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Two important issues related to the use of remotely-pumped erbium-doped fiber am-
plifiers in optical distribution networks are analyzed. We investigate the optimal
allocation of gain and loss among the stages of a lumped amplifier chain, using the
concepts of a Nash solution and Pareto optimality. The propagation of optical chan-
nels along an erbium-doped fiber is derived from basic physical considerations, and
compared with the well-known Desurvire model. We demonstrate a simple method of
constructing bus distribution networks, but this approach is particularly sensitive to
the numerical values of the parameters. A second approach is then discussed, extend-
ing the analysis of Sun et al. from ab-initio principles to model the effect of detectors

(users) along a distribution network. Theoretical closed-form results indicate that the
number of optical receivers that can be supported using this scheme is at least two
orders of magnitude higher than without optical amplification. Finally, we analyze
the effect of dynamic perturbations in the power that is extracted at the receivers.
Though our focus is on bus networks, we also discuss tree distribution networks as
extensions of the basic models. Our results have implications on the architecture of
optical distribution networks.
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It was like that then, the island, thought Cam,
once more drawing her fingers through the waves.

She had never seen it from out at sea before.
It lay like that on the sea, did it, with a dent in the middle

and two sharp crags, and the sea swept in there,
and spread away for miles and miles on either side of the island.

It was very small; shaped something like a leaf stood on end.
So we took a little boat, she thought, beginning to tell herself

a story of adventure about escaping from a sinking ship.
But with the sea streaming through her fingers,

a spray of seaweed vanishing behind them,
she did not want to tell herself seriously a story;

it was the sense of adventure and escape that she wanted,
for she was thinking, as the boat sailed on,

how her father's anger about the point of the compass,
James's obstinacy about the compact, and her own anguish,

all had slipped, all had passed, all had streamed away.
What then came next? Where were they going?

-V. WOOLF, To the Lighthouse (1927)
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Chapter 1

Introduction

A second class of applications, no less important, is that of
distribution systems with a very large number of subscribers.

The use of optical amplifiers makes it possible to maintain the power
arriving at a subscriber's premises at sufficiently high levels

so as not to be degraded by the receiver noise.
The number of subscribers that can thus be served by a single laser

can be increased by anywhere from 1 to 3 orders of magnitude.

-A. YARIV, Optical Electronics in Modern Communications (1997)

The impact of erbium-doped fiber amplifiers (EDFAs) on lightwave communications

has been perhaps the most unprecedented, unexpected and significant technological

achievement of this decade. While single-mode silica glass fiber is far less lossy com-

pared to most other optically transparent media, the signal absorption coefficient is

still significant enough to prevent signal transmission for communications purposes

over more than a hundred or so kilometers: hardly enough to traverse the width of

the country. As noted by Desurvire [6], the performance of communications systems

(e.g. in Gbits/s-km) has been growing by a factor of ten every four years or so over the

last two decades-which is no small achievement considering the degree of maturity

in electromagnetics (e.g. radar) and communication theory already achieved.

The new technology has quickly found applications in a variety of formats. For

example, the degree of flexibility offered by wavelength-division multiplexed (WDM)

systems in terms of bandwidth is truly unprecedented, and solitons have demon-

strated error-free and penalty-free propagation for over a million kilometers. Com-



munications engineers often take the properties of erbium-doped fiber for granted in

designing networks. With maturing technology and increased applications, however,

we come across problems where a textbook approach isn't quite feasible, or when a

"traditional" layered approach to network design is far less robust. One such problem,

we feel, is that faced by designers of distribution networks.

The majority of the backbone long-haul networks in the US and in several other

countries use optical fiber as the transmission medium, and EDFAs play a major role

in extending the span of such channels. By aggregating traffic from a number of

sources, it's commercially feasible for network managers to provide careful control of

these few strands of fiber that traverse long distances, often along carefully demar-

cated paths, and sheltered from undesirable conditions (e.g. temperature fluctuations

that degrade the EDFA pump sources). The problem with distribution networks is

that, by definition, they serve a large number of users in a relatively short geographic

span. There are many more access points to the fiber, and far higher need for robust

equipment that is simple to maintain. Furthermore, a distribution network must use

its resources as efficiently as possible-one cannot aggregate the data traffic from a

household, for instance, to fill a fiber to capacity; nevertheless, the household cannot

be served with less than one fiber leading to its doorstep.

What can be shared in such a situation is the gain that is added to the optical

signals for long-distance propagation: a number of households (more generally, let's

call them "users") can be served on different WDM channels which are amplified

simultaneously at one EDFA. The cost of the EDFA maintenance is then shared

among these users.

In typical distribution networks, and more so in commercial neighborhoods where

real estate is at a premium, it's still not economically viable to set up little huts at

intervals along the fiber route to house the EDFAs and equip these huts with tem-

perature control and monitoring equipment. The component of EDFAs that requires

most attention is typically the (semiconductor laser diode) pump. The gain processes

Introduction 10



take place by the interaction of the pump and the signal beams in a specially doped

section of fiber. In the absence of a pump beam (which is at a specific wavelength),

the signal beams view this doped section as just another length of fiber. It's only

when a pump beam is present that the induced gain overcomes the natural loss due

to absorption.

The common EDFA package integrates the pump diode and the specially doped

section (erbium is the doping element), but there is no physical barrier to isolating

these two elements and using a section of undoped fiber to connect them. In fact, the

same section of signal-carrying single mode fiber (SMF) that couples to the erbium-

doped fiber (EDF) can be used to feed in the pump beam as well. This is called a

remotely-pumped amplifier, and vastly simplifies network design. The pump sources

can be conveniently located at the start of the distribution network, and sections

of EDF inserted along the length of the EDF where appropriate. Turning on the

pump diodes (e.g. at a network operations building) will result in gain at all the EDF

sections along the fiber, just as if an individual EDFA were installed at each EDF

location. Adjusting and monitoring the pump sources, not only from a maintenance

perspective but also to effectively manage the traffic flow in the network, is now less

of a problem.

It's not obvious that such a scheme will, in fact, work. The pump will itself be

absorbed by the SMF before it can reach the EDF sections to provide gain to the

signal. We need to investigate what fraction of the pump is unused after the first

stage: is it reasonable to expect more than one stage of remote amplification? And

how many users can be supported this way? The answers to these questions form

this report.

At the end of this chapter, we show that a passive bus distribution network cannot

support more than a handful of users. The rest of our discussion will analyze a simple

way to enhance this number by more than two orders of magnitude.

We begin our analysis by identifying the main constraint on the span of an am-
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plified bus distribution network: spontaneous emission noise that is inherent in the

process of amplification itself. The basic principles are well-known, and the major

portion of our discussion of noise in optical amplifier chains focuses on solving an

optimization problem from a mathematical perspective: how do we allocate the gains

among the various stages of an amplifier chain to maximize the signal-to-noise ratio

of the final stage? This is equivalent to extending the span of the network as much

as possible by reallocating gains and losses among the stages. The problem has been

solved under various conditions in the literature, and most textbooks [30, 6] mention

it. But in order to keep the discussions as general as possible (and fun!), and yet lose

no rigor in our analysis, we use game theory-specifically the remarkable theorems

of Nash with regard to cooperative games-to present a new approach to solving this

basic problem.

Nevertheless, that's not our goal-we'll show in the remainder of the report that

the optimum SNR solution is but one step in maximizing the number of users. We

demonstrate a method for constructing such bus networks, but the numerical exam-

ples in that section will clearly show that it's difficult to apply optimization arguments

to this method. In fact, some of its basic assumptions might be questioned, and so

we present a second approach, based on a first-principles derivation of the (rate)

equations that govern the entire system.

The reader who wishes to preview the results may read through the Conclusion

before the intervening chapters. We believe that the game-theory approach to op-

timizing SNR, the use of a spectral density function to model the receivers along

the network, and the perturbation theory results of the tap fraction are all original

contributions to the field. Needless to say, we're already considering extensions to

the models described here.

Introduction 12



1.1 Passive distribution bus 13

* t2 . ttN

Figure 1-1: A passive distribution bus consisting of M repeated sections. Section
i=1, 2,..., M is characterized by a tap t- and preceded by a section of single mode
fiber, SMF of length d.

1.1 Passive distribution bus

Since our goal is to highlight and quantify the advantages that amplification can bring

to optical distribution bus networks, we'll first discuss the passive distribution bus.

We assume that the input signal power is PO, and the individual users are situated

along this passive fiber at intervals of length d.

As the signal propagates down the fiber, it is attenuated (absorption coefficient

a4). At each receiver k, a fraction tk of the signal power is coupled out of the fiber

for detection. We call this a 'tap' and tk denotes the tap fraction of the kth receiver.

When we are free to set the tap fractions as we wish, each receiver taps no more

power than is necessary to perform (relatively) error-free demodulation of the optical

carrier. We describe this in more detail in the next chapter: for our purposes here, we

assume that this translates into a minimum detectable power Pmin, which is constant

for all receivers.

From Figure 1-1, the first tap fraction is

t = en (1.1)
Poe-a

1.1 Passive distribution bus 13



The remaining signal power (1 - t1 )eadPo propagates a further distance d before

encountering the second tap, which is set according to

t2 = - min (1.2)(1 - t) PO e-2 '(.

It's easy to see that there's a simple relationship between any two successive tap

fractions

tk cx' d (1.3)
bk1 (1 - tk S

Since these are, after all, tap fractions, they cannot exceed 1, and we reach the

limit on M, the number of receivers that can be supported, when

tM Pmin/PO > 1 (1.4)tM M-1 Pi

- k)e-Ma' d

k=1

and all previous tk < 1.

As typical numerical values, consider o' = 0.5 dB/km for a signal channel near

1550 nm in typical single-mode fiber (SMF). Let the input signal power PO be -5 dBm

and the minimum detection threshold (receiver sensitivity) Pmin be -35 dBm. We must

also account for the finite losses at each tap beyond the tap fraction (e.g. coupling

between sections of fiber). For example, if we assume a further loss of T = -0.5 dB at

each tap, which is about what can we expect with present day technology, then [1.4]

becomes

tM M-1Pmin/PO > 1 (1.5)

(ii(1 -- tk) TM-1 e-Mc'd
k=1

In this case, for d = 50 m, we have M = 30 whereas for d = 10 m, M = 38.

A distribution network that can support only 40 users has limited applications.

1.1 Passive distribution bus 14



1.1 Passive distribution bus 15

But we will see that it's possible to substantially increase the number of receivers

that can be supported when we use amplification to counteract the propagation loss

and tap fractions. Our discussion will show that this amplification can be achieved

in a way that makes it technologically feasible to implement amplified distribution

networks: by physically separating the elements that consume power and are suscep-

tible to degradation (the pump diodes) from the location along the network where

the process of amplification takes place (a section of erbium-doped fiber).



Chapter 2

Detection of optical signals

Occasional use has been made of certain gambling terms,
particularly with reference to poker.

While it seems safe to assume a passing familiarity with games such as chess,
I am assured that it is unreasonable to expect universal acquaintance

with the rules and terminology of poker.
Admittedly, this shook my preconceptions to the core,

but I will endeavour to sketch the general idea!

-A.J. JONES, Game Theory: Mathematical Models of Conflict (1980)

One of the most fundamental limitations on optical communication is imposed by the

accumulation of noise from the active elements (lasers, amplifiers, modulators) along

the light path. We consider a typical communication model where the channel is

described by an optical amplifier chain-alternating sections of optical amplifiers and

passive optical fiber, with a signal source (laser) at the transmitter end and a detector

(e.g. avalanche photo-diode) at the receiver. Electromagnetic waves are attenuated

in propagation through real media (such as optical fiber), and to compensate for this

loss, we must periodically amplify the signal along the path.

As will be discussed in the next chapter, this process of amplification adds noise-

spontaneous emission noise-at each amplifier stage. Along an amplifier chain, the

noise added by a particular amplifier is itself amplified by the remaining amplifiers

further along the chain. This phenomena of amplified spontaneous emission (ASE)

results in a decrease of the signal-to-noise ratio (SNR) with each increasing stage. At

a typical detector, a bit-error-rate (BER) threshold translates into a lower bound on



the SNR, and therefore, the length of such a optical amplifier chain is bounded, even

in the absence of nonlinearities, by ASE accumulation.

In the first section, we describe the process of detection of an optical signal using

a semiclassical model. The question of optimizing the gain of each amplifier along

such a chain so that we maximize the SNR is addressed in some detail in Section 2.2.

We show that under ideal conditions, the best performance is achieved for a single

gain stage, placed as far as possible from the detector. Of course, in any real scenario,

the gain of a single stage will be limited, and a sub-optimal implementation may be

necessary.

Using erbium-doped fibers both as an amplifying and a transmission medium, it is

possible to characterize the entire channel as a single gain element. Section 2.3 shows

that the noise performance of such a setup is worse than that of the one described

earlier. Nevertheless, this model will be of considerable importance to us in later

chapters.

2.1 Fundamentals of detection

The noise processes in optical communications have been studied extensively for

decades. For those who have some familiarity with this topic, we'd like to point

out at the start what we will not be concerned with in this report.

We won't refer to nonclassical (e.g. squeezed) light, though the noise properties

of such states are often very attractive [24]. Further, we'll consider only the simplest

form of optical amplifier-the traveling-wave (TW) optical amplifier model. Para-

metric and wave-mixing amplifiers are not discussed [12].

While we do mention, and account for, the noise induced by non-ideal detection,

the bulk of our argument will focus on the most fundamental (classical) sources of

noise in optical communication systems: shot noise and amplified spontaneous emis-

sion. What we're after is not a complete description of the noise generating processes

themselves, but rather an understanding of the way these processes interfere with

2.1 Fundamentals of detection 17



communications. The starting point for the major portion of our discussion will the

concept of a signal-to-noise ratio (SNR).

In discussing the basic physics of noise in optical amplification, there are several

levels of detail: we'll restrict ourselves to a semiclassical model and a simple derivation

of the signal-to-noise ratio in an optical amplifier chain. Our goal is to justify, as

simply as we can, the definition [2.7] as a physically-intuitive figure of merit for our

optimization problem. For a detailed quantum-mechanical treatment, see [15] or [3].

Our discussion in this section is limited to introducing the terminology and physi-

cal concepts that we'll use in this chapter. For a more complete discussion, the reader

is referred to the many excellent books that cover this subject in detail [29, 30, 6].

The reader who is willing to take [2.7] on faith may skip the following paragraphs.

The concept of a signal to noise ratio arises only in the context of a receiver

i.e. when the electromagnetic waves are converted to electrical impulses for signal

processing. Therefore, let's begin our survey by describing a standard detection

mechanism for optical signals.

2.1.1 Avalanche photodiode

An optical fiber link will typically terminate in a detector of some sort, and the

prototypical model is that of an avalanche photodiode (APD). An APD is a diode

sensitive to electromagnetic radiation in the optical frequency range that is operated

under reverse bias near its avalanche breakdown point. An optical field incident on an

APD will generate pairs of holes and electrons in the semiconductor material, which

drift towards opposite terminals of the device. In the region of the p-n junction, these

carriers generate additional carriers by impact ionization. This chain reaction leads

to a greater current flow than in a normal photodiode, and the multiplicative factor

g is called the avalanche gain of the photodiode.

Since impact ionization is a random process, we usually deal with the mean value

of the avalanche gain E{g} = g, and its second moment E{g2 }. A common approxi-

2.1 Fundamentals of detection 18



2.1 Fundamentals of detection 19

mation, and one we'll use in our discussion, is to write

E{g2 } Efg}2 (2.1)

where x is called the excess noise factor exponent of the APD and is typically a small

positive number (e.g. 10-1). We'll use this approximation in our expressions for a

particular contribution to the overall noise--that due to shot noise.

From an electronic circuits perspective, an APD is typically specified as an ideal

current source together with a bias resistor and a lumped capacitor to represent the

junction capacitance of the device. The current source in this case depends on the

incident optical power, and is non-zero even when there is no light incident on the

device. This residual contribution is called the 'dark current' of the APD.

As discussed in [30], if an optical signal of power P, is incident on a photodiode,

the mean-square value of the resulting current at the output of the photodetector is

2 ___ 2

<Zs2>= K m)(2.2)

2.1.2 Detection noise sources

For electrical engineers, the concept of shot noise is a familiar one: it arises from the

random nature of the processes of generation and flow of quanta of charge (electrons)

in a semiconductor. A similar concept holds for quanta of light (photons) as well.

The rate of incidence of photons on the surface of a detector approximately follows

Poisson statistics. An APD can be thought of as counting these incident photons,

and it's easy to see that the sample paths of such a counting process are characterized

by discontinuous jumps at the (random) arrival times of the photons. The resultant

current at the output of the APD has a power-spectral density associated with this

phenomena, and its integral over a relevant bandwidth (e.g. B, the electronic band-

width of the detector) yields a term that has the dimensions of power. This term,



called shot noise, is modeled in circuit terms by an equivalent noise generator, or a

source of alternating currents at a particular frequency.

Johnson (Nyquist, thermal) noise is used to describe voltage fluctuations across

a dissipative circuit element, e.g. the overall impedance of the detector, which has

a non-zero real part. The random motion of charge carriers sets up local charge

gradients and an AC voltage. The power dissipation of this voltage is modeled by a

voltage source in series with or a current source parallel to a resistor.

2.1.3 Spontaneous emission

This is an important source of noise in laser oscillators and amplifiers. This is mainly

an effect of the random de-excitation of the laser ions, which is a random process,

and is most consistently understood from quantum mechanics [29, 9].

Excited ions in the upper level of a laser medium are characterized by a finite

excited state lifetime (e.g. T = 10 ms for erbium-doped glass [6], and r = 3 ms

for a ruby laser [29]). When these ions spontaneously transition to the ground state,

they emit a photon. Unlike the case of stimulated transitions, these randomly emitted

photons have no coherence relationships with the incoming signal light. The collection

of these incoherent photons, themselves amplified by the remaining section of amplifier

and by successive amplifiers, forms an interfering optical signal which we call amplified

spontaneous emission (ASE) noise.

There are at least two prominent effects of spontaneous emission: the spectral

broadening of the laser output (the Schawlow-Townes linewidth [29]) and a funda-

mental limit on the signal-to-noise ratio achievable at the output of optical amplifiers.

We'll ignore the former, since in high bit-rate systems, the bandwidth of the optical

pulses typically dominate the source laser linewidth [18].

At the output of an optical (traveling-wave type) laser amplifier of gain G, the
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ASE power in a single mode of spectral bandwidth B, is [30]

K = p hv B 0 (G - 1) (2.3)

where p is the atomic inversion factor.

We note that the expression for p can be a complicated one: indeed, the system

of [5.34], [5.36] and [5.39] is in integral form, but we shall make the assumption of

constant p for high input pump power (which is of practical interest). Furthermore,

for the purposes of this chapter, the important property is an obvious one: that p is

strictly greater than 1.

Consider a chain of N optical amplifiers, each characterized by gain G, where the

input signal power to the chain PO. The first amplifier increases the signal power level

to G1 PO and also adds PA in terms of power to the propagating electromagnetic fields.

The sum of G 1PO and M 1 forms the input to the second amplifier: not only will this

stage add its own noise .A2, it will also amplify the noise of the preceding stage, G2 A1.

The total noise power increases monotonically with the number of amplifiers, and this

phenomenon along such an optical amplifier chain is known as amplified spontaneous

emission (ASE).

To refine our picture, consider the situation in Figure 2-1. Each gain element Gi

is followed by a loss element Li (an important special case is Li1/Gj). The signal

PN and ASE noise TMN terms at the output are

N

PN= 1JGkLkPO (2.4)
k=1

N N

A/N = HhvBOZ(Gk -1)Lk J G1L (2.5)
k=1 j=k+1

2.1.4 Signal to noise ratio

Next, we consider the terms that define the mean-squared current at the output of

an APD. The signal-to-noise ratio will involve only ratios of these quantities, and so
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our simple definition is reasonable.

Following the discussion in [6], identifying the signal and noise contributions in

the photocurrent is most convenient in terms of Be, the electronic bandwidth of the

APD, and B0 , the optical bandwidth of the signal, and it's useful to think in the

frequency domain in terms of power spectral densities that can be integrated over the

relevant bandwidth to yield a quantity that has the dimensions of power. We assume

that the detector has a uniform frequency response 1. In terms of the mean-square

components of i(t), the noise terms are

<ZN > <Zsh2 > + <sZs-ASE2 > + <ZASE-ASE2 > + <th >

2B
=-g ey 2BeISmt2mIN -- tg2rIS IN B0 (2.6)

2 2.22Be /( -_Be 4kB TeBe

B2 2 R

where T, is the effective temperature of the detector and R is its resistance. The

number of ASE modes is given by m (for single-mode EDFAs without a polarizer at

the output m = 2).

The four noise terms in [2.6] are: the shot noise due to the signal and the ASE, the

beat noise of the signal and ASE fields, the beat noise among the ASE components

themselves, and the thermal noise of the detector.

Typically, the noise current component due to ASE-ASE beat noise can be ne-

glected if the signal power PN is not allowed to drop too far. Optical filtering of the

broadband ASE noise may also help to cut down this component. For similar reasons,

the shot noise due to ASE can also be ignored.

The photodetector SNR, using [2.2] and [2.6] is

<is2

SNR <=< > (2.7)
< iN >

'For a model similar to the one we've discussed that specifically accounts for the filtering char-
acteristics of typical optical detectors, see [20] and [28].
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2.1.5 Bit error rate

In digital communication systems, the optical signals are usually amplitude modu-

lated ( on-off keyed, OOK). The random nature of the detection process leads to a

finite probability of error for any signal-processing decision rule. Though we will be

concerned only with [2.7], we provide a highly simplified discussion here of how that

definition is related to the more familiar concept of a bit error rate (BER).

For a simple binary hypothesis (HO, H 1) testing problem in a Bayesian frame-

work [17], we identify a sufficient statistic y and compute its distributions pyIH(yHo)

and pyIH(yH1) under each of the hypotheses. Choosing between Ho and H1 is equiv-

alent to comparing the likelihood ratio L(y) to a threshold y1

fi(y)=I-

L(y) = PI(YIH) < ' (2.8)
PYIH(yH) H(y)Ho

where 11(y) is our decision based on the statistic y. To form a measure of how "good"

our decision is, we define the following probabilities

PD = Pr{H(y)= H = H} (2.9)

PF = Pr{H(y)=Hi IH = Ho (2.10)

In optical communications, H 1 represents the presence of a pulse, and Ho the absence

of a pulse, and so the above terms refer to the probabilities of (successful) detection

and of 'false-alarm', respectively. Obviously, PF defines an error event, and its a

priori probability is Pr {H = Ho}.

