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ABSTRACT

The increasing importance of aitline alliances and codesharing creates new challenges for the
revenue management systems currently used by the aitlines. In this thesis, these challenges
were discussed quantitatively and proposed solutions wete tested, using a computer tool
called the Passenger-Origin Destination Simulator.

The petformance of current revenue management methods was assessed in a hypothetical
environment, which modeled the hub-and-spoke US domestic market. In this environment,
an alliance of two airlines competed against another aitline. The performance of origin-
destination revenue management methods, especially those using bid-price control, was
shown to be sensitive to the evaluation of codeshate passengers. The sole use of different
evaluation or discount methods for these passengers, by taking into account either the fare
of their whole itinerary or the corresponding local fare, did not give an accurate estimate of
the value of those passengers for the alliance. This issue limits the revenue gains of the
alliance partners using origin-destination methods.

Two innovative schemes, bid-price sharing and bid-price inference, were proposed to allow
airlines to more accurately assess the value of connecting passengers for the alliance, by
allowing each alliance partner to estimate the revenue displacement costs on the other
partner’s legs. The use of bid-price sharing with an origin-destination revenue management
method produced an additional revenue gain on the order of one percent for the alliance.
With bid-price sharing, the alliance performed almost as well as if it were a single aitline
using the same method. The bid-price inference scheme led to similar results, while being
easier to implement technically and legally. However, it required preliminary tuning to ensure
its revenue performance.

Thesis Advisor: Dr. Peter Paul Belobaba

Title: Principal Research Scientist, Department of Aeronautics and Astronautics
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INTRODUCTION

Motivation and Goals

The motivation for undertaking this research originates in the simultaneous development of

sophisticated airline revenue management systems and large airline alliances worldwide.

Following research work initiated in the late 1980s in academia (Belobaba, 1987) and the
Operations Research departments of large aitlines, a growing number of airlines have been
implementing increasingly sophisticated revenue management systems during the 1990s.
These systems, which aim at maximizing the revenue generated by selling seats at different
prices, have been shown to produce revenue gains comparable to the current profits of the
airline industry (Smith et al., 1992). Meanwhile, alliances have been created between airlines
seeking to enter new markets and strengthen their existing market positions. In January
2001, 19 of the 25 largest airlines in the world' were members of one of the five global

airline alliances.

The context of aitlines alliances creates new challenges for revenue management systems
(De La Torre, 1999), which now have the added complexity of dealing with codeshare
passengers. However, as this thesis will show, this context also represents an opportunity for

further increasing the revenue of the alliance airlines.

The first goal of this thesis is to quantify the performance of current revenue management
systems in an airline alliance and identify the challenges created by the alliance context. The
second goal is to propose innovative but feasible solutions to address these issues. In order

to achieve these goals, a computer tool is used, called the Passenger Origin-Destination

Simulation (PODS).

! In terms of total revenue passenger-miles (RPKs), ICAQ Data, 1999.
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Structure of the Thesis

This thesis is structured in two parts.

Part I provides the reader with information on airline alliances, revenue management, and

the implications of the alliance context for revenue management.

e Chapter 1 defines the concepts of airline alliances and codesharing, discusses the
economic motivations and regulatory framework for airline alliances, proposes a
typology of current airline alliances, and reviews the contractual implications of

alliances for revenue management.

e Chapter 2 provides an introduction to the objectives and process of revenue
management, describes current revenue management algotithms, and stresses the

operational revenue management issues raised in the context of airline alliances.

Part IT presents the simulation results of current and proposed alliance revenue management

practices.

® Chapter 3 gives a brief description of the Passenger Origin-Destination Simulation,

and discusses the results of a baseline simulation in the alliance environment.

e Chapter 4 assesses the performance of cutrent revenue management methods in
airline alliances, using different discount methods for the evaluation of codeshare
paths, and the impact of a key alliance parameter in PODS, the joint image of the

alliance partnets.

® Chapter 5 proposes and tests two methods that aim at improving the performance of
tevenue management systems in the alliance context, by allowing the alliance airlines

to evaluate the displacement costs of codeshare passengets on their partner’s legs.
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Finally, a concluding chapter summarizes the findings and conttibutions of this thesis, and

proposes further research directions.
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PART I

AIRLINE ALLIANCES AND REVENUE MANAGEMENT

19



20



CHAPTER 1. AIRLINE ALLIANCES

Introduction

The aim of this chapter is to present the reader with some notions of aitlines alliances and
codesharing, which will be useful for the understanding of the remaining chapters of this
thesis. For a detailed discussion of these concepts, the reader is referred to the more
comprehensive Chapters 1, 2 and 4 of De La Torre’s thesis (De La Torre, 1999), from which

much of the material of this chapter has been drawn.

Alliance Definition

De La Torre proposes to define an airline alliance as “any kind of agreement between
independent catriers to mutually benefit from the coordination of certain activities in the

provision of air transportation services.”

These activities may include, by increasing degree of commitment:
- Codesharing (this activity will be described in more detail below)
- Scheduling of flight arrival and departure times
- Location of arrival and departure gates
- Joint frequent flyer programs
- Share of airport lounges and other ground facilities
- Share of passenger services such as baggage handling, check-in and ticketing
- Share of support services including maintenance and catering
- Share of distribution and retailing functions
- Joint purchasing of such items as fuel, passenger-service goods and aircraft
- Joint advertising campaigns and creation of an alliance brand recognition
- Jointallocation of resources (fleet and crew planning)

- Equity investment in partner’s stock
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Codesharing

The US Department of Transportation (DOT) defines codesharing as “a common aitline
industry practice where, by mutual agreement between the cooperating carriers, at least one
of the airline designator codes used on a flight is different from that of the airline operating

that ﬂight.”z

Practically, a flight from Paris to Boston operated by Air France under the flight number AF
332 can be marketed by Delta Airlines under the flight number DL* 8202, with the asterisk
indicating that this flight is a codeshare flight operated by a different airline. In the following,
we will refer respectively to the operating carrier and the marketing carrier of a codeshare

flight.

To better understand the implications of codesharing, it is important to remind the reader of

the different options that can be offered to a customer wanting to fly from A to B:

® On a non-stop flight, the passenger flies directly from A to B.

¢ On a one-stop flight, the passenger still flies on the same aircraft from A to B, but
this aircraft stops temporarily in an intermediate city C before going to the final

destination B.

¢ On a connecting flight, the passenger has to change airplanes in the intermediate
city C before reaching his or her final destination B. In the following, we will refer to
the different flight legs of a connecting flight. In our example, the connecting flight

has two legs, from A to C and from C to B.

2 Cited in Wynne, 1998,
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Depending on the trip length and the importance of air service from A to B, an itinerary may
involve several stops or connections in different intermediate cities. However, stops and
connections increase the passenger’s total travel time, and passengers tend to prefer a non-
stop flight to a one-stop flight, and a one-stop to a connecting flight to avoid the hassle of

changing airplanes.

Furthermore, connecting flights can be refined depending on how the different flight legs of

the flight are operated and marketed:

e The different flight legs of an on-line connecting flight are operated by the same

airline.

e The different flight legs of an inter-line connecting flight are operated by different

aitlines.

e The different flight legs of a codeshare connecting flight are operated by different
aitlines, but one of the operating airlines can market all the flight legs under its own

designator code.

Inter-line connecting flights tend to be less attractive to passengers than on-line connecting
flights, because they are usually less convenient in terms of the coordination of schedule
between the flight legs, location of the terminal and gates, and do not offer a seamless
service in general. However, a codeshare connecting flight operated by two different partner
airlines is considered the same as a single aitline on-line connecting flight by the Computer
Reservation System (CRS) used by travel agents. Most CRS thus display the flights

available for a certain market in the following order:

Non-stop flights
One-stop flights

On-line and codeshare connecting flights

ol e

Inter-line connecting flights
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Codesharing thus enables what were formerly inter-line connections, which appeared for
instance only on the third screen of the CRS, to now appear on the first or second screen,
along with the on-line connections, and therefore to be much more likely to be proposed by

the travel agent to a customer.

Codesharing is the most common activity involved in airline alliances. Historically, the first
codesharing agreement was signed in 1967 between USAir (then Allegheny Airlines) and
several regional carriers, which took over service from major cities to small communities
formerly serviced by Allegheny Aitlines (Oster and Pickrell, 1988). Allegheny Airlines could
no longer operate economically on these routes with the jet aircraft it had just acquired, but
was not allowed in the then regulated US airline industry to stop providing service on these
routes, and solved the problem by signing a “replacement” codeshare agreement. However,
since then the main motivation for codesharing agreements has been the strengthening of
existing market positions and the access to new markets. The first international codesharing
agreement was signed in 1985 by Amertican Airlines and Qantas (GRA, 1994), and gave the

American carrier access to the Australian market.

A variety of codesharing agreements can be found in the industry. Following the distinction
made by Oum et al. (1996), it is useful to differentiate parallel codesharing from
complementary codesharing. Parallel codesharing refers to codesharing between two
partners operating on the same route, whereas with complementary codesharing the
partners use each other’s flights to provide connecting service to markets where they did not
operated before. These two types of codesharing agreements serve different goals, as it will

be discussed in the next section.

Motivations for Airline Alliances

Air transportation is perhaps the paradigm of a global industry, and it should not be
surprising to see a strong trend of consolidation in this particular sector in an era of
globalization. Because air transportation is a truly global service, being a large player in this

industry is more a necessity than a goal. As we will see later in this chapter, international

24



mergers and acquisitions are often constrained by law, so that the formation of global

alliances has been the most prominent sign of this consolidation.

The main economic motivation for the formation of aitline alliances is the competitive

advantage associated with market power.

First, creating an alliance enables an airline to increase its market coverage, with several

major advantages over serving new destinations on its own:

The airline is able to enter new markets without the infrastructure, marketing and
competitive costs of serving these new destinations on its own. Indeed, the airline
does not need to assign aircraft and crew to this route, ot rent airport terminal space.

It also benefits from the market knowledge and customer base of its partner.

Besides, codesharing allows a “progressive entry” into a market, and does not change
the competition equilibrium as the plain entrance of a new competitor would. The
current “hub-and-spoke” networks of major airlines act as a deterrent against
competition on one aitline’s hub to spoke markets. New entrants trying to break in
these markets are likely to face predatory prices from the incumbent aitline that will
drive them out of business quickly, while majors expose themselves to tretaliation on
their own most profitable hub to spoke routes. Codesharing allows an airline to entet

new markets while limiting these risks.

It should finally be mentioned that codesharing is sometimes the only way to get into

congested, slot-controlled airpotts like London Heathrow.

Second, creating an alliance enables an aitline to strengthen its market position in the

markets it already serves:
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e The aitline is able to increase its apparent frequency on these markets through
parallel codeshating, which in tutns tends to increase its market share non-linearly

(Simpson, Belobaba, 1982).

o Competition between the alliance partners is also dampened on these markets,
strengthening the alliance position against the other competitors. For instance, the
alliance partners are able to rationalize capacity utilization by setting a common, not
self-competing flight schedule, and to use bigger aircraft when the consolidation of

the partners’ passenger loads is important enough.

To sum up, entering an alliance enables an aitline to increase its market share both by
extending its market coverage and strengthening its existing market position, yielding

economies of scope and economies of density.

On the other hand, costs are also associated with creating an alliance. The interaction
between the cooperating carriers may involve important transactional costs. Apart from the
costs related to overcoming cultural barriers and standardizing processes, the close
coordination of certain activities, like revenue management, may require substantial
investment. Finally, an aitline also needs to weight the opportunity cost associated with

entering one alliance instead of another.

Degree of Alliance Partners Involvement

Under the broad alliance definition given in the beginning of this chapter fall a variety of
agreements that involve some of the activities mentioned above. A distinction can be made
between matketing or transactional alliances, which usually focus on codesharing
practices on a few specific routes, and strategic alliances, which involve a higher number

of coordinated services, a higher level of commitment, and a long-term view for the alliance.
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In spite of the high degree of cooperation the alliance partners may reach, a strategic alliance
remains fundamentally different from a merger in that the founding entities remain
independent. However, some alliance may involve an investment in the partnet’s equity to
tighten the link between the partners. The investment can be unidirectional when one
partner, generally the largest one, invests in the other partner, or bi-directional when both

partners exchange equity.

It should be noticed that law usually sets an upper limit on foreign investment in an aitline in
a given country. In the United States, the maximum foreign equity in a domestic cartier is set
to 25%. This is a major constraint for international mergers and the establishment of
foreign-owned airlines in a country, even if more flexible agreement can be negotiated, and
have lead to the creation of the foreign-owned 17rgin Blue airline in the Australian domestic
matrket, for instance. The legal constraints are usually less important for aitline alliances, and

it is one of the main reasons why catriers often form alliances instead of merging.

Alliance Typology: Current Alliances

The alliances can also be contrasted according to their scope and the importance of the
carriers involved. Most alliances fall in one of the categories proposed by De La Torre,
which are inspired by the categories used by the US General Accounting Office (GAO,
1995).

Global Alliances

The major global alliances have grown from the alliance of a few so-called flag catriers
from different countries. These flag carriers have both a strong domestic and international
presence, and many of them used to be government-owned in Europe and Asia. A global
alliance is seen as a means to expand each partner’s network and to create a global network,

mostly through complementary codesharing. These alliances have reached various degrees of
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integration, and all aim at creating brand name recognition for the alliance, and providing a

seamless setvice to the customer. As of January 2001, there are three major global alliances.

Star Alliance, launched in 1997, is now the largest airline alliance, formed by Air
Canada, Air New Zealand, All Nippon Airways, Ansett Australia, Austrian Airlines,
British Midland, Lauda Air, Lufthansa, Mexicana Airlines, SAS, Singapore Airlines,
Thai, Tytolean Airways, United and Varig. It currently serves 815 destinations

around the world’.

Oneworld, the launch of which was delayed until 1998 by antitrust concerns over a
partnership between Ametican Aitlines and British Airways over the Atlantic, is now
formed by Aer Lingus, American Aitlines, British Airways, Cathay Pacific, Finnait,

Iberia, LanChile and Qantas. It serves 550 destinations worldwide®.

In response to those two major alliances, Skyteam has been launched in 2000 by
AeroMexico, Air France, Delta Airlines and Kotean Air, and already offers 450

destinations in its network’.

Two other alliances may be considered as global alliances, although they differ in size and

scope from the previous ones.

KLM/Northwest is the oldest global alliance. Although its scope is more limited
than the larger alliances mentioned above, it was the first alliance to be granted
antitrust immunity by the US DOT, in 1992, and it is now probably the most

integrated one.

Qualiflyer is the alliance formed around Swissair, with Sabena, Air Portugal, Turkish
Airlines, AOM, Crossair, Air Littoral, Air Europe, Polish Aitlines, Portugalia and

3 hitp:/ /www star-alliance.com, January 2001.
4 http:/ /www.oneworld.com, January 2001.
5 http:/ /www.skyteam.com, January 2001.
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Volare Aitlines. It diffets from the previous ones in that one airline, Swissait is by far
the largest airline in this alliance (many of the other partners are partially or

completely owned by Swissair), and the scope of the alliance is mostly European.

Since 1997, global alliances have been growing relatively fast. Airlines worldwide keep
discussing the possibility of joining an alliance or switching to another one. However, the
number of “drop-outs” has been low: to date, only six aitlines have quit an alliance, out of
them five have joined another alliance’. The stability of global airline alliances is a debated

topic, and might be affected by a change in the economic conjecture in the future.

US Domestic Allrances

Alliances have also been formed at the US domestic level. They typically involve two major
domestic carriers (Northwest and Continental, for instance), who seek to complement each
other’s networks through complementary codesharing. However, the ovetlap of their
respective networks is generally greater than within international alliances, and the partners
also practice parallel codesharing on the ovetlapping markets. As it has been discussed
catlier, parallel codesharing strengthens the alliance position on ovetlapping markets, and
concerns have sometimes been raised over a possible excessive domination of the alliance on

these markets (cf. the section below on the regulation of aitline alliances).

Regional Alliances

Another type of alliance emerged following the US Airline Deregulation Act of 1978, which
drove major cartiers out of the low-density matkets where large jets could not be operated
economically. They later formed regional alliances with smaller regional commuter cartiers,

which “feed” the major carrier’s hubs through complementary codesharing. Now these

¢ Literature review, Anne Dunning, MIT, January 2001.

29



regional alliances have also developed outside the US, especially in the European Union

(EU), and are often integrated into a major global alliance.

Transactional Alliances

Most large aitlines, apart from their involvement in a global alliance, also participate in a
number of point-specific or transactional alliances. Such alliances do not require 2 high
degree of commitment from the partners, and are limited to a few routes where the partners
deem an alliance more profitable than simple intetlining. These alliances are not strategic,

and are created and dismantled accotding to the evolving needs of the partners.

Regulation of Airline Alliances

An important concern about alliances is how they affect the vitality of competition in the
codeshare markets. The economic impact of aitline alliances for the partners, the
competitors and the customers is a controversial topic that will not be discussed here. The
reader is referred to De La Totre or Pels (Pels, 2001) for more detail on this subject. In any
case, regulatory agencies in the US and, more recently, in the EU, have become interested in

overseeing the creation of aitline alliances. Below, a summary of Oum, Yu and Zhang (Oum

et al,, 2001) is provided.

Since December 1987, DOT apptoval is requited for any codesharing agreement involving a
US carrier. The DOT stated that an international alliance would not be approved unless it is
covered by a bilateral agreement or otherwise brings benefits to the US, and unless the
foreign country allowed US carriers codesharing tights in its markets. Although the DOT
has the final authority to approve or disapprove codesharing agreements, the US
Department of Justice (DOJ) reviews codesharing proposals for potential antitrust
violations. International aitline alliances cannot, by law, lead to a merger, but the DO]J

approaches codesharing agreements and the associated alliances from the same perspective
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as mergers. If it determines that a proposed alliance would cause anticompetitive effects, it

may impose conditions on it or prohibit it altogether.

