
Site-Wide Templates for Internet Sites
by

Michael Bryzek
Submitted to the Department of

Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering
In Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2000

@ Michael Bryzek 2000. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce
and distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author___
Department of

Electrical Engineering and Computer Science

May 2000

Certified by
Harold Abelson

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 2 7 2000

LIBRARIES

Site-Wide Templates for Internet Sites
by

Michael Bryzek
Submitted to the Department of

Electrical Engineering and Computer Science
on May 2000, in partial fulfillment of the

requirements for the degree of
Master of Engineering

In Electrical Engineering and Computer Science

Abstract

This paper presents the design and implementation of a system to maintain multiple site-wide templates
for one website. The idea is to separate the core contents of a web page from the graphical elements
making up the page header and footer. Our goal is to non-intrusively allow both programmers and
graphics designers to work mostly independently, decreasing development time while increasing the
reliability and easing maintenance of the templates.

SWTM accomplishes most of these goals through a simple programmer's API, an object-based approach
to building templates, and a stored repository of all objects previously created. Thus, even when the
separation of tasks between programmer and graphics designer is not possible, the programmer need only

solve each problem once, allowing the graphics designer to reuse initial work in future templates.

Thesis Supervisor. Harold Abelson, Professor of Computer Science and Engineering

mbryzek@alum.mit.eduPage 2 of 68

Acknowledgements

I would like to first thank those people responsible for making this project possible, including Professor
Harold Abelson for supervising the work, Atisaya Vimuktanon, Rip Taggart, and Wendy Simmons for
creating the initial need for such a system at GuideStar.org, and ArsDigita Corporation for providing both
hardware and software resources to be able to implement the results. I would also like to thank Randy
Graebner and Aileen Tang who were concurrently working on an online education network; they offered
their system as a test bed for this project. I also thank Tracy Adams who helped with the design of a
prototype system in 1999.

I also would like to thank Rhonda Johnson and Leo Leung at the United Way of Massachusetts Bay who
provided many suggestions from the point of view of non-programmers. I also owe many thanks to Brian
Reid who helped me locate notes from his PhD thesis on Scribe, written before the Internet made papers
so easily accessible, and Jacek Siembab, who helped edit the final draft of this paper.

And of course, I'd like to thank my parents, brother, and sister for supporting and encouraging me to
pursue an advanced degree

Finally, this thesis is dedicated to my fiancee, Lisa Marchand who managed to plan most of our upcoming
wedding to allow me to spend more time on this project. She also provided constant support,
encouragement, and suggestions to help this project become successful.

mbryzek@alum.mit.eduPage 3 of 68

Table of Contents

S Introduction..6
1.1 On the personal side... .. 6
1.2 M otivation ... 7
1.3 W here SW TM fits in ... 7
1.4 H igh-Level System Design O verview ... 7
1.5 Evaluating our success .. 9

1.5.1 Separation betw een program m er and graphics designer... 9
1.5.2 Developm ent tim e ... 9
1.5.3 Ensuring sim ple upgrades/ports ... 9

2 Background .. 11
2.1 M arkup Languages .. 11

2.1.1 HTM L ... 11
2.1.2 A DP Tem plates ... 11
2.1.3 Scribe .. 11
2.1.4 LaTeX ... 12

2.2 Reusable com ponents .. 12
2.2.1 Desktop W ord Processors .. 12
2.2.2 Em ail Program s... 12
2.2.3 M acros... 12
2.2.4 EM ACS... 12
2.2.5 Cascading Style Sheets (CSS)... 13
2.2.6 Content M anagem ent System s... 13
2.2.7 Page-by-page tem plates using ADP.. 14

3 Exam ple Scenario... 15
3.1 General Process of Creating a Site-W ide Tem plate .. 15
3.2 A Real-Life Example - Building the BU Site-Wide Template .. 16

3.2.1 Step One - Gathering Basic Inform ation ... 16
3.2.2 Step Two - Identifying N odes ... 16
3.2.3 Step Three - Ensuring that the files in each node use the SWTM API 16
3.2.4 Step Four - Creating HTM L M ockups ... 16
3.2.5 Step Five - Creating SW TM Objects ... 17
3.2.6 Step Six - A ssigning Object to Nodes .. 19

3.3 Sum m ary ... 20
4 Design of the Site-Wide Template Manager (SWTM).. 21

4.1 Design Goals 21
4.2 Design Considerations... 21

4.2.1 Separating the work of the programmer and graphics designer.. 21
4.2.2 Maintenance Component: Creating, Maintaining, and Modifying Templates................... 22
4.2.3 Decrease overall developm ent tim e .. 24
4.2.4 A llow for m inim al work in upgrading legacy system s. .. 24

4.3 Design Sum m ary ... 25
4.3.1 SW TM API... 25
4.3.2 SW TM Tem plate M anager ... 26
4.3.3 SW TM Object M anager... 26
4.3.4 SW TM N ode M anager.. 27
4.3.5 SW TM File M anager .. 27

4.4 Other Design Considerations.. 27
4.4.1 M aintaining system perform ance.. 27

Page 4 of 68 mbryzek@alum.mit.edu

4.4.2 SW TM Library.. 28
5 Im plem entation .. 29

5.1 User pages ... 29
5.1.1 Tem plate M anager .. 29
5.1.2 Object M anager... 32

5.2 Data m odel .. 35
5.2.1 Central Tables ... 35
5.2.2 Tying the Central Tables Together .. 38

5 .3 A P I .. 3 8
5.3.1 Program mer's API... 38
5.3.2 Graphics Designer's API.. 44

5.3.3 Supporting Cascading Style Sheets... 46

5.4 Im plem entation Sum m ary .. 46

6 Evaluation - Did W e Accom plish Our Goals?... 47
6.1.1 Separating the W ork ... 47

6.2 M aintaining Development Time ... 49

6.3 Ensuring simple upgrades/ports ... 51
6.3.1 Porting the Bookm arks module... 51
6.3.2 Installing SW TM on the Sloan Education Network ... 52

6.4 Sum m ary ... 53
7 Future W ork... 54

7.1 Current SW TM Limits .. 54

7.2 Future Enhancements .. 55
7.2.1 U sability .. 55
7.2.2 Better File System Integration .. 55
7.2.3 M odule Search .. 55
7.2.4 Versioning... 55

8 Conclusion .. 57
9 Appendix A : O racle 8i Data M odel... 58
10 Appendix B: Loading Initial Tem plates... 63
11 Bibliography ... 67

Page 5 of 68 mbryzek@alum.mit.edu

1 Introduction
One of the ongoing frustrations in website design today, circa February 2000, is the lack of separation

between programmers and graphics designers. Many individual pages on the web include a

disproportionate amount of graphical context that is difficult to maintain or to change and usually requires

the programmer's assistance. A more ideal development environment would allow the programmers and

graphics designers to work independently. The separation of tasks between programming and layout

would lead to a more maintainable code base and a shorter development time.

Many people have attempted to solve the dependency between programmers and graphics designers.

However, today's solutions often go too far in solving the problem for either the programmer or the

graphics designer. This paper presents a distinct type of templating system that is a compromise in

convenience between the programmer and designer, allowing both to work productively with minimal

changes to either's usual working environment.

The big picture is to introduce a simple layer of software between the programmer and graphics
designers. We call this layer the site-wide template manager (SWTM). The programmer's API will consist

of a very small set of instructions that replaces the programmers original API to setup each individual
web page. Graphics designers will receive a new process by which they incorporate their graphical

changes to the site. SWTM then can be modified, as needed, mostly independent of the work of the

programmer and graphics designer.

In real life, this system has many applications - any database-backed website that needs, or may need to,
change the templates used on the site across a large number of pages will benefit from SWTM. In

particular, we will focus on the following implementations to evaluate the success of SWTM:

" A university online education system: The MIT Sloan school is planning to adopt an online
course system to manage its courses.' Each course will need its own look-and-feel.

" VolunteerSolutions.org: This online service matches volunteers to opportunities with nonprofit

agencies. The service is available in many metropolitan regions and on independent university
campuses, each with its own templating needs.

All of these examples will be implemented using the ArsDigita Community System version 3.2 (ACS)
and the ArsDigita Architecture: Oracle RDBMS 4 AolServer 4 TCL scripting language, but the

concepts presented are applicable to any development environment.

1.1 On the personal side...
The author's primary motivation in developing the site-wide template system comes from preliminary

work in building a rudimentary template system for GuideStar.org. This online service needed to template

its search engine and corresponding drill-down pages for various partners 2. As GuideStar.org continued to

add partners with various templating needs, a system to manage all of the templates became necessary.

However, at the time (circa October 1999), no system existed that could be easily incorporated into the

site.

'The online education system is being developed concurrently by Randy Graebner and Aileen Tang at MIT.
2 See, for example, http://www.jguidestar.org/search and http://www.guidestar.org/aol/search

mbryzek@alum.mit.eduPage 6 of 68

1.2 Motivation
After creating the initial version of EMACS, Richard Stallman wrote:

Extensibility means that the user can add new editing commands or change old ones to fit his
editing needs, while he is editing. EMACS is written in a modular fashion, composed of many
separate and independent functions. The user extends EMACS by adding or replacing
functions, writing their definitions in the same language that was used to write the original
EMACS system... this is the only method of extension which is practical in use.

SWTM is an extensible software module that can be "plugged-in" to existing sites, that, with a basic API
for the programmers, provides a highly extensible interface to control the look-and-feel for the entire
website. Note that this interface specifically focuses on the look-and-feel of the site, and ignores all other
aspects of a website that should themselves be extensible. 4

1.3 Where SWTM fits in
SWTM is designed to manage templates for a site where:

1. The number of pages that need to use templates is large
2. The customer does not need full content-management capabilities
3. There is a potential to brand the entire site, or sections of it, where the branding would require an

independent set of templates
4. The site is database-driven.

When the above conditions hold, SWTM will result in a website that accomplishes its goals while being
easy to maintain.

1.4 High-Level System Design Overview
SWTM separates a document into three distinct pieces:

Page Header

Page Body

Page Footer

Figure 1: Division of a document

3 Stallman, Richard, "EMACS, the Extensible, Customizable, Display Editor," Feb 11, 1998.
4 The author believes the larger problem of designing a fully extensible website is too complex for the scope of this
paper. Instead, we hope that by focusing our work initially on the design of an extensible templating system, we can
motivate further research into systems designed to aid programmers in creating fully extensible websites.

mbryzek@alum.mit.eduPage 7 of 68

Though this division of the page may seem obvious, its power is much more subtle. This division into
three components is based on the way pages are designed using html. The only way to place elements in
different locations on the page, e.g. a left menu bar, is to use html tables.5 If we want to separate the
contents of the page (the page body), from the graphics and navigation, we must separate the html needed
to create the look and feel from that needed to display the page. Note that this division of a document will
support almost all graphical layouts on the web today, from simple Yahoo-style menu bars to complex tab

6
based systems with top, left, bottom, and right navigation.

SWTM allows the graphics designer to specify the Page Header and Page Footer, leaving the programmer
to design the page body. Note that designing the page body is largely dependant on functionality. That is,
the page body is so intricately tied to the data model behind the entire web site that it is not feasible for a
graphics designer to control the appearance of the page body. The basic idea here is that the programmer
and graphics designer have different strengths:

* Programmers are great at extracting information from the database

* Graphics designers are great at creating graphics and navigation schemes.

As a real-life example of the need for such a system, one of the author's tasks while working on
http://uidestar.org 7 was to support third-party sites who wanted to link to GuideStar's search engine.
Figure 2 shows an example of one of the original GuideStar pages and Figure 3 shows a mockup of a
desired third-party page (this one for America's Promise). The author chose to create the two pages
entirely with Tcl procedures, and as a result, spent many hours changing style sheets, updating menu bars,
and changing graphics.

F : aGids 3 M of S P for Amrc'

cum=

W &I ; V)

Figure 2: Original GuideStar Search Results Page Figure 3: Mockup of Same Page for America's
Promise

5 Some people might say that you could use frames to accomplish the same affect. You probably could, but most
people despise frames because they are impossible to bookmark. In any case, none of the top web sites uses frames,
and we thus do not consider HTML frames as a viable alternative.
6 Some examples of sites with complex navigation that still breaks down into a page header, page body, and page

footer include http://mothernature.com, http://www.chowk.com.
7 http://GuideStar.org is a client of ArsDigita that posts financial information about nonprofit organizations on the

web with the goal of helping donors make better decisions as to where to donate their money.

mbryzek@alum.mit.eduPage 8 of 68

1.5 Evaluating our success
The major goals of the site-wide template system include:

1. Separating the programmer from having to think about the graphical layout of each page in a way
that makes it easy to maintain and change a set of templates.

2. Decreasing overall development time (or at least not increasing it!)
3. Ensuring relatively simple ports from legacy systems to ones that use SWTM.

1.5.1 Separation between programmer and graphics designer

The general concept of separating the programming of the web page's functionality from the layout of the
page is the most challenging goal of this project. Many systems have been designed to try to create this
separation as cleanly as possible, and all have failed (for more information, please refer to Section 2:
Background).

Our goal here is to allow the programmer to work without having to think about the general layout of the
page. That is, our goal is not to allow the programmer and graphics designer to work in complete isolation
throughout the entire life of the website but rather to allow the programmer to work with the graphics
designers only on the structure and flow of the content and functionality of each page. By doing so, we
limit our focus to creating a system that can manage the graphics and navigation that surround the body of
each page as shown in Figure 1.

We will measure our success with the following experiments:

* To what extent must the programmer be involved in creating templates?

* How long does it take to create an entirely new and different set of templates for use with the
same content?

* How many things must be changed (e.g. number of lines of code, number of files, etc.) to make
the new set of templates work properly?

1.5.2 Development time

Another of our primary goals is to ensure that we do not worsen the lives of either the programmer or the
graphics designer through their use of SWTM. For SWTM to make sense as a tool, it must not increase
the amount of time each party spends doing the same work they do today. Our hope is that this tool will
actually decrease the time it takes to develop a page, but we'll settle for no change in the development
time.

We will measure development time by simply measuring the amount of time it takes to add the look and
feel to a web page using SWTM versus a traditional method of either cutting and pasting the html or
modifying some procedure that returns the html. Note that we will run this experiment on a website that
currently implements at least two different templates for a portion of its pages.

1.5.3 Ensuring simple upgrades/ports

Our final major goal is to ensure that it does not require too much programming time to install SWTM on
an existing website. This is important as once site-wide templates are in use, we want them to be used on
all pages, including those previously developed.

mbryzek@alum.mit.eduPage 9 of 68

Porting a system is never easy, and we expect a significant time investment to install the template

manager on top of an existing system. Our goal is to at least make the upgrade process simple and as

error-free as possible.

To measure our success here, we will choose one section of an existing website built with ArsDigita's
toolkit and compare the amount of time it takes to put that module under the control of SWTM versus a
full content management system.

mbryzek@alum.mit.eduPage 10 of 68

2 Background
Before designing any new system, it is helpful to look at what is currently available in the marketplace
that is a possible replacement for the system we are trying to build. In the case of site-wide templates, we
are interested in any tool or product that performs at least one of the following functions (Note that
without loss of generality, we assume that graphics designers do not know anything about programming,
but do have basic knowledge of html):

* Markup languages: Consists of a simple language designed to eliminate or hide the complexity
of programming from graphics designers.

