
The knowledge evolution framework:
a knowledge management perspective on the impact of

knowledge segregation on product development projects

by

Jeffrey C. Chi

Master of Arts, Cambridge University, United Kingdom (1994)
Master of Science, Massachusetts Institute of Technology, Massachusetts (1992)

Bachelor of Arts, Cambridge University, United Kingdom (1990)

Submitted to the Department of Civil and Environmental Engineering
In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
in

Systems Engineering and Organizational Knowledge

at the

Massachusetts Institute of Technology

June 2001

© 2001 Jeffrey C. Chi. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole or in part.

S ignature of A uthor.........................
Jeffrey C. Chi

ep of Civil and Environmental Engineering
March 7, 2001

Certified by...............................
John R. Williams

Associate Professor
Civil and Environmental Engineering

Thesis Supervisor

Accepted by
Oral Buyukozturk

Chairq ittee on Graduate Students
OF TECHNOLOGY

JUN U 4 2UU1

LIBRARIES

BARKER

The knowledge evolution framework:
a knowledge management perspective on the impact of

knowledge segregation on product development projects

by
Jeffrey C. Chi

Submitted to the Department of Civil and Environmental Engineering
on March 7, 2001 in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in the field of
Systems Engineering and Organizational Knowledge

ABSTRACT

Successful product development projects are critical to success in many industries.
Developing offerings faster, better and cheaper than competitors has become critical to
success. In response to these commercial pressures, many industries have shifted from
a sequential, functional development paradigm to a concurrent, team-based paradigm.
Increasing the concurrence and cross-functional development, however, also
dramatically increases the dynamic complexity of development projects. This is added
complexity on top of the increasing technological complexity of offerings.

Whilst traditional models based on tools such as the CPM and PERT have been used for
the planning and management of such projects successfully in the past, the increase in
complexity has shown that such tools are less capable of planning and predicting the
outcome of projects. This is due to the dynamic nature of projects and the task-based
approach used. Recent research using dynamic simulation tools such as system
dynamics have indicated reasons that project duration and cost have been consistently
underestimated. The differentiation is attributed to the ability of dynamic simulation tools
to capture the iterative nature of work. Existing research has, however, concentrated on
iteration as a result of errors, quality control and shifting targets. Although these factors
do contribute to iteration, they seem almost exogenous factors where independent
policies can be used to mitigate the need for iteration. Yet all texts on design and
product development describe the process as an iterative one. There must, therefore,
be some endogenous factors that result in an inherent need for iteration. With the level
of complexity of projects, specialization becomes necessary. As a result, no individual
within a project has 'lull" knowledge about the project and its current state of
development. In other words, the information and knowledge is segregated to different
parts of the project organization. This research proposes a shift towards a knowledge-
evolution paradigm and uses it to investigate the impacts of such knowledge segregation
on the performance of product development projects. This proposed framework acts, in
part, to provide management levers and measurements in managing the knowledge
within product development projects. These are measurements that the traditional task-
based frameworks cannot directly provide.

A dynamic simulation model of a development project with multiple persons was built
using the system dynamics methodology. The model portrays the segregation of
knowledge and studies its impact on the rate of development and iteration. The model
was applied to projects with a scope defined by the Delta Design Game. Though simple,

the Delta Design game provides the boundaries in understanding the interactions
amongst participants in a typical process and has been used in the past primarily to
demonstrate this aspect of design. The model simulation bore results that closely
resembled real life behavior of the Delta Design project.

The model was also applied to the investigation of differing policies for improved project
performance. These policies include strategies involving conservatism in design,
preemptive measures against iteration and reduction of knowledge segregation through
the decoupling of the knowledge processes. The model structure provides insight as to
the effectiveness of these strategies.

The research finds that rework and iteration happens inherently in development projects
and its prevalence is interwoven into the fabric of the system architecture and project
organization structure.

Finally, this research has shown value in the knowledge evolution paradigm by gathering
insights through which task-based models could not. In so doing so, it is shown that
there is value in developing this concept further to enable a better understanding of
understanding product development projects and thus enabling better and more efficient
means of managing them.

Thesis Supervisor: John R. Williams

Associate Professor of Civil and Environmental EngineeringTitle:

Acknowledgements

This work could not have been possible without the support and contributions many

have provided. This section is dedicated to these people as a token of my appreciation

and gratitude.

Gratitude goes out firstly to members of my doctoral committee, who have collectively

and individually constantly provided direction and advice through their systematic

challenges and sometimes piercing questions. In particular, to my research advisor,

Prof. John Williams who first encouraged me to look into the field of knowledge

management and challenged me to think how it could be used to more accurately predict

the performance of projects. He has always been available for numerous discussions

we had on the merits of dismerits of current systems. Prof. Jerome Connor, for his

mentorship throughout my academic career here at MIT. His sound advice at critical

stages of my academic career here has made my experience here at MIT both fulfilling

and focused. Prof. Feniosky Pefia-Mora, for his valuable insights into project

management problems, always challenging my research and I in the right direction.

Others at MIT who have contributed significantly to this research include Prof. Sarah

Slaughter for her advice on research methodologies and being available as a sounding

board for this research, Prof. John Sterman for his amazing introduction to the world of

system dynamics, Prof. Louis L. Bucciarelli for allowing the use of the Delta Design

Game for the purpose of this research as well as for the discussions we had on the

design process and Prof. Herbert Einstein for allowing the use of copies of the Delta

Design Game. Thanks must also go out to current and previous fellow students for their

assistance and camaraderie. In particular, Hank Taylor who helped provide direction in

5

the earlier days of this research and Moonseo Park for the few discussions we had on

some of the finer implementation issues in System Dynamics. My colleagues at

Spandeck Engineering, Singapore who over the years have provided much of my

background experience and motivation in pursuing this area of research have also

indirectly contributed to this research.

I also owe thanks to those around me that have provided the emotional and moral

support that has kept me going the last few years. In particular, my wife Lena has really

been a pillar of support for me in this area being able to encourage me all this will while

living with the financial sacrifices we had to make in pursuit of this dream. My parents

and sister have also been extremely supportive in this regard.

Finally, but definitely not the least, gratitude goes out to the many individuals who have

provided me with a life outside of academic research. These individuals are the persons

that I have come into contact during my brief but meaningful tenure here at MIT including

colleagues from the Intelligent Engineering Systems Laboratory, staff and faculty of the

Leaders for Manufacturing and Systems Design and Manufacturing Programs, staff and

faculty of the Department of Civil and Environmental Engineering (especially Cynthia,

Jessie and Joan), fellow founding team members of e-MIT and certain members of the

Sloan MBA classes of 2000, 2001 and 2002.

6

TABLE OF CONTENTS

TABLE OF CONTENTS ... 7

LIST OF TABLES ... 13

LIST OF FIGURES .. 15

CHAPTER 1 INTRODUCTION.. 19

1.1 KNOWLEDGE EVOLUTION IN PRODUCT DEVELOPMENT... 19

1.2 INCREASING COMPLEXITIES IN PRODUCT DEVELOPMENT 22

1.3 PROJECTS, TEAMS AND KNOWLEDGE..23

1.4 MOTIVATION FOR RESEARCH ... 24

1.5 T HE P RO BLEM ... 27

1.6 RESEARCH APPROACH..28

1.7 O UTLINE O F THESIS.. 29

1.8SUMMARY ... 32

CHAPTER 2 LITERATURE REVIEW... 35

2 .1 INTRO D UCTIO N .. 3 5

2.2 LITERATURE REVIEW ON KNOWLEDGE MANAGEMENT ISSUES....................................36

2.2.1 Tacit vs. Explicit Knowledge... 37

2.2.2 Artifacts as codified knowledge ... 39

2.2.3 Measuring Knowledge.. 41

7

2.3 LITERATURE REVIEW ON ORGANIZATIONAL ISSUES ... 45

2.3. 1 Basic Preconditions for organizing ... 45

2.3.2 Features of organizations... 46

2 .3 .2 .1 D ivisio n of labo r.. 47

2.3.2.2 A taxonomy of coordinating mechanisms... 48

2.3.2.3 Information Processing and Communication Capacities... 49

2.3.3 Project Organization... 51

2.3.3.1 Type of organizational structure ... 51

2.3.3.2 Diversity of team members .. 53

2.4 LITERATURE REVIEW ON THE PRODUCT DEVELOPMENT PROCESS 56

2.4.1 The traditional product development process.. 56

2.4.2 Recent initiatives in product developm ent projects..................................... 58

2.4.2.1 Concurrent development.. 59

2.4.2.2 Cross-functional development teams... 60

2 .4 .2 .3 P roduct P latform s ... 63

2.4.3 Literature Review on System Architecture Issues....................66

2.4.4 Summary of product development process literature review........................68

2.5 LITERATURE REVIEW ON PROJECT MANAGEMENT FRAMEWORKS AND TOOLS............69

2.5.1 Critical Path M ethod and PERT .. 69

2.5.2 Design Structure Matrix... 73

2.5.3 Principles of Axiomatic Design ... 74

2.5.4 Systems Dynamics.. 80

2.5.4.1 Dynamic Modeling of Projects.. 80

2.5.4.2 System Dynamics Models of Product Development Projects...81

2.5.4.3 Significant System Dynamics structures.. 85

2.5.4.4 Evaluation of System Dynamics Models of Product Development Projects 90

2.6 SUMMARY OF LITERATURE REVIEW 91

2.6.1 Research Needs ... 92

8

2.6.2 Proposed Knowledge Evolution Framework.. 93

CHAPTER 3 MODEL DESCRIPTION... 95

3.1 INTRODUCTION ... 95

3.2 THEORETICAL BACKGROUND...96

3.2.1 Comm unication... 96

3.2.1.1 Dimensions of Communication... 96

3.2.1.2 Mode of communication.. 98

3.2.1.3 Dispersion of Organization.. 99

3 .2.1.4 D iversity of organization.. 10 1

3.2.2 System Architecture...102

3.2.2.1 A coupled system at the root level... 102

3 .2 .2.2 S table subsystem s ... 105

3.2.3 The Rework Structure and its impact on overlapping 108

3.3 BUILDING THE MODEL ... 117

3.3.1 Project Structure and the basis for knowledge evolution 117

3.3.2 Knowledge Evolution..119

3.3.2.1 The Knowledge Repository and the stages of knowledge... 120

3.3.2.2 Knowledge processes... 123

3.3.2.3 Prerequisite requirements of knowledge processes ... 124

3.3.2.4 Knowledge segregation and probabilities that work requires iteration 126

3.3.2.5 Reduction of probabilities.. 130

3 .3 .2 .6 Ite ra tio n.. 13 3

3.3.2.7 Dispersion between knowledge processes .. 134

3.4 MODEL DESCRIPTION SUMMARY ... 136

CHAPTER 4 THE DELTA DESIGN GAME ... 139

4.1 THE DELTA DESIGN GAME..140

4.1.1 Representation of the design ... 142

9

4.1.2 The task...143

4 .1.2 .1 D efinition of term s .. 143

4 .1 .2 .2 S p ec ifica tio ns ... 14 5

4.1.3 The roles..146

4.2 RELEVANCE OF THE DELTA DESIGN GAME...148

4.3 THE DESIGN PROCESS FOR A DELTAN HABITAT .. 149

4.3.1 Intended Design Process (The ideal case)...149

4.3.2 More realistic scenarios..150

4.4 PROJECT EXECUTION...153

4.5 OBSERVATIONS FROM THE DESIGN PROCESS...157

4.6 KNOW LEDGE EVOLUTION OF THE PROJECT .. 160

4.6.1 Knowledge Processes and Knowledge Repositories....................................161

4.6.2 Rates of Developm ent..163

4.6.3 Information Prerequisites ... 164

4.6.4 Probabilities upstream is not workable for downstream...............166

4.6.5 Holdback period ... 166

4.7 MODEL BEHAVIOR .. 167

4.7.1 W ithout iteration...167

4.7.2 W ith iteration..168

4.8 COMPARISONS...169

4.9 SUMMARY .. 170

CHAPTER 5 ANALYSIS & OBSERVATIONS .. 171

5.1 INTRODUCTION .. 171

5.2 SENSITIVITY ANALYSIS ... 172

5.2.1 Probabilities ... 172

5.2.2 Reduction factors and learning rates..174

10

5.2.3 Reduction in knowledge repository...177

5.2.4 Duration of holdback period ... 177

5.3 INSIGHTS...180

5.3.1 Policies for improving project perform ance...180

5.3.2 Performance of concurrent engineering and cross-functional teams 182

5.4 SUMMARY ... 185

CHAPTER 6 N ... 187

6.1 SUMMARY ... 187

6.2 CONTRIBUTIONS .. 190

6.3 FURTHER RESEARCH..191

6.3.1 Calibration and project m onitoring..192

6.3.2 Fram ework Developm ent ... 193

6.3.3 Applications Developm ent..195

6.4 CONCLUSIONS ... 195

REFERENCES .. 199

APPENDIX 1 SIMON'S WATCHMAKERS ANALOGY..217

APPENDIX 2 "REWORK AND OVERLAP" MODEL...221

APPENDIX 3 KE MO DEL OF DELTA DESIG N .. 233

APPENDIX 4 DELTA M ODEL SIM ULATIONS ... 247

APPENDIX 4-1 VARYING PROBABILITI ES...248

APPENDIx 4-2 VARYING LEARNING RATES .. 249

11

List of Tables

Table 2-1 Nonaka's 2X2 model ... 39

Table 2-2 Bohn's Stages of Knowledge... 42

Table 2-3 Strengths and Weaknesses of different development teams 53

Table 3-1 Types of information prerequisites...126

Table 4-1 Measurements used in Delta Design ... 143

Table 4-2 Summary of Design Specifications .. 145

Table 4-3 Summary of Design Responsibilities for Different Roles..............................147

Table 4-4 Results of the Delta Design Projects ... 157

Table 4-5 Knowledge Process for Delta Design .. 161

Table 4-6 Various Stages of Knowledge for Repositories..163

Table 4-7 Rates of Development for the Knowledge Processes 163

Table 4-8 Table of Information Prerequisites...165

Table 4-9 Table of probabilities not workable for downstream.....................................166

13

14

List of Figures

Figure 2-1 Information Processing in Science and Technology 40

Figure 2-2 Ideal operating method and stage of knowledge 44

Figure 2-3 A taxonomy of coordinating mechanisms ... 49

Figure 2-4 Types of development teams .. 52

Figure 2-5 Team Diversity on Team Rated Performance...55

Figure 2-6 Team Diversity on Innovation Performance... 56

Figure 2-7 Sequential and Concurrent Product Development Processes 60

Figure 2-8 The Power Tower...65

Figure 2-9 Progress of product development projects ... 68

Figure 2-10 A network diagram for CPM schedule management.............................. 70

Figure 2-11 A Gantt Chart Representation of a CPM Schedule 71

Figure 2-12 Design Domains (Axiomatic Design) ... 76

Figure 2-13 Hierarchical structure and Zigzagging ... 79

Figure 2-14 The Labor Structure...85

Figure 2-15 The Schedule Structure... 86

Figure 2-16 The rework Structure.. 87

Figure 2-17 The Available Work Structure.. 88

Figure 2-18 The quality structure.. 89

Figure 2-19 The Scope Structure ... 90

Figure 3-1 Dimensions of communications...97

15

Figure 3-2 Four modes of upstream-downstream interaction..................................... 98

Figure 3-3 Communication and Distance...100

Figure 3-4 Elements of Project Structure...103

Figure 3-5 System Dynamics model of Herbert Simon's watchmaker analogy 106

Figure 3-6 Results from Simon's Watchmaker Analogy ... 107

Figure 3-7 Rework and Overlap...109

Figure 3-8 Behavior of upstream task in Rework and Overlap model 110

Figure 3-9 Relationship between error rate and impact to quality 112

Figure 3-10 Upstream Error in Rework and Overlap Model ... 113

Figure 3-11 Downstream quality in Rework and Overlap Model 114

Figure 3-12 Downstream error rate in Rework and Overlap Model..............................115

Figure 3-13 Downstream Work Accomplished - Overall View 116

Figure 3-14 Downstream Work Accomplished - Exploded View 116

Figure 3-15 Overview of Knowledge Evolution Model..120

Figure 3-16 Phases of Product Development .. 121

Figure 3-17 Ford's FPDS Systems Engineering Approach .. 122

Figure 3-18 Information prerequisites..125

Figure 3-19 Reduction Factor through increase in knowledge 131

Figure 3-20 Reduction Factor through iterations..132

Figure 4-1 Sample design ... 142

Figure 4-2 Of Deltas, lyns and quarter-deltas .. 144

Figure 4-3 Delta Design by Team 1 .. 154

Figure 4-4 Delta Design by Team 2...154

Figure 4-5 Delta Design by Team 3...155

Figure 4-6 Delta Design by Team 4...155

Figure 4-7 Delta Design by Team 5...156

16

Figure 4-8 Delta Design by Team 6...156

Figure 4-9 Knowledge Evolution of the Delta Design Process 160

Figure 4-10 System Architecture of Habitat ... 162

Figure 4-11 Knowledge Evolution of Deltan Habitat (without iteration).........................167

Figure 4-12 Knowledge Evolution of Deltan Habitat (with iteration) - synchronous 168

Figure 4-13 Knowledge Evolution of Deltan Habitat (with iteration) - asynchronous.... 169

Figure 5-1 Knowledge Evolution (Prob = [0,0,0.9,0]]) .. 173

Figure 5-2 Knowledge Evolution (Prob = [0,0.9,0.9,0.9]) ... 173

Figure 5-3 Probability dominance and Learning Rates .. 176

Figure 5-4 Knowledge Evolution without holdback...179

Figure 5-5 Knowledge Evolution with holdback ... 179

17

Chapter 1 Introduction

1.1 Knowledge evolution in product development

In recent years, there has been much euphoria on the economy moving from an

industrial economy to an information economy and the eventual transition to a

knowledge-based economy. This is an economy where value is added not through

physical work on a product (industrial economy), not through providing information

(information economy) but through the provision and application of knowledge or know-

how.

As the economy progresses from industrial to information to knowledge-based, so must

there be a transition through which we manage and understand our product

development projects. Whether these product development projects are for office

buildings, software packages or automobiles, the efficient management of these projects

is becoming increasingly important. This can be observed through the history of product

development where industry have moved from solving physical constraints through the

analysis of bottlenecks and supply chains in the industrial economy to building ERP

systems in providing timely information to various divisions of an organization. As we

move into the knowledge economy, an understanding of the knowledge and knowledge

transfer issues in product development needs to be further understood.

19

Introduction

Current project management methodologies are task-based and concerned with the

organization and sequencing of tasks. Though they have been and will continue to be

useful, they do not provide us with the direct measurements and levers to understand

and manage the know-how within project organizations. This research proposes the

knowledge evolution framework as an alternative paradigm for modeling projects.

Recent initiatives to improve the product development process include concurrent

engineering, cross-functional development teams and product platforms. These

initiatives have all been implemented based on commercial pressures to develop

products faster, better and cheaper than competitors. On the surface, it seems fairly

obvious what these initiatives propose to achieve. They are all intended to hasten the

product development process through more efficient use of knowledge and resources.

See section 2.4.2 for a more complete discussion. These initiatives are therefore some

form of knowledge management implementations. Concurrent engineering allows work

that has no knowledge or information pre-requisites to proceed without hindrances from

other functions. As will be later demonstrated, in order for concurrent engineering to be

successful, the relationships of these pre-requisites need to be managed well. Cross-

functional teams have been implemented to allow shorter iteration cycles by ensuring

that all the knowledge required to proceed is close at hand. Product platforms ensure

knowledge of the product is re-used over a family of products instead of re-inventing the

wheel each time. All of these initiatives can therefore be considered implementations of

more efficient creation, use and transfer of knowledge over traditional product

development processes.

20

Chapter 1

Introduction

As product development projects embark into a new era, so must the processes and

tools that we use to manage these projects. In an environment where most projects

overrun both schedule and costs, and where the rule of thumb to estimate project

duration is to take an accurate guess and double or triple it, traditional task-based

project management tools such as CPM and PERT have not proven to be accurate

predictors of project performance. The situation is further aggravated by the increase in

complexity in product development projects. Many researchers consider that part of the

reason for this is the failure to capture iteration and the dynamic nature of projects.

Some researchers have captured iteration through dynamic modeling of projects but

have defined iteration as rework due to errors, mistakes or change in scope of project.

This is because the paradigm used is still task based and is only able to capture iteration

as work that is complete but not acceptable.

Clearly, however, iteration is in the very nature of product development projects and

cannot be avoided through better quality control or other measures taken to minimize the

iteration identified above. In order to make such an observation, a shift in paradigm to

one that captures information or knowledge needs to be used. This research proposes

the knowledge evolution paradigm where the state of the knowledge is tracked as the

project is in progress. In such a framework, iteration is represented as a reduction in the

state of knowledge. This does not mean that knowledge is lost but that information and

knowledge that was generated is no longer relevant. That information and knowledge,

however, was a necessary step in the generation of further information.

21

Chapter 1

Introduction

The knowledge evolution paradigm is based on the fact that knowledge and information

is generated and increases through the various stages of development of any

development project. This knowledge and information is captured both tacitly in

individuals associated with the project as well as explicitly in documents, drawings,

prototypes and partially built systems. Thus, knowledge about the product evolves

through the development of the product. Understanding the issues that affect its

evolution perhaps provides a deeper understanding on the product development process

and provides us with insights as to how we should manage product development

projects in a knowledge-based economy.

1.2 Increasing complexities in product development

Recently, product development projects have become much more complex due to two

primary reasons. There is, firstly, an increase in complexity as a result of more sub-

systems and components working together. Secondly, the project itself has become

more complex through larger organizations and more processes being executed

concurrently.

Technological activities and advances have generated much information and knowledge.

Xerox, for example, estimated that the volume of knowledge available to the public

would double every 73 days by the year 2000 (Brethenoux, 1997). Studies showing

exponential growth rate of journal articles and manpower give concern over the

enormous amount of scientific information being generated (Price, 1965). This

technological explosion has resulted in engineers and architects having to specialize into

22

Chapter 1

Introduction

specialties and even sub-specialties just to keep abreast of recent scientific and

technological advances in various fields. Product development project organizations

have also become more complex as different participants with different specializations

and perform only specific functions.

This results in individuals that specialize in their domain of expertise and operate only

with the information they need to know. Their knowledge of the project is hence

segregated from other specialists in other domains. So, not only have the products

become more complex, the process in developing these products has become more

complex as well.

The process has also been made more complex in response to commercial pressures to

develop products faster, better and cheaper than competitors. Many industries have

shifted from a sequential, functional development paradigm to a concurrent, team-based

paradigm. Although supposedly increasing project performance (lowering cost, shorter

project duration, higher quality), there are increased dynamic complexities (Smith and

Eppinger, 1995; Wetherbe, 1995; Osborne, 1993).

1.3 Projects, Teams and Knowledge

Complex development projects are seldom handled by small teams any more. The

amount of detailed knowledge needed requires deep functional expertise in many areas.

A project team often consists of many team members working for different organizations

with different functional expertise and different business interests. One such example is

23

Chapter 1

Introduction

in the development of an office building. The different team members include architects,

civil and structural engineering, HVAC engineers, electrical engineers, general

contractors and specialist contractors. Team members have different functional

expertise, different responsibilities and possibly different business interests in the

development project. A successful product development project, however, requires that

all the different team members to contribute in their specific domain of expertise.

In the individual contributions, members make use of information that is available (either

from their past experience or from information provided by other members) to generate

more information about the development project and the final product. This information

is in turn used by other members on the team to make their contribution. In this fashion,

information about the offering is created and built up to form the product knowledge.

Collectively, as a whole team, knowledge about the offering increases over time as the

offering moves from concept to conceptual design to detail design to prototype to

physical product. At the various stages of development, various mediums are used to

contain information/knowledge about the product.

1.4 Motivation for Research

In an environment where most estimates for project duration and costs rely on large

"fudge" factors, traditional project management tools such as CPM and PERT appear to

be missing some critical ingredients. Earlier research has exposed that these tools are

limited by their use of an indirect project measure (time) and by bundling the

characteristics of and relationships among scope, resources and processes in each

24

Chapter 1

Introduction

activity into a single duration estimate. They also tend to ignore iteration or require that

iteration be implicitly incorporated into duration estimates and precedence relationships

(Ford and Sterman, 1998).

More recent research approaches do overcome some of these shortcomings by

identifying some of the dynamic consequences of different project structures on project

performance. Crucial dimensions that have been identified include processes,

resources, scopes and targets. Like traditional project management tools, these studies

are also task based and models iteration as rework to tasks that have already been

performed and need to be redone due to errors, mistakes or failure to meet quality

standards. What is implied, however, is that as long as errors and mistakes are

minimized and as long as quality is properly controlled, iteration and rework can be

minimized.

The mere process of product development, however, is an iterative one. Any text on

design will introduce design as an iterative process. They will also state that design is

more art than science. Any text on project management will emphasize the importance

of change management, not on how to prevent changes but on how to manage them. It

seems, that on certain aspects of the project, iteration is unavoidable. It therefore

becomes interesting to ask why iteration actually occurs and to try understand its nature.

One way of finding the solution is in asking why designers can't get it right the first time

round. The solution seems to lie in the fact that not all participants in the design process

has knowledge of or is able to make entire decisions on the product being developed. In

fact, sometimes design decisions are based on the outcomes of others' design.

25

Chapter 1

Introduction

Whilst better understanding the true nature of under performance of projects is useful for

more accurate control and ultimately lead to better performance, the commercial

pressures to develop products cheaper, faster and at lower costs have resulted in the

adoption of new methods such as concurrent engineering, product platforms and cross-

functional teams. On the surface, the logic behind these implementations is quite

apparent. In fact, in some cases there have been significant improvements to the

adoption of these new methods (Merrils, 1991; Nevins and Whitney, 1989). However,

aggregated results have been fairly mixed (lansiti, 1993; Clark and Wheelwright, 1993;

Dean and Susman, 1991). It seems that there may therefore be some missing

"ingredients" that may act to contradict the logical intention of increasing project

performance. Researchers have attributed this contradiction to increased complexities

and tightened constraints imposed by the interdependencies requiring higher levels of

coordination (Ulrich and Eppinger, 1994; Malone and Crowston, 1990). It has also been

observed (Goldratt, 1997) that when responsibility to the project is distributed,

participants in the development process tend to build in buffers. Although it has been

recommended that these buffers be managed centrally, it is not quite clear its true

impact on project performance.

The motivation for this research is to uncover some of the dynamic complexities of

interdependencies, project complexities and this inherent nature of iteration. It is also

intended to provide some insight as to the effectiveness of implementing initiatives such

as concurrent engineering and cross-functional teams. As traditional project

management methods using task-based models seem unable to capture these

26

Chapter 1

Introduction

interdependencies and complexities, it is hoped that information based on the

knowledge evolution paradigm will be able to provide some insight.

1.5 The Problem

Current research relating to iteration in product development projects either models

iteration as separate tasks or as rework to mistakes, errors or lack of quality control.

The problem with these models of iteration is that they do not capture the true nature of

iteration, which is embedded in having multiple individuals involved in product

development projects. The question at hand is then whether interdependencies or

project complexities do impact iteration in projects.

In answering the above question, it is first necessary to determine what constitutes

interdependencies and project complexities and their relationship to knowledge

segregation. The concept of interdependencies and the need to minimize them has

been identified by quite a few researchers (Suh, 1990; Steward, 1981). Though quite

similar in nature, there does seem to be differing definitions. Suh's (1990) definition

(under axiomatic design) is related to a particular parameter affecting more than one

property whilst Steward's (1981) definition (under the design structure matrix) is related

to processes requiring information from other processes.

Complexities in product development projects mostly refer to the number of systems,

sub-systems and components. In the context of this research, however, it seems that

somehow the issue of interdependencies needs to be factored in as well.

27

Chapter 1

Introduction

In order to tie these relationships to iteration, it seems necessary to move away from

task-based models used in previous research. Task based models imply pre-

determined scopes. It is relatively clear that scope cannot be determinate especially in

the early stages. A new knowledge evolution paradigm could provide the insights

needed. A secondary problem that needs addressing is how these findings should affect

the policies that occur in daily project management especially, policies that are related to

segregation of responsibilities and knowledge.

1.6 Research Approach

The purpose of this research is to understand the relationship between project

organization structure, how knowledge is dispersed and its impact on project

performance. While it cannot be possible to provide a complete understanding of these

relationships, this thesis' contribution is in the identification of knowledge segregation

and its impact on iteration and hence project performance. This is achieved by firstly

establishing a new paradigm of knowledge evolution view of projects.

This thesis uses the system dynamics methodology (Forrester, 1961) for modeling

complex systems. System dynamics describes cause and effect relationships with

stocks, flows and feedback loops. Stocks and flows are used to model the state of

knowledge of the project as well as the processes that act to increase or decrease those

states. Feedback loops are used to model organizational structures as well as project

28

Chapter 1

Introduction

management decisions and policies. As it is unknown whether a particular design cycle

will be the final one, iteration is probabilistic. This is also modeled explicitly.

Apart from the modeling, results are also observed from projects. The Delta Design

game is an abstraction of an actual design project and is primarily used to demonstrate

social interactions in a design process (Bucciarelli, 1991). The Delta Design game was

used primarily because of its simplification of the design parameters. The fact that

participants only work together for 4 hours, that previous knowledge in any domain is not

of any benefit in the delta design process isolates the main crucial components of the

actual design process for observation. As there are 4 distinct roles in the delta design

process, each with specific domains of knowledge and expertise, knowledge is

segregated and making the project ideal for the purposes of this research.

The system dynamics model and the results from the Delta Design process are

compared and contrasted providing insights to these dynamics of the design process.

The model is then used to investigate how project performance varies with variations in

key variables. These results can then be used to evaluate the merits of certain policies

intending to improve project performance.

1.7 Outline of thesis

This section is intended to provide readers with an understanding of how the content is

laid out in the remainder of this thesis. Chapter 2 provides a review of the current

research and literature on the variety of topics that are related. As the knowledge

29

Chapter 1

Introduction

evolution framework proposed lies in the intersection of various fields of research

including knowledge management, organizational management, product development,

design and project management. Chapter 2 covers to some detail the current state of

related research in each of these fields.