Beyond the right to challenge any apptoval by the DOJ in the aitline sector, the DOT has
also the power to grant antitrust immunity in international aviation agteements. In some
cases, these immunities can be plain (Northwest/KLM alliance, 1992), and the pattners are
allowed to closely coordinate their activities and operate as if they had achieved a cross-
border merger. In other cases, antitrust laws still apply to certain routes, and the ability to
coordinate activities is testricted (United Airlines/Lufthansa alliance, 1996). Historically,
antitrust immunities have been granted by the US in exchange for open skies agreements
(with the Netherlands and Germany for the Northwest/KLM and United
Airlines/Lufthansa alliances respectively), or access to critical airports (domestic US
codesharing authority for British Airways has been granted in exchange for access privileges

to London Heathrow for United Aitlines and American Airlines).

The European Union has also recently started to review the antitrust implications of airline
alliances, first driven by anticompetitive concerns over the proposal of the alliance between
British Airways and American Aitlines in 1996, and the growing perception that the US have
used alliances and antitrust immunities to sign open skies agreements with its member states.
The European Commission (EC) typically approves alliances, but requires that the carriers
accept certain remedies designed to avoid excessive matket domination. For the alliance
between British Airways and American Airlines that gave birth to Oneworld, the partners
had to agree on such conditions as reducing their combined frequencies on their interhub
routes, and giving up slots and facilities in London Heathrow if a competing airline wanted

to but could not obtain them through the standard bidding procedure.

The novelty of the airline alliances phenomenon, the heterogeneity of the competitive

policies between regulated and deregulated countries, as well as some inconsistencies in the
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regulatory authorities’ result in the absence of a unified framework for regulating

international aitline alliances today.

Impact of Codesharing on Revenue Management — Contractual Level

With alliances, three flight types instead of one have to be handled by the CRS and the
Revenue Management (RM) systems of the aitlines: normal flights, partner-operated
codeshare flights, and aitline-operated codeshare flights. In this chapter we have desctibed
how the CRS lists codeshare flights, which is rather straightforward, even if it is not always
transparent to the customer. The ctitical problem that will be the focus of this thesis is the

impact of alliances and codesharing on revenue management.

Following the analysis of De La Torre, the problem posed by alliances to revenue
management lies at two different levels. First, at a contractual level, the partners have to
reach an agreement on seat allocation and revenue sharing on codeshare flights. Then, at the
operational level, the partners have to implement the agreement in their RM system so as to
maximize the benefits for the alliance and the partners. The operational problem will be
desctribed in the next chapter on revenue management, we will review here the most

common agreements for seat allocation and revenue sharing.

Seat Allocation Criterion

The alliance partners first have to agtee on how they allocate the seats available on 2
codeshare flight, and how the seat inventory will be controlled during the booking process.
There are two widely used types of agreement for seat allocation: block space codesharing

and free sale codesharing.

7 For instance, the European Commission approves alliances at the EU level, but open skies agreements are

reached with the individual member states.
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In block space codesharing, the aircraft cabin is virtually pattitioned in two between the
operating partner and the marketing carrier. The operating cartier keeps control of its own
part of the inventory, while the marketing partner creates a new “pseudo-flight” with a
capacity equal to the block space specified in the agreement. Because using fixed block sizes
carries the risk of leaving one partner with empty seats while the other cannot accommodate
excessive requests, the agreement usually allows the size of the block to be changed during
the booking process. The marketing cartier usually starts by asking for a small block space,
and then requests additional space as the block sells out. Depending on the agreement, this
request may be accepted automatically through a computetized inter-company
communication link, or may require the marketing carrier to call its partner and ask for

approval.

In an automated or “free sale” codesharing agreement, the operating catrier keeps
control over the whole inventory, but allows the marketing partner to directly access the
inventory by providing information about seat availability in each class. The operating
partner then automatically treats booking requests by the marketing partner according to the
availability and the details of the agreement, which may impose a quota on the number of
seats to be booked by the marketing partner. This type of agreement aims at providing a
more seamless inventory control between the partners, and has a greater potential for
optimizing the combined revenue of the alliance than block space codesharing. However, it
requires constant communication between the partners, and tends to be used only in
strategic alliances, whereas simpler block space codesharing is used in the multiple
transactional alliances that an airline is involved in. When the number of partners in a
strategic alliance becomes important, investing in a common standardized communication
link becomes critical to optimizing the alliance seat inventory control. As of this writing, the
members of the Star Alliance are planning to create a standardized protocol called StarNet to
link their heterogeneous seat inventory control systems. No alliance has yet committed to
creating a centralized seat inventory control system, because of the important investment
needed and the uncertainty over the real benefits of such a centralized system compared to a
simple interface like StarNet. Besides, reaching this degree of operations integration would
probably raise both fears of loss of independency from the partners and antitrust concerns

from the regulatory agencies.
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Revenue Sharing Criterion

The alliance partners also have to agree on how the combined revenue obtained from a
codeshare flight should be split between them. The two most common ways to share the

revenue are based either on operating costs or a proration method.

Some aitline practicing parallel codesharing on a city pair choose to share the combined
revenues generated by both aitlines on this route based on their respective operating costs.
Though aimed at maximizing the alliance revenue on this route, revenue sharing based on
costs is complicated as estimating operating costs is a difficult task, and often leads to an
inequitable disttibution of revenue. Besides, it raises the problem of allocating the revenue
generated by connecting passengers through this route, and often does not take into account

the costs associated with displaced passengers in the rest of the partners’ networks.

Most aitlines choose to use a proration method to share revenue on complementary
codeshate routes. This method logically evolved from the agreements on interlining routes,
fot which the International Air Transport Association (IATA) formed the Prorate Agency in
1950. In this type of agreement, the aitlines split the codeshare connecting ticket fare
according to set proration factors or base amounts. The type of proration may vary from

market to market within a codeshate agreement, the most frequently used are:

e Flat amount. Each partner marketing the flight pays a specific dollar amount
pet passenger to each pattner operating a leg of the codeshare flight. The amount

is specified by fare class for each codeshare flight.

o Fixed percentage of fate. Each partner marketing the flight pays a fixed

percentage of the ticket fare amount per passenger, specified by fare class.

e Proration by miles flown. Proration factors are not fixed as in the previous
method, but are proportional to the mileage flown by the passenger on the legs

operated by the partners.
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* Yield proration. Proration factors aim at reflecting the cost of displacing local
passengers supported by the operating partner on the codeshare legs. For
instance, in the PODS simulator used in this thesis, the revenue is split according

to the ratio of the local full coach (Y) fare.

Summary

This chapter has introduced the reader to the concepts of aitline alliances and codesharing.
An overview of the motivations for and regulations of alliances, and a typology of current
airline alliances were provided. Finally, the contractual implications of alliances for revenue
management were summarized. In the remaining of this thesis, we will focus on the
operational implications of airline alliances in terms of revenue management, using a

computer tool, the Passenger Origin-Destination Simulator.
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CHAPTER 2. REVENUE MANAGEMENT

Introduction

This chapter will give the teader an overview of current revenue management practices,
which is necessary to the understanding of the second part of the thesis. After introducing
the concept and elements of revenue management, we will describe briefly the RM
algorithms used in the Passenger Origin-Destination Simulator (PODS), which will be
described in the next chapter. Apart from the references that will be given for each
algorithm, additional explanations and examples of the implementation of these algotithms
in simple networks can be found in Gorin (2000), Lee, A. (1998), Wei (1997) and Williamson
(1992).

Concept and Elements of Revenue Management

After the 1978 deregulation of the US airline industry, the aitlines were allowed to compete
with each other by setting their own prices, instead of the distance-based standatd fare set by
the Civil Aeronautics Board (CAB). For the aitlines, this fare had been a clear obstacle to
competition, but it had the virtue of being set high enough to cover their operating costs. In
the deregulated environment, prices are set according to demand and supply, and it can be
the case that if only one fare were to be offered on a market, it might be too low to cover
the flight operating costs. Figure 2.1 is a simplified representation of the cost and demand
curves for a particular flight. In this market, no matter what the single fare offered by the
airline is (for this simple demand curve, the revenue-maximizing fare is $250), the tevenues
tepresented by the hatched area are smaller than the costs, represented by the shaded atea, of

carrying the number of passengers willing to pay this fare, in this case 50 passengers.
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$250
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Figure 2.1. Airline offering a single fare.

Therefore, in order to be profitable on such a route, an aitline has to offer several fares on
this market. Ideally, the airlines would like to charge each passenger a different price that
would be equal to his maximum willingness-to-pay (WTP). Practically, the airlines have
segmented the demand into different categories, and offer several fares targeted at each of
these categories. This practice is referred to as differential pricing (Belobaba, 1987). Figure
2.2 represents an ideal situation where an aitline segments the market in four categories, and
each passenger buys the fare targeted at its category. In this case, we see that the revenue is
greater than the operating costs. In reality, passengers will try to get the lowest fare that meet
their needs, therefore appropriate fences between categories need to be designed by the
airline’s marketing and pricing departments to prevent passengers from spilling to a lower
fare category. Those fences generally consist of several restrictions associated with each fare

category.
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Figure 2.2. Differential pricing.

A common way of segmenting the market is to offer a higher fare for a higher level of in-
flight services (such as wider seats, better food and fancy entertainment systems), that is, the
first class, to those passengers with a higher WTP. In addition, the airlines have found
another way to segment the market, essentially by discriminating between business
passengers and leisure passengers, while they often both sit in the same economy class.
Business travelers are not very price-sensitive, as their company usually pays for their air
tickets. They are willing - but not always happy - to pay a premium for having the possibility
of booking late, holding multiple reservations and canceling at the last moment, in order to
get the schedule that best fit their needs. On the other hand, leisure travelers usually plan
their trips in advance, do not change plans at the last minute, and are above all extremely
price-sensitive. These categories obviously do not cover the variety of air travel demand, but
discriminating between the two has proven very effective economically for the aitlines. In
this context, differential pricing consists of offering low fares to the leisure passengers, and
preventing the business travelers from buying these fares by imposing restrictions on them,

such as advance purchase, no-refundability, Saturday night stay requirement etc. This
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practice has enabled the aitlines both to increase their load factors by stimulating the
demand for low fares, and to keep yield high by charging higher fares to business passengers.
From the passenger petspective, fares for leisure trips have been decreasing steadily, and as a
result of the induced air travel growth business passengers benefit from increased

frequencies.

Of interest to us is the fact that because of the behavior of the business travelers and of the
restrictions applied to leisure fares, the highet-yield business class seats tend to be booked
later than the others. Therefote those seats need to be protected against early leisure booking
tequests, according to the forecasted demand of the different fare classes. This seat

inventory control relies on three consecutive elements, which determine its effectiveness:

¢ Demand Forecasting

e Determination of the network value of each passenger

¢ A Booking Control Mechanism

The determination of the network value of a given passenger will be described last, as it will

allow us to introduce the different revenue management algorithms used in PODS.

Forecasting

Forecasting is a complex subject that will not be desctibed extensively in this thesis. For
more details on this topic, the reader is referred to Swarek (1996) and Zickus (1998). For the
purpose of this research, however, a few notions related to forecasting need to be

introduced.

The development of hub-and-spoke networks has reinforced the inherent dichotomy of air
travel demand and supply. The air travel demand is defined on an Origin-Destination

(O-D) basis, as each passenger wants to travel from a particular point A to another point B.
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The air travel supply, on the contrary, consists of many flight legs, materialized by airplanes
flying from airport 1 to airport 2, often through another hub airport. In this chapter, we will
make a distinction between the forecasts that are performed on an O-D market basis, and
those made on a flight leg basis. From the aitline perspective, these forecasts differ

essentially on two points:

® First, most airlines have historically kept record of their past bookings on a flight leg
basis only, which cottesponds to the “operational reality” of the airline. As a result,
forecasting on an O-D basis is 2 much more difficult exercise, because these aitlines

have not had the necessary O-D historic database available.

® Second, due to the multiplicity of O-D markets served by a flight leg in hub-and-
spoke networks, the mean demand for a particular O-D market, specified by
passenger fare class and itinerary, might be a very small number, often less than
unity. As a result, the variability of this forecast will be very high compared to its
mean value. This, as we will see in the next section, can pose a problem to RM

algotithms.

Booking Control Mechanism

Once the passenger demand has been forecasted, and a network value has been attached to
each passenger on a flight (cf. below), the final step of seat inventory control is, given this
information, to manage the booking process in order to maximize revenue. Two different

methods are used in the industry: booking limits and bid prices.
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Booking Limits

The first, and still most commonly used technique to control the booking process is to
impose booking limits on the different fare classes or booking classes® offered on each leg.
The total capacity of the aitcraft being fixed, a certain number of seats are assigned to the
different fare classes (partitioned approach) or group of fare classes (nesting), according to

the forecasted demand and the network value of the passengets.

Partitioned approach

A first approach is to assign a certain number of seats to each class on a given leg. This
approach has the drawback of not being robust to variability in the demand. For example, if
more people want to book in the highest fare class than forecasted, these potential highet-
yield passengers will be spilled because not enough seats have been protected for them.
Besides, if the fare structure and forecast have been determined on an O-D basis, the
numbers forecasted for each particular O-D and class are so small that it becomes

impractical to use this approach.

l Nesting

To overcome this problem, the widely implemented Expected Marginal Seat Revenue
(EMSR) algorithm (Belobaba, 1987) uses the concept of nesting. A joint level of protection
is determined for the set of nested upper classes against the lower classes (EMSRa
algorithm), Thus, the seats assigned to a given fare class are always available for bookings in
a higher fare class, so that the higher yield passengers in the example above are not spilled.

In practice, it is effective and easier to protect the nested upper classes only against the next

lower class (EMSRb algorithm).

8 The booking classes and the fare classes may not be the same, as it will be shown when introducing the virtual

nesting concept.
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The EMSRD algorithm developed by Belobaba (Belobaba, 1992) is the following:

On a particular flight leg, there are n classes. For each class ¢, we know:
® The class fare f,
¢ The mean demand for that class d.

® The variability of the demand for that class o,

For each nest [1..c] grouping the upper classes 1 to ¢, we determine as a linear combination

of each class 1 to c:
® The nest average fare f | ,

® The nest total mean demand d (g

® The variability of the nest total demand o ;
Then, the seat protection level for the nest n ;  is set to be the number of seats x for which
the expected marginal seat revenue (EMSR) of the x™ seat in the nest is no longer greater
than the EMSR of the 1% seat booked on the next lower class. The EMSR of the i seat in a

fare class ¢ is the product of the fare class fare by the probability that this seat will be
booked.

Finally, the booking limit for each class f_ is set to be the number of seats available minus

the protection of the joint upper classes 1 to c-1.
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The algotithm can be written as follows:

Forc=1.n

Computation of the average fare and total demand for the nest [1..¢] :

fog = 2 fidy / 2 dy

k=l..c k=l..c
dpqg = Z di
k=1..c
—_— 2
0 g _\/_ 2 Ok
k=l..c

Computation of the joint protection level of classes 1 to ¢ against class ¢+1 :

R = Max,x g | {EMSR(:, > fo )
=Max, x ;4 | { Probability(x , ,are booked)* f; o >, }
=X | { Probability(x  4are booked) = f,; / £ 4}
End

Capacity = Leg capacity

For c=n..1
Computation of the booking limt for class ¢
B. = Capacity — 7y .y
Capacity = Capacity - 3,

End

For a passenger itinerary or “path” traversing several legs, the booking control is then done

on a per leg basis: a passenger will be allowed to book a seat in class ¢ only if on all the legs

traversed by the O-D path, there are seats available in this class. However, the bookings

limits on each leg can be set to take into account the total network value of a given

passenger, as we will see later in this chaptet.
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Bid-Price Approaches

Another approach to seat inventory control is to set, for each leg, a single “bid price” above

which a request for a seat on that leg will be accepted.

The booking control is then truly path based: a passenger will be able to book a seat at a

fare f is this fare is greater or equal to the sum of the bid prices on all legs traversed’.

The main advantage of this method is its simplicity compared to the booking limits method:
there is a single bid price for each leg, instead of n booking limits for each fare class or
booking class on each leg. However, this method has two drawbacks. First, it makes a
“binary” (yes or no) decision when receiving a booking request without discriminating
between fare values. The request will be accepted no matter if it is $1 or $500 above the bid
price. Second, this method does not impose a maximum booking limit or number of seats to
be sold at a given price, meaning that requests will be accepted as long as they exceed the bid

price, so the bid prices need to be updated often as bookings are accepted.

Network Value Determination - Single Aitline Case

Valuation as a Local Passenger

The simplest way of determining the value f, . of a fare class c on a leg | is to group local and
connecting passengers of this fare class in the same booking class or “bucket” (cf. Figure
2.3). In the PODS simulations performed for this thesis, the airlines will offer four fare
classes Y, B, M and Q, Y being the unrestricted full coach fare, and the others increasingly

restricted and cheaper fares.

45



Fare Class

Fare Class

Legl

Y

\\\

(OD market j)

Local Y
B

M

Q

Connecting Y
B

M

Q

B
M
Q

The mean and standard deviation of the demand for each bucket are then determined as a
linear combination of the local and connecting demand. The average fare of the bucket can

be set to be the local fare, a mileage weighted fare, or a demand weighted fare between the

Figure 2.3. Fare class grouping.

local and connecting fares of class c. In the following, we will use the latter method:

f lc (f 1 ¢ Local d | ¢ Local + f] ¢ Connccting j d 1 ¢ Connecting | )/(d 1 ¢ Local + d lc Connecting'})
J J

dlc:dchoca] + 2 dlcConnectingj
J

— / 2 2
Oc— ( O I¢Locl + 2 O ¢ Conncctingi)
j

9 Except for the HBP algorithm, for which the fare f should not be greater than the sum, but greater than the

maximurm of the heuristic bid prices of the legs traversed by a connecting itinerary.
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The simplest RM method, Fare Class Yield Management (FCYM), uses such a network
valuation method, based on a leg-based forecast, and uses the EMSRb algorithm with 4
booking (fare) classes as a booking control mechanism to compute the nested fare class
protection levels 7 |, . ;;and booking limits . on each leg 1 (cf. Figure 2.4). In this thesis, this
method will be referred to as simply “EMSRb” or “Eb.”

Local fare class ¢ fare and Fare class ¢ fare and Nested fare class
forecast for legl forecast for legl protection level and
booking limit for legl
(fchocalJdchocal-‘cchoc:l) I(flt:-1 dlc-‘clc) & &
\ (“1[1..c]:B le)
Leg-Based Fare Class
g X : » EMSRb A—»
Forecast *| Grouping

/..

