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Abstract

This thesis investigates the effect of various factors on multi-agent collaboration in a simulated
fire-fighting domain. A simulator was written that models fires and fire-fighting agents in an area
of a few square city blocks. Different scenarios were constructed to test the effects of limiting the
agents' knowledge and to compare the effects of coordinating the agents through a single entity with
the results obtained through independent decision making. This research demonstrates that the
amount of information available to each agent and the agents' ability to act on this information are
typically much more important factors than the use of a complex planning mechanism; as long as
the agents are aware of each other and take minimal steps to coordinate their actions they are able
to achieve results that are nearly as good as those achieved by much more complicated algorithms.
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Chapter 1

Introduction

Multi-agent collaboration, in which multiple entities cooperate to accomplish a shared goal,

can be found throughout life. Research into automating such collaboration has targeted everything

from soccer [11] to industry [6]. However, finding the optimal behavior for each agent in a group is

a difficult task.

Constructing an optimal set of behaviors for every entity requires that every agent know the

state of each of its peers and attempt to predict what actions they will take. This information must

then be factored into the agents' decision making process. Suboptimal solutions, though more

tractable, are of questionable value unless their degree of suboptimality is well characterized. This

research identifies and quantifies the effects of various factors on the ability of a group of simulated

fire fighting agents to extinguish a set of fires throughout a city. The following paragraphs discuss

optimal and suboptimal approaches to multi-agent collaboration, the algorithms and comparison

methods used in this work and the fire fighting domain these algorithms were tested in.

There are two common approaches to this problem, both of which use centralized planning.

One approach is to assign optimal behaviors to each agent a priori [23], allowing each agent to

carry out its plan independently of the other agents. Issuing a priori commands requires detailed
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knowledge of the problem before a solution can be constructed. In addition, this style of multi-

agent collaboration is extremely inflexible; if circumstances deviate at all from their expected state

the entire plan may become useless. Another approach that has been taken towards multi-agent

collaboration is to have some form of central coordination that issues commands to every agent in

the group as the situation unfolds[5], requiring constant communication between group members.

If a central coordination mechanism with global knowledge issues commands to and receives

information from every agent then the problem can be reduced to finding the optimal set of orders

that the central coordinator should issue, given the state of the world. In this type of problem

there is no real collaboration; only one entity makes any decisions. One method for calculating the

optimal set of orders to be issued in any given world-state is through the use of Markov decision

processes [10, 17] (MDPs). Appendix A provides a brief description of MDPs and the value iteration

algorithms used herein.

Despite the attractiveness of optimal solutions, there are several drawbacks to the centralized

approach. Centralized planning requires perfect communication between the coordinating entity

and all of the agents and is hampered by damage to the coordinating agent, which is a single point

of failure. In addition, development of an optimal multi-agent policy typically requires detailed

knowledge of the problem as a whole, which is likely to be infeasible for realisitically complex

problems.

Since agents in an urban environment typically do not have global knowledge of the entire city,

and often have limited communications with each other or with a central coordinator. This re-

search examines the effects of various factors on agent performance. These factors are the presence

or absence of global knowledge, the presence or absence of central coordination, variations in the

communication and vision range and the speed at which agents travel around the city. Five algo-

rithms were developed to support review of the various factors. An optimal algorithm was designed
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and implemented. This algorithm relies on global knowledge and perfect communications and is

very computationally intensive for all but the most trivial problems. A near-optimal approximation

algorithm was used in order to solve problems involving larger numbers of agents and fires. In order

to examine the effects of central coordination, a third algorithm was developed that did not rely on

central coordination but still allowed the agents global knowledge of the city. A fourth algorithm

was also designed that required neither global knowledge nor central coordination; comparing this

algorithm to the previous one helps to demonstrate the effects of global knowledge on agent ef-

fectiveness. Finally, a fifth algorithm was developed which did not rely on global knowledge or

coordination and also imposed more realistic constraints on the rate at which agents could travel

around the city. The effects of these constraints are discussed as well.

Since solving Markov decision problems is computationally intensive, the size of tractable prob-

lems that can be solved optimally is prohibitively small. As a result, a three-level comparison

was performed between the optimal solutions (for problems of small size), near-optimal solutions

created using an approximation algorithm discussed below and the algorithms discussed in this

work.

For comparison purposes, all of the algorithms were run in situations for which an optimal,

centralized solution could be constructed. In addition, the algorithms were run in situations for

which construction of an optimal solution is computationally intractable; these iterations and their

results are discussed in Chapter 6.

The agents' performance increased quickly as their range of knowledge increased, although it

plateaued after a certain range. Agents with global knowledge but no centralized control performed

nearly as well as centrally controlled agents with global knowledge. The results for problems of

various sizes are discussed in Chapter 6.

Meuleau et al. designed an algorithm that approximates the optimal solution to an MDP [16].
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This algorithm has been adapted for use in this thesis and compared with the results of the optimal

algorithm. The results are discussed in Chapter 6. This approximation is used as a baseline for

judging the results of this project on problems which are too large to solve optimally using MDPs.

This work deals with the fire fighting domain. Although prior research' has already developed

algorithms for use in this domain [2, 5, 12], these algorithms rely on either centralized control or

knowledge of the entire world. This project uses a simple simulation that models a few city blocks;

the simulator models the increase in intensity of the fires throughout the city as well as the efforts

of the fire fighters to extinguish them. This simulator is used to compare the effectiveness of the

various distributed algorithms, the near-optimal approximation and the optimal MDP solution.

The RoboCup Rescue project [12] has developed a similar simulator, but it is unsuitable for this

research for reasons that will be detailed in Chapter 6.

The remainder of this thesis is laid out as follows: Chapter 2 describes prior research done

in this field including the requirements for the creation of an optimal solution and previous work

aimed at developing near optimal solutions that bypass these requirements. It also further describes

the goals and motivations behind this work. Chapter 3 discusses the simulator that is used in this

research as well as the particulars of how fires and fire fighters are modeled. Chapter 4 discusses

the stepping stone algorithm, which is used to calculate the cost of moving a set of agents between

fires. Chapter 5 discusses the algorithms implemented during this research and the situations in

which they are applicable. Chapter 6 discusses the tests performed on the various algorithms and

the results that were obtained. Chapter 7 summarizes the thesis and presents an interpretation of

the results as a whole. Chapter 8 discusses some of the possible future extensions to this work.

Appendix A discussed the Markov Decision Problems used to model the simulation and the value

iteration algorithm used to provide optimal agent behavior.
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Chapter 2

Related Work in Fire Suppression

One application for which multi-agent collaboration is currently being explored is cooperative

fire-fighting [2, 5, 12], where simulated fire fighting agents work together to either contain [5] or

extinguish [2, 12] fires. The following sections describe related work in modeling fire spread and

fire suppression.

2.1 Previous Fire Models

Much of the previous work in fire simulation has focused on creating a realistic fire model that

is simple enough computationally to be used in a simulation involving many fires spreading over a

wide area of land. Several of these approaches are documented below.

2.1.1 A Simple Grid of Cells

One widely used approach is to model the fire as a lattice of cells. The cells are either on fire or

not (there is no intensity) and burn through their fuel supply at a predetermined rate. Individual

cells have their own fuel supply. At every time step there is some probability that the fire will

spread to nearby cells based on factors such as wind, hill gradient, etc. This model treats each cell
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as a separate fire.

Previous work using this model has represented fire suppression in various ways. Cohen has

the fire-fighting agents contain the fire and wait for it to run out of fuel [5]. Since Cohen was

simulating large scale forest fires and the agents were often far apart from each other, he relied on

a centralized "fire boss" to coordinate the agents when they were far apart.

Andrade models fire suppression efforts by reducing the amount of fuel that a particular cell

has, thus decreasing the time before it burns out [2]. Andrade's model requires agents to reduce

the fuel for each cell individually. Andrade modeled fire fighting in individual rooms on a ship.

Thus, each agent had complete knowledge of the room it was in, including the location of each of

the fires.

2.1.2 Rothermel's Work

Many fire simulations (e.g., [8, 15]) which model the spread of fires in the wilderness are derived

from work developed by Rothermel in 1972 [18]. These systems model a fire as a collection of cells,

which spreads by igniting nearby (non-burning) cells. Unlike the simple grid of cells discussed

previously, individual cells can have different intensities which affect how likely the fire is to spread

to neighboring cells. The intensity of a cell is based on the type of fuel being burned and is not

time dependent. Each cell is described by its fuel type, amount of fuel, current state (i.e., on fire

or not), susceptibility to being lit on fire by other fires and many other factors. Additionally there

are global factors such as terrain, wind conditions and moisture in the air that affect all of the cells.

Fire suppression is not typically studied using this type of simulation; these models are generally

used to study how a fire will spread unchecked through a forest [7].
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2.1.3 The RoboCup Rescue Simulator

The RoboCup Rescue project [12] has developed a simulation that will allow multiple agents to

cooperatively fight fires with only local knowledge and limited communications. This promises to be

a very useful environment for future research. However, the current efforts of the RoboCup Rescue

development team are focused on improving the simulator, rather than designing or implementing

the agents' strategies, making it less applicable to this thesis. Since the RoboCup Rescue project

has just begun [20], the algorithms used in the project are not very sophisticated. For example,

each agent simply heads towards the closest fire, regardless of how many other agents are heading

towards or already at that same fire.

Several characteristics of the current implementation of the RoboCup Rescue simulator make it

unsuitable for the current research. They include the inability to reset the simulator state, the lack

of distance and line-of-sight constraints on agent vision and agent communication, and the need

for a more realistic fire fighting model.

The fire models discussed in this chapter are summarized in table 2.1.

Simple Grid Rothermel's Model RoboCup Rescue

Same intensity across fire Yes No No

Intensity changes over time No No Yes

Fires consume fuel Yes Yes Yes

Used to model fire suppression Yes No Yes

Table 2.1: Fire Models
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Chapter 3

The Simulator and Fire Model

This chapter discusses the simulator used in this research (in section 3.1) and describes the way

that fire and fire suppression were modeled (in section 3.2). Each of the agents in the simulator

determines and executes its plan of action.

3.1 The Simulator Engine

The simulator used in this research is a simple Java program that models fires and fire fighting

agents within a few city blocks. The city is represented as a grid of nodes of three types ("road",

"fire" or "building"). "Building" nodes can catch on fire. Fires that are extinguished are still

treated as "fire" nodes, but with zero intensity. Each fire has its own intensity, discussed in section

3.2. The simulator models constraints such as vision and communications bounded by line-of-sight

and distance.

The simulator consists of a single main loop that first updates all of the fires (increasing or

decreasing their intensity if appropriate), then provides the agents with the information available

to them (about the entire world if the scenario allows global knowledge, otherwise only about the
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applicable portions of the world) and runs each agent's decision making routine. As part of the

decision making process, each agent decides which fire to fight or, if central coordination is present,

is assigned to a fire. Figure 3-1 shows the simulator display. The black squares forming a grid

through the picture indicate roads. The magenta circle at the intersection.is a fire fighting agent.

The two light gray squares above and to the right of the agent are low intensity fires. The other

squares represent unburned ground.

U EE.EEENEE U

Figure 3-1: The Simulator display

3.2 The Hybrid Fire Model

This section describes the model used to represent fires in this research. This hybrid model

retains many of the characteristics of the previously discussed fire models, but is simplified for use

with MDPs.

Each fire has one of five intensity levels; as the fire reaches each new intensity level it does more

damage. For example, a level one fire might scorch the paint off walls, while a level four fire might

cause total destruction. Level zero is used to denote fires that have been extinguished. There is

an a priori probability that a fire at one particular level of intensity will jump to the next level
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of intensity; this probability is based only on the fire's current level. The probability of the fire

increasing in intensity goes up as the fire intensity increases. For example, level-three fires have a

60% chance of becoming level-four fires in the next time step whereas level one fires have only a

15% chance of becoming level-two fires in the next time step. Table 3.1 lists the odds of fires at

various intensities increasing to the next level.

Intensity of Fire Probability of Increase

0 I 0
1 .15
2 .35
3 .6
4 0 (Maximum intensity)

Table 3.1: Probability of fire growth

There is also some probability that a fire will decrease by one level of intensity. This probability

is a function of the number of fire fighters fighting the fire and the current intensity of the fire.

The effectiveness of each additional fire fighter decreases as the number of fire fighters assigned to

the fire increases. For example, having one fire fighter fight a particular fire might provide a 10%

chance that the fire will decrease in intensity while having two fire fighters might only provide a

17% chance that fire's intensity will decrease. Table 3.2 summarizes the properties of the hybrid

fire model.

Hybrid Fire Model
Same intensity across fire Yes
Intensity changes over time Yes
Fires consume fuel No
Used to model fire suppression Yes

Table 3.2: Hybrid Fire Model

The hybrid model is very simple, but it has several important characteristics that make it
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useful to this project. Fires that are not extinguished will eventually increase in intensity and,

more importantly, will continue to increase in intensity at a faster and faster rate. This forces the

agents to attempt to fight every fire they have a realistic chance of stopping, because fires that

grow past a certain threshold will be very hard to control. In addition, the decreasing effectiveness

of additional fire-fighters means that the agents need to spread out their efforts for maximum

gain while still concentrating their efforts enough to fight fires that are on the verge of becoming

uncontrollable.

It is very important that the fire model be kept as simple as possible in order to increase the

size of the problems that are optimally solvable via MDPs. As a basis for comparison, it took a

Sun UltraSparc 20 with a 333 MHz processor one hour to solve the MDP corresponding to four

fires, each using the hybrid fire model, and seven fire fighting agents. It took the same computer

six hours to solve a two fire, four agent problem when the problem used the RoboCup Rescue fire

model because the RoboCup Rescue fire model allows the same fire to have different intensities at

different points across its surface and also keeps track of the fuel consumption of each fire.

28



Chapter 4

The cost of moving agents during a

single action

In this research, the "actions" evaluated by a Markov Decision Process (MDP) are simply

assignments of agents to fires. At any given time the agents are already at various locations. Thus,

the reward for a given action has to take into account the cost of moving the agents from their

current locations to the ones designated by the MDP. This chapter describes an algorithm used by

the simulator to quickly compute these costs.

For example, consider a situation with four fires (A, B, C, D) and two agents (a, b), where

agent "a" is at fire "A" and agent "b" is at fire "B". The cost to assign an agent to "C" and an

agent to "D" is the minimum of C(A, C) + C(B, D) and C(A, D) + C(B, C), where C(X, Y) is the

cost of moving an agent from location X to location Y. Figure 4-1 illustrates this problem.

This type of problem is a transportation problem [21]; it is a special case of a weighted bipartite

matching problem which is in turn a special case of a min-cost flow problem. For computational

efficiency reasons, the algorithm implemented in this research is Charnes and Cooper's "stepping
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Moving an agent from A to C and from B to D

A B

C D

Moving an agent from A to D and from B to C

A B G GD

1" C) D

Figure 4-1: Illustration of sample transportation problem

stone" algorithm [4], which is described in detail below.

The stepping stone algorithm is based on the network simplex method, and thus has a similar

running time. Although there is no known method that will make the simplex method run in poly-

nomial time [19], in practice the network simplex method, and thus the stepping stone algorithm,

run very quickly.

Since the transportation problem is a special case of a min-cost flow problem, it is possible to

use min-cost flow algorithms to solve it. However, an average problem uses very few iterations of

the stepping stone algorithm and thus runs considerably faster than most min-cost flow algorithms.

For example, if the number of nodes in a graph is n and the number of edges if m, the running

time of the algorithm described by Galil [9] grows with O(n 2 (m + n log n) log n). By comparison,

a single iteration of the stepping stone algorithm grows in O(m + n)2 time. The stepping stone

algorithm is used to calculate the cost of moving a set of agents from their current locations to a
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set of new locations. This cost is then factored into the instantaneous reward associated with a

given action in the MDP.

4.1 Overview of the stepping stone algorithm

The stepping stone algorithm minimizes the cost of transporting agents from m sources to n

destinations along mn direct routes from source to destination. Each path from a source to a

destination has a cost associated with it. That cost is applied to each agent that travels along

the route. The algorithm is based on the simplex method of solving linear programming problems;

it begins by creating a feasible solution to the problem and then refining that solution until an

optimal solution is reached.

