
Web Application Development

Using Open Source and Java Technologies

by
Wolfgang Andreas Klimke

Diplom-Bauingenieur
University of Stuttgart, Germany, 1998

SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING IN CIVIL AND ENVIRONMENTAL ENGINEERING
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY MASSACHUSETTS INS
OF TECHNOLOG

JUNE2001 JUN 0 4 20

02001 Wolfgang Andreas Klimke. All rights reserved. LIBRARIE

L'ARKER
The author hereby grants to MIT permission to reproduce and to distribute publicly paper and

electronic copies of this thesis document in whole or in part.

Signature of Author:
Department of Civil and Environmental Engineering

May 11, 2001

- C. George Kocur
Senior Lecturer of Civil and Environmental Engineering

Thesis Supervisor

Accepted by:
CA Oral Buyukozturk

Chairmnan, Departmental Committee on Graduate Studies

TITUTE
Y

01

S

Certified by:

2

Web Application Development

Using Open Source and Java Technologies

by

Wolfgang Andreas Klimke

Submitted to the Department of Civil and Environmental Engineering on May 11, 2001

in Partial Fulfillment of the Requirements for the Degree of Master of Engineering

in Civil and Environmental Engineering

Abstract

With the growing popularity of Open Source and Java, software engineers have embraced the
idea of a no-cost development platform for Web applications. This thesis introduces the
concepts of Open Source and gives an overview on current Open Source products with
particular focus on Web application enabling technologies.
Covered are the technical aspects of Web application development with today's leading Web
application development tools, such as Tomcat (the reference implementation of the Java
Servlet API) and the Concurrent Versions System CVS for source code control.
A case study of a real-world application, the development of a Web-based permit system for
urban road construction, is presented to show that Open Source development can meet the
expectations it has created.
Java is the dominant Web programming language today, and is used extensively by the Open
Source community. The author takes a closer look at ASP and C#, representing the core
technologies of Microsoft's Web application development platform, as Java's most important
competitor.

Thesis Supervisor: George Kocur
Title: Senior Lecturer of Civil and Environmental Engineering

3

Acknowledgements

I would like to thank those who made it possible for me to attend MIT, for their great support and
inspiration:

Mr. Ivan Karlin of Holderbank Engineering, Canada

Prof. Dr. -Ing. Stefan Holzer of the University of Stuttgart, Germany

MIT is an amazing place to be, and I am very grateful for the fantastic year I have spent here.
My special thanks go to:

Dr. George Kocur of the Massachusetts Institute of Technology

The case study presented in Chapter 4 was conducted in close collaboration with the

Department of Public Works of the Town of Arlington. Special thanks to:

Mr. Ron Santosuosso of the Engineering Division

Special thanks to my family and my girlfriend Grace for their ongoing support and love!

4

Table of Contents

1 Introduction... 7
2 Current Open Source Standards - A Brief Overview.. 10

2.1 W hat is Open Source?... 10
2.2 Linux Overview .. 11
2.3 Open Source W eb Technologies.. 16
2.4 Database Systems.. 21
2.5 Source Code Control with CVS .. 22

3 Introduction to W eb Application Developm ent.. 23
3.1 A Brief Introduction to Serviets and JSP... 24
3.2 Introduction to W eb Application Developm ent with Tomcat..................................... 31

4 Case Study: An Automated Street Opening Permit System 48
4.1 Introduction to the System ... 48
4.2 User Interface ... 50
4.3 Underlying Database in MySQL .. 58
4.4 Implem entation of the Application Logic... 63
4.5 Source Code Organization ... 69
4.6 Concluding the Case Study... 71

5 Miscellaneous Developm ent Topics.. 72
5.1 Transferring Information between Linux and Windows Systems 72
5.2 Multiple Developers under Tomcat.. 74
5.3 Handling Mixed Content using a Servlet Input Stream ... 77
5.4 Docum enting Source Code with the Javadoc Utility ... 79
5.5 Increasing the Application's Performance .. 82

6 Com parison of JSP and Java with ASP and C#.. 86
6.1 JavaServer Pages versus MS Active Server Pages ... 86
6.2 Java versus C# .. 92

7 Conclusions .. 97
8 Appendix ... 98

8.1 Tips on How to Learn Linux Quickly ... 98
8.2 Glossary... 99

5

List of Figures

Figure 1: SSL Site Operating Systems in the US, February 2001... 9
Figure 2: Enhydra Architecture.. 18
Figure 3: Interoperation Client / W eb Server / Serviet Container ... 25
Figure 4: Typical Servlet Container Implementation .. 26
Figure 5: Source Code Directory Structure.. 32
Figure 6: Standard Directory Layout, Servlet API Specification V2.2.................................... 41
Figure 7: Browsing the Application's Folders.. 43
Figure 8: Example Application Screenshots ... 43
Figure 9: Permit System Architecture ... 49
Figure 10: External W eb Pages Hierarchy.. 51
Figure 11: Internal W eb Pages Hierarchy.. 52
Figure 12: Permit Application Form Screenshot ... 57
Figure 13: Navigation: Internal Home Page Screenshot.. 56
Figure 14: Main Database Tables and Relationships .. 59
Figure 15: Permit System Classes Overview.. 64
Figure 16: Servlet Output Screenshot .. 69
Figure 17: Source Code Directory Structure for the Permit System....................................... 70
Figure 18: Screenshot of Generated Documentation... 81
Figure 19: Survey Results: Impact of C# on Java Programming... 92

List of Tables

Table 1: Market Share for Top Servers, February 2001.. 9
Table 2: Linux Distributions .. 14
Table 3: Comparison of MySQL and PostgreSQL Features ... 21
Table 4: Application Build Options.. 40
Table 5: Description of Database Tables... 61
Table 6: Permit System, Description of Internal Classes .. 67
Table 7: Comparison of JavaServer Pages and Microsoft ASP... 90
Table 8: Comparison of Java and C# ... 94
Table 9: Comparison of JVM and VES... 95

6

1 Introduction

Web Technologies, particularly the Internet, have become an important part of the business

world over the past few years. People have become accustomed to searching the Internet for

data, sending e-mails, or making simple purchases electronically. Web browsers, such as

Microsoft's Internet Explorer, or Netscape's Navigator, played an important part in the rapid

development of the Internet. Designed to present a simple and easy-to-operate front-end

interface to the user, Web browsers are today's standard way of accessing the vast amount of

information available through the Internet.

More recently, with more and more people being connected and the steadily increasing

connection speed to the Internet, a new wave of more sophisticated web applications emerged.
In order to make these applications possible, the browser's original functionality of "browsing",
i.e. navigating through the contents of web sites via hyperlinks, needed to be extended

significantly. Scripting languages, such as VBScript or JavaScript, Java-enabled browsers,
DHTML, or XML are some of the technologies that are part of today's browsers to provide the

means for the development of real-world applications such as on-line bookstores, on-line travel

agencies, or banking services, which are some of the most well-known examples for modern

Web usage. The technologies mentioned above served to enhance the mostly "static" contents

(e.g. text or images) of Web pages with "dynamic" elements, such as event handling for error

checking of forms prior to submittal, or performing of calculations. But not only browsers needed
to be improved. More importantly, Web servers needed to be able to respond to client requests

in a more flexible way than presenting the same content to all users. Server-side programming

is the key technology that allows developers to make Web applications fit for a specific purpose,
so incoming requests can be processed by the server on the fly (e.g. presenting filtered

information of a database according to search criteria provided by the client).

Server-side programming is today's way of choice to develop Web applications. A Web server
can be completely controlled by the application provider, eliminating uncertainties regarding the

capabilities of the client's Web browser. With server-side programming, Web pages are
prepared by the application considering the client's request. This preparation happens on the

server, so that the information submitted to the client can be in HTML format, the Internet's
basic, standardized language of communication.

7

Several server-side technologies exist today. The first solution to bringing dynamic data to the

Web was CGI, the Common Gateway Interface. CGI provided a simple way to create a Web

application that accepts user input, queries a database, and returns responses to the client.

Then, both Microsoft and Netscape developed proprietary, server-specific API's to answer
inefficiencies of CGI (especially its poor scalability). However, these API's were limited to a

particular platform. Furthermore, these API's reduced the stability of the server due to the fact

that their programs had to run within the same process as the Web server. The next step in the

continuing development of server-side technologies was Microsoft's Active Server Pages (ASP),

and Sun's Java Servlets and Java Server Pages (JSP). Implementations for JSP and Servlets

are available on many platforms, and they provide a good way of separating code and HTML to

increase maintainability. JSP and Servlets have become today's most popular way of server-

side programming for enterprise applications, while ASP dominates among smaller sites.

An effort to improve Microsoft's position in the server-side application development market was

made with the introduction of the .NET platform in 2000. The goal of .NET was to regain some

of the market that was lost to Sun Microsystems due to the superior concept of Servlets/JSP

over ASP. Sun, on the other hand, recently announced Sun ONE to compete with the .NET
strategy, showing that server-side programming is still evolving and improving at a rapid pace.

Since the server-side application development market is still evolving, developers are

confronted with the difficulty of having to work with constantly changing techniques, and having

to make the right choice of which development platform to use.

This thesis illuminates the concept of an Open Source, "free of charge" development platform

and server implementation, which has enjoyed an increasing popularity. The advantages are

numerous: The latest Open Source operating system, Linux, features high reliability, stability

and a transparent technology at no cost, making it a very appealing alternative to Microsoft

Windows, SunOS or other commercial offerings. Results of a current market share analysis

among SSL Site operating systems in the United States are shown in Figure 1. Linux captures a

significant market share.

In other countries, the Linux operating system is even more popular. In Germany, for example,
Linux had over 30% market share among SSL Site operating systems according to surveys

conducted in February 2001.

8

Figure 1: SSL Site Operating Systems in the US, February 2001
Source: http://www.netcraft.com/survey/

Java, although not an Open Source product, has become the dominant Web programming

language due to its complete class library and easy to use syntax, and is also available free of

charge. Open Source databases have matured and provide enough stability to be used in quite

large applications as a low-budged alternative to Oracle or SQL Server 2000. Last but not least,

the Open Source Web server Apache is actually dominating the market, as shown in recent

studies (see Table 1).

Server Type Total # of Sites Market Share in %

Apache 16,871,744 59.99%

Microsoft-IlIS 5,522,069 19.63%

Netscape-Enterprise 1,751,123 6.23%

WebLogic 1,039,605 3.70%

Zeus 801,215 2.85%

Rapidsite 380,217 1.35%

Thttpd 367,724 1.31%

tigershark 166,465 0.59%

AOLserver 153,296 0.55%

WebSitePro 114,655 0.41%

Table 1: Market Share for Top Servers, February 2001

Survey Results (over 28 Million responses). Source: http://www.netcraft.com/survey/

The major downsides of Open Source are twofold. First, accurate documentation is often more

difficult to find, and second, Open Source products are usually harder to configure than their

9

W Hindous
Linux

Solaris

Bso

unknoun

* Other Unix

Other non-Unix

commercial counterparts. This document addresses these issues for today's most popular Web
application Open Source products by taking a close look at what is available, and giving the
reader a starting point by providing a technical introduction and many selected references.

2 Current Open Source Standards - A Brief Overview

2.1 What is Open Source?

Before diving into the different Open Source technologies, it is helpful to look at where Open
Source came from, and the motivation behind it.

When developing applications, it is important to understand both the rights and obligations that
come with using Open Source software, since this can affect the newly developed product itself.
While Open Source implies that the source code is available and modifiable, the use of the
program is free, and copies may be made, it often also means that the same rules have to apply

to the program that utilizes Open Source, depending on the type of license that the Open
Source software is provided under.

It is also worth mentioning that free software, freeware, public domain, and Open Source don't
mean the same thing, although all of these products can be obtained free of charge.
Recommend references are given below for readers interested in a more detailed discussion of
these topics.

The term "Free Software" is based on the idea of making software accessible to anyone for free,
including the right for everyone to make improvements to it. This implies that the source code is

provided with the software product. To protect the rights of the authors, a formal approach

through licenses has been introduced through Richard Stallman, a former member of the MIT
Artificial Intelligence Lab, with the founding of the Free Software Foundation (FSF) in 1984.

Stallman's goal was to develop a UNIX-compatible operating system called GNU (= GNU's not

UNIX) which should give users a portable, no-cost alternative to the various UNIX systems that

were specific to each hardware vendor. He planned to achieve this by gradually replacing the
proprietary versions of the UNIX system software components with his and other voluntary

10

contributor's developments. To protect the author's copyright, as well as to guarantee the free

use of derivatives of the GNU work, the FSF developed the GNU General Public License (GPL).

Some products available under the GNU Public License, such as EMACS or the GNU C

Compiler became widely used, but only the introduction of Linux under the GPL pushed the idea

of free software to a new level of interest. With Linux's growing market share, the business

world took notice of the free software movement. The restrictive GNU public license with its

idealistic view, however, led to the development of other public licenses that seemed more

appropriate for business purposes, while taking advantage of the ideas of free software.

The introduction of these other licenses, such as the BSD, MIT X, Mozilla, or Artistic licenses,

increased the confusion about the meaning of free software and Open Source. Therefore,

community members developed a specification called "The Open Source Definition" in 1997.

This specification establishes guidelines for software licenses to be considered "Open Source".

The definition is available at http://www.opensource.org/osd.html.

Selected References

* Donald K. Rosenberg, M&T Books; Open Source: The Unauthorized White Pages, Chapter 1
and 3; 2000;

" Bruce Perens, O'Reilly & Associates, Inc.; Open Sources: Voices from the Open Source
Revolution: Essay 11: The Open Source Definition; 1999

2.2 Linux Overview

2.2.1 Introduction to Linux

Linus Torvalds created the Linux operating system as a personal project in 1991 (in Finland),

out of the desire to learn and understand the 386 processor and Unix-based operating systems.

It was released free-of-charge to the public for everyone to make improvements under the terms

of the GNU General Public License.

Since then, Linux has grown into a major player in the operating system market, thanks to the

contribution of hundreds of developers all over the world and the coordinating efforts of Linus

Torvalds. It has been ported to run on a variety of architectures including Compaq's Alpha,
Sun's SPARC, and Motorola's PowerPC chips. The term "Linux" technically only refers to the

kernel (the core of the operating system).

11

An important reason why Linux has become so popular today is the ease of availability through

the so-called "distributions". Distributions bundle the Linux operating system together with useful

applications developed by independent groups, and usually have an installation program. Many

companies offer Linux distributions today; a list of major distributions is given in the next section.

With the combined efforts of companies as well as individuals, Linux has evolved into a modern

operating system that incorporates protected memory, multitasking, fast TCP/IP networking,
shared libraries and multi-user capabilities.

2.2.2 Comparison of the Distributions

The following table gives an overview over some of the most popular Linux distributions that are

currently available. This table should help in finding the Linux distribution that is most applicable

for the desired tasks.

Distribution"* Version Description

Red Hat 7.0 Red Hat Linux is one of the oldest and most popular of today's
Linux distributions. Red Hat originated the RPM format used by
many other distributions. Most RPM packages that are
available on the Internet were compiled on Red Hat systems,
and therefore install and run fine on Red Hat.

Yellow Dog 1.2.1 Linux distribution for PowerPCs (Mac). Includes many software
packages. Includes automated update program for installation.

Elfstone Beta Elfstone Software is a newer player in the Linux market.
Elfstone claims to have a particularly stable Linux distribution. It
was designed primarily for programmers, engineers, and
network administrators, and contains only software to operate a
network. Based on RPM (upgradeable).

Stampede 0.9 The Stampede GNU/Linux Foundation is a non-profit
organization. Stampede is still under development. Developers
contribute on a voluntary basis.

KSI 2.0 Ukrainian/Russian Linux distribution.

12

Distribution** Version Description

.0~ Libranet 1.9.0 The Libranet distribution is built on top of Debian. This

Ubarn J distribution addresses primarily new users with simple
installation, automatic configuration and convenient selection of
software packages.

Debian 2.2r2 Unlike most other current Linux installations, the Debian
installation is text-based, and is therefore not recommended for
beginners. Many platforms are supported: x86 Intel machines,
Alpha, ARM, Motorola 68K, PowerPC and SPARC.

Storm Hail Linux distribution based on Debian 2.2r2. Similar to Libranet,
2.06 Storm Linux 2000 offers an easy installation process. Storm

comes with some additional commercial software (Star Office,
Acrobat Reader)

Mandrake 7.2 Pre-configured graphical Linux operating system with emphasis
on the ease of installation. Claims full compatibility with Red
Hat Linux.

OpenLinux 2.3 & Caldera, Inc. offers two Linux distributions, one for servers and
2.4 one for desktops. The server version eServer 2.3 includes 10

major server products, and easy web-based remote
management. The desktop version eDesktop 2.4 is specifically
targeted for Internet users. Technical support is available to
registered users.

CA Phat 3.3 Phat Linux was the first Linux distribution that could be installed
on a Windows partition.

MkLinux DR3 Apple Computer's version of the GNU/Linux operating system
based on the Mach 3 Open Source project. Versions of
MkLinux run on the Intel, PA-RISC, and PowerPC
architectures.

SuSE 7.1 SuSE Linux AG, headquartered in Nuremberg, Germany, is a
well-established company with over 500 employees worldwide.
The professional edition of version 7.1 includes easy
installation, many development and server products, and 90
days free installation support. It is available for a wide range of
hardware architectures including Sparc, Alpha, S/390,
RS/6000, and PowerPC, and can therefore be used in
heterogeneous networks.