* Reusable components: Allows the definition of some sort of reusable block of text or code that
can be modified by programmers and/or graphics designers. Once we have reusable components,
we can easily design a system to implement top-down or bottom-up design of presentation
templates.

In looking at examples that address some of the needs of SWTM, we hope to identify important concepts
or tools to use in the design of our system.

2.1 Markup Languages
Tagging languages are designed, in general, to hide some complexity from the author of a document. The
most common tagging languages are used to separate the presentation of text from the text itself.

2.1.1 HTML

"HTMNEvL consists of standardized codes, or "tags", that are used to define the structure of
information on a web page. HTML is used to prepare documents for the World Wide Web. A
web page is a single unit of information, often called a document, that is available on the
World Wide Web. HTML defines several aspects of a web page including heading levels, bold,
italics, images, paragraph breaks and hypertext links to other resources."8

Basically, HTML separates the content of a web page from its presentation through a very basic set of
tags. The simplicity of the language is largely responsible for the number of web pages that exist today.
HTML is designed to represent only one web page at a time, and does not help us in defining site-wide
templates.

2.1.2 ADP Templates

ADP templates are similar in concept to HTML with the major difference that tags can be defined on the
fly and reused by other sites. If a group of users agrees to a particular ADP standard, this tagging
language can be used to help that group of users share and present data on independent sites. The concept
of extending the base language is very powerful and one that we include in the design of our system.

2.1.3 Scribe

Brian Reid developed Scribe (Document Specification Language and its Compiler) as one of the early

experiments in automating the production of documents. Scribe was an example of a program designed
around "the whole idea of creating documents at a higher level than the individual formatting
commands." 9 In designing this system, Reid found that:

8 Network Solutions, Inc., "What is HTML?", http://rrpac.upr.clu.edu:9090/-jcarroll/html/sldO2.html
9 Abelson, Hal, Email exchange with the author, Feb 14, 2000.

mbryzek@alum.mit.eduPage 11I of 68

* The reality was that computer production of documents was not easy and the finished quality
was often poor

* Formatting programs put too much control in the hands of the authors and did not separate the
expertise of authoring text, designing formats, and imposing the formats onto the text.'

In summary, Reid tried to do too much with Scribe. The program excluded people, such as the formatting
experts, from the process of creating a document. Without their expertise, it was nearly impossible to
correctly format a document.

2.1.4 LaTeX
LaTeX is a markup language designed to separate the work of presenting a document from authoring its
content. It is very similar in design to HTML but has a richer set of commands. LaTeX works very well
for individual documents and users, but does not assist us in creating templates that can be applied and
easily changed to hundreds or thousands of documents.

2.2 Reusable components
Many programs today already allow users to create site-wide templates. We look at both traditional, or
single-user applications, and web applications, noting their strengths, weaknesses and the lessons learned
from their design.

2.2.1 Desktop Word Processors

When opening a new document in a word processor such as Microsoft Word, users have the option to
select a template in order to set the basic style sheet for the document. With non-web applications, such as
a desktop word processor, the idea of reusable components is largely simplified because in most cases, the
amount of customization that is needed and the number of users with disparate needs are small. Designing
a website, however, is more akin to designing a suite of customizations that can be dynamically loaded as
different users interact with the software.

2.2.2 Email Programs

Email programs allow users to define footers that are automatically attached to each email message sent.
This saves the user from having to repeatedly enter the same information.

Email footers are another extremely simple example of a system of reusable components. Alice simply
creates a file containing the signature she wants to repeat in every message and the software "cuts and
pastes" that text into every mail message she composes.

2.2.3 Macros

Many desktop applications support macros that allow us to repeat commands infinitely without having to
manually re-type the commands. Macros are similar to email footers in that a user saves a sequence of
commands that can then be executed in batch. Once the macro is changed, it must be rerun on all of the
data. There is no need for changes to a macro to automatically trigger the macro to be run again.

2.2.4 EMACS

EMACS is one of the great examples of a software program that can be infinitely customized to the needs
of an individual user and is probably the nearest relative to our goal of creating site-wide templates. Some

1 Reid, Brian, "20 Years of Abstract Markup. Any Progress?" Compaq Computer Corp, Nov 19, 1998,
http://reid.org/-brian/markup98.html

mbryzek@alum.mit.eduPage 12 of 68

of the lessons we can learn from the success of EMACS as related to reusable components for site-wide
templates include:

* The ability "to accept and then execute new code while [EMACS] is running."" This feature
allows users to not have to recompile the entire program to accept a new module.

e The use of global variables that are available after compilation. This allows modules/features
added after compilation to reference the same variables.

" Dynamic binding that allows nested calls to see the last definition of any previously defined
variable. This form of binding also allows us to define procedures that can accept a variable
number of arguments as we really have no way of knowing in advance what the necessary
arguments will be.' 2

The underlying theme to some of the lessons learned from EMACS is that the system must be designed
from the start as an extensible system and must be modular so future needs can be cleanly integrated. We
will have achieved our goal only when it is easy to extend and maintain our templating system.

2.2.5 Cascading Style Sheets (CSS)

Cascading Style Sheets are used to redefine properties associated with the look-and-feel of individual
HTML elements. "Every element type as well as every occurrence of a specific element within that type
can be declared a unique style, e.g. margins, positioning, color or size."" On the web, CSS is the only
system that makes it easy to customize entire websites. CSS simply requires programmers to include a
link to the style sheet in their pages and leaves the design of the style sheet to the graphics designers.
Modifying the single style sheet can instantly change the display properties of every document in the
website.

The major problem with CSS is that it is too limited in scope. CSS is designed to affect only the display
properties of existing elements and does nothing to help us change the entire look and feel of a website
and all of its documents. We expect that any templating system designed for the web should take full
advantage of CSS rather than try to rebuild the functionality already provided.

2.2.6 Content Management Systems

Content Management Systems14 are used to separate the management of content from programming tasks.
These systems are usually complex and are designed with the customer in mind. One of the main features
of a content management system is that a non-programmer can easily and remotely modify any piece of
content on a website. Content managements systems are extremely powerful and work well when the
client wants to control the way each piece of information appears on a website. In reality, the client is
more concerned about the general look and feel of the site as a whole rather than changing a
 tag to
a <P> tag. Because content management systems are so closely focused on the needs of the client,
programmers often must change their entire style of programming to use a large, and sometimes complex,
API. It is thus often easier to rewrite an existing system than to port it to a content management system,
and, in many cases, content management systems are overkill.

"1 Stallman, Richard, "EMACS, the Extensible, Customizable, Display Editor," Feb 11, 1998,
http://org.gnu.de/software/emacs/emacs-paper.html.
12 Ibid.
13 "CSS Frequently Asked Questions", http://www.hwa.org/resources/faqs/cssFAQ.html#css
14 See, for example, http://www.vignette.com or http://arsdigita.com/doc/versioning.html

mbryzek@alum.mit.eduPage 13 of 68

2.2.7 Page-by-page templates using ADP

Page-by-page templates using ADP are commonplace. The idea here is to ask the programmer to create
several variables that hold the majority of the page contents, to design custom ADP tags on a per-client
basis, and finally to offer clients the ability to rearrange the page contents using the predefined variables
and simple ADP tags.' 5 The variables are created in one file, and a separate file is created for each
template used to present the file. This system works well when the number of pages that must use
templates is small. If the entire site needs to use templates, this system will double the number of files that
must be maintained. In addition, each time a new set of templates is designed, the number of files will
increase linearly with respect to the original number of files in the system. This quickly results in a
maintenance nightmare.

However, page-by-page templates offer two very real advantages:

1.
2.

Full control over the placement within the document of each piece of content
The ability to customize the layout of the page contents on a template-by-template basis.

These two features replicate some of the functionality of fully blown content management systems, and
can be used, when necessary, to complement any templating system.

15 See, for example, http://arsdigita.condoc/style.html

mbryzek@alum.mit.eduPage 14 of 68

3 Example Scenario
Before we begin discussing the design of the system, we outline the way in which programmers and
graphics designers interact with the Site-Wide Template Manager (SWTM). The following example
outlines the construction of a site-wide template for one of Volunteer Solutions'partners - Boston
University (BU). VolunteerSolutions.org helps community service centers at universities put their
databases of volunteers, nonprofit agencies, and opportunities on the web. As part of this service,
VolunteerSolutions.org works with the university to integrate that university's look-and-feel.

3.1 General Process of Creating a Site-Wide Template
The overall process of creating site-wide templates can be summarized as:

1. Entering basic information into SWTM - Before any template is created, SWTM needs to know
the name of the site-wide template and unique identifier for that template.

2. Identifying distinct nodes in the system - A node is a directory on the file system that has a
unique look and feel. For example, on VolunteerSolutions.org, there are three primary nodes:

a. /general - This directory contains files that contain general information including
the site's privacy practices, legal policies, contact information, etc.

b. /agency - This directory stores all files related to serving the needs of nonprofit
agencies. Agencies use files within this node to post and update their information and to
view statistics on their listings.

c. /volunteer - This directory stores all files related to a volunteer browsing through
the site, including the search engine, the volunteer's personal workspace, and agency
listings for the volunteer to browse.

Additional nodes might be needed for templates wishing to further customize the look and feel
for:

o Agencies who are logged in (/agency/home)
o Agencies who are viewing general information (/agency/general)
o Volunteers who are logged in (/agency/home)
o Volunteers who are viewing general information (/volunteer/general)

3. Ensuring that all files in each node are setup to work with SWTM - Every file must use the
SWTM API.

4. Creating a mockup html pages for each node - For each node that we identify as having a
distinct look and feel, we need to create an html mockup from which to build the initial SWTM
objects. Note that in most cases, the changes in look-and-feel between nodes will be minor -
perhaps only a graphic, title, or menu bar needs to be changed. In this case, one core mockup
and a detailed outline of what changes from node to node is sufficient.

5. Creating SWTM objects - We need to convert the mockups into SWTM objects. This process is
straight forward and involves a lot of "cut-and-paste" work from the user's desktop to the web.

6. Assigning objects to nodes registered with the partner - The final step is to register objects with
nodes for the given partner's template. Objects are registered through SWTM by assigning an
object to a specific node, in one of two roles, either header or footer, and in a specified order.

The first step is trivial and amounts to filling out a web form - either the programmer or graphics designer

can do this.

mbryzek@alum.mit.eduPage 15 of 68

The programmer and graphics designer will generally work together to identify the nodes that need
distinct templates. The programmer outlines the different site functions of the site, and the graphics
designer decides whether the node associated with each function needs to have a custom template.

The programmer is solely responsible for the third step. Once the nodes have been identified, they must
be under the control of SWTM. In some cases, the files in the node will need to be ported before they can
be used.

The graphics designers are responsible for the last three steps, working mostly from their desktop
computer and uploading their work when they reach milestones.

3.2 A Real-Life Example - Building the BU Site-Wide Template
To make our lives easier here, we introduce Paula, who is the lead programmer for
VolunteerSolutions.org, and Gary, who is the graphics designer for the BU Community Service Center.

3.2.1 Step One - Gathering Basic Information

Paula and Gary agree to a unique identifier of "bu" for the BU site-wide template. Paula enters this
information into SWTM, registering the /bu URL to serve pages using the BU templates.

3.2.2 Step Two - Identifying Nodes

Paula and Gary work together to identify the following nodes that need to have templates:

* /agency

* /general

e /volunteer

e /volunteer/general

They also decide that all four templates will be very similar, with only the menu bars and the top image
depicting the name of the section changing.

3.2.3 Step Three - Ensuring that the files in each node use the SWTM API

Paula runs through the files in each node to be sure that all files have the appropriate SWTM calls. In our
specific case, there is no work to do since all of the nodes were originally written to use the SWTM API.
If there were some files that did not use the SWTM API, Paula would need to rewrite the appropriate
portions of those files.

3.2.4 Step Four - Creating HTML Mockups

Gary begins by creating one core mockup that will be used by templates used in all the nodes. Before
beginning, we identify the elements that will be changing between the nodes and how those changes will
impact the template:

* The image depicting the name of the section will change - Changing the image will be up to
SWTM and is straightforward, as simply changing a graphic does not impact the mockup html.
Note that to successfully reuse one html template, all the images must be the same size.

* Each section will have its own menu bars - SWTM is designed to support multiple objects

assigned to each node of a template. The core template thus cannot include any menu bars. We

should create a separate mockup for each menu bar to later add to SWTM. In actuality, BU

mbryzek@alum.mit.eduPage 16 of 68

decided to use the standard VolunteerSolutions.org menu bars making the process of creating
templates that much simpler.

3.2.5 Step Five - Creating SWTM Objects
Once the mockups are done, Gary, in general will need to create one SWTM object for every mockup he
has made. In our case, Gary has the following mockups:

0
0

Core mockup to be used in all nodes
The graphic to be used in each of the nodes

Note that since Gary has decided to use the VolunteerSolutions.org standard menu bars, those objects are
already created and there is no need for a mockup.

Gary first creates the core object, which he calls "BU Core Header" by copying the html from his
mockup into his web browser. (See Figure 4).

$ A:I~a:~
~ ~#I~ ~II~)

Figure 4: Creating the object "RU Core Header"

There are several key elements to note from the contents of this object:

* The first line, <swtm name=vsheader>, is a reference to a previously created object that
inserts the basic <html> and <head> elements. Gary could have used his own html had he
wanted, but it is easier to reuse objects. For reference, we include the definition of vsheader
in Figure 5: Creating the object "vsheader".

* Gary replaces the name of the image to use for the graphic with this call:
= <swtmvar name=image default=bu_vic.gif>

mbryzek@alum.mit.eduPage 17 of 68

This allows us to later dynamically bind the value of the variable image to the appropriate image
to use for a given section. If there is no binding for image, we use the default value.

Though not captured in the screen shot, Gary names the object he creates "buheader." This
name is how we are able to reuse objects and is unique across SWTM.

[4

I I- k~d M,"i

Figure 5: Creating the object "vsheader"

Next, Gary creates an object for the /agency node by dynamically binding the variable image to the
name of the graphic he wants to use in this node, and including the BU Core Header object he just
created. Figure 6 shows the code for this object, called "BU Agency Header." The interesting thing to
note from this example is the way in which the Gary dynamically binds the image variables:

* <swtm_set name=image value=buagency.gif>
The swtmset tag defines (or redefines!) the variable image so that the call to BU Core Header
uses the right image.

Gary finishes by creating two additional objects:

1. BU Volunteer Header - Identical to BU Agency Header, with image bound to
buvic . gi f. This step ensures that even if Paula has previously bound the variable image to
some value, BU Core Header will still find the right image.

2. BU General Header -Binds image to bugeneral.gif

mbryzek@alum.mit.eduPage 18 of 68

Figure 6: The definition of "BU Agency Header"

3.2.6 Step Six - Assigning Object to Nodes

The next step is for Gary to assign the objects he has created to each of the nodes through a series of
simple web pages:

1. Gary goes to the SWTM template manager (e.g. /admin/ swtm/ template/ /index . t c1)
2. He selects the BU Template
3. He adds the four nodes previously selected to the BU Template
4. For each node, Gary simply selects the objects he wants to use for the header and footer.

