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Abstract

Determining the conformations of biological molecules is a high scientific priority for bio-
chemists and for the pharmaceutical industry. This thesis describes a systematic method

for conformational search, an application of the method to determining the structure of the

formyl-Met-Leu-Phe-OH (fMLF) peptide by solid-state NMR spectroscopy, and a separate

project to determine the structure of a protein-DNA complex by X-ray crystallography.
The purpose of the systematic search method is to enumerate all conformations of a

molecule (at a given level of torsion angle resolution) that satisfy a set of local geometric

constraints. Constraints would typically come from NMR experiments, but applications
such as docking or homology modelling could also give rise to similar constraints.

The molecule to be searched is partitioned into small subchains so that the set of pos-

sible conformations for the whole molecule may be constructed by merging the feasible

conformations for the parts. However, instead of using a binary tree for straightforward

divide-and-conquer, four innovations are introduced: (1) OMNIMERGE searches a subprob-

lem for every possible subchain of the molecule. Searching every subchain provides the

advantage that every possible merge is available; by choosing the most favorable merge for

each subchain, the bottleneck subchain(s) and therefore the whole search may be completed

more efficiently. (2) A cost function evaluates alternative divide-and-conquer trees, pro-

vided that a preliminary OMNIMERGE search of the molecule has been completed. Then

dynamic programming determines the optimal partitioning or "merge-tree" for the molecule;

this merge-tree can be used to improve the efficiency of future searches. (3) PROPAGATION

shares information by enforcing arc consistency between the solution sets of overlapping

subchains. By filtering the solution set of each subchain, infeasible conformations are dis-

carded rapidly. (4) An A* function prioritizes each subchain based on estimated future

costs. Subchains with sufficiently low priority can be skipped, which improves efficiency.

A common theme of these four ideas is to make good choices about how to break the

large search problem into lower-dimensional subproblems. These novel algorithms were

implemented and the effectiveness of each is demonstrated on a well-constrained peptide

with 40 degrees of freedom.

Thesis Supervisor: Tomis Lozano-Perez
Title: Cecil H. Green Professor of Computer Science and Engineering
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Chapter 1

Introduction

Understanding the biological function of proteins and other flexible molecules often requires

investigating the possible conformations or three-dimensional arrangements of atoms in the

molecule. The famous "protein folding problem" is, in essence, the problem of finding the

conformation with lowest Gibbs free energy. The problem addressed in this thesis is enumer-

ating conformations that satisfy a given set of geometric constraints. The most important

occurrence of this problem is when NMR spectroscopy experiments yield constraints on the

geometry of atoms in a molecule (interatomic distances and dihedral angles in a molecule),

and one then needs to determine what conformations of the molecule are consistent with

those constraints.

Chapter 2 describes a systematic method for finding conformations that satisfy a user's

constraints. Chapter 3 is an application of that method to determining the structure of a

small peptide called fMLF (or formyl-Met-Leu-Phe-OH), based on constraints from solid-

state NMR spectroscopy. Chapter 4 is a set of novel algorithmic enhancements to the meth-

ods of Chapter 2. Chapter 5 describes the determination of a large structure (a protein

molecule bound to a double-helix of DNA) using a contrasting method, X-ray crystallogra-

phy.
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1.1 Context and Motivation

Protein Structure

Proteins, some of the most important types of molecules for life, are made from simple

building blocks called amino acids or, after they've been connected, amino acid residues.

The residues in a protein are connected sequentially to form a flexible chain. The spatial

arrangement of a protein in three dimensions is called the protein's conformation, or its

tertiary structure or, to emphasize the atomic-level resolution of the arrangement, the atomic

structure.

Each amino acid building block has one of twenty possible sidechains attached to an

invariant set of backbone atoms. Peptide bonds connect the backbone atoms of adjacent

residues in a protein, thus forming one polypeptide backbone through the entire length of

the protein. Because the various sidechains along the backbone have different chemical

properties, they attract or repel one another, creating a complicated and non-uniform set

of forces. The protein (both backbone and sidechains) bends and folds in response to the

forces and often converges to one energetic minimum.

The sequence of amino acids, or primary structure, of a protein is widely believed to

dictate the protein's tertiary structure, which determines the chemical activity and biolog-

ical function. Other molecules besides proteins have similar structural freedoms and often

have similar unique minimum conformations, but proteins are the canonical example.

Structure Determination

Atomic structures are too small to observe directly, such as with a microscope. Structure

determination is experimentally difficult, but it is a high scientific priority for biologists,

biochemists, and the pharmaceutical industry. Experimental methods for structure deter-

mination must somehow align or amplify signals from many copies of the same molecule,

such as through crystallizing the sample so that all copies have precisely the same orien-

tation (as for X-ray diffraction in Chapter 5), or subjecting the tiny magnetic dipoles in

the nuclei of the atoms to an enormous magnetic field (as in NMR spectroscopy in Chapter

3). The raw data from such experiments can, with extensive and sophisticated processing,

eventually provide sufficient information to deduce the structure of a molecule at atomic

resolution. X-ray diffraction yields a map of electron density and NMR spectroscopy typ-

12



ically provides constraints on distances between particular pairs of atoms and constraints

on dihedral angles for rotatable bonds. Some molecules are better suited to investigation

by one method or the other, and both methods have become extremely popular.

With the growing number of scientists performing these experiments and with increasing

automation of the structure determination process, software test suites [38, 72, 39, 55] have

been developed to provide simple but automatic measures of the quality of an atomic

structure. For X-ray crystallography, an analytical expression called the free-R [7] has

been adopted to help reduce unintentional overfitting of atomic structures to the observed

diffraction data. (The structure in Chapter 5 is noteworthy in part for the rigor with

which the free-R was applied, relative to competing studies at that time.) It is conceivable

that some atomic structures determined by NMR spectroscopy could also involve some

overinterpretation of the available experimental data [14]. That is, there may be NMR

constraint sets that permit a wider range of conformations than were originally identified.

In any case, the ability to determine the full range of conformations consistent with a set

of constraints would certainly aid in error analysis and confidence measures of structures

determined by NMR.

A protein has hundreds or even thousands of degrees of freedom, and its conformation

space (like configuration space in traditional artificial intelligence) is exponential in the

number of degrees of freedom. Moreover, small increments in one variable can cause extreme

and nonlinear changes in properties of interest (such as whether the constraints are satisfied).

Absolute completeness in searching such a space may prove as elusive as protein folding

itself. The primary goal of this thesis is to provide methods that guarantee some minimum

interval of coverage, even though absolute completeness on the continuous space is never

guaranteed.

The number of degrees of freedom that can be searched by our methods is not yet enough

for application to typical protein structures. Therefore, as we make progress towards the

eventual goal of systematically searching large structures, we address the important problem

of searching smaller molecules, such as peptides.

The constraints on the fMLF peptide, determined experimentally by Rienstra et al.,

include multiple distinct alternative ranges for many of the dihedral angles in the peptide.

For example, the q dihedral angle of methionine (the M in fMLF) was determined by ex-

periments to be between -152.5' and -145.5' or between -92.5' and -85.5' or between -8.5'

13



and -3.5'. Systematic methods are particularly well-suited to considering disjoint alterna-

tive ranges for torsion angle constraints, and we applied our methodology to the problem

of determining what conformations satisfy the fMLF constraints. By using a systematic

method, we were also able to provide a guarantee that all conformations consistent with

the constraints are either represented, within the margin of the search interval, or else are

able to escape detection by virtue of being narrower than the search interval. By using a

search interval of only 5' (for all but the two most unconstrained torsions in the peptide,

which had a search interval of 300), we provide an exceedingly high degree of confidence

that there is no other region of conformation space that might satisfy the constraints but

that somehow has been overlooked.

The accuracy of structures determined from NMR data depends even in prin-

ciple on several factors in addition to the quality of the data. The calculation

is not a simple mathematical transformation, but involves a search of the pro-

tein conformational space to find all conformations compatible with the given

set of experimental constraints. The adequacy of the search depends on the

experimenter.

Zhao and Jardetzky, 1994

from J.Mol.Biol., 239: 601-607.

1.2 Conformational Search

Conformational search algorithms, and systematic conformational searches in particular,

are used for many applications including docking [20, 52, 77, 53], homology modelling

[46, 15, 17], the pharmacophore problem [67, 69, 63], interpretation of crystallographic

14



electron density [76, 60], and determining stereospecific NMR assignments [26, 68, 24],

as well as for interpreting NMR constraints [3, 66, 12, 29] for outright conformational

analysis of important molecules [78], and for validating heuristic search and molecular design

methodologies [47].

Some of the differences among conformational search algorithms include how they rep-

resent the molecular structures, what definition of success they use, and what constraints

they place on the search. Some methods represent each conformation using Cartesian coor-

dinates for the atoms. The most popular representation, "rigid geometry," assumes that the

lengths and angles of covalent bonds are held fixed at their equilibrium values. The only re-

maining degrees of freedom, dihedral rotations about single bonds, can then be represented

as a vector of torsion angles.

Most conformational search algorithms have an engine that generates many different

starting structures from the breadth of the conformation space, and then another module

that evaluates each conformation to determine whether it is acceptable. Search methods

can then be categorized according to whether the engine for generating conformations is

systematic or stochastic. A systematic engine (sometimes also called exhaustive) gener-

ates conformations deterministically, usually covering the conformation space at predefined

intervals and in a predefined order. A stochastic algorithm generates starting conforma-

tions using some type of randomness. A simple stochastic algorithm might randomize the

parameters of the conformation (the torsion angles or Cartesian coordinates of atoms) di-

rectly. A more popular approach uses chemically-inspired "move sets" to create a Markov

random walk through conformation space, tweaking structures in ways that attempt to

bias the sampling away from trivially unacceptable (self-colliding) conformations. Many

researchers adjust the transition probabilities in a Markov walk to achieve importance sam-

pling. The Metropolis algorithm samples states with probabilities proportional to their

Boltzmann weights. The famous simulated annealing algorithm is simply a combination of

the Metropolis algorithm with a slowly decreasing temperature parameter. "Distance geom-

etry" algorithms [12], developed specifically for the NMR structure determination problem,

search stochastically for conformations that can be "embedded" in matrices of interatomic

distances.

15



Constrained Conformational Search

The constrained conformational search problem takes a primary structure (such as a protein

sequence) and some constraints on the 3-dimensional conformation of the molecule.

The goal is to enumerate the conformations of the molecule that satisfy the constraints;

that is, to output a list of atomic structures that "cover" the space of feasible conformations.

(Let us leave "coverage" [65, 10] undefined at present.) The constraints are typically upper

and lower bounds on interatomic distances, but they can also constrain torsional angles or

even combinations of torsional angles. Whereas some formulations of the conformational

search problem (sometimes called restrained search) involve ranking conformations accord-

ing to preferences such as relative energies, the constrained version of the problem-the

problem addressed in this thesis-defines conformations as either acceptable or unaccept-

able, with no preferences or relative order among the acceptable conformations.

Systematic Approaches

There is an extensive literature on systematic approaches to the constrained conformational

search problem. For reviews, see the book by Andrew Leach [43], the article by Martin

Saunders et al. [62], or other sources [34, 6, 4, 16, 61].

One important commonality among systematic approaches is that the user chooses the

size of the interval(s) to use when generating starting structures. In other words, the

coverage is an independent variable. In contrast, the independent variables for a stochastic

search might be the number of trials, the length of time, or even the probability of coverage,

but never the absolute minimum coverage.

In contexts where a guarantee is not required, stochastic searches can create good confor-

mational hypotheses very quickly, even for large or underconstrained problems. Systematic

methods are often too slow for large or underconstrained problems because of the number

of satisfying solutions to be enumerated.

The systematic approach has been used often for small molecules of great interest such

as drugs. Many of the earliest systematic methods were originally developed for rings, and

rings remain a popular application for systematic methods [30, 25, 66, 36, 56, 75]. The

systematic approach has also been used for searches where the backbone is fixed and only

the sidechain conformations must be searched [41, 40, 44].
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The goal of the thesis is not to compare systematic with stochastic methods, nor to

argue for the superiority of systematic methods. Both systematic and stochastic methods

are useful and important. Stochastic methods are currently used far more widely than

systematic methods, and the vast majority of conformational search questions that are of

interest to chemists and biologists tend to be cast automatically as problems for stochastic

search. By extending the state of the art in systematic search, we hope both to tempt and

to allow these scientists to cast their questions as problems for systematic search.

1.3 Overview

This thesis consists of a method for systematic conformational search and two structure

determination projects. The conformational search method is the centerpiece and it includes

several novel ideas, with demonstrations of how each innovation contributes to algorithmic

efficiency. The structure of the fMLF peptide is determined using the systematic search

method. The second structure, a protein-DNA complex determined using traditional X-ray

crystallography, is methodologically separate.

In the body of the thesis, our description of the systematic search method starts with

elementary search algorithms and then builds up our method as a series of modifications or

new levels beyond the elementary algorithms: the voxel model, divide-and-conquer, OMNI-

MERGE, merge-tree optimization, propagation, and prioritizing subchains with an A* cost

function.

Voxel Model

The voxel model, proposed by Toma's Lozano-Perez, divides conformation space into small

hypercubes called voxels, and the goal of the search is recast in terms of continuous voxels,

instead of discrete points. We attempt to enumerate all voxels that contain any satisfying

region of conformation space, instead of enumerating regularly spaced points that satisfy

the constraints.

One advantage of this model is that it allows the issue of completeness to be addressed

at the level of local search, not just as a global problem. However, the primary motivation

for using the voxel model is that it can provide a systematic guarantee of how finely the

space has been examined (namely at the width of the voxels), while also allowing the
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use of non-systematic methods at the local level. Within a voxel, we can evaluate points

using randomness, heuristics, or any search method with good empirical performance. Our

method uses minimization to evaluate and search each voxel.

Divide-and-Conquer

The second improvement uses divide-and-conquer to decompose the search of the full

molecule into many small searches. Other groups have also applied the idea of divide-and-

conquer to conformational searches (sometimes called "buildup procedures" or "combine

operations").

We divide the molecule chain into smaller and smaller subchains, enumerate the solutions

for the smallest subchains, and then combine the solutions for small subchains to create

solutions for larger subchains, until solutions have been enumerated for the whole molecule.

A "merge-tree" directs how the chain is divided into subchains, and we show that the choice

of merge-tree can be critically important to the efficiency of a divide-and-conquer search.

The novel portion of this work is a comparison of the empirical performance of divide-

and-conquer with alternatives. In addition, we clarify the distinction between the size of a

subchain and the size of a subproblem.

OmniMerge

We propose an algorithm that searches all possible subchains instead of just the particular

subchains specified in one merge-tree. Quite counterintuitively, the run time of OMNI-

MERGE is sometimes better than divide-and-conquer. If the subproblems defined by a

particular merge-tree do not exploit the available constraints very well, it may be preferable

to solve all subproblems (including the ones that don't exploit the constraints very well)

rather than to solve only the default subproblems.

The key insight is that during most divide-and-conquer searches, most of the run time

is consumed by one merge operation, usually the final merge of the right and left halves of

the molecule. Because OMNIMERGE searches all subchains, it has many alternative left and

right fragments to choose from when confronting the final bottleneck step. For a molecule

with 10 residues, there will be 9 choices: one residue on the left and nine on the right, two

on the left and eight on the right, etc. Although the time required to search every possible

fragment can be substantial, is can easily be less than the time to perform the final merge
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using a poor default choice of fragments. A crucial concept throughout this research is to

improve the speed of searching a chain by making a good choice of which right and left

fragments to combine.

Merge-Tree Optimization

We develop cost functions to evaluate alternative merge-trees, based not just on minimizing

the size of the subchains but the size of the subproblems. Instead of assuming that the length

of a subchain reflects the complexity of searching it, we consider the number of solutions for

a chosen subchain as well as the number of solutions for the subsequent subchains implied by

the first choice of subchain. The cost functions we develop in the merge-tree optimization

section require knowing how many satisfying voxels there are for each subchain. Once

the information is available, the cost function is amenable to optimization by dynamic

programming and an optimal merge-tree can be computed.

Searching a molecule with OMNIMERGE provides the required information, the number

of satisfying voxels for each subchain. Several other circumstances may also necessitate

searching the same molecule more than once, but in general one can always search a molecule

once at low resolution, compute the optimal merge-tree for low resolution searches of the

molecule, and then use that same merge-tree for a higher resolution search.

Propagation

When we search every subchain of the molecule, many of the subchains will overlap each

other, which is a form of redundancy. Any time we have two subchains that share at least

one residue, we would like to reuse some of the information about what torsion angles

are allowed or disallowed for those residues. We discovered a way to formalize this desire

with the concept of arc consistency (or constraint propagation), a common artificial intelli-

gence technique for general constraint satisfaction problems. However, the name "constraint

propagation" may be misleading because instead of applying the technique directly to the

constraints on conformations (the distance constraints and dihedral constraints provided

by NMR experiments), we create new, higher-level constraints requiring that overlapping

subchains must have solution sets that are compatible with each other. To be more precise,

each conformation of one subchain must be compatible with at least one conformation of the

overlapping subchain, or else it is illegal. We use a simple propagation algorithm to enforce
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arc consistency between the solution sets of overlapping subchains. This reduces the num-

ber of candidate conformations for each subchain and results in a substantial improvement

to run time.

Ordering Subchains

The final and most complex innovation we present is the idea of choosing the order in which

to search the subchains. If the cost of searching a subchain will be high, it is postponed

until all better alternatives have been searched. If a subchain is postponed until after the

whole molecule chain has been searched, that is the same as skipping it entirely.

The flexibility of skipping arbitrary subchains opens up an exponential breadth of pos-

sible "merge-strategies." Merge-trees are some of the possible merge-strategies, but another

merge strategy might begin evaluating one merge-tree and then skip to another if the first

is disappointing.

When choosing which subchain to search next, we evaluate each according to an A* cost

function that reflects both the cost of searching the subchain and an optimistic estimate of

the potential contribution of the subchain to the search of the whole molecule.

Commonality

A common thread running through many of our ideas is investing computational resources

in order to identify which subproblems will be cheapest to solve. The extra computation

involved, whether searching small subproblems or calculating the costs of alternatives, can

pay off dramatically if it allows the overall method to avoid searching a subproblem that is

astronomically time consuming. Thus, the potential benefit of the computational investment

may be enormous, whereas the worst-case cost from using these methods is limited to the

time spent performing the extra calculations. In the final section of Chapter 4 we examine

cases expected to have minimal benefit from the extra investment, but even in these cases,

the combined package of improvements in our method still manages to provide more than

enough benefit to compensate for the "overhead" time of using it.
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Chapter 2

Systematic Conformational Search

To explain the search algorithm we have designed, we start with basic search methods

and then explain the modules we have designed as improvements to the basic framework.

The most important improvements in this chapter are using minimization to evaluate small

regions of space, and using divide-and-conquer to build up the whole solution using solutions

to smaller (lower-dimensional) subproblems. Chapter 4 will continue from there to explain

further improvements that build upon divide-and-conquer.

2.1 Elementary Search

Suppose the molecule to be searched has N rotatable bonds as the only degrees of freedom

(the "rigid geometry" model), and suppose one has chosen some resolution, say 120 degree

increments in each dimension of torsion space, as constituting the desired level of detail for

enumerating satisfying conformations.

Gridsearch

The simplest systematic search algorithm is gridsearch, a type of generate-and-test search.

If a grid (a higher-dimensional cubic lattice) were drawn over the N-dimensional search

space with, in this case, 120 degree spacing in each dimension between adjacent points,

gridsearch would iterate over every gridpoint and evaluate the molecular conformation cor-

responding to each point; hence the name. The only noteworthy features of gridsearch are
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simplicity, ease of implementation, and low overhead. In the pseudo-code below,1 the sub-

routine that converts a torsion representation of a structure into an all-atom representation

in Cartesian coordinates is called INSTANTIATE CONFORMATION.

GRIDSEARCH

For 01 = 120', 2400,3600 {

For 02 = 120 , 2400, 3600 {

For ON = 120', 2400, 3600 {

Structure S = INSTANTIATECONFORMATION ([ 1, 02, ... ,ON]).

Output S if it satisfies all the constraints.

}

}
}

Gridsearch is a form of British Museum Search, which is to say it simply generates and

checks every possibility. The run time of GRIDSEARCH is always exponential in the number

of torsions.

Treesearch

Backtracking is an elementary systematic algorithm for solving constraint satisfaction prob-

lems, and when applied to conformational search problems it is often called Treesearch [48].

Treesearch differs from gridsearch because it evaluates each partial vector of torsion angles

each time the vector is extended or altered, instead of waiting until angles have been pro-

vided for all the torsions.2 Provided that the torsions are ordered according to adjacency

in the molecule, each partial vector of torsions, called a partial path in search terminology,

corresponds to a unique conformation for a contiguous fragment of the molecule. (The

fragment contains all atoms in the bond frames of the assigned torsions. Bond frames are

1 For simplicity, we write the pseudo-code with N nested loops as if N were an absolute constant. Whether
the algorithm is actually coded using explicit iteration or recursion does not change the substance of the
algorithm.

2We draw no distinction [24] between the iterative and recursive forms of this algorithm.
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explained in appendix A.) Treesearch evaluates each fragment it creates before extending

the instantiation. A fragment can be evaluated by determining whether the constraints

active on (or relevant to) that fragment are satisfied. (Active constraints are discussed in

section 2.3.)

TREESEARCH

For 01 = 1200,2400 ,3600 {
Structure s, = INSTANTIATECONFORMATION([0 1]).

If structure s, satisfies all constraints active on it,

Then For 02 = 120, 2400, 3600 {

Structure s 2 = INSTANTIATE CONFORMATION([0 1 , 92]).

If structure s2 satisfies all constraints active on it,

Then For 03 = 1200, 2400, 360 {

Then For ON = 1200, 2400, 3600 {

Structure SN =

INSTANTIATE CONFORMATION (0 1, 02, 03, ... , ON]).

Output S if it satisfies all the constraints.

}

The pseudo-code for Treesearch is like that for Gridsearch except that an evaluation is

done after the assignment step of every loop, not just after the assignment in the innermost

loop.

Comparison

The advantage of Treesearch over Gridsearch is apparent if you consider what happens when

some fragment smaller than the whole molecule actually is found to violate some constraint.

Whereas gridsearch would automatically evaluate all extensions of the bad start, treesearch

prunes away that whole branch of the search tree and skips ahead to the next fragment.

See Figures 2-1 and 2-2.
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Figure 2-1: A depiction of how Gridsearch might sample three angles per bond on a molecule
with three bonds. All branches are explored and evaluation only occurs after

angles have been assigned to all bonds.

NO MAYBE MAYBE

NO MAYBE MAYBE NO NO NO

Figure 2-2: A depiction of Treesearch (or backtracking) showing the evaluation ("MAYBE"

or "NO") for conformations of partial fragments of the molecule. The branches

that appear in gridsearch (above) and not in treesearch are said to be "pruned."
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When pruning occurs, the number of conformations pruned is exponential in the number

of uninstantiated torsions. When few variables are instantiated, the probability of finding

violations of an active constraint may diminish, but the reward from such a find is much

larger.

The run time of TREESEARCH can be exponential, like GRIDSEARCH, but it can also be

polynomial if constraints prune most of the branches. In the extreme case where all but one

possibility is pruned for every torsion, the run time of TREESEARCH could even be linear

in the number of torsions. See Figure 2-3.

ex
2 x

e1{x
X '9 X

Figure 2-3: An ideal case for TREESEARCH.

One disadvantage of treesearch is that N evaluations of overhead must occur before the

first whole conformation can be considered for output. Gridsearch in contrast has virtually

no overhead. If no constraints are active on fragments smaller than the whole molecule, 3

then treesearch will perform worse than gridsearch. However, in circumstances where some

constraints are active on smaller pieces of the molecule (which means fragments smaller

than the whole can be disqualified and the search pruned), then treesearch will be a clear

winner.

Completeness

Note that when treesearch excludes a high-dimensional slab of space based only on evaluat-

ing a lower-dimensional fragment of the molecule, the algorithm's completeness guarantee,

such as it is, does not diminish. Higher-dimensional versions of the same gridpoints would

3 One such circumstance might be if the trial conformation is constrained such that the intensities of its

overall diffraction pattern must match a set of crystallographic intensity data.
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have been excluded by the same constraints during a gridsearch.

The conformations that correspond to regularly spaced gridpoints are not necessarily

representative of all nearby conformations. Satisfactory regions of conformation space that

don't intersect the chosen gridpoints will be missed. While one might be tempted to think

of all systematic search methods as guaranteeing complete coverage of the space, in fact

these systematic methods only guarantee that some conformation in each region of space

was considered.

* 0 0 0 * 0 0

* 00

Figure 2-4: A two-dimensional example showing how a variety of shapes with non-trivial
volumes can theoretically exist without intersecting any of the gridpoints.

Intuitively we understand that if a satisfactory region of conformation space exists and

was not identified by the search, then that region must somehow be "narrow" enough to

have avoided detection. Figure 2-4 shows a variety of large shapes that are "narrow" enough

to avoid a 2-dimensional grid. The human instinct to consider such grids "thorough enough"

to exclude significant volumes is what allows magicians to amaze audiences by placing an

assistant in a box and then sticking swords through the box.

Rotamers

Because biologically interesting proteins are generally folded into low-energy conformations,

algorithms like gridsearch or treesearch sometimes turn out to work very well for conforma-

tional search problems when their search intervals coincide with the patterns of low-energy

conformations that we will call rotamers [58, 54].

Although single covalent bonds generally permit full rotation, there are certain angles

of rotation about a bond that cause slight steric clashes between its neighboring atoms,
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and some that avoid or minimize the clash. See Figure 2-5. Suppose two large atoms are

Figure 2-5: For a pair of bonded atoms with tetrahedral geometry, torsional angles of 1200,
2400, or 3600 cause steric clashes, and torsional angles of 60', 1800, and 3000
do not.

connected by a covalent bond, and suppose each has tetrahedral geometry, with bonds to

three other small atoms. Even though the three atoms on each side are pointing away from

the central bond, torsional rotations that place the small atoms in closest proximity (in an

"eclipsed position") cause steric clashes and are less favorable than other rotations.

These clashes, combined with the fact that energetically unfavorable conformations are

improbable, cause the set of likely torsional angles to be divided into distinct ranges. For

example, if steric clashes are minimized when a torsional angle is at 60, 180, or 300 degrees,

then the most energetically favorable (and the most probable) conformations for that tor-

sional rotation will have angles in the ranges of 60 ± 5, 180 ± 6, or 300 + 6 degrees, for some

value of 6. With two adjacent rotatable bonds, the spread of likely conformations looks like

a grid. See Figure 2-6.

Rotamers were originally defined as clusters of sidechain conformations that correlate

with locally optimal torsion angles and that were found to occur frequently in X-ray crystal

structures [58]. We will use the term rotamers more generally to refer to any likely or

frequently-occurring neighborhood of conformations for any molecular fragment [49]. Some

modern conformational search algorithms even use rotamers explicitly as their representa-

tion of conformation space [13, 44].

When our algorithm searches for conformations that satisfy constraints, we will not

generally require the conformations to be in rotamers, but we would like the option of

searching rotamers first or of calibrating the resolution of our search to match regular

intervals of rotamers. This corresponds to the "succeed first" approach to variable-ordering

in generalized constraint satisfaction problems. For example, the TREESEARCH algorithm
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Figure 2-6: A hypothetical scatter plot of angles for two dihedral angles with tetrahedral
geometry.

using 1200 resolution should instead use the following assignments in place of the original

values:

For Oi = 600, 1800, 3000

2.2 Evaluating Voxels with Minimization

Conformation space is continuous, even though we discretize it for our representations.

Consider again a grid drawn over the N-dimensional search space, with a given level of

resolution, but instead of evaluating the conformations that happen to correspond to the

grid points, consider evaluating the little multi-dimensional volumes of conformation space,

the voxels defined by the grid. (The term voxel refers to a unit of higher-dimensional

volume by analogy to a pixel as the unit of a two-dimensional picture.) Instead of asking

whether each gridpoint conformation satisfies the constraints, we ask whether there exists

any conformation in the voxel that satisfies the constraints. The voxel model is a previously

unpublished idea of Tomas Lozano-Perez. This thesis is the first application, test, and

demonstration of performance for the voxel model. Because the voxel model is such a simple,

readily-implemented idea, it may prove to be the most popular aspect of our systematic

search methodology.

A one-dimensional voxel is a range of torsions, such as [30, 60], and a d-dimensional voxel
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consists of d independent, simultaneous ranges for d adjacent torsions. A set of torsions are

adjacent if they are connected in the original molecule by a path of bonds that does not

include any other rotatable bond (that is, if they form a connected component of the bond

tree described in appendix A).