13

Distribution** Version Description

Corel Linux OS This distribution is based on Debian, and offers an easy 4-step
Second installation process. The desktop is KDE-based. The
Edition professional edition includes 30 days installation support and

some commercial software products.

uwJ Best Linux 2000 R3 Developed by SOT Finnish Software Engineering, Ltd.
Relatively new Linux distribution. Includes manual and games
CD. Menu-based installation. Fully upgradeable since RPM-
based. Recommended for typical home users.

Slackware 7.0 Slackware contains an easy to use installation program, online
documentation, and a menu-driven package system. A full
installation also includes networking utilities, a mail server, a
news server, a web server, etc. Slackware Linux is available for
x86, Alpha and Sparc systems.

ASPLinux * ASP Linux is a multinational development company based in
Singapore. The distributions claims to be 100% compatible to
Red Hat 7.0.L uLuteLinux * LuteLinux.com is based in Vancouver, Canada. In addition to
the distribution, LuteLinux offers training and certification
services, and management and consulting services.

Conectiva 6.0 Conectiva, Inc. is based in Brazil, and its Linux distribution is
mainly targeted for the South American market.

Turbolinux 6 Turbolinux, Inc. focuses on integrating the open source Linux
system with commercial software offerings from established
industry leaders including IBM, Oracle and Computer
Associates. Several optimized distributions for enterprise
application servers and database servers are available.

PR LinuxPPC 2000 Q4 Linux/PPC is the native port of Linux to the PowerPC
processor. The Linux PPC project is open source, supported by
voluntary contributors.

Table 2: Linux Distributions
* Not explicitly versioned ** Based on: Linux distribution page; www.linux.com/aetlinux

14

2.2.3 Selected References

* Tucows, Inc.; Linux Console - Distributions;
http://www.linuxberg.com/distribution.html; 2001; Descriptions & ratings of popular Linux
distributions.

" Erik Severinghaus; Comparison of Linux Distributions;
http://www.linux.com/support/newsitem.phtml?sid=82&aid=6837; February 2000
The author shares his personal experiences on the following Linux distributions: Caldera, Corel,
Debian, Mandrake, Red Hat, and Slackware.

* Rod Smith; Linux Distributions Guide; http://www.rodsbooks.com/distribs/; February 2001
Description of several popular Linux distributions, including: Caldera OpenLinux 2.4, Corel Linux
1.2, Debian GNU/Linux 2.2, Linux Mandrake 7.2, Linux by Libranet 1.2.2, LinuxPPC 2000, Red
Hat Linux 7.0, Storm Linux 2000, SuSE Linux 7.0, and Yellow Dog Linux 1.2.

15

2.3 Open Source Web Technologies

All products introduced in this section are Open Source. They are available at no charge,
including source code. However, a responsible use according to each product's license is

required.

2.3.1 The Apache Web Server

Apache is by far the most popular Web server today, with a market share of about 60%
according to the Netcraft Web server survey (see http://www.netcraft.com/Surve/). Apache is

maintained by the Apache Software Foundation (http://www.apache.org). Brian Behlendorf and

Cliff Skolnick initiated the Apache project in 1995 out of the need for rapid development of new

Web server features. The first version of Apache was based on the NCSA HTTPd Web server,
and modified through patches (therefore the name: Apache = "a patchy" server). The original

code base was eventually replaced in the next revision.

An important year for Apache was 1998 when an agreement with IBM for the continued

development of Apache was reached. IBM now includes the Apache code in its WebSphere

server product. Today, many voluntary contributions from companies and individuals guarantee

for the ongoing success of the Apache Web server.

The following is a list of Apache features for the current version 2.0:

* Serves static and dynamic CGI Web pages. Can interface with many dynamic content

generation technologies such as Perl, Java Servlets, or PHP.

* Highly configurable. Apache is composed of many modules that can be optionally added

or removed, as well as configured.

" Extensive security features. Several forms of authentication, including SSL encryption

are available.

* Portable (implementations are available for many platforms, including Windows, Unix,
Linux, and OS/2).

Apache is available for download, but also ships with most Linux distributions.

16

2.3.2 Tomcat Serviet Engine and Web Server

Web applications today are based on the ability of the server to generate flexible, dynamic

content. Several technologies are available that address dynamic content generation -

Microsoft's Active Server Pages technology (ASP), Java Server Pages and Serviets, or PHP are

examples to name but a few.

"Tomcat is the Servlet and Java Server Pages reference implementation" (quote from the

Tomcat Web site http://iakarta.apache.orq/tomcat/). To explain this statement further: While the

Servlet and Java Server Pages technologies are owned by Sun, the development of an engine

actually using these technologies has been put under the responsibility of the Jakarta Apache

Project. Jakarta is the home of several Open Source projects that all have Java as the common

platform. Tomcat is one of these projects.

In addition to being a Servlet and JSP Engine, Tomcat can also be used as a Web server. This

is especially useful during development for testing, when performance is not a critical issue. For

deployment, however, it is recommended to use Tomcat in conjunction with a more stable and

faster Web server, such as Apache.

The latest version of Tomcat can be downloaded at the Internet address given above. On-line

documentation covers installation on Windows or Linux, as well as other topics such as Apache-

Tomcat Web server integration, or application development under Tomcat. Some of these topics

are covered later on in this document.

2.3.3 Enhydra Application Server

2.3.3.1 Introduction to Enhydra

Enhydra provides a development environment for creating Web applications, being the Open

Source alternative to commercial software products that typically cost several thousand or up to

tens of thousands of dollars per CPU (e.g. WebSphere by IBM, iPlanet Application Server by

Sun). Enhydra is available for free download at http://enhydra.orq, or as a packaged version

including hard-copy documentation and support for about $700 (development license) or $1000

(deployment license) from Lutris Technologies, Inc.

A major downside of Enhydra has been its lack of support for the Java 2 Enterprise Edition. This

problem is currently being addressed: A beta version of Enhydra Enterprise has recently

become available (end of March 2001). Enhydra Enterprise will fully support J2EE.

17

2.3.3.2 The Enhydra Architecture

Web Server Application Framework Tools

Presentation XM LC

Presentation Layer
Manager

Web Server
with Enhydra

Director

SessionMultiserve
Session Business Laye Admin.1 Manager

Web Br owser

Enhydra KpTol
M ultise rve r

Mt. ::-- r Database Data Layer '' DODS
Manager

JD C J BC

InstantDB Database Server

Figure 2: Enhydra Architecture

As illustrated in Figure 2, the Enhydra application server consists of the following three

components:

" A Web server. The Web server can either be the Enhydra Multiserver, which is an HTTP

1.1 Web server with servlet engine supporting the servlet API version 2.2, or any other

Web server with servlet engine. Enhydra applications work with any standards-compliant

servlet runner. Figure 2 also shows Enhydra Director, which is a plug-in available for

several Web servers to provide load balancing to application servers while maintaining

session affinity.

* The Application Framework. Currently, Enhydra offers two distinct application models.

The developer may either choose the Enhydra-specific "Enhydra super-servlet

application framework", or the "servlet application framework" that follows J2EE

standards. The differences are described in further detail below.

18

* Tools. Enhydra offers a set of tools that help build a Web application. The most

important tools are listed below.

Enhydra separates the application logic into three layers: The presentation layer, the business
layer, and the data layer. Following this concept ensures that the designers can independently
work on the presentation while software engineers work on the application logic. Providing three
distinct layers also increases the maintainability of the code.

2.3.3.3 The Enhydra Application Framework Models

* The Enhydra super-servlet application model contains a single servlet that manages all
presentation objects (presentation objects generate the Web pages). This application
controller servlet has to be derived from a class provided by the Enhydra architecture. A
new presentation object is instantiated with each request.

* The serviet application model is the model described by Sun for so-called 'Web
applications". With this model, several servlets are usually written to respond to the
requests. The servlets are instantiated at start time of the application, and then executed
many times in separate threads.

2.3.3.4 Enhydra Tools

* The Application Wizard serves to generate an initial source tree for the development,
including make files. While this could be done manually, it can definitely save time during
the start-up phase of a project.

* The Extensible Markup Language Compiler XMLC is the tool that allows the clean
separation of the user interface and the application logic. It is used to compile an HTML
page into a Java class containing the whole page as a hierarchy following the W3C's
Document Object Model (DOM). The obtained Java class can then be programmatically

modified by replacing nodes or attributes with dynamic content.

This method has the following advantage: A designer can independently create a Web
page with his/her design tool of choice. Then, the programmer compiles the HTML page
and accesses the desired contents via attribute IDs.

19

" The Data Objects Design Studio is a tool to model the data tables of an application with

a graphical user interface. It is capable of generating both SQL scripts and Java code.

" The KeIp_ tools are a set of utility programs that allow the configuration of Enhydra

projects to work within IDE's such as Borland's JBuilder or Oracle's JDeveloper.

2.3.3.5 Concluding Remarks on Enhydra

While this thesis focuses on Web application development with Tomcat, Enhydra seems to

represent a very interesting alternative that should definitely be considered due to its

prospective J2EE support, and the clean separation of the presentation and the business layer.

Being a pure Java application, the deployment should be unproblematic in standards-compliant

servlet engines.

2.3.4 Selected References

* Rich Bowen, Ken Coar; Sams Press; Apache Server Unleashed: Chapter 1; 2000
Contains an overview on the history and the features of Apache.

" Lutris Technologies; Getting Started with Lutris Enhydra: Overview;
http://www.lutris.com/documentation/lutris-enhydra/35/books/qetting-started/overview.html;

" Robert L. Mitchell, Computerworld; Linux, Apache, Enhydra: Can Open Source Move Up?
http://www.computerworld.com/cwi/community/story/0,3201,NAV65-1797 ST059101,00.html;
March 2001

" Reviews of the Enhydra Application Server on the Web:
a. Michel de Bruijn; WebTechniques; An Application Server with No Strings Attached;

http://www.webtechniques.com/archives/2001/03/progrevu/; March 2001
b. Anne-Sophie Karmel; TechMetrics; Enhydra 3.01: Product Profile;

http://www.techmetrix.com/trendmarkers/tmkl 200/tmkl 200-4.php3; December 2000
c. Nicholas Petreley; InfoWorld; Arcane or Not, Enhydra Is a Dream Come True for the

Java-Loving Serviet Developer;
http://www.infoworld.com/articles/op/xml/00/07/24/000724oppetrelev.xmI; July 2000

20

2.4 Database Systems

There are quite a few Open Source database systems available; MySQL and PostgreSQL are

the most popular ones. For smaller applications, both database systems are a stable, no-cost

alternative to commercial database systems; however, their architectures show distinct

differences. Therefore, it is important to weigh the advantages and disadvantages of both

systems, and select the database that is most applicable for a given purpose. The

characteristics of both systems are outlined below.

MySQL is available at http://www.mvsgl.com, PostgreSQL at http://postgresgl.readysetnet.com.

License information can be obtained at:

http://www.mysil.com/doc/L/i/Licensinc and Support.html for MySQL,
http://postgresgl.readysetnet.com/devel-corner/docs/postgres/ln1274.html for PostgreSQL.

Feature MySOL V3.23 PostgreSQL V7.1

License MySQL Free Public License (very restrictive License of the
for Open Source standards; e.g. a license University of California
needs to be purchased for applications (unproblematic
requiring MySQL to function) licensing)

Kernel architecture Multi-threaded allowing for utilization of Single-threaded
multiple CPU's

Transactions with Not supported Supported
rollbacks

Views Not supported Supported

Sub-selects Not supported Supported

Foreign keys Not supported Supported

Extendable type system Not supported Supported

Stored procedures Not supported Supported

Size limitations:
Table size 2GB to 8TB (operating system dependent) 64TB (all O/S)
Row size 65534 (without BLOB's) Unlimited
Columns/table 3398 1600

Table 3: Comparison of MySQL and PostgreSQL Features

21

Generally, it can be stated that PostgreSQL currently offers a richer set of features in
processing the stored data. MySQL does not support some critical features, such as safe
transactions or foreign keys that are usually part of relational database management systems.

However, MySQL offers more standard data types and functions according to ANSI SQL.
Furthermore, the additional processing required for handling the transaction-safe tables in

PostgreSQL gives MySQL a significant speed advantage for insert and update statements.

Other databases that have been made available under an Open Source License more recently

include:

* InterBase and the spin-off Firebird, open sourced by Inprise/Borland (since July 2000)

* SAPDB, open sourced by SAP AG (since October 2000)

Selected References

* Tim Perdue; phpbuilder.com; MySQL and PostgreSQL Compared;
http://www.phpbuilder.com/columns/tim20000705.php3; July 2000
A Comparison of MySQL and PostgreSQL features, performance, and stability.

* Tim Perdue; phpbuilder.com; Open Source Databases: As the Tables Turn;
http://www.phpbuilder.com/columns/tim20001112.php3; November 2000
Follow-up article with extensive performance comparison of MySQL and PostgreSQL

2.5 Source Code Control with CVS

The creation process of software becomes more complex with growing size: An increasing

number of developers have to collaborate closely to achieve effective development in larger

systems. Furthermore, the introduction of latent bugs in the early stages of development can

pose a real problem in large programs, since tracing the problem to its origin can become a

tedious task.

Versioning control systems are the solution to this challenge. All versions of the source code are

archived and maintained in a central repository (the "master" copy), usually at a separate

22

server. Developers are granted access to this repository only indirectly through formal check-in

and checkout of code. The idea is that all developers work with their own local copy of source

code, and only check their code in once it compiles and runs. Versioning control systems keep

track of who is currently working on which files, and therefore prevent developers from

accidentally deleting or overwriting one another's code. In addition to that, the repository keeps

a complete history of all versions of the source code, so any version of a file may be retrieved

later on, or the differences of any two versions can be analyzed.

The dominant versioning control system today is an Open Source Unix/Linux command line tool

called Concurrent Versions System, or short CVS. It is widely used in both the Commercial and

the Open Source software development world. CVS is based on RCS (Revision Control

System).

Most Linux distributions ship with CVS. The versioning control system tools may also be

downloaded from Web sites (e.g. http://www.cvshome.com) as source code, or as binary

version for all common operating systems.

3 Introduction to Web Application Development

Chapter 2 gave an overview on current Open Source products and their features. This section

deals more with the technical aspects of selected Web application development technologies,
which should give the reader a good starting point for further study of the subjects.

The author assumes that the software packages described in this section have been

successfully installed. Detailed installation instructions are available on the Internet for each of

the products.

23

3.1 A Brief Introduction to Serviets and JSP

3.1.1 The Serviet Architecture

When a Web server receives a client request for static web pages (usually files with an

extension .htm or .htmo, it looks for the requested page, and simply responds to the client with

the contents. However, when dynamic content is requested, the behavior of the server needs to

be different: In this case, a program has to be run on the server machine that interprets the

parameters of the request and generates the content accordingly. To enable the server to

distinguish between regular requests for static pages and requests for dynamic content, the

server needs to be made aware of which requests should map to a program. This is usually

done through a server plug-in. This plug-in is a small interface that tells the server which

requests are dynamic (e.g. all pages that end with .cgi or .jsp), and what program to forward

these requests to.

A popular way of generating dynamic content in the past was the Common Gateway Interface

(CGI). The CGI environment instantiates a new child process on the server to handle each

request, i.e. runs a program that generates the output dynamically. This method, however, is

very resource intensive. Creating a the new runtime environment, initializing it and destroying it

after use are overhead tasks that can weigh heavily when a Web server receives thousands of

requests per day. A large number of simultaneous requests could even cause the server to

crash due to memory restrictions.

Servlets offer a much lighter weight approach to handling many client requests. Although the
servlet interface definition is based on CGI, it processes requests differently. A single program

running on the server, a so-called Servlet Engine or Servlet Container, handles all requests.

Instead of creating a new process for each request, the Servlet Engine uses Java's

multithreading capabilities to generate the dynamic page within the Servlet Engine's main

process. This approach results in a much better performance than the classical CGI approach.

The interoperation between the Web server, the Servlet Container, and the client browser is

illustrated in Figure 3.

24

Client Web Server (e.g. Apache) Serviet Container (Tomcat)

Check

requested

page type

dynarpiic Allocate new
thread

Tvste tic

Web browser Run serviet
service()

erve HTML method In

page thread

Generate
HTM L

dynamically

Figure 3: Interoperation Client / Web Server / Servlet Container

3.1.2 The Servlet Container

The Serviet Container, as illustrated by Figure 3, receives the HTTP request for a dynamic page

from the Web server, and is then responsible for invoking the servlet and returning the

generated response to the Web server. Exactly how the Servlet Container processes the

requests can vary from implementation to implementation. However, an efficient and therefore

common implementation of a Serviet Container is shown in Figure 4.

25

Servlet Container

Thread Pool

Serviet A Servlet B Thread 1 Thread 2 Thread n

in !to(in ito(
allocate thread

allocate thread
service()

allocate thread

service()

release thread

destroy() destroy()

x

Figure 4: Typical Serviet Container Implementation

In this model, the Servlet Container creates a "Thread Pool" at start-up time. A Thread Pool is a
collection of threads. When a new request is received, one of the available threads is allocated
to the request. The thread then runs the serviceo method of the servlet that maps to the

request. The thread is returned to the Thread Pool afterwards, so it can be re-used for another

request. With this model, many requests can be handled simultaneously without the Servlet

Container having to instantiate any new objects. The number of available threads in the Thread

Pool is usually configurable, so performance can be optimized for the number of requests that

an application usually receives over a certain time period. If all threads are in use, and another

request is received, the synchronization capabilities of Java allow waiting for the next thread to

become available.

A new instance of a servlet is only created when the servIet is requested for the first time. The

Servlet container makes sure that the servlet's initialization method inito has finished before the

serviceo method is called. The servlet's serviceo method can be run many times, and can even

26

be run simultaneously through several threads (there is no need for having a separate instance

of a servlet object for each request; only a thread is directly associated with a request).