Before the stepping stone algorithm is called, the simulator determines which locations have

more agents than are needed and which locations require additional agents. The simulator assumes

that each fire either "supplies" agents or "receives" agents, but not both. Since the travel cost is

linearly proportional to the distance traveled, it is always possible to construct an optimal solution

that does not require an agent to leave a location and a different agent to enter that location. Al-

though this isn't neccessary, it speeds up the calculation of the final solution considerably because

it means that the stepping stone algorithm only needs to consider the number of agents either "sup-

plied" or "received" at each fire, rather than the total number of agents. Figure 4-2 demonstrates

one such reduction. The pre-reduction circles indicate the number of agents at each location for a

given time and the post-reduction circles indicate only the agents that the stepping stone algorithm

will consider.

The stepping stone algorithm begins by generating a table correlating the various costs, supplies

and demands. Figure 4-3 shows a sample table. Each row represents a source location; the number
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T T+1

Supply Demand
Pre-reduction

T

0

T+1

Supply Demand
Po st-reduction

Figure 4-2: Reduction in the number of agents considered

of available agents is shown in parentheses next to the location name. Each column represents a

destination and lists its total demand in parentheses.

Destination(Demand)
Source D1(4) D2(2)
(Supply)

S1(2)

S2(5)

S3(6)

D3(1) D4(6)

Figure 4-3: Cost/Supply/Demand table ("Cost Table")

For example, the cell (S1, D2) in figure 4-3 shows the cost of transferring an agent from S1

to D2 (the cost is 1) and the number of agents being sent from S1 to D2 (2 agents are being

moved). In order for a solution to be feasible, the values in each row must add up to the total

supply available at that location and the values in each column must add up to the total demand
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at that location. For example, (S2, D3) + (S2, D4) = S2S, = 5. Figure 4-3 shows a sample

table with costs, supplies, demands and cell values. Such tables will be referred to as "cost tables."

Sources with no surplus agents and destinations requiring no additional agents are dropped

from the table. The cost of transporting an agent from a source to a destination (the cost of the

cell) is indicated in the upper left corner of the corresponding cell. The number of agents being

transported along that route (the value of the cell) is also shown. For the purposes of clarity, cells

that have not been marked as "basic" (see below) do not have their value displayed in any of tables

in this section; each of these "non-basic" cells has a value of zero. Figure 4-4 shows a sample cell

with cost 3 and value 4; the cell is marked as "basic".

Figure 4-4: A sample cell

A "path" of cells is a sequence of cells in the cost table. The cells in a path do not have to be

adjacent in the cost table but each cell must share either a row or column with the both previous

and next cells along the path. Figure 4-5 shows a path through various cells of the cost table. The

path starts at (S1, Dl) and includes (S3, Dl), (S3, D3), (S2, D3), (S2, D4) and (S3, D4). Note

that the path does not include (S2, D1) or (S3, D2). A path cannot include the same cell more

than once except when it forms a cycle, as noted below. Thus (S2, DI), (S2, D2), (S2, D1), (S3,

DI) is not a valid path. In all diagrams in this section, the arrow heads will denote cells actually

included in the path.

A "cycle" is a path of cells that starts and ends at the same cell. Cycles "originate" at the first

cell in the path. Figures 4-6 and 4-7 show cycles in a table; both cycles originate at cell (S3, D1).
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Destination(Demand)
D1(4) D2(2) D3(1) D4(6)Source

(Supply
S1(2)

S2(5)

S3(6)

Source

(Supply)
31(2)

S2(5)

S3(6)

Figure 4-6: A sample cycle
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Figure 4-5: Path
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Source

(Supply)
S1(2)

S2(5)

S3(6)

)estination(Demand)
D1(4) D2(2) D3(1) D4(6)

2 1 3 4

3 7 5

2 6 1 3

Figure 4-7: Another sample cycle

A set of "connected" cells is an unordered set of cells such that there is a path between any two

cells in the set made up entirely of cells within the set.

A "tree" of cells is an set of connected cells such that there are no cycles made up of cells in

the tree. Figure 4-8 shows a tree of cells. The tree contains the cells (S2, D1), (Si, D3), (S2, D3),

(S3, D3), (S3, D4). For example, (S2, Dl), (S2, D3), (S3, D3) is a path between (S2, D1) and (S3,

D3) composed entirely of cells in the tree.

OIC
Source

(Supply)
SI(2)

S2(5)

S3(6)

)estination(Demand)
D1(4) D2(2) D3(1) D4(6)

Figure 4-8: A tree of cells

A "spanning tree" is a tree which contains a cell in every row and every column of the cost
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table. Figure 4-9 shows a spanning tree of cells.

D
S ouxc e

(Supply)
S1(2)

S2(5)

S3(6)

estination(Demand)
D1(4) D2(2) D3(1) D4(6)

2 1 3 4

3 7 5 8

2 6 1 3

Figure 4-9: A spanning tree of cells

4.1.1 Step 1 - Initial Solution

The stepping stone algorithm uses a greedy approach to create the initial feasible solution. The cell

with the lowest cost among those whose supply and demand constraints are both unfulfilled (greater

than zero) is chosen and enough agents are assigned to that cell to fulfill the smaller of the two

constraints on that cell. If two cells with unfulfilled constraints have the same cost than either of

them may be used. As agents are assigned to each cell the remaining supply and demand totals on

that cell are reduced. This process is repeated until every supply and demand constraint has been

satisfied; proof that all of the constraints will be satisfied is given below. Figures 4-10, 4-11, 4-12

and 4-13 show this process occuring. The grey bars indicate supply and/or demand constraints

that have already been fulfilled and the grey numbers represent the value of the reduced constraints.

Note in figure 4-11 that the S3 constraint has been reduced to 5, but not yet fulfilled.

In figure 4-12, cell (S3, Dl) was chosen because it has the lowest cost among the cells with both

constraints unfulfilled. Although cell (S3, D3) has lower cost, one of its constraints has already
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Destination(Demand)

Source 1(4) D2(?f A
(Supply)

S1(2

S2(5)

S3(6)

Figure 4-10: Beginning the greedy allocation

Destination(Demand)

Source D1(4) D2Qj (

S2(5)

S3

D3f 0 D4(6)

Figure 4-11: After two allocations
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been fulfilled.

Destination(Demand)
Source D14 ( )D2 )j ,D3fJt() D4(6)
(Supply) 2 1

Sp

3 7 5 8

S2(5)

216 1 3

Figure 4-12: After three allocations

Assigning a value to a cell must fulfill at least one constraint, and the last cell must fullfill two

constraints since the total supply and total demand are the same. Since the allocation finishes when

all of the constraints are fulfilled, the greedy algorithm requires filling at most m + n - 1 possible

cells where m is the number of sources and n is the number of destinations. In the above example,

the first allocation fulfilled two constraints (both the S1 and D2 constraints) so only m + n - 2

cells were required. Pseudocode for the greedy allocation can be found in figure 4-14.

4.1.2 Step 2 - Basic Cells

The cells chosen in the previous step are marked as "basic" cells. Since each basic cell is chosen on

the condition that both its supply and demand constraints are unfulfilled, the basic cells will not

form a cycle. If there are less than m + n - 1 basic cells, then additional cells are marked as basic

until there are m + n - 1 basic cells. The additional cells are chosen in such a way that there are

no cycles among the basic cells. Proof that these additional cells always exist, as well as a method

to pick them, is discussed below.
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Destination(Demand)

Source DIS(4) D2 f'f0

(Supply
SI)

52 (5

2 3 4

L _. L _ .Z _ _ ..... ... .......... ...... ------..

SI24
6 y3

Figure 4-13: The final allocation

notDone = true

// loop until no more unfulfilled constraints
while notDone

do notDone = false
min-i = 0
min-j = 0

// find minimum cost cell among cells with
I/two unfulfilled constraints
for i = 0 to length[columns]

do for j = 0 to length[rows]
do if table[i][j].cost < table[min-i][min-j].cost and

columns[i].constraint > 0 and
rowsj].constraint > 0
then min-i = i

min-j = j
notDone = true

if notDone
// allocate agents to that cell
then table [i] [].value = minimum (columns [i].constraint, rows [j]. constraint)

columns [i]. constraint = columns [i].constraint - table[i][j).value
rows[j].constraint = rows[j].constraint - table[i] [j].value

Figure 4-14: Psuedocode for the greedy allocation
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Figure 4-15 shows cell (S1, Dl) being labeled as basic. The value of the cell is still zero.

estination(Demand)
Dl(4) D2(2) D3(1) D4(6)

Figure 4-15: Labelling an additional cell as basic with value zero

4.1.3 Step 3 - Dual Costs

Improving the initial solution requires calculating the "dual" costs for every cell in the cost table.

As in the Network Simplex Method, the dual cost of a cell reflects the potential change in the value

of a solution if that cell were included. Including cells with a negative dual cost would improve the

solution while including cells with a positive dual cost would degrade the solution. Cells already

included in the solution have a dual cost of zero, as do cells whos inclusion into the solution would

not change the value of the solution.

Before the dual costs for the cost table cells can be calculated, the "dual values" for the various

rows and columns must first be computed. These values will be used to compute the dual costs of

the individual cells, but have no meaning on their own. Calculating the dual values for the various

rows and columns can be done by using the cost equations for the basic cells. The cost equations

read:
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U, + V =QCj (4.1)

Here Cij is the given cost for the basic cell, Ui is the dual value for row i and Vj is the dual

value for column j. Since there are m + n - 1 dual equations (one for each of the basic cells) and

m + n values to be computed, U1 is set to zero.

Once the dual costs for the rows and columns are calculated, the reduced cost for non-basic cell

(i, j) (RCij) is calculated as follows:

RC~j = -z (Ut + 1/i) (4.2)

The reduced cost for a non-basic cell represents the change in the value of the solution which

results from making cell ij basic and making adjustments around the cycle of basic cells thus created

in the solution. There were originally m + n - 1 basic cells, marking an additional cell as basic

creates m + n basic cells. Proof that any collection of m + n cells must include a cycle can be found

below.

If all of the reduced costs for non-basic cells are non-negative then the solution is optimal;

including additional cells in the solution will not improve the solution at all. Proof of this is

discussed below, under the heading "Optimality Conditions" in the "Proof of Correctness" section.

If one of the non-basic cells has a negative reduced cost, it can be added into the solution in the

following manner.

4.1.4 Step 4 - Negative Reduced Cost Cycles

Consider a cycle of cells that involves a non-basic cell with a negative reduced cost and various

basic cells. The m + n - 1 basic cells were chosen such that they do not form a cycle. Since it is
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impossible to pick m + n cells such that there are no cycles (see section 4. 4.1.1) it must be possible

to choose such a cycle. This cycle is refered to as a "negative cost cycle." Figure 4-16 shows the

cycle formed from basic cells and a single cell with a negative reduced cost. Note that the cell

values used in figure 4-16 were not generated using the greedy algorithm but do represent a feasible

solution to the transportation problem. Numbers in gray represent reduced values. Cell (S3, D2)

has been marked as basic (with value zero) in order to ensure that there are m + n - 1 basic cells.

Destination(Demand)

Source D1(4) D2(2) D3(1) D4(6)

(Supply)
S1(2)

S2(5)

S3(6)

Figure 4-16: A cycle formed from a cell (S2, D1) with negative reduced cost

The first cell in the cycle (the cell with negative reduced cost; (S2, D1) in the example) is

labeled "positive." The other cells are alternately labeled "positive" or "negative." The "flow"

around this cycle is defined as the value of the smallest "negative" cell. In figure 4-16 the flow

would have value 4.

The flow around this negative cost cycle is then subtracted from every negative cell and added

to every positive cell. The first positive cell is then labeled basic, and one of the negative cell which

now has zero value is labeled non-basic. Figure 4-17 shows the cost table after the flow around the

cycle has been added to every positive cell and subtracted from every positive cell; cell (S2, D1)

has been made basic and cell (S3, D1) has been made non-basic. The dual values for each row
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and column are recomputed using the new set of basic cells and the dual costs for each cell are

recomputed using the new dual values. The process is then repeated until none of the non-basic cells

have a negative reduced cost. Note that the combined cost of the four cells in the cycle in figure 4-

16 is C(S2, D1)V(S2, D1) + C(S3, D1)V(S3, D1) + C(S2, D4)V(S2, D4) + C(S3, D4)V(S3, D4) =

3. 0 + 2 -4+ 3 .2+8. 4 = 46 where C(i, j) is the cost of cell (i, j) and V(i, j) is the value of cell (i,

j). The cost of the same four cells after cell (S2, DI) was added to the solution and cell (S3, D1)

was removed from the solution (in figure 4-17) is 3 * 4 + 8 - 0 + 3 - 6 + 2 . 0 = 30. Psuedocode for

adjusting a solution to handle a negative cost cycle can be found in figure 4-18. start-cell is the

negative reduced cost cell found earlier.

Destination(Demand)

Source D1(4) D2(2) D3(1) D4(6)

(supply)
S1(2)

S2(5)

S3(6)

Figure 4-17: An improved solution.

The search procedure mentioned on line 2 returns an array of the cells found in the cycle created

by the basic cells and the negative reduced cost cell. Proof that this cycle can always be found is

given below; a simple depth-first search algorithm can be used to find the particular cells. If any

three or more cells in the cycle all share the same row or the same column then only the first and

last cells in that row or column are included in the cycle. Figures 4-19 and 4-20 demonstrate this
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// get cells in cycle formed from basic cells and start-cell
cycle = search(start-cell)

// find minimum value among "negative" cells
min-negative = positive-infinity
min-index = -1
for i = 0 to length[cycle]

do if i mod 2 == 0 and /1 it's a "negative" cell
min-negative < cycle[i.value
then min-negative = cycle[i].value

min-index = i

/ increment/ decrement values
start-cell.value = start-cell.value + min-negative
for i = 0 to length[cycle]

do if i mod 2 == 0
then cycle[i].value = cycle[i].value - min-negative
else cycle[i].value cycle[i].value + min-negative

// relabel start-cell as basic
start-cell.basic = true

// relabel the minimum negative cell as non-basic
cycle[min-index].basic = false

Figure 4-18: Psuedocode for handling a negative cost cycle
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Destination(Demand)
Source D1(4) D2(2)

(Supply)
S1(2)

S2(5)

S3(6)

D
Source

(Supply)
S1(2)

S2(5)

S3(6)

D3(1) D4(6)
2 1 3 4

3 7 (+ 5 8

2 6 1 3

Figure 4-19: A possible cycle

estination(Demand)
D1(4) D2(2) D3(1) D4(6)

2 1 3 4

3 7 5 8

2 6 1 3

Figure 4-20: A cycle with fewer cells

Removing cells in this fashion can never result in the negative-reduced cost cell (the non-basic

cell) being removed, because doing so would form a cycle of only basic cells. The set of basic cells

must be acyclic. Proof of this is given in below.

This process results in a feasible solution with lower total cost unless the flow around the

negative cost cycle is zero, in which case the total cost will not change. If the flow is zero and

another non-basic cell has a negative reduced cost then the same procedure is applied to it. If the
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4.2 Proof of correctness of the stepping stone

algorithm

This proof is divided up into sections detailing various stages of the stepping stone algorithm. [4]

4.2.1 Constructing the initial solution

Theorem 1 At most m + n - 1 cells are chosen by the greedy allocation.

Each basic cell chosen during the greedy allocation is chosen such that it fulfills either the supply

or demand constraint for its row or column. Since the sum of all of the supply constraints equals

the sum of all of the demand constraints and the value of each basic cell is subtracted from both a

supply and a demand constraint, the final basic cell must satisfy two constraints. Thus, there must

be at most m + n - 1 cells.

Theorem 2 A set of m + n or more spanning cells must form a cycle.

A set of spanning cells includes a cell in every row and every column of the cost table. The

cells can be matched up with the rows and columns in a manner similar to that used to create
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only cell with negative reduced cost is in a cycle with zero flow then the solution is optimal.