There is a second type of error that can occur: we may declare ft(y) = Ho when,

in reality, H = H1. The probability of this event is 1 - PD, and its associated a priori

probability is Pr {H = H 1}.
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Combining the two independent cases, the overall probability of error is

Pe = PF Pr {H = Ho} + (1- PD) Prf{H = H1} (2.11)

There are many levels at which this formalism can be applied to optical signals.

We'll adopt one of the simplest, originally due to Personick [20]. The conditional

distributions in [2.8] are assumed to be Gaussian, and the Personick metric is the

Q-factor,

Q =>>(2.12)
iN22 N.2 >

where <i 0 > and <is1 > are the mean photocurrents associated with the signals under

the two hypotheses, and <ZN2> and <ZN 1 2> are the corresponding mean-squared

noise components (variances).

The decision threshold for this detection scheme is the weighted average of the

mean signal component of the photodetector output current,

2 s*>N 2><Zsi >
< < Z > + ZNO >< >(2.13)

i'2 *2

and the corresponding bit error rate, using the standard notation for Gaussian inte-

grals, is

1 I /x 2

BER = exp -- dx=-erfc (2.14)
22 rf /2

A lower BER implies that fewer errors occur over a given time interval, and a higher

quality-of-service (QoS) can be obtained. Usually, achieving a low BER implies a

trade-off in some other system resource, e.g. if the noise added grows monotonically

with increasing propagation distance, a BER threshold sets a limit on how far apart

the transmitter-receiver pair can be. Typical values of acceptable BER range from

10-12 to 10-9 for on-off keyed systems without error-correction coding.
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Personick's model is a rather crude one: the filtered photodetector output is better

expressed in terms of components along an orthonormal basis over the pulse interval

T [11]. The dimensionality of the space of finite energy signals with a bandwidth

B, and time spread T is about 2BOT + 1 which, for convenience, is assumed to be

even = 2M. The filtered noise process in each polarization at the photodetector over

the interval T can be written as ZU rtiq(t) where we take ni as i.i.d zero-mean

Gaussian with variance N0 /2. The signal can also be expanded in this orthonormal

basis as >j"f si(t). In units such that the photodetector has unit gain, the integral

of the photodetector output (without considering shot noise) is

T 2M 2

x = t (si + ni) Oj(t) d(2.15)

2M

= (si + ni) 2  (2.16)
i=1

Further accounting for the shot noise process, the photodiode generates electrons

following an inhomogeneous Poisson process with rate equal to the square of the field

envelope [11, 18]. The total number of electrons y generated over a bit time by the

photodiode follows a Laguerre distribution, and the conditional error probabilities

may then be evaluated explicitly.

We may approximate y as Gaussian, and a target error probability P6 = Q(q)

results in a necessary signal to noise ratio [11]

E/No~,q21±j)+ +q M(1+j(2.17)
2NO No

where N0 /2 = .A/2B0 from [2.3] is the power spectral density of this additive white

Gaussian noise (AWGN) source and 2E is the signal of the "on" pulses in OOK

modulation.

The probability of error (which is the same as the "bit error rate" BER) under
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SMF SMF SMF

S

L12 L2 LN

Figure 2-1: An amplifier chain consisting of N repeated sections. Section i
1, 2, ... , N is characterized by a gain G ;> 1 and followed by a loss (a section of
single mode fiber, SMF) Li < 1.

this assumption is

2E /No
P Q (2.18)

R /A(M(l+ 1/No) + v/M(1+1/No) + 4E/NO(1 + 1/2N)(o)

where terms such as MNo2 represent the ASE-ASE beat noise and 2ENO represents

the signal-ASE noise beat noise.

Both Personick's expression and the one given above are related to the physically

intuitive concept of the signal-to-noise ratio [2.7], which shall be our figure-of-merit.

2.2 Optimizing gain and placement

A typical optical bus network consists of alternating sections of amplifying and loss

elements. In particular, if we're using EDFAs as the gain elements, the length of the

doped sections and the doping concentration are the typical parameters that control

the gain. The length of the undoped section between EDFAs determines the loss;

and conversely, specifying the loss (e.g. in dB) uniquely determines the propagation

length in a given fiber. In this section, we investigate the conditions under which the

signal-to-noise ratio at the end of such an optical amplifier chain is maximized.
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We'll assume throughout this discussion that the effect of fiber nonlinearities can

be ignored. Furthermore, the amplification is linear in field amplitudes, and the noise

is additive and white as discussed in the previous section. The signal-to-noise ratio

(SNR) at any point along this amplifier chain-and in particular after the Nth stage-

is then completely determined by the individual gains and losses of these elements.

There are several ways that we can formulate our optimization problem: we consider

a very general approach that will prove quite powerful in subsequent more physically

intuitive reasonings. The optimization problem that we consider first is2

max SNR (G 1, G2 ,... ,GN, L 1 ,L 2 ,... ,LN)

N

subject to J7Gk= Gmax, G;> 1Vk,(219)
k=1
N

]7JLkz=Lmin, K0 < Lk<__IlVk.
k=1

In a given practical implementation, the constraints are frequently tighter-for

example, the entire domain [1, Gmax] may not be available to each G. We solve this

particular problem as indicative of the upper bound on the achievable, with the caveat

that this bound will probably be a loose one. Correspondingly, our solution to this

problem will be indicative of the correct design approach, rather than specify explicitly

what the various system parameters will be: the usefulness of the solution to this

problem in the network design context is to tell us how to improve performance in a

given situation, if possible, and what the upper bounds of such improvement methods

are. But the approach we take is quite general, and we expect other problems-besides

the one of immediate concern-can also be analyzed in a similar fashion. A particular

problem with a more direct physical interpretation is analyzed in Section 3.4 after we

have developed our model for amplification in erbium-doped fibers.

We'll first consider the case N = 2, when there are only two sections. As we've

2 See Appendix A for a discussion on the form of the constraints.
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seen in Section 2.1, the signal and ASE noise powers at the output of this two-element

chain are

P = G2 L2 G 1 L 1 Po (2.20)

A = p hvB,0 [(G1 - 1)L 1 G2 L2 + (G2 - 1)L2 ] (2.21)

In this section, we focus on optimization arguments, and the numerical values of

the various parameters are largely unimportant. We make the following assumption

-l] ~(2.22)
hv

so that the optical powers [2.20, 2.21] carry over directly to currents generated in

response to them by a photodiode of quantum efficiency r/.

Further, we assume that the thermal noise of the detector is dominated by either

the signal-ASE beat noise or the signal shot noise: this is the case of most practical

interest when a high-gain preamplifier is used at the detector, or when the optical

amplifier chain comprises of more than a few elements.

Using these assumptions, we can write the signal-to-noise ratio (SNR) function

defined by these two components

SNR (Gi, G2, L 1 ,L2 ) G2L2 GL(2.23)
2a K + (G1 - 1)L 1 G2L 2 + (G2 - 1)L 2

in terms of the following parameters

a = I hv Bo (2.24)

K = eB 0/2a

= 1/2prq (2.25)

The variables that appear in this continuous, real-valued function are defined over



the closed intervals on the real axis 1 < G. Gmaz, and Lmin <Li < 1. Usually,

Gmax is large-40 to 60 dB-and Lmin is correspondingly small ~~ 1/Gmar. The main

point is that these domains are all convex, compact subsetsof R1 .

Let us define the convex set S as the Cartesian product of these intervals

S = [1, Gmax] x [1, Gmax] x [Lmin, 1} x [Lmin, 1] (2.26)

Since S is closed and bounded on R 4 , by the Borel covering theorem [27, pages 64-66],

it is compact.

Now, we recall a useful concept [1, page 68],

Definition 1 (Quasi-concavity) A real-valued function f defined on a convex set

S in R is said to be quasi-concave if the set

{fs Is c S, f(s) > c}

is convex for all real numbers c.

Note that SNR(s) is a real number. As we will show later, SNR is monotonic in

each of G1, G2, L1 and L2. Therefore [1, page 68], the SNR is individually quasi-

concave in G1, G2, L 1 and L2 .

We model the selection of the optimum allocation-the optimum Gi and Li-as a

non-cooperative game (of dimension 4) in strategic form between the players GI, G2,

L, and L 2 . The extension to a cooperative game will be discussed later. The strategy

set for each player consists of the domain over which the corresponding variable (G1,

G2, L1 and L2 ) is defined in R1 . S as defined above is the strategy set for the game.

The reward function Pi is the same for all players, and is the signal-to-noise ratio

function, SNR.

We select a strategy for this game by allocating a real number for each of the

players to form a strategy vector s = {si, S2, S 3 , s4} C S. These four numbers si
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determine the SNR, and consequently the reward for each player. Our goal is to

optimize the reward: choose the optimum G and L, to maximize the SNR.

A strategy vector s c S can be diminished by deleting the ith strategy to form

sli e Sj, the space of all strategies except for that of player i. Similarly, a diminished

strategy vector may be augmented s-i\t to form the same vector as s but with a new

strategy t for player i.

Definition 2 (Reaction Function) The reaction function for player i is the point-

to-set mapping [101 ri : S_ -7 Si defined by

ri(si) = { si P(si\si = max Pi(s 1 \t) }
tEsi

which defines player Z's optimal strategy in reaction to a given set of strategies by the

other players.

The Cartesian product set of all such point-to-set mappings is called the reaction

function R(s) for the game. As we'll show shortly, the nature of the SNR function

implies that this is nonempty for every s c S.

The following theorem states conditions for the existence of a particularly impor-

tant s*, which is a fixed-point of R, i.e. s* E R(s*).

Theorem 1 (Nash Theorem [14, pages 267-268]) In a non-cooperative game of

dimension N, if the strategy sets Si are convex compact subsets of a finite-dimensional

space, and the reward functions Pi are continuous and individually quasi-concave, then

there exists a point s* c S such that for every i E N,

Pi(s*\s5 ) <; Pi(s*), for all si E Si.

To see this, note that our reward functions, each equal to the SNR function, are

individually quasi-concave. Therefore, the set of points t that maximize P(si\t) is

convex. Since the SNR function is continuous, and the domains of definition for G 1 ,
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G2, L 1 and L 2 are compact, t2 is compact and nonempty, and so, R is convex and

compact.

Since the reward functions (SNR) in continuous, and S is compact, it follows that

R is upper semi-continuous 3 . The following theorem guarantees the existence of a

fixed-point which is common to the ranges of each of the individual reaction functions.

Theorem 2 (Kakutani [13, page 256]) Let R be an upper semi-continuous point-

to-set mapping from a compact convex set S into itself such that for each s £ S, R(s)

is compact and convex. Then there exists a point s* C S (called the fixed point) such

that s* c R(s*).

This fixed point is a Nash equilibrium for the problem.

H

The definition of our game satisfies the conditions for the existence of a Nash

equilibrium: a strategy vector, consisting of picking a value in the appropriate domain

of definition, for each of G1, G2, L 1 and L 2 such that no player's SNR can be increased

by a unilateral strategy change. In other words, given the Nash equilibrium for our

problem, changing G or any of the other parameters individually will not improve

the SNR.

In the next section, we use a simple argument to construct a Nash equilibrium,

by examining the structure of the individual strategies and reaction functions. We'll

see that this point has some special properties that will also enable us to characterize

a different form of optimality: Pareto efficiency [14]. We can think of a strategy S

as formed by an allocation X of the gain and loss constraints, Gmax, Lmin among the

players so that the respective constraints are satisfied.

3Recall [1, page 68] that a point-to-set mapping

g(x) = arg max f(x, y)
yEY

is upper semi-continuous if f is continuous and Y is compact.
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Definition 3 (Pareto Efficiency) A feasible allocation X is said to be Pareto effi-

cient if there exists no other feasible allocation X' such that all individuals (weakly)

prefer X' to X and at least one individual strictly prefers X' to X.

In our particular case, the benefit functions for all the players are the same: to

acknowledge this explicitly, this is sometimes known as Pareto optimality.

2.2.1 Optimize over G 1 , G2

First, we consider the variation of SNR with respect to G while keeping the other

parameters fixed. This will allow us to define what the reaction function of G 1 might

be, for instance. To highlight the dependence on G1 ,

2a A1G12SNR(G1) B +i(2.27)
PO B1 + C1G1

where

A 1 = G2 L2 L 1  (2.28)

B 1 = K-G 2L 2 L 1 +(0 2A-1)L 2  (2.29)

C, = G2 L2 L 1  (2.30)

Note that SNR is a continuous and differentiable function of G1, and in particular,

since Li < 1,

2a dSNR(G1) _B=2 f>0 ifK>L1 L 2 (2.31)
Po dGJ) (Bi+ C1 G 1 )2  <0 if K<L 1 L 2 and G 1 = 1

We sketch SNR(G 1 ) for the two cases B 1 > 0 and B 1 < 0 as shown in Figure [2-2],

and we note that in the asymptotic limit G 1 -4o, the SNR approaches A 1 /0 1 = 1.

Note that K = 1/2py, where the inversion factor p ~ 1 and the photodiode

quantum efficiency q ~~ 1. Since min{Li, L 2 } is usually < 1, it's usually true that
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K < L2
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G2

Figure 2-2: The dependence of gain on the signal-to-noise ratio SNR(G 1 ) and
SNR(G 2) from [2.27]. As discussed in the text, the lower curve corresponds to most
practical situations. Note that if K > L2 , then K > L1L 2 since L, < 1.

K > L1L 2. In this case, a reasonable strategy for the gain of this first stage would

be to increase G, to the maximum possible, so that the SNR is maximized. This is

consistent with our definition of a Nash equilibrium. However, given that the total

gain that we can allocate (Gmax) is bounded, this isn't the full story, as we'll see in

the remainder of this section.

Using a similar argument, we consider the variation in SNR with G2 , which we

write

2a A2 G2SNR(G 2) =
PO B2 + C2 G 2

(2.32)

where

A 2 = GIL,L 2

B2 = K-L 2

C2 = (G1 - 1)L1L 2-+ L 2

(2.33)

(2.34)

(2.35)
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By forming the first derivative with respect to G2, we can easily show that

SNR(G2 ) is a monotonically increasing function, just as we observed for SNR(G 1).

2a d _ _B2 >0 ifK>L2  (2.36)
PO dG2 SNR( 2 ) (B2 + C2G2)2 <0 ifK<L2

The SNR sketch, shown in Figure [2-2, is of the same form as the one for G1.

2.2.2 Cooperative solution

We now focus on the case K > L2 . As we will see later, this is indeed the optimal

case. A similar argument to the one below, with complementary conclusions, will

help us choose the right (Ga, G2) for K < L2 -

In the absence of a constraint on G, a Nash equilibrium with respect to (GA, G2)

for constant (L 1 , L 2 ) would be the (non-cooperative) allocation (G - 00, G2 ->

oc). However, this isn't possible-but G and G2 can cooperate, and form a joint

strategy to optimize the SNR within the given constraints (i.e. find the Pareto optimal

solution.)

We solve this problem by using the concept of arbitration.

Definition 4 (Arbitration Procedure [19]) Given a payoff region P and a feasi-

ble status-quo allocation (uo, vo) E P, an arbitration procedure IF produces a payoff

pair (u*,v*) = 4' (P, (uo, vo)) which is fair to both players.

Note that the asymptotic limits for the two curves are different. In fact,

A2 _ G1L1  A12-G I=_ < I = A(2 .3 7 )
C2 (G1 - 1)L1 + I - C

Under the constraints of Gmax, let's consider the arbitrated allocation (G* =

Gmax, G* = 1), which is certainly Pareto superior to (G1 = 1,02 = Gmax). At this

allocation, the SNR is A 1 /C 1 . An increase AG in G2 cannot raise the SNR to more
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than A,/CI: the asymptotic limit for the SNR by increasing G2 is A 2 /C 2 < A 1/C 1 .

In fact, the constraint G1G2 =-Gma implies that G shall have to reduce, for small

AG, by approximately AG Gma, thereby reducing the SNR. This affects the reward

function for G2, and so moves away from Pareto optimality.

We make the following observations that result from this arbitration.

1. Consider any S E S. If the optimal {P 1 (G, sG*), P2 (G*, G*)} E S and there

exists another {P 1 (G 1 , G2), P2(C1 , C2)} c SG, then

1P (SG,{P 1 (G1 ,G 2 ),P 2 (G 1 ,G2 )}) = {P(G*G*), P2 (G*, G*)}

In words, the arbitration is independent of irrelevant alternatives.

2. The arbitration is independent of monotone order-preserving linear transforma-

tions to P1 or to P2 , the payoff regions for G and G2 respectively. This follows

from the definition of the reward function SNR.

By the Nash Theorem for cooperative games [19, page 138], the feasible Pareto

efficient arbitrated allocation we've found is unique. Alternatively, if we take our

status quo feasible point as (C1 = Gmax, G2 = 1), it follows from [2.31] and [2.36]

that no other point is Pareto optimal. Having satisfied the conditions for the Nash

theorem for cooperative games, we know that there exists exactly one Pareto optimal

point. Therefore, the arbitration we've constructed in the preceding paragraphs is

indeed the unique solution, in the Nash sense.

To summarize our argument in a different light, assuming Gmax is sufficiently

large (Gmax --> oo) that setting G1,2 = Gmax puts us in the asymptotic limits of either

curve, we note that

lim lim SNR(G 1 ,G 2 ) = L1 < 1 (2.38)
G 1- G2-+00

lim lim SNR(G 1 ,G 2 ) = 1 (2.39)
G2 +1 G1+oo
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Therefore, the allocation (GI = Gmaz, G2= 1) is the unique Pareto efficient Nash

solution of the cooperative game for fixed L 1 and L2 .

2.2.3 Optimize over L 1, L2

This section runs essentially parallel to the previous one: instead of G and G2, we

deal with L, and L2 . First, we consider the variation of SNR with respect to L 1 while

keeping the other parameters fixed. To highlight the dependence on L1,

SNR(L1) - aL L (2.40)
PA b, + c1L1

where

a, = G2 L2 G 1  (2.41)

b1 = K+(G2 - 1)L 2  (2.42)

C1 = (G1 - 1) G2 L2  (2.43)

Taking the derivative of the above with respect to L 1,

2atd SNR(L1) = (b+ L(2.44)
Ao dLi (bi + c1L1)2

which is always positive, and so, the SNR is a monotonically increasing function of

L, as shown in Figure [2-3].

Analysis of SNR versus L2 follows along exactly the same lines.

2aSNR(L2) a2L 2 (2.45)
Po b2 + c2 L2
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Figure 2-3: The loss dependence of signal-to-noise ratio SNR(L 1 ) and SNR(L 2)
from [2.40] and [2.45].

where

a 2 = G1L1 G2

b2 = K

C2 = (G1 - 1)L1G 2+ (G2-1)

(2.46)

(2.47)

(2.48)

Given the familiar nature of this functional relationship, it should come as no

surprise by now that, once again, we optimize the SNR in the limit L2 = 1. Taking

the derivative as before,

2cv d SNR(L2) = 2 2PO d L2 ( b2 +C2L2)2
(2.49)

As in the case of G and G2, we have to choose which of the two variables L1 or L2

---- ------- ,-
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to maximize. From the figure, it's easy to see that the following is true for Lmin 0,

lim lim SNR (LilL 2 )} =(2.50)
L1-->1 L2- K

lim lim SNR (LI, L2) K±---)(2.51)
L2>l LjO K + (G2 - 1) K

with equality in the last relation if and only if G2  1.

Therefore, the allocation (L 1 = 1, L2 = Lmin) is a Nash equilibrium (for fixed G

and G 2 ). In connection with an earlier statement on page 34, note that K > L2 is

indeed the usual case.

As a reminder, our definition of L is a number between 0 and 1. To relate this to

the length of fiber d1 ,2 that corresponds to this loss, note that di c exp(-L.). Our

Nash equilibrium allocation of (L 1 , L2 ) is to set d - 0, and d2 to take up the rest of

the propagation distance (as defined by Lmin).

2.2.4 Optimality

We assume that Gma, and Lmin can be distributed arbitrarily among the two stages:

in the standard terminology of economics, this is the assumption of free distribution

in an economy of goods. Then [14, page 171],

Theorem 3 In an economy that supports free distribution, if preferences are contin-

uous and strongly monotonic, then a feasible allocation X is Pareto efficient if and

only if there is no other feasible allocation X' that is strictly preferred by all players.

In the context of our game, the preferences are defined by the SNR function and

are the same for all players. As we've seen in the previous section, this function is

certainly continuous, and we've shown by taking the first derivative that it is strictly

monotonic in each of the variables [2.31, 2.36, 2.44, 2.49]. Therefore, each of the

individual preferences are strongly monotonic.

The Nash solution that we've found satisfies the criterion of the above theorem: as

we've shown, a shift away from that allocation strictly decreases the SNR for each of
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the players. Any other resulting allocation cannot be Pareto efficient: consequently,

the Nash solution {G= = max, G2 1, L = 1, L2  Lmim} is also Pareto optimal.

The Nash solution of the optimum allocation co-operative game for the

two-amplifier case with unsaturated gain is to arbitrate G = Gmax,

G2 = 1, and L 1 = 1, L2 = Lmin. No other feasible allocation is also

Pareto optimal. This implies that all the gain is inserted at the first

stage of this amplifier chain, and the distance between the two amplifier

stages should be set to zero: the propagation distance is entirely defined

by L2 .

We caution that, though a similar approach may be taken for more complicated

nonlinear amplification problems, the results are likely to be different.

2.2.5 Optical amplifier chains

We present a simple constructive proof to generalize our optimality argument. Con-

sider a chain of N amplifiers, each characterized by gain Gk, and each followed by

a loss element Lk. The problem can be formulated more precisely in terms of the

following definition,

Definition 5 (Reallocation) If X = {G1, G2,... , GN, L 1 , L 2 , ... , LN} is status

quo feasible allocation, the following mapping where X' is also feasible defines a real-

location.

