
An Integrated Method for Managing Complex
Engineering Projects Using the Design Structure

Matrix and Advanced Simulation

by

Soo-Haeng Cho

Bachelor of Science in Engineering
Division of Aerospace and Mechanical Engineering

Seoul National University, 1999

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

at the
MASSACHUSETTS INSTITUTUE OF TECHNOLOGY

June 2001

D 2001 Massachusetts Institute of Technology. All rights reserved

Signature of Author

Soo-Haeng Cho
Department of Mechanical Engineering

May 11, 2001

C ertified by

Steven D. Eppinger
General Motors LFM Professor of Management

Thesis Supervisor

Accepted by

Ain. A. Sonin
Chairman, Department Committee on Graduate Students

MASSACHM/ETTS INSTITUTE
OF TECHNOLOGY

JUL 16 2001

LIBRARIES

2

An Integrated Method for Managing Complex Engineering Projects

Using the Design Structure Matrix and Advanced Simulation

by

Soo-Haeng Cho

Submitted to the Department of Mechanical Engineering
on May 11, 2001 in partial fulfillment of the

Requirements for the Degree of

Master of Science

ABSTRACT

This thesis proposes an integrated project management framework for complex
engineering projects such as the development of an automobile. The integrated method
streamlines project planning and control using three modules: structuring, modeling, and
scheduling. In the structuring module, the design structure matrix (DSM) method is used
to structure the information flows among tasks and capture the iteration loops. By
classifying various types of information dependencies, a critical dependency path is
identified and redundant constraints are removed for the modeling and scheduling
analyses. In the modeling module, a generalized process model predicts complex
behaviors of iterative processes using advanced simulation techniques such as the Latin
Hypercube Sampling and parallel discrete event simulation. The model computes the
probability distribution of lead time and identifies critical paths in a resource-constrained,
iterative project. Using the results of analyses from the structuring and modeling modules,
a network-based schedule in the form of a PERT or Gantt chart is developed in the
scheduling module. The schedule is used as the basis for monitoring and control of the
project.

The primary goal of this work is to develop an integrated method that guides project
management efforts by improving the effectiveness and predictability of complex
processes. The method can also be used for identifying leverage points for process
improvements and evaluating alternative planning and execution strategies. Better project
management will ultimately result in a better quality product with timely delivery to
customers. Two case studies are performed to illustrate the utility of the method.

Thesis Advisor: Steven D. Eppinger, General Motors LFM Professor of Management

3

4

Acknowledgements

First of all, I would like to thank my advisor, Professor Steven Eppinger for the

opportunities he has given me and for his invaluable guidance throughout the years. I

have learned much from him about the attitudes and skills for conducting research,

collaborating with other colleagues, presenting ideas, and being open-minded. I will keep

these lessons in my mind wherever I go.

I am grateful to the Center for Innovation in Product Development at MIT for providing

great research settings and funds for this research. I am also thankful to the Singapore-

MIT Alliance for supporting the research in the second year.

I am indebted to several people for helping me complete this work. I am thankful to Dr.

Tyson Browning for providing me a basic foundation for this work. I'd like to thank Dr.

Ali Yassine for his encouragement and friendship. I am also grateful to the people who

broadened my vision to see a "real world": Norm Lewicki, Bill Kennedy, Keith Schmidt,

Ron Williams, and Bernard Spycher.

I would like to thank my friends, Taesik Lee, his wife Haeyun Oh, and Yong-Suk Kim

who have made my life at Boston exciting and memorable. I am sincerely grateful to

Seonghwan Cho, Jongyoon Kim, Sungbae Park, and all other friends at MIT, for sharing

joys and hands with me.

Lastly, I would like to thank my parents for their trust and support.

5

6

Table of Contents

ABSTRACT .. 3

ACKNOWLEDGEMENTS .. 5

TABLE OF CONTENTS .. 7

LIST OF FIGURES...10

LIST OF TABLES...13

CHAPTER 1...15

1.1 M OTIVATION .. 15

1.2 LITERATURE REVIEW .. 17

1.2.1 Process-Structuring Literature ... 18

1.2.2 Process-Modeling Literature .. 19

1.3 THESIS O UTLINE ... 22

CHAPTER 2...25

2.1 INTRODUCTION ... 25

2.2 CONSTRUCTING A MATRIX MODEL FOR A COMPLEX PROJECT 25

2.2.1 Decompose a Project into Manageable Tasks ... 26

2.2.2 Identify Sources of Inputs & Information Flow Types for Each Task............ 28

2.2.3 Map Information Flows among Tasks into a Square Matrix 30

2.3 HIERARCHICAL DECOMPOSITION OF PROCESSES .. 31

2.3.1 Graph Theory and Boolean Matrix Manipulation .. 31

2.3.2 Hierarchical Decomposition Based on As-early-As-Possible rule............... 32

2.3.3 Hierarchical Decomposition Based on As-Late-As-Possible Rule............... 38

2.3.4 Level Slack and DSM with Customized Task Sequence 42

2.4 INFORMATION DEPENDENCY CLASSIFICATION .. 43

2.4.1 Definitions of Various Dependencies .. 43

2.4.2 Algorithms for Information Dependency Classification 47

2.4.2.1 Algorithms Classifying Binding and Non-Binding Dependencies 48

2.4.2.2 Algorithm Classifying Critical and Non-Critical Binding Dependencies.......... 50

2.5 C HAPTER SUM M ARY.. 51

7

CH APTER 3...53

3.1 INTRODUCTION .. 53

3.2 M ODEL INPUTS ... 54

3.2.1 Task D urations... 54

3.2.2 Precedence Constraints.. 55

3.2.3 Resource Constraints .. 56

3.2.4 Iteration.. 57

3.2.4.1 Overlapping Iteration .. 57

3.2.4.2 Sequential Iteration .. 59

3.3 DESCRIPTION OF THE BASIC M ODEL.. 61

3.3.1 M odel Structure and Algorithm .. 61

3.3.2 Overlapping Iteration in Multiple Resource-Constrained Paths.................. 63

3.3.3 Rework Generation for Sequential Iteration in Multiple Paths..................... 63

3.3.4 Rework Concurrency.. 64

3.3.5 M easures and Rules for Resource Priorities.. 66

3.4 DESCRIPTION OF THE EXTENDED M ODEL .. 67

3.4.1 M odel Structure and Algorithm .. 67

3.4.2 Computing Resource-Constrained Slack... 71

3.4.3 M easures and Rules for Resource Priorities.. 72

3.5 CHAPTER SUMMARY... 73

CH A PTER 4 ... 75

4.1 INTRODUCTION .. 75

4.2 APPLICATIONS OF THE INTEGRATED FRAMEW ORK .. 75

4.2.1 Project Planning ... 75

4.2.2 Project M onitoring and Control .. 80

4.3 OTHER APPLICATIONS ... 81

4.3.1 Finding an Optim al Task Ordering.. 81

4.3.2 Setting Appropriate D ue Date.. 81

4.3.3 Finding A reas for Process Improvem ent .. 82

4.3.4 Evaluating M ultiple Projects .. 83

4.4 CHAPTER SUMMARY... 83

8

CHAPTER 5...85

5.1 INTRODUCTION ... 85

5.2 UAV DEVELOPMENT PROJECT ... 85

5.2.1 Basic Inputs and Analyses Results... 86

5.2.2 Analyses Results Using Additional Modeling Parameters........................... 87

5.3 LOGISTICS EUROPE PROJECT ... 91

5.3.1 Backgrounds... 91

5.3.2 Application of the Integrated Method to Project Planning........................... 91

5.4 CHAPTER SUMMARY.. 96

CHAPTER 6...97

6.1 CONCLUSION... 97

6.2 FUTURE RESEARCH .. 98

6.2.1 Extensive Applications ... 98

6.2.2 Extensions of the Integrated M ethod... 98

REFERENCEE ... 101

APPENDIX ... 105

Al. ALGORITHM FOR THE ANALYSIS OF A COUPLED BLOCK....................................... 105

A l-i. M odel Inputs.. 105

A1-2. M odel Variables .. 105

A]-3. Simulation Algorithm... 106

A2. COMPARISON WITH OTHER REWORK PROCESS MODELS 11I

A2-1. Analytical M odels.. 111

A2-2. DSM-Based Simulation Model (Browning and Eppinger 2000)................... 112

A2-3. Notes on the Proposed M odel in Rework Generation 117

A3. DEFINITIONS OF HEURISTIC PRIORITY M EASURES .. 118

A3-1. Rank Positional Weight (RPW) ... 118

A3-2. Cumulative Resource Equivalent Duration (CUMRED) 118

A4. EXPLICIT RESOURCE LINKS .. 119

A5. DETAILED DATA & COMPUTATION RESULTS OF LOGISTICS EUROPE PROJECT...... 122

9

List of Figures

Figure 1-1. Systems View of a Project .. 17

Figure 2-1. An Example of Project Decomposition Processes......................................27

Figure 2-2. Two types of Information Flow in a Task..28

Figure 2-3. Types of Information Flow between Two Tasks .. 29

Figure 2-4. Sources of Inputs and Information Flow Types..29

Figure 2-5. A Square Matrix Mapping Information Flows among Tasks 30

Figure 2-6. A Digraph and Its Corresponding Adjacency Matrix 31

Figure 2-7. A Reachability Matrix... 32

Figure 2-8. Algorithm Computing DSM based on AEAP Rule 34

Figure 2-9. Hierarchical Decomposition Based on the AEAP Rule.............................37

Figure 2-10. Collapsed View of AEAP DSM...38

Figure 2-11. Algorithm Computing DSM based on ALAP Rule 39

Figure 2-12. Algorithm Computing ALAP Collapsed DSM..40

Figure 2-13. Hierarchical Decomposition Based on ALAP rule 41

Figure 2-14. Collapsed View of ALAP DSM...41

Figure 2-15. Level Slack in AEAP Collapsed DSM..42

Figure 2-16. Collapsed DSM with Customized Task Sequence..................43

Figure 2-17. An Example of Binding and Non-Binding Dependencies.......................45

Figure 2-18. An Example of Information Dependency Classification 46

Figure 2-19. Network Diagrams Corresponding to Collapsed DSM's..........................47

Figure 2-20. Assumption for Overlapped Tasks...48

Figure 2-21. Algorithm <1> to Classify Binding and Non-Binding Dependencies..........48

Figure 2-22. Algorithm <2> to Classify Binding and Non-Binding Dependencies 49

10

Figure 2-23. An Exception of Algorithm <2>..50

Figure 2-24. Algorithm <2> to Classify Binding and Non-Binding Dependencies 50

Figure 3-1. Latin Hypercube Sampling .. 55

Figure 3-2. Information Flows and Precedence Constraints...56

Figure 3-3. Overlap Amount and Impact between Two Tasks......................................59

Figure 3-4. Rework Probability and Impact ... 60

Figure 3-5. Learning Curve...60

Figure 3-6. Algorithm for Computing Lead Time in the Basic Model.............62

Figure 3-7. An Example for Task Concurrency...64

Figure 3-8. An Example of Rework Concurrency..65

Figure 3-9. Procedures and Interim Results of the Extended Model...............69

Figure 3-10. Algorithm for Computing Lead Time in the Extended Model 70

Figure 4-1. An Integrated Project Management Framework..75

Figure 4-2. The Integrated Framework in Project Planning .. 76

Figure 4-3. Function of the Structuring Module from Systems View 76

Figure 4-4. Function of the Modeling Module from Systems View...............77

Figure 4-5. Representation of a Coupled Block...78

Figure 5-1. Model Inputs for UAV Project..86

Figure 5-2. Probability Distribution of Lead Time with Basic Inputs...........................87

Figure 5-3. An Example of a Simulated Gantt Chart..90

Figure 5-4. An Example of Rework Concurrency..90

Figure 5-5. Design Structure Matrix (As-Early-As-Possible) 92

Figure 5-6. Collapsed DSM (As-Early-As-Possible)...93

Figure 5-7. Probability Distribution of Logistics Europe Project Duration...................95

11

Figure 5-8. Network-Based Schedule .. 96

Figure A-1. Examples for Comparison with Analytical Models 111

Figure A-2. Task Concurrency of the First DSM Simulation Model.............113

Figure A-3. Rework Generation Patterns of the First DSM Simulation Model 115

Figure A-4. Rework Generation Pattern of the Proposed Model.....................................117

Figure A-5. Resource Confliction Among Parallel Tasks ... 119

Figure A-6. Alternatives Methods for Creating Explicit Resource Links 120

Figure A-7. Resource Links Created to All Resource Flows...121

Figure A-8. Data for Iterations in Logistics Europe Project............ 124

12

List of Tables

Table 4-1. Inputs and Outputs of the Modules .. 79

Table 5-1. Results Using Additional Modeling Parameters .. 88

Table 5-2. Rework-Adjusted Duration and Rank Positional Weight 90

Table 5-3. Summary of Simulation Results...94

Table 5-4. Critical Paths and Sequences..95

Table A-1. Data and Computation Results of Logistics Europe Project 122

13

14

CHAPTER 1

Introduction

1.1 Motivation

Today's competitive market has created a highly challenging environment for product

development. Companies are under increasing pressure to sustain their competitive

advantages by reducing product development time and cost while maintaining a high

level of quality. These needs drive companies to focus on developing a well-coordinated

development plan to organize their processes and resources (Takeuchi and Nonaka

(1986), Clark and Fujimoto (1991), Wheelwright and Clark (1992), Ulrich and Eppinger

(2000)).

A complex product development project involves a large number of tasks executed by a

network of professionals from various disciplines. As complexity increases, it becomes

more difficult to manage the interactions among tasks and people; it may be impossible to

even predict the impact of a single design decision throughout the development process

(Eppinger et al. 1994).

Since the introduction of network scheduling techniques such as PERT (Malcolm et al.

1959) and CPM (Kelley and Walker 1959), many researchers have made extensions to

make these standard techniques more powerful. These improvements include the

following:

. Allocation of resources across tasks

. Modeling of uncertainty in estimated task durations using Monte Carlo methods

. Prediction of cost as well as project duration

. Analysis of iterative processes including concurrent and/or stochastic rework of

tasks

15

. Developing measures for criticalities in both task and project levels

. Structuring information flows using a diagram or matrix

. Inserting buffers to manage variance in durations

As listed above, there have been tremendous efforts in academia and in the field to

improve the project management methods and tools that are currently available. However,

there has not been any integrated framework that utilizes all of these improvements.

The goal of this work is to develop an integrated method that utilizes positive aspects of

individual methods while resolving compatibility problems among them. This thesis

proposes a method that streamlines project planning using the design structure matrix

(DSM) method and advanced simulation techniques such as the Latin Hypercube

Sampling (LHS) and parallel discrete event simulation. The first step of planning

processes is to structure information flows among tasks using the DSM. The second step

is to model development processes using advanced simulation based on the

characteristics of a project, tasks, and interfaces between tasks. The third step is to

construct a network-based schedule in the form of a PERT or Gantt chart based on the

analyses of structuring and modeling. This streamlined planning approach can be

extended to an integrated project management framework for planning, monitoring and

control. This framework can be used to improve the effectiveness and predictability of

complex processes, accelerate communications among people, and guide project

management efforts throughout the development process.

The proposed method is based on the theory of systems modeling and simulation, and

adapts it to the project management context. It views a large scale development project as

a complex system within which its component tasks interact through information

exchanges in order to produce a high-quality product within targeted schedule and

budget. Figure 1-1 illustrates the systems view of a project adopted in the thesis.

In order to test the utility of the proposed method, two industrial cases are used. The first

case models the uninhabited aerial vehicle (UAV) preliminary design process at an

16

aerospace company. The data are from Browning (1999) and extended to include

additional parameters that can be incorporated in the proposed model. The second case

demonstrates the streamlined project planning in a logistics project at a medical

equipment company. The data were collected through the interview of a project manager.

The results and validity of the method are discussed later in the thesis.

System

Inputs Outputs

System objective: a high-quality product within targeted time and cost

O : a component task -*: information flow

FIGURE 1-1. SYSTEMS VIEW OF A PROJECT

1.2 Literature Review

The CPM/PERT approaches have been widely acknowledged as industry standard

techniques for project management for the past fifty years. However, these basic

techniques are not suitable for managing complex engineering projects due to their

limited analytical capabilities. The integrated method that the thesis proposes built upon

two areas of research that complement the weaknesses of those basic techniques. The first

area is related to process-structuring methods that structure complex information flows

and represent complex interactions among tasks. The second area is related to process-

17

b d e

f M

n

9 .h

modeling methods that characterize behavioral aspects of processes along the time line

such as stochastic models using a Markov chain etc. Throughout the thesis, the terms of

process-structuring and process-modeling methods denote those methods described

above.

1.2.1 Process-Structuring Literature

In the network-based models such as the PERT/CPM, a project network is usually built

by identifying precedence relationships among the tasks that are close to one another in

sequence from experience. However, this approach is not easily scalable for complex

engineering projects where a large number of tasks interact with one another in a

complex way. In addition, they do not represent iterative relationships very well.

Steward (1981) developed the design structure matrix (DSM) to model the information

flows of design tasks and to identify their iterative loops. The DSM method is based on

earlier work in large-scale system decomposition (Sargent and Westerberg (1964),

Steward (1965), Ledet and Himmelblau (1970), Warfield (1973)). Eppinger et al. (1994)

extended Steward's work by explicitly modeling information coupling among tasks and

investigating different strategies for managing entire development procedures. Rogers

(1999) developed a computer package as a design-supporting tool for a design manager.

He used the Generic Algorithm for partitioning and presented hierarchical decomposition

method similar to Warfield (1973).

The extended DSM methods have been widely applied to various manufacturing

industries as a project-planning tool. It complements the traditional project management

tools by showing a structural view of a complex project in a compact, square matrix.

However, there are also limitations in this method as a stand-alone project management

tool such as:

. Limited capability showing a time scale (time aspects):

18

A square matrix form in the DSM is very useful for the compact visualization of a

project structure. However, it does not show time aspects of a project graphically

as in the Gantt chart for monitor and control purposes.

Limited compatibility with the network-based scheduling methods and tools

(compatibility issues):

Using the DSM method, we can identify and represent iterative loops (cycles)

more effectively than other methods. In order to increase the compatibility of the

DSM method with other schedule methods, further research is necessary in the

following two areas: (1) how iteration loops in the DSM can be analyzed and

illustrated in the Gantt chart, associated with time aspects of iterations, and (2)

how information dependencies can be transferred to precedence task relationships

in a PERT or Gantt chart.

Austin et al. (1999) proposed using a 'rolled-up' task for construction projects to

represent a loop in the Gantt chart within which constituent tasks are shown in parallel

without precedence relationships. However, the analytical features such as predicting the

durations of those rolled-up tasks, computing criticalities etc. are not included in their

method.

1.2.2 Process-Modeling Literature

Two streams of research in this area are related to this work: one is resource allocation

and the other is iteration.

Many models related to resource allocation seek to find the optimal allocation of

resources to tasks, minimizing lead time subject to resource constraints. Early efforts

concentrated on two areas: one is the formulation and solution of the problem as a

mathematical (usually integer) programming problem and the other is the development of

heuristic methods to obtain approximate solutions (Patterson 1984). Given the NP-hard

nature of the underlying problem, enumerative approaches (Pritsker et al. 1969, David

and Heidorn 1971, Patterson and Roth 1976, Talbot and Patterson 1978, Patterson et al.

1990) and branch and bound solution approaches (Stinson et al. 1978, Christofides et al.

19

1987) were developed for solving this problem optimally. However, the exact approaches

are not computationally viable because the magnitude of combinatorial problem grows

too big, as more tasks are involved in the network. Cooper (1976) proposed heuristic

priority rules based on experimental results for assigning resources when tasks are

competing for limited resources. Woodworth and Shanahan (1988) proposed the method

identifying the critical sequence (Weist 1964) but did not provide a rigorous set of

heuristic rules. Bowers (1995) presented a set of heuristics for calculating a resource-

constrained slack and discussed the measures of tasks' importance. More recently,

Joglekar et al. (2000) have formulated the resource allocation problem with a deadline

constraint, seeking to maximize design quality.

Iteration is a fundamental characteristic of development processes (Alexander (1964),

Eppinger et al. (1994), Browning and Eppinger (2000)). Several analytical models have

been developed to explain iterative design processes. These include sequential iteration

models, parallel iteration models, and overlapping models.

In the sequential iteration model, tasks are repeated one after the other by a probabilistic

rule. GERT network is a generalized PERT network that allows probabilistic routing and

feedback loops, and Q-GERT is its simulation package for large-scale projects (Neumann

(1979), Pritsker (1979), Taylor and Moore (1990)). Smith and Eppinger (1997a)

developed a model based on a reward Markov chain using the DSM representation for

repetition probabilities and task durations. Ahmadi and Wang (1994) extended the

sequential iteration model by taking into account dynamic iteration probabilities and

learning effects. Eppinger et al. (1997) used Signal Flow Graphs to compute the

probability distribution of lead time. Andersson et al. (1998) extended the SFG model to

include learning effects and other non-linearities.