If the flow was not zero (and the algorithm has not terminated) then the cells are labeled basic

or non-basic as appropriate and the algorithm is repeated. If more than one cell in the cycle has

been reduced to zero flow only one of them is labeled non-basic.

This process continues until the reduced cost for each of the non-basic cells is non-negative.

Proof that the algorithm eventually terminates and that it produces an optimal solution can be

found below.



the initial greedy solution; one of the cells is matched up with both its row and column. Any cell

who's column or row has been matched to a different cell can then be matched to its remaining,

unmatched dimension. Figure 4-21 shows a set of m + n cells. Cell (S3, Dl) has been matched

with both its row and its column.

Destination(Demand)

Sourc e D1(4) D2(2)

(Supply)
S1(2)

S2(5)

S3(6)

D3(1) D4(6)

Figure 4-21: One cell matched to two dimensions

Figure 4-22 shows

one of the cells in the

cell (S3, D2) matched with its column.

set with only one unmatched dimension.

(S3, D2) was chosen because it was

Destination(Demand)

Source 1(4) D2(2)

(supply)
SI(2)

S2(5)

S3(6)

Figure 4-22: (S3, D2) matched to its column
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The first cell was matched with both its row and its column. Since there are m + n cells

and m + n rows and columns, one cell, X, will not be matched with either its row or its column.

Figure 4-23 shows all of the rows and columns matched. Cell (S1, D2) was not matched with a row

or column.

Destinadon(Demand)
Th'~i4 ~.

21 3 4

3 7 5 8

2 6 1 3

Iz~

Figure 4-23: (S1, D3) is unmatched

This cell is part of a cycle. Since X was not matched to its row, but its row was matched up

with a cell, there must be another cell Y in the same row as X that was matched with the row X

is on. In figure 4-23, X is cell (S1, D2) and Y is cell (S1, D3).

Y was matched with either its column or with both its row and column. If Y was matched

with only its row then that means that there must be another cell in the same column as Y that

was matched with that column. This new cell, Y', is connected to X by the path Y'-> Y->X and

is similarly matched with either just its column or with both its row and column. In figure 4-23,

cell (S3, D3) is Y'.

This path can be continued until it reaches Z, the cell which was originally matched against

both its row and its column. In figure 4-23, Z is cell (S3, D1). Z was matched up with the row

that Y" is on, thus the path goes from (S1, D2) to (S1, D3) to (S3, D3) to (S3, D6). Figure 4-24
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shows the complete path.

Destination(Demand)
o D)I 2( ) T ?

(Supply)
S1(2)

S2(5)

S3(6)

D3(1) T4 (6)

Figure 4-24: A path from X to Z

A similar path can be constructed beginning with the cell in the same column as X. This path

can also be extended until it reaches Z. There are now two distinct paths connecting X to Z;

reversing the direction of one of these paths will form a cycle among the m + n cells. Figure 4-25

shows the second path from X to Z.

Destination(Demand)

Source

(supply)
S1(2)

S2(5)

S3(6)

fl~ IA 1~41 ttTh.

Figure 4-25: A cycle in m+n cells

Thus, a set of m + n cells in a cost table must form a cycle.
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The next several proofs in this section will lead to a proof that, given a set of N cells where

N > m + n - 1, it is always possible to pick (m + n - 1) - N additional cells such that the entire

set of cells is acyclic.

Theorem 3 Given a set of N cells where N > m+n-1, it is always possible to pick (m+n-1)-N

additional cells such that the entire set of cells is acyclic.

Lemma 1 Two distinct trees of basic cells can be joined together to make a single (acyclic) tree

composed entirely of basic cells by marking a single additional cell as basic.

Since the two trees, A and B, are distinct, there are no paths in the cost table that include only

basic cells and that include cells in both trees. A cell c in the same row as a cell from one of the

trees and in the same column as a cell in the second tree can be marked as basic to create a single

tree. Figure 4-26 shows two distinct trees being joined by a single cell. Tree A is composed of the

three cells in the upper right of the cost table, while tree B is made up of the cells in the lower left

of the cost table. Cell c is (S2, D2), and marking it as basic will join the two trees together along

the dashed lines.

Destnation(Demand)

Source D1(4) D2(2) D3(1) D4(6)

(Supply)
SI (2)

S2(5)

S3(6)

Figure 4-26: Two trees joined by a single cell
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Since there were no paths made up entirely of basic cells that included cells from both trees

before the trees were joined, any path made up of basic cells that includes cells from both A and B

must include cell c. Thus, marking cell c as basic can only create a cycle if marking cell c as basic

creates a cycle within one of the two original trees.

For example, if cell c were chosen to be (S2, D3) as in figure 4-27 (ignoring the fact that cell

(S2, D3) does not join the two trees together), a cycle would be formed by the cells four cells in

the upper right hand corner.

Destination(Demand)

Source D1I(4) D2(2) D3(1) )4(6)

(Supply)
S1(2)

S2(5)

S3(6)

Figure 4-27: A cycle formed within a tree

Cell c was chosen because it is in the same row as a cell in tree A and is in the same column

as a cell in tree B. Since there was no path made up of basic cells from the cells in tree A to the

cells in tree B before c was marked basic, there can not be a cell in tree B in the same row as cell

c and there can not be a cell in tree A in the same column as cell c.

For example, in figure 4-26 cell (S2, D1) can not be a member of the tree in the lower left

because if it were, there would be a path connecting the two trees from (S2, D1) to (S2, D4). Since

the trees are distinct, there is no such path.
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Thus, marking cell c as basic can not create a cycle among the cells in either of the two original

trees. Thus, any two trees can be joined into a single (acyclic) tree by marking a single cell as

basic.

Lemma 2 A acyclic, spanning (i.e.: at least one cell in every row and column) set of m + n - 1

cells must form a single tree.

If it were possible for m + n - 1 cells to form more than one tree, a cell could be added that

would join the two trees together. This would create a spanning tree composed of m + n cells. Since

m + n cells always form a cycle, as demonstrated above, this is impossible. Since the m + n - 1 are

chosen because they are spanning and acyclic, they must therefore form a single spanning tree.

Lemma 3 A single spanning tree cannot be composed of fewer than m + n - 1 cells.

In order for there to be a single spanning tree there must be a basic cell in every row and every

column. Since the cells form a single tree, one of the basic cells can be paired up with both its row

and column and every other basic cell can then be matched up with either its row or its column

in the same way that cells were matched up in the proof that m + n cells must form a cycle (see

above). Since there is a path from every cell in the tree to every other cell in the tree, every cell

will be matched with a single dimension except for the first cell, which will be matched with two

dimensions. Since there are m + n rows and columns, there must be m + n - 1 cells in the spanning

tree.

Theorem 4 The stepping stone algorithm will always choose m + n - 1 basic cells that form a

single spanning tree.

Since it is impossible to create a single spanning tree with fewer than m + n - 1 cells, it is

impossible for the greedy algorithm to assign values to a set of m + n - 2 or fewer cells such that
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all of the supply and demand constraints are satisfied and a single tree is formed from the chosen

cells.

Since it is always possible to join two distinct trees together to form a single tree without forming

a cycle, it is always possible for the stepping stone algorithm to ensure that there are m + n - 1

basic cells without forming a cycle, regardless of which cells the initial greedy allocation chooses to

label basic. The stepping stone algorithm can do this by simply choosing cells that join the various

trees together and labeling them as basic.

Theorem 5 A set of m + n - 1 basic, connected, spanning cells must be acyclic.

If a cycle exists among the basic cells, it can be reduced as above, in figures 4-19 and 4-20.

The basic cells can be matched up with their rows and/or columns in the same way that cells

were matched up in section 2, beginning with one of the cells that remains in the cycle after the

reduction. All of the basic cells (including the ones dropped from the cycle) are included in this

matching process. Since the set of cells is connected, every cell will eventually be reached by the

matching process. Since there are m + n - 1 cells and m + n dimensions and the cells are spanning,

each cell will be matched up with one of its dimensions, except for the first cell, which will be

matched up with both of its dimensions. The reduced cycle must include the cell that was matched

up with both of its dimensions, as well as several cells that were matched up with only a single

dimension. Two paths can thus be "traced" outward from the original cell as was done in section 2.

However, since every cell other than the original cell was matched to at least one dimension, the

two paths can never meet in a single cell. Thus, there can not be a cycle.

Theorem 6 The process of labeling a cell as basic and labeling another cell as non-basic in the

stepping stone algorithm never forms a cycle of basic cells and never creates a set of basic cells that

is non-spanning.

53



Since the cell that was labeled as non-basic, X, was part of a cycle, one of the basic cells

(including the cell just labeled as basic) must be on the same row as X and another must be on

the same column as X. Thus, the set of basic cells must still be spanning. Additionally, any basic

cells that were on either the same row or the same column as X must stillbe on the same row or

same column as another basic cell. Thus, the set of basic cells must still be connected.

Since the set of m + n - 1 basic cells is spanning and connected, it must also be acyclic as proved

above.

4.2.2 Improvement of the solution

Each improvement of the solution requires first calculating the dual cost of each of the rows

and then calculating the reduced cost of each of the cells in the table. This portion of the proof

demonstrates that any cell with a negative reduced cost is part of a cycle around which the values

of the cells can be adjusted to improve the cost of the solution as a whole.

Theorem 7 Any cell with a negative reduced cost is part of a cycle around which the values of

cells can be adjusted to improve the overall solution.

Construct a graph G from the cost table such that each "supply" constraint in the transportation

problem corresponds to a node, each "demand" constraint corresponds to a node, each cell in

the table corresponds to an arc between a "supply" node and a "destination" node, and arcs

connect a source node to the supply nodes and a sink node to the destination nodes with capacities

corresponding to the supply and demand constraints. Figure 4-28 demonstrates the network flow

problem derived from a cost table with four rows and four columns. For example, the arc leading

from the source node to the node labeled S1 would have a capacity equal to the Si supply constraint.

The arc leading from Si to D1 would have a cost equal to the cost of moving an agent from Si to
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D1 .

Supply Demand
nodes nodes

U= supply S U= demand

S4D

S4

c = transport cost

Figure 4-28: A network flow problem derived from a cost table

Thus, any solution to the original transportation problem is also a feasible flow in G. If

the costs of all of the arcs from the source node to the supply nodess are negative numbers with

large magnitudes, the optimal solution to the transportation problem is the optimal solution to the

corresponding min cost flow problem in G. In this graph, the dual cost of each row and column

corresponds to the node potential of the appropriate node in the graph and the reduced cost of the

nodes in the table correspond to the reduced cost of the arcs in G. According to the complementary

slackness optimality conditions outlined in Network Flows [1]:

A feasible solution x* is an optimal solution of a min cost flow problem if and only if

for some set of node potentials the reduced cost and flow values satisfy the following

complementary slackness optimality conditions for every arc (i, j) E G:

if c7 > 0, then x* = 0

if 0 < x* < uij, then c7 = 0

if c7 < 0, then xg = uij

(4.3)

(4.4)

(4.5)
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where c7 is the reduced cost of arc (i, j), uij is the capacity of the arc (i, j) and x is the flow

through a particular arc.

This theorem can be mapped back to the original transportation problem as follows:

If each node in the graph is assigned an arbitrary potential, the solution to the minimum cost

flow problem is optimal if and only if the reduced costs of the arcs follow the properties outlined

above. The reduced cost for an arc is simply the change in the potential between the two nodes

that it connects.

Each of the supply and demand cells corresponds to a row or column in the original cost table;

the arcs that connect supply cells to demand cells correspond to cells in the original table. The

dual cost for each node corresponds to the dual cost of the associated supply or demand constraint

and the dual costs of the arcs correspond to the reduced costs for each cell in the cost table. The

reduced costs for the basic cells are always zero since the dual costs for the rows and columns

are chosen to ensure this. The flow through all of the non-basic cells is zero, so every cell with

a positive reduced cost has zero flow. This means that in a non-optimal solution, some cell must

have a negative reduced cost and flow below its capacity (which is infinite). This implies that more

agents can be sent through this cell in order to improve the solution and that as a result, the arc

can be made basic.

4.2.3 Termination

Theorem 8 The stepping stone algorithm always terminates

Since the stepping stone algorithm is initialized using only integers and is solved using only

mathematical operations that are closed for the set of integers, the cost of any intermediate solution

must always be integral. Thus, any improvement to the initial solution must decrease its cost by

at least one.
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The stepping stone algorithm always generates an initial solution. Since the optimal solution

has a specific cost, the initial solution has a specific cost and each iteration improves the cost of

the initial solution by at least one, the algorithm must terminate.

4.2.4 Optimality conditions

Theorem 9 The stepping stone algorithm terminates with an optimal solution.

A feasible solution to the transportation problem is optimal if and only if there are no

negative cost cycles in the cost table whos flow is greater than zero. If such a cycle exists then

the solution can be improved by moving as much flow as possible around this cycle, and thus the

solution is not optimal.

If there are no such cycles then the solution must be optimal for the following reasons. Let x*

be a feasible solution that has no negative cost cycles and let xO be an optimal solution to the same

problem such that x* / xO. Since xO is optimal, c(x*) c(xo) where c(x) is the cost of the solution

3;.

Consider the graph G created from the cost table in the previous section of the proof. The

Augmenting Cycle theorem [1] states that any two solutions to a network flow problem xi and x2

can be decomposed such that xi equals x2 plus the flow on at most m directed cycles where m is

the number of edges. Since xO and x* are solutions to the original transportation problem, they

are also feasible flows in G. Thus, X0 can be decomposed into x* plus the flow around some set of

cycles in G. It follows from this that xO can be represented as x* plus some "flow" around a set

of cycles in the original cost table. Since there are no negative-cost cycles in x*, this implies that

c(x 0 ) c(x*) so the two flows must have the same cost and x* is another optimal solution.
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4.3 Run time analysis of the stepping stone

algorithm

Although many algorithms exist which can solve the transportation problem and which have

a better worst case running time than the stepping stone algorithm, the stepping stone algorithm

performs very well in practice due to the low overhead required and the fact that most problems

require very few iterations to solve.

The original reduction of the current assignment and a future assignment to a set of "supply"

and "demand" values takes O(N) time where N is the number of fires in the city. This results in

m supply cells and n demand cells. Both m and n are less than N. Generating the cost table, the

supply column and the demand row takes 0(mn) time. Generating the initial greedy solution can

be done in two ways. The first is to sort all of the cells by cost and then assign the first 0(m + n)

of them to be basic cells. This takes 0(mn log(mn)) time, but involves a fair amount of overhead

for the sort. Another way to do it which I found to be faster for problems involving small numbers

of fires is to simply iterate through the list 0(m + n) times and pick out the smallest one each

time. This requires 0(mn(m + n)) time, but is very fast in practice. All of these time costs are

associated with initializing the algorithm and are only performed once.

Once everything has been initialized, the algorithm iterates until the solution is complete. Each

iteration requires the following steps:

1. Calculating the dual costs for the rows and columns takes 0(m2n 2 ) time since you have to

search through the basic cells to find one that has only one of either its row's or column's

dual cost set.

2. Calculating the reduced cost for the non-basic cells requires 0(mn) time, since that's how

many non-basic cells there are.
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3. Finding a negative cost cell requires O(mn) time.

4. Finding the cycle composed of basic cells and a negative cost cell simply requires a depth first

search which takes O(m + n) time.

5. Adjusting the cycle by the minimum flow found requires O(m + n) time since that is the

length of the cycle.

In practice the stepping stone algorithm typically requires very few iterations to terminate, so

the average case running time is OCm 2r 2 where C is the number of iterations. Although the worse

case number of iterations is the number of integral cost values between the starting and optimal

costs, in practice the stepping stone algorithm typically requires only two or three iterations to

reach an optimal solution.
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Chapter 5

Agent Decision Algorithms

The purpose of this research is to examine the issues surrounding loosely coupled, distributed

collaboration and to compare it to collaboration in which a central agent coordinates the actions

of all of the other agents. In order to model the best possible behavior for the central coordinating

agent, the fire-fighting problem is cast as a Markov decision problem. Solving the Markov decision

problem will produce a policy mapping every possible state of the world to the best possible action

in that state. The central coordinating agent simply needs to "look up" the action corresponding

to the current world state. The state of world is represented by the states of the various fires and

the locations of the agents, and the actions in each state are represented by possible assignments

of fire fighters to fires. For example, one action for a given state involving two fires might be to

assign two fire fighters to fire one and one fire fighter to fire two. These Markov decision problems

are solved using the value iteration method [14]. Appendix A provides a brief overview of Markov

Decision problems and the value iteration algorithm.