Connecting OD j fare class ¢ fare and
forecast for legl

d

(flc Connecting j2 = le Cnmcningj-'o lc Connecting § )

Figure 2.4. Eb - EMSRb Fare Class Yield Management.

Connecting Valuation

The valuation method presented above has the drawback of not discriminating between a
local passenger and a connecting passenget of the same fare class, even if the latter brings
more revenue to the airline. This can lead to a “bottleneck” effect for connecting passengers
when one of the legs traversed is full due to local traffic, because FCYM does not specifically

ptOtCCt seats for connecting passengers.
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The concept of virtual nesting enables an aitline to take into account this issue, and give
preference to a connecting passenger over a local passenger. Instead of grouping the local
and connceting fares of a class ¢ in the same bucket, the fares are grouped into a larger
number of virtual buckets (8 buckets will be used in this thesis), according to their total
dollar value (cf. Figure 2.5). For instance, the value of a connecting B fare might be equal or

greater than a local Y fare, so these fares can be grouped in the same virtual bucket v1.

Fare Class - Virtual Bucket

Leg bl
\/-4 R
- o e b3

b4
b5
b6
b7
b8

Local

Connecting |
(OD market {)

O 2 W <l0OZ o

Figure 2.5, Virtual nesting.

The buckets boundaries in terms of revenue value are chosen to create buckets of roughly
similar demand, in otder to increase the method’s robustness to variations in demand. The
mean fare, total demand and standard deviation of demand of a virtual bucket are computed

by a simple linear combination, as for the simple fare class grouping previously described:
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= * x
f lv = (f 1v Local d Iv Local + 2 f 1 v Connecting j d v Connecting j )/(d 1 v Local + 2 d Iv Conncctingi)
J

i

dlv:dleocal + 2 dIvConm:ctingi
J

_ 2 2
Oi1v— \/- ( O |vlocal + 2 o vaonncctingi)
J

The number of virtual buckets used by various aitlines in the industry is generally of the
order of 10 to 40. When the number of virtual buckets is simply equal to the number of
classes, and these virtual buckets are labeled like the FCYM buckets (Y, B, M, Q), the virtual
nesting method is called fare stratification. It has the advantage of not requiring any
modifications of the CRS compated to using simple FCYM. But the booking classes
(buckets), even if labeled as Y, B, M and Q, are not the same as the fare classes Y, B, M and

Q, as the fares classes are assigned to a bucket according to the total passenger revenue.

In our PODS simulations, the RM method called Greedy Virtual Nesting (GVN) uses this
network valuation method with 8 netwotk-wide fixed buckets. It is based on a forecast
specified by leg and bucket, and uses EMSRD to calculate the booking limits for the 8
buckets on each leg (cf. Figure 2.6).
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Figure 2.6. GVN - Greedy Virtual Nesting.

Displacement 1V aluation

The previous valuation method still has the drawback of not giving the preference, on a two-
leg itinerary A-B-C for example, to two local passengers over a connecting passenger of the
same fare class, while local passengers have generally a higher yield than connecting
passengers. Indeed, when estimating the value of the connecting passenger A-B-C on leg B-

C, the method does not take into account the cost of displacing a local passenger on leg A-B

to accommodate that connecting passenger.

Evaluating displacement costs allows a network-wide, and not only leg-based optimization of
seat inventory control. The methods that take into account displacement cost, and enable

this network optimization will be called Origin-Destination Revenue Management
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methods" (O-D RM methods). However, some of them may use on a leg-based forecast

(HBP"), or a leg-based conttrol mechanism such as EMSRb (HBP, DAVN™).

The displacement cost is a single value on a leg, independent of fare classes, like the bid-
price concept introduced above. Two methods can be used to evaluate the displacement cost

on a leg: solving a deterministic Linear Program (LP) ot determining the critical EMSR

value (EMSRc).

Deterministic Linear Programming approach

One can solve the deterministic LP associated with the problem of finding the number of
seats X | to be sold on each leg 1 (1=1..m) for cach class ¢ (c=1..n) in order to maximize the
network total revenue, given the fare structure f | and the capacity on each leg. The primal

problem can be written as:

Max , (Revenue) = Max _( 2 fi.%x0.)

I=l.m,c=1..n
Subject to: {2c=1 . X1 = Leg capacity }} ., ,,

{X lc < dlc} I=1.m, c=1.n

While solving for the optimal solution x* | _ of the primal problem, on can also obtain the
optimal solution £* | of the dual problem. On each leg, the dual solution can be interpreted
as the additional revenue generated by relaxing the capacity constraint by one unit on that
leg, and is called the shadow price of the leg, SP,. It represents an estimate of the

displacement cost on that leg. It should be noted that:

10 Although it could be argued that GVN is an O-D method, as it makes a difference between local passengers
and connecting passengets.
! This method will be described later in this chapter.

12 Idem.
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e This estimate is purely deterministic and does not take into account the stochastic

natutre of the demand.

e In order to solve the deterministic LP over the network, one must have performed

an O-D forecast, disaggregated by fares and paths.

A straightforward way of using the LP solution for seat inventory control is to use the
shadow prices SP, of each leg dircctly as bid prices BP,. The deterministic Network Bid
Price (NetBP) algorithm uses this approach, accepting a request for an itinerary only if the

fare is greater than the sum of the shadow prices over the itinerary (cf. Figure 2.7).

Shadow price for local leg 1 (SP )
= Network bid price forlocal legl (BP )

OD-based Deterministic
Forecast LP

Figure 2.7. NetBT' - Deterministic Network Bid Price algorithm.

The more complex Displacement Adjusted Virtual Nesting (DAVN) algorithm, based
on GVN, uses the shadow prices as displacement costs. On each leg, the displacement costs
of the other legs traversed by a connecting itinerary are subtracted from the total connecting

itinerary fare £ counecing tO Obtain the pseudo-fare pf . connecting of the itinerary. The pseudo-
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fare of a local passenger pf, . ., is simply set to be the local fare f, _, . The pseudo-fares
are then nested into 8 leg-specific virtual buckets, and EMSRD is used as a control

mechanism for the buckets limit (cf. Figure 2.8).

Loeal fare dlass o faze gnd Virtual class v pseudo-fare and
forecast for leg 1 forecast for local legl
O taeats B 1o ot P e teii’) PLicrom = ficLoca ®f1v: 10 910)

w

|
Leg-based \ \ Virtual L

Forecast Nesting

EMSRb 7—>

Nested vittual classv
protection level and
booking limit for local leg 1

(TI lu:B lu)

OD-based Deterministic|
Forecast ,f LP

Shadow price of
traversed legi (SP;)

Connecting OD j fare class ¢
fare and forecast forlegl

(flcComci.nng d lc Conmct‘m.g}:c lc
Connecting j

Figure 2.8. DAVN - Displacement Adjusted Virtual Nesting algorithm.

LEMSRC approach

A second method to estimate the displacement cost on a given leg is to calculate the critical

EMSR value (EMSRc) on that leg, defined as the EMSR value of the last seat available on
that leg.

EMSRc = EMSR (last seat available)
= Min {EMSR (x , ,, = Leg Capacity), f .}

= Min {Probability (x , ,; = Leg capacity seats are booked) * f , ,,f }
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The EMSRc value on a leg can be interpreted as the expected revenue increase from adding

a seat on this leg. It should be noted that, contrary to the shadow prices:

The EMSRc values take into account the stochastic nature of the demand.

The EMSRc values can be computed sepatately on each leg, so that this computation

does not require an O-D forecast.

The Heuristic Bid Price (HBP) algorithm developed by Belobaba (Belobaba, 1998) uses

the EMSRc values, computed using 8 network-wide fixed buckets, to calculate bid prices

for each leg (cf. Figure 2.9):

The bid price for a local passenger BP |, ., on a leg is set to be the EMSRc value on
this leg.

The bid price for a connecting passenger BP | ¢ ccins On 2 leg | is the EMSRc value
on this leg plus the sum of the displacement costs of the local passengers on each

traversed leg 1.

The displacement cost is heuristically estimated to be, for each leg traversed i, the
EMSRc value of leg i times the product of the percent of local passengers on legs i

and 1.

Then, the heuristic bid price for a connecting path is set to be the maximum of the

bid prices Max , BP over the legs traversed by the itinerary, which means that

1 Connecting
the heuristic bid prices of the legs are not “additive”, like the shadow prices
determined by a LP optimization in NetBP and DAVN, or the protated fares of
ProBP (cf. below). This poses a problem when we try to compare these different

kinds of bid prices, as we will see in Chapter 5.
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Figure 2.9. HBP - Heuristic Bid Price algorithm.

The HBP algorithm has two main drawbacks:

e It computes the EMSRc values separately on each leg using the total itinerary fares,

which means that these values are overestimated.

e It then uses a heuristic to try to capture the network effects, which in turns requires

estimating the percent of local passengers on each leg.

Bratu (1998) developed the iterative Prorated Bid Price (ProBP) algorithm, to obtain
prorated bid prices on each leg which take into account the displacement costs more
accurately. The idea behind the ProBP algorithm is to perform an iterative network-wise

proration of the EMSRc values of each leg, until convergence is obtained (cf. Figure 2.10):
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The total fares of each O-D itinerary f | _; are used as inputs for the first EMSRc

lej

computation.

The “raw” EMSRc values EMSRc | obtained on each leg | are then prorated over all
the L, legs traversed by the O-D itinerary j.

The prorated fares of each O-D itinerary ptf | on the different legs traversed by this

lcj

itinerary are then used as inputs to recalculate the EMSRc values.

The process is iterated until some convergence criterion on the prorated fares is met.

The converged prorated fares are used as itinerary-additive bid prices BP | on each

leg.

OD j fare and forecast:

o Network bid price for

*onlocallegl (ptf ) ojinit = £,,,d0,01¢5) local leg1 (BP, )

*on traversedlegi (prf ;. init = £ ;,d;;,04) Critical EMSR for: - T

Local legl: * locallegl (EMSRc,) A

* traversed legi (EMSRc, )
OD-based EMSRe
Forecast
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/ E EMSRc, ] 15 [@T)ne <PrTi)o < 22
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Figure 2.10. ProBP - Prorated Bid Price algorithm.
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Network Value Determination — Alliance Issues

In the context of airline alliances, the determination of the network value of a passenger is
further complicated in the case of codeshare flights. In the following, we will focus on the
problem of codeshare connecting flights, which will interest us in the remainder of this

thesis.

Even in the most tightly integrated alliances, each partner performs the determination of the
network value of a passenger separately. Joint network optimization would trequire, in
addition to a complete antitrust immunity, a potentially important investment in a common
system. The question faced by the alliance partners is then, given these separate processes,
how to determine the network value of the codeshare passengers so as to achieve a balance

between:

e Optmizing one aitline’s revenue,

e Optimizing the total alliance revenue.

We will introduce here three means to achieving these objectives, which will be investigated
in the second part of the thesis: the use of different discount methods for codeshare

passengers, bid-price sharing (BPS) and bid-price inference (BPI).

Discount Methods for Codeshare Passengers

Consider a codeshare connecting flight consisting of two legs, operated tespectively by the
partner airlines B and C. To evaluate the network value of a codeshate connecting passenger

on this flight, an airline partner has several options:

e Considering only the local passenger fare on the flight leg it operates. This is a logical

evolution from the method used on intet-line connecting flights, to which we will
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refer as “local discount.” When it uses this method, the airline is mostly concerned

with optimizing its own revenue.

e Considering the total itinerary fare. This method, to which we will refer as “no
discount,” is more concerned with optimizing the total alliance revenue, as it would

be the method used by the alliance if the alliance was a single airline.

Bid-Price Sharing and Bid-Price Inference

The use of discount methods alone does not allow an aitline to take into account the
displacement costs incutred on its leg by the other partner airline. Even when using no
discount, an airline assumes that the capacity on its partner’s leg is not limited when it

assigns a value to a codeshare connecting passenger.

When the pattners use O-D RM methods which take into account displacement costs, the
ideal way for an aitline to take into account the displacement costs on the partner-operated
legs, and thus to maximize the alliance revenue, would be to have access to its partner’s
heuristic bid prices (HBP), shadow prices (DAVN) or prorated fares (ProBP). We will

»

generally refer to this practice as “bid-price sharing,” including when the partners use

DAVN, for which the use of this term is not proper.

However, this practice is probably a few years ahead from what alliances can achieve today,
for both practical and legal reasons, as a complete antitrust immunity might be required.
Therefore, we will also investigate in this thesis the possibility of sharing information
between the partners at a lower level, for example by infetring the displacement cost of
codeshate connecting passengers from the CRS fare class availability information on the
partner’s leg. We will refer to this practice as “bid-price inference,” even when the alliance

partners use DAVN.
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Summary

This chapter has presented the teader with the objective and the three steps of the revenue
management process. The algorithms that will be used in PODS were briefly described, and
the revenue management issues raised in the context of aitline alliances were stressed, which

will be addressed in the second part of this thesis.
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PARTII

PODS INVESTIGATION OF AIRLINE ALLIANCES
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CHAPTER 3. THE PASSENGER ORIGIN-DESTINATION SIMULATOR

Introduction

In this chapter, we present a brief desctiption of the tool that will be used to investigate the
issues of revenue management for airline alliances presented in Chapter 1 and Chapter 2, the
Passenger Origin-Destination Simulatot (PODS). Eatly versions of the simulator have been
extensively described by Wilson (1995) and Swatek (1996), and updated and summarized
explanations on the PODS architecture can be found in Lee, A. (1998) and Gorin (2000).
Next, we will define the alliance simulation framework that we will use in this thesis. We will
first review the PODS parameters that will remain set for the rest of the discussion, and
those that will be investigated in the next chapters. Then, we will describe a reference
simulation that will be used both to introduce the main characteristics of the alliance in

PODS network D, and as a baseline case for further studies.

The PODS Simulator

The PODS simulator was originally developed at the Boeing Company by Hopperstad,
Berge and Filipowski, as an evolution of the Boeing Decision Window Model (DWM,
Boeing 1993). The PODS reseatch consortium was subsequently formed between MIT and
several American and European aitlines, which putpose is to use the simulator as an
investigation tool for studying the impact of RM systems in competitive aitline markets (cf.

for example Belobaba et al, 1997).

Unlike some earlier RM simulators like MITSIM (Williamson, 1992 and Mak, 1992), PODS
incotporates a full passenger decision model based on the Bocing DWM, so that the
passengers are able to choose between competing aitlines, paths and fares in a variety of
origin-destination markets, according to parameters that will be summarized in this chapter.
PODS also features various forecasting and RM algorithms, and is currently the most

comprehensive RM simulator, to our knowledge.
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The PODS Process and Architecture

PODS simulates a competitive air transpottation network, currently set to look like a
domestic US market between 42 major cities that would be served by two ot three hubbing
aitlines'. More precisely, it simulates the actions and interactions of passengers and aitlines
during the booking petiod for a single day of departure. The booking petiod extends over 16
successive time frames, the first time frame beginning 63 days before departure and the last
ending on the departure day. After the simulation is over, it is possible to analyze the results

of the aitlines, which can use various RM methods.

To this end, PODS runs an iterative process, petforming multiple trials for the same
departure day. This allows the aitlines to progressively build the historical database they need
to operate the forecasting component of their RM systems: manually initialized numbers in
the database are progressively replaced by the “real” passenger demand generated by the
simulator. To be more precise, each PODS case or simulation currently consists of 5
independent trials, each composed of 600 successive (and thus correlated) samples. The
initial 200 samples of each trial are discarded to eliminate the initial conditions effects, and

the results from the 5 trials are averaged to give stable and statistically significant results'.

The PODS atchitecture consists of five elements, which are linked as shown in Figure 3.1.

13 'The network used in this thesis will be described mote extensively later in this chapter.

14 On the determination of the number of samples necessaty, the reader is referred to Lee, A. (1998).
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Figure 3.1. The PODS Architecture (courtesy of Hopperstad).

In the passenger choice model, a passenger population is generated by embedded
stochastic processes aiming at capturing passenger group behavior. The passengers are
evenly split between the business and leisure categories, and want to fly to different cities
according to the heuristic input attractiveness of each city pair. The simulator then assigns

specific characteristics to each individual passenget:

® The time before departure at which the various passengers will book and might
decide to cancel their flight, as well as the probability of the passengers actually
showing up at the airport ate set according to heuristic curves that aim at

reproducing the patterns obsetved in the industry.

® Each passenger is assigned a favorite aitline, the airline which he/she will call first,
and a decision window, consisting of the earliest departure time and latest artival

time that he/she is willing to accept for his/her trip. The decision window is set
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according to time-of-the-day empirical demand curves, the duration of each flight

and the schedule tolerance of each passenget type.

The maximum “out-of-the-pocket” price a passenger is willing to pay (WTIP) for

his/her flight is determined according to empirical price elasticity curves.

In addition, generalized costs are associated to such disutilities as having a Saturday
night stay testtiction, not flying on his/her favorite airline, having a connection
instead of flying non-stop, replanning the flight etc. according to a study conducted

by Lee, S®.

Then, given the aitlines schedule and fares, which are fixed and have been set to reflect the

current US hub-and-spoke network environment with input from actual airlines, each

passenger tries to book a flight that:

Has a fare value smaller than his/her WTP,

Fits in his/her decision window (as mentioned above, generalized costs are

associated with replanning),

Minimizes the total cost, that is the flight fare plus the generalized disutility costs

associated to the flight.

The aitlines accept ot reject the passengers’ booking requests, according to the Revenue

Management / Seat Inventory Control system they use, and to the demand Forecast,

which is petformed using the Historical Booking Database. It should be noted that, in

151 ee, S., Standard Disutility Values, PODS v. 8 Technical Specifications, Appendix II, September 2000.
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addition to the various RM algorithms desctibed in Chapter 2, PODS allows the testing of

several forecasting and detruncation'® methods.

If a passenger does not obtain his/her first choice flight, the following can happen, taking

aitline A’s point of view:

Airline A Airline B

Path1 |

|
|

| I

: Vertical I

1 Recapture :

! 1

1 1

: Sell-up :

I 1

1 1

, Path 2 y Lathl :_; Class B
: Class B Horigontal Class B : Horizontal

: Recapture ! Spill-in

Figure 3.2. Passenger choice.

® Sell-up occurs when a passenger ends up flying in a higher class than he/she initially

requested.