On the knowledge management front, literature explaining the concept of embodiment of

knowledge in physical artifacts, the differentiation between tacit and explicit knowledge

and research on measuring the state of knowledge are introduced. Basic concepts in

the field of organizational theory along with why there is a need to organize are also

explained. Under product development, research in the space of concurrent engineering

and cross-functional teams are explored in a little more detail. The various project

management tools including CPM, PERT, DSM, Axiomatic design and previous project

management models in system dynamics are reviewed as a pre-cursor to this research.

With the current state of research reviewed, Chapter 3 puts some terms into context.

Definitions of terms such as interdependencies, project complexities and knowledge

segregation are put into the context of this research and the knowledge evolution

framework. Chapter 3 also introduces the concept of knowledge evolution and builds a

basic system dynamics model representing the knowledge evolution of development

projects. The model consists of several components. Firstly, the knowledge repository

represents the state of knowledge at any particular point in time. The state of knowledge

either increases or decreases through the processes that actually contribute towards

them. Knowledge processes are the individuals or groups of individuals that contribute

towards increasing the state of knowledge in the repositories. However, as certain

30

Chapter 1

Introduction

individuals do not have full access of knowledge and information they need to complete

their design, there is a probability that the initial design is not workable and in need of

changes. This constitutes the feedback loop that determines the iteration.

Chapter 4 introduces the Delta Design game and how it is used to validate the

knowledge evolution framework. The knowledge evolution model is applied to the

parameters of the Delta Design and its results are compared with the actual results. The

Delta Design process was chosen specifically for its simplification of parameters vis-n-

vis a more complicated project. Although simple, the Delta Design process is one that

demonstrates knowledge segregation amongst individuals and is simple enough to

execute multiple projects. Six projects with the same scope were concurrently executed

and comparisons were made both between the projects and with the simulated

knowledge evolution model.

Chapter 5 then analyzes how specific variables affect the performance of product

development projects. This analysis yields some insights of which some are intuitive

and others are not. These insights have implications as to whether specific strategies

and policies intended to improve project performance will actually work. In particular,

the issue of whether "holding back" and building in buffers or conservatism at the

individual level benefits the project at a global level is explored. Suggestions as to why

implementations of concurrent engineering and cross-functional teams do not universally

yield positive results are also provided in this context.

31

Chapter 1

Introduction

Finally, in Chapter 6, the results of this research is summarized and concluded. Further

research topics are proposed in the interest of developing this new framework.

1.8 Summary

In response to commercial pressures and increased competition, product development

projects have had to face increased complexities. It therefore becomes ever more

crucial to be able to control and manage project performance with regards to lowering

cost, reducing project time and have higher qualities.

Although recent research has identified iteration as one of the key reasons for the lack of

predictability of project performance, the iteration is implied to be due to mistakes, errors

or failure to meet quality requirements. This seems awkward since most design texts

will describe product development and design as iterative processes; not so much due to

errors or quality but just inherently iterative. As our product development projects

become more complex, it becomes more crucial to understand the sources of these

iteration.

In order to so, our project management methods need to move away from the traditional

task-based methods to information or knowledge evolution based methodologies. The

hypothesis of this research is that if information and knowledge is segregated, iteration

cannot be avoided. It is, therefore important to understand the impacts of separating

information and knowledge on the dynamics of project performance. With a suitable

model for understanding this aspect of project dynamics, we can apply it to the

32

Chapter 1

Introduction

investigation of policies that will enable project managers to make more informed

decisions on project structure and execution.

33

Chapter 1

Chapter 2 Literature Review

2.1 Introduction

This chapter describes and evaluates the literature as it pertains to this research. As

this research draws upon topics in several existing fields of research. A brief overview of

relevant topics in each of these fields is reviewed. Firstly, research in the field of

knowledge management is reviewed for their applicability in product development

projects. Specifically, the differentiation between tacit and explicit knowledge and the

various forms of knowledge representation used in the product development process.

Then, some of the recent initiatives in product development processes are reviewed and

compared with the traditional product development process. These initiatives include

the use of concurrent engineering, cross-functional teams and product platforms. In

view of the knowledge management definitions, these recent initiatives of the product

development process may also be viewed as knowledge management initiatives. There

is also a review of the current project management tools used to plan and manage

product development processes including CPM, PERT, DSM and Axiomatic Design.

Recent research involving the use of system dynamics are studied and some of the

more important structures such as the work availability, rework, labor, quality, scope and

schedule are briefly explained. Finally, gaps in the current literature are identified as the

starting point for the specific work of this research.

35

Literature Review

2.2 Literature Review on Knowledge management issues

Knowledge and knowledge management has become infused with almost any meaning

somebody wants to associate with it (Gates, 1999). Collaboration, data mining, web

casting, intranets, knowledge based systems, artificial intelligence are but a few of the

modern day fields that claim to have the solutions to knowledge and knowledge

management. With the advancement of information systems and in fields such as those

mentioned, it is no wonder that the distinction between knowledge and information is

somewhat blurred. As there is yet to be much consensus on a proper definition, it

becomes difficult to really define what is meant by knowledge and knowledge

management. The purpose of this review is not really to provide that definition, nor is it

to debate what the various definitions are. It is, however, meant to provide some

understanding of the current thinking in knowledge management and to set out some

distinctions between the terms information and knowledge.

Knowledge and information are distinct identities. Although it has been commonly

misconceived that knowledge resides in a collection of information or even that it is a

collection of information, knowledge actually resides within the user of information which

are people (Churchman, 1971). In fact, knowledge is embedded in people, and

knowledge creation occurs in the process of social interaction (Sveiby, 1997). It is also

further emphasized that only human beings can take the central role in knowledge

creation and that computers are merely tools, however great their information processing

capabilities (Nonaka, 1995).

36

Chapter 2

Literature Review

2.2.1 Tacit vs. Explicit Knowledge

When dealing with knowledge management issues it also becomes necessary to

differentiate between explicit and tacit knowledge (Nonaka, 1991). Explicit knowledge or

codified knowledge is knowledge that can be codified or easily recorded and retrieved.

Such codification could be in the form of writing or even embodied in a physical product.

The key is that another person can easily grasp the knowledge by reading or studying

the codification. Tacit knowledge, on the other hand, is knowledge that is uneasily

recorded. For example, a baker relies very much on his experience when kneading

dough to get the right consistency, texture etc. Variables like consistency and texture

are not exactly easily codifiable. However, alternative means of codifying the knowledge

of baking bread can be easier through means such as recipes, mixing times etc. The

former type of knowledge is tacit but can be eventually codified to some form of explicit

knowledge (this is the articulation process as described later).

Tacit knowledge consists partly of technical skills - the kind of informal, hard-to-pin down

skills captured in the term "know-how." At the same time, tacit knowledge has an

important cognitive dimension. It consists of mental models, beliefs and perspectives so

ingrained that we take them for granted, and therefore cannot easily articulate them.

When an employee leaves a firm, some knowledge of the employer's operations,

experience and current technology leaves as well. There are some aspects of the

employee's knowledge that are not codified in some manual or explicitly documented

37

Chapter 2

Literature Review

anywhere. Likewise, researchers are also realizing that people are the best carriers of

information and knowledge and that the best way to transfer knowledge between

organizations is to physically transfer a human carrier. (Shapero, 1969; Roberts and

Wainer, 1971).

Further, Michael Polanyi proposes (Sveiby, 1997; Polanyi, 1958; Polanyi, 1966) that "we

can know more than we can tell" and that explicit knowledge, expressed in words or

numbers is therefore only the tip of the iceberg. Furthermore, "while tacit knowledge can

be possessed by itself, explicit knowledge must rely on being tacitly understood and

applied. Hence all knowledge is either tacit or rooted in tacit knowledge.

The distinction between tacit and explicit knowledge suggests four basic patterns for

creating knowledge in any organization. These are socialization (tacit to tacit),

articulation (tacit to explicit), internalization (explicit to tacit) and combination (explicit to

explicit) (Nonaka, 1991) as illustrated in Table 2-1. All four of these patterns exist in

dynamic interaction, a kind of spiral of knowledge. New knowledge always begins with

the individual. That knowledge is rooted in tacit and needs to be described to other

members in the organization (articulated). The team then combines different pieces of

knowledge keeping it explicit in the form of documents or physical products (combined).

The team members then individually understand the knowledge (internalize) these are

then grasped in further detail with the individual's existing knowledge creating new

knowledge (socialized). The process is then repeated in a spiral.

38

Chapter 2

Chapter 2 Literature Review

To
Tacit Explicit

E
0

U-

co

-

LXw

Table 2-1 Nonaka's 2X2 model

2.2.2 Artifacts as codified knowledge

If we accept Polanyi's position that knowledge is inherently tacit. One of the challenges

for managers must be to put organizational knowledge into a form that makes it

accessible to those who need it. This is indeed the aim of codification which literally

turns knowledge into a code (not necessarily a computer code) to make it as organized,

explicit, portable and easy to understand as possible.

One analogy is given by Allen (1977) in describing the similarities (and differences)

between science and technology. Both science and technology are ardent consumers of

information (and knowledge). While scientists take information (and knowledge) in

verbal form (including diagrams, equations, documents) and transform them to some

other verbal form, technologists transforms them not only into verbal form but also into a

physically encoded form such as a product (Allen, 1977). This is best illustrated by

Figure 2-1.

39

Socialization Articulation

Internalization Combination

Literature Review

g nu Sse d 'c o utui~~~ ~ ~~~~ I j) zLl d jf~(:zl~ V

V I EnF'd .I a

v~~'~V, I 'l ~

Figure 2-1 Information Processing in Science and Technology

(Source: Allen, 1977)

One of the primary difficulties in codification work is how to codify knowledge without

losing its distinctive properties turning it into less rich information. This is especially the

case for tacit knowledge which is by nature difficult to articulate. By definition, tacit

knowledge cannot be effectively codified, at least in print. A document cannot capture a

child's experience, know-how, skills, and sense of balance on riding a bicycle.

There are two means in which codifying tacit knowledge can be made more effective

(Davenport and Prusak, 1998). The first is through knowledge maps or basically

pointers to which persons or groups through which knowledge can be accessed. The

second is through richer media other than text. Media such as drawings, pictures and

40

Chapter 2

Literature Review

video provide richer content and more information. The age-old saying that "a picture is

worth a thousand words" does hold true in this case.

In product development projects, the use of drawings, scaled models, prototypes all act

to provide information that is otherwise difficult to describe in words to other participants

in the development process. In that regards, these artifacts are used as a means of

conveying and transferring knowledge in the product development process. One can

therefore imagine that in the product development process, knowledge about the product

evolves from concept (perhaps only function with very little shape and form) to total

knowledge about the product (including shape, form, size and manufacturing process).

As the knowledge evolves, this knowledge needs to be captured and codified so other

participants can share the information. The means by which this knowledge is codified

would depend on who is using the information generated as well as how explicit or tacit

the knowledge is.

2.2.3 Measuring Knowledge

The knowledge evolution framework proposed in this research tracks project knowledge

over the duration of the project. It may, therefore, be necessary to somehow measure

the knowledge generated as it evolves. Whilst some may suggest, especially in this

digital age, that a unit similar to the bit in information technology may be relevant,

knowledge (and information for that matter) is never that precise. In the product

development process, a more "flexible" unit such as the chunk defined by Simon (1969)

may be suitable. However, in order for the measurement to represent something

41

Chapter 2

Literature Review

meaningful and track-able, such measurement must somehow account for the need to

quantify the end of a project. Since it is not possible to predict how many chunks or bits

need to be generated, it is perhaps not a suitable measurement to be used. Bohn

(1994) proposed scale for measuring technical knowledge. He had identified eight

stages of technological knowledge ranging from complete ignorance to complete

understanding. Each stage describes the knowledge about a particular input variable on

the process output. The stages are summarized in Table 2-2.

Stage Name Comment Typical Form of
Knowledge

1 Complete ignorance Nowhere
2 Awareness Pure Art Tacit
3 Measure Pre-technological Written
4 Control of the mean Scientific method Written and embodied in

feasible hardware
5 Process capability Local recipe Hardware and operating

manual
6 Process Tradeoffs to reduce Empirical

characterization (know costs equations(numerical)
how)

7 Know why Science Scientific formulas and
algorithms

8 Complete knowledge Nirvana

Table 2-2 Bohn's Stages of Knowledge

Variables in the first three stages are usually considered exogenous. This means that it

is impossible to control them. Those in subsequent stages represent increasing

understanding of causality and control over the outputs. As the nature of knowledge

changes qualitatively with each stage of this framework, the process of learning from

one stage to the next also changes.

42

Chapter 2

Literature Review

There could be many variables governing a particular process. Ideally, a company

would like to have a high stage of knowledge about all the important variables and a low

stage of knowledge about variables that have negligible effect. As more is learned about

part of the process, old variables are brought to higher stages but new variables also

emerge from the mist of ignorance. The process as a whole can do no better than the

knowledge about its most important drivers.

The knowledge stage of different process variables is important because it determines

how to manage both the knowledge and the production process. The higher the stage of

knowledge, the closer the process is to "science," and the more formally it can be

managed. One of the basic system-design decisions is the degree of procedure. The

spectrum of different means of performing a certain task consists of pure procedure at

one end and pure expertise on the other end. Procedures require a specified set of

rules about what to do under different circumstances whereas expertise requires

experienced and skilled people who use their own judgment at each moment. These

people have tacit knowledge and may not be able to explain how they carried out a task

even though they could perform it. Figure 2-2 shows that there is a natural relationship

between degree of procedure and stage of knowledge. This results from the fact that

certain knowledge becomes necessary to be able to use procedures to manage the

process.

43

Chapter 2

Chapter 2

*33,

all.
IN;;*

ILI

Stage of Knowledge

Literature Review

6 8

o e n adN U Ja e r The Ueve e:u o n ineBgn iSystmr-m toiosa usI AnE Emira

Figure 2-2 Ideal operating method and stage of knowledge

(Source: Bohn, 1994)

It seems that a similar notion of stages of knowledge may be used to track product

development processes. Stages do provide some measurements yet provide the

flexibility of not being a hard quantitative value. In fact, an alternative view of Bohn's

stages of knowledge can be viewed in a continuum of certainty of control. The more

knowledge of the technical process that is available, the more certain one can be on the

44

2

Literature Review

control of the process. Meaning there is low uncertainty in the outcome of the results.

This concept of uncertainties is indeed very powerful and will be a concept that has

implication in this research.

2.3 Literature Review on Organizational Issues

Whilst there is no doubt that organizational performance is one of the key factors in

determining project performance. It is not the only factor. Nonetheless, having an

efficient project organization, making use of limited organizational resources and dealing

with issues such as communication is very important in any project.

2.3.1 Basic Preconditions for organizing

The term organization refers to the complex pattern of communication and relationships

in a group of human beings (Simon, 1976). The purpose for building these organizations

and for organizing overcoming limitations that particular groups of human beings may

have. Groth (1999) identifies six areas where we can run into such limitations. These

limitations include:

" Capacity for work. Both our need for organizations and their nature are strongly

dependent on the nature and amount of work that we can carry out.

* Memory performance. The basis for any intellectual activity and crucial for

accumulation of knowledge and for the management of complex relationships.

Both the storage capacity and the retrieval capabilities of our long-term memory

are of vital importance. So are the limitations of our short-term working memory.

45

Chapter 2

Literature Review

* Information processing capability. Closely related to the question of work

capacity, our ability for reasoning, problem solving, and decision making is

directly related to the amount of complexity we can handle.

" Communication bandwidth. The first of communication's two aspects. The

amount of information we can absorb and disseminate per unit of time is of

obvious importance.

" Communication range. This is the second aspect of communication. How far

and fast we can communicate is also central, as are the possibilities of

communicating not only over distance but through time.

" Emotions

2.3.2 Features of organizations

The basic features of an organization are the division of labor and the need for

coordination. The coordination efforts require both information processing and

communications. The division of a greater, common task into smaller ones that are

suitable for single persons is the defining feature of purposeful organizations. In

principle, there are two ways of dividing work: everyone does the same thing in parallel

or the total task can be divided into specialized subtasks. Once the overall task is

divided into more or less specialized jobs, it becomes a challenge to structure those jobs

by grouping them in a way that ensures both that the organization's mission is

accomplished and that the efficiency of the operation is sufficient to ensure the survival

of the organization.

46

Chapter 2

Literature Review

2.3.2.1 Division of labor

A basic determinant for organizational performance is the grouping of tasks. Grouping is

necessary to establish a system of coordination and supervision, of resource sharing,

and of performance measurement (Mintzberg, 1979). The basis for grouping can either

be by activity, output or customer. These three categories can be further decomposed -

activity into function or skill, for instance. Most often, different bases for groupings are

used at different levels in the organization. For instance, top management may be

grouped according to function (marketing, finance, production etc.) the middle level

according to market or product (or both) and production according to process or function.

The reason is, that different criteria for grouping may apply at various levels. The criteria

used for grouping normally reflect the interdependencies that are seen as most

important. Mintzberg (1979) counts four such interdependencies: work-flow

interdependencies (between separate tasks or stages), process interdependencies

(within the separate stages themselves), scale interdependencies (economies of scale)

and social interdependencies (social interaction). When organizations are drawn by

conflicting criteria, they may be accommodated by creating various kinds of matrix

organizations. Specifically in product development projects, these matrix organizations

could come in the form of cross-functional teams as will be described in subsequent

sections.

Grouping is in itself the primary instrument for coordination. Intuitively, we try to group

together those functions that seem to have the most immediate interdependencies.

Physical proximity allows richer communication and generally, the richer the

47

Chapter 2

Literature Review

communication, the closer, swifter and more flexible the coordination. The primary

group, where coordination is effected through informal communication and where

feedback is immediate, is the building block of all organizations. Once a group starts

getting larger, informal communication cannot support the necessary coordination

between the larger units in the organization. To accomplish this, the organization has to

communicate and process large amounts of information across groups and units. In

fact, many authors view communication and information processing as the main

bottlenecks for organized activities.

2.3.2.2 A taxonomy of coordinating mechanisms

The basic coordinating mechanisms as proposed by Mintzberg (1979) and Groth (1999)

are listed and described below and highlighted in Figure 2-3:

* Mutual Adjustment. The basic coordinating mechanism that occurs naturally

through informal communication between the group members when a group is

sufficiently small. This mechanism demands a high volume of communication

and ideally every member must communicate with every other member. The

corresponding structural configuration is the Adhocracy, a creative, project

oriented organization living in a complex and dynamic environment.

" Direct Supervision. When a group expands beyond control of mutual adjustment,

the required volume of communication rapidly saturates human communication

capacity. At this stage, someone must take the lead and start planning and

directing the work of others. The corresponding structure configuration is the

Simple Structure, a centralized organization in a simple, dynamic environment

48

Chapter 2

Literature Review

with a strong leader who keeps the organization simple and informal. Direct

supervision also breaks down fairly rapidly as the limitations to how many

workers one person can direct and supervise is a few tens. This can be solved

through delegation in an hierarchical organization.

* The other is to reduce the need for supervision in the first place which can be

achieved through standardization. Standardization of work and standardization

of skills.

Cor dintI o o rk

by Feedback

Mu tu a
Adjustment

Direct
iuPe rv is on

C -ordatior

by Prram

c. Work of skilis

Ta it Explicit
5kills Sk 15il

Figure 2-3 A taxonomy of coordinating

(Source: Groth, 1999)

mechanisms

2.3.2.3 Information Processing and Communication Capacities

As organizations are needed to overcome the information processing and

communication limitations of a group of individuals, organizations will seek to reduce the

need for information processing and communication as much as possible. This is

49

Chapter 2

Literature Review

achieved through the mechanisms described above. However, information processing

and communication is the very focus of product development projects (Galbraith, 1977).

As part of the planning process, managers will group tasks with great care, preplan as

far as the environment allows, and they will only maintain the flexibility that is needed to

cope with the variations the environment forces upon them. If they can, they will try to

influence their environment to make it more stable, and if their competitive situation

allows it, they may create slack resources or redundancy in order to tolerate lower,

internal performance. Redundancy is important because it encourages frequent

dialogue and communication (Nonaka, 1991). Redundancy also spreads new explicit

knowledge. The organizational logic of redundancy helps explain why Japanese

companies manage product development as an overlapping process where different

functional divisions work together in a shared division of labor.

If these measures are insufficient, an organization will have to increase its information

processing capacity in order to cope. Two main alternatives, increasing vertical

information processing capacity or creating lateral relations, are open (Galbraith, 1977).

The information processing capacity of a hierarchy is bound to be quite limited - if it

attempts to coordinate the activities of different units by communicating through the

formal structure, the organizational hierarchy is easily overloaded. The development of

lateral relations is therefore seen as the main remedy. There are four basic types of

relations or liaison devices, ascending from liaison individuals (persons with special

responsibility to inspire cross-unit coordination by informing about certain aspects of

their units' activities), to cross-unit committees or task forces (same purpose with more

50

Chapter 2

Literature Review

comprehensive participation), to integrating managers or departments (similar with a

stronger mandate and more clearly defined responsibility) to the full matrix organization

(there may be two, sometimes three intersecting chains of command). In that regard,

many of the recent initiatives in improving product development project performances

are about knowledge and organizational efforts.

2.3.3 Project Organization

2.3.3.1 Type of organizational structure

Wheelwright and Clark (1992) have identified four dominant organizational structures

around which project activities can be organized. The four basic types of development

team structures are the functional team, the lightweight team, the heavyweight team and

the autonomous team and are illustrated in Figure 2-4. Each type has its own unique

strengths and weaknesses. These are listed in Table 2-3.

51

Chapter 2

Literature Review

T y ps -if)ve.,pment Teams*
iFunCtinrsI Tn-m " Iructur _-

Fu-n - On

ENG M K

W Kk

/ee

2, LghtwetghiTem hu w

G G!

r.LCL Liio

S strong PM ifluence

3. Heavywelght Team Structure

F F Ij

.3 '

c

L

4 Autonomous Team Structure

j F M FM,.

FNG VFG K

M L L

Sexh bi'' f flt $ evek of t'Ms fhtt j $ r lh wk i p eed

vunrkn and iutt 'om , trer a~ heavywei t~ tvaCL fie '-r'N tuo-y th Hn

Iertdt a isLe pjc t adr-mld

Figure 2-4 Types of development teams

(Source: Wheelwright and Clark, 1992)

52

Chapter 2

Literature Review

Strengths Weaknesses

Functional 0 Managers control both * Limited coordination and
performance and integration
resource 0 Localized optimization rather

0 Able to leverage prior than as a system
knowledge

Lightweight 0 Stronger coordination 0 Less authority
with other teams

Heavyweight 0 Even stronger authority 0 More authority

Autonomous 0 Focus 0 Expands boundary of project
0 Cross-functional definition

integration 0 Risk to form new business unit
0 Possibly redesign of entire

product rather than utilize
existing opportunities

Table 2-3 Strengths and Weaknesses of different development teams

2.3.3.2 Diversity of team members

Recent studies also provide evidence that diversity influences both internal processes

and external communications both of which are related to the project performance. The

factors that have been found to be important are the diversity of tenure (McCain et al.,

1983; Wagner et al., 1984; O'Reilly and Flatt, 1989) as well as diversity of function

(Calanton and Cooper, 1981; Cooper, 1979; Voss, 1985). Similarity of tenure positively

affects communication within the team (Goodman et al. , 1987; Zenger and Lawrence,

1989). Functional diversity positively influences communications outside the team

(Dougherty, 1987). Members of similar functions share a common language and

orientation, which makes communications easier (Kiesler, 1978). So, a high level of

homogeneity within a group is likely to increase the cohesiveness and communication

within the group (Festinger, 1954; Hoffman, 1985; Newcomb, 1961; Ward et al., 1985),

but this same homogeneity acts to retard external communication (Ancona, 1987; Katz,

53

Chapter 2

Literature Review

1982), which is the key in cross-functional teams. Since both internal and external

communications are positively related to performance, diversity acts both positively and

negatively in affecting performance. The impact of diversity on project performance

therefore is quite complex.

In a study involving 45 product development teams in the computer, analytic

instrumentation and photographic industries, Ancona and Caldwell (1989, 1990) have

identified the correlations between team diversity, team size and project performance.

The results of their findings can be summarized in Figure 2-5 and Figure 2-6. These

results are consistent with others researchers findings (O'Reilly and Flatt, 1989,

Dougherty, 1987) and provides a dilemma as to whether cross functionality is really

beneficial. In order to sufficiently solve this dilemma, a more holistic framework will be

necessary.

54

Chapter 2

Chapter 2 Literature Review

Tenure Diversity Internal Process

- Team Rated
Performance

Functional A a C el
Diverity +Communication

Size

- -Not Significant

P < 0.01

S< 0.05

Figure 2-5 Team Diversity on Team Rated Performance

(Source: Ancona and Caldwell, 1989, 1990)

55

Literature Review

Tenure Diversity Internal Process

Innovation Performance

F(Source External Communication

Size

-- - - - - - - - - - - - - - - - - - - -Not Significant

p < 0.01

p < 0.05

Figure 2-6 Team Diversity on Innovation Performance

(Source: Ancona and Caldwell, 1989, 1990)

2.4 Literature Review on the product development process

2.4.1 The traditional product development process

Traditionally, product development processes and their respective project organizations

are based upon a sequential and functional approach to development (Wheelwright and

Clark, 1992; Zaccai, 1991). These have been described by many researchers with given

examples from industry (Wheelwright and Clark, 1992; Womack et al., 1990; Nevins and

56

Chapter 2

Literature Review

Whitney, 1989; Hayes et al., 1988). In this paradigm, the development process is a

series of development activities from conceptualization to product introduction. .

In this traditional product development process, the three traditional measures of project

success are time, cost and quality/scope. These measures are increased or decreased

to improve total project performance. This can take the form of trading performance

among the three measures in a zero-sum environment (Rosenau and Moran, 1993).

Substandard project performance can be caused by friction among functional groups,

little and poor coordination and bottlenecks in the flow of products through the

development process (Ulrich and Eppinger, 1994; Hayes et al, 1988). Researchers

have also observed pitfalls in the traditional methods where development project

performances fall below expectations (Wheelwright and Clark, 1992). These include a

constantly moving target, mismatches between functions, lack of product distinctiveness,

problem solving delays and unresolved policy issues.

In response to overcoming these symptoms, recent initiatives in the management of

product development projects have included initiatives with concurrent engineering, the

use of cross-functional teams and the development of product platforms. These attempt

to enhance the performance of development projects through the solving these pitfalls

directly. On the surface, the logic behind these initiatives seems apparent. In some

cases, there have been significant improvements to the adoption of these new methods

(Merrils, 1991; Nevins and Whitney, 1989). However, aggregated results have been

fairly mixed (lansiti, 1993; Clark and Wheelwright, 1993; Dean and Susman, 1991).

Researchers have attributed this contradiction to increased complexities and tightened

57

Chapter 2

Literature Review

constraints imposed by the interdependencies requiring higher levels of coordination

(Ulrich and Eppinger, 1994; Malone and Crowston, 1990).

Before we can understand why these initiatives have provided mixed results in actual

implementations, it is first necessary to evaluate what the value proposition intended to

be.

2.4.2 Recent initiatives in product development projects

The traditional paradigm of project management has its limitations and has begun to

cause problems in this day and age where product life cycles are becoming shorter due

to competitive pressures. Clark and Fujimoto (1991) describe the traditional paradigm as

appropriate "...when markets were relatively stable, product life cycles were long, and

customers concerned most with technical performance". The recent market and

technology changes and the limitations of traditional project management methods have

led to the development of a new image of effective product development (Nevins and

Whitney, 1989; Hayes et al., 1988). Although this new image is still emerging, its central

features have been articulated by researchers and applied by industry. The new

paradigm fundamentally alters both the product development process and organization.

Researchers currently envision product development as a collection of highly coupled

activities that are performed iteratively and simultaneously by cross-functional product

development teams (Ulrich and Eppinger, 1994; Wheelwright and Clark, 1992; Womack

et al., 1990). The dominant change in the product development process from the

traditional to the new paradigm is from sequential activities to concurrent activities

58

Chapter 2

Literature Review

(concurrent development). The dominant change in the development organization from

the traditional to the new paradigm is from functional departments to cross-functional

development teams. The dominant change in the product system architecture is from

the development of single products to the development of a family of products (product

platforms).

2.4.2.1 Concurrent development

Concurrent development's primary purpose is cycle time reduction. Concurrent

development improves cycle times by planning, facilitating and executing multiple

development tasks simultaneously instead of sequentially as in the traditional

development paradigm. This requires breaking each development activity into smaller

tasks and starting downstream tasks as soon as all prerequisites are met. Figure 2-7

illustrates the fundamental difference between the traditional ("phased approach")

development process and concurrent design ("overlapping approach").

59

Chapter 2

Literature Review

upstream cycle

one-dhot tansmissim
of Upstem information

Phaed
Approach

downsTram cycie

upteam cycle

Ovedrapping
Approach

eary release of
pteilminary information

Figure 2-7 Sequential and Concurrent Product Development Processes

(Source: Hayes et al., 1988)

Large reductions in cycle time can be realized by applying concurrent development

(Wheelwright and Clark, 1992; Womack et al., 1990; Nevins and Whitney, 1989). This

cycle time reduction, however, is gained at the expense of increased complexity (Smith

and Eppinger, 1995; Wetherbe, 1995; Osborne, 1993; Ford and Sterman, 1997; Ford,

1995).

2.4.2.2 Cross-functional development teams

A primary purpose of cross-functional teams is improved quality and effectiveness

through improved coordination. Cross-functional development teams are groups of

development specialists from different functional domains who work together on a single

60

Chapter 2

Literature Review

development project. The formation of cross-functional development teams is an

extension of the move away from functional-based groups to the matrix structures used

in the traditional development paradigm. Hayes et al. (1988) describe and Wheelwright

and Clark (1992) later refine a more detailed model of this shift with intermediate steps

defined by the level of influence of project managers. Restructuring product

development organizations away from function-based groups and toward cross-

functional development teams has also become a widely used approach reducing cycle

time (Clark and Fujimoto, 1991).

However, several researchers (Bacon et al., 1994; Clark and Fujimoto, 1991; Dean and

Susman, 1991; Takeuchi and Nonaka, 1991) and many firms (e.g. see Clark and

Fujimoto, 1991 pg 105) have realized that the formation of cross-functional teams alone

does not improve cycle time. They identify overextended managers as a contributing

factor in cross-functional team failures. Reasons cited by other researchers vary. Dean

and Susman (1991) found friction between members of the team from design and

manufacturing. Wheelwright and Sasser (1991) cite a lack of planning due to a lack of

information. Nevins et al. (1991) identified a lack of cross-functional skills in team

members and no one taking responsibility for coordination. Clark and Fujimoto found an

automobile development team consisting of only liaison people and no developers. The

team failed because it was ignored by those developing the product.