There is no general, perfectly accurate way to determine whether a satisfying confor-

mation exists in a given volume. However, we can certainly do better than evaluating one

point per volume.

We will often use a satisfying point in a voxel as an easy and useful representation for

the whole voxel. Rather than enumerating satisfying conformations that happen to fall

at regularly-spaced intervals, the goal of the search problem will now be to output one

satisfying conformation from each voxel that contains a feasible region. We now formulate

VOXELIZED TREESEARCH, the treesearch algorithm in terms of voxels instead of points.

Whenever convenient, we will try to center our voxels on rotamers.

VOXELIZED TREESEARCH

For Range 01 = [0-120], [120-240*], [240-360'] {

If voxel (Range 01) has a satisfying conformation,

Then For Range 02 = [0-120], [120-240'], [240-360'] {

If voxel (RangeO1 , RangeO 2 ) has a satisfying conformation

Then For Range 03 = [0-120], [120-240], [240-360*] {

Then For Range ON = [0-120], [120-2400], [240-3600

If voxel (Range61, Range0 2 , ... , RangeON)

has a satisfying conformation,

Then output that conformation.

}

}
}
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Minimization as search

Gradient descent and other types of local optimization can be powerful search tools if local

optima don't provide too great an obstacle to exploration. Motivated by the hope that

our voxels might be sufficiently small to permit minimization to traverse much of the voxel

before getting stuck, we chose local minimization (as opposed to explicitly global meth-

ods) for finding satisfying conformations within a voxel. Minimization of potential energy

functions and other non-energetic objective functions has long been a popular tool for all

types of conformational search and conformational analysis, usually alone but occasionally

in conjunction with explicitly systematic search methods [45, 43].

Constraints on the conformation of a molecule can be trivially converted to an objective

function by summing the squared violations of the constraints. Assigning proper relative

weighting to disparate types and units of violation is less obvious. Extrapolating from a

case that involved experimental data, we chose weighting coefficients proportional to the

inverses of the standard deviations of the experimental measurements that gave rise to the

constraints. If an additional standard deviation in the data for the distance constraints

would be 0.1 A on average, and 2' on average for the torsion data, then a violation of 0.1

A in the distance constraints should receive the same absolute penalty as a 2* violation of

the torsion constraints.

Note that the objective function created here has nothing to do with potential energy

or with ranking the desirability of conformations. The constraints determine whether or

not a conformation is acceptable, not how good it is relative to other good conformations.

We use minimization of a constraint violation function as a heuristic for searching within a

voxel for satisfying conformations. The ensemble of conformations output by our algorithm

would still have to undergo energy minimization before they could be screened according

to energetic criteria.

The minimizer always starts from some initial point in the voxel, perhaps the same

point that gridsearch would have chosen, and then searches within the voxel for points that

minimize the objective function-that is, for conformations with smaller violations of the

constraints. The minimization halts when the violation function is sufficiently close to zero

(success) or when a maximum number of iterations has been reached (failure).

For the actual minimizer, we tried a quasi-Newton minimization method [59] and we
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Figure 2-7: The search within a voxel is guided by minimization of constraint violations.

added additional penalties in the objective function to prohibit solutions outside the voxel

being searched, but we found that a more effective and efficient method in practice is FSQP

[42] (Feasible Sequential Quadratic Programming), a suite of constraint-based nonlinear

programming methods that never considers points outside the restricted domain of the voxel.

Note that for our use of this optimization software, the constraints on the molecule (such

as the limits on interatomic distances) had already been incorporated into the objective

function, and what the FSQP saw as "constraints" were merely the voxel boundaries. In

either case, the user would specify a starting point in the voxel, a maximum limit on the

number of steps or iterations the minimizer can spend searching for a solution, and possibly

also parameters for multiple passes to reset the minimizer to different locations in the voxel.

With either method, the result of the minimization attempt(s) would become the answer

to whether a satisfying conformation exists within the voxel.

Minimization within Treesearch

If voxels are defined (and iterated over) by a treesearch algorithm, the first voxels defined

will have only one dimension, then two dimensions, and so on. Treesearch defines a (d+i)-

dimensional voxel only if it is an extension of a d-dimensional voxel that was already found

to contain a feasible region. When the minimizer begins evaluating the (d+1)-dimensional

voxel, we can initialize its starting conformation such that the first d torsions have the same

solution found previously. Then only the newest, d+ 1 torsion must be chosen arbitrarily.

Note that this reuse of previous information is not relevant for the basic version of

treesearch because without minimization, the midpoints (or gridpoints or rotamer-centers

or whatever points represent the voxels) are the only conformations evaluated. Without
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minimization, the same conformation is chosen for evaluation whether one chooses the

midpoint of a voxel and then extends its dimension, or if one extends the voxel and then

chooses its midpoint.

When running treesearch with minimization, we choose in many cases to perform two

or more passes of minimization, if the first pass fails. The first pass uses the d-dimensional

solution found at the previous level of the search, initializing only the (d+1)-st dimension

arbitrarily to the center of the range. The second pass uses the midpoint of the voxel, which

is the middle of the range for all (d+ 1) dimensions. When we do perform more than two

passes, the additional starting points are chosen at random from within the voxel.

Multi-resolution Search

Another strategy we considered for evaluating whether a voxel contains satisfying confor-

mations, assuming that the voxel has already failed to yield any satisfying conformations

during some preliminary, low-resolution search, is to search within the voxel systematically

at a higher level of resolution.

For example, if a user is interested in knowing how many 1200 rotamers satisfy a set

of constraints, voxels would be defined with 1200 resolution. Some voxels might have a

large obvious region of satisfying conformations that could be found just by evaluating the

midpoint of the voxel or by performing a minimization-search starting from the midpoint

of the voxel. Other voxels that fail at this level of search might nonetheless contain small

or obscure feasible regions, and for these case we would like to search more closely. For

example we could begin a gridsearch at 30 degree resolution within the voxel and quit the

gridsearch as soon as one feasible solution in the voxel is found.

Performing gridsearch as a second-pass filter on voxels that fail a first-pass is very dif-

ferent from performing gridsearch on the entire space. Not only will we avoid performing

gridsearch on voxels that have "obvious" satisfying conformations, but we will avoid per-

forming gridsearch on d-dimensional voxels unless they are extensions of (d-1)-dimensional

voxels that are already known to contain some feasible region.

We will use the term "multi-resolution" search to mean evaluating voxels using mini-

mization followed by gridsearch.
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Results

To verify that our minimization method for evaluating voxels is a better way to evaluate

voxels than other options (such as systematic sampling or random sampling), we constructed

two simple test problems and searched them using treesearch with different methods of voxel

evaluation. The first problem uses a set of distance constraints that are easily satisfied and

we measure how many satisfying conformations are found by each method. The other

problem uses an extensive set of distance constraints-only satisfied by a single narrow

region of conformation space-and measures how extensive the search must be in order to

locate that satisfying region.

For both problems, we started with a tetrapeptide of polyalanine folded so its # and

angles were all -570. (The WHATIF [72] software uses # and 0 angles of -57' as the

canonical backbone for alpha-helical conformations, so we will refer to this peptide as helical

despite its short length.)

Figure 2-8: The structure of a helical tetrapeptide of polyalanine.

No hydrogens were modeled, and all the peptide bonds were rigidly fixed at 180 degrees,

leaving two rotatable bonds per residue. Since the phi rotation of the first residue does

not have enough heavy atoms at the N-terminus to define it uniquely, the molecule has

only 7 degrees of freedom in total. The run time results throughout this thesis are rounded

off from hundredths of seconds to whole seconds or to three significant digits, whichever

precision is greater.

We took the set of all interatomic distances between 2.5 and 6.0 angstroms in the helical

structure as the available pool of interatomic distances to constrain. Given the 20 atoms in

the tetrapeptide, there are 124 pairs in this set. For the first problem, we used 10 percent of
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the available distances (selected at random) and constrained those pairs to be within plus

or minus 0.5 A of the values found in the helical structure. For the second, "tight" problem,

we used all of the available distances and constrained them to within plus or minus 0.1 A

of the helical values.

The first problem (with many possible solutions) requires solutions at 1200 resolution

and uses van der Waals radii set to 90% of the half sigma values4 from the CNS library

parallhdg.pro [8, 19]. For the first problem, the constraints (distance constraints and

hard-sphere van der Waals constraints) are considered to be satisfied if the sum of the

squared constraint violations is < 0.005 A2 . The tighter problem uses 400 resolution, 85%

of half sigma and a threshold of < 0.0005 k2 for the sum of the squared violations of the

constraints.

For all runs, the voxels are defined by treesearch according to resolution and without

regard to how the voxels will be evaluated. Since treesearch would define 1-dimensional

and 2-dimensional voxels and evaluate them before defining higher-dimensional voxels, an

unsatisfactory region of space would always have the opportunity to be excluded at low

dimension ("pruned") before being searched at higher resolution.

VOXELIZED TREESEARCH was applied to both problems, with various voxel-evaluation

methods as subroutines to decide whether a voxel contained any satisfying conformations.

(See Figures 2-9 and 2-11.)

" Random sampling. We tried random sampling for both problems. Random sam-

pling repeatedly selects conformations (uniformly at random) from inside the voxel,

with the maximum number of samples determined by some cap. For the first problem

we tried not only absolute caps but also caps that depend exponentially on the num-

ber of dimensions of the voxel (that is, the cap is proportional to the volume being

searched).

" Systematic sampling. We tried some form of systematic sampling for each problem.

For the first problem, we tried multi-resolution search with one pass of minimization

followed by evaluation of regularly spaced points (gridsearch) in the voxel. The tightly

constrained problem turned out to be easy enough that a single run of minimization

4 Sigma is the distance at which two atoms of the same type have zero van der Waals interaction energy.
Any closer and they would start to repel each other.
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Method for Run Time Conformations
Evaluating Voxels (seconds) Found
Evaluate 1 random point per voxel 0.09 1
Evaluate 10 random points per voxel 0.16 1
Evaluate 100 random points per voxel 1.61 5
Evaluate 1,000 random points per voxel 22.6 13
Evaluate 10,000 random points per voxel 265 36
Evaluate 100,000 random points per voxel 2,761 81
Evaluate 1,000,000 random points per voxel 27,536 114
Evaluate 10,000,000 random points per voxel 268,199 128
Minimize once, then gridsearch with 600 resolution 3.78 103
Minimize once, then gridsearch with 51.40 resolution 29.0 119
Minimize once, then gridsearch with 450 resolution 28.3 108
Minimize once, then gridsearch with 40' resolution 26.4 109
Minimize once, then gridsearch with 360 resolution 193 127
Minimize once, then gridsearch with 32.70 resolution 189 119
Minimize once, then gridsearch with 300 resolution 183 114
Minimize once, then gridsearch with 27.70 resolution 900 134
Minimize once, then gridsearch with 25.70 resolution 917 132
Minimize once, then gridsearch with 240 resolution 827 107
Minimize once, then gridsearch with 200 resolution 3184 131
Minimize once, then gridsearch with 17.1' resolution 9518 137
Minimize once, then gridsearch with 120 resolution 114,441 146
Minimize once, then gridsearch with 10 resolution 400,202 147
Minimize 1 time per voxel. (up to 5 steps) 0.64 49
Minimize 1 time per voxel. (up to 10 steps) 1.11 85
Minimize 1 time per voxel. (up to 20 steps) 1.75 101
Minimize 1 time per voxel. (up to 50 steps) 2.13 103
Minimize 2 times per voxel. (up to 50 steps) 3.92 134
Minimize 5 times per voxel. (up to 50 steps) 8.55 157
Minimize 10 times per voxel. 15.6 162
Minimize 100 times per voxel. 139 167
Minimize 1,000 times per voxel. 1,354 171
Minimize 10,000 times per voxel. 13,382 171
Minimize 100,000 times per voxel. 133,556 171

Figure 2-9: Treesearch on a tetrapeptide of polyalanine, with loose constraints, and a variety
of methods for evaluating whether there are any satisfying conformations within
each voxel. Because the search of a voxel exits at the first success, it is possible
for a random search with a higher bound on the number of steps (such as 1 ldim)
to finish sooner than a search with a lower bound.
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could find the answer, so for the tight problem we tried gridsearch within each voxel

but without any minimization.

* Minimization. Finally, minimization was used in both problems, with a variety of

caps on the number of steps and passes.

For voxel-evaluation methods that sample many points (whether systematically or at

random) the sampling is halted when the first satisfying conformation in the voxel is found.

However, for those voxel-evaluation methods to conclude that no satisfying conformations

exist, they must have tried and rejected all the candidate points for that voxel.

In the first problem, where many voxels contain satisfying conformations, minimiza-

tion dramatically outperformed random sampling in the number of conformations it finds

for comparable amounts of time (see Figure 2-10). In contrast to the smoothly improving
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Comparing Methods of Voxel-Evaluation
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160 -

minimization
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80 -
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40-

20-

.. ... . A ..... .... ........
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Figure 2-10: A plot of the data from Figure 2-9 with stars for runs using minimization,
circles for runs using the multi-resolution method, and triangles for runs using
random sampling.

completeness with time for the minimization and random sampling methods, the multi-

resolution method performed erratically. We hypothesize the performance plot is dispersed

between the minimization curve and the random sampling curve because multi-resolution

search is a hybrid method, using aspects of the minimization search and aspects of the sam-
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pling search; however, further investigation of this phenomenon remains for future research.

In the tighter problem, where only a small region satisfies all the constraints, minimiza-

tion found the one satisfying voxel easily, whereas the other methods had to sample so many

points that they consumed several orders of magnitude more time than minimization. (All

Method for
Evaluating Voxels

Evaluate 1 million random points per voxel
Evaluate 2 million random points per voxel
Evaluate 3 million random points per voxel
Evaluate 4 million random points per voxel

Evaluate 9dim random points per voxel

Evaluate 1 0 dim random points per voxel
Evaluate 11 dim random points per voxel

Evaluate at gridpoints with 4.00 spacing
Evaluate at gridpoints with 3.8' spacing
Evaluate at gridpoints with 3.6' spacing

Minimize once per voxel. (up to 5 steps)
Minimize once per voxel. (up to 10 steps)
Minimize once per voxel. (up to 50 steps)
Minimize twice per voxel. (up to 50 steps)

I

Run Time

(seconds)
FAILED

6,186
FAILED

11,962
FAILED

17,894
16,636

FAILED

17,341
31,470

FAILED

0.18
0.19
0.29

Conformations
Found

0
1
0
1

0
1

1

0
1
1

0
1
1
1

Figure 2-11: Treesearch on a tetrapeptide of polyalanine, with tight constraints, and a va-
riety of methods for evaluating whether there are any satisfying conformations
within each voxel. The times for failed runs are not shown because failures can
occur at any time during the search, sometimes quite early.

simulations reported in this thesis were performed on a Dell Precision 420 with 933-MHz

speed processors, with a surplus of RAM memory, unless otherwise specified.)

Sampling without minimization (at random or at gridpoints) performed much worse than

minimization, both when measuring the amount of repetition required to find a narrowly-

defined region, and when measuring the completeness of finding a broad region. The prob-

lems we constructed here do not by any means represent the breadth of applications where

conformational search might be used. However, these two cases were chosen for simplic-

ity of design and evaluation and were not optimized to sabotage any particular method of

voxel-evaluation. Multiple orders of magnitude in increased performance for all the cases

we studied (four orders of magnitude in Figure 2-11 and later five orders of magnitude in
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Figure 2-15) were sufficiently persuasive to us that we chose to perform minimization with

voxels for all future conformational searches.

2.3 Divide-and-Conquer

Divide-and-conquer partitions a large problem into pieces, solves the pieces, and assembles

the solutions of the pieces into a solution for the large problem. Divide-and-conquer is

typically used recursively, with large pieces divided into medium pieces, which are divided

into small pieces, etc. After explaining how to apply divide-and-conquer to the confor-

mational search of macromolecules, we explain and demonstrate the improved efficiency of

conformational searches that use divide-and-conquer.

Divide-and-conquer is powerful because it allows violating regions of conformation space

to be removed from further consideration based on evaluating low-dimensional pieces of the

overall problem. Just as treesearch is an improvement over gridsearch because it evaluates

"prefix" fragments of the molecule instead of only evaluating conformations of the complete

molecule, divide-and-conquer is an improvement over treesearch because (A) it evaluates

individually every piece it adds, before adding it onto an existing conformation, (B) once a

subproblem is solved, the answer is saved for use in future contexts rather than reinvented,

and (C) it can define its subproblems so that their average size (voxel dimensionality) is

smaller than for treesearch.

Previous Work

The divide-and-conquer idea has appeared in many forms throughout the history of confor-

mational search. Divide-and-conquer has been applied to docking searches [77] as well. In

the mid-1980's, Scheraga and colleagues developed a "buildup" procedure [57, 71, 22] which

has been successfully applied to a variety of applications [45]. Their buildup procedure

enumerates the low-energy structures of single residues, combines them and minimizes to

create low-energy dipeptides, combines overlapping dipeptides and minimizes to create low-

energy tripeptides, and so on [45]. This method does not address quite the same problem

as ours because at each level it retains only a limited number of conformations with the

best energies, not all the conformations with acceptable energies. Other authors [11, 32]

have used "buildup" procedures very similar to that of Scheraga et al.
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Gippert et al. [24, 23] published a set of programs for systematic search including a

divide-and-conquer module for use on top of an ab initio search module. The ab initio

method, DTAGS or "Distributed Torsion Angle Grid Search," is a cleverly optimized vari-

ant of gridsearch that enumerates feasible conformations for a small molecule or fragment,

provided that all the rotatable bonds are in a linear chain. Although DTAGS itself can-

not search branched molecules such as amino acids, this limitation is overcome by using

DTAGS on each branch and then reattaching the pieces. The reattachment is done pairwise

according to a tree and each "combine operation" (SPACEJOIN) pairs every possible con-

formation for one fragment with every possible conformation for the other fragment. This is

the same idea we use, although with several differences in implementation. NEWMOL then

converts then evaluates whether the combined fragments satisfy the constraints. Gippert et

al. articulated the problem of choosing a good "binary tree" for divide-and-conquer, which

is a topic we address at length in Chapter 4.

Countless other methods build databases of protein structure fragments and then build

models for new proteins by piecing together compatible fragments from their databases [35,

33]. These "model building" [43] methods are a form of "divide-and-conquer" with only

one level of division and reconnection.

Active Constraints

Whether evaluating a subproblem will remove conformations from further consideration

depends on what constraints apply to that subproblem. A constraint is not active until all

of its variables are instantiated; that is, until angle values are assigned to all the torsions

necessary to define coordinates for the atoms being constrained. Henceforth, the constraints

on a subchain will denote the set of constraints that are active when the torsions in only

that subchain are instantiated, and a satisfying conformation [for a subchain] will be a

conformation that satisfies all active constraints [on that subchain].

For (x ; y), let x-y denote the subchain extending from residue x to residue y, inclusive

of both. An interatomic distance constraint between two different atoms of residue 6 is active

on subchain 6-6 or on subchain 1-99, but not on subchain 3-5 because subchain 3-5 does

not provide torsion angles (which uniquely determine atomic coordinates) for the bonds of

residue 6.

This seems trivial until you consider that an interatomic distance constraint requiring
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some atom in residue 1 to be within a few angstroms of some atom in residue 30 is active

on subchain 1-30 but not on 1-29. A conformation of subchain 1-29 that places residue

1 dozens of angstroms away from residue 29 might satisfy all the active constraints, even

though there is certainly no possible way to extend or build onto such a conformation so

that the 30th residue would satisfy active constraints on the 1-30 subchain.

In cases as clear as this, the triangle inequality can use a tight constraint on the atoms

in residues 1 and 30 in order to infer looser constraints on nearby atoms, such as between

residues 1 and 29.

AB+BC>AC

dist(1, 30)+dist(30, 29) > dist(1, 29)

[dist(1, 30) 3A] AND [dist(29, 30) X] => [dist(1, 29) X + 3A]

Our algorithm provides a "triangle smoothing" option that automatically applies the

triangle inequality to infer all possible additional constraints. Some other algorithms also

apply the tetrangle inequality [18]. Constraints created in this way can be considered

"redundant" or "trivial" because they include no novel information, even though they attach

existing information to new parts of the molecule.

The looser, inferred constraint would be active on subchain 1-29 and would prohibit the

endpoints of subchain 1-29 from being dozens of angstroms apart. However, there would

still be some conformations of 1-29 that satisfy the inferred constraint but that cannot be

extended in any way that would satisfy the constraint on 1-30.

The Combine Operation

The combine operation uses the satisfying conformations for two pieces of a chain to define

candidate conformations for the whole chain. One can imagine how repeated use of combine

operations could be used in a divide-and-conquer strategy to build up the solution to the

whole problem based on solutions to smaller problems.

More formally, let S1 be the set of satisfying conformations for subchain x-y and let

S 2 be the set of satisfying voxels for subchain (yj-1)-z, where z > (y+1). Note that since a

satisfying voxel is represented by a satisfying conformation from within that voxel, we may

speak of satisfying voxels interchangeably with satisfying conformations.

Any conformation of x-z can be divided into left and right pieces corresponding to
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residues x-y and residues (y+-)-z. If a conformation of x-z satisfies all the constraints active

on x-z, then its left half must also satisfy all the constraints on x-y and its right half

must satisfy all the constraints on (y+)-z. However, not all conformations that satisfy the

constraints on the pieces also satisfy the constraints on the whole.

Therefore the set of all conformations of x-z derived by combining any satisfying con-

formation for x-y with any satisfying conformation for (y+1)-z is a superset of the satisfying

conformation for x-z. Call it the set of candidates. In order to determine which candidate

conformations satisfy the constraints on x-z, each must be evaluated individually. How-

ever, the effort of checking each member of the candidate set is generally far less than if the

constraints on x-y and y-z had not already been applied as filters.

Each candidate conformation corresponds to a unique voxel, and verifying whether each

one satisfies the constraints is the familiar problem of determining whether a voxel contains

any satisfying conformations. We continue to use minimization to evaluate all voxels. Note,

however, that the volume of a voxel increases with dimension and the problem of evaluating

it (determining whether it contains any satisfying region of space) becomes significantly

more difficult for higher-dimensional voxels.

solutions solutions potential
for x x for y -* solutions

for xy

ab

a#
afb ab

a x 
a,3
ab
ao

Figure 2-12: Combining 1D alternatives into all possible 2D combinations.

Defining the Combined Conformation

In our implementation, we always divide a molecule chain at a boundary between residues,

and we define the resulting pieces such that both pieces include the inter-residue bond and

the atoms defining that bond. Hence, when we combine satisfying conformations for left

and right subchains to create conformations for a larger subchain, each bond from the larger

subchain is first marked according to whether it appears in only the left subchain, in only
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the right subchain, or in both. Then as the combine operation proceeds, going through each

possible conformation for the left subchain and each possible conformation for the right,

the combine routine creates a conformation for the large subchain one bond at a time:

For a bond that appears in only one subchain, its angle (range of angles) can be taken

directly from the angles of that child subchain. For a bond that appears in both subchains,

both subchains must have compatible angles (the same range of angles), or else that pair

of conformations cannot be combined and is rejected. Note that this procedure defines a

particular conformation (a particular assignment of angles for each bond) as well as a voxel

(a range of angles for each bond). When evaluating whether a combined voxel contains any

satisfying conformations, we will have the option of using this combined conformation as a

starting point for minimization, in addition to just the midpoint of the voxel.

In proteins, amino acid residues are connected by peptide bonds. Since peptide bonds are

often fixed in a trans planar orientation (or restricted to a narrow range around a planar

orientation), the task of reconnecting subchains at their inter-residue bonds is especially

easy. An interesting direction for future work would be to permit our combine operation to

operate on fragments with larger regions of overlap. Although modifications to the actual

combine operation would be trivial, they would have profound implications for the issues

discussed in chapter 4.

Merge-Trees

The repeated division of large problems into smaller problems can be depicted using a

divide-and-conquer tree, which we will call a merge-tree for short. For the application

to conformational search, each node of the tree corresponds to a subchain and searching

that subchain is a subproblem of the overall search algorithm. The leaf nodes correspond

to subchains that are small enough to search easily ab initio. (We search leaf subchains

using voxelized treesearch with minimization.) Each internal node corresponds to a larger

subchain such that the problem of searching that subchain can always be solved by using

the "combine" operation on its left and right child subchains. The root of the merge-tree

is always the whole molecule.

For treesearch trees, each level corresponds to one torsion, the branches at a level are

the possible angle or angles ranges for a torsion, and a path from root to leaf defines a single

conformation. For merge-trees (divide-and-conquer trees), each node is a subproblem, the
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leaf nodes are the easiest subproblems, the root node is the whole search problem, and the

connectivity of the tree defines a strategy for how to use the solutions to the leaf subproblems

for solving the whole problem. Search trees are explored starting at the root progressing

down but merge-trees are traversed starting at the leaves.

Assume that the molecule to be searched is a chain of residues. We often talk about

amino acid residues in a protein but the whole molecule could also be a single-stranded

nucleic acid chain. Multiple strands, docking, and quaternary structures are not currently

possible. (Although the algorithmic changes necessary to implement the six degrees of

freedom necessary for docking or for searching quaternary structure might be relatively

small, the resulting complexity of the search problem is well beyond the scope of this work.)

Let us define a legal tree to be a binary tree such that (1) the leaves of the tree have

a one-to-one correspondence with the residues of the molecule, (2) the left-to-right order

of the leaves in the tree is the same as the order of the residues in the molecule, and (3)

every internal node has two children. We now show that every legal tree is a merge-tree

specifying a possible strategy for divide-and-conquer.

Define the label at each internal node as the list of residues corresponding to the leaves

in its subtree. Because leaves are sequential from left to right in the tree, the residues

for any internal node will always form a single contiguous subchain of the whole molecule.

The root will be labelled with the subchain corresponding to the whole molecule. Because

every internal node, I, has left and right children, the subchains (possibly consisting of just

single residues) at the left and right child nodes correspond to left and right pieces of I's

subchain, and I's subproblem can be solved using the combine operation on the solutions

of its left and right child subproblem. Therefore, every legal merge-tree corresponds to a

divide-and-conquer strategy for searching the whole molecule.

We assume that all merge-trees use single residues for leaves because single residues are

already small enough to search quickly, and there is little potential benefit from dividing

into smaller fragments than residues. Larger units, such as dipeptides, could trivially be

substituted for single residues in the algorithm and throughout this discussion. In any case,

the leaves of merge-trees would be explored using a basic method, such as TREESEARCH,

no matter how the rest of the merge-tree is constructed.
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Divide-and-conquer as Merge-Tree Traversal

We can now describe the whole divide-and-conquer algorithm. Create a default merge-tree

according to the number of residues in the molecule and traverse the tree from bottom

to top (and without loss of generality, from left to right) solving the subproblem at each

node. Each subproblem involves enumerating the satisfying conformations (voxels) for the

subchain at that node of the tree. For a leaf node, use treesearch (with voxels and with

minimization to evaluate the voxels). For an internal node, perform the combine operation

on the satisfying conformations (voxels) from the left and right child subchains.

1-4

1-4
1-3 4-4

1-2 3-4
1-23-

1-1 2-2 1-1 2-2 3-3 4-4

Figure 2-13: A linear or maximally-unbalanced tree on the left and a fully-balanced tree on
the right.

There may be many possible merge-trees for each molecule, but in order for the average

subchain size in the tree to be small, the divide-and-conquer tree should be as balanced

as possible. If a whole molecule has N residues, then treesearch or divide-and-conquer

according to a "linear" tree (such as in Figure 2-13) must evaluate one subproblem of each

size between 1 and N - 1 before evaluating the whole molecule. Divide-and-conquer with

a fully balanced tree will evaluate many subproblems of size 1, 2 and 4, a few subproblems

of size N/4 or N/2, and never any subproblems larger than N/2 (other than the final

evaluation of the whole molecule).

If N, the number of residues in the molecule, is a power of two, then one can simply

use the canonical, "full" or perfectly-balanced binary tree with log 2 (N) + 1 levels. If N is

not a a power of two, there are many possible ways to create a reasonably-balanced tree

with at most [log 2 (N)l + 1 levels (where [...1 denotes the operation of rounding up to the

nearest integer.) For simplicity, our default tree will be created as follows: starting with
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a full tree with 2[10g 2 (N)1 leaves, delete the 2[log 2 (N)1 - N rightmost leaves and delete any

internal nodes without both (left and right) children remaining. For example, if N = 9,
build a full tree with 16 leaves, delete the 7 rightmost leaves, remove unnecessary internal

nodes, and the result is the same tree as in Figure 2-18.

Distinctions between Treesearch and Divide-and-Conquer

In some sense, treesearch is a special case of divide-and-conquer where the division into

pieces forms a "linear" tree instead of a balanced binary tree.