* Recapture occurs when a passenger flies on a path different from the path he/she

initially requested, but stays on an alliance’s flight. If recapture is combined with sell-

!¢ Detruncation consists of estimating the total demand for a historical flight that was full, had that flight not

being full. This operation is essential to produce an accurate forecast of unconstrained demand for future
flights.
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up, we will speak of vertical recapture, if not, we will speak of horizontal

recapture.

Spill-in occurs when a passenger flies on an alliance flight, after having been denied
a booking request on a competing aitline, aitline B in this case. If spill-in is combined
with sell-up, we will speak of vertical spill-in, if not, we will speak of horizontal

spill-in.

If neither competitor offers him/het an acceptable alternative, a passenger might

eventually decide not to fly (no-go).

Simulation Input Parameters

In order to run a PODS simulation, one must specify a value for a number of different

parameters including those mentioned above. For the purpose of this thesis, we will

essentially consider the following parameters:

The Demand Factor (DF) is a parameter scaling linearly the level of demand
generated by the simulator. It can be tuned to obtain different aitline average load
factors", and should usually be in the range of 0.8 to 1.1 to reflect the load factors

actually observed in the industry.

The Joint Image (JI) of the partners in a two-partner alliance is a parameter
reflecting the customers’ perception of the flights offered by the alliance aitlines on
codeshare markets. In every codeshare market, the alliance operates three flights a
day, but each of these flights is marketed as two separate itineraries by the two
alliance partners'. If JI is set to 1, the customers will perceive these two itineraries as

being the same flight, considering the alliance as a single aitline. For instance, if the

17 The definition of the average load factor will be given later in this chapter.

18 'The reader is referred to the section “Alliance in Network D” below for additional explanations.
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alliance is competing against only one other aitline, the probability of a passenger
contacting either alliance aitline first is 50%, the same as the probability of a
passenger contacting the competing aitline first. If JI is set to 2, the customers will
petceive the two codeshare itineraries as two distinct flights, considering the alliance
partners as two different carriers. The probability of a passenger contacting any of
the three airlines first remains 33% in this case, yielding a 66% chance for the alliance
to be contacted first. The implications of the alliance joint image will be discussed in

a dedicated section of Chapter 4.

Several parameters control the use of the different RM methods by the airlines.
Here, the different aitlines will use one of the “standard” RM methods described in
Chapter 2: EMSRb, HBP, DAVN and PtoBP. The results obtained by the airlines
with these RM methods will be presented in Chapter 4.

The Discount Method used by each of the two alliance partners to evaluate
codeshare passengers can be set independently, but in the simulations presented in
this thesis the discount method will be the same for both partners. Besides, the same
discount method will be used for both the netwotk optimization step and the
decision fares of a partner. We will test the two discount methods introduced in

Chapter 2: Local Discount, and No Discount.

The use of Bid-Price Sharing (BPS) or Bid-Price Inference (BPI) between the
alliance partners can be turned on or off. The actual implementation of BPS and BPI

in PODS will be described in Chapter 5.

In certain simulations, we will make a passenger’s first choice his/her only
choice, meaning that a passenger will not fly if its first choice is not available. This
setting contrasts with the standard full choice setting described above, where a
passenger will consider the alternate fares/itinerary/airlines that can meet its needs, if

his/her first choice is not available. This will enable us to separate the “pure” effects
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of using advanced RM methods from the more complex phenomenon involved in

the passenger choice process.

Simulation Outputs

The PODS simulator generates several output files, which contain both vety detailed and
summarized results of the simulation. In this study, we will essentially focus on the following

outputs:

e The number of passengers carried by the different airlines, which can be detailed
by type (local, connecting, codeshare etc.), by choice (first choice, sell-up etc.), by

markets or by legs.

e The total number of Revenue Passenger Miles (RPM) flown by each aitline,
which is the most useful metric on which to base each aitline’s market share. The
number of RPMs of a given flight is the number of passenger carried on the airplane

times the distance flown in miles.

e The Average Load Factor (ALF) of each aitline, which is the ratio of the total
number of RPMs flown by the aitline over the total number of Available Seat Miles
(ASMs) it offers. The number of ASMs of a given flight is the seat capacity of the

airplane times the distance flown in miles.

e The percent of local passengets (as opposed to connecting passengers) carried by

each airline over its network.

e ‘The yield of each airline, which is the average revenue per RPM, or the average fare
paid by the passengers per mile flown (Total tevenue = average yield * total number

of RPMs).
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e The total revenue of each aitline, which can be detailed by passenger choice (first

choice, sell-up etc.).

Alliance in Network D

The network that we will use to is a derivative of PODS network D, which had been
designed to investigate the competition between two compatably sized carriers in a
hypothetical US domestic market. In network D, airline A was operating from a notthern
hub, similar to Minneapolis/Saint Paul (MSP), while airline B was operating from a southern
hub, similar to Dallas/Fort Worth (DFW). Both airlines served the same markets, linking
each one of twenty cities in the West of the US to each one of twenty cities in the East
through their respective hubs. Both aitlines offered three unidirectional trips on the
departure day, and thus organized three connecting banks (or “waves”) at their respective
hubs in the morning, at noon and in the evening. As a result, network D consisted of 482

markets, 252 flight legs, and 2892 possible paths.

A third airline is introduced in this network by splitting one of the two existing airlines. The
identity of the airline to be split is the first alliance parameter that has to be set in PODS. In
this study, the former aitline B has been split into two alliance partners, aitline B and aitline
C, which operate from the same DFW hub. The second parameter to be set is the
geographical layout of the alliance, which can be either East/West or North/South. For the
remaining of this thesis, the latter option has been chosen: the new airline B setves twenty
cities in the North of the US, on both West and East coasts from the southern hub, while
aitline C serves the remaining twenty southern cities. This choice allows the alliance partners
to offer on-line connects, from northwestern cities to northeastern cities for airline B, from
southwestern cities to southeastern cities for aitline C, and thus allows us to test the impact
of O-D RM algorithms for B and C. In addition, the alliance partners can serve the
remaining markets (Northwest to Southeast, Southwest to Northeast) only by offering
codeshare flights. For instance, a passenger wishing to fly from Seattle (SEA) to Miami

(MIA) has the choice between flying on three “paths”:
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- A from SEA to MSP, then A from MSP to MIA
- B from SEA to DFW, then B*(operated by C) from DFW to MIA
- C* (operated by B) from SEA to DFW, then C from DFW to MIA

As a result, even if the number of flight legs operated by the aitlines is unchanged, the total

number of paths offered to customers increases to 3552.

At this point, it should be noted that the alliance is not symmetrical. Because aitline B serves
northern cities from a southern hub, its flights are longer-haul on average than those of

airline C, which serves southern cities from the same hub.

The last parameter to be set is the identity of the aitline operating the interhub flights for the
alliance, between DFW and MSP. In order to increase the aforementioned asymmetry
between the alliance partners, airline B has been chosen to operate these extra flights. The

resulting network is depicted in Figure 3.3.

e

Airine B
Autline C

Figure 3.3. Alliance in network D.
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As a result of these settings, the alliance partners are not “equal”, and have distinct

characteristics, a situation often found in current airline alliances.

Characteristics of the Alliance - Baseline Case, JI=1

Parameters

We will use the following set of parameters to define the baseline case:

o The demand factor is set to 1.0.

® The joint image of the alliance partners is set to 1, which means that, in codeshare
markets, customers perceive the two codeshare flights offered by the alliance as only
one flight, and have a 50% chance of contacting either alliance partner first (and a

50% chance of contacting the other competitor).

e The alliance partners use the local discount method to value their codeshare paths

and their partner’s codeshare paths.

As mentioned in Chapter 1, for all simulations the alliance revenue split agreement is based
on the ratio of the local full coach (Y) fares between the two legs of a codeshare flight.
Therefore each alliance partner will pay for the codeshare flights it marketed a certain

amount per passenger to the other partner, according to this ratio.

It should be noted that this simulation differs from ptevious alliance investigations using
PODS (Lee, S., 2000), which did not take into account disutility costs, used a fixed fare

structure®’, and performed a 20-trial simulation.

19 The fares of the different classes on a given market were simply multiples of a base fare (Y: 4, B: 2, M: 1.5,
Q: 1), as opposed to the “realistic,” industry-based fares used here.
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We will now desctibe the asymmetry between the two alliance partners, and then contrast

the characteristics of the alliance to those of Airline A. The airlines” characteristics are

summarized in Figure 3.4%.

2 airlines: am
RPM (pax.mi)
ALF (points)
Netwosk Local (%)
Yield (cents)

Net Revenue ()
Total Pax

{Market Share (pomts)

50.78

4922 5078 0
10248762 10573023 0 10573023
83.54 82.99 c 89
5244 55.07 0. 5507
1368 1295 0 12.95
1401737 1369643 0 1369643
7118 7251 0 7251

L Taane
ASM (seat.mi)
ASM (%)

Alliance:

RPM (pax.mi)

ALF (pbints)
Network Local (%)
Yield (cens)
Net Revenue )]
Total pax
Codeshare pax ’
Codeshare pax (%)

Matket Share (points)

T~

A \
12267966 | 7956273 4783257 12739530
49.06 31.82 19.13 50.94
4920 3089 1991 150.80
10252623 6436486 4149366 10585852
83.57 80.9 86.75 83.09
5248 3789 5174 5493
1367 0 1Sz 1517 0 1295
1401932 754295 616683 1370978
7122 3767 3488 7255
- 86 81 1631
0.00 21.65 23.38 2248

Figure 3.4. Airlines results, DF=1.0, Eb vs. Eb/Eb, JI=1, Local Discount.

The reader will notice that the characteristics of airline A and of the alliance as a whole are

not exactly identical whether thete are two or three aitlines in the network. Indeed, with a

joint image equal to 1, the alliance partners treat the same number of passenger requests as if

they were a single aitline, but they treat those tequests according to separate optimization

processes. As a result, the alliance as a whole catries a slightly different number of

passengers, and the characteristics of the different aitlines are affected. However, these

2 In this thesis, we will refer to the RM systems used by the different aitlines with the following convention:
Eb vs. ProBP/DAVN means that aicline A uses EMSRDb, airline B uses ProBP, and airline C uses DAVN.
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differences are smaller than 0.1%, which is close to the limit of statistical significance

allowed by performing a simulation with 5 trials.

Airline B vs, Airline C

From Figure 3.4, we see that, compared to aitline C, aitline B:

Offers more ASMs, because as mentioned above it operates longer-haul flights,

and the interhub flights.

Carries a higher percent of local passengers. Indeed, aitline B own-connecting
flights are less attractive compared to those of aitline A for the northern cities, and
airline C for the southern cities, because of theit more citcuitous routing from/to

northern cities through the southern hub.

Has a lower average load factor. This is the result of aitline B carrying relatively
fewer connecting passengers, who occupy a seat on two legs, and more local

passengers, who occupy a seat only on one leg.

Carries more passengets, because it operates the interhub flights. Other simulations
have been performed which show that conversely, if airline C operates these

interhub flights, it carries more passengers than aitline B

Flies more RPMs, because of the longer-haul flights it operates, and the higher

number of passengers it carries.

Has a lower yield. The fact that it carries more local passengers than aitline C
(57.9% vs. 51.7%) would suggest that airline B should have a higher yield, because

local passengers tend to pay a higher fare per mile flown than connecting passengers

2t Cf. Appendix.
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of the same fare class. However, this difference is offset by the much longer-haul
flights operated by aitline B: it offers 31.8% of the total network ASMs compared to
19.1% for airline C, while they both operate airplanes with the same capacity on an
equal number of routes (except for the inter-hub flights, but other simulations show
than the number of ASMs associated with these flights is small®). Those flights yield
less revenue per passenger mile that the shorter-haul flights, as fares increase less

than linearly with distance. As a result, the average yield of airline B is lower.

e Gets higher revenue. Indeed, the higher number of RPMs flown by aitline B offsets

its lower average yield.
Conversely, compared to airline B, aitline C:
o Offers fewer ASMs, as it operates shorter-haul flights.
e Carries a lower percent of local passengers. Indeed, airline C own-connecting
flights are more attractive compared to those of airline B because of the short

routing from/to southern cities through the southern hub.

e Has a higher average load factor, because of its lower network percent of local

passengers.

e Carries fewer passengers, as it does not operate the interhub flights.

e Flies fewer RPMs, due to its shorter-haul flights, and the lower number of

passengers it carries.

e Has a higher yield, as its shorter-haul flights offset its lower network percent of

local passengers.

2 Cf. Appendix.
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® Gets lower revenue, because its lower number of RPMs offsets its higher yield.

Implications for Codeshare Passengers

Because of its lower ALF, aitline B has mote room to accommodate codeshate passengers
without displacing its own-connecting and local passengers. Besides, the proportion of
distance flown on codeshare routes is higher for aitline B than airline C, and so is the
revenue allocated on these routes. Indeed, the revenue split is based on the ratio of local Y
fares, which are higher for airline B because it operates the longer-haul leg of the codeshate
flights. Overall, aitline C always pays more to airline B on the codeshare flights marketed by
C ($88,561 in this case), than aitline B pays to aitline C on the codeshare flights marketed by
B ($75,650 in this case). Therefore, codeshare passengers ate much more desirable for

airline B than for airline C.

However, because the alliance partners use the same discount method for their own
codeshare and their partner's codeshare paths, the availability is the same for two codeshare
paths on the same market. Therefore, the two partners statistically carry the same
number of codeshare passengers, as the decision made by a partner airline on whether
accepting or not a codeshare booking request is the same for its own codeshare path and the

partner’s codeshare path.

Alliance vs. Airline A

The differences between airline A and the alliance ate relatively less important than those
between the alliance partners, and tend to evolve depending on the use of different RM
methods. The characteristics of aitline A compared to the alliance that usually remain true

beyond this baseline case are:

® Its slightly lower number of ASMs, and shorter-haul flights.
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e Its usually lower RPM market share, due to the lower number of ASMs it offers.

e Its higher yield, as it operates shorter-haul flights.

Mote important to us is the fact that the codeshare routes of the alliance are competitive
compared to those of airline A in terms of distance and schedule. A computation
shows that the alliance codeshare flights arc only 79 miles (4.0%) and 9 minutes (2.4%)
longer on average than the equivalent connecting flights on airline A. As a result, the market
share on these markets is 51.1% for aitline A, and 49.9% for the alliance with JI=1. The
balanced competitive situation on these matkets provides us with a good baseline case to

investigate the impact of RM and discount methods on codeshare traffic.

Summary

This section has briefly introduced the reader to the structure and simulation process of
PODS. The main input parameters that will be tested, and the outputs on which we will base
our analysis were described. The PODS framework for airline alliances was presented, and
the results from a baseline simulation wete discussed. In the next chapters, we will build on

these results to investigate current and potential future RM practices in aitline alliances.
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CHAPTER 4. REVENUE MANAGEMENT IN AIRLINE ALLIANCES: CURRENT
PRACTICE

Introduction

In this chapter, we will use PODS to study several current industry practices in revenue
management in airline alliances. We will focus primarily on two topics: the customer
perception of codeshare flights as it is modeled in PODS, and the petformance of O-D RM

methods in the alliance context.

The widespread industry practice of codesharing raises the issue of the customer perception
of codeshare flights. In PODS, this perception is modeled by a parameter called the alliance
joint image. In this chapter, we will first assess the sensitivity of the alliance results overall
and in codeshare markets to this parameter, when the alliance partners use EMSRb. Later in
the chapter, we will also determine whether the joint image parameter has an impact on the

relative performance of the O-D RM methods used by the alliance partners.

Next, we will investigate the interaction between the RM systems used by the alliance
partners. The relative performance of various combinations of O-D RM methods will be
assessed when local discount is used for codeshare passengers. The impact of the discount
method will then be discussed by contrasting those results with those obtained using total

fares as decision fares on codeshare paths.

The Impact of the Joint Image Parameter in PODS

As mentioned in Chapter 3, the alliance joint image parameter in PODS reflects the
customers’ perception of the codeshare flights offered by the alliance. In the PODS model,

the passengers will have either a 50% chance (JI=1) or a 66% chance (JI=2) to contact either
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alliance aitline first in codeshare markets. The other markets are not affected by the joint

image parameter, as they are served by aitline A and only one of the alliance partners.

It is clear that, with the very simple joint image model used in PODS, the alliance benefits

from each of its codeshate flights being petrceived as two distinct itineraries, which is the

case when the joint image parameter is set to JI=2. In the “real world” however, passengers’

first choice is influenced by many other parameters:

One major factor in passengers’ preference — especially business passengers - is the
frequency of service offered by an airline on a market. In many markets, one
competitor’s market share tends to increase non-linearly with its frequency share,
typically following an S-curve (Simpson, Belobaba, 1982). This reflects the
importance for time—sensitive travelers of finding a flight that fit their schedule, as
well as having the possibility of taking another flight if they miss their initial flight. It
is one of the main reasons why it is extremely difficult for an aitline to enter a market
where a competitor already offers a large number of flights per day, such as the

spoke markets served from a major carriet’s hub.

Another increasingly important factor is the passenger’s membership in a frequent
flyer program. These programs are designed to retain the frequent-flying, and
therefore most valuable customers of an aitline, by allowing passengers to earn
“miles” on their flights, which can be redeemed later in various ways, from seat class
upgrades to free flights on the same aitline. The rewards increase non-linearly with
the number of miles owned by the passenger, and have proven extremely effective in
making “captive” the “elite” (i.e. with a large stock of miles) members of these
programs, who bring the most revenue to the airline. The concept has grown beyond
the airline’s boundaries, with the creation of joint frequent flyers programs between
different carriers, especially in the context of alliances, and the involvement of other
stakeholders of the tourism industry, credit card companies, car rental companies,

hotels etc.
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e Finally, the overall aitline image cleatly influences one passenger’s first choice. The
image is built on the brand name recognition created by advertisement, the
passenget’s previous experiences of flying with that aitline, his/her possible

knowledge of the airline’s quality of service, safety recotd etc.

In PODS, these complex aspects cannot be currently investigated, as the competitors offer
the same frequency on all markets (three flights a day), and are equally likely to be one

passenger’s favorite airline.

However, the simple PODS joint image parameter allows us to quantify the impact of a
strategy common to most alliances, which consists of promoting an alliance brand name,
while keeping the individual partners’ separate identities and brands. In this context, it is
unclear whether the passengers perceive the different codeshare flights offered by an
alliance, which are usually advertised separately and appear as distinct flights on the CRS

screen of a travel agent, as different alternatives ot not.