Figure 7 shows the objects assigned to the /agency node and Figure 8 shows a preview of what the
template for the node looks like. Note that in the preview we see that the variable page_t itl1e (coming
from the call to vs-header) is undefined. This is a warning message that in this case is not a problem
since Paula tells us that the page -t i t l e has been defined in every file, or left blank intentionally.
When we turn off debugging mode, this type of error message would no longer appear.

mbryzek@alum.mit.edu

k" -Noma*

Page 19 of 68

J-r-T,-73M~M V=_T = MT i 1K M"

Agency Services

Page content

Figure 7: Objects assigned to the /agency node Figure 8: Preview of the /agency node

3.3 Summary
Most of the responsibility for creating site-wide templates lies with the graphics designer creating
mockups for each node. Once the mockups are created, transferring to SWTM is relatively simple: cut-
and-paste the html and use the three SWTM tags as necessary:

* <swtm name=?> to include another object
* <swtm_set name=? value=?> to dynamically bind a variable
* <swtmvar name =?> to retrieve the value of a variable

Over time, as the library of objects grows, the number of new objects that will need to be created for each
new site-wide template will be reduced. We thus expect the first few templates to be the most painful.

mbryzek@alum.mit.eduPage 20 of 68

4 Design of the Site-Wide Template Manager (SWTM)
This following section reiterates the primary design goals of SWTM and outlines the various
considerations leading to the final system design.

4.1 Design Goals
We begin by outlining the major design goals for SWTM:

* Separate work of the programmers from that of the graphics designer
* Make it easy to create, maintain, and modify all of the different templates in use

* Decrease overall development time
* Allow for minimal work in upgrading legacy systems.

We also note that by successfully accomplishing our first two design goals, we will have accomplished
our third design goal.

4.2 Design Considerations

4.2.1 Separating the work of the programmer and graphics designer

Our goal here is to allow the programmer and graphics designer to work as independently as possible. We
start by identifying the tasks that each will be performing.

4.2.1.1 Identifying Job Tasks
We assume, without loss of generality, that the site owner has already specified the overall functionality
of the website we are building. The programmer's job is to create all the pages in the system to
accomplish the functions of the specification. For example, if we were building a site to provide advice to
graduating law students on which law firm might be best for them, the programmer might build a search
engine that lets students find a law firm by categorizing their interests along predefined criteria, such as
the firm's size, location, and area of practice.1 6

The graphics designer, on the other hand, has two primary responsibilities. The first is to work with the
programmer during the initial development of any page to ensure that the programmer's choice of user
interface is appropriate. Note that this interaction between the two cannot and probably should not be
replaced. It is important that the programmer receive enough feedback about each object in the system so
that users will be able to successfully interact with the database. The second task of the graphics designer
is to create the overall look-and-feel for the website which includes the general color scheme, graphics
design, including icons and logos, and navigation schema.

In summary, we expect and encourage the programmer and graphics designer to work together to create
an intuitive user interface within each page. However, we want to ensure that most of the work of the
graphics designer remains separate from that of the programmer.

4.2.1.2 Achieving the Separation - Designing the SWTM API

To achieve this global separation, we introduce a very simple and generic API to specify the header and
footer of a particular page:

e swtmheader: Inserts the page header

16 See, for example, http://infirmation.com

mbryzek@alum.mit.eduPage 21 of 68

0 swtm_f ooter: Inserts the page footer

The graphics designer will be able to control what swtmheader returns based on the following state:

1. What page is currently being called? Note that we will identify a file by both its directory (or
node) and its name. The node is used to retrieve graphical elements for the page and the filename
is used to retrieve properties specific to that page.

2. What are the template properties of this page? (E.g., what is the page title, what section of the
navigation bar do we highlight, etc.)

3. What site-wide template are we currently using? Each template will be assigned a unique
identifier that is maintained either in the URL or in a cookie.

Everything else on the page belongs to the overall page body and is in the hands of the programmer.

Since we are using the TCL Scripting language as a test-bed for SWTM, we note that swtmheader
does not take any arguments. Rather, we will create a separate mechanism for these procedures to look for
variables defined in the calling environment (In a sense, we will implement a simpler, but sufficient,
version of the dynamic binding of EMACS). Note that this is possible because Tcl gives us the ability to
look into the running environment with commands like inf o exists.

To further enable the graphics designer to control the page headers and footers, we note that neither
swtmheader nor swtm_f ooter actually generates html - rather, they figure out what procedures or
objects must be loaded to create the html based on the system's current state.

4.2.1.3 Alternatives

In building a database driven site, there are a few alternatives to the proposed API to the SWTM. One
option is to store the page body in one file, and create separate files containing the headers and footers for
each template created. This option, though also simple, quickly leads to a maintenance nightmare as the
number of files in the system will increase linearly with the number of templates created. We note that
our SWTM API adds only a constant number of files to the system, if any at all.

Another option is to store each page and all the templates in the database, and at run-time, figure out
which page in the database is being called and which template to use. This model is very attractive in that
all of the content will reside in the database. However, unless we're going to offer content management
type services, such as allowing a non-programmer to edit text in html pages through a web interface,
storing each page in the database will make the development cycle longer, as the programmer will be
forced to work with web forms, or some similar variant. Working inside the file system is simply faster
and more convenient.

We do note, however, that Oracle plans to eventually integrate the file system with the database 7 so that

users would interact with a file system as they do today, but the data would actually be stored in the
database. When this solution becomes available, it will be a very powerful way to edit information that

will then always be available.

4.2.2 Maintenance Component: Creating, Maintaining, and Modifying Templates

Creating, maintaining, and modifying templates is the most important, and most difficult, component of

SWTM. Our goal is to allow non-programmers to create templates made up of smaller pieces that can be
re-used by other templates, if necessary, can be easily modified through a web interface, and are powerful

17 Dixon, Paul, Head of InterMedia Division at Oracle, Conversation with the author, Jan 2000.

mbryzek@alum.mit.eduPage 22 of 68

enough to satisfy most graphic design requirements. We break up the design of the maintenance
component into the following components:

* Creating an object-based approach to building templates
e Support of automatically generated ADP tags assigned to individual components
* Creation of nodes to logically group pages in the site together.

The reader is encouraged to look back at Section 3 to better understand the process of creating site-wide
templates.

4.2.2.1 Object-based approach to building templates

The object-based concept to building templates is simple: every time a type of element is needed on a
particular page, we create that object and ensure that it remains available to all existing and future

templates. With every object we create, we also document its function. This makes creating future
templates easier as we will be able to draw from a library of objects that have already been created,
debugged, and documented.

Every object that is created can contain HTML, ADP generated from other objects, or Tcl. We include

TCL as a supported language because there will inevitably be templates that cannot be created without
programming. Rather than create a new language to deal with these types of templates, we simply include

the programming language itself.' 8

Note that since each template object is now reusable, the graphics designer can easily reuse object
previously created by the programmer. Thus, if a certain object requires some programming, it need only
be created once and can be reused in the future without further interaction between the programmer and

graphics designer.

We add a final component to the concept of our objects. Each object will store basic metadata, pre-
defined by the programmer, to allow the graphics designer to easily select when that element is to be
used. This allows the programmer to essentially capture the most basic if/then statements into a user
interface for the designer. For example, we know in advance that menu bars change depending on
whether or not a user is logged into a system. Every object should "know" if it is to be displayed based on
the status of the current user's login status. Currently, the login metadata is the only flag our objects
support.

Note that we are using the term object loosely here. All we mean is that SWTM will allow us to reuse all
the components ever created, assist in documenting existing objects and provide some basic options to
help graphics designers select some standard requirements that must be satisfied to display the object.

4.2.2.2 Automatically Generated ADP Tags

For every object we create, we want to assign it a unique, immutable name that can be used as an ADP
tag. This ADP tag can then be used inside other objects, creating a bottom-up template design
environment. Note that we do not allow the names of these objects to change else we would break all
other references to the object.

18 The decision to include support for TCL in the definition of an object also stems from the design of EMACS that
emphasized that the system must support and execute new procedures defined after compilation. Each templating
object can be thought of as a new procedure in the system and is indeed implemented as such. TCL code executing
TCL code!

mbryzek@alum.mit.eduPage 23 of 68

To support top-down template design, we add a feature that inserts a placeholder when an unknown ADP
object is used. We also offer a toggle to turn off this feature, if desired, since placeholders essentially
mask "template object not found" errors that we want to catch before moving to production. This idea of a
debugging/development mode comes from the design of Multics Emacs with its "lisp-program-editing
mode to facilitate the interactive development and debugging of extensions as they are being written"'9.

4.2.2.3 The node manager

The node manager is the module that associates directories with SWTM. Our primary goals here are to
make it easy to associate metadata with every object in the system and to ensure that the additional
information does not impact system performance.

A node is a container for files in the system that also stores information common to all its files. The main
reason nodes are important is that grouping, in general, is the only way to create a scalable maintenance
model of a website. It is much easier to think of a site as a tree of ten nodes than a tree of 1,000 files.

Files in a file system can be logically grouped together. For example, each subdirectory should contain
files that perform tasks that are somehow related. We continue to use the idea of a directory on the file
system as representing one node that contains its files. Though this may seem limiting at first, in terms of
long-term maintenance, it is very important to keep the file system and database as closely connected as
possible. Note also that using directories as nodes makes it easier to initially group files in the system to
nodes in the database.

Additionally, every file stored in a node may contain optional information including:

* Page title (overriding what the programmer indicated in the file itself)

* Subsection (again to highlight a specific item on the menu bar)

The node manager must be flexible enough to accept new fields in the future and must be very fast, as it
will potentially be called every time a user requests a page. Thus, it is important to cache the information
contained in the node manager and in SWTM in general.20

4.2.3 Decrease overall development time

If we successfully create SWTM and separate the creation/maintenance of templates from the
programmer's everyday job, we claim that overall development time will decrease. The basic idea here is
that the programmer does not have to think about the template for the page currently being development.
Instead, the programmer simply inserts calls to swtmheader and swtm_f ooter respectively
around the contents of the page. The page will automatically be formatted exactly like the rest of the files
in the node.

4.2.4 Allow for minimal work in upgrading legacy systems.

To place an existing system's templates under the control of the SWTM, the following items must be
completed:

19 Greenberg, Bernard S., "Multics Emacs: The History, Design, and Implementation," August 15, 1979,
http://www.multicians.org/mepap.htm, Page 13.
20 Caching the information stored about a node or file is extremely important. In an early experiment in October
1999, the author turned off caching on a live system. Within ten minutes, the system had reached capacity handling
400 hits per minute on a Sun E450 with four processors at 400mHz and 4gb of RAM. Reinstating caching quickly
restored the system, which later reached capacity limits at approximately 1,600 hits per minute. Caching resulted in
a 400% increase in system capacity.

mbryzek@alum.mit.eduPage 24 of 68

" Templates must be created for every unique node in the system. We can identify a unique node in
a legacy system as a set of pages that has a significantly different look and feel.

" All pages must be modified to replace whatever legacy code generated either the header or footer
with calls to swtmheader or swtm_f ooter.

Zzzz - replace tedious

This process is very straight forward, though admittedly somewhat tedious. If the design of the legacy
system already abstracted away some of the template components, then upgrading should be relatively

simple (perhaps a short perl script could even do most of the work!). However, if the legacy system is
programmed with erratic and inconsistent style, upgrading will be time-consuming and the system could

probably use a re-write anyway.

4.3 Design Summary
SWTM will consist of the following pieces:

e Simple API
* Template manager - create/manage/maintain templates and the objects associated with each node

in a template
* Object manager - create/maintain objects in the system
* Node manager - create/maintain nodes and their metadata

* File manager - manage attributes assigned to individual files

* Field manager - create/maintain fields used to store metadata in all other parts of the system

4.3.1 SWTM API
The SWTM API consists of two procedures that have no required arguments:

* swtmheader - queries SWTM Node Manager for all the objects needed to generate the
header for the current node and template. Serves those objects in their specified order.

" swtm_f ooter - queries SWTM Node Manager for all the objects needed to generate the
footer for the current node and template. Serves those objects in their specified order.

These are the only procedures required to use SWTM. However, we provide the following functions for
convenience:

e swtmvar <variable name> - returns the value of the specified variable for the current
template, node, and file.

* swtmparameter_de f aul t_template - Returns the unique identifier for the default
template in SWTM. The name of this identifier can be changed on a server-by-server basis.

" swtmtemplate - returns the unique identifier for the current template. The template
identifier is stored in a cookie or is maintained in the URL. If there is no current template, this

function returns with a call to swtmparameterdef aulttemplate.

" swtmurl <url> - adds the current template identifier to the start of the url, if necessary.

This is necessary when the site owner has decided not to use cookies to maintain template
information as every absolute link must then contain the template identifier. Note that if cookies

are not used to store the template information, every absolute url in the system must be inserted

with a call to this function, else the template information will be lost.
" swtmreturntemplate - API call to replace the two calls to swtmheader and

swtm_f ooter. This procedure looks for a variable called pagecontent in the calling

mbryzek@alum.mit.eduPage 25 of 68

environment, and returns a string which is equivalent to sending the following sequence to the
web browser:

1. swtmheader
2. value of page_contents
3. swtmfooter

4.3.2 SWTM Template Manager
The template manager is the main point in the system from which we derive all other functionality. The
template manager

* Maintains all site-wide templates in the system
* Maintains all variables defined for a given template
* Maintains the objects, and their calling order, for each node that is assigned to a template

At a high-level, the template manager is the primary interface to SWTM. Users create templates, assign
them identifiers and values for certain user-created fields, register nodes with the templates, and assign
objects to generate the header and footer for each node. In this way, the template manager truly integrates
all of the functionality of SWTM in one central location.

4.3.3 SWTM Object Manager
The goals of the object manager are:

1. Create an object-based approach to building templates
2. Include a simple user interface
3. Provide support for categorizing objects

The SWTM Object Manager must also include some kind of development environment. It should include
a preview facility to show the user what the template currently looks like, and summary views to see what
nodes use which objects and which objects are being used by what nodes. We expect most of the time
users spend working with SWTM to be inside the Object Manager, especially before the library of objects
has been developed.

4.3.3.1 The object-based approach

Real-life HTML templates are built up of many smaller blocks. The template manager must support this
concept of very simple, object-oriented template design. Although we call this system object-oriented, it
is important to note that we do not allow for inheritance of any kind between template objects.

To implement this system, we create two tables. The first stores information about the template object,
including its source code (in HTML or ADP), unique identifier (to create the ADP tags (described in
Section 4.3.3.2: Creating a simple user interface) and any additional properties stored for all objects (e.g.
this object only applies to users who are logged in). The second table stores references to other objects in
the system. This is crucial for two reasons:

1. Before removing an object, we must ensure that we do not break any other object in the system
2. It is extremely helpful to view all system dependencies from an individual object in the system.

4.3.3.2 Creating a simple user interface

We assume that our graphics designer already has experience with and knowledge of HTML. We require
that the designers assign a unique identifier to every object that they create. These identifiers are wrapped

mbryzek@alum.mit.eduPage 26 of 68

into ADP tags that the designers can use in later templates. Note that ADP tags are unique across SWTM
- a designer cannot assign an ADP tag to a template variable and to an object identifier.

