CMP process because it involves the

simultaneous polishing of multiple materials: copper, dielectric and barrier [6]. In this sense, it is

similar to other metal CMP processes and STI CMP processes, but very different from and more

complex than dielectric CMP processes which only involve the polishing of one material. In

copper CMP, we want to clear the overburden copper and remove the barrier on top of the

dielectric spaces separating the copper interconnect lines. This is essential to avoid shorts between

adjacent interconnect lines. The heterogeneous nature of the process necessitates using a

consumable set and choosing polish process parameter settings that achieve specific relative

removal rates for the different materials.

Copper CMP is known to suffer from pattern dependent problems such as dishing and

erosion, as illustrated in figure 1.5. Dishing is defined as the difference between the height of the

copper in the trench, and that of the dielectric in the spaces surrounding the copper trench in

question. If the height of the copper in the trench is lower than the height of the neighboring
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dielectric, then dishing is positive. When dishing is negative, the copper interconnect sticks-up

above the neighboring dielectric level. Erosion on the other hand, is defined as the difference

between the dielectric thickness before CMP and that after CMP. Hence, it is the loss in dielectric

thickness during CMP, and it is always positive. The sum of dishing and erosion gives the copper

Dishing Erosion re-CMP
dielectric level

. ..MUMMM MMU-MM r nMM Mamn mo

Dielectric CopperK

Figure 1.5: Definition of dishing and erosion

Recess

Field region Field region

Dielectric Copper

Figure 1.6: Definition of recess

thickness loss (also known as the copper thinning) during CMP. Note that in the published

literature, erosion is sometimes referenced to the height of a neighboring field dielectric region,

and a separate "field dielectric loss" parameter is then specified. In this thesis, a single dielectric
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erosion term is used to represent dielectric loss everywhere, as this is found to be more amenable

to modeling use.

Recess is another term that is often used to describe pattern dependent problems in copper

and other metal CMP processes. The recess of a copper line is the same as the dishing of that line.

The recess of the dielectric in an array of lines is the difference between the dielectric height (at

the location of interest) and the height of the dielectric field surrounding the array. In this thesis,

recess represents the height of the field surrounding an array minus the height of the location of

interest within the array of lines, as illustrated in figure 1.6.

Dishing and erosion depend on layout patterns (line width, line space, and pattern

density), the polish process settings (down force, table speed, and slurry flow rate), the

consumable set used, the overpolish time, and the incoming electroplated topography [7-11]. The

incoming electroplated topography in turn depends on the layout patterns, thereby making the

dependency of dishing and erosion on layout patterns a complex one [12]. In addition, dishing and

erosion on metal level one could lead to increased dishing, erosion and surface non-uniformity on

metal level two as illustrated in figure 1.7 [13]. This effect could worsen on higher metal levels

and could lead to uncleared copper residue, shorts between adjacent interconnect lines, and

photolithographic problems. Thus, it has the potential of causing yield, integration and

manufacturing problems. To minimize the problem of cumulative non-uniformity, the inter-level

dielectric is often planarized using CMP, before any new interconnect level is defined. This

increases the number of processing steps and the cost of the process.

In an effort to minimize dishing, erosion, and within die non-uniformity, while

maintaining a relatively high throughput in copper CMP, copper CMP processes have evolved

from single step processes to multi-step processes. In a single step process, a single slurry, pad,
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and a single set of polish process parameters (down force, table speed, and slurry flow rate) are

used until the overburden copper and the unwanted barrier are cleared. With such a process, it is

difficult if not impossible to minimize dishing and erosion, while maintaining a high throughput.

Minimizing dishing and erosion for such a process requires the selectivity of the removal rates

(copper, barrier, and dielectric rates) to be ideally 1:1:1, and for the absolute removal rate (which

is then approximately equal for the three materials) to be reasonably low. The 1:1:1 selectivity

Dielectric

Metal 1

Dielectric Copper

Figure 1.7: Cumulative non-uniformity effect

ensures that dishing is equal to zero (assuming that the step heights in the overburden copper are

eliminated before the overburden copper is completely cleared), while the low material removal

rate ensures that the erosion is kept to a minimum during overpolishing. Overpolishing is

unavoidable because of pattern (density, line width and line space) differences across the die, and

deposited copper thickness and CMP process non-uniformities across the wafer.

High throughput, on the other hand, requires a high copper removal rate in order to

remove the overburden copper quickly, and a reasonably high barrier removal rate in order to clear

the barrier in the spaces between the interconnect lines quickly. Hence, the requirements for high

throughput and those for minimum dishing and erosion are in conflict. Single step processes that
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were typically used in the early days of copper CMP had reasonably high copper removal rates

(5000 - 8000 A/min), with barrier and dielectric rates in the range 100 - 1000 k/min [6]. Such

processes led to high erosion and dishing when significant overpolishing was required to clear the

overburden copper and the unwanted barrier across the entire wafer.

Multi-step copper CMP processes use different consumable sets and different polish

process parameter settings at different stages during the polishing process. End-point detection is

vital to the successful execution of such processes. In a two step polish process, a high copper

removal rate process is used to clear the copper overburden in the first step, while the second step

is geared towards removing the unwanted barrier across the wafer. A low selectivity process with

moderate removal rates (500 - 1000 A/min) is used in the second step. The end-point detection

algorithm set by the CMP engineers dictates when to switch from step one to step two. Typically

this occurs when sufficient barrier material has been exposed across the wafer. Non-uniform

copper thickness deposition across the wafer, non-uniform copper removal rates across the wafer,

and within die pattern differences lead to the need for overpolishing in the first step. This

translates to substantial dishing and erosion. The dishing in the first step could be reduced during

the second polish step, if a slurry that removes dielectric faster than copper is used in the second

step. The disadvantage of this dishing reduction mechanism is that it might lead to negative

dishing (i.e. the copper lines sticking above the dielectric level) for very fine features, and this

could cause potential yield and integration problems.

The inability of a two-step process to minimize dishing and erosion while maintaining a

high throughput, has led to the adoption of a three step and sometimes (although rarely) a four

step polish process. Three step or four step processes require a CMP tool with three or more

platens and sophisticated end-point detection for high throughput and minimum defects. In a three
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step polish process, the first step uses a highly selective copper removal rate process with a high

copper removal rate (typically above 8000 Amin) to remove a large amount of the overburden

copper without completely clearing it. The aim is to remove most of the overburden copper

quickly, while leaving the remaining overburden film highly planarized. An end-point detection

technique that directly or indirectly measures the copper thickness remaining on the wafer during

polishing is needed in the first step. This step is typically stopped when a particular thickness of

copper overburden remains on average across the wafer.

The second step is intended to clear all overburden copper residue across the wafer, while

achieving low dishing and erosion. In this step, a low removal rate copper process with relatively

low removal rate selectivity compared to the step one process is used. This step typically uses the

same type of slurry and the same type of pad as those used in step one. However, the polish

process settings (down force, table speed, and slurry flow rate) are different from those used in

step one. It is commonly known as a soft landing step because of the low down force used. In

addition, the end-point technique used in this step is different from that used in step one; rather

than stop at a target copper thickness, this end-point is typically based on optical reflectance to

detect clearing on the wafer surface.

In step three, a different polish process setting, a different type of slurry, and possibly a

different type of pad is used. The process is typically a low selectivity process, with low removal

rates for copper, barrier and dielectric. No end-point detection is required in this step. Instead a

fixed time polish is done with the time determined based on knowledge of the barrier removal rate

and the non-uniformity of the process in general. Negative dishing often occurs for fine features

after this step because the dielectric removal rate may be slightly higher than the copper removal

rate.
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Apart from dishing and erosion, other issues in copper CMP (not necessarily pattern

dependent) include corrosion, scratching and particulate contamination. Scratching can be caused

by large abrasives in the slurry or some of the diamond particles that come off the conditioning

wheel. To minimize scratching caused by large abrasive particles, filters are used to remove such

particles from the slurry. Copper corrosion is a chemical phenomena, and is primarily due to the

reaction of the chemicals in the slurry with the copper metal, or reactions of chemicals in the

cleaning solution with the copper metal during CMP clean [1]. To minimize corrosion, the copper

metal should be passivated. Adding BTA to the slurry is one way of achieving this [1]. Particulate

contamination occurs when particles remain on the wafer after CMP, and can lead to yield and

reliability problems.

In an effort to minimize dishing, erosion, scratches from abrasive particles, and other

defects in copper CMP, CMP consumable vendors in collaboration with tool companies and IC

manufacturers are formulating an abrasive-free slurry that can be used with conventional

polishing pads, in what has been termed abrasive-free polishing or AFP. These slurries do not

necessarily exhibit the same polishing relationships as conventional CMP slurries with abrasives.

For instance, the Hitachi C-430 exhibits a non-linear relationship between copper removal rate

and polishing pressure [14 - 16]. Preliminary experiments with this slurry show great promise in

significantly minimizing dishing and erosion, while achieving a copper removal rate as high as

6000 A/min [14 - 16].

1.3 Thesis Goals

To fully get the benefits of replacing aluminum with copper, dishing and erosion must be

minimized. Minimizing dishing and erosion requires an understanding of the layout and process

29



dependencies involved in copper CMP, and the ability to accurately predict the dishing and

erosion first across an entire die, and ultimately across an entire wafer, for any given process. In

this thesis, a semi-physical chip-scale pattern dependent modeling and characterization

methodology for copper CMP processes is developed. Specifically, the primary goals of the thesis

are as follows:

1. Identify the layout and process parameter dependencies in copper CMP, through experimenta-

tion with specially designed test masks.

2. Use experimental data and physical principles to develop a semi-physical model that captures

the pattern (topography) effects. The model should predict the evolution of the overburden

copper removal and the dishing and erosion for multi-step copper CMP processes.

3. Develop a methodology for rapidly calibrating the model for multi-step copper CMP pro-

cesses.

4. Develop a general chip-level simulator for copper CMP processes based on the model equa-

tions. The simulator should predict dishing, erosion, and copper overburden thickness evolu-

tion for random layouts.

1.4 Thesis Organization

The thesis is divided into eight chapters. Chapter 2 shows the framework of the modeling

and characterization methodology used in this work. First, some of the input and output

parameters of a typical copper CMP process are shown to illustrate the complexity of modeling

the process. Second, a literature review of currently available copper CMP models is presented.

This is followed by a discussion of our approach to modeling and characterizing pattern

dependencies in copper CMP processes.
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Chapter 3 describes the density-step-height model for single step Prestonian copper CMP

processes. First, the model is formulated, and the model calibration methodology is described. A

design of experiment is performed and the model calibration methodology is applied to see how

well the model fits the experimental data. This is followed by a discussion of some of the

limitations of the model, and suggestions for rectifying them.

In chapter 4, the framework of the density-step-height model is applied to non-Prestonian

copper CMP processes. Specifically, a density-step-height model is formulated for single step

abrasive-free copper CMP processes, and tested against experimental data.

Single step copper CMP processes are now rare, and have been replaced with multi-step

copper CMP processes. A multi-step copper CMP process uses different consumable sets (pads

and slurries) and different polish process settings (down force, table speed, and slurry flow rate) in

different phases of the copper CMP process. The density-step-height modeling framework is

applied to multi-step copper CMP processes in chapter 5. An extensive three step copper CMP

process experiment is conducted, and used to test the accuracy of the formulated multi-step

copper CMP model.

Current bottom-up fill electroplating techniques introduce long range height variation that

the density-step-height model fails to take into account. By failing to take this effect into account,

the density-step-height model incorrectly assumes that the polishing pad initially contacts all up-

areas with non-zero pressure. To rectify this, an integrated contact mechanics and density-step-

height model is formulated in chapter 6. Contact mechanics takes into account any long range

wafer surface height variation, in computing the polish pressure at all points of interest within the

die. Once the pressure is computed, the density-step-height formulation is used to compute the

removal rates in the local up-areas and down-areas.
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In chapter 7, the integrated contact mechanics and density-step-height model is

incorporated into a chip-scale simulator, in conjunction with an empirical pattern dependent

copper electroplating model. The simulator is used to predict the dishing and erosion performance

of a calibrated copper CMP process on random layouts.

The thesis concludes in chapter 8 with a summary of the contributions, and an

identification of future work.
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Chapter 2

Framework for Modeling Pattern Dependen-
cies in Copper CMP Processes

Copper CMP is a complex process with a large number of input and output variables,

some of which are illustrated in figure 2.1. The development of a comprehensive model of this

process is still several years away. In this chapter, a literature review of the currently available

copper CMP models is presented in section 2.1, followed by a description of the framework of the

modeling and characterization methodology developed in this thesis, in section 2.2. In section 2.3,

Inputs
Wafer

Pattern geometry
Wafer size, curvature
Material hardness

pH Slurry
Abrasive size, shape,
concentration, hardness
Oxidizers

Pad

Microstructure
Compressibility
Stiffness, Conditioning

Process Settings
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Slurry flow rate
Polish time, Temperature

Outputs

Blanket wafer
material removal
rate, Selectivity
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Particles,
Corrosion
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r
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on-

Figure 2.1: Copper CMP input and output variables
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the test masks used in the model development are described, and in section 2.4 the metrology used

in collecting experimental data is described. Finally, in section 2.5, the framework for

characterization and prediction of dishing and erosion on random layouts is described briefly.

2.1 Literature Review of Copper CMP Modeling

There has been an explosion in the number of published papers on CMP modeling, in the

last few years [17-19]. Only a few of these models deal with pattern dependent issues in copper

CMP processes, and hardly any of them can be considered an efficient chip-scale model. In this

section, the key copper CMP models that have been proposed and their limitations are discussed.

All the models proposed for copper CMP are based on Preston's glass polishing model

[20]. According to that model, the polish rate at any position on the wafer is given by equation

2.1, where -- is the rate of change in material thickness over time At, K the Preston coefficient,

L the applied load, A the contact area, and s the relative distance travelled between the pad and the

wafer position in question. Quite often, equation 2.1 is written as in equation 2.2, where RR is the

material removal rate, K the Preston coefficient, P the polish pressure, and V the relative speed

A H _ )A
A = K At) (Equation 2.1)

between the platen and the carrier. The Preston model assumes mechanical abrasion although

chemical effect is known to aid polishing [20]. The chemical contributions are lumped in

Preston's coefficient.

RR = KPV (Equation 2.2)

Yang has developed a semi-physical model for copper CMP, based on Preston's equation
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[21]. The model expresses the pressure in Preston's equation in terms of the compression distance

of the pad, pad conformation, pad thickness, and pad elasticity. By assuming that the pad expands

instantaneously as it moves from a high area to a low area, and that the relative change of

compression distance is directly proportional to the relative change of the feature size, Yang

derives the analytical expressions given in equations 2.3 and 2.4 for step-height and copper

dishing. In these equations, hS is the step-height, hso the initial step-height, w the line width, w0

the effective minimum line width (which he assumes to be 0.01 mm), P the applied pressure, H

the thickness of the pad, E the elasticity of the pad, V the linear velocity of the pad relative to the

-KCuEVt -KCuEV

H PH (wH
hs =h e +- C-lny -1 1 - e (Equation 2.3)

o so e jWO

-K CuEVt

hD = S )PH In - e (Equation 2.4)SE 9)

wafer, S the removal rate selectivity of copper to the barrier material, ( the pad conformity, Kcu

the Preston coefficient for copper, tj the elapsed time after the copper end-point, t the polish time,

and hD the copper dishing.

By further assuming that the copper is fully recessed below the ILD surface during the

overpolish step, Yang derives the expression given in equation 2.5, for ILD erosion. The variable

1] is the pattern area coefficient (defined as the ratio of effective patterned area to measured

patterned area), p the pattern density (defined as the ratio of copper line width to the pitch), W the
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-K EVt

hE --,n I - e H(1 - i p) (Equation 2.5)
E F W

width of the pattern array, and all the other parameters are as defined in equations 2.2 and 2.3.

The above dishing and step height equations do not have a pattern density or line space

dependence. It has been found experimentally that dishing depends on both line width and pattern

density or line space [7, 8]. Second, Yang does not explicitly show how to compute the time it

takes to clear the copper overburden and the barrier film. Third, his assumption that the copper is

fully recessed below the ILD during overpolish makes the model restrictive. Furthermore, he

mentions that step height plays a role in determining when a pad touches a low area. However, the

model equations do not account for this dependency. It has been shown experimentally that in

cases where the step height is greater than a critical value, the step-height decreases linearly with

time, and not exponentially with time as Yang's model suggests [22 - 23]. Finally, it is not clear

how Yang's model can be applied to an entire chip with an arbitrary layout.

Chekina et al., view the CMP problem as a wear-contact problem similar to those found in

contact mechanics [24]. Although they do not specifically develop a model for copper CMP, the

fact that they consider the case where two different materials are polished simultaneously, as well

as the case where only one material is polished, make their model applicable to copper CMP. The

model treats the pad as a massive elastic body whose surface is flat, and the wafer as a rigid body.

Using contact mechanics, the model assumes the relationship between the displacement of the

pad surface w and the contact pressure p, given in equation 2.6, where o is the contact area, v the

poisson ratio of the pad, and E the pad elasticity. In addition, the model assumes that in steady
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7zE O ' 2 2 (Equation 2.6)

state the pressure relation over the one-dimensional region [0,1] is given by equation 2.7, where pi

is the average pressure in region 1 which spans [O,a], P2 the pressure in region 2 which spans [a,l],

p the average pressure, and 1 is the pitch.

pla + p2 (1 - a) = pI (Equation 2.7)

Using the above equations and Preston's equation, Chekina and Keer derive a formula

which shows a linear relationship between steady-state dishing and pitch. Such a relationship is

not supported by experimental data for conventional copper CMP processes [7, 8]. Furthermore, it

is difficult to envision how the model can be efficiently applied to an entire chip.

Elbel et al., have developed a model for tungsten CMP, and they argue that it is applicable

to all metal CMP processes [25]. In a situation where the oxide and tungsten are being polished

simultaneously, the model expresses the pressure on the oxide po0 and that on the tungsten pw as

given in equations 2.7 and 2.8, where p is the applied pressure, c1 the pattern density, d the metal

dishing, and dmax the maximum dishing. Using Preston's equation to relate material removal rate

to relative speed and pressure, together with equations 2.7 and 2.8, Elbel derives dishing and

erosion equations in terms of pattern density, maximum dishing, and material removal rates.

(Equation 2.8)
ox I -(D

ddp (I - Wdd<dna
PW= ma (Equation 2.9)

0 d = dmax
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One of the assumptions that Elbel makes is that the linear relationship between the metal

pressure and the dishing is only applicable when the dishing is close to the maximum dishing.

This makes the model restrictive. In addition, if the metal pressure decreases with dishing, the

oxide pressure should increase with dishing, if the forces are to be conserved. The idea of force

conservation is key to the model developed in this thesis. Furthermore, Elbel states that the

maximum dishing is a function of line width only, and attempts to use a spring model to establish

the relationship between the two. It is true that the maximum dishing depends on line width, but it

should also depend on line space or pattern density. Finally, Elbel does not explicitly show how to

compute the time it takes to clear the bulk tungsten and the barrier.

Yoshida has developed a three-dimensional chip-scale CMP model for single material

polishing, using contact mechanics, Preston's equation, and a boundary element methodology

[26]. The model treats the pad as an isotropic elastic body, and assumes the same relationship

between the pad displacement and the concentrated load as given in equation 2.5. By defining a

reference plane, and measuring all quantities relative to it, Yoshida argues that when the pressure

is known, the displacement is unknown and vice-versa. Using the known quantities (pressure or

displacements at different locations on the chip) and the necessary boundary conditions, a

methodology for solving for the pad displacements and the pressure at all discretized points on the

chip is proposed. This leads to a prediction of the evolution of the wafer surface during polishing.

The model becomes computationally inefficient if it is used to capture the feature-scale

dependencies on the chip, something that is necessary for chip-scale copper CMP modeling.

Second, it lumps the compression of a pad and the long-range pad bending behavior into one

constant, thereby making the constant difficult to interpret physically. The model is best suited for

capturing long range pressure distribution across the entire chip. In this thesis, some of the ideas
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in Yoshida's model are used, but appropriate engineering approximations are made, and fast

fourier transforms are used to gain computational efficiency.

Vlassak has developed a contact mechanics based model of dishing and erosion in copper

CMP, dielectric CMP, and STI CMP [27]. He assumes that the local heights of the pad asperities

are exponentially distributed, and that the force transmitted by each asperity is given by Hertz's

formula [28]. By assuming that the pressure between the wafer and the pad is due to pad asperities

in contact with the wafer, and using the plain-strain deformation equation to relate pad

displacement and wafer pressure (equation 2.5), Vlassak solves for the pressure distribution and

the pad displacement numerically. With the pressure distribution known, Preston's equation is

used to compute the material removal rate. This leads to the computation of dishing and erosion

for arrays of lines with different densities and line widths. The effect of pad stiffness on dishing

and erosion is also simulated for an array of lines.

Vlassak's model recognizes that pad compression, and long range pad deformation both

play key roles in determining the polish pressure. However, Vlassak fails to mention how to

compute the time it takes to clear the bulk copper and the barrier film. In addition, it is difficult to

envision how to efficiently implement his model for an entire chip. Attempting to numerically

solve for the pressure and pad displacements for an entire chip on a time stepped basis can be

computationally intensive, especially if the discretization is fine enough to capture all features.

Runnels has developed a two-dimensional feature-scale erosion model for CMP processes

[29, 30]. He models the pad as a network of vertical springs with the same spring constant, and

horizontal springs with another spring constant. The springs are intended to capture the elastic

behavior of the pad, with the vertical springs accounting for the pad compression, and the

horizontal spring accounting for the long range bending or deformation of the pad. The
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connection of the vertical and horizontal springs to form a network of springs couples the pad's

compression with its long range bending or deformation.

In Runnels' model, pattern cross-section profiles are discretized using line segments

connected at points called nodes. The pad is also discretized into the same number of nodes.

Hooke's law is used to formulate a system of linear equations for the force exerted at each node.

This system of equations is solved by Gaussian elimination. After solving for the forces at each

node, Preston's equation is then used to compute the erosion rate at each node. A three-

dimensional version of the model has also been developed for chip-scale simulations [31]. To

fully capture the features on the entire die or a cross-section of the die, the discretization size must

be very small. This raises the issues of computational efficiency and accuracy when the model is

applied to an entire chip. If the discretization size is small, the model will be computationally

intensive. If the discretization size is large, on the other hand, the model will be inaccurate.

In addition to the models discussed above, several others dealing with the simultaneous

polishing of two different materials have been proposed [32 - 34]. They are all either restrictive to

certain conditions or difficult to apply to an entire chip. Nevertheless, the ideas in these models

will serve as a starting point, in the effort to develop a semi-physical chip-scale model for copper

CMP processes, in this thesis.

2.2 Modeling and Characterization Framework

In copper CMP, the goal is to clear the bulk copper and the unwanted barrier film quickly,

while keeping dishing, erosion and defects to a minimum. During this process, three materials are

polished. First only copper is polished, followed by the polishing of copper and barrier film

simultaneously. Finally, copper, barrier, and dielectric are polished simultaneously. To model the
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process, three intrinsic stages of polish are identified: a bulk copper removal stage, a barrier

clearing stage, and an overpolish stage, as illustrated in figure 2.2. In the bulk copper removal

stage, only copper is being polished. In this stage, the evolution of the copper thickness across the

chip, and the time it takes to remove the bulk copper across the chip, are of interest. The time to

clear the bulk copper will vary across the die because of pattern differences and incoming

electroplated topography variation.

bulk
Stage 1 coperremoval

barrier
Stage 2 removal

over-
Stage 3 polish

Figure 2.2: Three intrinsic stages in copper CMP processes

In the barrier clearing stage, copper and the barrier are being polished simultaneously. In

this stage, the time it takes to clear the barrier, and the dishing that results when the barrier is just

cleared at any spatial position, are of interest. Due to polish process variation across the wafer,

deposited copper thickness variation across the wafer, and pattern differences across the die, by

the time the bulk copper and barrier film are cleared at one point on the die, they might have been

cleared already at another point on the die. Hence, the latter point on the die is overpolished.

Overpolishing is defined as any polishing that is done beyond the time it takes to clear the bulk

copper and the barrier film at the location of interest. During overpolishing, copper, barrier and

dielectric are polished simultaneously. It is during overpolishing that the dielectric is eroded. In
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addition, the dishing that might have started during the barrier clearing stage can worsen during

overpolishing. This overpolishing is identified as the third intrinsic stage in copper CMP

processes. The dishing and erosion that occur during this stage, are of interest. In computing the

dishing during the overpolish stage, the dishing that occurs during the barrier clearing stage is

used as an initial condition. It is important to note that the term overpolishing is used loosely in

the CMP literature, and in the CMP industry. In the CMP industry, overpolishing means polishing

beyond the end-point time.

The evolution of the bulk copper thickness, the time it takes to clear the bulk copper, the

time it takes to clear the barrier, dishing and erosion, all depend on the patterns on the die, and the

incoming electroplated topography. In an attempt to identify the pattern dependencies of these

quantities, several masks with large ranges of line widths, line spaces, and pattern densities are

designed. These masks are used to fabricate patterned wafers, and the wafers used to conduct

polishing experiments. The data from these experiments and the known physics of the process are

then used to formulate a semi-physical model that explicitly expresses several variables as

functions of pattern factors (line width, line space, and pattern density), and provides unknowns

that capture the effect of the polish process parameters.