In the two-partner alliance simulated in PODS, this suggests that the joint image parameter
of the partners in codeshare markets should be set between JI=1 and JI=2. In this section,
we will test the sensitivity of the alliance results to the joint image parameter, overall and in

codeshare market, by comparing the JI=1 and JI=2 cases, everything else staying the same.

Baseline Case, J[I=2

In order to have a first point of comparison, we introduce a new baseline case, with the same
parameter settings as the baseline case presented in Chapter 3, except for joint image, now

set to JI=2. The results from this simulation are summarized in Figure 4.1.
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Airlines results, DF=10, Eb vs. Eb/Eb, JI=2, Local Discount:

m

Matket Share (points) 48.07 31.59 20.34 51.93
REM (pa mi) 10022623 686832 | 4240729 | 10827561
ALF (points) 817 82.79 88.66 8499
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Yield (shangs in cents) 019 om0 | 017
Net Revenue (change in %) 361 358 36l | 359
Total pax (change in %) s 158 102 128
Codeshare pax (change in %) 0 17.21 17.25 17.23

Figure 4.1. Airlines results, DF=1.0, Eb vs. Eb/Eb, JI=2, Local Discount.
Comparison with JI=1.

Comparing these results with those of the baseline case with JI=1, we notice that, when the

alliance joint image is switched to JI=2:

e The number of codeshare passengers catried by the alliance increases. As
expected, setting JI=2 gives the alliance a marketing advantage over aitline A. The
probability of one passenger contacting the alliance first on these markets increases
relatively by 32% (from 0.5 to 0.66), and the number of codeshare passenger carried
by the alliance by 17%. The difference between these two numbers can be explained
by the fact that, as the capacity of the alliance flights legs stays the same, the high
average load factor prevents the alliance from accommodating all the new codeshare

passengers.

e The total number of passengers carried by the alliance increases, but we notice

that this number increases far less than the number of codeshare passengers. This
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means that many non-codeshare passengers have been spilled by the alliance, to

accommodate codeshare passengers.

The decrease in the percent of local passengers carried by the alliance
cottoborates the former statement: some local passengers have been spilled to

accommodate codeshare passengers, who bring more total revenue to the airline.

The alliance average load factor increases, because of the greater number of

passengers it accommodates with the same flight capacities.

The RPM market share of the alliance increases, because it now carries a greater
numbet of passengers on a longer average stage length, as the percent of local

passenger it carries has decreased.

The alliance yield increases, which means that the decrease in the percent of
shorter-haul, higher-yield local passengers catried by the alliance is somehow offset
by a change in the fare class mix. Figure 4.2 represents the change in the alliance
passenger mix between JI=1 and JI=2, by class and type. It shows that the new
codeshare passengers catried by the alliance are mainly Y class, while many own-
connecting and local passengers displaced ate Q class. Overall, we see that the
alliance carries less Q class, and more M, B and especially Y class passengers. At this
demand factor, this change in passenger mix tends to increase the alliance average

yield.
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Figure 4.2. Changes in alliance passenger mix, JI=2 compared to JI=1.

e As a result of its greater RPM market share and higher yield, the alliance revenue

increases. At this level of demand (DF=1.0), the increase is 3.6%.

Ouwerall Impact at Different Demand Factors

We are now going to see if the trends presented above are robust to a variation in the level
of demand. Figures 4.3 to 4.8 represent the difference in the airlines results with JI=2
compated to JI=1, when the demand factor ranges from DF=0.8 to DF=1.1, and the

network load factors range accordingly from 70.7% to 86.9%.
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Figure 4.3. Changes in alliance results, JI=2 compared to JI=1.
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Figure 4.4. Changes in alliance results, JI=2 compared to JI=1.
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Figure 4.5. Changes in alliance results, JI=2 compared to JI=1.
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Figure 4.6. Changes in alliance results, JI=2 compared to JI=1.
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Figure 4.8. Changes in alliance results, JI=2 compared to JI=1.
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At low demand factors, the alliance ALF is lower, so that the alliance has more room to
accommodate extra codeshare passengers. Therefore, at lower demand factors, the alliance
ALF and RPM market share increase more, while the percent of local passengers decreases
more. But for the same reason, the difference in alliance average yield between JI=2 and
JI=1 becomes positive only at relatively high demand factors. Only then, demand is
sufficiently high for the alliance to compensate the loss of higher-yield local passengers by
spilling Q class passengers (cf. DF=1.0, above). On the contrary, when demand is low, the
alliance is not able to “improve” its passenger mix enough, and its average yield decreases.

Figure 4.9 shows the change in the alliance passenger mix at DF=0.8:
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Figure 4.9. Changes in alliance passenger mix, JI=2 compared to JI=1, DF=0.8.

We still notice an “improvement” in the passenger fare class mix, as the alliance gains more
Y passengers than B, M or Q. But it is far less dramatic than the improvement shown in

Figure 4.2, and Figure 4.7 shows that the alliance yield actually decreases at this demand

factor.
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However, Figure 4.8 shows that the decrease of alliance yield at low demand factors is
offset by the inctease in the number of RPMs, so that the revenue gains of the alliance with
JI=2 compared to JI=1 are actually higher at a low demand factor. Overall, because of this
balancing effect, the alliance revenue increase under JI=2 is quite stable through the demand

factor range investigated, around 4%.

Impact on Selected Codeshare Markets

The results presented above describe the effect of the joint image parameter on the alliance’s
overall results, over the whole network. However, we know that joint image affects only
codeshare markets, so we will now focus on these markets. As the previous results show that
the level of demand influences the effect of joint image, we will study two different

codeshare markets in the PODS network:

® A relatively low demand market, from Helena, MT to New Otleans, LA (8.8

passengers carried per day by all airlines),

e A relatively high demand market, from Los Angeles, CA to New York, NY (20.4

passengers carried per day by all aitlines).

Figures 4.10 to 4.12 show the effect of joint image on the alliance results on the low

demand market.
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LA

Figure 4.10. A low demand market (Helena, MT —New Orleans, LA).
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Figure 4.11. Changes in market share, JI=2 compared to JI=1.
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Figure 4.12. Changes in passenger mix, JI=2 compared to JI=1.

Because the alliance offers a shorter itinerary than aitline A (cf. Figure 4.10), its market
share with JI=1 is greater than the matket share of airline A in the Helena-New Orleans
market. Indeed, the shorter an itinerary is, the greater the chances are that it fits in one
passenger’s decision window”. When JI=2, the market is close to an even split between the
three aitlines (cf. Figure 4.11): as the demand on this market is low, the alliance is able to
accommodate most of the new passengers who choose to call them first. Figure 4.12 shows
that the alliance accepts these new passengers in all fare classes, more in Q class than in Y

class.

In a higher demand market, the situation is different (Figures 4.13 to 4.15):

2 Cf. Chapter 3, on the PODS passenger’s decision window model.
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Figure 4.13. A high demand market (Los Angeles, CA —New York, NY).
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Figure 4.14. Changes in market share, JI=2 compared to JI=1.
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Figure 4.15. Changes in passenger mix, JI=2 compared to JI=1.

When JI=1, aitline A has a market share edge over the alliance (cf. Figure 4.14), as it offers a
slightly shorter itinerary (cf. Figure 4.13), even if the difference is not as obvious as in the
Helena-New Orleans market. When JI=2, the market is still close to a 50/50 split between
airline A and the alliance. As the level of demand is high in this market, the load factors are
high on the two flight legs, and the alliance cannot accommodate all the new potential
codeshare passengers. However, Figure 4.15 shows that the alliance accepts new high-class
passengers, overwhelmingly from Y class, who previously flew on aitline A, and dumps its

previous Q class codeshare passengers on its competitor.

Figure 4.16 summarizes the results in terms of passengers carried and market share in these

two markets:
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Passengers, JI=1

Passengers, JI=2 3.04 2.86 2.86
Passengers difference -1.11 0.56 0.53
Market Share, J[I=1 (%) 4727 26.20 26.54
Market Share, JI=2 (%) 3470 32.65 32.65
Market Share difference (points) | -12.56 6.45 6.11

Passengers, JI=1

10.73 4.76 488 9.64
Passengers, [I=2 9.67 534 545 10.79
Passengers difference -1.06 0.58 0.57 1.15
Market Share, TI=1 (%) 52.68 2337 2396 4732
Market Share, JI=2 (%) 47.26 26.10 26.64 52.74
Market Share difference (paints) | -5.41 2.73 2.68 541

Figure 4.16. Summary, JI=2 compared to JI=1.

From these investigations, it appears that:

Setting the alliance joint image to JI=2 increases the alliance market share, and thus the

alliance leverage when the alliance partners implement O-D RM methods. Therefore, we will
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13%, depending on the level of demand of that market.

The joint image parameter in PODS has a significant impact on the alliance results.
Over the whole network, the alliance can expect a revenue gain in the order of 4%

with JI=2 compatred to JI=1, for a demand factor ranging from DF=0.8 to DF=1.1.

The gains are higher when the overall level of demand is low, and in low-demand
codeshare markets. When demand is high, the alliance cannot accommodate all new
codeshare passengers, but is able to increase yield by improving its passenger fare

mix. In network D, the market shatre gains in a codeshare market can vary from 5 to




primarily use this setting, assuming that the passengers perceive codeshare itineraries as
distinct alternatives, when investigating the impact of O-D RM methods, as their effect will
be “magnified.” However, when we need to compare the alliance results with the results of
the alliance as a single aitline B (cf. Chapter 3), especially in Chaptet 5, we will have to use a

JI=1 setting.

Interaction of the RM Systems of the Alliance Partners

Airline alliances often involve airline partners with different RM systems. Some airlines have
large Operations Research departments, which develop in-house advanced RM systems.
Others aitlines buy off-the-shelf RM systems from companies like Pros® or Sabre®. Finally,
many smaller airlines do not use RM at all. It is important to understand how the RM
systems of the different partners interact to determine the relative revenue gains of the
partners in the alliance, and of the alliance as a whole. In this section, we will try to answer

the following questions:

e  What is the impact of one or both alliance partners investing in an O-D RM system

on the revenue of its partner and on the alliance as a whole?

¢ How do the individual characteristics of each partner (ALF, short-haul vs. long-haul

etc.) condition the performance of different RM systems?

e What is the effect of using different discount methods for inter-partner codeshare

passengers on the performance of the different RM systems?

® Does our assumption concerning the alliance joint image in PODS (JI=1 or JI=2)

impact the performance of different RM systems?

We will first study in detail different combinations of RM methods used by the alliance at
JI=2, with local discount of the codeshare passengers. Then, we will compare these results to

those obtained using no discount, and with an alliance joint image of JI=1.
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Study with Local Discount of Codeshare Paths, [I=2

Fort this study, we will use as a baseline case the simulation with DF=1.0, all aitlines using
EMSRb, JI=2, and local discount for decision fares on codeshare paths. We will compate to
this case the results of simulations where one or both alliance partners use HBP, DAVN, or
ProBP, while airline A still uses EMSRb.

HBP Study, Local Discount

The HBP algotithm uses 8 network-wide virtual buckets,? where fare classes are grouped
according to their total itinerary value, to calculate bid prices on each leg. The bid prices for
connecting itineraries take into account the displacement costs on the legs traversed using a

heuristic described in Chapter 3. Therefore, compated to local paths:

¢ At low ALF, own-connecting paths are given preference, according to their total

itinerary value,

e At high ALF, own-connecting paths ate given a lower preference, because of the

displacement cost incurred.

However, because of the use of local discount, the codeshare paths are treated as local paths,
and are nested without taking into account the total itinerary fare. Thetefore, in the bucket
structure used by HBP, codeshare passengers are nested lower than own-connecting
passengers, and the EMSRc bid prices on each leg ate reduced. Own-connecting paths are
then controlled by HBP bid prices, which include displacement cost, whereas codeshare
paths are effectively controlled only by the reduced EMSRc value on each leg. As a result,
with local discount, the bid prices for codeshare paths tend to be low compared to own-

connecting paths

2 Cf. Chapter 2.
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The airlines’ total revenue and average yield when one or both alliance partners use HBP are
presented in Figure 4.17 and 4.18. On the top of each figure, the different combinations of
RM methods used by the alliance partners are represented using the convention defined in

Chapter 3, omitting the method used by airline A, which is EMSRD in all cases.
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Figure 4.17. Revenue differences in percent, HBP compared to EMSRb,
DF=1.0, JI=2, Local Discount.
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Figure 4.18. Yield differences in cents, HBP compared to EMSRb, DF=1.0,
JI=2, Local Discount.

H

We see that the use of HBP by any alliance partner translates into a net revenue loss for the
alliance compared to using EMSRb. This result is unexpected, as previous PODS studies
show that HBP performs consistently better than EMSRb®. The analysis of the changes in

passenger mix and passenger choice will help us to explain these results.

Case 1: Eb vs. HBP/EDb (Figures 4.19 and 4.20

25 Cf. for instance Belobaba, 1998,
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Figure 4.19. Change in airline B passenger mix, HBP/Eb vs. Eb.
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Figure 4.20. Change in airline C passenger mix, HBP/Eb vs. Eb.
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Figure 4.19 shows that, as expected when using HBP, aitline B carries more own-
connecting passengers, because of its relatively low ALF, but it also carries more codeshare
passengers, because of the use of local discount. The increase in own-connecting and
codeshare passengers, who are mostly Q class, displaces a significant number of local
passengers, essentially in the M class. As a result of this change in fare class mix, and the
decrease in the number of local passengers, aitline B average yield goes down. However,
with the overall increase in the number of passengers airline B carries, who moreover are
mostly connecting passengers, its number of RPMs is way up, and the revenue sharing on
codeshare paths is favorable to airline B, so airline B sees a slight increase in revenue

(0.23%).

On the other hand, aitline C does not disctiminate between local, connecting and codeshare
passengers as it uses Eb. Therefore, airline C spills both local and own-connecting
passengers, mostly M class, to accommodate the extra codeshare passengers, who are mostly
Q class. As a result, aitline C’s yield goes down, while the number of passengers it carries
barely increases. Besides, the tevenue split agreement on codeshare passengers is unfavorable

to airline C, so airline C loses revenue (-0.55%). Overall, the alliance loses revenue (-0.12%)).

Case 2: Eb vs. Eb-HBP (Figures 4.21 and 4.22)
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Figure 4.21. Change in airline B passenger mix, Eb/HBP vs. Eb.
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Figure 4.22. Change in airline C passenger mix, Eb/HBP vs. Eb.
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Because of its higher ALF, airline C with HBP chokes off its own-connecting passengers,
mostly in Q and M class, in favor of codeshare and local Q class passengets, who do not
incur displacement costs. Overall, aitline C carties fewer passengers, and the revenue split
agreement for the additional codeshate passengers it carties is not favorable, but aitline C
yield goes up because of the increased percentage of local passengers. The two effects

balance quite exactly, and airline C revenue stays the same.

The situation of airline B is very similar to the situation of aitline C in the previous case (Eb
vs. HBP/EDb). However, its revenue losses (-0.32%) are somehow limited by the favorable
revenue split agreement on the new codeshare passengers. As a whole, the alliance loses

revenue (-0.17%).

Case 3: Eb vs. HBP/HBP (Figures 4.23 and 4.24
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Figure 4.23. Change in airline B passenger mix, HBP/HBP wvs. Eb.
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Figure 4.24. Change in airline C passenger mix, HBP /HBP wvs. Eb.

In this case, we see a combination of the worst effects of the two previous cases, with the
largest increase in the number of codeshare passengers. Airline B still carries more own-
connecting passengers, but they are mostly Q class, as the new codeshare passengers are, and
both displace a large number of local M passengers. Therefore, airline B’s RPMs go up but
its yield goes down, and overall B loses revenue (-0.07%). Airline C is in the same situation
as when it was the only partner using HBP, except that its results are worsened by the higher
number of codeshare passengers it carries, so that aitline C loses revenue (-0.33%). Overall

the alliance loses more revenue than in the previous cases (-0.19%).

Another way to analyze the situation is to look at the changes in the number of passengers
carried by the alliance, categorized according to their first choice. Indeed, a passenger flying
in a given class on a given path on one of the alliance’s partners’ flights might have initally
requested a different fare class, on a different path, on a different airline. Studying the
evolution of the number of passengers carried by first choice allows us to see the impact of

the RM methods on the decision made by the aitline of accepting or not accepting a booking
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request. Figure 4.25 recalls the different passenger choice categoties that we will use in the

alliance context:

Alliance Airline A
R
: Path1l 1
1 Class Y,
: Vertical |
I Recapture \
I
| :
I
| Sell-up !
! |
I 1
I
: Path 2 . Path 1 :f Class B
, Class B Horigontal Class B : Horigontal
: Recapture ! Spill-in
1

Figure 4.25. Passenger choice in the alliance context.

The remaining possibility for a passenger is simply to get his/her first choice. We will not

look at the passengers deciding not to fly (no-go) here.
Figure 4.26 shows the differences in the passengers cartied by the alliance by class and

choice, when both alliance partners use HBP, compared to the case where all airlines use

EMSRbD.
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Figure 4.26. Change in alliance passenger choice, HBP/HBP vs. Eb.

We see that when the alliance uses HBP, it refuses first choice requests from passengers in
Y, B and M classes, which correspond to the local and connecting passengers displaced to
accommodate the new codeshare passengers, who are mostly Q class. The increase in Q
codeshare passengers comes both from an increase in first choice requests accepted by the

alliance and horizontal spill-in from the competing airline A.

DAVN Study, Local Discount

The DAVN algorithm uses 8 leg-specific virtual buckets,” where fare classes are grouped
according to the total itinerary values, taking into account the displacement costs for own-

connecting passengers. Therefore, as it was the case with HBP, compated to local paths,

2% Cf. Chapter 2.
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own-connecting paths are given a higher preference at low ALF, and a lower preference at

higher ALF.

Because of the use of local discount, the codeshare paths are treated as local paths, and are
nested without taking into account the total itinerary fare. However, because own-
connecting paths are nested according to their pseudo-fares (taking into account the
displacement costs), they are not systematically nested higher than codeshate paths. In
DAVN, the booking limits for both codeshare and own-connecting paths ate then set
directly according to this nesting”, so that the codeshare paths are probably only slightly
undet-protected on average. Thetefore, compared to HBP, one would expect to see a
reduced flow of codeshare passengers with DAVN, which is likely to be closer to the

tevenue-maximizing number for the alliance partnets.