In the parallel iteration model, multiple interdependent tasks work concurrently with

frequent information exchanges. AitSahlia et al. (1995) compared sequential and parallel

iteration strategies in terms of time-cost tradeoff. Hoedemaker et al. (1995) discussed the

limit to parallel iteration due to increasing communication needs. Smith and Eppinger

20

(1997b) developed a model for fully parallel iteration processes which predict slow and

rapid convergence of parallel iteration. Carrascosa et al. (1998) included the probability

and impact of changes in stochastic processes.

In the overlapping model, two development tasks are overlapped to reduce total lead

time. Ha and Porteus (1995) built a model of concurrent product and process design

processes and explored the optimal review timing minimizing total expected completion

time. Krishnan et al. (1997) developed a framework for overlapped sequential tasks. They

explained appropriate overlapping strategies based on upstream information evolution

and downstream iteration sensitivity. Loch and Terwiesch (1998) presented an analytical

model for optimal communication policy between two sequentially overlapped tasks.

While each of the resource and iteration models presented in the literature captures some

aspects that earlier methods do not explain very well, each new model also has its own

limitations. Resource models have considered optimal resource allocation and heuristic

resource priority rules. However, there has not been any significant work resolving

resource over-allocation issues in the overlapped and coupled project networks where

tasks repeat by a probabilistic rule. In addition, no algorithm is computationally practical

when the model takes into account the uncertainty inherent to estimated durations of

tasks. The sequential iteration models present the closed-form solutions for the

development time of an iterative network with a limited number of tasks. However, due

to the limitation of analytical approaches, they do not handle resource constraints as well

as more general project networks having parallel tasks (or paths) and overlapping. The

parallel iteration models analyze important aspects of concurrent engineering but use

highly simplified assumptions. The two-task overlapping models provide the optimal way

to reduce the time of two sequential tasks having the interface of unidirectional

information transfer. However, the concept does not easily apply to multiple tasks, in

particular, having multiple paths with iteration.

Adler et al. (1995) developed a simulation-based framework using queuing principles for

a multi-project, shared-resources setting. The model incorporates simple iterative effects

21

on development time but neglects many characteristics of iteration including overlapping

(or preemptive) iteration. Unlike most other resource models, it uses the average amount

of time that each resource group spends on each process of multiple projects and assumes

that work can be reallocated between resources with perfect efficiency, which is very

difficult to achieve. Thus, resources are not treated as constraints, so that the model is not

able to calculate criticalities of tasks and identify critical sequences.

Browning and Eppinger (2000) used simulation to analyze iterative processes based on a

DSM model as well as to account for normal variance of development task durations.

However, this first DSM simulation method is based on rather restrictive assumptions

regarding task concurrency and rework. Roemer et al. (1999) discussed time-cost

tradeoffs in multiple overlapped tasks. However, his model is limited to a single path,

assuming that sequential iterations take place among sub-tasks within a task.

1.3 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 presents the process-structuring method using the design structure matrix. This

chapter also discusses the procedure to construct a matrix model for a complex

engineering project.

Chapter 3 presents the process-modeling method using advanced simulation such as the

Latin Hypercube Sampling (LHS) and parallel discrete event simulation. Based on the

underlying structure of the project, complex behaviors of tasks are modeled and analyzed

for process improvements.

Chapter 4 presents the integrated project management framework based on the methods

presented in Chapters 3 and 4. This framework can be used for streamlined project

planning, monitoring, and control.

22

Chapter 5 presents the case studies performed using the methods explained in the

previous chapters. The results and findings from the case studies are also discussed.

Chapter 6 concludes the research work in this thesis and discusses the limitations and

extensions of the proposed method for further work.

23

24

CHAPTER 2

Process-Structuring Methods Using the Design
Structure Matrix

2.1 Introduction

This chapter discusses the procedure to construct a matrix model for mapping

information flows among tasks. It also presents the method for structuring complex

engineering processes using the design structure matrix (DSM). It. The method views a

large-scale development project as a complex system as described in the previous

chapter. Using the partitioning procedure based on Boolean matrix operations,

hierarchical decompositions in the DSM are performed based on the as-late-as-possible

rule as well as the as-early-as-possible rule in the schedule. Process hierarchies are used

to analyze the structure of a project. The method that classifies various types of

information dependencies is presented. It characterizes dependencies and identifies a

critical dependency sequence from a structural view.

2.2 Constructing a Matrix Model for a Complex Project

From the systems view, it is necessary to identify and define the component tasks and

informations exchanged among them in order to understand the structure of a complex

project. This section explains the procedure to construct a matrix model for a complex

engineering project in the following three steps: (1) decompose a project into manageable

tasks, (2) identify sources of inputs and information flow types for each task, and (3) map

information flows among tasks into a square matrix.

25

2.2.1 Decompose a Project into Manageable Tasks

Simon (1973) made an argument about the necessity of decomposing or dividing a

project into smaller tasks as follows:

"From the information-processing point of view, division of labor means factoring the

total system of decisions that need to be made into relatively independent subsystems,

each one of which can be designed with only minimal concern for its interactions

with the others. The division is necessary because the processors that are available to

organizations, whether humans or computers, are very limited in their processing

capacity in comparison with the magnitude of decision problems that organizations

face. The number of alternatives that can be considered, the intricacy of the chains of

consequences that can be traced - all these are severely restricted by the limited

capacities of the available processors."

Following his perspective, the successful accomplishment of a complex project requires

decomposing a project into smaller tasks that are (Kerzner 1995):

. manageable so that specific authorities and responsibilities can be assigned

. independent or with minimum dependence on other tasks

. integratable so that the total project can be seen when combined

. measurable in terms of progress

Figure 2-1 illustrates one simplified method of decomposition processes. First, set the

milestones and identify deliverables in each milestone. Second, create a list of

informations needed to produce each milestone deliverable. Third, draw causal diagrams

among the informations, if possible. Fourth, define a task that describes the process to

generate one or a few informations in the lowest hierarchy of the Work Breakdown

Structure (WBS). Fifth, group the tasks to have simple hierarchies in the WBS. Note that

the hierarchies in the WBS might draw unnecessary boundaries between tasks, decreasing

flexibility in processes. DSM partitioning explained later in this chapter may help cluster

the groups of tasks that are tightly coupled.

26

Milestone Kick-off Mi M2 Mn Launch

Deliverables D, , D12, D291, D22 ,,-- D,,2 , Final Product

12 13

Information
Map '5 i 6 17 ig

WBS
T2 T3 T4

T5 T6 T7

FIGURE 2-1. AN EXAMPLE OF PROJECT DECOMPOSITION PROCESSES

As Browning (1999) noted, the level of detail (or abstraction) at which tasks represent

processes is an important aspect when constructing a process model. While building a

model with sufficient details can improve the understanding of processes, there may be

the adverse effects using the project plan based on ill-defined processes, which include:

* increasing 'paper' complexity of a project with a larger number of tasks, which is

opposite to the objective of structuring processes

. prohibiting buy-ins from the project members who have not participated in

describing/defining their 'as-is' processes. (There might be more chances of this

phenomenon when a project plan is built upon a standardized template.)

. decreasing reusability of the processes

. decreasing flexibility of individual performers

Therefore, it is important to decompose a project into a set of tasks to the appropriate

level of detail.

27

When a project is very novel, it is very difficult to specify tasks as well as interim

deliverables. In this case, we can still improve project performance by structuring and

organizing emerging tasks as the project unfolds (von Hippel 1990).

2.2.2 Identify Sources of Inputs & Information Flow Types for Each Task

Throughout the thesis, the author follows the information-based view in which a task is

the information-processing unit that receives information from other tasks and transforms

it into new information to be passed on to subsequent tasks. The information exchanged

between tasks includes both tangible and intangible types such as parts, part dimensions,

bill of materials etc.

From a schedule perspective, there exist two types of information flow in a task: (1)

information flow at the beginning or at the end of the task, and (2) information flow in

the middle of the task, as illustrated in Figure 2-2.

(1) Input to begin (2) Input to proceed

task

(2) Preliminary output (1) Final output

FIGURE 2-2. TWO TYPES OF INFORMATION FLOW IN A TASK

Based on the above observation, the author defines two types of information flow

between two tasks. The first type represents the case that a downstream task requires final

output information from an upstream task to begin its work. The second type represents

the case that a downstream task uses final output information in the middle of its process

and/or begins with preliminary information but also receives a final update from an

upstream task. The second type of information flow is very common unless a project

28

planner were to decompose all tasks to the level of detail such that all information

exchanges take place at the end of tasks. Figure 2-3 illustrates the types of information

flow from upstream task a to downsream task b.

(a) First Type (b) Second Type

FIGURE 2-3. TYPES OF INFORMATION FLOW BETWEEN TWO TASKS

The second step of constructing a matrix model is to identify sources of inputs and

information flow types for each task following the above rules. The rationale behind

inquiring inputs instead of outputs is that people performing a task are better aware of the

characteristics of inputs than those of outputs. The tasks that require outputs of each task

can be easily identified after mapping all information flows for task inputs. Figure 2-4

illustrates the simple example in which tasks e, f and i produce outputs i,, if and i,

respectively. Task i requires inputs from tasks e and f. i, is transferred to task i by the

second type of information flow while if is transferred by the first type (as indicated by

the numbers on the arrows).

FIGURE 2-4. SOURCES OF INPUTS AND INFORMATION FLOW TYPES

29

2.2.3 Map Information Flows among Tasks into a Square Matrix

A simple methodology to map information flows among tasks is using a square matrix.

First, list the tasks down the left side in their rough sequence of execution with unique

indices. The same indices are listed in the row above the square matrix. When there is the

first type of information flow from task a to task b, then enter "1" into (i, j) of the square

matrix where i and j are the unique indices representing tasks b and a, respectively. For

the second type of information flow, enter "2". Reading across a row reveals the tasks

where the inputs of the task corresponding to the row come from. Reading down a

specific column reveals the tasks receiving outputs from the task corresponding to the

column. If the sequence of tasks in the matrix is the sequence of execution, a nonzero

element in the upper diagonal represents a feedback. Figure 2-5 illustrates a simple

example of this matrix.

Task Name 1 234 5 6 7 8 9 101112113 14 15
a 1
b 2 1
c 3 2 1
d 4 2 1

e 5 1
f 6 1 2
_ _ _ _ 7 1 _ 1
h 8 2 1 1
I 9 21
_ 10 1 1
k 11 2 2
I 12 1
m 13 1 1
n 14 1 1 1
0 15 1 11

FIGURE 2-5. A SQUARE MATRIX MAPPING INFORMATION FLOWS AMONG TASKS

30

2.3 Hierarchical Decomposition of Processes

Partitioning is the process of reordering tasks such that information flow marks in the

matrix are placed in the lower diagonal or grouped together within square blocks on the

diagonal (Steward 1981). It identifies iteration loops (cycles) and moves them to the

diagonal as close as possible. Steward (1981) called a square matrix obtained after

partitioning as the design structure matrix (DSM). This section reviews basic aspects

related to partitioning and hierarchical decomposition of processes in systems modeling.

The thesis basically adopts the partitioning method that has been developed using the

Boolean matrix manipulation based on the graph theory. Improvements are made such

that systems modeling technique can be better utilized in project management.

2.3.1 Graph Theory and Boolean Matrix Manipulation

A graph is a collection of vertices (nodes) and arcs (edges) connecting the vertices. A

directed graph or digraph is a graph in which the arcs have directions. A vertex

represents a system element while an arc represents information flow between the

elements. The adjacency matrix R is a Boolean matrix representing a graph uniquely. R is

a square matrix with the same number of vertices where r(i, j) = 1 if there is an arc from

vertex j to vertex i, and r(i, j) = 0 otherwise. Figure 2-6 illustrates a diagraph and its

adjacency matrix.

0 0 0 1

4 1 0 0 0

0 1 1 0

(a) Digraph (b) Adjacency Matrix

FIGURE 2-6. A DIGRAPH AND ITS CORRESPONDING ADJACENCY MATRIX

31

The reachability matrix R* is the element-by-element Boolean union of all of the powers

of the adjacency matrix up to the nth, where n is the number of rows in the R. It is also

called the transitive closure of the adjacency matrix. An important property of the

adjacency matrix is that ith power of this matrix gives all the i step paths between vertices

including loops. Then, the reachability matrix represents all of the paths of any length

between vertices (Ledet and Himmelblau 1970). Steward (1962) has shown that nth

power of (R u I) matrix is equivalent to the reachability matrix, i.e.

(R u I)" = R" u R" n- --- u R u I = R* . This property saves computation time

significantly when computing the reachability matrix by using the second, fourth, eighth

powers, and so on. Figure 2-7 shows the reachability matrix of the digraph in Figure 2-6.

S 1 1 1

1 1 1 1

S 1 1 1

FIGURE 2-7. A REACHABILITYMATRIX

2.3.2 Hierarchical Decomposition Based on As-early-As-Possible rule

The thesis basically adopts the partitioning method developed by Warfield (1973) and

improves it to be better applicable to project management. This method uses Boolean

matrix manipulation and decomposes a project into hierarchical levels that tasks belong

to. Process hierarchies are also used in information dependency classification in the next

section. There is an alternative partitioning method called "path searching" which does

not use Boolean matrix manipulations. Steward (1965) proposed this method based on

the earlier work of Sargent and Westerberg (1964). The method identifies a loop (circuit)

by tracing information flows until a node is encountered twice. However, this method

does not provide information about process hierarchies.

32

Warfield used the reachability matrix to identify system elements belonging to each

hierarchical level. A level was defined in the way that any two elements at the same level

are either not connected to each other or else there are two-way connections between the

two elements. The latter is the case that two elements are part of a loop (cycle). Once the

hierarchical levels and their elements are determined, the original Boolean matrix is

rearranged to show the separate blocks of the partition formed by the sets at the various

levels.

In the context of project management, a system in systems modeling is a project and an

element within a system is a task of a project. An information flow mark - hereafter

referred to as a dependency mark - in the lower diagonal of the matrix represents

feedforward information flow from an upstream task to a downstream task. A

dependency mark in the upper diagonal of the matrix represents a feedback information

flow to an upstream task from a downstream task. The term of a coupled block (Eppinger

et al. 1994) is defined as a set of tasks consisting of a loop (cycle), within which there is

at least one dependency mark in the upper diagonal of the matrix. Due to its cyclic

relationships among constituent tasks, iterations may take place potentially among the

tasks within a coupled block. Tasks in a coupled block belong to the same process level

while tasks outside coupled blocks are located in the same level if they are independent

of each other. It is also possible that multiple coupled blocks and/or single tasks are

located in the same level when there is no information flow between them. Thus, tasks

and/or coupled blocks in the same level can work in parallel.

In order to apply the two-type scheme of information dependencies, the second type of

information flow in the matrix are replaced by "1" before partitioning and recovered after

partitioning which is based on Boolean matrix manipulations. After this partitioning

process, coupled blocks are identified and tasks are rearranged based on the as-early-as-

possible (AEAP) rule which assumes that a task starts immediately after all the inputs

necessary to begin are available. In the same level, a coupled block is located before a

single task and, with more than one coupled block, the one with more constituent tasks is

located upfront. However, tasks within a coupled block follow the sequence in the matrix

33

input due to its cyclic relationship. Figure 2-8 illustrates the algorithm that computes the

DSM based on the AEAP rule.

(1) For every task i (i = 1, 2, ... , n) within a project, compute the following
sets:

Ri = f j I R*(i, j) =1 ; j=l,...,n }
A = { j I R*(j, i) =1 ; j=,...,n }

where, R * : reachability matrix

n : number of tasks in the project

(2) Compute the set Lk for k = 1, ... , m , where m is the maximum level in the

project, as follows:

(i) Li = { i I Ri n A, = Ri ; i=l,...,n }

(ii) for k = 2, ... , I,

Lk = { i \ R n A' = R' s.t. R' = Ri - (L kU L) and

AI = Ai - (L, u ... u LI); i=1,...,n and io (Liu --- u L_,) }

where m = min k s.t. (L,' --- ' Lk) = {1, ... , n

(3) Construct the DSM from the task i, of which n(R")

higher, in Lk for k= ,..., m.

(n(R) for L,) is

<Note>

(i) Lk is the set having the tasks in level k.

(ii) If n(R[) (n(Ri) for L,) is higher than one, the tasks in R[(Ri for L,) constitute a

coupled block.

(iii) '(3)' determines the ordering of tasks in the same level such that a coupled block
is located before a single task and, with more than one coupled block, the one
with more constituent tasks is located upfront.

FIGURE 2-8. ALGORITHM COMPUTING DSM BASED ON AEAP RULE

34

When the size of a coupled block after partitioning is too big, the partitioning result may

not provide useful information about the structure of a project. Tearing (Steward 1965

and 1981) is the technique that makes a coupled block smaller and finds a suitable

ordering of tasks within a coupled block. It removes a dependency mark in the upper

diagonal where task performers can make good estimates for its outputs, and reorders

tasks by partitioning again. The torn mark is recovered after reordering. Several

researchers (Steward (1965), Weinblatt (1972), Rogers (1989), Kusiak and Wang (1993))

proposed the methods for efficient tearing that minimizes number of tears or confines

tears to the smallest block along the diagonal (Yassine et al. 1999). However, an optimal

sequence of tasks within a coupled block depends the characteristics of individual tasks

as well as the characteristics of interfaces among tasks. Thus, while the tearing technique

(which is based solely on the characteristics of interfaces among tasks) suggests an

efficient order of execution from a structural view, it may not provide an optimal

sequence. This issue is further discussed in Chapter 4.

It is generally accepted that iteration improves the quality of a product in a design project

while increasing development time. Compromise must be made to optimize the tradeoffs

between these conflicting project goals (Eppinger et al. 1994). Thus, when constructing a

matrix model, a project planner should be careful not to mark all feedback flows unless

they represent iteration significant enough to affect development processes. After

partitioning, for this purpose, Eppinger et al. proposed artificial decoupling which

actually removes one or more 'less important' task dependencies from the matrix. This

can also be achieved by distinguishing unplanned iterations from planned iterations

indicated by marks in the upper diagonal of the DSM.

Planned iteration represents possible iteration between overlapped tasks or tasks within

coupled blocks, of which the impacts are accounted in a project plan. For overlapping

iteration between the tasks linked by "2" dependency mark in the DSM, the planned

iteration takes place when the downstream task receives new information from the

overlapped upstream task after starting to work with preliminary inputs. For sequential

iteration among the tasks within a coupled block, the planned iteration takes place when

35

the upstream task needs to incorporate the change of the initial estimate that it has started

with for the output from the downstream task. Also, the iteration may be caused by the

failure to meet the established criteria in testing or reviewing.

Unplanned iteration represents a possible iteration in a system level or between major

development phases (usually a long feedback loop in the DSM), which is not accounted

in a project plan. The loop usually feeds back from the task such as major testing or

reviewing at the end of each phase. This can also be caused by unexpected market

changes, technology innovation etc. in the middle of processes. The unplanned iteration

is often regarded as a failure mode and requires managerial decision about whether to

continue or abandon the project. When it is decided to pursue another iteration, it is

common to re-plan the project. The proposed method represents this type of iteration

flow with 'warning sign' (') in the DSM after partitioning. If this loop is initially

marked in the DSM and determined as unplanned after partitioning, smaller coupled

blocks can be obtained by replacing the dependency mark with the warning sign. Even

though unplanned iteration is not accounted in the schedule, it is very important to be

aware of the existence of those iterations so that appropriate contingency plans can be

made as part of project planning.

Figure 2-9 illustrates the results of hierarchical decomposition of the matrix input in

Figure 2-5, following the AEAP rule (the DSM obtained from this procedure is referred

to as the AEAP DSM hereafter). Note that a new index is assigned to each task. Two

coupled blocks are identified and different color schemes are applied to the blocks. The

tasks within each block are expected to do planned iterations. The example also shows

that it has chances to do unplanned iterations after finishing task n which might be the

task performing major reviews. In level two, block] and task b are independent of each

other, which implies that they can be worked in parallel. The same interpretation can be

made for the tasks in level three and four.

36

Task Name Level
a 1

C 2 2

d 2 3

_ _2 4

j j 2 ,5

b

e
m
h
k

f

4
4
4
4

6

7
8

9

i 13

n 14

o 15

FiGURE 2-9. HIERARCHICAL DECOMPOSITION BASED ON THE AEAP RULE

Another view of the DSM can be obtained by collapsing coupled blocks into block tasks

as suggested by Eppinger et al (1994). This type of the DSM can provide the structure of

a project more concisely and can also be used in multi-tier DSM's (Sabbaghian et al.

1998). In the collapsed view, information flow from a single task to a block task is

marked as "2" when there exists at least one second-type flow between the single task

and any constituent task within the block in the DSM. In contrast, any information flow

from a block task to any single or block task is regarded as the second-type flow as it is

very likely that the preliminary outputs of tasks within the block are transferred to

downstream tasks before converging to their final forms at the end of iterations. Figure 2-

10 illustrates the collapsed view of the DSM shown in Figure 2-9 (hereafter referred to as

AEAP Collapsed DSM). Note that a new index is assigned to each single or block task.

Two coupled blocks are collapsed into block tasks of which the diagonal are filled with

the same color used for coupled blocks in the AEAP DSM. Notice that information flows

to and from block tasks are changed according to the above rules.