X --+ X'=- {G'iG'2,...,G'N 71L2', - - L'

In our problem, feasibility is defined by the constraints in [2.19]. The signal and

ASE noise terms at the output of such a chain are

N

'P = PoJJGkLk (2.52)
k=1

N N

K = aZ(Gk -1)Ikn fJ GLj (2.53)
k=1 j=k+1
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It's obvious from the above expression that if we can reduce the overall noise

contribution from a subset N' < N of the amplifiers, the overall signal-to-noise ratio

improves. Consider N' = 2, and we write the ASE noise Al with a subscript N for

the number of stages,

N N

AN = aE(Gk-1)Lk j7 GLj
k=1 j=k+1

N

= {a(Gi - 1)L1 G2 L2 + o(G 2 - 1)L2 }H GkLk
k=3 ~

+MN-1,2} (2.54)

Recall that the arbitration between the first two stages in each of G and L is

independent of irrelevant alternatives. The optimal strategy for allocating the gains

and losses using A/N is also the Pareto optimal Nash solution, {G = Gmax, G2 =

1, L, = 1, L 2 = Lmin} formed by setting G and L2 to their respective limits. This

pair of amplifiers collapses to a single stage: G2 = 1 implies a no-gain, no-loss ideal

transmission line, and similarly L, = 1 implies the length of undoped fiber between

the last two amplifiers d1 2 = log L 1 = 0. In essence, we've concatenated the gains of

these two stages, and located this new amplifier at the left-most edge of the region

we're considering.

We recursively consider the combination of this resultant amplifier and the next

one and apply the same argument. At each stage, the two amplifiers collapse to a

single stage, located at the left-hand edge of the pair, with an increased gain at the

first stage and an increased propagation distance beyond the second amplifier stage.

Provided we don't run into a upper-bound limitation on the total gain allowed at

a single stage, this procedure can be repeated ad infinitum. This is undoubtedly a

Pareto optimal arbitration among the N players.

Similar to the Nash theorem for two-person games is the generalization to an

N-person cooperative game [26, pages 309-314]: this Pareto optimal arbitration is
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unique and is the Nash solution to the problem.

In a lumped amplifier chain modeled as a 2N-person cooperative game,

the unique Pareto optimal reallocation strategy that optimizes the SNR

starting with {G1, G2, . .. , GN, L 1, L 2 ,. . . , LN} is the Nash arbitration

solution:

N

{G' a Gk, G'2 1,..,G'N-

k=1 N (2.55)

{ ' 1,L'2 k ,-.,L' i
k=1

As a footnote, we point out that this isn't always implementable: the gain that

we can attain in a single stage is limited by the onset of non-linear optical effects,

and that will modify our SNR expressions considerably.

2.3 Lumped and distributed amplifiers

In a typical EDFA, the length of the erbium-doper fiber is of the order of a few meters,

and undoped fiber is used for the remainder of the distance between the source and

the destination. Consider a section of fiber perhaps three orders of magnitude longer,

but with a lighter doping concentration so that the net gain is the same. The same

extent of fiber serves as the gain medium and as the transmission medium. This is

called a distributed amplifier.

For our present discussion, we can view a distributed amplifier as a limiting case

of a lumped amplifier chain. If a total gain of Go is to be distributed among N stages,

one particular way of achieving this is to allocate to each stage a gain of G/N. As

N -> c, the gain of each stage goes to zero and so does the inter-amplifier spacing,

but the overall gain is, by definition, unchanged. In essence, we've taken a discrete

distribution over to its continuous equivalent, while preserving the "area under the

curve

2.3 Lurmped and distributed amplifiers 41



It's clear from our discussion that the SNR for such a system is worse than that for

any lumped amplifier chain (with a gain element preceding a lossy fiber). Consider

section k of length Lk in a chain of N amplifiers (N is large but finite). For this section,

we've shown that it's optimal to maintain a single amplifier of gain Gk = GO/N at

the front end of the fiber of length Lk. In particular, this arrangement is better than

spreading Gk out evenly over L (i.e. converting the kth section to a distributed

amplifier). This holds for all sections k= 1,2,... , N.

The same result is derived from a different perspective in [6, pages 121-136]. But

we will see that for our distribution network problem (maximizing the number of

users), this sub-optimal solution is the more natural one.
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Chapter 3

Characteristics of EDFAs

In constructing a deductive system
such as that contained in the present work,

there are two ... tasks that have to be ... performed.
On the one hand, we have to analyse existing mathematics

with a view to discovering what premises are employed,
and whether they are capable of reduction

to more fundamental premises.

-B. RUSSELL, Preface to Principia Mathematica (1910)

Optical (glass) fibers doped with lanthanides, e.g. erbium, can achieve lasing gain,

and can be pumped with relatively low levels of light to perform amplification of

optical signals. The first Erbium-doped fiber amplifiers (EDFAs) were developed by

researchers in the University of Southampton and the AT&T Bell Laboratories in the

late eighties. In this chapter, we cannot completely discuss the considerable research

activity in this field over the past decade, but instead focus on those aspects relevant

to applications of erbium-doped fibers in optical distribution networks.

To preview our development, we describe an unsaturated gain model, and the

evolution of the pump through an erbium-doped fiber. We analyze the dependence of

the signal gain as a function of the input pump power. As we aim to present analytical

derivations where possible, models which must inherently be evaluated numerically

in a given situation (e.g. high-gain EDFAs) are not discussed.



3.1 Rate Equations

An Er-doped fiber pumped by an optical beam can be described by the standard rate

equations for a two or three level laser system, depending on the method (and there-

fore the optical frequency) of pumping. The theoretical analysis of Er-doped fibers

is well known [6], and we will not discuss it in completeness here. Instead, the major

part of our development will deal with a simpler model for the evolution of pump and

signal beams derived from basic considerations and under certain simplifying con-

siderations. This will allow us to get some useful answers to the size-of-the-network

problem, without a great deal of symbolic manipulation

Firstly, we assume that the relevant laser transitions are homogeneously broad-

ened. In the absence of saturation, this assumption changes none of the predictions of

the main phenomena, e.g. ASE spectrum, as noted in [6]. Moreover, for the types of

calculations we carry out, the insight gained from analytical solutions possible with

this simplification is valuable.

On a related note, the ligand-field induced Stark effect in the laser system causes a

splitting of the each of the (two or three) levels into a number of manifolds. We assume

that because of thermalization, the populations within each individual manifold (for

an energy level of total angular momentum J, there are now J+1/2 energy sublevels)

follow Boltzmann's distribution. At thermal equilibrium, the same rate equations as

before are satisfied by the sum of the population densities of each level. This is conve-

nient because the overall pumping and emission rates can indeed be characterized by

experiments, whereas transitions between individual Stark sub-levels would require

further knowledge, and also question our assumption of homogeneous broadening.

3.1.1 Propagation of intensity

The concept of cross sections is an effective way to express the strength of atomic

transitions and the effect of applied electric fields. Consider a thin slab of erbium-

doped fiber of thickness Az and transverse area S along which the erbium ion density
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is p. Let M 1 and P2 be the fractional densities, or populations, of atoms in the

lower and upper levels of the atomic transition of interest. Assuming ions are neither

created nor lost, the total population PAf+M2 = M=A p.

When this slab of active medium is illuminated by an optical beam of power

P(z, t), each lower level atom behaves as if it has an effective area or cross section a

for power absorption. Similarly, each upper level atom is characterized by an effective

area o for emission. The change in power AP(z, t) for this optical wave upon passing

through this slab is ([23], pages 286-287)

A P(z, t) = [N2(z, t)c, - A41(z, t)oa] P(z, t) Az (3.1)

Before we consider the limiting case Az --+ 0, let's introduce two modifications to

the above model. As discussed in Desurvire [6, page 33], we can capture the effect

of incomplete overlap between the doped fiber core and the modal (electromagnetic

field) distribution of the optical power by a multiplicative confinement factor, F, < 1.

Secondly, let's normalize the populations to the laser ion density, so that, in terms

of Ni,2 = A 1 ,2 /A, the above equation becomes

OP8 (z, t) = ACF [(±ce + ca)N2 (z, t) - oI] P,(z, t) (3.2)

To simplify the notation, we introduce the absorption and emission coefficients,

OZSI= PF, 9a (3.3)

7 = p178 e (3.4)

so that the equation for optical propagation becomes

OP8 (z, t) = t(y 8 + as)N2 (z, t) - as] P,(z, t) (3.5)

We'll use this equation in a later chapter, generalizing to multiple optical beams:
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among the minor changes will be a wavelength dependency of the cross sections for the

various optical beams, which are usually called "channels" in a wavelength-division

multiplexing (WDM) scenario.

We now have a equation describing the evolution of an optical beam, whether it be

at the pump wavelength or at the signal frequencies, along an Er-doped fiber. Next,

we derive the corresponding equation that describes the change in the populations of

the two levels as a result of this optical power transfer.

3.1.2 Two-level system

Rate equations for laser systems are usually described in terms of pumping and tran-

sition rates, labeled R and W, which modify the population densities, N1 and N2 , of

the lower and upper atomic levels of Er-doped glass. In particular, using the standard

two-level model (29, pages 192-193], without direct pumping to the levels,

dNT2 _N 2dt -- N2 -(7,N2 - atNi) Wi (3.6)
dt t2

d N1 _N 1 N2= N+ 2+ (yN 2 - aN 1) Wi (3.7)
dt - t1  T

where r is the spontaneous lifetime of the upper state. We disregard the term de-

pendent on ti, which represents a further transition from the lower level to a ground

level: in our case, the lower level is itself the ground level. Also, r characterizes the

upper-to-lower level transition: therefore, t2 = 7.

The emission rate Wi(t), which we'll soon generalize to include a longitudinal co-

ordinate z, can be defined for a specific transition (e.g. the 2 -+ 1 laser transition in

Er-doped glass), in terms of the signal intensity 1(t) [29, page 193],

W21(t) = A8  1ss(t) g(As) (3.8)
8irn2 hv-r

where g(A 5 ) is the lineshape function. and F, is the multiplicative factor defined

3.1 Rate Equations 46



earlier. From fundamental considerations, the emission cross section is defined [23,

page 288],

g(A 8) =-87rn2T(e)s (3.9)As 2

resulting in the following definition for the emission rate

1472 (t)- o(A8)() = (A8) 1W21h(t) = ' S Sh(t)-= (s1 rSP'P(t) (3.10)
hu, S huS

using the relation between power and intensity in terms of the cross-section area S of

the fiber.

With this definition, the rate equation for the upper level population becomes

dIV2  N2  1 1_P (t) [7 sN 2 - a8N 1] (3.11)
dit T pS h,

Next, we can consider the effects of pulse propagation, and the longitudinal coor-

dinate z, on the above rate equations. First, the derivatives with respect to time t

are replaced with partial derivatives.

Let the electromagnetic energy density in the optical pulse be D(z, t), such that

the intensity of the pulse is

18 (z, t) = vg D(z, t) ~ -D(z, t) (3.12)
n

where we approximate the group velocity in Er-doped glass with the phase velocity.

In a short segment of length Az, the rate of change of stored energy is given by

the energy flux differential across this length, plus the rate of stimulated emission

within this segment [23, pages 363-365],

[D(z, t) A z] = 1T,(z, t) - 1 8(z + A z, t) + [-yN 2(z, t) - a5 N 1(z, t)] 1 8(z, t) A z

(3.13)
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In the limit Az -0, the above becomes

1.01S8(Zt)+ &I=(Z't) [ N 2(z, t) - a,Ni(z, t)] I(z, t) (3.14)
C at 09Z

We transform to moving coordinates defined by

t -± t - z/c (3.15)

and, in this reference frame that moves with the forward-traveling pulse,

1 0P8 (Z, t) = [yN 2 (z, t) - a, Ni(z, t)] P,5 (z, t) (3.16)
O-e P rz

where we've divided both sides of [3.14] by S to convert from intensity to optical

power.

Finally, using [3.11],

0N 2 (z, t) -N 2 (z, t) _ 1_ 1_Ps(z,t)
&t pjhv 5  Oz 5(3.17)at T p S fhv, Oz

These are essentially the same equations presented without derivation in [25], and

we'll use this model in a later chapter to analyze a particular form of the Er-doped

fiber amplifier. But first we present the model of Desurvire, derived using the same

development as above, with some further assumptions.

3.1.3 Desurvire's model

Two other simplifying assumptions enable us to obtain a closed-form solution to the

above coupled, non-linear equations. In particular, we assume that the Er-doing

profile is confined to a small central region of the fiber core, and that the sum of

all normalized signal+ amplified spontaneous emission (ASE) powers is dominated

by the normalized pump power at each fiber coordinate z. This is the unsaturated
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gain regime: once the signal input is reduced below a certain level, the EDFA gain is

independent of the signal input or output powers.

We do not repeat the analysis in [6]: the rate equations reduce to

dq3 q ,
=d-z --a>q (3.18)dc _ 1 [+ q(/

dzk -a IH[ (Ik q - 1)i Pk + 2qPoj -- OP/ (3.19)dz I + q 1 + rqp I + 77"

where p and q represent optical powers at the signal and pump wavelengths normalized

to the corresponding saturation power (of the order of magnitude of 1 mW for the

EDFA parameters considered in this chapter)

hvS
Psat(v) hr=S (3.20)

TPE[Je(V) + JaGv)]

The equivalent ASE powers are also normalized in terms of the optical bandwidth,

POk h-- B 0  (3.21)
Psat (Vk)

We've defined the pump and signal Er-doping absorption coefficients in terms of

the cross-section parameters,

p~Pap'p (3.22)

O/k PO 0akFk (3-23)

where Po is the peak value of the Er-doping concentration and the (power-dependent)

overlap integral factors, in terms of the power mode size Wk,p at the signal or pump
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wavelength, and the appropriate waveguide dimension ao, are

2

17 = 1 - exp - ao (3.24)

i = - exp[-Q0)](3.25)
(Wk2

Typically, the overlap factors are < 1 for ao < Wp,k.

In the above equations, the absorption coefficients a', account for fiber back-

ground loss at the respective frequencies of the signal and pump beams, and become

important for distributed amplifiers, where the length of the gain section can be

of the order of kilometers. , and qp are the ratios of the emission to absorption

cross-sections at the signal and pump wavelengths respectively.

The new rate equations are still nonlinear in the pump power, but for a given

fiber length, it is possible to derive a relationship between the input and output

pump powers as a function of the fiber signal gain. We shall use this in Section 3.3 to

obtain conditions under which the absorption of pump power at a given signal gain

is minimized.

3.2 Material characteristics

So far, we've talked about the basic physical processes that govern amplification in Er-

doped glass fibers. The absorption and emission cross-sections rae(A) and ce(A) figure

prominently in the rate equations, and as we've mentioned earlier, these parameters

are primarily of phenomenological origin-they have been measured and tabulated

for a range of wavelengths.

Our goal in this short section is to point out a few references in the literature

for the parameters that will appear repeatedly in our discussion. The experimental

determination of these parameters in a given situation is by no means a trivial ex-

ercise, and the references we cite will also provide typical numerical values for these
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parameters. These values will, in turn, enable us to get a numerical feel for the al-

gebraic (analytical) answers we get by studying the questions of network scale using

Er-doped fibers.

Absorption spectra can be measured directly from the fiber using a white light

source, and the results are usually quite accurate for large doping concentrations

(e.g. &5, > 10 dB/m). Part of our work will deal with fibers which are doped far

more lightly, and for these low concentration fibers, experimental procedures have to

account for the background loss. Measurements can be calibrated using spectral loss

measurements away from the 1.5 [m resonance as described in [4].

There are other approaches as discussed in [6], one of which is by using the

Fuchtbauer-Ladenburg formula, relating the peak cross sections to the effective line

widths of the absorption and emission line shapes. The emission and absorption

cross sections are linked in theory via McCumber's relation developed for phonon-

terminated optical masers [16]. Giles' method [8] measures the peak cross section

ratio by relating the small-signal gain to the loss coefficient at the signal wavelength.

This is called the cutback procedure: the curves for the small-signal gain and for the

loss coefficients are obtained by cutting small lengths of the fiber at the output end

and measuring the corresponding output signal power.

The saturation powers Psat at any wavelengths can be directly measured without

first having to find out the mode size, fluorescence lifetime and cross sections. The

general procedure is to measure the fiber transmission P0, 1(A)/P,(A) and fit the ex-

perimental points using an analytical model (e.g. the models we're about to describe).

The best fit yields a numerical value for Psat(A) as described in [6, pages 274-277].

There are several interesting aspects to this topic, and a considerable amount of

research has been carried out over the last decade, but we will refer the reader to [6]

for an overview and further sources in the literature.
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Figure 3-1: The ratio of normalized pump output to input q/qo (in dB) for the
following typical 1480 nm pump parameters: act= 1.32m', a k= 1.50 m- 1, 1 , =
0.23, ' /= 1 = 0

3.3 Pump propagation

We now investigate the evolution of the pump along an Er-doped fiber. In particular,

we look for the conditions under which the absorption of the pump can be neglected.

We'll see that complete pump transparency for a given signal gain Gk can be achieved

only for a certain fiber length 1opt and only in the limit of infinite input pump power,

However, even with finite, but large, input pump power, it's possible to achieve

substantial gain for relatively short fiber lengths. We demonstrate the relationship

between the input pump power and the resultant pump absorption for a desired signal

gain.

Returning to [3.18] and [3.19], we can write an equation for the output of the pump

power, qj, as a function of the input pump power, qo, the length of the Er-doped fiber,

I and the signal gain, Gk,
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q, = go exp -apt+P(1+ Ck)Cl exp 0+QlogeGk (3.26)

B D

where Eck= ak!,ap,k is the ratio of background to ionic absorption loss at the

respective wavelengths, and

C = E - + E - +(3.27)
1+ Ek I + 'qp

We note that the above relationship, in the limit of negligible background losses,

provides a correction to that stated in [2]. The C and D parameters defined in that

paper should read

C = a77s - (3.28)1 + Y,

D = apI+qp (3.29)
as 1 ± l+s

The relationship between output and input pump powers at a given signal gain

and for a particular length of Er-doped fiber is demonstrated in Figure 3-1 for a

typical set of parameters at a 1480 nm pump. Note that q,/qo < 1 with equality

implying that the pump is not attenuated.

Further, the required input pump power, qO, for a fiber of length 1 and gain Gk is

given by

e^st - 1
qo = b Oil _-1eA2I (3.30)
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Figure 3-2: The minimum normalized input pump required to achieve a certain gain,
G, as a function of the Er-doped fiber length, L, for the following typical 1480 nm
pump parameters: cep= 1.32 m-1,ak = 1.50 m--1,r77p= 0.23,r7k = 1.3, ck=0

where

A 1 = cppq+iCk±G7)
1 + 17k a L)

A2 = cY1±6p)+ 7l 7k (-rqEk-,G)
A2 = 'Tq(1k+( 1)+ -qp --

A2

cp(A 1 + A2 -a')

(3.31)

(3.32)

(3.33)
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From Figure 3-2, we note that in order to be able to achieve a certain level of gain

(from any length of Er-doped fiber), the normalized input pump power must exceed

a certain threshold, which can be found from [3.30] by setting dqo(l)/dl 111= 0 and

then using [3.30] again to find q0(l*).

3.3.1 Pump transparency

Dividing both sides of [3.26] by qO and setting the left-hand side equal to unity gives

a condition for complete pump transparency,

Bi = D log, Gk (3.34)

where B and D are defined in [3.26]. We can easily show that this corresponds to the

asymptotic limit of the curves in Figure 3-2, i.e. for the particular 1 that solves [3.34],

qo -± cc. To see this in the simplified case where we ignore background losses, we

follow Desurvire in simplifying [3.30] to

gO = apI Qk(3.35)
1 - exp[apl(Qk - 1)

where

Qk =1:; (1+ Gk)(3.36)

and for the condition of [3.34], Qk -+ 1 as 1 -+ i.

3.3.2 Finite input pump power

For a finite qO, we can solve the transcendental [3.35] for the gain that a particular

length of fiber achieves. The results of the numerical solution are plotted in Figure 3-3.

Note that for high input pump power, the gain increases exponentially (and lin-

early in dB) with the length of the Er-doped fiber: we expect this for situations where
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the pump "bleaches" the fiber absorption at that wavelength. For lower pumps, the

gain falls off at increased lengths because a significant portion of the pump is ab-

sorbed.

Starting with an available pump power budget, and a desired signal gain, we use

Figure 3-3 to get the desired length of Er-doped fiber, and then use Figure 3-1 to

evaluate the absorption in the pump for this length of fiber. For qO = 100, we see

that the feedthrough ratio is typically less than -0.3 dB for G<25 dB. Note that for

higher signal gain, our assumption of unsaturated gain is itself subject to revision.

While perfect pump transparency can't be achieved, the loss in the pump power,

with an input pump power qO = 100, can be limited. A plot of the dB loss in pump

power (called the feedthrough ratio, or FT) is plotted as a function of the signal gain

for a family of qo curves in Figure 3-4.

For high input pump powers, we can achieve high gain with small pump loss,

whereas to maintain the same level of pump loss (i.e. feedthrough ratio) for lower

pump input levels, the gain must be reduced.

For remotely pumped amplifier chains, the optimum length of an EDFA doesn't

follow the traditional definition. In particular, we don't wish to extract the maximum

power from the pump, which leads to the"optimum length" being defined as that at

which the output normalized pump power is (1+ n ')/(s - 77P) ~- 0(1).

Rather, we aim for the minimum length possible to achieve a certain amount of

gain, given that the input pump power is many times the saturation pump power.

This enables operation near the 1 -+ I point, and the gain that we can achieve for a

given length is given by the input pump power.

As Figure 3-3 shows, the gain at a particular fiber length converges quickly even

as the input pump power increases asymptotically, and this limit is indeed the well-

known G(oo) parameter.

Even with arbitrarily low signal powers, this (unsaturated) maximum EDFA gain

is limited by both amplifier self-saturation and laser oscillation due to ASE. The
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3.4 Alternate form of the SNR optimization problem

second limiting factor is particularly sensitive to backscattering from optical elements

e.g. in chains of optical amplifiers.

As the pump propagates along the undoped fiber, it is attenuated just as the

signal is, and therefore, the input pump to Er-doped sections further down the line

will be less than the original input pump power. Figure 3-4 shows that in order to

let a sufficient amount of the pump propagate to a subsequent Er-doped section, we

may have to reduce the gain by reducing the length of the Er-doped section so as not

to attenuate the signal too much.

This is particularly true of distribution networks, where the distance between

stations is small (e.g. 5-10 km), and a loss of 1-2 dB in the Er-doped section is

comparable to the propagation loss of the pump in the undoped region.