2.3 Test Masks

To capture pattern dependencies in copper CMP, several test masks have been designed in

collaboration with SEMATECH and semiconductor IC manufacturers [35 - 37]. In this section,

each of these masks is briefly described.

2.3.1 MIT Cu Mask Version 1.2

This mask is a slight variation of the MIT-SEMATECH 931 mask [35]. It is a single level

mask of dimensions 20 mm by 20 mm, with electrical and physical structures. The mask contains
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arrays of lines, isolated lines, slotted pads, serpentines, combs, and other structures, as shown in

figure 2.3. The minimum feature size on it is 0.25 gm, with line widths in

Pitch array structures
I with isolated lines

(physically testable structures)

0 0

EE=

20 mm 20 mm

(a) (b)

Figure 2.3: MIT copper mask version 1.2: (a) Layout (b) Floor plan

the range 0.25 gm to 100 gm, line spaces in the range 0.25 jim to 100 pm, and array layout densi-

ties in the range 10% to 90%. The arrays of lines are divided into pitch structures and density

structures. The pitch structures are non-electrical structures, with a fixed layout density of 50%,

and an array size of 2 mm. The density structures are electrically testable structures with certain

lines within the array connected to form kelvin structures that are connected to bond pads. The

array size of these density structures is about 2.3 mm. The arrays of lines are separated by large

field regions to measure dishing, erosion, step heights and recess easily, and to minimize neigh-

boring array effects.

2.3.2 GA303 Mask

This is a three level mask of dimensions 19.2 mm by 19.2 mm, designed to capture pattern

dependencies mainly for sub-micron features. Levels one and three are metal levels while level

two is a via level. The layouts and floor plans for the two metal levels of the mask are illustrated in
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figures 2.4 and 2.5. Level one of the mask is divided into 64 squares, each of dimension 2.4 mm.

Most of these squares contain arrays of lines and isolated lines that have the same line width as

the lines in the arrays. Each array of lines contains several lines that are connected as kelvin

structures and connected to bond pads. In addition, a special feature is added to each array to

electrically test for shorts between adjacent
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Figure 2.4: Metal level one
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Figure 2.5: Metal level two of GA303: (a) Layout (b) Floor plan
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lines. A sample array of lines with the isolated line on metal level one is illustrated in figure 2.6.

The arrays have line widths and line spaces predominantly in the range of 0.18 Rm to 1 pm, with

a few in the range 1.5 gm to 15 pm. The layout pattern densities of these arrays range from 10%

to 97%. The mask is designed such that the arrays of lines are separated by reasonably large fields

regions to measure dishing, erosion, recess, and step-heights easily. The rest of the squares on the

first metal level contain via chains, capacitor plates, serpentines, combs, and two unpatterned

regions for measuring the erosion in large field areas.

The second level of this mask contains vias for the via chains and vias connecting the bond

pads on the first level to those on the third level. The third level has ten array structures, capacitor

plates, and mostly bond pads. These bond pads are electrically connected to the bond pads on

level one. The goal is to be able to measure resistances of lines on metal level one directly from

metal level two. The array structures on metal level two are intended to study the impact of the

amount of dishing and erosion on metal level one on the amount of dishing and erosion on metal

level two. A sample array on metal level two is shown in figure 2.7.

Isolated Array of lines
line

U UEN E NO Bond pads
m y M level oe of A

Figure 2.6: Sample array on metal level one of GA303 mask
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Figure 2.7: Sample array on metal level two of GA303 mask

2.3.3 MIT-SEMATECH 854 Mask

The information obtained from CMP experiments with the above two masks led to the

design of the MIT-SEMATECH 854 mask [36]. This mask is a three layer mask with two metal

levels, and its dimensions are 20 mm by 20 mm, as illustrated in figure 2.8. Metal level one

contains arrays of lines with line widths and line spaces in the range 0.18 gm to 100 jim, and

layout pattern density in the range 1% to 99%. In addition, metal level one also contains via

chains, capacitors, slotted structures, and SEM structures for determining the true line widths of

the lines. Metal level two contains arrays of lines with line width and line space of 0.5 lam,

capacitor plates, and via chains. The arrays on metal level two are laid out to thoroughly

investigate the impact of dishing and erosion on metal level one, on the dishing, erosion, and

within-die non-uniformity on metal level two. Almost all the arrays are electrical structures, i.e.,

certain lines within the arrays are kelvin structures connected to bond pads. The arrays are

isolated from each other by large field regions, to allow accurate surface profile measurements to

be taken, and to avoid neighboring array effects.
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Figure 2.8: MIT-SEMATECH 854 mask

2.3.4 SEMATECH-MIT 862 Mask

The main idea behind this mask is to study the effects of polish process parameters and

consumable sets on planarization during the bulk copper polishing stage [37]. In addition, it is

designed to investigate the impact of varying line length, varying line space within an array, and

varying line width within an array, on dishing and erosion in the overpolish stage. The mask is

illustrated in figure 2.9, and it contains square trenches with dimensions in the range 1 Rm to 8

mm, and arrays with line widths and line spaces in the range 1 Rm to 100 pm. In addition, the

lengths of some lines is varied from 1 Rm to 1 mm.

The key to using this mask is the arrangement of the structures on the wafer, which is

depicted in figure 2.10. The structures on the mask are repeated five times on the wafer, to obtain

the interaction between wafer level non-uniformity and planarization. In addition to the structures

on the mask, squares of dimensions in the range 10 mm to 25 mm are directly exposed on the

wafer without the use of a mask. These squares are at the same distance from the wafer center in
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order to avoid within wafer non-uniformity (WIWNU) bias.
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Figure 2.9: SEMATECH-MIT 862 mask

Figure 2.10: Wafer layout scheme for 862 mask

2.4 Metrology

Metrology is an important component of the overall CMP process. The ability to

accurately measure copper thickness, dielectric thickness, and surface profiles, is essential to the

development of a pattern dependent model for copper CMP processes. In this section, the
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different measurements used in the model development, and the measurement tools used to take

these measurements, are described.

2.4.1 Copper Thickness Measurements

To investigate the evolution of copper thickness during the bulk copper polishing stage,

copper thickness measurements on patterned wafers are needed. While measuring copper

thickness on blanket wafers can be easily accomplished with a four point probe, accurately

measuring copper thickness on a patterned wafer when the overburden copper is still on the wafer,

is not an easy task. Several companies are developing tools to accomplish this task.

The iScan which is a product of Applied Materials Inc., measures copper thickness indi-

rectly by establishing and measuring eddy currents while polishing of the overburden copper is in

progress [38]. It enables effective end-pointing to be done during the bulk copper stage, and it also

makes possible the measurement of the instantaneous copper removal rate on blanket copper

wafers while polishing is in progress [38]. The MetaPulse 200X from Rudolph, and the Impulse

300 [39] from Philips, can measure copper thicknesses ex-situ, in large field areas on patterned

wafers with good accuracy. These tools can also measure the copper thickness within an array of

lines (while bulk copper is everywhere on the array) provided that the spot size is less than the

width of the region where the thickness is to be measured.

Copper thickness measurement is also essential after the bulk copper has been cleared, as

copper thickness can be used together with dielectric thickness to get dishing information. The

Impulse 300 [39], and the MetaPulse 200X can measure the thickness of some copper lines within

arrays and the thickness of copper on bond pads, after the bulk copper is cleared. Alternatively,

electrical measurements can be used to measure the thickness of copper lines after the bulk copper

and the unwanted barrier film are cleared [35]. In this case, the resistance is measured, and with
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knowledge of the resistivity, the accurate width of the line, and the length of the line, the copper

thickness can be computed. It is important to note that this measurement is the average thickness

of the copper line, taken along the entire line. In this thesis, electrical measurements are not used.

In addition, in this thesis, the Impulse 300 or the Metapulse 200X are not used to measure the cop-

per thickness after the bulk copper and the barrier are cleared. Instead, copper thickness is only

measured in wide field areas with the Metapulse 200X or the Impulse 300, while there is still bulk

copper on the wafer.

2.4.2 Surface Profile Measurements

To measure dishing, step height, and recess, a surface profile measurement is taken. A surface

profile measurement is a one or two dimensional measurement that gives the relative heights of

the different regions of the surface in question. This measurement is done with a high resolution

profiler, typically the HRP from KLA-Tencor or the Veeco profiler. Figure 2.11 shows a sample

levelled surface profile measurement for a structure after the bulk copper has been cleared and

overpolishing completed. The dishing and recess associated with this structure are indicated in the

figure. Levelled profile means that the relative height of the left of the profile (field region) and

that of the right of the profile (another field region) are set to the same reference value (typically

zero). Every measurement is taken relative to this reference value. Figures 2.12 and 2.13 show

sample levelled profiles for two array structures while there is still bulk copper on the wafer. The

recess and step heights associated with these structures are indicated in the figures.

In order to measure the copper thickness within an array while there is bulk copper on the

wafer, both a surface profile measurement across the array and copper thickness measurements in

the large field regions next to the array are used. If the point within the array is an up-area, then

the copper thickness at that point is the mean copper thickness of the two field regions that
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surround the array, minus the recess at the point in question. On the other hand, if the point of

interest within the array is a down-area, the copper thickness at that point is the mean of the field

copper thicknesses surrounding the array, minus the recess at that point, minus the step height at

the down-area of interest. It is important to note that if the relative height of the up-area is greater

than that of the surrounding field region, then the recess is negative and vice-versa.
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Erosion of dielectric spaces within an array of lines can be obtained by combining surface

profile measurements of the array with dielectric thickness measurements in the field regions sur-

rounding the array. The erosion at any dielectric point within the array is the mean thickness loss

in the field regions surrounding the array plus the recess at the dielectric point of interest. Alterna-

tively, erosion of the dielectric within an array can be obtained by measuring (using the UV1250

or UV1280 or F5 from KLA-Tencor) the deposited dielectric thickness at the location of interest,

and the dielectric thickness at the same location after CMP. The erosion at that location is the dif-

ference between the deposited and post-CMP dielectric thicknesses.

One of the problems with using a surface profile scan to obtain erosion, dishing, and cop-

per thickness within arrays, is that the field regions of the surface scan are levelled to the same ref-

erence height, even though they might be of different thicknesses. The greater the thickness

difference between the two field regions, the greater the error in the measurements obtained from

the surface scan in question. When the field regions are reasonably large, the thickness difference
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between the left and right field regions is typically small.

2.4.3 Dielectric Thickness Measurements

Dielectric thickness measurements can be obtained using KLA-Tencor's UV1250,

UV1280 or F5. These tools have spot sizes of about 5 pm or less in high magnification, and can

accurately measure dielectric (notably oxide and nitride) thickness to within 100 A or better.

2.5 Characterization and Prediction Methodology

The general framework of formulating the model from experimental data and the known

physics of the CMP process has been described. Once the model is formulated, one of the goals is

to use it to predict dishing and erosion for any random layout. Figure 2.17 illustrates the

characterization and prediction methodology. First, for a given process (fixed down force, table

speed, slurry flow rate, and consumable set), polish experiments are conducted where the polish

times are varied on different wafers. Second, the data from these experiments are used to calibrate

the model for the given process. Once the model has been calibrated, it can then be used to predict

dishing and erosion on any random layout polished under the same process conditions as those

used in the model calibration. The electroplated topography and the layout features (density, line

width, and line space) of the random layout are needed for dishing and erosion prediction. These

are obtained from an empirical pattern dependent electroplating model [36], and a layout extractor

respectively. The layout dependent dishing and erosion prediction can also be used to assess the

effectiveness of dummification in reducing within-die non-uniformity.

53



CMP Process
- Fixed pad, slurry
- Fixed pressure,

speed, slurry flow
rate, etc.

- Variable polish
times

CMP Test Wafers

Pu NC

Prodc C

Chip-Level
Simulation

- Prediction of dishing and erosion
- Assessing the effectiveness of

dummyfication in reducing within-die
non-uniformity

Measure dishing,
erosion and copper

thickness

W
Model parameter

extraction

Calibrated pattern
dependent copper

CMP model

Calibrated electro-
plating model and

layout extractor
outputs

Figure 2.14: Framework of characterization and prediction methodology
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Chapter 3

The Density-Step-Height Model for Single
Step Copper CMP Processes

The density-step-height model views copper CMP processes as chemically enhanced

mechanical processes. The contact of the polishing pad and abrasive particles with the wafer at

some applied pressure and speed is responsible for the removal of material during copper CMP

This mechanical contribution is enhanced or suppressed by the active chemical reactions between

the slurry and the materials that are being polished.

By applying regression analysis to data from blanket wafer polishing experiments

conducted to investigate the relationship between material removal rate and pressure, the model

establishes an empirical relationship between the material removal rate and polish pressure, for a

specific consumable set and speed. It then uses Hooke's law to relate the polish pressure to the

local step height and the pattern density. The relationship between material removal rate and

polish pressure, and that relating polish pressure to step height and pattern density, are then used

to relate removal rate to step height and density.

In this chapter, the density-step-height model for single step copper CMP processes is

presented. Single step copper CMP processes use the same consumable set (pad and slurry), and

the same polish process settings (such as down force, table speed, and slurry flow rate) throughout

the process. In sections 3.1 - 3.3, the model equations are derived for the three intrinsic stages of a

copper CMP process, followed by a description of the model parameters and a discussion of

special effects in copper CMP, in sections 3.4 - 3.6. A methodology for calibrating the model is
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proposed in section 3.7, and used to show how well the model fits experimental data in section

3.8. In section 3.9, some of the limitations of the density-step-height model are discussed, and

extensions of the model are proposed to deal with these limitations. Finally, the chapter concludes

in section 3.10 with a summary of the contributions.

3.1 Model Formulation for Intrinsic Stage One: Bulk

Copper Clearing Stage

In the bulk copper clearing stage, the main goals are computing the evolution of the bulk

copper thickness and the time it takes to clear the bulk copper at any spatial location of interest.

Figure 3.1 shows a sample electroplated topography for an array of lines with an initial step height

Ho. If the initial step-height for this array is greater than a critical step height Hex, the pad and

abrasives combination will not contact the down-area initially. Consequently, there will be no

pressure exerted on the down-area initially [9,22]. The up-area, on the other hand, will have a non-

zero constant pressure exerted on it initially. This constant up-area pressure is equal to the applied

force divided by the effective contact area, where the effective contact area is the total up-area

within the region where the influence of the applied force is felt. Thus, the effective up-area

pressure can be expressed as the applied pressure P1 divided by the effective electroplated copper

pattern density p,,u at the position of interest [3,40]. The effective electroplated copper pattern

density is the total up-area fraction in the effective contact region [3,40].

As polishing progresses, the step height H decreases as illustrated in figure 3.1. When the

step height becomes less than the critical step height Hex, the pressure exerted on the down-area

becomes non-zero. By Hooke's law, this non-zero down-area pressure increases linearly as the

step-height decreases, while the up-area pressure decreases linearly as the step-height decreases.
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Step height reduction continues until the step height is eliminated and the copper surface is flat.

The pressure exerted on this flat surface is the applied pressure P1 . Figure 3.2 illustrates the

relationship between the polish pressure and the step-height, for both the down-area and the up-

area during bulk copper polishing. The up-area and down-area pressures illustrated in the figure

are expressed mathematically in equations 3.1 - 3.2. From these equations, it can be shown that

the total force on the up-area and down-area is always equal to the applied force F. This is

expressed in equation 3.3, where A is the area of influence of the applied force F1 , and PIA = Fl.

Copper up-area Copper down-area Step height H

Copper

Initial
Barrier step height = HO

Dielectric

Increasing
polish time

Step height
eliminated

Figure 3.1: Step height evolution during bulk copper polishing

For the sake of simplicity, and without loss of generality, suppose the copper CMP process

is Prestonian (most conventional copper CMP processes are approximately Prestonian), i.e., the

material removal rate is linearly proportional to the polishing pressure, for copper, dielectric, and

barrier polishing, as illustrated in figure 3.3. Strictly speaking, Prestonian means that the removal

rate is directly proportional to the product of the pressure and relative speed. Using this Prestonian
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relationship together with the pressure versus step height relationship illustrated in figure 3.2, the

removal rate diagram for intrinsic stage one is constructed as shown in figure 3.4.
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A removal rate diagram plots removal rate versus step height (or dishing). The up-area and down-

area removal rates illustrated in the removal rate diagram for intrinsic stage one are expressed

mathematically in equations 3.4 - 3.5, where RR1P is the up-area removal rate and RRdown the
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down-area removal rate. From these first order differential equations, and given the appropriate

boundary conditions, one can solve for the evolution of the step height, the evolution of the copper

thickness in the up-area and down-area, and the time it takes to clear the bulk copper at any spatial

position of interest. This is discussed in the subsections to follow.
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3.1.1 Evolution of Step Height

The rate of change of the step height H with respect to polish time t is given in equation

3.6. The temporal evolution of the step height depends on whether the initial step height HO is less

than or greater than the critical step height Hex. Each of these scenarios is examined below.

= RRdown

(Equation 3.6)
-RR

up

1. Case 1: H0 > H ex (The initial step height is greater than the critical step height.)

If the initial step height is greater than the critical step height, the step height reduces

linearly with polish time until it is equal to the critical step height at a time denoted by tex. After

time tex, the step height decreases exponentially with polish time. This is expressed in equation

H
0

H=

H ex

Cu

-( t -t)

e

0 t<t

(Equation 3.7)

t > t
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3.7. The time at which the step height reaches the critical step height, and the time constant '1

with which the step height decreases exponentially are given in equations 3.8 and 3.9 respectively.

t (H0 - H )pcu 
(Equation 3.8)

ex rCu

(Equation 3.9)
ex pcu

- rCu

2. Case 2: HO 0 H x (the initial step height is less than or equal to the critical step height)

When the initial step height is less than or equal to the critical step height, the step height

decreases exponentially with polish time as given in equation 3.10. The time constant tj of the

exponential decrease is given in equation 3.9.

-t

H = H0 e
1

t > 0 (Equation 3.10)

3.1.2 Evolution of Bulk Copper Thickness

Figure 3.5 shows the electroplated topography for an array of lines, with the definitions of

some of the variables used in this section. Let ZuP represent the copper up-area thickness relative

Copper up-area Copper down-area H0

P1

ZO: Initial up-area
thickness

ZI : Initial down-area
thickness

HO: Initial step height

HO + Z, = ZO

Figure 3.5: Pre-CMP electroplated topography of an array
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to the barrier surface, Zd.w the copper down-area thickness relative to the barrier surface, ARup

the amount of copper thickness removed in the up-area, ARdoWnl the amount of copper thickness

removed in the down-area, and t the polish time. The evolution of Zu,, ZdOWf, ARup and ARd,0 f

are expressed below.

1. Case 1: H0 > H ex (the initial step height is greater than the critical step height)

The rate of change of the up-area thickness and the down-area thickness with respect to

time are given in equations 3.11 and 3.12. When the initial step height is greater than the critical

dZdo n

dt

(Equation 3.11)

= _RRdown

dZ
t up = -RR

dt up (Equation 3.12)

z =
up

Z0-

r
Z- Cu

cu

rcu
t

cu

T

-rcu(t-t )+H (1 - PCu) e

0 t<t ex

t)

1 -ij

Zdown 
Zz1 - r Cu(t -t )

z1

-H pcu

0 t< t
ex

t ex)
-

(Equation 3.14)
t x t
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step height, the evolution of the copper up-area and down-area thickness are given in equations

3.13 and 3.14, where t1 is given in equation 3.9. The amount of copper removed in the up-area

and down-area are given in equations 3.15 and 3.16 respectively.

AR u= Z -- Z (Equation 3.15)
up 0 up

A down = Z - Zdown (Equation 3.16)

2. Case 2: H 0  Hex (the initial step height is less than or equal to the critical step height)

Z up = Z0 - rCut + H 0 ( - pcu) e I t 0 (Equation 3.17)

Zdown = Z I - rcut - H0 pcu P1 - t 0 (Equation 3.18)

When the initial step height is less than or equal to the critical step height, the evolution of

the copper thickness in the up-area and the down-area are given in equations 3.17 and 3.18

respectively. In both cases 1 and 2 (when the initial step height is greater than the critical step

height, and when it is less than or equal to the critical step height), the time it takes to clear the

overburden copper at an up-area can be computed by setting the amount of copper removed in the

up-area to the initial up-area thickness, and solving for the time that satisfies the resulting

equation. Similarly, the time it takes to clear the copper thickness in a down-area can be computed

by setting the amount removed in the down-area to the initial down-area thickness and solving the

resulting equation for the time. In the case where the step height is eliminated before the bulk
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copper is cleared for a particular array of lines, the time it takes to clear the bulk copper in the up-

area is equal to that to clear the bulk copper in the down-area.

3.2 Model Formulation in Intrinsic Stage Two: Barrier

Clearing Stage

In the barrier clearing stage, the copper in the trenches and the barrier film in the spaces

between the trenches are being polished simultaneously. The time it takes to clear the barrier and

the dishing that results when the barrier has just been cleared, at any spatial location, are of

interest in this stage. Figure 3.6 shows the initial topography and the final topography for an array

of lines polished through intrinsic stage two. The assumption made in this figure is that the array

is planarized before the bulk copper film is completely cleared, i.e., the starting height of the

copper in the trenches is equal to that of the barrier in the spaces between the trenches.

For an applied pressure of P1, figure 3.3 shows that the blanket copper removal rate is

greater than the blanket barrier removal rate. As polishing progresses, the copper surface recesses

below the barrier surface. The difference between the relative height of the barrier and that of the

copper in the trenches is termed pre-dishing. As the pre-dishing increases, the effective pressure

Barrier oppe

Start of intrinsic
stage two

Dishing when barrier has
just been cleared

End of intrinsic
stage two

Figure 3.6: Sample topography at the beginning and the end of the barrier clearing stage
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on the copper in the trenches decreases, and that on the barrier in the spaces between the trenches

increases. By Hooke's law, the pressure on the copper (the down-area) decreases linearly with

increasing pre-dishing, while that on the barrier (the up-area) increases linearly with increasing

pre-dishing. The pre-dishing at which the pressure on the copper is zero is called the maximum

dishing dmax, and it is a model parameter. At this pre-dishing value, the pressure on the barrier is

equal to the applied pressure P1 divided by the effective layout barrier pattern density (which is

one minus the effective layout copper pattern density D, in stage two). A different symbol is

used to distinguish the effective layout copper pattern density in stage two from the effective

electroplated copper pattern density peu in stage one. Figure 3.7 illustrates the relationship

between pressure and pre-dishing, and equations 3.19 and 3.20 express this relationship

mathematically.

P1

Cu

Barrier (up-area)

P1

Copper (down-area)

dmax

Copper pre-dishing

Figure 3.7: Pressure versus copper pre-dishing

(D d
P P +P Cu Cu

b - (Dcu dmax

DCU: Layout copper pattern
density stage two

dmax: Maximum pre-dishing
(or maximum dishing)

PI: Applied pressure

I - (DU: Barrier layout pattern
density in stage two

(Equation 3.19)
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'dc
P = P 11-dcCu = d (Equation 3.20)

By combining the removal rate versus pressure relationship (figure 3.3) with the pressure

versus pre-dishing relationship (figure 3.7), the removal rate diagram for the barrier clearing stage

is constructed as shown in figure 3.8. This diagram plots removal rate versus copper pre-dishing.

When the surface is flat (i.e., when the pre-dishing is zero) the removal rate of the copper is the

instantaneous blanket copper rate while that of the barrier is the instantaneous blanket barrier rate.

As polishing progresses and the pre-dishing increases, the barrier removal rate increases and the

copper removal rate decreases. If polishing continues for a long time, a pre-dishing of dss is

reached, at which point the removal rate of the barrier and that of the copper are equal. This

condition is called steady-state pre-dishing, and when it is achieved, the pre-dishing remains

unchanged (provided that the process conditions and the consumable set are not changed). The

Time increasing

r
cu

r> b

I -( cu-

rb-

ss dmax

Copper pre-dishing

Figure 3.8: Removal rate diagram for intrinsic stage two

relationship illustrated in figure 3.7 is expressed mathematically in equations 3.12 and 3.22,

where RRCU is the copper removal rate and RRb is the barrier removal rate. From these equations,
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the barrier thickness loss Eb and the amount of copper pre-dishing de, are computed in equations

3.23 - 3.28. The time t2 that it takes to clear the barrier at any spatial location of interest is

obtained from solving equation 3.29 numerically, where Z2 is the initial barrier thickness. In

addition, the dishing d2 that results when the barrier has just been cleared is given in equation

3.30.

RR =r+r cu cu
b b b - Dcui dmax (Equation 3.21)

RR d
R u = r 1 - cu

cu cu max (Equation 3.22)

-(t- t1 )

dcu = de 2 +d 1e 2ss
(Equation 3.23)

(Equation 3.24)

d d mx(r cu- r b) (1- cu)
ss rcu (I-d cu) + rb cu

d (1 - (cu)

2 rcu - cu) + rb Cu

rcurb
A1 =r (-C )+rc

S cu b cu

(Equation 3.25)

(Equation 3.26)

(Equation 3.27)
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rb cu
2 rCu (-Cu) + rb cu (Equation 3.28)

( -(t 2 -t 1 )

X(t2- t1 ) + X2 (d - d) e 2  -1 = 2 (Equation 3.29)

-(t 2- t ) -(t 2-t )-

ddss! - e 2 (Equation 3.30)

3.3 Model Formulation in Intrinsic Stage Three: Overpolish

Stage

In the overpolish stage, the copper in the trench, the barrier on the side wall of the trench,

and the dielectric in the space between the trench, are all being polished simultaneously. The

dielectric erosion and the copper dishing that occur during this stage are the variables of interest.