37

1 12 13 14 5 16 17 18 19 110111112113114115 _

2 lock 2_

$ _3_

1 _4_

_5
1 $ 6

17_

2 11 bloc k2 9

2 2 !10

1 2 12

2 113

.~ 1 1 15

11 21 3 14 15 16 17 181 9 110111 [12113114 [15

,-- ---4 -

10
11
12

Task Name Level 1 3 567189 10

_________________1
b_____ck1__ 2 2 2__ 2

b 3 13

M 5 25

block2 6 2 1 6

1 1 2 1 10
12134 5T7 8 19 1

FIGURE 2-10. COLLAPSED VIEW OF AEAP DSM

2.3.3 Hierarchical Decomposition Based on As-Late-As-Possible Rule

In the previous section, the DSM's obtained by hierarchical decomposition are based on

the AEAP rule. However, it is not always true that tasks are planned to start as early as

possible when they have slack (float). Thus, we may have different DSM's which

essentially show the same structure of a project but with different task sequences. In

order to find those alternative DSM's, the method to obtain the DSM based on the as-

late-as-possible (ALAP) rule is explained in this section (hereafter referred to as ALAP

DSM). Under the ALAP rule, the starting time of a task is delayed to the extent that it

does not delay entire project, i.e. it can be delayed within the slack of the task.

The author proposes two alternative methods to obtain the ALAP DSM. The first method

takes a similar approach to Warfield (1973) by using the reachability matrix. After

computing the ALAP DSM using the algorithm in Figure 2-11, the collapsed DSM can

also be obtained in the same way as in the AEAP DSM.

38

(1) For every task i (i = 1, 2, ... , n) within a project, compute the following
sets:

Ri = { j I R*(i, j) =1; j=l,...,n }
Ai = { j I R*(j, i) =1 ;j=,...,n I

where, R* : reachability matrix

n : number of tasks in the project

(2) Compute the set Lk for k= 1, ... ,m , where m is the maximum level in the

project, as follows:

(i) L 1 = { i I R n A =A ; i=l,...,n }

(ii) for k = 2, ... , m,

Lk = { it\ R[n~r A' = A'

A = A, - (LI -- u L_); i=l,...,n and i (L, u .--. L _,) }

wherem=mink s.t. (Lu --- u Lk) = {1, ... , n

(forL1 , n(Ai)) is(3) Construct the DSM from the task i, of which n(A')

higher, in Lk fork= m, ... , 1.

s.t. R' = Rl - (LI u ... u Lk,) and

<Note>

(i) Lk is the set having the tasks in level 'm - k + 1'.

(ii) If n(A') (n(Ai) for L,) is higher than one, the tasks in A' (Ai for L,) constitute a

coupled block.

(iii) '(3)' determines the ordering of tasks in the same level such that a coupled block
is located before a single task and, with more than one coupled block, the one
with more constituent tasks is located upfront.

FIGURE 2-11. ALGORITHM COMPUTING DSM BASED ON ALAP RULE

39

The second method uses the AEAP Collapsed DSM. Since coupled blocks are collapsed

into block tasks, there exists no feedback dependency in this collapsed DSM. After

computing the ALAP Collapsed DSM using the algorithm in Figure 2-12, the ALAP DSM

can be constructed by de-collapsing block tasks in the collapsed DSM to coupled blocks.

(1) For every task i (i = 1, 2, ... , p) in the AEAP Collapsed DSM, compute the
following sets:

Ai = { j I AEAP (j, i) 0 ; j = i,...,p

where, AEAP: AEAP Collapsed DSM of which (i, i) for i = 1, ... , p is "1"
p: number of tasks in the AEAP Collapsed DSM

(2) Compute the set Lk for k = 1, ... , m , where m is the maximum level in the
project, as follows:

(i) Li = { i I Ai = { i }; i =1,...,p }
(ii) for k = 2, ... , M,

L = { i \ A'= { i } s.t. A' = Ai - (LI- u L_); i =I,..., p and

i e (LI u Lk_,) }

where m = min k s.t. (L, u ... u Lk) = {1, ... , P}

(3) Construct the DSM from block task(s) with more constituent tasks to single
task(s) in Lk for k = m, ... , 1.

<Note>

(i) Lk is the set having the tasks in level 'm - k + 1'.

(ii) '(3)' determines the ordering of tasks in the same level.

FIGURE 2-12. ALGORITHM COMPUTING ALAP COLLAPSED DSM

FROMAEAP COLLAPSED DSM

40

Figure 2-13 illustrates the results of hierarchical decomposition of the matrix input in

Figure 2-5, following the ALAP rule. Note that the levels of tasks as well as the sequence

of tasks are changed from the AEAP DSM. For example, tasks b and e are on the second

and third in the ALAP DSM while they are on the sixth and seventh, respectively, in the

AEAP DSM. Also, block], which is on level two of the AEAP DSM, is located in level

four of the ALAP DSM. Figure 2-14 illustrates the ALAP Collapsed DSM.

Task Name Level 1 16 17 12 13 14 15 112
a2 1

- 7
C 4 2 2
d 4 3

___ ___ 4 41

4 5
A 12

I

2

1

1

1

2

7

2

6 2 13 14 I5 11219 11011118 1

FIGURE 2-13. HIERARCHICAL DECOMPOSITION BASED ONALAP RULE

1412 1716 18 910

e

f
h
k

m

n

9 1101111 8

......

............
Oic

lbfe OT...........
...........

......... ... -----------

..........

2 2

E.
......

13114115

6
7
2
3
4
5

12
blck2 9

10
11
8

13

114

1 15

13 14 15

1......
1......

1 1

Task Name Level 1 3 4 2 17 16 1518 19 110

a 1 1

b 2 31 $ 3

e 4 1 4

blocki 4 2 2 2
f 4 7 1 2 7

block2 6 21 6

m5 -5

I8 1 12 8
n 6 9 2 1 1 9

0 10 2 1 1 10

1 13

FIGURE 2-14. COLLAPSED VIEW OF ALAP DSM

41

...........

............

...

............

............

..........

..........

II

....

1 t : -

..

1

2.3.4 Level Slack and DSM with Customized Task Sequence

Level slack of a task is defined as the difference between the level in the ALAP DSM and

that in the AEAP DSM. Figure 2-15 illustrates tasks with nonzero level slack based on the

AEAP Collapsed DSM in Figure 2-10. Dotted boxes are wrapped around the columns of

those tasks between the levels they can be located in. For instance, block] has level slack

of two and can be located between levels two and four. Tasks m and block2 have nonzero

level slack as well.

TaskName Level 12 3 4 5 6 7 8 9 10
a____________ 1

blockl 2 2 2
bam 2ee 3 1 3

_ 14

M5 2 5
1

5

block2 4 6 2 1 6
f 4 7 1 2 7

i 8 2 18

n 6 9 12 1 9
0 1 2 1 10

1 2 3 4 5 6 7 8 9 10 1

FIGURE 2-15. LEVEL SLACK IN AEAP COLLAPSED DSM

A task with nonzero level slack can be placed in a different hierarchy between its level in

the AEAP DSM and that in the ALAP DSM without affecting the structure of the project.

If the task is planned to start with some lag (i.e. later than the as-early-as-possible

schedule), the DSM can show the better structure of the project by moving it to the level

where tasks in the same level are possibly performed in parallel with it. Figure 2-16

illustrates the collapsed DSM with customized task sequence in which task m is moved to

level five from level three in the AEAP Collapsed DSM in Figure 2-10.

42

TaskName Level 2 4617151819 10

a 1
Block1: 2 2 22

b 3 3

e 44
Block2: 4 6 6

f4 7 1 2 7

m 5 2 5

I 8 _

n 6 9 2 1 1 9

o 10 2 1 1 10
12 3 T4 6 7 5 181910

FIGURE 2-16. COLLAPSED DSM WITH CUSTOMIZED TASK SEQUENCE

2.4 Information Dependency Classification

The method presented in this section classifies information dependencies by analyzing

the results from hierarchical decompositions. Through this classification process, a

smaller number of precedence relationships between tasks are drawn from information

dependencies between tasks. Thus, it reduces the number of constraints, hence

complexity.

2.4.1 Definitions of Various Dependencies

The method first classifies information dependencies into two categories: binding and

non-binding. The underlying purpose of this classification is to identify redundant

information dependencies and to reduce complexity by eliminating redundant constraints.

A binding dependency represents the dependency which is regarded as a constraint

between two dependent tasks. The delay of information transfer from the upstream task

directly causes the downstream task to slip. This information dependency is translated to

a precedence task relationship of "finish-to-start" for scheduling analyses in the following

chapters. Note that all dependencies within coupled blocks are regarded as binding. A

non-binding dependency represents the dependency which is not regarded as a constraint

43

between two dependent tasks. The delay of information transfer does not directly impact

the schedule even though there is information flow between two tasks. Thus, it is

regarded as a redundant constraint and omitted from further scheduling analyses.

Figure 2-17 illustrates binding and non-binding dependencies in a simple example. Two

feasible scenarios are given in (b) and (c) that correspond to the DSM in (a). The scenario

one is the case that all three tasks generate single outputs and the scenario two is the case

that task a generates multiple (two) outputs while other two tasks generate single outputs.

The following examples in part designs would explain such scenarios in which task a is

the design of part A, task b is the design of part B, and task c is the design of part C:

Scenario one: part A has interfaces with both parts B and C while parts B and C also

have a common interface. The design of part B needs dimensions of part A before

starting, and the design of part C needs dimensions of part B while it also requires

dimensions of part A.

Scenario two: part A is connected with part B while parts B and C have a common

interface. The design of part B needs dimensions of part A before starting, and the

design of part C needs dimensions of part B while it also requires information about

the material of part A to analyze structural performance.

In both scenarios, even though task c needs information from task a, it does not give a

precedence constraint because task a must have been completed by the time task c starts

after task b is finished. Therefore, information dependency between tasks a and c is non-

binding while other two dependencies are binding. However, this non-binding

dependency is also significant because people who perform task c should know from

whom or where they can find inputs to work.

44

'b C

Task Name 1 2 3 (b) Scenario one
a 1
b 2 1
c 3 'l1 a2

(a) DS S~0 i 'a2I'b'

non-binding dependency (c) Scenario two

FIGURE 2-17. AN EXAMPLE OF BINDING AND NON-BINDING DEPENDENCIES

Next, the method classifies two types of a binding dependency. A critical binding

dependency is a binding dependency between the tasks with zero level slack. A non-

critical binding dependency is a binding dependency which is not critical-binding.

Following critical binding dependencies along the tasks, the path goes through the entire

process hierarchies of a project from the first level to the last level. Kusiak et al. (1995)

called this path as a critical dependency path (however, they did not provide the method

or algorithm to identify this path). This path is different from a critical path because it is

determined without considering time aspects. However, this path provides guidance for

process improvements in the early stage of planning processes when detailed data for

durations are not available. Particular attention needs to be paid to critical binding

dependencies in order to shorten the lead time.

Figure 2-18 illustrates various dependencies in the collapsed DSM in Figure 2-15. The

marks at (7, 3), (10, 5), (6, 3), (8, 4) and (10, 6) represent non-binding dependencies. The

marks in latter three cells are converted from "2" in the AEAP Collapsed DSM to "1"

marks since there are no benefits from overlapping between the tasks linked by non-

binding dependencies.

45

TaskName Level 1 2 3 4 5 6 7 8 9 10

a 1 1

blocki 2 22 2

b 2 3 3

e 4 4 4

M 5- 2 5

block2 4 6 1 1 6

f 4 7

1 8 1 8

n 6 9 ?.... 49
0 10 1 14 1

34 5 6 17 18 19 10

non-binding dependencies

-i & -: critical binding dependencies
1 & 2 non-critical binding dependencies

FIGURE 2-18. AN EXAMPLE OF INFORMATION DEPENDENCY CLASSIFICATION

The network diagrams in Figure 2-19 show the equivalent structure of the above

collapsed DSM except that non-binding dependencies are omitted. It is noticed that block

tasks B] and B2 as well as singe task m can be placed in different levels since they have

nonzero level slack. The path along the tasks a-b-e-f-i-n-o is a critical dependency path of

the project linked by critical binding dependencies. The dotted arrows indicate non-

critical binding dependencies between tasks. The dependency between tasks b andf in the

collapsed DSM, for instance, is omitted since it is non-binding. Note that the coupled

blocks collapsed in these analyses are expanded in the modeling and scheduling analyses

in the following chapters.

46

f

(a) Based on the AEAP Rule

f

.... 3B 0

U L(2) L.,) L(4) L() L(6) L7)

(b) Based on the ALAP Rule

FIGURE 2-19. NETWORK DIAGRAMS CORRESPONDING TO COLLAPSED DSM's

2.4.2 Algorithms for Information Dependency Classification

Since all dependencies within coupled blocks are regarded as binding, the algorithm

receives initial values from the AEAP Collapsed DSM and classifies into the categories

explained earlier. For complete classification of information dependencies, the method

follows two steps: (1) classifies all dependencies into two groups - binding and non-

binding, (2) classifies binding dependencies into two groups - critical binding and non-

critical binding. Two alternative algorithms for the first step of classification are

proposed. The first one uses matrix manipulations while the second uses process levels.

The algorithm for the second step of classification also uses process levels.

47

2.4.2.1 Algorithms Classifying Binding and Non-Binding Dependencies

The method assumes that, the downstream task cannot be completed before the upstream

task finishes when tasks are overlapped, as illustrated in Figure 2-20. Figure 2-21 and

Figure 2-22 show the algorithms that classify binding and non-binding dependencies.

Task Name 1 2
a 1

b 2 2

"not allowed!"

"allowed!"

FIGURE 2-20. ASSUMPTION FOR OVERLAPPED TASKS

FIGURE 2-21. ALGORITHM <]> TO CLASSIFY BINDING AND NON-BINDING DEPENDENCIES

48

aZ~

For i = 2, 3, ... , n, where n: number of tasks in the AEAP Collapsed DSM,

(1) Set M(ij) = DSM(ij) for j= 1, ... , i - 1

where, DSM(i, j) : number in the AEAP Collapsed DSM representing
the type of dependency between tasks i and j

(2) For i > 2, compute the matrix M by executing the following loop:

for ii = 2 to i
for j= i -2 to 1 decreasing by 1

for k =1 + I to i - I
M(ii, j) = M(ii, j) + M(k, j) x M(ii, k)

next k
next]

next ii

s.t. DSM(i, j) # 0,(3) Forj= 1, ... , i - 1

if M(i, j) > DSM(i, j) for j= 1, ... , n,

(i, j) E Q, : a set of non-binding dependencies

otherwise, (i, j) E Q2 : a set of binding dependencies

FIGURE 2-22. ALGORITHM <2> TO CLASSIFY BINDING AND NON-BINDING DEPENDENCIES

Note that the algorithm <2> does not give a complete set of binding and non-binding

dependencies. Figure 2-23 illustrates the example of the binding dependency which is not

identified by the algorithm <2>. In this example, the dependency between tasks b and g is

not counted as binding even though it actually is. These exceptions rarely happen when

two tasks, of which the process levels differ by more than one, are placed on parallel

paths that have the same length of process levels. Thus, this algorithm can be used in less

computation time with marginal errors. When the difference between the levels of two

tasks is two as in the figure, the exceptions belong to the following set Q2

Q2 ={ (ij) i=1,2,...,n ; j=l,...,i- I and j e B"}

where, B= {j AEAP (j)+ 2 = L, j B' for Vk e B' and j=1,...,l-1}

49

For i = 2, 3, ... , n, where n: number of tasks in the AEAP Collapsed DSM,

(1) Identify the following two sets:

E= {j \ AEAP(i, j) #0 and LAEAP(i) + 1 = LAEAP()

Leq(i) = {seq(j) I ALAP(i, j) # 0 and LAP(j) + 1 = LAP(i) j = 1.i-I

where, AEAP (i, j): number in the AEAP Collapsed DSM (0, 1 or 2)

ALAP (i, j) : number in the ALAP Collapsed DSM (0, 1 or 2)

LAEAP (i) : level of task i in the AEAP Collapsed DSM

LALAP (i) : level of task i in the ALAP Collapsed DSM

seq(i) : function that maps the index i in the ALAP Collapsed DSM
to that in the AEAP Collapsed DSM

(2) For j= 1, ... , i - I s.t. j e B' = (Ei u L),

(ij) e Q2 C Q2 : a set of binding dependencies

When the difference of the levels is over two, a set has a more complex form. However,

the dependencies in this set rarely constrain the project if considering durations of tasks.

Task Name Lvl 1112131415161718

a 1 1
b 2 2 1 2

c 2 3 1 3

d 4 1,..-4

e 5 1 '' 5

f 4 6 .. '6

9 4 7 1 __ 7

h 81 1

1121314151617181

b d f

C e g

1-i i L(2) 1_1' L(4) L5

FIGURE 2-23. AN EXCEPTION OF ALGORITHM <2>

2.4.2.2 Algorithm Classifying Critical and Non-Critical Binding Dependencies

Q3 = { (i, J) e Q2 I LEAP (i) = LAMP (seq' (i)) and LAP (j) = LAMp (seq-' (j))

: a set of critical binding dependencies

Q4 = { (i, J) e Q2 I (i, D 3)

: a set of non-critical binding dependencies

where, LAEAP (i) level of task i in the AEAP Collapsed DSM

LAM (Ai) level of task i in the ALAP Collapsed DSM

seq-'(i) function that maps the index i in the AEAP Collapsed

DSM to that in the ALAP Collapsed DSM

FIGURE 2-24. A LGORITHM <2> TO CLASSIFY BINDING AND NON-BINDING DEPENDENCIES

50

2.5 Chapter Summary

In this chapter, the process-structuring methods are presented using the design structure

matrix. The methods structure complex information flows in the project and decompose

processes into hierarchies. And they identify iteration loops and distinguish planned

iteration from unplanned iteration. Through the information dependency classification

process, a critical dependency path is identified and redundant dependencies are

eliminated in further analyses in the following chapters. Improvements can be made from

a structural view using the results of analyses in the early stage of planning. The methods

are used as the structuring module in the integrated project management framework.

51

52

CHAPTER 3

Process-Modeling Methods Using Advanced Simulation

3.1 Introduction

In this chapter, a product development process modeling and analysis technique using

advanced simulation is presented. The model is a second-generation, DSM-based,

dynamic process simulation model that can incorporate many more general

characteristics of complex product development processes, including the following

features:

. modeling dynamic iteration characteristics among sequential, parallel and

overlapped tasks

. resolving resource confliction in the iterative project network

. taking into account the normal variance of development time

. assessing schedule risks of iterative processes as they progress

. calculating slack and identifying critical sequences in a resource-constrained

iterative project

The model uses the design structure matrix representation to capture the information

flows between tasks. In each simulation run, the expected durations of tasks are initially

sampled using the Latin Hypercube Sampling method and decrease over time as the

model simulates the progress of dynamic stochastic processes. It is assumed that the

rework of a task occurs for the following reasons: (1) new information is obtained from

overlapped tasks after starting to work with preliminary inputs, (2) inputs change when

other tasks are reworked, and (3) outputs fail to meet established criteria.

In order to analyze such a rich process model, numerical simulation methods are

employed. The model differs from the Virtual Design Team framework (Levitt et al.

1994) in that the objective of the VDT simulation is to predict organizational breakdowns

53

in performing activities while the goal of this model is to predict dynamic behavior of

iterative processes.

3.2 Model Inputs

Model inputs explained in this section characterize behaviors of individual tasks and

interactions among the tasks from a schedule perspective. The duration of a task is used

to model uncertainty and complexity within the domain of the task. Precedence and

resource constraints are used to determine the boundaries of tasks along the time line.

Iterations are modeled to predict the patterns of workflows caused by dynamic

information exchanges among the tasks.

3.2.1 Task Durations

The model uses the triangular probability distribution to represent the characteristic of a

task duration since it offers comprehensibility to a project planner (Williams 1992a). For

each task (i = 1, ... , n), the model receives three estimated durations - optimistic (do,,),,

most likely (d1k,1Y)i and pessimistic (dpess), as in some PERT-based analyses - for the

expected duration of one-time execution. The expected duration is the duration between

the start and end of its continuous work even though the task may iterate more than once

afterwards. Remaining duration, di of task i decreases over time as the model simulates

the project's progress. The model also receives actual duration (d,1 ,)i if the task has been

in progress. The original duration is defined as (do,), (do,,)i + di representing the

duration of task i at the start of the simulation.

It has been found that assessing the 10th and 90th percentiles of the expected duration is

more reliable than the extremes of the PDF which are typically outside the realm of

experience (Williams 1992a, Keefer and Verdini 1993). The model uses the Latin

Hypercube Sampling (LHS) method (McKay et al. 1979) to incorporate the uncertainty

of the expected duration of a task based on three estimated durations. After calculating

54

the extreme values of the PDF, it divides the range between them into N strata of equal

marginal probability 1/N where N is the number of random values for the expected

duration representing a known triangular PDF. Then, it randomly samples once from each

stratum and sequences the sampled values randomly. Figure 3-1 illustrates the LHS

procedure.

f(d) f(d) A = A2= ...=AN-I=AN= 11N

A =0.1 A = 0.1
-- d(d), d(N-I),d (N)

dopt dikl dpess T d d
o'pd't(md ... d(N-I) d(N)

FIGURE 3-1. LATIN HYPERCUBE SAMPLING

3.2.2 Precedence Constraints

In the previous chapter, two types of information flows are defined from a schedule

perspective. Using information flows and types of transfer patterns documented in the

DSM, precedence task relationships are drawn in order to extend the information-based

approach to the scheduling model.