3.4 Alternate form of the SNR optimization prob-

lem

In Chapter 2 we derived the optimum allocation of gain and loss along a chain of opti-

cal amplifiers under quite general constraints [2.19] and the form of those constraints

was further discussed in Appendix A. In this section, we use the physical model of

the erbium-doped fiber amplifier that we have developed to show the equivalence be-

tween the problem that was solved earlier and one that has a more obvious physical

interpretation.

We consider again a chain of alternating gain and loss sections, as shown in Fig-

ure 3-5, but now specify that the chain of amplifiers is remotely pumped. The con-

straint that arises naturally in this formulation is that of limited pump power: we

assume that the total available normalized pump power (at the input to the chain) is

qO. We will show that the previous solution i.e. increase the gain G, of the first stage

to the maximum allowed, is still the optimum one.

As before, we do not discuss in this report what the maximum allowed gain is:
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3.4 Alternate form of the SNR optimization problem

d

---G1  T G2

Figure 3-5: A chain of two amplifiers G and G 2 connected by undoped fiber of length
d with excess loss T between the elements

typically, nonlinear effects in propagation and in amplification must be considered

for a complete treatment, which substantially complicates the problem. For our pur-

poses, it's sufficient to explicitly acknowledge the presence of such a constraint. Our

discussion will consider a chain of two amplifiers-the results can be easily extended

to more elements as was done in the earlier optimization problem.

We assume, naturally, that the pump is not fully exhausted in the first amplifier

itself, so that a second gain stage can be supported. Let the spacing between the

stages be d, and the excess loss between the stages be T (e.g. coupling between the

doped and undoped sections of fiber). Since the pump is not fully exhausted in the

first gain stage, the (normalized) pump power at the output of the first amplifier is

FT q0 where FT is the feedthrough ratio defined by [3.26] as

FT-= =C-7-BGF (3.37)
q0I

where both B and D are positive and 1 is the length of erbium-doped fiber that

provides G1 .

The pump that is input to the second stage, accounting for propagation and excess
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3.4 Alternate form of the SNR optimization problem

losses, is

q,= -d T FT qo (3.38)

= e- d Tc-Bl G, qo (3.39)
P

where a' is the background absorption coefficient at the pump wavelength in the

undoped sections of fiber.

We assume that this remaining pump is fully utilized at the second (and final)

stage to provide the maximum possible gain. From Figure 3-6, we see that the

relationship between the desired gain G and the minimum required (normalized)

pump power for such a gain to be possible (for any length of fiber) is linear. The

exact dependency is not important: we model the relationship as phenomenological

rather than carrying out tedious algebraic manipulation

q=aG + (3.40)

where, for the particular values used in Figure 3-6, a = 1.08 and /5 3.30. Physically,

/ represents the pump power necessary to overcome absorption in the erbium-doped

fiber at the signal wavelengths.

The gain that we can obtain at the second stage is

G2 = 1[PG qo - 3] (3.41)
a

and the product H = G1G2 used in the constraints of [2.19] is

11= G - [PGDfqo - /5] (3.42)
a 1
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3.4 Alternate form of the SNR optimization problem

Consider what happens if we decrease the gain of the first stage to

G' = G 1 - AG 1  (3.43)

where, for our analysis, AG 1 is small compared to G 1 . The pump power now available

to feed the second gain stage is

q = P(G1 - AGi)Dqo (3.44)

P GD AG,
PG( 1 - D4 )qo (3.45)

where we note, in passing, that

qfj (3.46)
G1 G

The gain that we can achieve with this pump power is

G'1 -PG D 1 - DA G O -,3(3.47)

Consider H' = G'G'

1 1 DAG,U' = -(G -AG)PGD(1D A G 3o-] (3.48)
Gl

~H-I- [(D+ 1)PGfDqo--] AG 1  (3.49)

where we neglect terms O(AG 2).

As typical numerical values, qG = 0(100), P = 0(0.1), D = 0.47, a 1.08 and

# = 3.3. Since G 1 > 1 by definition, we have shown that H' < H.

As discussed in Appendix A, reducing the product H - H' is suboptimal (as-

suming that the signal shot noise is not dominant) when both H and H' are feasible

alternatives. In physical terms, it's better to use as much of the pump as possible at
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3.4 Alternate form of the SNR optimization problem

the first stage. In the optimal case (if possible) G2 =1 and so

BI a'd 11/D

G [=ee (a +13) (3.50)

Subsequent optimization over d (again, if realizable) will result, as in Chapter 2, in

T e-'d -+ 1 i.e. d = 0, T = 1. Now we realize that if we can physically alter the

geometry of the problem to use length I of erbium-doped fiber to provide this new

gain G1, then

G, -(qo - 3) (3.51)
a

This result shows the generality of our earlier approach, which was derived inde-

pendently of the physical considerations of pumping in amplifier chains. Of course,

we have specifically disallowed any nonlinear effects, which will probably determine

the maximum gain allowed at any one stage.
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Figure 3-6: The minimum required (normalized) input pump power for a desired
gain, assuming that the EDFA length is optimized for minimum required pump
power. We use the following typical 1480 nm pump parameters: ax = 1.32 m-, a, =
1.50 m- 1,r = 0 .23 , rk = 1.3, cv = 0. The slope is 1.08 and the intercept on the
ordinate is 3.31 (calculations in MathematicaR)



Chapter 4

Parametric design of distribution networks

On the other hand, when we have decided upon our premises,
we have to build up again as much as may seem necessary

of the data previously analyzed,
and as many other consequences of our premises

as are of sufficient general interest to deserve statement.

-B. RUSSELL, Preface to Principia Mathematica (1910)

We use the results of the previous chapters to evaluate the capabilities of remotely-

pumped Er-doped fiber segments in an optical network. We consider distribution

networks with one signal and one co-propagating pump beam, and derive bounds on

the number of receivers that can be supported, for typical systems parameters. The

central assumption is that a single pump beam is input at the head of the distribution

bus, and once the utility of this pump is exhausted, we have reached the limit of our

network. It's simple to extend our results if a second pump beam is then injected.

In the first section, we discuss the numerical values of the signal-to-noise ratio

along a typical chain of optical amplifiers. In particular, we introduce the set of

parameters that describes the APD receiver, the representative of a user along this

optical network. Using these parameters, we discuss the bus distribution network,

and various extensions to this model, with varying degrees of realism and optimality.

Our goal is to evaluate how many receivers we can support using a bus distribution

network. As will be obvious in retrospect, these results are highly dependent on the

numerical values of the parameters.



4.1 Signal-to-noise ratio

We assume that a 1480 nm pump is input at one end of a chain of optical amplifiers

(see Figure 2-1), each of gain Gk, where a passive section of (single-mode) fiber

resulting in attenuation Lk connects amplifiers k and k + 1, or, in the final section,

the last amplifier to a detector.

As discussed earlier, if the input signal power is PO, the signal and ASE noise

powers at the output of such a chain (i.e. after the Nth element) are

N

PN=PJ7JGkLk (4.1)
k=1

N N

A/N = phv BOZE(Gk -- 1)Lk fJ GL (4.2)
k=1 jzk+l

and we will specifically account for a particular contribution to Lk in a subsequent

section. If the gain of each stage is uniform and balances the loss in the following

section of fiber i.e. Gk= 1/L -G then t N grows linearly with the number of

amplifiers N,

AN = Ithv Bo (1 - 1/G)N (4.3)

Such a "transparent bus distribution network" is not necessarily the optimum allo-

cation of gains and losses (as analyzed in earlier chapters) but is simple to analyze in

closed form-other situations may be analyzed numerically as appropriate.

We convert the optical powers given above to the photocurrents they generate

when incident upon an APD-the expected value and variance of this photocurrent

defines the signal-to-noise ratio. Using our simple definition of the Personick Q-factor,

or the more sophisticated [2.17], we can then obtain the corresponding probability of

error (i.e. bit error rate). Note that the variances of the photocurrent are not the

same for the mark and space symbols. The ASE-signal beat noise typically dominates
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in the presence of an optical pulse, but obviously not when a pulse is absent.

For purposes of our calculation, we assume a transparent bus distribution network

and that the following parameters describe the system,

Electronic bit rate (data) B 10 Gbits/s

Optical bandwidth B0  2 B

Receiver electronic bandwidth B, B

Inversion factor A 1

Detector quantum efficiency ri 0.8

APD avalanche gain 9 17

APD excess noise factor X 0

Effective receiver temperature Te 4 x 290 K

Detector Resistance R 50 Q

which yields a receiver sensitivity of about -28 dBm (see Figure 4-2).

Defining the various mean-square current components at the output of an APD,

we can evaluate the SNR as a function of the number of amplifiers, for a given signal

input power. This implies that we can also evaluate the BER, e.g. using Personick's

approximation that would be observed by a detector based on this APD after each

amplifier. The results are shown in Figure 4-1 for a single signal channel with input

power P0 = 0.02 mW as would be typical in such a network.

Alternatively, we can consider P0 as the variable of interest, and ask what the

required P0 is for a given SNR target: this defines the receiver sensitivity as shown

in Figure 4-2. For example, consider two cases: one with N = 10 amplifiers and the

second with N = 100. As the ASE noise increases with the number of amplifiers, we

would expect that a higher input signal power would be required to attain the same

SNR threshold in the second case.

As expected, the growing ASE component results in a higher Po requirement with

increasing numbers of amplifiers, and the increase is quite linear in dB for N > 10.

For the first few stages, the receiver thermal noise dominates the ASE components.
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Gain per stage = 10dB 0 =0.02 mW
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Figure 4-1: The signal-to-noise ratio (SNR) and Personick's approximation to the bit-
error rate (BER) as measured by an APD (p=17, x=0) as a function of the number
of repeated amplifiers. The gain of each stage is 10 dB and balances the attenuation
in the signal in traversing the next section of fiber. The input signal power is 0.02
mW
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Figure 4-2: The required incident power on the APD to maintain a target SNR

(receiver sensitivity) as a function of the number of repeated amplifiers for three
different conditions: the gain of each stage is 5 dB, 10 dB or 20 dB and in each case,
balances the attenuation in the signal in traversing the next section of fiber.
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4.2 Bus distribution 70

Plots such as this are common in the literature, and our use of them will be limited

to two simple interpretations. Along an amplifier chain for a particular G, this plot

tells us what the required signal level is for a sufficient SNR. Correspondingly, if

we specify the acceptable minimum receiver sensitivity, we can determine how many

stages of amplification are allowed i.e. the length of the network.

4.2 Bus distribution

It's convenient to relate the power that is incident on the APD to the signal power in

the optical fiber. In an optical bus network, the receivers stationed along the bus each

divert (or 'tap') a small fraction of the signal power e.g. by using a weakly-coupled

resonator. This tap fraction is then incident on the APD for that receiver station.

Since the gains and losses are balanced throughout the network, the power required

by Figure 4-2 incident on the APD, expressed as a fraction of the input signal power,

tells us what fraction of the signal power needs to be diverted from the bus to be

incident on the APD: this number is in fact the tap fraction. For example, the receiver

sensitivity after twenty amplifiers in a chain with G=10 dB is about -26 dBm. If the

input signal level is -5 dBm, we require a weakly-coupled resonator with a tap fraction

no smaller than -21 dB so that the SNR constraint is met.

Also, from an earlier chapter, we've seen that for a sufficiently high (normalized)

input pump power qO, the absorption of the pump in the amplifier can be neglected.

Nevertheless, there will be some loss resulting from the coupling between the fiber

and the tapping resonator etc. We assume, as we did in our analysis of the passive

distribution network, that at each stage, the pump suffers a loss T.

The propagation equation for the pump can be written as

N

qN - qoJ7JLkT (4-4)
k=1

where Lk is the absorption loss of the pump in the SMF sections between amplifiers.



We can write this as Lk= exp(--a dk) where d4 is the length of the SMF section.

For a 1480nm pump, a'c~ 0.5 dB/km, but is much higher (about 1.2 dB/km)

for a 980 nm pump. Since we neglect pump absorption in the EDF as compared

to T, the additional loss in the pump is almost entirely from these SMF sections, a

980 nm pump can travel a far shorter distance than a 1480 nm pump. At the same

time, we've seen from Figure 3-3 that beyond qO > 100, the gain doesn't increase

very much: we're already pretty close to the asymptotic limit of infinite qO. So the

additional pump power that we can inject with present-day 980 nm sources doesn't

really help very much in the early stages either.

Let's assume that the stages are evenly spaced: d= d, and so, the pump that is

input to the N + 1 th stage is

qN ~~qoTNNd (4.5)

which implies that

)n qN =N(lnT-c'd) (4.6)

In our parametric design of the network, we specify that the gain of each stage

should be G, and this implies, according to Figure 3-3 that, at any stage, we need a

minimum q so that this gain can be achieved. Therefore, defining 4 as the minimum

(normalized) pump power required to be able to provide gain G, the number of taps

that we can support is

N j ln(/qo)I(4.7)
In T - oi' d_

As a numerical example, assume G = 10 dB, and from Figure 3-3, j = 5. Suppose

that at the input to this chain, we're given qO = 175, and the attenuation at each stage

T = -0.5 dB. Assume that the inter-amplifier spacing d = 50 m, and a' =0.5 dB/km

for a 1480 nm pump. Then, 1k = 20 i.e. we can permit twenty taps along this fiber.
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There is another factor to consider: the signal gain at each stage is 10 dB of

which we expend a negligble fraction in propagation (assuming that a'= 0.5 dB/km)

between amplifiers. In order to maintain a constant signal level, we have to distribute

the 10 dB of signal gain at each tap among as many users as possible. We show

two of the many choices available in Figure 4-3: the first is rather too optimistic to

be of practical value, and we are quite generous in allowing for nonidealities in the

second case. A practical implementation in a wide variety of configurations should

have performance between that evaluated for our examples.

Assuming an ideal star distribution network at each tap (which we call a star

subnetwork), we have from Figure 4-2 that the minimum detectable power at the

twentieth tap is -26 dBm. For simplicity, we'll use the same figure as a conservative

estimate for each of the previous taps as well. Let us assume that the input signal

power is -5 dBm (which is about as high as we can let it be, if we want to avoid

the nonlinear regime, given that the signal level rises by 10 dB after amplification).

Then, we can support no more than 103.1 ~ 1250 receivers at this stage. Since there

are twenty stages in all, the theoretical upper limit on the total number of receivers

that can be supported with this set of parameters (using a uniform tap fraction) is

25000.

We can right away see that this is quite impractical. How does one divide a -5 dBm

signal among 1250 APDs at one tap location without incurring any losses? A slightly

better, but still quite optimistic, scenario is to assume that at each tap location, we

allocate the expendable gain (10 - 0.025 ~- 10 dB in the above example) by a simple

distribution tree (which we call a tree subnetwork) of branching factor b. In other

words, all the photodiodes are located at the terminal vertices of the tree, and at

each split, the tree opens up into b branches, with an excess loss of A (in dB) for

an imperfect split. Counting the tap from the bus as an edge, the graph is b-regular

except, of course, for its terminal vertices. At each node, therefore, we attenuate the

dropped signal power by (10 log10 b+ A) dB. We note that A can account for both
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Figure 4-3: A bus distribution network, comprised of a main bus with remotely-
pumped EDFAs, whose kth stage is shown, with input pump power qk1, and output
pump power qk. Gain Gk is followed by a length dk of undoped fiber resulting in
attenuation Lk and is further followed by an "excess loss" T. At each stage, a sub-
network is introduced to connect to users U: two examples are an ideal star and a
b-regular tree of a levels with an excess loss of A per stage.
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coupling and absorption losses e.g. a small but finite propagation distance between

successive levels of splitting, as would be necessary in any practical device.

Let Pd be the signal level (in dBm) that is tapped [i.e. input signal power (dBm) +

expendable gain (dB)] and Pmin the receiver sensitivity (in dBm). Then the number

of receivers we can support at each tap is bP where

P - Pmin -4.8

a = (4.8)10 loglo b + A]_

where ( is the excess loss suffered by the signal encountered at each tap (e.g. at a

WDM demux).

For example, if we assume b = 2, A=zl dB, Pd= +5 dBm, Pmin = -25 dBm,

and ( = -1 dBm, then a = 7. The number of receivers that we can support by

this seven-level (binary) tree is 27 = 128. Accounting for each of the taps, the total

number of receivers that can be supported is 20 x 128 = 2560 which is quite a bit more

conservative. Nevertheless, our assumptions have been quite simple, and a network

designer who wishes to use this method will be well-advised to consider any major

sources of nonideal behavior into account.

We consider a parametric approach to designing a distribution network

based on a fiber bus. We stipulate that the gain of each amplifier stage

is 10 dB, the inter-amplifier spacing is 5 km, and that the signal level at

each amplifier input remains constant. Consequently, 10 dB of the signal

is dropped at each tap and we can support twenty such taps before the

pump is too weak to provide another gain stage (of 10 dB gain).

At each tap location, the best we can do is to distribute the dropped

signal power by a lossless star subnetwork among about 1250 users. But

this is highly impractical: not only will any real distribution device have

some inherent loss, there are few applications of a distribution network

that requires 1250 users to be situated at exactly the same location.
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To remedy this, we consider a tree subnetwork to distribute the 10 dB

dropped signal power while allowing a modest loss at each splitting

stage. The total number of receivers that can be supported this way

(about 2500) is substantially increased over that possible with a pas-

sive (unamplified) bus distribution network, which can typically support

about 40 detectors under the same assumptions.

A more careful approach is to account for the different detection thresholds for

each of the eight stages, using Figure 4-2. This implies that we use different tap

fractions at each of the receivers, though this may not be practical in a commercial

implementation. Considering an ideal star subnetwork, the total number of users

across all the 20 stages is over 36000 (up from 25000) wheras for the tree subnetwork

approach, we can suport about 4200 users (up from 2560). The floor operation in

the above formulae can provide substantial advantage to the use of non-uniform taps

for the tree subnetwork approach: another level of splitting results in a factor of b

increase in the number of users for that subnetwork.

As we mentioned at the start of this chapter, this is essentially an ad-hoc approach

to designing a bus distribution network, with little attempt at overall optimization.

We've picked G = 10 dB merely as representative of the highest gain we can achieve

without entering the nonlinear regime, in accordance with our earlier results on the

optimum allocation of gains and losses in an optical amplifier chain. And we haven't

optimized the use of the pump power for all stages: in the above example, even though

the pump power after the twentieth stage is too weak to provide a gain of 10 dB,

it can nevertheless provide a somewhat smaller gain, and a still smaller gain at a

stage after that. Obviously, increasing the number of taps will increase the number

of receivers even if we cannot support a gain of 10 dB at each of the added stages.

What complicates optimization arguments applied directly to the above expres-

sions is the floor operation in several of the formulae. It's inviting to play games
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with the parameters, adjusting them a little one way or the other to squeeze in an

additional stage, but such a procedure offers no insight into what the upper limits of

bus distribution networks are.

Moreover, it's usually the case that each tap corresponds to only one receiver.

Assuming that successive receivers are 50-100 m apart, it isn't very reasonable to

stipulate 10 dB of gain and then have to couple out nearly all of the amplified signal

so that the signal doesn't encounter the (high-power) nonlinear regime. networks, the

inter-receiver spacing is quite a bit closer than 5 km.

What we would like is to add only enough gain to offset the propagation losses and

the tap fraction for a single receiver: both of these may be quite a bit less than 1 dB

for receivers spaced apart by 10-20 meters, as in a typical computer network. The

Desurvire model isn't quite suited to calculations of this sort, and we use instead the

model we've developed from first principles in the previous chapter. As we will see,

it's simplest to account for these taps explicitly while modeling the characteristics of

the entire network as one single distributed amplifier.

4.3 Two-level example

In this section, we apply the above formulation to determine the number of users

that a particular network architecture 1 can support. The system we consider is a

hybrid of the models discussed so far, and as shown in Figure 4-4, has two levels of

bus distribution lines from the access node to the end users. Amplifiers are present

only along the main bus, and the subsidiary buses are passive.

We represent the fraction of signal power tapped from the main bus to start the

Jth subsidiary bus by t1 and the fraction of signal power further tapped from that

subsidiary bus to feed an end user by ac. For signal power PO input at the access

node (i.e. the head of the distribution network), the signal and ASE powers after the

larchitecture due to V.W.S. Chan, MIT
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Figure 4-4: A two-level distribution network, comprised of a main bus with remotely-
pumped EDFAs and passive subsidiary buses at regular intervals of d km. End users
are situated along the subsidiary buses at regular intervals of 1 km. The signal and
pump beams are input in the main bus at the top of the network, and the network is
assumed to be unidirectional for purposes of analysis.
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Nth stage are

N

P = 0 fl(1 - tk)(1 -)GkLk (4.9)
k=1

N N

AN = PhvBo((1 - tk)(Gk--1)Lk J7 (1 - tj)GL (4.10)
k=1 j=k+1

We assume for our model that the taps come after the gain and the (-loss stage, but

before the L attenuation so that the corresponding fractions that enter each of the

pair of Nth-stage passive subsidiary buses are

-I tN \i
PN 1 NII/1'LN (4.11)2 1-tN/

nN I AN tN 1 N (4-12)
2 (1 - tN)

For a "transparent" distribution network, we use only enough amplification to

overcome the attenuation in the signal,

(1 - tk)Gkk=1 Vk=1,2,...,N (4.13)

and dropping the indices from Gk and Lk and generalizing the index N to the more

conventional i, the above expressions simplify to

pi = PoGt (4.14)

ni = phv B 0N(G - 1)tj (4.15)

Equation [4.7] tells us how many subsidiary buses we can support from the main

bus. If d is the spacing between two consecutive subsidiary buses (assumed uniform),

and each gain stage provides uniform gain G, then the transparency condition dictates

1 a
t = 1- -G'e-S (4.16)

G
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where a' is the background absorption coefficient at the signal wavelength. From this

equation, the (uniform) tap fraction can be determined.

Following the notation of Figure 4-4, let the inter-user spacing along a subsidiary

bus be 1, and the minimum detectable power for any user along the ith subsidiary bus

(dictated by [4.15]) be Pi. Along this simple passive distribution bus, we reach the

limit on the number of pairs of users fn when

1 r 1
2 Pi A [Cpe~(1 - 2&e) (4.17)

where pi is obtained from [4.14].

Rewriting the above expression, the total numbers of users that can be supported

per "d-tap" along the main bus (recognizing that there are two end users per "i-tap",

along the subsidiary bus and two subsidiary buses per d-tap) is

log 4 P

A (4.18)

log 1 - 4 P - a' 1

At each end user along the ith, the tap fraction is

a- i(4.19)

since there are two subsidiary buses for each tap (contributing p in total power) along

the main line where i is determined by the signal-to-noise ratio criterion.