However, there is a slight difference between divide-and-conquer with a "linear" tree of

subproblems and treesearch. Consider a molecule with two rotatable bonds, one bond in

each of two residues. Treesearch would search the first bond, subchain 1-1, then extend the

satisfying conformations of 1-1 with all possibilities for bond 2. Divide-and-conquer would

also start by searching subchain 1-1, but its next step would be to search subchain 2-2,

and finally it would extend the satisfying conformations of 1-1 with only the possibilities for

bond 2 that have already been found to satisfy the constraints on 2-2. Figure 2-14 diagrams

which subchains are defined and searched by TREESEARCH and by divide-and-conquer using

either of the merge-trees in Figure 2-13.

a 1 2 3 4

2 3 4

Figure 2-14: Each circle (or oval) represents a search subproblem. Treesearch would search a
four-residue molecule as depicted in (a). (b) depicts divide-and-conquer with a
"linear" merge-tree and (c) depicts divide-and-conquer with a balanced merge-
tree.
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Results

We searched three peptides with and without use of divide-and-conquer. In all cases, divide-

and-conquer was far more efficient than treesearch alone.

The first case uses the same polyalanine tetrapeptide from the previous section. All

atom pairs with distances between 2.5 and 6.0 A in the helical structure were constrained

to have distances within 0.1 A of the distances found in the helical conformation. Peptide

bonds were rigidly fixed at 1800. Van der Waals radii were set to 85% of half sigma, the

Search Minimization to Run Time
Method evaluate voxels? (seconds)
Treesearch no 31,470.550
Divide-and-conquer no 3,009
Treesearch yes 0.29
Divide-and-conquer yes 0.13

Figure 2-15: Results of performing treesearch with and without divide-and-conquer, on a
tetrapeptide of polyalanine, with and without minimization to evaluate each
voxel. Tight constraints were used, as in Figure 2-11.

resolution was 400, and the constraints were considered to be satisfied when the summed

squared violation was < 0.0005 A2 . Run times for systematic search with and without

divide-and-conquer are shown in Figure 2-15. The top two lines use gridsearch with 3.60

spacing to evaluate voxels instead of using minimization and are included only to provide

support for our decision to use minimization for all voxel-evaluations (instead of just using

it for evaluating treesearch voxels, which is the original context where we evaluated it). The

bottom two lines show that searching with divide-and-conquer takes less than half as long

as with treesearch alone. However, both algorithms run so quickly that drawing general

conclusions would be premature.

The second case also uses a helix of polyalanine, but with 16 residues instead of 4. The

dihedral angles of the peptide bonds are permitted to vary between 1750 and 1850. Including

these omega angles, there are 47 degrees of freedom in the molecule. Again, the resolution

of the search is 400, the summed squared violations are restricted to < 0.0005 A2 , and the

van der Waals radii are set to 85% of half sigma. All pairs of atoms with distances between

2.5 and 6.0 Ain the helical structure were constrained to have distances within only 0.05 A
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of the distances found in the canonical helix conformation. These constraints again restrict

the satisfying region of conformation space very tightly, although with the larger molecule

and the added flexibility in the peptide bonds, two voxels are feasible instead of just one.

(One voxel contains the canonical helix that generated the constraints and the second is

the same except for a deviation in the final angle of the final residue, offset slightly by tilts

of several peptide torsions.)

Search Minimization to Run Time Number of
Method evaluate voxels? (seconds) Minimizations
Treesearch yes 143 660
Divide-and-conquer yes 1.92 813

Figure 2-16: Results of performing search on a 16-residue helix of polyalanine, with and
without divide-and-conquer.

Figure 2-16 shows the run time as well as the number of minimization subroutine calls for

searching the 16-residue polyalanine with and without divide-and-conquer. In both cases,

voxels were evaluated using up to two passes of minimization, each with up to 50 steps.

Although divide-and-conquer performs more minimization calls than treesearch, divide-

and-conquer is calling them with smaller subchains on average. Despite performing more

minimizations, divide-and-conquer runs two orders of magnitude faster than TREESEARCH.

The third case is the 9-residue Strep-tag peptide from the peptide-streptavidin complex

[64], entry 1RST in the protein data bank [2]. The sequence of the peptide is Ala-Trp-Arg-

His-Pro-Gln-Phe-Gly-Gly. Figure 2-17 shows the atomic structure from X-ray crystallogra-

phy and Figure 2-18 shows the default merge-tree.

The 1RST peptide has several long sidechains that contribute considerably to the con-

formational search problem. Of the 40 rotatable torsions, 32 rotate freely (as opposed to

peptide bonds), which is the same number of freely-rotating torsions as in the 16-residue

polyalanine. It addition, 1RST has some explicit hydrogen atoms.

We used the bond lengths and bond angles from the 1RST crystal structure, not idealized

values. Because the 1RST crystal structure is highly refined for its particular conformation,

using the same search parameters as for helical polyalanine would cause unavoidable van der

Waals clashes. Instead of reducing the van der Waals radii or increasing the allowed thresh-

old for the summed squared violations, we excluded van der Waals interactions between
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Figure 2-17: Atomic structure of the Strep-tag, taken from its crystal structure in complex
with streptavidin (1RST in the Protein Data Bank). The backbone bonds are
shown as colored cylinders and the sidechains as black lines. Residue 1 is at
the top.

1-
1-2
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1-9
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45-8
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A /\ /\
1-1 2-2 3-3 4-4 5-5 6-6 7-7 8-8

Figure 2-18: The default merge tree for 1RST.
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atoms in the 1-4 positions of bonds.

The dihedral angles of the peptide bonds were permitted to vary between 175'-185*, the

van der Waals radii were set to 85% of half sigma, and the summed squared violations were

restricted to < 0.0005 A2 . Voxels were evaluated using up to two passes of minimization

with up to 50 steps per pass. Any pair of atoms separated by a distance between 2.5 and

6.0 A in the crystal structure was constrained to keep its distance within 0.05 A of the

measurement from the crystal structure. Because the sidechains were so flexible, even in

the presence of these constraints, we chose to search them at lower resolution than the

backbone angles. The resolution of the search was 400 for backbone angles and 1200 for

sidechains.

Search Runtime Conformations Number of
Method (seconds) Found Minimizations
Treesearch 13,661 648 54,848
Divide-and-conquer 2,046 657 6,712

Figure 2-19: Results of performing search on the 9-residue 1RST peptide, with and without
divide-and-conquer. Figure 2-20 shows the set of structures resulting from the
divide-and-conquer search. In all tests, the voxel corresponding to the crystal
structure was among the answers found.

Figure 2-19 shows that the search of 1RST with divide-and-conquer was faster than

with treesearch alone. In addition, treesearch performed more minimizations on 1RST

than divide-and-conquer and found fewer satisfying structures. We hypothesize that these

additional differences are in part because treesearch's examination of only the "prefix"

fragments of the chain is ill-suited to this problem. Performing a divide-and-conquer search

on 1RST with a "linear" merge-tree yielded 648 conformations after 14,353.41 seconds,

thus confirming that the use of "prefix" fragments (whether in treesearch or in divide-and-

conquer) is responsible for the poorer performance.
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The ensemble of 657 structures found by the divide-and-conquer search of
1RST. The structures are superimposed along a central backbone bond, be-
tween the carbonyl carbon of residue 5 and the nitrogen of residue 6.
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Chapter 3

The Structure of a Peptide by

solid-state NMR

Article submitted to The Proceedings of the National Academy of Sciences (USA).
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Abstract

The three-dimensional structure of the chemotactic peptide, N-formyl-L-Met-L-

Leu-L-Phe-OH, was determined using solid-state nuclear magnetic resonance (SSNMR).

The set of SSNMR data consisted of 16 13C-15N distances and 18 torsion angle constraints

(on 10 angles), recorded using uniformly 13C,15N- and "5N-labeled samples. The peptide's

structure was calculated via simulated annealing and a newly developed protocol that

insures that all of conformational space, consistent with the structural constraints, is

searched completely. The result is a high quality structure of a molecule that has thus far

not been amenable to single crystal diffraction studies. The extensions of the SSNMR

techniques and computational methods to larger systems appear promising.

53



Over the last two decades, multi-dimensional nuclear magnetic resonance (NMR)

methods have been developed which permit determinations of globular protein structures

in solution ti]. To date most structures addressed with these techniques involve proteins

with molecular weights 20 kDa, but the continued development of new methodology

shows promise for studies of larger systems [2-6]. Despite the success of these

approaches, there remain fundamental limits on the size and physical state of molecules

amenable to study with solution-state NMR. In contrast, high-resolution solid-state NMR

(SSNMR) methods have no inherent molecular weight limit, and have for many years

been employed to determine details of molecular structure for high molecular weight

systems. For example, specific structural features of intact membrane proteins such as

bacteriorhodopsin (effective molecular weight ~ 85 kDa) [7, 8] and large enzyme

complexes such as 5-enolpyruvylshikimate-3-phosphate synthase (46 kDa) [9] and

tryptophan synthase (143 kDa) [10], have been reported. SSNMR methods have also

been used to examine surface-bound peptides [11] and to determine a low-resolution

structure (1.9 A backbone RMSD) of an insoluble peptide fragment from P-amyloid [12]

under experimental conditions inaccessible to both solution-state NMR and

crystallography.

To date, essentially all structural NMR studies of solid peptides and proteins have

relied upon site-specific incorporation of a pair of spin-1/2 nuclei, such as '3 C-13 C [13]

and 13C-1 N [9]. This approach has been very successful and will likely continue to be

important in experiments that address detailed mechanistic questions in large

biomolecular systems. However, recent advances in solid-state NMR methodology, most

notably the development of approaches to perform dipolar recoupling during magic angle
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spinning (MAS) [14, 15], in principle permit multiple distance and torsion angle

measurements on molecules that are uniformly 1C and 15N labeled [16-19]. The

development of these approaches considerably simplifies preparation of samples for

SSNMR experiments and concurrently opens the possibility of complete structural

determinations with solid-state MAS NMR. In this paper we describe the realization of

this goal with a complete structure determination of the chemotactic tripeptide, N-formyl-

L-Met-L-Leu-L-Phe-OH (f-MLF-OH) [20]. The structure of the peptide is based on sets

of NMR data that constrain 16 13C- 5N distances and 10 torsion angles derived from a

series of MAS NMR experiments performed on uniformly 3C,'5N- and "5N-labeled

samples. Finally, we discuss extensions of the solid-state MAS NMR techniques and

computational methods employed here to larger systems.

Experimental Procedures

N-formyl-Met-Leu-Phe-OH samples were synthesized by standard solid-phase

methods and HPLC purification (American Peptide Company, Sunnyvale, CA). One

sample, synthesized from U- 13C, 15N-labeled amino acids (Cambridge Isotope

Laboratories, Andover, MA), was employed for all resonance assignment experiments

and the majority of the 3D torsion angle experiments ('H-15 N-13 C-'H, 'H-13 G 3C-'H, 1
5N-

13C-'3C-'5 N). A second sample was prepared by dilution of the U-' 3C,15 N-labeled f-MLF-

OH peptide in natural abundance material in the ratio of 1:9, and employed for the

frequency selective REDOR experiments. A third sample, synthesized from 15N-labeled

amino acids, was employed for the 'H-N-"N- H torsion angle experiments. In all cases,

microcrystals of the f-MLF-OH peptides were grown by overnight evaporation from 2-
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propanol, and ~15-20 mg of each polycrystalline material was packed into a 4-mm

zirconia NMR rotor (Varian-Chemagnetics, Fort Collins, CO). Attempts to grow single

crystals suitable for diffraction studies were not successful. The structure of the f-MLF

methyl ester (f-MLF-OMe) and other analogs of f-MLF have been determined by

diffraction methods [21], but the f-MLF-OH acid form has not, despite repeated efforts

(E. Gavuzzo, private communication). Presumably the acid form does not form large

single crystals due to small differences in crystal packing forces, relative to the methyl

ester. We note that the previously published structure of f-MLF-OH includes a D-Phe

residue [22] which is not present in the chemotactically active form. [20]

Magic-angle spinning (MAS) NMR experiments were performed on Cambridge

Instruments spectrometers operating at 400 and 500 MHz (courtesy of Dr. D. J. Ruben),

together with custom-designed 400 and 500 MHz multiple-resonance transmission line

probes, or a Varian-Chemagnetics (Fort Collins, CO) 500 MHz triple resonance probe.

All of the probes were equipped with 4 mm MAS spinner modules. The resonance

assignment [23] and REDOR experiments [17] were performed at 500 MHz, as were

most of the torsion angle experiments (IH- 15N- C- H, 'H-' 3 C-C- 'H, and "N- C-13 C-

1
5 N), with the exception of 'H-15 N-15N-1H (400 MHz) [24]. Typical if field strengths were

~100-120 kHz on 'H during recoupling periods, ~80 kHz TPPM during chemical shift

evolution periods (using TPPM decoupling [25] ), and ~60 kHz during cross polarization.

Fields of -50 kHz or less were employed on the 13 C and 15N channels recoupling

channels. Additional details regarding the pulse sequences may be found in prior

publications. [17, 19, 23, 24]. Data acquisition periods are noted in the figure captions.

Experiments were performed at room temperature. Tensor magnitudes along the entire
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backbone ('H-15N and 'H- 13Ca dipolar couplings and 13C(O) chemical shift tensors) are

consistent with rigid lattice values. Likewise the Leu side-chain is rigid, based on upon

local dipolar field measurements. Signals from the Phe aromatic ring show evidence of

two-site conformational exchange, and the observed Met side-chain dipolar couplings

(C13 CP-1H, 13CY-IHY, 13C_ 13C ) are ~25% less than the rigid lattice values, consistent with

small librations of the side-chain.

Resonance Assignments

The initial step in a structural study by NMR involves the sequence-specific

assignment of the chemical shifts. Several multi-dimensional chemical shift correlation

methods for resolving and assigning peptide 13C and 15N resonances have been developed

[23, 26, 27]. Experiments for 3C- C assignments generally employ either a homonuclear

zero-quantum recoupling sequence such as RFDR [28] or a double quantum sequence

[29-31] such as SPC-5 [32]. Heteronuclear assignments are accomplished with frequency

selective 1N- C double cross-polarization methods [33, 34] refined with adiabatic

passage techniques [35]. Slices from 13C-13C planes extracted from a 3D NCC experiment

are shown in Figure 1 and serve to illustrate this point [23]. The slices correspond to the

three 5N resonances, and the 13C connected to each amide 15N appear in the 13C-13C plane.

Thus, the Leu 15N slice (116.2 ppm) shows positive cross-peaks (blue) to the Met C' and

Leu Ca. Since the 13C- 13C correlations were established using double-quantum

recoupling, the cross peaks to Leu C' and Met C" are negative absorption (indicate by red

cross peaks). 2D C-13C experiments and the 2D 1C- C planes from 1N- C- C

experiments also permit the resolution and assignment of the side-chain resonances.
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These methods have already been utilized at high magnetic fields (750-800 MHz 'H

frequency) in studies of larger proteins, yielding partial assignments in the Bovine

Pancreatic Trypsin Inhibitor (BPTI) [36], LH2 light-harvesting membrane protein

complex [37] and a complete de novo assignment of a 62-residue a-spectrin SH3 domain

[38].

Torsion Angle Measurements

When spectral assignments are complete, multidimensional experiments can be used

to obtain two types of structural constraints - torsion angles and internuclear distances.

Measurements of backbone and side-chain torsion angles ( , y and X) provide

constraints on the local structure and usually involve experiments that employ one or two

chemical shift dimensions, and an additional dimension to record the evolution under the

local dipolar interactions. Thus, the angular information is determined by the

measurement of the relative orientation of two dipolar tensors. For example, we recently

described a 3D experiment, for constraining the torsion angles $,, yi,, and X1' via 'H- 1
5N-

13C- H spectroscopy [19]. Similar 3D 15N-13Ca 3 C'-15N [39, 401 and 'H- 13 CUI 3C'-,5N

experiments [41] can be used to constrain yi, and 'H- 3 C-' 3 C-' H experiments [42]

constrain the side-chain Xi angles. Finally, the projection angle Oii,, measured in a 'Hi-

15 Ni-15 Ni,-'Hi,+ experiment [24] further constrains 4, and yi. We combined data from four

3D experiments in f-MLF-OH: 'H- 5 N-13C-'H, 'H-' 3 C-' 3 C-1H, 15N-' 3 C-'3 C- 5 N, and 'Hi-

15 Ni-15Ni.+1Hi+,. Each of the torsion angle measurements is most precise when the

correlated dipole tensors are approximately collinear. Therefore, the 'N- C 3 c 15 N

experiment is very precise for 140' < lyA < 1800, and the 'H- 1N- 3Ca'H experiment for -
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1500 < < -90*. The dephasing of the Met C'-C" double quantum coherence under C'-N

and C"-N dipolar couplings during the NCCN experiment in f-MLF-OH is illustrated in

Figure 2. For this particular measurement, the best-fit simulation gives the torsion angle

lytetl=157*. The precision (±1 a) of this experiment is ±10, due to the high signal-to-

noise ratio of the NMR data (>1,000:1 in first data point of the dephasing trajectory), and

the fact that this result falls within the most sensitive angular region of the experiment.

For other torsion angle constraints (Table 1), the precision ranges from ±20 to ±180, and

in all cases at least two (and sometimes four or six) solutions are consistent with the

experimental data, due to mirror-plane degeneracies. Determining multiple NMR

constraints on each torsion angle removes many of the degeneracies. For this reason we

have combined the results from multiple 3D torsion angle experiments to provide a total

of 18 constraints on 10 torsion angles in f-MLF-OH. All torsion angle solutions

consistent with the NMR data (based upon -10,000 iterations of Monte Carlo

simulations) are allowed for purposes of searching the conformational space (see below).

Internuclear Distance Measurements

Long-range internuclear distances (3-6 A) provide highly useful complementary

constraints for the peptide structure. Determination of these distances is particularly

important since small errors in the local torsion angle measurements can propagate over

multiple bonds resulting in an increased uncertainty in the global fold of the peptide.

Furthermore, distance measurements can provide constraints on the position of nuclei,

which are inaccessible to dihedral angle measurements (e.g., Met C'). Individual 13C-13C

and 13C- 15N distances can be measured in site-specifically labeled samples using
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techniques such as rotational resonance (R2 ) [43] or its variants (e.g., R2 tickling[44]) and

REDOR [45], respectively. Recently techniques have been developed for accurate

measurements of multiple 13C- 13C [16] and 13C-15N [17] distances in uniformly 13 C,15N

labeled molecules. For '3 C-15N dipolar interactions, selective recoupling is possible by

combining the REDOR technique [45] with selective Gaussian inversion pulses [17].

Using this approach we have measured a total of 16 13 C-15N distances in f-MLF-OH (14

distances >3 A), which are assembled in Table 2. Several representative distance

measurements are illustrated in Figure 3 and clearly demonstrate the strong dependence

of the decay of '3C magnetization on the dipolar coupling to the selected '5N. The 3.12 A

Met(CO)-Leu(N) distance further constrains ymet. The Met(C)-Phe(N) and

Leu(C8)-Leu(N) distances depend on multiple torsion angles and are important in

determining the shape of the turn in the f-MLF-OH backbone, and the conformation of

the Leu side-chain, respectively. With 95% statistical confidence, 15 of the 16 measured

distances have precision of ±0.3 A or better.

Computational Procedures

Since this is the initial determination of a molecular structure utilizing MAS

dipolar recoupling techniques, it required us to develop new approaches to calculating

molecular structures from the collection of experimental distance and torsion angle

constraints. Accordingly, we have explored two approaches to this problem, both of

which are described below. The first is based on simulated annealing and incorporates

molecular potentials configured to permit transitions among the multiple conformations

consistent with the structural constraints. Thus, during the annealing protocol the
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structures are biased towards the closest minima in the experimental RMSD plots at each

time step. This prerequisite requires that the force constants for these potentials be

sufficiently low to allow transitions among these minima. In a second approach we have

addressed a problem that is often unnoticed in NMR structure calculations that sample

the conformational space stochastically. In particular, these approaches do not necessarily

guarantee that all regions of conformational space are examined and therefore they may

lead to structures where the uncertainty in the final ensemble is anomalously low. Here

we address this issue by dividing the search space into discrete non-overlapping volumes

and assign each volume as allowed or disallowed, based on whether or not it contains

viable structures. Ordinarily a search through such a space would be intractable for all

but the smallest molecular systems. To circumvent this problem, we developed a divide-

and-conquer strategy that allows us to eliminate voxels that contain conformations that

violate the structural constraints. The approach condenses the search space sufficiently

so that significantly larger problems may be computationally tractable with this

procedure.

Simulated Annealing

An ensemble of 24 f-MLF-OH structures was calculated using the SSNMR

constraints collected above incorporated into the simulated annealing protocol of Nilges

et al. [46] and the program CNS [47]. The program was modified to accommodate the

structural constraints generated by the SSNMR distance and torsion angle experiments

described above. The internuclear distances were incorporated using a standard distance

potential and the 95% confidence limits. For the experimental torsion angle data sets, the

simulations based on each experimental measurement were pooled together according to
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the constrained angles and the resulting joint probability distributions enclosing the 75%

confidence limits were used. For example the 15N'3 C'3 C'5 N, 'H 15N' 3Ca'H, H 15 Ni13COCIH

and 'H15N15N'H experiments were joined to define a constraint on the Met 4 and Y

torsion angles. Harmonic square wells, with the square wells enclosing the 75%

confidence limits, were incorporated directly into the source code for each pair of angles.

For many of these constraints, there are several distinct minima. In these cases, the

potential is written to permit switching so that during the simulated annealing the

structures are biased towards the closest minima at each time step. Because of this

requirement, the force constants for these potentials had to be sufficiently low to allow

transitions between minima.

The results from the simulated annealing calculation are summarized and

compared in Tables 2 with the experimental distance constraints from the FS-REDOR

experiments. In Table 3 we summarize and compare the torsion angles from the known

X-ray crystal structure of f-MLF-OMe with the torsion angles calculated with CNS. Note

that in both cases there is excellent agreement between the calculations and the

experimental data.

Full Structure Search

In addition we developed a new computational procedure to analyze the distance and

torsion angle constraints. The simulating annealing procedure used above typically

samples the space of allowed conformations stochastically, a procedure that does not

assure that all regions of conformational space are sampled and thus may underestimate

the uncertainty in the final structural ensemble. An alternative that overcomes this

difficulty is to subdivide the search space into discrete voxels (small non-overlapping
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volumes that together entirely fill the conformational space) and to assign each voxel as

allowed or disallowed, based on whether or not it contains structures that satisfy the

constraints. If each voxel were searched explicitly, the search space would be intractable

for all but the smallest problems. We have adopted divide-and-conquer strategies to

allow relatively large regions of the search space to be eliminated if they contain a

substructure that violates the constraints. Such approaches can effectively prune the

search tree to make even large problems computationally tractable.

The search space was constructed from 16 torsion angles, 10 of which were

constrained directly by the SSNMR data. Three additional angles were peptide bonds

and constrained to be within 5' of planar (either cis or trans), and the remaining three

angles had no direct torsion constraints (yPhe, 2Phe, and X Met). Fixed bond lengths and

angles were used to simplify the space, the values of which were determined in trial

calculations involving energy minimization from an extended conformation with full

freedom in the presence of intramolecular constraints alternating with the systematic

search described below. Excluded volume (van der Waals) constraints were enforced

using 90% of the radius values (a/2) from the all-hydrogen protein parameters in CNS

version 4.02 [47]. Divide-and-conquer was implemented through initial searches

systematically performed for each residue independently at a voxel grid resolution of 50

for all but the free torsion angles, which were enumerated in 300 steps. In this initial

search, each "residue" included one additional atom along the backbone chain from its

neighbors to allow the join in the subsequent step. Each substructure voxel was searched

by first checking the center of the voxel to determine whether this substructure satisfied

the subset of constraints involving only the atoms in the substructure ("active
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constraints"). If so, the substructure was retained. Otherwise, the substructure was

minimized subject to the active constraints and the additional constraint that the

substructure remains within the voxel boundary (using CFSQP, a constrained nonlinear

programming method [48] and an objective function that included only NMR distance

constraints and excluded volume). For the search of each voxel, up to three

minimizations were performed. The midpoint of every voxel was always used as one of

the starting points for minimization, and additional starting conformations were created

by assigning each torsion angle either to the midpoint of its range in the voxel or to other

values in the voxel that had previously been found, during the searches of other partial

structures, to satisfy local constraints. If any minimization resulted in a structure that

satisfied the active constraints, the structure and voxel was retained and no further

minimizations were performed. If no satisfying substructure was found, the voxel was

eliminated. This procedure yielded 1504 substructures for f-Met, 432 for Leu, and 242 for

Phe. In the second phase of the divide-and-conquer strategy, these successful

substructure voxels were systematically joined without regard to constraints, resulting in

~650,000 structures for the f-Met-Leu "dipeptide". Of these possibilities all but 1360

were eliminated because they violated either NMR or excluded volume constraints (see

Figure 4). Similarly, joining the f-Met-Leu "dipeptide" structures with the 242 Phe

structures and applying the constraints yielded the 56,975 allowed structures for the

tripeptide.

In Figure 5 we illustrate the family of -60k f-MLF-OH structures consistent with the

SSNMR torsion angle and '3C-1 N distance data and excluded volume constraints. We

can conclude that the experimental data defined most of the structure almost uniquely,
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but that some ambiguity remains for the Phe ring and the chain carboxyl terminus. By

one of the usual criteria, the quality of the f-MLF-OH structure is especially high (0.02 A

RMSD for the peptide backbone and 0.38 A RMSD for all heavy atoms). However, it

should be noted that because this peptide is small, the RMSD values are not directly

comparable with values computed for proteins. Nevertheless, the backbone is fully

constrained with the exception of the formyl group, which is not isotopically labeled in

our samples. Note that the formyl group was allowed to assume either cis or trans

conformation with low (~'5) angular fluctuations. It therefore appears in the figure as a

carboxyl-like group. The C-terminal carboxyl group, for which no SSNMR torsion

angle technique currently exists, is not constrained. Similarly, we presently do not have a

method to constraint 72 and therefore the orientation of the Phe aromatic ring. However,

our experiments indicate scaled C8-H5 and CE-H6 dipolar interactions for the Phe ring,

which are consistent with twofold flipping observed in a number of cases [49, 50]. The

side-chain conformations of Met have slightly greater uncertainty than the backbone,

largely due to the paucity of constraints on the Met S and Cc.

Conclusions

We have determined the three-dimensional structure of the chemotactic tripeptide, N-

formyl-L-Met-L-Leu-L-Phe-OH, based on solid-state MAS NMR constraints (torsion

angles and 3 C-15N distances) derived from uniformly 13C, 15N- and 15N-enriched samples.

Simulated annealing procedures were used to define a set of structures consistent with the

NMR measurements. The prospects for extension of this work to larger systems are very

promising. We note that complete 3C and 15N chemical shift assignments for a U- 13 C," N
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labeled 62 residue SH-3 domain from u-spectrin have been performed using solid-state

NMR data alone [38] representing significant experimental progress. Since the methods

employed to obtain the torsion angle constraints are already 3D, they are directly

applicable to these larger systems; one structural constraint can be extracted from each

resolved cross-peak in the 2D 13 C and "C- 5N spectra, and the most critical

constraints ( , y, X1) are derived from the well-resolved 13Ca, '3CP and 13CO signals.

Application of these approaches to ct-spectrin [38], bacteriorhodopsin [51] and ubiquitin

[52] are currently in progress. In proteins, distance measurements are crucial for

determining the global fold, and improved multidimensional SSNMR methods for

distance measurements in U-13 C,15N labeled proteins are beginning to appear and will be

used to measure multiple distances in a single experiment [18].

Acknowledgments

CMR acknowledges the support of a NIH NRSA (GM-20134), CPJ the support of a

NSF Graduate Research Fellowship, MH the support of a Danish Natural Science

Council Postdoctoral Fellowship and a postdoctoral fellowship from the European

Human Frontier Science Program, and MTM the support of a NIH NRSA (GM-20818).

We thank L.J. Mueller, B.A. Tounge, M. Hong, and D.J. Ruben for many helpful

discussions during the course of this work. This research was supported by grants from

the National Institutes of Health (AG-14366, GM-23403, and RR-00995).