Other researchers (Klein, 1994; Ancona and Caldwell, 1991; Wheelwright and Clark,

1992) have also attributed less than expected improvements on product cycle time to the

increased complexity in managing cross-functional teams. Factors such as diversity

61

Chapter 2

Literature Review

increasing chances of internal conflict yet increasing the team's ability to communicate

with the outside world are ironies that contribute to such complexities (Ancona and

Caldwell, 1991). There is also the dilemma that having a broader base of expertise

within a team compromises the functional depth in that team as well as the complication

that expertise within the team changes over time. These factors increase the complexity

of management as there needs to be assurance that there is a fit between individual,

team and organizational needs (Klein, 1994).

Cross-functional work can be classified into two categories (Wheelwright and Clark,

1992). Systems to systems cross-functions are when there are interactions between

different sub-systems of the total system. The focus is on system integration and on the

interfaces between sub-systems. Systems to process cross functions, on the other

hand, are when there are interactions between the upstream processes and downstream

processes (e.g. design and manufacturing). With these cross-functional interactions, the

intention is to reduce coupling in the system architecture but unfortunately increase

coupling within the organization. Wheelwright and Clark (1992) point out that it is not

enough just to have members from each functional group, there needs to be cross-

element teams and communications. The complexity is so prevalent that Ancona and

Caldwell (1991) point out that there is no clear evidence that cross-functional teams

actually improve productivity.

Though there is not much research of the impact of system architecture on cross-

functional teams. The impact on development cycles is quite apparent. It does

therefore become beneficial to break the product down into systems that reduce the

62

Chapter 2

Literature Review

number of cross-chunk interactions (Pimmler and Eppinger, 1994; Suh.1990). This

suggests that a more holistic approach is necessary and that the arrangement of

subsystems is actually quite relevant.

2.4.2.3 Product Platforms

Meyer and Lehnerd (1997) define product platforms as "a set of subsystems and

interfaces that form a common structure from which a stream of derivative products can

be efficiently developed and produced. The assumption is that resources spent on

executing development of single products is better off spent on executing the

development of a platform of which a host of derivative products could be effectively and

efficiently created. Some examples of successful product platforms include Black and

Decker's power tools, Hewlett Packard's Ink Jet Printers and the Sony Walkman which

produced more than 160 products when they were introduced between 1980 to 1990

(Sanderson and Uzumeri, 1996).

In response to the market's increasing competitiveness to develop products cheaper,

faster and of higher quality, it becomes more essential for companies to generate a

continuous stream of products. Product platforms are planned so that a number of

derivative products can be efficiently created from the foundation common core

technology. In many ways, the use of product platforms does not deviate from the two

earlier concepts of concurrent engineering and cross-functional teams. Developing a

product platform is in fact concurrent engineering in developing multiple products at the

63

Chapter 2

Literature Review

same time. In the implementation, it is necessary also to use multidisciplinary teams

which is very much inline with the concepts of cross-functional teams.

Besides concurrency and multidisciplinary teams, the architecture of product platforms

also has a role to play in more effective development projects. Herbert Simon (Simon,

1969) shows that the evolution of complex systems from simple elements depends on

the numbers and distributions of potential intermediate stable forms. Hierarchical

systems with stable subsystems (as opposed to integrated systems) will develop faster

and of better quality. The classic analogy of two Swiss watchmakers is given as an

example. While both watchmakers made fine expensive watches and were in equal

demand, one prospered while the other struggled. One watchmaker assembled watches

individually bit by bit and would need to put down the partly assembled watch and

develop from scratch each time there was an interruption. The other watchmaker made

watches by constructing subassemblies of about ten components, each of which held

together as an independent unit. Ten of the subassemblies could then be fitted together

in a subsystem of higher order and ten of those constituted the whole watch. If an

interruption happened, instead of starting all over again, the watchmaker merely had to

reassemble that particular subassembly. Similarly, product platforms are about

managing the development and redevelopment of the subsystems rather than develop

the overall system from scratch with each new product. As a result, the overall

architecture of the product including how the subsystems interact with each other is

crucial in the design stage. In fact, the common product architecture can improve

development cycle times by facilitating a more streamlined development process and

more frequent model changes (Clark and Fujimoto, 1991 c; Smith and Reinersten, 1991)

64

Chapter 2

Literature Review

Meyer and Lehnerd (1997) propose a model for effectively managing the evolution of

product platforms. Coined the "power tower", an integrative model for managing

innovation, considers three essential elements of the enterprise including the market

applications, the product platforms and the technical and organizational building blocks.

Figure 2-8 shows how these three components fit together.