Figure 3.12 shows the relationship between pressure and dishing in this stage. This relationship is

based on Hooke's law in the same manner as those in stages one and two. Equations 3.31 and 3.32

express the pressure versus dishing relationship mathematically. The effective layout copper

pattern density (D, and the maximum dishing dax are the same for intrinsic stages two and three.

The reason for this will become clear when the modeling parameters are described in a later

section of this chapter.

By combining the removal rate versus pressure relationship illustrated in figure 3.3, with

the pressure versus step height relationship illustrated in figure 3.9, the removal rate diagram for
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Cu,

P--4 <D

d
max

Copper dishing

Figure 3.9: Pressure versus copper dishing

P = P+ u c
OX a x + - (b D (Equation 3.31)

cu max

D
P =P - uCu 1 d (Equation 3.32)

intrinsic stage three is derived as illustrated in figure 3.13. This diagram plots removal rate versus

copper dishing. If the surface is flat initially, the copper and the dielectric removal rates are the

respective effective blanket removal rates. As polishing progresses, the copper in the trench dishes

because of the selectivity of the process. As dishing increases, the removal rate of the copper in

the trench decreases linearly and that of the dielectric increases linearly. If polishing continues

long enough, a steady state dishing of Dss is reached at which the copper and dielectric removal

rates are equal. The relationship illustrated by the removal rate diagram is expressed

mathematically in equations 3.33 and 3.34, where RRO is the dielectric removal rate, and RRCU

the copper removal rate. From these equations, the dishing Dcu and erosion Eox as functions of
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time are derived in equations 3.35 - 3.40, where t is the polish time, t1 the time to clear the bulk

copper at the position of interest, and t2 the time to clear the barrier at the position of interest.

0
4-j rox

Cu

Time increasing

Dss dmax

Copper dishing

Removal rate diagram for intrinsic stage three

D
Cu

d
max

D
R R = r r I- dCu

cu cudmax

(Equation 3.33)

(Equation 3.34)

dD
W-cu - RR -RR

Cu ox

dEox
dt

-(t - t 3 )

T
3

DCu = d2

(Equation 3.35)

-RR ox

+ DL

(Equation 3.36)

(Equation 3.37)
1 - e
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-(t - t 3)

E = Y (t - t3 ) + Y 2 (D - d !2 e -

d (rcu - r )(1-cU)

ss rCu (I- Cu ) + r oxDcu

d x( - CU

3 ru cu) + r Q u

Y = rr
1 =r (1-@I)+rI@cu Cu ox cu

Y = r (cu

Y ox Cu

2 Cu -I cu) +x r Cu

t = t +t2

(Equation 3.38)

(Equation 3.39)

(Equation 3.40)

(Equation 3.41)

(Equation 3.42)

(Equation 3.43)

3.4 Model Parameters

The model parameters introduced in the formulation of the model equations are described

in detail below. At the end of the detailed descriptions, the parameters and the symbols used to

represent them are summarized in table 3.1.

3.4.1 Model Parameters in Intrinsic Stage One

The model parameters in intrinsic stage one are as follows:

1. Planarization length: The planarization length in intrinsic stage one is denoted by L1. It is the
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length scale over which the effective electroplated copper pattern density pu is computed.

The effective electroplated copper pattern density at any location of interest is a weighted

average of the local electroplated densities (i.e., the total up-area fractions in small discretized

cells) of the points that lie within a planarization length of the location in question [3]. The

weights allocated to the local electroplated densities is based on their distance from the point

of interest (i.e., the point at which the effective electroplated density is being computed).

Thus, the planarization length in intrinsic stage one tells us the extent to which a copper CMP

process can planarize the electroplated topography. The longer the planarization length, the

better the planarization capability of the process in question, and the more uniform will be the

polishing across different densities within the die.

Theoretically, the planarization length is the characteristic length of the deformation or

long range bending of the pad in the x-y plane, under the influence of an applied force. It is

believed to depend on the pad stiffness, the microscopic properties of the pad, the slurry, the

process settings (such as down force, and relative speed), the CMP tool, and the properties of

the material being polished (e.g. hardness of the material). It does not depend on layout or

electroplated topography, but it greatly influences the evolution of the topography during

CMP.

There is no direct way of computing or measuring the planarization length. Lefevre et al.,

proposed a methodology for obtaining the "average planarization length" for copper CMP

processes from polishing experiments with a wafer scale test mask [37]. Although the length

so defined is useful for comparing the planarization capabilities of different processes, it is not

necessarily the same as the planarization length used in the density-step-height model. To get

the planarization length for intrinsic stage one of the density-step-height model, a design of
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experiment that captures the evolution of the bulk copper topography is performed, and the

model equations are fitted to the data. The planarization length is the length (along with the

other model parameters) that yields the minimum RMS error between the experimental data

and the model equations, subject to certain constraints. This is discussed in detail later in the

chapter. The planarization length for a conventional copper CMP process is typically in the

millimeter range.

2. Critical height: The critical height in intrinsic stage one is denoted by Hex. It is the step height

above which the pressure on the down-area is zero. From the equations for step height evolu-

tion in intrinsic stage one, it is shown that the critical height is the step height above which the

step height decreases linearly with time, and below which the step height decreases exponen-

tially with time. This means that the critical height can be estimated from measured step

height versus time plots. Figure 3.11 shows step height versus polish time plots for isolated

copper lines with widths of 15 ptm and 300 jim, respectively (the electroplated widths are the

same as the etched trench widths for such wide lines).

bUUU

Electroplated
500d width =15 gm
4 0 0 0 - - -- -- - -- -- - -- - - - -- -

3000 - - - -- - --- -

2000 -

1000 -
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Figure 3.11:
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Theoretically, Hex captures the extent to which the pad compresses into a down-area. It is

dependent on the electroplated trench width, the electroplated spaces (up-area) surrounding a

trench or the electroplated copper density surrounding the trench, the consumable set (slurry

and pad), and the process settings (down force and relative speed). For a given process, the

larger the electroplated trench width, the easier it is for the pad to compress into the trench and

the higher the value of Hex. However, data shows that as the trench width increases, the rate of

increase of Hex with respect to the trench width decreases. In addition, the wider the

electroplated up-area surrounding the trench, the larger the value of Hex. As the up-area

surrounding the trench increases, the rate of increase of Hex with respect to the surrounding

up-area decreases.

For a given conventional CMP process, if Hex is modeled as a function of the electroplated

trench width and the surrounding electroplated trench space, the underlying assumption is that

the length scale of the compression of the pad is very short, i.e., the compression of the pad is

a local phenomena. On the other hand, if it is modeled as a function of the electroplated trench

width and the effective electroplated pattern density, the underlying assumption is that the

compressibility of the pad and the long range pad bending are somehow coupled. For

conventional copper CMP processes, data suggests that the length scale for Hex is very short.

Based on the observation of experimental data, two empirical formulae expressing Hex as a

function of the electroplated trench width w, (in units of microns) and the electroplated space

s, (in units of microns) are proposed in equations 3.44 and 3.45, for conventionally copper

CMP processes. In these equations, A is a constant in units of angstroms and is greater than or

equal to zero, a, and 01 are unitless constants between zero and one, s, is the compression
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length scale in microns (about 100 gm for conventional processes), so and w0 are

normalization lengths equal to 1 gm, smin is the effective minimum electroplated feature size

in microns, and "ln" is the natural logarithm function. The dependence on the electroplated

line width and space is sub-linear as dictated by experimental data.

A P Ps <s
W0 s 0 P

H =ex W (Equation 3.44)

A WPs P> SI
(p 0

H = AWPO In s S .ex W 0) s ij p min (Equation 3.45)

3. Effective blanket copper removal rate: The effective blanket copper removal rate is denoted by

rcu. It is an instantaneous as opposed to an average removal rate. In this thesis, this rate is typ-

ically set equal to the measured instantaneous blanket copper removal rate r. In cases where

this is not done, the effective blanket copper rate is allowed to float, to better fit the model

equations to the experimental data.

3.4.2 Model Parameters in Intrinsic Stages Two and Three

The model parameters in intrinsic stages two and three are as follows:

1. Planarization length: The planarization lengths in stages two and three are denoted by L2 and

L3, respectively. They are the lengths used to compute the effective layout copper densities in

these stages, in the same way that L, is used to compute the effective electroplated copper

density in stage one. They indicate the planarization capability during these stages. The thin

barrier is removed more rapidly in some areas of the chip than in others, due to pattern inho-
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mogeniety across the die and inequality in the barrier thickness deposited within the die (e.g.

the deposited barrier thickness in array regions is suspected to be much less than that in large

field regions). Thus, while only barrier and copper are being polished simultaneously in a

small localized region on the chip, dielectric and copper might be polishing simultaneously in

a neighboring small localized region. In essence, during the barrier clearing stage, copper,

dielectric, and barrier are being polished together when one looks at a larger region on the

chip.

During the overpolish stage, the copper in the trench, the barrier on the side walls of the

trench, and the dielectric in the space are all being polished simultaneously. Strictly speaking,

therefore, in both stages two and three, copper, barrier, and dielectric are being polished at the

same time, when one considers a large region (millimeter length scale) on the chip. It is

therefore practical to assume for modeling purposes, that L2 = L3. This assumption is the

reason why the same effective copper layout pattern density Icu is used in both the equations

for stages two and three derived earlier.

2. Effective blanket barrier and dielectric removal rates: The effective blanket barrier and dielec-

tric removal rates are denoted by rb and r, respectively. These rates are instantaneous as

opposed to average removal rates. They must be distinguished from the measured instanta-

neous blanket barrier removal rate rb and the instantaneous blanket dielectric removal rate r0 ,

respectively. They are extracted from measured pattern wafer data in some cases, and set equal

to the measured instantaneous blanket removal rates, in others. This is discussed in detail in

section 3.7.

3. Effective blanket copper removal rate: This is denoted by ru just as in stage one. In single step

copper CMP processes, the value of rcu in stages two and three is the same as that in stage one,
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provided that there is no chemical interaction between the barrier and the copper that affects

the rate during the barrier removal and overpolish stages.

4. Maximum dishing: The maximum dishing is denoted by dax. By definition, it is the dishing

at which the effective polish pressure exerted on the copper in the trench (down-area) is zero.

When the effective blanket dielectric removal rate is zero, the maximum dishing is the steady-

state dishing that is obtained in intrinsic stage three.

Theoretically, dmax captures the extent to which the pad compresses into the copper lines.

It depends on the line width, the line space or density (or more generally the up-area

surrounding the line in question), the consumable set (pad and slurry), and the polish process

settings (down force and relative speed). For a given process, the larger the line width, the

higher the dishing. This is because the pad can easily compress into, and (together with the

abrasives) exert pressure on the copper line. For conventional copper CMP processes,

experimental data shows that as the line width increases, the dishing rate with respect to line

width decreases. This is illustrated in figure 3.12 which shows a plot of measured dishing at

end-point time versus line widths, for isolated copper lines. In addition, for conventional

copper CMP processes, the wider the line space surrounding a given line, the higher the
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Figure 3.12: Measured dishing versus line width for isolated lines
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dishing of that line. As the line space increases, the dishing rate with respect to the line space

decreases. The line width and line space dependency of dishing are accounted for by dmax.

The dependencies of dnax on line width and line space, in intrinsic stage three, are similar

to the dependencies of Hex on electroplated line widths and spaces, in intrinsic stage one. The

functional forms of the two modeling parameters should therefore be similar. However, the

two parameters are not necessarily equal. For instance, a 0.25 pm isolated line dishes,

meaning that such a line has a non-zero dnax. On the other hand, for a 0.25 pim isolated

electroplated line, the value of Hex is zero. If pad compression was the only factor determining

the values of dmax and Hex, the two parameters will be identically equal. Because these

parameters also account for the effects of the slurry and abrasives on dishing and contact

height (if any), they are therefore not necessarily equal.

To capture the sub-linear dependencies of dishing on line width and line space, for

conventional copper CMP processes, the empirical relationships in equations 3.46 and 3.47

are proposed for dax. Either of these functional relationships can be used to model dmax with

good accuracy in conventional copper CMP processes. In these equations, w is the line width

in microns, s is the line space in microns, w, is the normalization line width equal to 1 gm, s,

is the normalization line space equal to 1 ptm, B is a constant in angstroms and is greater than

or equal to zero, a 2 and $2 are unitless constants between zero and one, s, is a dishing

Wa2( s02
B( s 0 <SS

WB ) sI)
d =max a s P2 (Equation 3.46)

B(W0) 1 >

78



U2

d = B( w In(2
max W m

S>S m (Equation 3.47)

length scale (approximately 100 pm for conventional processes), sm is the effective minimum

line space in microns, and "ln" is the natural logarithm function.

3.4.3 Summary of Model Parameters

The model parameters for a single step copper CMP process described in sections 3.4.1

and 3.4.2 are summarized in table 3.1. It is important to note that each of the parameters Hex and

dmax have three sub-parameters as given in the equations relating them to line width and line

space.

Table 3.1: Modeling parameters for single step copper CMP processes

Intrinsic stage one Intrinsic stage two Intrinsic stage three

Name Name Name

rcu Effective blanket rcu Effective blanket rcu Effective blanket cop-
copper removal rate copper removal rate per removal rate

L, Planarization length rb Effective blanket rox Effective blanket
barrier removal rate dielectric removal rate

H, Critical step height L3  Planarization length L3  Planarization length

dmax Maximum dishing dmax Maximum dishing

3.5 Edge Rounding

Dielectric erosion depends on pattern density and on line space, with density being the

dominant factor in cases of wide regular arrays of lines (regular meaning constant line width and

space for the entire array) [7]. The higher the copper pattern density, the higher the rate of
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dielectric polish, and the higher the erosion. Figure 3.13 shows profilometer scans after

overpolishing, for two wide regular arrays of lines. The scan on the left is for an array that has a

line width of 1 gm and a line space of 1 pm. The effective layout copper pattern density at the

center of this array (effective meaning density computed over the planarization length) is about

50%. The scan on the right is for an array that has a line width of 9 gm and a line space of 1 pm,

with the effective layout copper density at the center of the array being close to 90%. From the

two scans, it is clear that the higher the layout copper pattern density, the higher the dielectric

erosion. It is important to note that in the two scans, the erosion in the field regions is negligible.

Hence, the recess of the arrays relative to the field regions is approximately equal to the erosion in

the arrays. Figure 3.14 shows a plot of erosion versus time for the two arrays for which profile

scans are shown in figure 3.13. From this figure it is clear that the higher the pattern density, the

higher the rate of erosion.
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Figure 3.13: Profilometer scans of two regular arrays, showing the density effect on erosion:
(a) Line width = 1 pm; line space = 1 gm; (b) Line width = 9 pm; line space = 1 pm
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Figure 3.14: Erosion versus polish time

For a given pattern density, the smaller the line space, the higher the erosion rate and the

higher the erosion. This is particularly noticeable for very narrow arrays of lines or arrays with

varying line spaces. Figure 3.15 shows the profilometer scans after overpolishing, for an array

with a fixed line width of 20 pm and line spaces varying from 1 Rm to 100 pm. The array is

narrow (about 500 pm wide) compared to the planarization length of the process. Hence, the

pattern density range along the array is very small, and the density effect is therefore negligible.

By observing the two scans corresponding to two different overpolish times, it is clear that the

smaller the line space, the higher the erosion rate, and the higher the erosion. The larger line

spaces have negligible erosion rates and negligible erosion. Figure 3.16 shows two plots of

erosion versus line space for the profilometer scan shown on the right in figure 3.15. The graph on

the left is plotted on a linear-linear scale, and that on the right is plotted on a linear-logarithmic

scale.

The density-step-height model as formulated so far for single step copper CMP processes,

fully accounts for the density dependence of erosion. However, the line space effect only shows

up in the dax term in the erosion equation. In essence, the line space effect is currently treated as
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a second order effect. The density-step-height model parameters are extracted by fitting the model

equations to the experimental data, as discussed in the model calibration methodology section

Increasing line space
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of this chapter. If the effective blanket oxide rate is allowed to float during the extraction, the

extracted value is typically much higher than the measured instantaneous blanket oxide removal

rate. This happens because the floated parameter tries to account for the line space effect apparent

in the erosion data. It does so by averaging the line space effect over the range of line spaces used

82

0

-0.05

-0.1

e -0.15

-0.2

-0.25

-0.3

0

Figure 3

.2

9

102

I

-- ~ ~~ ~ - -- - - ---- -



in the extraction. If the calibrated model is then used to predict erosion on a layout not used in the

calibration process, it will over predict erosion in large field areas and possibly under predict it for

very small line spaces. It is therefore necessary to properly account for the line space effect on

erosion, when such an effect is significant.

The line space effect can be attributed to higher local pressure on the edge or corner of a

line space (the up-area). Figures 3.17 shows the local pressure on a line space. As the line space

gets smaller, the high local pressure peaks at the edges move closer together. Theoretically, when

the line space becomes infinitely small, the local pressure on it will be a delta-like function. The

high local pressure on the edges or corners of the line spaces lead to rounding of these spaces - a

phenomena hence forth termed edge/corner rounding - and consequently to an accelerated

reduction in the space thickness. The pattern density approach to computing up-area pressure

misses this local pressure effect because it averages it out when it takes an average of the pressure

over the planarization length.

Pressure profile

Line space

Figure 3.17: Local pressure on a line space (up-area)

Edge rounding leads to a reduction in the effective line space, and consequently an

increase in the effective line width for the line neighboring the space. Thus, edge rounding

decreases the total up-area, and hence the dielectric pattern density 1 - (DCI decreases. This occurs

over time, suggesting that the effective layout copper pattern density (cIU could be made a

function of time, to account for the line space effect. However, this is extremely difficult to do

within the framework of the density-step-height model. The density-step-height model does not
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say anything about how the pressure at the edge of a line space can be computed. A rigorous

treatment of the edge rounding effect requires a time stepped contact wear model where the

discretization is small enough to fully capture all the features on the layout. Such a model also

accounts for the pattern density effect indirectly. However, it is computationally prohibitive as

discussed in chapter 6 of this thesis.

A crude but simple way of dealing with the line space effect within the framework of the

density-step-height model is to model the effective blanket removal rate of the dielectric (or the

material experiencing this effect) as a function of line space. The empirical formula should be

such that as the line space increases, the effective pattern dependent blanket removal rate

decreases towards the measured instantaneous blanket removal rate. Thus, when dealing with a

blanket wafer, the effective pattern dependent blanket removal rate will be very close to, or ideally

equal to the measured instantaneous blanket removal rate. With this, a pattern dependent

multiplicative factor V is used to make the effective blanket dielectric removal rate a function of

line space, as given in equation 3.48, where r ox is the pattern dependent effective dielectric

removal rate, and rx is the pattern independent effective blanket dielectric removal rate. A

possible empirical function relating V to line space is proposed in equation 3.49. The parameter C

is a unitless constant greater than or equal to zero, s is the line space in microns, and s, is the edge

rounding length scale in units of microns. The multiplicative factor W is an additional modeling

parameter (when the edge rounding effect is included in the model equations) with two sub-

parameters C and s,-

ox = rox
(Equation 3.48)
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Ce c + I (Equation 3.49)

Instead of making the effective blanket dielectric (or up-area) removal rate pattern

dependent, one could introduce the line space effect in the pressure versus dishing (or step-height)

relationship as shown in figure 3.17, where P1 is the applied pressure, and W is the line space

dependent function introduced earlier. The rationale here is that W accounts for the local pressure

P -- Time increasing

cu

dmax
Dishing

Figure 3.18: Pressure versus dishing

effect. It introduces a correction to the effective layout pattern density, due to edge rounding.

Introducing W in the pressure versus dishing relationship or in the effective blanket removal rate

yields similar results. The latter is done in this thesis to account for the edge rounding effect.

If the line space effect is due to high local pressure at the edges of the line space, then the

same effect should apply to all up-areas. Indeed it does, but the extent of the edge rounding

depends on the process and the material in the up-area. To avoid introducing too many modeling

parameters, the edge rounding effect is only included where necessary. For instance, in the first
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intrinsic step where copper is the up-area, the edge rounding effect does not seem to play a

significant role.

3.6 Time Dependency of Blanket Removal Rate

In the formulation of the density-step-height model for single step copper CMP processes,

the effective blanket copper, effective blanket dielectric and effective blanket barrier removal rates

were introduced as modeling parameters. They were defined as instantaneous blanket removal

rates. One must distinguish between average blanket removal rate and instantaneous blanket

removal rate. The latter is the rate of change of the amount removed on a blanket wafer, with

respect to time, while the former is the amount removed on a blanket wafer divided by the polish

time. In practice, the blanket rate is often thought to be a constant. It is obtained by polishing one

or two blanket wafers for sixty or more seconds, and finding the average rate. A constant blanket

rate means that the amount of material removed on a blanket wafer is a linear function of time,

and that the average blanket removal rate is equal to the instantaneous blanket removal rate.

To investigate the assumption of a constant blanket rate, several experiments involving

polishing blanket copper wafers for different polish times, have been conducted on the Mirra. The

process settings and consumable set used in these experiments are summarized in table 3.2. Each

experiment is conducted on a different day, and the first experiment is repeated to study process

stability. The repeated experiment is numbered four in table 3.2.

Figures 3.19 - 3.22 show plots of the amount of copper removed versus polish time, and

plots of the corresponding average removal rate versus polish time, for the four experiments. The

average removal rate is not a constant over time. Instead, it increases with polish time at a

decreasing rate, and tends to reach a saturation value. If the average rate is not a constant, then it
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means that the amount of copper removed is a non-linear function of time, and that the

instantaneous blanket removal rate is also a function of time.

Table 3.2: Time dependency of blanket rate experiments

Experiment Down force Carrier speed
Platen # Slurry Pad .p(= platen speed)

#(psi) (
(rpm)

1 1 EPC-5001 Stacked 5 63

2 1 EPC-5001 Stacked 2 43

3 1 EPC-5001 Stacked 4 75

4 1 EPC-5001 Stacked 5 63
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Figure 3.19: Amount of copper removed and average removal rate for experiment # I

The apparent time dependency of the instantaneous rate complicates the model equations.

It makes the removal rate diagrams snap-shots in time of the removal rate versus step-height or

dishing relationships. It is therefore necessary to investigate this issue further in an effort not to

add unnecessary complication to the model, or not to exclude an important effect thereby

confounding the extraction of the modeling parameters.
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Park et al. [38], report the results of blanket copper wafer experiments that further study

the apparent effects shown in the data presented in figures 3.19 - 3.22. Several blanket copper

wafers are polished on the Mirra, and the iScan is used to measure the amount of copper removed

on average across the wafer, with a time sample taken once per second. This corresponds to the

instantaneous blanket removal rate [38]. They conclude that the amount of copper removed on

blanket copper wafers is a non-linear function of time, and that the average and instantaneous

blanket copper removal rates are functions of time. To fit the data obtained in their experiment,

they propose an empirical function for the amount of copper removed on a blanket wafer (denoted
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by AR) in terms of polish time t, as given in equation 3.50. The variable a, is a constant in units of

A/s, a2 and a3 are constants in units of A, and T is a time constant in units of seconds. By using the

initial condition that the amount of copper removed is zero when the polish time is zero, the

variable a3 should equal the negative of the variable a2 . The empirical relationship given in

equation 3.50 is rewritten in equation 3.51 to reflect this initial condition.
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Figure 3.22: Amount of copper removed and average removal rate for experiment #4

The equation for the amount of copper removed versus time implies that as polish time

tends to infinity, the amount of copper removed tends to a linear function. By dividing the left

hand side and right hand side of this equation by the polish time t, the average blanket copper

removal rate is obtained. This is given in equation 3.52, where rA is the average removal rate in

units of A/s. Furthermore, by taking the derivative of equation 3.51 with respect to polish time t,

the instantaneous blanket copper removal rate is obtained. This is given in equation 3.53, where r,

is the instantaneous removal rate in units of A/s.

-t

r
1 a2e 3 ( Equation 3.50)
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AR = a t + a2 -

a2 r
r1 = a - -e

T

(Equation 3.51)

(Equation 3.52)

(Equation 3.53)

The equation for the instantaneous removal rate implies that at time equal to zero, the

instantaneous rate is not necessarily zero. As the polish time increases, this rate exponentially

approaches a saturation rate. The average removal rate is initially less than the instantaneous rate,

and it increases at a decreasing rate. If polishing continues infinitely long under the same

polishing conditions (e.g. the pad does not become clogged with slurry particles), the average rate

approaches the saturation instantaneous removal rate. By fitting the data presented in figures 3.19

- 3.22, to the above equations, the values of the parameters a1, a2 , and tr are extracted, as

summarized in table 3.2. The model fits versus the measured data are shown in figures 3.23 - 3.26.