66



Table 1. Torsion angle structural constraints in f-MLF-OH determined by 3D MAS dipolar-
chemical shift experiments. Four types of 3D experiments were performed, involving sets of

nuclei A-B-C-D: 'H- 1N- C-'H [19], 1H- C- C-1 IH [42], 1N- C- C-15N [39, 40], and IH- N-
1sN- H [24]. In each experiment, B-C 2D chemical shift planes were recorded as a function of the
dipolar mixing time between nuclei A-B and C-D. The modulation of the B-C cross peak
intensity reported on the relative orientation of the A-B and C-D dipole vectors, and therefore the
A-B-C-D torsion angle (assuming invariant bond lengths and angles). Each experiment yielded
several types of data, as listed in column three. Due to mirror plane symmetry, multiple solutions
are possible in each experiment. Monte Carlo simulations [19] were performed, with a minimum
of 10,000 iterations, to determine all possible solutions. Solutions were grouped within local
minima; those that occurred in more than 20% of Monte Carlo simulations are listed as most

likely solutions (with ±1 a precision), whereas those that occurred less often are indicated as less
likely solutions. (The results in cases where the B and C nuclei were not directly bonded (e.g., H-

N[i]-CP[i]-H) depended on two intervening torsion angles (e.g., 4 and X1) in a coupled manner;
several such 2D solution spaces were included in the final calculations, but are not shown here.

The determinations of y[i] via H-N[i+1]-Ca[i]-H data presumed a trans peptide bond (o=1800).)

Most Likely Less Likely
Residue Angle Data Type Solutions (0) Solutions (0)

Met H-N[i]-C"E[iI-H -150 2 -6± 2-90±2

y N-C"[i]-C'[i]-N ±157 ± 1 n/a
108 18

-151 10
H-N[i+1]-C"[i]-H' 161 4 78 5

-10 8
24± 11

-163±3 163±3
x1 H-Ca[i]-C0[iJ-H 2  -77±3 -43 ± 3
X2 H2-CP[i]-C [i]-H 2  ±169 ±2 n/a

-94±2
Leu H-N[i]-C[i]-H -146 2 n/a

+91 4 ±45 ±4
SN-Ca[i]-C'[i]-N ±120 ± 4 ±65 5

-69±4 -178±7
H-N[i+1]-Ca[i]-H -51 ±4 -59± 10

-51 ±4 -59 ±10
±177 ± 3

X1 H-C"[i]-CP[i]-H 2  -57 ± 3 n/a
-64 ± 3

±173 ± 3
X2 H2-CP[i]-C [iI-H -65 ±4 n/a

-56± 4
-163 ±2 -45± 6

Phe #H-N[i]-C"[i-H -77 ±2 162± 2

H-Ca[i-CP[i]H 2  68±4 n/a
52 ±4
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Table 2. Comparison of the internuclear '5N-"C distance constraints in f-MLF-OH, determined
using frequency selective REDOR [17] and the distances in f-MLF-OMe determined with X-rays.
In column three and four are the average distances determined from the 56,975 structures
generated by the full search procedure developed here and the CNS calculation. Note that most
of the experimental distance constraints are more precise than is customarily observed in solution
NMR experiments. The excellent agreement between the experimental and calculated distances
lends credence to the structural model illustrated in Figure 4.

Atoms
Met(N) Met(C')

Met(C")
Met(CD)
Met(C)
Met(CE)
Leu(CS)
Leu(C62)

Leu(N) Met(C')
Met(C")
Met(CS)
Met(CY)
Met(C)
Leu(C')
Leu(C")
Leu(CD)
Leu(C82)

Phe(N) Met(C')
Met(CS)
Met(C )
Met(C)
Leu(C')
Leu(Ca)
Leu(CS)
Leu(C6 2)
Phe(C')
Phe(C")
Phe(CE)

FS-REDOR

2.52±0.02
3.20±0.03
5.4±0.3
5.7±0.7
5.5±0.3

3.12±0.03
4.17±0.10

5.5±0.3

2.46±0.01
3.64±0.09

3.4±0.2
4.12±0.15
4.8±0.2
5.2±0.3

3.24±0.12
5.4±0.3

rC-N (A)
X-ray
2.40
1.46
2.50
3.04
5.71
6.03
6.28
1.33
2.44
3.20
4.56
5.93
2.46
1.46
2.50
3.63
3.41
4.06
5.43
5.62
1.34
2.43
3.12
5.38
2.37
1.47
2.53

a Leu(C6 ) resonance frequency is 19.6 ppm (20).
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Full Structure
2.47
1.46
2.47
3.25
5.85
5.97
5.92
1.33
2.41
3.07
4.19
5.52
2.42
1.46
2.46
3.53
3.54
4.11
5.11
5.03
1.33
2.42
3.15
5.34
2.46
1.46
2.45

CNS
2.47
1.46
2.47
3.23
5.63
5.92
5.80
1.32
2.37
3.02
4.16
5.56
2.39
1.45
2.45
3.52
3.59
4.13
5.11
5.08
1.33
2.41
3.11
5.32
2.47
1.46
2.46



Table 3. Comparison of the 14 torsion angles derived from the SSNMR structures in f-MLF-OHI
with the corresponding angles from the X-ray structure of f-MLF-OMe [21]. The average root
mean squared deviation of the full ensemble from the representative angles shown below was
±3.5' and the average error for the CNS calculation was ±1.0'.

Residue Angle f-MLF-OMe f-MLF-OH f-MLF-OH
x=ray Representative CNS

Met -146.0 0.7 -145.5

Met q 151.3 0.6 158.5
Met -61.2 0.9 -85.0
Met X2 172.9 0.6 171.4

Met 1, 77.5 0.8 87.1
Leu (o 169.6 0.6 175
Leu -67.7 0.8 -89.5
Leu -49.1 0.8 -39.5
Leu XI -59.9 0.8 -58.7
Leu X2 -178.5 0.8 -178.3
Phe 0 175.7 0.6 176.1
Phe -155.4 0.6 -166.5
Phe Xi 64.4± 0.8 55.7
Phe X2 -78.4 ±0.9 -76.2

-150.6
158.0
-82.3
157.8
71.3

-177.2
-92.1
-44.0
-59.4

-176.5
180.0
-162.9
53.1
-89.2
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Figures and Captions

Rienstra et al., Figure 1

54.4- F1 I Fcc FP

175.21 L'I F La FP

56.8 - L'$ La LP

172.2- M I MC

52.0- M'1 Ma MP

180 140 100 60 20

Phe 15N
107.6 ppm

Leu 15 N
116.2 ppm

Met 15 N
125.5 ppm

13C Chemical Shift (ppm)

Figure 1. Strip cross sections through the 5N planes of the 3D 15N- 3 C-'3 C chemical shift

correlation spectrum of f-MLF-OH, showing the backbone resonance assignments. The Met "N

plane (125.5 ppm) shows only '3C cross-peaks from the Met residue. In contrast, the Leu 15N

plane (116.2 ppm) shows Met and Leu '3C cross-peaks, and the Phe 5N plane (107.6 ppm)

displays Leu and Phe '3C cross-peaks. Since 13C-'3 C correlations were established using the SPC-

5 double quantum recoupling pulse sequence [32] the cross-peaks corresponding to subsequent

13 C- 3C dipolar transfers alternate in sign [29] (blue and red for positive and negative absorption,

respectively). Details of the pulse sequence and experimental parameters used to record this

spectrum can be found in [23].
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Rienstra et al., Figure 2
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Figure 2. Measurement of WMe, in f-MLF-OH via the double quantum '5N-"C-13 C- 15N

experiment [39]. (a) Experimental and simulated dephasing of the Met C'-C" double quantum

coherence under the C'-N and C"-N dipolar couplings. The best simulation yields a torsion angle

of ±157±1*. (b) RMSD between the NCCN simulation and experiment for the Met residue,

calculated as a function of y.
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Rienstra et al., Figure 3
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Figure 3. Measurement of carbon-nitrogen internuclear distances in U-'3 C,15N-f-MLF-OH using

frequency selective REDOR [17]. (a) Structural model of f-MLF-OH displaying the distances

measured in (b)-(d). Experimental REDOR S/So curves (So and S represent the reference and

dipolar dephasing experiments, respectively) and simulations are shown for (a) Met(C)-Leu(N),

(b) Leu(CE)-Leu(N), and (c) Met(CO)-Phe(N), and correspond to internuclear distances of (a) 3.12

+ 0.03 A, (b) 3.64 ± 0.09 A, and (c) 4.12 ± 0.15 A. A total of 16 distances between 2.5 and 6 A

were measured in f-MLF-OH. Distance measurements were performed in a sample prepared by

co-crystallizing U-13C,'5N f-MLF-OH with natural abundance f-MLF-OH in a 1:9 ratio, in order

to minimize the interference from intermolecular '3C-15N couplings. Details of the pulse sequence

and experimental parameters can be found in [17].
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Figure 4: An illustration of the divide-and-conquer strategy used to search conformational

space. Starting from the individual residues (bottom) and progressing to the tripeptide, the

number of substructures satisfying the SSNMR and excluded volume constraints and the number

of searchable torsions are indicated.
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Figure 5: An illustration of a family of 56,975 f-MLF-OH structures consistent with the

SSNMR torsion angle measurements, "C-15N distances, and excluded volume constraints. The

structure of the backbone is of especially high quality (0.02 A RMSD). Since the formyl group

was not labeled it was permitted to assume both the cis and trans conformations in the

calculation, and exhibits the appearance of a carboxyl group in the figure. The C-terminus and the

Phe ring appear disordered since no torsion angle methods currently exist to constrain the

terminal y' or X2 angle. The ring conformation is largely determined by excluded volume

constraints, and it is likely undergoing twofold flips (see text). The Met and Leu side-chain

conformations are also relatively well defined.
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Chapter 4

Merge Strategy Optimization

Introduction

Chapter 2 described a systematic framework for searching the rotational degrees of freedom

of a molecule and evaluating whether voxels (ranges of torsion angles) contain conformations

that satisfy the user's constraints. A layer of divide-and-conquer search was constructed

which searches individual residues independently, then combines the satisfying conforma-

tions to create candidate conformations for dipeptides, then combines those to form larger

subchains, etc. This divide-and-conquer layer seems like it should be an improvement, and

preliminary results do indicate that it is, but let us examine more closely how the divisions

(the merge-trees) are chosen and how those choices influence efficiency.

We begin with an example that helps clarify the implicit assumptions of using a divide-

and-conquer approach and that shows how important the choice of merge-tree can be for the

run time of conformational search. Then we'll consider the full range of possible merge-trees

and ask how to evaluate alternatives using available information.

Based on observations that low-dimensional searches are so much faster than higher-

dimensional searches as to be practically free, we ask if there is any benefit to be had

from doing "extra" searches. We will explain the benefit and then the cost of searching all

possible subchains of one size before searching any subchains of a larger size. We formalize

this cost evaluation as a dynamic programming table and show how an optimal merge-tree

can be extracted from it.

Performing "extra" searches (searching more subchains than the minimum necessary

for a particular merge-tree) sets up two additional types of flexibility that can enhance the
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overall search algorithm. First and most importantly, sharing information from the result of

one search can simplify the search of an overlapping subchain; we describe how constraint

propagation can accomplish this sharing. Moreover, in some cases the benefit reaped is

more than enough to offset the cost of searching the extra subchains in the first place. The

second additional flexibility is that we may choose the order in which the subchains are

searched. That sets up an opportunity to use the A* algorithm to choose which merges to

perform next, as if each merge towards constructing the whole molecule were a step in a

partial path towards the single destination of searching the whole molecule.

4.1 The Choice of Merge-Tree Can Be Important

We first motivate the research in this chapter by constructing an extreme example, a

molecule with a set of constraints such that using a naive choice of merge-tree results

in an exponential search and using a seemingly unlikely merge-tree results in a polynomial

search.

Problem Framework

In order to categorize example protocols as exponential or polynomial, we will need to vary

the size of the problem without changing the nature or character of the problem. Therefore

we will use variable-length alpha-helices of polyalanine. (To define an alpha-helix of any

length, we apply torsion angles of q = -57.0', = -57.0', and w = 180.00 to every residue

in the chain.)

For the divide-and-conquer strategy in chapter 2, we used full, balanced binary merge-

trees by default. This default tree is not always optimal, and we will show here that in the

worst case, it could be exponentially worse than optimal.

We will design a constraint set so as to sabotage searching with the default tree but

not to sabotage all possible merge-trees. Suppose our molecule has 2 k residues, the ideal

number for the advantage of the default trees. (When the number of residues in a molecule

is not a power of 2, especially if N = 2k + 1, pathological cases for default merge-trees are

easy to imagine.)
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The default merge-tree

The default merge-tree for a molecule with N = 2 k residues would be the full, perfectly

balanced tree with (k + 1) levels, defined in section 2.3. (See Figure 4-1.)

1-8

1-4 5-8

1-2 3-4 5-6 7-8

A A /\ /\
1-1 2-2 3-3 4-4 5-5 6-6 7-7 8-8

Figure 4-1: The default merge-tree for a molecule with 23 = 8 residues.

Recall from section 2.3 that the most important reason for doing a divide-and-conquer

search is allow more opportunities for pruning the search. By defining a tree without regard

to the constraint set, there is a possibility that the chosen fragments and merges may not

correspond to any active constraints and that no pruning will be possible.

The constraint set

Let us define a set of interatomic distances (for the same molecule of N = 2 k residues)

such that when using the "default" merge-tree, no constraints are active prior to the final

merge. (The final merge is the top-most in the tree, with the whole molecule as the result.)

Constrain the distance between atom i and atom j if and only if
N

the residue of atom i is < -
- 2'

N
and the residue of atom j is >

2
Note that in this constraint set, distance constraints may be of any length, not necessarily

less than 5 or 6 A. For the "padding" on the constraints, let us choose plus or minus 0.05

A from the measured distance in the helical structure.

As we have defined it, this constraint set has no constraints within the left half of

the molecule nor within the right half of the molecule, but has every possible constraint
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involving one atom in the left half and the other in the right. As divide-and-conquer search

traverses the default merge-tree, bottom to top, no constraints will take effect prior to the

final combine operation, when the two halves of the molecule are joined. Even if this set of

constraints suffices to specify a unique satisfying conformation for the whole molecule, the

search will have to explore and enumerate every self-avoiding conformation' of both N-sized2

halves. Because the number of accessible conformations for a subchain is exponential in the

length of that subchain, the cost of searching this molecule with a naive binary merge tree
NL 

N)would be 0(2 * e2 ) E O(eN

Some technicalities

When breaking a chain into two subchains at a peptide bond, we choose to include the

peptide bond (and therefore the atoms that define it) in both subchain pieces. Because

the C-terminal atoms of any residue are used when defining the next residue, and the N-

terminal atoms of any residue are used when defining the previous residue, we also need to

exclude from our constraint set any interatomic distances where atom i is at the C-terminus

of residue 2 k-1 or when atom j is at the N-terminus of residue 2 k-1 + 1.

Applying the triangle inequality to all the entries of the molecule's distance matrix (the

"triangle smoothing" option) would allow some constraining information to trickle across

the artificial boundary we're erecting between the left and right halves of the molecule, and

would indirectly provide constraints that are active within the left half and within the right

half of the molecule. Atoms near the boundary, thus constrained by the triangle inequality,

would not contribute to the exponential growth of overall run time. The remainder of

each half of the molecule would behave the same, and exponential growth would ensue,

but larger examples would be required in order to display the phenomenon as clearly as it

can be displayed without the use of the triangle inequality. Therefore we neglect to apply

triangle smoothing in this example.

The "manually-constructed" merge-tree

A merge tree that exploits the structure of the constraints might conceivably allow a divide-

and-conquer search of the same molecule with the same constraints to cost far less. Any

1 A self-avoiding or accessible conformation is one that doesn't involve van der Waals clashes.
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such tree would merge a subchain from residue(s) < E with a subchain from residue(s)

> $ at the beginning of the search, not the end.

Let us define another merge-tree such that every merge has active constraints. Call

this the "manually constructed" merge-tree. Note that this merge-tree would under other

circumstances probably be worse than the default merge-tree because its depth is linear, not

logarithmic, in the number of leaves, and a substantial number of merges involve minimizing

fragments almost as large as the whole molecule. In the default merge-tree, only the final

merge requires such large minimizations.

Build the "manually-constructed" merge-tree so that every merge spans the artificial

boundary between residues 2 k-1 and 2 k-1 + 1. Start with the first, lowest-level merge

1-7

2-7

2-6

3-6

3-

4-5

1-1 2-2 3-3 4-4 5-5 6-6 7-7 8-8

Figure 4-2: A manually-constructed merge-tree for a molecule with 8 residues.

between those two residues themselves. (See Figure 4-2.) Then merge 2 k-1 - 1 with the

dipeptide. Then merge another residue onto that tripeptide. We have chosen to alternate

adding a new residue from the left and from the right but the key feature of this merge

tree is that residues are added one at a time onto the subchain that spans the boundary.

Therefore all subchains searched will have at least one residues on the left and at least

one on the right, which means every subchain constructed (except leaf subchains) will have

active constraints.
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Results

We used divide-and-conquer (with VOXELIZED TREESEARCH on leaves) according to the

default and "manually constructed" merge-trees, to perform a systematic search at 120'

resolution on helical polyalanine subject to the set of constraints we constructed above.

The van der Waals radii were set to 90% of half sigma,2 and the threshold for summed

squared violations was 0.005 A 2 . The w torsions (for peptide bonds) were permitted to vary

between 175' and 1850.

Number of Run Time by Merge-Tree
Residues default manually-computed

2 0.19 0.19
4 64.4 1.35
8 2,500,000.t 11.9

16 180

Figure 4-3: Run times with default and manually-constructed merge-trees.
t The run time for the simulation of 8 residues with the default merge-tree was ex-
trapolated from an actual simulation that was terminated after 590333.590 sec-
onds. In that time it had searched every node below the root and had searched
1,618,126 out of 6,638,760 candidates for the final merge.

Using the default merge-tree forces the algorithm to enumerate satisfying conforma-

tions for the left and right halves, even though there are no external constraints active on

either left or right halves of the molecule. Since the left and right halves have no active con-

straints, and since the number of unconstrained (self-avoiding) conformations for a molecule

is exponential in the length of the chain, divide-and-conquer with the default merge-tree

must take an exponential amount of time. No matter how divide-and-conquer calculates its

conformations, simply enumerating the conformations for the left and right halves requires

exponential time. Indeed, exponential growth does accurately describe the few trial runs

we were able to complete.

In contrast, each time the size of the molecule doubles (each time k increases by one),

the run time of the algorithm using the "manually constructed" merge-tree increases by

approximately a factor of ten. This rate of growth is polynomial. By constructing the

constraint set adversarially with respect to a given merge-tree, we have created extreme

2half of sigma in the CNS parameter set parallhdg.pro [8, 19]
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but vivid evidence for why the choice of merge-tree is important.

4.2 How Can We Choose Good Merge-Trees?

How can we choose merges that are appropriate to the constraint set without manual

intervention? All other things being equal, small subchains can be searched more quickly

than large ones. However, the availability of active constraints is not always equal, and

(as shown in previous extreme example) the availability of active constraints can be a far

more important consideration when choosing a merge-tree for divide-and-conquer than the

sizes of subchains. The number of conformations does often correlate with the size of the

subchain, but the important thing is to choose subchains with few conformations.

Simple descriptions of divide-and-conquer usually explain that a large problem is divided

into pieces, the pieces are easy to solve, and the solutions for the pieces are combined to

create the solution for the large problem. While that is entirely true, we emphasize that

what makes divide-and-conquer especially effective for constrained searches of molecular

conformations is that divide-and-conquer can isolate and search the most highly-constrained

pieces of the molecule and then use the resulting small set of satisfying conformations to

build satisfying conformations for the rest of the molecule.

After discussing two intuitive considerations, locality and ordering, we will define a cost

function and a formal methodology for computing an optimal merge-tree.

Locality

We say there is locality in a constraint set if the existence of a constraint between atoms i

and j means it is more likely than average that atoms near i and atoms near j will also be

constrained (by non-trivial or non-redundant constraints). When a constraint set exhibits

locality, it may be possible to define some subchains with particularly large numbers of

active constraints, and those subchains might have particularly few satisfying conformations.

Whenever possible we want to satisfy clusters of constraints with local, low-dimensional

searches, so that we can avoid instantiating extra variables.

In chapter 2 we mentioned three reasons for using divide-and-conquer search over

treesearch: because it evaluates individually each piece it adds, because it stores the satisfy-

ing conformations of recurring clusters of variables, and because it can allow you to define
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subproblems with a smaller average size. An additional reason, related but crucial, why

divide-and-conquer improves efficiency is that it has the freedom to choose well-constrained

subproblems and to exploit the locality of the constraint set. Good merge-trees define sub-

problems that have as few satisfying conformations as possible. If all subproblems have

the same number of satisfying conformations, then choosing a merge-tree that optimizes

the average subchain length (like the default merge-tree) would make sense, but subchains

with short length are not necessarily always the subchains with the smallest number of

conformations.

Ordering

Consider performing treesearch at 120' resolution on a molecule with four bonds. If there

44{

X V X X X X X X B,'

Figure 4-4: The search is less efficient if the variable with many legal assignments is instan-
tiated first (left) instead of last (right).

are many feasible possibilities for 01 and few for 02, 03, and 04 (see Figure 4-4), then it is more

efficient to search 01 last instead of first. Likewise, if a molecule can be broken into well-

constrained subchains and poorly-constrained subchains, the search will be more efficient

if we build satisfying conformations for the well-constrained subchains first and then, as

late as possible, build onto them the poorly-constrained regions with higher variability.

Searching well-constrained subproblems first corresponds to the "first-fail" approach to

variable-ordering in generalized constraint satisfaction problems [28, 31].

An efficient merge tree isolates subproblems with well-constrained, efficiently-enumerable

solutions and puts them at the early nodes of the merge-tree so that they can be solved first.

It places unconstrained subchains near the root of the merge-tree (unconstrained variables
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near the bottom of the search tree) so that (A) they won't have to be enumerated before

needed (which is when everything is needed, in the final search of the whole molecule); and

(B) they won't have to be enumerated before the little constraint they do have is applied,

namely when all variables are instantiated and all constraints become active.

Cost Function

Before we attempt to design an algorithm that chooses a good merge-tree, let us clarify

our measure of cost. Recall that a merge-tree depicts a divide-and-conquer search strategy:

subchains corresponding to leaf nodes are searched directly and interior nodes are searched

by combining the solutions of the right and left child subchains.

The run time of searching a subchain depends on factors as diverse as the number of

rotatable bonds, the number and sizes of atoms attached to those bonds, the number and

type of constraints, the information or the redundancy in the constraints, the number of

voxels with conformations that satisfy the constraints, and the ease of finding satisfying

conformations within each satisfying voxel. These factors are in addition to user-defined

constants such as the resolution of the search and how long to search within each voxel

before giving up.

Let us design a simple cost function that can be computed quickly and that may correlate

approximately with run times. Ideally the cost function would be an accurate predictor of

run time, but when in doubt about how to define the cost, we will err on the low side so

that the cost will be able to serve as a lower bound on run time.

From this point forward, we consider the cost to be an abstract entity that is defined

and computed independent of the run time. After the cost is defined and implemented, we

will show that the cost function is useful for making decisions, such as for choosing merges

and merge-trees. Although we intend the cost values to resemble run times, the cost itself

an exact quantity, not an estimate. The only reason we stress this distinction is because

the cost entities themselves will be estimated later in this chapter.

Let us define the cost of searching a leaf subchain as the number of feasible conformations

(the number of solutions or satisfying voxels) times the cost of searching each voxel. This

choice ignores the cost of ruling out regions of conformation space that have no satisfying

conformations, but a cost that counted every possible voxel (as with GRIDSEARCH) would

be an overestimate.
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The search of a non-leaf subchain is performed by combining solutions from left and right

child subchains into candidates for the larger subchain and then evaluating the candidate

voxels. We define the cost of searching a non-leaf subchain to be simply the number of

candidate voxels times the cost of evaluating a voxel. The number of candidates is the

number of solutions for the left child times the number for the right. (This definition is not

a strict lower bound because if the omega torsion at the shared peptide bond has multiple

allowed ranges, (e.g., cis as well as trans), then there may be some combinations that can

be ruled out immediately on the basis of incompatible ranges for the shared torsion.

The cost of evaluating a voxel is more complicated and it depends on the voxel. It

can be insignificant if the initial voxel point given to the minimizer (such as the midpoint)

satisfies the constraints without need for further minimization. In contrast, if the voxel

contains no satisfying conformations, the algorithm will choose a starting point, minimize

with perhaps 50 steps, fail, and repeat the whole process (with a fresh starting point and

50 more steps of minimization) a predetermined number of times before concluding that no

satisfying conformations exist.

We have chosen to define the cost of evaluating a voxel as the number of residues in

the subchain, which is roughly proportional to the number of dimensions of the voxel. We

acknowledge that many simplifications are inherent in this definition. Indeed, the square of

the number of residues (or the square of the number of torsions) might be more accurate

in more cases than our choice of the linear cost. However, we prefer to err on the low side

(providing a guaranteed lower bound) because this cost function will later be used to evalu-

ate whether to perform additional work searching small subchains in exchange for possibly

reducing the future costs of searching large subchains. If we overestimate the costs of large

subchains relative to small ones, the algorithm could overestimate potential savings and

waste its time. Our cost function can then be expressed as follows:
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NODECOST(leaf subchain m-m)) = NUMSOLUTIONS(subchain m-m)

x VOXELCOST(1 residue).

NODECOST(subchain m-n) = NuMSOLUTIONS(subchain m-i)

x NUMSOLUTIONS(subchain (i+1)-n)

x VOXELCOST(n - m + 1 residues).

VOXELCOST(n residues) = n.

Since the cost of evaluating a non-leaf subchain was based on the assumption that its

child subchains had already been searched, the entire cost of searching a non-leaf subchain

from scratch is actually the cost of all the nodes in its subtree. In particular, the cost of

searching the whole molecule is the sum of the costs of all the nodes ni in the merge-tree F.

TREECOST (F) = NODECOST (S).
ser

The Optimum Cost

Given the number of satisfying conformations for every subchain, we can compute the

NODECOST for every subchain. Then, given enough time, we could enumerate all possible

merge-trees, compute their TREECOSTs, and determine the optimum.

We claim that the following function also computes the optimum cost, over all possible

choices for merge-trees, for the search of a given molecule.

BESTTREECOST (subchain m-n)

NUMSOLUTIONS(subchain m-i)

MIN x NuMSOLUTIONS(subchain (i+1)-n)

x VOXELCOST(n - m + 1 residues)
m<i<n

+ BESTTREECOST(M-i)

+ BESTTREECOST((i+ 1)-n)

Dynamic Programming

Computing the BESTTREECOST is an ideal case for using dynamic programming [1]. Let us

build a dynamic programming table of BESTTREECOST entries such that the first residue
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of a subchain gives the row of the entry and the last residue gives the column. Entry

LAST RESIDUE IN SUBCHAIN

1 2 3 4 5 6 7 8 9

1
H

2

D 3

z 4

D 5

6

7
U/)
%~ 8

9

Figure 4-5: One way to set up a dynamic programming table for building up values of
BESTTREECOST.

i-j of the table would contain the BESTTREECOST of the possible subtrees rooted at i-

j. (See Figure 4-5.) An algorithm to fill in BESTTREECOSTs would start with the leaf

subchains along the main diagonal of the table, then proceed, in order of increasing number

of residues, to fill in another diagonal, using a linear number of look-ups from previous

entries to compute each new entry.

If we perform a 45 degree rotation on the table in Figure 4-5, then the table entries are

Figure 4-6: The same table as in Figure 4-5, rotated 450, can be aligned with the default
merge-tree for 8 residues.

arranged from top to bottom in order of subchain size, in such a way that merge-trees can
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easily be superimposed on the tables; see Figure 4-6. The leaves are now along the bottom,

in what we will call a "diagonal row." Rotating the table has the important advantage

of positioning each subchain entry approximately where it would be in a merge-tree for

creating that subchain, and that provides a visual cue for the relationships between the

entries in the "table." Although Figure 4-6 shows a default merge-tree superimposed on

the table, any merge-tree could be superimposed equally well.

The Optimal Merge-Tree

Computing a dynamic programming table of BESTTREECOSTS for a molecule gives the

optimal merge-tree as a side-effect. For each subchain, m-n, the choice of i used in BEST-

TREECOST(m-n) gives the best division of m-n into left and right children. As with any

case of dynamic programming, although cost information is computed "bottom-up" start-

ing with small subchains, we read out the information in reverse order, "top-down," for

deducing the globally optimal merge-tree. Taking the i chosen in BESTTREECOST(1-N),

we break the molecule into two subchains, 1-m and (m+1)-N. Then we look up the choice

of i for BESTTREECOST(1-M) to break up that subchain, and so on until reaching leaves.

The set of divisions (i values) that gave rise to the merge-tree with optimal TREECOST is

the optimal merge-tree.