If we are to account for an excess loss J per i-tap along the subsidiary bus, anal-

ogous to the role of T in [4.4], [4.17] becomes

1r 12P = -pi e- (I - 2ai)6 (4.20)
2 1L
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and therefore, the number of users per tap [4.18] is

log 4-P

Mi - Pi A (4.21)

log (I- 4 t) -a'1+logS 1

4.3.1 Numerical calculations

We use the same parameters to describe the system as tabulated earlier. We assume

that the normalized input pump power q0 is 250 and the input signal power Po=

0.1 mW, and we use the results of the previous chapter to approximate Q, the required

normalized input pump power to achieve a certain desired gain. We account for excess

losses using T = -1.5 dB, 10 log1 o S = -0.5 dB and assume (to be compensated for

by a slight increase in the appropriate G. We illustrate the results of numerical

evaluation for two particular instances.

It is simple to modify the calculations to take the effect (i.e. added noise power

resulting in a slightly higher detection thereshold) of ( explicitly into account, but

it's effect for the number of d-taps t ~ 10 is quite small anyway.

Since we assume that the subsidiary buses are equally spaced along the main bus,

it's simple to calculate the ASE power at each of the d-taps (along the main bus). The

number of d-taps is determined by the given input pump power. Once we know the

ASE power that is tapped into any given subsidiary bus, we calculate the minimum

signal power that is necessary to meet a simple SNR test at a bit-rate of 10 Gbits/s:

we use the approximate from of Personick's Q-factor test as discussed earlier.

For d = 50 meters and 1 = 10 meters, the following table represents the total num-

ber of users that can be supported (using a uniform tap fraction). Subsidiary buses

farther from the access node suffer from a lower SNR and therefore, the corresponding

Mi is lower.
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& t N hi

gain (dB) req. pump # d-taps # total users tap fraction

5 4 14 1128 0.665

10 5 13 1000 0.894

15 7 12 928 0.967

20 8 12 912 0.989

25 9 11 868 0.997

For such short inter-user and inter-bus distances, the critical parameter in these

calculations is the excess loss per stage (both in the main bus and in the subsidiary

buses). We find that it should be possible to support about a thousand users with such

a distribution tree, but caution that the calculations may need to be adapted to fit

particular situations, e.g. if the signal has already suffered ASE accumulation before

the access node (as is likely). The MATLAB source code provided in Appendix C

may be modified accordingly.

Note that for spatially compact networks such as the one considered here, it's

advantageous to keep the gain per stage as low as possible to minimize the SNR

degradation due to amplified spontaneous emission. Of course, if the inter-user spac-

ing is to be increased, it may become necessary to use higher levels of amplification

so that the tap fraction (which we can think of as extracting the component of the

gain added in excess of propagation losses) remains positive.

Also, this agrees with our analysis of the optimum allocation of gains and losses

along an optical amplifier chain: recall that our solution was to set G2 = G3 - - - =

GN = 1 so that the gain stage G, is as far away from the detector as possible. If G,

represents the gain that is encountered before the start of the distribution network

(e.g. in the long-haul backbone network), the number of users that can be supported

is indeed higher when we lower G = G2= G 3 = - = GN to the minimum necessary

to overcome attenuation and simultaneously avoid the nonlinear regime.
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We assume uniform G for each of the stages. While it is true that we

want to pick G as low as possible, the floor operation in the formulae

involves some searching for the optimum G. For any particular value of

G that we choose:

1. Find the minimum normalized input power jo needed to generate

G for the particular EDF characteristics, which is given by

do = min qo
L

where qO is given by [3.30]. In some situations, this step may be

simplified e.g. by assuming 4o = qo/10.

2. The number of d-taps that are allowed is given by [4.7]

3. The pair of equations [4.14] and [4.15], with pi as the variable

of interest, results in Pi, the minimum tapped signal power for

the %th subsidiary bus, that satisfies an appropriate SNR or BER

constraint.

4. Using this value of Pi and pi as given by [4.14], we calculate the

number of users per d-tap from [4.21].

For an upstream signal input at the end users in Figure 4-4, we typically require

that the headroom at the head (access node of the feeder network) be sufficient

to support a subsequent downstream distribution network. This implies that we

need to overcome the worst-case loss Lmax 1/Mi + (Mi/4) (a'l + 6) in the signal,

e.g. by inserting an amplifier of the appropriate gain G = 1/Lmax just before the d-

tap. In other respects, our unsaturated amplifier model is reciprocal, but a practical

implementation will need to carefully consider additional elements as appropriate.
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Chapter 5

Distributed EDFAs and bus networks

If I wanted to fell a tree
I would not start with tearing the leaves

and then breaking the twigs and cutting the branches,
but apply the axe to the lowest part

-N.C. CHAUDHURI, Three Horsemen of the New Apocalypse (1997)

This chapter discusses a particular form of the erbium-doped fiber amplifier that

is more appropriate, at least from an analytical viewpoint, to a bus distribution

network where a single user is served at each drop point. From earlier discussions

on the minimum detectable signal power, we know that the fraction of signal power

in the bus that needs to be diverted to a detector, the "tap fraction" can be quite

small. For example, if the minimum required signal power for the desired SNR (or

BER as appropriate) is -25 dBm, and if the signal power along the distribution bus

is -5 dBm, the necessary tap fraction is -20 dB.

At each tap along the bus, the signal level drops by the tap fraction, which we

can offset by amplifying the signal before the next tap so that the signal power

remains constant. But when we service only one receiver per tap, the gain necessary

to overcome this drop is small compared to or of the same magnitude as the gain

necessary to overcome propagation losses. It's reasonable to consider an extended

section of lightly-doped fiber, which simultaneously serves as the transmission and

the gain medium. We model the entire bus distribution line as a single gain Er-doped

fiber (amplifier), with the gain spread out along the entire length, hence the name



'distributed' EDFA. This may, of course, model a real, physical system (distributed

EDFAs do exist) but also serves as a mean-field approximation for the case of lumped

gain elements. Since the inter-stage gain, whether lumped or distributed, is small, we

expect the approximation to be a good one.

The rate equations which we've derived in an earlier chapter, and are also used

in [25], describe the evolution of the population density of the excited state in a two-

level laser system and of the optical power along the Er-doped fiber. We characterize

the taps along the distribution bus by a (spatial) density function in the optical

power evolution equations: the fraction of the optical power (in each channel) that is

diverted away from the bus to a receiver. To keep our equations simple, we'll consider

a two-level model, with pumping at 1480 nm (background loss coefficient 0.5 dB/km).

This makes sense from a practical standpoint-the background absorption coefficient

at 980 nm is significantly higher (1.2 dB/km), and for distribution spans in the tens

of kilometers, this additional loss can be quite costly.

As we will see, the fraction of the optical power that is tapped at successive

detectors need not be constant. Since increased propagation length implies a greater

total gain, and hence greater ASE, we need greater signal levels incident on the

detector to maintain the same BER. If we assume that the signal level in the bus is

maintained constant, this means the tap fractions form an increasing sequence. This

observation will allow us to form a bound on the total number of receiver stations

that can be supported.

5.1 Rate equations

In an earlier chapter, we've derived the basic forms of the rate equations that we'll

use. We consider a generalization of that model to include more than one optical

beam traversing the erbium-doped fiber (EDF).

Consider a section of EDF of length L along which N optical channels propagate.

Channel k, at wavelength Ak carries optical power hvkPk(z, t) with a confinement
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factor 'k. Let the fraction of atoms in the excited state be N 2 (z, t). The rate equation

that describes the change in the upper level population is

9N2 (z, t) N 2 (z, t) 14N&Pk (z, t) (5.1)
at T 'pS z

where T is the spontaneous lifetime of the upper level, p is the number density of

active Er atoms and S is the fiber core cross section.

We define a 'tap function', tk(z) which represents the fraction of power in channel

k at distance z from the input end of the fiber that would be tapped (i.e. diverted

from the transmission bus to a receiver) if a receiver were to be stationed there. For

a total of M receiver stations along the fiber,

M

fk(z) = > 6(z - zm)Ik(m) tk(z) (5.2)
m=1

represents the taps along the entire EDF length for channel k, where I(m) = {1,0}

is a vector of indicator variables representing whether a fraction tk(zm) of channel k

is tapped at z = zm or not.

Each of the m receivers is characterized by an N-vector of indicator variables,

[Ii(m),12, (M), ... , IN(m)]T, representing whether channel k is tapped or not. While

this INxM matrix is useful for simulations of channel loading and dynamics, the case

of I(m) =- 1 represents the scenario a where each channel is tapped at each receiver.

The vector [Zm] for m = 1, 2,. . . , M represents the z coordinate of each of the taps.

This allows us to consider arbitrary spacing of the taps, particularly for numerical

simulations, but we shall first consider the case

M
Zm =-L m = 1,2,... ,M (5.3)

M

representing M taps that are uniformly spaced by L/M.

As before, the propagation equation for the power in any channel (including the
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pump) can be written as

0P 'Z t) =Pk(z, 0_Uk [ (k + aEk)N 2(Z, 0 -- a- - -fk(Z)I Pk(z,t) (5.4)
Oz

where

ak -- P]PkOa(Ak) (5.5)

7k = PrkTe(Ak) (5.6)

= ?7k §Yk (5.7)

are the absorption and emission coefficients as defined earlier, and a' is the back-

ground loss coefficient at Ak, and Uk ±1 indicates forward or backward propagation

relative to the z axis.

The meaning of the definition [5.2] now becomes clear. Specifically, consider the

case of uniformly spaced taps. By integrating [5.4] in a small neighborhood Az of

z = m*L/M,

L "M 2 $L
APk(Zt) .1z*L = ...---Pk(m*,t)f z-Mtk (z) dz (5.8)

M M Im. L AzM

M 2

= .. . -Pkm* , t kM * L)(5.9)
M ) M

which represents the fraction of the power in channel k that is dropped (by a power

splitter) at z = m*L/M.

We require that T, pS are independent of z, and assume that we can exchange

the order of operations d/dt and f dzi. In doing so, we specifically disallow a z-

dependence of p, but still allow non-uniform taps. Integrating [5.1] over the total

'See Appendix B for a discussion of the validity of this.
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length of the EDF from z = 0 to L,

(d±}) jLNtN

+- N2(z, t) dz = E- Put (Ak,t)-- Pin (Ak, t) (5.10)
dt T 0 PSk=1

We define the path-averaged upper level fraction, N2(t), as

N 2 (t) =j N 2(z, t) dz (5.11)

and the path-averaged exponential gain coefficient (for channel k), gk(t), as

gk(t)=-log Pt(Ak7t) (5.12)
L Pin (Ak,t)

Therefore, [5.10] can be rewritten as

d 1I1 N

+ ] 2 (t) = ->L Pin(Ak, t)[ exp(j(t)L) - 1] (5.13)
dt TLC k=1I

where the saturation parameter ( = pS/r is defined as the number density of Er

atoms divided by the spontaneous lifetime in the upper level [25].

Also, from [5.4] after dividing both sides by Pk(z, t) and integrating over the total

length of the EDF from z = 0 to L,

1 1 L 1  O k (Z t) =N + ak)N2(t) - 6  
(5.14)

where we define

&k =ak +a' + 1 tk(Zm) (5.15)
m=1

Recognizing that the left-hand side of [5.14] is given by [5.12], the average expo-
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nential gain constant can be written as

gk(t) ('Yk-Ia'k)N2-(t)-ck (5.16)

P N2(t) - Gk (5.17)
P at (Ak

where the saturation power (expressed in photons) is

PS _ __

Psat (Ak) TkOk k k(5.18)
T(-/k -+- k) 7k + ak

Combining [5.13] and [5.17], we can describe the time-evolution of the upper-level

fraction, given the input channel powers.

d 1 1 NA-

(- + -T N2(t) =T Pinf(Akt) exp [N2(t) - 6k)L -
k=1 Psat (Ak)

(5.19)

Once the above ordinary differential equation for N 2 (t) is solved, we can obtain the

path-averaged gain for each channel from [5.17], and thereby determine the output

powers for each channel.

Given the non-algebraic nature of the above equation, finding an explicit solution

for the dynamics of N 2 (t) usually has to be carried out using numerical techniques. In

the next section, we focus on a special case of [5.19] which will yield some important

insights.

5.2 Steady state

We consider the special case of [5.19] when all the involved quantities are independent

of time. By definition, this is the steady-state solution, and N2 satisfies a transcen-
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dental equation

A 2 = L(E Pin(Ak)exp [(A)AN2--cik) L] - 1} (5.20)

Since we're mainly concerned with the limitations on the size of the distribution

network, rather than its dynamics, we'll assume the steady state conditions for the

remainder of the chapter.

5.3 Uniform taps

To simplify the following analysis, we assume uniform and uniformly spaced taps

along the bus, but allow for differences in the taps for the signal and the pump.

t (mjjj)- tsP (5.21)

If we further assume, as we did in an earlier chapter, that the pump power domi-

nates the signal powers, then we can reduce the right-hand side of [5.20] to a single

contribution: from the pump,

N2=- Pin{(Ap) exp [ -P-() 2 - ,L] -I(5.22)

where, depending upon the physical geometry of the network,

ap + a' + It, if pump is tapped along with the signal
ap PL(5.23)

a,± + aotherwise

The first definition is applicable if power splitters with non-zero drop response at

the pump wavelength (e.g. Y-junctions, or weakly coupled resonant structures) are

used to tap a fraction of the signal power. Instead, if a bandpass WDM mux-demux is
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used to separate the pump before the tap, the second definition applies. The solution

of the simple transcendental equation, [5.22], enables characterization of each of the

channel gains, using [5.17].

Consider the case of perfectly uniform signal channels, or equivalently, only one

signal channel, indexed by s rather than k. The transparency pump power defines

unity net gain for the signal channel, or equivalently, the (steady-state) path-averaged

exponential gain constant at the signal wavelength f, = 0. We can derive a simple

condition on the required N 2 , using [5.17],

N2 = as (5.24)

as + a,+ MtS/L

S + as(5.25)

Since this represents the fraction (< 1) of atoms in the excited state, the following

inequality must be satisfied:

- 4(5.26)
L -- t ts

which defines a bound on the number of stations per unit length that can be supported

for a given tap fraction.

Furthermore, the pump power required to achieve transparency can be found by

substituting [5.24] into [5.22], and using [5.18],

(-yp + ap) (a, + a', + Mt, / L) /(-y, + a)
Pin(Ap)/Psat(Ap) = L Cm + s)( a' M/LC aP)L(5.27)

1 - exp [ s-(Y- a5+-aItapM

where 'p.tap {1, 0} is an indicator variable that takes on values depending on

whether the pump is tapped along with the signal or not. This equation can also be

used to define the maximum serviced length of Er-doped fiber L, for a given pump

input power, Pi,(A).

Equations [5.26] and [5.27] can be combined to describe a bound on the number
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of receivers that can be supported. We assume the condition in [5.26] to be satisfied

with equality, and substitute in [5.27] with the assumption that L is large so that the

denominator of [5.27] 1,

L Pin(Ap)/Psat( )
+p±j(5.28)

and consequently,

M Pin(A)/Psat(A) 7 s4) (5.29)
ts (7P + a,

The validity of this approximation depends, of course, on the numerical values of

the various parameters. We'll see that for a representative set of numerical values,

this is indeed valid. Using the same approximation in [5.27], if we are given L or M,

we can solve for the other

L = -±c4 -{(;;2;) Pini(AP) Mt} (5.30)

1 r/y7+as PP(A-)
M r= 1K +a)P_- (a, + a')L (5.31)

ts 7, + a, sat ( 5)

Since both L and M must be positive, we can derive an upper bound

Pin(Ap)/Psat(Ap) (53 + a'2)
ms(P + a) (.2

which gives the maximum number of users that can be supported (we've not dealt

with noise-related bounds yet), and

~ Pin(Ap)/Psat(Ap) (7s + as
L = a l(5.33)

7P +ap S

is the maximum length of erbium-doped fiber that this level of pump input power

can support.
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The given conditions will determine which form of the constraint is more applica-

ble: if M/L is the starting point, then M* and L* are the appropriate bounds. Note

that M* <M1I and L* < I. However, if we are given either M or L and can trade off

a lower receiver density for increased propagation length or number of users, then L

or M is what we seek.

It's also possible, in practice, to design networks with different receiver densities

along successive sections of the EDF. A particular span of the the fiber may serve

a particularly high concentration of users, and may be followed by a essentially a

transmission line without a significant number of taps. This "clustered" model is

difficult to analyze theoretically, but the results of the parametric approach of the

previous chapter can be combined with those presented here. In a later section, we'll

consider nonuniform taps (albeit for a different rationale), and the mathematics are

uniformly applicable to a wider variety of situations than we will point out explicitly.

At signal transparency, we've found two bounds on L and hence on M:

one given by the simple fact that L and M must both be positive, and

the second which bounds the receiver density M/L by a characteristic

of the upper-level population. In a later section, we'll evaluate these

bounds for typical numerical values.

Before we do so, we investigate another bound: that due to the signal-to-noise

(SNR) ratio required to maintain a particular bit-error rate (BER).

5.4 Noise power

Following Desurvire [6, pages 76-77], the amplifier noise, related to the photon statis-

tics master equation, is defined as

/za(z')dz
N(z) = G(z) i: ( dz' (5.34)

JOG(z')
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where

a(z) = ac(As)pFs N2(z) (5.35)

G(z) = exp Z{oe pFN 2 (z') - a,,pF, N(z') - a'L - MtI}dz' (5.36)

In our analysis, we have dealt with path-averaged quantities, and so an evaluation

of N(L) is not possible, particularly in the case of transparency. However, if we assume

uniform and complete medium inversion along the fiber length (typically achieved for

negligible absorption of a high-power 980 nm pump), Ni(z) _ 0 in [5.36] implies that

er pF sN 2 = aoL ± Mt, (5.37)

and using this fact along with G(z) = 1 in [5.34]

N(L)=L + M t s  (5.38)

and the noise power in bandwidth B0 is

PN(L) = N(L) hv B 0  (5.39)

For uniform, but incomplete inversion (negligible absorption of a high-power

1480 nm pump), we have to account for the non-zero lower level population den-

sity where

N 2 max - 0 (5.40)7S +± as

since the gain coefficient is always negative at the pump wavelength. Since N1,+N 2 =

1, and we have normalized the population densities by p, the doping concentration
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along the fiber (number density),

PNs(L) (f,)a(As7s i s s -s+a'I L + Mts (5.41)

As compared to a distributed amplifier without periodic taps along the signal

path, the added gain needed to offset the drop in signal power along the length of the

EDF increases the noise power by the factor M t5 , and also lowers the corresponding

SNR.

For the case of maximum M attained when [5.26] is satisfied with equality,

PM AX_(L) _ I " (s (Y+as--cis)±msLhv B (5.42)
7 + a)

- L hv B, (5.43)

which is, in general, an upper bound for the ASE noise power.

5.5 SNR constraint

A given level of input pump power Pi,(A) limits the length of an EDF that can

provide signal transparency using the results of the previous section and the deter-

mines the number of stations that can be supported. Here, we can derive closed-form

expressions for the important and practical case of very high pump power, so that we

can assume uniform medium inversion along the entire fiber length.

Let us assume that the optical power in the signal is Ps(L) and the optical power

in the noise is PN(L). For input signal power Po,

Ps(L) = Po (5.44)

PN(L) = (a'L+Mt,)hvB, (5.45)

where, for simplicity, we use [5.38] to account for the noise power. The same ar-
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guments can be applied to [5.41] as well-the only difference is that of an additive

constant increasing the noise power in the second case.

We define the following terms which have the dimensions of currents (as generated

by a photodiode in response to incident optical fields),

Is(L) = Ps(L) C (5.46)
hiS

IN PN(L)'(5.47)
hu

Assume that we detect the fields by an avalanche photodiode with gain factor 9,

excess noise factor x and quantum efficiency r, where Be is the electronic bandwidth

(Gbits/s, related to the bit rate of communications) and B, is the optical bandwidth

(nanometers, related to the passband of the optical window of the detector). We

write down the mean-square current terms that define the signal-to-noise ratio:

<is2 > <g2 22signal

<ZN1 > 2S IN(L) <>2 signal-ASE beat noise

<ZN 2 >2> 2q eBj[Is + 21N(L) < >2+ signal and ASE shot noise (5.48)

<ZN 3 2 > n2IN(L)2 Be (2Bo - Be)<4> 2  ASE-ASE beat noise

<ZN 4 > =>4JBj4Be detector thermal noise

where kB is Boltzmann's constant, Te is the effective temperature (Kelvin) and R is

the resistance (Q) of the detector.

The signal to noise ratio (SNR) is defined in terms of the above mean-squared

currents as

SNR(L) = 2 2< S> 2 2 (5.49)
< ZNi > - < ZN2 >+ N +<N4 >

and, given a target SNR and input signal power Po, [5.49] is a quadratic equation

in L. In fact, if we ignore the ASE-ASE beat noise term, [5.49] reduces to a simple
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linear equation in L.

There is another way to analyze this equation: for a given L, [5.49] is a quadratic

equation in PO, the signal power required to achieve the target SNR. Alternatively,

using [2.17], we can calculate the necessary signal power for a target bit-error-rate

(BER).

At the end of this section of transparent fiber, the signal power is the same as at

the input, by definition of transparency. However, we have added ASE noise along

the fiber. We can then determine the number of stations that can be supported by a

passive distribution bus, with the receiver thresholds set by taking into account the

SNR at the output of the EDF. As we've seen in Chapter 1, this is typically a small

number (about 40) which we will ignore.

5.6 Numerical example

We continue to assume that the taps along the fiber are uniform, though we'll see in

the next section that this is not the optimum that can be achieved.

We assume the following numerical values for the various parameters, [5]:

signal absorption coefficient (A5 = 1.55 pm) a, 4.0 dB/km

pump absorption coefficient (A = 1.48 pm) a 1.6 dB/km

background loss coefficient asP 0.5 dB/km

Ratio of or, to oa, (As = 1.55 pm) 1s 1.42

Ratio of o-, to o-a (AP = 1.48 pm) qp 0.37

and we assume that t = 0.01, implying that the tap fraction is -20 dB. Also, we

assume that the pump is not tapped along with the signal at each receiver along the

fiber, so that the maximum possible utility is gained from a given pump input power.