Table 3.3: Extracted blanket rate equation variables

Experiment a, a2  1I- RMS error
# (Als) (A) (s) (A)

1 249.5 3986.6 16.4 168.5

2 120.0 924.0 9.71 195.5

3 159.0 1176 7.7 102.4

4 239.6 1424 6.3 137.3
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To provide a physical explanation for the observed time dependency of the instantaneous

removal rate, Park et al., suggest that the exponential nature of this rate might be linked to the

temperature during polishing. They show a plot of temperature versus polish time illustrated in

figure 3.27. The temperature tends to increase exponentially towards steady state just as the

instantaneous removal rate increases exponentially towards steady state.
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Figure 3.27: Temperature and instantaneous removal rate versus polish time

The time dependence of the instantaneous removal rate introduces additional modeling

parameters (a], a2 , and t,). However, these parameters are obtained from blanket wafer experi-
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-ments, as opposed to patterned wafer experiments. Hence, the additional parameters do not

complicate the extraction of the other model parameters, which requires patterned wafer data. In

cases where the measured instantaneous blanket removal rate is very small (< 25 A/s), the

effective blanket removal rate for the material in question is treated as a constant over time, and

allowed to float in a reasonable range of values, during the extraction of the model parameters.

This is usually the case for the effective blanket dielectric and barrier removal rates, in a single

step copper CMP process.

Experimental data shown in chapter 5 seems to suggest that when the saturation

instantaneous removal rate (denoted by a, in this thesis) is small, that rate is achieved almost

"instantaneously". It is worth mentioning that the time dependency of the instantaneous removal

rate is not observed on some CMP tools.

3.7 Model Calibration Methodology for Single

Step Processes

Calibrating the model for a given copper CMP process involves performing CMP

experiments on blanket and patterned wafers, measuring the copper thickness, dishing, and

erosion at specific sites on a die, and extracting the unknown model parameter values. The model

parameter extraction criteria is the minimization of the RMS error between the model equations

and the data, subject to certain constraints.

The model is formulated to capture the pattern dependent evolution of a copper CMP

process. To extract the correct model parameters that achieve this goal, two things must be done.

First, a test mask that contains a full range of densities, line widths and line spaces must be used to

pattern the wafers. The MIT-SEMATECH 854 mask and the MIT mask version 1.2 are the most
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suitable of the currently available masks for this task. Second, time split experiments must be

performed with both patterned and blanket wafers. Time split experiments involve polishing

several wafers for different polish times. To avoid lot to lot variation, it is recommended that all

blanket wafers used in the experiment are from the same lot, and all patterned wafers are from the

same lot. The different steps of the calibration procedure are described in the following sections.

3.7.1 Calibration Experiments and Measurements

Calibration experiments are conducted to capture the pattern dependent evolution of the

CMP process in two of the three intrinsic stages of a single step copper CMP process. In addition,

pre-CMP and post-CMP metrology is done to obtain the necessary experimental data. The

experiments and measurements required for calibrating a single step copper CMP process are

described below.

1. Wafer processing and first pre-CMP metrology: A short flow damascene process should be

run to make patterned wafers with a suitable test mask, notably MIT-SEMATECH 854 mask

or MIT mask version 1.2. The dielectric thickness after the trenches are etched and before the

deposition of the barrier film, should be measured at certain array and field sites.

2. Additional pre-CMP metrology: Before conducting any CMP experiments, the material thick-

ness on all blanket wafers (copper, barrier, and dielectric), the copper thickness at several

array (if possible) and field sites on a sample of the patterned copper wafers, the step height

and recess for several arrays on a sample of the patterned copper wafers, must be measured. If

accurate copper thickness measurements can be obtained within arrays of lines (at up and

down-area sites), the number of surface scans required will be reduced considerably. How-

ever, it is sometimes difficult to set up recipes that give accurate copper thickness measure-

ments within arrays, and in this thesis no such measurements are used. To obtain accurate
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copper thickness measurements within arrays, surface profile scans are used in combination

with copper thickness measurements in large field regions, on the patterned wafers.

3. Intrinsic stage one experiments: These experiments are intended to capture the bulk copper

thickness evolution. First, at least six blanket copper wafers should be polished for times rang-

ing from 15 s to 70 or 80 s. This is intended to capture the time dependency of the instanta-

neous blanket copper rate. Second, at least four patterned copper wafers should be polished

for different times, with the times selected to remove targeted amounts of copper thickness (on

average) on each wafer. An end-point detector such as the iScan makes the task of accurately

targeting a certain amount of copper thickness removed easier. To capture the stability of the

removal rate during polishing, at least two blanket copper wafers should be polished between

the polishing of the patterned wafers. The times of polish for these blanket wafers can be two

of the times used to polish the blanket wafers in the earlier blanket wafer experiment. This

will give repeated data points.

4. Intrinsic stage two experiments: It is extremely difficult, if not impossible to perform experi-

ments that capture or isolate the evolution of the barrier clearing on patterned wafers. This is

because the norminal barrier thickness deposited is typically small (200 - 250 A). The amount

sucessfully deposited on fine arrays is believed to be even smaller. Thus, there is no easy way

of setting up patterned wafer experiments to target particular amounts of barrier removed on

average across the wafer.

5. Intrinsic stage three experiments: The experiments in this stage are intended to capture the

evolution of dishing and erosion. First, blanket barrier and dielectric wafers must be polished

to obtain the blanket removal rates for these materials. By the time this stage is reached in a

typical one step process, the time of polish will be long enough such that the instantaneous

95



removal rates of the materials being polished would have reached saturation. Thus, only three

dielectric and three barrier blanket wafers should be polished for 60 s, 90 s, and 120 s respec-

tively, or some other suitable polish times. The blanket rates of these materials is typically low

for single step polishing.

After the blanket barrier and dielectric wafer experiments, at least four patterned wafers

must be polished for different times including end-point time and overpolish: tep, tep + to, tep +

2to, and tep + 3to where to is based on the copper removal rate and a targeted amount of

equivalent blanket copper removed. The end-point time tep is the time it takes to clear the bulk

copper and expose sufficient barrier across the wafer. It is typically determined by a reflection-

based end-point detector. By the end-point time, dishing and erosion of the arrays would have

started. The time to should be larger than the variation in end-point times for the four different

wafers. In addition, it should be chosen such that excessive overpolishing is not done.

Excessive overpolish can lead to extraction of the wrong model parameter values. To monitor

process stability, it is recommended that at least two blanket copper wafers be polished in-

between the four patterned wafers.

6. Post-CMP Metrology: When all the above experiments are complete, post CMP measure-

ments must be done. First, the thicknesses on all polished blanket wafers must be measured.

Second, the copper thicknesses at several sites on all patterned wafers with copper residues

should be measured. The same sites measured before CMP, should be used for the post-CMP

measurements. Third, surface scans should be taken for certain arrays on all patterned wafers

with copper residue and all patterned wafers without copper residue (i.e., those that are over-

polished). These arrays should be the same as those used for the pre-CMP surface scans.

Finally the thickness of the dielectric in the field and some array regions of patterned wafers
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without copper residue should be measured. From these measurements, copper thickness

removed during the bulk copper removal stage, step height remaining during the bulk copper

stage, dishing and erosion in arrays after overpolishing, and erosion in field regions after over-

polishing, are obtained. This data should be filtered to remove questionable data values, and

the filtered data is used to extract the model parameters.

3.7.2 Extraction of Model Parameters

Extraction of model parameters involves fitting the model equations to the measured

experimental data subject to certain constraints. The constraints are intended to force the

parameters to take values in a given range in accordance with the physical interpretation of these

parameters. The extraction of the model parameters related to each of the three stages (with the

exception of the second intrinsic stage) is done independently. The methodologies for extracting

the model parameters in the three intrinsic stages are described below.

1. Extraction of model parameters in intrinsic stage one

The measured copper thicknesses removed in the array and field regions of the patterned

wafers, the measured step height remaining in the arrays of patterned wafers, the measured

copper thicknesses removed on the blanket copper wafers, the local electroplated densities for

the entire layout, the electroplated line widths and line spaces, are used for extraction of the

intrinsic stage one model parameters. These parameters are the effective blanket copper

removal rate re,, the planarization length LI, and the critical height Hex. Figure 3.28 shows a

flow chart detailing the extraction procedure. The overall extraction criteria is the

minimization of the RMS error between the filtered measured data and the model equations

for stage one, subject to certain constraints.
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Figure 3.28: Model parameter extraction procedure for intrinsic stage one

First, the blanket wafer data is used to extract the measured instantaneous blanket removal

rate effective blanket copper removal rate. This rate is a function of time as given in equation

3.53. The proposed empirical function has three unknowns (a], a2 , and Tr), all of which must

be extracted from blanket wafer data. The effective blanket copper removal rate is set equal to

the measured instantaneous blanket removal rate.

Second, an examination of the step height data should indicate whether or not Hex is

significant. If the step height versus time plot for the large feature sizes (e.g. 100 ptm line

width and 100 gm line space) is linearly decreasing until the step height is approximately

zero, then He, can be neglected. If the plot tends to change from linear to exponential at a
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relatively high step height, then Hex cannot be ignored. This parameter is a function of the

electroplated line width and space as proposed in equation 3.44 (for conventional copper CMP

processes). The function proposed has three unknowns: A, ac, and f 1. If Hex is significant,

then L1, A, cy, and B1, should be extracted from the patterned copper wafer data, after the

effective blanket copper removal rate is extracted from blanket copper wafer data. Otherwise,

only L, should be extracted from the patterned copper wafer data.

2. Extraction of model parameters in intrinsic stage three

The measured dishing and erosion in the array regions, the measured erosion in the field

regions, the local densities of the layout in discretized cells, the extracted effective blanket

copper removal rate (extracted in intrinsic stage one), the measured blanket dielectric data,

and the layout line width and line space information, are all used in extracting the model

parameters in intrinsic stage three. These parameters are the effective blanket copper removal

rate rcu (same as that extracted in stage one), the effective blanket dielectric removal rate r,

the planarization length L3 , the maximum dishing parameter dmax, and the edge rounding

factor W (if necessary). Figure 3.29 shows a flow chart detailing the extraction procedure in

intrinsic stage three. The measured dishing and erosion at end-point time (or the lowest

polishing time in the stage three experiments) are used as initial conditions. The sum of

squared errors between the model equations for intrinsic stage three and the rest of the dishing

and erosion data is minimized, subject to certain constraints.

The maximum dishing parameter is a function of line width and line space, as proposed in

equation 3.46. The analytic function proposed has three unknowns: B, X2 , and $2. In addition,

the edge rounding factor W is a function of line space, as proposed in equation 3.49. The
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function proposed has two unknowns: C and sc. Hence, a total of seven parameters (excluding

the blanket copper removal rate which is already known from stage one) need to be extracted.

Extracted blanket
copper removal rate
(from stage one): Model equations forrcu: a1, a2 , and Tr intrinsic stage two

Minimize RMS
Measured data: error subject to Layout details
- Dishing constraints
- Erosion - Line widths
- Blanket dielectric - Line spaces

wafer data - Local discretized
-x,y coordinates of layout densities

measured dishing
and erosion sites

L2
rox

dmax: B, a2 , P2

W: C, se

Figure 3.29: Model parameter extraction procedure for intrinsic stage three

It is important to note that the measured instantaneous dielectric removal rate (i.e. the rate

extracted from blanket dielectric wafer data) is typically very small in single step copper CMP

processes. It is therefore recommended that the effective blanket dielectric removal rate be

treated as an unknown constant, and this constant value is one of the seven parameters that are

extracted from the patterned wafer data. When the edge rounding effect is included in the

model equations, the constant extracted effective blanket dielectric rate tends to be closer to

the measured instantaneous blanket dielectric removal rate.

3. Extraction of model parameters in intrinsic stage two

The model parameters for intrinsic stage two are obtained from the extracted parameters

in stages one and three, and the measured blanket barrier and dielectric data. The planarization
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length and the maximum dishing parameter are the same in stages two and three as discussed

in section 3.4.2. In addition, the effective blanket copper removal rate in stage two is equal to

that in stages one and three. If edge rounding is taken into consideration, it is assumed that the

barrier film experiences the same edge rounding phenomena as the dielectric film, given that

they are both up-areas in a single step process. Hence, the edge rounding factor W is the same

in stages two and three. The only remaining unknown parameter in stage two is the effective

blanket barrier removal rate rb.

Using the extracted model parameters in stage three, the times at which the barrier is

cleared at the array and field sites can be computed. These times correspond to the times when

erosion is equal to zero at the sites of interest. In addition, the dishing at the array sites for

these times can also be computed. Using the extracted model parameters in intrinsic stage one,

the times at which the bulk copper is cleared at the array and field sites, and the values of any

pre-dishing that occurs when the bulk copper is just cleared at the array sites, can be

computed. These computed values should be sufficient to estimate the effective blanket barrier

removal rate rb.

The procedure outlined above to estimate the effective blanket barrier removal rate is

idealistic and impractical. The thinness of the barrier film, the lack of knowledge of the exact

barrier film thickness (especially in the array regions), extraction errors in stages one and

three, and random errors in the measured data, often make the computed values inconsistent.

The computed time when the barrier is cleared can be less than the computed times when the

bulk is cleared at the same sites. This is inconsistent because the times when the barrier is

cleared at all sites should equal the clearing time of the bulk at such sites plus the time it takes

to clear the barrier at the same sites. To avoid this inconsistency, it is recommended to use a
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first order approximation based on measured to extracted blanket removal rate ratios, to

extract the effective blanket barrier removal rate. It is assumed that the ratio of the measured to

extracted blanket dielectric removal rate in stage three, is equal to the ratio of the measured to

extracted blanket barrier removal rate ratio in stage two. This assumption is mathematically

expressed in equation 3.56, where rox is the measured instantaneous blanket oxide removal

rate, r,, the extracted effective blanket dielectric removal rate, rb the measured instantaneous

blanket barrier removal rate, and rb the extracted effective blanket barrier removal rate. One of

the constraints used in the extraction of the effective blanket dielectric removal rate ensures

that the effective blanket barrier removal rate extracted as in equation 3.54 is less than the

extracted effective blanket copper rate (recall that a typical single step copper CMP process

uses a slurry and process settings that have a higher blanket copper removal rate than the

blanket barrier removal rate).

In this thesis, it is assumed that the barrier film is removed instantaneously in array

regions because the exact initial thickness of the barrier in these regions is usually unknown.

Thus, the clearing of the barrier is only an issue in large field regions where it is known that

the initial barrier thickness is equal to the norminal deposited barrier thickness.

r rbox b

ox rb (Equation 3.54)

3.7.3 Checking the Accuracy of the Model Parameter Extraction Procedures

The model parameters in intrinsic stages one and three are extracted independently using

different data sets. To check the accuracy of the extraction procedure, at least two things must be

done. First, the extraction in each stage (stages one and three only) must be checked for accuracy
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independently. In stage one, this means using the extracted model parameters to predict the

copper thicknesses at the field and array sites not used in the model parameter extraction

procedure. In stage three, it means using the extracted model parameters to predict the dishing and

erosion values at the array sites, and the erosion at the field sites, not used in the extraction of the

stage three model parameters. It is important to not use the data for all measured sites, for

extraction of model parameters, if possible.

Second, a full simulation of the entire process should be done. The extracted model

parameters in all three intrinsic stages are used to simulate the time to clear the bulk, the dishing

and erosion at several sites on the die. The dishing and erosion simulation results should be

compared to the measured dishing and erosion. Running a full simulation involving all the

intrinsic stages is a good way of testing how well the model parameters, extracted independently

in the stages, fit together to capture the pattern dependent evolution of the entire process.

3.8 Model Fits versus Experimental Data

In this section, we test the derived model and the proposed calibration methodology for

single step copper CMP processes against experimental data. Two sets of single step copper CMP

process experiments are used for this purpose. These two sets of experiments use the same polish

process settings, the same slurry, but different types of pads. The dielectric used is oxide and the

barrier used in tantalum nitride (TaN). Unfortunately, at the time these single step copper process

experiments were performed, there was no access to equipment for accurately measuring copper

thickness on patterned wafers. Furthermore, no end-point sensor was available to conduct polish

experiments to capture the bulk copper clearing process. Thus, only overpolish patterned wafer
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experiments, and blanket wafer experiments were done. The details of the experiments are given

in tables 3.4 - 3.8.

With no experimental data for extracting the model parameters in stage one, the emphasis

in this section is on extracting stage three model parameters only. The accuracy of the extraction

in stage three is tested by using the extracted parameters to predict the dishing and erosion amount

for the test structures not used in the extraction procedure (where data is available for such

structures). Extraction of intrinsic stages one and two parameters and a full simulation of the

entire process will be done when the model is applied to multi-step copper CMP processes in

chapter 5.

Table 3.4: Experimental description

Experi- Tetms on Sed slurry
mental set Tsmak ToPd Sury Down Speed flow ratet set Tool Pad slurry force (psi) (rpm) (l/min)

se (mllmin)

1 854 Mirra Stacked EPC-5001 4 75 175

2 854 Mirra Solo EPC-5001 4 75 175

Table 3.5: Blanket wafer experiments in experimental set # 1
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Wafer # Wafer type Polish time (s)

C-1 Copper 10

C-2 Copper 15

C-3 Copper 30

C-4 Copper 40

C-5 Copper 50

C-6 Copper 60

C-7 Copper 70

B-i Barrier 90

B-2 Barrier 120

D-I Oxide 90

D-2 Oxide 120



Table 3.6: Patterned copper wafer experiments in experimental set # 1

End-point Total polish Wafer status
Wafer # time time after CMP

(s) (s)

P-1 N/A 92 Overpolished

P-2 97 97 Overpolished

P-3 97 102 Overpolished

P-4 97 107 Overpolished

Table 3.7: Blanket wafer experiments

Table 3.8: Patterned copper wafer experiments

in experimental set # 2

in experimental set # 2
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Wafer # Wafer type Polish time (s)

C-8 Copper 12

C-9 Copper 18

C-10 Copper 26

C-11 Copper 36

C-12 Copper 53

C-13 Copper 64

C-14 Copper 79

B-3 TaN 90

B-4 TaN 120

D-3 Oxide 90

D-4 Oxide 120

Wafer # End-point Total polish Wafer status after
time (s) time (s) CMP

P-5 153 153 Overpolished

P-6 153 158 Overpolished

P-7 153 164 Overpolished

P-8 153 173 Overpolished



3.8.1 Model Parameter Extraction in Intrinsic Stage Three, for Experimental

Set # 1

Using the extraction procedure described earlier, the model parameters are extracted for

two cases: No edge rounding taken into account, and edge rounding taken into account. The

functionality used for dmax is as given in equation 3.46, and that used for V when edge rounding is

taken into account is as given in equation 3.49. The effective blanket dielectric removal rate is

treated as a constant, and it is allowed to float in a small range that includes the measured

instantaneous blanket dielectric removal rate.

The analysis of blanket wafer data given in equations 3.53 and 3.54 is applied to the

measured blanket copper data, to extract the effective blanket copper removal rate (the effective

blanket copper removal rate is set equal to the measured instantaneous blanket copper removal

rate). The extracted effective blanket copper removal rate ru is given in table 3.9.

The array sites on the MIT-SEMATECH 854 mask used in the extraction of the

planarization length L3, the maximum dishing dnax, the effective blanket dielectric removal rate

r0,, and the edge rounding factor y, are indicated on the mask in figure 3.30. The values of the

extracted model parameters are summarized in table 3.9, and the fits between the model equations

and the measured data for the array sites used in the extraction procedure are illustrated in figures

3.31 - 3.32. It is clear from the table 3.9 that when the edge rounding factor W is not included in

the model equations, the extracted effective blanket dielectric removal rate is almost six to ten

times the measured blanket dielectric rate (the measured rate is less than 1 A/s). As explained

earlier, the model equations compensate for the absence of this factor by averaging the edge

rounding effect over the available line space range and including the averaged effect in the

extracted value of r0,. This leads to a minimum RMS error between the data and the model

106



equations.

Table 3.9: Extracted model parameters in intrinsic stage three, for experimental set # 1

reU
(A/s) dmn (A) RMS

A!' Error
a, a2  tr (s) (gm) B sr(A)

(Als) (A) (s) (A) 2 C m)

159 1176 7.7 4.34 1309 294.2 0.303 0.292 N/A N/A 107

159 1176 7.7 2.22 1498 333.0 0.303 0.259 3.04 22.5 70

Figure 3.30: Array

111 1 i H IM *f I 1

EMI ii

sites used in the extraction of model parameters for stage three

To test the accuracy of the extraction, the extracted model parameters for stage three are

used to predict the dishing and erosion for several array sites not used in the extraction procedure.

These array sites are numbered on the test mask used, in figure 3.33. The measured dishing and

erosion at the minimum polish time are used as the initial condition in intrinsic stage three, for

predicting the dishing and erosion at other polish times in intrinsic stage three. The predicted

results match the measured data well as shown in figures 3.34 - 3.35.
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Figure 3.31: Model fit versus data for experiment set # 1, for extraction without
edge rounding

3.8.2 Model Parameter Extraction in Intrinsic Stage Three for Experimental

Set # 2

The extracted model parameter values for experimental set # 2 are summarized in table

3.11. The blanket copper wafer data is used to extract the effective blanket copper removal rate

rc, with the same methodology applied to the data for experimental set # 1. The same array sites

used in experiment set # 1 are used in the extraction of the model parameters for experimental set

# 2. Figures 3.40 - 3.41 show the model fits versus the data for the array sites used in the

extraction.

108

-.- Data
-aModel Fit

2000

z1500
ISo

C;

0 1000

500

S

215

a
5



a

'S

a

0 5 10 15
Array site number

t = 97 s
.5

2500

-F- Data
2000- - Model Fit

1500-

1000

500 -

0 5 10 15 20 2
Array site number

2500

-e- Data

2000 -- Mode Fit

1000-

500

2500-

2000

1= 102 s .2l 100

1000

SOOF

20 25

Jwuu

30 0 --a- Data........ ......
3000 - Model Fit

2 5 0 0 - -- --------- -- - - - - - - - - -

2 0 0 0 - -- - - ---- ------ ---- - --- .--- .-- .-.-

1500 -

1 0 0 0 - -- - - -- -- -- - - --- - - ---

5 0 0 - - - - - - - - - - - -

0 5 10 15 20 2
Array site number

'nnn.

-41-- Data
-y Model Fit V

-

----. ...-. ..--. ..-. --. ..-. .-. -- - --.-- -- -- - - -.-- - --

- -- -.-.-.-.-.-.- -.

0 5 10 15
Array site number

20
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12 --U

Figure 3.33: Array structures used in testing the accuracy of the extraction in stage three
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Figure 3.34: Model prediction versus data in experimental set # 1, to test the accuracy of the
extraction (with the edge rounding effect included) procedure in intrinsic stage three

Table 3.10: Intrinsic stage three extracted model parameter values for experimental set # 2

rcu (A/s) rox d RMS

( 3 dmax () Error
(sm) A

a, (X/s) a2 (A) r (s) s) B (A) CC2 [2 C sC (m) (A)

115 2373 15.0 4.34 1385 337.0 0.174 0.240 N/A N/A 74

115 2373 15.0 0.9 1529 372.4 0.188 0.185 7.4 15.4 46
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Figure 3.35: Model prediction vs. data in experimental set # 1, to test the accuracy of the
extraction (with the edge rounding effect neglected) procedure in stage three

3.9 Limitations of the Density-step-height Model

The density-step-height model as formulated in this chapter ignores some effects observed from

experimental data. Hence, it cannot be used to explain these effects or any impacts they might

have on dishing and erosion. Two of the limitations of the density-step-height model are discussed

in sections 3.9.1 and 3.9.2, with suggestions of how these effects can be included in the

framework of the model.
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3.9.1 The "Ear" or "Array-edge" Effect

In conventional copper CMP processes, data shows that erosion at the edge of an array is

sometimes greater than erosion at the center of the array. This effect which is termed the "ear

effect" or the "array-edge" effect in this thesis, is particularly prevalent for small feature and low

density array structures surrounded by large field areas. Figure 3.38 shows a profilometer scan for

an array, where the array-edge or ear effect is present.

There are very few publications in the CMP literature that specifically mention this effect

[1, 6]. In one of these publications, the ear effect is attributed to pad rebounding [6]. However, this

view is not supported by experimental data. When a different slurry is used with the same pad,
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Figure 3.37: Model fits versus data (experimental set 2) for extraction with edge rounding,
in intrinsic stage three

this effect is not observed. For example, the Hitachi and the Fujimi copper CMP slurries

do not show this effect. Experimental data for the Hitachi slurry is shown in chapter 4.

The ear effect seems to be pattern dependent. While it occurs for small feature, low to

medium density array structures, it is not observed on high density array structures. For high

density array structures, the center of the array erodes more than the edge. This is purely due to

the density effect, according to the density-step-height model. Figure 3.39 shows a profilometer

scan of a high density array (9 gm line width, and 1 gm line space). The ear effect is not present

for this array. In addition, it has been privately reported that this effect is not observed when

dummy fills are inserted into a layout.
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The observations from experimental data lead to the speculation that the ear effect is a

pattern dependent chemical effect that results from an interaction among the barrier, copper, and

the slurry [1]. Experimental data suggests that the larger the amount of barrier available in a local

region (e.g a large field region), the more prevalent the ear effect. This seems to explain why the

ear effect is seen on layouts without dummy fills while it is not seen on those with. On layouts

with dummy fills, no region can be called a field region. They all have dummy metals, thereby

decreasing the amount of barrier in such regions.
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line dishing
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Figure 3.40: Profilometer scans showing dishing of sub-micron isolated lines

The idea of the ear effect being related to the amount of barrier in a local region, might be

used to explain why an isolated copper line as small as 0.25 jim or even 0.18 jim dishes.