The first type of information flow (representing the case that the downstream task

requires final information from the upstream task to begin its work) is translated to a

"finish-to-start" precedence constraint between two tasks. The second type of information

flow (representing the case that the downstream task uses final information in the middle

of its process and/or begins with preliminary information but also receives a final update

from the upstream task) is translated to a "finish-to-start plus lead" constraint. The DSM

is used to document these information flows and precedence constraints. The notation

DSM(i, j) for i, j = 1, ..., n is used to represent this two-type scheme in the DSM where:

55

. DSM(i, j) = 0 when there is no information flow from task j to task i

. DSM(i, j) = 1 when there is the finish-to-start type of information flow from task j

to task i

. DSM(i, j) = 2 when there is the finish-to-start-plus-lead type of information flow

from task j to task i

Figure 3-2 illustrates types of information flows and precedence constraints between

tasks a and b. Note that each of three arrows in (b) represents the second type of

information flow while it is modeled as the same precedence constraint.

b

Task Name 1 2

a

b 2A1

DSM(i, j) (i, j = 1, 2)

(a) Finish-to-Start

a Task Name 1 2
a1

b b 2 2

DSM(i, j) (ij = 1, 2)

(b) Finish-to-Start + Lead

FIGURE 3-2. INFORMATION FLOWS AND PRECEDENCE CONSTRAINTS

3.2.3 Resource Constraints

The model assumes that there exists a fixed resource pool throughout the entire project

duration. It consists of specialized resources and/or resource groups of which constituents

exhibit the same functional performance. Each task has its own resource requirement

which is assumed to be constant over the entire period the task is processed. When two or

56

more tasks are competing for limited resources in a certain period of time, i.e. resources

are over-allocated, the model determines priorities by the heuristic rules which are

explained later in this chapter.

3.2.4 Iteration

Eppinger et al. (1997) defined iteration as the repetition of tasks to improve an evolving

development process. In the thesis, iteration is referred to as rework caused by other tasks

without including repetitive work within a single task (variance in duration). The model

assumes that planned rework of a task is generated due to the following causes (similar to

the explanations of Smith and Eppinger (1997a), Eppinger et al. (1997), Browning and

Eppinger (2000)):

. receiving new information from overlapped tasks after starting to work with

preliminary inputs

. probabilistic change of inputs when other tasks are reworked

. probabilistic failure to meet the established criteria

In the proposed model, the first cause gives rise to overlapping iteration, and the second

and the third causes give rise to sequential iteration. Parallel iteration of a limited number

of tasks is simulated in this model by combining overlapping and sequential iteration.

3.2.4.1 Overlapping Iteration

Overlapping has been described as a "core technique for saving development time"

(Smith and Reinertsen 1995). It is generally acknowledged that overlapping tasks may

save time, but is more costly than the traditional sequential approach. Following the

definition of task relationships in this work, however, this may be true only when the

overlapping implies the transfer of incomplete preliminary information. This is also

related to how to define a task. If the tasks are defined such that all information

exchanges take place at the end of tasks, the project network could be modeled using only

a sequential iteration model.

57

Suppose two dependent tasks are overlapped sequentially and the downstream task starts

to work with the preliminary information from the upstream task. As the upstream task

evolves, its output information also evolves to its final form while the new information

generated since its initial transfer of the preliminary information gets released according

to its communication policy. The downstream task may repeat the part of its work to

accommodate this new information which is unnecessary if it started to work with the

final information from the upstream task. In this model, it is assumed that overlap

amounts as well as expected rework impacts between the two tasks can be estimated in

the planning stage.

The model uses the DSM representation as shown in Figure 3-3. The notation OA(i, j) is

used for maximum overlap amount and OI(i, j) for overlap impact for i, j = 1, ... , n. The

former represents the planned overlap amount between tasks i and j and it is a fraction of

the expected duration of task i. This carries the assumption that the downstream task

cannot be completed before the upstream task finishes (this is in accordance with the

assumption in the previous chapter). The latter represents the expected overlap impact

when task i is overlapped with task j by the amount OA(i, j) x d, and it is a fraction of

that amount. OI(i, j) = 1 implies no benefit from overlapping. To implement overlapping

strategy, it should be reasonably less than 1 considering additional risk due to the

evolution of volatile preliminary information.

In Figure 3-3, task b starts with preliminary information from task a. It is planned to

begin earlier with preliminary information and expected to finish 20% of its work before

task a gives a final update. However, it is also expected to rework half of work done

through overlapping to incorporate updated information from task a. Thus, lead time is

reduced by 10% of d2 from this overlapping.

58

I a---- 11 1 11 1

Task Name 1 22

a 1

b 2 22

DSM(i, j) OA(i, j) OI(i, j) (i, j = 1, 2)

a

b

0.2 d 2 d 2 0.1 d 2

FIGURE 3-3. OVERLAP AMOUNT AND IMPACT BETWEEN Two TASKS

3.2.4.2 Sequential Iteration

As explained in the previous chapter, the model distinguishes unplanned iteration from

planned iteration, and incorporates the effects of only planned iterations when computing

the lead time of a project (while it also allows for assessing the effects of unplanned

iteration). Thus, the model accounts for sequential iteration caused by feedback marks

only within coupled blocks. It takes an approach similar to Browning and Eppinger

(2000) by explaining sequential iteration using rework probability, rework impact and the

learning curve.

Rework probability is a measure of uncertainty in sequential iteration. RP(i, j, r)

represents the probability that task i does rework affected by task j in rth iteration for i, j

= 1, ... , n and r = 1, 2, ... In the case of i < j, it represents the feedback rework caused by

the change of information from downstream task j or by the failure of downstream task j

to meet the established criteria. In the case of i > j, it represents the feedforward rework

that downstream task i needs to do since upstream task j has generated new information

after it has done its own rework. As the development processes converge to their final

solutions with iterative rework, there are less chances that new information is generated

59

and errors are discovered. Therefore, rework probability tends to decrease in each

iteration.

Rework impact is a measure of the level of dependency between tasks in sequential

iteration. RI(i, j) represents the percentage of task i to be reworked when rework is caused

by taskj for i, j = 1, ..., n. Rework impact is assumed to be constant in each iteration.

The learning curve measures a characteristic of a task when it repeats. (L,i for i = 1,

n represents the percentage of original duration when task i does the same work for a

second time. The model assumes that the learning curve decreases by (Li), percent in

each repetition until it reaches (Lm.)i which is the minimum percentage of original

duration when task i does the same work repeatedly. Thus, rework amount is calculated

as the original duration multiplied by rework impact and learning curve. Figure 3-4

shows the rework probability and impact for sequential iteration using the DSM

representation, and Figure 3-5 illustrates the learning curve.

1 2 11 2

1 0.4 .31 0.8
2 10.5 2 0.6

RP(i, j, r) RI(i, j) (i, j = 1, 2; r = 1,2,3,...)

FIGURE 3-4. REWORK PROBABILITY AND IMPACT

% of (do,1)i
100%

(Lo i)

(L ,i)?

(L.ax)i

Ist 2nd 3rd ... # of iteration

FIGURE 3-5. LEARNING CURVE

60

3.3 Description of the Basic Model

The model employs the parallel discrete event simulation (Pritsker and O'Reilly (1999),

Zeigler et al. (2000)) to compute the distribution of lead time. Analytical features are

included so that the model can describe the complex behavior of development processes

having overlapped tasks and sequential iterations. This section explains the underlying

structure of the simulation-based model. The detailed procedure and model variables are

presented in the section Al of the Appendix.

3.3.1 Model Structure and Algorithm

In discrete time systems, the model assumes a discrete mode of execution. It is in a

particular state at a particular time instant and advances to the next state in a sequential

manner along the time line. In the discrete event simulation, events trigger state

transitions and time advances in discrete steps by the time elapsed between events. The

distinctive feature of discrete event simulation is that no components within a system

need to be scanned during times between events (in contrast, the discrete time simulation

requires that scanning must be performed at each time step). A parallel simulation allows

multiple model components to be active and to send their outputs to other components.

The model uses different expected durations of tasks in each simulation run which are

initially sampled using the Latin Hypercube Sampling method. With those durations of

tasks, it simulates a series of sequential state transitions incorporating iterations in

multiple paths. States are determined dynamically based on all the inputs of tasks and

task interfaces explained earlier. In each state, it scans all tasks and determines a set of

active tasks satisfying both precedence and resource constraints. If the amount of

resources required by the tasks satisfying precedence constraints exceeds the resource

capacity of the project, resource assignments are made by the heuristic priority rules. It

assumes that a task begins to work as early as possible when it has all the necessary

inputs from upstream tasks and all the required resources.

61

An event is defined as the completion of a task instead of any information transfer. Thus,

when any active task in the current state q is completed, the model makes a transition to

the next state 'q+1'. The duration of state q, Dq (q = 0, 1, 2, ...) is defined as the

minimum remaining duration of active tasks in the state. Before making a transition to

the next state, the model subtracts the duration of the current state from the remaining

durations of all active tasks. If all the remaining durations of tasks are zero, one

simulation run is complete and the lead time is calculated as the sum of all the state

durations. After N simulation runs, the probability distribution of lead time can be

displayed.

Figure 3-6 summarizes the algorithm to compute the lead time in one simulation run. A

simulation run starts with initializing model variables from the model inputs at STEP1. It

simulates time advance of tasks by following STEP2 through STEP7 in each state until it

satisfies the termination condition.

For each simulation run,

STEP 1. Initialize model variables from the inputs at state 0.

STEP2. Initialize model variables in the current state q.

STEP3. Identify a set of concurrent active tasks in the current state satisfying

precedence and resource constraints based on the priority rules.

STEP4. Adjust overlapping iteration.

STEP5. Adjust the durations of the active tasks and the lead time.

STEP6. Generate sequential iteration rework.

STEP7. Make a transition to the next state q+1 or finish the simulation run if

satisfying the termination condition.

FIGURE 3-6. ALGORITHM FOR COMPUTING LEAD TIME IN THE BASIC MODEL

62

3.3.2 Overlapping Iteration in Multiple Resource-Constrained Paths

In each state, the model identifies a set of active tasks which have started to work in the

current state. For each task in this set, the model simulates that its overlapped part of

work has been performed in prior state(s) and the expected impact due to iterations has

been added to the projection in the current state. The overlap amount of a task is

dynamically determined by both precedence and resource constraints with other tasks in

multiple paths. The model assumes that overlapped part of work has a lowest priority for

limited resources and does not start to do unless resources are secured during its

processing time. When the amount of overlap is different from the planned amount with

any information-providing task, it computes its overlap impact, assuming that it is linear

to the overlap amount. If a task is overlapped with multiple tasks, the overlap impact is

between the maximum of single impacts and the sum of them depending on the amount

of duplicate rework caused by those tasks. In this case, the model takes the latter as a

default. When a task is overlapped with any upstream task that has been reworked, the

model assumes that the overlap amount cannot exceed the rework amount of the

upstream task. Finally, the overlap amount is subtracted from the remaining duration of

the active task and the overlap impact is added to it.

3.3.3 Rework Generation for Sequential Iteration in Multiple Paths

In each state, the model identifies a set of active tasks which are supposed to be

completed in the current state. It is those tasks that cause state-transition events. For each

task in the set, the model determines whether it causes feedback and/or feedforward

rework to other tasks. Rework decisions are simulated by comparing each rework

probability with a random number. When rework occurs, the amount of rework is

computed by the original duration of a task doing rework multiplied by a rework impact

adjusted for learning curve benefit. Finally, rework amounts are added to the remaining

durations of those tasks that are determined to rework. Note that feedback rework in an

upstream task can also cause successive feedforward rework in subsequent states to the

downstream tasks that have been in process or completed before. The model also

63

simulates that a rework decision can be made before final output information is produced

through overlapping. The section A2 in the Appendix explains the details of how the

proposed method differs from the analytical methods using a Markov chain (Ahmadi and

Wang 1994 and 1999), a reward Markov chain (Smith and Eppinger 1997a), and a signal

flow graph (Eppinger et al. 1997), and from the first DSM-based simulation method

(Browning and Eppinger 2000).

3.3.4 Rework Concurrency

When tasks iterate sequentially, a choice of rework policy may allow rework concurrency

to shorten the lead time. For illustration, consider the simple example given in Figure 3-7.

The information flow diagram and its corresponding DSM show three sequential tasks

with feedback loops. In all other process models for sequential iterations surveyed in the

literature, when both tasks a and b require new information from task c, the rework of

task b cannot begin before the completion of the rework of task a. This is based on the

underlying assumption that the precedence constraint between tasks a and b should also

be respected when tasks iterate. However, a project manager may prefer a different policy

when there is a small chance that task a will produce new information also causing task b

to rework. By performing the rework of both tasks a and b concurrently, the lead time can

be reduced with small additional risk.

Task Name 1 2 3
a 1

ab 2 1 1

C 3 1

(a) Information Flow Diagram (b) DSM

FIGURE 3-7. AN EXAMPLE FOR TASK CONCURRENCY

We introduce the Rework Concurrency (RC) to model this strategic decision upon task

concurrency during iteration. It represents total direct and indirect feedforward rework

probabilities which control the level of concurrency in sequential iteration. The Rework

64

Concurrency is a lower-triangular matrix which takes direct rework probabilities from

RP(i, j, 1) (i = 2,..., n; j = 1,..., i-1) and adds them with indirect rework probabilities. The

indirect probability (i, j) represents the probability of task i doing rework caused by task j

through the intermediary of other tasks between i and j. For example, RC(5, 2) in Figure

3-8 is computed as the sum of indirect rework probabilities between tasks 2 and 5

through tasks 3 and 4 as intermediaries (0.5x0.l + 0.5 xO.4 = 0.25).

RC(i, j) (i > j) is computed at STEP3 of the simulation algorithm when determining the

concurrency of tasks i and j when task j is reworked. The model assumes that a task can

be performed even though there exists an upstream dependent task being reworked if the

total rework probability between the two tasks in the RC is less than the probability

Poernce, a pre-determined rework risk tolerance. The algorithm to compute the Rework

Concurrency is included in the algorithm explained in the section A] of the Appendix.

In the above example, if RC(2, 1) < 'lierance, the model simulates that both tasks a and b

are reworked concurrently when both must be reworked. Otherwise, task b waits until the

rework of task a is completed, at which time, new information from task a becomes

available. In some cases, it may not be necessary for task b to use any of the new

information from the rework of task a. However, if the rework of task a does create

additional rework for task b, the total amount of rework of task b is between the

maximum and the sum of reworks generated by tasks a and c. The model uses the latter

as the default amount of rework required for task b and assumes that this quantity cannot

exceed the task's original duration diminished by the learning curve effect.

11 2 3 4 5 6

1m _
2 0.5 04
3 0.5
4 0.5 0.1
5 0.1 0.4

6 0.4

1 2 13 4 5 6

2 0.50
3 0.25O5
4 0.25 0.500 0. 00
5 0.13 0.25 0.10 10.4
6 .0.05 0.10 0.04 10.16 0.4O

RP(i, j, 1) RC(i, j) (i, j=. 6)

FIGURE 3-8. AN EXAMPLE OF REWORK CONCURRENCY

65

3.3.5 Measures and Rules for Resource Priorities

The heuristic priority rules that Cooper (1976) proposed are no longer applicable in the

project network where tasks iterate sequentially in a probabilistic manner. In this paper, a

rework-adjusted rank positional weight is proposed as a good measure that can help a

project manager to determine task priorities. The rank positional weight is one of the

measures that Cooper found among the best toward minimizing total lead time in the

project network without iteration. (See the section A3 in the Appendix for the definition.)

We define the rework-adjusted duration of a task as the expected value of the sum of the

duration of its first execution and the total amount of successive rework it creates for its

predecessors, assuming no resource constraints in the project network. Then, the rework-

adjusted rank positional weight is computed by replacing the deterministic duration of a

task in Cooper's definition with the rework-adjusted duration. This measure of task

priority is calculated before computing lead time with resource constraints.

The model determines priorities by the heuristic rules whereby a task has a higher priority

if:

(1) it has been in process

(2) it has a higher user-specified priority

(3) it has a higher rework-adjusted rank positional weight

(4) it is sequenced more upstream

(from (1) to (4) in order of significance)

The above priority rule is toward minimizing lead time of a coupled block. Rule (1)

implies that a task cannot be interrupted once it has started (non-preemption). Thus, the

model does not allow splitting of a task due to its resource constraints. The user-specified

rule in (2) can be used when resource priorities should be determined considering

different project objectives. Rule (3) stipulates that a higher priority is given to the task

that exposes the project to higher schedule risk.

66

3.4 Description of the Extended Model

In the CPM/PERT method, precedence relationships between tasks and durations of tasks

are the sufficient inputs for analyses. Slack (float) - hereafter referred to as conventional

slack - and a critical path are defined based on those two inputs. Combined with Monte

Carlo methods, it can also take into account normal variance of task durations. However,

as Weist (1964) pointed out, the definition of conventional slack is no longer valid when

a project network is determined by resource constraints as well as precedence constraints.

Thus, Bowers (1995) defined resource-constrained slack - hereafter referred to as RC

slack - as follows:

"the time by which a single task can be extended or delayed without affecting the

project duration, assuming that the resource allocation is unchanged".

Using this definition, a critical sequence (Weist 1964) is defined as the sequence of tasks

that have zero RC slack following both precedence and resource links.

However, the above definitions cannot be directly used in the iterative project network

where a probabilistic rule is applied. The following questions illustrate this restriction: if

a task has no slack in its first execution while having some slack in its first iteration,

would we use the average slack as a measure of task importance? What if the task repeats

twice in another scenario? For this reason, slack is not considered in all the process

models for iteration presented in the literature. In this section, the extended model is

presented to compute the RC slack of tasks as well as the lead time in a resource-

constrained iterative network. Critical sequences are also identified after computing RC

slack using this extended model.

3.4.1 Model Structure and Algorithm

In the extended model, the model assumes that sequential iteration takes place only

among the tasks within the coupled blocks that are identified by the structuring analyses

in the previous chapter. Then, the slack and criticality of tasks can be computed by

67

treating those coupled blocks as if they were single tasks having separate resource

requirements. (Hereafter, the coupled blocks that are collapsed in the extended model are

referred to as block tasks while the tasks not belonging to any coupled block is referred to

as single tasks.)

Figure 3-9 summarizes the procedure and interim outputs of this extended model. The

simulation starts with computing the probability distributions for expected durations of

coupled blocks. The basic model presented in the previous section is applied m times

individually where m is the number of coupled blocks in the project. Then, the model

computes the lead time and RC slack in the network without sequential iteration. Figure

3-10 summarizes the algorithm in one simulation run of STEP4 in Figure 3-9, including

forward and backward pass computation of the lead time.

While the extended model has the same simulation-based underlying structure of the

basic model, there are several differences, as discussed below.

In order to compute RC slack, the extended model performs both forward and backward

pass computations. Since it assumes no sequential iteration in the project where coupled

blocks are collapsed, the procedure in the basic model that generates rework for

sequential iteration is omitted. The model takes separate overlap inputs between block

and single tasks (or between block tasks when two coupled blocks can work in parallel).

Without specifying these amounts, a downstream task that is dependent upon any task

within a coupled block can start only when all constituent tasks in the coupled block

finish iterations. Thus, if poerai, > 0, the computed lead time from the extended model is

always equal to or longer than that from the basic model unless the overlapping is

specified between block and single tasks.

When adjusting overlapping iteration, the extended model modifies original durations of

tasks as well as remaining durations of tasks. And it uses those adjusted original

durations as remaining durations at the start of the backward pass computation. This

procedure eliminates the overlapping adjustment step in the backward pass computation.

68

For each coupled block,

STEP1. Forward pass computation without resource constraints, having one of N

LHS-sampled durations for constituent tasks

Output: Measures for task priorities for resources among the tasks within

the coupled block

STEP2. Forward pass computation with resource constraints, having one of N LHS-

sampled durations for constituent tasks

Output: Probability distribution for the expected duration of the coupled

block based on N simulation results

For the entire project with coupled blocks collapsed into block tasks having the

probability distributions for the expected durations of those blocks computed in

STEP2,

STEP3. Forward and backward pass computation without resource constraints,

having the most likely durations of single tasks and average durations of

block tasks

Output: Measures for task priorities for resources among the single and

block tasks

STEP4. Forward and backward pass computation with resource constraints, having

one of N LHS-sampled durations for single tasks and one of N simulated

durations for block tasks

Output:

(i) Probability distribution of the lead time based on N simulation results

(ii) Average and standard deviation of RC slack for each task

(iii) Major critical sequences with percentage of chances that they are

critical

FIGURE 3-9. PROCEDURES AND INTERIM RESULTS OF THE EXTENDED MODEL

69

For each simulation run,

<Forward pass computation>

STEP1. Initialize model variables from the inputs at state 0.