As in any case of dynamic programming, the number of satisfying conformations for

subchain 1-N cannot depend on how they were created, whether by combining, say, 1-1 x

2-N or 1-L x (L+1)-N. The choice of i used for computing the BESTTREECOST of a

child subchain does not influence the BESTTREECOST of the parent.

This dynamic programming assumption is actually a version of our previous assumption

that a systematic solution to a conformational search problem does not depend on how the

systematic search was performed. In other words, the voxels enumerated should be the

same, except for order, whether found by by TREESEARCH, divide-and-conquer, or any

other method, long as the constraints and the resolution are the same.

This assumption does turn out to be false sometimes in practice. Especially when a

subchain has many degrees of freedom, the minimizer can fail to find any satisfying confor-

mations even when a satisfying region in the voxel does exist. A difficult but potentially

crucial area for future research might be to study factors that influence completeness and

the probability of false negatives, such as whether the choice of merge-trees matters in prac-
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tice, or whether the choice of satisfying solutions at low dimension (which are combined to

create candidates at higher resolution) can improve completeness.

4.3 Searching All Subchains (OMNIMERGE)

While performing a variety of conformational searches using divide-and-conquer, we ob-

served that a large fraction of run time is consumed during the final combine operation

to create the whole molecule. The time taken to search the leaves or to perform the low-

dimensional merges is utterly dwarfed by the time for performing the higher-dimensional

merges. Therefore we ask if there is any conceivable benefit to be reaped during high-

dimensional searches (for example during the final merge) if we performed some additional

lower-dimensional searches.

Performing Locally Optimal Merges

Suppose we performed all possible dipeptide merges (1-2, 2-3, 3-4, 4-5, ... ) instead of

just the pairs specified in some merge-tree (such as 1-2, 3-4, ... ). Obviously this would

require twice as much work, but for the moment let us assume the cost of this extra work

is insignificant. Could anything be gained from it? Nothing is gained if the next goal is

to create tetrapeptides by combining pairs of dipeptides. If on the other hand the next

goal is to create tripeptides, then we would have two different possible merges for creating

each subchain and we could choose whichever one has the lower NODECOST. For example,

when creating subchain 1-3, we could choose between combining subchains 1-1 x 2-3 or

combining subchains 1-2 x 3-3.

Let OMNIMERGE be the algorithm that searches all possible subchains of the whole

molecule, in order of increasing size, and that chooses the children for each combine opera-

tion so as to minimize the NODECOST.

BESTNODECOST(m-n)

MIN NUMSOLUTIONS(M-i)

x NuMSOLUTIONS((i+1)-n)
m < i < n

x VOXELCOST(n - m + 1).

If we have searched all subchains of length < 1, we know how many satisfying conforma-

tions there are for each subchain of length < 1, which is enough information to evaluate the
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various cost functions (NODECOSTs, BESTTREECOSTS, etc.) for subchains of length < 1+1.

As OMNIMERGE searches subchains of increasing length, we can trivially fill in successive

diagonal rows of the BESTTREECOSTs dynamic programming table. Filling in an entry of

the table requires up to 1 comparisons but note that we do not actually perform I merges;

we compare the costs of I merges and perform the best one. The cheapest merge according

to BESTTREECOST is added to to the dynamic programming table, and the cheapest merge

according to BESTNODECOST dictates which combine operation OMNIMERGE actually per-

forms. OMNIMERGE performs the locally optimal merge, without regard for the costs of

any subtrees, but it keeps track of which merges would be globally optimal if the subtrees

had not already been provided. In other words, because the BESTTREECOST of m-n takes

into account the costs of creating the subtree of m-n, it corresponds to the globally optimal

merge-tree for creating m-n. In contrast, OMNIMERGE chooses child subchains according

to BESTNODECOST, without considering costs of creating the children.

Previous Work

Like OMNIMERGE, the "buildup" procedure of Scheraga et al. [57, 71, 22] also searches all

subchains of the molecule. However, instead of choosing the most favorable left and right

child subchains to merge (which is the key idea of OMNIMERGE), the buildup procedure

always creates an i-residue subchain by merging the subchain for the first i - 1 residues with

the subchain for the last i - 1 residues. The benefit of a large overlap between the right and

left children is that longer-range constraints will have already been satisfied. (For example,

if the merge is to create subchain 1-8, then constraints involving residues 1-7 or residues

2-8 have already been satisfied; the only newly active constraints would be between residues

1 and 8.) The disadvantage of a large overlap between the children is that longer subchains

tend to have a larger number of satisfying conformations. (The number of conformations

for the right child times the number of conformations for the left could be very large.) This

disadvantage is not a problem for Scheraga et al. because they keep only a limited number

of energetically-favorable conformations for each subchain. Although their approach is not

systematic, it is "closer" to systematic than many other popular search methods, such as

simulated annealing.
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4.3.1 Mitigating the Cost of OMNIMERGE

Methods to improve the theoretical worst-case performance of an algorithm often involve

paying overhead costs for a sophisticated algorithm, slowing down the answers to easy

questions, in exchange for much better performance on very difficult problems. In practice

one could always run a simple algorithm in parallel with a more sophisticated algorithm,

and if the naive approach gives a quick answer, halt both. The worst case penalty for

having the "insurance policy" of the sophisticated algorithm would only be the use of twice

as many processors.

We now present several variations that may run faster than OMNIMERGE in many cases,

although they generally provide less "insurance" than OMNIMERGE. Also, when a variation

involves omitting some of the subchains, the BESTTREECOST dynamic programming table

will not be filled in entirely and the globally optimal merge-tree can no longer be com-

puted as a side-effect of the search. Yet, in cases where the conformational search result

is more important than knowing the optimal merge-tree, one of these suggestions might be

appropriate.

Imposing an upper limit on subchain sizes

The cost of searching (combining and minimizing) large subchains can be substantial. Is

there some threshold size beyond which it becomes too costly to search all possible sub-

chains, compared with the savings of choosing good merges? If N is the size of the whole

molecule, there will be high cost for searching subchains of size N - 1 and N - 2, and one

might argue that the likely benefit would be small. Since the whole molecule can be searched

by combining two subchains that are roughly size {, one might prefer not to search any

subchains that are significantly larger than E (except of course the whole molecule).

Let LIMITED OMNIMERGE be the algorithm where we search all subchains of length up

to some limit L, where L is at least large enough to include some right and left children of the

root. (L > FE1.) In the experiments below, we chose L = 0.667N. LIMITED OMNIMERGE

searches many more subchains than would be searched using a default merge-tree, but fewer

than regular OMNIMERGE, and each subchain search (except the final merge) gets to use

its optimal children.

We could also use an algorithm that stopped searching all possible subchains at a thresh-
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old smaller than half the size of the molecule, to try to save more time. It could perform

its final merges according to some pre-determined strategy, such as a default merge-tree or

some greedy strategy that aims to create the longest possible subchain as soon as possible.

Imposing a lower limit on subchain size

As described earlier, one could use dipeptides or other fragments larger than single residues

for the leaves of the divide-and-conquer algorithm. Analogously, one could construct the

dynamic programming table as if amino acids were paired, thus reducing the size of the

table and significantly reducing the number of subchains to be searched. If we think of

the task of examining every possible subchain as itself as a type of systematic search to

find well-constrained subproblems, then pairing the residues would still be a uniform and

systematic search, except with coarser resolution.

Requiring divisibility of subchain sizes

Another way to reduce the cost of an OMNIMERGE-like search is to impose a divisibility

requirement on the subchain sizes. Only subchains with lengths divisible by d (or smaller

than d) would be searched. Assume dIN and d < N. If the whole molecule has 10 residues

and one imposes a divisibility limit of 2, then subchains with lengths 1, 2, 4, 6, 8, and 10

would be searched (not just subchains sizes that are powers of two). This would fill in every

other diagonal row of the dynamic programming table. Requiring divisibility of subchain

sizes is similar to having a lower limit on subchain sizes because it also "covers" the space

of all possible subchains, but at lower density, as if decreasing the resolution of the search

for well-constrained subproblems.

Removing orphaned subchains

When using one of the variants of OMNIMERGE that omits certain subchains, we can often

remove additional subchains from consideration if all the larger subchains they could help

create (via the combine operation) have already been removed. For example, if a molecule

has 6 residues and LIMITED OMNIMERGE only searches subchains of up to 4 residues, then

subchains of size 5 are removed from consideration. Subchain 1-4 is potentially useful

because it could be combined with 5-6 to create the whole molecule. Likewise 3-6 might

be useful because it could be combined with 1-2. In contrast, 2-5 can never be useful
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because combining it with anything (such as 1-1 or 6-6) would create a subchain of size 5.

Subchain 2-5 is within the size limit, but the decision not to search subchains 1-5 or 2-6

leaves subchain 2-5 "orphaned." Orphans can be removed from consideration without any

risk of increasing run time. However, with the PROPAGATION algorithm introduced later

in this chapter, it is conceivable that skipping an orphaned subchains could worsen the run

time.

Testing limited versions of OMNIMERGE

The methods suggested so far for reducing the run time of OMNIMERGE searches involve

skipping some subchains and not completing the entire dynamic programming table. Such

methods are difficult to evaluate apart from some context (such as a particular molecule

with a given set of constraints) because the context determines how the skipped subchain

contributes to the overall solution of the problem. If the skipped subchain happens to be part

of the optimal merge-tree for the whole molecule, or even just part of a locally optimal merge

for some subchain, then its removal might slow the search of that subchain, possibly enough

to decrease overall performance. If the skipped subchain is not part of any locally optimal

merges (or if it is part of a locally optimal merge but the suboptimal alternatives are almost

as good) then skipping the subchain will improve performance. The impact on performance

may be a bimodal distribution as contexts vary. Methods that skip some subchains will

sometimes perform better and sometimes worse than OMNIMERGES. Although it might be

interesting to test many variants in many contexts, the preliminary trials in this chapter

will only use one additional variant of OMNIMERGE: LIMITED OMNIMERGE with an upper

threshold on subchain size of L = 0.667 * N, and with orphaned subchains removed.

Computing the optimal merge-tree at low-resolution

An entirely different approach to mitigating the cost of OMNIMERGE is to compute the

optimal merge-tree at lower resolution than the eventual search. Assuming that the optimal

merge-tree for searching a molecule at low resolution is similar to (or sometimes even the

same as) the optimal merge-tree for searching the same molecule (with the same constraints)

at higher resolution, then one could perform OMNIMERGE once at low resolution to compute

the optimal merge-tree, and then perform an ordinary divide-and-conquer search at high

resolution using the merge-tree that was found to be optimal at low resolution.
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4.3.2 Performance Examples

The performance of OMNIMERGE (and LIMITED OMNIMERGE) may be better or worse

than divide-and-conquer, depending on whether the default merge-tree is well suited to

the molecule and the constraint set for each particular case. (Divide-and-conquer was

introduced in Section 2.3.) Although we are about to present two major enhancements to

OMNIMERGE (PROPAGATION in section 4.4 and A* ordering of subchains in section 4.5),

we will first show how the unenhanced algorithm performs.

We used the same parameters and the same constraint set for the nine-amino acid 1RST

peptide as in section 2.3.3 When searching with 400 resolution for the backbone torsions and

1200 resolution for the sidechain torsions, there are hundreds of satisfying conformations.

Different search methods yielded different numbers of satisfying conformations after running

for different amount of time, as reported in Figure 4-9.

We used the same merge-tree (Figure 2-18) defined in chapter 2 to be our default, but

in the case of 1RST, the default merge-tree may be an unusually poor choice because the

leftmost residue (combined last in the default) has more solutions by far than any other

leaf. Therefore, we also inspected the 1RST crystal structure visually and designed another

merge-tree that we thought might place nearby residues (residues likely to have active

constraints) together at low levels of the merge-tree, while also preserving balance (which

means minimizing the average subchain size) in the tree. See Figure 4-7. No objective

criteria were used and we make no claims of optimality for this merge-tree.

As another comparison, we performed a full OMNIMERGE search at low resolution (1200

for all torsions); then, using the dynamic programming table of BESTTREECOSTS produced

as a side-effect of that search, we determined the optimal merge-tree for searching at low

resolution (see Figure 4-8). Finally, we performed the regular search (40' for backbone

torsions and 1200 for sidechain torsions) with that merge-tree.

In terms of run time, the default merge-tree is much worse than the other methods.

The manually-constructed merge-tree is competitive with OMNIMERGE, and the fastest

3 Two passes of minimization per voxel; 400 resolution for the backbone torsions and 1200 for the
sidechains; summed squared violations less than 0.0005 A2 ; hard sphere van der Waals radii at 85% of half
sigma; van der Waals interactions ignored between atoms in the 1-4 positions of a covalent bond; peptide
bonds restricted to 175'-180'. All interatomic distances in the crystal structure were measured and for
every pair of atoms between 2.5 and 6.0 A apart, we constrained those atoms to maintain a distance within
±0.05 A of the measured distance.
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Figure 4-7: A manually designed merge tree for 1RST.
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Figure 4-8: The optimal merge-tree for searching 1RST at 120' resolution.
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Search Runtime Number of Conformations
Method (seconds) Minimizations Found

divide-and-conquer with
default merge-tree 2,046 6,712 657
divide-and-conquer with
manually-constructed tree 533 5,189 662
divide-and-conquer with
merge-tree optimized at
120' resolution 302 3,162 679
above plus cost of
OMNIMERGE at 1200

resolution 320 3,654 679
OMNIMERGE 536 7,271 679
LIMITED OMNIMERGE .12 5,709 675

Figure 4-9: Run times for simulations on 1RST searching all possible subchains, compared
with using particular merge-trees. (Recall that LIMITED OMNIMERGE searches
all subchains with lengths < 0.667N or up to 6 residues, and orphaned subchains
are also removed.) The fastest time is colored green. The resolution of the search
was 40' for backbone torsions and 120' for sidechain torsions.

algorithms are LIMITED OMNIMERGE or low-resolution OMNIMERGE followed by a divide-

and-conquer search using the merge-tree that is optimal at low resolution.

The number of minimizations performed by divide-and-conquer with the manual merge-

tree is lower than the number performed by LIMITED OMNIMERGE, but the divide-and-

conquer run time is significantly slower. This suggests that divide-and-conquer, even when

using the manually constructed merge-tree, is performing more of its minimizations on

high-dimensional subchains.

After performing OMNIMERGE at the regular resolution, we saw that its optimal merge-

tree is very similar to the optimum found for lower resolution searches (see Figure 4-10).

Of course, the higher resolution optimum is not available in advance, but if it were, it could

be searched in only 278 seconds (with 3222 minimizations).

All the methods found the voxels corresponding to the crystal structure (the structure

which was used to generate the constraints and which by definition satisfies the constraints).

However, many of the methods did miss some voxels. A "false negative" occurs when the

voxel-evaluator disqualifies a voxel that does indeed contain a satisfying conformation. As

the size of voxels increases (due to low resolution, high dimensionality, or both) the number
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Figure 4-10: The optimal merge-tree for searching 1RST at 400 resolution.

of extrema per voxel increases, and the probability of false negatives increases. We have not

yet identified any other trends to explain the varying completeness of the different searches

here.

Figure 4-11 shows the manually-designed merge-tree for 1RST annotated in red with

the TREECOST for each subtree. The leaf subchains are labelled in blue with the number

of satisfying conformations. The blue symbols for the non-leaf subchains are the number

of candidate conformations followed by how many of those conformations were found to

satisfy the constraints. The diamonds, arranged as in the dynamic programming table

of Figure 4-6, denote all the possible subchains of the molecule. Blank diamonds are for

subchains that are not searched by this merge-tree. Appendix B has similar figures for other

merge-trees.

A visual display of the performance of OMNIMERGE components is more difficult be-

cause left and right child subchains are chosen independently for each combine operation.

Figure 4-12 shows which subchains were the children for the locally optimal merges that

created the largest subchains of 1RST. Note a tendency of merges to reuse some of the

particularly well constrained subchains (as indicated by clusters of merge endpoints), such

as subchain 5-9.
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Figure 4-12: Locally optimal merges for creating subchains of size 6 are in red, for creating

subchains of size 7 are in blue, for creating subchains of size 8 are in yellow, and

the chosen merge for creating the whole molecule is shown in green. Merges

for creating smaller subchains are omitted for clarity.
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Figure 4-11: Satisfying conformations (blue) and subtree costs (red), for subchains in the

manual merge-tree of 1RST. For non-leaf subchains, the blue figures include

the number of combined candidates (before the arrow) and then (after the

arrow) the number of candidates found to satisfy the constraints.
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Figure 4-13 shows the number of candidate conformations OMNIMERGE evaluated for

each subchain of 1RST, followed by the number of solutions. (For leaf subchains, the

number of candidate subchains is not applicable and only the number of satisfying solutions

is shown.)

/ 9 5P9
8 680*679

' ' 40 440 396 4340 3
161416 32*20 7924454

S 5 11 s 42 1:14 5
4 8408 848 16412 1649 126499

8 48 444 16416 444 848 6084126 7

2 16416 1644 848 444 242 2048 4443 8
848 2448 1248 242 342 1542 5049 604455

2 4 6 2 1 3 5 10 76

Figure 4-13: Each non-leaf entry contains the number of candidate conformations, an arrow,
and the number of satisfying conformations.

All methods found the same number of satisfying conformations for all the subchains

they searched in common, except the final subchain (the whole molecule) for which the

disagreement in number of conformations found is reported in Figure 4-9.

The number of candidates evaluated in order to determine the number of satisfying

conformations obviously does vary depending on the method. For example, in the manual

merge-tree, subchain 6-9 can only be searched be combining 6-7 and 8-9, which gives

2 x 455 = 910 candidates. When OMNIMERGE reaches subchain 6-9, it chooses to combine

6-8 and 9-9 instead, which gives only 8 x 76 = 608 candidates.

Figure 4-14 shows the dynamic programming table with the BESTTREECOST of each

subchain. Recall that the left and right child subchains combined by OMNIMERGE are cho-

sen to minimize the number of candidates but the left and right children used for building

up the dynamic programming table are chosen to optimize the cost of the whole subtree.
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'7 799 6523 3 '-

6 299 457 8823

5 248 201 525 4135

167 158 157 195 3247

C 3  142 125 106 61 135 2616 7

2 108 108 49 24 45 108 2243

22 58 32 7 10 38 115 1606 9
2 4 6 2 1 3 5 10 76

Figure 4-14: A dynamic programming table for 1RST, with each entry denoting the BEST-
TREECOST for the subtree rooted at that subchain. A 450 rotation of this
table, as in Figure 4-5 may be more familiar.

For example, the shaded entries in Figures 4-13 and 4-14 correspond to subchain 3-5 of

1RST. The BESTTREECOST of subchain 3-5 comes from choosing to combine subchains

3-3 and 4-5, which yields a total cost 49.

BESTTREECOST(m, n)

NUMSOLUTIONS(m, i) 6

MIN x NUMSOLUTIONS(i + 1, n) x 2

x VOXELCOST(n - m + 1 = x 3 = 49
m < i <n

+ BESTTREECOST(m, i) + 6

+ BESTTREECOST(i + 1, n) + 7

OMNIMERGE performs its search of subchain 3-5 by combining subchains 3-4 and 5-5.

Subchain 3-4 might be costly to create, but since its search is already done, its results can

be freely reused by OMNIMERGE.

BESTNODECOST(m, n)
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MIN NUMSOLUTIONS(m, i) 8

x NUMSOLUTIONS(i + 1, n) = x 1 24.

x VOXELCOST(n-m+1). x 3

4.4 PROPAGATION (Arc Consistency)

The penultimate and most promising upgrade to systematic conformational search uses the

idea of arc consistency [74, 73] to propagate information about disqualified conformations

from each searched subchain to any other subchains that overlap it.

Motivation

When two subchains contain overlapping residues, any conclusions deduced about the over-

lapping residues during the search of one subchain must also be true about the same residues

in the other subchain. We want to avoid deducing the same conclusion repeatedly.

For example, suppose we searched subchain 1-5 by merging 1-3 and 4-5, and suppose

we discovered after evaluating all the candidate combinations that residue 3 always clashed

with residue 4 unless residue 3 was in conformation X. In such a case, it is obvious to a

human that every conformation that includes these residues and satisfies the constraints

(including every conformation for the whole molecule) must have residue 3 in conformation

X. Suppose the next planned subchain to search involves merging subchains 2-3 and

4-6 to create subchain 2-6. The current algorithm would have to consider all possible

combinations of 2-3 and 4-6 as candidates and would rediscover from scratch that residue

3 must be restricted to conformation X, which is a waste of effort.

That's one case of a general problem of how to share information. To generalize the

challenge, any time a conformation (a combination of torsion ranges for a subchain) is found

to violate the constraints, that combination should be pruned from consideration in all

other subchains as well. Although we have not yet found a suitable algorithmic framework

to distribute every kind of possibly relevant information, the notion of arc consistency

between overlapping subchains addresses much of the need.
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Arc Consistency

Arc consistency between variable A and variable B means that for each value of A, there

exists a value for B such that the value of A and the value of B are consistent according

to the constraint-arc between A and B. This terminology derives from variables being

vertices in a graph and pairwise constraints on the variables being arcs between the vertices.

Enforcing arc consistency (also called constraint propagation) can greatly accelerate solving

a constraint satisfaction problem.

There are many ways to use arc consistency in the context of conformational search.4

For our application of arc consistency, each subchain is a variable (which also makes it a

vertex), each conformation is a value, and two vertices are connected by an arc if the two

corresponding subchains have an overlap.

Consistency between two values according to a constraint-arc is defined as follows: given

that a value is a conformation, which really just represents a voxel, and a voxel is a range

of angles for each torsion, then a conformation for subchain A will be called consistent

with a conformation for subchain B if and only if each bond that occurs in both subchains

is assigned to the same range of angles (or to overlapping/compatible ranges) in the two

conformations. The criterion of arc consistency can finally be translated to our problem as

follows. For each conformation of subchain A, there must exist a conformation of subchain

B such that the two conformations assign compatible ranges of angles to each of the torsional

bonds that they have in common. For example, if subchain A and subchain B both contain

torsion 9i, then a conformation of subchain A placing torsion 9i in the range 30-60' would

not be "consistent" with a conformation of subchain B placing torsion 9i in the range

90-120 .

Pitfalls to Avoid

There is a common misunderstanding about arc consistency, and also a clash of vocabulary

particular to this context. The misconception that tends to occur frequently with any

application of arc consistency is that arc consistency forbids a value (conformation) for a

variable (subchain) when the value is found to be inconsistent with a value for a linked

4 Forward-checking is a limited form of arc consistency, applied during a backtracking search. The al-
gorithm by Beusen et al. [5] called "treesearch with look-ahead" can also be considered backtracking with
forward-checking.
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(overlapping) variable. Actually, arc consistency only forbids a value when it's found to be

inconsistent with every possible value for the linked variable.

The vocabulary problem comes from confusing the original constraints imposed on the

problem by the user (such as constraints on interatomic distances) with the new require-

ments imposed on overlapping subchains in order to facilitate the sharing of information.

Hence, we will always refer to the new requirements as constraint-arcs, and "consistent"

will mean the constraint-arcs are not violated, whereas "feasible", "satisfying," or "legal"

will refer to the status of the user's constraints.

In our application of arc consistency, the constraint-arcs are only enforcing compatible

angles for the common bonds between overlapping subchains. A pair of perfectly good con-

formations that satisfy all of the user's constraints can be "inconsistent" if they don't agree

on angles in the region of overlap. That could occur frequently, such as if the conformations

are part of distinct alternative solutions to the overall problem. We forbid a value only

when it is inconsistent with all values for an overlapping subchain. We do not forbid a

value when it is inconsistent with just one value of an overlapping subchain.

PROPAGATION

We use a relatively standard algorithm for enforcing arc-consistency, which we will simply

call PROPAGATION [50, 51, 70]. PROPAGATION will be run after each non-leaf subchain So

(other than the whole molecule) is searched. The propagation queue holds subchains with

recently-modified solution sets (in other words, subchains with new information that needs

to be propagated). Therefore, the algorithm starts by initializing the queue to hold So.
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PROPAGATION

Queue <- So.

For each subchain, S, in the Queue {
For each searched subchain, T, that overlaps S {

For each conformation of T {
For each conformation '; of S {

If d is consistent with ' at overlapping bonds,

Then Next -

}
Comment {There is no d, consistent with T}

Remove ' from the conformations of T.

Queue +- Queue U {T}.

}
}

}

For our implementation of PROPAGATION, we have chosen to perform PROPAGATION

only once per subproblem (after the combine operation is done), rather than repeatedly

during the combine operation (each time a candidate is discarded). A problem for future

research might be to establish parameters to trigger PROPAGATION during a combine op-

eration if an expected chain-reaction could reasonably reduce the number of candidates

currently under consideration.

PROPAGATION has no effect when used with divide-and-conquer on a particular merge-

tree because the only subchains that overlap each other have an ancestor-descendent rela-

tionship. Since information already progresses from child to parent in an orderly fashion

when using a merge-tree (namely via the combine operation), there is no additional unshared

information to propagate. For example, in a default merge-tree, subchain 1-4 overlaps sub-

chain 3-4, and the solutions ruled out during the search of 1-4 might be sufficient, with

PROPAGATION, to reduce the solution set for subchain 3-4, but since the only use for sub-

chain 3-4 was for creating 1-4, nothing is gained. No information is propagated to, for

example, subchain 4-5 because that subchain is never considered. Only when doing the

"redundant" work of searching "extra" subchains is PROPAGATION truly applicable. Un-
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less otherwise specified, we will assume PROPAGATION always occurs in conjunction with

OMNIMERGE or LIMITED OMNIMERGE.

The overall effectiveness of OMNIMERGE with PROPAGATION compared with, for ex-

ample, divide-and-conquer on a default merge-tree, will depend on whether the sharing of

information can create enough of a "chain reaction" to offset the additional costs of search-

ing the extra overlapping subchains, minus the regained cost for being able to use optimal

merges, plus the cost of performing the PROPAGATION. In other words, we need to try it

to know.

In the case of a relatively unconstrained molecule, the PROPAGATION algorithm will

rarely create "chain reactions" because there are many solutions for each subchain com-

patible with every solution for every overlapping subchain. In a more tightly constrained

system with sparse solution sets, the removal of one solution for a small subchain at one

end of the molecule might dramatically reduce the solution set for a neighboring subchain;

the neighboring subchain is added to the queue and its changed solution set is propagated,

possibly reducing the solution set for its neighbor, and so on across the whole molecule.

Performance Results

We ran variants of OMNIMERGE, with and without PROPAGATION, on the 1RST peptide

with the same constraint set and same parameters as in section 2.3, page 47. PROPAGATION

allowed both OMNIMERGE and LIMITED OMNIMERGE to run significantly faster. See Fig-

ure 4-15. The reduced number of minimizations is sufficient to account for the faster speed.

With PROPAGATION, OMNIMERGE ran more efficiently than the LIMITED version, even

though LIMITED runs faster without PROPAGATION. This might be because the additional

large, overlapping subchains searched by OMNIMERGE revealed inconsistencies, and the

PROPAGATION from them allowed the search of the final subchain to run more quickly.

PROPAGATION runs quickly relative to the cost of minimization, especially with in-

creasing subchain sizes, and so we strongly recommend using it whenever it is applicable.

However, the disadvantage of using PROPAGATION during an OMNIMERGE search is that it

does not provide the necessary information for determining the optimal merge-tree. Instead

of computing the number of conformations of each subchain that satisfy the constraints ac-

tive on that subchain, we are determining the conformations for each subchain that are both

consistent with overlapping subchains and feasible with respect to the active constraints.
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Search With Run Time Number of Conformations
Method Propagation (seconds) Minimizations Found

divide-and-conquer with
default merge-tree 2046 6712 657
divide-and-conquer with
manually-constructed tree 533 5189 662
divide-and-conquer with
merge-tree optimized
at 120' resolution 320 3654 679
OMNIMERGE 536 7271 679
LIMITED OMNIMERGE 313 5709 675

OMNIMERGE 211 4390 664
LIMITED OMNIMERGE 245 3957 695

Figure 4-15: Run times for simulations on 1RST searching all possible subchains, with and
without propagation to enforce arc-consistency. (The cost of the search using
the merge-tree optimized at low resolution includes the cost of OMNIMERGE
at low resolution. Compare with Figure 4-9.) The resolution of the search was
40' for backbone torsions and 1200 for sidechain torsions.

Without knowing the number of solutions for each subchain, unaided by hints from over-

lapping neighbors, we cannot compute accurate TREECOSTS, much less BESTTREECOSTS.