Generally, it might be partly responsible for the increased dishing of isolated lines compared to

array lines with the same line widths. Figure 3.40 shows the profilometer scans of two arrays with

line widths of 0.25 gm and 0.5 jim respectively. The arrays have line spaces equal to their line

widths. Each array has an isolated line of the same width as the lines in the array, located about

500 pim from the array. The figure clearly shows that the dishing of the isolated line is greater than

that of the array lines, for both arrays. The ear effect might shed some light on why dmax and Hex
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are not identically equal. It was stated earlier that while a 0.25 pm isolated line dishes, meaning

that it has a non-zero dnax, a 0.25 gm isolated line has an Hex of zero.

The ear effect can be incorporated into the density-step-height model by making the

effective copper blanket removal rate and the effective barrier blanket removal rate pattern

dependent, i.e., they become functions of width and space or of the amount of barrier in a local

region. There is definitely a length scale associated with the ear effect as shown in figure 3.38.

This length scale might be used to define the extent of the local region. Making the effective

blanket copper and barrier removal rates pattern dependent functions introduces additional

modeling parameters, and therefore complicates the extraction of model parameters. Further

experimental work is needed to fully understand the ear effect, so that it could easily be

incorporated into a copper CMP model.

3.9.2 Excessive Overpolishing

According to the density-step-height model, the dielectric erosion increases linearly with

polish time after steady-state dishing is achieved. Steady-state dishing is achieved very early in

stage two or three, in conventional copper CMP processes. This means that erosion should be

mainly linear with time in the overpolish stage. Hence, if excessive overpolishing is done, the

erosion for a high density array surrounded by a field region is projected to become excessively

high. This is not supported by experimental data.

Figure 3.41 shows a plot of dielectric erosion versus polish time for an array structure with

a line width of 100 gm and a line space of 1 pm (effective copper pattern density of

approximately 99%). The data indicates that the rate of erosion decreases if the polishing

becomes excessive. The data in the plot is associated with the first experimental data set used to

test the density step height model in section 3.8. Two extra wafers are polished for what
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constitutes excessive overpolishing. Since the density-step-height model has already been

calibrated for this experiment, excluding the excessively overpolished data points, figure 3.46

compares the model prediction to the experimental data with the excessively overpolish data

points included. The figure indicates that the model over-predicts erosion for the excessively

overpolished times.
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Figure 3.41: Plot of erosion versus polish time showing model failure when excessive
overpolishing is done

Generally, the density-step-height model over-predicts erosion when the polishing is

excessive because it fails to take into account the impact of long range height variation on the

effective polishing pressure. When dealing with an array that is surrounded by large field regions,

the array erodes faster than the field regions. As the level of the dielectric in the array recesses

well below the level of the dielectric in the field regions, the pressure exerted by the polishing pad

on the dielectric in the array as a whole decreases, while that on the dielectric in the field region

increases slightly. As the pressure on the dielectric in the array decreases, the rate of erosion

should also decrease. Ultimately, the rate of the dielectric erosion in the array will be in steady-

state with the rate of the dielectric erosion in the field region. A removal rate diagram with the
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field being the up-area and the array being the down-area can be used to explain this effect, with

the complication that there is a need to identify large region "up" and "down" areas on the layout.

An alternative is to include this effect in the model by integrating the density-step-height model

with contact mechanics to account for pressure in different regions of the chip; this approach is

discussed in chapter 6 of this thesis.

3.10 Summary

In this chapter, the density-step-height model for single step copper CMP processes is

formulated and tested against experimental data. The model uses blanket wafer experiments to

establish an empirical relationship between material removal rate and polish pressure. It then uses

Hooke's law to establish a relationship between pressure and step height (or dishing). The

removal rate versus pressure relationship and the pressure versus step height relationship are used

to formulate removal rate diagrams. Removal rate diagrams are plots of removal rates versus step

height (or dishing). From these diagrams the model equations are obtained and used to compute

the evolution of copper thickness, the time to clear the bulk copper, and the evolution of dishing

and erosion. The model introduces the parameters dax and Hex that relate dishing and the

evolution of step height to the layout features. The model as formulated in this chapter ignores the

"ear" effect, and fails to take into account long range height variation when apportioning polish

pressure. The latter is rectified in chapter 6 of this thesis.
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Chapter 4

Application of the Density-Step-Height Model
to Non-Prestonian Copper CMP Processes

The density-step-height model as formulated in chapter 3 captures certain effects -

pressure as function of step height or dishing, pressure as function of pattern density, removal rate

as function of pressure, and acceleration in erosion due to localized feature scale pressures - that

appear to be important in most, if not all, copper CMP processes. The framework of the model has

some flexibility and extendability in the sense that the dependencies of dishing, erosion, and other

parameters, on line width, line space or pattern density can be adapted to account for a variety of

effects seen in different copper CMP processes. In this chapter the framework of the density-step-

height model introduced in chapter 3 is extended to model non-Prestonian abrasive-free copper

CMP processes. For simplicity, a single step abrasive-free copper CMP process is emphasized. In

section 4.1, a brief overview of abrasive-free copper CMP processes is given. This is followed by

the formulation of the model in the three intrinsic stages of such processes, in section 4.2. In

section 4.3, the accuracy of the model is tested against experimental data. Finally, the chapter

concludes in section 4.4 with a summary.

4.1 An Overview of Abrasive-Free Copper CMP Processes

In an attempt to reduce dishing, erosion, and scratching in copper CMP processes,

consumable companies in collaboration with IC manufactures and research institutions are

developing abrasive-free copper CMP slurries. These slurries have no abrasive particles in them.
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This suggests that chemical reactions in combination with soft friction are responsible for

material removal when these slurries are used. They are used in conjunction with conventional

polishing pads and conventional CMP tools, in what has been termed "Abrasive-Free Copper

CMP" (AFP).

Hitachi Chemicals Inc., was one of the first companies to publish experimental results on

abrasive-free copper CMP processes. Their 430-1 slurry shows great promise in reducing dishing

and erosion [14-16]. One interesting property of the 430-1 slurry is that different concentrations

of the chemicals in the slurry lead to different removal rate versus pressure relationships. Figure

4.1 shows the removal rate versus pressure relationships for three different abrasive-free slurry

solutions [14-16]. In addition, different removal rate versus pressure dependencies can be

obtained on different platforms using the same slurry, as illustrated in figure 4.2 [43]. In theory,

therefore, it is possible to manipulate the slurry in such a way that an ideal removal rate versus

pressure relationship can be obtained - ideal from the point of view of planarization, and dishing

and erosion minimization.
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Figure 4.1: Removal rate versus down force for different abrasive-free slurry solutions
(from [16])
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The advantages of abrasive free copper CMP processes are substantially improved dishing

and erosion performance, reduced solid content in effluent, and reduced scratching during CMP.

The challenge for such processes is that in some cases, it may be difficult to clear the copper in

certain regions on the die, and the wafer in general. It is important to note that abrasive-free

copper CMP processes are at the final stages of development. They are envisioned to be used in a

two-step polish process framework, where in both polish steps would use abrasive-free processes,

or the first step would use an abrasive-free process and the second a conventional copper CMP

process or even an etching process [14-16].
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Figure 4.2: Removal rate vs. pressure curves for 430-1 Hitachi slurry on different CMP tools
(from [43])

4.2 Model Formulation for Single Step Abrasive-Free

Copper CMP Processes

Figure 4.3 shows an abstraction of the removal rate versus pressure relationships for

copper, dielectric, and barrier, approximating the relationships observed for a particular mixture

of the Hitachi 430-1 abrasive-free slurry. The relationship for copper is non-Prestonian, and
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comprises two linear regions. There exists a threshold pressure PO at and below which the copper

removal rate is zero, and a breakpoint pressure P2 at which the slope of the copper removal rate

versus pressure curve changes. At an applied pressure of P1 , the instantaneous blanket copper

removal rate is rc,, and the instantaneous blanket barrier and oxide removal rates are equal to rx.

The removal rate versus pressure relationship for the barrier and the dielectric (oxide in this case)

is approximately Prestonian. These removal rate versus pressure relationships are used in

formulating the density-step-height model in the three intrinsic stages of a single step abrasive-

free copper CMP process below.

Copper
r

Oxide/Barrier

ro

p10 I P2

Pressure

Figure 4.3: Approximate removal rate versus pressure relationship

4.2.1 Model Formulation in Intrinsic Stage one: Bulk copper polishing

Figure 4.4 shows the relationship between pressure and step height in intrinsic stage one.

In the figure, pcu is the electroplated copper density, HO is the step height which corresponds to a

pressure of PO on the down-area, and Hex is the critical step height. By combining this relationship

with that illustrated in figure 4.3, the removal rate diagram for intrinsic stage one of the single step

abrasive-free copper CMP process is obtained, as illustrated in figures 4.5 - 4.6. If the quantity P11
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PCU is greater than or equal to the break pressure P2, the removal rate diagram is given in figure

4.5. Otherwise, the removal rate diagram is given in figure 4.6. From the removal rate diagrams,

the removal rate equations can be derived, and used to solve for the step height evolution, the

copper thickness evolution, and the time it takes to clear the bulk copper at any spatial position of

interest.

From figures 4.5 and 4.6, it is clear that the step height at and above which the removal

rate on the down-area becomes zero is H0 , as opposed to the critical step height Hex. This is

because of the occurrence of a non-zero positive threshold pressure P0 below which the copper

removal rate is zero. The parameter Ho is related to Hex as given in equation 4.1. Having Ho less

than Hex implies that this abrasive-free process has a higher planarization efficiency than a

conventional copper CMP process with a similar Hex value. The planarization efficiency is a

measure of the local planarization capability of the process, and is defined as one minus the ratio

of the amount removed in the down-area and that removed in the up-area.

P1C

Copper
up-area

P1

P0__ - -Copper
down-area

Step height

Figure 4.4: Pressure versus step height relationship
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4.2.2 Model Formulation in Intrinsic Stage Three: Overpolish Stage

Figure 4.7 shows the pressure versus dishing relationship in intrinsic stage three of an

abrasive-free copper CMP process, where do is the dishing associated with a pressure of PO, (Dcu is

the effective layout copper pattern density, and P1 is the applied pressure. Combining this

relationship with the removal rate versus pressure relationship illustrated in figure 4.3 gives the

removal rate diagram illustrated in figure 4.7. It is important to note that this removal rate diagram

P 1

1 - c

P i-

po- I I
I I

d I
Dishing

max

Pressure versus dishing relationship in intrinsic stage three

Cu

0.)

C3

r

r
- - - - - - - -- 1 - DC

Cu

d0 dmax
Dishing

Removal rate diagram for intrinsic stage three of abrasive-free process
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is the same as that for intrinsic stage two of this process because the removal rate versus pressure

curves for both the dielectric and the barrier are the same for this abrasive-free process.

As seen in figure 4.8, the dishing at which the copper removal rate becomes zero is less

than the maximum dishing value of dmax. This is due to the non-zero threshold pressure, similar to

the case of the critical step height discussed earlier. It implies that the steady-state dishing for this

process is much less than that for a conventional copper CMP process which has a similar blanket

copper removal rate and similar maximum dishing values. The maximum dishing dmax is related

to do as given in equation 4.2. The removal rate diagram is expressed mathematically in equations

4.3 - 4.4, where RRO is the dielectric removal rate, and RRCU is the copper removal rate. From

these equations, the amount of dishing DC, and erosion EOX can be obtained as functions of time,

as in equations 4.5 - 4.12. The variable t3 represents the time it takes to clear the bulk copper and

the barrier at a spatial location of interest, t represents the polish time, and d3 represents the

dishing when the barrier has just been cleared at the location of interest.

P I- P 0
0 P IP max (Equation 4.2)

D
r Cu I-cu O<D u< d0

RR = u d0c (Equation 4.3)

cu c O D max

(D D
RR =r +r cu Cu 07D Jdox ox ox I _<bcui d cu max (Equation 4.4)

126



(Equation 4.5)

=RRox (Equation 4.6)

(Equation 4.7)
t t 3

-(t - t 3 )

T 3
-ij

d0 d (1 -iCU)

rcud 0 ( - cu) + r dmaxI

(Equation 4.8)
t >t

(Equation 4.9)cu

Dss =(rcu- r )T3

r ci)ox cu D
OX d 1- I ssmax cul

r (D_ ox cu
X 2= x cu (D -d 3 )t 32 d m -axu ss 3 3D

(Equation 4.10)

(Equation 4.11)

(Equation 4.12)

4.2.3 Model Parameters and Model Calibration Methodology

The modeling parameters for this single step abrasive-free process are summarized in

table 4.1 and they are similar to those for a single step conventional copper CMP process
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discussed in chapter 3. The effective blanket removal rates are instantaneous removal rates, with

the same time dependence as given for conventional copper CMP processes. The edge rounding

factor V has the same functionality as in chapter 3 (it is not included in the equations for dishing

and erosion above). In addition, the functional dependence of the critical step height Hex and the

maximum dishing dax on layout features are not necessarily the same as those for conventional

copper CMP processes, as discussed in section 4.3. The methodology for extracting the model

parameters is the same as that described earlier for single step conventional copper CMP

processes.

Table 4.1: Model parameters for single step abrasive-free copper CMP processes

Intrinsic stage one Intrinsic stage two Intrinsic stage three

Name Name Name

riu Effective blanket rcu Effective blanket rcu Effective blanket cop-
copper removal rate copper removal rate per removal rate

L, Planarization length rb Effective blanket rox Effective blanket
barrier removal rate dielectric removal rate

Hex Critical step height L3  Planarization length L3  Planarization length

dmax Maximum dishing dmax Maximum dishing

Edge rounding W Edge rounding factor
factor

4.3 Model Fit versus Experimental Data

To test the accuracy of the model for abrasive-free copper CMP processes, a single step

copper CMP experiment is conducted using the MIT-SEMATECH mask 854, the Hitachi 430-1

slurry, and an IC1000 solo pad. The threshold pressure PO, applied pressure P1 , and breakpoint

pressure P2 are 3.0 psi, 4.7 psi, and greater than 6.0 psi, respectively. The rest of the experimental
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details are given in tables 4.2 - 4.3. At the time the experiments were conducted, there was no

access to equipment that measured copper thickness on pattern wafers accurately. Consequently,

only step height and recess measurements are used to capture the evolution of the bulk copper

polishing; step height and recess data are insufficient to fully extract the model parameters in

intrinsic stage one. Therefore, no extraction of model parameters is done for the first intrinsic

stage. Instead, the emphasis is on the overpolish stage.

Table 4.2: Blanket wafer abrasive-free CMP experiments

Wafer number Wafer material Polish time (s)

T-1 Copper 7

T-2 Copper 17

T-3 Copper 33

T-4 Copper 50

T-5 Copper 60

S-1 Oxide 90

S-2 Oxide 120

U-1 Barrier (TaN) 90

U-2 Barrier (TaN) 120

Table 4.3: Patterned wafer abrasive-free CMP experiments
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Wafer End-point Total polish Wafer status after CMP
number time (s) time (s)

Q-6 143 143 Overpolished

Q-7 142 152 Overpolished

Q-8 141 161 Overpolished

Q-9 142 172 Overpolished

Q-10 143 203 Overpolished

Q-11 142 262 Overpolished



4.3.1 Experimental Data and Model Parameter Extraction

The data for the amount removed on the blanket copper wafers shows that the effective

blanket copper removal rate (i.e. the instantaneous blanket copper removal rate) is a constant with

a value of 86.7 A/s. This confirms what was stated earlier in chapter 3 that depending on the

polishing tool used, the instantaneous rate can be time dependent or not. The measured

instantaneous removal rates for the dielectric and the barrier are both less than 0.5 A/s, implying

that the slurry hardly removes the dielectric and barrier material. As a result of this, significant

overpolishing of the patterned copper wafers had to be done to get a reasonable amount of

erosion, which is necessary for extracting the correct planarization length in the third intrinsic

stage.

The experimental data for the overpolish stage show that dishing is a function of line

width. The larger the line width, the greater the dishing. The same effect is observed in

conventional copper CMP processes. It is believed to be due to the fact that the larger the line

width, the easier it is for the pad to compress into the line and exert pressure on the copper.

Figures 4.9 shows profilometer scans for two array structures that have the same layout density,

but different line widths. The structure with the larger line width has the larger dishing. Figure

4.10 plots dishing versus line width for structures with 50% layout pattern density. The figure

shows that the rate of dishing with respect to line width decreases as the line width increases.

In addition to the line width dependence, the data also suggest that dishing depends on

copper pattern density, and that the density effect seems to be dominant. Figure 4.11 shows the

profilometer scans of two array structures with the same line width, but different layout copper

density, and figure 4.12 shows a plot of dishing at the center of an array versus copper layout

density. These figures indicate that the higher the copper layout density, the higher the dishing.
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This dependence is the complete opposite of what is observed in conventional CMP processes.

There, the higher the copper density, the lower the copper dishing. The apparent density

dependence of dishing for this abrasive-free process, is contrary to expectation particularly since

the data also suggest that the higher the pattern density, the higher the dielectric erosion, as

illustrated in figure 4.13. Clearly then, this density dependence of dishing needs careful

examination.
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Figure 4.9: Profilometer scans for two arrays with same density, but different line widths:
(a) Line width = 1 gm; Line space = 1 pm (b) Line width = 10 pm; Line space = 10 pm

500-

400-

.S300-
0

200-

100 -

0 20

Figure 4.10: Measured dishing versus line

40 60 80 100
40 60 80 100
Line width (um)

width for arrays with copper pattern density of 50%

131

0.0

0
E

'A -0.01

-0.02

-0.03

-0.04

-0.05-

2500

- - - - - -- -

-...... ........ - .... --....-...-...-...-.

002

rmn.

I



For any array, the data shows that dishing peaks in a finite region at the center of the array.

The size of this finite region remains relatively unchanged for all the arrays. The size of the finite

region, and its distance from the edge of the array indicates that the density length scale for

dishing is approximately 500 gm. In an earlier publication [39], this length scale was called the

planarization length, and the apparent density effect was interpreted as a layout pattern density

effect. Upon further examination of the data, it is likely that the interpretation in the earlier

publication was inaccurate.

Is lated line Isolated lineo004
dishing dishing 002 Center dishing

E
0 .0 4 -. -... -.... -........ -. ...-4
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Figure 4.11: Profilometer scans of two arrays with same line width, but different densities:
(a) Line width = 50 pm; Density = 50% (b) Line width = 50 gm; Density = 99%

The length scale of 500 pim is far shorter than the millimeter range length scale expected

for the planarization length. This suggests that the apparent density dependence of dishing is not

related to the long range pad deformation, which is captured by the planarization length. It is

therefore misleading to call it a pad pressure related density effect, which relates the geometric

up-area and geometric down-area ratio to pressure with a planarization length notion. Instead, it

seems to be a chemical effect that occurs in the presence of an applied force. It is conjectured to

be linked to the formation of Cu2+ ions as a by-product of the Hitachi 430-1 slurry [44]. The
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higher the amount of copper within the chemical related length scale (500 pm in this case), the

higher the concentration of Cu 2+ ions and the higher the amount of dishing. How exactly the

presence of Cu2+ ions result in higher dishing is not clear. The fact that dishing reaches a steady-

state in this process means that static etching is negligible and not responsible for this effect.

To account for the conjectured chemically induced dishing effect (which occurs in the

presence of pressure), a new variable 0 which represent the ratio of the copper in a region (whose
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size is determined by a chemically induced dishing length scale Lc, which is 500 pm in this

experiment) is introduced. The higher the ratio of copper at any spatial position, the higher the

dishing. The longer the chemically induced dishing length scale, the more non-uniform the

dishing profile within an array, and vice-versa. This length scale can be obtained from observing

the shape of the dishing profile for several arrays of lines. Hence, the introduction of this new

variable does not complicate the model parameter extraction methodology.

This conjectured chemical effect is incorporated into the density-step-height model

through the model parameter dmax. An empirical function relating dax to the line width w (in

microns) and the copper ratio 0 is proposed in equation 4.13. In this equation, u2 and B2 are

unitless constants between zero and one, B is a constant in units of angstroms and is greater than

or equal to zero, and wo is a normalization line width of 1 gm. To avoid having an unrealistic

value of infinity for dax when the parameter 0 is equal to one, as suggested by the proposed

function, the proposed function is modified as given in equations 4.14 - 4.15. The variable 8 is a

unitless constant, and it is set equal to 0.01 in this thesis. The functionality of dax captures the

sub-linear dependence of dishing on line width, and the power-like dependence of dishing on

copper ratio.

d = B -2 1 0
max (w0) 1-0; (Equation 4.13)

02 0

d = B( w 2( 1

max W 0 16) (Equation 4.14)

~ 0 06

10-6 0 >6 (Equation 4.15)
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If the conjectured chemically induced effect affects the value of dmax, then within the

framework of the density-step-height model, it must also affect the critical step height Hex in

intrinsic stage one. In particular, the functional dependence of Hex on layout parameters is

typically the same as that of dmax. In intrinsic stage one, the copper ratio is one everywhere

because there is bulk copper everywhere (in up and down areas). This implies that the only layout

parameter on which Hex is dependent is line width, as proposed in equation 4.16, where a is a

unitless constant between zero and one, w is line width in microns, wo is a normalization line

width of 1 pm, and A is a constant in units of angstroms and is greater than or equal to zero.

H = A 1
ex (W0 (Equation 4.16)

Using the proposed functionality for dmax, the blanket wafer data, and the dishing and

erosion data measured from the overpolished wafers, the model parameters are extracted as

summarized in table 4.4. The model parameter rox (instantaneous blanket dielectric removal rate)

is floated in a restricted range during extraction. The arrays used in the extraction of the model

parameters are marked on the test mask used in the experiment, in figure 4.14. The model fits

versus the measured data for the extracted values of the model parameters are shown in figures

4.15 - 4.17. The model predicts the trend in the data accurately, and fits the data to within

measurement errors.
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Table 4.4: Extracted model parameters in intrinsic stage three of abrasive-free copper CMP
process (rb is obtained from r, as described in chapter 3)

rcu (A/s) dm (A) 1 RMS
aIa r ( s) ( sError, a2 Tr (As) (ks) (A) B (A) CC2 P2 C s (A)

(A/s) (A) (s)

86.7 0 0 0.34 0.34 1269 557 0.17 0.29 N/A N/A 78.1
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Figure 4.14: Array sites used in the extraction of model parameters
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4.4 Summary

The framework of the density-step-height model is applied to non-Prestonian processes.

Specifically, the model is formulated for a single step abrasive-free copper CMP process, and

tested against experimental data for the overpolish stage. Experimental data shows that abrasive-

free processes are different from conventional copper CMP processes. First, the absence of

abrasives makes the effective blanket dielectric removal rate very small. This leads to very low

erosion, even after significant overpolishing. Second, dishing depends on line width and the

amount of copper within a specific region. The latter effect, speculated to be a chemical effect in

the presence of pressure, dominates the amount of dishing.
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Chapter 5

Application of the Density-Step-Height Model
to Multi-Step Copper CMP Processes

Single step copper CMP processes have been replaced in practice with multi-step copper

CMP processes, where different consumable sets and different polish process parameter settings

(down force and relative speed) are used at different phases of the polishing process. A typical

multi-step copper CMP process has three steps. In such a process, the first step is intended to

remove a large amount of the bulk copper, while leaving the remaining copper film highly

"planarized". The second step is intended to clear the remaining bulk copper across the entire

wafer, while keeping dishing and erosion low. This step uses a low down force and an average

relative speed, and is often referred to as a soft landing step. The third step clears any remaining

barrier film from the spaces between the interconnect lines, and across the entire wafer.

In this chapter, the framework of the density-step-height model developed in chapter 3 is

applied to modeling conventional Prestonian multi-step copper CMP processes. In section 5.1, the

density-step-height model equations for a three-step process are derived. This is followed by the

development of a calibration methodology in section 5.2. The model and calibration methodology

are tested against experimental data in section 5.3. Finally, the chapter concludes with a summary

in section 5.4.
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5.1 Formulation of Model for Multi-Step Processes

The key to modeling a multi-step copper CMP process is to treat it as a combination of

separate single step CMP processes, where each step is comprised of three intrinsic stages: bulk

copper polishing, barrier clearing, and overpolishing [42].

Each of the separate single step processes in a multi-step process is intended to emphasize

or achieve results in a different phase of the polishing process. As a result, for each single step

process, not all three intrinsic stages are necessarily relevant or active. Figure 5.1 summarizes the

intrinsic stages that are relevant in a three step copper CMP process. For such a process, the first

step is used to remove a large amount of the bulk copper, without completely clearing it.