A servlet is only removed from memory if it has not been requested over a longer period of time.

Prior to removal, the servlet's destroyO method is called to allow for clean-up activities.

3.1.3 An Example Servlet

Java servlets always look very similar. A servlet class usually contains just a few methods, the

init(, a service(), and the destroy(method. If specific initialization or clean-up activities are not

required, the inito and destroy(methods may even be omitted. An example for a simple, but

typical servlet class is shown below. This servlet reads a few parameters from the client

request, performs a task, and generates the HTML output.

package Rectangle;

// import the servlet packages
import javax.servlet.*;
import javax.servlet.http.*;

// import some other packages
import java.io.*;
import java.util.Arrays;

public class DrawRectangle extends HttpServlet {

// doGet method is an HTTP specific service() method

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

// read two parameters from the request object

int width, height;
try {
width = Integer.parseInt (req.getParameter("width"));

height = Integer.parseInt (req.getParameter("height "));

}
catch (NumberFormatException e) { width = 10; height = 10; }

// perform action: generate a page & a rectangle with * characters

char line[] = new char[width];
Arrays.fill(line,'*');
StringBuffer str = new StringBuffer();
str.append("<html><head><title>");
str.append("Rectangle Test");
str.append("</title></head><body><p>");
for (int i=0; i<height; i++)

27

{
str.append(line);
str.append("
");

}
str.append("The width is ");
str.append(width);
str.append(" and the height is ");

str.append(height);
str.append(" .
</body></html>");

// write output to the response object
res .setContentType ("text/html");

PrintWriter out = res.getWriter(;
out.println(str);
out.close);

The service(method (here called "doGet()') always has two arguments, which are an input and

an output object. For an HTTP servlet, those objects are the HTTP request and the HTTP

response. The HTTP request object passes all arguments to the servlet that were received by

the Web server with the request. The response object contains a PrintWriter stream to hold the

response that is generated by the servlet.

The simple servlet shown above reads two parameters width and height from the request

object. Then, it draws a rectangle of these dimensions to a string buffer. Finally, it writes the

string buffer containing the rectangle to the response object.

While this servlet does not seem particularly useful, and the same functionality could be

achieved through some browser-side scripting, it does already show some of the servlet

architecture's power: The doGet() method uses fill(char[] a, char val) of the Java Arrays

package. All of Java's extensive library packages can be accessed through servlets, as well as

any other classes or methods available on the server (custom classes, J2EE beans, etc.).

28

3.1.4 JavaServer Pages

JavaServer Pages (JSP) are a server-side extension to the serviet technology. A JavaServer

Page is basically an HTML or XML page that contains scripting elements (scriptlets) and tags in

addition to the regular page contents. A JSP engine always converts/compiles a page to a

servlet prior to execution. JSP engines are included in most servlet engines, such as Tomcat.

JSP's offer the following advantages over pure servlet programming:

* JSP pages make it easier for a Web designer to generate pages with dynamic content.

The Web designer can call so-called "JavaBeans" (for an explanation, see below) with

XML-tag-style commands, which most Web designers are familiar with. No additional

programming skills are required. Therefore, JSP pages foster the concept of separating

application logic from content presentation.

* Web developers can use JSP pages for the generation of presentation-driven contents,
such as complex forms or outputs that would be cumbersome to implement with servlet

programming only.

JSP's use the following elements to extend the functionality of static HTML or XML pages with

dynamic content:

* Directives (enclosed within <%@ and %>) are short statements that are used to give the

JSP engine information about the page that follows (such as page language, used

packages, or whether the page should have session state). Directives also provide the

means to include other HTML or JSP pages on the server side.

* Declaratives (enclosed within <%! and %>) are used for page-wide variable and method

declarations.

* Scriptlets (enclosed within <% and %>) contain Java code embedded in the page. Unlike

client side JavaScript or VBScript, Scriptlet code is interpreted on the server side.

* Expression Evaluations (enclosed within <%= and %>) offer a way to directly evaluate a

variable or function to a String for inclusion in the output of the page.

* JavaBean invocation and manipulation tags (enclosed within <jsp: and />).

JavaBeans can be instantiated with the useBean command. In a nutshell, JavaBeans

29

are public Java classes with a constructor that has no arguments. They usually are

reusable components containing application logic.

The following is an example JSP page demonstrating four of the five JSP language elements

(the JSP elements are highlighted with a shaded background). This page uses a JavaBean to

generate a formatted navigation bar.

<html>
<head>

<title>JSP Navigation Bar</title>
</head>
<body>
<!-- JSP directive indicating the page language -- >

<%@ page language="java'' %>
<!-- JSP directive indicating a server-side page include. -

<%@ include file="banner.html" %>
<!-- Use a JavaBean to generate a navigation bar -->
<jsp:useBean id="navibar" class="MyPackage.NavigationBar" />
<!-- Now, call the navibar bean's add() method to manipulate the bean.

This is done in Java language syntax. The following two lines are
a "scriptlet". -- >

<% navibar.add("Home ","home_int.jsp");
navibar.add("Help", "helpjint.jsp"); %>

<!-- Evaluate an expression with <%= . . . %>, in this case, call the
navibar bean's toHTML() method to generate the navigation bar in HTML
on the page -- >

<%= navibar.toHTML() %>
<hl>Welcome to this demonstration page!</hl>
<p>This page shows how to use JSP to generate a navigation bar.</p>
</body>

</html>

3.1.5 Selected References

* Danny Ayers et al; Wrox Press Ltd; Professional Java Server Programming; 1999

* Sun Microsystems, Inc.; Java Serviet Technology, White Paper;

http://iava.sun.com/products/servlet/whitepaper.html

" Sun Microsystems, Inc.; JavaServer Pages, White Paper;
httD://iava.sun.com/Droducts/isD/whiterarer.html

30

3.2 Introduction to Web Application Development with Tomcat

The Apache Software Foundation has published an excellent guide on application development

under Tomcat at http://iakarta.apache.orq/tomcat/oakarta-tomcat/src/doc/appdev/. The author

strongly recommends basing a new development environment on the instructions provided by
this document. This Section provides a brief summary of the key ideas of Apache's application
development guide, some additional comments for clarification, and a detailed example for

creating a simple application, which can serve as a starting point for more complex tasks.

Important note: Depending on your user account settings on the system you are using, you

might need to have Linux super-user (administrator) rights to write to directories that are not

inside your local user home directory. You may also require logging in as a super-user to

configure the Tomcat servlet engine, or to start and stop it during development. If you are not

familiar with the access rights and user management on your Linux system, please contact your

system administrator. The system administrator may also wish to grant you the required
permissions explicitly by providing the appropriate sudo commands.

3.2.1 Creating the Source Code Repository

The source code should be kept separate from the compiled version of the application. Source

code control is easier if the directories contain only source files, and it is much more convenient

to make an installable distribution of the application. The Apache Software Foundation

recommends a directory hierarchy for source files, which is shown in Figure 5.

Using the recommended directory structure also has the advantage that a provided build script

may be used without major modifications, which can create a compiled Web application from

the source tree with just one shell command.

Before creating the source repository with the Concurrent Versions System, CVS needs to be

configured according to the access levels required. CVS repositories can be configured for

single users, user groups on the same server, or for multiple users on many client machines

using remote access over a network or the Internet. Described here is the configuration for a
user group accessing the repository from a single server. Please see Section 3.2.5 for
references on how to set up CVS for the other cases.

31

myApp/ is the top level
source directory of the
application.

t
etcl C

c

web.xml

Iib/

libraries, e.g.
JAR files

src/

he etc/ directory contains special files
describing the application that should be
opied to the WEB-INF directory when the
pplication is built.

the /lib directory should contain
libraries, usually .JAR files for Java
applications.

the source/ directory should
contain all Java source code
(including servlets), which should
be organized in packages.

packagel/

Java file

package2/

Java files

the web/ directory should contain all
HTML and JSP pages, as well as

stylesheets, XML files, etc. For larger
projects, several subdirectories
should be created under web/. The
entire hierarchy will be copied to the

root directory of the deployment
home when the application is built.

Figure 5: Source Code Directory Structure

32

myApp/

build.xml
build.sh

web/

HTML files
JSP pages
stylesheets
etc.

3.2.1.1 Configuring CVS for a User Group on a Single Server under Linux

To set up CVS from the Linux shell for multiple developers within a user group on the same

server, you may follow the steps outlined below. The $ symbol stands for the Linux shell

command prompt.

* Step 1: Create a Linux user group that all developers will belong to (assuming that the

prospective developers already have login accounts), and then add the users to this new

group. Note: You need to have super-user privileges to create new groups.
$ /usr/sbin/groupadd devteam (create new group "devteam")

$ /usr/sbin/usermod -G devteam andreas (add user "andreas" to devteam)

$ /usr/sbin/usermod -G devteam grace (add user "grace" to devteam)

* Step 2: Set the CVS environment variables. The export statement is used to set system

variables under Linux. The following statements could be added to the global /etc/profile file

or the users' .profile file to set the variables automatically at login time.

First, set the default editor for CVS. You may use vi, ae, emacs, or any other editor. CVS

invokes the editor when an entry to a log file is required.
$ export EDITOR=/bin/vi

Next, set the CVS root directory. Make sure you have write permission in the directory where

you wish to place the CVS root.
$ export CVSROOT=/devteam/cvsroot

" Step 3: Create the CVS root directory with the following command. The $ symbol indicates

that the following text is a system variable (the one you have defined in Step 2).
$ mkdir $CVSROOT

* Step 4: Set the appropriate group ownership and access permissions for the repository.

First, set the group for the new CVS repository:
$ chgrp devteam $CVSROOT

Then, change the access permissions of the directory to allow all members of the

development group to read from and write to the new CVS repository.
$ chmod g+rwx $CVSROOT

* Step 5: Initialize CVS with the command
$ cvs init

33

3.2.1.2 Creating the Source Tree in CVS and Configuring the Build Scripts

This Section describes how to set up the source tree shown in Figure 5 within the CVS

repository created under Section 3.2.1.1.

" Step 1: Before you create the directory tree in CVS, you need to create a local copy of the

directory structure in your home directory.
$ cd - (The - symbol is a variable containing the current

$ mkdir myApp user's home directory)

$ cd myApp

$ mkdir etc

$ mkdir lib

$ mkdir arc

$ mkdir web

* Step 2: Create the initial project in CVS using the cvs import command. Replace [usemame]

with your Linux user name.
$ cvs import -m "Initial project creation" myApp (username) start

You can verify that the project was created correctly in CVS by renaming the original

directory to keep it as backup, and performing a checkout:
$ cd ..

$ my myApp myApp.bu

$ cvs checkout nyApp

* Step 3: Create and customize the build scripts for your application. As mentioned earlier, the

Apache Software Foundation already provides build files as a basis. These files require the

Apache "Ant" make utility to run, which is usually included in the Tomcat distribution and

does not need to be installed separately. However, if Ant is not yet installed on your system,

you may download it from http://iakarta.apache.org/ant/ (Documentation is available at this

Web address, too).

Download the files build.xml and build.sh, and place them in your local myApp/ directory.

Links to the files can be found within the document http://akarta.apache.org/tomcat/jakarta-

tomcat/src/doc/appdev/.

34

You don't need to make any modifications to the build.sh file.

The build.xml file, however, must be customized slightly so it can be used by your

application. Fortunately, you need to modify only a few lines to change the application name

and to set the destination path indicating where Ant should deploy the application. You can

make the changes by opening the build.xmlfile with a text editor, such as emacs.

The following lines give an example for the modification that is consistent with the folder

names introduced above.

<property name= "app. name " value= "myApp" />
<property name= "deploy.home" value="/devteam/deployHome"/>

Note: The build.xmlfile contains detailed information on how to customize the file.

Then, add the initial build files to the source code repository from your local myApp/

directory with the following commands:
$ cd ~/myApp

$ cvs add build.xml

$ chmod a+x build.sh (this command makes the build script executable)

$ cvs add build.sh

$ cvs conmit -m "Initial build script files added."

With the completion of Step 3, the preparation of the source code repository is complete. All

developers can now check out the source code with cvs co {application name], add new files to

the repository with cvs add and cvs commit, or build the application using the build.sh script.

The last part of the set-up process is the configuration of Tomcat and the application itself, so

Tomcat can recognize it, and the application can be accessed through web browsers once it is

built.

35

3.2.2 Configuring Tomcat to Recognize the New Application

To make the Tomcat serviet engine aware of the new application, you have to add a new

<context> entry to Tomcat's server.xml configuration file with information on the location of your

application. Furthermore, the application itself has to be deployed with a configuration file called

web.xml describing the servlets it contains, as well as other critical application data. The

necessary steps for a successful set-up of the two files are outlined below.

Part 1: Configuring the Tomcat servlet engine's configuration file called server.xml.

Open the server.xmlfile in a text editor, e.g. emacs.
$ emacs $TOMCAT_HME/conf/server.xml

The server.xml file already contains some context elements. Navigate to the end of the file,
and add the new context element, as shown below:

<Context path=" /myApp"
docBase=" /devteam/deployHome"
debug=" 0"
reloadable="true"
trusted="false" >

</Context>

The path attribute indicates the virtual directory under which the browser may access the
physical document root directory docBase on the server (this should be the directory

containing the web application - during development, it should be the same directory as the

deployment home directory specified in the build.xmlfile).

Please refer to the Apache Software Foundation's Tomcat application development guide for

a detailed explanation of the other attributes.

36

* Part 2: Creating an initial web.xmlfile for the new application.

The web.xml file is the Web Application Deployment Descriptor. This file defines all

information that the server needs to know to run the Web application. The definition of the

Descriptor is part of the Servlet API Specification, V2.2. The Apache Software Foundation

provides a basic web.xml file within the Tomcat application development guide. Please

download this file, and place it in your local source code directory under etc/ Then, add the

file to the repository with the commands given below. As long as you have not created any

new servlets, no modifications should be necessary to the provided web.xml file. However,
the web.xml file contains a few small bugs that must be taken care of (as of the writing of

this on April 30, 2001 - I am assuming they will still be there):

o Line 77: The description text contains an XML tag <servlet-mapping> that is

recognized by Tomcat, but should not be right here. Just remove the <> symbols.

o Line 88 and 92: The end tags are wrong. Instead of </paramName>, it should be

<Iparam-name>

Note: The example web.xml file contains a lot of information that is not required initially.

Nevertheless, it is very useful to have an example that contains many of the available tags

for reference.

After correcting the mistakes mentioned above, you should add the file to the repository.
$ cd -/myApp/etc

$ cvs add web. xml

$ cvs conmnit -m "Initial web.xml file added."

This concludes the set-up and configuration of the development environment. In the next

section, the author will demonstrate the development and deployment of a simple application

containing one HTML page and one servlet, and look at the structure of the deployed

application in further detail.

37

3.2.3 Developing and Running an Example Application

The example application will consist of the Servlet shown in Section 3.1.3, and an HTML form

that is used to provide the Servlet with the necessary parameters to generate some dynamic

output.

3.2.3.1 Creating the HTML Page and Registering It with the Repository

The source code for the HTML page is shown below. Store the code under the name

drawrectangle.html in the web/ directory of the source tree. The form drawrectangle.html is a

plain HTML page; it does not contain any dynamically generated data. It serves only to provide

the servlet with the necessary parameters to run.

<html>
<head>

<title> Draw a Rectangle </title>
</head>
<body>

<h2>Servlet Demonstration - Draw a Rectangle</h2>
<!-- The following line specifies the URL that the form is submitted to

when the "Submit" button is pressed. The URL is mapped to the
correct Java class by the Servlet Engine -- >

<form action="drawrectangle.servlet">

<P>
Please enter the desired width and height:

Width: <input type=text name="width" size=5>

Height: <input type=text name="height" size=5>

<input type=submit value="Draw Rectangle">

</P>
</form>

</body>
</html>

Schedule the drawrectangle.htmlfile for addition to the repository with the following command:
$ cvs add drawrectangle.html

Please note that the cvs add command does not yet store the file in the repository. This gives

you the opportunity to test the file before committing it to the repository. Committing the file will

be handled later on in Section 3.2.3.7.

38

3.2.3.2 Adding the Serviet to the Repository

Create a new directory under the src/ directory with the name Rectangle. The directory name

must be the same as the package name specified in the first line of code of the serviet. Then,
save the Servlet code presented in Section 3.1.3 under its class name (DrawRectangle.java) in

the Rectangle directory. Schedule the new directory (this is important: always add directories to

the repository as well!) and the new file for addition to the CVS repository.
$ cd src

$ mkdir Rectangle

$ cvs add Rectangle

$ cd Rectangle

$ cvs add DrawRectangle.java

3.2.3.3 Registering the Servlet in web.xml

Before the new servlet can be executed, it needs to be registered in the Web Application

Deployment Descriptor web.xml.

To do this, add the following lines to the web.xmlfile:

<servlet>
<servlet-name>DrawRectangle</servlet-name>
<servlet-class>Rectangle.DrawRectangle</servlet-class>

</servlet>
<servlet -mapping>

<servlet-name>DrawRectangle</servlet-name>
<url-pattern>drawrectangle. servlet</url-pattern>

</servlet-mapping>

The <servlet> tag defines a new servlet. You must provide a servlet name, which can be chosen

arbitrarily (it does not necessarily have to be the servlet class name). The <servlet-class>

attribute tells the servlet engine where to find the java class file that contains the servlet byte

code. Last but not least, you need to define the servlet mapping. (The URL that is received

through the browser request is mapped to a Java class by the servlet engine).