Lark I X ~Ii Li~w~

I Ifi~rk~9 i
~ r. I

I
~c~fl~I11v

rakt emnts
Sr n -!S -1

~~~~1K ~

I

Product Pa

CI'11111n Iluilrdin /

Figure 2-8 The Power Tower

(Source: Meyer and Lehnerd, 1997)

65

A A

Ii-I
'K

N

ED,111J

I- I 1 11 1 - Wj
I:,_ I' " ' , -1

Chapter 2



Literature Review

As can be seen, the technical capabilities and organizational capabilities work are both

crucial to successful product platform management. How organizational differences

affect product development cycles, seem to be somewhat lacking in the literature.

Meyer and Lehnerd (1997) also propose composite teams encompassing the essential

skills to create a robust platform. This is much in-line with the literature on cross-

functional teams.

2.4.3 Literature Review on System Architecture Issues

Under traditional product development processes, the primary measures for success

have been time, cost and quality. As described in previous sections, there are several

levers that can be used to increase product development project performances.

Traditionally, these have been organization and sequencing. The use of cross-functional

teams and concurrent engineering initiatives are in fact using these levers. The use of

product platforms, a more recent approach seems to be using yet another lever which, in

the opinion of this author, does not seem fully exploited. This lever is the product's

system architecture.

System architecture is basically the arrangement of the functional elements into physical

blocks, (Ulrich and Eppinger, 1994). An alternative definition describes it as the

embodiment of concept, and the allocation of functionality and definition of interfaces

among the elements (Crawley, 1999). Yet another definition describes it as the

structure, arrangements or configuration of system elements and their relationships

necessary to satisfy constraints and requirements, (Boppe - Crawley, 1999). In simpler

66

Chapter 2



Literature Review

terms, the system architecture defines the system's elements (sub-systems or

components) and their relationship with each other (e.g. how they would interface).

System architecting includes not only improving the performance of the product, have

implications on its production cost but also impacts the performance of the product

development project (Rechtin and Maier, 1997). The system architecture would

eventually not only have impacts on the projects sequencing, it will also have impacts on

the project's organization which is why the system architecture is such an important

lever in managing the product development project performance.

It has been suggested that system architecture uses, manages and balances the three

themes in architecture. These themes are basically simplifying complexity, resolving

ambiguity and focusing creativity (Crawley, 1999). More specifically, system architects

are involved with:

* Removing/reducing/resolving ambiguity at the interface with the upstream

process.

* Manage complexity and reduce apparent complexity

o Manage through abstraction, decomposition and hierarchies

o In a poorly architected system, complexity will rise down the downstream

process.

* Focusing creativity

Based on these themes, the level of ambiguity, complexity and creativity vary over the

life cycle of the product development project as shown in Figure 2-9. This concept is

relatively similar to the knowledge evolution paradigm proposed by this research as

67

Chapter 2



Chapter 2 Literature Review

levels ambiguity, uncertainty, complexity and creativity all change as knowledge of the

system evolves and is developed into reality.

Figure 2-9 Progress of product development projects

(Source: Crawley, 1999)

2.4.4 Summary of product development process literature review

The existing literature describes and documents recent fundamental changes in product

development processes and the related organizational structure from sequential,

functional approach to a concurrent, cross-functional approach. Even though there are

cases of significant improvements in product development projects, the aggregated

results have proven to be fairly mixed (Isanti, 1993; Clark and Wheelwright, 1993; Dean

and Susman, 1991). This suggests that even though such practices are moving in the

right direction, there seems to be a gap of knowledge using current methodologies.

Researchers have attributed this contradiction to increased complexities and tightened

constraints imposed by the interdependencies requiring higher levels of coordination

(Ulrich and Eppinger, 1994; Malone and Crowstone, 1990). In order to understand how

these complexities and interdependencies interact to cause these results, this research

68



Literature Review

proposes to analyze this product development process from a knowledge evolutionary

paradigm as opposed to the traditional task based paradigm used by most project

management tools today.

2.5 Literature Review on Project Management Frameworks and

Tools

2.5.1 Critical Path Method and PERT

One of the most commonly used project management tools is probably the CPM (critical

path method). It is a task-based tool that disaggregates the development process into

activities or tasks that are related through their dependencies. Although initially

developed for schedule control, it has been expanded to manage resources (and

therefore costs)(Moder et al., 1984; Willis, 1986; Mueller, 1986) and is based on the

traditional paradigm of development. Under CPM, each activity is treated as a

monolithic block of work described only by its duration. The temporal dependencies

describe the constraints which earlier (upstream) activities impose on later (downstream)

activities. The constraints are described with relationships between the beginnings and

completions of activities. The logic of the schedule can be represented in a network

diagram. A simple example of a network diagram is shown in Figure 2-10.

69

Chapter 2



Literature Review

1020

4 12

Figure 2-10 A network diagram for CPM schedule management

(Source: Halpin and Woodhead, 1980)

The fundamental basis of CPM is to identify a project's critical path, which is the

sequence of tasks whose combined durations define the minimum possible completion

time for the entire set of tasks. Earliest and latest possible start and finish dates of all

activities within a schedule determined by the critical path can be calculated, as can the

available slack (sometimes called float) times. The results of this planning and analysis

can be presented for broader communications with a Gantt chart. An example of a

Gantt chart from Moder et al. (1983) is shown in Figure 2-11.

70

Chapter 2



Literature Review

IMPro* Vow i o ___Vo

.40 ft*Wwso -rt

C40 IM

C40 j o

Rgue 12-1 Dr chert forconoret gravfty-arM dam.

Figure 2-11 A Gantt Chart Representation of a CPM Schedule

(Source: Moder et al., 1983)

Recent additions to the CPM provide several tools for trading away good performance in

one measure in another. For example, resource constraints may be put in to the project

model and the critical path based on satisfying these constraints can be recalculated.

Thus, the durations of activities along the critical path can be shortened by adding more

resources (Ulrich and Eppinger, 1994; Wheelwright and Clark, 1992; Moder et al., 1983).

The CPM also provides a time-cost tradeoff method for analyzing the effectiveness of

accelerating alternative activities. The effects of altering activity dependencies among

activities to shorten the critical path can be investigated (Barrie and Paulson, 1984;

Moder et al., 1983).

The CPM's ease of use and application is one of its key advantages. It provides a set of

fundamental tools for characterizing and managing a development project in temporal

terms. However, the method has critical limitations. The method assumes no rework

71

Chapter 2



Literature Review

of errors which are undiscovered when the phase is "completed" and that the rework of

errors discovered within a phase's duration is incorporated into the phase duration

estimate. The method cannot explicitly represent bilaterally coupled activities and

therefore cannot describe loops, feedback or iteration in a system. In order to model

iteration and rework, separate activities and tasks need to be modeled. Until the

activities actually finish, however, the number of times of iteration or where rework

occurs is not really known. One other weakness is that the CPM assumes that the

product development project remains unchanged over time. This prevents the method

from modeling time-varying and endogenous factors such as developer skill, training and

coordination issues. Therefore the CPM is unable to model the highly coupled aspects

and dynamic nature of the product development process. Finally, the CPM cannot

describe the rationale that underlies the structure description and therefore lacks depth

of information content.

PERT (Project Evaluation and Review Technique) uses an approach to schedule

management which is similar to CPM. This method was developed for processes such

as product development (Moder et al., 1983). PERT addresses one of the limitations of

the CPM by incorporating the uncertainty inherent in the estimates of the durations of

development activities into a scheduling tool. Three estimates (pessimistic, likely and

optimistic) of project duration are used for each activity to model the variability of

durations. The PERT method calculates the probabilities of a project meeting specific

objectives. PERT incorporation of duration uncertainty makes it more valuable in

managing less certain processes such as product development. However, PERT

requires lots of data and is limited in accuracy by the estimates of variability of activity

72

Chapter 2



Literature Review

durations. Like CPM, PERT cannot explicitly represent coupled loops or feedback,

assumes the project is static, and cannot model causes of process behavior.

2.5.2 Design Structure Matrix

In addressing the issues of concurrency and the iterative nature of couple processes, the

design matrix was developed (Steward, 1981; Eppinger et al., 1990). The design

structure matrix is a square matrix with the full set of development activities as both row

and column labels. Each cell within the matrix represents a unidirectional dependency

between two activities. Design structure matrices have been used to map (Smith and

Eppinger, 1991) and predict (Morelli and Eppinger, 1993) information flows among

activities. The matrix can be used to identify information flows as sequential, parallel or

coupled and for the efficient ordering of development activities. Chao (1993) applied the

design structure matrix to study the use of iterations in making time/quality tradeoff

decisions. The focus was a portion of product development at a large semiconductor

firm (DEC). Two strategies for making time/quality decisions (faster iteration and higher

quality iteration) were proposed and tested.

Osborne (1993) applied iteration maps and the design structure matrix to describe

product development at a leading semiconductor firm (Intel) in terms of cycle time.

Osborne investigated variability in cycle times. His conclusions about the major factors

of iteration on cycle time include iteration and project complexity. His work

demonstrates the need for the additional investigation of the impacts of dependencies

among development activities on cycle time. The design structure matrix is a potentially

73

Chapter 2



Literature Review

useful tool in describing and investigating information transfer and iteration for cycle time

reduction. But the design structure matrix cannot directly model the structure of a

development process over time. Like the CPM, the design structure matrix assumes

that the dependencies between phases are fixed or that the distribution is fixed.

Osborne's research supports other work which suggests that iteration in product

development is a primary cause of the dynamic nature of product development process

(Cooper, 1993a,b, c, 1994; Ford et al., 1993; Seville and Kim, 1993; Kim, 1988).

Iteration is therefore suspected to be a primary driver of cycle time performance as well

as a measure of quality.

2.5.3 Principles of Axiomatic Design

The traditional product development process is a general problem-solving paradigm that

divides the decision making process into a series of stages, and these stages are

typically outlined as follows: problem identification, formalization of goals, generation of

solution concepts, evaluation of concepts and selection of the best solution and

implementation. Implementation of this approach relies on hierarchical decomposition of

a problem into sub-problems, and the generate-and-evaluate process is invoked

iteratively at each level of the hierarchy (Mar and Palmer, 1989). Thus a system concept

is initially identified to satisfy an overall set of requirements. This initial concept is then

partitioned into sub-systems, components and interfaces that must be configured so as

to satisfy the original set of requirements plus any sub-requirements related to

serviceability, ease of manufacture and maintenance.

74

Chapter 2



Literature Review

Though this provides a logical framework for design, the traditional process does not

provide a prescriptive methodology for selecting an optimal solution. The principles of

axiomatic design can be seen to formalize the concepts and provide prescriptive

methodologies for selecting optimal solutions. The resulting design methodology is a

consistent framework for attacking performance-based design problems at various levels

of abstraction.

Axiomatic design is a formal strategy for partitioning and evaluating solution alternatives,

without which it is difficult to advance directed, comprehensive solutions because there

is no mechanism to prevent the designer from trying to force-fit traditional concepts.

Axiomatic design (Suh, 1990) also defines the design process as a hierarchical activity

where the solutions are based on a sequence of stages pertaining to problem definition,

solution synthesis, solution evaluation and implementation. However, the advantage of

axiomatic design versus traditional systems engineering is the fact that the

decomposition and decision-making processes are made explicit by the following key

concepts:

* Existence of different design domains.

" Definition of the decomposition process in terms of a zigzagging between design

domains.

* Requirements that the best solution satisfies certain design axioms.

Firstly, the transition from an abstract statement of need to a physical entity is not linear

but cyclical, depicted as a helix (Hubka, 1982; Suh, 1990). Successful transition

requires continuous exchange of knowledge between and within different design

75

Chapter 2



Literature Review

domains. These domains are shown in Figure 2-12. Problem identification corresponds

to a customer's statement of needs and occurs in the client domain. In the development

of single-item products, such as a building, the client or his agent takes an active role: a)

initiate the order for the project, b) express desired performance requirements, and c)

establish project cost constraints. In the manufacture of mass-produced products, the

client domain refers to a market of consumers, and their active input is often provided by

proxy in the sales or product planning sections of the manufacturing organization. In

either case, designers also use the client domain as a buffer for gaining an

understanding of their particular tasks and for reasoning about the functional

requirements for subsequent design stages or subordinate design disciplines.

FRI DV1
NEEDS FR2 DV2

CLWIMT FUNCTIONAL PHYSICAL
DOMAIN DOMAIN DOMAIN

PV1
PV2

PROCESS
DOMAIN

Figure 2-12 Design Domains (Axiomatic Design)

76

Chapter 2



Literature Review

The output from the client domain is then translated in the functional domain into a

combination of objective and subjective goals or functional requirements (FRs). In an

office development project, for example, leasable space is often specified as an

objective requirement related to economic feasibility and aesthetic properties are

subjective criteria to promote tenant interest. Starting with the stated FRs, the design

engineer generates a solution by defining design variables (DVs) so as to satisfy the

FRs and describe the solution's physical make-up. This process of synthesizing a

design solution constitutes a mapping between the functional and physical domains. In

turn, the DVs generated in the physical domain are interpreted as a set of requirements

for implementation in the process domain. The engineer responsible for designing a

construction plan or a manufacturing process plan maps these requirements to a

sequence of actions or process variables (PVs) to affect a result.

Secondly, the concept of decomposition refers to the fact that the output of each design

domain evolves from abstract to concrete ideas in a top-down hierarchical manner. The

FRs for a design project are decomposed into a hierarchical structure of sub-objectives.

The total design description at any level of the hierarchy consists of all components,

attributes and relationships needed to satisfy the stated sub-objectives. Various sources

(Hubka, 1982; Hubka and Eder, 1988; Pahl and Beitz, 1988) recognize that the mapping

process must take place over a number of levels of abstraction so as to define sufficient

design data to support construction or manufacturing activities. For example, Hubka

(1982) recommends typically six levels of design detail while Pahl and Beitz (1988)

identify three. In some systemic approaches to design, the conceptual design stage

involves decomposition of the overall functional requirement(s) into an appropriate set of

77

Chapter 2



Literature Review

sub-functions followed by a one-to-many mapping between each sub-function and

feasible function carriers. Solution concepts are obtained from the synthesis of various

function carriers into composite structures or layouts. The feasible solutions are then

detailed during the succeeding stages of design refinement in order to support the

original sub-functions and to satisfy other design requirements, such as durability,

aesthetics, and ease of production.

Axiomatic design also recognizes that the mapping between functional requirements and

design variables must take place over a number of levels. Functional decomposition is

continuous and precedes the generation of design variables at all levels of abstraction.

(Suh, 1990). Thus the reasons for concept refinement during the later design stages are

made explicit. In addition, design for ease of construction or ease of manufacture is

considered concurrently because the hierarchical decomposition in one domain cannot

be performed independent of the evolving hierarchies in the other domains (Suh, 1990).

As a result, prior to decomposing a parent set of FRs, the FRs must be mapped

successfully to a set of DVs and these DVs must be mapped, in turn, to an appropriate

set of PVs. The decomposition between the functional, physical and process domains

are shown in Figure 2-13.

78

Chapter 2



Literature Review

FUNCTIONAL PHYSICAL PROCESS
DOMAIN DOMAIN DOMkIN

Fri DV PV1

FRI FR2 - ~DVI DV2 - ~FyI PV

Fril 1 M2 Frt21 FR22* DVI I DV12 DV21 DV220- PV2I PVl2 PV21 PV22

Figure 2-13 Hierarchical structure and Zigzagging

Continuous zigzagging through the process or construction domain is a robust strategy

for advancement of manufacturable solutions. It allows concurrent development of

design and construction plans. In addition, the manufacturability of the product can be

reviewed in terms of the required systems and activity sequences, rather than relying on

the detailed calculation of the man-hour and material expenditures necessary for

constructing the discrete building elements. The latter approach to improved

manufacturability is a sub-optimization scheme, and empirical studies (Griffith, 1984)

have indicated that reliance on such elemental approaches does not significantly reduce

total costs.

The most important concept in axiomatic design is the existence of design axioms which

provide a rational basis for the evaluation of proposed solution alternatives and the

subsequent selection of the best solution. The intent of the design axioms are to allow

explicit objective reasoning about the merit of each proposed design solution and the

identification of the best solution from among many alternatives.

79

Chapter 2



Literature Review

The first axiom focuses on the mapping between "what is required" (FRs or DVs) and

"how do we achieve it" (DV's or PVs). The second axiom establishes information

content as a relative measure for comparing alternative solutions. The axioms may be

stated in the following procedural form (Suh, 1990):

AXIOM 1 The independence axiom

In an acceptable design, the mapping between the FRs and DVs is such that each FR

can be satisfied without affecting any other FRs.

AXIOM 2 The information axiom

Among all proposed solutions that satisfy axiom 1, the most optimum design has the

minimum information content.

2.5.4 Systems Dynamics

2.5.4.1 Dynamic Modeling of Projects

Whilst some research approaches (such as the Design Structure Matrix) identify some

dynamic consequences of different project structures on project performance, a

description of the process structure in the form of the causal relationships that generate

project behavior is needed to investigate how project processes drive performance. The

system dynamics methodology, developed by Jay Forrester (1961) at the Massachusetts

Institute of Technology captures such causal relationships between variables and their

impacts on each other in an ever changing environment.

80

Chapter 2



Literature Review

2.5.4.2 System Dynamics Models of Product Development Projects

Several researchers have built system dynamics models of product development.

Roberts (1974) built a relatively small (30 equations) project model which investigated

the management of R&D projects. The primary material which flows through the product

development process is generic "job units". Completion of job units is based upon

perceived progress, which includes both actual progress and perceptual errors. These

decisions include manpower changes, which directly impacts the job unit completion

rate.

Cooper (1980) and Reichelt (1990) described the construction and use of large system

dynamics models by Pugh-Roberts Associates of large scale shipbuilding operations for

claims settlement. Cooper's model included product development in each of the two

projects modeled. This model focused upon rework caused by customer changes.

Manpower was primary cost driver and therefore key to the model structure. The model

simulates the major phases of shipbuilding operation. Cooper modeled (1980) and

subsequently modeled (1994, 1993a,b, c) the impacts of rework in projects on cycle

time. The model simulates the initial completion of development tasks (basework) and

corrective action (rework). A delay in discovering defects slows the completion of

unflawed development tasks. The process structure propagates change across project

phases with interdependent schedules and disruptions which reduce quality and require

rework. Reichelt (1990) describes the dependence of downstream project activities on

the completion of upstream activities in a two-stage process. Cooper and Reichelt's

work adds three valuable concepts:

81

Chapter 2



Literature Review

1. the ability of customers to influence cycle time and increase coordination needs

in product development processes;

2. the distinction between direct (first-order) and indirect (higher-order) impacts and

3. competition for resources among product development activities.

Richardson and Pugh (1981) developed and explained in detail a model focusing upon

the management of single R&D projects. Richardson and Pugh use rework to expand

on the resource effectiveness portion of the fundamental structure used by Roberts.

They distinguish between work performed satisfactorily and tasks requiring rework. Both

satisfactory tasks and rework are modeled explicitly. This allows the incorporation of

new and potentially important influences on cycle time and coordination such as the

error rate in development activities and the rate at which errors are discovered.

Richardson and Pugh identify the impractical nature of some cycle time reduction

policies such as assuming no rework or assuming a constant project scope. They use

their model to illustrate the effects of different assumptions and policies on cycle time.

Abdel-Hamid (1984) modeled software development to better understand project

management in light of cost overruns, late deliveries and user dissatisfaction. The

model simulated software production as influenced by human resources management,

planning, and controlling. In this model schedule pressure influences resource quality

through the prediction of work force size necessary to complete the project on schedule.

The model's schedule pressure influences resource effectiveness through productivity,

the error generation rate and worker allocation to quality assurance.

82

Chapter 2



Literature Review

Jessen (1990) investigated the behavior and impacts of project manager motivations

with a model based upon resources, rework, targets and resource strategy. This model

focused on the roles of goal seeking (balancing) feedback loops in projects. It expands

the description of the motivational structures in projects.

Homer et al. (1993) modeled project process structure explicitly by introducing "gate

functions" to describe the constraints on work progress imposed by both preceding

phases and the work within phases. This model uses graphical table functions to

describe these precedence relationships in more detail than possible with the Critical

Path or PERT methods. For example, two phases can be described as very tightly

coupled with the upstream phase limiting the work available throughout the duration of

the downstream phase, not just limiting the start or finish of work as in the critical path

methods. Homer et al.'s model uses both available work and resources to constrain

progress. The information prerequisites in the model described in this work has its

foundation in the Homer et al. model.

Seville and Kim (1993) built a model based on Kim's earlier model (1988) of product

development at a computer hardware company. These models simulated the flow of

product development tasks through two stages: product design and process design.

Seville and Kim use different levels of coordination between product and process

engineers with an exogenous coordination fraction decision. Seville and Kim contributed

an explicit structure for modeling the coordination effects on resource quantity and

effectiveness. They also used a two-stage ageing structure and modeled the impacts of

factors such as productivity to each stage separately.

83

Chapter 2



Literature Review

Ford et al. (1993) studied the interface between two product development groups within

an electronic entertainment equipment manufacturer (Ford and Paynting, 1995). The

model focused on the relationships among coordination, schedule and quality. They

explicitly modeled required rework due to errors due to errors and optional iteration to

meet a quality goal. This allowed them to incorporate the influences of schedule

pressure on decisions about iteration for quality. This illustrates modeling cycle time

reduction as a tradeoff between time and project quality. Ford et al. add a distinction

between required and voluntary iteration in product development.

Whilst these researchers have covered the three domains (monitoring and control,

rework and human resources) as identified by Rodrigues and Bowers (1996), it is Ford

and Sterman (1998) that tie these together with the process structure. Ford and

Sterman (1998) develop a product development model which explicitly models all four

performance drivers - process structure, resources, targets and scope. They have

demonstrated the importance of distinguishing process dynamics from other project

dynamics and have added development process to the three domains identified by

Rodrigues and Bowers (1996). More specifically, Ford and Sterman (1998) have

identified process concurrence relationships as an important aspect impacting process,

resource, scope and targets on project performance.

84

Chapter 2



Literature Review

2.5.4.3 Significant System Dynamics structures

In the various system dynamics models cited above, several underlying structures are

found to cover the four performance drivers mentioned. As in general system dynamics

models, although individual cycles do not describe the behavior of the system as a

whole, the impact of the individual cycles are profound. These cycles are described

below:

* The labor structure

Time Remaining

Schedule Pressure

+ I Estimate Time
Labor Intensity +Required to complete

Head Count + +

Work Week

Ba
Labor Quantity

Work Remaining

+ Task Completion
Rate

Figure 2-14 The Labor Structure

The labor structure includes three balancing feedback loops which increase labor

effort as a response to schedule pressure. The response can adjust the amount of

effort (Labor Quantity), how hard people work (Labor Intensity) as shown in Figure

2-14. Although existing models generally assume that labor is the dominant

85

Chapter 2



Literature Review

resource in product development projects, development resources other than labor

can be modeled with the same structure (e.g. Cooper, 1980)

. The schedule structure

Expec
(+ C

Schedule Pressurc

Time to Deadline
C e Date

Calendar Time

0
ted Time to
mpletion

Deadline Dat

Resistance to Slip
Deadline

Figure 2-15 The Schedule Structure

The schedule structure as shown in Figure 2-15 describes another common project

management tool, slipping the deadline in response to schedule pressure. Many

models include this feedback loop (Roberts, 1974; Richardson and Pugh, 1981;

Abdel-Hamid, 1991).

. The rework structure

86

Chapter 2



Literature Review

Schedule Pressur

Error Generation B
Rate + Work Remaining

Apparant Task
Completion Date

Tasks Completed
without errors

Tasks Completed with Tasks with errors
Undiscovered Errors discovered

Figure 2-16 The rework Structure

The rework structure describes the process where work perceived to be completed is

not actually complete due to errors. It is distinguished from quality by the fact that

rework must be done whereas quality work is optional. Although not solely

responsible for, rework explains many symptoms we see in projects. For example,

the 90% syndrome which reflects why a project is persistently 90% complete is

explained through the rework structure as 90% is always perceived to complete but

little "real" progress is made due to rework (Ford and Sterman, 1999).

0 The available work structure

87

Chapter 2



Literature Review

Basework Available

Project Scope + but not completed

+

Total Basework +
Available to Basework

Precedence Complete Completion Rate

Constraints + +0

Upstream Task Basework +
Release Rate Completed

Figure 2-17 The Available Work Structure

The performance of projects can be constrained by the availability of work. This

structure explains the critical path in the CPM/PERT methodology where work

cannot proceed if precedence constraints are not met. The structure shown in

Figure 2-17 shows that work can only proceed based on the resources available

(basework completion rate). However, if basework is not available (due to

precedence constraints not met), only available basework is executed.

0 The quality structure

88

Chapter 2



Literature Review

- Quality Standard

B+

Pressure to decrease Quality of Work

project requirements +

+ Quality Gap

Product Quaity Tasks Completed
R) without errors

Work remaining +

Figure 2-18 The quality structure

The quality structure represents the repetition of tasks undertaken to meet quality

requirements (Quality Standard). This repetition is distinguished from those in the

rework structure where the repetition is mandatory and required for basic product

functionality. Repetition in the quality structure is "optional" and can be adjusted by

reducing project requirements. This is particularly influential as project managers

have major impact on number of iterations through the setting of quality targets.

0 The scope structure

89

Chapter 2



Literature Review

Pressure to
+ Decrease Project +

Requirements
Work Queue

Work Remaining

Task Percent of Project
Completion Scope Available

Rate Project Scope

Figure 2-19 The Scope Structure

The scope structure as shown in Figure 2-19 represents the adjustment of

project size.

2.5.4.4 Evaluation of System Dynamics Models of Product Development Projects

Although current research ties together the four performance drivers - process structure,

resources, targets and scope with the six major project structures. The impacts on

project performance due to organizational structure and system architecture have not

really been studied. This research intends to develop a framework that ties in the

organizational structure and system architecture to the project structure. This would be

achieved through changing the model structures from a viewpoint of tasks processed to

a viewpoint of knowledge transfer between team participants.

90

Chapter 2



Literature Review

2.6 Summary of Literature Review

This chapter has covered some of the recent research in the fields of knowledge

management, product development, organizational theory and project management

tools. Recent initiatives in product development projects, particularly concurrent

engineering, cross-functional teams and product platforms have been used to improve

product development projects. Results, however, have been fairly mixed. This indicates

that there may be some missing ingredient to improving product development project

performances.

The principle of knowledge being embodied within artifacts provides the underlying

philosophy of being able to track the collective knowledge in a product development

project as it evolves over time. Although not normally viewed as such, the recent

initiatives in product development processes can also be viewed upon as knowledge

management initiatives by ensuring knowledge within the project organization is easily

accessed and disseminated quickly once further knowledge is generated.

The review of project management frameworks and tools has shown that most of these

tend to be task-based (i.e. representing the project as a breakdown of tasks). As a

result, these frameworks fail to capture the iterative nature of these projects. Although

recent use of dynamic simulation tools does model rework, this tends to be primarily

rework due to mistakes, error or failure to meet quality standards. It cannot be imagined,

however, that iteration will not happen in the absence of mistakes, error or low quality.

In fact, any basic text in product design will indicate that the process is an iterative one.

91

Chapter 2



Literature Review

The iteration process in product development project is one that is not captured or

represented in current research and project management methods.

2.6.1 Research Needs

The lack of accounting for iteration and rework in projects accounts for a big chunk of the

underperformance of product development projects. The common saying that an

accurate estimate of project duration is to take your best guess and multiply by two holds

true in many cases where the additional factor is used to account for rework, change in

scope and other forms of iteration.

As traditional product development project management techniques are task based, the

only means of modeling change in scope, rework and iteration is to place in additional

tasks or activities. However, one seldom understands how much iteration needs to be

modeled for. It is also impossible to estimate the duration of these tasks. Further,

rework and iteration themselves are repetitive in nature and placing in additional tasks

and activities in exactly the same format, does not really add value to the project model.

If there is a change in scope, it becomes even more difficult to model the breakdown of

tasks and activities since one does not know ahead of time how the scope will be

changed and what type of tasks are needed.

Just as a basic determinant for organizational performance is the grouping of tasks,

there is no doubt that organizational performance is a key determinant of project

performance. It is, unfortunately not the only determinant. Given a pre-determined set

92

Chapter 2



Literature Review

of tasks, organizational structure is a very important factor in the project management

process. Rarely, however, do product development projects come prescribed with a pre-

determined set of tasks. How the project performs also depends greatly on how the

project is broken down into tasks. Very often, tasks are broken down in accordance with

the organizational structure. It can therefore be appreciated that product development

projects are basically coupled problems where tasks need to be broken down according

the organizational structure and where the organizational structure is designed

according to the task breakdown at the same time.

To circumvent this problem, one possibility is to have product development project

models that model the information flow and knowledge generated. Such a framework

would also need to account for the iterative nature of projects as well as the coupled

nature between system architecture, task breakdown and project organizational

structure.

This research proposes such a framework. By tracing the evolution of information and

knowledge about the product and systems in product development projects, we seem to

be able to account for most of the issues mentioned above.

2.6.2 Proposed Knowledge Evolution Framework

Under the proposed knowledge evolution framework, the state of information and

knowledge over the duration of projects is tracked. The information and knowledge

intended to be tracked encompasses all information and knowledge generated including

93

Chapter 2



Literature Review

those embodied in documents, prototypes, and partially developed products and in the

processes that produce products.

In this framework, the knowledge of the product evolves over time as it is transformed

from conception in a few individuals to detailed engineering knowledge in more

individuals to knowledge embodied in physically into the products/prototypes. The

process by which knowledge evolves is one where individuals constantly create and

transfer the knowledge to other members in the project team. The other members will

make use of the existing knowledge, assimilate with other sources of knowledge and

create new knowledge before codifying and transferring to other members. Since most

knowledge is rooted in tacit knowledge, the infrastructure for transfer of knowledge and

information needs to suit the purpose of acquisition, creation, transfer and utilization of

information and knowledge needed the product development process.

At any state, there is always uncertainty about the knowledge that has been generated

up till that time. This uncertainty does vary over time as well. As the knowledge

evolution framework suggests, this uncertainty is the underlying trigger for iteration. Its

evolution is just as important and is one of the underlying themes of this research.

94

Chapter 2



Chapter 3 Model Description

3.1 Introduction

This chapter develops both the knowledge evolution framework as well as the model

used for the analysis of projects. The knowledge evolution framework presents a model

of a product development project from the viewpoint of how knowledge pertaining to the

project is developed and evolves. This is opposed to traditional project management

frameworks that are task-based and need explicit task definition to model the project.

The knowledge evolution framework presents a fresh vantage point and provides further

insight into product development projects.

The background theory of the knowledge evolution framework that is based upon other

researchers' work is presented in the first part of this chapter. The second part of the

chapter explains some of the specific features of this knowledge evolution model that is

then used to model the Delta Design process in the subsequent chapter.

95



Model Description

3.2 Theoretical Background

3.2.1 Communication

In the recent initiatives of the product development process as described in the

preceding chapters, the one common recurring theme is communication. Information

processing capacity forms one of the major bottlenecks in the product development

process (Galbraith, 1977) and project organizations should be designed to either

maximize the capacity or to reduce the need for communication as much as possible.

While concurrent engineering is based on utilizing as much of the information processing

capacity of a project organization as possible, concurrent development teams minimizes

the extent to which information needs to be moved around the project organization.