Four scenarios are examined in this thesis, and algorithms to handle each situation are dis-

cussed below. The following scenarios were chosen to test the effects of various factors on agent

performance. The first scenario allows the agents both global knowledge and perfect communica-
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tions with a single coordinator. This represents the best case scenario for the agents. The second

scenario also allows the agents global knowledge of the city, but requires each agent to make its

own decisions without central coordination. The third scenario limits each agent's knowledge to

areas within its line of sight and requires that each agent make its own decisions. The final scenario

also includes limited knowledge and communications and, in addition greatly reduces the speed at

which agents move around the city.

Table 5.1 lists the average damage done to the city over 2000 trials of each scenario. Each

problem was run with ten fires and fifteen agents.

global knowledge local knowledge

Central coord. 197.455 XXX
Distrib. coord. 216.326 294.939
Reduced speed XXX 1047.152

Table 5.1: Damage caused to the city during each of the four scenarios

For the scenario in which a central coordinating agent is present, the agents are allowed unlim-

ited communication with a single entity that makes all of the decisions. In situations that allow

only local knowledge, any two agents are only allowed to communicate with each other when they

are within a certain distance of each other and there is an unobstructed line of sight between them.

The five algorithms used in this study are described next.

1. Optimal algorithm - The optimal algorithm is a solution to the MDP used to model the

world. The solutions generated by this algorithm will be used as a benchmark for optimality

in the rest of the study. This algorithm requires a central agent with global knowledge and

global control over the fire fighters but, due to computational restraints, can only be applied

to fairly small problems.

2. Approximation algorithm - The approximation algorithm is an estimation of the optimal
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solution to the MDP. This algorithm can be applied to problems that are too large to solve

via the optimal algorithm and was used as a benchmark to measure later algorithms on

larger problems. The results of the approximation algorithm were compared with optimal

solutions to a series of small problems and found to be nearly optimal in most cases. The

approximation and optimal algorithms are both intended for the same type of problem; both

algorithms require global knowledge and centralized control over the agents.

3. Decoupled algorithm - The decoupled algorithm deals with a different situation than the

previous two algorithms. Agents are still provided with global knowledge but now must make

all decisions locally. For small problems, the results of this algorithm were compared with

the results of the optimal algorithm; for larger problems the results of the approximation

algorithm were used as the benchmark.

4. Fully collaborative algorithm - The fully collaborative algorithm deals with situations in

which neither global knowledge nor centralized control is present; agents must communicate

with each other to share knowledge and must make all decisions locally. The results of this

algorithm were compared with the results given by the decoupled algorithm to determine the

effects of global knowledge versus local knowledge. Additionally, the results were compared

with those of the optimal and approximation algorithms to determine the optimality of the

algorithm.

5. Constrained collaborative algorithm - The constrained collaborative algorithm deals with

a scenario in which additional constraints on agent travel are imposed. These constraints

increase the state space to the point where finding an optimal solution is computationally

infeasible even for very small problems. The results of this algorithm were compared with

the results of the fully collaborative algorithm to determine the effect of these additional
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constraints.

The decoupled, fully collaborative and constrained collaborative algorithms all rely on a Boltz-

man distribution to guide the actions of the individual agents. These distributions are controlled

by parameters as described in section 5.3. The values of these parameters were tuned over repeated

trials by a simple machine learning algorithm implementing gradient descent. The machine learning

algorithm is discussed in further detail in section 5.3.

Agents in the various scenarios used different mechanisms to travel around the city. In the

optimal, approximation and decoupled algorithms, the agents are allowed to travel instantly from

one fire to another, although "teleporting" around the city may have a cost associated with it.

Since the agents have global knowledge, there is no need for them to travel anywhere else in the

city. In the fully collaborative algorithm, the agents can still teleport around the entire city but

no longer have perfect knowledge of their surroundings. At times they are forced to teleport to

randoms locations in order to discover new fires. In the constrained collaborative algorithm, agents

are no longer allowed to "teleport" around the map. Instead, each agent has a set walking speed

that it used as it followed the city streets.

Table 5.2 summarizes the type of problem that each of the algorithms is designed to solve; more

detail is given in the following sections where each algorithm is described.

Characteristics I Algorithms
optimal approx. decoupled fully collab. constrained collab.

optimal Yes No No No No
requires global knowledge Yes Yes Yes No No
requires global control Yes Yes No No No
scalable No Yes Yes Yes Yes
allows "teleportation" Yes Yes Yes Yes No
uses machine learning No No Yes Yes Yes

Table 5.2: Algorithms to be Compared
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5.1 Optimal algorithm

The optimal algorithm is designed to solve problems in which both global knowledge and

centralized organization are present. This version of the problem relies on a single entity that

knows the state of the world and can communicate perfectly with each of the fire fighters. The

goal of this problem is to find the optimal behavior for the central coordinator; the orders that the

central coordinator gives to an agent provide the agent with the optimum behavior that the agent

can perform at that time.

This problem is framed as a Markov decision problem (MDP) designed to generate the behavior

of the coordinating entity. The MDPs are solved through the value iteration method described in

Appendix A.

Two versions of the optimal algorithm were run on problems of various sizes to test the al-

gorithm's scalability. Simulations that took over a day to run were deemed computationally in-

tractable and were halted. In the "cost free" version, agents were allowed to teleport around the

map at no cost. The largest problem of this type that the computer could handle in a single day

involved four fires and seven fire fighters. This MDP required a total of 625 states with 120 actions

per state and took about four hours to solve on a P11 300 MHz computer. Larger problems proved

to be computationally intractable; it took over a day to do five iterations of the value iteration

algorithm for a five fire, eight agent problem. Since the algorithm typically takes between fifty and

seventy iterations to converge the calculation was halted.

A second version of the algorithm, in which agents were penalized for teleporting large distances,

was also tested. This "travel cost" version of the optimal algorithm could solve problems involving

three fires and five agents in around 10 minutes on the above mentioned computer. However, a

four fire, five agent problem required about 48 hours to solve.
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The cost-free version of the problem has one important trait: the effectiveness of a particular

assignment of fire fighters to fires depends only on the state of the fires, not on the current locations

of the agents. The effectiveness of an assignment in the travel-cost version of the problem relies on

both the current states of the fires and the current locations of the various agents. For example,

consider a city with two fires, A and B, and a single fire fighter F. The effectiveness of assigning

F to fire A is independent of F's current location in the cost free problem, but depends on F's

location in the travel cost problem. Suppose having F fight fire A is more useful than having a

single agent fight fire B. There is no reason not to assign F to fire A in the cost free problem.

However, if agent F is already at fire B, the cost of traveling between the two fires may overshadow

the gain of having F fight fire A instead of fire B.

The fact that the utility of an assignment of fire fighters to fires is independent of the agents'

locations means that the state of the world in the cost-free problem can be represented by the

states of the various fires alone. In the travel cost problem, the state of the world must reflect both

the states of the fires and the agents' locations. As discussed above, this reduces the size of the

largest feasible problem solvable by the value iteration algorithm.

The value-iteration equation [14] used in the cost free version of the problem computes the value

of a given state as the sum of the instantaneous reward for being in the state and the expected

value of the best possible action in that state. That is:

V(f) = R(f) + (dmaxE(Pr(f'If,p)V(f'))) (5.1)

where f is an n-tuple representing the current state of the various fires, p is an n-tuple representing

a possible assignment of fire fighters to fires, R(f) is the instantaneous reward for having fires in

configuration f and f' represents the possible future configurations of the fires. d is the "discount
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factor", in this research it has a value of 0.9. The discount factor alters the solution slightly; it

causes the value iteration algorithm to more heavily favor courses of action that will lead to short

term gains than it would otherwise have. A useful side effect of discounting is that it also causes

the problem to converge more quickly to an equilibrium point.

The term Pr(f'If,p) is the probability of reaching some particular fire configuration f' from a

fire configuration f by performing the assignment p, while V(f') is the value of being in configuration

f'. The reward function for being in a given state is simply a measure of how much damage the city

will take over the next time step, multiplied by -1. For example, a city with two fires of intensity 1

and one fire of intensity 2 would have a reward of -4. The rewards are multiplied by -1 so that the

rewards for a "better" situation is greater than the reward for a "worse" situation.

In the travel-cost version of the problem, each state is composed of a pair of n-tuples. One

n-tuple describes the fire states and the other describes the agents' current locations. The equation

used to determine the value of a given state is:

V(< f, p >) = R(f) + max[C(p, p') + d E Pr(f'If, p')V(< f',p' >)] (5.2)
p1 fI

where p describes the current location of the agents, and p' describes a possible assignment of agents

to locations. C(p,p') is the minimum cost of moving the agents from assignment p to assignment

p' as determined by the Stepping Stone algorithm (see section 4.1).

5.1.1 Collapsing the Agent Location Information

The typical value iteration approach requires iterating over and updating every possible state

once, and then repeating the entire process over and over again until the values of the states

converge. Since the values of the states asymptotically approach some equilibrium point, the
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algorithm ends when the the new value for every state is within some epsilon (f) of the old value.

In this research the value of E was set at 0.01. As a basis for comparison, values for states in a

three fire problem range from -659.03 to 0.0 and the value difference between the two states closest

in value is 1.03. Thus, the value of e was small enough that a change in value by less than E was

judged to be insignifigant. Pseudocode for this algorithm is shown in Figure 5-1.

The odds(x, y, z) function found in line 18 calculates the probability of reaching the fire configu-

ration x given the current fire configuration y and the agent distribution z. The reward(x) function

calculates the instantaneous reward for being in state x.

This value iteration algorithm listed in Figure 5-1 runs in O(ISI2IAI), where IS| is the number

of possible states that the MDP might be in and JA| is the number of possible actions in each state.

Since each world state in a travel-cost problem consists of a combination of the states of the

fires and the locations of the agents, the number of possible states in the world grows much faster

than it does in a similar cost-free problem. For example, a city with 2 fires and 4 agents has 125

possible states for the travel cost problem but only 25 states for the cost-free problem. Similarly,

a city with 3 fires and 5 agents has 2625 possible states for the travel cost problem, but only 125

states for the cost-free version.

In the cost-free problem, ISlislFI, the number of possible fire configurations in the city. However,

in the travel-cost problem ISisIF|IPI, the number of possible fire configurations multiplied by the

number of possible assignments of agents to fires.

Thus, solving the cost-free MDP using equation 5.1 requires O(IFI 2IPI) time whereas solving

the travel-cost problem using equation 5.1 requires O(1F 21p13) time. The time required to solve

the travel-cost problem can be shortened to O(|F12 pI2 ) by observing that any particular action

will result in only IF of the IFl P possible states. For example, if an action assigns three fire

fighters to fire A and none to fire B, then every state in which an agent is located at fire B has zero
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/ takes as input an array "states," which includes the states of the world,
/7 an array "actions," which includes the possible actions in each state and
/7 the array "fires", which includes a list of all of the possible fires.

/7 this algorithm modifies the "act" field in each element of the states array
/7 to reflect the best possible action in that state.

// initialize all values to negative infinity
for i = 0 to length[states]

do states[i].value = negative-infinity 10
states [i].old -value = negative-infinity

notDone = true
while notDone

// copy values to old-values for later use
do for i = 0 to length[states]

do states[i].old-value = states[i].value

/ create new values
for i = 0 to length[states] 20

do for j = 0 to length[actions]
do sum cost(states[i], actionsbj])

for k = 0 to length[fires]
do sum = sum + d * (<fires[k], actions[j]>.value * odds(fires[k], states[i].fires, actions[j]))

/ the odds function calculates the odds of reaching the fire configuration
/ fires/k] given the current fire configuration states[i].fires and the
// action actions/i]

if sum > states[i}.value + reward(states[i]) 30
then states[i].act = actions[j]

states[i].value = sum + reward(states[i])

/ check if values have converged
notDone = false
for i = 0 to length[states]

do if Istates[i].old-value - states[i].value > epsilon
then notDone = true

break
40

Figure 5-1: Pseudocode for the typical value iteration method
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probability of happening.

Despite this optimization, the value iteration algorithm is still too slow to solve problems involv-

ing more than two or three fires or fire fighters. However, it is possible to further optimize the value

iteration algorithm and solve travel-cost problems in O(FI2 IPI + IFHjP 2) time by precalculating

some of the information used in the MDP and storing it for use throughout the value iteration

method. It is possible to speed up the value iteration calculation by noticing that the innermost

loop, beginning on line 15 of Figure 5-1, does not rely on the "action" part of state[ij (from line

12). This means that when various states have the same fire configuration but different agent

distributions, the inner loop will always return the same result. For example, the two following

states:

< (2, 2)(0, 2) >

< (2, 2) (1, 1) >

would both result in the same value being calculated in the inner-most loop. By pre-computing all

of the possible values for the inner-most loop, storing them in a hash table and then looking them up

as needed, the running time for the value iteration algorithm can be reduced to O(1F121PI+I Fl P12)

time. Pseudocode for the new value iteration method can be found in figure 5-2.

In figure 5-2, gdp is a hashtable used to store the calculations. Everything else follows the

notation for figure 5-1 as listed above.

Despite this improvement, the travel cost version of the problem is still significantly slower to

solve than the cost-free version of the problem. Solving a 4-fire, 7-agent cost-free problem on an

Ultra Sparc 20 with 300 MHz processor required about an hour of computation; solving a travel

cost problem of the same size on the same computer required approximately 48 hours.
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/ takes as input an array "states," which includes the states of the world,
// an array "actions," which includes the possible actions in each state and
// the array "fires", which includes a list of all of the possible fires.

//this algorithm modifies the "act" field in each element of the states array
|/to reflect the best possible action in that state.

// initialize all values to negative infinity
for i = 0 to length[states]

do states[i].value = negative-infinity 10
states[i]. old-value = negative-infinity

notDone = true
while notDone

// copy values to old-values for later use
do for i = 0 to length[states]

do states[i].old-value = states[i].value

// calculate inner loop for all f, p' and store in hashtable gdp
//the hashtable will be read later to determine the value for 20

/ the inner loop calculations

for i = 0 to length[fires]
do for j = 0 to length[actions]

do sum 0
for k = 0 to length[fires]

do sum = sum + (odds(fires[k], fires[i], actions[j]) * <fires[k], actions[j]>.value)

// this loop calculates the expected value of each action. This is
/1 simply the odds that a given state will occur as a result of the 30
// action, multiplied by the value of being in that state.

gdp.store(<fires[ij, actions[j]>, sum)

// create new values
for i = 0 to length[actions]

do for j = 0 to length[fires]
do for k = 0 to length[actions]

do sum = cost(actions[i], actions[k]) +
(d * gdp.get(fires[j, actions[k])) 40

if sum > states[i].value + reward(states[i])
then states[i].act = actions[j]

states[i].value = sum + reward(states[i])

/ check if values have converged
notDone = false
for i = 0 to length[states]

do if Istates[i].old-value - states[i].valuel > epsilon
then notDone = true 50

break

Figure 5-2: Pseudocode for the improved value iteration method
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5.2 Approximation algorithm

This algorithm is designed to deal with the same types of problems as the optimal algorithm,

but it can handle much larger problems. Many algorithms have been suggested for finding near

optimal solutions to large Markov decision problem. This research adapts a technique laid out by

Meuleau et al. for solving large, weakly coupled MDPs [16]. Although this technique does not

provide optimal solutions, it generates near-optimal results for most problems and can be used on

problems involving dozens of agents and fires.