A servlet mapping should be provided for each servlet. You may also use wildcards for the URL-

patterns. E.g. <url-pattern>*.servlet</ur-pattern> would map all URL's ending with .servlet to

the specified servlet name.

39

3.2.3.4 Building the Application

To build the application, please run the build.sh script from your local source code root directory
myApp.

$ cd -/myApp

$./build.sh

The build script will automatically determine which files have to be re-compiled or re-copied to

the deployment directory that you have specified in the build.xml file. When you use build.sh the

first time, the make utility Ant will create the whole directory structure from scratch.

The build.xml file and the source code directories are organized in a way that the Servlet API

Specification V2.2-compliant Web application hierarchy is generated automatically. This

standard directory layout is shown in Figure 6.

When building the application, you may also specify an optional parameter to control the build

behavior ($. /build. sh [parameter]). The available options are shown in the table below.

Option Function

prepare Generates the deployment directory structure.

clean Removes the deployment home directory structure.

compile The default; Compiles/copies the project to the deployment home.

javadoc Generates the Java documentation.

all Executes clean, prepare, compile, and javadoc consecutively to re-build all.

dist Generates the WAR file for the application; a Web archive is a compressed file that
contains the whole Web application in a single file, conforming to the Servlet API
Specification V2.2. The Web archive is used to easily distribute and deploy an
application. The dist command also generates a JAR file of the source code.

Table 4: Application Build Options

Eventually, you may wish to modify the provided build.xml file, for example to generate the Java

documentation in another directory, or to change the javac compiler settings (turn optimization

on, for example). The Apache Ant documentation explains the available XML tags and attributes

that make up the build script in the Ant reference documentation, which can be found here:

http://iakarta.apache.org/ant/manual/.

40

All files that must be visible to the client

deployHome/ browser are stored directly under the
deployment home directory. In larger

HTML files applications, they may be stored within

JSP pages several subdirectories.

stylesheets
etc.

All application-specific files and directories that

WEB-INF/ are not directly accessible through the browser
are stored under the WEB-INF/ directory. The

EmWeb Application Deployment Descriptor web.xml
must be located in the WEB-INF/ directory.

classes/

Packages and their classes (includin
servlets) are stored in the classes/
directory. The package name must
equal the subdirectory name.

package1/

.class files

package2/

.class file s

The lib/ directory
contains the JAR files,
and other libraries or

drivers.

Figure 6: Standard Directory Layout, Serviet API Specification V2.2

41

lib/

libraries, e.g.
JAR files

3.2.3.5 Starting and Stopping Tomcat

Once you have successfully built the application, you can run it in the servlet engine. The
command to start Tomcat is simply:

$ $TOMCATHOME/bin/startup.sh

You should receive messages indicating the start-up process, similar to this:

Using classpath:/usr/local/jakarta-tomcat-3.2.1/lib/ant.jar:
/usr/local/jakarta-tomcat-3.2.1/lib/jasper.jar:
/usr/local/jakarta-tomcat-3.2.1/lib/jaxp.jar:
/usr/local/jakarta-tomcat-3.2.1/lib/parser.jar:
/usr/local/jakarta-tomcat-3.2.1/lib/servlet.jar:
/usr/local/jakarta-tomcat-3.2.1/lib/test:
/usr/local/jakarta-tomcat3.2.1/lib/webserver.jar:
/usr/java/jdkl.3/lib/tools.jar:
/usr/local/jakarta-tomcat-3.2.1/webapps/ROOT/WEB-INF/classes:
2001-05-01 12:10:39 - ContextManager: Adding context Ctx(/examples
2001-05-01 12:10:40 - ContextManager: Adding context Ctx(/admin
2001-05-01 12:10:40 - ContextManager: Adding context Ctx(/myApp)

cannot load servlet name: controller
2001-05-01 12:10:42 - PoolTcpConnector: Starting HttpConnectionHandler on
8080

Tomcat is pre-configured to listen and respond to HTTP requests at port 8080. You can verify

this at the start-up, as shown above (last line). There should also be a line indicating that your

application context was loaded (other bold line).

Don't worry about the message "cannot load servlet name: controller", which you will probably

get. This is a servlet defined in the web.xml file, but there is actually no class provided for it in

our example application; therefore, it cannot be loaded, of course. You can clean up web.xml

and remove this servlet, as well as any other definitions not required later on.

Any time that you modify the web.xml file (by adding a new servlet, for example), Tomcat has to

be restarted so it reloads the Web Application Deployment Descriptor web.xml (However, you

don't have to restart Tomcat when adding JSP pages or HTML pages, since they do not require

a modification of web.xmo. Before running the start-up script again, you have to shut Tomcat

down properly, or Tomcat will not restart. To do this, use the command:
$ $TOMCATHOME/bin/shutdown.sh

When continuously changing and deploying the application, you may wish to write a batch script

that stops and restarts Tomcat with a single command.

42

3.2.3.6 Testing the Application

To test the application, open a Web browser, such as Microsoft Internet Explorer or Netscape

Navigator. If you have used the same settings as described in the previous sections, you can

access the application under the URI http:/localhost:8080/myApp/ from your Tomcat server.

From any other machine, you have to replace the localhost keyword with the Web server name

(e.g. myServer.mit.edu) or the server's IP address.

By pre-definition, browsing of the application directories is allowed (you can disable this later, if

you wish). However, the WEB-INF directory (see Figure 6), which contains the application

configuration file and the servlets, is not accessible to the client browsers.

Files:
draw rectanale.htal 0.6 EB Hon, 30 Apr 2001 17:55 EDT

DoneItemet

Figure 7: Browsing the Application's Folders

To go to the example page, click on the file drawrectangle.html (the only file directly accessible

from a browser). The following figures show the HTML page and the serviet output.

Aldres1#] http://arlington6 mit edu:8080/mApp/drawectangle.html -J

Servlet Demonstration - Draw a Rectangle

Please enter the desired width and height:

Width:F40

Height: s

** ** *** * ***** ** * * ***** *******

* *** ****** ********* ***** **** **** ****** **

The width is 4) end the height is 5.

Figure 8: Example Application Screenshots

43

3.2.3.7 Committing the Additions to CVS

When you have tested the pages, and everything runs to your satisfaction, you should finally
commit the new files and the changes you have made to the CVS repository.

$ cd -/myApp

$ cvs commit -m "Added drawrectangle files & modified web.xml file."

Good practice is to build the application and check for errors before committing any changes.
This way, the repository will contain a running version at all times. This is advantageous
especially when multiple developers are involved in the project.

You can always issue the add command well ahead of the actual commit, as demonstrated with

the two pages of the example application. By adding the files early, you can reduce the danger
of forgetting to check in a file. The cvs add command will only schedule a file for committing, but

not actually store it in the source code repository yet. The cvs commit command will update the

repository.

44

3.2.4 Concluding the Introduction to Application Development with Tomcat

Section 3.2 has given a detailed introduction to setting up a development environment for Web

applications using Tomcat and CVS on the Linux operating system.

Most tasks have to be performed manually. While the process of registering servlets, managing

CVS, and building the application with a make file seem tedious compared to the development

with IDE's, the demonstrated approach gives the development team good control over the

product, as well as flexibility. However, the author encourages the reader to consider other

development environments, such as Enhydra, which provide a richer set of tools to create a

Web application faster (e.g. wizards to set up a source tree, integration with IDE's).

3.2.4.1 Debugging with Tomcat

A difficulty that the developer faces is the lack of a real debugging tool for servlets. Since a

servlet can be tested only from a browser, and stepping through a servlet line-by-line is

therefore not possible, debugging can become a time consuming task. Therefore, you should

apply extra care when developing a servlet, and make good use of status outputs with the

System.err.print/no command, for example. There are IDE's available that can be used with

Tomcat to improve debugging issues, such as Borland's JBuilder. Please refer to Borland's Web

site at http://community.borland.com/article/0,1410,22057,00.html for additional information

(JBuilder is not Open Source software, but the Foundation Edition V3.5 is available free of

charge).

3.2.4.2 Multiple Developers with CVS

The small size of the Web application example presented above did not really allow for showing

the advantages of the central CVS repository that was created for the application source code.

The following is a brief explanation of how other developers can access the code.

Any member of the development team that is part of the group owning the repository can

checkout the code to his/her home directory and independently work with it. A user x would

simply use the following commands to obtain a fresh local copy:
$ cd ~

$ cvs co myApp

45

Now, the user x can edit the files, add new files, commit changes, or build the application just
like the person that created the initial version.

To bring a checked-out version up-to-date with the current state of the repository, the cvs
update command is used from the project source directory:

$ Cd -/myApp

$ cvs update -d

It is usually helpful to coordinate among the developers and decide who should work on which
files to avoid two developers checking out the same file and working on it simultaneously (files
that are checked out are not locked by CVS). Although CVS has merging capabilities to bring

different versions together, this does not work very well. It is also recommended to commit
changes and run cvs update regularly to avoid conflicts that can occur when developers use

older versions of files.

CVS offers many other features. Please refer to the resources given in Section 3.2.5 for
additional information.

3.2.4.3 Scalability of the Presented Development Approach

The presented approach installed Tomcat and the source code repository on one central server.

Building and deployment of the application was also done on this server. This works well for

smaller development teams of around three team members. The developers can access the

central server easily via Telnet, and have their own local copies of the source code in their
home directories.

However, concentrating the development on a single server has disadvantages. Assuming that

all developers use the same deployment directory for their builds and compile their source code

on the same system, a larger number would cause too much interference among them.

Stopping and restarting Tomcat, which has to be done occasionally to re-load the application, as

well as limited system resources slow down development as the number of developers

increases.

The easiest and most efficient way of addressing these issues is to provide each team member

with his/her own machine running its own local instance of Tomcat. Other options are available

as well, which will be introduced in Section 5.2.

46

3.2.5 Selected References

* Mark Allen; The CTDP Linux User's Guide V.6.2 November 2000;
http://ctdp.tripod.com/os/linux/usersguide/index.htm
A good Linux user's guide.

* Nathan Meyers; Waite Group Press; Java Programming on Linux: Chapter 9: Setting Up a
Linux Development Environment; 2000;
Not specifically for Web applications, but contains an introduction to CVS

* Apache Software Foundation; Developing Applications with Tomcat; 2000;
http://gakarta.apache.org/tomcat/nakarta-tomcat/src/doc/appdev/
This guide is essential for getting started with Web application development under Tomcat.

* Alavoor Vasudevan; CVS-RCS How-To V19.&; January 2001;
http://linuxdoc.orq/HOWTO/CVS-RCS-HOWTO.html
A practical guide to very quickly set up the RCS/CVS source code control system.

* John Goerzen; I DG Books Worldwide, Inc.; Linux Programming Bible: Chapter 26: Archiving
and Collaboration with CVS; 2000;
This chapter contains information on how to set up CVS for single users and for multiple users via
remote access. Also contains a brief description of the most used CVS commands.

* Karl Vogel; Coriolis Inc.; Open Source Development with CVS;
Chapters 2, 4, 6, 8, 9, and 10 are available free under the GPL at
http://cvsbook.red-bean.com/cvsbook.htm; 2000

47

4 Case Study: An Automated Street Opening Permit System

4.1 Introduction to the System

4.1.1 Overview and Purpose

The Street Opening Permit System was developed for the Engineering Division of the

Department of Public Works of the Town of Arlington, Massachusetts, to improve the process of

applying for, issuing of, and administering of permits for street openings. Moving from a manual

process to a computer-supported approach promised good time savings both on the applicant's

and the town's side. The system was implemented as an n-tier Web application consisting of a

browser-based user interface, business logic programmed in Java, and a database backbone.

The core part of the system is an application form that is processed automatically right at

submittal time, and makes an immediate decision whether a permit can be granted or not. To

make this possible, the engineering department is given extensive administrative functionality to

configure the behavior of the system. Furthermore, a database is used to archive all issued

permits, as well as all other system-critical information.

The system distinguishes two different user profiles: External users, which are the contractors

and utility companies that apply for permits, and internal users, which are the town's employees

that manage the system.

Typical tasks for external users with the system are:

" Applying for permits

" Searching for, displaying and printing permits that have been issued to them

Typical tasks for internal users with the system are:

" Viewing, editing, deleting, or searching for issued permits

* Configuring the behavior of the automated application approval system

" Administering external users (contractors and utility companies)

* Generating reports or billing information

48

The application was developed under Tomcat on a Linux server. MySQL was used as the

database. The system will also be deployed under the same software components due to the

low expected load of the application, and the financial limitations that apply to public institutions.

4.1.2 Overall Architecture

The Permit System consists of three layers:

" The user interface, which was implemented using Sun's JavaServer Pages (JSP)

technology. For presentation, both JSP and serviets are used.

* The business logic, which consists of a package of Java classes.

* The database layer, which consists of a set of tables in a MySQL database.

r---I
Street Opening Permit System

Presentation Layer Business Layer Database Layer
User Interface

Serviets
JSP Pages Java Classes MySQL Database

Browser

--- I

Figure 9: Permit System Architecture

The first step in developing the Permit System architecture was the design of the database by

capturing the requirements as attributes and tables in a relational system. Then, an initial

prototype of the user interface was created that consisted of HTML mock-up pages. The Java

classes comprising the business logic were then developed closely based on the database

tables and the HTML pages.

During the architectural process, a strong emphasis was placed on the consistency of the three

layers. Fields of forms that were developed needed to have a corresponding attribute in a

database table, and vice versa. Furthermore, a file name, attribute, and variable naming

convention spanning all three layers was introduced to avoid confusion and to make the names

easier to memorize.

49

4.2 User Interface

4.2.1 UI Design Decisions

When designing the user interface, a couple of items have to be kept in mind to arrive at a good

solution. Basically, the system should be as easy and intuitive as possible to use. Therefore, the

pages should be consistent in look and feel, which helps the user in getting accustomed to the

system faster. Furthermore, the pages and functions should be logically grouped to facilitate

navigation between the pages, and functions should be placed where the user would most likely

expect them without having to consult a manual first.

To achieve these goals, the following design decisions were made:

* All pages have an identical layout. On top of the page, a banner is shown. Below

that, a navigation bar is displayed from which the Home and the Help page may

always be reached. Underneath the navigation bar, the main page area is displayed.

Finally, at the bottom of the page, a disclaimer with a copyright notice and contact

information is shown. The page banner and the disclaimer are included from an

external file so updating this information can be done easily by modify only one file.

" Fonts and colors are consistent from page to page. This is done with a central

Cascading Style Sheet that is included at the top of each page. CSS style sheets are

a very powerful but simple way of reducing the formatting overhead on pages, and to

give Web pages a uniform look across different browsers (Netscape, Microsoft). The

style sheet that was used for the Permit System is shown below.

<!-- define the hyperlink style -- >

a:link { color: #000080; font-family: verdana, sans-serif;
font-weight: bold }

a:visited { color: #000080; font-family: verdana, sans-serif;

font-weight: bold I
a:active { color: #000080; font-family: verdana, sans-serif;

font-weight: bold }
a:hover { color: #DOOOOO; font-family: verdana, sans-serif;

font-weight: bold }

<!-- define the body style -- >
body { font-family :verdana,sans-serif; font-size: 10pt;

background-color: #FFFFFF; color: #000000 }

<!-- define table and paragraph defaults -->

p,td,th { font-family : verdana, sans-serif; font-size: 10pt }

50

<!-- define the headings -- >
h4 {font-family:verdana,sans-serif;

font-size:10pt;color:#000080; text-align:center }

h3 {font-family:verdana,sans-serif;
font-size:12pt;color:#000080; text-align:center }

h2 {font-family:verdana,sans-serif;
font-size:16pt;coior:#000080; text-align:center }

hl {font-family:verdana,sans-serif;
font-size:20pt;color:#000080; text-align:center }

" The internal user administration pages and the external user pages where clearly

separated to avoid any implementation difficulties with respect to security of the internal

Web pages. Mixing the external and internal content would have increased the

complexity of providing an "employees-only" context area.

* All functions of the system were logically grouped and a page hierarchy was developed

to have a clearly structured and consistent navigation. The external Web page hierarchy

is shown in Figure 10. The internal Web page hierarchy is shown in Figure 11.

Permit DeniedApplication
Form Permit Granted

Perm it Resu s - View D ta s
_Search

Help

FAQ

-Feedback

Figure 10: External Web Pages Hierarchy

51

External
Login

External
Home

Company Administration

Com pan ie s
M e n u Add

Edit

D elete

Permit denied Application
Permits Application Form and

M e n u Form Manual Approval Permit
Administration:

L-------------------------- ---
List allConfiguration of the Automated

Restrctio AddApplication Approval System

------- --------- P---rm-----r--n-t-I

-Edit

- Deet

'- List 3ay ie deti

Schsuduse

Miscellaneous Administration Tasks

4Bill~ing

FAQ Admin

-- - - - - - - -- - - - - - - - -- - - - - - - -- - - - - - - - -- - - - - - -

Figure 11: Internal Web Pages Hierarchy

52

Intern al
Login

Internal
Home --

Help

-- -- -

4.2.2 Implementation using JSP

Since the goal was to use JSP only for generating formatted output and providing a user

interface, particular attention was paid to placing the business logic in external classes (the

business logic layer will be discussed in Section 4.3). All JSP pages are implemented in a

common way. Therefore, just one example page is analyzed in detail below.

Presented here is the application form (file: applicationjint.jsp). The complete code for the page

is not shown; repetitive code segments have been removed. JSP language segments are

highlighted with a shaded background.

The beginning of the JSP page typically contains the HTML header. Also included here is the

link to the CSS style sheet to achieve the uniform font and color style.