Registering new ADP tags should be part of the API to any web server. To create a new tag with
AolServer, the programmer simply associates the start and end ADP tags with a Tcl procedure. The
procedure takes as arguments a string (whatever is between the start and end tags) and a set of key/value
pairs (which are specified in the first ADP tag).2 ' As an example, let us create a replacement for the
HTML <hl> tag called <my_hl>. The user would register the tag my_h1 with the procedure
process_ my_h1_tag. When used, e.g.

e <myhl size=+2>Testing</my_hl>,

the procedure proc ess_my_hl would be called with the arguments " Tes t ing " and the set
(<size=+2>).

To increase the readability and ease the maintenance of our user-entered code, we choose to provide a
minimal set of tags that take an argument specifying the unique identifier of the object/variable.

4.3.3.3 Object Categories

The designer should have the option to create various object types. This is important in helping the
designer quickly identify components that can be reused in developing new templates. For example, one
object type may be "Top-level Navigation" that contains all the objects that already implement top-level
navigation. This system of categorization is just a simple mechanism to categorize objects for easier
future retrieval. Additionally, we allow each object to be associated with a particular template, indicating
that this object is customized to the point at which it is no longer useful in a general sense.

4.3.4 SWTM Node Manager
The goal of the node manager is to simply maintain all of the nodes that are currently being used by
SWTM. Before a template assigns objects to a node, the node must first be registered with the Node
Manager.

We also note that our choice of representing each directory in the file system as a node allows us to
traverse the tree of nodes in the same manner as the file system - by appending or deleting directories
from the path.

4.3.5 SWTM File Manager
The goal of the file manager is to maintain metadata assigned to individual files. In general, the
programmer will assign most of the metadata in the file's actual source code. However, it is desirable to
provide the graphics designer with a way to override the programmer's choices. For example, the graphics
designer may want to change the page title or to highlight a different section of a menu bar. The file
manager would provide this functionality.

4.4 Other Design Considerations

4.4.1 Maintaining system performance

SWTM must be efficient. We provide a central method to cache any data in the database through two API
calls that are closely tied to SQL:

2 For more information, please refer to the ns regis ter-adptag function of the AolServer API at
http://aolserver.con/doc.

mbryzek@alum.mit.eduPage 27 of 68

* swtmmemo i z e_list - takes a sql query, and caches the result as a list of all the
columns/rows returned.

* swtmmemoi ze_one - takes a sql query, and caches the first element returned

All other calls in SWTM must use these two functions to cache all results. Note that caching metadata for

nodes and files makes sense since there are very few nodes and files. In addition, the amount of data we
store for each node or file is limited. Note also that the system of caching we use is optimistic in that it
caches all the information for a specified node, and its files, the first time any piece of information for that

node is called. This takes advantage of spatial locality in the way users interact with a web site.

An alternative design would cache individual pieces of information as they are requested. We feel most of

the data will eventually be requested once a user first accesses a node, thus making our implementation
more efficient.

4.4.2 SWTM Library
We initially considered including a formal library that would serve as a central repository from which to

find all other objects, templates, files, etc. in the system. However, as we implemented the design, it
became clear that the library was truly useless. The functional division in SWTM along the lines of
templates, nodes, objects, and files, along with the ability to associate any object or node with an
individual template made it easy to find any needed element in the system. One enhancement to SWTM
would provide a search function inside each of these functional divisions (e.g. a keyword search box that

found all objects that mentioned the word "header").

mbryzek@alum.mit.eduPage 28 of 68

5 Implementation
The implementation of SWTM can be broken into the following pieces:

1. User pages
2. Data model
3. API

We choose to start with the user pages to provide an overview of how a user actually interacts with
SWTM, without spending too much time initially on any other aspect of the system. We then discuss the
data model that supports the activities of the user. We finish by outlining the API provided to both
programmers and graphics designers.

5.1 User pages
The user pages are designed to capture the main modules of SWTM:

* Template manager - create/manage/maintain templates and the objects associated with each node
in a template

* Object manager - create/maintain objects in the system
* Node manager - create/maintain nodes and their metadata
e File manager - manage attributes assigned to individual files

* Field manager - create/maintain fields used to store metadata in all other parts of the system

Each module is implemented as a stand-alone subsystem, with links created between modules. The root
directory for SWTM is identified by the procedure swtmurl _stub, which in our implementation
returns /admin/swtm. This is the base directory from which users work and simply contains links to all
the other modules.

5.1.1 Template Manager

The template manager is the central module in SWTM, from the point of view of functionality - almost
all other modules reference templates either directly or indirectly. This module controls the actual
generation of the look-and-feel for each node registered to each template. In a sense, the template
manager is the interface between templates, nodes, objects, and the rest of the web site.

5.1.1.1 Core Template Information

Each template is identified by a unique template key and must contain a template-name, which
is a human understandable identifier for the template. Additionally, users can specify whether a template
is currently active. An active template is registered with the web browser so that pages can be served
appropriately when requests for the template_key are received (e.g.

http: / / servername. com/ templatekey/ *). An inactive template is useful when debugging to

ensure that outside parties cannot access files using the specified template_key.

Registering the template key with the web browser is usually very straightforward. In AolServer, during

server startup, we use the API call nsregister-proc to "tell" the server to redirect certain requests
(see Figure 7). Note that we redirect all urls beginning with template keys in one of two ways, depending
on whether or not we are using cookies to maintain the current template. If we are using cookies, we
redirect requests for the template key to a procedure that takes the template key out of the url, inserts it
into a cookie named swtmtemplate, and redirects the user to the same url, with the template key
removed. If we are not using cookies, we simply locate the requested file on the file system, and serve it

mbryzek@alum.mit.eduPage 29 of 68

appropriately (e.g. Tcl files are served as Tcl, ADP files as ADP, etc.). The same functionality can be
accomplished in Apache using ModRewrite to rewrite queries for pages beginning with templatekey
to the appropriate location.

foreach template [swtmtemplate_list] {
if { [swtm_parameter-usingcookies] } {

nsregisterproc GET /$template/* swtmsettemplate-cookie

nsregisterproc POST /$template/* swtm_set_templatecookie

} else {
nsregisterproc GET /$template/* swtmserve-page
nsregisterproc POST /$template/* swtmservepage

}

Figure 9: Procedure to register template keys with AolServer

5.1.1.2 Template Metadata

In addition to the basic information we store about each template, we need to allow users to dynamically
add additional information to the template. This is crucial if we want to continue using SWTM as the
number of templates increases, each adding potential new pieces of information that are incorporated in
various pages on the site.

The template manager provides support to add new fields to the system, through a link to the Field
Manager, and to provide values for each of the fields associated with all templates. Note that fields are
globally visible to all templates, and there is currently no support for a field specific to one template.
Through experience building templates for several sites, 2 we found that any field that is useful to one
template will eventually be useful to future templates. There is no need or reason to associate one field
with a specific template. Figure 10 shows the screen to edit template information, including values for

several fields associated with templates.

22 The author's primary templating experience comes from building multiple templates as guidestar.org and
volunteersolutions.org both matured.

mbryzek@alum.mit.eduPage 30 of 68

Figure 10: Screen to edit template information and specify values for template fields

We also add an optional field that associates templates with user groups in the existing web site
architecture. This is useful since many existing sites already make use of the concept of user groups. We
may want each user group of a certain type to be associated with a template. The danger with associating
templates to user groups is that only a small number, if any at all, of user groups will actually use
templates. Thus, for user interface purposes, we set up the data model to look for user-groups of type
"site-wide-template" when offering users the choice of selecting a group to associate with a template.

5.1.1.3 Registering Nodes with Templates

Another function of the template manager is to allow users to register nodes in the system with each
template. Users can easily register nodes previously created in the node manager to each template by
simply following a link to register a new node. Each registered node is activated by default, but can be
deactivated. Figure 11 displays the screen to register a new node for a template.

Map no1S to tempente

Figure 11: Screen to register a new node with a template

mbryzek@alum.mit.eduPage 31 of 68

5.1.1.4 Registering Objects with Nodes

The final major function of the template manager is to allow users to assign objects that define the header
and footer for a specified template/node pair. Once the desired objects are created, the user can select the
desired node to see all registered objects for both the header and footer and can register new objects for
that node. This screen also allows users to preview what the current look-and-feel for the template/node
pair looks like.

Note that the idea of registering multiple objects to represent the header or footer for a template/node pair
could have been left out of the implementation of SWTM. The user could have created a new object that
was a wrapper for all the objects needed to generate either the header or the footer. However, the author
felt that it was simpler, both in terms of time and in minimizing the total number of objects in the system,
to allow the user to register multiple objects explicitly for each template and node. Seeing the objects
themselves makes it easier for the user to later reuse the same objects while specifying a new header and
footer for a different node or template.

5.1.1.5 Caching Template Information

Performance is one of our primary concerns, and caching the template information is part of maintaining
system performance. We want to make it quick to lookup the value of any template variable, including the
basic information and the metadata specified through the user created fields. The need for caching this
information led to the procedure swtm_var, described below, which caches the values of all the
variables for a given template the first time any of the template variables are accessed.

Additionally, we need to cache the list of objects specifying the header and footer of each template/node
pair. The procedure swtmobj ect_tags_f or-url implements this caching. Note that unlike fields
where we cache all values the first time any field is accessed, we cache objects for only the template and
node we are currently accessing. Over time, the number of nodes in the system can grow quite large and it
is not clear that users who touch one node will touch the others. In most well organized web sites, the
author actually believes that users tend to migrate to one node where they spend the majority of their
time.23

Note that the SWTM user pages do not use the caching feature, as it would make data updates transparent.
Rather, all data accessed through the user pages forces a reload of the cache. This makes sense since the
user expects changes made to show up immediately on the website.

5.1.2 Object Manager

The object manager is the module that accomplishes many of the most interesting and challenging
objectives of SWTM:

0 Creating a simple user interface

23 The behavior of users with regard to the nodes they access when entering websites would be an interesting
experiment that the author has yet to explore. A few examples, though, provide insight into the author's decision to
cache individual nodes as they are accessed:
- enn.com - users who access the WEATHER directly may not be interested at all in the CURRENTEVENTS

node
- photo.net - users often spend most, if not all, of their time in one of two nodes: BBOARD or PHOTO. Neither

node indicates in any way that the user will reach the other in any short period of time
- volunteersolutions.org - depending on the type of user, all the user's time will be spent in either the

VOLUNTEER or AGENCY node
- guidestar.org - most users spend all their time in the SEARCH node, never seeing the MEMBERS or HELP

nodes.

mbryzek@alum.mit.eduPage 32 of 68

Implementing an object-based approach to developing site-wide templates

We begin with an overview of the implementation of an object, and then focus on the user interface.

5.1.2.1 What Are These Objects?

An object in SWTM is simply a string that contains HTML, ADP, and/or TCL. In addition to the source
itself, each object stores several pieces of metadata:

e A name that is used to help the users identify the object and understand what it does.

* A description that is a more verbose explanation of what the object does.

* An optional flag indicating whether the object should be used for users who are either logged in
or logged out. This is especially useful when creating menu bars that depend on a user's login
state.

* A category to which the object belongs. Categories can be created dynamically, but common
categories include General, Header, Footer, and Menu bar. The categories are used to help the
user organize the objects in the system for faster future identification.

* Optional association with a template. Some objects are built for a specific site-wide template and
cannot be reused in other templates. By associating these objects with a specific template, we can
significantly simplify the user interface when registering objects with nodes.

* A flag indicating whether the object should be run through the Tcl interpreter. We expect that
most graphics designers will never enable the Tcl interpreter, but we provide this feature as a way
for programmers to create objects that contain Tcl code. Note that the user can also use ADP
syntax to include Tcl code, making this flag a convenient, but unnecessary, feature.

* The key to uniquely identify the object and to incorporate the object in other templates. Once an
object is created, its key can never be changed, though this functionality could eventually be
incorporated.

Each object must also be able to "include" other objects to allow for object reuse. We attain this
functionality through a special tag, <swtm name=key>, that dynamically inserts the object with the
specified key (see section 5.3.2 for a more thorough explanation).

5.1.2.2 Creating a Simple User Interface

The web form to create objects is relatively straightforward. We expect graphics designers to already have
html mockups of the objects they create, developed using their standard desktop tools. Designers need
only name their objects, assign a unique key, and paste in the html source.

Once the object has been created, the user interface becomes more important. One of our goals is to create

a friendly environment that aids in debugging. To this end, we provide several debugging functions.

5.1.2.2.1 Debugging mode

The developer can set the system in Debugging mode that inserts placeholders for referenced variables
and objects that do not yet exist or that could not be found. This makes it easy for the user to identify
remaining objects and variables that must be created. When in debugging mode, we return an error string,
in html, describing the problem, which in the case of objects will usually be "variable or object is not

mbryzek@alum.mit.eduPage 33 of 68

defined". When debugging mode is turned off, we return the empty string rather than the error message.
Production sites should turn off debugging mode to ensure that even if a page is missing a variable, it
does not interfere with the web surfer's reading of a page. Note that when debugging mode is off, the error
is still logged in the web server's error log.

5.1.2.2.2 Preview mode

Each object has a link to a preview that includes the object source, the html itself of the parsed object, and
a "screen shot" of what the object actually looks like (where the screen shot is simply the parsed object
placed inside a table with a small border).

The preview shows the actual object itself, but currently has two major limitations:

* Broken html code could prevent the screen shot from appearing. The problem is that the html
code may be broken on purpose, such as a header leaving an open <TD> tag to start the column
that contains the page body. With a robust html parser/verifier tied into the preview option, we
would be able to identify the broken html, highlight the possible problem, and add enough html
code to allow the object to display correctly. We leave this modification to future versions of
SWTM.

* Some objects will rely on variables being defined in either the file being accessed or a parent
object that includes the currently viewed one. This results in additional variable not found errors,
if the system is in debugging mode. Though somewhat annoying, these errors should be treated as
warnings/reminders to ensure that the specified variable is later somehow specified.

5.1.2.2.3 Parsing an object

Since the SWTM API includes a few new tags (see Section 5.3), we provide a parsing function that
displays the SWTM tags we found while parsing the object. This allows the user to quickly identify
missing tags and verify that the correct objects and variables are being used. Figure 12 shows sample
output from the parse function.

Figureo 12:c Parsin th "UWMBy Agnci Hadr"obec

mbryzek@alum.mit.eduPage 34 of 68

5.1.2.2.4 Object Dependencies

As the object library grows in terms of the number of objects, we need an easy way to view all
dependencies for individual objects. Thus, we maintain all dependencies in the system in one central table
that maps any tag to another. This works well for objects as one object includes another by using the
second object's tag.

From this information, we can generate a page that shows all the object and template dependencies one
object has (See Figure 13).

Dependencies~ for U WMIB Agency Header

Figure 13: Dependencies for one object

5.2 Data model
Before we delve into the SWTM API, we outline a few of the major components of the Data Model with
the goal of making it easier to understand the implementation of the queries that the API uses. The full
data model is attached as Appendix A: Oracle 8i Data Model. We should also note that just about every
table in SWTM has an integer primary key - including the mapping tables discussed below.

5.2.1 Central Tables

The following tables make up most of the SWTM data model:

" swtmtemplate - stores basic information about all templates in the system
e swtmtags - stores all of the ADP tags currently in use
e swtm_type - stores information about all the types we are using
* swtm_f ield - stores each field the user has added
* swtmobj ect - repository for all user created objects
* swtmnode - stores all the nodes registered with SWTM
* swtm_f ile - stores all metadata associated with individual files in the system

5.2.1.1 Storing templates - swtmtemplate table

The swtmtemplate table stores central information about each template, including:

mbryzek@alum.mit.eduPage 35 of 68

* The template key used to uniquely identify each template
* The name of the template
* An optionally associated user group
* Information about whether the template should inherit the nodes and objects from a different

template.
* Whether or not the template is currently active

The swtm template is also used as a reference for mapping fields that the user has created.