The approximation algorithm takes advantage of the fact that the fires act independently of

each other; the growth of the fires in one part of the city does not affect the fires anywhere else

in the city. The approximation algorithm calculates the utility of assigning a set number of fire

fighters to a fire under the assumption that fire fighters assigned to a fire will remain there until it

is extinguished. Given the utilities of assigning various numbers of fire fighters to various fires, the

problem is reduced to finding an instantaneous assignment of fire fighters to fires in such a way as

to maximize the total utility.

Iterating through every possible combination of utilities and simply choosing the right one

would require 0 (FA) time, where F is the number of fires and A is the number of agents. However,

it is possible to reduce the run time of the approximation to O(F + A) by exploiting one of the

characteristics of the fire model used in the simulator.

The fire model used in this research is designed so that adding additional agents to a fire has a

decreasing effect. For example, two fire fighters have less than twice the chance of lowering a fire's

intensity as one fire fighter. This characteristic of the Hybrid Model means that a "critical mass" of

agents is never needed for effective fire fighting and that the utility gained by adding an additional

fire fighter to a fire always decreases as the number of fire fighters increases. At each time step the

72



agents are allocated among the fires in a greedy fashion based on the utility gained per additional

fire fighter. The algorithm compares the utility of a given fire with its current allocation of fire

fighters to the utility of the same fire with one additional fire fighter. The fire with the largest

difference is assigned an additional fire fighter, reevaluated, and again compared to the other fires.

The fire with the largest difference (this may or may not be the same fire as the previous iteration)

is then assigned a single agent. This continues until all of the fire fighters are assigned.

The approximation algorithm precomputes the utilities of assigning varying numbers of fire

fighters to fires of different intensities, but, unlike the optimal algorithm, does not compute a

complete solution for every possible occurence. Pre-computing the individual utilities requires

O(f A) time, where f is the number of possible states a single fire can be in and A is the total

number of fire fighters in the simulation. Evaluating any given situation takes 0 (m + n) time where

m is the number of fires and n is the number of agents.

Travel-cost problems, in which distance costs are taken into account, use a greedy approach to

judge the utility of adding agents to various fires. In addition to calculating the utility of having

an additional agent at each fire, the cost of moving the nearest unassigned agent to the fire is

taken into account. Although this means that agents are moved from one fire to another in a

greedy, non-optimal fashion it was too computationally intensive to iterate over all of the possible

assignments of agents to fires, calculate the utility and the smallest possible travel cost for creating

each assignment and then choose an assignment out of this set. Since the fires didn't typically

change much between any two time steps, very few agents were required to move at any given time.

Thus, this greedy allocation generally worked very well. (See results in chapter 6.) However, the

travel-cost version of this algorithm requires 0(mn) time since the algorithm has to compute the

distance between every agent and every fire. Although calculating the distance between and agent

and a fire is very simple, the large number of these calculations required is the limiting factor on
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the scalability of the algorithm.

5.3 Decoupled algorithm

In this algorithm each agent has perfect knowledge of the entire world but now lacks a single

central entity to coordinate its actions. Thus, at every time step each agent must view the world

and decide which fire it will fight. In the cost-free versions of the problem each agent has no reason

to expect an agent to stay in its current location. Because of this, the agents do not attempt to

figure out what other agents will do in a given time step. Instead, each agent rates each of the fires.

This rating is based on the difference a single fire fighter would make to the expected intensity of

the fire; fires which would be more affected by a single fire fighter are given a higher rating. Since

this rating is independent of how far the fire is from the agent, every agent will rate the fires the

same way. This means that if every agent chose to fight the fire where it would make the most

difference, they would all pick from among the fires tied for the highest rating. Since the utility

of adding additional fire fighters to a fire decreases as the number of fire fighters increases, this

would lead to a lot of wasted effort that could be better spent distributed over other fires. Instead

of simply picking the most highly rated fire, the agents use the fires' ratings construct a modified

Boltzman distribution [22]:

V(X) = e(R(X)/Ci) + C2 (5.3)

Pr(X) = V(X)/ EV(X) (5.4)
x

where X is a fire, R(X) is X's rating, C1 and C2 are two constants (see below) and Pr(X) is the

probability that the agent will choose to fight fire X. The probabilities Pr(X) of all of the fires sum
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up to one; at each time step each agent rates each of the fires, generates Pr(X) for every fire, and

picks a single fire to fight according to this distribution.

Figures 5-3, 5-4, 5-5, and 5-6 show the probability distributions for a single agent choosing

between fires of intensity 1, 2, 3 and 4. The "linear" distribution shows the odds that the agent

will pick each of the fires based on the fire's rating. The Boltzman distributions show the effects on

this probability distribution of fitting the ratings to Boltzman distributions with various values of

C1 and C2. For example, "Boltzman (.5/.3)" indicates a Boltzman distribution with C1 = .5 and

C2 =.3.

Linear distribution

e 0.6 -

- 0.5

-0 .3

0.2 -

0.1

0

1 2 3 4

Intensity uf fire

Figure 5-3: A linear probability distribution

A simple gradient descent algorithm was used to tune the values for C1 and C2 in order to find

the distribution that gave the best results. The gradient descent algorithm evaluated the results

for particular values of C1 and C2. It then tested the results with a slightly increased value of C1.

If the simulation results improved then the change was kept. If the change worsened the results of

the simulation C1 was tested again with a slightly decreased value. Once Ci was altered, C2 was
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Boltzman (.31.3)
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Figure 5-4: A Boltzman distribution with C= .3 and C2 = .3

Figure 5-5: A boltzman distribution with C1 = .3 and C2 = .5
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Boltzman (.5.3)

Figure 5-6: A Boltzman distribution with C1 = .5 and C2 = .3

evaluated and altered in the same way and the process was repeated. The incremental changes to

C1 and C2 began at 10% of their respective values. After C1 and C2 were adjusted by this amount

5 times, the size of the incremental change was reduced to 5%. 10 changes of this size were made,

followed by 20 changes of 2.5% size. After each set of trials the size of the incremental change was

halved and the number of trials in the set was doubled. This continued up until changes of size

0.3125%. The simulation results for any given value of C1 and C2 were determined by running

1000 trials and averaging the results. In general, smaller values of C1 and C2 tended to produce

better results, but reducing the values past a certain threshold cause the agents' effectiveness to

suddenly drop off. These experiments, as well as the results, are discussed more thoroughly in the

next chapter.

When an agent in a travel-cost version of this problem teleports over a long distance within

the city, its ability to fight fires is reduced for the next time step. Agents in a travel-cost problem

factor this information into their decisions by estimating the intensity of the fire a time step after
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they arrive (and thus after they have paid the cost of teleporting around the city) and using this

information in the Boltzman distribution.

Both the travel-cost and cost-free versions of the algorithm take 0(mn) time, where m is the

number of agents and n is the number of fires, because each agent independently evaluates each of

the fires.

Because the agents cannot rely on each other to fight any given fire, compared to a centrally

coordinated scheme in which assigning two agents to a fire will always result in both agents fighting

that fire, they tend to prefer fighting small fires where an individual agent will have more impact.

Thus, the agents in the decoupled algorithm typically do signifigantly worse than those in the

optimal or approximation algorithms; they do not work together to fight large fires until all of the

small fires have been put out.

5.4 Fully collaborative algorithm

In this scenario, agents are only aware of what they can see of their immediate surroundings

and they lack any centralized control. Whenever two or more agents are fighting the same fire,

they share their current beliefs about the state of the world and incorporate the information gained

from other agents into their individual view of the world.

At any given time the agents are located on the street closest to the fire they are trying to fight.

They can "see" up and down the street for several blocks and can also detect fires that are close

by but are not within direct line of sight. Agents can also determine the number of agents already

fighting any fire they can see. Figure 5-7 shows the area that an agent can see. The thick, red,

cross-shaped boundary indicates the area that the agent (represented by the magenta circle at the

center of the cross) can see. See chapter 4 for a description of the display.
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Figure 5-7: Area visible to an agent

Each agent maintains its own "world view," which includes the location and intensity of each

fire it knows about and how long ago that information was obtained. When two agents are near

each other (that is, they are fighting the same fire), they are assumed to be within communications

range of each other and they send each other copies of their current world view. Each agent then

uses the most up-to-date observation about each fire to form a new world view and makes its choice

about which fire to fight next based on this information. The agents pick which fire they will fight

from a Boltzman distribution similar to the one used in the decoupled algorithm but limited to the

fires that the agent knows about. The previously described gradient-descent algorithm was used to

tune several of the parameters in the Boltzman distribution over many trials.

Since the agents cannot see the entire city, it is possible that the city will contain a fire that

none of the agents knows about. In order to help detect and extinguish such fires, the agents will

occasionally explore the city rather than fight one of the fires they already know about. At every
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time step there is some percentage chance that an agent will choose to explore the city rather than

fight a fire. The value of this percentage was also tuned by the machine learning algorithm. When

an agent chooses to explore the city, it randomly picks a street in the city and teleports itself there.

In the next time step the agent will see any fires that are within its line of sight and will incorporate

those fires into its world view. The next time the agent communicates with another agent, it will

share this information.

The travel-cost version of this problem incorporates distance costs in the same way that the

decoupled algorithm does; the distance an agent teleports affects its ability to fight fires during that

time step. Since agents do not fight fires while they are "exploring," distance costs are ignored. For

example, agents do not preferentially explore areas closer to themselves even though the travel cost

for teleporting to a nearby location is smaller than the cost of traveling a long way. This allows the

agents to more easily explore the entire city; having the agents preferentially explore areas close to

themselves would prevent distant areas of the city from ever being explored.

As with the decoupled algorithm both versions of the fully collaborative algorithm take 0 (mn)

time because each agent independently evaluates each of the fires.

5.5 Constrained collaborative algorithm

This scenario is similar to the scenario detailed above, except that the agents are unable to

teleport around the city. Instead, they travel around the city via the roads and can change their

decision about what fire to fight while enroute from location to location. These additions make

solving the problem optimally through an MDP nearly impossible. Allowing agents to be located

anywhere in the city (instead of simply at a fire) increases the state space of the problem tremen-

dously. Even if the agents had global knowledge of the city (which they do not) solving this problem
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optimally would be computationally intractable for all but the most trivial examples. For example,

a city comprised of two fires, one agent and a 3 by 3 block of land would require 16 states for a

cost-free MDP, 32 states for a travel-cost MDP and 144 states for an MDP capable of solving the

constrained collaborative problem.

At every time step the agents gather information about the portion of the city that they can

see. The agents use the same "line of sight" code that was used in the fully collaborative algorithm.

Agents have full knowledge of the roads in the city; when an agent decides to move from one fire

to another it computes the shortest path from its current location to its target. It then follows the

city roads along that path to its destination. Agent travel speed was arbitrarily set to allow each

agent to move through two cells in a given time step.

Since the agents now spend much of their time traveling from fire to fire, allowing communication

only between agents fighting the same fire is unrealistic. Instead, the agents can communicate with

other agents within their communication range at any time step. Agents can communicate in

straight lines; the agent in figure 5-8 can communicate with any agent in the thick yellow rectangle.

The area that the agent can see (the thick, red cross) is also shown in this figure as reference.

Moving from fire to fire requires a considerable investment on the part of the agents and thus

happens much less often than it does for the fully collaborative algorithm. Thus, it is much more

likely that agents fighting a particular fire will still be fighting the same fire in a few time steps.

When an agent sees a fire, it can also see how many people are fighting that fire. It uses this

information to help it decide which fire to fight. For example, an agent can see a high intensity

fire with several agents around it and a low intensity fire with no agents fighting it. The agent

will assume that none of the fire fighters around the high intensity fire will waste several time

steps traveling to the low intensity fire and if the distances between the agent and the two fires are

comparable, it will head to the low intensity fire. Although doing this results in the agent devoting
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Figure 5-8: Range of communication for an agent

its efforts to a less important fire, fighting a fire with no one around it is more likely to prevent

damage to the city because of multiple agents lose effectiveness when fighting the same fire.

In addition to sharing their world views during communication, agents also tell each other their

current location, target fire and the number of agents around any fire they can currently see. Agents

maintain a world view similar to the one used in the fully collaborative algorithm. The world view

does not include information on the number of agents at or heading towards a given fire, other than

the information an agent can currently see. Past information about agent locations is not stored in

the world view because the agents move around often enough to make this information inaccurate.

For example if two agents, A and B, are heading towards a fire with no fire fighters around it

and A is closer to the fire than B, agent A will treat the fire as if there are no fire fighters fighting

it. However, agent B treats the fire as though there were already an agent there because it knows

that agent A will reach the fire before it does.
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Often times an agent enroute to fight a particular fire will see or hear about other fires. This

situation is handled the same way agents handle new information at other times; the agent will

weigh the utility of continuing on to its original target versus switching to a new target. This

calculation is based on the distance between the agent and the various fires, the intensity of the

various fires and the number of agents at or heading towards each of the fires. The agent calculates

the "expected number" of agents at each of the fires as described above. It then calculates the

number of time steps it would take to reach each of the fires and uses this information to determine

the expected intensity of the fire assuming the agents currently fighting the fire continue to do so.

Finally, the agent calculates the utility of fighting each of the fires given its expected intensity and

the same number of fire fighters. The agent will then head towards and attempt to fight the fire

with the highest utility.

In summary, at any given time step, regardless of whether an agent is fighting a fire, on its way

to a fire, or exploring the city, the agents will access every fire they know about, including fires

that they have just seen or just heard about. This assessment attempts to predict the intensity of

the fire by taking into account the current intensity, the number of time steps required to reach the

fire, and the number of agents already on their way towards the fire. The agent then calculates the

utility of fighting each of the fires based on the estimated intensity and the number of agents that

will already be at the fire when it arrives. It then heads towards the fire at which it will have the

greatest effect.

The four scenarios discussed in this chapter impose various constraints on the agents. In the

first scenario the agents can communicate perfectly with a central coordinating mechanism and

have perfect knowledge of the city. In the second scenario, the agents retain global knowledge of

the city but must now make all decisions locally. In the third scenario, the agents make all of their

decisions locally and can only see the portion of the city for which they have a direct line of sight.
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In the final scenario, the agents are restricted to local decisions making, local knowledge of the city

and are also greatly restricted in their ability to move around the city. The algorithms discussed in

this chapter will allow the agents to handle each of these scenarios. However, some of the scenarios

are intrinsically more difficult than others; as the number of constraints on the agents increases

their ability of quickly extinguish the fires and prevent damage to the city decreases.
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Chapter 6

Experiments and Results

The algorithms proposed above were tested in various ways to determine under what conditions

the algorithms perform well and under what conditions they perform poorly. The experiments and

their results are listed below.

6.1 Comparison of Optimal and Approximation algorithms

Both the optimal and approximation algorithms were run on problems of various sizes to de-

termine the accuracy of the approximation algorithm. The problems are listed as MxN where M

is the number of fires and N is the number of agents. Each algorithm was run one thousand times

on each problem; the average results for the cost-free problem are shown in table 6.1. A T-Test

was used to compare the resulting data sets, the results are also listed in table 6.1.

3x2 3x5 4x6 4x7
Optimal 84.475 58.383 81.766 76.302
Approx 84.746 58.648 82.956 77.596
T Test 0.8653 0.8432 0.7365 0.6887

Table 6.1: Comparison of optimal and approximation algorithms on cost-free problems
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The travel-cost version of the approximation was also run on a series of problems of the same

size. The MDP solution to a travel-cost problem is specific to that particular configuration of fires

(for example, an MDP that was solved for fires at (1, 1) and (2, 3) would not work for fires at (1, 1)

and (10, 10)). Thus, it was not feasible to randomly generate 1000 test cases, and solve the MDP

for each of them using the optimal travel-cost algorithm. However, the data shows that on average,

the travel-cost version of the approximation algorithm performed signifigantly worse than the cost-

free version. This stems from the fact that the algorithm tends to avoid moving agents from one

fire to another and because the algorithm uses a simple greedy allocation to move the agents from

one fire to another (rather than using the computationally intense Stepping Stone method outlined

above). Thus, as the number of agents and fires increases, the agents in the travel-cost problems

are less and less effective. Table 6.2 shows these results. A T-Test was also run comparing the

results of these experiments with the results of the cost-free version of the approximate algorithm.

