
Obstacle Detection for Robot Navigation

Using Structured Light

by

Deborah L. Tran

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE
at the Massachusetts Institute of Technology OF TECHNOLOGY

May 23, 2001 JUL 11 2001

@ 2001 Deborah L. Tran. All rights reserved. LIBRARIES

The author hereby grants to M.I.T. permission to reproduce an
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
Department of Electrical Engineering and Computer Science

May 23, 2001

Certified by
Kenneth M. Houston

Principal Member of Technical Staff, Charles Stark Draper Laboratory
Thesis Supervisor

Certified by 4
Leslie Pack Kaelbling

Professor of Computer Science and En in Massachusetts titute of Technology
Tkijsl prvisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses



[This page intentionally left blank]

2



Obstacle Detection for Robot Navigation
Using Structured Light

by
Deborah L. Tran

Submitted to the
Department of Electrical Engineering and Computer Science

May 23, 2001

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Obstacle detection is an essential function for autonomous mobile robots. Current
autonomous systems are generally heavy, high-powered devices. Additionally, obstacle
detection systems often employ active ranging sensors that exhibit poor angular
resolution, thereby preventing vehicles from navigating through narrow spaces. Other
systems require considerable processing to resolve objects. The work in this thesis
attempts to design a small, lightweight, low-cost, and low-power system to detect
obstacles in the direct field of view of a small robotic vehicle. In particular, the range to
the obstacle as well as shape estimation is key data that would aid in robot navigation as
well as data gathering. Rather than using conventional active or passive ranging
techniques, this thesis examines projections of structured light to determine range to the
obstacle and surface information of the obstruction. A physical model was developed and
tested through simulation, and verified in hardware.
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1 Introduction

Autonomous mobile robotic vehicles are often used to gather data over a wide

range of environments for a variety of purposes. An essential function of these vehicles

is the ability to detect obstacles as well as estimate range to potential obstructions in order

to prevent a possible collision.

In order to identify potential obstacles, a variety of sensors and ranging techniques

can be employed. However, the sensors currently used by existing ranging systems

possess some or all of the following negative properties: large size, high power

consumption, and low performance in specific conditions. The two types of traditional

ranging techniques, active and passive sensing, either consume a large amount of power,

or involve computationally intensive processing.

These characteristics are especially problematic for small robotic systems, whose

size, weight, and power constraints are very limited. There are few practical ranging

systems that currently exist that can achieve high accuracy, low power, and a wide,

dynamic range within a small footprint.

Therefore, we would like to develop a system that is primarily small in size. A

key part in the solution is to decrease power consumption, since power generators are

generally the heaviest and largest part of an autonomous robot. Additionally, to reduce

the power consumption of the processing unit, we would like to have simple

functionality. Third, as with any product, we would like to have the robotic system be

low cost. Finally, because this robot will experience non-ideal and rugged environments,

the number of mechanical components should be minimal, so that the chance of failure is

decreased.
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Furthermore, the shape of an obstacle is important for smaller robots, which

approach objects at closer distances than larger vehicles. Therefore, it would be

advantageous if our technique could estimate the contour of potential obstacles.

In the following sections, we will discuss potential methods for sensing obstacles

as well as gathering data from objects, and the types of sensors that are available. We

will also propose a solution for a small mobile robotic range sensor.

1.1 Sensors

In order for an autonomous vehicle to self-navigate, it needs to be aware of its

environment. A range of sensors can be used to inform the vehicle of its surroundings.

Current methods of obstacle detection entail a variety of sensors, including ultrasonic

sonar, ultra-wideband, infrared waves, millimeter waves, and lasers.

1.1.1 Ultrasonic Sonar

Ultrasonic waves are vibrations whose frequencies exceed the human auditory

limit, which falls around 20 kHz. To detect obstacles, autonomous robots often transmit

ultrasonic waves towards a surface and record its return time. This round-trip time, along

with knowledge of the wave's velocity, is used to calculate the distance between the

object and the robot. Ultrasonic sonar sensors are prevalent in many robots because of its

low cost, ease of use, and relatively small footprint. At close ranges it can provide very

reliable range information.

However, at long distances, the ultrasonic signal attenuates significantly.

Additionally, the speed at which the wave travels is relatively slow at roughly 330 m/s,

therefore systems using ultrasonic sensors are delayed by the reflected response. Another

disadvantage of ultrasonic sonar is the wide-angle beam of sonar devices. This creates
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ambiguity as to the precise location of the object in the field of view. The use of the

ultrasonic sonar is limited to certain areas due to the reflectivity and absorption of

surfaces since certain surfaces absorb ultrasonic waves, while others reflect ultrasonic

waves to a high degree. Due to the low frequency and long wavelength of ultrasonic

waves, some smooth surfaces appear as a mirror to ultrasonic waves, and therefore appear

invisible to detectors. Ultrasonic waves are also affected by changes in temperature.

Often, multiple responses can result from a lone transmitted signal. This behavior

is due to echoes from the original signal that strike the obstacle at different locations.

Ultrasonic time-of-flight sensors generally respond to the first reflected response from an

object. This introduces a disadvantage, in that any other echoes from its sent signal is

ignored. These echoes contain valuable information such as shape and motion.