Therefore, this step only involves intrinsic stage one behavior. Step two is used to clear the

remaining bulk copper from the entire wafer. The time of polish in step two is typically the end-

point time plus an additional time to ensure clearing of bulk copper across the wafer. Hence, step

two involves bulk copper polishing (stage one), barrier polishing (stage two), and overpolishing

(stage three) at some points on the die. The bulk copper stage in step two involves polishing of a

pattern-free copper surface with thickness differences across the surface, i.e., the step height is

approximately zero everywhere on the die during the bulk copper clearing stage in step two.

Step three is used to clear the remaining barrier across the wafer. This step involves barrier

polishing (stage two) and overpolishing (stage three). The slurry and the polish process parameter

settings used in this step typically have a higher blanket dielectric removal rate compared to the

blanket copper removal rate. In addition, the blanket copper removal rate might be higher or lower

than the blanket barrier removal rate. In formulating the model equations, only the relevant

intrinsic stages in each step are taken into account.
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Figure 5.1: Relevant intrinsic stages for the steps of a three step copper CMP process

The pressure versus step height (or dishing) diagrams and the removal rate diagrams for

the relevant intrinsic stages in each polish step, are illustrated in figures 3.36 - 3.40. All the

parameters used in these figures are defined in tables 5.1 - 5.4. The assumption made in deriving

the removal rate diagrams is that each of the three separate single step processes is approximately

Prestonian. This assumption is valid for conventional multi-step copper CMP processes.

The removal rate diagram for the overpolish stage of the third step shown in figure 5.6 is

particularly interesting. In the overpolish stage of the third polish step, the copper in the trench is

the up-area and the dielectric in the space is the down-area. This is because, by definition, the

down-area contains the material with the higher blanket removal rate and the up-area contains the

material with the lower blanket removal rate, in the case where two materials are being polished

simultaneously, starting with a flat surface. However, at the start of the third intrinsic stage of the

third step, the initial dishing due to the previous step and the second stage of the third step might

143



0copper

P1
Ps1

Pressure

0

0
S0

rCU
Pcu 1

r cul

P1

Pcu 1
P

u-aea

down-
area

H

Step height

copper up-area

'*'* .4 copper down area

Hi11 ex1I
Step height

Figure 5.2:

0

0

0

Formulation of removal rate diagram for intrinsic stage one (bulk copper polish)
of step one in a three step copper CMP process

copper

rcu2-- --

rb 2 --- - Ibarrier

rox2 dielectric

0

r,2
0

1 - Ocu2

Pressure

0

rcu2-

rb2_

up-area
(barrier)

down-area
(copper)

max2
Pre-dishing

barrier

rb2

I-(cu2
copper

dss2 max2

Pre-dishing

Figure 5.3: Formulation of removal rate diagram for intrinsic stage two (barrier removal) of
step two in a three step copper CMP process

144

i

rCU I-0

z



A
copper

o-- barrier

dielectric

Pressure

%2I

0

0..

1 - (Icu2

P~-Ci
up-area

down-area

dnax2
Dishing

dielectric

rox2

1 -4:Dcu2

copper

Dss2 max2

Dishing

Figure 5.4: Formulation of the removal rate diagram for intrinsic stage three (overpolish) of
step two in a three step copper CMP process

P 3

e- dielectric

I copper

barrier

P33
Pressure

r --:cu3

0
S
0 rb -

d Iss3

:0
cjA

1 cu3

P 3-

A

up-area
d wn-area

d 3
p3

Pre-dishing
barri r

r rb3

I - (Dcu3
copper

a 3

Figure 5.5:

Pre-dishing

Formulation of the removal rate diagram for intrinsic stage two (barrier
clearing) of step three in a three step copper CMP process

145

A

0

rcu2-

rb2 -
rox2

0

0
S
0 rb3-

rb37

P2

z



dielectric up-area A Pressure

3copper P

rb3 3
r ox3-. - - - gc3-cu3

rcu3-- - down-ar3

P barrier -dmax3 0 d
Pressure Dishing

Remova rate
rox

3

r cu3 copper cu3

-cu3 dielectric
cu3ox

-d D 3d
max3 ss p3

Dishing

Figure 5.6: Formulation of the removal rate diagram in intrinsic stage three (overpolish) of

step three in a three step copper CMP process

be large and positive. In this case, the third stage of the third step starts with the dielectric being

the up-area and the copper being the down-area. If the initial dishing is greater than a critical

dishing dm3, there will be no removal of copper in the trench initially, and the dielectric in the

space will be removed at a constant rate, initially. As polishing progresses, the dishing decreases.

When the dishing becomes less than the critical dishing, the removal rate of the copper in the

trench increases linearly as the dishing decreases, while that of the dielectric in the space

decreases linearly as the dishing decreases. At a dishing of zero, the removal rate of the dielectric

is the effective blanket dielectric removal rate rx3, while that of the copper is the effective blanket

copper removal rate rCU3. The inequality of these two effective removal rates forces dishing to

become negative if polishing progresses beyond the time when dishing becomes zero. Ultimately,
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a negative steady-state dishing of Dss3 is reached at which point the removal rate of the copper

now in the up-area and that of the dielectric now in the down-area are equal. Recall that negative

dishing means that the copper level is above the neighboring dielectric level.

The removal rate equations in steps one and two can be easily written from the removal

rate diagrams for these steps. The removal rate diagram for the third stage of the third step is

expressed mathematically in equations 5.1 - 5.2. These equations can be solved for the dishing

and erosion during the third stage of the third step, as given in equations 5.3 - 5.14. The model

parameters for a three step process, and all other variables used in the removal rate diagrams and

the formulated equations are summarized in tables 5.1 - 5.4.

rox3 1 + Dcu3 -dmax3 < Dcu3 _ dp3
R d )max3C

ox33 (Equation 5.1)
r D > d

1I - cu3 p3

Ir r r- jcu3-d3

rRR = r c3rIu3d cu3 D cu3 -dmax3 < Dcu3 : dp3
RRcu33 =u (y4 cu3 ) max3

0 Dcu3 > d p

(Equation 5.2)

Solving for dishing Dcu3 and erosion Ex3 in the third intrinsic stage (overpolish stage) of step

three, in a three step copper CMP process

dDcu3 RR -RR
Wti cu33 ox33 (Equation 5.3)
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= R ox33

1. Case 1: d3 > d3p (initial dishing in stage three of step three is greater than the critical

dishing in the stage)

E o3=

d r ox3
3 -Dcu3

d

-(t - t 

+ Dss3 I- e T3

r

1- cu3

Ot<tp

t tp

o0t<tp3

1r3 P3I Dcu3 p +X 3(t - tP 3 ) +

(Equation 5.6)

(Equation 5.7)
t 3 p

dmax3(rcu3 - rox3) cu3

r(cu3 - cu3) + rox3"cu3

d max3 cu3

r cu3( - cu3) + rox3 cu3

(Equation 5.8)

(Equation 5.9)
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(t -t p)
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X = + D ss3
X3 =rox 3 +d mamax3

Z - Ox3T33(dp3 -Dss3)
3 d max3

(Equation 5.10)

(Equation 5.11)

dishing in stage three of step three is less than the critical dishing in

t > 0

t > 0

(Equation 5.12)

(Equation 5.13)

(Equation 5.14)

The critical dishing parameter in step three dp3 is the positive dishing above which no

pressure is exerted on the copper in the down-area, and consequently, no removal of copper takes

place above it. This parameter is similar to the maximum dishing parameter in intrinsic stage three

of a single step copper CMP process in the sense that it is associated with a set-up wherein the

copper in the trench is the down-area and the dielectric in the space is the up-area. Thus, it can be

modeled with either of the empirical relationships given in equations 5.15 - 5.16, for conventional

copper CMP processes. In these equations, s is the line space, in microns w is the line width in
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microns, A3 is a constant in units of angstroms and is greater than or equal to zero, s, is a

normalization line space equal to 1 pm, w, is a normalization line width equal to 1 gm, s1 is a

dishing length scale (easily obtained from measured profilometer scans of polished arrays. It is

about 100 pm - 250 jim for conventional CMP processes), X3 and $3 are unitless constants

between zero and one, "ln" is the natural logarithmic function, and s,,,i is an effective minimum

line space in microns.

A 3 ( ) 3
A K)
A3 0

S

d = A ( In( s )
p3 3w s )

0 < s s (Equation 5.15)

S >sI

S >S min (Equation 5.16)

Table 5.1: Relevant model parameters in step one of a three step process

Intrinsic stage one Intrinsic stage two Intrinsic stage three

Description

rcuj Effective copper blanket
removal rate N/A N/A

L11  Planarization length

Hx1 Critical step height
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Table 5.2: Relevant model parameters in step two of a three step process

Intrinsic stage one Intrinsic stage two Intrinsic stage three

Description Description Description

rcu2 Effective copper rcu2 Effective blanket rcu2 Effective blanket
removal rate copper removal rate copper removal rate

rb2 Effective blanket rox2 Effective blanket
barrier removal rate dielectric removal

rate

L23  Planarization length L23  Planarization length

dmax2 Maximum dishing dmax2 Maximum dishing

W2 Edge rounding fac- W2  Edge rounding fac-
tor (if necessary) tor (if necessary)

Table 5.3: Relevant model parameters for step three of a three step process

Intrinsic stage one Intrinsic stage two Intrinsic stage three

Description Description

rcu3 Effective blanket copper rcu3 Effective blanket copper
removal rate removal rate

rb3 Effective blanket barrier rox3 Effective blanket dielec-
removal rate tric removal rate

N/A L33  Planarization length L33 Planarization length

d Maximum dishing in dp3  Critical dishing in step
step two (same as critical three (related to the max-
dishing in stage three) imum dishing in stage

three, and same as maxi-
mum dishing in stage
two

W3 Edge rounding factor (if W3 Edge rounding factor (if
necessary) necessary)
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Table 5.4: Description of other variables used in the removal rate diagrams and equations
derived earlier

Variable Description

RRcu33  Copper removal rate in stage three of step three

RRox33  Dielectric removal rate in stage three of step three

Pj Applied pressure in the i th step

pcuj Effective electroplated copper pattern density in step 1

Ocui Effective layout copper pattern density in the i th step

Dssi Steady state dishing in the i th step

dys; Steady state pre-dishing in the i th step

Dcui Dishing in the i th step

Eox; Erosion in the i th step

d3 Dishing at the start of stage three in step three

The critical dishing dp3 in step three is related to the maximum dishing dmax3 (the

maximum dishing is defined as a positive quantity) in that step as given in equation 5.17. This

relationship can be derived from the removal rate diagram for stage three of step three, shown in

figure 5.6. In the case of a wide array of lines (wider than the planarization length) with constant

line width and space, the effective copper layout pattern density is related to the line width and

space as given in equation 5.18. Substituting this relationship in equation 5.17 leads to equation

5.19. The dwax3 versus dp3 relationship given in equation 5.19 stresses the local nature of both

parameters. Generally, it is recommended to use equation 5.19 to relate dmax3 to dp3 when dealing

with random layouts, where the arrays are not necessarily wide, and the line spaces and widths for

an array are not necessarily constant.

152



The maximum dishing parameter dm3 in stage three of step three is associated with the

case where the copper in the trench is the up-area, and the dielectric in the space is the down-area.

Therefore, by duality, it could be modeled by either of the empirical functions given in equations

5.20 - 5.21, for conventional copper CMP processes. In these equations, w is the line width in

microns, s the line space in microns, w0 a normalization line width of 1 gm, so a normalization

line space of 1 jim, w1 the dishing length scale in microns similar to s1 in equation 5.15, wmin the

effective minimum line width similar to the effective minimum line space smin in equation 5.16,

B3 a constant in units of angstroms and is greater than or equal to zero, and X3 and r3 are unitless

constants between zero and one.

d =d I cu3
max p3 p 3 K cu3j (Equation 5.17)

(D =
Cu w+s

(Equation 5.18)

d =d (Sdmax3 193 (Equation 5.19)

B3(s 3

=max3 3 (Equation 5.20)
s 0 K W 01

d =B s_ I n W & W.
max3 3 (s ) W . ) mi n (Equation 5.21)

0 min
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5.2 Calibration Methodology for Multi-Step Copper CMP

Processes

Calibrating a multi-step copper CMP process involves conducting CMP experiments,

metrology, and extracting the model parameters. It was stated earlier that not all intrinsic stages

are relevant for the respective single step processes that comprise a multi-step process.

Consequently, only experiments that capture the parameters in the relevant intrinsic stages must

be conducted. The calibration experiments for a three step copper CMP process are described

below. This is followed by a description of the model parameter extraction methodology.

5.2.1 Calibration Experiments and Metrology

The experiments and metrology needed to calibrate a three step copper CMP process are

described below.

1. Wafer processing: The processing needed is the same as in the case for a single step copper

CMP process.

2. Pre-CMP metrology: The measurements needed are similar to those needed for the calibration

of a single step copper CMP process.

3. Step one polish experiments: Only bulk copper polishing occurs in this step. Hence, the

experiments needed to calibrate this step are exactly the same as those used to calibrate intrin-

sic stage one of a single step copper CMP process.

4. Step two polish experiments: The polish process in step two is intended to clear the bulk cop-

per remaining after step one. Because the bulk copper remaining after step one polish is typi-

cally pattern-free, i.e., almost all step heights are eliminated after step one polish, there is no

need to conduct experiments intended to capture the bulk copper thickness evolution in this

step. The typical polish time in step two is the end-point time plus an additional polish time to
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ensure complete clearing of the remaining bulk copper. Thus, overpolish experiments are

needed to properly calibrate the process in step two.

First, blanket wafer experiments must be conducted. The polish time in step two is

typically long enough and the removal rates are low enough, such that the effective blanket

copper, barrier, and dielectric removal rates can be treated as constants. For instance, a typical

step two process has a measured blanket copper instantaneous removal rate in the range 2000

- 3500 A/min, and barrier and dielectric blanket instantaneous removal rates in the range 20 -

350 A/min. The measured blanket average removal rates in this step are representative of the

measured blanket instantaneous removal rates. Thus, only three blanket copper wafers, three

blanket barrier wafers, and three dielectric wafers need to be polished. The blanket copper

wafers should be polished for 40 s, 60 s, and 90 s respectively, and the blanket dielectric and

barrier wafers should be polished for 60 s, 90 s, and 120 s respectively.

After the blanket wafers have been polished, the overpolish experiments must be

conducted. Overpolish experiments involve polishing at least four patterned copper wafers in

step one, targeting the norminal thickness typically removed in that step on all four of them.

Then, each wafer should be polished in step two for a different polish time including the end-

point time tep and overpolish: tep, tep + t1 , tep + 2t1 , and tep + 3t1 , respectively. Alternatively,

the polish times could be tep - t], tep, tep + t1 , and tep + 2t1 , respectively. The time t1 should be

chosen based on knowledge of the measured instantaneous blanket copper removal rate in step

two, and a targeted amount of blanket copper thickness removed.

5. Step three polish experiments: The polish process in step three is intended to clear any barrier

residue across the wafer. Generally, by the time this step is started, no bulk copper residue

remains on the wafer. Thus, only barrier polishing and overpolishing occur in this step. First,
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the instantaneous blanket copper removal rate, instantaneous blanket barrier removal rate, and

the instantaneous blanket dielectric removal rate should be measured. These rates are typically

low (300 - 1800 A/min), and are attained almost "instantaneously". Three blanket copper

wafers, three blanket barrier wafers and three blanket dielectric wafers should be polished for

60 s, 90 s, and 120 s respectively, and the average of the removal rates for each material is an

accurate measure of the instantaneous blanket removal rate for that material.

After the blanket wafer experiment is conducted, at least four patterned copper wafers

should be polished in step one, targeting the nominal amount removed in that step, followed

by polishing in step two for the norminal polish time (i.e., end-point time plus the norminal

time that is added to the end-point time to ensure complete bulk copper clearing), and

polishing in step three for fixed times of 20 s, 40 s, 60 s and 75 s or 80 s respectively.

6. Post-CMP metrology: The post-CMP metrology and the data filtering for multi-step copper

CMP processes are similar to those done for single step copper CMP processes.

5.2.2 Model Parameter Extraction Methodology

Extraction of model parameters involves minimizing the RMS error between the model

equations and the measured data, subject to several constraints. Some of the constraints include

limiting the possible values of the model parameters in order to obtain results that are in line with

the known physics of the process. The procedures for extracting the model parameters in a three

step process are described below. It is important to note that the model parameters for each step

are extracted independent of those for the other steps.

1. Extraction of model parameters for step one polish process: The relevant model parameters in

step one are listed in table 5.1. The procedure for extracting these parameters is similar to that

used for extracting the model parameters in stage one of a single step copper CMP process.
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2. Extraction of model parameters for step two polish process: The relevant modeling parameters

in this step are listed in table 5.2. The procedure for extracting these parameters is similar to

that used for extracting the model parameters in stage three of a single step copper CMP pro-

cess. The effective blanket copper rate is set equal to the measured instantaneous copper blan-

ket removal rate, while the effective blanket dielectric removal rate is floated in a range of

values including the measured instantaneous dielectric removal rate. This is done because the

measured instantaneous dielectric removal rate in this step is typically small. The effective

blanket barrier removal rate is obtained from the measured instantaneous dielectric removal

rate, the measured instantaneous barrier removal rate, and the extracted effective dielectric

removal rate, using the same method described in section 3.7.2 of chapter 3.

3. Extraction of model parameters for step three polish process: Figure 5.7 illustrates the extrac-

tion methodology in step three. The relevant model parameters in this step are listed in table

5.3. Using the measured dishing and erosion data and the measured blanket wafer data in step

three, all parameters are extracted. It has been found that for conventional copper CMP pro-

cesses, the edge rounding effect must be included if the model is to fit the data very well.

Including the edge rounding effect introduces two more parameters. Hence, it is practical to

set the effective blanket removal rates to the measured instantaneous blanket removal rates to

reduce the number of unknowns, and avoid over fitting.
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Figure 5.7: Model parameter extraction methodology for step three of a three step process

5.2.3 Checking the Accuracy of the Extraction Results

The extraction results in each step must be checked for accuracy. In step one the extracted

parameters, the initial copper thicknesses and the model equations, are used to predict the

remaining copper thicknesses or the amount of copper thicknesses removed at certain sites not

used in the extraction procedure, if data is available for such sites. In step two, the measured

dishing and erosion at end-point time (or the lowest polish time), the extracted parameters, and the

model equations are used to predict the dishing and erosion for the array structures not used in the

extraction procedure (for all polish times excluding the minimum polish time). In addition,

prediction of the erosion at the field sites not used in the extraction should also be done, if

measurements are available for such field sites. In step three, using the measured dishing and

erosion data after norminal steps one and two polishing as the initial condition, the extracted

model parameters and the model equations, the dishing and erosion for the array and field sites

not used in the extraction procedure should be predicted. The predicted results should be
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compared to the available measured data.

After checking the accuracy of the model parameter extraction in each of the three polish

steps separately, the accuracy of the parameters should be checked together. This is done by

running a full simulation of the entire three step polish process to predict the dishing and erosion

after step two polish and the dishing and erosion after step three polish for arrays and field sites

used in the extraction as well as those not used in the extraction. The extraction of parameters is

done independently in each polish step. The accuracy of this overall simulation indicates how well

the different steps fit together in the model, as one unit.

5.3 Model Fits versus Experimental Data for Multi-Step

Copper CMP Processes

To test the model and the calibration methodology proposed for multi-step copper CMP

processes, a comprehensive CMP experiment is conducted for a three step polish process, on

Applied Materials Mirra tool. The dielectric used is oxide, the barrier used is tantalum nitride

(TaN), and the MIT mask version 1.2 is used to pattern the copper wafers for the experiment. The

experimental design is summarized in tables 5.5 - 5.11. Model parameter extraction and a

verification of the accuracy of the extraction are done in the subsections following the

experimental description.

Table 5.5: Three step process experimental design

Step # Platen # Pad Slurry Down force Speed
(psi) (rpm)

1 1 Stacked EPC-5001 5 63

2 2 Stacked EPC-5001 2 43

3 3 Stacked 10K-1 3 100
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Table 5.6: Blanket copper wafer experiments in polish step one

Wafer Polish time
number (s)

B-i 7

B-2 15

B-3 23

B-4 31

B-5 40

B-6 50

Table 5.7: Patterned wafer experiments with monitor blanket wafers in polish step one

Wafer Copper wafer Targeted copper thickness Polish time
number type remaining (kA) (s)

P-1 Pattern 13.5 14

B-7 Blanket N/A 14

P-2 Pattern 11 29

B-8 Blanket N/A 29

P-3 Pattern 8.5 43

B-9 Blanket N/A 43

P-4 Pattern 6 58

B-10 Blanket N/A 57

P-5 Pattern 3.5 64

B-11 Blanket N/A 65

Table 5.8: Blanket wafer experiments in polish step two
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Wafer Wafer Polish time
number material (s)

B-12 Copper 40

B-13 Copper 60

B-14 Copper 90

C-1 Oxide 60

C-2 Oxide 90



wafer experiments in polish step two

Wafer Wafer Polish time
number material (s)

C-3 Oxide 120

D-1 Barrier 60

D-2 Barrier 90

D-3 Barrier 120

5.9: Copper pattern wafer experiments in polish step two

Table 5.10: Blanket wafer experiments in polish step three
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Table

Wafer Nominal End-point Total polish

number polish time in time in step time in step
step one (s) two (s) two (s)

P-6 63 76 76

P-7 67 74 94

P-8 63 75 110

P-9 63 74 124

P-10 65 78 98

Wafer Wafer Polish time
number material (s)

B-15 Copper 60

B-16 Copper 90

B-17 Copper 120

C-4 Oxide 60

C-5 Oxide 90

C-6 Oxide 120

D-4 Barrier 60

D-5 Barrier 90

D-6 Barrier 120

Table 5.8: Blanket



wafer experiments in polish step three

Norminal polish Norminal polish time in Total polish time

number time in step one (End-point time + 20 s) in step three
(s) (s) (s)

P-11 63 99 20

P-12 67 98 35

P-13 63 100 50

P-14 63 102 65

5.3.1 Extraction of Model Parameters for Step One Polish Process

The amount of copper removed on the blanket wafers is plotted against polish time in

figure 5.8. Using equation 3.51 to analyze this data, the extracted fitting parameters associated

with the effective blanket copper removal rate rcui (a1, a2 and 'r) are given in table 5.12 (the

effective blanket copper removal rate is set equal to the measured instantaneous blanket copper

removal rate.). The plot of the modeled amount of copper removed, average blanket copper

removal rates versus measured data, and modeled instantaneous removal rate are shown in figures

5.9 - 5.10.

Table 5.12: Parameters for effective blanket copper removal rate in step one, as per
equation 3.51

rcuj (A/s) RMS Error

a, (A/s) a2 ( A) Tr (s) (A)

249.5 3986.6 16.4 168.5

162

Table 5.11: Copper pattern



zUUU

0

0000-

0
8000-

0

6000 -

4000 -0

0

2 0 0 0 .-- - - - ---- - -- - -.-------.-.-.---

0

0 10 20 30
Polish time (s)

40 50 60

Amount of copper removed on blanket wafers versus polish time

12000

0 Data

10000- 
- Model Fit

8000-
E
GE

6000-
0

0

4000-
0
E

2000-

0 10 20 30 40 50

Polish time (s)

160

120

0

E
80

40

60

Model fit versus data for blanket copper removal rate, as per equation 3.50

200

150
0
E

0100

50

0 10 20 30
Polish time (s)

Figure 5.10: Extracted effective blanket copper removal rate for step one process versus time

163

0
E

0.
0E
0.
0.

Figure 5.8:

Figure 5.9:

- Data
-- ModelFitj

0 10 20 30
Polish time (s)

40 50 60

40 50 60



Figure 5.11 shows a plot of the measured step height versus polish time for the 100 pm

line width, and 100 pm line space array structure on the test mask used in the experiment. From

the figure, it is clear that the step height decreases linearly with polish time until the step height is

approximately zero. This indicates that the parameter Hexi is negligible to first order, for this

structure. This structure has the largest line width and space of all the arrays used in the

extraction. If its value of Hexj is negligible, then all other structures used in the extraction

procedure should have negligible Hexjj values also. Hence, in extracting the model parameters for

step one, Hexi is considered negligible.

Using the extracted effective blanket copper removal rate parameters shown in table 5.12,

the planarization length (LI) in step one is extracted using the procedure for extracting intrinsic

stage one model parameters for a single step process. The step one extracted model parameters are

summarized in table 5.13. The model fit versus the measured data for the amount of copper

removed at several array and field sites, are shown in figure 5.12. The array and field sites used in

the extraction of the model parameters are illustrated in figure 5.13.

6000

5000-

4000 -

Z
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Figure 5.11: Step height versus polish time for 100 gm line width, 100 gm line space
structure array structure, in step one
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Table 5.13: Extracted model parameter values in step one

rcuj (A/s) Hex11 (A)
RMS

a, a2  Tr A,1 Errorr(A)
(A/s) (A) (s) (A) Ero$A

4893 249.5 3986.6 16.4 N/A N/A N/A 817

(a) (b)

Figure 5.13: Array and field site numbers of sites used in extraction of model parameters, for
three-step copper CMP process (the mask is MIT mask version 1.2):

(a) Array up-area sites (b) Field sites

The extracted planarization length LI, is 4894 gm, and the RMS error of the extraction is

817 A. The planarization length is slightly higher than expected, and the error is high. The

individual errors at the different spatial sites used in the extraction have a large spread, and this

makes the results unacceptable. As seen in figure 5.12, the model generally does not fit the data

very well. This result exposes one of the limitations of the density-step-height model: the model
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wrongly assumes that all up-areas are initially contacted by the pad and abrasive combination

with a non-zero pressure.