5.2.1.2 Storing Tags - swtm-tags table

To minimize any possible confusion when interpreting an ADP tag, from the point of view of both
SWTM and the users, we enforce the constraint that all tags are unique. The tag of an object or field
uniquely identifies a row in either the swtm obj ect or swtm_f ield table. Note that it would be
possible to allow both objects and fields to have identical ADP tags, as we always know the context in
which the tag is being parsed, but we chose not to add this possible confusion to the system.

Each tag stores information about the table and row that is using the tag. This allows us to work
backwards, if need be, from the tag to the referencing row, and also enforces the principle of system-wide
unique tags.

5.2.1.3 Storing Types - swtmjtype table

In SWTM, we introduce types as a way to group fields added to the system and objects assigned to roles
in templates. Having this one table store all of the types in which we are interested simplifies the overall
data model by reducing the number of tables we would have to replicate. In our implementation, both
fields and objects, when assigned to roles, are assigned a type.

5.2.1.4 Storing Fields - swtm_field table
We need an easy way to keep track of all of the fields that the user adds to this system. The
swtm_f ield table implements a basic metadata system that consists of the following information for
each field:

* Its global type (through swtm type)
* Its presentation type (e.g. this is a Boolean or text field)
e The text to display when asking the user to fill in data for the field
e The tag to use to retrieve the value of a field
* Whether or not the field is required, and if so, how to prompt the user
* An optional default value

Based on this information, we can dynamically generate a form to capture all the information the user has
specified. Note that the use of swtmtype lets us use the same swtm_f ield table when obtaining data
for new templates or for new files.

The field's presentation type is stored in a separate table, swtm_f ield-types, that currently only
supports Boolean and text fields. The SWTM API consists of a Tcl procedure,
swtm_display_f ield, which formats the field for display, inside an html form, based on the type.
To add a new presentation type to the system, users need only add a row to swtm_f ieldtypes and
modify the procedure swtm_display_f ield.

mbryzek@alum.mit.eduPage 36 of 68

We store all user-entered data for a particular field in the swtm_f ieldvalue table. The values table
is the only one that is not keyed by an integer primary key - rather, the primary key is a combination of
the field with which the user-entered value is associated, and the referencing table/row for which the user
entered the data.

5.2.1.5 Storing Objects - swtm-object table

The swtm-obj ect table stores all the information about each object, including:

* To what category the object belongs
* Its name
* Its tag
* Its content
* A user entered description
* Flags describing what user state is required for this object to be active

* With what template, if any, the object is affiliated
* Basic auditing information, including who created the object and when, and who last modified it

and when

To store information about the category to which an object belongs, we use a helper table,
swtmobj ectcategory, which simply stores a string describing the category. The user can
dynamically create new categories while adding/editing objects.

5.2.1.6 Storing nodes - swtmnode table

For nodes, we only store the URL stubs that are part of SWTM. Every URL stub must be a directory in
the file system, though currently nodes are not automatically removed when the underlying directory is
removed. We considered adding this logic, but chose against it for two reasons:

1. Once a file system directory is removed, the node will never again be accessed, automatically
deactivating that node.

2. It is not clear that we would want to remove the information regarding the objects associated with
the node for the various templates.

We believe the automatic and natural deactivation of nodes is a better option. A possible enhancement
could offer a feature to verify the validity of all the nodes, but this is left to future work (see Section 7.2.2
Better File System Integration).

5.2.1.7 Storing Metadata for files - swtmfile table

Similar to the swtmnode table, the swtm_f ile table simply stores the node to which the file belongs
and the path to the file, relative to the node's URL stub. Files that are registered in swtm_f ile can then
be associated with various fields that the user creates for files.

Note that associating files with nodes allows us to rename nodes without having to worry about losing file

properties. However, when a new node is added or an existing node is deleted, we may end up in an

unusual state. For example, if the file "/volunteer /home / index. tc1" belongs to the node
"/volunteer," when we add the node "/volunteer /home," we need to decide whether or not to
move the file to the new node. We chose not to move the file primarily to reduce confusion. If graphic
designers add files to one node and later create new nodes, they would potentially be surprised if their
previously added files were no longer registered with the same node.

mbryzek@alum.mit.eduPage 37 of 68

5.2.2 Tying the Central Tables Together

SWTM relies on three general mapping tables that tie the rest of the information in the system together:

* swtmobj ec t-obj ec t map - Maps one tag to another as a way of saying "This tag uses that
tag." This map only enforces the foreign key constraint on the from tag since a user working in a
top-down fashion might create an object that uses an object that has yet to be built.

* swtmnode map - Associates nodes with any other table/row in the system.

* swtmnode obj ec tjmap - Maps objects in a specified role, through the swtmtype table,
to a mapping of a node.

The swtm obj ec t_obj ect map table is currently modified whenever new objects are created or
existing objects are edited (since only objects can include other objects). Each time the content of an
object changes, we parse the content to pull out all calls to include other objects, and update this table.
This table is used mainly for user-interface purposes in exposing the dependencies between objects.

The swtmnodemap table allows templates and files to be associated with a given node. We simply
store the node id and the referencing table and row. In addition, the node-map table stores a flag
indicating whether or not the mapping is active.

The last mapping table associates objects, types and node mappings. Any object can be assigned into a
role, as specified by the swtm type table, 4 and associated with a row in the node-map table. This lets
us easily assign objects to a specific node for a given template. Note that this type of data model also
lends itself nicely to future extension. For example, the data model supports associating objects with files
registered to given nodes, though we presently see no reason to add this functionality.

5.3 API
The SWTM API can be broken up along the lines of the interface given to programmers and that given to
graphics designers. We start by outlining the programmer's API as the graphics designer's API is
necessarily a subset of that provided to the programmers (since programmers will have access to whatever
API we provide to graphics designers).

5.3.1 Programmer's API

We are going to outline the Programmer's API starting with system-wide parameters, then describing the
interface to maintain information regarding the current template, and concluding with the actual serving
of pages in the system.

5.3.1.1 System-wide Parameters

We augment our AolServer instance with a few parameters and provide procedure calls to easily return
the value of the parameter (see Table 1).

Parameter Procedure Call Description
URLStub swtmparameterurlstub Returns the path to SWTM,

or relative to the server root, with
swtm_ur1 _stub no trailing slash. (e.g.

/admin/acs / swtm)

24We considered adding another swtmrole table, but found it unnecessary. Roles and types are very similar in
the case of SWTM and an object's role can be thought of as the type of role the object plays in the current mapping.

mbryzek@alum.mit.eduPage 38 of 68

DefaultTemplate swtm-parameterdefaulttemplate Returns the default template to
use when we cannot identify
the template based on the user's
request or cookies

UseCookiesP swtm-parameterusing-cookies 1 if we are using cookies to

keep track of the template. 0
otherwise.

DebuggingModeP swtmparameter_debugging_mode 1 if we are in debugging mode.
O otherwise.

TemplateGroupType swtm_parametertemplate-group-type Returns the type of the user

groups we want to associate
with individual templates.
Returns the empty string if no
type has been selected

TraceP swtmparameter_tracep Returns 1 if we are in trace

mode. 0 otherwise (Trace mode
refers to the logging of all the
procedures calls in SWTM).

Table 1: Overview of Server Parameters

5.3.1.2 Maintaining template information

SWTM offers two ways to maintain information regarding the current template:

1.
2.

Cookie Method - In a persistent cookie named "swtm.template"
URL Method - In the url of every page request.

In either case, we are storing the templatekey for the current template, a unique and non-intrusive
identifier from which all other information can be retrieved. The programmer always requests the current
template by calling the swtmrtemplate procedure, which first identifies the method being used to
store the template key, and returns the template key (or default template if there is no current template
key).

The major difference between the two methods for storing a template key is that with the cookie method,
no links in existing pages need to be modified whereas with the URL method, every absolute link (e.g.
starting with /) must be replaced with a call to swtmurl to ensure that the template_key is
included in the link.2 s To partially remedy the problem, objects that are served are run through the swtm
procedure swtmparse_href s that automatically adds in the template_key if necessary. The
programmer could easily modify the API to also run all page content that is served to the user through this

same procedure, though we expect a such a global parsing of the <a href> tags produce erroneous

links that will be hard to track down.

An additional concern when using the URL method is that pages that rely on asking the server for the

URL of the current page could be fooled as the URL returned to this script will not actually point to the

25 Note that the problem of maintaining the template key in all URL requests is similar to that with storing

session identifiers in the URL as opposed to in cookies. Once the session ID has been established, every
link must contain it, else the session information is lost. The advantage with our URL method is that
relative links automatically inherit the template key.

mbryzek@alum.mit.eduPage 39 of 68

file being served. SWTM provides an additional procedure, swtmconnurlnotemplate, which
returns the URL without any initial template key.

It is also worth mentioning one other, somewhat subtle, pitfall with the URL method. Normally, when url
stubs are registered with the web server to trigger certain procedures to be called, they are registered from
the server's root (e.g. we would register the /help directory on guidestar.org by assigning
http: / /guidestar. org/help/ * to a procedure). This type of registering will not work when
serving pages in the URL method. SWTM provides its own call to register procedures with the server,
swtmregisterproc, to automatically register the specified directory for all template keys being
used.

Although the URL method is more tedious to work with, it does provide several key benefits that in many
cases cannot be ignored:

* When users bookmark a page, their bookmark will contain the template key so that even if users
lose their cookies file, the template information will be preserved next time they come to the site.

* The server log will contain information regarding the amount of site activity each template key
received. Without the template key in the URL, the amount of traffic for each template could not
be determined.

We recommend using the cookie method as a starting point since it is simpler to implement (especially
when porting a legacy system). However, the URL method is provided as an option when business
demands require more tracking of usage across the templates.

Procedures:
swtmtemplate (}

returns the value of the current template, or the default template if there is no

current template.

swtm-url { { url " } }
If the current url begins with a leading slash, meaning it is an absolute link from

the server's root, this proc will prepend the template variable to the url if we

are NOT using cookies. Note that "/" is left as '/" (how else could you specify the

root?) And an empty url is either returned as empty or returned as /template if

we're not using cookies

swtmparse_hrefs { string }
Replaces all hrefs with calls to swtmurl to add in the template when necessary.

Note - if we are using cookies, this procedure does nothing.

swtmconnurlno-template { (url "" } }
Returns the current url (from url, if specified, or nsconn, if we have a

connection), minus any template identifier. Default return value is the current url

swtmregister-proc { from to {inherit 1} }

Registers procs for all templates

5.3.1.3 Initializing the system

We now explain the SWTM API for AolServer to initialize the web server to recognize and appropriately
serve requests for templates. These procedures are simple and could easily be ported to most other web
servers. The key procedure is swtminitialize that coordinates the registering of template keys to
the appropriate processing procedures.

mbryzek@alum.mit.eduPage 40 of 68

At server startup, we need to identify all of the active template keys in SWTM, and register them as url
stubs with the web server. The call swtmtemplatelist caches and returns a list of active template
keys. The next step is to redirect all requests to the template keys to a procedure to handle the request.
There are two such procedures:

1. When using the cookie method, send requests to swtmsettemplatecookie that will
identify the template key at the start of the url, set the swtmtemplate cookie to contain that
key, and redirect to the requested url, with template key removed.

2. When using the URL method, send requests to swtm serve-page that will identify the appropriate
file on the file system and process it according to its type (Tcl, ADP, html, etc).

Procedures:
swtminitialize {}

Registers all the template urlstubs as one of two procs (depending on whether or

not we're using cookies!)"

swtmset-templatecookie {}
Strips off the cookie that identifies a template from the first part of the url.

Redirects to cookie-chain to set the cookie, ending at the page the user requested,

minues the template identifier.

swtmservepage {}
Function that reads the current filename from the url, and then parses/sources that

file depending on its extension. This function strips off the template identifier
before identifying the physical file, letting us implement the virtual url's based

on those template id's.

swtmtemplatelist {}
Returns a list of all the template identifiers. Caches the result.

5.3.1.4 Hooks to work with the template key

Since the template information is all keyed on the one string templatekey, we provide several
functions to convert back and forth between other identifiers that are often used while building pages with
SWTM. Namely,

" Obtaining a templateid from its key
* Obtaining a template-key from its id (useful when working with database information since

foreign keys use template_id)
* Obtaining the groupid for a given template
* Obtaining the template for a specified user id. Note that this relies on the user belonging to at

least one group in the system that is tied to a template.

All of these procedures cache the information they retrieve to minimize database accesses for these
common pieces of information. The caching also allows us to quickly shift between these identifiers to
simplify database queries.

Procedures:
swtm-group-id-from-template { { template "" } }

Returns the group id for the specified (or current) template.

swtmtemplateid_fromkey { template-key { force 0 } }
Returns the templateid associated with the specified template key. Memoizes the

result.

mbryzek@alum.mit.eduPage 41 of 68

swtmtemplatekeyfrom-id { template-id { force 0 } }
Returns the template-key associated with the specified template id. Memoizes the
result.

swtmtemplatefrom_user_id { db user id
Returns the template userid is associated with

5.3.1.5 Pseudo Dynamic Binding in Tel
One of the key technical problems in building an extensible system is to allow dynamic binding of
variables to ensure that changes made to one procedure do not affect others. The basic idea is to allow
each called procedure to:

* Take an optional number of arguments that can change dynamically
* Allow each called procedure to inherit the most recently defined value of a variable.

In Tcl, we implement this through a simple procedure call, swtm dynamicbinding, which binds a
key to its value in the calling environment. This is possible in Tcl because of its ability to dynamically
bind local variables to a variable in the calling environment. To retrieve the most recently defined value
of a variable, we use the swtmupvar call to search through the calling stack to find the last definition
of a variable, returning that value.

To implement dynamic binding, we explicitly force all procedures to be used with SWTM templates to
take no required arguments. Instead, parameters are set in the calling environment, and the called
procedure looks for the argument it needs by using swtm_upvar.

Procedures:
swtmupvar { var { defaultvalue "_swtmundefinedvalue" } }

Implements dynamic binding of variables by returning the value of the variable
named var in the lowest found level. If the value is not found, returns
defaultvalue (or [swtm_undefined_value]).

swtmdynamic-binding { key value I
Dynamically binds key to value 2-3 levels up in the calling stack.

5.3.1.6 Performance

SWTM provides two procedures devoted to caching information from the database:

* swtmmemoizelist - stores the rows and columns returned as a list in memory
* swtmmemoizeone - returns the first column from the sql query

Neither of these functions requires a database handle, meaning that some pages in the system will only hit
the database once after server startup, after which even a database crash would not break the page (though
a web server restart would, as the cache would be cleared).