<html>
<head>

<link rel="stylesheet" type="text/css" href="../style.css",>

<title>Permit System New Application</title>

</head>

Then, the page language is set and the required Java classes are imported using the JSP page

directive.

<body>

<%@ page language= "java" import="java. sql. *, Permit .MyHTML, Permit .Company,
Permit .WorkType, Permit. StreetWorkType, Permit. Street"%>

The JSP include directive is used to include the banner to the page.

<%@ include file=". ./banner-permit.html" %>

The NavigationBar bean is instantiated, and the items that should be presented are added to

the navigation bar content. Then, the completed navigation bar is dumped on the page with the

evaluation of the toHTMLO function.

<jsp:useBean id="navApplicationInt" class="Permit.NavigationBar" />

<% navApplicationInt.add("Home","home-int.jsp"); %>
<% navApplicationInt.add("Permits Menu", "permitsint.jsp"); %>
<% navApplicationInt.add("Help", "helpint.jsp"); %>
<%= navApplicationInt.toHTML() %>

53

Another bean is invoked, the database bean MyDbBean. A connection the the Permit System

database is established, and all information that is required for the dynamic content generation

is read using static functions of the appropriate classes. The database connection is then

released immediately with the close() command to free the connection for the next use.

<jsp:useBean id="dbBean" class="Permit.yDbBean" />

dbBean.connect();
ResultSet companies=Company.readAllCompanies (dbBean);

ResultSet workTypes=WorkType .readAllWorkTypes (dbBean);

ResultSet streetWorkTypes=StreetWorkType .readAllStreetWorkTypes (dbBean);
ResultSet streets=Street.readAllStreets(dbBean);
dbBean.close();

Then, the page title is disipayed using plain HTML code.

<table border=1 cellpadding=10 width=100%>
<tr><td>
<h2>File New Application</h2>
<center>This form is to be used by the Department of Public Works only.

</center>
</td></tr>

</table>

The following code segment starts the main part of the page, which is the application form. The

form is of encoding type multipart/form-data to allow for mixed content (a drawing file may be

uploaded). This is also done using HTML only. The submitted form will be handled by a servlet

(a servlet mapping has been defined in the web.xml file for add.Permit)

<form enctype="multipart/form-data" method="POST" action="add.Permit">

<table border=1 width=100%>
<tr><td align=center bgcolor=#800000>
Please provide the following information:

</td></tr>
</table>
<table>

54

The first item of the form is a drop-down box that is used to select a company name. The drop-

down is generated automatically by the createDataSelecto function of the MyHTML class.

<tr>
<td bgcolor=#COCOCO align=right>Contractor/Utility Company:</td>

<td>

StringBuffer str=new StringBuffer();
MyHTML .createDataSelect (str, "PerComName ",l ,companies);

<%= str.toString() %>
</td>

</tr>

Other drop-down boxes for work types, dates, streets, etc. are created in a similar manner, as

shown below. Form fields that do not contain dynamic data are created in HTML, e.g. the input

field for the Dig Safe Number. Note: not the entire code for the form is shown here.

<tr>
<td bgcolor=#COCOCO align=right>Type of Work:</td>
<td>

str=new StringBuffer);
MyHTML. createDataSelect(str," PerWorkType" 1,workTypes);

<%= str.toString() %>
</td>

</tr>

<tr>

<td bgcolor=#COCOCO align=right>Dig Safe Number:</td>

<td><input type=text name="PerDigSafe" size=30></td>

</tr>

<tr>

<td bgcolor=#COCOCO align=right>First Day of Work:</td>
<td>

str = new StringBuffer();
MyHTML. createDateSelect (str, "PerValidFronDay",

"PerValidFromMonth", "PerValid romYear", 3);

<%= str.toString() %>
</td>

</ tr>

The form has two buttons. The user may either submit or reset the entered application data.

</table>

<input type=submit value="Submit" name="Submit">

<input type=reset value="Reset" name="Reset">

</form>

55

Finally, the disclaimer is included to the page.

<%@ include file=". ./disclaimer.html" %>
</body>

</html>

The resulting output of the application form JSP page is presented in Figure 13 (on the next

page).

The navigation between the Permit System pages was implemented through HTML hyperlinks.

As an example, the Permit System's internal home page providing access to all internal function

groups is shown in Figure 12. The implementation is trivial, and is not discussed in further detail

here.

ARLINGTON DEPARTMENT OF PUBLTC WORKS
Permit System

Street Opening Permit System Home Page - Internal

Welcome to the Street opening Permit System Internal Home Page.

-. --- - - --.---- 7 7Please select one of the following options:

MAIN MENU

Companies Menu
Permits Menu
Street Restrictions Menu
Holiday Schedule Menu
Miscellaneous Settings and Options
Billing Transfer to Microsoft Excel
Data Evaluation, Reports
Frequently Asked Questions Admin
Help and Instructions
About the Software
External User Homepage *

* Note: The external pages are not completed yet.

(c) 2001 Department of Civil Engineering, MIT, Cambridge. All rights reserved. For questions or comments,
please e-mail Ron Santosuosso of the Department of Public Works, Arlington.

14C htt:/rigo6m drWO/pemtitel/p ern-iitjnsp Xi

Figure 12: Navigation: Internal Home Page Screenshot

56

Intemet

ARLINGTON DEPARTMFNT OF PUBLIC WPO KS
I tf Permit Syatem I

File New Application

This form is to be used by the Department of Public Works only.

Please provide the following intorrnation:

Contractor/Utility Company Andreas Construction

Type of Work: CabeTV

Dig Safe Number

First Day of Work: Meyd 2001-1

Last Day of Work: 5 d IJun 1 2001

Type of Street Work: Other

Street where Work Is To Be Done; B~RDEENROAD,

In Front Of PremiSes From #F To #F

Length of Woriing Area (Feet):

Width of working Area (Feet):

Purpose of Work:

Drawing File (required from utility companies only
Browse.-

II~~.I h Iif any openings are added to or removed from the street, please enter numbers here:

Telephone Manholes: Fo ":Water Manholes: FO _]other openings: Fo -Water Gates: O
Ele ctric Manholes, F7-sewer Manholes:F-- Catch Basins; c_- Gas Gates

. Obtaining a valid DigSafe number is the contractor's responsibility. The contractor must mark out the area of work for
DigSafe.
. This permit is granted and accepted upon the express condition that the contemplated work shall be done in such
manner as to protect all travelers from liability to accident and from contact with materials, rubbish or excavations, by
fencing or otherwise, to the approval of the Director of Public Works, and upon the condition that during the whole of
every night, from twilight in the evening till sunrise in the morning, lighted barricades shall be so placed as effectually to
warn all persons of the existence of any obstructions to travel.
. The party or parties in whose name this permit is issued shall be responsible for the removal of all surplus material
from the street, and also for the replacement of all surfaces and excavations covered by this permit, the work must be
done to the satisfaction of the Director of Public Works. The party or parties in whose name this permit is issued will be
held responsible for the condition of the work for a period of one year from the expiration date of the permit. Any repairs
becoming necessary within a period of one year will be made at the expense of the party or parties in whose name this
permit is issued.
* The permit must be completely displayed upon the work where it can be seen by anyone passing by. A strict
compliance with this rule will be required and this permit is revoked upon any violation of the conditions herein contained.

(c) 2001 Department of Civil Engineering, MIT, Cambridge. All rights reserved. For questions or comments, please e-mail Ron
Santosuosso of the Department of Public Works, Arlington.

1C Dare Kftcuekd

Figure 13: Permit Application Form Screenshot

57

..

4.3 Underlying Database in MySQL

MySQL is an Open Source database with a command line user interface. Prior to
implementation of the Permit System data tables in MySQL, a graphical representation of the
tables, attributes, and relationships was created to visualize the data. Although attributes had to
be added to the tables during the development process, the overall concept and layout of the
database remained the same. A graphical representation of the database is shown in Figure 14.

Figure 14 also illustrates the naming convention that was used for variables and database
attributes. The first three letters of the attribute reflect the table name. Introducing this
abbreviation as a part of the attribute name offered the advantage of not having to explicitly

provide the table name in the SQL statements, since the attribute name is already the unique
identifier.

58

Note: The Street Premises Table and the Login Tables are not shown.

CompanyType

- CoTType: Enum

Contact

- ConCompanylD: int
- ConName: String .n
- ConEmail: String
- ConPhone: String

- ConPager: String

CompanyWorkType

CWTCompanylD: int
CWTType: Enum 1

CompanyStreetWorkType

- CSTCompanyID: int
- CSTType: Enum

Company

- ComID: int
- ComName: String 0..n
- ComType: Enum 0..

..n - ComLicense: String
- ComStreet: String
- ComCity: String
- ComState: String
- ComZip: String
- ComPhone: String
- ComFax: String
- ComEmail: String

- ComActive: Enum

WorkType

- WoTType: Enum
11

StreetWorkType

- SWTType: Enum1 .. n 1 - - - - - - a

Street

- StrID: int
- StrName: String

Holiday

- HolName: String

- HolDate: Date

Figure 14: Main Database Tables and Relationships

59

Permit

- PeriD: int
- Perlssue: Date
- PerComiD: int
- PerWorkType: Enum
- PerDigSafe: String
- PerApproved: Enum

- PerValidFrom: Date
PerValidUntil: Date

- PerStreetWorkType: Enum
- PerStreetlD: int
- PerStartPremises: int
- PerEndPremises: int
- PerWorkAreaLength: int
- PerWorkAreaWidth: int
- PerPurpose: String
- PerApplicationFee: int
- PerTelephoneManholes: int
- PerWaterManholes: int
- PerSewerManholes: int
- PerElectricManholes: int
- PerCatchBasins: int
- PerWaterGates: int
- PerGasGates: int
- PerOtherOpenings: int
- PerTimeStamp: Date
- PerActive: Enum
- PerLastEditDate: Date
- PerLastEditUser: String
- PerDrawingFile: String
- PerFileContentType: String
- PerFileLength: int

Admin

- AdmBasicFee: int
- AdmFrom1: int

- AdmTol: int

- AdmAddFeel: int

- AdmFrom2: int

- AdmTo2: int
- AdmAddFee2: int
- AdmFrom3: int
- AdmTo3: int
- AdmAddFee3: int
- AdmMinNotify: int
- AdmissueWeekend: Enum
- AdmWeekendFroml: String
- AdmWeekendFrom2: String
- AdmWeekendFrom3: String
- AdmWeekendTol: String
- AdmWeekendTo2: String
- AdmWeekendTo3: String
- AdmlssueHolidays: Enum
- AdmWorkTypeChecking: Enum
- AdmStreetWorkTypeChecking: Enum
- AdmPremisesChecking: Enum
- AdmDrawingFileRequired: Enum
- AdmMaximumValidDays: int
- AdmEmailNotification: Enum
- AdmMaiServer: String
- AdmEmailAddress: String

0..n

Restriction

- ResID: int
- ResStreetlD: int
- ResWholeStreet: Enum
- ResStartPremises: int
- ResEndPremises: int
- ResStartDate: Date
- ResEndDate: Date
- ResComment: String
- ResActive: Enum

FAQ

- FaqQuestion: String
- FaqAnswer: String
- FaqlD: int
- FaqPosition: int

The following table briefly describes the most important database tables and its attributes. The

descriptions are provided to give the reader a general overview over the contents of the Permit

System database. For a more detailed analysis of the tables and their attributes, please refer to

the Street Opening Permit System Project Report that is available from the CEE Department of

the Massachusetts Institute of Technology.

Table Name Primary Key(s) Description

Company ComiD The Company table contains the information on all
contractors and utility companies that are registered with
the Arlington Department of Public Works.

Contact ConCompanylD This table contains contact information for each company.

ConName Several contacts may be given.

Company CoTType This table contains the company types that are possible,
Type which are Utility or Contractor.

Company CWTCompanyD This table contains all types of work that a particular
Work Type CWTType company may perform. E.g. a company registered for the

type of work CableTV will not be allowed to perform work of
type Gas.

Company CSTCompanylD This table contains all types of street work that a particular
Street Work CSTType company may perform. Similarly to the Company Work
Type Type table, a company registered for street work of type

Street Opening Only will not be permitted to perform work
of type Water.

Work Type WoTType The Work Type table enumerates all possible work types.

Street Work SWTType The Street Work Type table enumerates all possible types
Type of street work.

Permit PerD The Permit table contains a history of all issued permits,
including all application data, such as issue date, location,
size of the work area, etc.

Street Str/D This table contains a list of all the streets that exist in the
Town of Arlington.

Restriction ResiD This table is used to store all restrictions that have been
applied to street or street segments. Permits will not be
issued for restricted streets.

60

Table Name Primary Key(s) Description

Holiday HolName This table contains the holiday schedule. Permits will not
be issued on holidays.

Admin The Admin table stores several parameters that are used
to configure the behavior of the Automated Permit
Approval System. This table does not have a primary key
since it contains only one row.

Frequently FAQID This table contains a list of all frequently asked questions.
Asked The list of FAQ's is composed by the town's employees,
Questions and presented to external users.

Table 5: Description of Database Tables

As mentioned earlier, MySQL provides a command-line user interface. On-line documentation

explaining both basic and advanced features is available at

http://www.mysgl.com/documentation/index.html.

The connection from the Web application to the database is usually done with a JDBC driver.

The JDBC driver provides the middle tier from the Java SQL classes to the database. The

JDBC driver serves to translate the Java SQL statement format to the database-specific format,
and returns the results that the processing of the statement generated to the application.

The Permit System uses the MM MySQL JDBC driver, which was released under the GNU

LGPL license. It is available at http://mmmysql.sourceforqe.net/.

With the JDBC driver, connecting to the database becomes easy. The Permit System uses a

simple JavaBean class to get a connection and to execute SQL statements. The connection is

closed immediately after execution of the SQL statements. The DbBean class and its most

important methods are presented below.

Due to the low expected load of the application (more than 5 concurrent users are very unlikely),

no connection pooling was implemented (connecting to a database is a very resource intensive

task. Heavy-duty applications therefore use connection pools that leave a set of connections

open that are re-used many times. Please see Section 5.5.4 for further details on database

connection pooling).

61

package Permit;
import java.io.*;
import java.sql.*;

public class DbBean {

private Connection dbCon;
private String dbURL=""; // a default database URL may be provided here.

private String dbDriver="org.gjt.mm.mysql.Driver";

// Set the database URL.
public void setDbURL(String dbURL) {

this.dbURL = dbURL;
}

// Open a database connection
public boolean connect() throws ClassNotFoundException, SQLException {

Class.forName(this.getDbDriver());
dbCon = DriverManager.getConnection(this.getDbURL());
return true;

//Close the database connection.

public void close() throws SQLException {
dbCon.close);

}

// Executes an SQL Query.
public ResultSet execSQLQuery(String sql) throws SQLException {

Statement s = dbCon.createStatement();
ResultSet r = s.executeQuery(sql);
return r;

}

An example for a database query with the DbBean class looks like this. In the presented case, a

list of all company names is extracted from the Company table.

// Instantiate the database JavaBean class
DbBean dbBean = new DbBean();
// Set the database URL
dbBean.setDbURL("jdbc:mysql://localhost/testpermit?user=&password=");

// Establish a connection
dbBean.connect();
// Execute the SQL query
ResultSet rs = dbBean.execSQLQuery ("SELECT ComName FROM Company");
// Now, do something with the result set, e.g. display it!

// Don't forget to close the connection!

dbBean.closeo;

62

4.4 Implementation of the Application Logic

The JSP pages are the front-end of the application, while the database stores the system data.

The application logic, programmed in Java, pulls the two pieces together. The following figure

shows all classes and the dependencies among them for the internal part of the application.

Figure 15 indicates that many classes are servlet classes (i.e. they are derived from the

HTTPServlet class). The servlet classes contain only service() methods to process client

requests. The request is almost always received from a JSP page.

To the left of the servlet classes, the classes containing the application logic are shown. Their

methods perform actions such as database queries, updates, and inserts according to provided

arguments. Various get(methods are also provided, which are used by the JSP pages to

access the dynamic data that the private member variables of the classes contain once a

database query to retrieve the information was performed. The dependencies of the servlets to

the application logic classes are shown in the diagram above through solid lines.

To the right of the servlet classes, miscellaneous supplementary classes are shown. Some of

them are required by most of the servlets (e.g. the database bean class MyDbBean), while

others are needed less frequently.

63

r --------------------------
Serviet Classes

r-------- --- ------- ----------------------------------- I
Company Adninistration Classes

II
CompanyAdd

Company) CompanyDelete

CompanylEdit

C-o m p an yList--)

----- ----- ----- ---- - i--------------- -------r----- ---------------------- 4------------------- -----------------
Application and Pelmit Administration Classes

II

PermitAddl

PePrmIt rmtd

PermitSearch PermitList

- -- -- -- - 11--

Configuration of Automated Approval System Classes

Option pinEi

RestrictionAdd

Restriction RestrictionEdit

(es str Ic t IonD e Ie te ,

e trcinListCurren

I I iii

Res tric tlo n Lis tH istor y

Holiday~d

Holiday HolidayEdit

HolidayDele te

Holidayl-ist

I-- --- -----------------------

Miscellaneous Adrinstration Tasks Classes

Re port CrRe portShow

BillSe arch BIlLs

FAQAd

FAQ FAQEdIt

FACIDe lete

- -A- L.s 7

Database Connection Classes

DbBean

M yDbBean

Global Variables Class

Global

Miscellaneous Supplementary Classes

LogInCheckBean

NavigationBar

M yHTM L

4- e'm u It Ip a r tR e q ue stD

M yCalendar

StreetWorkType

. o Typ.. ..