The incoming electroplated copper topography exhibits long range height variation which

affects the pressure on the up-areas and down-areas. Figure 5.14 shows plots of measured initial

electroplated thickness at the array and field sites shown in figure 5.13. Note that these

thicknesses are measured relative to the top of the barrier film. Hence the variation in the

measured thicknesses represent long range height variation. If the long range height variation is

large, the pad and abrasive combination might not be contacting certain up-areas initially. At sites

where there is contact, the polish pressure might be larger than or less than the pressure computed

by the density-step-height model. In addition, as polishing progresses and the long range height

variation changes, the pressure needs to be re-distributed to account for this change. The density-

step-height model fails to do this.

2 1.6

1.9- 1.58- -. -.-.--

1. 1.56

1.54
.1.6-

.2 1.52 - ....

:E 1.5 . ... 5

0 1.4 - .o.. .. .. ... .. .....

1.48-
1.3-

1.2- 1.46

1.1 1.44 ___
0 5 10 15 20 25 0 5 10 15 20 25 30 35 40

Array site number Field site number

(a) (b)

Figure 5.14: Measured initial electroplated copper thickness:
(a) Array up-area sites (b) Field sites

In an attempt to remedy this flaw in the model, and minimize the RMS error, the

extraction procedure gives a longer planarization length. This planarization length is influenced

by the long range height variation in the plating topography. As stated in section 3.4.1 of chapter
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3, the planarization length is supposed to be independent of topography. An improvement is made

to the density-step-height model in chapter 6 to remedy this limitation. It is worth mentioning that

the density-step-height model works well in cases where the electroplated topography is

conformal. In these cases, long range height variation in the incoming electroplated thickness is

minimal or ideally non-existent, i.e., the up-areas for all structures are at the same height after

electroplating, or the differences in these heights are small.

5.3.2 Extraction of Model Parameters for Polish Step Two Process

The blanket copper, dielectric, and barrier wafer experimental data are shown in figures

5.15 - 5.17. Also shown in these figures are the fits to the data presented, as dictated by equation

3.51 in chapter 3. The linear fits obtained for the amount of material removed on the blanket wafer

implies that the measured instantaneous blanket removal rates and the measured average blanket

removal rates are the same in this step, as was discussed in section 5.1.1. The measured

instantaneous blanket removal rates are summarized in table 5.14.
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HData
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00 2000 - 4 .

0
16o 43.6

1500 -
43.4-

E
< 1000 - 43.2 -- - ---

0 Data: Average rate
500 - - - --- - -- -- - 43 - Model: Inst. (and average) rate

0 42.8 110
0 20 40 60 80 100 0 20 40 60 80 100

Polish time (s) Polish time (s)

Figure 5.15: Amount of copper removed and measured blanket removal rate vs. time,
for step two process
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Figure 5.17: Amount of barrier removed and measured blanket barrier removal rate vs. time,
for step two process

Table 5.14: Instantaneous blanket wafer polish rates as extracted from blanket wafer data,
using equation 3.51

RMS Error inInstantaneous a, a2  Tr am roved
0 0 amount removed

rate (A/s) (A) (s) (

rcu2 (A/s) 44 0 0 67

ro2 (A/s) 0.19 0 0 0.86

rb2 (A/s) 0.61 0 0 0.46
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Figures 5.18 shows a plot of measured dishing versus line width for different polish times,

and a plot of measured dishing versus polish time for several arrays. From these figures, it is clear

that dishing reaches steady state rather quickly for small feature sizes. Also, the higher the line

width, the higher the dishing, for a fixed pattern density. Figure 5.19 shows a plot of measured

erosion versus polish time for different arrays, as well as a plot of measured erosion versus pattern
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Figure 5.18: Measured dishing versus polish time in step two and line width, for arrays with
line width equal to line space: (a) t represents polish time (b) w represents line width
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Figure 5.19: Measured erosion versus polish time and density for several array structures:

(a) w and s represent line width and line space respectively (b) t represents polish time
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density for different polish times. The higher the pattern density, the higher the erosion. In

addition, the higher the polish time, the higher the erosion.

Using the measured dishing and erosion data at the array sites shown in figure 5.12, the

measured blanket wafer rate information shown in table 5.14, and the extraction procedure

described in section 5.1.1, the model parameters for step two are extracted as summarized in table

5.15. The effective blanket copper removal rate rcu2 is set equal to the measured instantaneous

blanket copper removal rate given in table 5.12. The effective blanket dielectric rate is allowed to

float in a range during the extraction. In the case where no edge rounding effect is included in the

model equations (the extracted parameters for this case are in the first row of table 5.14), the

possible range is from 0.5r,.x2 to 15rox2, where rox2 is the measured instantaneous blanket

dielectric removal rate. In the case where the edge rounding effect is included in the model

equations (the extracted model parameters for this case are in the second row of table 5.14), the

range is from 0. 3rox2 to 5rox2. The effective blanket barrier removal rate is extracted from the

measured instantaneous blanket dielectric rate, the measured instantaneous blanket barrier

removal rate and the extracted effective blanket dielectric removal rate, using equation 3.56 in

chapter 3.

Table 5.15: Extracted model parameters in step two

dmax2  WI2  RMS
rcu2 rox2 rb2 L2 3  (A) Error

(A/s) (A/s) (A/s) (ptm) 0 A
B2 (A) U2  P2  C2  Sc2

44 7.95 25.5 1596 159.3 0.467 0.468 N/A N/A 120

44 2.36 7.58 2456 173.6 0.427 0.331 4.03 4.19 73
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The extracted effective blanket oxide removal rate is much higher than the measured

instantaneous blanket oxide removal rate when no edge rounding effect is taken into
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consideration, and it is closer to the measured instantaneous blanket removal rate when the edge

rounding effect is included in the model equations. Figures 5.20 shows plots of the model fit

versus experimental data for the case when the edge rounding effect is not included in the model

equations, while figure 5.21 shows plots of the model fit versus experimental data for the case

when the edge rounding effect is included in the model equations. Generally, the model fits the

data very well for all the array sites used in the extraction. The fit is much better for the erosion

data when the edge rounding effect is taken into account. It is important to note that the long range

height variation that affected the accuracy of the extraction results in step one does not exist in

this step. By the time the overpolishing stage is reached in step two, the long range height

variation in the electroplated copper thicknesses has already been minimized significantly. In

addition, because the overpolish experiments did not involve excessive overpolishing, the

limitation of the density-step-height model described in chapter 3 is not an issue in this case.

5.3.3 Extraction of Model Parameters for Step Three Process

The measured instantaneous blanket rates in step three are constant as expected. Table

5.16 gives the values of these measured rates. Post-CMP profilometer scans of the array structures

Table 5.16: Measured instantaneous blanket removal rates in step three

rcu3 rox3 rb3
(A/s) (A/s) (A/s)

20.0 9.0 4.0

on the patterned wafers show severe edge rounding of the dielectric. The problem is so severe

that there seems to be voids or empty spaces between the copper in the trenches and the dielectric

in the spaces. Figures 5.22 shows a profilometer scan for an array after a long step three polish,
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that clearly illustrates the severity of the edge rounding problem. Edge rounding seems to be the

signature of the 10K-I slurry that is typically used in the third step of a three step process. Figure

5.23 shows the evolution of array dishing and recess for a particular array during polish step three.

Field
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Figure 5.22: Profilometer scan of an array showing severe edge rounding in step three

The severe edge rounding problem could lead to an inaccurate reading of the profilometer

scans. When the dielectric in the large field regions are severely rounded, levelling the two field

regions that surround an array becomes difficult. Hence correctly reading the recess value for any

dielectric point on the array, relative to the levelled field point, becomes very challenging. In

addition, the points where the oxide thickness loss in the field are measured may not match the
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points at which the field regions are levelled. Because erosion is measured as the field thickness

loss plus the recess at the dielectric position of interest (relative to the levelled field region), the

measured erosion value could be incorrect. The effect is to increase the potential measurement

inaccuracy in this step by 100 - 400 A in erosion values for some structures.
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As stated in the formulation of the model equations in section 5.1, when the blanket

dielectric rate is greater than the measured blanket copper rate, steady state dishing is negative.
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Figure 5.24 show a plot of measured dishing versus polish time for four array structures, and a in

these plots has equal line width and space. The measured dishing for each array decreases with

polish time. Erosion, on the other hand increases with polish time. Figure 5.25 shows a plot of

measured erosion versus polish time for two arrays.

It is worth mentioning that the copper in the trench does not experience any significant

edge rounding, even though it ultimately becomes the up-area when the dishing becomes

negative. From this observation, it is clear that the edge rounding effect should only be included in

the equations for the dielectric removal rate in polish step three. If the edge rounding effect is

excluded from the model equations, the effective blanket copper and dielectric removal rates need

to be floated for the model to fit the data well, i.e., by ignoring the edge rounding effect, the

extracted values for the effective blanket copper, dielectric, and barrier removal rates, are not

necessarily equal to the measured blanket rates.

If edge rounding is included in the equations, then setting the effective blanket and

dielectric rates to the measured instantaneous blanket rates yields a good fit of the model to the

data. Note that when edge rounding is incorporated into the model, two additional modeling

parameters (W3: C3, sc3) are added to the parameters that need to be extracted. It is therefore

practical to set the effective blanket copper and dielectric removal rates to the measured

instantaneous blanket rates, to reduce the number of fitted parameters, and avoid over fitting the

model to the data. The extracted model parameters for the step three process are summarized in

table 5.17. The first row of the table corresponds to the case when the edge rounding effect is

excluded from the model equations, while the second row corresponds to the case when it is

included in the model equations. As seen in table 5.17, when the edge rounding effect is excluded

from the model equations, the extracted effective blanket dielectric removal rate is almost twice
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the measured rate. If these extracted model parameters (in the case when edge rounding is

neglected) are used to predict the dishing and erosion for a different chip polished with the same

three step process, the model will definitely over predict the erosion in step three, especially in

large dielectric field areas. The plots comparing the model fits to the experimental data are shown

in figures 5.26 and 5.27. Generally, the model fits the data well. The fits to the erosion data are

better when the edge rounding effect is included in the model equations.

Table 5.17: Extracted model parameters in step three

rcu3 rox3 rb3 L3 3  dp3 (A) W 3 RMS
(A/s)(jim)Error (A)

(A/s) (ks) (A/s) A3 (A) ( 3  03 C3  Sc3

13.7 45.2 9.0 3707 54.5 0.896 0.014 N/A N/A 137.0

9.0 20.0 4.0 4500 31.0 0.625 0.014 3.41 57.3 126

5.3.4 Checking the Accuracy of the Extraction

The extraction of model parameters for the three polish steps uses all the array structures

for which measurements are taken. As a result of this there is no opportunity to use the extracted

model parameters in each polish step to predict dishing and erosion, or copper thickness, on array

structures not used in the extraction process. Running a full simulation of all the polishing steps to

predict dishing and erosion in steps two and three (for all the structures used in the extraction), is

the only possible way of testing the accuracy of the model parameter extraction procedures for

this three step polish experiment.

The simulation results for all the array sites marked in figure 5.12 are compared to experimental

data in figure 5.28. The large extraction errors in step one affect the accuracy of the simulated

dishing and erosion (especially erosion) in steps two and three. At the first four array sites, for
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Figure 5.26: Model fit versus experimental data, in the case where the edge rounding effect
is neglected
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instance, the bulk copper is not cleared even after step three polish, and the simulated dishing and

erosion at these sites are thus zero. For array sites where there is a large positive recess in the

electroplated topography, the density-step-height model clears the bulk copper very quickly,

thereby leading to a high computed overpolish time. This results in high simulated erosion at

these array sites. For array structures where the electroplating is conformal, and where the

surrounding area does not have large long range height variation in the electroplated thickness, the

simulation results agree with the measured data. Again, the simulation results presented here

highlight the need to extend the density-step-height model to account for long range

electroplating height variation. This is done in chapter 6.

5.4 Summary

In this chapter, the density-step-height model is formulated for multi-step copper CMP

processes, and a model calibration methodology is developed. A comprehensive three step copper

CMP polish experiment is conducted to test the accuracy of the model. The edge rounding effect

is found to be important for the model to fit the data (without over fitting) accurately during

extraction of model parameters, particularly in steps two and three.

The model is anticipated to work accurately when the electroplating process is conformal.

In this case, the long range height variation introduced by the electroplating process is either

small, or ideally zero. The model presented in this chapter, fails to take into account large long

range height variation introduced by the electroplating process, in computing the initial pressure

on the up and down areas. In addition, it fails to re-distribute the pressure correctly, when the long

range height variation changes during polishing. These limitations of the model are rectified in

chapter 6.
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Chapter 6

Integrated Contact Mechanics and
Density-Step-Height Model

The density-step-height model is capable of rapidly simulating thickness evolution on an

entire chip, and it is effective at capturing local feature-scale pattern dependent effects. However,

this model fails to take into account long range height variation (such as that introduced by

electroplating) when apportioning the effective polish pressure on the up and down areas of an

array. In addition, it does not correctly redistribute the polishing pressure when the long range

height variation changes as the polishing progresses. With this limitation, the density-step-height

model cannot accurately predict dishing and erosion performance when the electroplating process

introduces large long range height variation, when significant overpolishing is done, and when

multi-level metallization schemes are involved.

Contact mechanics based wear models (usually called contact wear models) have been

used to model dielectric and copper CMP processes [26, 27, 28, 45]. These models account for the

initial long range height variation caused by the copper electroplating process, and they also

redistribute the pressure to take into account the changing long range height differences as

polishing progresses. However, they can be computationally prohibitive or inaccurate when

simulating an entire chip or a small section of a chip, depending on the discretization size used. In

copper metallization, the feature sizes on the lower metal levels are very small. Hence, the

discretization size for a full chip simulation must be very small, if the feature-scale polishing

evolution is to be computed accurately. Such a discretization size will lead to long and impractical
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simulation times. If the discretization size is made too large, on the other hand, the simulation

time will be reasonable, but the prediction of feature-scale polishing evolution will be inaccurate.

The contact wear model and the density-step-height model are not individually suited for

practical and accurate chip-scale simulations in copper CMP. However, a combination of the two

will yield a model that is ideal for the task. Contact mechanics can readily account for long range

height variation effects, while the density-step-height formulation can accurately account for local

feature-scale pattern dependent material removal during the polishing process. In this chapter, an

integrated contact mechanics and density-step-height model for copper CMP processes is

formulated. In section 6.1, the framework of contact wear models is described briefly. This is

followed by the formulation of the integrated model in the three intrinsic stages of a single step

copper CMP process, in sections 6.2 - 6.4. A calibration methodology is then developed in section

6.5, and used to test the integrated model against experimental data in section 6.6. Finally, the

chapter concludes with a summary in section 6.7.

6.1 Framework of Contact Wear CMP Models

Contact wear CMP models use a wear law that relates the material removal rate to the

polishing pressure (via Preston's equation), and a classic contact mechanics pressure versus

displacement relationship. According to this classic relationship, if the pad is treated as a massive

elastic body, and the wafer a rigid body, then the pad displacement W and the contact pressure P

are related as given in equation 6.1, where v is the poisson's ratio and E the elasticity of the pad

[26 - 28]. If the displacement is known, the contact pressure P can be computed and vice-versa.

Once the pressure has been computed, it can then be substituted into the wear law to compute the

material removal rate.
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2
W(x,y) = - v P( ,ri) d~dri (Equation 6.1)irE fU f 2 +(_ I2

A (x- ) +(y-r)

In practice, neither the pad displacement nor the contact pressure is known at all spatial

positions of interest, initially. Yoshida proposes a boundary element methodology (BEM) that

discretizes the wafer surface into small cells, where the contact pressures and pad displacements

can be assumed constant [26]. He then uses the known pad displacements in certain cells, and the

known contact pressures in other cells to fully solve for the pad displacements and the contact

pressures at every spatial position of interest [26].

In formulating the integrated contact mechanics and density-step-height model, the classic

pressure-displacement relationship given in equation 6.1 is combined with the density-step-height

model presented in chapter 3. Yoshida's methodology is exploited to solve equation 6.1. However,

instead of using matrix manipulations to fully solve the problem, as Yoshida does, an FFT-based

approach is proposed. For the sake of simplicity, the model is formulated for Prestonian single

step copper CMP processes; the model can be extended to non-Prestonian copper CMP processes

by using alternative non-Prestonian removal rate versus polish pressure relationships. In addition,

since multi-step copper CMP processes are combinations of single step copper CMP processes,

the model can also be applied to such multi-step processes. The experiment used to test the

accuracy of the model is the three step copper CMP process experiment used in chapter 5.

6.2 Formulation of Integrated Model in Intrinsic Stage One:

Bulk Copper Polishing Stage

Consider the electroplated topography of several arrays of lines, illustrated in figure 6.1.

The topography shows height differences among the different array up-areas. These height
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differences (hence forth called long range height variation) influence the effective polishing

pressure on the different up-areas (as well as on the down-areas). The density-step-height model

formulated in chapter 3 does not take this into account. To remedy the situation, an envelop

function is introduced that captures the long range height differences over the entire chip or region

of interest. To obtain the envelop function, the chip or region of interest is first discretized into

cells small enough to capture the long range thickness differences, and large enough to enable

efficient computation. Typical discretization sizes studied here have ranged from 200 gm by 200

gm to 400 grm by 400 pm for a 20 mm by 20 mm chip (a discretization size of 240 gm by 240 gm

is used to obtain the results presented in this thesis). After discretization, each cell is represented

by the average, maximum or some other appropriate statistic of the local up-area heights within

the cell. Figure 6.2 shows the envelop function for the electroplated topography shown in figure

6.1.

Long-range height ifference Local up-area Local down-area Local step height

-I-- ilililli

Figure 6.1: Bottom-up fill electroplated profile for several arrays of lines

Figure 6.2: Envelop function for the electroplated profile shown in figure 6.1
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The pressures on the different cells making the envelop function are computed by using

the pressure versus displacement relationship expressed in equation 6.1. Let P, denote this

envelop pressure, with a value that depends on the location of the cell. After taking into account

the long range height variation through the envelop function, the computed envelop pressures are

then used in the density step-height model, to compute the up-area and down-area removal rates.

The process of computing the envelop pressures for the different cells and using them to compute

the removal rates is done iteratively as illustrated in figure 6.3. The iterations are needed so that

the envelop and the envelop pressures reflect the evolution of the long range height variation.

Compute the envelop

SP 4 Pe5 2Apply contact mechanics
S e2 to compute envelop pressures

Pei

Use density-step-height model
to compute the removal rates

FCompute amount removed
inup and down areas for
polish time of 8t.

u-i

Compute new
envelope

Set polish
( O No time to:

Done Ys sSm(8t) = Total polish t - Sum(8t)
time t?

Figure 6.3: Iterative implementation of integrated model for intrinsic stage one

The removal rate equations for each iteration time interval in intrinsic stage one can be

expressed as in equations 6.2 - 6.3, where RRUP is the removal rate of the copper up-area, RRdown

is the removal rate of the copper down-area, ru is the effective blanket copper removal rate for an
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applied pressure of P1 (pressure setting on the CMP tool), pu is the effective electroplated copper

pattern density after accounting for the long range thickness variation through the envelop

function, and Hex is the critical step height as defined in chapter 3. The up-area and down-area

removal rates linearly depend on the pressure ratio term P/Pi because of the assumed Prestonian

nature of the process. This pressure ratio term could be thought of as a correction factor for the

long range height variation.

r 'Pcu e H H
CU Pex

RR = ( (Equation 6.2)
up (

r - I + O H<H
cu P PC He ex

0 H H ex

R R =P (Equation 6.3)

rcu J p~ ( Hex) e
down H<He

6.2.1 Calculation of Envelope Pressure Pe

In the iterative implementation of the integrated model, illustrated in figure 6.3, the

envelope pressure in each cell is computed in every iteration. In this section, a methodology for

computing the envelope pressure for a single iteration is proposed.

Suppose there is a wafer whose surface is similar to the envelope profile shown in figure

6.2, and suppose the wafer is pressed against a polishing pad with an applied pressure of P1 , as

shown in figure 6.4. If the wafer surface is flat (i.e. the envelope is constant, meaning there is no

long range height variation), then the top pad surface will also be flat and in contact with the wafer
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surface everywhere. This means that the pad displacement Wp is constant everywhere, and the pad

pressure Pb and the wafer (envelope) pressure P, will then be equal to the applied pressure P, in

every cell making up the envelope. If the wafer surface is not flat, when a pressure of P1 is applied

the polishing pad bends and displaces to conform to the wafer surface. Hence, there is a

perturbation to the otherwise constant pad displacement Wb. Let the line AD represent a reference

level in the wafer-pad geometry. The perturbation pad displacement wb is defined as the reference

level minus the height of the top of the pad surface (the top of the pad surface is the surface that

touches the wafer when there is contact between the two) as shown in figure 6.4. In addition, let

there exist a wafer perturbation displacement we defined as the reference level minus the top

surface of the wafer, as illustrated in figure 6.4. Both the perturbation pad displacement and the

perturbation wafer displacement vary along their surfaces, i.e., they vary from cell to cell.

The long range non-planarity of the wafer surface leads to a perturbation in the wafer and

pad pressures, i.e., these pad and wafer pressures deviate from the applied pressure P1 . The

perturbation pad pressure is denoted by Pb and it is related to the perturbation pad displacement as

given in equation 6.4. The parameter kc is a model parameter referred to as the contact factor.

Theoretically, kc is related to the pad elasticity and the poisson ratio as in equation 6.1. It

therefore has inverse pressure units (e.g. 1/pascal or 1/psi).

It is recognized that equation 6.4 is a convolution, and can be re-written as in equation

6.5, where f is a kernel function given in equation 6.6. Fast fourier transforms (FFTs) can be used

to solve equation 6.5. However, the kernel function f has a pole at the origin, so that at (x,y) =

(0,0) this function is infinite. It therefore needs to be modified slightly without significantly

changing the physics of the problem. A modified kernel function f, is proposed in equation 6.7,
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where the new term E is small but greater than zero. In this thesis, the new term S is set equal to

0.1 in discretized units. With the new kernel function, equation 6.6 is approximated as in equation

6.8. Taking the FFT of equation 6.8 leads to equation 6.9. If the perturbation pad displacement wb

is known, then the perturbation pad pressure Pb can be computed as in equation 6.10, where

"Real" means the real part of a complex number, "IFFT" means inverse fast fourier transform, and

"FFT" means fast fourier transform.

We Reference plane Wb

Wafer

Figure 6.4: Wafer-pad set up for envelope pressure computation

Wb(x'y) = k Cbf "( d~d1
C j 2 2

A (x-C) +(y-rj)
(Equation 6.4)

wb(x'y) = k cPb(x'y) 0 f'(xy)
(Equation 6.5)

1
f (xy) = _-2

x +y

f1I(x,y) =
2 2

x + y +8e

(Equation 6.6)

(Equation 6.7)

192



Wb(xy) = k Pb(xy) 0 f1 (x'y)
(Equation 6.8)

FFT [wb(x'y)] kc(FFT [pb(xy)]) e (FFT[f 1 (x,y)]) (Equation 6.9)

Pb(xy) - Real IFFT b(xy)]
kc) _FFT [f (x,y) ] _ (Equation 6.10)

To implement the FFT-based approach to solving for the perturbation pad pressure, the

perturbation pad displacement wb is initially assumed equal to the perturbation wafer

displacement we, which is known. This is equivalent to assuming that the pad is in contact with

the wafer everywhere, initially. Then, the perturbation pad pressure is computed using equation

6.10. After computing the perturbation pad pressure in every cell making up the envelope, the

constraint expressed in equation 6.11 is checked. If the constraint is violated in any cell, it means

that the pad is not in contact with the wafer in that cell. Consequently, the perturbation pad

displacement associated with that cell is decreased by a small amount, and equation 6.10 is solved

for the new perturbation pad pressure in every cell, including the cells where the constraint was

originally satisfied. This procedure is continued iteratively until the constraint is satisfied in all

cells. At that point, the resulting perturbation pad pressure and the corresponding perturbation pad

displacement are said to constitute a consistent solution. The procedure just described is

illustrated in figure 6.5.

Once a consistent perturbation pad pressure is found, the envelope pressure P, is

computed as given in equation 6.12 and the pad pressure is given in equation 6.13. If the

perturbation pad displacement is equal to the perturbation wafer displacement, then the pad
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surface and the wafer surface are in contact, and the wafer or envelope pressure is equal to the

reference pressure minus the perturbation pad pressure. The pad pressure is equal to the wafer

pressure. If, on the other hand, the perturbation pad displacement in a cell is less than the wafer

displacement in the same cell, the pad surface and the wafer surface are not in contact in that cell.

Consequently, the wafer or envelope pressure in that cell is zero, while the pad pressure is the

reference pressure minus the perturbation pad pressure.