Procedures:
swtmmemoizelist { sql-query { force 0 } {also-memoizeas " "

Allows you to memoize database queries without having to grab a db handle first. If
the query you specified is not in the cache, this proc grabs a db handle, and
memoizes a list, separated by [_swtm-defaultdivider] inside the cache, of the
results. Your calling proc can then process this list as normally.

swtmmemoizeone { sql { force 0) { alsomemoizeas "" } }
wrapper for swtmmemoizelist that returns the first value from the sql query.

mbryzek@alum.mit.eduPage 42 of 68

5.3.1.7 Serving pages

Once a template has been set up with nodes and objects for that node, writing pages is very simple. The
example in Table 2 shows the Tcl code for a web page that simply displays "Hello world" and the
presentation of the page. Note that we defined page-title in the calling environment, allowing the
API calls swtmheader and swtm_footer to determine which objects must be processed to serve
the current page (or the API call swtmreturn-template in the second Tcl script example in Table
2).

Set page-title "Hello world"

ReturnHeaders W({I
nswrite "
[swtm header]

[swtm footer]

Hello world

Set page-title "Hello world"

nsreturn 200 text/html \
[swtmreturn template]

Table 2: Simple "Hello world" page (2 ways to write the Tcl page) and the output (served by SWTM)

The API calls do all the work figuring out which objects to use to serve the current page. Both
swtmheader and swtm_f ooter are very similar in execution, differing only in the type of objects
that each returns (swtm-header returns objects registered as headers for the current node, and
swtm_f ooter returns objects registered as footers).

The call to swtmheader proceeds as follows:

1. Call swtmobj ect-tags-f orurl to obtain a list of all the objects, in their specified
calling order, that generate the header for this template

a. Obtain the current template using swtmtemplate
b. Obtain the current url from the web server

i. Look up the url in the node manager to find the nodeid
ii. If there is no node id, find the node id of the parent directory.

iii. If no node could be found for the current template, and we have reached the root
directory, change the template to the system default and begin again with the
originally requested url.

c. Once we have the current node and template, simply look up all the ADP tags for the
objects that need to be called.

2. For each object tag, serve that object using the procedure call swtmserve-object
3. Return the concatenated result of all the objects served.

mbryzek@alum.mit.eduPage 43 of 68

The process for swtm_f ooter is identical. Note that most of the work in serving pages can be divided
up into two pieces:

1. Figuring out which template and node to use - we do this through recursive lookups as outlined
above, and cache the result so the next time this node is requested, the lookup is fast.

2. Serving each of the registered objects - each object is served with a call to
swtm_serveobj ect. This procedure parses each object in the following manner:

a. Lookup and cache the basic information for the object (its content, required user state (e.g.
only for logged in users), and whether or not this object is a Tcl program).

b. If we're using the URL method to maintain template information, insert the template into

every <a href> tags that references the server root directory.

c. Parse the content using AolServer's ADP parser - This parser will recursively parse all other
objects in the body of our current object through a registered tag designed to allow objects
to include other objects. (See Section 5.3.2: Graphics Designer's API).

d. Evaluate the object with our Tcl parser, if necessary.

Procedures:
swtmheader { { template "" } { url_stub " } { force 0 } }

Generates the header for the current or specified template and urlstub. If force

is set to 1, we skip the cache.

swtmfooter { { template "' } { url_stub } { force 0 } }
Generates the footer for the current or specified template and urlstub. If force

is set to 1, we skip the cache.

swtmreturntemplate { }
Adds the partner header and footer around the string page-content (or page-body)

that is defined in the calling environment.

swtmserve-object { tag { template " " } { force 0 } }
Takes in a tag of an object and returns the html output for that object. This is

the main procedures used in generating templates for nodes. Note that this

procedures parses the swtmset tag to implement dynamic binding. Arguments: *

template: If non-empty, we'll use it for the template * force: If force is set to

1, we will ignore caching

swtmservevar { tag }
Simulate adp registered procedure for swtmvar

5.3.2 Graphics Designer's API
For the graphics designer, we create the following tags to make it easy for the designer to work with

SWTM:

* <swtmheader options>page_ti tle</ swtmheader> - a wrapper for the procedure

call swtmheader that dynamically binds the page_title and any key/value pairs specified

in op ti ons (e.g. size=1). Note that both page_ .ti tie and op ti ons are optional arguments.

mbryzek@alum.mit.eduPage 44 of 68

* <swtm_footer options></swtm f ooter> - a wrapper for the procedure call

swtm_f ooter that dynamically binds and any key/value pairs specified in the optional

argument options (e.g. size=l).

* <swtm name=obj ect-key> - Includes the SWTM object with key obj ect_key. This tag
is registered to the procedure swtm-parsetagswtm that pulls out the object name and
serves the specified object with a call to swtmserve-obj ect.

* <swtmvar name=varname default=default_value> -Looks up the variable
named varname with a call to swtmservevar that looks for the variable in several
different places: (Note that defaul t_value is an optional argument, and if specified, this
value overrides any messages provided by the debugging mode.)

1. Looks up the value of varname for the current file being processed.

2. Calls swtm upvar to find the last binding of the variable
3. If the variable is still not found, returns def ault_value, if specified, an error message if

in debugging mode, or the empty string.

* <swtmset name=varname value=var_value> - Dynamically binds a variable

named varname to the specified value.

A graphics designer could have produced the Hello world example page in Table 2 by writing the
following two lines in a file saved in the same directory:

<swtm_header>Hello world</swtm_header>
<swtm_footer></swtm_footer>

Finally, we note the following objects loaded are used very frequently in all types of objects and in
cascading style sheets:

* <swtm name=default_f ont size="-l"> (or [swtm default_font "size=-
1 "] for programmers) - This command inserts an html font tag using the specified properties and
the def aul t_font_f ace and def ault_fonts i ze fields for the current template.

* <swtm name=title_font size="-1"> (or [swtm title_font "size=-1"] for
programmers) - This command inserts an html font tag using the specified properties and the
title_f ont_f ace and title_f ont_size fields for the current template.

Procedures:
swtmvar { var {template ""'} {force 0} }

Caches and returns the value of the specified variable for the current template

(unless specified). If force is 1, we reset the cache for the template, and then

return the value of the variable. Returns (swtm_undefined_.value] if there is no

such variable, or template

swtmvarordefault { var { template " " }
Returns the value of var for the specified (or current) template. If the value is

empty, looks for the same var in the default template.

swtmdefaultfont ((props "" } }
Wrapper for swtm_parse-tag-defaultfont

swtmtitle_font { (props " I } }
Wrapper for swtmparsetag-titlefont

mbryzek@alum.mit.eduPage 45 of 68

5.3.3 Supporting Cascading Style Sheets

Initially, we considered adding a separate module to automatically create a cascading style sheet from
whatever fields were specified. However, as we implemented SWTM, we realized that it was much
simpler to create, maintain, and extend style sheets by simply creating an object that contained the style
sheet. Other objects that needed to display style sheets can simply include the CSS object.

This is an extremely simple solution - there is no additional user interface and no additional code
required. The graphics designer simply uses the core tools to enable CSS. Figure 14 shows a simple style
sheet used in the site-wide template for Baylor University at VolunteerSolutions.org.

JBay or Style Sheet

r _4

Figure 14: A Simple Style Sheet Object for Baylor University

5.4 Implementation Summary
The SWTM implementation is built upon a general data model that we expect to extend as the needs for
various types of new templates becomes clearer. We have focused on creating an API that is rich enough
to support all foreseeable needs of a programmer building a site with SWTM while supporting a very
simple, and small (3 tags!) API for graphics designers.

mbryzek@alum.mit.eduPage 46 of 68

6 Evaluation - Did We Accomplish Our Goals?
We began this paper by outlining the following major goals for SWTM:

1. Separating the majority of the tasks between the programmer and graphics designer
2. Maintaining, and hopefully decreasing, overall development time
3. Ensuring relatively simple ports from legacy systems to ones that use SWTM.

In this section, we evaluate how SWTM satisfies each of these goals. As a basis for evaluating our work:

* We fully implemented SWTM at VolunteerSolutions.org, maintaining approximately 20 site-
wide templates

* Ported an Online Bookmarks 26 module
* Ported the user pages of an Online Education System to SWTM

6.1.1 Separating the Work

One of the distinguishing characteristics between SWTM and content management systems is that we are

only concerned with the tasks of building and maintaining the headers and footers, as opposed to all
elements and content in each web page. SWTM achieves the separation by introducing a simple API
consisting of two basic calls, swtmheader and swtm_f ooter, that generate the appropriate template
based on the page being called. The API is simple and increases the legibility of web pages as there is
much less, if any, html associated with look and feel. Instead, almost all of the code for each file is
directly related to performing some specific function. This makes the separation a success from the point
of view of a programmer.

However, to make the separation a true success, we must be able to rely on the graphics designer to work
independently with SWTM. To this end, we introduced the SWTM Object Manager as the primary
playground for graphics designers. This web based interface allows the designers to continue working
with the tools they use today to generate html mockups for websites, synchronizing their changes with the
online system whenever necessary.

In practice, we found that designing a complex template without the assistance of a programmer is either
impossible or overly tedious. Some of the most common elements in a website are tough to design
without control logic. For example, many sites use menu bars that dynamically change based on some

state. There are two ways to create these menu bars:

1. Create a unique html mockup of each menu bar and associate one menu bar with each file
2. Create a short script that loops through the options for the menu bar, and highlights the

appropriate section, or sections, based on some state (e.g. a variable named section).

The second option is much more favorable in terms of future maintenance of the menu bar. However,

SWTM does not provide the graphics designer with any assistance in creating such dynamic menu bars.

Note that this is a problem common to all templating interfaces, and not just to SWTM.

Instead of trying to "solve" this problem by introducing a new ADP tag or by adding an attribute to an

existing html tag, we integrated the TCL scripting language with SWTM objects and provided support for

object reuse. Our goal here is not to isolate the programmer completely from the process, but as much as

is helpful. Once a programmer creates an object, such as a menu bar, it is saved in the Object Manager.

26 For more information about the module we used, please refer to http://arsdigita.com/doc/booknmarks.html.

mbryzek@alum.mit.eduPage 47 of 68

The next time that menu bar needs to be used, the programmer does not have to be involved.
Additionally, we provide an online tool for a graphics designer to specify the metadata (e.g. what section
to highlight) through the web, allowing the designer to at least modify the objects being created.

There are a couple objective measures to how well we accomplished our goal of separating the work:

1. Percentage of objects that required a programmer's assistance to create
2. Amount of object reuse in the system

6.1.1.1 Objects that required a programmer's assistance to create

The number of objects that require a programmer's assistance is only a rough measure of the level of
separation of the work between the programmer and graphics designer. This number will surely be
impacted by the type of templates being developed. If the majority of objects need programmer
assistance, then we truly have not accomplished our goal.

We implemented 20 site-wide templates for VolunteerSolutions.org, creating 76 objects. Of those,
approximately 20 objects required some sort of programming - from simple if/then statements to calls to
other Tcl procedures. We note, however, that all of the objects that required programming were created
while building the first four templates - all other templates made use of the pre-defined components.

The following types of objects were easy for graphics designer to create independently:

* Images based navigation bars with image maps
* Cascading Style Sheets
* JavaScripts
* General, static, menu bars

The following types of objects were difficult and generally required the programmer's assistance:

* Text-based navigation bar that highlights current section
* Objects that behave differently depending on the URL
* Objects that append additional html based on the existence of variables

Overall, we found that after creating a core set of dynamically changing objects, the graphics designer
was able to easily reuse those objects in building new templates.

6.1.1.2 Overall Object Reuse

Object reuse is perhaps the best measure of our ability to remove the programmer from the graphics
design process. We can measure object reuse in two ways:

1. The number of objects that use other objects, leading to a hierarchical approach to building
templates

2. The number of objects that are used in multiple nodes.

6.1.1.2.1 Hierarchical approach to building templates

On VolunteerSolutions.org, we found that 54 objects were directly reused by other objects. This number,
however, is a lower limit. To better understand what this number means, we look at the following
example of object reuse:

e One object stores the CSS for a site

mbryzek@alum.mit.eduPage 48 of 68

* Another object stores the JavaScript
" We build a header object that includes both the CSS and JavaScript objects and some additional

html
* Four other objects use the header object

The total number of directly reused objects in this example would be six - The header uses the CSS and
JavaScript objects, and four other objects use the header object. In reality, the number of reused objects is
twelve - the CSS, JavaScript, and Header objects are each reused four times.

In summary, out of 76 objects, 54 were reused directly. This means that at least 70% of all the objects we
create are reused by other objects.

6.1.1.2.2 Reusing objects in nodes

SWTM also supports object reuse at the node level. We registered 77 nodes with the 20
VolunteerSolutions.org site-wide templates, and registered 304 objects with those 77 nodes. This means
that on average each of the 76 objects was registered approximately four times with a node.

6.1.1.3 Summary

The level of object reuse in 20 nontrivial VolunteerSolutions.org templates is extremely high, supporting
our initial design goal of building a simple, object-oriented approach to creating templates. Part of the
reason for this high level of reuse can be attributed to a type of self-fulfilling prophecy - after the first few
templates have been created, the designer knows which objects are readily available and can create future
mockups to take advantage of the growing library of objects to create new templates.

When actually building these templates, the programmer was involved in creating objects for only the
first four of them. The last sixteen templates were created from:

* HTML Mockups
* Previously created objects
* The three SWTM tags provided to Graphics Designers

We thus claim that SWTM accomplishes, at least to a first-degree, the separation of work between the
programmer and graphics designer in creating site-wide templates.

6.2 Maintaining Development Time
For SWTM to make sense as a tool, it must not increase the amount of time either the graphics designer
or the programmer spends doing the same work they do today. We hope that working with SWTM
actually decreases development time, but we would settle for no change in development time because of
the added benefits of increased reliability and simpler maintenance.

There are a few aspects to measuring development time:

e How long does it take to create a template with SWTM?

* How long does it take to code a new page?
* How hard is it to change the template in a non-trivial way?

6.2.1.1 Creating a new template with SWTM

The general process of creating a new template is the same regardless of tools being used:

mbryzek@alum.mit.eduPage 49 of 68

1. HTML mockups are created
2. Parties agree to the state that each page maintains (e.g. the section of the menu bar to highlight)
3. Templates are added to the web site.

With SWTM, the process is no different. However, SWTM provides two real advantages:

1. All objects are stored in the Object Manager and can be reused.
2. The programmers API is constant - because of dynamic binding, the procedure calls in the

individual files never need to be changed.

If the template requires a new piece of state to be associated with certain files, there are two options:

1. If there are relatively few pages that are affected, the new state can be assigned through the File
Manager

2. If the changes are global, the programmer needs to revisit every affected file to set the state.

Regardless of the system to maintain templates - whether it be straight html or fully blown content
management systems, these file-by-file changes will have to be made. SWTM is no different. In practice,
we found that the amount of state that each file needs to maintain is both small and relatively constant,
and if it does change, there is no additional work imposed by SWTM that did not exist before hand.

On VolunteerSolutions.org, once the core set of objects was created, each new site-wide template took
approximately 30 minutes to put together from the html mockup. That is hardly any time at all when you
consider that each template affects over 100 files.

6.2.1.2 Coding a new page

Once the templates are created, coding a new page is extremely simple. However, this is true of most
templating systems - once the html mockup is complete and somehow made part of the system, nothing
more needs to be done.

Note, however, that many systems of including templates in files may require more lines of code to be
written. ArsDigita standard coding style is one example of this. Table 3 contrasts the two styles and
shows that using SWTM actually reduces the number of lines of code from five to two.