Figure 15: Permit System Classes Overview

64

The following table gives a brief description of all the internal Permit System classes.

Class Name Description

Company This class contains the methods to access the company data in the
database. Furthermore, contact information is processed with this class.

CompanyAdd These servlets handle a user request for an addition, update, or deletion

CompanyEdit of a company. After completion of the task, a confirmation message is

CompanyDelete shown.

CompanyList This servlet retrieves the list of all companies from the database. Using
the MyHTML class, a formatted output of the list is presented to the
user.

Permit This class contains the methods to access the permit data in the
database. The application form checking functions are also included to
this class.

PermitAdd This servlet processes a submitted application form using the checking
functions of the Permit class. It utilizes the MultipartRequest class to
upload drawing files that may have been submitted by the user. It
generates an output providing the checking results, including options on
how the user may continue (Back to Application, Cancel, Proceed). All
application information is stored in the session object.

PermitAdd2 This servlet is reached if the application was approved by the system
and confirmed by the user. The application data that was written to the
session object in the PermitAdd servlet is retrieved, and new permit is
stored in the database.

PermitEdit These servlets handle the requests for updating or deletion of permits.

PermitDelete After completion of the task, a confirmation message is shown.

PermitSearch This class contains variables and methods to extract specific permits
from the database.

PermitList This servlet utilizes the PermitSearch class to obtain a list of permits
according to submitted search criteria or a list of all permits issued for
the last 30 days. Using the MyHTML class, a formatted output of the list
is presented to the user.

Option This class contains variables and methods to retrieve or update the
options data from the Admin table of the database.

OptionEdit This servlet handles the update request for options.

Restriction This class contains the methods to access street restriction data in the
Permit System database.

65

Class Name Description

RestrictionAdd These servlets handle the requests for adding, updating, or deletion of
RestrictionEdit street restrictions. A restriction may apply to a whole street or to a street

RestrictionDelete section only. After completion of the task, a confirmation message is
shown.

RestrictionListCurrent These servlets retrieve the list of all current restrictions or the history of
RestrictionListHistory restrictions, respectively, from the database. Using the MyHTML class,

formatted outputs of the lists are presented to the user.

Holiday This class contains the methods to access holiday data in the database.

HolidayAdd These servlets handle the requests for addition, updating, or deletion of

HolidayEdit holidays. After completion of the task, a confirmation message is

HolidayDelete shown.

HolidayList This servlet retrieves the current holiday schedule from the database
and displays it using the MyHTML class.

Report This class contains the methods required to generate reports.

ReportShow This servlet utilizes the Report class to display reports.

BillSearch Closely modeled according to the PermitSearch class, this class is used
to retrieve permit within a date range to generate billing information.

Bil/List This servlet uses the BillSearch class to create a page in Excel
spreadsheet format containing the billing information for the specified
time period.

FAQ This class contains the methods to access FAQ data in the database.

FAQAdd These servlets handle the requests for addition, updating, or deletion of
FAQEdit frequently asked questions. After completion of the task, a confirmation

FAQDelete message is shown.

FAQList This servlet retrieves all FAQ's from the database and displays them.

DbBean This class provides the database connectivity. For a detailed
description, please refer to Section 0 of this document.

MyDbBean This class inherits from the DbBean class, and provides the Permit
System-specific database URL.

Global This class contains the application-wide constants.

LoginCheckBean This class is used for basic user authentication.

NavigationBar A navigation bar can be easily created with this class.

MyHTML The MyHTML class contains many methods to generate HTML output
from various sources, such as database result sets or arrays. Many
output formats are possible. The most common ones are tables and
drop-down boxes.

66

Class Name Description

MultipartRequest The MultipartRequest class is used to process the application form.
Since the application form contains mixed content (both an input stream
for a file upload, and regular form data), the processing is different from
a standard doGet(servlet method. Please see Section 5.3 for a
detailed discussion of file uploading with servlets.

MyCalendar The MyCalendar class is the interface between the MySQL date format
and the Java date format of the GregorianCalendar class. Conversion
methods are provided in this class.

Street Supplementary classes to access the corresponding database tables.

WorkType

StreetWorkType

Table 6: Permit System, Description of Internal Classes

When a serviet is invoked by the servlet engine (i.e. the client has requested the servlet by

selecting a hyperlink or pressing a button on one of the JSP pages), other methods from non-

servlet classes are called by the servlet to perform the requested action. This could be storing

information to, or retrieving information from the database, for example. The serviet also

displays a result page, e.g. the confirmation that a database update was handled successfully,

or the contents of a retrieved database result set. A typical serviet doing this is shown below.

package Permit;
import javax. servlet. *;
import javax.serviet.http.*;

import java.io.*;
import java.sql.*;

// Servlet class to list all companies.

public class CompanyList extends HttpServlet {
// doGet() Handles the HTTP request for listing all companies.

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

// Instantiate a string buffer to hold the generated HTML page.

StringBuffer str = new StringBuffer();
MyHTML. setApplicationPath (Global . PERMITURL);

// Start page output to the string buffer
// Insert the page header including the style sheet link

MyHTML.startPage(str,"List of All Companies","../style.css");
// Add the page banner

MyHTML. includeHTMLFile (str, "banner-permit . html");

// Add the Navigation Bar

67

NavigationBar naviBar = new NavigationBar();
naviBar.add("Home","homejint.jsp");
naviBar.add("Companies Menu", "companies_int.jsp");
naviBar.add("Help","helpint.jsp");
str.append(naviBar.toHTML());

// Display the page title
MyHTML.insertTitle(str,"List of All Companies",2);

// Instantiate a new database connection JavaBean
MyDbBean dbBean= new MyDbBean();

try {
// Perform the database query to get the list of companies
dbBean.connect();
ResultSet rs = dbBean.execSQLQuery("SELECT ComID,ComName, "+

"ComLicense,ComActive FROM Company ORDER BY ComName");
// Use the MyHTML class to generate a formatted table from the
// result set
String[] labels={ "ComID","Company Name","License #","Active" };
MyHTML.createHyperlinkDataTableWithID(

str, labels, rs, 2,"ComID","company_detailsjint.jsp");

}
// Perform exception handling
catch(SQLException e) {
MyHTML.createDatabaseReport(str,MyHTML.ERROR,

"A database error has occured.
"+e);
}
catch(ClassNotFoundException e)
MyHTML.createDatabaseReport(str,MyHTML.ERROR,

"The database driver could not be found.
"+e);
}
finally {

try {
// close the database connection
dbBean.close();

I
catch(SQLException e)
MyHTML.createDatabaseReport(str,MyHTML.ERROR,

"The database connection could not be closed!
"+e);

}
}
// Add the disclaimer
MyHTML.includeHTMLFile(str,"disclaimer.html");
MyHTML.endPage(str);

// Get print writer of the servlet output stream

PrintWriter out = res.getWriter();
// Post the results by printing the string buffer to the output stream

res.setContentType ("text/html");
out.println(str);
out.close(;

}

68

A screenshot of the resulting output is shown below.

ARLINGTON DEPARTMENT OF'PUBLIC WORKS

Pernit Svstem

List of All Companies

Compn Nme License A tve

Andreas Construction 11223344 Active

Another test company 3456 Inactive

Boegershausen Construction Co ABCDEFGHHIF Active

ITest contractor company 1234.5 Active

(c) 2001 Department of Civil Engineering, MIT, Cambridge. All rights reserved. For questions or comments,
please e-mail Ron Santosuosso of the Department of Public Works, Arlington.

Figure 16: Servlet Output Screenshot

4.5 Source Code Organization

Figure 17 shows the organization of the source code for the Street Opening Permit System. It

closely follows the suggestions provided by the Apache Software Foundation (see Section

3.2.1), and utilizes CVS for version management.

69

pe rmit/

build.xml
build.sh

newtc.sh
chperm.s

Pe rmit/

java file

the web/ directory contains the page banner, the

disclaimer, and the style sheet. Those documents

are included to almost all JSP pages and servlets.

in tern a I/

*_int.jsp files

external/

*_ext.jsp files

images/

drawings/

the internal/ directory

contains all JSP pages for

the department-internal

part of the application.

the external/ directory

contains all JSP pages for

the externally accessible

part of the application.

contains the application's

image files.

directory for uploaded

drawing files.

Figure 17: Source Code Directory Structure for the Permit System

70

permit/ is the top level source directory of the application. Also included to the

top level directory are two addtional shell scripts. newtc.sh restarts Tomcat.
chperm.sh changes the access permissions recursively for the whole source

directory (granting write permission to the developer's group).

the etc/ directory contains the Web
etc/ Application Deployment Descriptor for the

Permit System.

webLxml

the /lib directory is empty, since no

lib/ libraries have been used.

the source/ directory contains all Java
src/ source code (including the servlets)

within the Permit package.

web/

banner.html

disclaimer.htm
style.css

4.6 Concluding the Case Study

4.6.1 Summary

The case study of the Street Opening Permit System for the Engineering Division of the

Department of Public Works of the Town of Arlington has demonstrated the successful

utilization of Open Source technologies for a real-world application.

A team of three students has concurrently worked on the implementation of the JSP pages,

servlets, and other Java classes, mainly during the spring term of 2001. The project is currently

about 90% complete, a few items are not fully implemented yet. The database will be integrated

with the Pavement and Inspection Management System, another student project conducted at

MIT this spring.

All Open Source components used (Red Hat Linux V7.0, MySQL V3.23, Tomcat V3.2.1, CVS)

have been working reliably throughout the development and the testing phase of the software.

The complete source code of the Permit System has been put under the GNU GPL, and is

available at the CEE Department of MIT.

4.6.2 Selected References

* Sun Microsystems; Serviet API Specification V2.2;
http://iava.sun.com/products/servlet/2.2/aavadoc/index.html

* Sun Microsystems; Java 2 Platform, Standard Edition, V1.3 API Specification;
http://iava.sun.com/02se/1.3/docs/api/index.html

* Web Design Group; Guide to Cascading Style Sheets; http://www.htmlhelp.com/reference/css/

* Leon Changxin Qi; CEE Department of MIT; Enabling Technologies for a Web-based Urban
Street Construction Permit System; May 2001

* Rajesh Prasad; CEE Department of MIT; Pavement Permit System Infrastructure: UML Based
Design; May 2001

* Changxin Qi, Rajesh Prasad, W. Andreas Klimke; CEE Department of MIT; Street Opening
Permit System Project Report; May 2001

71

5 Miscellaneous Development Topics

5.1 Transferring Information between Linux and Windows Systems

Some developers may wish to use Windows for development, since they are more familiar with

this environment, or since they already have easy access to a Windows system (e.g. their

computer at home). Most Open Source products are available for Windows, and since Java,

Servlets and JavaServer Pages are platform-independent technologies, there is no problem with

developing on a Windows system while deploying the application on a Linux machine. The CVS

repository, however, is recommended to be installed on a Linux system rather than on

Windows, if multiple developers are involved.

This section introduces some of the options that are available in accessing the Linux server

from a Windows machine, and vice versa.

5.1.1 Accessing the Linux Server over Telnet

Most Linux distributions include a telnet server package, which is often enabled by default. With

a telnet server running on the Linux server, users can remotely login to the machine from any

other machine over the telnet client application (a telnet client application is included to

Microsoft Windows by default).

The telnet protocol server on Linux is called telnetd (for telnet daemon). Once the super-server

application xinetd receives a request for a telnet connection, the telnet daemon is started

automatically, and a connection to the remote machine is established. The user can then work

on the server in a Linux box (if the username and password are accepted).

To check whether the telnet server is enabled, you may issue the following command to display

the telnet configuration file. The disable parameter should be set to "no".

$ more /etc/xinetd.d/telnet

service telnet {
disable = no
flags = REUSE
socket-type = stream
wait = no
user = root
server = /usr/sbin/in.telnetd

72

logonfailure += USERID
}

To connect to the Server from the Windows machine, just run telnet (click "Start" from the Task

Bar, then select "Run...", and type telnet [host name).

5.1.2 Transferring Files from and to the Server With FTP

A convenient way to transfer files to and from the Linux server is the File Transfer Protocol. The

standard configuration for FTP is a private user-only site, which means that only users that have

accounts on the server are allowed to transfer files, and files may only be transferred to and

from the user's home directory path. Since the developers should only work with local copies of

the source code in their home directory, this FTP access mode is well suited.

As for the telnet server, an FTP server and an FTP client take care of the file transfer. The FTP

server is invoked as the client requests an FTP connection.

You may connect to the Linux server either through the command line, or through a Web

browser. To start the command line FTP client on the Windows machine, click "Start" from the

Task Bar, then select "Run..." and type ftp [host name}. The ftp program will request a login

username and password.

ftp theServer.mit.edu

From a browser, type ftp://[usemame}@{hostname} to connect. A window requesting the login

password will be shown.

f tp: / /andreasatheServer .mit . edu

The command line tool provides more functionality than browser-based FTP. For example, files

can be transferred in ASCII or binary mode (ASCII mode transfer takes care of the character

format differences between Linux and Windows, and converts the character codes during

transfer). Command line FTP also allows providing a script file that is run at the FTP session

start time. A script file is useful to perform repetitive tasks.

The browser-based FTP is easier to use since it allows dragging and dropping of files in a

graphical environment, but it is less flexible that the text-based FTP interface.

73

5.2 Multiple Developers under Tomcat

In this section, three different set-ups for the operation of Tomcat during development as a
stand-alone Web server are introduced. Each of the approaches has its advantages and
disadvantages. Depending on the number of developers and the number of machines available,
the most appropriate solution should be selected. The techniques may be mixed as well.

5.2.1 One Instance of Tomcat on Multiple Servers

Advantages: No interference among developers when using Tomcat (starting, stopping,
debugging). The full system resources are available to each developer.

Disadvantages: Tomcat must be installed and configured on all machines. Each developer must
be familiar with configuring the server.xmlfile.

Giving each developer his/her Tomcat server is a good solution for advanced users that wish to
have full control over the Web server, and are comfortable with configuring the Web Application
Deployment Descriptor web.xml and Tomcat's server.xmlfile themselves.

A danger of distributing the deployment during development across many machines is that
integration of the components may become more difficult, since it becomes more likely that the
developers don't check on each other's work as much since they are not directly affected by it.

5.2.2 Multiple Instances of Tomcat on a Single Server

Advantages: No interference among developers when using Tomcat (starting, stopping,
debugging). Direct traceability of errors to the originator is possible.

Disadvantages: System resources must be shared; difficult to configure; multiple server.xmlfiles
(one per developer).

With multiple instances of Tomcat, it is possible to provide each developer with his/her own
Tomcat virtual machine. The application is then served at different port addresses. The
configuration is quite complex. A separate server.xmlfile must be created for each user. Then,
Tomcat needs to be started by providing the appropriate server.xmlfile.

74

Shown below are the server.xml configuration files for two developers. The differences are

highlighted.

<?xml version="1.0 encoding="ISO-8859-1"?>
<Server>

<Logger name="tclog"
path="/devteamlandreas/tc/tomcat.log'

/>
<Logger name="servlet_log"
path="/devteam/andreas/tc/servlet.log"

/>

<Logger name="JASPERLOG"
path="/devteam/andreas/tc/jasper.log"
verbosityLevel = "INFORMATION"

/>
<ContextManager debug="O"
workDir="/devteam/andreas/tc/work'
showDebugInfo="true" >

<--======== Interceptors======--

<-- ========= Connectors-=======--

!-- Normal HTTP -- >

<Connector

className="org.apache.tomcat.service.PoolTcpConnector">
<Parameter name="handler"
value=
"org.apache.tomcat.service.http.HttpConnectionHandler"
/>
<Parameter name='port' value="8080'/>

</Connector>

<Context path="/myApp"
docBase="/devteam/andreas/deployHome"
debug="O"
reloadable="true"
trusted="false" >

</Context>
</ContextManager>
</Server>

<?xml version="1.0" encoding='ISO-8859-1"?>
<Server>

<Logger name="tclog"
path="/devteam/grace/tc/tomcat.log'

/>
<Logger name="servletjlog"
path="/devteam/grace/tc/servlet.log'

I>

<Logger name="JASPERLOG"
path="/devteam/grace/tc/jasper.log"
verbosityLevel = "INFORMATION"

/>
<ContextManager debug="O"
workDir='/devteam/grace/tc/work
showDebugInfo="true" >
<! Interceptors======--

<-- =========Connectors-=======--

<!-- Normal HTTP -- >
<Connector

className="org.apache.tomcat.service.PoolTcpConnector">
<Parameter name="handler"
value=
"org.apache.tomcat.service.http.HttpConnectionHandler'
I>
<Parameter name="port" value="8081"/>

</Connector>

<Context path="/myApp"
docBase="/devteam/grace/deployHome"
debug="O"
reloadable="true"
trusted="false" >

</Context>

</ContextManager>
</Server>

The server.xml files should be placed in the users' home directories. To start the Tomcat

processes, the following commands are used (the -f option indicates that the server

configuration file is provided in the command line).

$ $TOMCATHOME/bin/startup.sh -f /devteam/andreas/tc/server.uml

$ $TOMCATHOME/bin/startup.sh -f /devteam/grace/tc/server.xml

75

5.2.3 One Instance of Tomcat on a Single Server

Advantages: Easy to configure (only single server.xmlfile).

Disadvantages: Interference among developers when using Tomcat (starting, stopping,
debugging). Source of error messages is identifiable, but more effort is needed. The system

resources must be shared among all developers.

Installing just one instance of Tomcat on a single server is the quickest way of setting up the

environment. This is often sufficient for smaller development teams (for the case study

presented in Section 4, this worked well for a group of three people; the team shared the server

for testing and compilation of the application, while editing of the code was mostly done on other

machines. In addition to the group of three, the server was occasionally used by two other

development teams at the same time - however, up to 5 concurrent developers did not pose

any problem).