Set wb = We in every cell

Compute the perturbation
pressures in eery cell

ECompute the Ye s Is the constraint given in No Decrease wb in cells

envelope press eq. 6.11 met in all cells? where the constraint
re in each cellviolated

+Done

Figure 6.5: Iterative methodology for computing the envelop pressures

P1 -Pb 0

(Equation 6.11)

P I -Pb W e = W b
Pw

e W e >wb (Equation 6.12)

Sb = I b (Equation 6.13)
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6.3 Formulation of Integrated Model in Intrinsic Stage

Three: Overpolish Stage

The model formulation in intrinsic stage three is similar to that in intrinsic stage one. Here,

the dual material surface (copper in the trenches and dielectric in the spaces) is first discretized

into cells. In each cell (a cell might contain both materials), the average, maximum, minimum or

some other appropriate statistic of the up-area heights is computed to represent the envelope in

that cell. When the envelope is computed, a similar iterative implementation of the integrated

model described in section 6.2 is applied. This implementation is illustrated in figure 6.6.

Compute the envelop

T
P e4 Pe5 Apply contact mechanics

elP2 to compute envelop pressures

t Pei

Use density-step-height model
to compute the removal rates

Compute new
envelope

CJPPer Dielectric

Done

I
Compute the dishing and
erosion for polish time 8t I

I
Set polish

No time to:
Yes Is Sum(6t) = Total polish t - Sum(8t)

time t?

Figure 6.6: Iterative implementation of integrated model in intrinsic stage three

The removal rate equations for intrinsic stage three, originally derived in chapter 3, now

change due to the envelop pressure being different from the applied pressure, as given in

equations 6.14 - 6.15. In these equations, Du is the copper dishing, dax the maximum dishing
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parameter, RR,, the dielectric removal rate, RRu the copper removal rate, rcu the effective blanket

copper removal rate, r, the effective blanket dielectric removal rate, and (cD is the effective

layout copper pattern density. The new equations are for each iteration in figure 6.6. The pressure

ratio term P/P takes care of the limitation of the density-step-height model in the excessive

overpolishing regime, which was discussed in chapter 3. The formulation of the integrated model

in intrinsic stage two (the barrier clearing stage) is similar to that in intrinsic stage three.

RR =r e I- cuCu Cu P d (Equation 6.14)
1max;

(P I-_ - D
RRox ox P d (Equation 6.15)

1 Cu max

6.4 Model Parameters and Calibration Methodology

The integrated contact mechanics and density-step-height model parameters for a single

step copper CMP process are the contact factor kc, and all the parameters introduced in the

formulation of the density-step-height model for single step copper CMP processes, in chapter 3.

These parameters are summarized in table 4.1. Theoretically, the contact factor kc is related to the

stiffness of the pad. The stiffer the pad, the smaller the contact factor, and the more difficult it is

for the pad to conform to any long range height variation on the wafer, i.e., the pad is then less

likely to contact lower height areas, for a given applied pressure. On the other hand, the softer the

pad, the larger the contact factor, and the easier it is for the pad to conform to the long range

height variation on the wafer. The contact factor therefore indicates the extent to which long range

height variation can be eliminated.
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The contact factor should not be confused with the planarization length. Both parameters

are indicators of the planarization capability of a CMP process. The longer the planarization

length and the smaller the contact factor, the higher the planarization capability of the process.

One way to distinguish between the two is to think of pad bending in three dimensions. The

planarization length captures the length scale of the pad deformation in the x-y plane, while the

contact factor captures the extent of the deformation in the z-plane.

The contact factor may be influenced by the process settings (e.g. speed) and the

consumable set (slurry). It does not depend on topography (topography meaning long range

height variation). However, it does determine the evolution of topography during CMP. The

contact factor is a model parameter and it is not computed from first principles. Instead, it is

extracted from experimental data. In order for the value of kc to be extracted from single level

copper CMP experiments, the electroplating process must introduce large long range height

variation, or excessive overpolish experiments must be performed. It is assumed in this thesis, that

for a single step copper CMP process, the contact factor is the same in all intrinsic stages.

6.4.1 Model Calibration Methodology

The experiments needed for calibrating the integrated model for single step copper CMP

processes are similar to those proposed for calibrating the density-step-height model for single

step copper CMP processes. However, the extraction methodology for the integrated model is

different from that proposed for the density-step-height model. The integrated model requires the

computation of an envelope function which captures the long range height variation. Computing

the envelope function requires knowledge of the thicknesses or relative heights across the entire

die or across the large region of interest. For instance, to compute the envelope function of the

electroplated die surface, the electroplated copper thicknesses all across the die must be known.
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The electroplated copper thicknesses across the entire die can only be obtained through

simulations.

Table 6.1: Integrated model parameters for a single step copper CMP process

Intrinsic stage one Intrinsic stage two Intrinsic stage three

Description Description Description

rcu Effective blanket rcu Effective blanket cop- rcu Effective blanket cop-
copper removal rate per removal rate per removal rate

kc Contact factor rb Effective blanket bar- r0x Effective blanket
rier removal rate dielectric removal rate

L, Planarization length kc Contact factor kc Contact factor

Hex Critical step height L3  Planarization length L3  Planarization length

dmax Maximum dishing dmax Maximum dishing

Edge rounding W Edge rounding factor
factor

A simulator that predicts the electroplated copper thicknesses across an entire chip has

been developed by Park [36]. This simulator is based on an empirical pattern dependent

electroplating model [36]. Using the measured electroplated copper thicknesses at specific points

on the die (for a wafer patterned with a specially designed test mask), the electroplating model is

calibrated. The calibrated model is then used to simulate the electroplated copper thicknesses

across the entire die [33]. The simulator predicts the copper thicknesses across the die to within

500 - 800 A accuracy. The errors in the simulation affects the computed envelope and

consequently, the computed envelope pressures.

The model parameter extraction principle for the integrated model is the minimization of

the RMS error between the measured data and model, subject to several constraints. Figures 6.7 -
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6.8 illustrate the procedures for extracting the integrated model parameters in intrinsic stages one

and three of a single step process. The modeling parameters related to intrinsic stage two are

obtained from the extracted modeling parameters in intrinsic stage three, as described in chapter

3.

6.5 Model Fits versus Experimental Data

In chapter 5, an extensive three step copper CMP experiment was reported to evaluate the

accuracy of the density-step-height model, for multi-step copper CMP processes. The density-

step-height model did not fit the experimental data for the first polish step satisfactorily. This is

because of the density-step-height model's failure to account for the influence of long range

height variation (introduced by the electroplating) on polishing pressure. The integrated model

has been formulated to remedy this limitation of the density-step-height model. This model is

therefore tested against the same experimental data obtained from the three step copper CMP

process used in chapter 5.

The integrated contact mechanics and density-step-height model has been formulated for

single step copper CMP processes in section 6.2. Applying this model to multi-step copper CMP

processes requires treating multi-step processes as combinations of single step processes, each

comprised of three intrinsic stages. Once again, it is important to note that not all intrinsic stages

are relevant for the different polish steps. Hence, the model parameters related to irrelevant

intrinsic stages are ignored.
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single step copper CMP process

intrinsic stage one of

6.5.1 Extraction of Model Parameters for Step One Process

Only intrinsic stage one is relevant for step one as discussed in chapter 5. Thus, the model

parameters that need to be extracted are the effective blanket copper removal rate rc,,, the

planarization length L11, the contact factor ke,, and the critical step height Hexii. As discussed in

chapter 5, the critical step height can be neglected for this experiment. Post-CMP step height data

for this experiment indicates that the critical step height is negligible (for the structures on the test

mask used in the model parameter) extraction. The relevant extracted model parameters for step
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one are summarized in the first row of table 6.2. For the sake of comparison, the extracted model

parameters for the density-step-height model are summarized in the second row of the same table.

Extracted blanket
copper removal rate
(from stage one):

rcu: a1 , a2, and Tr

Measured data:
- Dishing
- Erosion
- Blanket dielectric

wafer data
-x,y coordinates of

measured dishing
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equations for
ic stage two

Model
intrinsi

Minimize RMS
error subject to Layo

constraintsL
- Lin
- Lin
- Loc

lay

dmax: B, a2U 02
W: C, sc

Figure 6.8: Integrated model parameter extraction procedure in intrinsic stage three of a
single step copper CMP process

Table 6.2: Extracted model parameters in step one of three step copper CMP process

rcul (A/s)
L 1 kc, Hex11 RMS Error

a, a2 Tr (Rm) (1/kPa) (A) (A)
(A/s) (A) (s)

249.5 3986 16.4 2758 9.95 negligible 569

249.5 3986 16.4 4893 N/A negligible 817

The initial simulated electroplated copper thickness profile used to compute the initial

envelope function and the initial envelope pressures during the model parameter extraction is
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illustrated in figure 6.9. The simulated thicknesses at certain points on the die are compared to

measured electroplated copper thicknesses in figure 6.10. The points on the die used for this

comparison are illustrated in figure 6.11. The initial envelope function computed from the

simulated electroplated copper thicknesses is illustrated in figure 6.12. In addition, the initial

envelope pressures are also shown in figure 6.12.
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Figure 6.9: Simulated electroplated copper thicknesses across die
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The model fits versus experimental data for the extraction of model parameters in step one

are shown in figure 6.13. For the sake of comparison, the model fits for the density-step-height
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model of chapter 5 are shown on the same graph. The integrated model fits the data with an RMS

error of 569 A (RMS error for density-step-height model is 817 A). This error is acceptable given

that the copper thickness measurements on the patterned wafers are only accurate to within 300 -
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500 A (copper thicknesses in array regions are estimated from copper thickness measurements in

nearby fields, and from recess data obtained from surface scans), and the fact that the model used

to simulate the initial electroplated copper surface for use in the estimation of the envelope and

the envelope pressures, has RMS errors on the order of 500 A. More importantly, the spread in the

fitting errors at the different sites is small.

The integrated model fits the data much better than the density-step-height model, as seen

in figure 6.13. In addition, the planarization length of 2758 [tm extracted for the integrated model

is more reasonable than the length of 4893 tm extracted for the density-step-height model. The

latter length is unexpectedly large given the high down force process used in step one.

6.5.2 Extraction of Model Parameters for Step Two Process

The extracted model parameters in step two are given in table 6.3. The edge rounding

effect is included in the equations to better fit the model to the data, and to get the extracted

effective dielectric removal rate closer to the measured rate. The parameters have the same values

as those extracted for the density-step-height model with the edge rounding effect included, in

chapter 5. The extracted contact factor is unrealistically high, suggesting that there is not enough

long range height variation for the correct value of the contact factor to be extracted. Whenever

the contact factor does not have a significant impact on the evolution of the topography, it is

impossible to extract its correct value from the data. The model fits versus the data are shown in

figure 6.14.
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6.5.3 Extraction of Model Parameters in Step Three

The extracted model parameters in step three are summarized in table 6.4. The edge

rounding effect is included in the model equations, and the effective blanket copper and dielectric

removal rates are set equal to the measured instantaneous rates. The extracted model parameters

are equal to those extracted for the density-step-height model in chapter 5. The contact factor in

step three does not impact the evolution of the topography significantly because the long range

height variation is small, and hence the extracted value of the contact factor is suspect. The model

fits versus the measured data are shown in figure 6.15. The model agrees with the trend in the

data, and fits the data to within measurement errors.

Table 6.3: Extracted model parameters in step two for three step copper CMP process

rcu2 ro2 rb2 L2 3  
dmax2 (A) V2 RMS

0cu 0ox 0b 2 Error
(A/s) (A/s) (A/s) (gm) (1/kPa) B2  2 2 Error

(A)

44 2.36 7.58 2456 2.3e3 173.6 0.427 0.331 4.03 4.19 73

Table 6.4: Extracted model parameters in step three for three step copper CMP process

dp3 (A) W3 RMS
rcu3 rox3 rb3 L33  kc3 Error

(A/s) (A/s) (A/s) (pim) (1/kPa) A3  A)
(A) 3X 3 C3  c3 (

9.0 20.0 4.0 4500 2.5e3 31.0 0.625 0.014 3.41 57.3 126
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6.5.4 Checking the Accuracy of the Extraction

In chapter 5, the accuracy of the extraction of the density-step-height model parameters

for the three step copper CMP process is tested by running a full simulation of all the polish steps,

and comparing the simulated results to the measured dishing and erosion. This testing procedure

is repeated in this chapter for the integrated contact mechanics and density-step-height model.

The simulation results are compared to the measured data in figure 6.16. For the sake of

comparison, the simulation results obtained in chapter 5 for the density-step-height model are

shown in the same figure.

It is clear from figure 6.16 that the integrated model fits the measured erosion much better

than the density-step-height model. This is not surprising because the integrated model computes

the bulk copper clearing times and hence the overpolish time much more accurately than the

density-step-height model. Dielectric erosion is strongly dependent on overpolish time. If the

overpolish time is underestimated, the dielectric erosion is underestimated and vice-versa.

There is little difference between the two models with regards to the simulated dishing

values. This should not be surprising because dishing tends to reach steady state rapidly.

Therefore, even though the density-step-height model does not accurately simulate the overpolish

times, it is able to compute the correct steady state dishing values for most of the array sites (both

models extracted the same values for the maximum dishing of all the arrays). This does not mean

that the density-step-height model is able to accurately predict dishing, particularly for short

overpolish time.
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6.6 Summary

In this chapter an integrated contact mechanics and density-step-height model is

developed. Contact mechanics is used to compute the polish pressure on an envelope function that

captures the long-range height variation on the die, while the density-step-height model

formulation uses this pressure to compute the removal rates in the local up-areas and down-areas.

A methodology for calibrating the model is proposed, and used to test the model against

experimental data obtained from a comprehensive three step copper CMP process. The model

predicts the trend in the experimental data well, and fits the data to within acceptable errors.
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Chapter 7

Chip-Scale Simulation

The main goals of this thesis are to develop a semi-physical pattern dependent model for

copper CMP processes and to incorporate the model into a simulator for predicting the dishing

and erosion performance, as well as the copper thickness polish evolution, on an entire chip. In

this chapter, the components of the simulator, and the methodology for using the simulator to do

chip-scale predictions are described. In section 7.1, the framework for chip-scale simulations is

described briefly. This is followed by brief descriptions of the components of the chip-level

simulator, in sections 7.2 - 7.5. In section 7.6, the predictive accuracy of the simulator is tested,

and the chapter concludes in section 7.7 with a summary.

7.1 Framework for Chip-Scale Simulation

The framework for doing chip-level simulation is illustrated in figure 7.1. The simulator integrates

an electroplating modeling methodology with a copper CMP modeling methodology. A modeling

methodology comprises a model and a calibration/characterization procedure for the model.

Calibration involves performing CMP and electroplating experiments, to extract the models'

parameters for a given copper CMP process, and a given electroplating process. Prediction

involves using the calibrated models to simulate the copper thicknesses deposited by

electroplating, the copper thickness evolution during CMP, and the dishing and erosion after

CMP, for any random layout. The requirements are that the random layout must be plated with the

calibrated electroplating process, and polished under similar conditions (down force, relative

speed and consumable set) as the calibrated copper CMP process.
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The chip-scale simulator has several components, including the electroplating model, the

copper CMP model (the integrated contact mechanics and density-step-height model developed in

this thesis), a layout extractor, a standard test mask, and a standard calibration experimental plan.

These components are described in sections 7.2 - 7.5.

7.2 Layout Extractor

Dishing and erosion depend on line width, line space, and pattern density. The copper

thickness evolution during CMP depends on the electroplated copper pattern density, the

electroplated line width and space, and the long range electroplated copper height variation. In

addition, the copper thickness deposited by electroplating also depends on the line width, and line

space on a layout [12,36]. Hence, for the simulator to predict the dishing and erosion on a random

layout or to calibrate the model using the test mask, the layout details of these masks must be

known. A layout extractor is a tool that takes in any layout, and summarizes the layout patterns on

it, calculating desired discretized statistics for the line widths, line spaces, line lengths, and local

layout pattern density.

A typical layout has many objects in it: lines, squares, and other polygons. It would be

impractical to have a layout extractor that gives the details of every object on the layout. Instead, a

typical layout extractor discretizes the layout into small cells. In each cell, the layout extractor

computes the average, maximum, and minimum line widths, line lengths, and line spaces [36]. It

also computes the number of lines in certain line width ranges, and the layout density of the lines

(corresponding to copper lines in a damascene process) in the cell.

The size of the cell should be chosen such that the extractor provides accurate information

about the layout features, while maintaining computational efficiency. The larger the cell size, the
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faster the computation, but the less accurate the layout information it provides. Typical cell sizes

are 20 gm by 20 pm and 40 gm by 40 pm.

7.3 Electroplating Model

The electroplating model is an empirical model that expresses the thickness of the copper

deposited, the array recess and step height in terms of line width and line space [36]. The model

needs to be calibrated for every electroplating process. The calibration experiment needed is the

electroplating of at least two wafers patterned with a specific test mask. Once the wafers are

patterned and plated, the copper thickness deposited at specific sites, and the step height and

recess for certain arrays are measured. This data is used to extract the model parameters.

Once the model is calibrated for the given electroplating process, it can then be used to

predict the electroplating thickness, the step height, and the recess across an entire chip, for any

random layout. The layout details for random layouts provided by the layout extractor are used as

as inputs to the model, to do the predictions.

After computing the step heights in every cell of the random layout, the electroplating

model also computes the local electroplated copper density in every cell. This local density is

simply the total copper up-area in the cell. A detailed description of the electroplating model can

be found in the thesis by Park [36].

7.4 Copper CMP Model

The copper CMP model used by the simulator is the integrated contact mechanics and

density-step-height model formulated in chapter 6 of this thesis. For a given copper CMP process,

simulated electroplated thicknesses, simulated electroplating step heights, and simulated local
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electroplated copper densities for a standard test mask, and the calibration experimental plan

described in chapter 6, are used to fully calibrate the model. The simulated results used in the

calibration are provided by the electroplating model described above.

Once calibrated, the model can then be used to predict the copper thickness evolution

during CMP, the bulk copper clearing times, and the dishing and erosion for any random layout.

The requirement is that the wafers patterned with the random layout be polished using the same

process (consumable set, slurry flow rate, down force and relative speed) as the process for which

the model has been calibrated. It is important to note that the polish times of the test wafers used

in the calibration need not be the same as the polish time for the wafers patterned with the random

layouts. The model captures time dependencies accurately.

The layout details of the random layout provided by the layout extractor are used as inputs

in the model prediction. For instance, the line width and line space information provided by the

layout extractor are used to compute the maximum dishing parameter. Because the layout

extractor provides statistical information of the layout features in a particular cell of the layout,

the model prediction should also be interpreted as a statistic for the cell in question. For example,

with information about the average line width and average line space in a cell, the model predicts

the average dishing and erosion in that cell.

7.5 Test Mask

The test mask used in calibrating these models for any given CMP process and plating

process, should have a wide range of patterns: line widths, line spaces, and pattern densities. The

MIT-SEMATECH 854 mask, and the MIT mask version 1.2 are the most suitable of the currently

available masks, for this task. These masks are described in chapter 2 of this thesis.
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7.6 Testing the Predictive Accuracy of the Chip-Scale Simu-
lator

To test the accuracy of the simulator, the three step copper CMP process described in

chapters 5 and 6, is used to polish wafers patterned with a complex layout. This layout (hereafter

referred to as mask Z) is different from the layout of the standard test mask used to calibrate the

electroplating and copper CMP models. The experimental details including the polish times for

two of the wafers patterned with mask Z are summarized in tables 7.1 - 7.2.

Table 7.1: Three step copper CMP experiment on the Mirra

Step # Platen # Pad Slurry Down force Speed
(psi) (rpm)

1 1 Stacked EPC-5001 5 63

2 2 Stacked EPC-5001 2 43

3 3 Stacked 10K-i 3 100

Table 7.2: Polish times of wafers patterned with mask Z

Wafer # Step one Step two Step three

Z-1 63 102 55

Z-2 63 117 0

Some of the layout details for mask Z, obtained from the layout extractor are shown in

figures 7.2 - 7.3. For the purpose of comparison, the same layout details for the calibration test

mask are shown along side those for mask Z. The simulated average electroplated copper

thicknesses, simulated electroplated step heights, and simulated local electroplated copper pattern

densities, for both mask Z and the calibration mask are shown in figures 7.4 - 7.6.
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Using the extracted values of the copper CMP model parameters for the three step copper

CMP process in chapter 6, the electroplating model results, the layout extractor results, and the

polish times for the Z-patterned wafers, the simulator predicts the dishing after polish step two,

the dishing after polish step three, the erosion after polish step two, the erosion after polish step

three, and the bulk copper clearing time. The simulated results are shown in figures 7.7 - 7.10. To

check the accuracy of the simulated results, dishing and erosion measured at several spatial

locations on the polished Z-patterned wafers, are compared to the simulated results at the same

sites in figures 7.11 - 7.13. As seen in these figures, the simulated results match the trends in the

measured data well. In addition, the simulated results are close to the measured results within

errors of 100 - 500 A. These errors are reasonable given that the model parameter extraction

errors in steps one and three, the simulated electroplating error, and the dishing and erosion

measurement errors, are in the same range. This indicates that the developed copper CMP model,

the electroplating model, and the chip-scale simulator can be used to gain important insight into

pattern dependent effects in copper interconnect formation.
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7.7 Summary

In this chapter, the integrated contact mechanics and density-step-height model developed

in this thesis is combined with an empirical pattern dependent model for copper electroplating

processes, to form a chip-scale simulator for copper CMP and copper electroplating processes.

The models making up the simulator need to be calibrated for every copper CMP process and

every electroplating process, respectively. Once the models are calibrated, the simulator can be

used to predict the dishing and erosion performance for any random layout polished under the

same process conditions as those of the copper CMP process for which the copper CMP model

has been calibrated. In addition, the plating process used to deposit copper on the wafers patterned

with the random layout must be the same as that for which the electroplating model has been

calibrated.

The simulator uses a layout extractor to extract the layout details (line widths, line spaces,

line lengths, and local layout pattern density) on any given layout. The layout extractor discretizes
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the layout into small cells, and extracts appropriate statistics of the lines, and polygons in each

cell. In addition, it computes the layout density in each cell, based on the objects (lines and

polygons) in the cell. The discretization or cell size is chosen to achieve accurate extraction of the

layout details, without making the extraction process computationally prohibitive. Typical cell

sizes are 20 ptm by 20 pm and 40 pm by 40 gm.

To test the accuracy of the simulator, the three step copper CMP process calibrated in

chapter 6 of this thesis is used to polish wafers patterned with a layout that is different from that

used in the model calibration. A bottom-up fill electroplating process is used in depositing copper

on the wafers. The electroplating model has already been calibrated for that process [36]. A

comparison of the measured dishing and erosion to the simulated dishing and erosion shows that

the simulated results follow the trends in the measured data quite accurately. In addition, the

simulated results are close to the measured data within errors of 100 - 500 A.
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Chapter 8

Conclusion and Future Work

This chapter summarizes the key contributions of this thesis in section 8.1, and identifies

areas for future work in section 8.2.

8.1 Summary

The main contribution of this thesis is the development of a chip-scale predictive semi-

physical pattern dependent model for copper CMP processes. The model is integrated with an

empirical chip-scale pattern dependent model for copper electroplating processes, to form a chip-

scale copper CMP and copper electroplating simulator. The simulator predicts the dishing and

erosion performance of calibrated copper CMP processes, on any layout. It also predicts the bulk

copper thickness evolution during copper CMP, and can possibly identify clearing problems that

tend to plague the CMP of multi-level copper interconnects. In addition, it can be used to assess

the effectiveness of dummy fills in reducing dishing and erosion, and to generate smart design

rules in conjunction with circuit simulators.

An extensive three step copper CMP experiment has been conducted to test the accuracy

of the chip-scale simulator. For these experiments, it has been found that the simulator predicts

the trends in dishing and erosion accurately. In addition, the predicted dishing and erosion are

close to the measured dishing and erosion on real layouts, considering the errors in the model

parameter extraction, electroplating simulation, and metrology.

The predictive copper CMP model developed in this thesis is an integrated contact

mechanics and density-step-height model. It uses contact mechanics to compute the polish
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pressure in each large region on the chip. Given the effective polish pressure, the density-step-

height formulation computes the removal rates of the local up-areas and down-areas.

The model must be calibrated for every copper CMP process, before it can be used for

predictive purposes. A comprehensive calibration methodology has been developed in this thesis.

It includes the use of a specialized test mask, the polishing of several blanket and patterned wafers

to capture the evolution of the copper CMP process, and pre-CMP and post-CMP metrology.

8.2 Future Work

The results presented in this thesis show that the developed copper CMP model and chip-

scale simulator can be used to gain important insight into pattern dependent effects in copper

interconnect formation. Additional work is needed to statistically include wafer level and polish

process variations in the model, and to study the relationships between the model parameters and

polish process parameters such as down force, relative speed, pad stiffness, abrasive size, abrasive

concentration in slurry, chemical concentration in the slurry, and slurry flow rate.

Including wafer variation in the model will make it possible for the simulator to predict the

evolution of the bulk copper thickness, and the dishing and erosion performance on any die across

the wafer. In addition, including process variation in the model will make it more robust. Finally,

understanding the relationships between the model parameters and polish process parameters will

make it possible for the simulator to be used to optimize copper CMP processes.
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