The airlines’ total revenue and average yield when one or both alliance partners use DAVN

are presented in Figure 4.27 and 4.28:

77 In HBP the bid prices for connecting paths are differentiated from the bid prices for local (and codeshate)
paths using a heuristic, gffer the leg bid prices have been computed using fixed virtual buckets. In DAVN, the
total itinerary fares and displacement costs are taken into account before the nesting into leg-specific buckets (cf.

Chapter 2).
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Figure 4.27. Revenue differences in percent, DAVN compared to EMSRb,
DF=1.0, JI=2, Local Discount.

DAVN/Eb DAVN/DAVN Eb/DAVN
0.5 T T T
.l A oo
ol [ B
B Aliance
0.2+ : y

01+ . I -
 — - .-__m oy
~0.1 }- " i y 3 of

~0.2 Y E— =

-0.5 | Il I

Figure 4.28. Yield differences in cents, DAVN compared to EMSRD,
DF=1.0, JI=2, Local Discount.
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We see that, with the use of DAVN by one or both alliance partners, the alliance as a whole
and the alliance partners see an increase in revenue. However, the two partners do not
benefit equally from using DAVN: aitline B sees the greatest increase in revenue whenever it

uses DAVN,

Case 1: Eb vs. DAVN/EDb (Figures 4.29 and 4.30
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Figure 4.29. Change in zitline B passenger mix, DAVN/Eb vs. Eb.
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Figure 4.30. Change in airline C passenger mix, DAVN/Eb vs. Eb.

Using DAVN allows aitline B to increase the number of its own-connecting passengers
(essentially in Q class), while decreasing the number of local M and Q class and codeshare Q
class passengers, because of the particular nesting of own-connecting passengers mentioned
above. Overall, the revenue of airline B increases by 0.78%. The reduced number of
codeshare passengers in turn benefits airline C, which revenue increases by 0.20%. Overall,

the total alliance revenue increases by 0.52%.

Case 2: Eb vs. Eb/DAVN (Figures 4.31 and 4.32)
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Figure 4.31. Change in airline B passenger mix, Eb/DAVN wvs. Eb.
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Figure 4.32, Change in airline C passenger mix, Eb/DAVN wvs. Eb.
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As when it was using HBP, aitline C reduces the number of its own-connecting passengers
(mostly Q and M class) when it uses DAVN, due to its high ALF. But the number of
codeshare passengers does not increase as much as with HBP, because of the
aforementioned specificities of DAVN nesting. The increase in aitline C’s yield offsets the
decrease in the number of passengers it carries, and airline C’s revenue increases by 0.48%.
Because of its lower ALF and the revenue sharing agreement, airline B benefits of the
increase in the number of codeshare passengers, and sees a revenue increase of 0.30%. As a

whole, the alliance revenue increases by 0.38%.

Case 3: Eb vs. DAVN/DAVN (Figures 4.33 and 4.34
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Figure 4.33. Change in airline B passenger mix, DAVN/DAVN vs. Eb.
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Figure 4.34. Change in airline C passenger mix, DAVIN/DAVN vs. Eb.

When both alliance partners use DAVN, there is a combination of the good impacts of
DAVN seen in the previous two cases. Airline B benefits from an increased number of
connecting passengers as well as a few extra codeshare passengers. Airline C limits its own-
connecting passengers, while the increase in codeshare passengers is small enough to allow
airline C to carry more local passengers. Overall, the revenue increases by 0.92% for airline

B, 0.61% for airline C and 0.78% for the alliance.

Looking at the changes in the number of passengers by choice (Figure 4.35), we see that the
alliance denies some first-choice Q and M booking requests, and accepts more B and Y first-
choice requests, showing that DAVN performs as expected in this alliance situation. The
loss of first-choice QQ bookings is offset by an increase in spill-in from aitline A in the same

class, which mostly consists of connecting passengers.

112



Bl Total
Bl First Choice
A Sel-Up

[[Z7] H. Recapture
[] V. Recapture
B H. Spil

. V.oSpil

Evolution (pax)

V.spil i
H.Spil o
V. Recapture ke ] _ i -
H. Recapture - ., ~""a
Sel-Up ,4./-”/' M
FirstChoice ™~~~ B
e
Total Y

Passenger class

Figure 4.35. Change in alliance passenger choice, DAVN/DAVN wvs. Eb.

ProBP Study, Local Discount

With ProBP, as it was the case with HBP and DAVN, own-connecting paths are given a
higher preference at low ALF compared to local paths, and a lower preference at higher
ALF. Because of the use of local discount, the codeshare paths are treated as local paths, and
are nested without taking into account the total itinerary fare. Therefore, in the bucket
structure used to compute the initial EMSRc values on each leg, codeshare passengers are
nested lower than own-connecting passengers, and the initial EMSRc bid prices on each leg
are reduced. However, because the fares of own connecting paths are then prorated while
the fares of codeshare paths are not, the converged bid prices are finally over-valuated,

making the bid prices for own-connecting paths particularly high.

The airlines’ total revenue and average yield when one or both alliance partners use ProBP

are presented in Figure 4.36 and 4.37:
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Figure 4.36. Revenue differences in percent, ProBP compared to EMSRb,
DF=1.0, JI=2, Local Discount.
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Figure 4.37. Yield differences in cents, ProBP compared to EMSRb,
DF=1.0, JI=2, Local Discount.
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We see that ProBP with local discount does not perform as well as DAVN for the alliance.
The maximum revenue gains achieved by the partners and the alliance as a whole are smaller
than those observed when one or both alliance partners use DAVN. Besides, the use of

ProBP by aitline B alone has a negative revenue impact on airline C.

Case 1: Eb vs. ProBP/Eb (Figure 4.38 and 4.39
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Figure 4.38. Change in airline B passenger mix, ProBP/Eb vs. Eb.
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Figure 4.39. Change in airline C passenger mix, ProBP/Eb vs. Eb.

For airline B, the main difference between this case and the Eb vs. DAVN/EDb case is the
much smaller increase in the number of own-connecting passengers, while the number of
codeshare and local passengers still decreases. As a result, airline B carries fewer passengers
without increasing significantly its yield, and its revenue gain is smaller (0.70%). This seems
to confirm that treating codeshare passengers as local passengers distorts the ProBP bid
prices, making the bid prices for own-connecting passengers artificially high. The slight
decrease in aitline C’s revenue (-0.21%) is due to a degradation of its passenger fare class
mix, as local and own-connecting Q class passengers replace M class passengers. As a whole,

the alliance revenue increases only by 0.29%.

Case 2: Eb vs. Eb/ProBP (Figures 4.40 and 4.41
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Figure 4.40. Change in airline B passenger mix, Eb/ProBP vs. Eb.
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Figure 4.41. Change in airline C passenger mix, Eb/ProBP wvs. Eb.

117




The use of ProBP by aitline C leads to a large decrease in airline C’s number of own-
connecting passengets, again confirming a distortion of the own-connecting bid prices. The
important increase in airline’s C yield, due to the many Q class connecting passengers it
spills, barely offsets the large decrease in the number of passengers it carries, and aitline C’s
revenue increases by only 0.09%. Airline B benefits from an increase in the number of
codeshare passengers carried by the alliance, and sees a 0.12% revenue gain. Overall, the

alliance revenue increases by only 0.11%.

Case 3: Eb vs. ProBP/ProBP (Figures 4.42 and 4.43
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Figure 4.42. Change in airline B passenger mix, ProBP/ProBP vs. Eb.
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Figure 4.43. Change in airline C passenger mix, ProBP /ProBP wvs. Eb.

In this case, the total number of passengers carried by each alliance partner decreases. Airline
B sees only a very small increase in the number of its own-connecting passengers, but a
significant increase in the number of codeshare passengers, so that overall its revenue gains
(0.90%) are higher than in the Eb vs. ProBP/EDb case. Aitline C’s situation is very similar to
the Eb vs. Eb/ProBP case, and its revenue increases by 0.19%. Overall, the alliance revenue

increase is 0.58%.

Figure 4.44 shows that the loss of many first-choice QQ class connecting passengers is not
offset by the horizontal recapture between the partners, and the increase in Q class

codeshare spill-in from aitline A.
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Figure 4.44. Change in alliance passenger choice, ProBP /ProBP wvs. Eb.

Impact of the Disconnt Method on the Performance of RM Systems in the Alliance

[ Local Discount - Summary

Figure 4.45 summarizes the performance of the different combinations of RM systems

tested, with local discount of codeshare passengers:
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Ebvs.HBP/Eb | 014 023 -0.55 012
Eb vs. HBP/HBP | 025 -007 -033 019
Ebvs. Eb/HBP | 019 -032 0  -017
Eb vs. DAVN/Eb 037 078 02 @ 052
Eb vs. DAVN/DAVN| -057 092 061 078
Eb vs. Eb/DAVN 028 03 048 0.8
Eb vs. ProBP/Eb 2038 07 021 029
Eb vs. ProBP/ProBP | -063 09 019  0.58
Eb vs. Eb/ProBP 018 012 009 0.1

Figure 4.45. Interaction of the RM methods used by the alliance partners.
Revenue gains in percent over the baseline case (Eb vs. Eb/Eb), DF=1.0,
JI=2, Local Discount.

® The use of local discount for codeshare paths with HBP makes the bid prices for
these paths excessively low. As a result, the alliance partners carry many codeshare
passengers, who displace higher-revenue passengers, and the alliance revenue

decreases compared to the EMSRb case.

e The use of local discount for codeshare paths with ProBP makes bid prices
excessively high, especially for own-connecting passengers, and leads to a

deteriorated performance for ProBP.

® DAVN is more robust to the use of local discount for codeshare paths, as it nests

own-connecting paths according to their pseudo fares.
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No Discount J

Using the total itinerary fare as the decision fare for codeshare paths gives these paths a
higher value compared to using the local discount method. As a result, both alliance partnets

carry more codeshare passengers when they use total fates as decision fares, as shown in

Figure 4.46:

Local |Totalpax | 7373 7319 | 7212

Codeshare pax 2055 1951 1991
Codeshare pax (%) 27.87 26.65 27.61
None Total pax o) 7368 ) 7316 | 7263
Codeshare pax 2107 2060 2130
Codeshare pax () 28.59 28.17 29.33

Figure 4.46. Effect of the discount method on the number of codeshare
passengers carried by the alliance, DF=10, JI=2.

Figures 4.47 to 4.50 show the alliance revenue gains when both alliance pattners use HBP,

DAVN and ProBP, with and without local discount:
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Figure 4.47. Revenue differences in percent, HBP compared to EMSRb,
DF=1.0, JI=2, Local Discount vs. No Discount.
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Figure 4.48. Revenue differences in percent, DAVN compared to EMSRb,
DF=1.0, JI=2, Local Discount vs. No Discount.
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Figure 4.49. Revenue differences in percent, ProBP compared to EMSRb,
DF=1.0, JI=2, Local Discount vs. No Discount.

Eb vs. HBP/Eb 068 |
Eb vs. HBP/HBP -0.33 076 -025] 030
Eb vs. Eb/HBP 017 025 010 | 0.8
Ebv.DAVN/Eb | -0.47 079 027 | 056 |
Eb vs. DAVN/DAVN| -0.84 129 029 | 084
Eb vs. Eb/DAVN 046 074 027 | 053
Eb vs. ProBP/Eb 019 039 -059 | -0.05
Eb vs. ProBP/ProBP | 072 1.06 -018 | 0.50
Eb vs. Eb/ProBP 038 053 -002| 028

Figure 4.50. Interaction of the RM methods used by the alliance partners.
Revenue gains in percent over the baseline case (Eb vs. Eb/Eb), DF=1.0,
JI=2, No Discount.
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® The use of total fares for decision fares on codeshare paths improves the results of
HBP, as it increases the bid prices of codeshare paths, which were excessively low

with local discount.

® DAVN is less sensitive to the discount method used, because of the specificities of
its nesting. With total fares, the codeshare paths are slightly over-protected, and the
alliance carries more codeshare passengers. Therefore airline B, for which codeshare
passengers are desirable, benefits from the use of total fares, whereas aitline C
suffers. Overall, using total fares instead of local fares with DAVN merely increases
the asymmetry between the alliance partners, and is close to a zero-sum game, as the
revenue gains of the alliance as a whole are not significantly different from those

obtained when using local discount.

® With total fares for decision fares on codeshare paths, ProBP performs worse than
with local discount, because the bid ptices are further distorted. Indeed, the
codeshare paths, which are not prorated, ate now nested according to their total

fares, thus further increasing the converged prorated bid prices.

It appears than none of the two discount methods proposed for codeshare paths gives

satisfactory results, especially for bid-price methods.

Impact of Alliance Joint Image on the Performance of RM Systems in the Alliance

The performances of the different combinations of alliance RM systems at JI=1 are

presented in Figure 4.51:
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Ebvs.HBP/Eb | 014 | 02 .05 | -012
Ebvs.HBP/HBP | 02 | 008 -025 -016
Eb vs. Eb/HBP 011 -025 005 | -0.12
Eb vs. DAVN/Eb 028 07 | 011 | 043
Eb vs. DAVN/DAVN| -048 078 057 | 0.69
Ebvs. Eb/DAVN  |-026 025 051 | 037
Eb vs. ProBP/Eb 029 069 -0.32 | 023
Eb vs. ProBP/ProBP | -061 083 035 0.1
Eb vs. Eb/ProBP 028 01 035 021

Figure 4.51. Interaction of the RM methods used by the alliance partners.
Revenue gains in percent over the baseline case (Eb vs. Eb/Eb), DF=1.0,
JI=1, Local Discount.

If we compare this table with the results obtained at JI=2 (Figure 4.45), we do not see great
differences in the relative performance of the O-D RM methods compared to EMSRDb (the
baseline case in Figure 4.51 is also at JI=1). A closer look reveals that in most cases, aitline
B performs usually slightly wotse, and aitline C slightly better with JI=1. This trend is
consistent with the fact that at JI=1, the alliance leverage on codeshare passengers is smallet,
thus limiting the asymmetry between the revenue gains of airline B and aitline C. But the

difference is barely significant.

Interactions of the RM Systems of the Alliance Partners - Summary

From the study of the interaction of alliance RM systems, we can draw the following

conclusions:
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The use of DAVN or ProBP by one or both alliance partners results in revenue gains
for the alliance. At DF=1.0, the revenue gains are higher with DAVN (order of 0.7%
to 0.9% with both partners using DAVN) than with ProBP (order of 0.6% with both
partners using ProBP), which bid prices are distorted by the use of a discount
method for codeshare paths. On the contrary, HBP petforms wotse than EMSRb in
most of the cases studied (order of —0.1% to —0.6% with both partners using HBP),

due mostly to its ineffective control of discounted codeshare passengers.

The revenue gains are not evenly shared between the alliance partners. Airline B
typically gains more revenue than aitline C, in both absolute and relative terms. In
some cases, aitline B is the main benefactor of aitline C investing in an O-D RM
method (Eb vs. Eb/ProBP, DF=1.0, JI=2, No Discount). In other cases, airline B’s
switching to an O-D RM system results in a revenue loss for aitline C, because of the
increased number of codeshare passengets cattied by the alliance (Eb vs. HBP/Eb,
DF=1.0, JI=2, Local Discount) or changes in airline C passenger fare class mix (Eb
vs. ProBP/Eb, DF=1.0, JI=2, Local Discount).

The individual characteristics of the alliance aitlines condition the effect of using an

O-D RM method:

- Airline B, which has a relatively low ALF, tends to increase the number of own-
connecting passengers it catries. Airline C, which has a relatively high ALF, tends

to decrease the number of own-connecting passengers it carries.

- Because of the differences in the partner’s ALF and the revenue sharing
agreement, codeshare passengers are much more beneficial to airline B than to

aitline C.

127



e Our assumption concerning joint image has been shown to affect the alliance market
shares in codeshare markets, but it does not affect significantly the relative

petformance of O-D RM systems compared to EMSRb.

e Using total fares for decision fares instead of local discount on codeshare paths leads
to an increase in the number of codeshare passengers carried by the alliance, and
reinforces the asymmetry between aitline B and aitline C results. However, it does
not lead to a significant improvement of the alliance total revenue compared to using
local discount, as the losses of aitline C compensate the gains of airline B. Indeed,
codeshare paths are still misevaluated as the alliance airlines do not have information

on the displacement costs incurred by a codeshare passenger on their partnet’s leg.

Summary

In this chapter, cutrent alliance RM practices were investigated. The impact of the joint
image parameter in PODS was quantified. The importance of the interactions between
different RM systems in the alliance was shown. The evaluation of codeshare paths was
identified as a critical issue with current RM practices, whether the alliance partners use local
fares or total fares as decision fatres. In the next chapter, we will test two methods that
estimate the displacement costs on the partner’s legs, so as to correctly evaluate codeshare

paths.
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CHAPTER 5. BID-PRICE SHARING AND BID-PRICE INFERENCE

Introduction

In Chapter 4, the evaluation of codeshate paths was shown to be a major issue in alliance
tevenue management. Depending on the load factor and the RM method used by the
alliance partners, the local fare and total fare discount methods can lead to either an
underestimation or an overestimation of the value of codeshare paths on a leg, compared to
local and on-line connecting paths. This incortect evaluation results in deteriorated
petformance of O-D revenue management methods, especially bid-price algorithms (ProBP,
HBP), which appear to be more sensitive to the accuracy of codeshare path value than

DAVN.

In order to evaluate accurately the codeshare paths and optimize total alliance revenue, each
alliance airline needs to estimate the displacement costs caused by codeshare passengers on
the other partner’s leg. In this chapter, we assess two methods for achieving this objective.
The first one, bid-price sharing, assumes that the alliance aitlines have direct access to their
partner’s displacement costs. In the second, bid-price inference, the alliance airlines use their

partnet’s fare class availability information to estimate their displacement costs.