Finally we note that in this case, completeness deteriorated for OMNIMERGE and im-

proved for LIMITED OMNIMERGE. Another drawback to using PROPAGATION, not clearly

evident in this example, is that PROPAGATION may easily decrease the completeness of a

search. If the minimizer (or whatever method is used to evaluate voxels) cannot find any

satisfying conformations in a voxel, that voxel is disqualified, even if there is a satisfying

region of space in the voxel. Because OMNIMERGE considers all possible subchains, some

combinations of torsion ranges will be considered much more often than under divide-and-

conquer, sometimes in the context of high-dimensional voxels. The repetition increases the

probability of a false negative occurring at some point. Without PROPAGATION, a single

false negative in OMNIMERGE would have no effect on the overall results unless the sub-

chain with the false negative participated in the merges that create the final molecule. In

contrast, PROPAGATION can spread a false negative to many overlapping subchains and

cause the final results to be corrupted indirectly. Even if the overlapping subchains already

searched the same combination of torsions and correctly identified satisfying conformations

in the voxels, having it disqualified by one subchain might be enough to have it disqualified
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in others.

4.4.1 Previous Work

The PROPAGATION algorithm we use with OMNIMERGE has a conceptual similarity to

the combination of "build-up" and "build-down" projections used by Gippert et al. in their

DTAGS and binary search methods, but some background is required before the relationship

between the concepts can be described.

The DTAGS (Distributed Torsion Angle Grid Search) algorithm [24, 23] searches linear

chains of torsions (such as polypeptide backbones without sidechains) and constructs lookup

tables of the results. For example, if a gridsearch has been performed at 10' resolution on

a chain of 4 torsions (01, 02, 93, 94), then the answers (allowed/disallowed) can be stored as

a four-dimensional (36 x 36 x 36 x 36) boolean matrix.

Whenever a conformation for a small subchain is found to violate the constraints,

DTAGS projects that information onto a host of higher-dimensional tables. The overall

idea is like the Rete algorithm [21]. There is a lookup table for every possible subchain of

consecutive torsions (like our sets of all possible subchains except at the level of torsions

instead of residues). If a conformation for torsions 01-04 is infeasible, then every subchain

containing torsions 01-04 has its lookup table updated such that the sub-matrix of entries

corresponding to the disallowed angles for 01-04 are marked automatically as disallowed.

For example, in the table for (01, 92, 93, 94), if the boolean entry for the conformation (01 =

110 0, 2 = 120', 93 = 1300, 94 = 1400) says disallowed, then in the table for (01, 92, 93, 94, 95),

the "column" of entries corresponding to (01 = 1100 02 = 120', 93 = 130', 94 = 1400, and

any value of 95) would also get marked as disallowed.

Compared with a naive gridsearch algorithm, DTAGS is space-intensive and performs an

enormous number of projection operations on bits, but it performs remarkably few floating-

point operations and it never computes the interatomic distance between the same pair of

atoms more than once. This is a stunningly creative trade-off. An empirical comparison of

its performance or else an analysis of its asymptotic efficiency would be helpful.

In the 1995 version of the DTAGS algorithm (Gippert's doctoral thesis [23]), the term

"propagation" is used to describe the repeated projection of disallowed conformations into

higher-dimensional tables. That use of the term propagation is not related to our PROP-

AGATION algorithm nor to the "constraint propagation" algorithms within the "constraint
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satisfaction" area of artificial intelligence. (The criterion used by the 1995 version of DTAGS

for ruling out conformations in higher-dimensional tables is strictly weaker than the arc con-

sistency criterion used for constraint propagation between overlapping subchains.)

In the 1998 version of the DTAGS algorithm [24], another procedure called "build-down"

was added, and this brings us finally to the similarity with our PROPAGATION algorithm.

Whereas the DTAGS projection in the 1995 version (called "build-up" but not with reference

to the buildup procedure of Scheraga et al. [57, 71, 22]) uses single disallowed conforma-

tions in a low-dimensional table to rule out sub-matrices in high-dimensional tables, the

new "build-down" procedure finds whole sub-matrices in high-dimensional tables that are

entirely disallowed and uses that information to rule out the single corresponding conforma-

tions in lower-dimensional tables. For example, with the "build-down" procedure, if some

large chain has no allowed conformations with 0, = 30', then all smaller subchains of it can

have Oi = 30' excluded as well.

Recall the arc consistency criteria that we enforce with the PROPAGATION algorithm:

If subchains A and B overlap,

then for each conformation of subchain A,

there must exist a conformation of subchain B such that

the two conformations assign compatible ranges of angles to each of the torsions

that they have in common.

The filtering of conformations accomplished by the the DTAGS "build-down" procedure

can be restated in similar terms as follows: (Differences are in boldface.)

If A is a subchain of B,

then for each conformation of subchain A,

there must exist a conformation of subchain B such that

the two conformations assign the same angle to each of the torsions that they

have in common.

The two methods define legal subchains very differently, but let us assume temporarily

that the concept of a subchain is not in question. If we set aside the voxel model for the

moment, then the arc consistency criterion could use angles instead of ranges of angles. The

only remaining difference is whether the two subchains must have a superchain-subchain

relationship or an arbitrary region of overlap.
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The "build-down" criterion alone is less general than the arc consistency criterion be-

cause the superchain-subchain relationship is less general than an arbitrary region of overlap.

(The "build-up" criterion alone is definitely less general than the arc consistency criterion.)

The combined application of both "build-up" and "build-down" might be at least as gen-

eral as arc consistency because it would conceivably allow information to travel arbitrarily,

including across overlaps. For example, information about disallowed values for residues

3-5 could travel from subchain 1-5 to subchain 3-8 by way of 1-8.

We conjecture (making allowances for the differences already mentioned) that any set of

conformations satisfying both the "build-up" and "build-down" criteria would also satisfy

our arc consistency criterion and vice versa. In other words, if the other components of

two algorithms (DTAGS and OMNIMERGE with PROPAGATION) were the same, then their

respective criteria for removing disallowed conformations seem like they would be equivalent,

even though the motivations and implementations are very different.

Gippert et al. also apply the combination of "build-up" and "build-down" ideas to

their divide-and-conquer method, a Cartesian-space binary tree search. The "build-down"

algorithm for use with their Cartesian-space binary tree search is described using an analogy

to the DTAGS method rather than in full detail. Similarly, and for lack of space, we

suggest that the conceptual similarities between the Cartesian-space binary tree search and

PROPAGATION are analogous to the similarities between DTAGS and PROPAGATION.

4.5 Augmenting OMNIMERGE with A*

Our method so far, OMNIMERGE with PROPAGATION, searches all possible subchains by

combining small subchains into larger ones, and it propagates consistent values across over-

lapping subchains. The final innovation we present will be to choose the order in which

subchains are searched (possibly also skipping some subchains) rather than simply searching

all subchains according to the default ordering from OMNIMERGE.

In this introduction to the section, we provide some general intuitions for the ideas to

be developed later. The next topic, buildable sets and the buildability graph, will provide a

formal description of the space of all possible merge-strategies. Aside from the definition of

a "buildable" subchain, this topic may be considered optional. The topic after that is the

innovation itself, "the A* improvement" for selecting which subchain to search next. The
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final topic looks at performance of OMNIMERGE with the A* improvement.

The A* improvement is a subtle idea with several layers. The basic idea was motivated

by instincts acquired after observing many runs of OMNIMERGE. With some molecules,

there is an early bottleneck-a "bad" subchain that is much more costly to search than

other subchains of comparable length. While other subchains might have some right or left

child subchains with many solutions, there is usually some combination of left and right

children with reasonably low product. For the "bad" subchain, there is no good combination

of right and left children.

For example, in the extreme example at the beginning of this chapter, we constructed

constraints that leave the left half and right half of the molecule unconstrained even though

the whole molecule is well-constrained overall. If the extreme constraints are applied to a

molecule with eight residues, then subchain 5-8 would qualify as "bad." We will revisit this

case after describing the A* improvement.

Human instinct is to skip the search of the "bad" subchain. Certainly time would

be saved in the short run, and limited harm would seem to come of it in the long run,

because many alternative subchains are available to serve as right and left children for all

subsequent merges. Just as LIMITED OMNIMERGE chooses which subchains to skip based

on their lengths, we would like to choose which subchains to skip based on information

obtained during the searches of smaller subchains, such as information about the number

of solutions for various right and left children.

One can consider exhaustively which single subchain might be best to "skip," or one

can evaluate all possible merge-trees fully, but the general space of all possible merge-

strategies is astronomical. (For example, the space of merge-strategies includes skipping

combinations of subchains, or searching some of the subchains in one merge-tree and then

searching the subchains of some other merge-tree.) Instead of restricting ourselves to using

very simple merge-strategies, (such as merge-trees, or OMNIMERGE, or skipping a single

choice of subchain), we would like to navigate the full space of possible merge-strategies

and make choices on the fly using the information currently available. When information

shows particular subchains to be "bad" or "good," we would like to omit the bad subchains,

search the good subchains immediately, and otherwise take advantage of the freedom. If

no useful information is available, we can follow a simple default merge-strategy, such as

searching all subchains, and no harm would come from having the extra freedom.
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As we wander the space of merge-strategies, we obtain some degree of new information

each time another subchain is searched. If subchains that looked "good" turn out to be

worse than expected, a subchain previously classified as "bad" might start to seem good

by comparison. Rather than omitting the "bad" subchain permanently, we will order the

subchains from good to bad and search the best subchain first. If a subchain is ranked

"bad" enough for long enough, the search of the whole molecule chain will occur before the

search of the "bad" subchain. Since the search of the whole molecule marks the end of the

program, any subchain postponed until after the search of the whole molecule is skipped.

As in life, postponing something long enough means it never gets done. Thus, we talk about

how to order or prioritize subchains instead of simply talking about which subchain(s) to

skip.

The two remaining ideas are about how to compute a quantitative function that evalu-

ates the priority of a subchain. They pertain to the A* cost function itself, but still only at

an intuitive level.

We would like to prioritize a subchain not just by the immediate cost of searching it but

also by the expected usefulness of the subchain towards creating other merges. Furthermore,

since the true goal is to search the whole molecule, we consider defining the usefulness of

a subchain in terms of its relative contribution to a merge-tree for the whole subchain.

(Suppose we actually knew the costs of alternative merge-trees and suppose we were going

to search the molecule using a merge-tree.) If two merge-trees for the whole molecule

are chosen by optimizing over all the same freedoms, except that merge-tree a must use

subchain A and merge-tree 0 must use subchain B, then the difference in cost between

a and 3 can be thought of as the difference in value between subchains A and B. The

immediate costs of searching A or B might dominate the comparison of their merge-trees

(which would be like choosing which subchain to search next based just on the immediate

costs). The more interesting case is if A is more expensive to search than B but a is less

expensive than 3. That might occur if A can be merged with a well-constrained subchain

to create a search of the whole molecule and B would have to be merged with an expensive,

unconstrained subchain before it could create a search of the whole molecule. Under such

circumstances, where A is the "missing link" for reaching the final answer, we would like to

choose A even though the immediate search of B would be cheaper.

The final idea comes from the supposition that we might know the costs of alternative
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merge-trees and that we might search the molecule using a merge-tree. The number of

conformations for each subchain is unknown, but suppose we make estimates for these

numbers and use the estimates to predict an optimal merge-tree. For subchains in the

distant future, our estimates will have virtually no predictive power. For subchains that

might be searched in the near future (subchains for which at least one left and right child

have been searched), much better estimates may be possible.

We will indeed attempt to perform the search using the optimal merge-tree. At the

beginning of the search, when virtually no information is available, we will make a wildly

optimistic set of estimates and pursue their logical consequences for one step, which is

for the search of one subchain. When the results turn out to be disappointing, we will

revise the estimates and follow their logical consequences for one step. Whenever a set of

estimates is inaccurate, the next piece of incoming information (the number of solutions

found for the subchain previously believed to be "best") will disprove the initial estimates.

The new information causes revisions not just in the estimates for the number of solutions

per subchain but also in the optimal merge-tree. We can always try to pursue the optimal

merge-tree, but the optimal merge-tree may shift after each subchain.

In the absence of any estimates with predictive power, the constantly "disappointing"

information and the constant shift from one optimal merge-tree to another will end up

causing all subchains to be searched in order from small to large. In other words, if we have

no predictive information, we will search the same subchains as OMNIMERGE! OMNIMERGE

is an excellent strategy if no information is available. Meanwhile, if we can somehow estimate

the optimal merge-tree correctly, then we may actually have a chance of searching according

to the optimal merge-tree.

Buildable Sets

Up until now we have talked about the different merge strategies as if the question is

which merge-tree to use. From that viewpoint, OMNIMERGE (without PROPAGATION)

encompasses every possible merge strategy because the results of every possible merge-tree

can be reconstructed easily from the results of OMNIMERGE.

However, there are yet other merge strategies that OMNIMERGE neglects. Using the

same language, a more general question, instead of which merge-tree to use, is what parts

of which merge-trees to explore, and in what order. This allows for the possibility of,
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say, alternating between the subchains of two different merge-trees until one seems clearly

better than the other. OMNIMERGE considers all possible merge-trees but it treats them

uniformly; by searching all subchains in a pre-determined order, OMNIMERGE precludes

the possibility of skipping ahead to a "later" subchain, such as a large subchain for which

particularly promising, well-constrained left and right children have just been identified.

We will now develop a more general language and framework for considering possible merge

strategies.

Let N be the number of leaf subchains (residues) in the molecule being searched.

We define a buildable set of subchains to be a set of subchains such that every element

is either a leaf subchain or else it is buildable from the other subchains in the set. Subchain

Si is buildable from subchains Ci and Ri if Ci and Ri can function as left and right children

for a combine operation to create Si. A complete (or incomplete) buildable set is a buildable

set that includes (or does not include) the whole molecule as one of its subchains.

Recall from the definition of a legal merge-tree (in section 2.3) that the subchains in a

legal merge-tree are always a complete buildable set.

Buildability Graph

A buildability graph has a vertex corresponding to each buildable set of subchains. Let

Vi denote either a vertex or its buildable set. A directed edge, ES, connects vertex Vi to

vertex V2 if and only if there is a subchain S such that S is not in V, but adding S to V

yields V2. ({S} U V = V2.) Since V2 is buildable, then either S is a leaf or S is buildable

from the subchains in V.

Suppose the molecule to be searched has only two residues (or two pieces of whatever

size we choose to search from scratch). The set of possible subchains has three elements

{1-1, 2-2, and 1-2}. The power set of the set of subchains would have 23 = 8 elements,

although not all of those eight would be buildable sets. Figure 4-16 shows, for a molecule

with two leaves, the eight elements of its subchain power set, five of which are buildable.

Each vertex (circle) contains an arrangement of open and red-filled diamonds-reminiscent

of the diagonal table (Figure 4-6) with all possible subchains-to depict which subchains are

absent or present in the set. The lower left diamond in each circle represents the first leaf

subchain, the lower right represents the last leaf subchain, and the top diamond represents

the whole molecule.
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Figure 4-16: The buildability graph for a molecule with two leaves. The disconnected ver-
tices, f, g, and h, correspond to elements of the power set that are not build-
able.

1-3
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1-1 2-2 3-3

absent

. present

Figure 4-17: Legend for Figure 4-18.
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Figure 4-18 shows a buildability graph for a molecule with three residues and six possible

subchains (1-1, 2-2, 3-3, 1-2, 2-3, and 1-3). Again the diamonds in each vertex correspond

to the possible subchains in a set, with the leaves in the bottom row, and the whole molecule

at the apex. Figure 4-17 is a legend.

Merge Strategies as Paths

Each vertex in the buildability graph corresponds to a knowledge state. The subchains in

the buildable set are the subchains that have known solutions (that have been searched).

Traversing a directed edge corresponds to searching a subchain. The size of the knowledge

state (the number of subchains searched) grows by one for each step taken. There are no

dead-ends (no reachable vertices with zero out-degree) except when all subchains have been

searched, and the longest possible path is from the vertex for the empty buildable set to

the vertex for the set of every possible subchain. (OMNIMERGE explores a longest possible

path.)

Finally let us define a complete build path as a path in the buildability graph from the

empty buildable set to a complete buildable set. Each merge strategy we have considered

so far in this chapter (ignoring PROPAGATION) corresponds to a merge strategy path.5

Contrary to first instinct, no merge strategy path could ever include both vertex b and

vertex c from Figure 4-16 or 4-18 because knowledge state c indicates ignorance about the

first leaf subchain, not indifference. Searching the first leaf and then the second would

correspond not to a-b-c but to a-b-d in Figure 4-16 or a-b-f in Figure 4-18. Also perhaps

contrary to instinct, complete build paths can terminate as soon as any complete buildable

set is reached, such as nodes n or o, not just at the most complete set, node p. In a

buildability graph, there is a "finish line" beyond which any node is an acceptable goal.

The path through Figure 4-18 corresponding to the strategy of divide-and-conquer with

a default merge-tree is a-b-f-h-k-n. (Recall that we chose in section 2.3 to traverse merge-

5The set of all possible subchains except those larger than 0.667*N (but smaller than the whole subchain)
is a complete buildable set because the removal of large subchains cannot prevent small subchains from being
buildable, and the only subchain larger than 0.667*N, the whole molecule, is already buildable because of
the size $ subchains. If integer d divides N evenly, then the set of all subchains that are either smaller
than d or divisible by d is a complete buildable set because subchains of length kd for k > 1 can be built by
combining subchains of length d and (k - 1)d. For subchains of length d or smaller, all possible subchains
are available for combination. Removing orphans does not alter the buildability of a set, although if other
factors have been chosen poorly (such as if d does not divide N evenly) then it can alter the completeness
of a set.
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Figure 4-18: The buildability graph for a molecule with three residues. Vertices correspond-

ing to non-buildable sets are omitted.
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trees from left to right before going from bottom to top. Traversing the same merge-tree

in a different order would include paths such as a-b-f-i-k-n or a-d-g-h-k-n.) A linear-merge

tree is identical to the default merge-tree when there are only three leaves, so that path

would be the same.

The path corresponding to OMNIMERGE is a-b-f-h-k-m-o. Instead of going straight

from k to the finish line, OMNIMERGE goes from k to another incomplete state, m. As we

know, OMNIMERGE searches more subchains than divide-and-conquer does before yielding

the final answer, even for a molecule with only three residues. However, the final edge in

a path, the search of the whole molecule, tends to be the most time-consuming step in

the whole path, by far. Using OMNIMERGE and going from k to m causes an additional

dipeptide to be searched. The benefits of this are, first, if the solution sets for the dipeptides

(1-2 and 2-3) are not already consistent at their overlap, then PROPAGATION can reduce

the number of remaining solutions; second, more than one possible combination of smaller

subchains is available for the final step of searching 1-3, and the additional choice of children

might allow fewer candidates to be considered.

Each diagram we have presented for visualizing search strategies emphasizes different

facets of the algorithms. The buildability graph does not show which children are chosen

at each step nor any costs. It just guarantees that, whenever there is an edge present, there

exists some method for searching the subchain it adds. The buildability graph highlights

decisions about which subchains are searched and in what order. Although we gain noth-

ing by explicitly differentiating trivial decisions, such as the order in which the leaves are

searched, this model highlights the variety of viable paths that do not correspond to any

particular merge-tree or nameable strategy. Divide-and-conquer using a merge-tree never

searches any "extra" overlapping subchains (it skips ahead to larger subchains at every op-

portunity), and OMNIMERGE always searches every overlapping subchain, never skipping

anything. There is a universe of other strategies in between these two extremes.

Growth in the number of options

The total number of possible subchains for a molecule with N leaves is N + (N - 1) + (N -
N(N + 1)

2) + 1. ... = .2

Every legal merge-tree with N leaves has N - 1 internal nodes and 2N - 1 nodes total.

Because the N - 1 internal nodes of a legal merge-tree have no restrictions on arrangement
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other than the binary branching factor, there is a one-to-one relationship between ordinary

binary trees with N - 1 nodes and legal merge-trees with N - 1 internal nodes, N leaves,

and 2N - 1 total nodes. Therefore, the number of different legal merge-trees with N leaves

12(N - 1)
is equal to the number of binary trees with N - 1 nodes, which is 1 [37].

The number of possible sets of subchains grows exponentially with the number of sub-

chains, which itself is already quadratic in the number of residues. OMNIMERGE and its

variants may exhaust the paths through the small buildability graph in Figure 4-18, but for

sufficient N, the number of possible paths through the buildability graph will be far greater

than the number of merge-trees. There are many ways of jumping around in the table of

all subchains that do not correspond to merge-trees or other named strategies. We wish to

design an algorithm that uses this insight, this flexibility, to perform a more efficient search.

4.5.1 The A* Improvement

We now describe an augmentation of OMNIMERGE that uses the A* algorithm for choosing

which subchain to search next. A* is often described in conjunction with a search graph

but the buildability graph is a knowledge state graph. (In a search graph, you can explore

many alternative paths or partial paths by backing up and choosing another branch. In a

knowledge state graph, backing up would correspond to deleting information.)

The main idea of A* is to decide among alternatives by scoring each option according

to a cost function that reflects the total cost of reaching the goal by way of that option.

The A* cost function typically involves a heuristic to estimate the cost from the decision

point to the goal. Under A*, any uncertainty about the cost to the goal must be resolved

optimistically so that the estimated cost is a guaranteed lower bound on the actual future

cost if the option is chosen. Choosing which subchain to search next according to a cost

function contrasts with plain OMNIMERGE, which chooses its next subchain according to a

blind left-to-right, bottom-to-top ordering.

The A* cost function

The general case for defining the A* cost function assumes that some number of subchains

have already been searched and multiple subchains (including the whole molecule) have not

been searched. How can we compute the cost of searching the whole molecule by using a
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particular subchain?

We already have a cost function, the BESTTREECOST, which gives the cost of reaching

the goal (of searching the whole molecule) by way of the subchains in the optimal merge-

tree. The BESTTREECOST for a molecule can be computed if one knows the number of

satisfying conformations (number of solutions) for all its possible subchains. Furthermore,

a guaranteed lower bound on the BESTTREECOST could be computed from guaranteed

lower bounds on the number of solutions. For subchains that have not yet been searched,

make the most optimistic (cheapest) guess and assume they will each have one solution.

Accordingly, we can compute ESTIMATED-BESTTREECOSTS, ESTIMATED-NODECOSTS, or

estimated versions of any of our cost functions using the estimated numbers of solutions.

We could define f*(S), the A* cost of subchain S, to be the ESTIMATED-TREECOST for

searching the whole molecule using the best merge-tree that includes subchain S. One dis-

advantage of this definition is the possible inclusion of unsearched subchains in the subtree

for S. Since the purpose of this computation is to evaluate whether to search S next, and

any immediate search of S would be restricted to using left and right child subchains that

have already been searched, we will instead define the cost f*(S) to be the ESTIMATED-

TREECOST for searching the whole molecule using the best merge-tree that (1) includes

subchain S and that (2) only uses searched subchains for constructing the cost of the sub-

tree of S.

The A* cost function, f*(S), is traditionally broken into two parts, g*(S), the actual

cost to reach S (without estimate), and h*(S), the estimated cost from S to the goal. In

that case, if S corresponds to the black entry in Figure 4-19, then g*(S) would be computed

using the costs of the subchains in the red region and h*(S) would be computed from costs

of the subchains in the yellow region.

There are two trivial cases that we have, for simplicity, defined separately. For any leaf

subchain under consideration, we define its A* cost to be small because all strategies depend

on searching all leaf subchains. Therefore leaves can safely and efficiently be searched first.

Conversely, unreachable non-leaf subchains should be scored so they never come next. In

other words, if there aren't any searched subchains that can serve as right and left children

for a combine operation to create subchain S, then the A* cost for S should be prohibitively

high.

Before each non-trivial choice of which subchain to search next, we compute f* for all
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Figure 4-19: Regions influencing (red) and influenced by (yellow) the black entry when
computing BESTTREECOSTS.

unsearched subchains as follows. First we compute as much as possible without making

any assumptions or using any estimates. The actual number of solutions for searched

subchains is used to compute TREECOSTS and g* for as many subchains as possible. Then

we compute as much as possible using optimistic estimates but without focusing on any

particular choice of subchain. This gives an ESTIMATED-BESTTREECOST table including

all subchains. Finally we make one table for each possible assumption that requires a

particular subchain to be used. That is, for each unsearched subchain S, we make a table

Ns.

Just as the computation of the cost of the globally best merge-tree is computed by

filling in a dynamic programming table with BESTTREECOST(m, n) for each subchain up

to the whole molecule, the computation of the cost of the best merge-tree restricted to S

will be computed by filling in a dynamic programming table with an analogous function,

Ns(m, n), applied to each subchain up to the whole molecule. One difference is that Rs is

only computed for subchains that include all the the residues of S (the subchains shaded

yellow in Figure 4-19).

Ns(m-n) contains the ESTIMATED-TREECOST for searching subchain (m-n) using the

best merge-tree that (1) includes S and that (2) uses actual g*(S) costs to choose the

best subtree rooted at S. Ns (subchain S) is obviously just g*(S). We use this entry

for Rs to build up entries for larger subchains, as with dynamic programming to compute

BESTTREECOSTS except always making sure S is included in any choice of merge-tree.

Eventually Ns (subchain (1-N)) will give us f*(S).
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Determining each new entry Rs(m, n) involves minimizing over a choice of which left

and right child subchains to combine. However, with the 1s computations, the choice of i

(the middle residue) is also restricted so that one of the child subchains must contain all

the residues of S. The cost of that child's subtree is taken from previous entries in the 1s

table and the cost of the other child is taken from the ESTIMATED-BESTTREECOST table.

(In the formula below, the left child is assumed to be the one containing S.) Otherwise, if

the residues of S were divided between the left and right children of subchain m-n, then S

would not be a part of the implied merge-tree.

Ns(subchain S) = g*(S)

Ks(subchain m-n) =

ESTIMATED-NUMSOLUTIONS (subchain m - -i)

MIN x ESTIMATED-NuMSOLUTIONS(subchain i + 1 - -n)

m < i < n x VOXELCOST(n - m +1)
S c subchain (m, i)

+ Ms(subchain rn-i)

+ ESTIMATED-BESTTREECOST(subchain i + 1-n)

The final entry in the table, Ns(subchain (1, N)) is equal to f*(S), the A* cost for subchain

S. After filling in tables NT, Ru, Rv for all unsearched (reachable) subchains T, U, V, the

subchain with best A* cost is chosen to be searched next. Although this cost function

is elaborate, the cost of evaluating subchains using quadratic-sized dynamic programming

tables is generally insignificant compared with the cost of actually searching those subchains.

Variations

A faster way to choose a subchain to search next would be to skip the N tables and just

compute an ESTIMATED-BESTTREECOST table for the whole molecule. This would give

both a lower bound on the search of the whole molecule and an "optimal merge-tree"

corresponding to that best-case search. Then we would choose any reachable subchain in

the optimal merge-tree to search next.

The A* approach to ordering subchains is not necessarily optimal, in the sense of pro-

viding a reasonable merge-strategy with best trade-off of overhead versus strategy improve-

ment. Some searches might run faster using a greedier strategy, such as a cost function that

estimates only the remaining cost to the goal instead of the total cost. More aggressive cost

functions that don't provide a guaranteed lower bound might also be useful.
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Using OMNIMERGE with A* (but without PROPAGATION) will evaluate all subchains

necessary for computing the optimal merge-tree. Using PROPAGATION prevents the resulting

table from being useful for that purpose (as described on page 107), and algorithms that

don't use A*'s guaranteed lower bounds or its evaluation of total costs will also lose the

guarantee of proving an optimal merge-tree as a side-effect of the search.

Results

We searched 1RST using the same constraints and parameters as in the previous test cases,

but this time we included the use of the A* algorithm to choose the order in which subchains

were searched. Figure 4-20 shows the results of the simulations.

Search Propa- With Runtime Number of Conformations
Method gation A* (seconds) Minimizations Found

divide-and-conquer with
default merge-tree 2047 6712 657

divide-and-conquer with
manually-constructed tree 533 5189 662
divide-and-conquer with
optimized merge-tree 320 3654 679

LIMITED OMNIMERGE 313 5709 675

LIMITED OMNIMERGE 311 5709 675

LIMITED OMNIMERGE 245 3957 695

LIMITED OMNIMERGE 244 3604 695

OMNIMERGE 536 7271 679

OMNIMERGE 555 7271 679

OMNIMERGE 241 4390 664
OMNIMERGE 22u 3968 662

Figure 4-20: Run times for simulations on 1RST searching
without PROPAGATION, with and without the
the search was 40' for backbone torsions and

all possible subchains, with and
A* algorithm. The resolution of
120' for sidechain torsions.

The search of 1RST runs faster with A* than without (except in the case of OMNI-

MERGE without PROPAGATION) but the improvement almost insignificant, especially when

compared with the improvement in efficiency that PROPAGATION accomplished.