ArsDigita Style SWTM Style
ReturnHeaders ReturnHeaders
nswrite "[adheader $pagetitle] ns_write [swtm header]
<h2>$pagetitle</h2>
$contextbar
<hr>

Table 3: Comparison of ArsDigita Coding Style with SWTM Style

The only claim that we can truly make about the amount of time it takes to code a new page while using
SWTM is that SWTM requires at most the same amount of time as whatever was in place before.

6.2.1.3 How hard is it to change the template in a non-trivial way?

Changing a template in a non-trivial way is akin to creating a new site-wide template and depends on the
amount of new state (e.g. a new variable defining a subsection of a menu bar) and the number of new
objects that the programmer must create. To get a grasp on this issue of creating non-trivial new
templates, we implemented, for VolunteerSolutions.org, a complex template for SouthWest Texas State

mbryzek@alum.mit.eduPage 50 of 68

University (See Figure 15 and Figure 16). In this case, the graphics designer was able to completely
implement the SouthWest Texas State template, with no programming, in less than half an hour. The
interesting point here is that although the template looks completely different, and contains much more
complex html, the existing objects for elements such as menu bars allowed the graphics designer to
independently make the non-trivial change.

_______________________._._...............____.........__ ..

74 yo/"N V*P"

Figure 15: Volunteer Solutions Template for Figure 16: SouthWest Texas State Template for
/volunteer node /volunteer node

6.3 Ensuring simple upgrades/ports
Our final major goal is to ensure that it does not require too much programming time to install SWTM on
an existing website. This is important as once site-wide templates are in use, we want them to be used on
all pages, including those previously developed.

6.3.1 Porting the Bookmarks module

To measure our success in this area, we first ported the user pages of a simple ACS Bookmark module to
use SWTM. This consisted of porting approximately 20 Tcl pages consisting of about 2,000 lines.
Overall:

* The port took less than half an hour
* We modified approximately 125 lines of existing code
* All the modifications were simple - a global find and replace perl script took care of most of the

work.

Table 4 shows an example of the type of changes we made to each of the files in the Bookmarks module.
The entire process was simple and error-free, though admittedly tedious in that each file had to be
manually modified.

Original file (create-folder. tcl) SWTM port (create-folder. tcl)

mbryzek@alum.mit.eduPage 51 of 68

set title "Create Folder" set pagetitle "Create Folder"
set contextbar (ad contextbar-ws \

set html "[ad-header "$title"] "$return_url [adparameter SystemName
<h2>$title</h2> bm] " "$pagetitle"]

[ad contextbar-ws "$return_url \ set html [swtm header]
[adparameter SystemName bm] " "$title"]

<hr>l

Table 4: Example of the type of code we replaced while porting the Bookmarks module to SWTM

6.3.2 Installing SWTM on the Sloan Education Network27

We were initially planning to implement SWTM on top of a class run using SWTM. However, there are
no classes currently using the Sloan Education Network, and thus most of the examples we presented in
this paper came from VolunteerSolutions.org.

We ported the core user pages for the Sloan Education Network (SEN), but did not port other modules
used by SEN (e.g. bulletin board, news, etc) that are currently being ported to some kind of templating
system by ArsDigita.28 The core user pages were again simple to port, requiring about a half hour of
work. Figure 17 shows a sample template created from the existing MIT Course 6.001 website.