There are several measurements when we look at communication efficiency in project

organizations. These can be listed as follows:

* Dimensions of communication

* Mode of communication

" Dispersion (or distance) of organization

" Diversity

These measurements are discussed briefly below.

3.2.1.1 Dimensions of Communication

A critical element affecting the performance of the project team is the dimension of

communication (Wheelwright and Clark, 1992). Four dimensions of communication

96

Chapter 3



Chapter 3 Model Description

pattern - richness, frequency, direction and timing - jointly determine its quality and

effectiveness. Figure 3-1 presents the dimensions and the spectra through which

communications can exist.

im ns (f r L' Crn munc n Upstre! Iam TI L Ind

sparse: Rr
documn, >~o C

camputar a kmad su

Lowpic p'

c 4c 0

Lab'
en~~~~ pe w bgn,5t

uuofmIniatt 1em 'T psram- cfr' ''.~'*, deign an~d d vwn':trea LI Ir 2xLml 4*

p mAI'- r enaea Is:Up di Th how pmnt rdp 'n c a spctu for eac

m-_-J2 UpMi fo IuY o

Figure 3-1 Dimensions of communications

(Source: Wheelwright and Clark, 1992)

97

3r-

-J
J



Chapter 3 Model Description

3.2.1.2 Mode of communication

Figure 3-2 Four modes of upstream-downstream interaction

(Source: Wheelwright and Clark, 1992)

98



Model Description

Besides the dimensions of communication pattern, there is also the mode of

communication. These are illustrated in Figure 3-2 and also affect the performance of

the project organization, particularly where there is concurrency involved.

Concurrent engineering attempts to integrate upstream and downstream processes as

much as possible. Based on task-based management tools such as CPM and PERT,

integrating the processes is possible as long as pre-requisites for the downstream

processes have been met. This is also accounted through the "Work Availability

Structure" in the use of system dynamics in project management. Increasing project

performance is therefore about ensuring that work is always available and thus

optimizing project resources.

This research, however, will show that integration brings on added complexity through

rework and iteration. So, even though pre-requisites are met, the quality and knowledge

segregation implies less than ideal circumstances for an earlier start. This may

ultimately lead to longer durations through more rework or iteration.

3.2.1.3 Dispersion of Organization

In a study of communications patterns of R&D laboratory workers, the most successful

R&D groups include individuals who spend as much time communicating outside as

inside the company. Such individuals search for new technologies, participate in the

definition of industry standards and bring to the lab a wealth of competitive information

(Allen, 1977). In the same study, Allen also noted that the probability that two people will

99

Chapter 3



Model Description

communicate decreases dramatically as the distance that separates them increases.

This is illustrated in Figure 3-3, which represents a regression from data of seven R&D

organizations.

'igure 8A4 Pro ut bab!IL C i n ofi as a Funct tin of I)stance
Comrving :fr )r4u oiztninat Si out t ban

15 Z
0

Ds e i rr;? r 5 o mmue

Figure 3-3 Communication and Distance

(Source: Allen, 1977)

Extending the concept of reduced communications when distance between participants

are increased, it can be envisioned that any other similar "barriers" to communication

would have a similar impact. Some of these "barriers" are listed as follows:

* Geographic distance

* Organizational boundaries

* Functional boundaries

100

Chapter 3



Model Description

These boundaries or "barriers" can be compressed into a single measurement which we

coin organizational dispersion. Organizational dispersion not only measures the

physical distance between participants in the project organization but also takes into

account whether the participants are working cross organizationally and across

boundaries. Each of these "barriers" represents increasing reduction in communication

frequency, probability and volume.

Unlike R&D organizations, however, product development project organizations have

pre-determined communication processes. Because of project goals, certain groups of

participants, for example, will be required to hold regular meetings for communications.

What increased dispersion means, however, would allow for increased formal

communications and decreased informal communications. This has great impact on the

impact of iteration and rework.

3.2.1.4 Diversity of organization

Based on the dispersion concept mentioned above, having uniform teams (in terms of

functionality and organizations) makes more sense. This is, in fact, contrary to the use

of cross-functional teams where organizational and functionality dispersion is increased

but the geographic distance between participants is reduced.

Ancona and Caldwell (1989, 1990) have, in fact, found that diversity both helps and

harms in product development project performance. Further, their results are consistent

101

Chapter 3



Model Description

with other researchers (O'Reilly and Flatt, 1989, Dougherty, 1987). The reason for this

paradox is the need to differentiate between communication within the team (internal)

and communication outside the team (external) as discussed in the preceding chapter.

With this research, one can begin to understand why previous implementations of cross-

functional teams have yielded mixed performances. Without fully understanding the

causal effects of the team makeup, the results are truly not predictable. Unfortunately, it

is not possible to model the organizational changes in traditional task-based models.

The closest possibility is to reduce time to individual tasks due to closer collaboration

and quicker comment throughput. This, however, does not reflect the whole picture. To

understand the nuances behind the use of cross-functional teams, an information or

knowledge evolution based view of the project must be used.

3.2.2 System Architecture

3.2.2.1 A coupled system at the root level

The literature review has suggested that system architecture has some bearings on both

the project organization as well as the task definition for the project. Likewise, very often

system architecture is determined by the skill sets that are available within the project

organization (or anticipated project organization).

Figure 3-4 shows a simple diagram with the different causal relationships between the

elements of the project structure.

102

Chapter 3



Model Description

Organizational
Structure

Work Breakdown System
Structure Architecture

Figure 3-4 Elements of Project Structure

Indeed, many researchers propose that it will be more efficient if the process is

decoupled (Steward, 1981; Suh, 1990). This is, however, difficult as the problem is

coupled at the root level as indicated by Figure 3-4 above.

Over time, many types of product development projects have established traditions,

standards and codes of practice. These are established to reduce some iteration by

using acceptable industry norms. These industry "norms" dictate the way project

organizations are formed since every role has its place and project procedures are used

since "everyone is used to this way of working". In an economy where project

performance inefficiencies can be lived with, these norms provide structure without trial

and error and unnecessary iterations. However, with the commercial pressures of today,

any competitive advantage needs to be used. Unfortunately, in certain industries where

103

Chapter 3



Model Description

such norms have become so entrenched, a different approach could yield less ideal

results.

Many industrialists will recognize that often the system architecture and the

organizational structure match each other in terms of breakdown and scope of work.

Traditionally, organizational structure and system architecture reflect each other quite

well. But does organizational structure drive system architecture or vice versa? The

solution seems to lie in tradition. For example, in the design and construction of

buildings, the system architecture of buildings have driven the specialization of trades

leading to current industry relationships between architects, engineers and contractors.

This "natural" progression seems to be a result of efforts to ease management through

the division of labor and specialization of trade as discussed in Section 2.3 above. As

artifacts and the development processes increase in complexity, it is observed that such

"natural" project structures may no longer be optimal and "experimentation" with

techniques such as concurrent engineering, cross-functional teams and knowledge re-

use. The underlying common philosophy this research assumes is that the move

towards the optimization of information and knowledge transfer as a means of increasing

project performance.

It is important to distinguish between information flow and knowledge flow. Having

efficient means of transferring information is no guarantee of better project performance.

The information that is transferred needs to be relevant, generated in a timely fashion

and delivered and made available to the right persons. Having efficient and effective

knowledge management is thus imperative to increasing project performance.

104

Chapter 3



Model Description

Understanding not only how knowledge is created, utilized and transferred but what type

of underlying organizational structure and system architecture are needed to optimize

the knowledge activities is the philosophy of the underlying knowledge evolution

framework.

3.2.2.2 Stable subsystems

Herbert Simon's watchmaker analogy (2.4.2.3 Product Platforms; Simon, 1969)

demonstrates that hierarchical systems with smaller subsystems evolve quicker than

large non-hierarchical systems. The speculations on speed of evolution were first

suggested through an information theory estimating the time required for biological

evolution (Jacobsen, 1995). Jacobsen's model suggests that the expected time required

to reach a particular state is inversely proportional to the probability of the state - hence

it increases exponentially with the amount of information of the state. Simon's model

introduces the concept of levels and subassemblies, which produces much smaller

estimates.

A system dynamics model is created based on Simon's model. In this model, the total

number of parts in each product is 1000. The number of parts per assembly (ppa)

represents the number of parts (on average) there are in each assembly. The number of

parts per product divided by the number of parts per assembly therefore represents the

number of sub-assemblies there are in each product. Figure 3-5 shows the model that

was created with the equations in Appendix 1.

105

Chapter 3



Chapter 3 Model Description

Random
Generator

Probability of Time to Time to
interuption disassemble assemble

Vtrpto Parts in Rate Parts in
Individual incomplete complte

PatsAssemblies Assemblies
Rate of asseml y

Base Rate of sembly
Assmbly

No of assemblies

Parts per complete

products

No of products
complete

Figure 3-5 System Dynamics model of Herbert Simon's watchmaker analogy

Figure 3-6 shows the different rates of evolution for the different number of sub-

assemblies. Even though the base rate of assembly of 10 parts/hour is held constant,

the impact to the final rate of production varies quite significantly due to loss of work due

to interruptions.

106



1,000

750

500

250

0

Model Description

Graph for No of products complete

- -

0 25000 50000 75000 100000
Time

No of products complete ppa=10 ....... .... ....... ........... . ................. ........... . ............. Dmnl
No of products complete :ppa=50 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Dmnl
No of products complete: base(ppa=100, - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Dmnl
No of products complete :ppa=500-------- ------- --- ------- - - Dmnl
No of products complete ppa=1000 Dmnfl

Figure 3-6 Results from Simon's Watchmaker Analogy

These results show that the lowest number of parts per assembly would yield the

quickest rate. This is indeed similar to a rework cycle. In this case, rework is due to the

inability to achieve a stable state prior to interruption. There have been other system

dynamics models (Ford, 1995) that have indicated the impact of rework in the product

development project duration. Though not exactly the same, the stable subsystem

model indicated by Simon's watchmaker analogy further enforces this point.

107

Chapter 3



Model Description

It is this type of behavior that explains the 90% syndrome (Ford and Sterman, 1999). A

scenario where the project reaches 90% completion pretty much in accordance to

schedule and the remaining 10% of the work takes about the same time as the first 90%

to complete. This results in project overruns caused the second half of the project

working on both the final 10% of work as well as the rework to the initial 90%.

3.2.3 The Rework Structure and its impact on overlapping

There are further implications resulting from this rework structure. As discussed in

Section 2.5.4.3 above, the rework structure explains many discrepancies we see

between project estimates and actual project results. For example, Li (1999), Peha-

Mora and Li (2000) and Eppinger (1994) describe a scenario where overlapping

upstream tasks and downstream tasks do not necessarily result in a shorter overall

duration. This phenomenon is described with the rework structure and its impact on the

"quality of work done". This is illustrated through the system dynamics model shown in

Figure 3-7 below (the equations are provided in Appendix 2)

108

Chapter 3



Chapter 3 Model Description

Upstream Time to
detect errors Upstream Rework

Discovery Rate

Upstream Initial Upstream Error

Task Definition Upstream
Undiscovered

Upstream Rework

Remaing Ustream
Quality

Upstream Work

Upstream Upstream Wo Accomplished

productivity Flow
Upstream
Perceived
Workflow Upstream Perceive Upstream

Work Accomplished Reliability
Percentage at Upstream Error

downstream start-- - -l Activate
do w Sensitivity 0

Sensitivity Index 1
Downstream Downstream Perceived Downstream SensiivityIndex 2
Perefved Work Accomplished Quality

Downstream ontemItilDownstre ensitivity Choice
Productivity Downstream itial Dowwstream Sensitivity

Accomplished Downstream
Inherent Quality

Downsreamrewor

Work

RemaningDownstream

Undiscovered
Downstream Rework

Error R ate

D', oanst Rework

Discvery Rate

Downstream Time to

detect errors

Figure 3-7 Rework and Overlap

The model takes two simple tasks one upstream and one downstream. Work

accomplished is differentiated between work actually accomplished and work that is

deemed accomplished but is actually not. The distribution of work would depend on the

work quality, which represents a percentage of work complete that is done without

requirements for change. The behavior of the upstream task is shown in Figure 3-8

below.

109



Model Description

Upstream Behavior

2,000

1,500

1,000

500

0
0 10 20 30 40

Time
50 60 70 80 90 100

Upstream Work Accomplished
Upstream Perceived Work Accomplished - - - - - - - - - - - - - - - - - - - -

Unit
Unit

Figure 3-8 Behavior of upstream task in Rework and Overlap model

The downstream task starts at a point where the upstream task is perceived to have

completed a certain amount of work. This is indicative of practice in industry where

overlapping is implemented. Using the terminology of CPM, this represents a

predecessor/successor relationship of start-to-start with a lag period. The lag, in this

case, uses a percentage of perceived work accomplished rather than a fixed time period

but basically achieves more or less the same intention.

Most project managers will, traditionally, use a lag period that is defined by two

parameters. The first is that work is available for the downstream task. The second is

110

I

Chapter 3



Model Description

that work will remain available for the downstream task. Since the downstream task

cannot complete before the upstream task, there is no point in starting too early (by

introducing more overlapping) only to find that you need to stop the downstream task at

some point to wait for more work to become available. There are, of course, other

considerations that need to be considered, such as resource availability.

What is not realized, however, is that based on the perceived work accomplished (since

actual work accomplished cannot be determined), there are inherent errors introduced

into the downstream task. This affects the quality of the downstream task significantly.

Obviously, different types of processes impact the downstream quality differently. This

is captured through what it termed the sensitivity. Basically, highly sensitive downstream

tasks are affected tremendously by errors triggering off high impacts to quality (lower

figures) with relatively low error rates. Figure 3-9 shows a set of fairly sensitive

relationships that are used in this model indicated by the variables Sensitivity 0,

Sensitivity Choice 1 and Sensitivity Choice 2. These are in increasing sensitivities.

Insensitive relationships would result in lines above the Sensitivity 0 line.

111

Chapter 3



Chapter 3 Model Description

Sensitivity

0.8

- 0. 2
0

E

0 0.2 0.4 0.6 0.8 1

Error Rate

-+- Sensitivity 0 -u-Sensitivity Choice 1 -A- Sensitivity Choice 2

Figure 3-9 Relationship between error rate and impact to quality

The downstream process, like the upstream has a quality factor that indicates the

percentage of work that is done right the first time round. This factor has two

components. Firstly, the inherent quality which represents quality inherent to the task

itself. That is to say, that in the absence of errors from the upstream process, certain

errors will be generated inherently due to task considerations like quality control, people,

processes etc. The second component is the sensitivity to upstream errors. Errors that

are generated upstream do affect the downstream task and when they are spotted, they

contribute to rework on the downstream task as well.

112



Model Description

Graph for Upstream Error
0.2

0.15

0.1

0.05

0
0 10 20 30

Upstream Error : Start=0%-

40 50 60 70 80 90 100
Time

Dmnl

Figure 3-10 Upstream Error in Rework and Overlap Model

Figure 3-10 shows the errors that are generated in the upstream task. There is initially a

sharp increase followed by a gradual decrease in errors. The decrease in errors results

in the decay caused by an information delay in both detecting and amending the errors.

113

Chapter 3



Model Description

Graph for Downstream Quality
0.8

0.6

0.4

0.2

0
0 10 20 30 40 50 60 70 80 90 100

Time

Downstream Quality: Start=0%

Figure 3-11 Downstream quality in Rework and Overlap Model

Dmnl

Figure 3-11 shows the impact of this upstream error on the downstream quality. As can

be seen, there is a sharp decrease in quality corresponding to the sharp increase in

errors and the gradual increase in quality corresponding to the gradual decrease in

errors.

So, as the quality of the downstream task varies over time, when the downstream

process actually starts affect the downstream error generation rate and thus the duration

of the downstream task.

114

Chapter 3



Model Description

Graph for Downstream Error Rate

0 20 40 60 80 100 120 140 160 180 200
Time

Downstream Error Rate : Start=O% Unit/Mont
Downstream Error Rate: Start=25% --.. ---.....-.--...................................... Unit/Mont
Downstream Error Rate : Start=50%-- - -- - - - - - - - - - - - - - - - Unit/Mont
Downstream Error Rate: Start=75% .................................... Unit/Mont
Downstream Error Rate : Start=100%--- - - - - - - - - - - - - - - Unit/Mont

Figure 3-12 Downstream error rate in Rework and Overlap Model

Figure 3-12 shows the error generation rate for different scenarios as to when the

downstream task actually starts. Start = x % indicates that the downstream task starts

when the upstream task is perceived to be x% complete. Earlier starts indicate higher

error generation rates whilst later starts indicated lower error generation rates. The error

generation rates generally determine the total duration of the downstream task. So it is

conceivable that in certain instances, a later start could result in an overall (upstream

and downstream) duration. This is in fact demonstrated in Figure 3-13 and Figure 3-14

where the downstream task completes earlier for a start at 25% completion rather than

at 0% or 50% completion of the upstream task.

115

200

150

100

50

0

I ~

I*

Chapter 3



Graph for Downstream Work Accomplished

2,000

1.500

1,000

500

0

5 10 15 20 25 30 35 40 45 50
Time

55 60 65 70 75 80 85 90 95 100

Downstream Work Accomplished: Start=0-7- - - - - - - - - - --....................................................................------------- --

Downstream Work Accomplished. Start=25

Downstream Work Accomplished: Start=50% --- - -- ----- -- - -- -- - - -- -- - - -- --

Downstream Work Accomplished: Start=75% - - - - - - - - - - - - - - -

Downstream Work Accomplished: Start= 100% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Figure 3-13 Downstream Work Accomplished - Overall View

Graph for Downstream Work Accomplished

Unit
Unit
Unit
Unit
Unit

1,100

1,050

1,000

950

900

55 56 57 58 59 60 61 62
Time

63 64 65 66 67

Downstream Work Accomplished: Start=0% ---------------------------- --- -----------.......................................................................

Downstream Work Accomplished: Start=25%

Downstream Work Accomplished: Start=50% -- - - - - - - - - - - - - - - - - - - - - - - - - - - - '

Downstream Work Accomplished: Start=75% - - - - -- - - - - - - - - - - - - - -- --

Downstream Work Accomplished: Start=100% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -"

Figure 3-14 Downstream Work Accomplished - Exploded View

Chapter 3 Model Description

* -~ -~ ~ -

68 69
70

Unit
Unit
Unit
Unit
Unit

116

r-

68 69



Model Description

Basically, because of the inherent quality of the upstream task, there is a perceived

amount of work complete that is less than the actual work complete due to errors. The

downstream tasks starts based on those errors and basically cause further errors to the

downstream tasks. What actually happens is that errors in the upstream tasks affect the

quality of the downstream tasks and cause more rework to be done in the downstream

tasks. So the downstream tasks actually take a longer time to execute if executed too

early (as the upstream errors are not fixed yet). In some cases, as shown in Figure 3-13

and Figure 3-14, the savings in time by overlapping is insufficient to compensate the

additional time it takes to execute the downstream tasks; thus causing the phenomenon

described here. One question that begs answering though is under what circumstances

this phenomenon exists and whether there is an optimal point as to the amount of

overlap should be used (Peha-Mora and Park, 2001 a). Peha-Mora and Park (2001 b)

use a concept called reliability buffering and identify "windows of opportunities" where

this phenomenon exists.

3.3 Building the model

3.3.1 Project Structure and the basis for knowledge evolution

Traditional project management models such as CPM and PERT have concentrated on

optimizing the project performance by the sequencing of tasks. These tasks are based

on a work breakdown structure which is obtained from breaking down complex problems

117

Chapter 3



Model Description

into sub-problems and parts that are easier to address alone than in the context of the

whole. This concept of breaking complexity into simpler elements has been extensively

used within established theories. The concept is to breakdown a complex system into

simpler sub-systems and to breakdown the sub-systems into even simpler sub-sub-

systems, resulting in a system hierarchy. This system hierarchy will then consist of

components each of which represents a sequence of tasks that need to be performed.

This sequence of task thus reflects the system hierarchy quite closely and is known as

the work breakdown structure.

However, as described in Chapter 2 above, these models do not adequately model the

dynamic complexities of product development projects. Product development processes

are highly iterative and some form of dynamic modeling is needed to model the dynamic

complexities. Tools such as the Design Structure Matrix (DSM) and Axiomatic Design

address some of these dynamic issues but neglect to describe or model the underlying

process which drives cycle time. In order to adequately describe the process structure

in the form of the causal relationships that generate project behavior, we select system

dynamics as a modeling tool. Section 2.5.4 above describes some of the recent

research using system dynamics to model the product development process. More

notably, Ford and Sterman (1998) has developed a model that ties in four principal

performance drivers - process structure, resources, targets and scope. Along with the

recent movement in the use of concurrent engineering, product platforms and cross-

functional teams to reduce cycle time, one realizes that organizational structure, system

architecture and knowledge re-use are also fundamental drivers in development project

118

Chapter 3



Model Description

performance. In the past, where there was little pressure to reduce development cycle

time, issues such as organizational structure and system architecture have not been

considered levers of project performance. Our literature review, however, shows that

they can be quite important drivers and it is the purpose of this research to develop a

framework that allows us to study this.

The knowledge evolution framework is a more holistic representation of the project and

views the project as processes generating knowledge and information rather than

completing predetermined tasks that may change over time.

3.3.2 Knowledge Evolution

Figure 3-15 shows an overview of the knowledge evolution model that was built using

the system dynamics methodology. As in most system dynamics model, although the

model works together as a whole where small changes in certain parameters anywhere

in the model can affect behavior in globally, the model does consist of distinct separate

features that are described in the sections that follow. These distinct features include:

" The knowledge repository

" Knowledge processes

" Information prerequisites

" Probabilities

" Reduction factors and learning rates

" Iterations

" Dispersion between knowledge processes

119

Chapter 3



Chapter 3 Model Description

Information
Prerequisites Met

Duration of
holdback FIndex 2 Ties Stage I

Knowledge Integration Ties to other Ties Stage 2
Process ad processes Ties Stage 3

Kolde 
Index 3 Index I

Increase in Rpst Decrease in

Knowledge knowledge due to
rework

Initial State Time to reduce

Rate of KnRwrtdges Rework Factor

Deomf ntaieRwr
DevelopmentIteration 

plus Probability Not
Iterations Workable for

Rate according to downstream

stage Increased Iterations initial Learning rate by

Knowledge iteration

Initial Probability Not
Reduction of iteration Workable for

risk due to iteration Combined reduction Downstream

Learning R ate Reduction of risk due to of knowledge

By knowledge increased knowledge
increaseit :

Figure 3-15 Overview of Knowledge Evolution Model

3.3.2.1 The Knowledge Repository and the stages of knowledge

At the heart of the model is the knowledge repository which indicates the state of

knowledge with the project at any point in time. Since the knowledge evolution

framework intends to map the progress of collective knowledge across a project's

organization, it is necessary to somehow measure the state of knowledge of any

particular portion of the project.

120



Model Description

A means for such a measurement is proposed by Bohn (1994) as discussed in Section

2.2.3 above. Bohn applied various states of "knowing" to the various processes.

Similarly, it is possible to apply Bohn's (1994) various stages of knowledge of technical

processes to the various parts of the system hierarchy. Considering a typical

component of a system hierarchy, that component will have its sub-systems, a parent

system (of which the component is a sub-system) and sibling components that the

component will need to interface with. That specific component has a knowledge cycle

that proceeds through various stages of knowledge are affected by the stage of

knowledge of its parent system, sibling systems and sub-systems.

Figure 3-16 shows the phases of product development that a system goes through. It

may be said that each of the systems, subsystems, sub-subsystems and components go

through a similar process. Phases 4 & 5 provided a basis for the sub-system design and

incorporation which means it could be iterative (if proposed subsystems don't work).

These are also the phases in which the subsystems and their subsystems or

components are specified. The interactions with the sub-system processes are two fold.

Fgr -1 Pha s of Pd ti -Phasn

Figure 3-16 Phases of Product Development

121

Chapter 3



Model Description

There is first a top-down approach to the knowledge evolution of the system as it is

broken down into subsystems. There is then a bottom up approach to finalize details of

the subsystems so knowledge about the sub-systems are built-up as knowledge of the

system itself can then be finalized. This is very similar to Ford's Product Development

Process (FPDS) methodology as shown in Figure 3-17 where there is a top-down

cascade of targets followed by a bottom-up approach for optimization and verification.

(Lavine, 1999).

Cascade Targets Deslgn Verification

Design Opttmization

Figure 3-17 Ford's FPDS Systems Engineering Approach

(Source: Lavine, 1999)

Also coined a "V" shaped process, the left part of the "V" represents the initial top-down

approach where the system is primarily architected, the right part of the "V" represents

the bottom-up approach where details are filled in. Based on this design methodology,

we would expect knowledge stages to progress down a hierarchy with higher stages of

knowledge on the top of the hierarchy initially. At a certain stage, the progress reverses;

the higher stages of knowledge are at the bottom of the hierarchy. Referring to Figure

3-16 above, Phase 5 is both top-down (5b) and bottom-up (5a)

122

Chapter 3



Model Description

As different components and subcomponents of the hierarchy advances through

knowledge evolution at different rates, it becomes necessary to keep track of them

separately. The stage of knowledge of individual components are kept track in the

knowledge repository.

Just as Bohn's stages of knowledge represented more certainty in the control of the

technical processes, advancing to a further stage in knowledge evolution represents

more certainty of the information generated. This is discussed in slightly further details

under probabilities.

3.3.2.2 Knowledge processes

What causes the collective knowledge of the project to evolve as the knowledge

repository advances through the different stages of knowledge are the knowledge

processes. Knowledge processes represent the teams and people that act to evolve the

collective knowledge. This concept of knowledge processes is similar to the various

domains in axiomatic design where knowledge needs to be transferred between the

domains in a zig-zagging process.

There are some primary relationships between knowledge processes that affect their

activity and hence the rate of evolution. These include the dispersion between the

knowledge processes as well as the prerequisite requirements of the knowledge

processes. By the very nature of there being distinct knowledge processes indicates

123

Chapter 3



Model Description

that there is segregation of knowledge. Knowledge segregation, in this case, does not

simply mean that particular knowledge processes do not have the skill or expertise to

make informal decisions. It also includes situations where the processes have not been

given the mandate to make those decisions and hence are not aware of the outcome of

those decisions.

So one of the key impacts of knowledge segregation is that it leads to risk of having to

iterate. Other relationships that affect the activity of knowledge processes and hence

the rates of evolution are the dispersion and the prerequisite requirements.

3.3.2.3 Prerequisite requirements of knowledge processes

Understanding prerequisites has always been one of the keys in managing product

development projects. The CPM/PERT method involves identifying predecessors to

activities building a network of activities but identifying which activity is performed first

and in the case of CPM, a critical path is calculated identifying the longest path of critical

activities that would determine the duration of the project. The DSM method is

sometimes used to identify couplings (through the identification of information of tasks

completed) of processes and optimized to produce an optimal sequence of work. Even

the system dynamics models on project management involve this concept of work

availability as mentioned in Section 2.5.4.2 and shown in Figure 2-17.

In the knowledge evolution framework, these perquisite requirements are information

prerequisites. In knowledge evolution, knowledge processes are active only when

124

Chapter 3



Model Description

information prerequisites are met. In other words, further knowledge or information

about a component can be generated only when the information prerequisites are met.

For example, the foundation of a building cannot be designed unless the loads from of

the building are known. Wheelwright and Clark (1992) indicate four modes of upstream

and downstream interaction as shown in Figure 3-2. In the knowledge evolution model,

as the knowledge repository represents the knowledge already known about the system,

the upstream portion is read from the knowledge repository. The downstream portion is,

of course, the knowledge process itself. For a system with multiple processes and

multiple repositories, this mapping of information prerequisites occur in a matrix such as

the one shown in Figure 3-18 below.

Knowledge
Repository

03) Cl)
_0 Cl)

2)U
0L

Figure 3-18 Information prerequisites

This mapping closely resembles the Design Structure Matrix (DSM)

denotes communication between the processes. Unlike the DSM,

represents one of the modes of upstream-downstream interaction in

Table 3-1 below.

where the "X"

however, "X"

accordance to

125

X

X Xx x
x x

Chapter 3



Model Description

Value of "X" Representation

0 Process is independent of other processes.

1 Tightly integrated problem solving where the

difference in stage is within a specified amount.

2 Integrated problem solving where both processes

must remain in same stage.

3 Early involvement. The upstream processes must

be ahead of the downstream process

4 Early start in the dark. Batched Processed, where

the upstream process must be a certain amount

ahead of the downstream process.

5 Serial/Batch. Where the upstream process must

complete its whole stage before the downstream

process can proceed.

Table 3-1 Types of information prerequisites

3.3.2.4 Knowledge segregation and probabilities that work requires iteration

The phenomenon of rework and overlap as described in Section 3.2.3 above is of

significant importance in the knowledge evolution model as well. Before it is possible to

elaborate this, it is useful to identify sources of iteration. Iteration can be largely

categorized into four broad categories.

126

Chapter 3



Model Description

There is firstly iteration that is represented by rework due to errors or failure to meet

quality requirements. This is the type of iteration that prior research (Roberts, 1974;

Richardson and Pugh, 1981; Ford, 1995; Ford and Sterman, 1999; Li 1999) has been

primarily concerned with. Rework of this nature tends to be due to the process itself and

can be minimized through better management of the process.

The second category of iteration is caused by a change in scope. This change in scope

may be caused by requirements change initiated by the client or due to circumstances

as more information becomes available.

The third and fourth category of iteration is due either to insufficient information or

sufficient information but not made available to the right persons. Though the symptoms

and behavior are very different, they have different implications on remedies.

The differentiation on the causes of iteration is important as they identify the sources of

the problem and generally dictate what remedies are available. As rework due to

mistakes are caused by the processes internally and any solution will need to address

that. Rework due to information misplacement indicates inefficiencies in the information

distribution system and solutions such as communication enhancement through

organization or technology may be possible. Iteration due to insufficient information and

information change, however, indicate implementation strategy issues.

127

Chapter 3



Model Description

Insufficient information is the most immediate outcome of knowledge segregation and is

the focus of this research. The question on whether to start the ball rolling on processes

when information is lacking then becomes significant. Like the phenomenon described

in the Rework and Overlap model, starting a process earlier does not necessarily imply

ending it earlier due to more rework if the process is started earlier.

Iteration due to insufficient information occurs when certain assumptions that are made

about parameters are no longer true. In the product development process with

segregation of knowledge, there are probabilities that certain assumptions made do not

hold true. As the knowledge is segregated, such assumptions also do not get

challenged until sufficient information is generated. When these assumptions are

generated, work done that was based on these assumptions may no longer be valid. If

such is the case, iteration becomes necessary. As will be demonstrated, this type of

iteration is inherent by the fact that the design process is performed by multiple

participants and hence the information and knowledge is segregated.

Iteration due to information change occurs when upstream processes change their

information. This could be due to mistakes or perhaps information changes on

processes even further upstream.

Iteration due to information misplacement occurs when the required information exists

but is deemed to be unavailable due to inadequacies in the information distribution

system. This can exist as it takes time for information to get distributed or some persons

128

Chapter 3



Model Description

may be unintentionally "left out of the loop". Incidentally, if it does exist, this mode of

iteration can be minimized through proper knowledge management.

The basis of this research is that due to the segregation of knowledge and information,

product development project participants do not have full knowledge to perform their

tasks without iteration. That being stated, there is neither certainty nor uncertainty that

at any particular stage work will need to be iterated. The relationship is therefore

probabilistic.

The probabilities in the spreadsheet input represent the probabilities that a process

would need to go through at least one iteration in the process of the cycle. As the

system dynamics software uses discrete systems, the probability for each time step

needs to be estimated. This is done as follows:

Suppose that P represents the probability of at least one iteration taking place,

and n representing the number of time steps. If the probability at each time step

is uniform and is represented by p, then

P = 1 -(1-p)".

Therefore,

p = 1-1 .

In actual cases, p may not be constant. In many cases, there is a higher chance of p

occurring at a certain time. In the absence of evidential data, however, a uniform

distribution is a relatively accurate first order approximation. If the model were to be

refined, and if more information about the timing of iteration probability were available,

the model could be modified accordingly.

129

Chapter 3



Model Description

In deriving the probabilities to be used in a model, several factors need to be considered.

The following represents a list of some of these factors:

* Criticality. This represents how critical the knowledge is.

* Sensitivity. How sensitive the knowledge processes is to changes in information.

" Location of knowledge. This has impacts on how the knowledge would be

communicated and whether it would be explicitly or tacitly transferred.

* Dispersion. How the organization of the firm would facilitate the transfer of

required knowledge.

These factors all affect the probabilities and thus would directly impact project duration

and performance.

3.3.2.5 Reduction of probabilities

Since the probabilities of iteration are due to knowledge segregation, the probabilities

reduce as knowledge and information is available to other participants in the product