Bid-Price Sharing

Bid-Price Sharing in PODS

When the alliance uses Bid-Price Sharing (BPS, defined in Chapter 2) in PODS, each alliance
airline makes available to its partner information about the network displacement cost on its

own legs, depending on the RM system it uses:
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e For DAVN, the displacement cost is the shadow price of each leg, which results

from solving the deterministic LP over the airlin€’s network®.

e For ProBP, the displacement cost is the converged value of the bid price on each leg,
which results from the iterative proration of the critical EMSR value of each leg over

the airline network.

e For HBP, the displacement cost is related to the critical EMSR value on each leg.

Each aitline then incorporates this information into its bid prices/pseudo-fares for
controlling codeshare itineraries. This assumes that each aitline uses an O-D RM method,
and uses the total fare values, which now include the displacement costs on the partnet’s

leg, for codeshare paths.

However, the optimization processes of the alliance partners (LP solving for DAVN,
EMSRc computation for HBP and ProBP) remain separate. Therefore, the combined RM
systems of the partners are not equivalent to a single aitline’s RM system. In this section, we
will compare the alliance results with BPS to those the alliance would obtain if it were a

single airline using the same O-D RM method.

So as to reduce the information flow between the alliance aitlines”, and avoid potentially
unstable feedback effects™, the information is exchanged only at the beginning of each time
frame, i.c. 16 times during the booking process. Therefore, the alliance partners do not have
perfectly up to date information on each other’s displacement costs, resulting in potential lag

effects.

2 The reader is referred to Chapter 2 of this thesis for a description of the RM methods mentioned in this
chapter.

» A real-time exchange of bid prices would be difficult to implement. Also, for some RM methods such as
DAVN in PODS, the displacement costs are te-calculated only at each time frame.

30 With bid-price sharing, each airline using an O-D method modifies its bid-prices/pseudo fares depending on
its partner’s displacement costs. The partner in turn modifies its own bid-prices/pseudo fares, and this process

could lead to instability if a positive feedback loop were created.
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The bid-price sharing scheme in PODS is outlined in Figure 5.1:
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Figure 5.1, Bid Price Sharing in PODS.
HBP and Bid-Price Scaling

Because HBP bid prices are computed using a heuristic constant (cf. Chapter 2), they are not
directly comparable with ProBP protated fares and DAVN shadow prices, which are based
on a genuine network optimization. Therefore, when one partner uses HBP and the other

DAVN or ProBP, the HBP bid prices need to be processed before being used by the

network optimizing partner, and vice-versa.

The simplest solution to this problem, conceived by Hopperstad as part of this research,
consists of scaling all HBP bid prices by a constant, in order to make them commensurable

to network-optimized bid prices. The partner using HBP computes this constant, HBPSCL,
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as the average ratio of its own path’s HBP bid prices HBP, over the sum of the local EMSRc
bid prices of each leg BP, traversed by the path p:

npaths HBP,
nlegs
p=l ) A, -BR
HBPSCL = =
npaths

Where A, = 1 if leg /is traversed by path p, = 0 otherwise.

The partner using HBP can then scale down the bid prices he passes to his network-
optimizing partner (by multiplying them by HBPSCL) and scale up the bid prices he receives
(by dividing them by HBPSCL).

Figure 5.2 gives an example of the procedure, for a two-path, four-leg network:

Heuristic Bid Prices Approximation of Network

Additive Bid Prices

Path 1, HBP = 100+0.25%100=$125 Path 1, BP = 72+72=§144
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Path 2, HBP = 300+0.25%100=$325 Path 2, BP = 72+216=$288
HBPSCL
= (125/200 + 325/400)/2
=072

Figure 5.2. Bid Price Scaling.
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As we see, scaling has the drawback of reducing the variability of the bid prices: after scaling,
the difference between the bid ptices of path 1 and path 2 is smaller ($144) than before
($200). This can lead to inconsistencies in estimating the availability of each fare class before
and after scaling. For instance, for path 1, a fare class with a fare of $130 would be labeled
available by HBP but labeled unavailable using the sum of the scaled bid prices. On path 2,
a fare of $300 would be labeled unavailable by HBP and labeled available with the sum of
the scaled bid prices.

To limit availability labeling errors, one could choose to use more sophisticated methods
than scaling all bid prices by the same constant, like solving a linear least squates problem
over the network. However, these methods would be computationally intensive, especially in
large airline networks. Besides, preliminary testing proved that the total mislabeling rates
obtained with simple bid-price scaling stayed in reasonable ranges, from 4% to 6% in
network D at DF=1.0. In this chapter, we will use the simple bid-price scaling method for

HBP when needed, and evaluate its performance.

Bid-Price Sharing, Alliance Partners Using the Same RM Method

We will first assess the performance of bid-price sharing when both partners use the same
RM method. In order to compare the results obtained with and without BPS to those the

alliance would obtain if it were a single aitline, this study will be conducted at JI=1.

HBP

Figure 5.3 compares the revenue gains of the alliance partners using HBP, with and without

BPS, to the results of the alliance as a single aitline using HBP.
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Figure 5.3. Revenue differences in percent, alliance using HBP compared to EMSRb,
DF=1.0, JI=1.

We see that the use of BPS leads to a significant improvement of the alliance results. From a
0.16% revenue loss when the alliance used HBP with local discount, compared to using
EMSRD, the alliance revenue increases by 0.83% when the alliance uses HBP with BPS. The
revenue improvement is actually greater than if the alliance were a single aitline using HBP
(0.68%), which is an unexpected result as the alliance partners still optimize their networks

separately.

To separate the effects of passenger choice from the impact of network optimization, similar
simulations were performed, making a passenget’s choice his/her only choice (cf. Chapter
3). With this particular simulation setting, a passenger will not consider alternative fares,
itineraries or aitlines if his/her first choice is not available. As a result, fewer passengers
decide to fly than when full passenger choice is enabled, for a same level of demand. Because
the average load factor influences the performance of RM methods, the simulations with
first choice as the only choice were performed at a demand factor of DF=1.2, to obtain load

factors comparable to those observed at DF=1.0 with full passenger choice. The baseline
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cases at DF=1.2, with first choice as the only choice, are presented in Figure 5.4 for the

two-airline and the alliance environments:

Zairlines:| . | u i A \ jance
Madcet Shate (ponts) | 49.27 507 0 30.73
RPM (pax.mi) 10309308 10615946 0 10615946
ALF (points) 84.03 8333 0 83.33
Netwodk Lacal (%) 34.67 . 5785 D 3783
Yield (cents) 434 L. 1383 0 1383
Net Revenue (§) 1499405 1468600 0 1468600

Alliance: arameter v
Market Share (points) 49.3 30.56 20.14 50.7
RPM (pax mi) 10318490 6397279 | 4214578 10611857
ALF (points) 84.11 80.41 88.11 83.3
Netwotk Local (%) 54.61 617 53.56 5776
Yield (cents) 1453 1238 1614 13.87
Net Revenue ($) 1499088 805092 . 666729 1471821

Figure 5.4. Airlines results, First choice only choice, DF=1.2,
Eb vs. Eb/Eb, JI=1, Local Discount.

It should be noted that, even if the ALFs in these simulations are comparable to those
observed with full choice at DF=1.0 (cf. Figure 3.4), other important aitline mettics are
significantly different. For instance, the average yield is substantially higher at this higher
demand factor. Therefore, the results of these simulations, which reflect the “pure” effects
of the network optimization process independently from passenger choice effects such as
spill-in, sell-up and recapture (cf. Chapter 3), cannot be directly compared to the full choice
results at DF=1.0. However, we can compare the performance of BPS relatively to the local
discount and single airline cases, with full choice or first choice. The revenue gains of the

alliance over the baseline Eb vs. Eb/Eb case are shown in Figure 5.5:
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Figure 5.5. Alliance revenue differences in percent, full choice compared to first choice,
alliance using HBP compared to EMSRb, JI=1.

From Figure 5.5, it appears that the alliance revenue edge in the BPS case compared to the
single airline case with full choice is due to passenger choice effects, as it disappears when
first choice is the only choice. Then, as one would expect, the optimization of the whole
alliance network results in greater revenue gains (1.25%) than two separate optimizations of

the partners’ respective networks (1.2%).

Figure 5.6 shows the changes in the alliance revenue by passenger choice, compared to the

baseline Eb vs. Eb/Eb case:
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Figure 5.6. Alliance revenue differences in dollars, by passenger choice, alliance using
HBP compared to EMSRb, DF=1.0, JI=1.

We see that the main part of the revenue increase obtained with BPS compared to the
simple local discount case is due to reduced first choice revenue losses. As it was stressed in
Chapter 4 (Figures 4.24 and 4.25), the use of HBP with local discount leads to an important
flow of codeshare passengers in the alliance, mostly Q class, who displace higher total
revenue passengers. First choice booking requests in Y, B and M classes are then denied in
favor of those Q class passengers (Figure 4.26), and the alliance first choice revenue
decreases. With BPS, the alliance is able to take only the “good” codeshare passengers,
taking into account their displacement costs. As a result, excessive Q codeshare passengers
are no longer accepted (the total number of codeshare passengers carried by the alliance
drops by 127, from 1,775 to 1,648 passengers), and the loss of first choice revenue is halved.
Furthermore, the alliance is able to better accommodate the passengers spilled by its
competitor, hence increasing its revenue from spill-in. With BPS, the breakdown of revenue
gains by passenger choice is very similar to the breakdown observed when the alliance is a

single airline.

137



DAVN

Figure 5.7 compares the revenue gains of the alliance partners using DAVN, with and
without BPS, to the results of the alliance as a single airline using DAVN:

Local Discount BPS, No Discount Single Airline
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Figure 5.7. Revenue differences in percent, alliance using DAVN compared to EMSRb,
DF=1.0, JI=1.

With DAVN, the alliance revenue gain when the alliance uses BPS is the same as if the
alliance were a single aitline (1.19%), significantly greater than the revenue gain obtained
using local discount (0.69%). Figure 5.8 shows that from a pure optimization standpoint,
DAVN with BPS actually falls short of the single airline performance (1.1% vs. 1.73%).
Compared to HBP, the incremental revenue gain of using BPS is smaller for DAVN (0.5%
compared to 0.99%). This can be explained by the fact that even with local discount, the
nesting method of the DAVN algorithm allowed the airline to limit the number of codeshare

passengers it carries’. As a result, the performance of DAVN with local discount was

31 Cf. Chapter 4.
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already significantly better than the performance of EMSRb (0.69%), while the use of local
discount with HBP lead to a tevenue loss compared to EMSRb (-0.16%). In Figure 5.9, we
sec that the use of BPS does not lead to a significant reduction of DAVN first choice
revenue loss, which was already small compared to the first choice revenue loss of HBP with
local discount. The decrease in the number of codeshare passengets is only of 70 passengers,
from 1,669 to 1,599, confirming that with local discount, DAVN already controls faitly well
the number of codeshare passenger the alliance carries. The alliance revenue increment of

using BPS comes mainly from increased revenue spill-in from aitline A.

Full Choice, DF=1.0 First Choice, DF=1.2
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Figure 5.8. Alliance revenue differences in percent, full choice compared to first choice,
alliance using DAVN compared to EMSRD, JI=1.
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Figure 5.9. Alliance revenue differences in dollars, by passenger choice, alliance using

DAVN compared to EMSRb, DF=1.0, JI=1.

ProBP

Figure 5.10 compares the revenue gains of the alliance partners using ProBP, with and

without BPS, to the results of the alliance as a single airline using ProBP.
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Figure 5.10. Revenue differences in percent, alliance using ProBP compared to EMSRb,
DF=1.0, JI=1.

With ProBP, the use of BPS leads to revenue gains (1.53%) which are greater than those
obtained if the alliance were a single airline (1.33%), and significantly greater than those
obtained using local discount (0.61%). Figure 5.11 shows that the optimization performance
of ProBP with BPS (1.33%) is actually much lower than the performance of a single
optimization (2.09%). The revenue gains of using BPS with ProBP, which are detailed in
Figure 5.12, are mostly due to a reduction in first choice revenue losses. As it was the case
with HBP, the use of BPS limits the number of codeshare passengers carried by the alliance
(by 191 passengers, from 1,749 to 1,558).
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Figure 5.11. Alliance revenue differences in percent, full choice compared to first choice,
alliance using ProBP compared to EMSRb, JI=1.
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Figure 5.12. Alliance revenue differences in dollars, by passenger choice, alliance using
ProBP compared to EMSRb, DF=1.0, JI=1.

142



Bid-Price Sharing, Alliance Partners Using the Same RM Method - Summary

Figure 5.13 summarizes the performance of HBP, DAVN and ProBP with and without

BPS, with full passenger choice or first choice only:

009 048 0.26
123 116 12

P [Local Discount 1 02 -008 0.16
BPS, No Discount | -0.37  1.19 0.38 0.83
ingle Airline -0.34  0.68 0 0.68
LocalDiscount | -043 078 057 | 069 |
BPS, No Discount | -0.59 138 095 | 119
ingle Airline -0.61 119 0 1.19
[EocaDiscount | 061 082 035 | oel
|BPS, No Discount | -0.87 | 1.95 103 1.53
ingle Airline -0.75 | 1.33 0 1.33
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Figure 5.13. Performance of OD RM methods used by the alliance partners.
Revenue gains in percent over the baseline case (Eb vs. Eb/Eb), JI=1.

To summarize, when the alliance partners use the same O-D RM method, the use of bid-
price sharing leads to significant incremental revenue gains for the alliance, ranging from
0.5% to 1% compared to the use of local discount with the same RM method. The revenue
increase is greater for bid-price methods, especially HBP, which are more sensitive to the
correct evaluation of codeshare passengers than DAVN. For these methods, the revenue
gains come mainly from a reduction of first choice revenue losses, whereas for DAVN it

comes essentially from an increase in spill-in revenue.
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Bid-Price Sharing, Alliance Partners Using Different RM Methods

In the previous section, the revenue impact of BPS when the alliance partners use the same
RM method has been shown. In this section, we will determine if BPS is effective when the
alliance partners use different RM methods. As the comparison with the single aitline case is

not possible, we will catry this study with the standard alliance joint image JI=2.

Without Bid-Price Scaling: DAVIN & ProBP

In this case, the alliance partners exchange the LP shadow prices obtained in DAVN and the
prorated EMSR ctitical values obtained with ProBP. These displacement costs are
comparable, as they both come from netwotk optimization processes, and ate additive along
an itinerary32. The revenue differences between the baseline case Eb vs. Eb/Eb and the two
cases Eb vs. ProBP/DAVN and Eb vs. DAVN/PtoBP ate shown in Figure 5.14, when the

alliance partners use local discount or BPS:

32 Howevet, the reader should keep in mind that the LP optimization in DAVN is deterministic whereas

ProBP takes into account the probabilistic natute of passenger demand.
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Figure 5.14. Revenue differences in percent, compared to EMSRb, DF=1.0, JI=2.

We observe significant revenue gains due to BPS. In both cases, with BPS, the alliance

revenue is 0.80% greater than with local discount.

With Bid-Price Scaling: HBP with DAV'N or ProBP

In these cases, the HBP heuristic bid prices need to be scaled in order to be compared with
the DAVN shadow prices and the ProBP prorated fares (cf. nfra). The revenue differences
between the baseline case Eb vs. Eb/Eb and the four cases Eb vs. HBP/DAVN, Eb vs.
DAVN/HBP, Eb vs. HBP/ProBP and Eb vs. ProBP/HBP are shown in Figures 5.15 and

5.16, when the alliance partners use local discount or BPS:
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Figure 5.15. Revenue differences in percent, compared to EMSRb, DF=1.0, JI=2.
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Figure 5.16. Revenue differences in percent, compared to EMSRb, DF=1.0, JI=2.
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Once again, we observe significant revenue gains when the alliance partners use BPS instead
of local discount. These inctemental gains, which range from 0.81% (Eb vs. DAVN/HBP)
to 1.21% (Eb vs. HBP/ProBP), are in general greater than those obtained above with
DAVN/ProBP combinations that do not require bid-price scaling. Indeed, with local
discount, the combination of HBP with DAVN or ProBP performs worse than a
combination of ProBP and DAVN, and has thus a higher potential for revenue
improvements. These results also prove that the simple bid-ptice scaling scheme proposed
by Hopperstad enables effective BPS between the alliance partners when they use a
combination of HBP and ProBP or DAVN.

Bid-Price Sharing, Alliance Partners Using Different RM Methods - Summary

Figure 5.17 summarizes the results discussed above, and gives for reference the revenue

gains of the alliance partners using the same RM method when JI=2:
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Local Discount 041 062 0.25 0.46
BPS, No Discount -0.67 1.88 0.52 1.27
Towl Dicowtt | 06 102 029 069
BPS, No Discount 0.77 1.66 1.29 1.49
Local Discowat | 014 = 039 018 03
BPS, No Discount -0.5 1.68 0.43 1.11
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Figure 5.17. Performance of OD RM methods used by the alliance partners.
Revenue gains in percent over the baseline case (Eb vs. Eb/Eb), DF=1.0, JI=2.
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When the alliance partners use different O-D RM methods, the use of bid-price sharing
leads to significant incremental revenue gains for the alliance, ranging from 0.80% to 1.21%
compared to the use of local discount with the same combination of RM method. The bid-
price scaling scheme enables effective BPS between the alliance partners when one of them

uses HBP.

Bid-Price Inference

The bid-price sharing scheme tested above assumes that the frequent exchange of
displacement cost information between the alliance partners is technically feasible and legally
possible. But exchanging displacement costs on the hundreds or thousands of legs a large
airline operates daily between different computer systems might require significant IT
investment. Besides, it might require the alliance partners to have received antitrust

immunity to coordinate revenue management decisions.

For these reasons, it is interesting to see if the alliance partners could significantly enhance
the performance of their distinct RM systems by making use of already available, less
sensitive information. The Bid-Price Inference (BPI) method introduced here consists of
inferring the partner’s bid prices from the fare class availabilities on the pattner’s legs.
Compared to BPS, BPI is an approximate method, but it is simpler to implement and less
problematic technically and legally, because the information needed is alteady available

publicly on the CRSs.

Bid-Price Inference: Local Path Method

The simplest method to estimate the bid price on a partner’s leg, also proposed by
Hoppetstad as part of this tesearch effort, is to use the partner’s local path fare class
availability information on that leg, simply based on CRS Availability Status (AVS). Without
having any additional information on the partner’s bid prices, a first guess would be to set

the estimated bid price BP,, to:
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® BP. = 05 (f; + f), whete f_ is the fare of the lowest class open, and f; is the fare

of the highest class closed,
e BP, = 0.5f,, when all classes are open,

e BP., = f, when all classes are closed.