STEP2. Initialize model variables in the current state q.

STEP3. Identify a set of concurrent active tasks in the current state satisfying

precedence and resource constraints based on the priority rules.

STEP4. Create temporary precedence constraints for backward pass computation to

the tasks that have all the inputs but are delayed due to lower priorities for

required resources.

STEP5. Adjust overlapping iteration and modify original durations accordingly.

STEP6. Adjust the durations of the active tasks and the lead time.

STEP7. Make a transition to the next state q+1 or finish the forward computation of

the simulation run if satisfying the termination condition.

<Backward pass computation>

STEP8. Initialize model variables from the inputs at state 0.

STEP9. Initialize model variables in the current state q.

STEP 10. Identify a set of concurrent active tasks in the current state from the most

downstream task having nonzero remaining duration, which satisfy

precedence (including additional constraints generated during the forward

pass computation) and resource constraints.

STEP 11. Adjust the durations of the active tasks and the lead time.

STEP12. Make a transition to the next state q+l or finish the backward computation of

the simulation run if satisfying the termination condition.

<RC slack computation>

STEP 13. Compute RC slack for each task.

STEP14. Identify critical sequence(s) in the simulation run following the tasks having

zero RC slack.

FIGURE 3-10. ALGORITHM FOR COMPUTING LEAD TIME IN THE EXTENDED MODEL

70

3.4.2 Computing Resource-Constrained Slack

Resource allocations made in the forward pass computation must be respected in the

backward pass computation in order to compute the RC slack defined earlier. Woodworth

and Shanahan (1988) used a resource sequence label to record allocation decision of

resources to each task, and Bowers (1995) used a method to create explicit resource links

in the forward pass computation by identifying all resource flows. The latter method has

an advantage in that there is no need to account for resources during the backward

computation. However, the resource link should be created whenever a resource

allocation is made and this becomes complicated when tasks share resources having

multiple units in a complex project (or multi-projects). Thus, the author proposes the new

approach that uses a less number of explicit resource links and records of allocation

decisions.

During the forward pass computation at STEP4 in Figure 3-10, the model creates explicit

resource links from the active tasks which are supposed to be completed in the current

state to the tasks which have all inputs but are delayed because of lower priorities for

required resources. During the backward computation, the model regards these resource

links as additional precedence constraints that determine the starting time of tasks. When

resource over-allocation is found during the backward pass, the tasks with later start time

during the forward pass have priorities following the allocation decisions made during the

forward pass. In this way, only a small number of additional constraints are created

without tracking all the resource flows across the tasks. However, it is also necessary to

account for resources during the backward computation. The section A4 in the Appendix

discusses this method more in detail with comparison to the method proposed by Bowers.

The RC slack of each task is computed by subtracting earliest start time in the forward

pass from latest start time computed in the backward pass. Then, one or more critical

sequences are identified by following the tasks with zero RC slack. This process is

repeated in each simulation run to assess the variance of RC slack and to identify critical

sequences that may be changed in each simulation run due to the variance of task

durations.

71

3.4.3 Measures and Rules for Resource Priorities

The model takes the resource requirements for block tasks, assuming that those resources

are required over the entire period that all constituent tasks are processed. These

requirements may give constraints to other tasks that can be executed in parallel with

those block tasks.

Two measures for task priorities proposed by Cooper (1976) are used to determine

resource priorities among tasks in the network without sequential iteration. One is a

conventional slack per successor and the other is a cumulative resource equivalent

duration (see the section A3 of the Appendix for the definitions). Bowers (1995)

suggested that the conventional slack might be better used in loosely resource-

constrained networks while the resource equivalent duration might be better in tightly

resource-constrained networks. Thus, either one can be used as a more important measure

depending on a specific project.

These measures for task priorities are calculated with most likely durations of tasks

during the forward and backward pass computation without resource constraints in the

STEP3 of Figure 3-9. And they are used when computing the lead time with resource

constraints in N scenarios in the STEP4. Thus, the model assumes that resources are

allocated based on pre-determined measures without knowing the actual durations of

tasks during the simulation (Bowers 1995).

When two or more tasks are competing for limited resources in a certain state, the

extended model determines priorities by the heuristic rules whereby a task has a higher

priority if:

(1) it has been in process

(2) it has a higher user-specified priority

(3) it has higher cumulative RED

(4) it has a smaller conventional slack per successor

(5) it is sequenced more upstream

72

(from (1) to (5) in order of significance; (3) and (4) are interchangeable)

The model simulates that different allocation decisions (represented by explicit resource

links) can be made in each simulation run while the same pre-determined measures for

task priorities are used. This is based on the assumption that a project manager can make

resource-allocation decisions with the knowledge of past performance (i.e. actual

durations of tasks prior to the current state) and the priority measures that are calculated

with the best estimates for the expected durations of tasks (i.e. most likely duration

estimates). Note that the priority measures are based on the characteristics of a task itself

and successive tasks that have not been performed at the decision points. Bowers (1995)

did his analyses under two different assumptions that a project manager has perfect

knowledge of past and future performance or that all resource allocation decisions are

made well in advance without changes. The assumption in the thesis is between these two

extremes and represents more practical view as Bowers discussed in his work.

3.5 Chapter Summary

In this chapter, the process model is presented using advanced simulation. The model

computes the probability distribution of lead time in a resource-constrained project

network where iterations take place among sequential, parallel and overlapped tasks. The

extended model computes resource-constrained slack and identifies critical sequences in

a generalized project network having iteration. These models are used as the modeling

module in the integrated project management framework presented in the next chapter.

73

74

CHAPTER 4

An Integrated Project Management Framework

4.1 Introduction

Structuring Modelinq

Schedulino

FIGURE 4-1. AN INTEGRATED PROJECT MANAGEMENT FRAMEWORK

Figure 4.1 illustrates the integrated project management framework that this thesis

proposes. In the previous chapters, the methods for structuring and modeling modules

were presented. This chapter discusses how each module functions and interacts with

other modules within the integrated framework. And it presents some applications of the

framework in project planning and control.

4.2 Applications of the Integrated Framework

4.2.1 Project Planning

Under the integrated framework, the basic sequence of planning processes is 'structuring

- modeling - scheduling'. Figure 4.2 illustrates iterative information flows between the

modules in project planning.

75

I

I

Structuring Modeling

............ . : iteration
Scheduling

FIGURE 4-2. THE INTEGRATED FRAMEWORK IN PROJECT PLANNING

The structuring module analyzes complex information flows among tasks and

decomposes the project into process hierarchies to which each task belongs. The DSM

provides a compact visualization of information flows and helps define clear interfaces

between tasks. Tasks are sequenced to have minimum feedback iterations from a

structural view. The module also computes level slack of tasks and identifies the longest

path through hierarchies. Non-binding dependencies are identified and eliminated for

analyses in modeling and scheduling modules. Figure 4.3 illustrates the function of the

structuring module from the systems view in which a complex project is seen as the

system within which component tasks interact through information exchanges.

fi~voo

L(2) L- L(4) L L(6)

DSM Analyses

FIGURE 4-3. FUNCTION OF THE STRUCTURING MODULE FROM SYSTEMS VIEW

76

In the modeling module, dynamic iterative processes are simulated along the time line.

With the model inputs for characteristics of tasks, iterations etc., it simulates execution of

tasks and decision-making of project members in resource allocations, rework etc.

Different execution strategies are evaluated by adjusting modeling parameters. The

simulation outcomes include the probability distribution of lead time, criticalities of tasks

and major critical paths (or sequences) with percentages of criticalities. Figure 4.4

illustrates the function of the structuring module from the systems view.

State:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1

Simulation

FIGURE 4-4. FUNCTION OF THE MODELING MODULE FROM SYSTEMS VIEW

In the scheduling module, the outcomes of structuring and modeling modules are used to

construct a network-based schedule in the form of a PERT or Gantt chart with scheduled

task durations. The tasks having slack may be scheduled to have some lag to the extent

that they do not add more risk than the expected benefits from the late starts. Figure 4-5

illustrates different ways of representing coupled blocks in the Gantt chart. (a) is one

example of a traditional way of representation where all tasks constituting a coupled

block (loop) are listed k times where k is the expected number of iterations from

experience. (b) is the way that Austin et al. (1999) represented a coupled block when

transferring information in the DSM to the Gantt chart. In (b), all constituent tasks of a

coupled block are listed in parallel without precedence relationships and have the same

duration that is estimated directly for the coupled block. This method might be good

when the tasks are tightly coupled so that the duration of the block cannot be predicted

77

L(2) L(4) L(6)

with accuracy by modeling information exchanges among tasks or when the tasks are

loosely coupled so that they can work in parallel. Except these two extreme cases, the

sequential progress of tasks with moderate overlaps can be simulated in the modeling

module. In this case, a coupled block is represented as a 'rolled-up' task within which its

constituent tasks are arranged without feedback information flows, as illustrated in (c). A

dummy task is added at the end representing the duration of a coupled block that is

computed in the modeling module. As uncertainties diminish while tasks progress,

iterative execution of tasks can be updated under the rolled-up task. Note that the

sequence of tasks in iteration may be changed due to the probabilistic nature of iteration.

Sa

c

(ei on

(a) Using the Expected Number of Iteration

Fa

F(D) Block 1 Durto

F _ a

b

C

(b) Long Parallel Tasks without Relationships

Update!
ca

Actual Duration

(c) Using a Dummy Task Under a Rolled-Up Task

FIGURE 4-5. REPRESENTATION OF A COUPLED BLOCK

The deterministic durations of tasks (including rolled-up tasks) in a network schedule

may be chosen from a certain percentile in the probability distribution, depending on a

specific project. For instance, if the schedule target is given as 100 days from a start and

the lead time is expected to be 110 days with 50th percentile durations of tasks, the

78

percentile might be adjusted lower to meet the target in schedule, but with a higher

schedule risk. A project buffer may be added at the end representing aggregated safety.

This can improve the Critical Chain method (Goldratt 1997) as well.

Table 4-1 summarizes the inputs and outputs of each module in project planning.

Structuring

Modeling

Inputs

. A list of tasks

. Information flows among tasks

. Information flow patterns

. Duration estimates of tasks

. Resource requirements of tasks

and capacity of the project

. Dynamic characteristics of

overlapping and sequential

iterations (including the learning

curve)

. Rework risk tolerance

Outputs

. Design Structure Matrix

(Identification of loops and process

hierarchies among tasks)

. Differentiation of planned &

unplanned iterations

. Identification of non-binding

dependencies

. A critical dependency sequence and

level slack of tasks

. Probability distributions of the

durations of the project and coupled

blocks

. Resource-constrained (or

conventional) slack and criticalities

of tasks

. Critical sequences (or paths) with

percentages of criticalities

. Simulated Gantt charts

" Scheduled durations of tasks and . PERT or Gantt chart

.l coupled blocks chosen from the . Schedule risk that the project fails

probability distribution to meet the due date (or target)

. Due date and/or project buffer size

TABLE 4-1. INPUTS AND OUTPUTS OF THE MODULES

79

I

4.2.2 Project Monitoring and Control

Both the DSM and the Gantt chart can be used to monitor and control the project. The

DSM can accelerate communications between people by increasing the understanding of

interactions. Thus, the right information can be made available at the right place at the

right time (Browning 1999). In addition, the impact of any delay of a single task can be

easily identified by tracing information flows from the task. The Gantt chart is used to

track the progresses of tasks against a time scale. The tasks with high criticalities and/or

small slack need particular attention to reduce chances that the project is overrun.

Using the modeling module, the schedule risk can be identified quantitatively and its

assessment can accelerate proactive risk management efforts. The model inputs can be

easily updated to incorporate current information as the project progresses. For instance,

initial estimates for task duration, overlap amounts and impacts can be updated or

replaced with actual values as they become available. Rework parameters may be

updated to represent foreseeable iterations. As uncertainties diminish while the project

advances, the variance of lead time becomes smaller.

Note that all the benefits of each module can be achieved by maintaining compatible

interfaces between the modules. By following the streamlined processes within the

framework, any control efforts incorporating latest decisions can be easily represented in

the project plan. For instance, if there is a need to add a new task, the project plan may be

updated as follows: (1) identify the tasks which it requires inputs from and delivers

outcomes to - update the DSM, (2) enter its rework characteristics as well as its duration

estimates and resource requirements - update the process model, and (3) update the Gantt

chart using the results of analyses from the structuring and modeling modules.

80

4.3 Other Applications

The previous DSM-based process models (Smith and Eppinger (1997a and 1997b),

Eppinger et al. (1997), Carrascosa et al. (1998), Browning and Eppinger (2000)) have

provided practical insights for process understanding and improvements. This section

discusses applications of the simulation-based model (which is used in the modeling

module of the framework) that further enhance analyses that have been performed by the

previous models. The distinctive feature of this model is that it has greater flexibility and

generality to describe real development processes. Engineering management can benefit

from this rich model through better project planning and control in several ways

discussed in this section.

4.3.1 Finding an Optimal Task Ordering

The proposed model is a performance evaluation model, not an optimization model.

However, the model can be easily utilized to find an optimal task sequence given the

objective function that might be, for instance, a function of the average and standard

deviation of lead time, and schedule risk. Note that this is an O(n!) operation where n is

the number of tasks (Browning and Eppinger 2000) if we allow tasks to be positioned

anywhere in the sequence. By fixing some logical precedence relationships between tasks,

computation time can be reduced.

4.3.2 Setting Appropriate Due Date

By analyzing the probability distribution of lead time, an appropriate due date can be

chosen with predictable confidence (Browning and Eppinger 2000). When the schedule

target is given, the risk that the project fails to meet the target can be assessed via the

simulation. When the schedule risk is high, the model can be used to evaluate different

improvement efforts such as adding resources, overlapping tasks, executing fewer or

faster iterations etc. This perspective may facilitate decision making and communications

between senior management and the project team.

81

4.3.3 Finding Areas for Process Improvement

The model can be used to evaluate various process improvements through simulation by

adjusting model parameters. Below are examples of model applications for this purpose:

. Task criticality: When the size of a coupled block is large, it is very likely that it is on

the critical path (or critical sequence). For the tasks within coupled blocks, three

alternative measures may be used to represent relative importance of tasks within a

coupled block where conventional and resource-constrained slacks cannot be defined.

The first measure is the sensitivity of project lead time to variation in task duration

(Williams (1992b), Bowers (1995), Christian (1995)). The second measure is the

rework-adjusted rank positional weight defined earlier. The third measure is rework-

adjusted slack as a substitute for conventional or RC slack that is computed by

replacing nominal durations with rework-adjusted durations of tasks. When the size

of a coupled block is small, its aggregate slack provides a broader measure of

criticality in the entire network.

. Strategic work policy for concurrency: The rework risk tolerance defined earlier can

be used as guidance for work policy during iterations. Lead time can be reduced by

increasing concurrency level strategically, although this may result in increased

development costs.

. Faster and/or fewer iterations: Smith and Eppinger (1 997b) proposed two general

strategies for accelerating the iterative processes. Faster iterations can be achieved by

increasing learning curve and/or decreasing rework impact, i.e. reducing the amount

of rework. For instance, the efficient use of information technology such as computer-

aided tools could help accomplish this effect. Fewer iterations can be achieved by

decreasing rework probabilities. Well-defined interfaces between tasks, and well-

established coordination and communication routes between project members could

reduce the number of iterations. The proposed model can be used to identify the most

efficient points for such improvements.

82

4.3.4 Evaluating Multiple Projects

The model can also be applied in a multi-project environment by representing each

project on a different path. In this manner, it is possible to consider resource allocation

across the projects and the effect of such constraints on completion of all of the projects.

4.4 Chapter Summary

This chapter presented the integrated project management framework for complex

engineering projects. The integrated method streamlines project planning and control

using three modules that are structuring, modeling, and scheduling. Under this integrated

framework, the positive aspects of the methods used in each module can be utilized while

overcoming the limitations of stand-alone applications.

83

84

CHAPTER 5

Case Studies

5.1 Introduction

In this chapter, two industrial cases are presented. In the first case, the DSM-based

process model (which is used in the modeling module in the integrated framework) is

used to analyze the uninhabited aerial vehicle (UAV) preliminary design process at an

aerospace company using the data from Browning (1999). In the second case, the

streamlined project planning is demonstrated in a logistics project at a medical equipment

company.

5.2 UA V Development Project

The Boeing IS&DS Group was testing some novel design process techniques in an effort

to develop complex system products faster and cheaper while maintaining high

performance. One such effort was the UAV project, which utilized some new methods

for organizing, managing, and implementing the vehicle's conceptual and preliminary

design development phases. After the initial model and effort led to a faster and more

efficient process, Boeing enlisted the aid of an outside perspective to learn still more. The

data and analyses presented in Browning (1999) was this second phase effort. In this

thesis, the data and analyses are extended to include additional parameters that can be

incorporated in the proposed model.

'The background of the case was quoted with some modifications from Browning (1999).

85

5.2.1 Basic Inputs and Analyses Results

Figure 5-1 shows basic model inputs. Under the same conditions of Browning and

Eppinger (2000) - (1) 0 and 100th percentiles for optimistic and pessimistic duration

estimates (2) constant rework probabilities in all iterations, (3) learning curve benefit

only in the first iteration, (4) zero rework risk tolerance Pt,0erance, (5) no overlapping, and

(6) no resource conflicts, the average of lead time is 146.8 days with 17.0 days of

standard deviation after 2000 simulation runs. The probability distribution shown in

Figure 5-2 is skewed to the right because the lead time becomes longer as more iterations

take place. Both the average and standard deviation are higher than those obtained by

Browning and Eppinger (avg. 141, s.d. 8). This is mainly because the new model

accounts for all the successive feedforward rework while the earlier model does not. (See

the section A2-2 in the Appendix for the detailed explanation).

_I Exp. Duration Lear-
Task Name ID 1 2 3 4 5 6 7 8 9 10 14 12 13 1 Opt. Likel Pess. ning

Prepare UAV Preliminary DR&O 1 1.9 2.0 3.0 0.35
Create UAV Preliminary Design Coninguration 2 1 1 4.8 5.0 8.8 0.20
Prepare Surfaced Models & Internal Drawings 3L_ 1 1 2.7 2.8 4.2 0.60
Perform Aerodynamics Analyses & Evaluation 4 1 1 9.0 10.0 12.5 0.33
Create Initial Structural Geometry 5 1 1 1 1 2 1 14.3 15.0 26.3 0.40
Prepare Structural Geometry & Notes for FEM 6 1 2 9.0 10.0 11.0 0.9C
Develop Structural Design Conditions 7 1 2 7.2 8.0 10.0 0.35
Perform Weights & Intertias Analyses 8 1 1 4.8 5.0 8.8 1.00
Perform S&C Analyses & Evaluation 9 1 1 1 18.0 20.0 22.0 0.25
Develop Freebody Diagrams & Applied Loads 10 1 1 1 1 1 9.5 10.0 17.5 0.50
Establish Internal Load Distributions 11 1 1 1 2 14.3 15.0 26.3 0.75
Evaluate Structural Strength, Stiffness, & Life 1 1 1 2 2 13.5 15.0 18.8 0.30
Preliminary Manufacturing Planning & Anale 13 1 1 1 30.0 32.5 36.0 0.2
Prepare UAV Proposal 141 1 1 1 1 1 11 1 11 1 4.5 5.0 6.3 0.7

(a) Project Table and DSM

1 2 3 4 5 6 7 8 9 10 11 12 13
2 0.2
3 0.5 0.4
4 0.5
5 0.5 0.1 0.1 0.3 0.1
6 0.4
7 _ 0.4
8 0.5 0.5
9 0.5 0.5 0.5

10 0.1 0.5 0.2 0.1 0.4
11 0.5 0.5 0.5 0.5
12 0.4 0.5 0.5 0.4
13 0.5 0.4

(b) Rework Probability Matrix

2 3 4 5 6 7 8 9 10 11 12 13
2 0.1
3 0.3 0.5
4 0.8
5 0.1 0.1 0.1 0.3 0.1
6 0.3
7 0.8
8 0.5 0.5
9 0.3 0.3 0.3

10 0.1 0.5 0.4 0.3 0.3
11 0.5 0.5 0.3 0.3
12 0.3 0.5 0.5 0.5
13 0.9 0.3

(c) Rework Impact Matrix

FIGURE 5-1. MODEL INPUTS FOR UA V PROJECT

86

300 _____

0.9
r_ 250-,- .

200 -
006

0 150--- -- 0.5 Q
0.4 4

E 100 -. I -

50 -7-5.
0 50

119.1 134.7 150.3 165.9 181.5 197.1

FIGURE 5-2. PROBABILITY DISTRIBUTION OF LEAD TIME WITH BASIC INPUTS

5.2.2 Analyses Results Using Additional Modeling Parameters

The simulation model allows great flexibility to account for more general features of

dynamic development processes. Table 5-1 summarizes the results using additional

modeling parameters as follows:

(1) Optimistic and pessimistic duration estimates are 10th and 90th percentiles,

respectively.

(2) Rework probabilities decrease in each iteration by 50%.