development process. In other words, the probabilities reduce as more is learnt about

the system. It is necessary to differentiate between two types of learning. Firstly,

learning by knowledge increase. This is the general type of learning that occurs as more

information and knowledge is generated about the system. The second type of learning

is the learning by iteration. Even though iteration occurs, there is much we can learn

about the system. At the very minimum, the project has learnt that what does not work.

Generally, as more information and knowledge is generated by the project organization,

the probability that iteration will happen is reduced. In the knowledge evolution model,

130

Chapter 3



Model Description

useful information and knowledge is indicated by an increase in the stage of knowledge

repositories. Possible reduction factors in probabilities relating to this increase is shown

in Figure 3-19.

Reduction Factor by increase in knowledge

1
+- Learning Rate = 0.01

0.8 -- Learning Rate =0.25
0-A Learning Rate = 0.25

L0.6 +* Learning Rate = 0.-*Learning Rate = 1
0

lp. -*- Learning Rate = 2
--- Learning Ratge = 4

S0.2 -- Learning Rate = 8
-- Learning Rate = 100

0
0 0.2 0.4 0.6 0.8 1

Increase in knowledge stage

Figure 3-19 Reduction Factor through increase in knowledge

Though the relationship is not precisely known, we know that the space is defined by a

reduction factor between 0 and 1 and since each stage of knowledge is unity, the

increase in knowledge is between 0 and 1.

The equation

Reduction factor = 1 - (AKnowledge)1LearingRate

131

Chapter 3



Model Description

Represents a family of curves as shown in Figure 3-19 that suit this description and

represents a good estimate to understanding the relationship.

Once the process goes through iteration, even though the knowledge repository does

not advance (it in fact decreases), some knowledge about the system is still generated.

At the very least, knowledge of what does not work and why it does not work is now

known. So even if the stage of knowledge actually decreases, the knowledge gained in

the iteration process reduces the probability of iteration.

Reduction Factor by Iteration

0-

0

U-

0

1.2

1

0.8

0.6

0.4

0.2

0
0 5 10 15 20

No of Iterations
25

Figure 3-20 Reduction Factor through iterations

The equation

Reduction factor = 1/ (1+ No of itera tions)LeamingRate

132

-+- Learning Rate =0.01
-U- Learning Rate = 0.25
-A- Learning Rate = 0.5
-*- Learning Rate= 1
-*- Learning Rate = 2
-* Learning Rate = 4
-+- Learning Rate = 8

Learning Rate = 100

Chapter 3

0 1,

g- , i i ,I IN! Af d



Model Description

represents the family of curves that is shown in the Figure 3-20 which describes a

probable relationship between the number of iterations and the reduction factor.

As there is a difference in the types of learning, there must also be the differentiation in

the learning rates. In both types of learning, a higher learning rate represents a quicker

reduction of probability of iteration occurring as either knowledge increases or number of

iterations increase.

3.3.2.6 Iteration

Iteration in the knowledge evolution model is represented by a reduction in the stages of

knowledge for the relevant processes. Some may comment that this is a "loss" in

knowledge. This is not the case since knowledge cannot really be lost. Some of the

knowledge may be rendered irrelevant but the knowledge and information generated still

exists. In fact, as described in the previous sections, that knowledge and information,

though not directly relevant is still of value to the product development project as a whole

since knowledge of what does not work reduces the probabilities of iteration.

Iteration also does not mean that the process starts over again since much of the

knowledge gained and information generated can be reused. In the knowledge

evolution framework, some knowledge process triggers off iteration, as the knowledge

generated in some previous process is unacceptable. At this point the stage of

knowledge is reduced by a certain pre-determined amount for the previous process as

well as all the immediate downstream processes. This pre-determined amount varies

133

Chapter 3



Model Description

depending on the process but can be very little (e.g. for tightly integrated processes

where there are checks along the way), or very large.

There is a stock for iteration that basically keeps track of how many times a knowledge

repository has been iterated.

3.3.2.7 Dispersion between knowledge processes

Keeping in mind that the knowledge creating process includes both the transfer of tacit

and explicit knowledge, how effectively that knowledge/information is transferred has an

impact on the performance of the project.

As discussed in Section 3.2.1.3 above, the probability of communication amongst team

members reduces as the distance between members increase (Allen, 1977). Whilst

Allen's study observed the impact of physical distance, there are other forms of

"distances" that effectively reduce the transfer of knowledge and information. These

"distances" could include geographic, organizational and functional boundaries. A more

generic term to "distance" would be dispersion.

For the case of simplicity, we combine all these factors of geography, organization and

function into the single term, dispersion. Based on the similarity with Allen's (1977)

study, the greater the dispersion between two knowledge processes, the less likely

communication will take place. Unlike the R&D environment, however, communication

134

Chapter 3



Model Description

is enforced in product development as it becomes necessary to coordinate. What

dispersion is likely to do is to make the communication more formal and less frequent.

For example, in a building project, the communication between an architect that works

for an architectural firm and a structural engineer that works for a structural engineering

firm would communicate mostly through drawings, perhaps weekly meetings. There is

already a functional and organizational dispersion. If the geographic dispersion were to

increase (say the firms were in different cities), the communication would rely more on

drawings and the frequency of meetings would reduce drastically. This would reduce

the opportunity for knowledge to be transferred tacitly as there would be less face-to-

face meetings.

It then becomes important to understand characteristics of formal communications such

as papers, letters, documentation and informal communications such as brainstorming

sessions, face-to-face discussion and phone conversations. As discussed above, the

four dimensions of communications affect its quality and effectiveness. These four

dimensions are richness, frequency, direction and timing as shown in Figure 3-1. This

research assumes the following relationships:

" As dispersion increases, frequency of communication decreases, the

communication becomes more formal and less informal.

* Formal modes of communications occur at a slight lag and occur slower than

informal modes of communications. However, formal modes of communications

are more accurate (as more thought had been put in) and less prone to mistakes.

135

Chapter 3



Model Description

Formal modes of communication also occur in larger batches compared to

informal modes of communications.

Though dispersion affects multiple variables in the model, a first order approximation by

varying the holdback duration is used in this research.

3.4 Model Description Summary

The knowledge evolution framework represents a model of the product development

project via its information and knowledge evolution over time as opposed to the

traditional models of tasks sequencing and progress over time.

Basically, stages of knowledge in what is termed the knowledge repository represent

how much knowledge is generated by the individual knowledge processes. Knowledge

processes represent individuals or teams that are part of the product development

project organization. Multiple knowledge processes and repositories can be modeled in

the knowledge evolution framework. These knowledge processes are constrained

(much like the predecessor relationship in CPM) by other knowledge processes. There

are 5 types of constraints ranging from independence to tightly constrained (integrated

mode). These constraints, termed information prerequisites are entered as a matrix

which closely resembles the Design Structure Matrix.

Each of the knowledge processes may be required to go through an iteration processes.

This will result in some loss in the stage of knowledge. The possibility of this iteration

136

Chapter 3



Model Description

process happening is probabilistic according some pre-set probability and generally

reducing as the stage of knowledge or number of iterations increase.

137

Chapter 3





The Delta Design Game

Chapter 4 The Delta Design Game

In order to demonstrate the usefulness of the knowledge evolution framework, the model

is used to simulate the design project of a Deltan Habitat as outlined by the Delta Design

Game (Bucciarelli, 1991). The Delta Design game was created as an abstraction of the

engineering design process intending to demonstrate designing as a social process of

negotiation amongst participants. Though this research is not purely concerned with the

social interactions amongst participants, the design of a Deltan habitat does provide a

useful design problem on a simplified level (the game is designed to be complete within

3 to 4 hours), yet provides a relatively accurate picture of a product development project.

The Deltan habitat project was chosen in this research precisely because it is an

abstraction of the design process and limits the study to the issues at hand without the

complications of large projects. The simple and short project with multiple design roles

provides the stability that large and long projects cannot as there changes in project

organization structure to inevitably happen during these projects. Other complications

such as changing requirements are also absent in the Deltan habitat project since the

scope and specifications are clearly spelt out without the risk of client change.

139

Chapter 4



The Delta Design Game

Although the abstractness of the task disconnects it from the real world (the design is for

a habitat on the fictional deltoid plane), the open form of the design problem provides a

very real experience where there is no single right answer. And although the process

will allow participants to reach a conclusion within a couple of hours, the specifications

and constraints have all the elements of a real project.

This chapter describes the use of the knowledge evolution framework on the Deltan

design process. Firstly, the rules of the game and some brief design specifications are

described. The model with customized parameters is then used to simulate the process.

The results of these simulations are then compared with six separate projects that were

undertaken by first time participants.

4.1 The Delta Design Game

The Delta Design game is a team exercise intended to demonstrate the social

interactions amongst the participants of engineering. Participants learn that designing in

teams is as much a social process as it is a technical process and that excellence in

design requires attention to both. The design task is an abstract one of designing a

habitat on an imaginary deltoid plane where not only the units of measure are different

but the basic fundamentals of mechanics are vastly different as well.

The game is played in teams of four participants each performing different roles in the

design of a Deltan habitat. The games consist of 4 phases, the first taking about an hour

where participants are each given a different set of materials where they understand the

140

Chapter 4



The Delta Design Game

role they play in the design process as well as the deep functional knowledge that the

roles need to perform their function.

This is then followed by another hour reserved solely for the design. Which includes

time both for coming up with a suitable situation as well as tabulating the performance

measures in preparation for a 5 minute presentation.

The third phase is the presentation of the various groups and the final phase is an open

discussion.

The 4 roles in the game are the architect, the project manager, the structural engineer

and the thermal engineer. The architect provides the layout design ensuring the habitat

satisfies certain criteria such as entrance location, overall color coordination and

aesthetics. The project manager makes sure the cost is within budget as well as within

schedule. The structural engineer specifies key support locations as well as checking to

ensure the segments are structurally sufficient. The thermal engineer calculates the

stable temperature of the habitat as well as ensuring that the temperature of each delta

is within an acceptable range.

The following information is provided more to understand the information that needs to

be generated and is required from the various participants as well as constraints that the

various participants face.

141

Chapter 4



The Delta Design Game

4.1.1 Representation of the design

Representation of the design consists of an arrangement of blue and red equilateral

triangles placed on a grid of "diamonds". Each triangle represent a delta which are the

building blocks of the habitat. A sample of the design representation is shown in Figure

4-1.

Figure 4-1 Sample design

142

Chapter 4



The Delta Design Game

4.1.2 The task

4.1.2.1 Definition of terms

Before the design task can be properly specified, it is first necessary to define some

terms. This is necessary since in order to moot any discrepancy in technical experience,

the project exists on an imaginary deltoid plane where mechanics are slightly different

from the way we know it to be.

Table 4-1 shows the key measurements and the units used in Delta design:

Measurement Unit of Measurement Symbol

Time Wex Wx

Distance Lyn Ln

Area Quarter-Delta Qd

Heat Deltan Thermal Unit DTU

Temperature Degrees Nin Nn

Force Din Dn

Moment Lyn-Din LD

Currency Zwig

Table 4-1 Measurements used in Delta Design

Although Deltan space appears to us as two-dimensional, it does have three distinct

directions that occur 600 to each other. The grids mentioned in the design

143

Chapter 4



The Delta Design Game

representation, above, are 1 lyn by 1 lyn. Deltas, the fundamental building blocks come

in the form of equilateral triangles with sides that measure 2 lyns each. Each delta

consists of 4 quarter-deltas as shown in Figure 4-2below.

One Delt&q,

I~ tt

1 QD = I quter &a

Figure 4-2 Of Deltas, lyns and quarter-deltas

Deltas basically come in two different types of colors, red and blue. Each type has

different thermal properties as well as different costs. Further, the cost of joining the

deltas together is different depending on whether the joint is red-red, red-blue or blue-

blue. Red deltas produce heat, blue deltas do not. There are further properties about

deltas which are spelt out under the specific roles.

144

Chapter 4



The Delta Design Game

4.1.2.2 Specifications

The design of the habitat is to satisfy the following conditions:

Minimum Area 100qd

Maximum Cool Deltas (% Total) 60-70%

Average Internal Temperature Range 55-65 0Nn

Individual Delta Temperature Range 20-85 0Nn

Maximum Load at Anchor Points 20 Dn

Maximum Internal Moment 40LD for 21yn joint

20LD for 1 lyn joint

Overhead Factor -K (varies)

Total Budget !1,400.00

Aesthetics subjective

Table 4-2 Summary of Design Specifications

In order to understand the above design specifications, it is also necessary to

understand the details some of the details that are outlined in the various roles

participants play. As the Delta Design game was designed specifically to demonstrate

the social interactions between participants in design, participants will find quickly that

their design proposal will impact others. For example, the architectural requires no more

than 60 to 70% of blue deltas as a color requirement but this provides a constraint to the

thermal engineers who have temperature requirements both for the habitat as well as

individual deltas.

145

Chapter 4



The Delta Design Game

4.1.3 The roles

The architect

The architect's role is spelt out in the "Architect Primer". Firstly there is the issue filling

out an enclosure to satisfy the minimal area requirement. There is then the issue of

blues versus reds. Several parameters include the percentage of blue deltas to total

(not more than 60-70%) and the dispersion of the blue deltas (minimize the number of

joints with two blues). Finally there is the issue of aesthetics. This is a "soft"

requirement as it is in vogue to have smooth externals and angular interiors. The

performance measure is therefore to maximize interior length to exterior length.

The project manager

The project manager's responsibility is to ensure that cost is kept within the budget and

that the construction time is kept to a minimum. The levers that affect the cost include

the choice of colors for deltas and how they are laid out.

The structural engineer

The structural engineer's responsibility is to ensure that the habitat will hold together

under the prescribed loading conditions. The habitat will require 2 and only 2 anchors

which can each only support 20 din. The strength of the individual connections between

the deltas also need to be designed for. These depend on the contact length of the joint

and is 20 LD/lyn of contact.

146

Chapter 4



The Delta Design Game

The thermal engineer

The thermal engineer's responsibility is to ensure the temperature of the interior as well

as the individual deltas is within the specified temperature range.

The above responsibilities with the respective measurements and specifications are

summarized in Table 4-3 below.

Role Measure Specification

Internal Area > 100 qd

Blueness <60-70% blue deltas

Architect Blue dispersion Maximize %tage of non-

blue joints

Aesthetics Maximize internal length to

external length

Cost < ! 1,400

Project Manager Total Cost = K (delta cost +

cement cost + module cost)

Time to build Minimize Time to build

Anchor reactions Each reaction < 20 dins

Internal Moments Moment < Strength of joint

where strength of joint =

Structural Engineer 20LD per lyn of contact

Gravity Waves Possibility of gravity

changing directions. Up to

designer how much to

account for.

Thermal Engineer Delta Temperatures 20 - 85 0Nn

Interior Temperature 55 - 65 'Nn

Table 4-3 Summary of Design Responsibilities for Different Roles

147

Chapter 4



The Delta Design Game

4.2 Relevance of the Delta Design Game

In order to test the use of the knowledge evolution framework and its efficiency in testing

policies for true existing projects, it is first necessary to test the robustness of the

concepts. Data coming from complex projects, however, is often "tainted" and not

objective. Firstly, product development projects are often very long projects, which

means data needs to be tracked over long periods of time. To make things more

difficult, very often, organizational changes do occur over the course of the project. This

leads to inconsistencies in the way data is recorded over the course of the project. In

the case of this research, as organizational structure is itself a crucial variable, changes

in project organization makes it difficult to make meaningful observations. Further, true

projects are not bound as the scope and goals may shift over time.

Based on these shortcomings of using complex projects for testing the knowledge

evolution framework, a short-term development project that has a fixed scope and

captures the essence of multiple individuals working towards that goal would seem ideal.

Though not a true product development project, the Delta Design Game satisfies most of

these requirements. By nature of its intended use (to demonstrate social interaction

between participants), there are many interdependencies on each of the participants for

information. Yet as the design process is simple enough, it provides a boundary that

keeps observations and analysis simple so that the crucial issues can be effectively

captured.

148

Chapter 4



The Delta Design Game

Finally, complex product development projects are typically one-off. This makes it

difficult to compare results across projects as there may be basic differences in the

projects that result in different project performances. As described in previous chapters,

whether the design is modular or integrated and how the project organization is

structured are factors that contribute to changes in project development. The Deltan

habitat design project, because of its simplicity and short time required to execute,

makes it easy to repeat the process and to compare results across multiple projects.

4.3 The design process for a Deltan habitat

4.3.1 Intended Design Process (The ideal case)

With most project planning tools, iteration is not explicitly planned for. Very frequently, it

is either planned for as a review activity with a guesstimated duration or built into the

actual activities themselves with some "extra" time for iteration. These estimates for

"extra" time are derived from estimates of the ideal case. So, similar to other project

planning, an "ideal case" estimate is required.

Although there is no preset procedure for the design of a Deltan habitat, the roles and

limitations in the system architecture lead to some preset paths for the design process.

This is due particularly as the knowledge base and the information available to a

particular role is limited. As discussed above, the design parameters that each role has

control over also affects other design parameters. Even though ideal, there is probably

no one unique methodology.

149

Chapter 4



The Delta Design Game

One such possible anticipated process can be described as follows:

"Before the project manager, thermal engineer or structural engineer can contribute in

any fashion, there must be some form of base design that is made available for them to

work on. The architect, therefore, has the initial role in providing the base design. What

this base design actually consists of would depend on the "experience" of the team. An

experienced team would provide minimal information so to provide for the other

participants for feedback before providing further details. This is done to primarily

minimize rework due to subsequent tasks. Once this minimal base design is provided to

the various other participants, the project manager performs an initial check, the

structural engineer performs his initial design and the thermal engineer performs his role.

Once the various participants "OK-ed" the base design, the architect would need

specifics from the thermal engineer on suggested red and blue assignments before

checking the dispersion requirements". In the meantime, the various other participants

could go ahead with their designs. Once the thermal engineer makes his design

decisions, the architect then finalizes his adjustments and informs the other participants.

All participants now start to optimize their design inputs."

4.3.2 More realistic scenarios

The above process described is ideal. In reality, however, as designers do not have full

knowledge of what is acceptable or not outside their domain, designs are not guaranteed

to be implementable the first time round.

150

Chapter 4



The Delta Design Game

The following description is typical of a process of a fairly experienced team:

"Initially, the architect provided a layout of deltas satisfying the internal area requirement

as well as the aesthetics requirement. Feeling that the thermal engineer would have

much to say about the choice of colors for the deltas and not too particular about specific

locations of red or blue deltas, the architect did not specify the colors of the individual

deltas but rather only mentioned that of the 20 deltas used, a maximum of 13 could be

blue.

Once the basic layout was given, the project manager, structural engineer and thermal

engineers could get to work. The project manager could not pin point the exact cost but

could perform conservative estimates as to project cost. It seemed as if there was a

good chance that the design could be built within budget so re-design on the architect's

part was not necessary. The structural engineer could provide a design for the location

of anchors and confirm that the joints between deltas all had sufficient contact points. In

this particular case, there were a couple of joints that were not sufficient and the

structural engineer had two options. One was to change the location of the anchors, the

other was to increase the contact length of those particular joints. The structural

engineer brought this up to the architect who seemed willing to change the contact

length.

The change was implemented and the other roles (the project manager and thermal

engineer) were informed of the change. This, of course, affected some of the

calculations that had been made up to that point in time based on the architect's original

layout. The project manager did not really mind, since the estimate was still relatively

151

Chapter 4



The Delta Design Game

preliminary, but the thermal engineer had more specific rework since he had started

specifying which deltas were red and which were blue. Based on temperature

requirements and the layout, the thermal engineer was able to estimate that he needed

10.3 to 12.2 red deltas. This would clearly satisfy the blueness requirements that the

architect was concerned about but the thermal engineer felt that, based on past

experiences there would be a problem keeping delta temperatures below the melt-down

range. He recommended one of the alternate routes, to add deltas to the habitat

therefore increasing the percentage of blue deltas, or reduce the contact lengths of the

joints. In any case, since it was just a hunch, he could do the calculations and confirm

whether it was really an issue. The other roles decided to wait for the calculations to

check. Seeing that either of the alternatives would mean rework for all the roles, all

involved decided that the thermal engineer confirmed it would pose a problem before

deciding to make any changes.

The thermal engineer performed the check only to find his suspicion confirmed. Having

performed the necessary calculations, he proposed to add a few deltas which would

increase the loads on the system (for the structural engineers to check) as well as the

cost of the habitat (for the project managers to check). After making the additions, the

design went back to the structural engineers for re-design & check, the project manager

for a more detailed costing and the architect to ensure the blueness and dispersion

criteria were satisfied. There were a few more minor tweaks in the design meant to

optimize certain parameters before the design was finalized."

152

Chapter 4



The Delta Design Game

Even with an experienced team, iteration is necessary as participants are not fully

equipped with the tools necessary to perform other roles. The experience gained,

however, has caused participants to be cautious and aware of previously made

mistakes. This is captured in the knowledge evolution framework as lower probability of

iteration and resulting in a lower number of cycles. First time participants would yield a

higher number of iterations.

4.4 Project Execution

As part of this research, six projects of first time participants were executed concurrently.

In order to demonstrate certain features of the knowledge evolution framework, 3 teams

(Teams 1, 2 and 3) were asked to follow the game as per instructions. The other 3

teams (Teams 4, 5 and 6) were forced to work with the slight handicap of having to work

asynchronously. The diagrams labeled Figure 4-3 through Figure 4-8 show the results

of the six projects.

153

Chapter 4



The Delta Design Game

Figure 4-3 Delta Design by Team 1

Figure 4-4 Delta Design by Team 2

154

Chapter 4



The Delta Design Game

Figure 4-5 Delta Design by Team 3

Figure 4-6 Delta Design by Team 4

155

Chapter 4



The Delta Design Game

Figure 4-7 Delta Design by Team 5

Figure 4-8 Delta Design by Team 6

156

Chapter 4



The Delta Design Game

Synchronous Mode Asynchronous Mode

Team 1 Team 2 Team 3 Team 4 Team 5 Team 6

Project 70 mins 70 mins 70 mins 65 mins 65 mins 65 mins

Duration

Total No 2 5 6 3 4 2

of

Iterations

Table 4-4 Results of the Delta Design Projects

Table 4-4 summarizes the results of the six projects describing the total duration of the

project and the number of iterations the process goes through. The results also tabulate

when the iterations happened and which participant had contributed to the iteration.

4.5 Observations from the design process

Monitoring the above processes, several interesting observations that affected the

duration of the design process were made. The first of these was the need for iteration.

Prior research has modeled iteration as rework that is resulting from mistakes and lack

of quality control. From the delta design process above, it can be seen that iteration was

unavoidable even though no mistakes were made. Based on the information that was

available to individuals, they came up with workable solutions (or commented on

unworkable ones) that were limited to their domain. As they did not have access to

information in others' domains, it seemed that iteration was unavoidable. Upon closer

157

Chapter 4



The Delta Design Game

observation, one realized that the fact that the system architecture and design

organization were coupled also had a significant role. This meant that a particular

designer's design changed drastically the parameters of others' designs. In some

cases, these effects would be severe enough such that other participant's are not able to

satisfy the design constraints. This would result in the design already performed to be

iterated. If this were not the case, the need for iteration is greatly reduced.

The second interesting observation was the conservatism of design that participants

used. Participants tried to give themselves some slack or "safety margin" when they

made design decisions or recommendations. To the individual designer, this made quite

a bit of sense. This "safety margin" would allow them the flexibility of slight changes

from other designers without actually having to perform rework. On the global scale,

however, this probably provides more constraint on the other designers and hence

probably causing more rework to occur. This dilemma is similar to the one described by

Goldratt (Goldratt, 1997) where he recommends that the risk of schedule overrun be

managed collectively rather than individual processes in the manufacturing chain build in

their own slack time. At the same time, the reverse (where some participants were

demanding iteration without evidence that it was needed) was also true. In a particular

project, the project manager did not like the using too many modules and demanded an

iteration to occur. This was done even though he had no idea at this stage how much

the habitat would cost.

The third interesting observation was that even though certain participants could

progress they did not. These participants had no lack of information from other

158

Chapter 4



The Delta Design Game

participants but were unwilling to proceed as they understood that other participants

could cause significant rework on their part and they wanted an understanding before

they wasted efforts in further development. Now during this exercise, that seemed like a

waste of resources (since idle time is wasted time anyways). It would make sense

therefore to proceed with the design since there is a chance of there being no rework. In

reality, however, when participants are typically assigned to more than one project,

perhaps even more than one role, the participants would rarely proceed with the next

stage of design knowing there would be a good chance of rework. They would typically

get some form of sign-off on their preliminary work before heading to the next stage of

development.

The fourth interesting observation was the similarity in performance between the

synchronous mode and the asynchronous mode. Even with significant handicap in

communications, the teams that had to communicate asynchronously did not suffer from

significant performance loss. Performance in this case being measured by the duration

of the project. With the exception of team 1, teams working in a synchronous mode had

more iterations than teams without.

Based on these observations, and desirous to improve the design process, we actually

identify some issues where it is unclear what the proper improvements are to be made.

Issues such as whether safety margins should be managed at individual levels or

globally, whether a cross-functional team makes sense and even whether to wait for

feedback or develop concepts further are some examples. Projects managers today

focus on improving the productivity of individual participants as well as interpersonal

159

Chapter 4



Chapter 4 The Delta Design Game

communication through the use of innovative methods such as information technology.

Although there are efforts promoting the use of cross-functional teams, results have

been fairly mixed. This research hopes that understanding the knowledge evolution of

the project may provide some insight to these ambiguities.

4.6 Knowledge evolution of the project

Figure 4-9 shows the knowledge evolution model for the Delta Design process. For the

purposes of the delta design project, it becomes necessary to calibrate certain

parameters in the model to suit the specific project.

Information
Prerequisites Met

n oFlags Ties Stage 1
Knowledge Integration Ties to other Ties Stage 2

Process ad processes Ties Stage 3

r- 
Knoledge 

Index 3 Index I

Increase in ReoioyDecrease in

Knowledge Iknowledge due to
rework

Initial Stat Thie to reduce rwr

Knowledge Rework Factor

Rate of
Development Initialize Rework Iteration plus I Probability Not

- Iterations Workable for
Rate according to downstream

stage Increased Iterations initia Learning Rate by d

Knowledge iteration Initial Probability Not

Reduction of iteration Workable for

risk due to iteration Combined reduction Downstram

Learning rate Reduction of risk due to of knowledge

By knowledge increased knowledge

Figure 4-9 Knowledge Evolution of the Delta Design Process

In particular, the following are parameters that need to be defined and calibrated:

160



The Delta Design Game

" Knowledge Processes and Knowledge Repository

* Rates of development

* Ties to other processes

* Probabilities not workable for downstream

" Holdback period

These parameters are described in more detailed below and the equations used for the

model can be found in Appendix 3.

4.6.1 Knowledge Processes and Knowledge Repositories

Firstly, it will be necessary to define what the knowledge processes and repositories are.

The knowledge processes are relatively straightforward. Each of the roles represents

one knowledge process as shown in Table 2-1.

Knowledge Processes

Architect

Project Manager

Structural Engineer

Thermal Engineer

Table 4-5 Knowledge Process for Delta Design

The system architecture is relatively simple. As the entire habitat is built from

combinations of red and blue deltas, the system does not consist of any subsystems. It

is an integrated system with red and blue components. The system is integrated as

there are numerous possible interfaces between the components to the system and that

161

Chapter 4



The Delta Design Game

they perform multiple tasks including thermal control, structural integrity and enclosure.

It is also possible to view the system architecture as comprising these different

subsystems i.e. thermal, structural and enclosure but with these subsystems tightly

integrated or coupled with each other. This architecture is shown in Figure 4-10. For

the purpose of mapping out the knowledge evolution framework, this seems more

suitable as there is a one-to-one mapping with the knowledge processes.

Habitat

Structural Pubsystem - - Thermal Subsystem - - Enclosure Pubsystem

Figure 4-10 System Architecture of Habitat

Once the knowledge repositories are set, it is useful to identify the various stages of

knowledge. These stages are selected based on the milestones where information is

transferred between the knowledge processes. As construction does not fall under the

scope of this project, not the full range of knowledge is used. For simplicity, we

represent the stages in need as stages 1 thru 3. Table 4-6 shows the representation of

the various stages.

162

Chapter 4



The Delta Design Game

1 2 3

Architect Initial layout without Finalizing color Minor changes to

finalizing colors suggestions optimize

Project Manager Initial cost estimate Detailed costing Minor changes to

optimize

Structural Engineer Structural check Detailed structural Minor changes to

calculations optimize

Thermal Engineer Thermal check with Detailed thermal Minor changes to

color suggestions calculations optimize

Table 4-6 Various Stages of Knowledge for Repositories

4.6.2 Rates of Development

Based on projections on the amount of work, the rates of developments are estimated as

follows:

Stage 1 Stage 2 Stage 3

Architect 0.1 0.2 0.2

Project Manager 0.2 0.1 0.2

Structural Engineer 0.08 0.2 0.2

Thermal Engineer 0.07 0.2 0.2

Table 4-7 Rates of Development for the Knowledge Processes

163

Chapter 4



The Delta Design Game

The next stage is to understand the information pre-requisites for the individual

processes and build a matrix of information prerequisites as well as identify the type of

pre-requisite.

4.6.3 Information Prerequisites

Similar to placing predecessor activities in the CPM method, information pre-requisites

are placed by analyzing which pieces of information are necessary for subsequent

stages to proceed. Based on the Delta Design process, the project manager, structural

engineer and thermal engineer are unable to proceed with any design until the Architect

has completed stage 1. The relationship between the Project Manager, Structural

Engineer and Thermal Engineer with the Architect as shown in Table 3-1 is 5. Now, the

Architect cannot move to the second stage of knowledge development until each of the

other processes has achieved Stage 1. This represents each of them having performed

initial checks on the proposed layout by the architect. The relationship is therefore

relatively tightly integrated (2 according to Table 3-1).

Table 4-8 shown below summarizes the information prerequisites for the design process.

164

Chapter 4



The Delta Design Game

Upstream
(Stage 1)

Architect Project Structural Thermal
Manager Engineer Engineer

E Architect 0 2 2 2

Project Manager 5 0 0 0

Structural Engineer 5 0 0 0
0 Thermal Engineer 5 0 0 0

Stage 2
Architect Project Structural Thermal

Manager Engineer Engineer

E Architect 0 0 0 2

w Project Manager 0 0 0 0

Structural Engineer 0 0 0 0

o Thermal Engineer 5 0 0 0

Stage 3
Architect Project Structural Thermal

Manager Engineer Engineer

E Architect 0 0 0 2

Project Manager 0 0 0 0

Structural Engineer 0 0 0 0

o Thermal Engineer 5 0 0 0

Table 4-8 Table of Information Prerequisites

165

Chapter 4



The Delta Design Game

4.6.4 Probabilities upstream is not workable for downstream

Table 4-9 represents the probabilities that knowledge already developed needs to be

change based on restrictions by subsequent processes. As whether the knowledge

already developed needs to be reestablished depends on what was developed, one can

imagine that the variable is probabilistic.

The values for probabilities used in our initial evaluation were determined by trial and

error to represent what seemed like realistic figures from comparison of behavior of the

model to what actually occurred.

Upstream
Architect Project Structural Thermal

Manager Engineer Engineer
Architect 0 0 0 0

Project Manager 0.8 0 0 0

n Structural 0.8 0 0 0
C

0 Engineer

Thermal Engineer 0.8 0 0 0

Table 4-9 Table of probabilities not workable for downstream

Table 4-9 suggests that the Architect's proposed schematic has an initial chance of 80%

needing rework at some point in the development of the project.

4.6.5 Holdback period

The holdback period represents a time where even though all the information

prerequisites have been met knowledge processes remain inactive. Such times of lull

activities can be either intentional (as in the case of our observations where participants

are unwilling to proceed) or unintentional (as in the case of asynchronous activities). We

use a holdback duration of 5 minutes to simulate the asynchronous teams.

166

Chapter 4



The Delta Design Game

4.7 Model behavior

4.7.1 Without iteration

Figure 4-11 shows the behavior of the knowledge evolution model when iteration is not

considered in the model.

Graph for Knowledge Repository

4

3

2

1

0
0 12 24 36 48 60 72 84 96 108 120

Time (M~inute)

Knowledge Repository[Architect]: Current Dmnl