AMrUnLm Simi.qrvOjnd

~~~~. ..........my (2b M ±

Figure 17: Sample SWTM template implemented on central class page for SEN

The key points to take away from the port of the user pages of SEN are:

e

e

Integrating SWTM with the existing pages was simple and fast.
Once integrated, all other templates, including those created for the other sites presented as
examples in this paper, could be dynamically loaded.

27 Many thanks to Randy Graebner and Aileen Tang who were concurrently developing this system!
28 The actual templating system that will be used is still being debated. However, once these modules have been
rewritten to make use of any set of organized templates, it will be much simpler to either port them to SWTM or
integrate SWTM with the templating system being used. In their current state, these modules have no common
structure and porting them to any templating system involves a near full re-write, which is beyond the scope of this
paper.

mbryzek@alum.mit.eduPage 52 of 68



The second point is the most important - in less than an hour, we were able to port the user interface for a
system consisting of over 20,000 lines of code to SWTM.

6.4 Summary
SWTM accomplishes our goals through:

* Object reuse and dynamic binding allows for easy implementation of new templates and for
simple modification of existing templates

e A simple programmer's API ensures that programmers do not need to spend any time thinking
about the templates while writing individual user pages

e Support for simple upgrades of existing modules.

Although we were unable to completely separate the tasks of the programmer and graphics designer, we
have come a long way to ensure that the two work independently, and have done so with minimal
interference to either's design environment.

Finally, we note that some of the work that still requires the interaction of both the programmer and
graphics designer is an ongoing problem in web design that we did not set out to solve. Our goal was to
separate the majority of the work between the two, and to this end, SWTM is a success.

mbryzek@alum.mit.eduPage 53 of 68



7 Future Work
As with any system, SWTM is the first version of a templating system that can head in many directions.
Our goal was to separate a document into three parts: the header, the contents, and the footer. The future
work we describe here broadly outlines several directions/enhancements that we believe will further the
utility of SWTM.

7.1 Current SWTM Limits
In implementing the current version of SWTM, we identified several limits that might be well worth
removing in future implementations.

" Support for a root templates directory: Currently, every new template is assigned a template
key that is then registered at the level of the server root (e.g.
ht tp: / /guides tar. org/template key). For a site with many templates, it is
foreseeable that one of the template keys will conflict with an existing directory on the system.
An alternative design would force all templates to be relative to a specific directory (e.g.
http: / /guidestar. org/ templates / templatekey) rather than from the server root.
This may be a desirable option for sites with many templates.

" Better support for the debugging mode: Currently, the debugging mode is toggled on or off on
the server level, which can become inconvenient when many people are using the site. An
enhanced debugging mode would:

o Allow authorized users to dynamically toggle debugging mode on a user-by-user basis
o Include a more advanced html parser to provide better feedback on poorly constructed or

improperly formatted objects and templates.

" Node level variables: We support values associated with fields at the file and template level. It
would be nice to allow users to associate these fields at the node level as well (e.g. all pages at the
/volunteer node default to a page_t itle of "Volunteer Services").

* Support for template copying: On some sites, the differences between some templates may be
so small that it is easier to program the logic for the different templates and simply associate new
keys with the same nodes and objects. One example of this situation is a site like yahoo.com that
sets up site-wide templates for major cities that differ only in the image displaying the city name
(e.g. http://boston.yahoo.com). In this case, assigning a template key that doubled as the name of
the image to display would allow one template to support all the nodes and objects for all major
cities. To make this work, we would have to add a "copy template" feature.

" Better display of object dependencies: We currently display only limited object dependencies -
just other objects and templates either directly accessed or accessed through another object
directly related to the initial object. A useful debugging tool would show all of the dependencies,
regardless of depth.

" Increased number of presentation types: SWTM only supports two presentation types:
Boolean and text. More types, such as integer, character, long text, or super long text, would
allow the user to cater the presentation of new fields more closely to the type of field it is. It

mbryzek@alum.mit.eduPage 54 of 68



might be useful to incorporate a fully blown metadata system 29 to manage SWTM fields, though
it is not yet clear that such flexibility is needed.

Changing keys of objects/fields: Currently there is no way to change the key associated with an
object or field. Since we already track dependencies between objects, it is feasible that a future
version will allow the key to be updated.

7.2 Future Enhancements

7.2.1 Usability
One of the major obstacles to the adoption of SWTM is the ability of non-programmers to successfully
interact with the system. Though we have made great progress in this initial version, the non-programmer
will still struggle in creating some very common site components. For example, SWTM does not provide
an IF statement for the graphics designer to use, making it difficult for a graphics designer to create an
object for a menu bar that highlights one part of the bar based on the current file or node being accessed.

The challenge with future usability enhancements is to balance the need for certain features with the
simplicity of the language that graphics designers use. The way to proceed along these lines is to work
with several graphics designers to implement templates based on SWTM, and then to re-analyze the work
produced and to understand the major stumbling blocks. The common struggles will point to features that
must be implemented to enhance usability.

7.2.2 Better File System Integration

Currently, SWTM editors must work through a browser interface to create or to modify objects. For a site
with a large number of templates, this can quickly become tedious. New functionality should be built that:

1. Allows the graphics designer to upload a new version of an object from their own computer

2. Provides the designer with some sort of local copy of a set of objects (e.g. all the objects that this
template and node depend on).

This type of functionality would make it easier to create objects as the developer can work locally with
third-party software packages and later synchronize work.

Another useful enhancement would be a "file system verifier" to check for nodes whose underlying
directories no longer exist and for files which have been removed. This system could offer the user
feedback on missing nodes and files, and offer the option to remove them from SWTM completely.

7.2.3 Module Search
A nice feature would allow the user to use keyword searches within SWTM modules. An example of this
enhancement would be a keyword search through all of the objects, allowing the designer to find all
objects that mention the word "header." This would also be useful with templates and fields.

7.2.4 Versioning
One of the major drawbacks to the current system is that there is no version history of an object. Rather,
once an object is modified and refreshed in the cache (e.g. through the preview function), it will become
active on the site.

29 ArsDigita built such a system to support the knowledge management requirements of Siemens.

mbryzek@alum.mit.eduPage 55 of 68



What is needed is a system of versioning that allows users to:

1. Save all versions of all objects
2. Retrieve any version of an object
3. Mark a particular version as the currently active one

We can provide versioning in one of two ways:

1. Implement a simple web-based versioning procedure
2. Tie the web interface to existing version-control software (e.g. CVS)

From the two options, working with a third party program would be simpler to implement, more reliable,
and more powerful. Thus, we expect a future version to cleanly tie the web-editing process to a program
such as CVS.

mbryzek@alum.mit.eduPage 56 of 68



8 Conclusion
There are several different options available today for creating templates for a site, ranging from simple
include files to complex content management systems. SWTM fills a niche somewhere in between these
two systems, addressing the problem of managing templates to generate the overall look-and-feel of a site
while ignoring issues concerning the placement and appearance of individual elements within the page.

We began the project with the following goals:

e Separate work of the programmers from that of the graphics designer
* Make it easy to create, maintain, and modify all of the different templates in use
* Decrease overall development time
* Allow for minimal work in upgrading legacy systems.

The first goal proved to be the most challenging in that many templates in use today require some
programming logic to be successful. SWTM does not provide any mechanism to enable the graphics
designer to create this logic and continues to rely on the programmer to create objects that require some
sort of programming.

SWTM successfully accomplishes the second goal by creating an object-based approach to building html
templates that is intuitive to graphics designers. Objects can dynamically bind variables (through a simple
ADP tag), include other objects, and look up the value of any variables. Additionally, all objects are
stored in a central Object Manager that allows the graphics designer to choose from a library of
previously created objects. Thus, when a graphics designer requires assistance from a programmer to
create a new object, that object will be stored and easily reused in future templates.

Through a simple programmer's API, SWTM usually decreases development time in terms of creating
new pages. The API abstracts the templates being used, and furthers the treatment of individual web
pages as objects with state.

Finally, we ported a couple modules of differing complexity to SWTM - the process is simple, though
somewhat tedious, when porting a well-designed module (modules written in an inconsistent fashion are
extremely difficult to port to SWTM).

In practice, SWTM truly takes advantage of object reuse, both on the level of new objects making use of
previous objects and of templates using multiple objects to generate the look and feel for a portion of a
site. Graphics designers can work independently, and programmers need not worry about the templates.

As discussed in Section 7:Future Work, there is still a lot of work to be done. The true test will come
when a graphics designer is single-handedly managing hundreds of site-wide templates for a web site.
Only at that time will we have truly accomplished our goals.

mbryzek@alum.mit.eduPage 57 of 68



9 Appendix A: Oracle 8i Data Model
-- define a table that everything else references...
-- these are the identifiers for the templates themselves!
create sequence swtmtemplatetemplateid-seq start with 100;

create table swtm-template (
templateid integer

constraint sttemplateid-pk primary key,

-- a human understandable name for this template - for UI

templatename varchar(250)
constraint sttemplate-namenn not null,

-- the unique identifier for this template

templatekey varchar(50)
constraint st_template-keynn not null

constraint sttemplatekey-un unique,

-- a lot of times, we will want to associate a user group with a template

-- we assume that the user will use a grouptype of "site-wide template"

-- from which to select the groups. Note that the user group must first be

-- created before the user can associate it with a template.

-- note that a user group can have at most one template associated

-- with it
group-id constraint st_groupid-fk references usergroups

constraint st-group-id-un unique,

-- we allow "symlinks" between templates - that is, one template can use all of

-- the objects specified for another template

copy-from templateid constraint st-copy-from-templatejid_fk references

swtmtemplate,
-- is this node currently active?

activep char(l) default('f')
constraint stactive-p_ck check(activep in ('t','f'))

-- a centralized table to simply store all the adp tags we create.

-- This is important as it keeps the tags unique across the entire system

create sequence swtmtagstag_id-seq start with 100;
create table swtm-tags (

tag-id integer
constraint stmapid-pk primary key,

-- each tag must be uniquely mapped to another object

-- this is the ADP tag that our users will use as they create objects

-- and programmers use in referencing template variables

tag varchar(50)
constraint st_tagun unique
constraint sttag-nn not null,

onwhichtable varchar(50)
constraint stonwhichtablenn not null,

onwhatid integer
constraint stonwhatidnn not null,

-- because each tag is unique, we only allow each row in a table to be mapped

-- once. You may want to relax this constraint to allow for multiple tags to

-- refer to the same table and row, but I don't think this is a really good

-- idea
constraint stwhichtablewhatidun unique(on which table, onwhatid)

-- a table to put every object we create into a category

create sequence swtmcategory-categoryid-seq start with 100;

create table swtmobject-category
category_id integer

constraint soc-category_id_pk primary key,

mbryzek@alum.mit.eduPage 58 of 68



category varchar(500)
constraint soccategorynn not null

-- this table stores all of the template objects we create
create sequence swtm objectobject-id-seq start with 100;
create table swtm-object (

object-id integer
constraint soobject_id_pk primary key,

-- into what category can we stick this object?
categoryid constraint socategoryid_fk references

swtmobjectcategory
constraint socategoryid_nn not null,

-- what is the name of this object - should be human understandable
objectname varchar(250)

constraint so_object-nameun unique
constraint soobject-namenn not null,

-- what ADP tag do we use?
tag-id constraint sotagid-fk references swtmtags

constraint so_tag_id un unique
constraint sotagid-nn not null,

-- what's the actual content? This is an adp...
contentadp clob

constraint socontentnn not null,
-- a human readable description of what the thing does
description clob,
-- does this object apply to all users, logged-in users, or logged-out users?
requireduserstate varchar(20) default('all')

constraint sorequired userstateck
check(required-userstate in ('all','logged-in','logged-out')),

-- do we subst the content of this object?
tcl-template-p char(l) default('f')

constraint sotcl-template-p-ck check(tcl-templatep in

-- does this object belong to only one template or do we
-- share it with the entire system?
templateid constraint sotemplateid_fk references swtm-template,
-- some columns to tracke the object creator and dates
creationdate date

constraint socreationdatenn not null,
creationuserid constraint socreationuseridfk references users

constraint socreationuseridnn not null,
lastmodifieddate date default sysdate,
lastmodifieduserid constraint solastmodifieduseridfk references

users

lastmodifiedip
constraint solastmodifieduseridnn not null,

varchar(50) constraint solastmodifiedipnn not null

-- we keep track of which objects reference which other objects

-- note that one object can have at most 1 reference in this table to another

-- object because we don't really care about the number of references

create table swtm-objectobject-map (
from objecttag varchar(50) constraint soomfromobjecttag_nn not

null,

to-objecttag varchar(50) constraint soomtoobjectid-nn not null,

constraint soomfromtoobject-tag-pk primary key(from objecttag,
to-objecttag),

constraint soomfromto_notequal-ck check(from-object-tag <> to-objecttag)

mbryzek@alum.mit.eduPage 59 of 68



-- we need a way to say we only care about headers and footers

create sequence swtm-typetype_id-seq start with 100;

create table swtm type (
type-id

type-key

explanation

integer
constraint st_type_id_pk primary key,

varchar(50)
constraint stshortdescription-un unique
constraint stshortdescriptionnn not null,

varchar(2000)
constraint stexplanationnn not null

-- types of fields - text/boolean/etc.
create sequence swtmfield-typestypeid-seq start with 100;

create table swtmfieldtypes (
type-id

pretty-text

type-key

integer
constraint sft_typeid_pk primary key,

varchar(100)
constraint sft-pretty-textnn not null,

varchar(50)
constraint sft_type-keyun unique
constraint sft_typekeynn not null

-- we need an easy way to associate multiple fields with each node

-- create a table to store all the fields for which we want to ask

create sequence swtmfieldfield id-seq start with 100;

create table swtmfield (
fieldid integer

constraint sffieldid_pk primary key,

type-id constraint sf-typeidfk references

constraint sftypeid-nn not null,

-- text to display when asking for people to enter this field

displaytext varchar(1000)
constraint sffieldtextnn not null,

-- unique templatekey for an ADP tag to insert this data

-- into the page

swtmtype

tag-id constraint sf swtm-tag-fk references swtm-tags

constraint sfswtmtag-un unique

constraint sfswtm-tagnn not null,

required-p char(l) default('f')
constraint sf_requiredp_ck check(requiredp in ('t','f')),

field-typeid constraint sf field-typefk references swtmfield-types

constraint sffield-type_nn not null,

-- what to display if they forget to enter this field and it's required?

display if_notentered varchar(1000),

constraint sf-requireddisplayck check( requiredp='f' or

display-if-not-entered is not null ),
-- what's the default value for this field?

defaultvalue varchar(1000)

-- a place to store information for all fields

create table swtmfield value (
-- this is the value for which field?
fieldid integer

constraint sfvfieldidfk references swtm field,

mbryzek@alum.mit.eduPage 60 of 68



-- which row does this field value refer to?
onwhichtable varchar(50)

constraint sfvonwhichtablenn not null,
onwhatid integer

constraint sfvonwhatidnn not null,
-- the value itself
value varchar(1000),
constraint sfvtablewhatidfieldid-pk primary key (on which table,

onwhat-id, field id)

-- we need a table to store all the nodes in the system
-- and metadata on those nodes. We use the url stub with a
-- leading slash and no trailing slash to
-- a. uniquely define a node
-- b. let us implement inheritance on the filesystem (through caching,
-- we can afford the performance hit on this one...)
create sequence swtmnodenodeid-seq start with 100;
create table swtmnode (

nodeid integer
constraint swtmnodenodeid_pk primary key,

-- what's the urlstub of this node (relative to server root)
urlstub varchar(200)

constraint swtmnodeurlstubun unique
constraint swtmnodeurlstubnn not null

-- we need a table to store meta-information for any file.
-- we simply create a table to store files, just like nodes,
-- and then use the abstract field/value tables
-- note that files are also system-wide... This is probably
-- desirable as most templates share file information. If not,
-- then you better use unique variables in the objects you
-- create for the templates that need different field/values!
create sequence swtmfilefile_idseq start with 100;
create table swtmfile (

fileid integer
constraint swtmfilefileid-pk primary key,

node id constraint swtm file file id fk references swtm node
constraint swtmfilefileidnn not null,

-- what's the path to this file, including the filename itself
-- and relative to the node url stub. Includes leading slash
filename varchar(400)

constraint swtmfilefilenamenn not null,
constraint swtmfilenodefileun unique(nodejid, file-name)

-- we need to map nodes to templates so that we maintain unique nodes

-- and unique templates, with unique pairings
create sequence swtmnodemapjidseq start with 100;

create table swtmnodemap (
map-id integer

onwhichtable

onwhatid

nodeid

constraint snm.map_id-pk primary key,
varchar(50)

constraint snmonwhichtablenn not null,

integer
constraint snm_onwhatidnn not null,

integer
constraint snmnodeidfk references swtmnode,

mbryzek@alum.mit.eduPage 61 of 68



constraint snm_tableidnodeun unique(on whichtable, onwhat id, nodeid),
-- is this mapping currently active?
active-p char(l) default('f')

constraint snmactivep_ck check(activep in ('t','f'))

-- we need to map each template/node pair to an object and object type...
-- note that there is no restriction saying an object cannot appear twice
create sequence swtmnodeobject map-id-seq start with 100;
create table swtmnode_objectjmap

node-object-map-id integer
constraint snomnodeobjectmapid pk primary key,

map-id integer
constraint snomnmap-id-nn not null
constraint snomnmapid-fk references swtmnodemap,

object-id integer
constraint snomobject-id_nn not null
constraint snom-object_id_fk references swtm object,

-- What "role" is the object playing here? That is, in regards to its being
-- used for this node mapping, what is it?
object-type-id constraint snomobject-typeidnn not null

constraint snom objecttype_id_fk references swtm type,
-- if we have multiple objects defined for a given node mapping, we probably
-- want a way to indicate the order in which the objects should be applied
calling-order integer default 1

mbryzek@alum.mit.eduPage 62 of 68



10 Appendix B: Loading Initial Templates
This section lists the SQL scripts to load a default template into SWTM.

-- Define a user group type of "site-wide template."
-- this is more for user-inteface concerns because we don't want to
-- offer a select list of 1,000 groups!
BEGIN

insert into user-grouptypes
(group-type, prettyname, pretty-plural, approvalpolicy,

defaultnewmemberpolicy, group_moduleadministration)
values

('site-wide template', 'Site-wide template', 'Site-wide templates', 'closed',
'closed', 'none');
END;

show errors;

-- create a few initial categories
insert into swtm-objectcategory
(categoryid, category)
values
(1, 'General');

insert into swtm-objectcategory
(category_id, category)
values
(2, 'Menubar');

insert into swtm-objectcategory
(categoryid, category)
values
(3, 'Headers');

insert into swtm-objectcategory
(categoryjid, category)
values
(4, 'Footers');

insert into swtm-objectcategory
(categoryid, category)
values
(5, 'Miscellaneous');

insert into swtm-objectcategory
(category-id, category)
values
(6, 'Style Sheets');

insert into swtm-objectcategory
(categoryid, category)
values
(7, 'JavaScript');

-- populate the types now
insert into swtm type
(type-id, typekey, explanation)
values
(1, 'header', 'Header objects are used to create the templates for the page header');

mbryzek@alum.mit.eduPage 63 of 68



insert into swtm type
(type-id, type-key, explanation)
values
(2, 'footer', 'Footer objects are used to create the templates for the page footer');

insert into swtm type
(type-id, type-key, explanation)
values
(3, 'template-field', 'Template fields are used to specify additional information for
each template');

insert into swtm type
(typeid, typekey, explanation)
values
(4, 'object-field', 'Object fields are used to specify additional information for any
new template object that is created');

insert into swtm-type
(typeid, typekey, explanation)
values
(5, 'filefield', 'File fields are used to specify additional information for each
file');

-- Populate several common field types
insert into swtmfieldtypes
(type-id, pretty-text, type-key)
values
(1, 'Boolean (i.e. true/false)', 'boolean');

insert into swtmfieldtypes
(type_id, prettytext, type-key)
values
(2, 'Text (e.g. any text description, field, or other information)', 'text');

-- SETUP A DEFAULT TEMPLATE WITH SOME BASIC PROPERTIES

-- create an initial, default template
insert into swtm template
(templateid, template-name, template-key, active-p)
values
(1, 'ArsDigita Default Site-Wide Template', 'ad', 't');

-- create the root node
insert into swtmnode
(nodeid, urlstub)
values

(1, '/');

-- Create two simple objects to wrap around api calls to generate ArsDigita look and
feel
insert into swtm tags
(tag_id, tag, onwhichtable, on-whatjid)
values
(1, 'adheader', 'swtm object', '1');

insert into swtm tags
(tag-id, tag, onwhichtable, on.whatid)
values
(2, 'ad-footer', 'swtm object', '2');

mbryzek@alum.mit.eduPage 64 of 68



insert into swtm tags
(tag-id, tag, onwhichtable, on-what id)
values
(3, 'insertdefaultfont', 'swtm-object', '3');

insert into swtm tags
(tagid, tag, onwhichtable, on-what-id)
values

(4, 'inserttitlefont', 'swtmobject', '4');

insert into swtm tags
(tagid, tag, onwhichtable, on-what-id)
values
(5, 'defaultfontcolor', 'swtm field', '1');

insert into swtm tags
(tag_id, tag, onwhichtable, on-what-id)
values
(6, 'defaultfont face', 'swtmfield', '2');

insert into swtm tags
(tag_id, tag, onwhichtable, on-what-id)
values
(7, 'defaulttitlecolor', 'swtm field', '3');

insert into swtm-tags
(tag_id, tag, onwhich_table, on what id)
values
(8, 'defaulttitlefont', 'swtm-field', '4');

insert into swtm object
(objectid, categoryid, objectname, tagid, content adp, description, creation_date,
creationuserid, last modifieddate, lastmodifieduser_id, last modifiedip)
values
(1, 3, 'ArsDigita Default Header', 1, '<%=[swtm generic_header]%>', 'Wrapper for the
default ArsDigita header - call to adheader followed by the page title, context bar,
and horizontal rule', sysdate, 1, sysdate, 1, '0.0.0.0');

insert into swtm-object
(objectid, category-id, object-name, tagid, content adp, description, creation_date,
creationuserid, last modifieddate, lastmodifieduser_id, last modifiedip)
values
(2, 4, 'ArsDigita Default Footer', 2, '<%=[swtm generic_footerl%>', 'Wrapper for the
default ArsDigita footer', sysdate, 1, sysdate, 1, '0.0.0.0');

insert into swtm-object
(objectid, category-id, object-name, tag_id, content adp, description, creation_date,
creationuserid, last modified_date, lastmodifieduser_id, last modifiedip)
values
(3, 1, 'Insert Default Font', 3, '<%=[swtm-parse-tagdefault font]%>', 'Inserts the
default font html tag specified in the template', sysdate, 1, sysdate, 1, '0.0.0.0');

insert into swtm object
(objectid, category-id, object-name, tag-id, content-adp, description, creation_date,
creationuserid, last modifieddate, lastmodifieduserid, last modified ip)
values
(4, 1, 'Insert Title Font', 4, '<%=[swtm-parse-tag_title_font]%>', 'Inserts the title
font html tag specified in the template', sysdate, 1, sysdate, 1, '0.0.0.0');

mbryzek@alum.mit.eduPage 65 of 68



-- Create the fields for default and title font
insert into swtmfield
(field id, type id, displaytext, tagid, required-p,
values
(1, 3, 'What is the default font color?', 5, 'f', 2);

insert into swtmfield
(field id, type id, display-text, tag_id, required-p,
values
(2, 3, 'What is the default font face?', 6, 'f', 2);

insert into swtmfield
(field id, type id, displaytext, tagid, required-p,
values
(3, 3, 'What is the title font color?', 7, 'f', 2);

insert into swtmfield
(fieldid, type id, displaytext, tag-id, requiredp,
values
(4, 3, 'What is the title font face?', 8, 'f', 2);

field-type-id)

field-type-id)

field-type-id)

field-type-id)

-- map the root node to the default template
insert into swtmnode_map
(map_id, nodeid, on whichtable, on whatid, active-p)
values
(1,1,'swtm template',l,'t');

-- map our objects to the default template in their specified roles
insert into swtmnodeobject map
(nodeobject mapid, mapid, object-id, objecttypeid)
values
(1,1,1,1);

insert into swtmnodeobject map
(nodeobject map id, mapid, objectid, objecttypeid)
values
(2,1,2,2);

mbryzek@alum.mit.eduPage 66 of 68



11 Bibliography

1. Abelson, Hal, Professor of Computer Science and Engineering, Massachusetts Institute of
Technology, Email exchange and conversations with the author, January 2000 to May 2000.

2. ArsDigita Community System Documentation, http://www.arsdigita.com/doc, specifically
http://arsdigita.com/doc/versioning.html, http://arsdigita.com/doc/style.html, and
http://arsdigita.com/doc/bookmarks.html.

3. Dixon, Paul, Head of InterMedia Division at Oracle, Conversation with the author, January 2000.

4. Goldstein, Karl, "Dynamic Publishing," http://karl.arsdigita.com/doc/publish/.

5. Graebner Randy and Aileen Tang, MIT Thesis on "Sloan Education Network."

6. Greenberg, Bernard S., "Multics Emacs: The History, Design, and Implementation," August 15, 1979,
http://www.multicians.org/mepap.htm.

7. Greenspun, Philip, Philip and Alex's Guide to Web Publishing, April 1999, Morgan Kaufmann
Publishers; ISBN: 1558605347.

8. Johnson, Rhonda, United Way of Massachusetts Bay, conversations with the author, November 1999
to May 2000.

9. Network Solutions, Inc., "What is HTML?", http://rrpac.upr.clu.edu:9090/-jcarroll/html/sldO2.html.

10. Raggett, Dave, "Adding a touch of style," February 17, 2000,
http://www.w3.org/MarkUp/Guide/Style.

11. Reid, Brian, "20 Years of Abstract Markup. Any Progress?" Compaq Computer Corp, Nov 19, 1998,
http://reid.org/~brian/markup98.html.

12. Simmons, Wendy, GuideStar.org, Conversations with the author from January 2000 to May 2000.

13. Stallman, Richard, "EMACS, the Extensible, Customizable, Display Editor," February 11, 1998,
http://org.gnu.de/software/emacs/emacs-paper.html.

14. Taggart Rip, GuideStar.org, Conversations with the author from September 1999 to May 2000

15. Tufte, Edward R., Visual Explanations : Images and Quantities, Evidence and Narrative, March
1997, Graphics Press; ISBN: 0961392126.

16. Vald6s, Ray, "A Plateful of Templates," WebTechniques, May 2000, Volume 5, Issue 5.

17. Vimuktanon, Atisaya, GuideStar.org, Conversations with the author from September 1999 to January
2000.

18. Wium, Hakon and Bert Bos, "Cascading Style Sheets - Designing for the Web,"
http://www.awlonline.com/csena/titles/0-20 1-41998-X/liebos/.

mbryzek@alum.mit.eduPage 67 of 68



19. World Wide Web Consortium, "Web Style Sheets", http://www.w3.org/Style/.

20. "CSS Frequently Asked Questions", http://www.hwg.org/resources/faqs/cssFAQ.html#css.

mbryzek@alum.mit.eduPage 68 of 68