Therefore, one cannot extract additional data from the obstacle being detected.

A common ultrasonic sensor used for mobile robot navigation is the Polaroid

6500 series transducer. The specifications are outlined in Table 1.

Table 1 Specifications for the Polaroid 6500 Series Transducer

Cost _ $50
Range 6" -35 ft
Accuracy ±1%
Response Time 2.38 ms
Power 0.45 - 9W
Dimensions 1.69" (dia) x 0.328" (deep)

1.1.2 Infrared

The method of detecting objects using non-collimated infrared waves is similar to

ultrasonic methods. The infrared range is usually divided into three regions: near infrared

(nearest the visible spectrum), with wavelengths 0.78 to about 2.5 gm; middle infrared,
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with wavelengths 2.5 to about 50 gm; and far infrared, with wavelengths 50 to 1,000 pLm.

To calculate the proximity of an object, infrared waves are directed towards the object,

and the robot computes range based on the elapsed time between the transmission and

reflection of the beams.

The advantages of using infrared are also similar to ultrasonic, in that they are

affordable and small. Infrared range finders are also impervious to the colors of obstacles

since their waves fall outside the visible electromagnetic spectrum. Infrared signals also

travel faster than ultrasonic waves, thereby enabling more measurements within a specific

time frame. Infrared rangefingers tend to be more reliable than sonar as well. The

disadvantages of infrared waves are its susceptibility to atmospheric conditions such as

fog, as well as smoke and dust. Also, the range of infrared rangefinders tend to be shorter

than ultrasonic sonar.

Sharp, Inc. offers a rangefinding module that uses an infrared diode and a

position sensitive detector. Its features are provided in Table 2.

Table 2 Specifications for the Sharp GP2D12

I C o st $ 2 0 ....... ........ ..............
Range l0cm-80cm
Resolution +0 5 cm
Response Time 38 ms
Power 96.8 mW
Dimensions [4.5 m x 18.9mm x 13.5 mm

1.1.3 Millimeter-Wave Radar

Millimeter waves can be used in time-of-flight techniques as well. Millimeter

waves are not as sensitive to atmospheric conditions as infrared waves. Their

wavelengths range from 500 micrometers to 1 cm. Since these wavelengths are shorter
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than ultrasound waves, the response times of systems utilizing millimeter waves are faster

than ultrasonic sonar.

Fujitsu Ten, Ltd. develops millimeter-wave collision warning systems for

vehicles. The properties of such a system is listed in Table 3.

Table 3 Specifications for Fujitsu 76Ghz Millimeter-Wave Radar

Cost $10,000 (pre-production)
Range 5-120m
Resolution ±5%
Response Time lO0ms
Power 14.4 W
Dimensions 106mm x 88mm x 90mm

1.1.4 Ultra-Wideband Radar

Another method for sensing objects is ultra-wideband (UWB) radar. Whereas

most radar systems emit sine-wave bursts at a specific frequency, the signals from UWB

radar systems are complex and span a wide range of frequencies. For UWB systems, this

range of frequencies is defined to cover at least a 25% bandwidth. The duration of each

pulse generally lasts less than a billionth of a second.

Due to this short lifetime, power consumption is greatly reduced. Since the

frequency span of UWB radar is large, the resulting resolution from UWB echoes is

greatly improved. Also, due to the variety of frequencies being used, more types of

surfaces may be detected, resulting in a higher probability of sensing obstacles. A unique

property of UWB is its ability to penetrate foliage and below ground surface.

Additionally, the probability of UWB waves being detected is lower than with

narrowband signals.

17



However, the increase in bandwidth results in greater processing demands as well

as an increased chance of false alarms. Wide signal bandwidths also result in high noise

levels. The physical size of UWB sensors is also relatively large compared to ultrasonic

sensors. The complexity of UWB signals makes it more difficult to use than ultrasonic

sonar. Furthermore, UWB radar systems are less readily available than ultrasonic and

radar systems due to FCC regulations.

The specifications for an ultra-wideband radar developed for the Naval Surface

War Center by Multispectral Solutions, Inc. is given in Table 4.

Table 4 Specifications for a UWB radar by Multispectral

Cost $1000-$2000
Range Up to several hundred feet
Resolution Less than one foot
Response Time 10 kHz
Power 25 pW(average)
Dimensions 150 cubic inches

1.1.5 Lasers

Lasers can be used as range finding devices similar to ultrasonic rangefinders.

Since the beam from a laser is extremely focused, it does not exhibit the wide-beam

dispersion of ultrasonic sonar, therefore, the readings tend to be superior in range

determination and angular resolution. In addition, because the energy from the laser does

not dissipate as much as ultrasonic at further distances, laser sensing can function over a

much greater range. Third, because laser pulses travel at the speed of light, the range

readings return much faster, therefore, the responsiveness of laser range finding devices is

quicker.
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However, the fact that laser pulses travel so fast is also a disadvantage. Using

time-of-flight ranging, one can measure the time between sending and receiving a signal.