Knowledge Repository[ProjectManager] : Current - - - - - - - - - - - - - - - - - - - - - - - - - Dmnl
Knowledge Repository[StructuralEngineer]: Current --- ------ Dmnl
Knowledge Repository[ThermalEngineer] : Current - - - - - - - - - - - - - - - Dmnl

Figure 4-11 Knowledge Evolution of Deltan Habitat (without iteration)

167

Chapter 4



The Delta Design Game

4.7.2 With iteration

Figure 4-12 and Figure 4-13 show the behavior of the knowledge evolution model when

probabilities for iteration are considered.

Graph for Knowledge Repository

4

3

2

1

0
0 12 24 36 48 60 72

Time (Minute)

Knowledge Repository[Architect] : Current
Knowledge Repository[ProjectManager]: Current - - - - - -

Knowledge Repository[StructuralEngineer] : Current - -

Knowledge Repository[ThermalEngineer]: Current - -

84 96 108 120

Dmnl
--- --- ---------- Dmnl

-- Dmnl
- - - - - - - - - - Dmnl

Figure 4-12 Knowledge Evolution of Deltan Habitat (with iteration) - synchronous

168

'I
*/ "I

~1 /
ii /

/

Chapter 4



The Delta Design Game

Graph for Knowledge Repository

6

4.5

3

1.5

0
0 12 24 36 48 60 72 84 96 108 120

Time (Minute)

Knowledge Repository[Architect]: Current Dmnl
Knowledge Repository[ProjectManager] : Current - - - - - - - - - - - - - - - - - - - - - - Dmnl
Knowledge Repository[StructuralEngineer] : Current- - ------- Dmnl
Knowledge Repository[ThermalEngineerl : Current - - - - - - ----- - - - Dmnl

Figure 4-13 Knowledge Evolution of Deltan Habitat (with iteration) - asynchronous

Figure 4-12 shows the case with synchronous communication whilst Figure 4-13 shows

the case with asynchronous communication.

4.8 Comparisons

The model simulation shows similarity to the results as tabulated in Section 4.5 above.

In particular, the differences between the asynchronous teams and the synchronous

teams with the calibration of the duration of holdback period variable. It is noted that the

synchronous teams tend to go through more iterations that the asynchronous ones so

even though the asynchronous teams were working with a significant handicap, the

169

Chapter 4



The Delta Design Game

project performance was relatively similar. This concept of using the holdback period to

simulate project organization structure.

4.9 Summary

The Delta design game represents a project with all the components of a typical project

including multiple participants, multiple skill sets and thus segregated knowledge, a well-

defined scope and definite project schedule. Yet, the project is simple enough without

the complications of boundary conditions including the project scope and project

organization changing. These features of the Delta Design project make it ideal for

analyzing the segregation of knowledge in project organizations.

The knowledge evolution framework described in the preceding chapters are calibrated

to suit the Deltan Habitat projects. The knowledge evolution simulations closely

resembled the results from actual projects run by first time participants.

Six projects were run concurrently with 3 teams working synchronously and 3 teams

working asynchronously. The project performances were not found to be significantly

different though the synchronous teams went through more iterations than the

asynchronous teams. These attributes were also captured by the knowledge evolution

framework.

170

Chapter 4



Chapter 5 Analysis & Observations

5.1 Introduction

The knowledge evolution framework can be used to provide insight into project

complexities and assist us in implementing policies to improve product development

project performances.

The previous chapter demonstrated that the knowledge evolution framework is capable

of modeling and simulating projects as the results produced by the simulation model

resembles the results of the six projects actually executed. This chapter evaluates the

particular model developed for the Deltan habitat design project to gather further insights

as to how specific variables affect the performance of product development projects.

These variables include the following:

" Probabilities

" Reduction factors and learning rates

" Reduction in knowledge repository

* Duration of holdback period

171



Analysis & Observations

These insights have implications on how specific strategies and policies intended to

improve project performance will actually perform. Implementations of concurrent

engineering and cross-functional teams that have not produced consistent performances

as mentioned in previous chapters are examples of policies the framework could be

used to avoid.

5.2 Sensitivity Analysis

5.2.1 Probabilities

Whilst iterations are affected by a few key factors including the number of iterations and

the stage of knowledge within the knowledge processes, the probability that processes

need to be iterated is one of the key factors responsible for iteration. Quite simply, high

probabilities imply more iterations while lower probabilities imply less iterations. This

trend is indeed confirmed by the simulations that are tabulated in Appendix 4-1.

One interesting observation that seems counter intuitive, seems to be the impact of

multiple probabilities. Comparing the results between processes where only one

process can be a cause for iteration and processes where multiple processes can be

causes for iteration with equal probabilities, it seems that there is no significant increase

in the number of iterations. For example, comparing the cases where Prob = [0,0,0.9,0]

and Prob = [0,0.9,0.9,0.9] we see no significant rise in the number of iterations as

illustrated in Figure 5-1 and Figure 5-2 respectively.

172

Chapter 5



Analysis & Observations

Graph for Knowledge Repository

0 12 24 36 48 60 72 84 96 108 120
Time (Minute)

Knowledge Repository[Architect]: Current
Knowledge Repository [ProjectManager]: Current - - - - - - - - - - - - - - - - - - - - - - -

Knowledge Repository[StructuralEngineer] : Current-- - ------
Knowledge Repository[ThermalEngineer] : Current - - - - - -

4

3

2

1

0

Figure 5-1 Knowledge Evolution (Prob = [0,0,0.9,0]])

Graph for Knowledge Repository

. .. ..

0 12 24 36 48 60 72
Time (Minute)

Knowledge Repository[Architect]: Current
Knowledge Repository [ProjectManager] : Current - - - - - -

Knowledge Repository[StructuralEngineer]: Current - -
Knowledge Repository [ThermalEngineer]: Current

Dmnl
Dmnl
Dmnl
Dmnl

84 96 108 120

Dmnl
----------------- - Dmnl
------------- - Dmnl
- - - - - - - - - - - Dmnl

Figure 5-2 Knowledge Evolution (Prob = [0,0.9,0.9,0.9])

173

4

3

2

1

0

Chapter 5

-



Analysis & Observations

Intuition will tell us that the additional risk [0, 0.9, 0, 0.9] to the original [0, 0, 0.9, 0] will

cause more iterations. With further analysis of the results, we find that though this is not

untrue, the additional impact is minimal. If we compare with the other simulations for

Prob = [0,0.9,0,0] and Prob = [0,0,0,0.9] we will find that these are less dominant (see

Appendix 4-1). The probabilities of iteration, therefore seem to conform with the saying

"that a chain is only as strong as its weakest link". This seems to be due to the

following reasons:

* The iterations caused by the original [0, 0, 0.9, 0] actually dominate the process.

" Even though the probability from the various processes are the same, this is

definitely possible since the reduction factors for iteration reduce probabilities

after iteration and further suppresses the risk for iteration from the other

processes. The impact from the reduction factors is evaluated in the following

section.

5.2.2 Reduction factors and learning rates

Another key factor affecting iterations in the simulation models is the reduction factor for

the probabilities. As discussed in 3.3.2.5 , there are two separate types for reduction

factors; one of which is for the number of iterations and the other for increases in the

stage of knowledge. In general, as the learning rate increases, the reduction factor

reduces more quickly as shown in the family of curves in Figure 3-19 and Figure 3-20.

The direct implication of this is, of course, that the quicker the reduction of reduction

factor, the lower the iteration. This is more or less confirmed by the results that are

tabulated in Appendix 4-2.

174

Chapter 5



Analysis & Observations

As mentioned in the previous section, the dominance of certain probabilities over others

is verified as well. These results are also tabulated in Appendix 4-2. The behavior that

the probability for one process dominates over the others is more significant for higher

learning rates. Figure 5-3 shows the differences between Prob = [0,0.9,0.9,0.9] and

Prob = [0,0,0.9,0]. For high learning rates, the evolution is more or less identical whilst

for low learning rates, the case for Prob = [0,0,0.9,0] has significantly more iterations.

175

Chapter 5



Analysis & Observations

Prob = [0,0.9,0.9,0.9] Prob = [0,0,0.9,0]

Graph for Knowledge Repository Graph for Knowledge Repository

4 4

3 3

2 2
Ct

0 0
0 12 24 36 48 60 72 84 96 108 120 0 12 24 36 48 60 72 84 96 108 120

Time (Minute) Time (Minute)

Knowledge Repository[ Ahitect] Current Dm1 Knowledge Repository[Amchitect): Current Drui

KmwledgeRepository[Pr jetMuager]:Curen..t - -Dnil KenwledgeRepository{ProjemtMuage):Cunet --- -Dn

KnowledgeRepository[StructuralEngineeee Ctrrent - -- -- -- Dm KowledgeRepository[StructuralEnginee]:Cuent - -- -- - Dm1

Knwe'edgeRepositerylThermalEegieeerl:Cent---. . . .- -Dm1 Knowledge Repostory(ThermalEngineer]:Current -Dmd

Graph for Knowledge Repository Graph for Knowledge Repository

44

3 3

C 2 2

0 0
0 12 24 36 48 60 72 84 96 108 120 0 12 24 36 48 60 72 84 96 108 120

E Time (Minute) Time (Minute)

Knowledge Repository[Arhtect]: Current Dnl Knowledge Repository(Architect): Current Dm1

Knowledge Repository[ProjectManager]: Ctrent - - - - - - - - - - - Dnt Knowledge Repository(Projei iiager]:Current - - - - - - - - - - - Dml

KnowledgeRepositorytStructaiEngineer:Crent -l-- -- - D KnowledgeRepository[StructuraEngineer]:Current --- - - -- -- Dmni

0 Knwedge Repository[ThermalEngineer] : Current - -Dn1 Knowledge Repository[Thernmln gineer}: Current --. -- Dui

Graph for Knowledge Repository Graph for Knowledge Repository

4 4

*0
cc 3 3

2 2

0
0 12 24 36 48 60 72 84 96 108 120 0 12 24 36 48 60 72 84 96 108 120

Time (Minute) Time (Minute)

Knowledge Repository[A i tect] Cuent Dntl Knowledge Repository(A tetect: Cunrent D-1

0 Knowledge Repository(PtojectManager:Current -Dn..l KnowledgeRepository[ProjetMngm]:Cerrent - -.- - - - -- - - -Dl

KnowledgeRepository[StructrEngineteerlCurrent -- - --- Denl KnowledgeRepository[StructumlEngieer]:Curet - ---- -- Du

Knowledge Repusit.y[Therml gieer: Cent ..-...-....-- . .. DmI Knowledge Repository[ThenlEungineer: Current -- .- -- Dml

Figure 5-3 Probability dominance and Learning Rates

Though not intuitive, this behavior is logical as the dominance of one process over

another is determined by its effect to quickly bring down the reduction factor which

causes lower probabilities for the other processes.

176

Chapter 5

'I



Analysis & Observations

5.2.3 Reduction in knowledge repository

Under the knowledge evolution framework, iteration is represented by a reduction in the

knowledge repository. This does not mean that knowledge is lost, but simply that the

work it took to generate the knowledge needs to be redone. Obviously, the immediate

question is how much reduction in the stage actually takes place. Also obvious, is that

the more reduction per iteration, the longer the project duration.

Therefore, in the ideal situation, the lower the reduction per iteration, the better. If it

were possible to minimize reduction in the knowledge repository However, low

reductions in the knowledge repository typically implies a more integrated process with

frequent checks and thus more iterations. This implies that there is a tradeoff between

more iterations with lower reductions in the knowledge repository but more iterations and

less iterations but greater reductions in the knowledge repository. Any policies that is

intended to increase project performance must either be targeted at lowering the

reduction per iteration without increasing the frequency of iterations or take this tradeoff

into consideration.

5.2.4 Duration of holdback period

The duration of holdback period denotes the period of time a knowledge process after its

information prerequisites are met and before it starts productive work towards the

177

Chapter 5



Analysis & Observations

project. Whilst the existence of these periods may be either unintentional or intended as

part of formal policies they do exist in projects.

In a previous chapter, the calibration between synchronous teams and asynchronous

teams were performed by varying the holdback period. The figures suggest that

asynchronous teams operate with some holdback. This holdback may not be

intentional, rather, it occurs as a consequence of asynchronous teams information

assimilation process and hearing from other parties before proceeding with work. This

was, in fact, one of the observations from the Deltan habitat project. Even though

certain participants had the necessary pre-requisite information, they preferred not to

perform work until further information was available.

Intuition will tell us that the impact of holdback period is that its effect on the project

duration will be negative only if the work to be performed is on the critical path. This is

true in the absence of other factors. In fact, intuition has also told participants of the

Delta habitat project to holdback in the fear of rework and iteration as we had observed.

From a cost and resource usage angle, holdback therefore does make some sense.

Our model, however, also shows us that with holdback (such as with asynchronous

teams), there can be improvements in project duration. This is illustrated in Figure 5-4

and Figure 5-5.

178

Chapter 5



Analysis & Observations

Graph for Knowledge Repository

0 12 24 36 48 60 72 84 96 108 120
Time (Minute)

Knowledge Repository[Architect]: Current
Knowledge Repository[ProjectManager: Current - - - - - - - - - - - - - - - - - - - - - -
Knowledge Repository[StructuralEngineer] : Current-- - - ------
Knowledge Repository[ThermalEngineer]: Current - - - - - - - - - - - -

Figure 5-4 Knowledge Evolution without holdback

Graph for Knowledge Repository

Dmnl
Dmnl
Dmnl
Dmnl

0 12 24 36 48 60 72 84 96 108 120
Time (Minute)

Knowledge Repository[Architect] : Current
Knowledge Repository[ProjectManager] : Current - - - - - - - - - - - - - - - - - -
Knowledge Repository[StructuralEngineer]: Current- - -----

Knowledge Repository[ThermalEngineer] Current - - - - - -

Figure 5-5 Knowledge Evolution with holdback

-- Dmnl
- - - Dmnl
- - Dmnl

Dmnl

4

3

2

1

0

6

4.5

3

1.5

0

179

Chapter 5



Analysis & Observations

This counter-intuitive behavior is in fact caused by a lower number of iterations. With a

certain amount of holdback, the reduction in probabilities lowers the probabilities

sufficiently in the duration of the holdback. This lowering of probability reduces the risk

of iterations and hence the number of iterations.

Through various simulations, some key levers have been identified that triggers this type

of behavior. Firstly, it is the relative learning rates between knowledge increase and

iterations rather than the absolute learning rate that is key. The larger the ratio, the

more likely holdback will result positively towards project performance. This is due to the

fact that if the learning rate by iteration is large as well, iteration will lower the

probabilities of iteration just as much. Secondly, the reduction in stage of knowledge

compared to the duration of holdback period with the rates of development is significant

as well. This finding extends Pefia-Mora and Park's (2001b) model on the reliability

buffer that is concerned with primarily work quality identifying further causes for

existence of a reliability buffer.

5.3 Insights

5.3.1 Policies for improving project performance

Based on the results from analyzing variations in key variables, in order to reduce

project duration, the following generally hold true:

0 Reducing probabilities that work is unacceptable as far as possible,

180

Chapter 5



Analysis & Observations

* Increasing the learning rates (both by iteration and by knowledge increase),

" Minimize the reduction in knowledge repository without increasing the frequency

of iteration, and

" In the right settings, strategically holding back whilst waiting for important but not

critical information.

There are, however, more important lessons to be drawn from the analysis. Firstly, for

reducing probabilities, it was observed that the probability from one process could

dominate the entire knowledge evolution. This process would therefore become the

"bottleneck" in the entire evolution. Efforts to minimize probabilities should therefore be

targeted at that particular process. In an effort to minimize this effect of the weakest link,

not just the probabilities need to be reviewed but also other key variables such as

reduction factors and reduction in stage.

Secondly, it is important to understand the learning rates for several reasons. The

higher the learning rates, the more this behavior of dominance applies. Therefore, for

scenarios with very low learning rates, applying this principle of dealing with the weakest

link will see less dramatic improvements. Also, the ratio of learning rate by knowledge

increase to learning rate by iterations is important since scenarios with higher ratios will

see more improvements with holdback than otherwise.

Fourthly, it is generally not straightforward to reduce the reduction in stage of knowledge

per iteration without increasing the number of iterations. Decreasing the reduction in

stage of knowledge generally implies closer integration, more checks and therefore

181

Chapter 5



Analysis & Observations

higher risks of iteration. As the reduction in stage of knowledge is typically limited to the

stage, one means around this is to increase the number of stages. In the physical world,

this means introducing more stable sub-forms and "locking in" the design at critical

points. So similar to theories involving evolution and stable states (Simon, 1969;

Jacobsen, 1995) more sub-forms decreases the time required (also see Simon's

watchmaker analogy, Simon, 1969). One must note, however, that the mechanics of

this artificially creates hold back scenarios which, again, may or may not be desirous in

product development projects depending on the project circumstances.

5.3.2 Performance of concurrent engineering and cross-functional teams

In previous chapters we have stated that although there have been successful

implementations of concurrent engineering and cross-functional teams, the aggregated

results have been fairly mixed (lansiti, 1993; Clark and Wheelwright, 1993; Dean and

Susman, 1991). Researchers have attributed this contradiction to increased

complexities and tightened constraints imposed by the interdependencies requiring

higher levels of coordination (Ulrich and Eppinger, 1994; Malone and Crowston, 1990).

This section attempts to identify further reasons for this contradiction.

The concept in concurrent engineering is to concurrently execute parallel activities and

processes. Ultimately, once work becomes available, it should be executed. What is

not accounted for, however, is the iterative process. Firstly, there is the iteration due to

rework as discussed in the "Rework and overlap" model. Starting earlier, generally

implies a lower quality and increases the amount or work that needs to be iterated. This

182

Chapter 5



Analysis & Observations

leads to less than satisfactory results. This, rework, however, may be minimized through

better quality controls and tighter scope controls. Besides iteration due to rework, this

research has shown that iteration exists in the absence of poor quality. This iteration is

due to lack of knowledge and information from certain participants and knowledge

segregation. Like rework and quality, the later a knowledge process starts, the more

information and knowledge is available and the risk of iteration reduced. Starting too

early may imply starting with a high probability of iteration and leading to more iterations

and probably longer durations.

Of course, this does not mean that concurrent engineering strategies do not work, they

have proven to be successful in many instances. What needs to be evaluated prior to

embarking on concurrent engineering is this risk of more iterations leading to longer

durations. The results of this research therefore suggest that candidate projects suitable

for concurrent engineering are projects with the following attributes:

* Strong organizational processes to handle increased complexity as well as

ensure quality is maintained.

" Lower probabilities of iteration due to knowledge segregated, in other words, less

coupled knowledge processes.

" In the event processes are coupled, the probabilities should be low. High

learning rates is a plus but not necessary.

* Low reduction in knowledge repository per iteration is important as there will

likely be more iterations in this type of environment.

183

Chapter 5



Analysis & Observations

* Low Learning rate by knowledge increase/Learning rate by iteration ratio (cross-

functional teams imply less holdback periods)

Policies involving cross-functional teams, unlike concurrent engineering take on a

different approach. The project organization is arranged such that participants with

different functional background operate with each other closely (both in terms of physical

distance and dispersion in general). This basically reduces the time and effort in

communication between the functions. In the knowledge evolution framework, this can

be represented by lowering the reduction in knowledge repository. However, as

mentioned above, this typically implies more iteration. So we see immediately, that it is

an issue of trade-off and deciding which alternative is more suitable for the case of the

project.

Candidates for projects that are suitable for cross-functional teams are projects that

have the following attributes:

* Low probability of iteration

" High learning rates

" Low learning rate by knowledge increase/learning rate by iteration ratio (cross-

functional teams also imply less holdback periods)

In these analysis, the holdback period seems relatively crucial and is used to

simulate the relative dispersion of the project organization. It seems that firms have

inherent holdback periods which can be described as the period of time between

184

Chapter 5



Analysis & Observations

when a process can theoretically proceed to when it can practically proceed given

that it takes time for information to be communicated through meetings, drawings

and so on. Both concurrent engineering and cross-functional teams are intended to

reduce that time. However, as found in this research, such reduction of holdback

period does not necessarily reduce the project duration.

5.4 Summary

This chapter analyzes how variations to the various key variables affect the project

duration. Whilst much of the behavior is intuitive, some interesting results seemed

counter-intuitive. The following results were rather intuitive:

* Project duration is shortened with the following trends:-

o Lower probabilities of iteration

o Higher learning rates

o Lower reduction in knowledge repository per iteration

o Minimum holdback period

These results tend to hold true except in special circumstances. These special

circumstances lead to results that are counter-intuitive such as:

" Probabilities of iteration from a process can be dominant over other processes

provided the learning rate by iteration is sufficiently high.

* A longer holdback period can shorten project duration provided the learning rate

by knowledge increase is sufficiently high and the learning rate by iteration is

sufficiently low.

185

Chapter 5



Analysis & Observations

* There exists a tradeoff between lowering the reduction in knowledge repository

per iteration and the number of iterations that needs to be carefully considered.

These results have implications on the implementation of policies or strategies to

shorten the project duration. The knowledge evolution framework is used to describe

circumstances that would cause shortening or lengthening of project durations. In

particular, the use of concurrent engineering and cross-functional teams have been

analyzed using the framework and an explanation why these methodologies may or may

not work have been provided.

186

Chapter 5



Conclusions

Chapter 6 Conclusions

6.1 Summary

In response to commercial pressures to shorten the product development life cycle,

many product development teams in different industries have implemented new

techniques such as concurrent engineering, cross-functional teams and product

platforms. Though there have been success stories, the aggregate results have been

fairly mixed. This contradiction to the intended results seems to suggest there may be

some missing ingredient.

It is a sad fact that almost all projects come in late and over budget. With rules of thumb

for estimation of project duration as "take your best guess and multiply it by two", why do

projects still come in late? Some researchers consider iteration as the major cause.

Iteration, for example, explains the 90% syndrome. A common scenario in complex

projects where 90% of the work gets executed pretty much in accordance to the

schedule and the remaining 10% of the work takes more than the original 90% to

complete. Past researchers have looked into this problem and have considered iteration

to be caused mostly by rework due to mistakes, or failure to meet quality problems.

187

Chapter 6



Conclusions

Many design texts, however, start off by stating that design, which is part of the product

development process, is an iterative process. It is quite apparent that these texts are not

referring to mistakes and errors.

This research has looked at the inherent nature of the iteration and has identified that

knowledge and information segregation lead to rework. In order to understand the

implications of this segregation, this research proposes a knowledge evolution

framework, a framework that captures the product development project as an

evolutionary one where the collective knowledge of the project contained in the minds of

the participants, in the documents generated and even in physical artifacts such as

prototypes, parts and even products increases over time. This concept is borrowed from

practitioners in knowledge management who have considered physical artifacts to be

embodiments of knowledge.

The knowledge evolution framework lies in the intersection of various fields including

knowledge management, product development, project management tools and

organizational theory. Relevant theory and literature from these fields were analyzed

and concepts required in the knowledge evolution framework were expended upon.

Much of the relevant literature lies in the use of system dynamics in studying the

dynamic nature of projects. This research is no different as the knowledge evolution

framework was developed using the system dynamics methodology.

The knowledge evolution framework was developed as a system dynamics model

representing the knowledge as stages of knowledge in a knowledge repository and

188

Chapter 6



Conclusions

representing the people and teams by knowledge processes. Each knowledge process

has probabilities that it will need to iterate as a result of downstream processes and has

information prerequisites that need to be met before the process can proceed.

In order to test this framework, simple projects were executed involving the design of

habitats on the fictitious Deltoid plane. The project is a design exercise used as an

instruction tool for the demonstration that design is indeed a social process. These

projects were simple enough to execute that the research ran six concurrent projects.

The results were quite similar to that predicted by the simulation model. One interesting

result that arose from the six projects was that even though three projects operated in an

asynchronous mode at a considerable handicap, the project performance was

comparable. This was due to the fact that the asynchronous projects had, on average,

less number of iterations.

The knowledge evolution framework model for the Deltan habitat design project was also

used to analyze the effect of some of the key variables on project performance. In

particular, the project duration. While it was found that generally project durations

shorten when probabilities are low, learning rates are high and the reduction of

knowledge repository per iteration is low, optimizing these factors is not sufficient. The

analysis also yielded some interesting results.

One such result was that probabilities of iteration from a process can be dominant over

other processes provided learning rate by iteration is sufficiently high. The implication of

189

Chapter 6



Conclusions

this result is that any policies targeting reduction of probabilities must be targeted at "the

weakest link". Especially if learning rate by iteration is high.

Another interesting result was that longer holdback periods can potentially shorten

project durations. This is provided the learning rate by knowledge increase is sufficiently

high and the learning rate by iteration is sufficiently low. This result partially answers the

question as to why initiatives such as concurrent engineering and cross-functional teams

yield mixed results. Both these initiatives act to shorten the holdback periods reducing

either the time between processes or dispersion in the project organization. While these

are commonly regarded to shorten project duration, they can also lengthen project

durations if the environmental factors are correct. This is caused by the fact that earlier

actions result in higher probabilities of iteration.

The final interesting result was the understanding of the tradeoff between increased

iteration and reduction in knowledge repository. Many policies that act to improve on

side also balances the other thereby canceling the benefits. This understanding allows

us to understand why certain policies work and others do not.

6.2 Contributions

One of the purposes of this research was to provide an alternative to the traditional task-

based frameworks and tools that did not accurately capture the concept of iteration in

the absence of errors or lack of quality control. The knowledge evolution paradigm is a

190

Chapter 6



Conclusions

new approach that models the iterative process as a probabilistic one that brings out this

side of product development projects.

Application of the knowledge evolution framework to projects have also demonstrated

the existence of dominant probabilities and environmental factors that make certain

probabilities dominant. Also, the framework has demonstrated that "holding back" does

work in certain instances and has found that they are more likely to work when the

learning rate by knowledge increase is high and the learning rate by iteration is low.

These relationships are counter-intuitive and to some extent explain the mixed results

that initiatives such as concurrent engineering and cross-functional teams have had on

project performance.

Even at a basic level, the knowledge evolution framework has proven useful to

deepening our understanding of managing complex product development projects. With

some further research, the framework could be developed into a set of tools that can be

used to plan for and manage these projects.

6.3 Further research

In order to achieve the goal of utilizing the knowledge evolution framework for the

planning and management of product development frameworks, there are a few thrusts

in which future research could prove potentially valuable. These thrusts represent

different directions in which research could head covering different concentrations. The

thrusts are:

191

Chapter 6



Conclusions

* Calibration and project monitoring,

" Framework development, and

" Application development.

6.3.1 Calibration and project monitoring

This research has applied the knowledge evolution framework and analyzed

relationships on simplified projects. After applying the framework on a project, one will

realize the difficulty in estimating certain figures such as the probabilities of iteration and

the learning rates. In reality, these will be extremely difficult to measure before a project

starts which is when the simulations prove useful for policy and strategy testing.

This research assumes the relationships between the dispersion of an organization to

the richness of the communication. In actuality, this would probably need to be

benchmarked for different firms. How much of that communication relies on tacit

transfer and how much relies on explicit transfer needs to be more closely studied. The

assumption that tacit communication is "richer" but less precise also needs to be further

verified.

One of the more pressing areas for research is that some benchmark for these figures

for different types of processes and somehow calibrating them to the model for future

uses. Questions that arise include whether these numbers would be firm specific,

industry/practice specific, organizational structure specific. Some of the variables that

would need some form of benchmarking and calibration include:

192

Chapter 6



Conclusions

* Probabilities

" Learning Rates

" Equivalent dispersion (between geography, function and organization)

With some of this information, strategies and policies that are intended to improve

project performance can be tried and tested both in the simulation model as well as

implemented in true projects.

The strong points in using the Delta Design project (simple, constant organization,

constant scope) also point to the weaknesses of the applicability of the findings. In

reality, projects are never quite this simple. Another area of further research is therefore

in applying the framework into more complex projects. Before this can happen, it may

also be necessary to further develop the knowledge evolution framework to account for

some of these complexities.

6.3.2 Framework Development

Another possible thrust of research could be focused on further developing the

knowledge evolution framework. Firstly, the issues of scope, quality and rework have all

been intentionally omitted to focus on the knowledge and information segregation issue.

An immediate research need will be to incorporate these to evaluate the relative

importance.

193

Chapter 6



Conclusions

The model used in this research was kept simple. Some of the variables were kept to

their first order approximations as the intention was really to demonstrate the use of the

framework and that no there is no substantive evidence (without further research) of

more meaningful estimates. For example, in the model, a uniform probability density

function is used even though it is quite clear that iterations are more likely to occur at

specific parts of the cycle. However, further research is needed to gather what more

likely probability density functions would look like. Other areas where first order

approximations were used and could see further research is the differentiation between

in-stage and cross-stage iteration.

Another possible research area is reconciliation with the task-based environment. The

knowledge evolution paradigm highlights certain areas of project management that have

not previously been analyzed. This is, however, not to say that the traditional task-

based paradigm is not useful. It has proven its use and will continue to contribute to the

successful management of product development projects. Research is therefore

necessary to somehow tie the two paradigms together and provide useful tools for

managing projects

The third possible area of research in the framework development thrust is further

detailed modeling. For example, if each stage of knowledge can be considered a stable

subsystem, then the impact on differentiating between in stage iteration and cross stage

iteration could be considered. Also, as resources in large product development firms are

typically over multiple projects, the relationships arising from limited resources being

applied to multiple projects could also be evaluated. These relationships are a

194

Chapter 6



Conclusions

necessary to understand in developing a framework that could be used as a useful tool

for managing projects.

6.3.3 Applications Development

The final thrust of research possibilities is in the area of applications development.

Although system dynamics is extremely useful and powerful for understanding the

dynamic nature of projects, skills required to use it to improve project management are

not that easily acquired. It seems therefore that some form of interface may be needed

in order to provide a valuable toolset to project managers. This need calls for the

development of suitable applications based on the knowledge evolution framework.

Such applications will need to capture both the knowledge evolution paradigm as well as

the task-based paradigm issues that the previous section describes.

One possibility is the further use of system dynamics engines with an improved user

interface that allows for easy input of processes and scope. Another possibility is the

use of multi-agent simulation models. Knowledge processes can be modeled as agents

that interact with other agents.

6.4 Conclusions

This research has demonstrated how a knowledge evolution paradigm of modeling

product development projects can be used to analyze issues that the traditional task-

based tools have not. In particular, the knowledge evolution framework was able to

195

Chapter 6



Conclusions

account for iterations in projects in the absence of mistakes and lack of quality control.

As the knowledge evolution framework is providing an alternative model of product

development projects, it is capable of providing insights into project behavior where

traditional task-based tools could not. Beyond insights, the framework can also provide

measurements and levers for management that is directly linked to the knowledge in the

project organization. This is especially important as firms are beginning to realize the

importance of managing knowledge in an increasingly knowledge-based economy.

This research has also shown significant fit to actual simple projects. Six Deltan habitat

design projects were executed concurrently and the results were similar to that predicted

by the model showing that the framework can be used to simulate real projects. As the

product development process is relatively complex and once system architecture and

organizational decisions are implemented, they become extremely difficult to change;

the knowledge evolution framework provides a means to test and simulate concepts at a

relatively low cost.

Finally, this research has also highlighted some properties of projects that seem counter-

intuitive. These include the dominance of probabilities of iteration and the value of

"holding back". The research has also allowed us to understand the circumstances in

which these properties become significant. These properties have given not only given

us a deeper understanding of product development projects but will also enable us to

make more informed decisions when implementing strategies, policies and initiatives

aimed at increasing project performance.

196

Chapter 6



Conclusions

Understanding the knowledge evolution in product development projects is a first step

towards managing the knowledge organization in firms that are involved in product

development. Not only can the knowledge evolution paradigm provide insights as

shown by this research, it is potentially a very useful project management tool. The

knowledge evolution framework is the most direct way of leveraging a firm's human

capital as it could provide information as to what type of knowledge is needed and when

it would be needed. Understanding how knowledge is transferred within the project

organization also enables firms to implement strategies and policies as to what media is

suited for what type of knowledge transfer and whether the knowledge is tacit or explicit.

197

Chapter 6





References

Abdel-Hamid, Tarek (1984). The dynamics of software development project

management: an integrative system dynamics perspective. Unpublished doctoral theses.

MIT, Cambridge, MA.

Abdel-Hamid, Tarek and Madnick, Stuart (1991). Software project dynamics: an

integrated approach Prentice-Hall, Englewood Cliffs, NJ.

Abelson, H., Sussman, G.J., Sussman, J. (1985). Structure and interpretation of

computer programs. MIT Press, Cambridge, MA.

Albano, Leonard D. (1992). An axiomatic approach to performance based design.

Unpublished PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA.

Allen, Thomas J. (1977). Managing the flow of technology. MIT Press, Cambridge, MA.

Ancona, Deborah, G. (1987). Groups in organizations: extending laboratory models.

Annual review of personality and social psychology: group and intergroup processes.