(3) Maximum learning curve is 50% of that in the first iteration.

(4) Rework risk tolerance P',e,,Le = 0.3, i.e. more concurrency is allowed when tasks

iterate.

Under the more rigorous assumption about task duration estimates in (1), both the

average and standard deviation are greater than those with 0 and 100th percentile

estimates. This is mainly due to the right-skewness tendency of task durations. Also, the

existence of multiple paths in the project contributes to the increase of the lead time.

Incorporating dynamic characteristics of sequential iteration in (2) and (3), and increased

task concurrency in (4), the model predicts smaller averages and standard deviations of

the lead time. The cumulative effect of the additional modeling parameters from (2) to (4)

87

is a 5.3% decrease from the lead time under the assumption (1). Note that this difference

will be more significant with more tasks and iterations.

Basic (1) (1),(2) (1)-(3) (1)-(4)
(146.8, 17.0) (152.2, 20.1) (149.3, 15.8) (148.5, 14.2) (144.2, 13.1

<Note>
(i) (#, #): (average, standard deviation)
(ii) "(1)-(3)" denotes the results of the model with assumptions (1) through (3), and so on.

TABLE 5-1. RESULTS USING ADDITIONAL MODELING PARAMETERS

Ignoring feedback marks in the DSM, i.e. assuming no sequential iterations, the path

along the tasks 1-2-3-5-6-7-10-11-12-13-14 is a critical path when tasks have most likely

durations. This implies that the lead time can be reduced by overlapping the tasks along

this path such as the development of preliminary surfaced configuration (task 3) and

structural design (tasks 5-7). Other important leverage points for reducing the lead time

are the feedback marks. By transferring preliminary review decisions or testing results to

upstream tasks, feedback rework can start earlier. This allows for the accelerations of

iterative rework. Under the following overlapping scenario, the average lead time is

reduced to 137.7 days:

(5) For the six information flows marked by "2" in the DSM in Figure 9 (b), tasks are

planned to complete 25% of work with preliminary inputs before receiving final

updates, and expected to redo 50% of work completed without final updates.

The above scenario includes the overlapping between tasks 12 and 5 in feedback rework.

The following scenario, for example, would cause such overlapping:

As a result of structural evaluation in task 12, it may become necessary to redesign

the structural geometry of specific subsystems before having evaluation results for the

entire system. The need to redesign some subsystems (task 5) can be detected early in

88

a series of tests in task 12, whereas the need for additional weight and inertial

analyses (task 8) can be determined only at the end of the tests.

All the above analyses are performed under the assumption that there is no resource

conflict among the tasks in the UAV project. This assumption is reasonable because tasks

that can be performed in parallel are related to different disciplines, therefore, no resource

sharing is necessary between those tasks. In multiple project environments, however, the

resources belonging to the same functional group may need to get involved in tasks in

different projects during a certain period of time. In this case, optimal resource allocation

toward project objectives becomes an important issue. For the purpose of illustration, an

example situation is tested as follows:

(6) Tasks 7 and 8 compete for limited resources and one of them should be delayed.

Table 5-2 shows the rework-adjusted durations and rank positional weights of the tasks

under assumptions (1)-(5). Since the rework-adjusted RPW of task 8 is higher than that of

task 7, the model assigns resources to task 8 and delays task 7 that can work in parallel

with task 8 without this resource constraint. Then, both tasks 7 and 8 become critical and

the project is delayed by the duration of task 7. Figure 5-3 shows an example of a

simulated Gantt chart. This is only one of many simulation runs under assumptions (1)-

(6). The numbers inside the bars indicate the amounts of overlapped work performed in

prior state(s). Even though the scenario shows that tasks rework during states 5 and 14-19,

it delays the entire project only in states 5 and 14 since no rework is added to task 13

after starting earlier. This is due to the pre-determined work policy for increased task

concurrency during iterations. Since total rework probabilities are less than 0.3 except for

task 5 as shown in Figure 5-4, preliminary manufacturing planning and analyses (task 13)

are simulated to work concurrently with functional performance analyses (tasks 8-11)

after redesigning structural geometry (task 5).

89

ID Task Name Rework-Adjusted Duration Rework-Adjusted RPW

2 Create UAV Preliminary Design Confinguration 6.4 184.4

3 Prepare Surfaced Models & Internal Drawings 3.3 178.0

4 Perform Aerodynamics Analyses & Evaluation 11.7 108.7

5 Create Initial Structural Geometry 19.6 163.0

6 Prepare Structural Geometry & Notes for FEM 10.5 143.4

7 Develop Structural Design Conditions 8.4 105.4

8 Perform Weights & Intertias Analyses 7.3 124.5

9 Perform S&C Analyses & Evaluation 20.2 20.2

10 Develop Freebody Diagrams & Applied Loads 13.0 97.0
11 Establish Internal Load Distributions 22.1 84.0

12 Evaluate Structural Strength, Stiffness, & Life 27.8 61.9

13 Preliminary Manufacturing Planning & Analyses 34.2 34.1

TABLE 5-2. REWORK-ADJUSTED DURA TION AND RANK POSITIONAL WEIGHT

FIGURE 5-3. AN EXAMPLE OF A SIMULATED GANTT CHART

ID 2 31 41 5 6 7 8 9 10 11 12 13

3 05
4 0.25 05
5 0.25 0.50 0.001
6 0.10 0.20 0.00 04
7 0.04 0.08 0.00 0.16 0.401
8. 0.05. 0.10 0.00 0.20 0.50 00
9 0.40 0.80 0.50 0.10 0.25 0.00 0.50

10 0.09 0.18 0.10 0.25 0.63 0.20 0.10 0.00
11 0.14 0.28 0.05 0.51 1.26 0.60 0.55 0.00 0.50
12 0.16 0.32 0.07 0.57 1.42 0.84 0.27 0.00 0.70 0.40

13 0.19 0.38 003 0.73 0.57 0.34 0.11 0.00 0.28 0.16 0.40

<Note> Rework Concurrency is changed when feedback iteration happens.

FIGURE 5-4. AN EXAMPLE OF REWORK CONCURRENCY

90

ID\ State D (w/o rework) D (w. rework) 1 2 3 4 6 7 8 9 10 11 12 13 20 21

1 2.0 2.0 1 1 1 1
2 5.9 5.9 LA II_1_1
3 2.9 3.8 ENOi,
4 8.9 8.9
5 1 17.0 19.2
6 9.0 10.1 _ _

7 10.3 10.3
8 7.7 11.5 __

9 20.2 21.7 -

10 16.3 18.7
11 15.5 23.8 _ _ _

12 14.8 16.7 __

13 34.7 34.7
14 5.0 5.0

5.3 Logistics Europe Project

The integrated method was used in planning a logistics project at a medical equipment

company. The project was in the middle of planning processes when the case study was

begun. The purpose of this case study is to demonstrate that the proposed methodology is

applicable to real projects and improves project management practices.

5.3.1 Backgrounds

The medical company designs, develops, manufactures and markets a sample preparation

system for medical diagnostic applications. The business sector grows at a rate of 8-10%

per year, which requires the corporation to adjust its structure and procedures on a

frequent basis. This includes the customer-driven supply chain management system that

ensures the seamless flow of material and information from manufacturing forecasts to

European end users. The mission of Logistics Europe is to support the European

operations by providing an optimal service level through the entire supply/value chain

and reducing cycle time for materials and information. To achieve this, a European

distribution center (EU DC) was established and all local warehouses were consolidated

into that platform except for the Italian warehouse (IW). This project is for consolidating

the IW to the EU DC. The company can benefit from cost savings in inventory and

logistics through the successful completion of this project.

5.3.2 Application of the Integrated Method to Project Planning

The data were collected in three steps: (1) a list of tasks, (2) information flows among

tasks, and (3) characteristics of tasks and iterations. Between the steps, the author had the

face-to-face discussion with the project manger who is actually responsible for

maintaining the plan. The first two sets of data were analyzed in the structuring module

using the DSM. The third set of data was analyzed in the modeling module. Based on the

results of analyses, a network-based schedule was built with deterministic durations of

tasks and coupled blocks.

91

The data for a list of tasks were gathered from the initial plan built using the PERT/CPM

method. However, they need to be modified in order to employ the information-based

approach of the proposed method in which a task is an information-processing unit.

(Before modification, several tasks represented instantaneous actions similar to

milestones rather than information-processing efforts.) After determining the list of tasks,

information flows among the tasks were mapped in a square matrix following the two-

type scheme of transfer patterns. Figure 5-5 illustrates the results of hierarchical

decomposition in the DSM based on the as-early-as-possible rule. Figure 5-6 shows the

collapsed DSM where various dependencies are classified.

Task Name Lv 1 21 31 41 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 22 42

Project approval
Develop European long-term business strategy 2 2 1 2

Develop European Materials & Logistics strategy 3 3

Establish European 2001 budget 4 1 2
Kick-off meeting 5 1 1

Develop the details of action items 6 ---

Develop customer delivery profile 7 1

Review the price agreement for this year 82 1

Define additional parameters for new prices I I 1 1 1 9
Determine new prices 10
Establish normal lead time of delivery by locations I1 1 1 Process Definition

Modify current procedures in logistics 8 12 1 1 2 1 112

Calculate worldwide projected inventory levels 8 13 1 1 13
Review modified procedure in logistics 8 14 2 ^ 1
Calculate new safety stocks for EU DC 15 1 1 C T-

Milestone review 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16
Determine sample customers for testing 17 1 2
Ship a series of products to sample customers 18!
Review testing results 19 1 1 119

Modify replenishment program 201 20
Adjust safety stocks in EU DC 10 21 2 21

Adjust international rolling forecast 22 2 22

Implement new procedure in logistics 12 23 1 1 1 2 2 23
Close W and ship remaining inventories to EU DC 24 1 24
Distribute all the products from the EU DC 14 25 _ _1 2

1 2 3 41 5 6 71 8 9110111112113114115116117118 19120 21 22 23 24

FIGURE 5-5. DESIGN STRUCTURE MATRIX (As-EARLY-As-POSSIBLE)

92

Task Name Level 1 1 2 3 41A[1 81 911011111211311411516117
Project approval
Develop European long-term business strategy 2 2 14 2

Develop European Materials & Logistics strategy 3] 3

Establish European 2001 budget 4 4 1 4

Kick-of. meeting 5 1 1 . .

Develop the details of action items 6 64 6

Develop customer delivery proffle 6 7 7
Blockl: Price Negotiation 11 6

Establish normal lead time, of delivery by, logcations 9 1

Block2: Proces::5Defihftibrn 8 10 1 Il 1 1 1 1 22 10

Blocka Customer Testing _1_1 11

Modify re lenishment program 12 12

Adljust safety stocks In EUDC 1 13 1 . 13

Adjust international rollingforecast 14 1 14

Implement new procedure in logistics 12 15 11 15

Close 4 -and ship remaining inventories to EU DC 164 4 16

Distribute all the products from the EU DC 14 17 4 17

.............. 1 2 31 41 5 1 6 1 7 1 8 1 9 10 111 112113114 15 116] 17 1

<Note> 1 and 2 marks represent binding dependencies.

FIGURE 5-6. COLLAPSED DSM (AS-EARLY-AS-POSSIBLE)

The following observations from the comparison of the PERT/CPM approach and the

information-based approach in this case study may explain some general improvements

of the proposed method:

. In the initial plan, the tasks were arranged based on precedence relationships among

tasks which are considered for scheduling the expected starting and ending dates of

tasks (not for defining precedence constraints). Thus, precedence relationships of

each task are accounted with only its neighboring tasks in sequence. In the

information-based approach of the DSM method, information flows are thoroughly

captured and precedence constraints are derived from those information flows.

After analyzing the DSM, some additional constraints not documented in the initial

plan were found as binding dependencies in the DSM.

. The initial plan did not explicitly show iteration loops while it implied the existence

of planned iteration in customer testing by scheduling repetition of three tasks.

From the structuring analyses, we found that there are three coupled blocks for

planned iteration which represent price negotiation, process definition, and

93

customer testing. In addition, the project also has some chances to do unplanned

iteration when it completely fails to meet the criteria. Being aware of such

iterations was very helpful for the project manger to understand the potential

sources of risk. This may lead to proactive risk management as the project

progresses.

After structuring processes, the detailed data for durations, resources, overlapping and

sequential iteration were collected. (See the section A5 in the Appendix for the data.)

Using those data, simulations were performed to predict the lead time under the following

assumptions: (1) 10th and 90th percentiles for optimistic and pessimistic duration

estimates, (2) P'%lerance= 0, and (3) sequential iterations only among the tasks within the

coupled blocks. Table 5-3 summarizes the results of simulations. Table 5-4 shows major

critical paths and sequences with the percentages that they are critical. Figure 5-7 shows

the probability distribution of the lead time with resource constraints. Note that the

distribution would show more right-skewness if unplanned iterations were accounted in

the simulation.

avg. s.d. (10%,30%,50%,70%,90%)
Lead Time (w/o RCs) 157.4 19.9 (132.8,146.7,157.3, 168, 182.2)
Lead Time (w. RCs) 157.6 19.9 (132.9, 146.8, 157.6, 168.1, 182.2)
BLOCK1 : Price Negotiation 18.0 6.1 (10.6,14.4,17.3, 20.6, 26.7)
BLOCK2: Process Definition 32.6 12.1 (18.0, 25.5, 31.6, 38.0, 48.8)
BLOCK3: Customer Testing 27.9 7.9 (17.4, 23.1, 27.6, 32.0, 38.6)

<Note> "RCs" denotes resource constraints.

TABLE 5-3. SUMMARY OF SIMULATION RESULTS

94

Major Critical Paths (without Resource Constraints)
1-2-3-4-5-6-8-14-21-27-28-29-30-31 [63%]

1-2-3-4-5-7-8-14-21-27-28-29-30-31 [28%]

1-2-3-4-5-7-13-14-21-27-28-29-30-31 [6%]

Major Critical Sequences (with Leveled Resources)

1-2-3-4-5-6-8-14-21-27-28-29-30-31 [57%]

1-2-3-4-5-7-8-14-21-27-28-29-30-31 [28%]

1-2-3-4-5-6-13-14-21-27-28-29-30-31 [8%]

<Note> Task IDs are based on those in Figure 5-8.

TABLE 5-4. CRITICAL PATHS AND SEQUENCES

Logistics Europe

140 - - - - -%

to 120 - - 8r_ 0.8
100

-- 0.6 2

800.4

40 0.2 E

0 0
99.7 113.1 126.4 139.8 153.1 166.5 179.8 193.2 206.5 219.9

Lead Time

FIGURE 5-7. PROBABILITY DISTRIBUTION OF LOGISTICS EUROPE PROJECT DURATION

This project did not have a due date or a target while the greater cost-savings can be

achieved as the project is completed successfully in less time. Thus, the network-based

schedule was built with the most-likely durations of tasks and average durations of

coupled blocks (without a buffer at the end), as shown in Figure 5-8. Three coupled

blocks identified and simulated earlier are shown as rolled-up tasks within which

precedence relationships including overlapping are represented.

Compared with the initial plan based on the PERT/CPM method, the revised plan has

more structured and rigorous information about the project. Following the proposed

approach, the project manger could better understand the structures of the project and

95

- -pope_-_ -

have better prediction about the outcomes of uncertain processes. The DSM as well as the

Gantt chart can be effectively used to monitor and control the project as it progresses.

MMay June July August September October November D

ID Task Name Duration Predecessors 4/291 5/13I 5/271I6/10 I/24 I7/8 |7/22 8/5 8/19 9/2 9/16 9/30 10/1410/2811/11 11/25
1 Project approval 1 day.

2 Develop European long-term business strategy 10 days 1

3 Develop European Materials & Logistics strategy 10 days 2

4 Establish European 2001 budget 10 days 3

5 Kick-off meeting 1 dayw4

6 Develop the details of action items 15 days 5 a

7 Develop customer delivery profile to days 5
8 Block1: Price Negotiation 17.3 days 6,7
9 Review the price agreement for this year 2 days

10 Define additional parameters for new prices 4.3 days 9FS-1.6 days

11 Determine new prices 10 days 9,10

12 (D) Blocki Duration 17.3 days

13 Establish normal lead time of delivery by locations 10 days 7

14 Block2: Process Definition 30.4 days 8,13

15 Modify current procedures in logistics 15 days

16 Calculate worldwide projected inventory levels 3.45 days 15FS-0. 9 days

17 Review modified procedure in logistics 6.6 days 1SFS-3 days

18 Calculate new safety stocks for EU DC 2 days 16

19 Milestone review 3 days 15,16,17,18

20 (D) Block2 Duration 30.4 days

21 Btock3: Customer Testing 27.6 days 14

22 Determine sample customers for testing 2 days

2 Ship a series of products to sample customers 12 days 22

24 Review testing results 4 days 23

25 (D) Block3 Duration 27.6 days

26 Modify replenishment program 4 days 14

27 Adjust safety stocks in EU DC 2 days 21

28 Adjust international rolling forecast 2 days 27

29 Implement new procedure in logistics 5 days 28

30 Close IW and ship remaining inventories to EU DC 16 days 26,29

3 1 Distribute all the products from the EU DC 3 days30

FIGURE 5-8. NETWORK-BASED SCHEDULE

5.4 Chapter Summary

In this chapter, two industrial cases are presented to demonstrate the integrated method.

The method was proven to be applicable to real projects even though more extensive

applications to projects in various industries need to be followed for improving the

method.

96

CHAPTER 6

Conclusion and Future Research

6.1 Conclusion

This thesis proposes the integrated project management framework for complex

engineering projects. It is based on the systems view of a complex project as well as on

the information-processing view of a task. Under the integrated framework, analyses are

performed to structure information flows, and to model the characteristics of information

processing of each task and information exchanges among tasks. The network-based

schedule is built upon these analyses.

The framework in part and as a whole provides helpful contributions to project

management theory and application. It integrates several broad aspects of theories and

applications in the areas such as system and project management, design theory and

methodology, systems modeling and simulation, schedule network analyses, stochastic

iteration modeling etc.

A key contribution of this work is the development of a generalized process model that

allows for streamlining the DSM-based structuring analyses with the network-based

scheduling analyses. The model accounts for important characteristics of product

development processes, including information transfer patterns, uncertain task durations,

resource conflicts, overlapping and sequential iterations, and rework concurrency. The

model addresses several limitations imposed by previous analytical and simulation-based

approaches. It can be applied to a wide range of processes where iteration takes place

among sequential, parallel, and overlapped tasks in a resource-constrained project.

Increased understanding of complex processes can be achieved through structuring and

modeling information flows. The integrated method is also useful for evaluating different

97

project plans and for identifying strategies for process improvements. Proactive risk

management can be achieved by assessing the status of the project as it progresses.

6.2 Future Research

6.2.1 Extensive Applications

The integrated method has been used to analyze product development processes and to

plan a logistics project. While the feasibility and applicability of the method are proven,

more extensive applications in various industries need to be followed to further test and

improve the method. In particular, it would be helpful to test the utility of the method in a

multi-project environment where an efficient resource-allocation issue is more significant.

In addition, the benefits of the integrated framework in project monitoring and control

have not been proven yet.

The author observed that a basic information-based approach has been applied to build a

template for standardized product development processes based on the PERT/CPM

method in one of major U.S. automotive companies. However, lots of important aspects

of real development projects could not be incorporated in the standardized template due

to the limited capabilities of existing principles and tools. For instance, overlapping and

sequential iterations were not documented and modeled in the plan even though they are

widely practiced among people. The author believes that the integrated method can

provide the methodologies to build a template for complex development projects.

6.2.2 Extensions of the Integrated Method

While the author believes that the integrated method has broad applicability to complex

engineering projects, there are still several limitations and possible extensions, as

discussed below.

98

The method does not include any process optimization technique such as finding optimal

resource-allocation to minimize the lead time and finding optimal overlap amounts in

multiple paths. This is a limitation of a richer process model incorporating iteration and

overlapping in multiple paths. Also, the model is not suitable for predicting the progress

of concurrent execution of tightly coupled tasks. For this type of parallel iteration, the

method suggests that a coupled block is modeled as if it were a single task while

representing information flows among tasks in the DSM. More accuracy and generality

can be achieved if we could model frequent bi-directional information exchanges and

consequent impacts between parallel tasks.

The method simply assumes that the processing time of each task is independent of those

of other tasks. However, when uncertainties affect multiple tasks, independent duration

distributions cannot be assumed (Williams 1992a). Various methods have been

developed to model interdependencies, from estimation of correlation coefficients

between tasks to use of joint distributions. However, difficulties remain in measuring

correlation among task durations.

The method also assumes a fixed resource pool for the project and constant resource

requirements for tasks. It can be extended by allowing variable resource capacity and

requirements.

Lastly, the method can be further extended by incorporating development cost as in

Browning and Eppinger (2000). However, it is very difficult to apply the same cost

structure to different iterative process hierarchies in conjunction with development time.

99

100

Reference

[1] Alexander, C., Note on the Synthesis of Form, Harvard University Press, 1964.
[2] Adler, P., Mandelbaum, A., Nguyen V. and Schwerer E., "From Project to Process

Management: An Empirically-based Framework for Analyzing Product
Development Time", Management Science, Vol. 41, No. 3, pp. 458-484, 1995.