As a basis for comparison, the optimal travel-cost algorithm was run on a series of three fire,

five agent problems. See section 6.2 for the results.

3x2 3x5 4x6 4x7

TC Approx 87.758 69.1145 94.33 91.3345
T Test 0.4774 0.2314 0.0424 0.0215

Table 6.2: Effectiveness of approximate travel-cost algorithm

In order to more accurately determine the cases in which the approximation algorithm breaks

down, the actions chosen by the approximation algorithm were compared with the actions chosen

by the optimal algorithm in various states of the cost-free problem. The approximation algorithm

was applied once on every possible state in the four fire, seven agent problem and the action chosen

was compared to the MDP solution for the same problem. The approximation algorithm differed

from the optimal algorithm in 45 of the 625 states. In all cases, the results differed by at most one

86



agent. For example, the approximation algorithm might assign three agents to one fire, two agents

to another, two to the third fire and none to the fourth while the optimal assignment was three

agents to the first fire, two agents to the second and one each to the third and the fourth. Figure 6-1

shows the distribution of states in which the approximation algorithm differed from the optimal

algorithm. The intensities of two of the four fires are shown on the X axis while the intensities of

the remaining two fires are shown on the Y axis. For example, 44 means that both fires had an

intensity of four. The values were sorted along each axis in order of total intensity. For example,

44 is before 34 and 43 which are in turn before 42, 33 and 24. The rectangles in figure 6-1 are

colored for clarity reasons; rectangles on the same row all share the same color.

Results of Optimal and Approximation algorithms

0

CG
CN

Figure 6-1: Differences between the approximation
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Figure 6-1 shows that the approximation algorithm differs from the optimal algorithm primarily

in cases in which all four of the fires seem to have high intensities. A direct comparison of the choices

made by the two algorithms indicates that the approximation algorithm tends to spread its efforts

out among several fires rather than concentrating on a single fire as the optimal algorithm does.

Table 6.3 shows a representative sampling of the states in the four fire, seven agent problem in which

the two algorithms chose different actions. The states are represented as a four-tuple denoting the

intensities of the fires while the actions are represented by a four-tuple indicating the number of

fire fighters assigned to each fire.

State Optimal assignment Approximate assignment
(2 344) (2 3 1 1) (3 3 1 0)
(2 2 4 4) (3 211) (3 3 10)
(2 1 4 2) (2 2 1 2) (3 2 0 2)
(1 1 4 2) (2 2 1 2) (2 203)
(2 4 2 2) (2 1 2 2) (3 0 2 2)

Table 6.3: States in which the Approximation and Optimal algorithms differed

6.2 Effects of fire configuration on optimal solutions

In travel-cost problems the agents' ability to effectively fight the fires is hampered when the

fires are far apart. The farther the distance between the fires, the greater the penalty for switching

from fire to fire. As a result, the agents will not switch from one fire to another unless fighting a new

fire has a much higher utility than fighting the current one. Three different fire configurations were

tested to determine the effects of distance on the optimal algorithm's performance. The "Small"

fire configuration involved three fires at the coordinates (13, 11), (13, 13) and (13, 14). The "Mix"

fire configuration had fires at (3, 3), (13, 11), and (13, 14). The "Far" fire configuration used fires

at (3, 11), (9, 14) and (13, 10). The starting intensitities of the fires were varied in addition to the
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fire locations. Table 6.4 shows the starting intensities of the various configurations. "Fire 1," "Fire

2," and "Fire 3" refer to the fires in the order they were listed above. For example, "Fire 1" in the

"Small" configurations is the fire at coordinates (13, 11).

I Fire 1 Fire 21 Fire 3

FarUneven
FarEven
MixEven
MixDist

MixClose
SmallUneven

SmallEven

1
2
2
3
1
1
2

2
2
2
2
2
2
2

3
2
2
1
3
3
2

Table 6.4: Initial intensities of various fire configurations

Figures 6-2, 6-3 and 6-4 show the three fire configurations. The gray, orange and yellow rect-

angles represent the fires. The black rectangles arranged in a grid represent the streets. The green

rectangles represent unburned ground.

Figure 6-2: The "Small" fire configuration

Each configuration was tested 2000 times and the results were averaged together. In order to

test larger distances, a "cost multiplier" was added to the travel costs. A "cost multiplier"' of 10
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Figure 6-3: The "Mix" fire configuration

Figure 6-4: The "Far" fire configuration
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gives the same results as if the fires had all been ten times as far apart. The intial positions of the

agents were randomly determined in every trial. Table 6.5 summarizes the results of these trials.

An ANOVA was used to calculate the probability that the results were all drawn from the same

random distribution (i.e.; That the results were not signifigantly different.) The ANOVA run on

all of the groups combined returned a value of less than .01%. However, an ANOVA run on the

tests performed using a cost multiplier of 1 returned a probability of 36.23% that the results were

drawn from the same distribution. An ANOVA run on the tests performed using a cost multiplier

of 10 resulted in a probability value of 13.02%, while the ANOVA run on the data generated using

a cost multiplier of 100 returned a probability of 5.05%.

Cost multiplier
1 10 100

FarUneven 64.649 67.836 100.505
FarEven 64.420 70.674 90.005
MixEven 63.277 74.165 83.518
MixDist 66.085 78.281 86.820
MixClose 62.283 71.834 83.749

SmallUneven 63.295 66.605 78.728
SmallEven 62.283 62.309 74.409

Table 6.5: Effects of distance on optimal travel-cost algorithm effectiveness

The greater the distance cost between two fires, the greater the incentive for an agent not to

move from one fire to another. The Small configurations were thus easier for the agents to deal with

because they had to pay much smaller penalties to switch from fire to fire. In the Mix configurations

the agents could move between the fires at (13, 11) and (13, 14) fairly easily, even with a high cost

multiplier. However, the penalty for moving between the fire at (3, 3) and one of the other two

fires was very and high and agents tended not to do so. For this reason, the MixDist configuration

was generally harder for the agents to handle than the other Mix configurations; agents at either

the (13, 11) or (13, 14) fires tended to avoid moving out to the high intensity fire at (3, 3) until the
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difference in intensity between the far-off fire and the closer two fires was very high.

When the cost multiplier was raised to 100, the cost of travel between fires was so high that

agents typically only moved from one fire to another if the fire they were fighting was nearly

extinguished. Thus, the far configurations typically were very hard to deal'with; if too few agents

started near a fire it was unlikely that other agents would switch fires to help them and the fire

would grow to a very high intensity. The agents were much less successful fighting the FarUneven

configuration than they were in fighting the FarEven configuration; since one of the fires began

with a high intensity it was very likely that not enough agents would be assigned to this fire and

it would grow out of control.

The fact that two of the fires in the Mix configuration were close together meant that, even with

a high cost multiplier, the agents were able to switch between the two close fires when necessary.

However, the third, far off fire suffered from the same problems as the fires in the Far configurations

did; agents typically did not arrive at or leave from the fire unless the difference in intensity between

the fire at (3, 3) and one of the other two fires was very large.

Similar results were obtained by the approximate travel-cost algorithm. During the execution

of the greedy heurisitic to assign agents to fires, the approximation algorithm estimated the cost

of moving agents between fires. It later used the stepping stone algorithm to exactly compute

this cost, but the initial approximation was often an over estimate of the cost of moving agents

around. Thus, the results for the approximate travel-cost algorithm were considerably worse than

the results for the optimal algorithm. Table 6.6 demonstrates these results.

A set of ANOVAs was run on this data to help determine the signifigance of the results. The

ANOVA run on all of the groups combined again returned a value of less than .01%. The ANOVA

run on the tests performed using a cost multiplier of 1 returned a probability of 24.62% that the

results were drawn from the same distribution. An ANOVA run on the tests performed using a
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cost multiplier of 10 resulted in a probability value of 17.37%, while the ANOVA run on the data

generated using a cost multiplier of 100 returned a probability of 2.24%.

Cost multiplier
1 10 100

FarUneven 75.333 79.189 111.215
FarEven 64.460 73.314 94.393
MixEven 65.560 74.233 84.271
MixDist 75.048 92.109 109.960

MixClose 64.416 77.871 83.791
SmallUneven 65.090 63.458 89.305

SmallEven 62.953 75.904 74.581

Table 6.6: Affects of distance on approximate travel-cost algorithm effectiveness

6.3 Parameter tuning in the Boltzman distributions

As mentioned above, the decoupled and fully collaborative algorithms use two parameters to

control the Boltzman distribution. A learning algorithm was run to determine the optimal values

of C1 and C2; this algorithm returned values of C1 = .51 and C2 = .34 for the decoupled algorithm

and C1 = 0.3246 and C2 = 0.068 for the fully collaborative algorithm. In order to verify these

findings, the algorithm was run on a ten-fire, fifteen agent problem with a variety of values for

C1 and C2. Each pair of values was repeated 2000 times and the results were averaged together.

Table 6.7 summarizes the results for the decoupled algorithm. An ANOVA was run on all of the

data sets, it returned a probability less than .01% that the data was all drawn from the same

distribution. However, an ANOVA run on the data sets with C1 = .5,1,1.5 returned a probability

of 32.65% that the data was all drawn from the same distribution.

This chart shows the gradient that the learning algorithm followed; running the algorithm with

C1 = .51 and C2 = .34 resulted in 214.25 average "damage points" to the city over 2000 trials.

A similar chart was constructed for the fully collaborative algorithm. However, the minimum
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C1

.00001 .5 1 1.5
0 477.58 216.73 217.79 219.85

C2 .5 476.89 217.91 221.50 224.01
1 475.52 220.37 221.22 221.21

1.5 474.52 218.42 222.87 222.14

Table 6.7: 0 and C2 values in the Boltzman Distribution for the cost-free decoupled algorithm

possible value of C1 that could be tested was .001. Each agent was aware only of its immediate area

and thus it was possible for an agent to not know of any of the fires. Java seemed to occasionally

throw floating exceptions when an agent did not know of any fires; this never happened during the

decoupled algorithm because the agents could see the entire city. The gradient mapped out using

the fully collaborative algorithm was much less consistent and less clear cut than the one mapped

out using the decoupled algorithm; repeated tests confirmed that many different values for C1 and

C2 gave nearly the same result. The optimal values for C1 and C2 resulted in an average total

damage of 294.9385 over 2000 trials.

An ANOVA run on all of the data sets returned a probability of 68.23% that the data was all

drawn from the same original distribution.

C1
.001 .5 1 1.5

0 303.928 297.458 301.011 302.650
C2 .5 304.781 299.982 299.566 302.604

1 303.997 301.831 295.891 298.133
1.5 307.397 298.594 300.663 304.718

Table 6.8: C, and C2 values in the Boltzman Distribution for the cost-free, fully collaborative
algorithm

The values of C1 and C2 were recalculated for travel-cost problems. The optimal values for C1

and C2 were found to be .49 and .22. Various values of C1 and C2 were tested and the "damage
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gradient" was mapped out; the results are shown in table 6.9. The optimal values for C1 and C2

were calculated to be .38 and 1.27 respectively.

An ANOVA run on the entire data set returned a probability of less than .01% that the data was

all drawn from the same distribution. Running the ANOVA on only the data'sets with C1 = .5, 1,1.5

returned a probability of 24.36% that the data was all drawn from the same distribution.

C1

.00001 .5 1
0 517.30 263.59 277.54

C2 .5 521.01 256.48 268.07
1 519.33 251.20 256.36

1.5 523.49 253.62 257.67

Table 6.9: C1 and C2 values in the Boltzman Distribution for

1.5
279.34
267.40
264.08
268.62

the travel-cost decoupled algorithm

A similar table of data was compiled for values of C1 and C2 in the travel-cost, fully collaborative

problem. The optimum values for C1 and C2 were found to be 0.712 and 0.023. Table 6.10 shows

the results.

An ANOVA run on all of the data again returned a probability of less than .01% that the

data was drawn from the same distribution2. Excluding the data sets in which C1 = .001 from the

ANOVA resulted in a probability of 54.36% that the data was all drawn from the same distribution.

C1 I
.001 .5 1 1.5

C2

0
.5
1

1.5

424.156
423.633
421.698
425.739

323.980
324.676
323.616
324.405

324.412
324.844
331.148
327.888

325.212
326.437
327.727
332.069

Table 6.10: C1 and C2 values
algorithm

in the Boltzman Distribution for the travel-cost, fully collaborative

In general, smaller values of C1 and C2 meant that the agents were more likely to fight fires
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with higher utilities, regardless of the loss of efficiency due to multiple fire fighters fighting the same

fires. In general, this is a useful trait for the agents to have because it means that more important

fires will have more agents devoted to them. However, below a certain threshold the agents tend

to cluster together too much and efficiency suddenly drops. The gradient descent algorithm was

run for a few problems of different sizes, but the optimal values for C1 and C2 did not change

signifigantly as the problem size changed.

6.4 Comparison of Approximate, Decoupled and Fully Collabora-

tive algorithms

The approximation, decoupled and fully collaborative algorithms were run on a series of ten-

fire and fifteen-fire problems with varying numbers of fire fighters. The goal of these tests was to

determine the effectiveness of the decoupled and fully collaborative algorithms for various problem

sizes. Each algorithm was run two thousand times on each problem size and the results were

averaged together. Table 6.11 shows the results for various numbers of agents solving a ten-fire

problem. Table 6.12 shows the results of various numbers of agents in a city with fifteen fires.

Figures 6-5 and 6-6 show the same data in graph form. The error bars in the graph represent a

95% certainty that a value was drawn from a given distribution.

Algorithm Number of agents

7 10 15 20 25
Approx 246.975 215.392 197.455 174.765 160.838

Decoupled 298.44 257.6275 216.3255 190.828 178.576
Fully col. 353.6585 325.0745 294.9385 275.068 259.1345

Table 6.11: Algorithm results for cost free, ten-fire problems

These charts illustrate some interesting behavior. As more and more agents are added to the
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Algorithm Number of agents

10 15 2 0 25 30

Approx

Decoupled
Fully col.

370.82
453.1465
523.712

326.4
386.3825
484.594

292.9055
340.7625
457.022

272.213
313.016
436.081

261.3445
294.137

411.8205

Table 6.12: Algorithm results for cost free, fifteen-fire problems

Raw data for ten fire problem
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Figure 6-5: Comparison of algorithms in ten-fire, cost free problems.
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Figure 6-6: Comparison of algorithms in fifteen-fire, cost free problems.

problem, the decoupled algorithm does better and better relative to the approximation algorithm.

However, the fully collaborative algorithm seems to do worse and worse (relative to the approxi-

mation algorithm) as the number of agents increases. Figures 6-7 and 6-8 show the damage to the

city during run-throughs of the decoupled and fully collaborative algorithms as a percentage of the

damage done during a run-through of the approximation algorithm.

Since the agents in the decoupled algorithm don't share their plans with each other or coordinate

their actions, each agent acts as if it were the only fire fighter in the city. This means that fire

fighters in the decoupled algorithm prioritize small fires that can be handled by a single agent very

highly as compared to the approximation algorithm.

For example, a four fire, seven agent problem with fires (1 1 3 4) resulted in a distribution of

(2 2 3 0) using the approximation algorithm; 2 agents were assigned to each of the level one fires

98

Raw data for fifteen fire problem



Percentage difference for ten fire problem
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Figure 6-7: Damage relative to approximate algorithm in ten-fire, cost free problems.
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Figure 6-8: Damage relative to approximate algorithm in fifteen-fire, cost free problems.
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and three agents were assigned to the level three fire. The decoupled algorithm generates a set of

probabilities that the agent will be assigned to any particular fire. The probability distribution

generated for this particular state was (.35 .35 .174 .117), which would result in seven agents being

distributed as follows: (2.45 2.45 1.22 .82). As more and more agents are added, the decoupled

algorithm begins to put out low intensity fires very quickly because it assigns too many agents to

these problems. However, because the small fires are being put out so quickly and because there

are still a few agents assigned to the higher intensity fires, the larger fires do not typically cause

too much damage before the smaller fires are dealt with and more agents are assigned.