Sage, Beverly Hills, CA.

199



References

Ancona, Deborah .G. and Caldwell, David E. (1989). Demography and design:

predictors of new product team performance. MIT Working Paper 3078-89.

Ancona, Deborah .G. and Caldwell, David E. (1991). Cross functional teams: blessing or

curse for new product development. MIT Management Review, pp 11-16 Spring.

Bacon, Glenn et al. (1994). Managing project to process management: an empirically

based framework for analyzing product development time. Management Science

41:3:458-484.

Beam, W.R. (1990). Systems engineering: architecture and design. McGraw-Hill

Publishing Co., New York.

Belady, L.A. and Evangelisti, C.J. (1981). System partitioning and its measure. Journal

of systems and software, vol. 2, no. 1, February 1981, pp. 23-29.

Berenato, D.A. (1988). Issues and strategies for improving constructibility. Unpublished

Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.

Bohn, Roger E. (1994). Measuring and managing technological knowledge. Sloan

Management Review, Fall 1994.

200



References

Brethenoux, E. (1997). The future of knowledge management, Part 1. 1997

Bucciarelli, Louis L. (1991). The Delta design game. Massachusetts Institute of

Technology, Cambridge, MA.

Bucciarelli, Louis L. (1994). Designing engineers. The MIT Press, Cambridge, MA.

Calantone, R. and Cooper, G. (1981). New product scenarios: prospects for success.

Journal of Marketing, 45: 48-80.

Card, D.N. (1988). The role of measurement in software engineering. Software

Engineering 88, Proceedings of the second IEE/BCS conference, Univ. of Liverpool, July

1988. Short Run Press, Exeter, U.K.

Churchman, C. West (1971). The design of inquiring systems: basic concepts of

systems and organization, Basic Books ,New York.

Clark, Kim B. and Fujimoto, Takahiro (1991). Product development performance,

strategy, organization and management in the world auto industry. Harvard Business

School Press, Cambridge, MA.

Clark, Kim B. and Fujimoto, Takahiro (1991). The power of product integrity: managing

product life cycle from start to finish. Harvard Business Review Paperback, Cambridge,

MA.

201



References

Clark, Kim B. and Fujimoto, Takahiro (1991). New product development performance.

Harvard Business School Press, Cambridge, MA.

Clark, Kim B. and Wheelwright, Steven (1993). Managing new product and process

development. Harvard Business School Press, Cambridge, MA.

Cooper, Kenneth G. (1980). Naval ship production: a claim settled and a framework

built. Interfaces. 10:6. The Institute of Management Sciences.

Cooper, Kenneth G.

Project Management

Cooper, Kenneth G.

Project Management

(1 993a). The rework cycle: benchmarks for the project manager.

Journal. 24:1.

(1 993b). The rework cycle: how it really works.. .and reworks....

Journal. 24:1.

Cooper, Kenneth G. (1 993c). The rework cycle: how projects are mismanaged. Project

Management Journal. 24:1.

Cooper, Kenneth G. (1994). The $2000 hour: how managers influence project

performance through the rework cycle. Project Management Journal. 25:1.

Cooper, R.G. (1979). The dimensions of industrial new product success and failure.

Journal of Marketing, 43: 93-103.

202



References

Crawley, Edward. (1999). 16.882 System Architecture. Class Notes. Cambridge, MA:
MIT,

Cronberg, A. and Saeterdal, A. (1975). The potential of the performance concept - some

questions. Industrialization Forum, vol. 4, no. 5, pp 23-26.

Davenport, Thomas and Prusack, Laurence. (1998). Working knowledge: How

organizations manage what they know. Harvard Business School Press, Cambridge,

MA.

Dean, James W. Jr. and Susman, Gerald I. (1991). Organizing for manufacturable

design: managing product life cycles from start to finish. Harvard Business Review

Paperback. Cambridge, MA.

Deo, N. (1974). Graph theory with applications to engineering and computer science.

Prentice-Hall, Englewood Cliffs, NJ.

Dougherty, D. (1987). New products in old organizations: the myth of the better

mousetrap in search of the beaten path. Unpublished PhD thesis, Sloan School of

Management, MIT, Cambridge, MA.

Eppinger, Steven D. et al. (1990). Organizing the tasks in complex design projects.

ASME conference on design theory and methodology. Chicago, IL. Sept:39-46.

203



References

Eppinger, Steven D. (1994). A model-based method for organizing tasks in product

development. Research in Engineering Design 6:1-13, Springer-Verlag London Limited.

Festinger, L. (1954). A theory of social comparison processes. Human Relations, 1:117-

140.

Ford, David N., Hou, Alex and Seville, Donald (1993). An exploration of systems

product development at Gadget, Inc. Working paper D-4460. Systems Dynamics Group.

Sloan School of Management, MIT, Cambridge, MA.

Ford, David N. (1995). The dynamics of project management: an investigation of the

impacts of project process and coordination on performance. Unpublished Doctorate

thesis. MIT, Cambridge, MA.

Ford, David N., and Sterman, J. D. (1998). Dynamic modeling of product development

processes. System Dynamics Review, 14(1), 31-68.

Ford, David N., and Sterman, J. D. (1999). Overcoming the 90% syndrome : iteration

management in concurrent development projects. MIT Sloan School of Management

Working Paper.

Forrester, Jay W. (1961). Industrial dynamics. Productivity Press, Cambridge, MA.

204



References

Gates, Bill with Hemingway, Collin. (1999). Business @ the speed of thought using a

digital nervous system, New York.

Galbraith, Jay T. (1977). Organization design. Addison-Wesley, Reading, MA

Goldratt, Eliyahu M. (1997). Critical chain. North River Press, Great Barrington, MA.

Goodman, P.S., Ravlin, E. and Schminke, M. (1987). Understanding groups in

organizations. Research in Organizational behavior, 9:1-71. LL. Cummings and B.M.

Staw (Eds)

Griffith, A. (1984). Design rationalization and its effects on buildability and productivity.

Organizing and Managing Construction, Proceedings 4th International Symposium on

Organization and Management of Construction, Univ. of Waterloo, April 1984,

International Council for Building Research, pp 579-586.

Groth, Lars (1999). Future organizational design: The scope for the IT-based enterprise.

John Wiley and Sons, Chichester.

Halpin, Daniel W. and Woodhead, Ronald W. (1980). Construction management. John

Wiley & Sons, New York.

Hayes, Robert H., Wheelwright, Steven C. and Clark, Kim B. (1988). Dynamic

manufacturing: creating the learning organization. The Free Press, New York.

205



References

Hoffman, E. (1985). The effect of race-ratio composition on the frequency of

organizational communication. Social Psychological Quarterly, 29: 499-517.

Homer, Jack, Sterman, John, Greenwood, Brian and Perkola, Markku (1993). Delivery

time reduction in pulp and paper mill construction projects: a dynamic analysis of

alternatives. Proceedings of the 1993 International System Dynamics Conference.

Cancun, Mexico, Monterey Institute of Technology.

Hubka, V. (1982). Principles of engineering design ed. By W.E. Eder, Butterworth

Scientific. London.

H ubka, V. and Eder, W.E. (1988). Theory of technical systems: A total concept theory for

engineering design. Springer-Verlag, Berlin/Heidelberg.

lansiti, Marco (1993). Real world R&D: Jumping the product generation gap. Harvard

Business Review. May-June:138-47. Cambridge, MA.

Jacobsen, H. (1955). Information, reproduction, and the origin of life. American

Scientist, 43 (January 1995):119-127.

Jessen, Svein Arne (1990). The motivation of project managers, a study of variation in

Norwegian project manager's motivation and demotivation by triangulation of methods.

206



References

Unpublished doctoral thesis. The Henley Management College and Brunel University,

UK.

Kafura, D. and Henry, S. (1981). Software quality metrics based on inter-connectivity.

Journal of systems and software, vol. 2, no. 2, June 1981, pp. 121-131.

Katz, R. (1982). The effects of group longevity on project communication and

performance. Administrative Science Quarterly, 27: 81-104.

Kiesler, S.B. (1978). Interpersonal processes in groups and organizations. AHM

Publishing, Arlington Heights, IL

Kim, Daniel H. (1988). Sun Microsystems, Sun3 product development/release model.

Technical report D4113, System Dynamics Group. MIT, Cambridge, MA.

Klein, Janice A. (1994). Maintaining expertise in multi-skilled teams. Advances in

Interdisciplinary studies of work teams, Volume 1 ppl 46-165, JAI Press..

Koomen, C.J. (1985). The entropy of design: a study on the meaning of creativity. IEEE

Transactions on systems, man and cybernetics, vol. SMC-1 5, no. 1, January/February

1985, pp. 16-30.

207



References

Lavine, Jerrold I. (1999). Parametric design constraints management using the design

structure matrix: creation of an electronic catalog for a safety belt system. Unpublished

Master's Thesis, Massachusetts Institute of Technology, Cambridge, MA.

Leonard, Dorothy (1995). Wellsprings of knowledge: building and sustaining the sources

of innovation. Harvard Business School Press, Cambridge, MA.

Li, Michael 1. (1999). A robust planning and control methodology for design-build fast-

track civil engineering and architectural projects. Unpublished Master's Thesis,

Massachusetts Institute of Technology, Cambridge, MA.

Malone, Thomas W. and Crowston, Kevin (1990). What is coordination theory and how

can it help design cooperative work systems. Proceedings of the conference on

computer supported cooperative work. Los Angeles, CA.

Mar, B.W. and Palmer, R.N., (1989). Does civil engineering need system engineering?

Journal of Professional Issues in Engineering, vol. 115, no. 1, January 1989, pp45-52.

McCain, B.E., O'Reilly, C.A. and Pfeffer, J. (1983). The effects of departmental

demography on turnover: the case of a university. Administrative Science Quarterly, 26:

626-641.

Merrils, Roy (1991). How northern telecom competes on time. Managing product life

cycles from start to finish. Harvard Business Review Paperback. Cambridge, MA.

208



References

Meyer, Marc H. and Lehnerd, Alvin P. (1997). The power of product platforms: building

value and cost leadership The Free Press, New York.

Mintzberg, Henry (1979). The structuring of organizations. Englewood Cliffs, Prentice

Hall.

Moder, Joseph, J., Phillips, Cecil R and Davis, Edward W. (1983). Project management

with CPM, PERT and precedence diagramming. Van Nostrand Reinhold Co. New York.

Mohanty, S.N. (1981). Entropy metrics for software design evaluation. Journal of

systems and software, vol. 2, no. 1, February, 1981, pp. 39-46.

Mueller, F.W. (1986). Integrated cost and schedule control for construction projects.

Van Nostrand Reihnhold, New York.

Nadler, David, and Tushman, Michael. (1988). Strategic organization design. Scott,

Foresman. Glenview, IL.

Nevens, T. Michael, Summe, Gregory L. and Uttal, Bro. (1991). Commercializing

technology: what the best companies do. Managing product life cycles from start to

finish. Harvard Business Review Paperback. Cambridge, MA.

209



References

Nevins, James L. and Whitney, Daniel (1989). Concurrent design of products and

processes, a strategy for the next generation in manufacturing. McGraw-Hill, New York.

Newcomb, T.M. (1961). The acquaintance process. Holt, Reinhart and Winston, New

York.

Nonaka, Ikujiro and Hirotaka Takeuchi. (1995). The knowledge-creating company,

Oxford University Press.

Nonaka, Ikujiro (1991). The knowledge creating company. Harvard Business Review,

November-December 1991

O'Reilly, C.A. and Flatt, S. (1989). Effective team demography, organizational

innovation and firm performance. Working paper, University of California, Berkeley.

Osborne, Sean M. (1993). Product development cycle time characterization through

modeling of process iteration. Unpublished master's thesis. MIT Sloan School of

Management. Cambridge, MA.

Pahl, G. and Beitz, W. (1988). Engineering design - a systematic approach. The Design

Council, London.

210



References

Pea-Mora, F. and Li, M. (2000), A Robust Planning and Control Methodology for

Design-Build Fast-Track Civil Engineering and Architectural Projects, Journal of

Construction Engineering and Management, ASCE, April, 2000.

Pefia-Mora, F and Park, M. (2001a), Robust Control of Cost Impact on Fast-tracking

Building Construction Projects, Journal of Construction Engineering and Management,

ASCE, Approved Jan. 2001.

Peha-Mora, F and Park, M. (2001 b), Reliability Buffering for Concurrent Construction,

Journal of Construction Engineering and Management, ASCE, Submitted Mar. 2001.

Pimmler, Thomas U. and Eppinger, Steven D. (1994), Integration analysis of product

decompositions, MIT Sloan School of Management Working Paper 3690-94.

Price, D.J. DesoSolla. (1965), Networks of scientific papers, Science 149: 510-515

Polanyi, Michael (1958). Personal knowledge: towards a post-critical philosophy. The

University of Chicago Press. Chicago, IL.

Polanyi, Michael (1966). The tacit dimension. Doubleday. New York, NY.

Reichelt, Kimberly S. (1990). Halter marine: a case study in the dangers of litigation.

Unpublished Master's Thesis. MIT Sloan School of Management, Cambridge, MA.

211



References

Rechtin E. and Maier M.W.(1997), The art of systems architecting, CRC Press, Boca

Raton, FL

Richardson, George P. and Pugh IlIl, Alexander L. (1981). Introduction to system

dynamics modeling with Dynamo. MIT Press, Cambridge, MA.

Roberts, Edward, B. (1974). A simple model of R&D project dynamics. R&D

Management. 5:1.

Roberts, E.B. and Wainer, H.A. (1971). Some characteristics of technical entrepreneurs.

IEEE Transactions on Engineering Management, E.M - 18, 3.

Rodrigues, Alexander and Bowers, John. (1996). System dynamics in project

management: a comparative analysis with traditional methods. System Dynamics

Review. 12:2:121-139.

Rosenau, Milton D. and Moran, John J. (1993). Managing the development of new

products, achieving speed and quality simultaneously through multifunctional teamwork.

Van Nostrand Reinold, New York.

Sanderson, Susan and Uzumeri, Mustafa (1996). Innovation Imperative. Irwin

Professional Publishing, Burr Ridge, IL.

212



References

Seville, Donald A. and Kim, Daniel H. (1993) New product development management,

flight simulator facilitator's guide v2.08. Unpublished report, organizational learning

center, Sloan School of Management, MIT, Cambridge, MA.

Shapero, A. (1967). Preliminary analysis of inter-specialty mobility of technical

professional manpower resources. National Science Foundation.

Shannon, C. (1948). A mathematical theory of communication. Bell System Technical

Journal, vol. 27, July 1948, pp 379-423.

Simon, Herbert A. (1969). The sciences of the artificial. MIT Press, Cambridge, MA/

London.

Simon, Herbert A. (1976). Administrative behavior, Third Edition, New York, The Free

Press (First published in 1945).

Smith, Preseton and Reinertsen, Donald. (1991). Developing products in half the time.

Van Nostrand Reinhold, New York.

Smith, Robert P. and Eppinger, Steven D. (1995). Identifying controlling features of

engineering design iteration. Working Paper WP#3348. MIT Sloan School of

Management. Cambridge, MA.

213



References

Steward, Donald V. (1981). The design structure system: a method for managing the

design of complex systems. IEEE Transactions of Engineering Management.

Suh, N. P. (1990). The principles of design. Oxford University Press, New York.

Sveiby, Karl E. (1997). The new organizational wealth: managing & measuring

knowledge-based asset. Berrett-Koehler Publishers, San Francisco, CA.

Takeuchi, Hirotaka and Nonaka, Ikujiro. (1991). The new product development game.

managing product life cycles from start to finish. Harvard Business review paperback.

Cambridge, MA.

Taylor, R.S. (1985). The influence of research and development on design and

construction. Proceedings of the Institution of Civil Engineers, Part 1, vol. 78, June 1985,

pp. 469-497.

Troy, D.A. and Zweben, S.H. (1981). Measuring the quality of structured designs.

Journal of systems and software, vol. 2, no. 2, June 1981, pp. 113-120.

Ulrich, Karl T. and Eppinger, Steven D. (1994). Methodologies for Product Design and

development McGraw-Hill, New York.

van Emden, M.H. (1970). Hierarchical decomposition of complexity. Machine intelligence

5, ed. B. Meltzer and D. Michie, Halstead Press, NY. Pp. 361-380.

214



References

Voss, C.A. (1985). Determinants of success in the development of application software.

Journal of Product Innovation Management, 2:122-129.

Wagner, W.G., Pfeffer, J. and O'Reilly, C. A. (1984). Organizational demography and

turnover in top management groups. Administrative Science Quarterly, 29: 74-92.

Ward, R.A., LaGory, S. and Sherman, S.R. (1985). Neighborhood and network age

concentration: does age homogeneity matter? Social Psychological Quarterly, 48: 138-

149.

Wetherbe, James C. (1995). Principles of cycle time reduction: you can have your cake

and eat it too. Cycle Time Research Vol 1. No 1, ppl -24. 1995. FedEx Center for Cycle

Time Research. Memphis, TN.

Wheelwright, Steven C. and Clark K.B. (1992). Revolutionizing product development:

quantum leaps in speed efficiency and quality The Free Press, New York.

Wheelwright, Steven C. and Sasser, Earl W. Jr. (1991). The new product development

map. Managing product life cycles from start to finish. Harvard Business review

paperback. Cambridge, MA.

Womack, James P., Jones, Daniel T. and Roos, Daniel (1990). The machine that

changed the world, the story on lean production. Rawson Associates. New York.

215



References

Wurman, Richard S. (1989). Information anxiety. Doubleday, New York.

Zaccai, Gianfranco. (1992) How to make the client/consultant relationship more like a

basketball game than a relay race. Design Management Journal. 2.2.

Zenger, T.R. and Lawrence, B.S. (1989). Organizational demography: the differential

effects of age and tenure distributions on technical communication. Academy of

Management Journal, 32:353-376.

216



Appendix 1 Simon's Watchmakers Analogy

Random
Generator

Probability of Time to Time to
interuption disassemble assemble

Individuaion Parts in Rate Parts in
Indiviual icomplete completed

Parts j- Assemblies Assemblies
Rate of asselly

Bas sRate of assembly
Assmbly

No of assemblies

Parts per complete

products

No of products
complete

(01) Base Rate of Assmbly=

10

Units: Parts/Hour

(02) Disassmbled due to interruption=

IF THEN ELSE(Random Generator>(1 -Probability of interuption), Parts in

incomplete Assemblies

/Time to disassemble

217



Herbert Simon's Watch Analogy

,0)

Units: Parts/Hour

(03) FINAL TIME = 100000

Units: Hour

(04) Individual Parts= INTEG (

Disassmbled due to interruption-Rate of assemly,

1e+006)

Units: Parts

(05) INITIAL TIME = 0

Units: Hour

(06) No of assemblies complete=

Parts in completed Assemblies/Parts per assembly

Units: DmnI

(07) No of products complete=

Parts in completed Assemblies/Parts per products

Units: DmnI

(08) Parts in completed Assemblies= INTEG (

Rate,

218

Appendix 1



Herbert Simon's Watch Analogy

0)

Units: Parts

(09) Parts in incomplete Assemblies= INTEG (

+Rate of assemly-Disassmbled due to interruption-Rate,

0)

Units: Parts

(10) Parts per assembly=

100

Units: Parts

(11) Parts per products=

1000

Units: Parts

(12) Probability of interuption=

0.01

Units: Dmnl

(13) Random Generator=

RANDOM UNIFORM(0, 1,1)

Units: Dmnl

219

Appendix 1



Herbert Simon's Watch Analogy

(14) Rate=

IF THEN ELSE(Parts in incomplete Assemblies>(Parts per assembly-1),

Parts in incomplete Assemblies

/Time to assemble ,0)

Units: Parts/Hour

(15) Rate of assemly=

Base Rate of Assmbly

Units: Parts/Hour

(16) SAVEPER = 100

Units: Hour

(17) TIME STEP = 1

Units: Hour

(18) Time to assemble=

1

Units: Hour

(19) Time to disassemble=

1

Units: Hour

220

Appendix 1



Appendix 2 "Rework and Overlap" Model

Upstream Time 

detect errors Upstream Rework
Discovery Rate

Upstream Initial Upstream Error

Task Defintion ,Usea

w Upstream erk

Res Deiito Upsereamea

Wokucomlihdielailt

Pc strr Uework

Uwstream Upstre Wo Accomplis

prdciVity Flow
Upstream

Workflow Upstream Perceive Upstream
Work Accomplished Reliability

dPereags at Upstream Error
downsreamstar--- - -- ,.. ActivateOr

dow>r fw Capn-,m ------

Downteam -Downstream Perceived Downstream
Werkeivew Work Accomplished Qualt

Downstream Downstream Initial Downstream D
Productivity Task Definition Workflow Downstream Wor S

Accomplished Downstream
Inherent Quality

Downstream
Work

Remaining

Downstream
. ... Undiscovered

Downstream Rework
Error R ate

Dwnstream Rework
Discovery Rate

Downstream Time to
detect errors

ns
nsit

Sensitivity 0

Sensitivity Index I

Sensitivity Index 2

trean ensitivity Choice
ivity

221

wY
e



"Rework and Overlap" Model

> Aion> Accop no> FT'>

Downstream is Only upstream
active Proj ect active Upstream aciv

Duration Headstart Upstream is active Upstream
Duration

Downstrea
Duration Overlap Duration

(01) Activate downstream workflow=

if then else(Upstream Perceived Work Accomplished/Upstream Initial

Task Definition

>Percentage at downstream start,1,0)

Units: DmnI

(02) Downstream Duration=

Project Duration-Headstart

Units: Month

(03) Downstream Error Rate=

Downstream Perceived Workflow*(1 -Downstream Quality)

Units: Unit/Month

(04) Downstream Inherent Quality=

0.7

Units: Dmnl

222

Appendix 2



"Rework and Overlap" Model

(05) Downstream Initial Task Definition=

1000

Units: Unit

(06) Downstream is active=

if then else(Downstream Initial Task Definition-Downstream Work

Accomplished

>0,1,0)

Units: Dmnl

(07) Downstream Perceived Work Accomplished=

Downstream Undiscovered Rework+Downstream Work Accomplished

Units: Unit

(08) Downstream Perceived Workflow=

if then else(Downstream Work Remaining>0:AND:Activate downstream

workf low

=1, 1 00*Downstream Productivity(Downstream Perceived Work Accomplished

/Downstream Initial Task Definition

),0)

Units: Unit/Month

(09) Downstream Productivity(

223

Appendix 2



"Rework and Overlap" Model

[(0,0)-(1,3)],(0,0.51),(0.075,0.89),(0.124,1.47),(0.175,1.76),(0.248,2.01

),(0.311,2.05),(0.404,2.04),(0.492,1.92),(0.55,1.81),(0.586,1.75),(0.656,1.63

),(0.691,1.49),(0.737,1.22),(0.779,0.82),(0.843,0.482),(0.909,0.237),(1.01

,0.079))

Units: Unit/Month

(10) Downstream Quality=

Downstream Sensitivity*Downstream Inherent Quality

Units: DmnI

(11) Downstream Rework Discovery Rate=

Downstream Undiscovered Rework/Downstream Time to detect errors

Units: Unit/Month

(12) Downstream Sensitivity=

if then else( Sensitivity Choice=1, Sensitivity O(Upstream Error),

if then else (Sensitivity Choice=2, Sensitivity Index 1 (Upstream Error),

Sensitivity Index 2(Upstream Error)))

Units: DmnI

(13) Downstream Time to detect errors=

6

Units: Month

224

Appendix 2



"Rework and Overlap" Model

(14) Downstream Undiscovered Rework= INTEG (

Downstream Error Rate-Downstream Rework Discovery Rate,

0)

Units: Unit

(15) Downstream Work Accomplished= INTEG (

Downstream Workflow,

0)

Units: Unit

(16) Downstream Work Remaining= INTEG (

+Downstream Rework Discovery Rate-Downstream Error Rate-

Downstream Workflow

Downstream Initial Task Definition)

Units: Unit

(17) Downstream Workflow=

Downstream Perceived Workflow*Downstream Quality

Units: Unit/Month

(18) FINAL TIME = 200

Units: Month

225

Appendix 2



"Rework and Overlap" Model

(19) Headstart= INTEG (

Only upstream active,

0)

Units: Month

(20) INITIAL TIME = 0

Units: Month

(21) Only upstream active=

if then else(Downstream Work Accomplished=0,1 ,0)

Units: DmnI

(22) Overlap Duration=

Upstream Duration-Headstart

Units: Month

(23) Percentage at downstream start=

0.5

Units: Dmnl

(24) Project Duration= INTEG (

Downstream is active,

0)

Units: Month

226

Appendix 2



"Rework and Overlap" Model

(25) SAVEPER =

TIME STEP

Units: Month

(26) Sensitivity 0(

[(0,0)-(1,11)1,(0,1),(1,0))

Units: **undefined**

(27) Sensitivity Choice=

2

Units: Dmni

(28) Sensitivity Index 1 (

[(0,0)-(1,1)],(0,1),(0.03,0.5),(0.125,0.125),(0.5,0.03),(1,0),(1.1,0))

Units: Dmnl

(29) Sensitivity Index 2(

[(0,0)-(2,1)],(0,1),(0.25,0.5),(0.5,0.25),(0.75,0.125),(1,0),(1.1,0))

Units: DmnI

(30) TIME STEP = 1

Units: Month

227

Appendix 2



"Rework and Overlap" Model

(31) Upstream Duration= INTEG (

Upstream is active,

0)

Units: Month

(32) Upstream Error=

if then else (Upstream Perceived Work Accomplished>0,

(Upstream Perceived Work Accomplished-Upstream Work

Accomplished)/Upstream Perceived Work Accomplished

0)

Units: Dmnl

(33) Upstream Error Rate=

Upstream Perceived Workflow*(1-Upstream Quality)

Units: Unit/Month

(34) Upstream Initial Task Definition=

1000

Units: Unit

(35) Upstream is active=

if then else(Upstream Initial Task Definition-Upstream Work

Accomplished>

0,1,0)

228

Appendix 2



"Rework and Overlap" Model

Units: DmnI

(36) Upstream Perceived Work Accomplished=

Upstream Undiscovered Rework+Upstream Work Accomplished

Units: Unit

(37) Upstream Perceived Workflow=

if then else (Upstream Work

productivity(Upstream Perceived Work Accomplished

/Upstream Initial Task Definition), 0)

Units: Unit/Month

Remaining>0,1 00*Upstream

(38) Upstream productivity(

[(0,0)-(1,3)],(0,0.51),(0.075,0.89),(0.124,1.47),(0.175,1.76),(0.248,2.01

),(0.311,2.05),(0.404,2.04),(0.492,1.92),(0.55,1.81),(0.586,1.75),(0.656,1.63

),(0.691,1.49),(0.737,1.22),(0.779,0.82),(0.843,0.482),(0.909,0.237),(1.01

,0.079))

Units: Unit/Month

(39) Upstream Quality=

0.9

Units: Dmnl

(40) Upstream Reliability=

229

Appendix 2



"Rework and Overlap" Model

if then else (Upstream Work Accomplished>O, 1-Upstream Undiscovered

Rework

/Upstream Work Accomplished,1)

Units: Dmnl

(41) Upstream Rework Discovery Rate=

Upstream Undiscovered Rework/Upstream Time to detect errors

Units: Unit/Month

(42) Upstream Time to detect errors=

6

Units: Month

(43) Upstream Undiscovered Rework= INTEG (

Upstream Error Rate-Upstream Rework Discovery Rate,

0)

Units: Unit

(44) Upstream Work Accomplished= INTEG (

Upstream Work Flow,

0)

Units: Unit

Upstream Work Flow=(45)

230

Appendix 2



"Rework and Overlap" Model

Upstream Perceived Workflow*Upstream Quality

Units: Unit/Month

(46) Upstream Work Remaining= INTEG (

-Upstream Error Rate-Upstream Work Flow+Upstream Rework Discovery

Rate,

Upstream Initial Task Definition)

Units: Unit

231

Appendix 2





Appendix 3 KE Model of Delta Design

Information
Prerequisites Met

Duration of
holdback FIndex 2 Ties Stage 1

Knowledge Integration Ties to other 4:I Ties Stage 2
Proess rocesses Ties Stage 3

Index 3 Index I

rsZ Knowledge

Increase in Rpst Decrease in
Knowledge 10V knowledge due to

rework
Initial State Ttme to reduce

fKnowledge Rework Factor

Development 
Initialize Rework Iteration plus 1 Iterations Probabilt Not

Workable for
Rate according to downstream

stage Increased Iterations initi Leaing Rate by

Knowledge iterations
SrInitial Probability Not

Reduction of iteration Workable for

risk due to iteration Combined reduction Downstream

Learning Rate Reduction of risk due to of knowledge

by knowledge increase increased knowledge

(01) Combined reduction of knowledge[Process]=

Reduction of iteration risk due to iteration[Process]*Reduction of risk due

to increased knowledge

[Process]

Units: Dmnl

233



Knowledge Evolution Model of Delta Design

(02) Decrease in knowledge due to rework[Process]=

if then else (Initialize Rework[Process]=1,5,

if then else (Initialize Rework[Architect]=1:AND:Ties to other processes[

Process,Architect]>O , (Knowledge Repository[Process

]-integer(Knowledge Repository[Process]))/(2*Time to reduce

Knowledge),

if then else (Initialize Rework[ProjectManager]=1:AND:Ties to other

processes

[Process, ProjectManager]>0 , (Knowledge Repository

[Process]-integer(Knowledge Repository[Process]))/(2*Time to reduce

Knowledge

if then else (Initialize Rework[StructuralEngineer]=1:AND:Ties to other

processes

[Process,Architect]>0 , (Knowledge Repository

[Process]-integer(Knowledge Repository[Process]))/(2*Time to reduce

Knowledge

if then else (Initialize Rework[ThermalEngineer]=1:AND:Ties to other

processes

[Process,ThermalEngineer]>0 , (Knowledge Repository

[Process]-integer(Knowledge Repository[Process]))/(2*Time to reduce

Knowledge

),0)

234

Appendix 3



Knowledge Evolution Model of Delta Design

)

)

Units: 1/Minute

(03) Duration of holdback[Process]=

0,0,0,4

Units: Minute

(04) FINAL TIME = 120

Units: Minute

(05) Flags[Process, Target]=

if then else(Ties to other processes[Process,Target]=0, 0,

if then else(Ties to other processes[Process,Target]>0:AND:Knowledge

Repository

[Target]>=3,0,

if then else(Ties to other processes[Process,Target]=1:AND:ABS(Index

1[Process

,Target])<Integration, 0,

if then else(Ties to other processes[Process,Target]=2:AND:ABS(Index

3[Process

,Target])<1, 0,

235

Appendix 3



Knowledge Evolution Model of Delta Design

if then else(Ties to other processes[Process, Target]=3:AND: Index

1[Process

,Target>0, 0,

if then else(Ties to other processes[Process, Target]=4:AND:Index

1[Process

,Target]>Lead, 0,

if then else(Ties to other processes[Process, Target]=5:AND:Index

2[Process

,Target]>=1, 0,

1)))))))

Units: Dmnl

(06) Increase in Knowledge[Process]=

FIXED(Knowledge Process[Process],Du ration

holdback[Process] , 0)

Units: 1/Minute

(07) Increased Knowledge[Process]=

Knowledge Repository[Process]-integer(Knowledge Repository[Process])

Units: Dmnl

(08) Index 1 [Architect,Process]=

Knowledge Repository[Process]-Knowledge Repository[Architect]

Index 1 [ProjectManager,Process]=

236

DELAY of

Appendix 3



Knowledge Evolution Model of Delta Design

Knowledge Repository[Process]-Knowledge Repository[ProjectManager]

Index 1 [StructuralEngineer,Process]=

Knowledge Repository[Process]-Knowledge

Repository[Structu ral Engineer]

Index 1 [ThermalEngineer,Process]=

Knowledge Repository[Process]-Knowledge

Repository[Thermal Engineer]

Units: Dmnl

(09) Index 2[Architect,Process]=

Knowledge Repository[Process]-integer(Knowledge Repository[Architect])

Index 2[ProjectManager,Process]=

Knowledge Repository[Process]-integer(Knowledge

Repository[ProjectManager

1)

Index 2[StructuralEngineer, Process]=

Knowledge

Repository[Structu ral Engineer

Repository[Process]-integer(Knowledge

])

Index 2[ThermalEngineer,Process]=

Knowledge

Repository[Thermal Engineer

I)

Units: DmnI

Repository[Process]-integer(Knowledge

237

Appendix 3



Knowledge Evolution Model of Delta Design

(10) Index 3[Architect,Process]=

integer(Knowledge

Repository[Architect

])

Index 3[ProjectManager,Process]=

integer(Knowledge

Repository[ProjectManager

Repository[Process])-integer(Knowledge

Repository[Process])-integer(Knowledge

])

Index 3[StructuralEngineer,Process]=

integer(Knowledge

Repository[Structu ral Engineer

Repository[Process])-integer(Knowledge

Index 3[ThermalEngineer,Process]=

integer(Knowledge

Repository[ThermalEngineer

Repository[Process])-integer(Knowledge

])

Units: Dmnl

(11) Information Prerequisites Met[Process]=

if then else(SUM(Flags[Process,Target!])>=1, 0,1)

Units: Dmnl

(12)

238

Initial Probability Not Workable for Downstream[Process, Target]=

Appendix 3



Knowledge Evolution Model of Delta Design

GET XLS CONSTANTS('delta05.xis','Sheetl1','C010')

Units: DmnI

(13) Initial State[Process]=

0,0,0,0

Units: DmnI

(14) INITIAL TIME =0

Units: Minute

(15) Initialize Rework[Process]=

if then else(Knowledge Repository[Process]>1:AND:Rework

Factor[Process]>1 0

,1,0)

Units: Dmnl

(16) Integration=

1.2

Units: Dmnl

(17) Iteration plus 1 [Process]=

if then else(Initialize Rework[Process]=1, 10,0)

Units: 1/Minute

239

Appendix 3



Knowledge Evolution Model of Delta Design

(18) Iterations[Process]= INTEG (

Iteration plus 1 [Process],

Iterations initial[Process])

Units: Dmnl

(19) Iterations initial[Process]=

0,0,0,0

Units: DmnI

(20) Knowledge Process[Process]=

Information Prerequisites Met[Process]*Rate of Development[Process]

Units: 1/Minute

(21) Knowledge Repository[Process]= INTEG (

+lncrease in Knowledge[Process]-Decrease in knowledge due to

rework[Process

1

Initial State[Process])

Units: Dmnl

(22) Lead=

0

Units: Dmnl

240

Appendix 3



Knowledge Evolution Model of Delta Design

(23) Learning Rate by knowledge increase[Process]=

0.05,0.05,0.05,0.05

Units: DmnI

(24) Probability Not Workable for downstream[Process,Target]=

(1 -(1 -Initial Probability Not Workable for

Downstream[Process,Target]*Combined reduction of knowledge

[Process])A(1/50))*1 0

Units: Dmnl

(25) Process:

Architect, ProjectManager, StructuralEngineer, ThermalEngineer

(26) Rate according to stage[Architect](

[(0,0)-(20,0.3)],(0,0.1),(1,0.1),(1.001,0.2),(2,0.2),(2.001,0.2),(3,0.2),

(3.001,0),(11,0))

Rate according to stage[ProjectManager](

[(0,0)-(20,0.4)],(0,0.2),(1,0.2),(1.001,0.1),(2,0.1),(2.001,0.2),(3,0.2),

(3.001,0),(11,0))

Rate according to stage[StructuralEngineer](

[(0,0)-(20,0.4)],(0,0.08),(1,0.08),(1.001,0.2),(2,0.2),(2.001,0.2),(3,0.2

),(3.001,0),(11,0))

Rate according to stage[ThermalEngineer](

[(0,0)-(20,0.4)],(0,0.07),(1,0.07),(1.001,0.2),(2,0.2),(2.001,0.2),(3,0.2

241

Appendix 3



Knowledge Evolution Model of Delta Design

),(3.001,0),(11,0))

Units: 1/Minute

(27) Rate of Development[Process]=

Rate according to stage[Process](Knowledge Repository[Process])

Units: 1/Minute

(28) Reduction of iteration risk due to iteration[Process]=

1/(1 +Iterations[Process])AReduction Order[Process]

Units: Dmnl

(29) Reduction of risk due to increased knowledge[Process]=

1-Increased Knowledge[Process]A(1/Order of Reduction[Process])

Units: Dmnl

(30) Learning rate by iterations[Process]=

1,1,1,1

Units: DmnI

(31) Rework Facto r[Process]=

MAX(

RANDOM UNIFORM(Probability Not Workable for

downstream[Process,Architect]

1 0+Probability Not Workable for downstream[Process,Architect],0),

242

Appendix 3



Knowledge Evolution Model of Delta Design

MAX(

RANDOM UNIFORM(Probability Not Workable for

downstream[Process, ProjectManager

1,1 O+Probability Not Workable for downstream[Process,ProjectManager], 0)

MAX(RANDOM UNIFORM( Probability Not Workable for

downstream[Process,StructuralEngineer

1,1 0+Probability Not Workable for downstream[Process,StructuralEngineer],

0),

RANDOM UNIFORM(Probability Not Workable for

downstream[Process,Thermal Engineer

S,1 0+Probability Not Workable for downstream[Process,ThermalEngineer], 0)

Units: DmnI

(32) SAVEPER =

TIME STEP

Units: Minute

(33) Target:

Architect, ProjectManager,Structu ral Engineer,Thermal Engineer

(34) Ties Stage 1 [Process, Target]=

GET XLS CONSTANTS('delta05.xls','Sheetl','C3')

243

Appendix 3



Knowledge Evolution Model of Delta Design

Units: DmnI

(35) Ties Stage 2[Process, Target]=

GET XLS CONSTANTS('deltaO5.xls','Sheetl','h3')

Units: Dmnl

(36) Ties Stage 3[Process, Target]=

GET XLS CONSTANTS('deltaO5.xis','Sheetl','M3')

Units: DmnI

(37) Ties to other processes[Process,Target]=

if then else (Knowledge Repository[Process<1 ,Ties

1 [Process,Target

if then else(Knowledge Repository[Process]<2, Ties Stage

2[Process,Target

],

Ties Stage 3[Process,Target]))

Units: Dmnl

(38) TIME STEP = 0.1

Units: Minute

(39) Time to reduce Knowledge=

244

Stage

Appendix 3



Knowledge Evolution Model of Delta Design

0.1

Units: Minute

(40) Inputs from DeltaO5.xls

245

Appendix 3





Appendix 4 Delta Model Simulations

247



Appendix 4 Delta Model Simulations

Appendix 4-1 Varying probabilities

These are probabilities the various processes affect the Architect. The order of the

probabilities are [Architect, Project Manager, Structural Engineer, Thermal Engineer]

Graph for Knowledge Repository Graph for Knowledge Repository Graph for Knowledge Repository

4 4 4

3 3 3
.... 2  

-_ _ ..

0 12 24 36 48 60 72 84 108 120 0 12 24 36 48 60 72 84 96 10 120 0 12 24 36 48 60 72 84 96 108 12
. (Minu8) T",_ (minh,) 2. (Min-e)

Kn2wi2g,2 epo.i,. ry2Pr8i8288 8r]:C22re2 - - - - - - -r2y2] - - - - 6222,K82.8dg 28p22822y[Prje22228ge8]:8. re2 - - - -2 -2 -- 2 2Knolede~eor-tor[Stuctrnlngmen]Curen ---------- - - - --- m nweg~pstri~utrlnier:urn - -- --- - - DKn Kn Wdg p iu[tutrlnn ]C- 1e ----- ------- ---D

K- -p Re". S-ma E - I ]:Kr C.,~-- - ~ - +--D - - -g-7 - - - --7 r)Curnt - - - - - -- D n Kolegeemioy-en lngee)Curne - -- D n

Prob [0,0.3,0,0] Prob = [0, 0.6, 0, 0] Prob = [0, 0.9, 0, 0]
Graph for Knowledge Repository Graph for Knowledge Repository Graph for Knowledge Repository

33 --- -3

2 2

0 12 24 36 48 60 72 84 96 10 120 0 12 24 36 48 60 72 84 108 120 0 12 24 36 48 60 72 84 96 108 10
T._ (Mimklc ni(Minu.W) T i . Mas)

Kn 28428.828282y8r28 296288r8C88r8 -2828 - - - - - Du Kolde pmay[rjc nagrCrrn - -6,8682-6888) .. 6 - - - - 6 Dr888244 2883)8848844288888)tu er]Curen 28 ------Dn

68828dg 28 28y 884m48nge4 r:C2 re) --- 2 - -68--8-4D*8,8 no 22d232pi8c8y22888288gn888:88 n ------- --- 6 44- D6 8 22c ep 88828882: ---- - - - -

Prob [0,0,0.3,0] Prob = [0,0,0.6,0] Prob = [0,0,0.9,0]
Graph for Knowledge Repository Graph for Knowledge Repository Graph for Knowledge Repository

33 3

2 2 23

0 0 0 2/
0 12 24 36 4B 60 72 84 96 108 1-0 0 12 24 % 48 60 72 84 96 I8 120 0 12 24 36 4 60 72 84 96 108 120

Ti- (Minu)) r_ (M -) T-m9 (Mi).9)

K wlegRepoitofPoec:- glC rn -W C ., -- - 1.4. -nw - 1.%. y-rj.1nae]Curn - - - - - -- rl nwedeeoitr{roetnagr: out ---+ --Dm

dg2R8p8 I r ] r r8 - -- -.-. - ----- - dg y r r r re - .. - 4C D22484 4.8R -p8882 Wr y 826r .,2 -28-r) 8 - - - - -- 8
K28y82 2 r - - -- - - +,288 6*8.2228. 2 [d222i'y 8 2:.r. - -- - - ++++- D2 K2 ,68282y[-442 r:Cr- --- --- ---

Prob [0,0,0,0.3] Prob [0,0,0,0.6] Prob = [0,0,0,0.9]
Graph for Knowledge Repository Graph for Knowledge Repository Graph for Knowledge Repository

4 4 4

/ --- 3 3

2 - 2 - 2 - .-..-..

9 Y....... ...y..

0 12 24 36 48 W 72 84 108 20 0 12 24 36 48 60 72 84 96 24 120 22 24 36 48 6) 72 84 96 8 120
r"_ (Mi...) 1"'. (Minut) T"._'Mi..t)

8now22d..)p. i.ory[2 ru222r22222 n8 er8:2r28882228 ---- -- 2 - -- 2228 2n28 2n 282dge 22p22284y[ 28rc .8r 2222gn 2822:C 'rre '' ---- --- - - - Dmn,2K8.2.d 22p 224 ry 28r8c.8822gi 22r2:2rren --- -- -Dm

Prob = [0,0.3,0.3,0.3] Prob = [0,0.6,0.6,0.6] Prob = [0,0.9,0.9,0.9]
Graph for Knowledge Repository Graph for Knowledge Repository Graph for Knowledge Repository

28 4

2 2 2

0 12 24 36 48 60 72 84 6 108 120 0 12 24 36 48 60 72 84 96 14 120 0 12 24 36 4 60 72 84 96 10 120

6now82dge.8,888)2y)Pro.2484r8C882 , --2 - - - -=2882 8,2288p288yP2 8-C2 - -2882 28 = [0,0.3,0.9,0.3yPro2-8r] =2 rr42 [ +0,0. --6-,-0- 828

Prob =[0,0.3,0.6,0.3] Prob =[0,0.3,0.9,0.3] Prob =[0,0.6,0.9,0.6]

248



Appendix 4 Delta Model Simulations

Appendix 4-2 Varying Learning Rates

Graph forKowleRepsitoy Graph for Knowledge Repository Graph for Knowledge Repository

4 .4 .. 4

3 - 3 3

22 2 .

0 12 24 36 4 0 60 72 9 % 108 120 0 12 24 36 4 0 2 84 6 10 120 0 12 24 36 48 6 72 83 %6 108 120
T..e(Mine) TI

0 3
5inSIc) Tim

0
(Minu0c)

K24edeepsieyP6p43 ngr]Cren - - - - - D024 Kn4wedg4.p32
3

W80000I0n2g0):Crrt -- 024- - D24 K 24.de008, y[Poc~r :urt~ - - - -- Dra

Knweg~p i ay 08utuu~ner0:uret - -+ ----- --- -0D24 0,n owk~pt3ory .,4tudrer):r
0 2

= -~ -- -- -02 D

4 4
.4

8
ri Knwdeeo I80020cur0~gec :C3rret +- - - --- -D

Learning Rate (Iteration)=10 Learning Rate (Iteration)=10 Learning Rate (Iteration)=10
Learning Rate (Stage)=10 Learning Rate (Stage)=1 Learning Rate (Stage)=0.1

Graph for Knowledge Repository Graph for Knowledge Repository Graph for Knowledge Repository

4 4 4

-3 3

2 2 2

S0 0 y

0 12 24 36 48 60 72 84 9 108 120 0 12 24 36 48 60 72 84 %6 10 120 0 12 24 36 48 60 72 84 %6 108 2

Tine (Minue) Time(Mi...) 11- (kMin3. )

R4260. 3
1 
0 ----- , --- - --- -02 [il00Oer : 3 -------- - -024 Sdg20.Oory 3r1032g.20040 --- - -

Learning Rate (Iteration)=1 Learning Rate (Iteration)=1 Learning Rate (Iteration)=1
Learning Rate (Stage)=10 Learning Rate (Stage)=1 Learning Rate (Stage)=0.1

Graph for Knowledge Repository Graph for Knowledge Repository Graph for Knowledge Repository
4 4 4

3 ~ ~ ~- 3 3

2 ........ 2 2 .. .. .

0 -2 24 6 48 60 72 84 2 10 120 0 0 24 6 48 60 2 84 20 02 20

Ti308Min14c) Tim3(Min332) 0 12 24 36 48 60 72 84 96 108 1t0

l
40 44 ~o.' ee01

0
.0 - -0 4 SorISO

2
eK.00 -- 24.3.dgeO3 .03[24C3.000. --- ------- -----Dr

Learning Rate (Iteration)=O.1 Learning Rate (Iteration)=0.1 Learning Rate (Iteration)=O.1
Learning Rate (Stage)=10 Learning Rate (Stage)=1 Learning Rate (Stage)=0.1

Graph for Knowledge Repository Graph for Knowledge Repository Graph for Knowledge Repository

4 4 4

2 2 - 2 -

0 -- - 3

0 12 24 36 48 60 72 84 20 10 120 0 12 24 36 48 60 72 84 20 108 120 0 12 24 36 48 60 72 84 20 108 120
Time (Minute) Um7r, (Mikut)Tme(nu)

Kn0.3.4. R 33 tr 
4 3 0

0.nge3
0

r] - Cur . +-- +- - -- 024m Kro4deS Rep tory( 
8 8

-2g0e] ure - - - -- 024i Kn

4
wedge . 0yrtra~nier or rr30."0+- +- - - - D2K -d.WAE~ C. 6.o06Or C104e.,o ...... .02 C4.2. 3 8. o-

Prob =[0,0.9,0.9,0.9] Prob =[0,0.9,0.9,0.9] Prob =[0,0.9,0.9,0.9]
Learning Rate = 10 Learning Rate = 1 Learning Rate = 0.1
Graph for Knowledge Repository Graph for Knowledge Repository Graph for Knowledge Repository

4 4 4

3 3

2 2 - -.

0 0 /-
0 12 24 36 48 60 72 84 20 108 120 0 12 24 36 48 60 72 84 20 106 120 0 12 24 36 48 60 72 84 20 308 120

Prob = [0,0,0.9,0] Prob =r [0,0,0.9,0] Prob =r [0,0,0.9,0]
Learning Rate = 10 Learning Rate = 1 Learning Rate= 0.1

249



Delta Model Simulations

250

Appendix 4