The first bound, given by [5.26], then implies that the number of receiver stations

per kilometer M/L < 244.
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In an earlier section, we've analyzed the limit imposed by the limited input pump

power available for amplification of the signal as given by [5.28]. First, we verify that

the approximation we made in deriving that relationship, and the ones that followed

it, is indeed valid. We want

1--exp aS - a - a' L ~ 1 (5.50)

and substituting in numerical values, we want 1 - exp(-1.75 L) ~~ 1 which is satisfied

with about 1% or less error if L> 2.5 km. Since the span of our distribution networks

will turn out to be quite a bit longer than this, our approximation is self-consistent.

Substituting in the appropriate numerical values, we see that by ignoring noise

constraints, the maximum length L* = 0.505 x Pin(Ap)/Psat(Ap). If the normalized

input pump power q = Pin(Ap)/Psae(Ap) = 100, we have L 50.5 km, and therefore,

M* = 244 x L* ~ 12,300 receivers.

If we'd rather deal with a fixed number of receivers rather than a receiver density

(number of receivers per kilometer), then we can use [5.30] to evaluate the maximum

possible transmission length for a given number of receivers, or [5.31] for the converse.

The upper bounds [5.32,5.33] can be evaluated for e.g. q = 100, t, = 10-2, yielding

M < 30,700 and L < 84 km. Note that this exceeds the receiver density bound

(M*/L*), and so the earlier bound is tighter.

We can design the length of our network to suit a given number of

users, or the other way around. Upper bounds on each of the parameters

are given by simple relationships in terms of the input power and tap

fraction. Also, we can use the receiver density M/L as the starting

parameter instead, which may be more appropriate in some applications.

The tradeoff between propagation length and the receiver density will be explored

in the next section.
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In evaluating the signal-to-noise ratio bound [5.49], we've shown the results for

two SNR thresholds, -25 dB and -30 dB, assumed uniform for each receiver station,

and the following parameters (as in earlier chapters) for detectors:

Electronic bit rate (data) B 10 Gbits/s

Optical bandwidth Bo 2 B

Receiver electronic bandwidth Be B

APD avalanche gain 9 50 -

APD excess noise factor X 0

Effective receiver temperature Te 4 x 290 K

Detector Resistance R 50 Q

Further, we use the ASE noise power defined for uniform but incomplete inversion

(from 5.41),

PN(L) [{as(Ys + as-6s)± L±MtjhvB(5.51)
PN Ts +7 s + a s L+ It y o(.1

= [(as + a')L + M ts] hv Bo (5.52)
±s + a,

The results of the numerical solution of [5.49] are shown in Figure 5-1. We've plot-

ted the input signal power (in dBm) along the ordinate (though this is the parameter

that determines the corresponding abscissa). Conversely, if we wish to design an

EDF of a given length, this figure indicates the required input signal power. We have

consistently assumed that the EDF is not in the nonlinear regime of amplification,

and this will limit the maximum input signal power we can tolerate.

The results are encouraging! While we must caution that these are theoretical,

and therefore, rather optimistic calculations, it's evident that a distributed EDF can

support a large number of stations: in the thousands of receivers, over a distance in

the tens of kilometers. This is precisely suited for the application we have in mind:

a distribution network.

In carrying out this calculation, we've assumed that the tap fraction at each
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Figure 5-1: The maximum length of EDF that can be supported by a given normalized
input signal power (or vice versa), as dictated by the SNR constraint. The curves for
Methods 1 and 3 are almost coincident. Three algorithms are considered as described
in the text. The receiver density is 100 receivers per kilometer and the tap fraction
= 0.01



5.6 Numerical example 100

receiver along the fiber is uniform. Two algorithms have been used to evaluate the

required signal power in Figure 5-1. Personick's Q factor accounts for the different

APD output variances (noise terms) for the presence and absence of a pulse, and the

exact calculation forms Method 2. A simpler algorithms assumes that the variances

are equal-this is common in the literature-and then we can solve a simple quadratic

equation to find the required signal power: this is Method 1. The more careful analysis

of Humblet and Azizoglu considered in [2.17] with an assumed M= 36 forms the

basis of Method 3. For network lengths more than a few kilometers, the results of

Method 3 coincide with those of Method 1. Appendix C lists the MATLAB code for

this plot.

We've found two types of bounds that constrain the span of a distributed

EDFA. Numerically evaluating these bounds using the parameters we've

used in this section, we see, firstly, that the number of receivers per

kilometer cannot exceed 244. Next, for a given input pump power (e.g.

60 times the saturation power at 1480 nm), and assuming 3000 receivers

along the fiber, the span of the fiber cannot exceed about 40 kilometers.

This implies that the receiver density is 75 detectors per km, well within

our bound of 244. And then, assuming that this level of pump is high

enough to cause uniform (but incomplete) inversion along the fiber, the

required signal levels are about 0 dBm for a receiver threshold of -25

dB, and -2.5 dBm for a receiver threshold for -30 dB.

In a later section, we show how we can obtain the limiting performance of such a

system. At each receiver, we tap no more than necessary to meet a certain SNR. At

the input end of the fiber, the ASE power is less than at the output. And so, we'd

expect a lower signal level to satisfy the SNR criterion. Now consider the situation

we've been describing this far-the signal level is maintained constant along the length

of the fiber. A lower signal level requirement for the receiver at the input end of this

fiber implies that the tap fraction at this end can be lower than at the output end.

In other words, the limiting performance is achieved in the case of non-uniform taps.



5.7 Tradeoff pump input for receiver density

The effect of lowering the receiver density from e.g. 244 to 75 receivers per kilo-

meter will be analyzed in the next section.

5.7 Tradeoff pump input for receiver density

In the context of the numerical values we've used in the previous section, the max-

imum receiver density is 244 users per kilometer. In certain situations, we may not

need such a high density of users-it's possible to trade receiver density for maximum

propagation length as we've seen in our calculations. In this section, we formulate

those results algebraically.

Let the normalized input pump power be q= Pin(Ap)/Psat(Ap). Assuming the

highest possible receiver density [5.26], the propagation length L* is given by

L* = (5.53)
7), + alp

Let's consider a particular receiver density M/L so that

q 7___+___L = q s s(554)
7p + a as + a' + Mts/L

where 7, > a' + Mt/L.

The increase in propagation length AL L - L* is

q 7 s -a' -- Mts1 L
AL =- q - M (5.55)

yP + ap as + a'4+MtS/L

Using numerical values for the parameters from the previous section, for an input

q = 100 and M/L = 75 receivers per kilometer instead of the theoretical limit of 244,

we have AL = 19.5 km. Similarly, if we were to assume q = 60, then AL = 11.7 km,

and L = L* + AL = 42 km as discussed in the previous section.
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5.8 Non-uniform taps

We'll continue to assume a single channel for the signal, but now relax the constraint

of uniform taps. We can also relax the assumption that the taps are uniformly

spaced. As we've discussed earlier, this is a closer picture of ideality: as L increases,

a larger fraction of the signal is necessary to satisfy [5.49], whose denominator grows

monotonically with L.

Consider the original definition of the tap function, f 8 (z)

M

fs5 (z) =1 6(z - zm)Is(m) t, (z) (5.56)
m=1

where [Zm] is the vector of tap locations, as before. In a network design problem, [zm]

represents the locations of the receiver stations, and is a given parameter.

Under the assumption of complete and uniform medium inversion, we can consider

the noise power at the end of a section of EDF of length z,

M(z)

PN(z) sa'z + > ztzm) 1 hv B, (5.57)
M=1

where M(z) is the number of taps in (0, z). If, for any z that we consider, we assume

that inversion is uniform but incomplete,

M(z)

7 - as - (z)

PN(Z)=NCa m=1 +Zt)sZm) h B 0
-s + as m=1

M(z)

(cI , + a')z + t,(zm)j h vB 0  (5.58)
'YS + as S

7s OsM=1

but we will deal with the simpler notation of complete inversion for the remainder of

this section.

5.8 Non-uniform taps 102



For example, if we restrict ourselves to uniformly spaced taps,

Zm = ML m=1,2,... , M(5.59)
M

M(z) = fMJ (5.60)
-L

For complete and uniform medium inversion, signal power excursion is minimal,

and we assume that transparency is maintained, i.e. [5.44] is assumed valid for all

z C (0, L). We can now obtain t(z) by the following recursive process.

For 0 < z z1 , we can find the noise power from [5.57]

Pk (z) = (c',z)hvB, (5.61)

since there are, by definition, no taps before z1 . Using this value in the SNR constraint

calculation [5.49], yields P*, the minimum detectable signal power, given that the

noise power is [5.61]. Therefore, the tap fraction at z = z1 is t8 (zi) = P1*/PO.

For z, < z < z 2, the definition of the noise power must now account for the tap

at z1 , which we have just computed,

Pk(z) =-[a,z +t,(z 1 )] hv B, (5.62)

and, again, the SNR constraint calculation [5.49] yields P2*, the minimum detectable

signal power at the second stage. Therefore the tap fraction at z = z 2 is tS(z2) =

P2*/Po-

We can proceed in this recursive fashion until we reach a constraint that we'll

discuss in a moment. In particular, for zm- < z < Zm, the noise power at z is

M-1

Pj7(z) = [a'z + t,(zi)]hvB, (5.63)
i=1

and using this value in the SNR constraint calculation, with signal level P0 , yields
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P*, the minimum detectable signal power at the mth stage and the corresponding

tap fraction, ts(zm) = PA/P. At each stage, the vector of the preceding taps, t8 (zi)

is available to us.

It's easy to see that the ts(Zk) form an increasing sequence, but there is a physical

limit on any of the terms: we cannot tap more than 100% of the signal power! This

bound imposed by the accumulated ASE is evident when the following condition is

met:

ts(Zm) > 1 for some m < oo (5.64)

More formally, since the sequence t. represents the sequence of tap fractions, the

bound on the number of stations M* that can be supported given a vector of tap

locations [zml, m = 1, 2, .. . , M is

M*=min min M ts(Zm) > },M (5.65)
1<m<M

where we assume that min[x] = oo if x is an empty set.

The upper level population (fraction) N2 must be less than 1, and using [5.24],

M(z)

ts(zm) < L ( - 4') (5.66)
m=1

When this condition is satisfied with equality, substituting into [5.58], the noise power

at the output for complete inversion is

PMAX(L) = yL hv B0 (5.67)

which is the same as for the case of uniform taps, as expected.
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Figure 5-2: Tap fractions along the EDF, for receivers spaced apart by 10 meters,

and input signal power PO= -10 dBm to PO = 0 dBm.

5.9 Numerical example (contd.)

The numerical values for our parameters are the same as before. The receiver sensi-

tivity is not a rational function of the propagation length, and consequently, neither

are the tap fractions. It's simplest to evaluate the algorithm numerically, e.g. in

MATLAB. We've provided the code listing in Appendix C: it's simple to modify the

parameters to address a special circumstance. For quicker execution, we've used the

approximation to Personick's Q-factor sufficient statistic described earlier: for large

L, the two methods give near-identical results.



Figure 5-2 plots the tap fractions tk for receivers spaced apart by only 10 meters,

whereas in Figure 5-3, we've increased the spacing to 40 meters.

In all cases, the tap fractions form an increasing sequence, and moreover, depend

critically on the input signal power Po. The results show that signal powers in the sub-

dBm range are sufficient for typical LAN distances, particularly if the tap fractions

are selected according to this procedure. As compared to the case of uniform taps,

designing the taps optimally increases the propagation distance e.g. by an order an

magnitude for Po = -10 dBm.

Another parameter that affects the growth rate of the tap fraction sequence is

the receiver density M/L. Receivers spaced apart by 10 meters should be sufficiently

generous for most applications. As discussed for the case of uniform taps, a lower

receiver density increases the span of the network for the same signal input power

level PO, whereas for a still higher density (but within the N2MAX bound described

earlier), we will reach the tap fraction bound tM < 1 sooner.

We've assumed, in our analysis so far, that the tap fraction represents the small

fraction of signal power that is necessary for detection. In a later chapter, we will

see that the same sequence of mathematical steps can be applied to a different inter-

pretation: tk now represents a division of the signal (and pump) power into two or

more equal parts. The physical structure that a sequence of such operations results

in is called a distribution tree, which we analyze in the same framework as the bus

network, but with a higher order-of-magnitude scale for the tap fractions.

Non-uniform taps permit a lower input signal power to serve the same

distribution network (i.e. same length and number of users). Similarly,

the number of users, overall length or receiver density can be increased

for the same input signal power. As expected, the tap fractions form an

increasing sequence.
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5.9 Numerical example (contd.)
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Figure 5-3: Tap fractions along the EDF, for receivers spaced apart by 40 meters,
and input signal power PO = -13 dBm to Po = -3 dBm.
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Chapter 6

Time-varying tap function

I don't know if you have ever seen one of those old maps
where they mark a spot with a cross and put "Here be dragons"

or "Keep ye eye skinned for hippogriffs,"
but I had always felt that some such kindly warning

might well be given to pedestrians and traffic
with regard to this Steeple Bumpleigh.

-P.G. WODEHOUSE, Jeeves in the Morning (1971)

In this chapter, we consider an important extension to our model for distributed

EDFAs. So far, we've assumed that the tap function tk(z) is independent of time i.e.

once we set the tap locations and the tap fractions, fk(z) does not affect the gain

dynamics of the EDFA.

It's interesting to ask what the effect of a small (dynamic) perturbation in tk(z)

is on the steady-state solution that we've found in the previous chapter. What we're

most interested in is the resulting change, if any, in the output power of each channel

P0 ut(Ak, t). We will show that perturbing the tap function of any channel indeed

affects the remaining channels: this is called crosstalk, and present a simple closed-

form expression to quantify this.

We consider the following perturbation

tk(Z,7t) = tk (Z) -± Atk(t) /Atk(t)j < tk(z) for all z,t (6.1)

where tk(z) is the time-independent steady-state tap function defined in the previous



chapter.

This perturbation redefines our effective absorption coefficient [5.15]

1
ck (t) = 6dk +-Xtkt) Atk(t)I <K k (Z) for all z, t (6.2)

L
2(k

This results in a perturbation of the path-averaged upper-level population density,

path-averaged exponential gain constant and output power for each channel, which

we define as

N2(t)= N 2[1 + AN2(t)] AN2(t)I < 1 (6.3)

Y(t) = gki[l + 'APk (t)] IA~k t)1 « 1 (6.4)

Pout (Ak, t) = Pout(Ak)[1 + yk(t)] IYk(t)I < 1 (6.5)

Our goal is to relate yk(t) to Atk(t), or equivalently to xk(t). The first step is to

substitute these definitions into [5.13]. Separating the steady-state terms from those

that depend explicitly on t, we get two equations:

AT2  =- (7LPi(k)[exp (PkL) - 1] (6.6)
k=1

R2 + A f2 (t) =L. Pin (Ak) e lE exp {IN ANk(t)L} 1] (6.7)
( dt -rL(k=1

For small x, we can write exp(x) ~ 1 + x, and so,

-2 (+ 1) AN() 1 N
TL(~ >Pot(Ak)YkAgk(t)L (6.8)dt r L k=1

Similarly, by substituting the new definitions into [5.16], we obtain the pair of

Time-varying tap function 109



Time-varying tap function 110

equations,

9k (7k + ak)N2-k

9k Ak(t) (7k + &k)N2 AN 2 (t) - Xk(t)

Finally, by using the definitions in [5.121, we get

Pout(Ak, t) = Pin(Ak)ePkLek Ak(t)

SPout(Akj{1 + 9k Ak(t)L}

which implies that

yk(t) =k Agk(t) L

Substituting [6.10] into [6.8], we get

1 1 N
- AR2 -=PrLC out (Ak) L

T) TL(k=1
{(ra + ac)N 2 AN 2 (t) - Xk(t}}

Recall the definition of Psat(Ak) from [5.18]. Also, we define a saturation factor [25],

N

Fs = Pout (Ak)/Psat(Ak)
k=1

(6.15)

which represents the total output power, with each channel's power normalized to

the saturation power at the corresponding wavelength. Then,

SFs A 2 (t)
= 4Pout(Ak)xk(t)

N

= S I 1 Pout (Ak) Xk (t)

(6.16)

(6.17)

(6-9)

(6-10)

(6.11)

(6.12)

N2d
N2 (dl

(6.13)

(6.14)
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Now, we take the Laplace transform of [6.17], and defining the following Laplace

transform pairs

L[AN 2(t)] ANV2 (s) (6.18)

L[rk(t)] - Xk(s) (6.19)

L[yk(t)] = Yk(s) (6.20)

flAtk(t)] = Tk (s) (6.21)

we can write

N
T

N2 N 2 ( pS(),Pout(Ak) Xk (s) (6.22)

Also, taking the Laplace transform of [6.13] and using [6.10]

Yk(s) = (ryk + ak)N2 AN 2 (s) L - X (t) L (6.23)

which, combining with [6.22] and using the definition of x(t) results in

1 1 N
Yk ()- Pout(A) AT (s) - ATk(s) (6.24)

Psat(Ak) 1+ Fs +7TB

This represents, in the frequency domain, the solution to our perturbation prob-

lem. Note that it depends only on the output channel powers, and not on their

path-averaged quantities, which is convenient from an experimental perspective. For

example, in a communications network, a certain call might involve altering the tap

fractions for a number of receivers. Given the output channel powers at that time

and a bound on how much perturbation of the channel output powers are allowed, a

network manager can decide whether or not to allow that call to go through. Simi-

larly, the time-domain solution also indicates the time-scale over which perturbations

resulting from a dynamic change in the tap fractions are damped below a threshold,
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and this can be used in scheduling algorithms.

6.1 Single-channel perturbation

To gain some insight into [6.24], assume that the tap function for only a single channel

p is perturbed:

Atk(t) = 0 Vk $ p (6.25)

From [6.24], the output on channel p suffers a perturbation y(t) whose Laplace

transform is

Y(s) =-AT(s)I - 1 I+ t:;)1(6.26)
1 1 + F + -Fs P,,t( AP)

whereas for all the remaining channels q = 1, 2,... ,p - 1,p+1,... , N

Y(s) = 1 Put(AP) AT(s) (6.27)1 + F, + rs Pt(Aq)

In physical terms, the effect of a small increase in the tap fraction for a particular

channel p has two kinds of effects. Firstly, the power output for that channel is

attenuated, as represented by the first term of [6.26]. Increasing the tap fraction

results in a further increase in the magnitude of y(t) and hence of the change in the

power output.

There is also a second order effect-a singularity in the domain of the problem: a

decrease in the power output for any given channel affects the upper-level population.

Recall that the rate of change of A2 is proportional to the channel powers. Reducing

the channel power reduces the rate of change of A 2, and dampens the change in

output power. This is shown by the second term of [6.26], which reflects the low-pass

filtering. Since a change in N2 affects all channels, not just channel p, this term affects

(with the saturation power for each channel acting as a normalizing constant) in the

6.1 Single-channel perturbation 112



6.1 Single-channel perturbation 113

output of each of the other channels, leading to crosstalk.

If we further assume that the perturbation is an impulse at to,

At (t) = C 6(t - to) (-± ATE(s) = (6.28)

then the time-domain perturbation of channel p is

yP(t) - ± - ( -A,) (6.29)
T Psat(Ap)

where t, represents the characteristic time scale of this perturbative effect

tc = 1(6.30)

This clearly shows the two effects described above. Note that the characteristic

time scale is the same as that defined in [25] for signal-tone perturbations in the input

signal. This is expected: the first-order low-pass filter response is a characteristic of

the EDFA model.



Chapter 7

Distributed EDFAs and tree networks

We do it now by writing analytic symbols on the blackboard,
but for your entertainment and interest,

I want you to ride in a buggy for its elegance,
instead of in a fancy automobile.

So we are going to derive this fact by purely geometrical arguments
-well, by essentially geometrical arguments.

-R.P. FEYNMAN (1964)

Our model for distributed EDFAs with taps along the length of the fiber can be very

simply extended to a particular form of the tree distribution network. The problem

we consider is that of a "fully-extended" tree: the users are the lowest-level leaves of

a symmetric tree, and so the distance from each user to the head of the tree is the

same.

For bus networks, the tap fractions tk represent the the signal power coupled out

of the bus transmission line at each receiver, and are typically small numbers 10-.

Now, we redefine tk to be the splitting fraction (degree -1) at each node of the tree.

For example, if a tree splits into two branches at each node, the splitting fraction of

node k is tk - 1/y = 1/2.

Each time we tap a fraction tk, we begin another branch of the tree. If the taps are

uniform, the degree of each of the nodes is the same and the tree is called "regular",

but it's also possible to consider non-uniform taps. There is no special significance of

a signal-to-noise ratio at each of the stages: all the receivers are at the lowest level,

and so have identical SNRs. Rather, physical considerations can dictate what the



sequence of tap fractions should be: e.g. if we require no more than twelve users, a

three-way split followed by two two-way splits will better use the available resources

than a simple two-way splitting structure with four levels.

The mathematical analysis proceeds exactly as before, but since the tap fractions

are now much larger in magnitude than before, far fewer taps can be allowed. If the

total number of taps along the direct route from the head of the tree to any one user

is M, the number of users the tree serves is -My

There are two other minor interpretative changes we have to make. To obtain

M from the equations of the previous chapter, we set Ip-tap 1, since the pump is

also "tapped" along with the signal. This only strengthens the assumption that the

denominator of [5.27] 1 Also, L now represents the distance of each user from the

head of the tree, and we relate it to the total length of fiber used in the next section.

The bound on receiver density [5.26] now reads

M/L<(rb -c,)Y (7.1)

For a tree that splits into two at each node, y = 2 and for the numerical values of the

EDFA parameters used in the previous chapter, we cannot support more than four

such splits per kilometer along any particular branch. In other words, the number

of receivers increases by a factor of 2 = 16 for each kilometer of signal and pump

propagation.

If we further assume that M = 12 is sufficient (which allows 4096 users at the

lowest level), the maximum propagation length for a normalized input pump power

q = 100 is [5.33] L = 82.8 km. Note that this is higher than for the bus network,

even with non-uniform taps.

As before, we can now use the SNR constraint to obtain the minimum signal input

power that is required at the head of the tree e.g. for M = 12.
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7.1 Length of tree networks

As mentioned before, L now represents the distance of each of the users from the

head of the tree. For simplicity, we represent the length of fiber between successive

nodes as 1 unit. Let d/r be the total length of fiber used to form a tree with m splits

along any head-to-user branch.