[3] Ahmadi, R., and Hongbo, W., "Rationalizing Product Design Development
Process," Working Paper, Anderson Graduate School of Management, UCLA,
1994.

[4] Ahmadi, R. and Wang, R., "Managing Development Risk in Product Design
Processes," Operations Research, Vol. 47, No. 2, pp.235-246, 1999.

[5] AitSahlia, F., Johnson, E. and Will, P., "Is Concurrent Engineering Always a
Sensible Proposition?," IEEE Transactions on Engineering Management, Vol. 42,
No. 2, pp. 166-170,1995.

[6] Andersson, J., Pohl, J. and Eppinger, S., "A Design Process Modeling Approach
Incorporating Nonlinear Elements," Proceedings of ASME Design Engineering
Technical Conferences, DETC98-5663, 1998.

[7] Austin, S., Baldwin, A., Li, B., and Waskett, P., "Analytical Design Planning
Technique: A Model of the Detailed Building Design Process," Design Studies,
Vol. 20, pp.279-296, 1999.

[8] Bowers, J., "Criticality in Resource Constrained Networks," Journal of the
Operational Research Society, Vol. 46, pp 80-91, 1995.

[9] Browning, T., "Modeling and Analyzing Cost, Schedule, and Performance in
Complex System Product Development," Ph.D. Thesis (TMP), MIT, Cambridge,
MA, 1998.

[10] Browning, T. and Eppinger, S., "Modeling the Impact of Process Architecture on
Cost and Schedule Risk in Product Development," Working Paper, No. 4050, Sloan
School of Management, MIT, 2000.

[11] Carrascosa, M., Eppinger S. and Whitney D., "Using the Design Structure Matrix
to Estimate Product Development Time," Proceedings of ASME Design
Engineering Technical Conference, DETC98/DAC-6013, 1998.

[12] Christian, A., "Simulation of Information Flow in Design," Ph.D. Thesis (ME),
MIT, Cambridge, MA, 1995.

[13] Christofides, N., Alvarez-Valdes, R. and Tamarit, J., "Project Scheduling with
Resource Constraints: A Branch and Bound Approach," European Journal of
Operational Research, Vol. 29, pp. 262-273, 1987.

[14] Cooper, D., "Heuristics for Scheduling Resource-Constrained Projects: An
Experimental Investigation," Management Science, Vol. 22, No. 11, pp. 1186-
1194,1976.

[15] Clark, K. and Fujimoto, T., Product Development Performance: Strategy,
Organization, and Management in the World Auto Industry, Harvard Business
School Press, 1991.

[16] David, E. and Heidorn, G., "Optimal Project Scheduling under Multiple Resource
Constraints," Management Science, Vol. 17, No. 12, pp 803-816, 1971.

101

[17] Eppinger, S., Whitney, D., Smith, R. and Gebala, D., "A Model-Based Method for
Organizing Tasks in Product Development," Research in Engineering Design, Vol.
6, pp. 1-13, 1994.

[18] Eppinger, S., Nukala, M. and Whitney, D., "Generalized Models of Design
Iteration Using Signal Flow Graphs," Research in Engineering Design, Vol. 9, No.
2, pp. 112-123, 1997.

[19] Goldratt, E., Critical Chain, The North River Press, MA, 1997.
[20] Grose, D., "Reengineering the Aircraft Design process," Proceedings of the Fifth

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Panama City Beach, FL, Sept. 7-9, 1994.

[21] Ha, A. and Porteus, E., "Optimal Timing of Reviews in the Concurrent Design for
Manufacturability," Management Science, Vol. 41, No. 9, pp. 1431-1447, 1995.

[22] Hoedemaker, G., Blackburn, J. and Wassenhove, L., "Limits to Concurrency,"
Working Paper, Vanderbilt University Owen School of Management, 1995.

[23] Joglekar, N., Yassine, A., Eppinger, S., and Whitney, D., "Performance of Coupled
Product Development Activities with a Deadline," Working Paper, No. 4122, Sloan
School of Management, MIT, 2000.

[24] Keefer, D. and Verdini, W., "Better Estimation of PERT Activity Time
Parameters," Management Science, Vol. 39, No. 9, pp. 1086-1091, 1993.

[25] Kelley, J. and Walker, M., "Critical-Path Planning and Scheduling," Proceedings
of Easter Joint Computer Conference, pp. 160-173, 1959.

[26] Kerzner, H., Project Management: a Systems Approach to Planning, Scheduling,
and Controlling, 5th Edition, VNR, New York, NY, 1995.

[27] Krishnan, A., Eppinger, S. and Whitney, D., "A Model-Based Framework to
Overlap Product Development Activities," Management Science, Vol. 43, No. 4,
pp.437-451, 1997.

[28] Kusiak, A., and Wang, J., "Efficient organizing of design activities," International
Journal of Production Research, Vol. 31, pp 753-769, 1993.

[29] Ledet, W. and Himmelblau, D., "Decomposition Procedures for the Solving of
Large Scale Systems," Advances in Chemical Engineering, Vol. 8, pp. 185-224,
1970.

[30] Levitt, R., Cohen, G., Kunz, J., Nass, C., Christiansen, T., and Jin, Y., The virtual
design team: Simulating how organization structures and information processing
tools affect team performance, in Carley, K.M. and M.J. Prietula, editors,
Computational Organization Theory, Lawrence Erlbaum Associates, Hillsdale, NJ,
1994.

[31] Loch, C. and Terwiesch, C., "Communication and Uncertainty in Concurrent
Engineering," Management Science, Vol. 44, No. 8, pp. 1032-1048, 1998.

[32] Malcolm, D., Roseboom, J., Clark, C. and Fazar, W., "Application of a Technique
for Research and Development Program Evaluation," Operations Research, Vol. 7,
No. 5, pp. 646-669, 1959.

[33] McKay, M., Beckman, R. and Canover, W., "A Comparison of Three Methods for
Selecting Values of Input Variables in the Analysis of Output from a Computer
Code," Technometrics, Vol. 21, No. 2, pp. 239- 245, 1979.

[34] Neumann, K., "GERT Network and the Time-Oriented Evaluation of Projects,"
Lecture Notes in Economics and Mathematical Systems, Vol. 172, 1979.

102

[35] Pascoe, T., "An Experimental Comparison of Heuristic Methods for Allocating
Resources," Ph.D. Thesis, Cambridge University, England, 1965.

[36] Patterson, J., "A comparison of exact approaches for solving the multiple
constrained resource, project scheduling problem," Management Science, Vol. 30,
No. 3, pp. 854-867, 1984.

[37] Patterson, J. and Roth, G., "Scheduling a Project under Multiple Resource
Constrains: A Zero-One Programming Approach," AIE Trans., Vol. 8, No. 3, pp
449-456, 1976.

[38] Patterson, J., Talbot B., Slowinski, R. and Weglarz, J., "Computational Experience
with a Backtracking Algorithm for Solving a General Class of Precedence and
Resource-constrained Scheduling Problems," European Journal of Operational
Research, Vol. 49, pp. 68-79, 1990.

[39] Pritsker, A., Watters, W. and Wolfe, P., "Multiproject Scheduling with Limited
Resources: A Zero-One Programming Approach," Management Science, Vol. 16,
pp. 93-108, 1969.

[40] Pritsker, A., "Modeling and Analysis Using Q-GERT Networks, 2nd Edition, John
Wiley/Halsted Press, 1979.

[41] Pritsker, A. and O'Reilly, J., Simulation with Visual SLAM and AweSim, 2nd
Edition, John Wiley & Sons, 1999.

[42] Roemer, T., Ahmadi, R. and Wang, R., "Time-Cost Trade-Offs in Overlapped
Product Development," Operations Research, Vol. 48, No. 6, pp. 858-865, 2000.

[43] Rogers, J., "A knowledge-based tool for multilevel decomposition of complex
design problem," NASA TP 2903, 1989.

[44] Rogers, J., "Tools and Techniques for Decomposing and Managing Complex
Design Projects," AIAA Journal of Aircraft, Vol. 36, No.1, pp. 266-274, 1999.

[45] Sabbaghian, N., Eppinger, S., and Murman, E., "Product Development Process
Capture and Display Using Web-Based Technologies," Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics, San Diego, CA, 1998.

[46] Sargent, W. and Westerberg, A., "Speed-Up in Chemical Engineering Design,"
Trans. Inst. Chem. Eng., Vol. 42, 1964.

[47] Simon, H., "Applying Information Technology to Organization Design," Public
Administration Review, Vol. 33, pp. 268-278, 1973.

[48] Smith, R. and Eppinger, S., "A Predictive Model of Sequential Iteration in
Engineering Design," Management Science, Vol. 43, No. 8, pp. 1104-1120, 1997.

[49] Smith, R. and Eppinger, S., " Identifying Controlling Features of Engineering
Design Iteration," Management Science, Vol. 43, No. 3, pp. 276-293, 1997.

[50] Smith P., and Reinertsen, D., "Developing Products in Half the Time," 2nd Ed.
Van Nostrand Reinhold, NY, 1995.

[51] Steward, D., "On an Approach to Techniques for the Analysis of the Structure of
Large Systems of Equations," SIAM Rev., Vol. 4, pp. 321-342, 1962.

[52] Steward, D., "Partitioning and Tearing Systems of Equations," SIAM Numerical
Anal., ser. B, Vol. 2, No. 2, pp. 345-365, 1965.

[53] Steward, D., "The Design Structure System: A Method for Managing the Design of
Complex Systems," IEEE Transactions on Engineering Management, Vol. EM-28,
No. 3, 1981.

103

[54] Stinson, J., Davis, E., and Khumawala, B, "Multiple Resource-Constrained
Scheduling Using Branch and Bound," AIIE Trans., Vol. 10, No. 3, pp 252-259,
1978.

[55] Takeuchi, H. and Nonaka, I., The New Product Development Game, Harvard
Business Review, January-February, pp. 137-146, 1986.

[56] Talbot, F. and Patterson, J., "An Efficient Integer Programming Algorithm with
Network Cuts for Solving Resource-Constrained Scheduling Problems,"
Management Science, Vol. 25, No. 11, pp 1163-1174, 1978.

[57] Taylor, B. and Moore, L., "R&D Project Planning with Q-GERT Network
Modeling," Management Science, Vol. 26, No. 1, pp. 44-59, 1980.

[58] Ulrich, K. and Eppinger, S., Product Design and Development, 2nd Edition,
McGraw-Hill, New York, 2000.

[59] von Hippel, E., "Task Partitioning: An innovation process variable," Research
Policy, Vol. 19, pp. 407-418, 1990.

[60] Warfield, J., "Binary Matrices in System Modeling," IEEE Transactions on
Systems, Man, and Cybernetics, Vol. SMC-3, No. 5, 1973.

[61] Weinblatt, H., "A new search algorithm for finding the simple cycles of finite
directed graphs," Journal of ACM, Vol. 19, pp 43-56, 1972.

[62] Weist, J, "Some properties of schedules of schedules for large projects with limited
resources," Operations Research, Vol. 12, pp 395-418, 1964.

[63] Wheelwright, S. and Clark, K., Revolutionizing Product Development: Quantum
leaps in Speed, Efficiency and Quality, Free Press, 1992.

[64] Williams, T., "Practical Use of Distributions in Network Analysis," Journal of the
Operational Research Society, Vol. 43, pp 265-270, 1992.

[65] Williams, T., "Criticality in Stochastic Networks," Journal of the Operational
Research Society, Vol. 43, pp. 353-357, 1992..

[66] Woodworth, B. and Shanahan, S., "Identifying the critical sequence in a resource
constrained project," International Journal of Project Management, Vol. 6, pp. 89-
96, 1988.

[67] Yassine, A., Falkenburg, D., and Chelst, K., "Engineering design management: an
information structure approach," International Journal of Production Research,
Vol. 37, No. 13, pp 2957-2975, 1999.

[68] Zeigler, B., Praehofer, H., and Kim, T., Theory of Modeling and Simulation -
Integrating Discrete Event and Continuous Complex Dynamic Systems, 2nd Edition,
Academic Press, 2000.

104

Appendix

A1. Algorithm for the Analysis of a Coupled Block

Al-i. Model Inputs

For i = 1, ... , n; j = 1, ... , n and k = 1, ... , 1,

n ; total number of tasks

1 ; total number of resources available for the project

(Rk)ttl ; total amount of resource k available for the project

(Rk), ; amount of resource k that task i requires

Dac, ;actual duration of the project that has been in progress

(dact,) ; actual duration of task i that has been in progress

(do,,), estimate for optimistic remaining duration of task i

(dlikel,),; estimate for most likely remaining duration of task i

(d)p . estimate for pessimistic remaining duration of task i

0 if no dependency between task i and j, or i = j

DSM(i, j) 1 if there is the finish-to-start type of information flow from taskj to task i

2 if there is the finish-to-start-plus-lead type of information flow from task j to

task i

OA(i, j) ; maximum overlapping amount of task i with task j

OI(i, j) ; expected rework impact of task i from the overlapping with task j

RP(i, j, r) ; rework probability that task j causes rework to task i in the rth iteration (r = 1,2, ...)

RI(i, j) ; rework impact which represents the percentage of task i to be reworked when the

rework is caused by taskj

(L,)ri) ; learning curve which represents the percentage of original duration when task i does

the same work in the second time

(L. ; maximum learning curve which represents the minimum percentage of original

duration when task i does the same work repeatedly

Polerance probability that determines rework concurrency of tasks

A1-2. Model Variables

For i, j=],...,n; k = 1, ... ,I; m = 1, ... ,N; and r = 1,2,...

q ; state

105

(Rk)

D

Dq

(d LHS

di
(do,.,)

(dcomple

RP'(i,

L4

C(i, 1) {
C(i, 2) {
PR =

CPR(i, 1) =

CPR(i, 2) =

Lr

RR(i, 1)=

PR(i, 2) =

1 if task i has been completed before

0 otherwise

1 if task i has been reworked before

0 otherwise

1 if task i has all the necessary information to be worked on

0 otherwise

1 if PR.= I and di # 0 in the current state

0 otherwise

1 if CPR(i, 1) = 1 in the previous state

0 otherwise

1 if CPR(i, 1) = 1 and task i has all the necessary resources to be worked on in

the current state

0 otherwise

I if RR(i, 1) = 1 in the previous state

0 otherwise

RC(i, j) ; total direct and indirect rework probabilities that taskj causes rework to task i

A1-3. Simulation Algorithm

For p = 1, ... , N, follow STEP1 through STEP7 below.

STEP1. Initialize model variables from the inputs at state 0 of the pth simulation run.

1. Set di = (dLHS)(i, P) and (do,.), = (d 1 ,) + di for i = I , ... , n.

2. Set D = Da,, and (d cY,ilete).= 0 for i = I, ... , n .

106

total amount of resource k available in state q

; total project duration until the current state

duration of state q

)(,> ; expected duration of task i in the mth simulation run sampled using the LHS

; remaining duration of task i

; original duration of task i defined as the sum of (dct)i and d , at the start of each

simulation run

,e)i ; total project duration when task i is completed

j, r) ; rework probability in the current state

; learning curve when repeating task i in the current state

3. Set PR, = 1 and PRi = 0 for i = 2, ... , n.

4. Set Li = I for i = 1, ... , n.

5. Set RP(i, j, r) = RP'(i, j, r) for i, j= 1, ... , n; r = 1,2,...

6. Set CQi, 1) = I if (dliel,)= 0 for i = 1, ... , n. Otherwise CQi, 1) = 0 for i = 1, ... , n.

7. Set C(i, 2) = 0 for i = 1, ... , n. (Assumption: tasks have not been reworked yet - this is for

computing overlap amounts.)

8. Set q = 1.

STEP 2. Initialize model variables in the current state q.

1. Set RR (i, 2) = RR (i, 1) and CPR (i, 2) = CPR (i, 1) for i = 1, ... , n.

2. Set CPR (i, 1) = 0 and RR (i, 1) = 0 for i = 1, ... , n.

3. Set Q, =Q2=Q 3=0-

4. Set (Rk)' = (Rk)toal fork= 1,..

STEP 3. Identify a set of concurrent active tasks in the current state q satisfying precedence and

resource constraints based on the priority rules.

1. Find a = min ie {2, ... , n I d # 0 }.

2. If a = n, then set PRn= CPR(n, 1) =RR(n, 1)= I and go to 8.

3. If there exists i e {1, ... , n I C(i, 1)= 1 and di # 0) (i.e. there is any task that is reworked in

the current state),

(1) find b = maxie {2, ... , n I PRi = 0 and di #0 }.

(2) compute the Rework Concurrency between tasks a and b as follows:

for i = a + 1, ... , b,

(i) set RC(ii, j)= RP(ii, j,I) forj = a, ... , b -I.

(ii) for i > a + 1, execute the following loop:

for] = i- 2 to I decreasing by I

fork=j+1 Toi- I

RC(ii, j) = RC(ii, j) + RP(k, j, 1)x RC(i, k)

next k

nextj

(3) forie {a, ... , n PR =0 and d# 0},

107

if d = 0 for every j e { a, ... , i -1I (DSM(i, j) # 0 and C(j, 1)=0) or(

RC(i, j) > Ptlrc, and C(j, 1) = 1) }, then set PR = 1.

Otherwise,

forie { a, ... ,nI PR =0 and d # 0

if d = 0 for everyje { 1, ... , i - II DSM(i, j) # 0 }, then set PR = 1.

4.Forie{ 1, ... ,ni PRi =1 and d #0},set CPR(i, 1)= 1.

5. Set Q = i = 1, ... , n I CPR (i, 1)= 1 }.

6. Calculate (Rk)required = J(R,) fork = 1, ... , I where i e Q.

7. If (Rk)required (R 4) for every k = 1, ... , I (i.e. there are no over-allocated resources),

set RR(i, 1) = I and (Rk)q= (Rk)' - (Rk), for k = 1, ... , 1; and I e Q, (i.e. assign

resources to the tasks and reduce resource capacity in the current state).

Otherwise, sort the elements of Q, in the descending order of resource priorities based on the

priority rules. For i e Q, , beginning with the task with the highest priority, if (Rk)1 (Rk)q

for every k = 1, ... , 1, then set RR (i, 1) = l and (Rk) = (Rk)' - (Rk)i for k = 1, ..

8. Set Q2 = { i = 1, ... , n I RR (i, 1) = 1 }.

STEP 4. Adjust overlapping iteration for the tasks in Q2 .

1. Set Q3 ={ie Q2 I RR (i, 2)= 0, CPR (i, 2)= 0 and j =1,...,n s.t. OA (i, j) # 0}

2. If Q3 = $, then go to STEP5.

Otherwise, for i e Q3,

(1) Set K,=K2 =K 3 =0

(2) If there exists j e { i + I, ... , n I (dconipet) = D and OA(i, j) # 0} , set the overlap

amount K, of task i as OA(i , j) x di and go to (4). (This implies that task i starts to do

feedback rework in the current state. It is assumed that feedback rework can be overlapped

with only one task that causes the rework.)

(3) If there existsje { 1, ... , i - 1 I (dcnie,e)j = D, OA (i, j) # 0 and RR(j, 1) = 0 } and for

calculate the overlap amount K, as follows:

108

K = min (D - (dcompete)j + OA(i, j) x di)

where je {1, ... , i -1OA(i, j) #0 and RR(J, 1) =01

Otherwise, go to (7).

(4) Calculate the actual overlap amount K 2 of task i based on resource availability in the

prior states. If (Rk). 5 (Rk)q-_ for every k = 1, ... , 1, set K 2 =K 2 + min(K,, Dq 1)

and K, = K - Dq_ . Otherwise go to (5). If K, > 0, repeat this procedure for prior states

q-2, q-3, ... until K, 0.

(5) If C(i, 1)= 0 and there existsje {1, ... ,i- 1 OA (i, j) # 0, RR(j, 1) = 0 and C(j, 2)=

1 }, set K 2 equal to the minimum of K 2 and min (D - (dcope,,e ,)j +

(rework amount performed in previous iteration)1) }

(6) If task i is overlapped with only one task, then calculate the actual overlap impact K 3 as

follows:

K3 = K2 x OI(i, j)

Otherwise,

K 3 = ((K 2 -D+(dconiete)j) x OI (i,j))

where je {, ... ,i - OA(i, j) #0 and RR(j, 1)=0}

(7) Set di =di -K 2 +K 3 .

STEP 5. Adjust the total project duration and the remaining durations of the tasks in Q2 -

1. Set Dq = min di for i e Q2.

2. Set D D + Dq.

3. Set d= d - Dq for i e Q2.

4. If d =0 for i e Q2, then

(1) Set (dconpiete)i = D.

(2) If C(i, 1) = 0, set C(i, 1)= 1. Otherwise, set C(i, 2) = 1.

(3) Set Li = max (Li x(Lorig)i , (Lmax)i).

109

STEP 6. Generate sequential iteration rework.