To have multiple teams or people working under the same Tomcat process, all you need to do

is add new contexts to the server.xml file (see example below). As long as Tomcat does not

need to be restarted often (which is required to apply changes to the web.xmlfile), this can work

well during development. By default, Tomcat allows for up to 50 concurrent threads, which is

more than sufficient during development even with many team members.

<Context path=" /andreas"
docBase="/devteam/andreas/deployHome"
debug=" 0"
reloadable=" true "
trusted=" false" >

</Context>
<Context path=" /grace"

docBase=" /devteam/grace/deployHome"
debug=" 0"
reloadable="true"
trusted="false" >

</Context>

Reference
* Gal Sachor; Tomcat - A Minimalistic User's Guide; 1999

httr://iakarta.apache.orci/tomcat/iakarta-tomcat/src/doc/uciuide/tomcat ug.html

76

5.3 Handling Mixed Content using a Serviet Input Stream

Forms sometimes require the uploading of files in addition to regular parameter data. An

example is the application form of the case study presented in Section 4. In addition to entering

form fields, the user has the option to submit a drawing file.

Instead of a simple "post" request, which is usually used to submit form data, the CGI

"multipart/form-data" encoding type has to be used to allow uploading of files through a stream.

Unfortunately, the servlet API V2.2 does not support multipart/form-data requests very well. The

input stream has to be parsed manually for the parameter value pairs and for the files contained

in the stream. It turns out that this is quite complex to program - therefore, it makes sense to

use an existing class library to perform this task.

A couple of libraries exist, but not all of them are free to use. For the case study presented in

Section 4, Jason Pell's MultipartRequest class was used, which was published under the GPL

(the latest version is published under the LGPL). The MulitpartRequest class is available for

download at http://www.geocities.com/asonpell/programs.html, including source code and

documentation. With this class, the multipart/form-data request can be handled in a very similar

way to a regular post request. A simple example consisting a HTML form and the corresponding

servlet is given below. Please make sure that the upload directory exists.

This is the HTML form.

<html>
<head>
<title>MultipartRequest Demo</title>

</head>
<body>
<h2>MultipartRequest Demo</h2>

<form enctype="multipart/form-data" method="POST" action="upload.Servlet">

Please enter your name:
<input type=text name="Name" size=30>

File to upload:
<input type=file name="File" size=30>

<input type=submit value="Submit" name="Submit">

</form>
</body>

</html>

77

And this is the servlet handling the multipart/form-data request. Don't forget to define a serviet

mapping in the web.xmlfile.

import javax.servlet.*;
import javax.serviet.http.*;

import java.io.*;
import java.sql.*;

public class UploadExample extends HttpServlet

{
public void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

// Get the content type and the content length
String contentType = req.getContentType();
int contentLength = req.getContentLength);

// Get the servlet input stream
ServletInputStream in = req.getInputStream(;

// Perform the multipart request. This stores the file to the specified
// directory, and generates a hashtable containing all the parameters
// that are submitted with the form.
// The paramters can be accessed with the getURLParameter(String) method.
MultipartRequest multipartRequest =
new MultipartRequest(contentType,contentLength,in,"/uploadDir");

// read form paramters
String name = multipartRequest.getURLParameter("Name");

// get the file
File file=multipartRequest.getFile("File");

// Get print writer
PrintWriter out = res.getWriter();
// Print out a table of all items read
out.println(multipartRequest.getHtmlTable());
out.close();

}
}

78

5.4 Documenting Source Code with the Javadoc Utility

A task that is often not paid enough attention to is the documentation of the source code,

although this is crucial to achieve high maintainability of the product, as well as reusability of

components.

Furthermore, in a project involving multiple developers, the developers have to interface with

classes that other members of the team have written. Most likely, they will also want to use the

methods of those classes. It is obvious that this is only possible if the classes are documented

well, and the documentation is made available to the team members not at the end, but as early

as possible in the development process.

A great tool to document Java source code is the Javadoc utility. Javadoc generates

documentation in HTML format, including package trees, an index, and sophisticated navigation

and cross-references. Since Sun Microsystems uses the same tool to generate their API

reference documentation, the interface is well known to the Java developer community, and

therefore easily understood.

The Apache Software Foundation has already provided the basis to use Javadoc in their

build.xml file for application development with Tomcat. To automatically generate the HTML

documentation for the Web application, there are only a few steps required, which are outlined

below.

Step1: When writing your source code, comment it according to the format specified by the

Javadoc documentation (see references). Basically, documentation text is inserted prior to each

class and method declaration. Tags starting with an @ symbol have a special meaning and are

interpreted by the Javadoc compiler (please refer to the Javadoc documentation for a complete

list of available tags).

* Servlet to demonstrate the MultipartRequest class by Jason Pell.

* @author W.Andreas Klimke (MIT)

* @see MultipartRequest

public class UploadExample extends HttpServlet {

* Uploads a file to the /uploadDir directory.
* @param req the request object
* @param res the response object
* @throws ServletException
* @throws IOException

79

*/
public void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

}
}

Step2: Generate an HTML file called package.html for each source code package, and place it

in the package directory. This is important! The Javadoc utility looks for this file in each package
folder.

<html>

<head>
<tile>Documentation of the example package</TITLE>

</head>
<body>

Included are all Java classes of the example package.
</body>

</html>

Step 3: Modify the build.xml file regarding the Javadoc command option, as shown below. The
package names (which are as well the directory names) should be given under the

packagenames parameter.

<target name="j avadoc" depends= "prepare">
<javadoc packagenames="myPackage"

sourcepath="src"
author=" true "
version="true "
bottom="Copyright (c) 2001 MIT. All Rights Reserved."
destdir=" ${javadoc .home} "/>

</target>

Step 4: Build the documentation with the following command:

$./build.sh javadoc

javadoc:
[javadoc] Generating Javadoc
[javadoc] Javadoc execution
[javadoc] Loading source files for package myPackage ...
[javadoc] Constructing Javadoc information...
[javadoc] Building tree for all the packages and classes...
[javadoc] Building index for all the packages and classes...
[javadoc] Building index for all classes...

BUILD SUCCESSFUL
Total time: 3 seconds

80

Javadoc will generate the documentation under the specified destination directory. The

generated files can be viewed through a browser without any additional modification, as shown

in Figure 18.

http://andreask.mit edu:8UBU/uploadLxample/Iavadoc/indexhtm

All Classes
MultipartRequest
UploadExample

Pck Class Tree Deprecated Index Help
PREVPACKAGE NEXTPACKAGE FRAMES NO FRAMES

-. - -...... ... -.. . . ~... -~.~.- ..

Package myPackage

Included are all Java classes of the example package.

See:
Description

Class Summary
MultipartRequest A MuliPart form data parser.

UploadExample Servlet to demonstrate the MultipartRequest class by Jason Pe.

Package myPackage Description

Included are all Java classes of the example package.

Class Tree Deprecated Index Help
PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES

Copyright (c) 2001 MIT. All Rights Reserved.

Figure 18: Screenshot of Generated Documentation

References
" Sun Microsystems; How to Write Doc Comments for the Javadoc Tool;

http://iava.sun.com/"2se/avadoc/writingdoccomments/

* Sun Microsystems; Javadoc 1.3 Documentation;
http://iava.sun.com/i2se/1.3/docs/tooldocs/iavadoc/index.html

81

.1 - 11

.....................

5.5 Increasing the Application's Performance

5.5.1 Good Programming Practices

Following is a list of good programming practices to increase performance. These practices are

not just specifically for web application development. However, due to the resource-intensive

nature of servlets, good code becomes even more important. (A servlet is instantiated once, and

then executed many times, depending on the load of the web site. Inefficiencies can be

magnified over time).

" Avoid strinq concatenation. Java concatenates two strings internally by instantiating a

StringBuffer object, and using the StringBuffer's appendO method to append the second

string to the first string. When concatenating several strings with the + operator, several

instances of string buffer objects are created, used, and then garbage collected, thus,
system resources are wasted. String concatenation can be avoided by using the

StringBuffer object as shown in the code example.

// StringBuffer example
String user = "John";
// The pre-defined size of the StringBuffer is 16 characters.
/ To avoid the need for resizing, set the initial size to 50 chars.

StringBuffer strBuffer = new StringBuffer(50);
strBuffer.append("The user ");
strBuffer.append(user);
strBuffer.append(" is currently logged in.");

out.println(strBuffer.toString());

" Avoid unnecessary obiect instantiations. Each object that is instantiated requires system

resources (memory) during its life cycle. Try to avoid the creation of new objects if

possible.

* Free resources when they are no longer needed. When an object is no longer needed, it

can be marked to be garbage collected. In Java, simply set the object to null, and the

garbage collector can free the associated resources. (This is not required for local

variables, since they automatically go out of scope when a function is terminated.)

* Use final classes and methods. The compiler will optimize a class declared final. This is

because the compiler knows no subclasses can ever be created in the hierarchy.

Similarly, a final method can be inlined by the compiler to avoid the overhead of an extra

function call.

82

* Use static methods where applicable. A method declared static tends to execute faster

than any other type of method declaration. Next are final methods, followed by instance

methods, and last, synchronized methods.

5.5.2 Apache and Tomcat Web Server Integration

The Tomcat web server can serve both static and dynamic web pages. However, if a web site

contains a significant number of static pages, using the Apache web server for the static content

can increase the application's performance. The Apache web server is also an open source

product developed by the Jakarta project (like Tomcat).

Besides the performance increase, there are several other reasons that make the combination

of Apache with Tomcat a good choice:

* The Tomcat web server is not as configurable as Apache.

* Tomcat is not as robust as Apache.

* Apache provides some additional functionality that cannot be found under Tomcat (e.g.

modules for Perl or PHP).

When running in combination with Apache, Tomcat is configured as an add-on to the Apache

web server. Apache and Tomcat work together in the following way: Apache serves as the main

web server that listens for client requests. Before Apache processes a request, the request is

checked whether it refers to a dynamic web page (a servlet or JSP page). If a servIet or JSP

page is requested, Apache forwards the request to the Tomcat web server, which processes it.

Otherwise, Apache directly serves the request.

To achieve this behavior, both Apache's and Tomcat's configuration files have to be modified.

Furthermore, an additional module has to be added to the Apache environment (either

mod-Jserv or mod-jk - the latter is the newer module, it is easier to configure and can handle

the secure https protocol).

83

Selected References:
* Gal Shachor; Tomcat-Apache HOWTO;

http://jakarta.apache.org/tomcat/iakarta-tomcat/src/doc/tomcat-apache-howto.html; 1999-2000;
Introduces the cooperation of Tomcat and Apache. Shows how to configure Apache and Tomcat.
Also covers configuring Apache and Tomcat for multiple Tomcat JVM's, virtual hosting, and
troubleshooting.

" Gal Shachor; Working with mod~jk;
http://akarta.apache.org/tomcat/aakarta-tomcat/src/doc/mod ik-howto.html; 1999-2000;
Explains the installation and configuration of mod-jk more in-depth than the article mentioned
above.

5.5.3 Prepared SQL Statements

When the same SQL statement needs to be executed repeatedly, it is more efficient to use the

PreparedStatement rather than the Statement command. Prepared statements are precompiled

prior to being used, and accept any number of parameters. A simple example of how to use

prepared statements in Java is given below. The PreparedStatement class is part of the SQL

Package of the core Java 2 API.

// Generate the SQL string
// To indicate a parameter, a question mark is used.
StringBuffer sql = new StringBuffer(256);
sql.append("INSERT INTO Users(Username, Password) ");
sql.append("VALUES(?, ?)");
// Create the prepared statement; assuming dbConn represents an existing
// database connection.
PreparedStatement stmt = dbConn.prepareStatement(sql.toString));
// Generate some random data to be put in the database
String[][] user = {

{ "johnt", "youllneverguessit" },
{ "garys", "topsecret" },
{ "eddym", "mybirthday" }};

/ Execute the statement 3 times, after setting the parameters.
for (int i = 0; i < 3; i++)
{

stmt.clearParameters();
for (int j = 0; j < 2; j++) stmt.setString(j+l, user[i][j]);
stmt . executeUpdate);

}

84

5.5.4 Database Connection Pools

The classical way of accessing a database is a three-step procedure:

(1) The database driver establishes a connection

(2) An SQL statement is executed, and a result set is retrieved

(3) The database driver closes the connection.

With this procedure, a new database connection object is created with each new client request.

This is very time consuming, since the database engine must allocate communication and

memory resources, authenticate the user, and set up a security context (this can easily take one

or two seconds). Therefore, the performance of database access can be significantly improved

by avoiding the opening of new connections with each client request. This is done by

implementing database connection pools.

The concept of database connection pooling can be described as follows:

* An application gets a reference to the connection pool, or an object managing many

pools (depending on the complexity of an application, it may be necessary to implement

a pool manager that maintains multiple instances of connection pools).

" The application obtains a connection object from the connection pool. The connection

pool maintains a collection of many database connections, which are kept in an open

state to save the time that is required to establish a connection.

* The connection is used, i.e. a database statement is executed with the connection

object.

" The connection is returned to the pool, and is therefore free for the next use.

Connection pools benefit most server applications. Performance can be improved significantly if

the following conditions are satisfied (according to Professional Java Server Programming):

* Users access the database through a limited set of generic database user accounts, as

opposed to a specific account per user.

" A database connection is only used for the duration of a single request, as opposed to

the combined duration of multiple requests from the same client.

There are plenty of connection pool implementations described in computer literature. The book

Professional Java Server Programming presents three different implementations of varying

complexity to cover basic as well as advanced needs for connection pooling. Enterprise

JavaBeans also offer database connection pooling.

85

6 Comparison of JSP and Java with ASP and C#
An alternative to Open Source Web application technologies, which predominantly use Java as

the programming language, is available with Microsoft's Web servers, namely Personal Web

Server (PWS) and Internet Information Server (IIS). Microsoft's Web application enabling

technologies are Active Server Pages (ASP), which will soon enter a new stage with the

introduction of the .NET platform and C#. In this chapter, the author takes a closer look at ASP

and C# as the core technologies of Microsoft's Web application development platform, and

compares them to Sun Microsystems' Java products.

6.1 JavaServer Pages versus MS Active Server Pages

The main purpose of both JSP and ASP is to add dynamic capabilities to web sites. This is done

on the server side, i.e. the browser request is processed on the server before a dynamically

generated web page is sent to the client. This extends the functionality of web applications

significantly beyond the initial approach of generating dynamic content directly on the client (e.g.

with client-side scripting languages or Java Applets).

JavaServer Pages and Java Servlets have been introduced in detail in earlier chapters. In this

section, Microsoft's ASP 3.0 and the announced ASP.NET will be introduced briefly, and then

compared to Servlets and JSP.

6.1.1 Microsoft Active Server Pages 3.0

An Active Server Page combines HTML, scripting, and server-side components in one file called

Active Server Page. Supported scripting languages are VBScript and JavaScript (other scripting

languages are supported through third parties).

ASP provides the programmer with a few objects that can be accessed from the ASP page

without explicit instantiation. The objects have application, session, or page scope, and are

used to process client interactions and store any data that is required to manage these

interactions. The available objects are listed below.

86

* The Application object is used to share information among all users of a given

application.

" The ObiectContext obiect is used to either commit or abort a transaction (managed by

the Microsoft Transaction Server) that has been initiated by a script contained in an ASP

page.

* The Request obiect retrieves the values that the client browser passed to the server

during an HTTP request, and makes these values easily accessible to the programmer.

" The Response oboect is used to send output to the client.

" The Server obiect provides access to methods and properties on the server. Most of

these methods and properties serve as utility functions.

" The Session obiect is used to store information needed for a particular client session.

Variables stored in the Session object are not discarded when the user jumps between

pages in the application; instead, these variables persist for the entire user-session.

Session state is only maintained for browsers that support cookies. Note: ASP 3.0 does

not support URL rewriting to maintain session state.

An important aspect of any Web application is the integration with databases. Active Server

Pages support this well. The following code example illustrates the ActiveX Data Object controls

for database connectivity. Since IIS Version 4.0, automatic connection pooling is available, so

the simple method of opening and closing connections can even be used for larger scale

applications.

<%@ language="VBScript" %>
<HTML>

<HEAD><TITLE>Dispay user names</TITLE></HEAD>

<BODY>
<H2>User names in data base:</H2>
<% Dim Conn

Dim UserNames
' Create a database connection object
set Conn = Server.CreateObject ("ADODB.Connection")
' Create a result set object
set UserNames = server.CreateObject ("ADODB.RecordSet")
' Establish the database connection (providing no username or password)

Conn.Open "Provider=Microsoft.Jet.OLEDB.4.O; Data Source = " &

"C: \dataBases\Users .mdb"
Execute the SQL statement

Set UserNames = Conn.Execute("SELECT UserNames FROM Users")
Display the results

87

Do Until UserNames.EOF
Response.Write UserNames ("UserName
")
RSUserNames.MoveNext

Loop
' Close the database connection
Conn.Close

</BODY>

</HTML>

Scripting languages, as used by ASP, were thought of as true RAD languages, since they are

very simple to use (e.g. no strong variable types are required). However, with the increasing

complexity of Web applications, the usage of scripting proved to incur some serious limitations.

Exception handling, for example, is possible in ASP, but it is very cumbersome as the following

code excerpt demonstrates. The scalability of VB-style error handling is poor, since VBScript or

Jscript do not provide the means to process errors with throwing and catching.