There are significant differences in costs between alternative merge strategies for 1RST

(in part because the molecule and its constraints are very asymmetric). The A* algorithm

can distinguish and exploit these differences to create a more efficient search. The addition
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of A* does not seem to have much effect on the number of conformations found.

While OMNIMERGE without A* is forced to search every large subchain, and LIMITED

OMNIMERGE is forced to skip every large subchain, OMNIMERGE with A* can choose to

skip a large subchain (if, say, the number of candidates for it would clearly make it more

expensive to search than just skipping ahead and searching the whole molecule), but it still

searches large subchains that have a possibility of participating in an optimal merge-tree.

Of course the vast majority of subchains examined by OMNIMERGE with A* do not turn

out to participate in the optimal merge-tree, but some of them do compensate by reducing

the solution sets of other subchains via PROPAGATION. In sum, we recommend the use of

the A* augmentation because it can avoid searching the most poorly-constrained subchains

in a molecule (a benefit with unlimited potential), and at worst it requires extra arithmetic

(a delay with limited potential).

The extreme example

At the beginning of this chapter, we constructed artificial constraints on a molecule (for

example, on an eight-residue helix of polyalanine) such that the right and left halves (sub-

chains 1-4 and 5-8) are unconstrained but constraints from the left half to the right half

do constrain the overall molecule tightly.

We searched an eight-residue helix with these constraints using OMNIMERGE, and the

number of conformations for each subchains is shown in Figure 4-21. Note the large numbers

for subchains 1-4 and 5-8. For non-leaf subchains, the two numbers provided are the number

of candidate conformations to be evaluated (before the arrow) and the number of candidates

found to satisfy the constraints (after the arrow).

If we searched the same molecule using PROPAGATION, the unique ranges for subchains

at the interface between the two halves would propagate immediately to the rest of the

molecule and the search would complete extremely quickly, with or without the A* ordering.

OMNIMERGE searches subchains in a predefined order, from left to right and from small

to large. Figure 4-22 shows this order using increasing color intensity to indicate the passage

of time.

If we search the same eight-residue helix with extreme constraints but using the A*

function to select subchains, the order in which the subchains are searched is shown in

Figure 4-23. Black entries indicate a subchain that has been skipped.
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Figure 4-21: Subchain size statistics acquired by running OMNIMERGE (without any PROP-

AGATION) on the eight-residue helix with extreme constraints.
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Figure 4-22: The order in which subchains are searched by OMNIMERGE is shown using

increasing color intensity for the passage of time.
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Figure 4-23: The order in which subchains are searched by OMNIMERGE with A* ordering
(but without PROPAGATION) is represented by increasing color intensity.

When the number of satisfying conformations is dramatic and obvious, such as for the

extreme example without PROPAGATION, using A* orders the subchains very decisively,

skipping the right and left halves of the molecule and choosing subchains "up the middle"

of the table.

4.6 A Difficult Case

We constructed a more difficult set of test cases using a 16-residue helix of polyalanine.

(See Figure 4-24.) We chose a length of polyalanine with 24 = 16 residues so that the

Figure 4-24: Sixteen residues of alanine with 4 = -57.0', = -57.0', and w = 180.0'.

default merge-tree would be well-balanced and we established short-range constraints that

are randomly distributed along the molecule. The constraints were generated by forming

the molecule into a helix, measuring all its interatomic distances, and among all atom

pairs with a distance between 2.5 and 6.0 A, selecting some uniformly at random and

constraining them to an interatomic distance within some threshold (called the "padding")
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of the measurement. The selected pairs of atoms were chosen without regard for atom types,

nuclear-spin properties, or covalent bonding arrangement, and therefore some constraints

may be redundant with each other and/or with the rigid geometry. The pairs of atoms were

selected independently for each of the trial constraint sets.

This is not expected to be a favorable case for OMNIMERGE and its variants for several

reasons. Because of the complete uniformity of the molecule and the relatively uniform

number of constraints for each part of the molecule, we expect there will be little difference

in cost between alternative merge strategies. Thus, we expect that the merges performed by

OMNIMERGE (using the optimal choices of left and right children) will not be significantly

better than the merges in the default merge-tree, and OMNIMERGE will have to search

many more subchains than the default merge-tree (quadratic instead of linear).

In particular, we expect the merges of large, overlapping subchains to be a waste of time

because there are no constraints on pairs of atoms separated by more than five residues in the

sequence. The only new constraints that will become active when performing a combine

operation on medium or large subchains will be short-range constraints at the interface

between the two children. If a small subchain that overlaps the interface has already been

searched and its results propagated, then the high level merges will involve virtually no

pruning. In that case, LIMITED OMNIMERGE will certainly outperform OMNIMERGE.

We do expect PROPAGATION to be useful, although simply not performing unnecessary

searches of "extra" overlapping subchains might be superior. Finally, we expect that the

A* augmentation of OMNIMERGE will not be able to suggest an order of search that is

significantly better from the "default" order of plain OMNIMERGE.

Results

We searched the polyalanine peptide at 120' resolution for all bonds, with up to five passes

of minimization per voxel, according to five different trial conditions and sets of constraints.

All peptide bonds (w torsion angles) were constrained to between 1750 and 1850. Hydrogen

atoms were excluded from the model.

Trial A constrained 70 pairs of atoms to within 0.05 A of their measured distance in

the helix and all constraints were considered satisfied when the summed squared violations

were less than 0.0005 A2 . All search methods found 6 satisfying conformations. Parallel

statistics for each of the five trials appear in Figure 4-25. Figure 4-26 shows the results of
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Number of Distance Sum-Sq Satisfying
Trial Atom Pairs Constraint Violation Conformations

Constrained Padding (A) Allowed (A2) Found

A 70 0.05 0.0005 6
B 73 0.05 0.0005 15
C 503 0.5 0.005 15
D 385 0.5 0.005 30
E 294 0.5 0.005 varies

Figure 4-25: Five sets of parameters used for generating constraints and running searches
on 16-residue peptides of polyalanine. The right column shows the number of
satisfying conformations found by the searches.

searches using the conditions in trials A, B, C, and D. As expected, OMNIMERGE with-

out PROPAGATION performs poorly; it requires an order of magnitude more time than

divide-and-conquer using the default merge-tree. Also as expected, LIMITED OMNIMERGE

universally outperforms OMNIMERGE, and PROPAGATION always improves performance.

The surprise is that LIMITED OMNIMERGE (with PROPAGATION) outperformed the

default merge-tree in all trials. The fastest run time for each trial is colored green. LIMITED

OMNIMERGE (with PROPAGATION) required between 10 percent and 50 percent as much

time as the default algorithm.

Using A* to choose the order for searching subchains had mixed effects, ranging from

helping significantly in trial A, and helping insignificantly in trial B, to hurting insignifi-

cantly in trials C and D.

As another comparison, we performed OMNIMERGE searches at 180' resolution (for all

bonds) to obtain optimal low resolution merge-trees; then the low resolution optimal trees

were used for divide-and-conquer searches at the regular 120' resolution. For the run times

of these searches, the times for just the optimized divide-and-conquer searches are enclosed

in parentheses, and the total times, including the time for performing OMNIMERGE at low

resolution, are shown without parentheses. The lower resolution searches were initially

performed with only one pass per voxel, but OMNIMERGE at low resolution failed to find

any conformations that satisfied the constraints for trials A and B. (These false negatives

are not too surprising because 1800 resolution is coarser than the broadest rotamers, which

are local minima. Multiple minima per voxel would not reliably be explored using only one

pass.) Therefore, we repeated the low resolution searches for trial conditions A and B with

129



Search With Trial A Trial B Trial C Trial D
Method* A* Run Time Run Time Run Time Run Time

divide-and-conquer with
default merge-tree 80.3 26.8 58.5 179
divide-and-conquer with
merge-tree optimized
at 180' resolution (11.2) (11.1) (45.5) (89.0)
above plus cost of
OMNIMERGE at 1800

resolution 98.3 65.8 55.3 114
OMNIMERGE

without propagation 1002 749 103 199
LIMITED OMNIMERGE

without propagation 633 380 75.0* 106
OMNIMERGE

with PROPAGATION 20.5 47.7 13.6 63.2
LIMITED OMNIMERGE

with PROPAGATION 18.2 14.4 1 1.0 21.0

OMNIMERGE

with PROPAGATION 8.23 47.9 14.3 58.3
LIMITED OMNIMERGE

with PROPAGATION .WI I L. 11.4 21.9

Figure 4-26: Run times for simulations on polyalanine (in seconds) according to various
search methods with four different conditions. The limit of subchain size for
LIMITED OMNIMERGE was two-thirds of the size of the whole molecule, or up
to 10 residues.
*In trial C, LIMITED OMNIMERGE only found 14 of the 15 conformations found
by the other methods.
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up to 5 passes of minimization per voxel, which required much more time. Not surprisingly,

the combined cost of low resolution OMNIMERGE and high resolution divide-and-conquer

is greater than the default for trials A and B. However, for trials C and D, where the lower

resolution searches succeeded with only one pass per voxel, the total time for low resolution

optimization was faster than the default algorithm.

More False Negatives

There was one additional constraint set, "Trial E", with a larger number of looser con-

straints, that proved a particular challenge for any of the methods to search completely.

We followed up with repeated searches using a larger limit on the number of passes per voxel.

To compare the completeness of the different methods, each method was run with the max-

imum number of minimization passes per subchain set to 5k, for k = 0, 1, 2,3,4, 5. Figure

4-27 shows the number of conformations found, according to the number of passes used,

Search 1 Pass 5 Passes 25 Passes 125 Passes 625 Passes
Method # Conffs # Coris # Confs # Confs # Confs
divide-and-conquer
with default tree 124 317 323 326 329
LIMITED

OMNIMERGE 60 300 323 326 331

OMNIMERGE 59 294 326 323 329
LIMITED OMNIMERGE

with A* 39 275 318 327 328
OMNIMERGE

with A* 48 292 322 328 328

Figure 4-27: The number of conformations found for simulations that varied both the search
algorithm and the number of passes of minimization per voxel. See also Figure
4-28. All variants of OMNIMERGE shown include PROPAGATION.

and Figure 4-28 shows the corresponding run times required. The results for three of the

methods (default divide-and-conquer, OMNIMERGE with A*, and LIMITED OMNIMERGE

with A*) are also plotted in Figure 4-29. Divide-and-conquer has the best completeness

when using a small number of passes, but OMNIMERGE performs best when using many

passes.

We do not know whether the difficulty of enumerating the satisfying conformations

completely is because the constraint set for trial E is particularly complicated in some way,
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Search 1 Pass 5 Passes 25 Passes 125 Passes 625 Passes
Method Run Time Run Time Run Time Run Time Run Time

divide-and-conquer
with default tree 157. 4,623. 24,392. 122,683. 616,051.
LIMITED

OMNIMERGE 18.1 2 70. 3,252. 14,733.
OMNIMERGE 33.6 423. 987. 3,840. 13,644.
LIMITED OMNIMERGE

with A* 1i.- 253. 903. 3,340. 14,960.
OMNIMERGE with A* 32.0 403. 1,083. ;.129. 12.951.

Figure 4-28: The Number of seconds of run time for simulations that varied both the search
algorithm and the number of passes of minimization per voxel. See also Figure
4-27. All variants of OMNIMERGE shown include PROPAGATION. Times are
rounded to the nearest second or to three significant digits, whichever signifi-
cance is greater.

or because the boundaries of the satisfying space lie near the boundaries of the voxels,

or because of other factors. While systematic search methods are often hailed for their

completeness, we find here that false negatives are a critical factor for evaluating the per-

formance of systematic algorithms. As dimensionality increases, with larger molecules, we

expect this problem to become an even more decisive factor.
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Figure 4-29: Plot of run time versus number of conformations using the data from Figures
4-27 and 4-28.
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Worst Case

For OMNIMERGE (or LIMITED OMNIMERGE) with PROPAGATION and A*, the worst possi-

ble case would be if the search problem had no active constraints for any subchains smaller

than the whole molecule, and every subproblem were maximally unconstrained. Although

divide-and-conquer with a default merge-tree (and every other method we have considered)

would perform poorly on such a case, OMNIMERGE would be by far the worst because it

would evaluate the exponential number of possibilities for every subchain (two subchains

of size N - 1, three subchains of size N - 2, etc.) instead of evaluating them only for two

subchains of size ;, four subchains of size , etc. With no conformations to disqualify,2' 4'1

PROPAGATION could only add overhead. With no subchains particularly well-constrained

and no particular paths to the goal better than the others, A* could only add overhead.

OMNIMERGE would perform a quadratic number of extra, exponentially-large searches,

compared with divide-and-conquer using a default merge-tree.

However, if no constraints are active until the final merge, all methods would require time

exponential in N, because the final merge would have an exponential number of candidates,

no matter how few conformations actually turn out to satisfy the constraints.

At the start of this chapter we showed an example where a poor choice of merge-tree,

relative to the constraint set, could result in an exponential search of a molecule even though

another merge-tree exists that can be searched in polynomial time. We now conclude the

chapter by postulating that no A* search will take exponential time unless all possible

merge-trees also take exponential time.
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Chapter 5

The Crystal Structure

of a Protein-DNA Complex

Article appeared in Structure (1997) Vol. 5, No. 8, Pages 1047-1054.

The protein data bank accession code for this structure is 2HDD.
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Engrailed (Gln50-+Lys) homeodomain-DNA complex at 1.9
A resolution: structural basis for enhanced affinity and al-
tered specificity

Lisa Tucker-Kellogg, Mark A. Rould, Kristen A. Chambers, Sarah E. Ades, Robert

T. Sauer, and Carl 0. Pabo

Abstract

Background

The homeodomain is one of the key DNA-binding motifs used in eukaryotic gene regulation,

and homeodomain proteins play critical roles in development. The residue at position 50 of

many homeodomains appears to determine the differential DNA-binding specificity, helping

to distinguish among binding sites of the form TAATNN. However, the precise role(s) of

residue 50 in the differential recognition of alternative sites has not been clear. None of the

previously determined structures of homeodomain-DNA complexes has shown evidence for

a stable hydrogen bond between residue 50 and a base, and there has been much discussion,

based in part on NMR studies, about the potential importance of water-mediated contacts.

This study was initiated to help clarify some of these issues.

Results

The crystal structure of a complex containing the engrailed Gln50-+Lys variant (QK50)

with its optimal binding site TAATCC (versus TAATTA for the wild-type protein) has

been determined at 1.9 A resolution. The overall structure of the QK50 variant is very

similar to that of the wild-type complex, but the sidechain of Lys50 projects directly into the

major groove and makes several hydrogen bonds to the 06 and N7 atoms of the guanines

at base pairs 5 and 6. Lys50 also makes an additional water-mediated contact with the

guanine at base pair 5 and has an alternative conformation that allows a hydrogen bond

with the 04 of the thymine at base pair 4.
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Conclusions

The structural context provided by the folding and docking of the engrailed homeodomain

allows Lys50 to make remarkably favorable contacts with the guanines at base pairs 5 and

6 of the binding site. Although many different residues occur at position 50 in different

homeodomains, and although numerous position 50 variants have been constructed, the

most striking examples of altered specificity usually involve introducing or removing a ly-

sine sidechain from position 50. This high-resolution structure also confirms the critical role

of Asn5l in homeodomain-DNA recognition and further clarifies the roles of water molecules

near residues 50 and 51.

Introduction

Altered-specificity variants can provide powerful tools for studying protein-DNA recog-

nition. The homeodomain, one of the key DNA-binding motifs used in eukaryotic gene

regulation, provides a very attractive system for this type of analysis: hundreds of re-

lated homeodomain sequences are known, and there is a wealth of relevant biochemical and

structural data [1]. Biochemical and genetic studies indicate that residue 50 is especially

important in determining the differential specificity of homeodomain-DNA recognition [2-

5], playing a role in distinguishing between binding sites of the form TAATNN. Glutamine

is the most common residue at position 50, but cysteine, serine and lysine occur in other

subfamilies [1]. The tightest and most specific binding occurs when lysine is present at

position 50. Biochemical studies of an engrailed Gln50-*Lys variant (QK50) revealed that

QK50 actually binds more tightly to TAATCC than wild-type engrailed binds to TAATTA

(Table 5.1) [6]. We have pursued structural studies of this Lys50 variant to understand

how it forms such a stable complex, to elucidate the role of position 50 in homeodomain-

DNA recognition, and-more generally-to explore the structural requirements for design-
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ing altered-specificity variants. We find that the Lys50 sidechain projects directly into the

major groove of the DNA and makes a set of hydrogen bonds with the guanines at base pairs

(bps) 5 and 6 of the optimal TAATCC binding site. The Lys50 sidechain and these new

contacts are accommodated without requiring any major changes in the overall architecture

of the homeodomain-DNA complex.

Version of Engrailed DNA site*
TAATTA TAATCC

Wild type 0.079 21
QA50 0.19 3.4
QK50 0.32 0.0088
*Only one strand of the DNA subsite is indicated; binding studies used

20 bp duplex DNA sites.

Table 5.1: Equilibrium dissociation constants (in nM) for the complexes with the wild type
engrailed homeodomain, the QA50 variant, and the QK50 variant.

Results

We have crystallized the engrailed QK50 variant in complex with the duplex TAATCC

binding site, and have solved this structure at 1.9 A resolution. The DNA duplex used for

cocrystallization is homologous to that used in studies of the wild-type complex and gave

cocrystals that are nearly isomorphous to the wild-type cocrystals studied by Kissinger et

al. [7]. Our refined model (using data collected at -150'C) has a free R factor of 25.1%

and a conventional R factor of 20.5% for data from 6.0-1.9 A resolution (Table 5.2). The

overall structure of the QK50 complex is very similar to that of the wild type engrailed

complex (studied at 2.8 A resolution at room temperature): alignment of the complexes by

superimposing Ca atoms of the homeodomain (residues 10-55) and P and C1' atoms of the

TAATNN subsites (i.e. superimposing 24 atoms of each DNA duplex) gives a root mean

square (rms) deviation of 0.48 A, and confirms that the folding and docking are exceedingly

similar. As in the wild-type complex, the homeodomain folds as a globular domain with

three a helices, and helix 3, the 'recognition' helix, fits into the major groove of the DNA.

An extended N-terminal arm contacts the minor groove. Given that the wild-type and

QK50 complexes are so similar, we focus our attention on Lys50 and Asn5l. These residues
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Data Collection
Resolution (A) 1.9
Measured reflections 92,610
Unique reflections 27,136
Completeness to 1.9 A(%) 94

Completeness in 1.97-1.90 A shell (%) 84
Rmerge* (%) 3.5
Refinement
R factort (%) 20.5
Rfrf (%) 25.1
Rms deviation of bond lengths (A) 0.011
Rms deviation of bond angles (0) 1.46
Number of nonhydrogen atoms 1,990
Number of water molecules 183
Rms AB (A2 )t 2.32

* Rmerge = EII - (I)I/EI, where I =observed intensity and (I) = average

intensity of multiple observations of symmetry-related reflections.

tThe R factors exclude 2564 reflections for which F < 2o-(F). Using all

data from 6.0 - 1.9 A, the R factor is 21.7% and the Rfree is 26.5%.

tRms AB is the root mean squared difference between temperature

factors of covalently bonded atoms.

Table 5.2: Data collection (-150'C) and refinement statistics.
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are critical for site-specific recognition and have been the focus of much discussion when

comparing NMR and crystal structures of homeodomain-DNA complexes [7-14].

Interactions between Lys50 and the DNA

Figure 5-1 shows the electron density for Lys50 from the solvent-flattened MIRAS (mul-

tiple isomorphous replacement with anomalous scattering) map (using data collected at

10'C) and also shows the final refined model (using data collected at -150'C). The overall

placement of the lysine sidechain is exceedingly clear: Lys50 projects into the major groove

towards the guanines of bps 5 and 6, and many of the key contacts involve hydrogen bonds

to the 06 and N7 atoms of these guanines (Figures 5-1-5-4). The high resolution of our

structure determination allows us to see and refine alternate conformations for the terminal

atoms of Lys50. Conformation 1 (60% occupancy) places the terminal NH+ group near

the guanines of bps 5 and 6. In this conformation, the closest contacts involve the 06 of

the guanine at bp 5 (2.76 A) and the 06 and N7 of the guanine at bp 6 (3.27 and 3.17 A,

respectively). The N7 of the guanine at bp 5 is slightly farther away (3.92 A), but there is a

bridging water molecule that contacts the N7 of this guanine (2.88 A) and the terminal NH3

of the Lys50 sidechain (3.17 A). Conformation 2 (40% occupancy) only moves the terminal

N( of the lysine by 1.42 A but the altered sidechain dihedral points the NH+ somewhat

more towards the guanine at bp 5 and the thymine at bp 4. In this conformation, the closest

contacts involve the 06 of the guanine at bp 5 (2.78 A) and the 04 of the thymine at bp 4

(3.04 A). The N7 of the guanine at bp 5 is 4.11 A away, but there are good contacts from

the bridging water molecule (which in this conformation is 3.17 A from the N( and 2.88 A

from the N7 of the guanine).

The role of Asn5l

This high resolution cocrystal structure also provides important information about the

role of Asn5l in homeodomain-DNA recognition. The structure of the wild type engrailed

complex at 2.8 A resolution [7] indicated that Asn5l makes a pair of hydrogen bonds with the

adenine at bp 3 of the TAATTA site, and similar contacts were seen in the a2 homeodomain-

DNA complex [8]. There has been much discussion about these contacts, since NMR studies

of the Antp-DNA complex have suggested that Asn5l has multiple, rapidly-interchanging

conformations and have indicated that Asn5l might make water-mediated contacts with
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Figure 5-1: Solvent-flattened MIRAS electron-density map contoured at 1.5-, in the vicin-
ity of Lys50 and bp 5 of the TAATCC subsite. The model is our final refined
low-temperature structure, but a rigid-body motion has been used to adjust
for differences in cell dimensions (between the 10*C map and the -150*C re-
fined structure). The protein is shown in yellow and the DNA in red. The
two conformations of Lys50 are essentially superimposed when seen from this
orientation.
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the bases [9, 10]. Our structure of the QK50 variant confirms that Asn5l forms a pair

of direct hydrogen bonds with the adenine at bp 3, with distances of 3.04 A to the N7

atom and 3.09 A to N6. The conformation and contacts that we observe for Asn5l are in

excellent agreement with those observed in studies of the Oct-1 [11], paired [12], a1/a2 [13],

and even-skipped [14] homeodomain-DNA complexes. The remarkable consistency of these

structures (determined independently and in different crystal forms) suggests that these

crystallographic studies are giving the correct (time-averaged) conformation of Asn5l. The

fact that Asn5l is so strictly conserved among the hundreds of known homeodomains (see [1]

for a review) and the fact that homeodomain binding sites almost invariably have adenine

at bp 3, suggests that the Asn5l-adenine contacts may be similar in all homeodomain-DNA

complexes.

Cyt 6

Cyt 5

- -- -Thy 4

Lys 50

Ads 3

Asn 51

Cyt 6

Cyt 5

Thy 4

Lys 50

Ad@ 3

Asn 51

Figure 5-2: Stereo diagram showing base contacts made by Lys50, Asn5l and associated
water molecules in the QK50-TAATCC cocrystals. Both conformations of the
Lys50 sidechain are shown, and the three key water molecules are represented
as black spheres; hydrogen bonds are shown as dashed lines. The numbering
scheme for base pairs corresponds to that used in Figures 5-3 and 5-4. A Ca
trace is shown for part of helix 3.
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Water molecules in the binding interface

In addition to the direct hydrogen bonds made with the adenine at bp 3, Asn5l is flanked

by several well-ordered water molecules at the protein-DNA interface. Perhaps the most

striking interaction involves a water molecule that bridges from the 061 of Asn5l to the N6

of the adenine at bp 4 (Figures 5-2 and 5-4). This water molecule has excellent hydrogen-

bonding geometry, with distances of 3.01 A to the 061 and 3.11 A to the N6 atom. This

water molecule also bridges to a second water molecule which, in turn, contacts the N7 of

the adenine at bp 4 (Figures 5-2 and 5-4). The distance between these two water molecules

is 3.15 A, and the distance from the second water molecule to the N7 is 3.08 A. A third

water molecule in this hydrogen-bonding network contacts the N7 of the guanine at bp 5.

We note that there is a 'tilt' in the Asn5l sidechain amide that allows Asn5l to main-

tain good hydrogen bonds with the adenine and yet also allows it to interact well with the

bridging water molecule. (This tilt involves a rotation around X2, and the observed X2 angle

(-37' in our complex leaves the amide plane 27' out of the plane of the adenine.) The

observed tilt of the Asn5l sidechain underscores the potential importance of the bridging

water molecule. It seems quite plausible-as suggested by Wilson et al. [15]-that the

water-mediated contacts with the adenine at bp 4 may augment the sequence specificity

provided by the Ile47-thymine contact (Figure 5-3) and thus may help explain the preference

of the homeodomain for the canonical TAAT subsite. Examining other refined structures

of homeodomain-DNA complexes shows similar tilt angles for the Asn5l sidechains. Re-

markably, we note that a conceptually analogous bridging interaction also occurs in the a2

portion of the al/a2 homeodomain-DNA complex: here the terminal atoms of the Arg54

sidechain, rather than a water, participate in a hydrogen-bonding network that bridges from

the 061 of Asn5l (2.99 A) to the 06 of the guanine at bp 4 (3.09 A).

Discussion

The role of position 50

As emphasized in the early biochemical studies [2-5], residue 50 plays a key role in determin-

ing the differential specificity of the homeodomain, helping to explain how homeodomains

can distinguish one TAATNN site from another. Correlating all the available data, how-

ever, highlights the fact that different residues at position 50 confer very different degrees
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Figure 5-3: Major groove contacts of the QK50-TAATCC complex. Three residues make
base contacts in the major groove: Asn5l makes a pair of hydrogen bonds with
the adenine at bp 3 (red); le47 makes hydrophobic contacts with the methyl
group of the thymine at bp 4 (purple); the primary conformation of Lys50
(yellow) makes hydrogen bonds with the 06 of the guanine at bp 5 and with
the 06 and N7 atoms of the guanine at bp 6; the secondary conformation of
Lys50 (green) makes hydrogen bonds with the 06 of the guanine at bp 5 and
with the 04 of the thymine at bp 4. Hydrogen bonds are shown as dashed lines
and van der Waals contacts are indicated with dotted spheres. For clarity, water
molecules have been omitted in this figure.
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of specificity for their respective sites. Reviewing the earlier papers [2-5], shows that the

most striking cases of altered-specificity mutations usually involve introducing or removing

a lysine residue from position 50: Key constructs are a Lys50 -+Gln variant of the bicoid

homeodomain [3], a Ser50-+Lys variant of the paired homeodomain [4], and a Gln50-+Lys

mutation in the fushi tarazu homeodomain [5]. In every case, the Lys50 variants of these

homeodomains prefer to bind a sequence of the form TAATCC and they presumably all

make contacts similar to those seen in the crystal structure reported here.

There are other cases in which the sidechains at position 50 only have a marginal role

in determining DNA-binding specificity. For example, the Oct-1 homeodomain, with a

cysteine at position 50, shows sequence specificity for a 4 bp subsite (typically with the

sequence AAAT) but shows little specificity at positions that would correspond to bp 5 and

6 of our current numbering scheme. Changing this cysteine to glutamine has little effect

on DNA-binding affinity [16,17]. Even when glutamine, which is one of the most common

residues at position 50, occurs in the wild-type proteins it may have only a modest energetic

contribution to binding: wild-type engrailed prefers a TAATTA site, but a variant (QA50)

which has alanine at position 50 binds the TAATTA site only 2.4-fold less strongly than the

wild-type protein (Table 5.1) [6]. This modest energetic contribution of the Gln50 sidechain

(AAG = 0.5 kcal/mol) is fully consistent with the 2.8 A resolution crystal structure of the

wild type engrailed complex, in which the only direct contact between Gln50 and the DNA

bases is a van der Waals contact with the methyl group of the thymine at bp 6.

When placed at position 50, lysine seems to have a clearer sequence specificity than other

residues tested and makes a greater energetic contribution to binding. Thus, comparing the

QK50 and QA50 variants of engrailed shows that changing Lys50 to alanine gives a 390-

fold reduction in affinity for the TAATCC sequence (Table 5.1; AAG = 3.4 kcal/mol) [6].

The numerous direct contacts made by Lys50 in our QK50 structure, and the way that

these lysine-guanine contacts fit so well within the conserved structure of the complex,

provide a simple explanation for the efficacy of this residue in site-specific recognition.