For each task i e { i e Q2 1 (dco,,pe)j= D },

<feedback rework>

1. If i > 1, forj e {1 , ... , i - I I RP'(j, i, 1) # 0},

if a random number between 0 and 1 is less than RP'(j, i, 1), then

(1) Set d. = min(d1 + (dori)j x RI(j, i) xL , (do,) 1 x (L,,),)

(2) Set RP'(j, i, k) = RP'(j, i, k +1) for k = 1, 2, ...

(3) Set PR1 = 0 and PR = 0 for all the successors of j.

<feedforward rework>

2. If C(i, 1)= I andi<n,forje { i+1, ... ,ni RP'(j, i, 1) #0 and d #(doig) },

if a random number between 0 and 1 is less than RP'(j, i, 1), and it is not true that rework

of task i has been generated by task j and has never been executed, then

(1) If C(j, 1) = 1,

set d1 = min (d + (doi)j xRI(j, i)x Lj, (do,,)jx (Lori)j)

Otherwise,

If di < (do,) 1 x 0.9,

set d = min (di + (di) ,x RI(j, i) x L, (doi), x 0.9).

Otherwise,

set d = min (di + (don)j x RI (j, i) xL, , (do.,))

(2) Set RP'(j, i, k) = RP'(j, i, k +1) for k = 1, 2, ...

(3) Set PR = 0 and PR = 0 for all the successors of j.

STEP 7. Test a termination of the simulation run.

If di = 0 for every i = 1, ... , n, the pth simulation run is complete. Otherwise, set q = q + I and

go to STEP2 (i.e. make a transition to the next state).

<Note>

For conciseness, some minor details of algorithms are explained verbally and some model

variables are not included.

110

A2. Comparison with Other Rework Process Models

This section explains different aspects of the proposed model with respective to task

concurrency and (sequential) rework generation. Note that all the other rework models

mentioned below do not account for resource conflicts and overlapping iteration.

A2-1. Analytical Models

By definition, a network is in a certain state at a certain instance, and the sum of state-

transition probabilities is equal to one in a Markov chain or a reward Markov chain. Since

a state represents a task in the process models based upon a Markov chain (Ahmadi and

Wang 1999) or a reward Markov chain (Smith and Eppinger 1997a), they have inherent

limitation to model a project having parallel tasks (or paths) as shown in Figure A-I (a).

For the same reason, tasks a and b in Figure A-9 (b) cannot be reworked in parallel after

task c is completed.

b

a dada b c
Q< ~C&

(a) Parallel Path (b) Sequential Path

FIGURE A-i. EXAMPLES FOR COMPARISON WITH ANALYTICAL MODELS

Eppinger et al. (1997) made an extension to the analytical model using a signal flow

graph in order to model parallel task execution. However, as they discussed in their work,

the result quantity is the total effort (sum of durations of all tasks) instead of the lead time.

In addition, the model is not able to account for the 'AND' rules, where a number of

tasks have to be completed before a task starts.

111

A2-2. DSM-Based Simulation Model (Browning and Eppinger 2000)

The DSM-based simulation model was the first attempt to overcome inherent limitations

of the analytical methods for modeling iteration in parallel tasks (or paths). They used the

discrete time simulation to achieve this purpose (note that the thesis employs the discrete

event simulation). In this section, the author discusses its assumptions in task concurrency

and rework, and consequent impacts to lead time computation. The summary of

improvements in the proposed model is given at the end of the section.

<1> Task concurrency using the "bands"

"Banding" is the graphic technique proposed by Grose (1994) to show a set of tasks in

the DSM that can work in parallel potentially. Browning (1999) made the following

comments about this technique:

"An innovation of adding alternating light and dark bands to a DSM to show

potentially concurrent activities comes from the work from Grose Since one

activity in each band sits on the critical path, fewer bands are preferred, implying

greater concurrency and shorter process duration for a given set of activities."

Browning and Eppinger (2000) presented the following algorithm using the bands to

identify a set of concurrent tasks (or activities) working in each time step:

"Find first activity, i, that has unfinished work

Loop through subsequent activities to identify concurrent work for the current time

step. If next activity has unfinished work and is not dependent on an unfinished,

upstream activity, then set its WN entry to TRUE (i.e. this activity works in the

current time step). Otherwise, the complete band has been found (stop checking

activities)."

<Note> The author added italicized words above for clarity.

A simple example is given in Figure A-2 to illustrate possible marginal errors that might

be caused by the above algorithm. The example has nine tasks with six bands in two

112

parallel paths as illustrated in (a) and (b). The numbers in the parenthesis at (b) represent

the durations of tasks. Note that the bands are equivalent to the process levels based on

the as-early-as-possible rule in the network without feedback information flow. The path

along the tasks a-b-d-f-h is a critical path with 19 units while the tasks c, e, g, and h have

one unit of slack.

(a) DSM with Bands

(3) (4) (4)

b d f

(3) c e h

(2) (2) (3) (3)

LV I L(2) Lf") L(4) L-i5, L(6)

(b) Project Network

|cel L&JIiKJ

(c) Simulated Gantt Chart Following the Above Algorithm

FIGURE A-2. TASK CONCURRENCY OF THE FIRST DSM SIMULATION MODEL

113

I - I i E I I I I B i I

At the time step right after task c has been completed, following the algorithm in the

above,

(i) Task b is the first task with unfinished work.

(ii) Task c is the next task but does not have unfinished work. Thus, a complete band

including only task b is found.

However, task e should start to work when task c is over, according to their assumption

that tasks are supposed to start as early as possible once upstream dependent tasks are

completed. The same explanation can be made for the delayed start of task g. Thus, the

lead time is overestimated by 2 units as illustrated in the figure. There are more chances

to give a misleading result when a project network has multiple paths with more than two

tasks in each path. Besides, task h is not on the critical path even though it takes one band

alone. Generally speaking, it is not true that only one task in each band sits on the critical

path.

<2> Rework generation

In this section, rework generation patterns of the algorithm proposed by Browning and

Eppinger (2000) are discussed using the case example of Browning (1999) in Figure A-3.

The simulated Gantt chart in (b) is one of many possible outcomes from the rework

probability matrix in (a). Following their algorithm,

(1) At the time step tO when task 9 is completed,

(i) First-order (feedback) rework is generated to task 2

(ii) Second-order (feedforward) rework is generated to task 3 due to rework of

task 2

(2) At the time step t] when task 2 starts to be reworked,

(i) Task 2 is the first task with unfinished work.

(ii) The next task 3 has unfinished work but is dependent upon task 2. Thus, a

complete band including only task 2 is found.

(3) At the time step t2 when task 3 starts to be reworked,

(i) Task 3 is the first task with unfinished work.

114

(ii) Task 11 is the next task with unfinished work and is not dependent upon task

2. The next task 12 has unfinished work but is dependent upon task 11. Thus,

a complete band including tasks 3 and 11 is found.

<Note>

There may be other time steps between time steps tO and t], and between t] and t2, if the

constant size of time step is smaller than the time for the rework of task 2 or 3 shown in the

figure.

Prepare UAV Preliminary DR&O

Create UAV Preliminary Design Configuration

Prepare & Distribute Surfaced Models & Int. Arngmt. Drawings

Perform Aerodynamics Analyses & Evaluation

Create Initial Structural Geometry

Prepare Structural Geometry & Notes for FEM

Develop Structural Design Conditions

Perform Weights & Inertias Analyses

Perform S&C Analyses & Evaluation

Develop Balanced Freebody Diagrams & Ext. Applied Loads

Establish Internal Load Distributions

Evaluate Structural Strength, Stiffness, & Life

Preliminary Manufacturing Planning & Analyses

Prepare UAV Proposal

1
2

3
4

5
6

7
8
9

10

11
12

13
14

I 2 3 4 5 6 7 8 9 10 11 12 13 14

.4 -

.4

.3

.4 .5 . .3 .1

.1 .4

.4 .4
.5

.4 .5 .5 .5

.5 .5 .5 .5

.4 .5 .4

.5 .5 .4

.3 .4 .4 .4 .4 44 4 .4 .4 .4 .4

Source: Browning (1999) Chapter 6. pp.174, Table 5

(a) DSM Dimension One - Rework Probability

indices of tasks

0

0 20 40 60 / 100

E0O s Time (Days)

U) tl t2

120 140

Source: Browning (1999) Chapter 6. pp 168, Figure 2

(b) Simulated Gantt Chart of One Scenario

FIGURE A-3. REWORK GENERATION PATTERNS OF THE FIRST DSM SIMULATION MODEL

115

A4

A511

A512
A531

A521
A522

A5341

A532
A533
A5342

A5343
A5344

A54

A6

U
I W 2

*a 2
- -

9- -
men 0m - m

mamme

160 180

The below is the summary of the issues identified in the example:

1. Task concurrency - Following the banding algorithm, task 11 did not work in parallel

with task 2 at ti while it did with task 3 at t2. But there is no rationale for this

interruption of task 11. This shows another limitation of the banding-algorithm's stopping

rule in iteration - the algorithm stops checking other downstream tasks even when it

misjudges that a complete band has been found.

2. Timing of second-order rework generation - The second-order rework of task 3 was

determined at the same time when the rework of task 2 was determined. Because of pre-

generated rework of task 3, task 11 was interrupted at ti, which shouldn't have happened

otherwise. Besides, in practice, the decision point of rework of task 3 is more likely when

the rework of task 2 is completed.

3. Chain feedforward rework after second-order rework - In the above example, the

rework of task 3 may cause additional feedforward rework to tasks 4, 5 and 9, which may

cause subsequent reworks to further downstream tasks, as indicated by the rectangles in

(a). If theses successive feedforward reworks are not accounted as in their algorithm, the

model may significantly underestimate the lead time. In addition, it does not take into

account the size of a feedback loop which can be measured by the distance of a feedback

mark from the diagonal in the DSM.

<3> Summary of improvements from the first DSM-Based simulation model

Browning (1999) provided insightful suggested extensions for his model. Below is a list

of topics and achievements of the proposed model:

. dynamic durations and iterations - solved

(The task durations are updateable and the iteration characteristics such as rework

probability and the learning curve are changed in each iteration.)

. increased task concurrency (overlapping iteration) - solved

. resource requirements and constraints - solved

. distinctive rework probability in each output - not incorporated

. independent blocks of highly coupled activities - solved

116

. cost modeling (NPV) - not incorporated

Additional improvements not included in the above list are:

. identifying a correct set of concurrent tasks

. modeling successive chain feedforward rework

. employing the discrete event simulation instead of the discrete time simulation,

which saves computation time and increases accuracy

. employing the Latin Hypercube Sampling technique instead of Monte Carlo

sampling technique, which reduces the number of simulation runs for

convergence.

A2-3. Notes on the Proposed Model in Rework Generation

Consider a simple example in Figure A-4. The scenario in (c) is under the assumption

that the total rework probability that either task a or b causes task c to rework is larger

than Ptolerance . After the first iteration of task b (i.e. b'), there is a chance that both

upstream task a and downstream task c need to incorporate new information from the

rework b'. When that case happens, task c waits until rework of task a (i.e. a') is

completed. The model simulates that the rework of task c accumulated after the

completion of b' is performed as if it updated latest information from the second iteration

b".

Task Name 1 2 3
a

2 3 1 1

(a) Information Flow Diagram (b) DSM

a a

SC cl

(c) One Possible Outcome from Simulation

FIGURE A-4. REWORK GENERATION PATTERN OF THE PROPOSED MODEL

117

A3. Definitions of Heuristic Priority Measures

A3-1. Rank Positional Weight (RPW)

Cooper (1976) defined a rank positional weight of task i as follows:

rpwi = d + dj

where, di: expected duration of task i

d : sum of all expected durations over all successors of task i
i

(Note: a set of successors includes all downstream tasks that receive outputs from the

task.)

By adding the summation part of the rank positional weight, it measures global

importance of a task while it measures only local importance among neighbor tasks

without it (Cooper 1976).

A3-2. Cumulative Resource Equivalent Duration (CUMRED)

Cooper (1976) defined a cumulative resource equivalent duration of task i using a

resource usage duration (Pascoe 1965) of each resource as follows:

RUDk = Lk+Ek Rk

where, RUDk : resource usage duration of resource k

Lk : last time period of requirement for resource k

Ek: total excess requirement for resource k

Rk : total available amount of resource k

RUDMAX = Maximum { RUDk I where k = 1, 2,..., K (number of resources)

118

K

RED = (rik Rk) - (RUDk I RUDMAX) - di
k =1

where, RED: resource equivalent duration of task i

ik : amount of resource k required by task i

CUMRED = RED, + , REDj
i

where, CUMRED : cumulative resource equivalent duration of task i

REDJ : sum of RED over all successors of task i

A4. Explicit Resource Links

During the forward pass computation, the model creates explicit resource links between

the tasks that cause a resource conflict. If the conflict is between two tasks, it simply

creates the link from the task with a higher resource priority to the one with a lower

priority. If more than two tasks are involved, it requires a careful examination. The

example in Figure A-5 is used for illustration. Figure A-6 shows two possible alternative

methods for creating explicit resource links in the example, under the assumption that (i)

all the durations of tasks are equal, (ii) tasks b, c, and d compete for the same resource A

while two units of A are available, and (iii) the order of resource priorities are task c, b,

and d from the highest. Note that resource links are considered as if they were precedence

constraints during the backward pass computation.

b

aC e

d

FIGURE A-5. R ESOURCE CoNFLICTIoN AMONG PARALLEL TASKS

119

b(A)

d (A)

forward pass

(a) Scenario A

b (A)

| a CA e |

d (A)

forward Pass

b (A)

|a e

d (A)

backward pass

(a) Scenario B

FIGURE A-6. ALTERNATIVES METHODS FOR CREATING EXPLICIT RESOURCE LINKS

In the first scenario, task d is delayed because of its lowest priority and one explicit

resource link is created between tasks c and d assuming that the same resource A that is

assigned to task c is assigned to task d. Under this scenario, only the RC slack of task b is

nonzero although task d has a lower priority than task b. In the same way, if the resource

link is created between tasks b and d, task c with a highest priority has some RC slack.

Thus, this method reveals inconsistency that task d with a lowest priority is critical

(because it has zero RC slack) while task b or c with a higher priority has nonzero RC

120

(A): one unit of resource A
P information flow (precedence

constraint)
: resource flow (resource

constraint)

b (A)

|a CA

d (A)

backward -pass

slack. This is the method of creating resource links when more than two tasks compete

for limited resources in Bowers (1995).

In the second scenario, two explicit resource links are created even though task d uses

only one unit of resource A. Under this scenario, all three tasks are critical because they

have no RC slack. Thus, the tasks have RC slack in accordance with their resource

priorities which represent the relative importance of tasks. This is the method developed

in this thesis that creates explicit resource links from all active tasks, that finish in a

certain state, to the tasks that have all inputs but are delayed due to lower priorities for the

same resource used by those active tasks.

In the method proposed by Bowers, a resource link is created for any resource assignment,

as illustrated in Figure A-7. And there is no need to account for resources in the

backward pass computation using this method. In contrast, the proposed method does not

create a resource link unless there exists a resource conflict between two tasks during the

forward pass computation. Thus, it does not create the resource links in the figure while it

requires that resource conflicts be handled in the backward pass computation as well. For

instance, during the backward pass computation, if one unit of resource A is available for

the project, the model simulates that task b is delayed after task d by interpreting that task

d has a lower priority during the forward pass computation because it started later than

task b.

b (A)

a 71c AA

FIGURE A- 7. RESOURCE LINKS CREATED TO ALL R ESOURCE FLOWS

121

A5. Detailed Data & Computation Results of Logistics
Europe Project

Table A-I summarizes the data and computation results of the Logistics Europe project in

a task level. Resource requirements are not included in the table because there was a

resource conflict only between tasks 6 and 13 within this project. In reality, the resources

used in this project did multi-tasking with other projects. More extensive data collection

would give more precise results constrained by limited resource capacity. Figure A-8

shows the data related to iterations. The learning curve was determined as 30% for the

tasks that calculates numeric values using computer models, 50% for review tasks, and

70% for other tasks, while the maximum learning curve is determined as 35%, 20%, and

50%, respectively. No additional overlapping was planned other than between the tasks

within coupled blocks as indicated in the figure.

Expected Duration Prede- Slack Criticality RCSlack RCCriticality
Task ID Task Name Opt Likely Pess cessors (avg,sd) % (avg,sd) %

1 Project approval 1 1 5 0, 0 100 0, 0 100
2 Develop European long-term business strategy 5 10 15 1 0, 0 100 0, 0 100
3 Develop European Materials & Logistics strategy 5 10 15 2 0, 0 100 0, 0 100
4 Establish European 2001 budget 5 10 15 3 0, 0 100 0, 0 100
5 Kick-off meeting 1 1 5 4 0, 0 100 0, 0 100
6 Develop the details of action items 5 15 20 5 1.6, 3.1 65 1.4, 2.9 67
7 Develop customer delivery profile 5 10 15 5 4.1, 4.7 35 4.3, 4.7 33
8 Blockl: Price Negotiation 6,7 .1, .8 93 .3, 1.2 87
9 Review the price agreement for this year 1 2 3
10 Define additional parameters for new prices 2 4 6 9FS _________

11 Determine new prices 5 10 15 9, 10
12 (D) Blocki Duration 10.6 17.3 26.7
13 Establish normal lead time of delivery by locations 5 10 15 7 12.4, 8.3 7 8.2, 6.7 13
14 Block2: Process Definition 8,13 0, 0 100 0, 0 100
15 Modify current procedures in logistics 5 15 25 ____

16 Calculate worldwide projected inventory levels 1 3 6 15FS
17 Review modified procedure in logistics 2 6 12 15FS
18 Calculate new safety stocks for EU DC 1 2 3 16
19 Milestone review 2 3 10 15,16,17,18
20 (D) Block2 Duration 18 31.6 48.8 ________

21 Block3: Customer Testing 14 0, 0 100 0, 0 100
22 Determine sample customers for testing 1 2 4 1
23 Ship a series of products to sample customers 10 12 14 22 1
24 Review testing results 2 4 6 23
25 (D) Block3 Duration 17.4 27.6 38.6
26 Modify replenishment program 2 4 6 14 33.3, 9.2 0 33.3, 9.2 0
27 Adjust safety stocks in EU DC 1 2 3 21 0, 0 100 0, 0 100
28 Adjust international rolling forecast 1 2 3 27 0, 0 100 0, 0 100
29 Implement new procedure in logistics 1 5 10 28 0, 0 100 0, 0 100
30 Close IW and ship remaining inventories to EU DC 8 16 24 26, 29 0, 0 100 0, 0 100
31 Distribute all the products from the EU DC 2 3 4 30 0, 0 100 0, 0 100

<Note> "Task ID" is different from "ID" in the DSM.

TABLE A-1. DATA AND COMPUTATION RESULTS OF LOGISTICS EUROPE PROJECT

122

ID Task Name Ori. Learning Max. Learning
8 Review the price agreement for this year 50% 35%
9 Define additional parameters for new prices 50% 35%

10 Determine new prices 50% 35%

<Rework Probability>
1st Iteration 2nd Iteration 3rd Iteration

8 911 1 81 9 10 8 9 10
81W f 0. 0.2 8 0.1
91088 9 1002 901 0

101.0 11.0 10110 110 10 1.01 1.0=

<Rework Impact> <Overlap Amount> <Overlap Impact>
8 910 8 9 10 8 9 10

811 __0 8 8M
910.6= 9 0.4 91. = I

1010.6[0.4 1E%1

(a) Block]: Price Negotiation

ID Task Name On. Leaming Max. Learning
12 Modify current procedures in logistics 70% 50%
13 Calculate worldwide projected inventory levels 30% 20%
14 Review modified procedure in logistics 50% 35%
15 Calculate new safety stocks for EU DC 30% 20%
16 Milestone review 50% 35%

<Rework Probability>
1st Iteration 2nd Iteration

12 13 14 15 16 1 12 131 14 15 16
12 0.5 0.3 12M 10.1 0.1
13O 13 1.O I
14 1 .o 14 1.0
15 10 15 O.0

11611.01 .01 .01 1.O 16 1.0 1.0 O .

<Rework Impact> <Overlap Amount> <Overlap Impact>
1213 14 15 16 1 12113 14 15 16 12 13 14 15 16

12 0.5 0.5 12 12
13 0.2 13 _ 130 .5
14 0.7 140 14 0.2
15 10.21 15 15
16 05 0.5 0.505 16 16

(b) Block2: Process Definition

123

ID Task Name Ori. Learning Max. Learning
17 Determine sample customers for testing 70% 50%
18 Ship a series of products to sample customers 70% 50%
19 Review testing results 50% 35%

<Rework Probability>
1st Iteration 2nd Iteration 3rd Iteration 4th Iteration

17 18 19 17 18 19 17 18 19 17 18 19
17 0.8 17 0.5 17 03 17 0.1
181.0 18 1.0 18 1.0 18 10
19 1 19 1.0 19 19 1.0

<Rework Impact> <Overlap Amount> <Overlap Impact>
17 18 19 17 18 19 17 18 19

17 ff - lo 17 17M
1818 n 18 18
19 0.8 19 19

(c) Block3: Customer Testing

<Note> "ID" is based on that in the AEAP DSM.

FIGURE A-8. DATA FOR ITERATIONS IN LOGISTICS EUROPE PROJECT

124