<%@ language="VBScript" %>

Sub Foo()

On Error Goto ErrHandler
Set Conn = Server.CreateObject ("ADODB.Connection")
. . . ' Some SQL Statements
Exit Sub
ErrHandler:

Call ErrHandler(Conn)
End Sub

Sub ErrHander(Conn)
NumberOfErrors=Conn. errors . count

for Counter = 0 to NumberOfErrors-l
Number=Conn.errors (counter) .number
Description=Conn.errors(counter).description
Response.write "Error=" & Number & ", & Description;

Next
. . . 'A1so close any existing connections

End Sub

Another problem with scripting languages is that an organization of the application into classes

and libraries (namespaces) is not possible. This decreases maintainability and clarity especially

in larger projects. Reuse of code in ASP 3.0 is difficult due to the lack of namespaces. To

achieve reuse in ASP 3.0, functions need to be maintained in separate asp files. Then, these

files have to be added to each page with an include directive. Another way of reuse is the

generation of COM's, but this requires additional development time and effort.

88

6.1.2 Microsoft ASP.NET

ASP.NET will be part of Microsoft's .NET framework, and is currently only available as a beta

version (March 2001). It has been referred to earlier as ASP+, but the name has been slightly

changed by Microsoft to indicate its ties to the .NET platform.

The major improvement of ASP.NET over ASP is the introduction of C# as the server-side

scripting language. Optionally, other third generation languages may be used for scripting. This

will solve the problems of ASP 3.0 that were described above. Other improvements include a

new object model for HTML controls called "server controls", which make the generation of

HTML controls such as selection boxes, lists, or inputs much easier and provide a convenient

way of separating the dynamic contents from the HTML code (Please see the code example

below).

script language="C#" runat="server">

void PageLoad(Object sender, EventArgs e)

{

DataSet dataset = . . . // (get data set from database)
// Bind the data set DataSet to the DataList Control

myDataList.DataSource = dataset.Tables[0].DefaultView;
myDataList . DataBind (;

</script>

<P>
Please select the desired item:
// This will be replaced by HTML code once the page is processed & sent

// to the client. The runat attribute specifies that it is processed at

// the server.
<asp:DataList id="myDataList" runat="server">

</P>

Due to ASP.NET's close ties to Microsoft servers, some features such as page caching,

database connection pooling, and authentication services (among others) are easily available to

the programmer without having to implement these functionalities him/herself.

89

6.1.3 Comparison of JSP, ASP, and ASP.NET

Although ASP and JSP seem similar at a first glance, there are quite significant differences in
the architectural approach of the two technologies. ASP.NET picks up some of the concepts

that have made JSP successful, and addresses problems that developers faced with ASP 3.0.
The following table summarizes the features of the technologies.

Feature JavaServer Pages Active Server Pages ASP.NET
3.0

Supported web Any web server (e.g. Microsoft IIS or Microsoft IIS (initially)
servers Apache, Netscape, IIS) Personal Web Server

Supported Microsoft Windows, Microsoft Windows Microsoft Windows
platforms Solaris, Mac OS, Linux, (and others with 3 rd

and other Unix party products)
Platforms

Extensible tags/ Create custom tag Custom tags only with Server controls object
Extensibility libraries IE 5 and XSL model that can be
Model transformation extended

Reusable Supported across Reusable within the Supported within the
components platforms Windows platform, but Windows platform

cumbersome

Scripting Java, including the JavaScript, VBScript C# or any other .NET-
languages complete Java API (others through 3rd compliant language

parties) (initially VB and C++)

Integration with JDBC/ODBC drivers ODBC/OLEDB drivers ODBC/OLEDB drivers
data sources provided by the and ADO object and ADO.NET object

database vendors and
JDBC API

External JavaBeans and Through COM Backward compatibility
components Enterprise JavaBeans with COM, .NET/C#

components

Extensive tool Yes Yes Expected
support I III

Table 7: Comparison of JavaServer Pages and Microsoft ASP

90

The main advantages of JavaServer Pages over ASP 3.0 are the platform independence, and

the benefits gained from enabling the server pages with a fully object-oriented programming

language (this is especially valuable for enterprise applications, where clear structuring,
maintainability, and appropriate error handling become important factors). ASP.NET promises to

improve ASP 3.0 significantly in these areas. Developers have complained about the COM

objects being inconvenient and cumbersome to use in ASP 3.0. With C# and ASP.NET, COM

objects will still be supported, but no longer required as the only means to create components.

6.1.4 Selected References

* Ron Wodanski, Microsoft; ASP Technology Feature Overview;
http://msdn.microsoft.com/workshop/server/asg/aspfeat.asp; August 1998

" Len Cardinal, George V. Reilly, Microsoft; 25+ ASP Tips to Improve Performance and Style;
http://msdn.microsoft.com/workshop/server/asp/ASPtips.asp; April 2000
This article presents tips for optimizing ASP applications and VBScript. Includes a long list of
additional references.

" J.D. Meier, Microsoft; Leveraging ASP in IIS 5.0;
http://msdn.microsoft.com/workshop/server/asp/server02282000.asp; February 2000
Describes new features & improvements of ASP that where introduced in 11S 5.0.

* Chris Kinsman; Introduction to ASP+;
http://www.asp-zone.com/articles/ck072600/ck072600.asp; July 2000
Summarizes the limitations and problems of ASP 3.0 from a developer's standpoint. Introduces
the new features of ASP+ that solve these problems, such as compiled language integration (e.g.
C#) instead of the scripting languages (JScript and VBScript), new page framework & object
model, deployment, authentication, and load balancing architecture.

" Rob Howard, Microsoft; Five Steps to Getting Started with ASP.NET;
http://msdn.microsoft.com/library/default.asp?URL=/library/welcome/dsmsdn/aspl 1122000.htm;
November 2000.
Download instructions of the .NET SDK beta. Contains references to books and newsgroups.

* Dino Esposito, The Component Model in ASP.NET;
http://msdn.microsoft.com/msdnmag/issues/01 /02/cutting/cuttinqOl 02.asp; February 2001
Explanation of the extensible object model and server controls, including code samples.

91

* Sun Microsystems; Comparing JavaServer Pages and Microsoft Active Server Pages
Technologies; http://ava.sun.com/groducts/isp/isp-asp.html; November 1999
Sun stresses the advantages of JSP over ASP, such as platform independence and cross-
platform reusability, and web server independence. Sun also mentions the use of Java for
scripting, instead of Jscript and VBScript, which offers a richer library and better maintainability.

6.2 Java versus C#

The goal of this section is not to provide a detailed comparison of Sun's Java and Microsoft's

C#. It rather summarizes the key points of many articles that have been published on this

subject.

At this point in time (March 2001), the C# SDK is only available as a beta version, and

documentation is only sparsely available. Although C# shows some promising features that go

beyond Java's current language specification, its stability, usability and security have yet to be

proven in a larger scale.

The developer community is reserved in estimating C#'s impact on Java. A survey conducted by

IBM shows (September 2000) that most developers don't believe in a significant impact of C#

on Java programming. However, many developers believe that the introduction of C# will

stimulate Sun to more actively improve Java. Furthermore, C# is expected to become the

primary development language for web application development under the Windows platform.

No impact to Java programming

A nice complement to Java programming

The end to Java programming

74%

Figure 19: Survey Results: Impact of C# on Java Programming
Source: http://www-106.ibm.com/developerworks/library/iava-pollresults/csharp.html

92

6.2.1 The C# Language Specification - an Overview

C# was introduced by Microsoft in 2000 as "the premier language for writing .Net applications in

the enterprise computing space", as Microsoft puts it. C# derives from C and C++. However, it

modernizes C++ in the area of classes, namespaces, method overloading, and exception

handling. Certain features, such as macros, templates, and multiple inheritance have been

eliminated from the language, to make its use easier and less error-prone. C# is clearly

Microsoft's answer to Java (Sun prevented Microsoft from integrating Microsoft's Java

implementation "Visual J++" more closely to the Windows environment through a lawsuit). The

resemblance to Java is very strong; however, Microsoft tries to offer an even more powerful

language to the web application programmer under the Windows platform. Java and C# are

compared in detail in Chapter 6.2.3.

6.2.2 The .NET Common Language Runtime (CLR)

Microsoft recognized the advantages of Sun Microsystems' approach of generating so-called

"byte code", the platform-independent semi-compiled code that is generated by the Java

Compiler (javac) and executed through the Java Virtual Machine (JVM). Microsoft's version of

this technology is implemented as the Common Language Runtime (CLR) within the .NET

platform. Similar to the Java platform, this runtime manages the execution of code via the Virtual

Execution System (VES), and it provides services that make programming easier and faster

(Rapid Application Development concepts). The managed code that is executed by the CLR is

called "Intermediate Language" (IL). C# is compiled to IL, but other programming languages,

such as Visual Basic or C++ can be compiled to IL as well. Programming is made easier

through automatic memory management (garbage collection), cross-language integration

(including exception handling), and versioning support.

6.2.3 Comparison of Java and C#

Both C# and Java are languages that resemble C++ and C, but have cleaned up with some of

the less used (such as templates) or error-prone (such as multiple inheritance) features of C++.

Following is a table that compares the two language's features in detail.

93

Feature Java C#

Lack of pointers Yes Yes

Single operator, the "dot" Yes Yes

Unified type system Yes Yes
(e.g. no varying range of the integer type)

Boxing/un-boxing of variables No Yes

Enumerations No Yes

Garbage collector Yes Yes

Exception handling (try, catch, finally) Yes Yes

Security model Yes Yes

Data encapsulation (class model) Yes Yes

Inheritance (from a single class only) Yes Yes

Polymorphism Yes Yes

Fully object oriented Yes Yes
(all functions and variables are contained in classes)

Implicit method overriding prohibited No Yes

Implementation of Interfaces Yes Yes

Emulation of function pointers Yes Yes
(with interfaces or "delegates")

Operator overloading No Yes

Enforced type safety:

Checking of casts for validity Yes Yes

Use of un-initialized variables not permitted Yes Yes

Array bounds checking Yes Yes

Overflow checking for arithmetic operations Yes Yes

Support of versioning No Yes

Pre-processor (conditional compilation) No Yes

Automatic creation of documentation files Yes Yes

Interoperation with other languages (C++, VB) Yes Yes

Interoperation with native code Yes Yes

Table 8: Comparison of Java and C#

94

One can see from Table 8 that Java and C# have many things in common. C#'s syntax

sometimes allows a slightly more elegant way of coding (see references). At this point in time,

the C# language specification has a few additional features compared to Java. However, Java

offers a large amount of class libraries and development support that C# cannot offer yet.

6.2.4 Comparison of the Java Runtime and the CLR

The core part of the Java Runtime Environment and the Common Language Runtime are the

execution systems, which are the Java Virtual Machine (JVM), and the Virtual Execution System

(VES), respectively. Following is a table that compares the features of the two.

* Third party

Feature JVM VES

Interpretation of intermediate code from various languages No* Yes

Class loader enforcing security Yes Yes
(Consistency and accessibility checks)

Garbage collection, exception handling, stack tracing Yes Yes

Management of threads and contexts Yes Yes

Many platforms supported Yes No

Table 9: Comparison of JVM and VES
vendors offer language translators to Java.

The VES will be available initially only on Windows operating systems, and other platforms are

unlikely to be supported in the near future. Java Virtual Machines, on the other hand, are

available on many different platforms, such as Windows, Macintosh, Unix, or Linux.

95

6.2.5 Selected References

* Christoph Wille; Presenting C# July 2000
This book introduces the language C# and its
C++. The book also describes the Microsoft
including the Common Language RuntimE
Unfortunately, security issues, which are a ma
addressed.

features. Comparisons are often drawn to C and
.NET elements from a developer's point of view,

1, the Intermediate Language, and the VES.
in concern in developing web applications, are not

* Mark Johnson; C#: A Language Alternative Or Just J--?;
http://www.aavaworld.com/avaworld/w-11-2000/iw-1122-csharpl.html; November 2000
A detailed comparison of Java and C# with many programming examples. Java and C# code is
directly compared in tables. Includes a long list of additional resources.

" Jim Farley; .NET vs. J2E E: How Do They Stack Up?;
http://ava.oreilly.com/news/farley 0800.html; November 2000
Compares Microsoft's .NET and the Java 2 Enterprise Edition. The main technologies that are
part of the two frameworks are listed, and key differentiators are presented. Possible impacts of
.NET on the Windows and the Java developer community are discussed.

* Michael L. Perry; C#, The Natural Progression;
http://www.avaworld.com/avaworld/w-08-2000/w-0804-itw-csharp.html; July 2000
Information on the chief developer of C#, Anders Hejlsberg. Overview of C# features, especially
regarding RAD. Reasons why Microsoft created another programming language.

" Anders Hejlsberg, Scott Wiltamuth; C# Language Specification;
http://msdn.microsoft.com/ibrary/default.asp ; 2000

96

7 Conclusions

With the introduction to the idea of Open Source and the overview of available products, the

author has introduced the reader to the Open Source world, which is currently very much alive.

Developers can chose from a growing variety of Open Source products to assemble a

development environment that fits their needs. The utilization of Java as the primary

development language for Open Source Web technologies results in platform-independence

and high reusability of the developed components. Furthermore, Open Source products

interoperate well (e.g. Apache and Tomcat) and they are often more configurable than their

commercial counterparts.

This thesis has demonstrated that Open Source Web application development can hold up to

the high expectations. The case study presented in Chapter 4 has confirmed that Linux, CVS,
and Tomcat, and MySQL can provide the means to develop and deploy a Web application in a

free-of-charge environment while providing high reliability, usability, and security.

Development using Open Source products is without a doubt more difficult than with its

commercial counterparts. This is mainly because documentation is not as readily available. This

may change in the future, though, due to the growing popularity of Open Source.

To widen the reader's perspective, a comparison of the Web enabling Java technologies by Sun

Microsystems and their most important current and prospective competitor, Microsoft's ASP and

.NET, has been presented. Both approaches have many similarities, even more so with the

introduction of the .NET platform. However, since ASP and C# cannot offer significant

advantages at this point in time and lack platform independence, it seems likely that Java will

continue to be the dominating programming language for Web applications in the near future.

The author hopes to having provided a good starting point for newcomers to Web application

development using Open Source and Java with this document. Any comments or questions are

very welcome; please email klimke@alum.mit.edu.

97

8 Appendix

8.1 Tips on How to Learn Linux Quickly

This section's purpose is not to give an introduction to Linux, but rather to advice a Linux
newcomer on how to learn to use and understand the environment quickly.

* Take a look at the various tutorials and quick references available on the Internet, e.g.
this one by Mark Allen: http://ctdp.tripod.com/os/linux/usersguide/index.html

* On many topics, there are so-called "How-To" documents available. A complete list of all
How-Tos can be found at http://www.linuxdoc.org/HOWTO. These documents are quite
comprehensive and usually maintained well.

* Don't use the graphical desktop environments such as Gnome or KDE. They hide a lot

of details from the user and don't foster the understanding of the Linux operating system.

The following commands help to quickly get information on Linux shell commands:

* The whatis command can be used to get a short description of any system command.

Example: whatis mkdir will display a brief description of the mkdir command.
" Linux system commands or files usually come with a manual file. These manuals are

very detailed. They include the complete syntax of commands, or the file format. The
manuals can be accessed with the man command from the Linux shell.

Example: man cp displays the manual for the Linux file copy command cp.

" When not yet familiar with command names, the right command can often be found
quickly with man -k [keyword. This command browses the internal Linux command

descriptions database for the given keyword, and displays all matches.
Example: man -k delete will display all commands that contain the word "delete" in their

whatis description.

* System commands can be located with the whereis command (only system commands;

for other files, use slocate). If the search is successful, a list of all location paths is

returned.

Example: whereis linuxconf
* Other files can be located with the slocate command. The search returns all path or file

names containing the search keyword.

Example: slocate tomcat.sh

98

8.2 Glossary

ASP Active Server Pages - Microsoft's technology supporting dynamic web content. ASP
allows server-side programming in VBScript or JavaScript.

BLOB A BLOB is a database data type for storing binary large objects.

CGI The Common Gateway Interface common gateway interface is a standard way for a
Web server to pass a Web user's request to an application program and to receive
data back to forward to the user. CGI is the basis for most dynamic content
generation languages today.

COM Microsoft's Component Object Model serves as a framework for the interaction of
distributed objects in a network, similar to CORBA.

CORBA The Common Object Request Broker Architecture is a framework for the creation,
distribution, and management of objects in a network.

CSS Cascading Style Sheets are a technology to define and apply formatting to HTML
pages.

DOM The Document Object Model is a programming interface specification developed by
the W3C. The DOM serves to represent XML or HTML documents as an object with a
hierarchical structure, so it can be programmatically modified.

IDE An Integrated Development Environment allows editing, compilation, and debugging
within a single, comprehensive user interface.

NCSA The National Center for Supercomputing Activities, located at the University of Illinois
at Urbana-Champaign

PHP PHP is widely used server-side, cross-platform, HTML embedded scripting language.
The abbreviation PHP originated from the first versions of the PHP parser in 1995
known as the Personal Home Page Tools.

RPM RPM stands for the "Red Hat Packaging" format. RPM allows for the packaging of
software (source code and binaries) into archives, so that the binaries can be easily
installed and the source code can be reconstructed.

Tag A tag is a generic term for a language element descriptor. For example, tags are used
in HTML to define different text elements (e.g. the <hi> indicates a heading level 1,
<table> indicates a table). While HTML has a fixed set of tags with specific meaning,
other languages such as XML allow for the creation of new tags with customized
behavior.

W3C The World Wide Web Consortium is a neutral organization, which seeks to promote
standards to further evolve the Web.

99