Remarkably, these are the first direct hydrogen-binding contacts reported for residue 50 in

any homeodomain-DNA complex.
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Arg31
Leu 26-+

Lys46- Base
Arg53 -Pair
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Figure 5-4: Sketch of major groove contacts in the QK50-TAATCC complex. Residues that
make base contacts in the major groove are shown in boldface. Phosphates are

represented with circles, and hatched circles mark phosphates that are contacted

by the homeodomain. Arrows represent direct protein-DNA contacts. Small
circles marked 'W' denote water molecules, and finely-dotted lines represent
water-mediated contacts. The numbering scheme for the base pairs corresponds
to that used in Figures 5-2 and 5-3; base pairs are numbered to represent a

typical homeodomain binding site in the form TAATNN.
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Base-specific electrostatic interactions

Our structure of the QK50-DNA complex also highlights the role that 'electrostatic readout'

of the major groove may play in site-specific recognition. Recent surveys of sidechain-base

interactions in the known protein-DNA complexes show that arginine-guanine and lysine-

guanine interactions are remarkably common [18, 19]. As hydrogen bonds involving one

charged partner can be very strong [20], and because the N7 of guanine is the most elec-

tronegative region in the major groove [21], such contacts may make a major contribution

to site-specific recognition. (A key lysine residue in the N-terminal arm of A repressor also

forms hydrogen bonds with a pair of guanines in the major groove [22, 23].) We presume

that the binding affinity of the QK50 variant reflects both the intrinsic affinity of these

lysine-guanine interactions and the very favorable structural framework (provided by the

rest of the homeodomain-DNA complex), which holds lysine in an ideal position for making

these contacts.

Prospects for other altered-specificity variants

One of the underlying structural issues in protein-DNA recognition-and one that is es-

pecially important when thinking about altered-specificity variants-involves the complex

interrelationship between the overall folding and docking arrangement of a protein and the

geometric requirements for particular sidechain-base interactions (COP and L Nekludova,

unpublished data). To what extent does the overall folding and docking determine which

sidechain-base interactions are geometrically plausible at a given position? How often will

a strictly local substitution, such as the Gln50-+ Lys change in engrailed, allow new DNA

contacts that are as favorable or more favorable than the wild-type contacts?

In thinking about these issues, it is interesting to re-examine the role of Gln50 in the

engrailed homeodomain. After seeing the important role that glutamine-adenine contacts

play in other protein-DNA complexes, one might have imagined that glutamine would make

a pair of hydrogen bonds with one of the adenines in the preferred TAATTA binding site.

However, (as mentioned above) the only direct contact between Gln50 and the DNA is a

van der Waals contact with the methyl group of the thymine at bp 6, and changing Gln50

to alanine only gives a modest (0.5 kcal/mol) reduction in affinity for the TAATTA site.

Modeling studies readily confirm the problems that would be involved in trying to make
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canonical glutamine-adenine contacts from position 50 of the homeodomain, and modeling

thus helps explain why these contacts do not occur in the wild-type complex. Surveying

known protein-DNA complexes shows that the most favorable glutamine-adenine interac-

tions (such as those seen in the A repressor [23, 24] and the 434 repressor [25] complexes)

involve a pair of hydrogen bonds between the sidechain and the base, and in these situations

the terminal atoms of the sidechain (C, C6, NE and OE) are roughly coplanar with the

adenine base. While keeping the protein and DNA backbones fixed in the conformation of

our QK50 crystal structure, we attempted to superimpose the same 'canonical' glutamine-

adenine contacts seen in the phage repressors onto residue 50 and bps 5 or 6 of the engrailed

complex (L Nekludova and COP, unpublished data). Regardless of what sidechain x angles

are used during modeling, there is no way that canonical glutamine-adenine contacts can

fit into the structural context provided by the homeodomain. The position and orientation

of the polypeptide backbone at position 50 (vis-h-vis the DNA) provides an ideal geomet-

ric arrangement for the lysine-guanine interactions, but simply does not work as well for

optimizing potential glutamine-adenine interactions.

Other studies have revealed similar limitations in the design and selection of DNA-

binding proteins with altered specificity. For example, biochemical and genetic studies

involving systematic variation in position 51 of the Oct-1 homeodomain and in bp 3 of

the AAAT binding site failed to reveal any other sidechain-base combination that would

work as well as the wild-type Asn5l-adenine arrangement [26]. Glutamine was particu-

larly disruptive when placed at position 51 (causing a 1,100-fold reduction in binding to

the AAAT subsite), and it appears that the structural context provided by the rest of the

homeodomain-DNA complex plays a critical role in determining which sidechain-base in-

teractions will be possible at any given position. The basic idea is very simple and yet has

broad implications for our understanding of protein-DNA recognition: given the distinct

sizes, shapes, and conformational preferences of the sidechains, only one or two may fit

well at a given position in a complex. The overall folding and docking arrangement of the

protein (and the overall structure of the DNA) will help to determine which contacts are

possible.
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Conclusions

These structural and biophysical studies of the QK50 variant provide an interesting per-

spective on current studies of protein-DNA recognition. The analysis of multiple confor-

mations and of water-mediated contacts has some meaningful role in the understanding of

homeodomain-DNA interactions, but we find that a lysine variant which can make direct

hydrogen bonds with the DNA bases binds more tightly and specifically than the wild-type

engrailed homeodomain. The crystal structure of this altered-specificity complex shows

there is nothing mysterious about the tight binding: the homeodomain presents the Lys50

sidechain in a very favorable geometric and structural context (fixed by the conserved fold-

ing and docking arrangement of the homeodomain), and the lysine can make a set of direct,

sequence-specific hydrogen bonds with the 06 and N7 groups of the guanines. (There is

also a water-mediated contact and an alternative conformation of the terminal atoms that

allows a hydrogen bond with the 04 of a thymine.) Our structure gives a satisfying expla-

nation for the affinity and specificity of the lysine QK50 variant, but challenging problems

remain as we try to understand the limits of altered-specificity variants. How often will such

favorable substitutions be possible? How do the overall folding and docking arrangements

help to determine what sidechain-base interactions will be possible at a given position?

Biological Implications

Homeodomains are one of the most important eukaryotic DNA-binding motifs, and they

occur in many transcription factors that control differentiation and determine cell fate.

Homeodomains contain 60 amino acids, which fold to form a module with three a helices

and an extended N-terminal arm. Homeodomain-DNA interactions have been studied in-

tensively both because of the intrinsic importance of the homeodomain, and because the

homeodomain has become a paradigm for the analysis of protein-DNA interactions. Pre-

vious structural studies have shown that helix 3, the 'recognition' helix, docks into the

major groove and makes many of the base contacts. Biochemical and genetic studies have

suggested that residue 50 of the homeodomain is especially important for differential recog-

nition, distinguishing among sites of the form TAATNN. However, none of the previously

determined structures of homeodomain-DNA complexes has provided evidence for a stable

hydrogen bond between residue 50 and a base, and there has been much discussion about
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the potential significance of water-mediated contacts in homeodomain-DNA recognition.

Biochemical data, showing that a Gln50--+Lys (QK50) variant of the engrailed home-

odomain has very high affinity and specificity for a TAATCC site, motivated solving the

structure of this complex, and we find a set of very favorable Lys50-guanine contacts that

readily explain the biochemical data. The QK50-DNA structure also confirms the conserved

docking arrangement of the homeodomain and the critical Asn5l-adenine contacts seen in

the crystal structures of other homeodomain-DNA complexes. The fact that there is a

rigidly conserved docking arrangement may help explain why other sidechains (including

the wild-type glutamine) cannot make such energetically favorable contacts from position

50. More generally, our analysis suggests limits (only certain sidechains will fit at certain

positions) that may occur in the design and selection of altered-specificity DNA-binding

mutants. Finally, our data suggest that direct sidechain-base interactions, when geomet-

rically compatible with the other contacts in a complex, can provide greater affinity and

specificity than water-mediated contacts.

Materials and Methods

Protein expression and purification

The engrailed QK50 domain used in these studies contains 60 amino acids from the Drosophila

engrailed protein, but the glutamine residue at position 50 of the wild-type homeodomain

is replaced by lysine and an N-terminal methionine is introduced in cloning. (Thus the

sequence of our peptide is the same as that shown in Figure 1 of reference [7], except

that lysine is present at position 50.) The QK50 variant was expressed in Escherichia coli

strain BL21 cells containing the DE3 plasmid [18]. Cultures were induced for 2.5 h with

0.3 mM isopropyl-f-D-thiogalactopyranoside (IPTG) at 37'C. Soluble protein was puri-

fied using ion exchange and reverse phase chromatography, and the purity of the peptide

was confirmed by gel electrophoresis, mass spectroscopy, amino acid analysis, and protein

sequencing (William Lane, Harvard Microchemistry Facility).

DNA complex formation and crystallization

The complex was formed in 1 M ammonium acetate (to keep it soluble), with a 2:1 molar

ratio of QK50 peptide to duplex DNA. The DNA used for cocrystallization, contains one
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5'-T T T T G C C A T G T A A T C C C C G G A
A A A C G G T A C A T T A G G G G C C T A-5'

TAATCC subsite, and when these DNA duplexes stack in the crystal, a related subsite with

the sequence AAATCC is formed by the juxtaposed DNA duplexes. Crystals of the QK50-

DNA complex were grown using the hanging-drop vapor diffusion method [27]. Well buffer

contained 0.73-0.80 M ammonium acetate (pH 8.0) and 1% PEG 400. The best crystals

grew in three days at room temperature from a 2 pl hanging drop containing the complex at

a concentration of 10 mg/ml. Note that these conditions are somewhat different from those

used for crystallizing the wild-type complex, which had been studied at 2.8 A resolution [7].

As with the wild-type crystals, the QK50-DNA complex crystals form in space group C2,

but have cell parameters of a = 129.9 A, b = 45.45 A, c = 72.75 A, 0 = 118.70 at 10 0C.

(The wild-type crystals have a = 131.2 A, b = 45.45 A, c = 72.9 A, 0 = 119.00 at room

temperature [7].) Under cryo conditions (-150'C), the cell parameters of the QK50-DNA

crystals are a = 127.7 A, b = 45.3 A, c = 72.5 A, / = 119.50. As expected from studies of

the wild-type complex, the asymmetric unit of the QK50 crystals contains one DNA duplex,

one homeodomain at the TAATCC site, and a second homeodomain at the AAATCC site

that is formed by juxtaposed duplexes.

Phasing and refinement

Structure determination of the QK50-DNA cocrystals proceeded in two stages: MIRAS was

used for initial phasing and model refinement at 2.0 A resolution using data collected at

10'C; and final refinement to 1.9 A used data collected under cryo conditions. For MIRAS

phasing, data were collected on a Rigaku R-Axis IIC detector equipped with Yale/MSC

mirrors. Two crystals of the native and of each double- or triple-iodinated DNA derivative

were used and data were processed with DENZO/SCALEPACK (written by Z Otwinowski

and W Minor and distributed by Molecular Structure Corp.). A constant temperature of

10'C was maintained at the crystal with an FTS AirJet crystal cooling system. Derivatives

were local scaled to the native using MAXSCALE [28]. Cross-phased heavy-atom refinement

(each derivative is refined separately using phases derived only from the other three deriva-

tives) was carried out with the program PHARE [29]. Solvent flattening [30] was used to

improve the phases. Heavy-atom parameters were then re-refined to convergence using the
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solvent-flattened phases as parent phases (without updating the phases during refinement),

and new MIRAS phases were recalculated [31]. This process of refining the heavy-atom

parameters using the solvent-flattened phases, recalculating MIRAS phases, and solvent

flattening was repeated four times to give the final electron-density map, free of any model

bias (Figure 5-1; Tables 5.3 and 5.4). The 2.8 A model for the wild-type complex [7], with

the appropriate changes in amino acid and nucleotide sequences, was rebuilt into this den-

sity using TOM/FRODO [32, 33] and refined to 2.0 A with XPLOR [34]. Higher resolution

data, extending to 1.9 A, were obtained using cryocrystallographic methods. Crystals were

cryoprotected by adding glycerol to the hanging drop, with a final concentration of 30%

(v/v) immediately prior to flash cooling. Data were collected at -150'C and processed as

before. In rebuilding to the cryo data, rigid-body refinement was used to adjust for the

differences in cell parameters. Throughout refinement we made repeated use of simulated

annealing omit maps and monitored the free R factor to avoid overfitting the experimental

data. The same free R list was used for the 10'C data and the -150'C data. Local scaling

was used to correct for absorption errors and anisotropic diffraction. The two monomers

were refined independently and have almost identical DNA contacts, but discussion in this

paper focuses on the homeodomain at the TAATCC site as this binding site has the same

sequence as that used in the biochemical studies [6] and because this complex does not

have a nick in the DNA. (As in the wild-type complex, the other homeodomain binds to a

'nicked' site formed by the juxtaposition of neighboring DNA duplexes.)

Native Derivative 1 Derivative 2 Derivative 3 Derivative 4
lodinated bases* - T2, T8', C17 T2, T8', C18 T2, C17 T2, C18
Rmerge (%) 4.4 4.7 5.5 4.8 5.0
Rcross on I (%) - 18.3 27.6 16.6 25.5
Rcross on F (%) - 13.1 20.2 12.3 18.7
Completeness to 2.25 A(%) 90 88 76 99 90
Completeness to 2.0 A (%) 76 79 65 86 81
Rculi - 0.495 0.551 0.529 0.564
Phasing power - 3.25 2.59 3.01 2.40
*Numbering scheme for bases corresponds to that used in Figure lb of reference [7].
Reross on I = sum(IIN - IDI)/sum(IN). R,,,o, on F = sum(|FN - FDI)/sum(FN).
Rcumis = sum(|IFPH + / - FP| - FHcaLc||)/sum(|FPH + /- Fp|), for centric reflections only.
Phasing power = (sum(FH 1sum((|FpH - |FPHcaie) 2 0 .5*

Table 5.3: MIRAS phasing statistics (data collected at 10 0C).
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Resolution shell (A) 9.4 6.2 4.6 3.6 3.0 2.6 2.2 2.0 20-2.0

Figure of merit 0.93 0.95 0.93 0.89 0.86 0.79 0.65 0.46 0.73*
*Subsequent solvent flattening increases the mean figure of merit to 0.84.

Table 5.4: MIRAS figure of merit versus resolution.

Accession numbers

Coordinates are being deposited with the Brookhaven Data Bank. While they are being pro-

cessed, a set of coordinates may be obtained by sending an e-mail message to pabodmit.edu.
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Chapter 6

Conclusion

We have presented a core algorithm for systematic conformational search (Chapter 2), an

application of that algorithm to structure determination by solid-state NMR (Chapter 3),

some new ideas for improving how the subproblems in conformational searches are defined

(Chapter 4), and a separate structure determination project involving X-ray crystallography

(Chapter 5).

6.1 Outlook for Searching Larger Molecules

We have made some progress at applying systematic search to larger problems, but with

moderate resolution, the number of voxels that satisfy the constraints can be prohibitive to

enumerate. Even when using very tight constraints, the search time for moderate resolution

can still be very large. For lower resolution searches, incompleteness becomes the primary

obstacle, particularly with large molecules.

We have found cases with large molecules where a low-resolution search fails to find any

satisfying conformations, even if the constraints have been designed around some known

conformation. In other words, low resolution gives us the expected problem of false nega-

tives. Then, when we increase the resolution of the search infinitesimally, the search finds an

astronomical number of conformations for the whole molecule. This may be surprising but

the reasons for it become clear with hindsight. Many boundaries of conformation space are

hyperplanes instead of rugged manifolds, and if the orientation of a boundary is degenerate

or exactly parallel to the definition of the voxels (such as 0 < 120'), then the size of the

solution set will not necessarily be continuous as a function of resolution. The simplest case
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is when the feasible region of conformation space is a tall, thin rectangular slab. When the

search fails to find any voxels with satisfying conformations, that means the feasible region,

if it exists, must be narrower than the interval of the search. When the search explodes

(when the solution sets become intractable), the feasible region must be wider than the

interval of the search in several dimensions. Both situations can occur simultaneously in

large molecules because here can be both overconstrained and underconstrained degrees of

freedom in the same molecule at the same time.

Preliminary trials (and tribulations) with Engrailed

We performed some preliminary searches of engrailed QK50 (residues 5-55, without hydro-

gens, as in Chapter 5), which has over three hundred torsional degrees of freedom. The

parameters were 400 resolution for all torsions, 85% of half sigma for hard-sphere atomic

radii, peptide bonds constrained to within 50 of planar, and summed squared constraint

violations less than 0.001 A2 . We first tried to search the protein with distance constraints

alone, constraining up to 100% of all atom pairs that have a distance in the crystal structure

between 2.5 and 6.0 A.

The final stage of the search, the merge that brings together the N-terminus and C-

terminus, requires satisfying many newly-active constraints. The "almost correct" confor-

mations for the left and right pieces had to be adjusted within the combined voxel via

minimization, but searching over 304 possible dimensions of dihedral variation proved too

difficult. Very tight distance constraints left so small a region of feasible space that it could

not be found in the high-dimensional voxel. Loose constraints caused obvious problems as

well.

We tried adding some dihedral constraints, which we structured to resemble the dihedral

constraints provided by the solid-state NMR experiments on fMLF. First, the angle value for

the torsion to be constrained is measured in the crystal structure and a 100 range is defined

around that value. Then, two other 10' ranges were defined at random in the remaining

350' span of angles (overlapping ranges were discarded and randomized again). Finally,

the torsion angle was constrained to be in one of the three narrow ranges. We applied

constraints of this form to 61 torsions selected at random from among the non-peptide

bonds.

The combination of interatomic distance constraints and torsion constraints was suffi-
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cient to allow our algorithm to search the engrailed protein. With constraints allowing a

0.1 A range in interatomic distances for all short-range pairs of atoms, and with 61 torsions

constrained as described, our method identified 54 voxels containing satisfying conforma-

tions in 31,429 seconds. These trials were preliminary and there may be any number of

more practical circumstances (such as a change in atomic radii) that would allow our al-

gorithm to complete the search. We are eager to try allowing larger overlaps between the

right and left children of a merge; larger overlaps the the merge might reduce the difficulty

we encountered in the final merge of having many newly active constraints and of needing

to adjust many of the torsions within their voxels. Nonetheless, initial indications are that

increasing the number of degrees of freedom will provide greater challenges to systematic

search methods than distance constraints alone can immediately counterbalance.

Implications for future goals in systematic search

Even if an algorithm had perfectly complete and instantaneous knowledge, simply listing

the satisfying voxels for a protein in reasonable time requires that the number of undercon-

strained degrees of freedom be small. Also, because of how we have defined the problem,

a single erroneous constraint that cannot be satisfied will cause the whole search to fail.

(Halting with no solutions is called "failing" in constraint satisfaction parlance, but the

term indicates the absence of solutions, not a judgment about the quality of the algorithm

or about whether the result is a false negative.) Although both these "features" are what

we originally wanted, the results (and the frequency with with these results occur) are

frustrating "bugs" to users in practical circumstances.

Infeasible constraints. Our method can easily allow for small violations of a constraint

by modifying the criteria of acceptance, for example 0 < 120' + E instead of 0 < 1200. This

is what we do when setting a small but nonzero threshold on the summed squared constraint

violations. Allowing k constraints to be grossly violated but strongly enforcing the remaining

constraints is far more complex but it is an approachable and intellectually-appealing area

for future research.

Explosion of solutions. Our method can assign different resolutions to different

degrees of freedom, and we found with the fMLF structure that this contributes considerably

to reducing the number of voxels without sacrificing much information content. With the

current implementation, the user must specify the choices of resolution. When we began
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these studies, defining the resolution as a strictly independent variable seemed desirable,

but a helpful feature might be an option for the algorithm to suggest resolution intervals

for each torsion based on results of a preliminary search.

One of the most promising directions for future research in systematic conformational

search methods may be to explore how the search problem might be recast in different

terms. A very useful contribution would be a compact representation for the simultaneous

variations in different torsions, although there are questions about which information to

sacrifice and how inaccuracy could become amplified over the size of the molecule. Torsion

angle representations can become unwieldy for large chains as a small change in one back-

bone angle can have a large effect on the position of distant atoms. However, Cartesian

coordinate or distance matrix representations are often prone to poor covalent geometry on

a local scale. Perhaps future methods will find a way to combine the best aspects of torsion

angle search for small subchains with the best of Cartesian or distance-based methods for

combining larger subchains.

6.2 Contributions of the Doctoral Candidate

The contributions in this thesis involving structure determination (the journal articles of

Chapters 3 and 5) contain their own references, introductions, and summaries of contri-

butions. Here I highlight my previously unpublished results on systematic conformational

search.

I designed, implemented, and demonstrated the practical impact of four fundamental,

interrelated, and truly novel improvements to the state of the art in systematic conforma-

tional search:

" The OMNIMERGE algorithm searches all possible subchains and uses the best choice

of left and right child subchains for each combine operation. The greatest

significance of OMNIMERGE may be that it makes possible many of the other inno-

vations in this thesis. By itself it also can improve the search of molecules for which

default methods get trapped using needlessly expensive components at the final merge

of the search.

" The merge-tree cost functions evaluate alternatives for how large problems may be

broken into subproblems. A simple application of dynamic programming to those
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functions, in conjunction with results from any previous OMNIMERGE search of the

same molecule, yield the optimal merge-tree for the molecule.

" PROPAGATION enforces compatibility between overlapping subchains by fil-

tering out infeasible conformations from their solution sets.

" An A* function selects which subchain to search next based on current information

about the sizes and costs of other subchains, and based on estimates for the relative

contribution of each subchain towards the search of the whole molecule. Costly sub-

chains may be skipped entirely but low-cost subchains (ones that could be part of an

optimal merge-tree for the whole molecule) are never skipped.

With Toma's Lozano-Perez, I demonstrated the utility of the voxel model, which allows

efficient but non-systematic searches to be used locally within a systematic context.

In addition, I adapted systematic search methods to a real dataset. By searching the

formyl-Met-Leu-Phe-OH peptide at an exceedingly high resolution, we provided unprece-

dented confidence in the interpretation of the constraints while determining a previously

unknown atomic structure.
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Appendix A

Systematic Search Implementation

A.1 Definitions and Preprocessing

Bonds

Each rotatable bond in a molecule defines a local reference frame, also called an internal

coordinate system [9]. Atoms that have invariant relative positions (invariant over any

rotation of torsion bonds) are defined to be in the same bond frame (also called an "aggre-

gate" [5]). Figure A-1 shows the rotatable bonds (the torsions) of an amino acid residue

0 0

111 lIE 1 c
-C+N-- C -+N-

C

C61 C(5

Figure A-1: The rotatable bonds in a leucine amino acid.

and Figure A-2 shows how the literal bonds can be converted into a tree datastructure of
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bond frames. The default TREESEARCH strategy uses an ordering of the torsions t1 , t2t3 ...

0=0

N

C

Cfl C=O

C N

C61 C62

Figure A-2: A tree of bonds.

such that if tj is the parent of tj in the bond tree, then ti occurs before tj in the ordering.

The parent of t1 is the invariant coordinate frame; the parent of t 2 must be ti; the parent

of t 3 may be either t1 or t 2 , and so on.

The bond tree should not be confused with the search tree. The bond at the root of

the bond tree is instantiated first, at the root of the search tree, and the bonds lower in the

bond tree are searched later, lower in the search tree. However, a bond corresponds to a

whole level of the search tree, but it is only one edge in the bond tree.
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Atoms

Given the coordinate frame of the parent bond frame and the rotation of the bond connect-

ing the child frame to the parent frame, one can compute the child coodinate frame. Bond

frames and the torsion vectors defining their relative orientations are the primary represen-

tations used by our algorithm. Cartesian coordinates for atoms only exist for the duration

of subroutines that evaluate a conformation on the basis of constraints on the atoms.

Atoms are specified as coordinates relative to their bond frame. Two torsions are ad-

jacent in the bond tree if there are no rotatable bonds separating them. When adjacent

torsions in the bond tree are instantiated, the atoms in their respective bond frames have

an exact relative orientation, which permits calculation of the distance between atoms in

the two frames. For atoms in two arbitrary bond frames, ALL intervening torsions must be

instantiated before the relative orientation of the frames can be computed and before the

relative positions of the atoms can be calculated.

A.2 Options and Optimizations

Atom hash

Another opportunity to improve efficiency is in the check for interatomic distances that

violate the user's distance constraints or the van der Waals constraints. Evaluating the

constraint violations of a conformation is part of the inner loop of the search algorithm.

Therefore, efficiency gains in this stage can have a significant impact on total runtime, even

when the non-optimized algorithm is polynomial. Contrary to popular opinion, the check

of interatomic distances need not consume quadratic time. We can exploit the short-range

nature of most distance constraints to design a procedure that is more efficient than checking

all pairs of atoms.

Van der Waals constraints, a special category of distance constraints, are derived from

the chemical structure of the molecule rather than input by the user. They prohibit any

atom from entering the volume of another atom, unless the two atoms are covalently bonded

or meet other chemical criteria. Van de Waals constraints, although numerous, only concern

atoms in close proximity.

The user-defined distance constraints could theoretically require two atoms to be sep-

arated by a large distance, but more often they tend to require atoms to be close to each
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other.

Note that distance violation checks are performed only after a particular vector of tor-

sions angles has been chosen (for example, the midpoint of a voxel). Since the torsions

define a unique conformation, absolute three-dimensional coordinates are available for each

atom.

Rather than computing the distances between all pairs of atoms and checking those

distances against the various constraints, we can divide the 3-dimensional space of atomic

coordinates into small cubes (like the way we divide torsion space into small voxels), and

hash the atoms according to their cubes. (So far this only requires time linear in the number

of atoms.) Then we can iterate through the non-empty hash cubes instead of iterating

through pairs of atoms or through the Cartesion space. Each hash cube will contain at

most a constant number of atoms. For each hash cube, compute distances for all pairs of

atoms that are in the same or in nearby cubes, and check only those distances against the

constraints. This avoids considering the majority of atoms pairs, which are in distant cubes.

The number of occupied hash cubes grows with the size of the molecule, but the number

of pairs of atoms grows with the square of the size of the molecule. Therefore, for large

enough molecules, the hash is a more efficient way to check van der Waals and other short-

range distance constraints.

For each user-defined constraint involving a long interatomic distance (such as if two

atoms were required to be at least 20 angstroms apart), that pair of atoms would have to

be considered explicitly, in addition to the iteration over hash squares. But as long as the

number of constraints requiring long interatomic distances is much smaller than the number

of pairs of atoms, it will be more efficient to check for short-distance violations using the

hash and then for the remaining constraints separately than to check all pairs of atoms.

Minimization options

We provide a variety of extra options for "tweaking" the minimizer because the minimization

is so important. However, we have not yet determined what combinations of options is

optimal, for this algorithm or in general.

A popular heuristic for augmenting local minimization methods is to repeat the min-

imization several times using randomized initial values. We allow the user to specify the

number of such restarts, called passes. There are a variety of methods for choosing initial
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points (starting torsion values) for the minimization, including complete randomization,

partial randomization (often called a "random kick"), or reuse of angle values found during

lower dimensional-searches). In the extreme case where a user chooses many passes with

totally random initial values, but limits the minimization to zero iterations (beyond the

evaluation of the initial values), our method to evaluate voxels becomes identical to random

sampling.

The user may also choose for the number of passes to be a function of the number

of dimensions of the voxel. The number of passes can be quadratic or exponential in the

number of dimensions. These options for additional sampling were designed in response to

the greater occurrence of false negatives in higher-dimensional voxels.

Distances without Square Roots

We provide the option of using squared distances and squared bounds throughout the

method (including in the distance matrix) rather than true distances, so that time-consuming

square root operations may be avoided. Let b be a bound on the distance between two atoms,

and let d be a measured distance between those atoms that has been determined to violate

the bound. For simplicity of notation, assume b is an upper bound. Then, the magnitude

of the violation, v, is approximated as follows:

v = d-b

Vapprox 2b

The above approximation for the violations of distance constraints is also used by the DIANA

program for NMR interpretation [27].

166



Appendix B

Merge-Trees for 1RST

Below are figures showing various merge-trees for 1RST annotated with the TREECOST for

each subtree in red. Each leaf subchain is annotated in blue with the number of conforma-

tions for the subchain, and each non-leaf subchain has two blue numbers, the number of

candidate conformations (before the arrow) and the number of candidates found to satisfy

the constrains (second).

A
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Figure B-1: Subchains in the default merge-tree of 1RST.
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Figure B-2: Subchains in the manual merge-tree of 1RST
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Figure B-3: Subchains in the merge-tree that was determined to be optimal for a low-
resolution search of 1RST (120' resolution for all bonds).
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Figure B-4: Subchains in the merge-tree that was determined to be optimal for a moderate-
resolution search of 1RST (40' resolution for backbone bonds and 120* resolu-
tion for sidechain bonds).
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