If we were to allow another -y-way split along this line, we would multiply the total

number of users by 7, and increase

dm+ = 7 dm + 1 (7.2)

For a total of M splits along any one head-to-user branch,

M-1

dm =-7do +1z7rM (7.3)
M=O

where do 1.

The summation is easily carried out:

SM _ 7 M+1 _1
dM YM +7 1-= (7.4)

If we define the efficiency of fiber utilization y as the number of users served

divided by the total length of fiber (in units)

M /'M+1_
'r1 7 (7.5)

(7.6)
'-Y- (1/y M )

For large M, we can further simplify

1
r/ ~ - -(7.7)
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which shows that the efficiency increases for higher degrees of splitting. In the limit

7 -- oo, q -+±1, which is what we expect from a star distribution network. In any

event, this is worse than for a bus distribution network where each successive fiber

section adds 1 to the total number of users.

Distribution tree networks are simple to analyze if we redefine the tap

fraction tk to represent the splitting fraction at each node. We assume

that all the users are situated at the lowest level leaves, and have shown

that the efficiency of fiber usage is strictly less than that of a bus distri-

bution network. But the performance of such a network is better than

that of a bus network-increased number of users, or propagation dis-

tance or lower input signal power requirement, depending on which of

these parameters we vary.

Nevertheless, a tree network in which all the users are situated at the lowest level

isn't always practical. A particular implementation may call for a hybrid solution-

bus distribution for the major part, with a tree at the terminus. The possibilities

that a network designer can explore are quite extensive, and the framework we have

provided can be easily adapted, and our code modified, as appropriate for a given

problem.
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Chapter 8

Conclusion

Let your body stir, if your mind is still becalmed. Swim.
No, now, like her, I can't cope with a crowd.

But you do, don't you, when you play as an extra fiddle in an orchestra.
How about walking? Walk to where you can walk to.

Walk around if you have nowhere to go.
It is five in the morning, but this is wintry London, there is no Venetian dawn.

The drifters out of the night pass those who are drifting into the day.

-V. SETH, An Equal Music (1999)

A section of erbium-doped fiber (EDF) can be pumped at 1480 nm or at 980 nm to

provide gain for a number of signal channels in the 1530-1560 nm frequency band.

A typical source for the pump is a semiconductor diode laser. The common erbium-

doped fiber amplifier (EDFA) package integrates the pump diode and the EDF, but

there is no physical barrier on isolating these two elements, and using a section of

undoped fiber to connect them. In fact, the same section of signal-carrying single

mode fiber (SMF) that couples to the EDF can be used to feed in the pump beam

as well. In an optical network, the pumping sources are the components of the fiber

amplifier that require management and control-the gain-providing section of EDF

can be treated just like any other section of fiber from a maintenance perspective.

The separation of these two components considerably simplifies network design.

In transmitting a signal from a source to a receiver, the most important channel

model is that of an optical amplifier chain. The users are situated along the length

of this chain, and at each receiver, a fraction of the signal power is coupled out of the



fiber ('tapped') and used for detection. We need repeated amplification to offset the

losses incurred by absorption along the SMF and by the taps. It's quite intuitive that

the signal-to-noise ratio (SNR) of an optical amplifier chain is maximized when all the

gain is situated at the input end of the fiber-as far away from the detector as possible.

We've formulated this result precisely using standard methods in optimization and

results from game theory. The principal concept is that of a Nash solution for a

cooperative game, and uses the fact that the strategy sets are compact and the

individual reward functions are quasi-concave.

A well-known model [6] is used to demonstrate a particular method for construct-

ing such remotely-pumped EDFA chains. The results clearly show that the number

of receivers that can be supported with amplification is substantially higher than is

possible without amplification. But we've seen that this method is characterized by

large parametric dependencies: changing the numerical values of the system param-

eters by a small amount results in very large changes in the final answers. Given the

nature of the formulae involved, it's not easy to optimize these results, and anyway,

the basic principles on which we've built this model aren't really relevant for bus

networks which service a single user at each tap location.

Since both the tap fractions and the inter-user distance in typical bus distribution

networks are small, we assume that the entire bus is a lightly-doped EDF. The fiber

serves simultaneously as the propagation (source-to-receiver) and gain medium. In

order to characterize the performance of these types of networks, we've derived a

simple model for the rate equations that describes an EDFA from first principles. We

explicitly account for the taps by using a singular density function that represents

the fraction of signal power that is coupled out at each user, and have solved the

model in the steady-state conditions to identify the upper bounds on the number of

receivers that can be supported.

We emphasize that the mathematical technique that enables us to get simple

answers to this problem is the method of integrating under the differential in the rate
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equation for the upper level population [25]. The principle on which this analysis rests

is the well-known theorem of dominated convergence, and we've taken advantage of

this by constructing a singular density function that captures the essential aspects of

the detection mechanism while still satisfying the dominated convergence theorem.

Other phenomena in EDFAs may be conveniently modeled this way, and Appendix B

provides a starting point.

Investigating the dynamic behavior of EDFAs can be tricky or impractical. One

particular case has important implications for network designers-the effects of chang-

ing the tap function. Using the Laplace transform and perturbation theory, we've

solved the system of differential equations that model the EDFA. The low-pass filter

nature of the EDFA as pointed out in a different context in [25] is once again evident,

and we've identified the time scale over which these perturbative effects are felt. Fur-

thermore, the parameters on which this model depend are precisely those that are

supplied by typical network management & control services.
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Appendix A

Inequality constraints

The Massachusetts Institute of Technology is committed to
the principle of equal opportunity in education and employment.

The Institute does not discriminate against individuals on the basis of
race, color, sex, sexual orientation, religion, disability, age,

veteran status, ancestry, or national or ethnic origin
in the administration of its educational policies, admissions policies,

scholarship and loan programs, and other Institute
administered programs and activities,

but may favor US citizens or residents in admissions and financial aid.
-MIT Nondiscrimination Policy (1999)

A generalization of the SNR optimization problem [2.19] is

max SNR (G 1 , G 2 ,... ,GN, L 1 ,L 2 ,... ,LN)

N

subject to flGk Gmax, G ;> 1 V k(A)
k=1

N

fJLk < Lmin, 0 < Lk _lIV k.
k=1

where we've replaced the equality constraints with inequalities. In physical terms,

we require that the overall gain of the optical amplifier chain be no more than a

certain threshold Gmax Since Lmin oc e-'d for propagation distance d, the second

constraint implies that the overall propagation distance should be no less than a

threshold corresponding to Lmin.

In this section, we demonstrate that, for all practical purposes, this problem re-
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duces to the earlier problem,

max SNR (GI, G2, . . . , GN, L1 , L2 ,.. ,LN)
N

fIk = Gmax,

Lk - Lmin,

Gk > lVk,

0 < Lk < lVk.

(A.2)

A.1 Sub-optimal in G

First, consider the gain constraint in [A.1]. Let

N

Go ' (Gk < Gmax
k=1

Writing out the SNR and isolating the dependence on G1,

0 G1L 1 (H CNkLk)

2a K + (GI - 1)L 1 (H 2 GkL) ±n 2+

(A.3)

(A.4)

where jf2+ represents the ASE noise contribution from all stages after the first in the

optical amplifier chain.

Consider the arbitrated reallocation

G, HG' =)3G,

G2 G'=G2

GN G'N =GN

03>1 (A.5)

(A.6)

(A.7)

(A.8)

where we choose 3 so that H N_ 0G' = Gmax. This is certainly feasible, and the new

subject to
k=1

N

k=1
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SNR is

0 GIL, (fIN-2GL
SN R (G m ax) _= 

flO( > G k )

2a K + (G1 - 1)L 1 (H GkLk) + A 2+

Taking the ratio of [A.9] and [A.4],

SNR(Gmax)
SNR(Go)

K + (G1 - 1)L 1 (iN2 GkLk) + +

K + (# G1 - 1)L 1 (H 2 okLk) ±i-A2+
(A.10)

Simplifying this expression, SNR(Gmax) > SNR(Go) if (and only if)

(A.11)

As before K < 1/2 and Lmin < 1. Since our optimal solution is to set G2=

G3 = = GN = 1, this condition is usually satisfied in practice. In physical terms,

if we assume that the signal shot noise doesn't dominate the ASE-signal beat noise,

it's better to raise the overall allocatable gain to the highest attainable limit.

The Nash solution that we've found is consistent with the above assump-

tion [A.11], and the inequality constraint for G. in [A.1] can usually be

replaced with an equality constraint.

A.2 Sub-optimal in L

Next, we consider the L constraint in [A.1]. Let

LO 'Nj Lk < Lmin
k=1

(A.12)

(A.9)

(N N
K - (G) (J+Lk) 2+>o

k=2 k=L

Lmin

A.2 Sub-optimal in L 123



Writing out the SNR to isolate the dependence on LN,

_p 0  GNLN (H 1 GkLk
SNR(LO) = P k1(A. 13)2a K + A_1GNLN +(GN -1)LN

where P/2+ represents the ASE noise contribution from all stages until the last in the

optical amplifier chain.

Consider the arbitrated reallocation

L1  - L' = L, (A.14)

L2  L' = L2 (A.15)

(A.16)

LN H-> L'=yLN -y>1 (A.17)

where we choose y s0 that f N L' = Lmin. This is a feasible reallocation, and the

new SNR is

S y GN LN(k1GkL)
SNR(Lmin) = P N Fkl k(A. 18)2a K +A_,lYGNLN + 'y (GN - 1)LN

Taking the ratio of [A.18] and [A.13],

SNR(Lmin) K + X_1GNLN+ (GN - 1)LN
SNR(L) = K + A- 11 GNLN + 7 (GN - 1)LN

Since -y> 1 and K > 0, SNR(Lmin) > SNR(Lo) in all cases: the SNR defined by

a strict inequality constraint is always sub-optimal. In physical terms, an attenuator

cannot improve the SNR.

The inequality constraint for Li in [A.1] can always be replaced with an

equality constraint.
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Appendix B

The validity of equation 5.10

The use of improper functions thus does not involve any lack
of rigor in the theory, but is merely a convenient notation,

enabling us to express in a concise form certain relations
which we could, if necessary, rewrite in a form

not involving improper functions, but only in a cumbersome way
which would tend to obscure the argument.

-P.A.M. DIRAC, The Principles of Quantum Mechanics (1930)

Starting from the rate equation [5.1], we integrate both sides with respect to z to

get [5.10]. The main mathematical point we address here is the exchange of the

order of differentiation and integration: is such an operation valid for our model?

Specifically, we ask the question: is it true that

- f N2(Z, t) dz= N2 (Z,7) dz (B. 1)

We'll use a particular version of the following well-known theorem [21],

Theorem 4 (The Dominated Convergence Theorem) Consider a family {fh}

of real-valued functions on R, where 0 < |hi < H, (H constant). Assume that

1. fh is integrable for each h,

2. there exists a function f such that f, - f almost everywhere as h -± 0,

3. there exists an integrable function G, independent of h, such that |fh < G for

all h.



Then f is integrable, and

lim fh-liM A= f
h->0 f h->0

Using this result, we can derive a sufficient (but not necessary) condition for our

result [21, pages 153-154],

Theorem 5 Let N2 be a real-valued function defined on R x J where J is an open

interval in R. Assume that for each fixed t C J,

1. z -+ N 2 (z,t) is integrable,

2. &N 2 (z, u) exists for almost all z,
Ou I u=t

3. there exists an integrable function G(z), independent of t, such that

yjN 2 (zt) < G(z)
Ot

for almost all z and for all t c J.

Then,

-f N 2(z,t)dz =f -N 2 (z, t) dz (t E J).dt f_0 _ o t

The first condition implies that the upper level population density, N2 , should be

integrable: of course, without this assumption, we cannot define the path-averaged

upper level fraction [5.11] etc.

Next, the set of tap locations {z1 , z2 ,... , ZM} is the union of a collection of disjoint

points (and so is a countable null set), and provided N 2 (z, t) is continuous over the

rest of the Er-doped fiber, the second condition is also satisfied.

Finally, we'll construct a dominating function G(z), independent of t and inte-
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grable, so that the third condition is satisfied. From [5.1]

&N2 (z,t) N2 (z,t) 1 N dPk(zt)
at - T ps Z

N2 (Z t) 1 N

= ' + 1>1E[( + aA)N 2(z, t) - dk] Pk(z, t) (B.2)

Since N2 is the fraction of the laser ion density in the upper state, it must satisfy

N2 < 1, so that

0N 2(z t) 1 i N

T-y+jE [Q(y-- c' -- fA(z)] Pk(z, t) (B.3)
k=1

1 - /--Yk - ak -kA Z)IPmax (B.4)

0 (z)

where we've used [5.4] with Uk -- 1 for simplicity, and assumed that the optical powers

in the fiber are always upper-bounded by Pma, independent of wavelength. The least

upper bound of Pk in an erbium-doped fiber will usually be the input pump power:

note that the pump is always absorbed, and the signal powers are usually far weaker

than the pump.

Notice that each of the terms that define G(z) is integrable: the only term that

requires inspection is [5.2]

M

fk(z) = > 6(z - zm)Ik(m) tk(z) (B.5)
m=1

where 6(z) is the Dirac delta "function". By construction, the integral of the product

6(Z - zo)tk(z) is indeed well-defined [7], and since the number of taps is finite, we

can interchange summation and integration so that the integral of fk(z)Pk(z) exists,

particularly when Pk(z) = Pmax.

As a footnote to this development, we have constructed this particular form of
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the tap function with precisely this condition in mind. Exchanging the order of

differentiation and integration as in the original EDFA model of [25] is very convenient

and we would like to retain that facility while accounting for the taps along the fiber.

We've identified the mathematical underpinnings for the validity of that model, and

then constructed a density function effectively describing the taps so that we can still

carry out the same mathematical procedures as before.

Equation [5.10] is valid provided

1. z F-+ N 2 (z,t) is integrable,

2.&1N 2(z,t) is continuous almost everywhere,

3. the optical power in the each channel is bounded.
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Appendix C

Source code

The procedures and applications presented in this book
have been included for their instructional value.

They have been tested with care
but are not guaranteed for any particular purpose.

The publisher does not offer any warranties or representations,
nor does it accept any liabilities

with respect to the programs or applications.

-ATEX: A Document Preparation System (1994)

C.1 Two-level parametric design

% MATLAB Source file

% Specific example: Parametric Design

% Name: specex.m

% Two-level parametric design of a specific distribution

A network. Plots \hat{M}_i for i=1, 2, \aleph.

A Calculates \aleph from \qhat (to be specified)

% Title of plot gives total number of users and of pairs

% of subsidiary buses. Ordinate specifies number of users

% for each pair of subsidiary buses.

% Based on network architecture of V.W.S. Chan, MIT

'A
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Shayan Mookherjea

February 5, 2000

7. Computational

R=50;

F=4;

T=290*F;

c=3*10^(8);

1=1 .55*10^(-6);

nu=c/l;

eta=0.8;

h=6.634*10(-34);

e=1.6*10-(-19);

k=1.38*10^(-23);

Be=10*10^(9);

Bo=2*Be;

AlphaP

AlphaS

EtaP =

EtaS =

BAlpha

GammaP

GammaS

= 1.445;

= 2.512;

0.37;

1.42;

= 1.122;

= EtaP*AlphaP;

= EtaS*AlphaS;

parameters

% detector resistance

% noise figure of detector

A effective detector temp

A speed of light in vacuum

A center wavelength

% center frequency

A quantum efficiency of detector

A Planck's constant

% charge of electron

% Boltzmann's constant

A Electronic Bandwidth

A Optical Bandwidth

A EDFA Characteristics

' pump absorption coefficient

% signal absorption coefficient

' to get pump emission coefficient

A to get signal emission coefficient

7 background absorption coefficient

A pump emission coefficient

' signal emission coefficient

7.

'A

7.

AvG = 50;

Q = 6;

const=e*eta/ (h*nu);

% Initialization

DeltaL = 0.5;

Avalanche Gain = 50

target SNR

optical power to photodiode current

% spacing (km) between bus taps

% Author:

7 Last modified:

clear
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C.1 Two-level parametric design

Deltad = 0.05; Z spacing between sub-taps

GO = 2.0; X default gain along bus (10 dB)

ExLossB = 0.7943; % excess loss per bus stage (-1.0 dB)

ExLossS = 0.8913; % excess loss per sub stage (-0.5 dB)

SigIn = le-4; % input signal power - 10 dBm

qhat = 3; % required norm. input pump power

qO = 250; % supplied norm. input pump power

% calculate number of bus taps allowed

notaps = floor(log(qhat/qO)/(log(ExLossB)-BAlpha*DeltaL));

pmin = zeros(1,notaps); % will store min reqd. power

mhat = zeros(1,notaps); % will store number of users per bus tap

psig = zeros(1,notaps); % signal power tapped after each amp

pase = zeros(1,notaps); A ase power tapped after each amp

tapfr= zeros(1,notaps);

tapfr0 = 1 - exp(BAlpha*DeltaL)/GO; % the (default) tap fraction

for i=1:notaps, A you have the option of non-uniform taps

% tapfr(i) = tapfrQ+i*(0.9999 - tapfro)/notaps;

tapfr(i) = tapfr0; ' uniform tap fractions

psig(i) = SigIn *tapfr(i)*GO;

pase(i) = h*nu*Bo*i*(GO-1)*tapfr(i);

' the ase power tapped

a = AvG; ' the preamplifier gain

id2=a*const*pase(i); % ase current

b = 2*Q*Q*(id2*2*Be/Bo+e*Be)*a; ' Linear in I_s

c = Q*Q*(2*id2*2*Be*e + id2*id2*Be*(2*Bo-Be)/(Bo*Bo) + 4*k*T*Be/R);

rt = b/(2*a*a) + (sqrt(b*b+4*c*a*a))/(2*a*a);

pmin(i)=rt/const;
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D no. of users along a d-tap

mhat(i)=4*floor(log(4*pmin(i)/psig(i)) / (log(1 - 4*pmin(i)/psig(i))

- BAlpha*Deltad + log(ExLossS)));

end

totalusers = sum(mhat); 7% total number of users

plot (mhat)

xlabel('At Tap No.')

ylabel('No. of users')

ttlstr = strcat('Number of users :',num2str(totalusers),' with :',

num2str(notaps),' taps');

title(ttlstr)

C.2 Equal taps: Figure 5-1

% MATLAB Source file

% Equal tap fractions

eqtap.M% Name:

/0

7.

0/0

7.

This program calculates the input signal power necessary

along an optical amplifier bus network. The tap locations

are uniformly spaced, and the receiver density

is supplied

7. External Calls:

X SNRClc2a.m

% SNRClc2b.m

% SNRClc2c.m

7 Author:

X Last modified:

One of the following three.

Solves quadratic equation directly

approximate but f ast.

Use the Q factor correctly

more accurate but slower.

According to (2.17) by Humblet

and Azizoglu

Shayan Mookherjea

February 20, 2000
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clear

global L rxden

A Definitions

global R F T const nu eta h

global AlphaP AlphaS EtaP El

% Computational

R=50;

F=4;

T=290*F;

c=3*10^(8);

1=1.55*10^(-6);

nu=c/l;

eta=0.8;

h=6.634*10 (-34);

e=1.6*10^(-19);

k=1.38*10^(-23);

Be=10*10^(9);

Bo=2*Be;

AlphaP

AlphaS

EtaP =

EtaS =

BAlpha

GammaP

GammaS

A used by the function that

% calculates the SNR threshold

e k Be Bo

taS BAlpha GammaP GammaS AvG Q tapfr

parameters

/ detector resistance

A noise figure of detector

A effective detector temp

I speed of light in vacuum

' center wavelength

A center frequency

A quantum efficiency of detector

A Planck's constant

' charge of electron

' Boltzmann's constant

' Electronic Bandwidth

A Optical Bandwidth

'A EDFA Characteristics

= 1.445; A pump absorption coefficient

= 2.512; A signal absorption coefficient

0.37; A to get pump emission coefficient

1.42; ' to get signal emission coefficient

= 1.122; A background absorption coefficient

= EtaP*AlphaP; A pump emission coefficient

= EtaS*AlphaS; A signal emission coefficient

AvG = 50;

Q = 6;

const=e*eta/(h*nu);

'A

'A

'A

Avalanche Gain = 50

target SNR

optical power to photodiode current

C.2 Equal taps: Figure 5-1 133



C.2 Equal taps: Figure 5-1 134

tapfr = 0.01; % uniform tap fraction

% Initialization

indx=0; 7 counts how many taps

Lmax = 40; % calculation ends at 60 km

DeltaL = 1; % plotting intervals

spreq=zeros(1, (Lmax/DeltaL)); % Signal Power REQuired

L=DeltaL; % start off the first tap at (km)

rxden = 100; % receiver density (per km)

format compact; % remove this line for speed (1/3)

% the WHILE loop

while (L<=Lmax), % stop at max length

indx=indx+1; 7 also count how many taps

disp(indx) % remove this line for speed (2/3)

% spreq(indx)=SNRClc2a/tapfr;

spreq(indx)=abs(fzero('SNRClc2b',2e-5,optimset('disp', 'off')))/tapfr;

% spreq(indx)=SNRClc2c/tapfr;

L=L+DeltaL;

end

format loose;

% update the total length

% remove this line for speed (3/3)

% Plot the required signal power

xax=linspace(DeltaL, DeltaL*indx, indx);

insigp=30+10*loglO(spreq);

plot(xax, insigp)

xlabel('Propagation distance (km)')

ylabel('Required Signal Power (dBm)')

% convert to dBm

. plot with labels

C.2.1 Equal taps: SNR calculation: Method 1

% MATLAB Source file

A Minimum signal power required to meet Q
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% Provides: SNRClc2a(x)

% Needs: Global variables as defined below

Z Algorithm: Directly solve the quadratic equation

% Author: Shayan Mookherjea

% Last Modified: January 14, 2000

function [DThr] = SNRClc2a(x)

global L rxden

% Computational parameters

global R F T const nu eta h e k Be Bo

global AlphaP AlphaS EtaP EtaS BAlpha GammaP GammaS AvG Q tapfr

% Power relationships

pase=(GammaS/(GammaS+AlphaS))*(AlphaS+BAlpha+(rxden*tapfr))*L*h*nu*Bo;

% noise power due to ASE

% We solve the quadratic equation for the minimum

% detectable power with a preamplifier in front.

a = AvG; % the preamplifier gain

id2=a*const*pase; % ase current

b = 2*Q*Q*(id2*2*Be/Bo+e*Be)*a; % Linear in I_s

c = Q*Q*(2*id2*2*Be*e + id2*id2*Be*(2*Bo-Be)/(Bo*Bo) + 4*k*T*Be/R);

rt = b/(2*a*a) + (sqrt(b*b+4*c*a*a))/(2*a*a);

pmin=rt/const;

DThr = pmin; % This is the detection threshold (W)

C.2.2 Equal taps: SNR calculation: Method 2

% MATLAB Source file

% Minimum signal power required to meet Q

' Provides: SNRClc2b(x)

C.2 Equal taps: Figure 5-1 135



% Needs: Global variables as defined below

% Algorithm: Find the zero of SNR- Q^2 using 'fzero'

% Author: Shayan Mookherjea

% Last Modified: January 14, 2000

function [SNRT] = SNRClc2b(x)

global L rxden

A Computational parameters

global R F T const nu eta h e k Be Bo

global AlphaP AlphaS EtaP EtaS BAlpha GammaP GammaS AvG Q tapfr

% Power relationships

psig=x; ' signal power along bus

pase=(GammaS/ (GammaS+AlphaS))* (AlphaS+BAlpha+(rxden*tapfr) ) *L*h*nu*Bo;

A noise power due to ASE

A Convert to currents and find SNRT

ISg = psig*(e*eta)/(h*nu);

INs = pase*(e*eta)/(h*nu);

Sig = (AvG*ISg)^2; % MS signal component

INt = 2*INs*2*Be/Bo *AvG *AvG*ISg; % signal-ASE beat noise

IN2 = 2*e*Be*(ISg+2*INs)*AvG; ' shot noise

IN3 = (INs*AvG)^2*(Be/(Bo^2))*(2*Bo-Be); % ASE-ASE beat

IN4 = 4*k*T*Be/R; ' thermal noise

Qform = Sig/(((sqrt(IN1+IN2+IN3+IN4))+sqrt(IN4))^2);Y Personick suff. stat.