The agents in the fully collaborative algorithm are affected by two major factors that agents in

the approximation algorithm are not affected by. The first handicap that the agents in the fully

collaborative algorithm have is that they must spend a portion of their time exploring the city

rather than fighting fires directly. At each time step the agents in the fully collaborative algorithm

have a 10% chance of choosing to explore the city rather than fight a particular fire. Since the

portion of the city covered in fires is small compared to the total area of city, most exploration does

not result in new information and is thus wasted effort. Additionally, at the beginning of each run

through of the simulation, a given agent only has information about a few fires in its immediate

area. The agent will choose to fight one of those and will only learn about far away fires if it goes

exploring and discovers them or meets an agent who has explored and found them. Thus, in the

initial stages of the simulation the agents distribute themselves based on very limited information.

Because of these two factors, adding in additional agents causes the fully collaborative algorithm

to improve at a slower rate than the approximation and decoupled algorithms, as indicated by

figures 6-7 and 6-8.

The same set of experiments were conducted using travel-cost versions of all three algorithms.

Tables 6.13 and 6.14 summarize the results.
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Algorithm I Number of agents
7 10 15 20 25

Approx 268.1305 250.1075 229.1075 221.555 215.182
Decoupled 325.54 297.2945 264.2325 233.835 222.3285
Fully col. 394.5895 356.9205 325.036 293.0805 273.0735

Table 6.13: Algorithm results for travel-cost ten-fire problems

Algorithm Number of agents
10 15 20 25 30

Approx 407.862 371.9365 359.2365 344.077 335.9845
Decoupled 486.3785 436.227 400.389 372.0735 343.454
Fully col. 564.1555 507.9245 462.788 433.258 414.7075

Table 6.14: Algorithm results for travel-cost fifteen-fire problems

Figure 6-9 and 6-10 show the same data in graph form. Figure 6-9 shows the performance of

the algorithms on ten-fire problems and figure 6-10 shows the performance of the algorithm on

fifteen-fire problems.

All of the travel-cost algorithms performed considerably worse than their cost free counterparts

because the agents had to factor in the cost of moving from fire to fire into their considerations

and thus couldn't always fight the fire at which they would have the most impact. In other

respects the travel-cost algorithms behaved very similarly to the cost-free version. As the number

of agents increased, the decoupled algorithm began to achieve results that were very similar to the

approximation algorithm. The fully collaborative algorithm also improved as the number of agents

was increased, but it improved much less quickly than the decoupled algorithm did.

Figures 6-11 and 6-12 show the damage to the city during run-throughs of the decoupled and

fully collaborative algorithms as a percentage of the damage done during a run-through of the

approximation algorithm.
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Figure 6-9: Comparison of algorithms in ten-fire, travel-cost problems.
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Figure 6-10: Comparison of algorithms in fifteen-fire, travel-cost problems.

102



Percentage difference for ten fire problem

60 -

)50

~40
-+-Decoupled

"Exe 3030 -i-Fully col.
= 20

E 1m

0
7 10 15 20 25

Number of agents

Figure 6-11: Damage relative to approximate algorithm in ten-fire, travel cost problems.
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Figure 6-12: Damage relative to approximate algorithm in fifteen-fire, travel cost problems.
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6.5 Effects of vision in the fully collaborative algorithm

The area that each agent can "see" in the fully collaborative algorithm is dependent on two dif-

ferent factors: "unobstructed vision" and "obstructed vision." The unobstructed vision parameter

controls how far down the road an agent can see while the obstructed vision parameter controls how

far "through buildings" the agent can see. Figure 6-13 demonstrates the two factors; the red arrows

down the centers of the roads represents the agent's unobstructed vision. The agent's obstructed

vision is represented by the magenta arrows leading off of the roads. The total area that the agent

can see is enclosed within the thick red cross.

Figure 6-13: Factors controlling agent vision

Altering the two vision controlling parameters changes the amount of information available to

the agents at each time step; these effects were mapped out in a series of trials. The table below

shows the average values for various combinations of factors. Since an obstructed vision of 2 means

that the agents can detect fires about half a block away despite interposed buildings (for example,
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the agents look through windows), obstructed vision values greater than 2 are highly unrealistic.

Obstructed vision values of 0 prevent the agents from fighting the fires; they can't see off of the

road at all and as a result can not detect the fires. Each pair of values was tested 4000 times on a

10 fire, 15 agent problem and the results were averaged together.

Obstructed Vision

1 2
1 409.442 342.79725
2 370.8135 328.1255

Unobstructed 3 354.4575 312.21425
Vision 4 338.4675 302.054

5 322.7125 297.51625
6 314.997 289.98525
7 307.4945 288.0105
8 302.1215 287.95425
9 297.312 281.636
10 296.9354 283.6825
11 295.3885 279.33125
12 294.40575 280.4715
13 289.95675 279.28975
14 289.9015 278.1965

Table 6.15: Effectiveness of various vision parameters

Figure 6-14 demonstrates the same data. The top line represents the effectiveness of the agents

for various unobstructed vision ranges when their obstructed vision range was set to 1. The bottom

line represents the effectiveness of the agents when their obstructed vision range was set to 2. The

Y-axis measures the amount of damage caused to the city before the fires were put out. The error

bars represent a 95% of the range of values used to generate each data point.

Increasing the agents' range of vision allowed them to fight the fires more effectively. However,

past a certain threshold the advantage to the agents of each increase in vision tapered off; each

increase no longer represented a signifigant change (percentage-wise) in the area that the agent

could see.
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Figure 6-14: Effectiveness of agents with various vision ranges.

Increasing the agent's obstructed vision was more generally more helpful than increasing the

agent's unobstructed visions. For example, an agent with an obstructed vision of 1 and an unob-

structed vision of 4 can see about as much ground as an agent with an obstructed vision range of

2 and an unobstructed vision range of 2, but agents with higher obstructed vision ranges typically

fought fires more effectively. This is largely due to the fact that fires are never located in streets

and thus, much of the area that an agent with high unobstructed vision can see will never have

a fire in it. Additionally, agents with a high range of unobstructed vision often find their field of

view blocked by buildings or by the edge of the city and thus can't fully take advantage of the area

that they can see.
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6.6 Travel Time of Agents in Constrained Collaborative algorithm

A series of tests were run to determine how much time the agents in the constrained collaborative

algorithm spent traversing the city. The simulator was run 2000 times for each of a number of

different problem sizes and the results were averaged together. Table 6.16 summarizes the results.

Problem sizes are expressed in the format MxN, where M is the number of fires and N is the

number of agents. The results represent the amount of time the agents spent walking from place

to place as a percentage of the total time the simulator was run.

Problem Size Percent
4x3 27.512
4x4 30.748
4x6 37.112
4x8 39.029

4x10 41.355
10x7 33.847

1Ox10 39.527
10x15 39.569
10x20 45.933
10x25 46.341

Table 6.16: Time spent traversing the city in the constrained collaborative problem

The time each agent spent walking around the city decreased as the number of fires grew but

increased as the total number of agents increased. As the number of fires increases, the agents have

a greater and greater chance of quickly finding fires to fight and need to spend less time wandering

around the city. As the number of fire fighters increases, the odds that the agents are unevenly

distributed around the city increase. As a result, agents in an overcrowded area will typically seek

out fires that are being fought by fewer fire fighters. Although this means that the average agent

spends more of its time walking around, it also allows the agents to more evenly distribute their

efforts around the city.
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6.7 Effectiveness of the Constrained Collaborative algorithm

The constrained collaborative algorithm requires that agents walk around the city instead of

teleporting from fire to fire. As a result, the agents have to spend a lot of time traveling around

the city instead of fighting fires. In order to guage the effect of this additional constraint, the

constrained collaborative algorithm was tested on a series of problems of various sizes. Tables 6.17

and 6.18 summarize the results, each problem was tested 2000 times and the results were averaged

together. The results of the fully collaborative algorithm on the same problems are also listed for

comparison purposes.

Algorithm Number of agents

7 10 15 20 25
Fully col. 353.6585 325.0745 294.9385 275.068 259.1345
Const col. 1899.214 1322.823 1047.152 760.778 666.864

Table 6.17: Results (in damage points) of the constrained collaborative algorithm on ten-fire prob-
lems

Algorithm Number of agents

10 15 20 25 30
Fully col. 523.712 484.594 457.022 436.081 411.821
Const col. 2805.162 2544.182 1962.459 1815.677 1706.526

Table 6.18: Results (in damage points) of the constrained collaborative algorithms on fifteen-fire
problems

Figures 6-15 and 6-16 show the same data in graph form; figure 6-15 shows the data for the

ten-fire problem and figure 6-16 shows the data for the fifteen-fire problem.

The agents in the constrained collaborative problem performed much worse than the agents

in the fully collaborative problem. This was due largely to the fact that the agents had to spend

almost half their time on average traveling around the city. Additionally, the fact that traveling

from one fire to another required multiple time steps highly discouraged agents from switching
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Damage Caused During Ten Fire Problem
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Figure 6-15: Fully collaborative and constrained collaborative algorithm for ten-fire problem
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Damage Caused In Fifteen Fire Problem
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Figure 6-16: Fully collaborative and constrained collaborative algorithm for fifteen-fire problem
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between fires; only rarely would an agent leave a fire and to fight another fire that was more than

a block or two away.

6.8 Effects of vision range on the constrained collaborative algo-

rithm

The agents in the constrained collaborative algorithm could see the area around them based on

their "obstructed vision" and "unobstructed vision." These two factors function exactly the way

they do in the fully collaborative algorithm; section 6.5 describes these factors. 4000 trials were

conducted for various values of obstructed and unobstructed vision in a 10 fire, 15 agent problem.

The average results are presented below, in table 6.19.

Obstructed Vision

1 2

Unobstructed
Vision

1
2
3
4
5
6
7
8
9

10
11
12
13
14

2032.542
1811.002
1695.266
1683.592
1699.655
1660.269
1674.990
1668.745
1675.276
1650.274
1637.385
1678.997
1646.174
1687.638

1273.819
1132.732
1050.167
1025.398
998.239
1003.756
979.355
990.082
982.451
1025.258
997.327
975.460
982.573
986.031

Table 6.19: Effectiveness of vision in constrained collaborative algorithm

Figure 6-17 shows the same data in graph form; the error bars represent 95% certainty with

regards to each data set.

The agents in the constrained collaborative algorithm benefit from having vision above a cer-
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Effectiveness of Vision Parameters
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Figure 6-17: Effects of vision parameters on constrained collaborative algorithm

tain threshold. However, since there is a large penalty associated with moving from across large

distances, the agents do not benefit much from information about fires that are far away. Unless

an agent has just extinguished a fire and is looking for any new fire to fight, it is unlikely that the

agents will use information about fires that are more than a block away.

6.9 Effects of non-line-of-sight communications on the constrained

collaborative algorithm

The agents in the constrained collaborative algorithm were originally restricted to line of sight

communications. This experiment examined the effects of allowing agents to communicate with

each other regardless of whether or no there was a clear line of sight between them.

Each agent was allowed to communicate with any other agent within a certain radius, regardless

of intervening obstacles. 4000 trials were performed for each communications radius, and the results
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are summarized below in table 6.20.

Radius of communications range Damage to the city
7 1165.2343

10 1117.7045
12 1085.9223
15 942.3124
20 987.1913
25 970.5431

Table 6.20: Effectiveness of communication despite lack of line-of-sight

As with increased vision, increased communications improved the effectiveness of the agents by

providing them with information about more and more fires. After a certain point, the effects of

increased vision seem to plateau; the cost of moving to a fire that is very far away is so large that

the agents can't often take advantage of this additional information. As a basis for comparison,

a range of 7 means that the agents could communicate with anyone within a block and a half of

themselves, while a range of 25 means that the agents can communicate with anyone within a 5

block radius.

6.10 Effects of non-constant vision on the constrained collabora-

tive algorithm

This experiment explored the effects of a slightly different vision model. Rather than allowing

the agents to see all of the fires in a fixed area around them, the agents were able to detect fires at

different ranges depending on their intensities. For example fires with intensity 1 might be visible

a block away while fires with intensity 4 might be visible two blocks away. In these experiments

agents were still required to establish a direct line of sight with a fire before they were able to detect

it.
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The ranges at which fires were visible were linearly proportional to the intensities of the fires.

For example, if a fire of intensity 1 was visible at range 3 then a fire of intensity 2 would be visible

at range 6, a fire of intensity 3 would be visible a range 9 and a fire of inensity 4 would be visible

at range 12.

4000 trials were conducted for various detection ranges in a 10 fire, 15 agent problem. The

ranges listed below reflect the range at which a level four fire could be seen. The range at which

lower intensity fires could be see was found by diving the range appropriately and then rounding

up. The average results are presented below, in table 6.21.

Range to see level 4 fire Total damage to the city

1 1423.624
2 1324.423
3 1192.733
4 1024.147
5 1079.373
6 991.139
7 980.029
8 979.240
9 1002.884
10 989.294
11 973.744
12 981.853
13 995.471
14 969.149

Table 6.21: Effectiveness of vision in constrained collab. algorithm

Figure 6-18 shows the same data in graph form.

As with the first set of vision experiments, the effects of increased vision increase greatly at

first but then seem to drop off after a certain plateau. Agents are very unlikely to switch to a low

intensity fire far away from themselves, so being able to see only high intensity fires at long range

provides almost the exact effect as being able to see any fire at long range. Limiting the agent's

vision this way also lightens the computational load every agent has to perform before making a
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Figure 6-18: Effects of non-constant vision on constrained collaborative algorithm

decision. The simulator used in this research allows each agent unlimited time to make a decision

about which fire to fight at any given time step. However, agents acting in a simulator that limited

the amount of information they could process at each time step could voluntarily filter out low

intensity fires that were long distances away without suffering a large loss in effectiveness.

6.11 Damage caused as a function of time

A series of tests were run to map out the rate at which damage was caused to the city in each of

the various scenarios. 500 trials were conducted and the damage done to the city at each time step

was stored. The average damage caused at every time step is graphed below; figure 6-19 shows

the performance of optimal, approximate, decoupled and fully collaborative algorithms on 4 fire,

7 agent problems. Figure 6-20 shows the performance of the approximate, decoupled and fully
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collaborative algorithms on 10 fire, 15 agent problems.
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Figure 6-19: Damaged caused as a function of time for 4 fire, 7 agent problems

The performances of the optimal and approximate algorithms followed roughly the same pattern.

The largest fires were tackled first, resulting in a quick overall drop in fire intensity. The agents

then spread out to fight the low intensity fires; this ensured that none of them would have a chance

to rebuild in intensity but meant that portions of the city were on fire for long periods of time.

The decoupled algorithm tended to fight smaller fires first, which meant that the initial drop in fire

intensity was less rapid as other fires grew in intensity. However, putting out small fires quickly

meant that the decoupled algorithm was able to extinguish all the fires in the city much more

rapidly than the optimal or approximate algorithms, despite the fact that more total damage was

suffered. For example, agents with centralized communication (using the approximation algorithm)

in the ten-fire, fifteen agent problem occasionally took 59 time steps to extinguish all the fires in the

city, but the city suffered only 148.628 "damage points" on average. Agents making independent
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Figure 6-20: Damaged caused as a function of time for 10 fire, 15 agent problems
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decisions using the decoupled algorithm never took longer than 49 time steps to put out the fires,

but the city suffered an average of 163.196 damage points in the process.

Since the agents executing the fully collaborative algorithm were not given global vision, they

typically had a much harder time finding fires to fight initially. Further more, because many fires

were not discovered for a long time, the damage to the city per unit time actually increased when

those fires began to grow out of control.