The interpolation constants above assume that the partner’s bid prices are evenly distributed
between the fare of the lowest class open and the fare of the highest class closed. If all
classes are open, then the bid price should be halfway between zeto and the fare of the
lowest class in the local O-D market served by that leg. If all classes are closed, the bid price
should be greater than or equal to the fare of the highest class, but we do not know by how

much, so that the safest bet is to set the bid price equal to the fare of the highest class.

However, this interpolation can be improved if we know the distribution of the pattner’s bid
prices between the fare of the lowest class open and the fare of the highest class closed.
After parametric studies using ProBP in the netwotk D used for our PODS simulations,

Hopperstad found that the optimal interpolation coefficients ate closer to:

o BP, = 0.75f,; + 0.25 f,_, where £ is the fare of the highest class closed, and f,_ is the

fare of the lowest class open,
® BP., =0.25f, when all classes are open,

e BP., = 1.1 f, when all classes are closed.

This suggests that in network D, the ProBP bid prices are in fact distributed closer to the
fare of the highest class closed than to the fare of the lowest class open (respectively closer
to zero if all classes are open), and typically do not exceed by much the fare of the highest

class when all classes are closed.
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For the alliance partners, the ideal way to interpolate accurately their partner’s bid prices
would be to calculate the interpolation constants of their respective networks, and exchange
this information with their pattner. The amount of data that needs to be exchanged (four
coefficients) compare favorably with the real-time seamless access to all the partner’s bid
prices necessary to bid-price sharing. If this option was not possible, an alliance partner
could also study the distribution of its own bid prices, and use the resulting interpolation

constants to estimate the bid prices of a partner who is using a similar O-D RM method.

Bid-Price Inference: O-D Methods

With or without tuning of the intetpolation constants, the method presented above only
takes into account the local path fare class availability. A more accurate estimate of the bid
price on a given leg could be obtained by using the information on the fare class availability

of all itineraries traversing that leg.

An optimal solution could be found by solving a linear least squares problem over the
partnet’s network, using the bid price obtained with the local path method as a target BP,,

for each path p, with the objective of solving for the leg bid prices BP, such that:

2
2(233 ‘A, - BPtgtp] is minimized
14 !

Where A,,=1ifleglis traversed by path p, = 0 otherwise.

A heuristic solution could be more easily obtained by using an iterative proration process
similar to ProBP, where the leg bid prices are first initialized using the local path method,

and are then prorated over the different itineraries until a convergence criterion is met.

Preliminaty tests performed were by Hopperstad to estimate the mislabeling rates of the

three methods, and show that:
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e Without tuning of the interpolation coefficients, the computationally intensive linear
least squares method does not produce significantly lower etror rates than the

heuristic proration method, and therefore has not received further attention.

® Without tuning of the interpolation coefficients, the local path method produces
high beta error rates”, ie. using the inferred bid prices it often mislabels as
unavailable a path that was marked available by ProBP. It is consistent with the fact
that bid prices are in fact distributed with a lower average than the average of the

fare of the lowest class open and the fare of the highest class closed.

e With tuning of the interpolation coefficients, the heuristic proration and local path
methods both produce reasonably low error rates (x = 0.09 and 8= 0.13 for the local

path method, a = 0.07 and $= 0.02 for the heuristic proration method).

Because of its simplicity, and because as we will see it performs quite well @ posteriors, we will

focus on the local path method.

Bid-Price Inference vs. Bid-Price Sharing

In this section, we will compare the petformance of BPI, with and without tuning, to the
respective performances of the local discount method and of BPS, for HBP, DAVN and
ProBP. We will conduct this study at JI=1, to compate the tesults with those found with

BPS in the first section of this chapter.

33 The alpha error rate («) is the probability of a false positive, i.e. of marking a path/class available using the
inferred bid prices which was marked unavailable by ProBP. Conversely, the beta error rate (B) is the
probability of a false negative, i.e. of marking a path/class unavailable using the inferred bid prices which was
marked available by ProBP.
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| HBP

Figure 5.18 and 5.19 present the difference in airline revenue when the alliance partners use
HBP, respectively with local discount, BPI, tuned BPI and BPS, compared to the baseline
case Eb vs. Eb/Eb:
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Figure 5.18. Revenue differences in percent, alliance using HBP compared to EMSRb,
DF=1.0, JI=1.
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Figure 5.19. Alliance revenue differences in dollars, by passenger choice, alliance using

HBP compared to EMSRb, DF=1.0, JI=1.

From Figure 5.18, we see that with tuning, BPI leads to alliance revenue gains that approach
those obtained with BPS (0.7% vs. 0.83%). However, the revenue impact of BPI with HBP
is quite sensitive to the tuning of the interpolation coefficients, as the performance of BPI
without tuning (0.13%) falls short of these results. Figure 5.19 shows that the ability to
recover the first choice revenue losses strongly depends on the accuracy of the evaluation of

codeshare paths, therefore on the accuracy of the interpolation constants.

DAVN

Figure 5.20 and 5.21 present the difference in aitline revenue when the alliance partners use
DAVN, respectively with local discount, BPI, tuned BPI and BPS, compared to the baseline
case Eb vs. Eb/Eb:
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Figure 5.20. Revenue differences in percent, alliance using DAVN compared to
EMSRb, DF=1.0, JI=1.
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Figure 5.21. Alliance revenue differences in dollars, by passenger choice, alliance using

DAVN compared to EMSRb, DF=1.0, JI=1.
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The results above confirm the greater robustness of DAVN to the accuracy of the
evaluation of codeshare passengers. Indeed, if we compare these results with the results of

HBP, we notice that:

e The petformance of BPI with tuning is much closer to the performance of BPS

(1.15% vs. 1.19%),

e The performance of BPI is less sensitive to the tuning of the interpolation
coefficients, as the performance of BPI without tuning is close to the performance

of BPI with tuning (1.06% vs. 1.15%).

Figure 5.21 also confirms that, as we have seen in the first section of this chapter, the use of
BPI or BPS with DAVN does not lead to a great decrease of first choice losses™, but that

the incremental revenue gains come mostly from increased spill-in.

ProBP

Figure 5.22 and 5.23 present the difference in airline revenue when the alliance partners use
ProBP, respectively with local discount, BPI, tuned BPI and BPS, compared to the baseline
case Eb vs. Eb/Eb:

3 When the alliance uses BPI without tuning, we observe a decrease in first choice losses, but it is offset by an

equivalent recapture revenue loss.
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Figure 5.22. Revenue differences in percent, alliance using ProBP compared to EMSRb,
DF=1.0, JI=1.
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Figure 5.23. Alliance revenue differences in dollars, by passenger choice, alliance using
ProBP compared to EMSRb, DF=1.0, JI=1.
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With ProBP, the sensitivity of BPI to the accuracy of the interpolation coefficients appears
greater than with DAVN, but lower than with HBP. With tuning, BPI does not perform as
well as BPS (1.36% vs. 1.53%), but the performance of BPI without tuning is still good
(1.23%, compared to 0.61% for local discount). In Figure 5.23, we see that the recovery of

first choice revenue losses is about the same with or without tuning.

BPI vs. BPS — Summary

Figure 5.24 summarizes the performance of BPI with and without tuning of the

interpolation coefficients and the performance of BPS, for HBP, DAVN and ProBP:

Local Discount ’ ] o 1
BFL No Discount | 0. 047 0.2 043

BPI Tuned,No Discourt | 037 105 026 | 01
BPS, No Discount 0.37 119 0.38 0.83
Local Discourt To® 0B 057 | oe
BPI, No Discount 038 126 081 - 1.06
BPI Tuned, No Discount | -0.64 14 0.8 | 115
BPS, No Discount 0.59 138 | 095 1.19
LoalDiscout | 0.6t 08 035 | os1
|BPL, No Discount 053 | 165 0.7 123
BPI Tuned, No Discount | -0.83 179 083 | 1.36
BPS, No Discount -0.87 195 1.03 1.53

Figure 5.24. Performance of OD RM methods used by the alliance partners.
Revenue gains in percent over the baseline case (Eb vs. Eb/Eb), DF=1.0, JI=1.

Overall, the use of BPI with tuning of the interpolation coefficients by the alliance pattners

leads to revenue gains approaching those obtained with BPS. Without tuning, the use of BPI
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leads to smaller revenue gains, which are still significantly greater than those obtained with
the local discount method. Bid-prices methods, especially HBP, are more sensitive to the
accuracy of the interpolation coefficients than DAVN, and tend to perform worse using BPI

without tuning.

Summary

In this chapter, two methods to imptove the evaluation of codeshare passengers were tested.
Bid-price sharing produces the greatest improvement of the alliance revenue over local
discount, enabling the alliance to petform essentially as well as if it were a single airline.
However, this method is difficult to implement and may require antitrust immunity. Bid-
ptice inference is much easier to implement, but requires tuning in order to obtain

performances similar to BPS.
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CONCLUSION

Summary of Findings

The reader will recall that the first objective of this thesis was to quantify the performance of
current revenue management systems in an airline alliance, and identify the critical issues
created by the alliance context. Accordingly, the second objective was to propose and test

new techniques to address these issues.

Performance of Current Revenne Management Systems in an Airline Alliance

The performance of current revenue management methods has been assessed in a virtual
environment modeling the hub-and-spoke US domestic market, in which an alliance of two
aitrlines competed against another airline. Multiple simulations were performed in this
environment, varying the alliance joint image, the revenue management algorithms used by

the airlines and the discount methods for codeshare passengers.

The alliance joint image parameter has been shown to have a significant impact on the
magnitude of the alliance results in PODS network D. Over the whole netwotk, the alliance
revenue is typically 4% greater at JI=2 than at JI=1, for a demand factor ranging from
DF=0.8 to DF=1.1, when all aitlines use EMSRb. The difference is greater when the overall
level of demand is low, and on low-demand codeshare markets. When demand is high, the
alliance cannot accommodate all the extra codeshate passengers attracted by a higher joint
image, but is able to increase yield by improving its passenger fare class mix. In network D,
the alliance market share gains due to a higher joint image on a specific codeshare market
can vary from 5 to 13%, depending on the level of demand of that matket. Howevet, joint
image does not affect significantly the relative performance of origin-destination revenue

management systems compared to EMSRb.
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The use of DAVN or ProBP by one or both alliance partners results in revenue gains for the
alliance compared to using EMSRb. At DF=1.0, the revenue gains are higher with DAVN
(otder of 0.7% to 0.9% with both partners using DAVN) than with ProBP (order of 0.6%
with both partners using ProBP), which bid prices are distorted by the use of a discount
method for codeshare paths. On the contrary, HBP performs worse than EMSRb in most of
the cases studied (order of —0.1% to ~0.6% with both partners using HBP), due mostly to its

ineffective control of discounted codeshare passengers.

The individual characteristics of the alliance aitlines condition the effect of using origin-
destination revenue management methods. Airline B, which has a relatively low ALF, tends
to increase the number of own-connecting passengers it carries, while airline C, which has 2
relatively high ALF, tends to decrease the number of own-connecting passengers it carries.
Because of the differences in the partner’s ALF and the revenue sharing agreement,

codeshare passengers are much more beneficial to aitline B than to airline C.

As a result, the revenue gains of using an origin-destination revenue management method
are not evenly shared between the alliance partners. In the simulations, the longer-haul,
lower ALF aitline B typically gains more revenue than airline C, in both absolute and relative
terms. In some cases, airline B is the main benefactor of airline C’s investing in an origin-
destination revenue management. In other cases, airline B’s switching to an origin-
destination revenue management system results in a revenue loss for airline C, because of the
increased number of codeshare passengers carried by the alliance or changes in aitline C

passenger fare class mix.

Using total fares for decision fares instead of local discount on codeshare paths leads to an
increase in the number of codeshate passengers catried by the alliance, hence reinforcing the
asymmetry between aitline B and aitline C results. However, it does not lead to a significant
improvement of the alliance overall results compared to using local discount, as the losses of
airline C compensate the gains of airline B. Indeed, codeshare paths are still misevaluated as
the alliance airlines do not have information on the displacement costs incurred by a

codeshare passenger on their partnet’s leg.
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Evaluation of Possible Improvements: Bid-Price Sharing and Bid-Price Inference

Two innovative schemes, bid-price sharing and bid-price inference, have been proposed to
accurately evaluate the value of connecting passengers to the alliance, by allowing each

alliance partner to estimate the displacement costs on the other partner’s leg.

When the alliance partners use the same origin-destination revenue management method,
the use of bid-price sharing leads to significant incremental revenue gains for the alliance,
ranging from 0.5% to 1% at JI=1 compared to the use of local discount with the same RM
method. The revenue increase is greater for bid-price methods, especially HBP, which are
more sensitive to the correct evaluation of codeshare passengers than DAVN. For these
methods, the revenue gains come mainly from a reduction of first choice revenue losses,
whereas for DAVN it comes essentially from an increase in spill-in revenue. When the
alliance partners use different origin-destination revenue management methods, the use of
bid-price sharing leads to significant incremental revenue gains for the alliance, ranging from
0.80% to 1.21% at JI=2 compared to the use of local discount with the same combination of
revenue management method. A simple bid-price scaling scheme enables effective bid-price

sharing between the alliance partners when one of them uses HBP.

The use of bid-price inference with tuning of the interpolation coefficients by the alliance
partners leads to revenue gains approaching those obtained with bid-price sharing. Without
tuning, the use of bid-price inference leads to smaller revenue gains, which are stll
significantly greater than those obtained with the local discount method. Bid-price methods,
especially HBP, are more sensitive to the accuracy of the interpolation coefficients than

DAVN, and tend to perform worse using bid-price inference without tuning.

Contributions

From the findings summarized above, several conclusions can be drawn concerning aitline

alliances, and the use of revenue management tools by alliance partners in particular.
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First, the customer perception of codeshare flights offered by an alliance in a market has a
significant impact on the alliance market shate in this market. Alliances considering teplacing
multiply listed codeshare flights with a single alliance flight in the future should weight the
potential marketing benefits of such a strategy against the market share losses likely to be

caused by not being listed multiple times in the CRSs.

Second, differences in the characteristics of the individual aitlines in an alliance, notably their
average load factor, as well as the interaction of the different revenue management methods
they use, can lead to mixed results for the alliance as a whole, and to large disparities
between the revenues of the alliance partners. It is thus important for the alliance airlines to
understand the interaction of their revenue management systems in order to maximize the
total alliance revenue, and accordingly to reach a revenue sharing agreement for codeshare

passengers that is fair for all partners.

Third, the performance of origin-destination revenue management methods, especially those
using bid-price control, has been shown to be particularly sensitive to the evaluation of
codeshare passengers. The misevaluation of these passengers in cutrent revenue
management systems, whether the alliance partners use local fares or total fares to value
these passengers, limits the revenue gains of the alliance partners using origin-destination
methods, and tepresents an opportunity for future RM and reservations system

development.

Finally, bid-ptice sharing seems promising for the improvement of alliance revenue over
local discounting of codeshare passengers, enabling the alliance to perform almost as well as
if it were a single aitline, in tevenue terms. Howevet, this method is difficult to implement
and may require antitrust immunity. Bid-price inference would be significantly easier to
implement, but appeats to requite tuning in order to obtain performances similar to bid-

price sharing.
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Future Research Ditrections

From this first numerical investigation of tevenue management for airline alliances, the

following research directions could be explored:

e In the airline network investigated in this thesis, the alliance partners share a
common hub. This is not the case in most alliances worldwide, which usually involve
partners with distinct hubs. It would be interesting to see if the conclusions of this

thesis could be generalized to a network with several alliance hubs.

e Similarly, alliances involving a greater number of partners, and partners of very
different sizes, are the norm in the airline industry. By further dividing the network
optimization process, these characteristics may affect the impact of the two solutions
proposed in this thesis to improve the performance of origin-destination revenue

management methods, bid-price sharing and bid-price inference.

® The technical implementation of bid-price sharing and bid-price inference, as well as

their legal status, also deserve further investigation.

e In the longer term, one could develop revenue management systems for airline
alliances that make use of the partner’s information at the network optimization step
of the seat control inventory process, and not only at the booking control step, like
the bid-price sharing and bid-price inference schemes proposed in this thesis. Such

systems could result in additional revenue gains for the alliance.
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APPENDIX: BASELINE CASE WITH AIRLINE C OPERATING THE INTER-HUB
FLIGHTS

In this appendix, we briefly describe the results of a baseline simulation with:

e DF=1

>

Eb vs. Eb/EDb,

e JI=1,

Local Discount,

Where airline C operates the interhub flights between DFW and MSP (as opposed to

airline B in all other simulations). The results are summarized in Figure A.1:

Macket Shace (points) 4922 287 22 . 07
RPM (pas.mi) 10269013 | 6005681 4589011 10394692
ALF (points) 8’7 8067 8667 8316
NetwokLocal %) . 5253 | 5483 5513 5499
Yield(cents) 1369 1134 1509 1296
NetRevenue () 1405750 692867 680227 1373094
Totalpax SA LTS RO -2 SO 7263
Codeshare pax B T . 819 1640
Codeshate pax (%) 0.00 [ 2458 2088 | 2258

Figure A.l. Airlines results, DF=1.0, Eb vs. Eb/Eb, JI=1, Local Discount,
airline C operates interhub flights.
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We notice that, even if aitrline C operates interhub flights, the number of ASMs it offers and
RPMs it flies are still significantly smaller than those of airline B. The changes in ASMs from

the standard simulations is shown in Figure A.2:

‘ameter B lianc ~
ASM (seat.mi) | 12267886 7956273 = 4783257 12739530 | 25007498
% of Total ASM 49.06 31.82 : 19.13 50.94 100.00
C |ASM (seatmi) | 12267566 744457500 529495500 12738530 | 25007498
% of Total ASM 49 .06 28.77 21.17 50.94 100.00

Figure A.2. Changes in ASMs, depending on the carrier operating interhub flights.

However, in spite of their small weight in terms of ASMs, the interhub flights determine®
which alliance partner carries more passengers: when airline C operates these flights, it

carries more passengets than aitline B, contrary to what happens in the standard simulations.

35 Apart from the variations in the number of passengers due to the use of different RM and discount methods.
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