SNRT = Qform - Q^2; % what we need to find fzero of

C.2.3 Equal taps: SNR calculation: Method 3

% MATLAB Source file

% Minimum signal power required to meet Q
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% Needs: Global variables as defined below

% Algorithm: Humblet-Azizoglu

% Author: Shayan Mookherjea

0 Last Modified: February 20, 2000

function [DThr] = SNRClc2c(x)

global L rxden

% Computational parameters

global R F T const nu eta h e k Be Bo

global AlphaP AlphaS EtaP EtaS BAlpha GammaP GammaS AvG Q tapfr

MO=36; % M in equation (2.17)

% Power relationships

pase=(GammaS/(GammaS+AlphaS))*(AlphaS+BAlpha+(rxden*tapfr))*L*h*nu*Bo;

% noise power due to ASE

pmin = pase*Q*Q*(1+h*nu/(2*pase))+pase*Q*sqrt(MO*(1+h*nu/pase));

DThr = pmin;
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C.3 Inequal taps: Figure 5-2

MATLAB Source file

Inequal tap fractions

X Name: ineqtap.m

This program calculates the tap fractions necessary

along an optical amplifier bus network. The tap locations

are uniformly spaced by DeltaL, and at each tap location,

no more power is tapped than is necessary to detect the

signal given an SNR test.

% The tap fractions affect the accumulated ASE power.

% External Calls:

% Author:

% Last modified:

XA

clear

global L tapsum

SNRCalc .m

Shayan Mookherjea

January 9, 2000

Moved definitions to main file, and GLOBAL

Simpler display (user feedback) (quicker)

A used by the function that

X calculates the SNR threshold

A Definitions

global R F T const nu eta h e k Be Bo

global AlphaP AlphaS EtaP EtaS BAlpha GammaP GammaS AvG Q

' Computational parameters

R=50; A detector resistance

F=4; % noise figure of detector

T=290*F; % effective detector temp

c=3*10^(8); A speed of light in vacuum

1=1.55*10~(-6); ' center wavelength

'I.

0/0

7.

oh

oh

'A

'A

7.

C.3"Inequal taps: Figure 5-2 138



C.3 Inequal taps: Figure 5-2

nu=c/l;

eta=0.8;

h=6.634*10~(-34);

e=1.6*10^(-19);

k=1.38*10^(-23);

Be=10*10^(9);

Bo=2*Be;

AlphaP

AlphaS

EtaP =

EtaS =

BAlpha

GammaP

GammaS

o /

0/0

0/0

0/0

0/0

0/0

0/0

center frequency

quantum efficiency of detector

Planck's constant

charge of electron

Boltzmann's constant

Electronic Bandwidth

Optical Bandwidth

% EDFA Characteristics

= 1.445; % pump absorption coefficient

= 2.512; 7 signal absorption coefficient

0.37; % to get pump emission coefficient

1.42; % to get signal emission coefficient

= 1.122; % background absorption coefficient

= EtaP*AlphaP; % pump emission coefficient

= EtaS*AlphaS; % signal emission coefficient

AvG = 50; % Ava

Q = 6; 7%tar

const=e*eta/(h*nu); % con

% Initialization

tapvecs=0;

tapsum=0;

indx=0;

Lmax = 60;

PInput = .001;

DeltaL = 0.04;

L=0;

newtap= 0;

format compact

7 the WHILE loop

while (newtap <1)&(L<=Lmax),

lanche Gain = 50

get SNR

vert optical power to photodiode current

oh

rn/

*1.
0,0

0/*

0/r

'A

0/,

will contain tap fraction sequence

the running sum of tap fraction

counts how many taps

calculation ends at 60 km

Input power (W)

spacing between taps (km)

start off the first tap at (km)

the latest tap fraction

% suppress extra line feeds

7 stop at max length
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indx=indx+1; % also count how many taps

newtap=SNRCalc/PInput;

tapvecs(indx)=single(newtap); % ... is added to the list

A Update the global variables

tapsum=tapsum+newtap; % and the running sum is updated

L=L+DeltaL; O as is the total length

end

format loose % back to usual format

A Plot the tap fractions

xax=linspace(DeltaL, DeltaL*indx, indx);

semilogy(xax, tapvecs) % plot with labels

xlabel('Propagation distance (km)')

ylabel('Tap fractions')

ttlstr=strcat('Input signal power:',num2str(round(30+10*loglO(PInput))),' dBm');

title(ttlstr)

C.3.1 Inequal taps: SNR calculation

% MATLAB Source file

A Calculates minimum signal power needed (mW)

A to meet SNR criterion

A Provides: SNRCalc(x)

A Needs: Global variables as defined below

A Author: Shayan Mookherjea

A Last Modified: January 13, 2000

function [DThr] = SNRCalc(x)

global L tapsum

% Computational parameters

global R F T const nu eta h e k Be Bo

global AlphaP AlphaS EtaP EtaS BAlpha GammaP GammaS AvG Q
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7 Power relationships

pase=GammaS/(GammaS+AlphaS)*((AlphaS+BAlpha)*L+tapsum)*h*nu*Bo;

% noise power due to ASE

7 We solve the quadratic equation for the minimum

% detectable power with a preamplifier in front.

a = AvG; 7 the preamplifier gain

id2=a*const*pase; % ase current

b = 2*Q*Q*(id2*2*Be/Bo+e*Be)*a; % Linear in I_s

c = Q*Q*(2*id2*2*Be*e + id2*id2*Be*(2*Bo-Be)/(Bo*Bo) + 4*k*T*Be/R);

rt = b/(2*a*a) + (sqrt(b*b+4*c*a*a))/(2*a*a);

pmin=rt/const;

DThr = pmin; % This is the detection threshold
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Appendix D

Further remarks on the optimization problem

Any linear ordering is a dense sum of scattered linear orderings.

-F. HAUSDORFF, Math. Ann. 65, 435-505 (1908)

We have developed our optimization arguments in Chapter 2 along physical lines, for

the final result is more physically meaningful than mathematically profound. Also,

there are a number of other factors of physical origin which will affect any practical

implementation of the results, e.g. finite input pump power to the EDFA. In this

concluding section, we briefly highlight in a more mathematical setting the principles

and our motivation for the game-theoretic analysis presented earlier.

We first see that altering our figure-of-merit slightly makes the analysis of optical

amplifier chains quite a bit simpler. This is further explored in the second section in

the context of the general theory of linear orderings.

D.1 Negative noise-to-signal ratio

Our figure of merit in the original optimization problem is the signal-to-noise ratio

of the Nth amplifier along a chain of optical amplifiers. We can identify the associ-

ated reward functions with quantities that our hypothetical players may actually, in

reality, want to maximize: the relationship between signal-to-noise ratio and commu-

nications performance is well-known. Nevertheless, the mathematics are somewhat



more elegant if we introduce the equivalent concept of a negative noise-to-signal ratio

as follows:

Definition 6 (Negative noise-to-signal ratio: NNSR) We define the negative

noise-to-signal ratio in relation to our original definition of the signal-to-noise ra-

tio SNR as

NNSR = -1/SNR

Using the same approximations as in Chapter 2, i.e. the dominant noise sources are

the signal-ASE beat noise and the signal shot noise, we can write the NNSR after the

Nth stage as

N N

K + (Gk- 1)Lk fJ G Lj
2a k=1 j=k+I1(D.1)

NNSRN N D1
P0  Hj kLk

k=1

where K = eB0 /2a with o = p hv B as before and Po is the signal power input at

the head of the chain.

We analyze our optimization problem in terms of NNSR rather than SNR. Firstly,

we can now consider, if necessary, the noiseless case very simply: NNSR remains finite,

while SNR -+ cc.

Specializing to the two-amplifier, two-attenuator chain as we did earlier, the new

figure of merit is

NNSR (G 1, G 2 , L 1 7,L2 ) 2a K + (G1 - 1)L 1 G2 L 2 + (G2 - 1)L 2  (D.2)
PO G2L 2 G L 1

Our arguments proceed exactly as before, with appropriate modifications. For exam-

ple, we can redraw Figure 2-2 as shown in Figure D-1.

The main advantage of this increased complexity in formulism is that chains of

amplifiers can be analyzed quite easily. If we perform a linear transformation on
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A,

B 1+C1
A,

B 2 +C2
A 2

C2
A2

A2
K > L 1 L2

NNSR(G 1 )

G1 1 G2

K > L 2

NNSR(G 2)

Figure D-1: The dependence of gain on the noise-to-signal ratio NNSR(G 1 ) and
NNSR(G 2).

NNSR,

NNSR' = p NNSR + q, p ;o0 (D.3)

then both curves in Figure D-1 shift and scale appropriately, but it's still true that

p(-CI/AI) + q > p(-C 2 A 2) + q (D.4)

which implies that our arbitration is still the Pareto optimal Nash solution, which

is unique. This is merely a demonstration of the invariance of the arbitration under

monotone order-preserving transformations, and we will return to this concept in the

next section. First, we interpret this simple mathematical operation in a way that

has substantial physical significance.
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Let's consider the practically important case GkLk = 1, so that along a chain of

N stages,

2aFN
NNSRN i K + V(1 - 1/G) (D.5)

.k=1

If we add another stage, the resultant NNSR can be written as

1 2a N1 2aNNSRN+1 - K + j (1 - 1/G) + I K (D.6)
GN+1 PO - k=1 . GN+1 PO

which, since GN+1 > 1 can be written as a linear transformation

NNSRN+l = pNNSRN + q (D.7)

where p > 0.

Adding a stage has two implications. First, we change the N player game to

an N + 1 player game, but this is a trivial modification in nomenclature only: our

arbitration procedure can be carried out for any N. Then, we notice that by our

definition of the game, we have changed the reward function for all the players by

a monotone order-preserving linear transformation. We know that under precisely

such transformations, our Nash solution is still valid and moreover, unique. The use

of the negative noise-to-signal ratio makes it simple to demonstrate the correctness

of our solution for arbitrary N-stage chains, of course, under the assumptions of

feasibility.

D.2 Linear orderings

We have so far considered "free-market economies": in many practical situations,

such an assumption may be too liberal. For example, not all Gk may be able to

attain Gmax even if we set all other G = 1,j # k. While there are countless possible
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restrictions reality may impose, we briefly discuss a methodology that allows us to

understand in which situation our analysis still holds valid.

Consider the set A of all feasible allocations

A= a = (a,a2 ,... , aN) ak Gk , k = 1,27,...,N (D.8)

such that

17 1 0 a Grna .(D.9)
k

H 0 1 ak < Lmin (D. 10)
k

and l< Gk Gmax, Lmin <Lk <1 Vk=1,2,...,N.

Our analysis using the signal-to-noise ratio (SNR) establishes a binary relation

called a ranking R of A where

Va, a2 E A, <a 1 ,a2 >E R iff SNRN (al) < SNRN(a 2 ) (D.11)

and we call <A, R> a linear ordering.

Consider a mapping f of A onto B and a ranking S of B, which we are in general

free to choose different from R. As an example, let f be the identity map and S be

given by the NNSR. If we can write

Vb 1, b2 E B, <b,b 2 >E S iff NNSRN(al) < NNSRN(a2 ) (D.12)

then the linear orderings are isomorphic, <A, R>_<B, S>. In our example, which

represents our conversion from SNR to NNSR, f is in fact an automorphism.

For the identity map f, we can choose a different S according to any preferred

criterion-for example, the bit error rate (BER) rather than NNRS-such that the

orderings are isomorphic, i.e. have the same order type. It's obvious that having the
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same order type is an equivalence relation on the class of all linear orderings.

Next, we can generalize f such that the linear orderings < A, R> and < B, S >

again have the same order type: a simple example is

a, 10logio(a1) - 10log1 o(& 2)

a2 10log1o(a2) - 101og1 0 (&)2)3)

which, for any choice of &I and &2, expresses Gi and Li in dBr rather than absolute

units.

In fact, if order type TR is the representative of the equivalence class of <A, R>,

we are free to choose any linear ordering S of order type TS such that TR is embeddable

is Ts, TRf -< TS.

An added degree of complication arises if B is not Dedekind complete. We restrict

our attention to S = R. Let <I, S > be a linear ordering and for each i E I let

< Ai, S > be a linear ordering. For the moment, let's assume that A are disjoint.

Define the genralized sum E {Ai I i c I} to be the linear ordering < C, S> where

C = U {Ai c I}. If Ai are not disjoint, we modify our definition [22] by first

replacing each < Ai, Si > by an isomorphic copy < A'S, S > so that {A'1 i E I} is

pairwise disjoint.

It follows trivially that our optimality conclusions hold: C is a linear ordering

with the same binary relation S (i.e. NNSR) as each of its constituents. Moreover,

we can further adapt Ai to a suitable form by the following lemma [22, pages 19-20]

Theorem 6 Let f be an isomorphism of < I, S> onto <I', S'>. For each i e I let

< Ai, Si> be a linear ordering and for each i' E I' let < A $S> be a linear ordering;

and assume that for each i E I,

<A, Si >~< Af (j), Sfti)>
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Then

{A i E I} ~ >{AZ/ i' E I'}

This gives us considerable freedom in our choice of the isomorphic mappings.

Finally, we note that the constructive process we used in analyzing the N-amplifier

chain in Chapter 2-starting at the left-hand end of the chain and analyzing groups of

two stages-is a simple example of iterated condensations of the linear ordering, each

iteration of which yields a linear ordering. An appropriate choice of condensation

maps can considerably simplify the analysis in a given situation
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Index

absorption coefficient, 53, 84, 86

background, 9, 13, 71, 84

effective, 109

Er-doping, 45

in rate equations, 50

absorption spectrum, 51

allocation

optimum, 29

amplification

use of, 15, 83

amplified spontaneous emission, 16, 48

propagation length, 84

amplifier chain, 58, 118

remotely pumped, 119

amplifier, traveling-wave type, 20

amplitude modulation, 23

arbitration, 34

ASE, see amplified spontaneous emis-

sion

avalanche gain, 18

avalanche photodiode

dark current, 19

in distributed amplifier, 95

photon counting, 19

bandwidth

electronic, 22, 98

optical, 22, 49, 98

Bayesian framework, 23

beat noise, 22, 95

beat noise, dominant, 66, 123

bias resistor, 19

bit error rate, 16, 84

Boltzmann's constant, 95

Boltzmann's distribution, 44

Borel theorem, 29

broadening

homogeneous, 44

thermalization, 44

bus distribution, 65, 83

model of, 26, 66

passive, 13-14

transparent, 66, 78

two-levels, 76

capacitance

junction, 19

Chan, V.W.S, 76

communications



Index 153

model, 118

performance, 9

confinement factor, 45

constraints

in optimization problem, 121

convergence, Dominated, 120, 125

coordinates, moving, 48

cross section

absorption, 45

emission, 45, 47

fiber core, 85

use of, 44

crosstalk, 113

cutback procedure, 51

dark current, 19

decision rule, 23

decision threshold, 24

density function, 84

Desurvire, E., 9, 45

model, 48-50

detection

non-ideal, 17

detector

model of, 18

detector noise, dominant, 67

Dirac delta function, 127

distributed amplifier, 41, 84

detection, 95

effect of taps, 94

introduction, 76

distribution

bus, see bus distribution

clustered, 92

passive, 13-14

star, see star distribution

tree, see tree distribution

distribution networks, 10

dominating function, construction of,

126

EDFA, see erbium-doped fiber ampli-

fier

efficiency of fiber utilization, 116

emission coefficient, 86

Er-doping, 45

emission rate, 46

erbium ion density, 44, 45

erbium-doped fiber, 11, 43, 84, 118

integrating over, 87

maximum length, 91

erbium-doped fiber amplifier, 10, 83

differential equations, 120

distributed, 84

dynamic behavior, 120

first, 43

gain process, 10

limitations on gain, 56

Index 153



Index 154

low-pass filter, 120

optimum length of, 56

pump, 10

feasibility, 39

feedthrough ratio, 60

fiber

loss, 9,14, 70

nonlinearities, 27

fixed point, 30

free distribution, 38

Fuchtbauer-Ladenburg formula, 51

gain

avalanche, 18

reallocating, 12

gain coefficient, 87

pump, 93

gain constant

path-averaged, 109

gain, channel, 90

game

non-cooperative, 29

game theory

use of, 12

Giles, on peak cross section ratio, 51

ground level, 46

group velocity, 47

impact ionization, 18

indicator variable, 90

indicator variables, 85

integrating, under the differential, 119,

125

intensity, of optical pulse, 47

inversion, 94

complete, 93, 102

incomplete, 93, 102

ionization

impact, 18

Johnson noise, 20

junction capacitance, 19

Kakutani, S., 31

Laguerre distribution, 25

Laplace transform, 111, 120

ligand field, effects of, 44

likelihood ratio, 23

lineshape function, 46

loss

reallocating, 12

losses

additional, 14, 70, 74

lower level

population, 45, 93

McCumber, on cross sections, 51

mean-squared values, 21, 95

Index 154



Index 155

minimum detection threshold, see re-

ceiver sensitivity

Nash equilibrium, 31

Nash Theorem

cooperative, 35

generalized, 40

non-cooperative, 30

network design

construction of, 12

feasible, 15

methodology, 10, 65-82

multistage, 11, 12

structure, 11

use of taps, 89

network management, 10, 111, 118, 120

noise power, 92

noise processes, 17

filtered, 25

noise sources, 19

number density, 85, 87, 94

number of receivers

maximum, 84

number of users

density, 90, 101

maximum, 91

active, 90

passive, 14

numerical values, 96

SNR bound, 96

Nyquist noise, 20

on-off keying, 23

optical networks

backbone, 10

distribution, 10

optical power, 28

optical propagation

in rate equations, 47

optical propagation, equation for, 45

optimization problem, 27, 58

original contributions, 12

output power, 88

overlap integral factor, 49

Pareto efficiency, 31

passive distribution, 13-14

path-averaged values, 87, 90

Personick Q-factor, 66, 100, 105

Personick, S.D., 24

perturbation theory, 120

perturbations

signal-tone, 113

phase velocity, 47

photon statistics, 92

point-to-set mapping, 30

Poisson process, 25

population density, 84

path-averaged, 109
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Index 156

populations

normalized, 45

power

optical, 28

power spectral density, 22, 25

power, optical

bound on, 127

probability of error, 23

propagation length, 84, 115

pump power

absorption of, 56, 93

dominant, 89

effects of high input, 55, 70, 94

evolution of, 52, 70, 85

input v/s output, 53

required input, 53, 90

source, 118

transparency, 52, 55

unused, 11

pump power transparency, 90

pump wavelength, 71, 84

quality of service, 24

quasi-concavity, 29

rate equations, 44

multiple channels, 84

two-level system, 46

reaction function, 30

reallocation, 122, 124

receiver density, 106

bound, 115

tradeoff, 92

receiver sensitivity, 14, 67, 83

affects number of stages, 70

tap fraction, 103

receiver, model of, 13

numerical, 67

remotely-pumped amplifier, 11

resistance, 95

resistor

bias, 19

saturation factor, 110

saturation parameter, 87

saturation power, 49

as normalization, 112

in photons, 88

measurement of, 51

Schawlow, A.L., 20

scheduling algorithms, use in, 112

shot noise, 19, 22

signal processing, 23

signal to noise ratio, 16, 21, 65, 119

constraint, 115

distributed amplifier, 94, 95

function, 28

maximization, 121

simulations, use in, 85
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Index

single mode fiber, 11, 118

singular density function, 119

SMF, see single mode fiber

solitons, 9

span of network, 89, 90

at transparency, 94

spectral bandwidth, 21

splitting fraction, 114

star distribution, 117

subnetwork, 72

Stark splitting, of levels, 44

steady state, 88-89

stimulated emission, rate of, 47

strategy vector, 29

tap fraction, 13, 70, 83, 119

bound, 14, 104

dynamic perturbation, 108

in tree networks, 106, 114

losses beyond, 14

nonuniform, 75, 102

numerical example, 96

purpose of, 13

sequence, 14, 84, 103, 106, 115

simple example, 70

uniform, 89

tap fractions

set of locations, 126

tap function, 85

meaning of, 86

taps

number of, 71

taps, spacing of, 85

temperature, effective, 95

thermal noise, 20, 22

thermalization, see broadening

Townes, C.H., 20

tree distribution, 114

length of, 116

subnetwork, 72

unsaturated gain, 48

upper level, 85

population, 45, 85, 87, 126

bound on, 104, 127

evolution, 88

steady state, 88

upper state, 84

spontaneous lifetime, 46, 85, 87

wavelength-division multiplexed, 9, 10,

46, 89

WDM, see wavelength-division multi-

plexed

157