Agents with constrained movement and with neither global vision nor global communications

were typically unable to put many fires out before they rapidly grew in intensity. Thus, the damage

to the city per unit time typically grew much more quickly than it did for the fully collaborative

algorithm and only peaked when the fires began reaching their maximum intensity. The graph of

damage vs time for agents working on a 10 fire, 15 agent constrained collaborative problem is shown

in figure 6-21; the data was not included figure 6-20 because the damage caused in this scenario

was so much greater than that of any of the other scenarios.
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Figure 6-21: Damaged caused as a function of time during a constrained collaborative problem
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Chapter 7

Summary and Interpretation of

Results

This thesis investigates the effect of various factors on multi-agent collaboration in a simulated

fire-fighting domain. A simulator was written that models fires and fire fighting agents in an area

of a few square city blocks. Different scenarios were constructed to test the effects of limiting

the agents' knowledge and the effects of either coordinating the agents through a single entity or

having them make individual decisions. This research demonstrates that the amount of information

available to each agent and the agents' ability to act on this information are typically much more

important factors than the use of a complex planning mechanism; as long as the agents are aware

of each other and take minimal steps to coordinate their actions they are able to achieve results

that are nearly as good as those achieved by much more complicated coordination algorithms.

Three algorithms explored scenarios in which agents had global knowledge. Despite the fact

that the approximation algorithm uses a very simple greedy agent allocation, it performed almost

identically to the optimal algorithm on a variety of cost-free problems and also performed very well
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on the travel-cost problems on which it was tested. Agents working without central coordinations

also performed well compared to those using the approximation algorithm; despite lacking central

coordination the decoupled algorithm was typically able to achieve results within 15 to 20 percent

of those obtained by the approximation algorithm.

In contrast, agents working without global knowledge did much worse than those with global

knowledge, despite having a slightly more complex coordination mechanism. The agents imple-

menting the fully collaborative algorithm attempted to predict each other's future actions and take

this information into account while the agents in the decoupled algorithm simply randomized their

choice of fires to fight to avoid making the same choice as every other agent. On the other hand,

increasing the vision range of the agents that lacked global knowledge had a fairly large effect in

both cost-free problems and travel-cost problems. These agents assume that the area they can see

is tiny compared to the total area of the city. Thus, they do not attempt to scale the frequency with

which they explore the city based on the portion of the city they can see. As a result, increasing

the field of view of agents in the fully collaborative algorithm will never allow them to achieve the

same results as were obtained by agents with global vision.

The algorithms that dealt with travel-cost problems were less affected by changes in the agents'

vision range than the algoithms designed to solve cost-free problems. The increases in vision allow

agents to see fires that are far away, but the agents are penalized for moving to fight those fires.

As a result, the gains resulting from additional vision range taper off quickly.

The ability of the agents to act on the information they had was also a key factor in determining

the effectiveness of various algorithms. For example, the travel-cost algorithm was much more easily

solved when the fires were close together; although the agents had perfect knowledge of the city,

the central coordinator was unable to act on this knowledge because of the cost of moving agents

from fire to fire.
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Similar results were obtained when the agents' fields of view were increased in the constrained

collaborative algorithm. Although the increased vision had a large effect initially, the improvement

gained from increases to the agents' sight range quickly tapered off. This resulted because the cost

to the agents of using this information and switching to a distant fire was so high.

Of the four scenarios investigated in this research, the scenario in which agents had both global

knowledge and centralized coordination was by far the easiest to solve. The lack of central coordi-

nation caused a signifigant decrease in the agents' ability to put out fires, although the magnitude

of this loss decreased as the number of agents increased. Removing the agents' ability to see the

entire city resulted in a much larger decrease in fire fighting ability. Unlike the loss of centralized

coordination, the performance of agents without global knowledge did not improve relative to those

with global knowledge regardless of how many total agents their were, despite there more complex

coordination algorithm. Finally, removing the ability of the agents to teleport around the city

caused the largest decrease in fire fighting ability, despite the fact that the agents had the most

complex coordination mechanism.
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Chapter 8

Future work

The purpose of this research was to examine how best to organize and deal with agents with

realistic kinds of constraints such as lack of global knowledge and lack of centralized coordination.

There are several possible avenues for future exploration. The hybrid fire model used in the

simulator has only four discrete states. The fire model was purposely kept very simple to limit the

number of states in the Markov Decision Process; the run time of the value iteration algorithm

grows with (MN) 3 where M is the number of possible states in the fire and N is the number of

fires. However, the run times of the approximate, decoupled, fully collaborative and constrained

collaborative algorithms do not grow with the number of possible states in the fire, they grow with

the product of the number of fires and the number of agents. Testing out the algorithms with a

more complicated fire model would allow for more thorough verification of the results presented

here.

The effectiveness of the approximation algorithm is due largely to the specific characteristics of

the hybrid fire model used in this simulation. A more generalized approximation could be developed

using neural networks or other function approximation techniques to approximate the behaviour of

the MDP-driven optimal solution.
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There was no optimal basis against which to compare the constrained collaborative algorithm's

performance. Future work might involve developing a centrally coordinated version of the con-

strained collaborative algorithm that used global knowledge. This algorithm could serve as an

"upper bound" against which to measure the performance of the constrained collaborative algo-

rithm. A centrally coordinated version of the algorithm would allow agents to more effectively

discover all of the fires in the city and would ensure that agents move to the most useful fire when

the fire they are currently fighting is put out.

Many of the benefits of central communications might also be found in a hierarchical orga-

nization. In addition, a flexible hierarchical organization would require less communication than

single-point central coordination and thus would be less vulnerable to a failure in a single entity.

However, it would still provide better interagent coordination than the distributed approaches dis-

cussed in this paper. A hypothetical organization of this type might entail each agent attempting

to solve its own local goal by dividing the task into several parts for each of its subordinates to

handle; agents that have not received a goal from their superiors might simply default to some

preselected goal (such as making contact with other agents) or might attempt to determine a useful

course of action dynamically.

126



Chapter 9

Appendix A - Markov Decision

Processes

Although creating optimal behavior in a group of agents is a complex task, creating optimal

behaviour in a single agent (such as a centralized coordinator) is fairly easy. One common method

for determining the optimal behaviour for a single entity is a Markov Decision Processes (MDP).

Solving an MDP involves mapping every possible state of the world to the best possible action the

entity can take in that state; both the immediate reward for a given action and the possible states

that are likely to result because of that action are taken into account when an action is considered.

The definition for a Markov decision process used here closely follows the one used in work done

by Littman et al. [14].

A Markov decision process is defined to be a four-tuple of (Qs, QA, p, c) where Qs is the state

space, QA is the action space, p is the state-transition probability distribution function and c is

the instantaneous-reward function [14].

The state-transition function indicates the probability of reaching a particular state j given
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some action A taken in state i:

pj = Pr(St =jISt-1=iAt=k) (9.1)

where St indicates the state at time t and At denotes the action at time t.

A Markov decision process must satisfy the Markov property, which states that the current

state of the world is completely understood without knowledge of past actions and/or their results.

A Markov decision problem is defined as a Markov decision process along with an instantaneous

reward function. The reward function computes the reward of performing a given action in a given

state. This allows the total reward for any particular state to be computed for a given policy. One

example of a Markov decision problem is the following:

A robot is standing in the middle of a floor. The floor is divided up into a grid with the robot

at one particular location. The robot wishes to reach a different location and can only move in

certain, discrete ways (eg: one unit north, one unit west, etc.). There is a fixed reward associated

with moving from one location to another, although in this case the "reward" would most likely be

negative (the cost of moving between the cells in the grid).

This problem obeys the Markov property because the state of the world is determined based

entirely on the current position of the robot; the world state is not affected by previous locations

the robot has been in or previous actions it has taken. A solution to a Markov decision problem

creates a policy which maps actions to states. In the robot example used above, the policy would

assign a particular movement to each location; whenever the robot was at any particular location

it would perform the movement associated with that state.

An optimal solution to an MDP provides a policy that, when followed, allows the goal state

to be reached with the least possible total incurred cost. Some MDPs involve more than one goal
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state, possibly with varying weights associated with each of them. In this case, the optimal solution

defines a set of actions that maximizes the expected reward for any state.

9.1 Value Iteration

Many algorithms have been written to solve Markov decision problems [3, 13]. This research

uses the value iteration algorithm devised by Bellman in 1957. This algorithm iterates through the

entire state space and calculates the value of each state along with the best action to take in each

state. For every iteration, each state is updated as follows:

Vti (i) = max[Z(r(it, jt) + dVt(j))Pr(jtlit, A))] (9.2)
St

where V(it) is the value of state i at time t, d is the discount factor (0 < d < 1), maXA is the

maximum over the action space, r (it, jt) is the reward of going from state i to state j and Pr(jt lit, A)

is the probability of making a transition to state j from state i at time t given action A.

Each state's value is initialized to zero, then during each iteration of the algorithm the value of

the state is updated based on the reward that the robot would receive for moving to other states

in view of the likelyhood that a given action would result in the robot moving to a given state.

This continues until the change in value of each state falls below some threshold. The algorithm

keeps track of the action that produced the greatest value for each state; when the algorithm has

terminated, the set of (state, action) pairs that were created during the last iteration comprises

the solution to the MDP.

The value iteration algorithm often takes a very long time to converge to a single set of values

and, depending on the problem, may never converge at all. If the algorithm is simply run for a

fixed number of iterations and stopped it is possible that the MDP will not count events beyond
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its "horizon". For example, if value iteration is run for 75 iterations and then stopped, it might

produce a policy that provides a robot with very good behavior for 75 iterations but leaves the

robot with no fuel for the 76th iteration.

Rather than compute the value iteration algorithm out to a fixed horizon, this research uses

discounting to ensure that the value iteration converges. Discounting involves multiplying the

changes in value by an ever decreasing discount constant. Rather than creating an MDP that simply

assumes the simulation will stop after a certain point (in the above example, the MDP assumed

that the simulation would only last 75 iterations), discounting reflects an a priori probablilty that

the simulation will be stopped at any given time step. Although an MDP solved with discounting

may produce a slightly different result than an unaltered MDP would, it is also guaranteed to

converge to a single set of values and typically does so much more quickly than the non-discounted

MDP would have.

130



Bibliography

[1] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows. Prentice Hall, 1993. pages: 309-310.

[2] S. Andrade. An Intelligent Agent Simulation Of Shipboard Damage Control. Master's thesis,

Brazilian Naval Academy, 2000.

[3] L. Baird. Residual algorithms. In 12th International Conference on Machine Learning, 1995.

Tahoe City, Morgan Kaufman.

[4] A. Charnes and W. Cooper. The Stepping Stone method of explaining linear programming

calculations in transportation problems. Management Science, 1:49-69, 1954.

[51 P. Cohen, M. Greenberg, D. Hart, and A. Howe. Trial by fire: Understanding the design

requirements for agents in complex environments. AI Magazine, 10(3):32-48, 1989.

[6] D. Eustace, D. Barnes, and J. Gray. Co-operant robots for industrial applications. IEEE

International Conference on Industrial Electronics and Control, pages 39-44, 1993.

[7] W. Frandsen. Fire spread through porous fuels from the conservation of energy. Combustion

and Flame, 16:9-16, 1971. Elsevier Science Inc.

131



[8] F. Fujioka. Simulating fire spread as spatial stochastic process. In 13th International Confer-

ence on Fire and Forest Meteorology, Agricultural Network Information Center, Lorne Aus-

tralia, 1996.

[9] Z. Galil and E. Tardos. An O(n 2 (m + nlogn)logn) min-cost flow algorithm. In Journal of the

ACM, volume 35, pages 374-386, April 1988.

[10] R. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge, 1960.

[11] H. Kitano. Research program of robocup. Applied Artificial Intelligence, 12(2), 1998.

[12] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi, A. Shinjoh, and S. Shimada.

Large-scale disasters as a domain for autonomous agents research. In IEEE International

Conference on Systems, Man and Cybernetics, volume VI, pages 739-743. Tokyo, 1999.

[13] D. Koller and R. Parr. Policy iteration for factored MDPs. In 16th Annual Conference on

Uncertainty in AL. Association for Uncertainty in Al, 2000.

[14] M. Littman, T. Dean, and L. Kaelbling. On the complexity of solving Markov Decision Prob-

lems. In Eleventh International Conference on Uncertainty in Artificial Intelligence, Morgan

Kaufmann Publishers, Inc, San Francisco, 1995.

[15] M. McCarthy. Fire Modelling and Biodiversity. Johnstone Centre, London, 1997.

[16] N. Meuleau, M. Hauskrecht, K. Kim, L. Peshkin, L. Kaelbling, T. Dean, and C. Boutilier.

Solving very large weakly coupled Markov Decision Processes. In Proceedings of the Fifteenth

National Conference on Artificial Intelligence, AAAI, Madison, Wisconsin 1998.

[17] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley,

New York, 1994.

132



[18] R. Rothermel. A mathematical model for predicting fire spread in wildland fuels. In USDA

Forest Service Resource, 10, 1972.

[19] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, 1998.

[20] S. Tadokoro, H. Kitano, T. Takahasi, I. Noda, H. Matsubara, A. Shinjoh, T. Koto, I. Takeuchi,

H. Takahasi, F. Matsuno, M. Hatayama, M. Tayama, T. Matsui, T. Kaneda, R. Chiba,

K. Takeuchi, J. Nobe, K. Noguchi, and Y. Kuwata. An approach of Al and Robotics to

the emergency response problem in disaster. In 4th International Conference on MultiAgent

Systems, RoboCup-Rescue Workshop, 2000.

[21] T. Tokuyama and J. Nakano. Efficient algorithms for the Hitchcock transportation problem.

In SIAM Journal on Computing, volume 24, 1995.

[22] J. Varriano. Boltzman distribution.

URL: http://www.cbu.edu/ jvarrian/447/447Boltzman/, Christian Brothers University, De-

partment of Physics, last modified: 3/99.

[23] W. Zhao. Multiple Autonomous Vehicle Mission Planning and Management, T-1349. Master's

thesis, Massachusetts Institute of Technology, 1999.

133



Index

agents

communication, 62, 63, 79-82

teleportation, 64

vision, 62, 78, 81, 104, 122

walk, 80

world view, 79, 82

algorithms

approximation, 19, 62, 64, 72, 85, 96, 98,

101, 121, 122

constrained collaborative, 63, 64, 80, 108,

111, 123

decoupled, 63, 64, 74, 93, 96, 98, 101, 122

fully collaborative, 63, 64, 78, 81, 93, 96,

98, 101, 104, 122

optimal, 62-65, 85, 88, 121, 122

Boltzman distribution, 64, 74, 79, 93

cells

basic, 33, 38, 40-42, 46, 50, 52, 53

connected, 35, 53

cycle, 33, 46, 48, 52-54

dual cost, 40

matching with dimensions, 36, 47, 52, 53

negative cost cycle, 42, 45, 57

negative reduced cost, 54

non-basic, 33, 41, 42, 46, 53

path, 33

reduced cost, 41, 43, 56

spanning tree, 35, 52

tree, 35, 50, 52, 53

complementary slackness optimality conditions,

55

cost multiplier, 89, 91

cost table, 33, 54, 58

demand constraint, 32

dual costs, 54, 55

dual values, 40-42

supply constraint, 31

transforming to graph, 54, 57

cost-free problem, 65, 66, 68, 74, 121

134



fire configuration, 88

far, 88, 89, 92

mix, 88, 89, 91

small, 88, 89, 91

fire model

cell lattice, 21

fuel reduction, 22

Rothermel, 22

gradient descent, 64, 75

greedy allocation, 121

knowledge

global, 62-65

local, 62-64, 78, 80

machine learning algorithm, 64, 93

Markov decision problem, 61-63, 65, 72, 80,

128

discounting, 130

value iteration, 61, 65-67, 129

Markov decision process, 18, 127

Markov property, 128

optimal solution, 62, 128

multi-agent collaboration, 17

approaches, 17

central coordination, 18, 61-63, 65

distributed situations, 61

local control, 63, 74, 78

policy, 128

RoboCup Rescue, 20, 23

simulator, 20

stepping stone algorithm, 30, 31

greedy allocation, 36, 46, 47, 58

initial reduction, 31, 58

optimality, 41, 57

run time, 58

termination, 56

transportation problem, 29, 30, 55

travel-cost problem, 65, 67, 68, 70, 73, 77, 80,

88, 122

world state, 61, 68, 78

135