However, because of the high velocity of laser pulses, the processing speed on the

receiver side needs to also be fast at near distances. Therefore, laser range finding does

not work very well at close ranges. Also, laser rangefinders available today often

consume high power and are physically large, especially those that incorporate a scanning

head that rotates in order to sweep a beam across large areas. In addition, some lasers

are not eye-safe, and thus must be limited to areas of low human occupancy. Further-

more, laser waves are more affected by atmospheric conditions than ultrasonic waves.

Sick Optic-Electronic, Inc. designs various laser range finding modules that are

often used for robotics. The properties of the smallest of its indoors laser range finding

devices are presented in Table 5.

Table 5 Specifications for the LMS-200

1Cost $5750
Range .p to 3O m
Resolution 10mm

IError ±15 mm. within I to 8m
±4 cm between 8 to 20 m

Response Time 56/26/13ms based on angular resolution
Power - 7.5 W maximum)

LDimensions 55 mm x185mm x156 mm

1.2 Techniques for Sensing

The techniques used to detect obstacles can be divided into two categories: active

sensing and passive sensing. Active sensing generally involves a transmission of energy,

such as acoustic or electromagnetic waves which returns reflections from an obstacle to a

sensor, while passive sensing generally uses the already illuminated scene to detect depth.
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Active sensing techniques include time-of-flight ranging and use of structured light while

passive sensing uses image-processing techniques that analyze texture, linear perspective,

motion, focus, occlusion and similar aspects.

Because passive sensing procedures generally require much computation and

processing, passive sensing cannot perform well in real-time environments. The power

and equipment needed for such processing would also contribute significantly to the load

of the robotic system. Therefore, an active sensing scheme would be more favorable.

One common active ranging method is time-of-flight (TOF) ranging. Sensors

employing TOF techniques calculate distance by determining the elapsed time between

transmitted signals and received signals, and multiplying this time by the velocity of the

signal. However, using TOF at very close ranges with fast signals yield poor accuracy,

since the speed at which the signal can be processed is limited by the processor speed.

Another active method is structured light. Structured light is a technique for

recovering shape by extrapolating three-dimensional meshes from rays of projected light

and a camera. The typical set-up for structured light range finding is shown in Figure 1.

CCD came n,

lager al senermtor

Figure 1 Setup for Structured Light Sensing (Figure reproduced from [15] by permission,@ 1991 IEEE.)
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A camera is oriented down towards the object, while a laser is directed such that

its beam intersects the object. To determine the distance to the object, triangulation is

used between the camera, the object, and the laser. Patterns of projected light can be

achieved by sending the laser beam through a slit or grid filter.

Image Plane

0 xJ

y ... I..........................

Figure 2 Diagram for triangulation calculations. The camera lens is modeled as a pinhole. y is the range
to the obstacle. (Figure adapted from De la Escalera, Moreno, Salichs, and Armingol, 1996.)

Few components are required, reducing overall costs. In addition, high accuracy

at close ranges can be achieved. Therefore, the use of structured light is a potentially

viable solution.

1.3 Previous work in Structured Light

Structured light is often used for object recognition, 3-D reconstruction, as well as

obstacle detection. In the next section, we will discuss past work performed in this field

that provide valuable information to solve our problem.

1.3.1 PRIME

PRIME (PRofile Imaging ModulE) is a structured light sensor developed by

DePiero and Trivedi (1996) for three dimensional computer vision. Using a downward

pointing camera, and a laser fitted with a slit filter, one can capture the image of the beam
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striking the object. From this image, one can determine range and shape for the slice of

the object that gets intercepted by the beam. To recreate the 3D shape of the object, the

object is incrementally moved via a conveyor belt so that the beam can ultimately sweep

all planes of the object's surface and generate a 3D model of the object.

Rigid Sensor
Backbone

Camera

Wheel
Encoder

Laser

Laser Plane

Range
Measurement

Scanned Object

Figure 3 PRIME

Precision
Standoffs

Setup.

z
S

Conveyer

(Figure reproduced from [5] by permission of the authors.)

Horizontal
Calibration

Plate atZ = Zi

Ci

World points
on this line

are at Z = Zi
Ri

Image of laser plane intersecting
horizontal calibration plate

C

I --

Superposition of images formed wii
horizontal calibration plates

Figure 4 Calibration Setup for PRIME. (Figure reproduced from [5] by permission of the authors.)
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Correct calibration, therefore, is vital to accurately reproducing the object's

model. Each movement of the object needs to be known precisely so that calculations

use the correct increment for range determination. PRIME uses complex calibration

models for reliable measurements.

1.3.2 Multiplexing Light Sources

Since the object in the previous project needs to be incremented deliberately, the

amount of time required to scan an object can become long. Baba and Konishi (1999)

attempt to reduce this time by using a multiplexed structured light source.

mage

Shieldsensor

flWeld
Mask

Lens

Field system
Stop

Oble

Lighl
sourc~e

4- Lens
Ssysteln
z1

seJn-

Figure 5 Multiplexed Light Source Setup. (Figure reproduced from [1] by permission of the authors.)

Previous work using multiple light stripes were complicated because each light

stripe needed to be tagged in order to determine which stripe corresponded to which
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source. The conventional method encodes each stripe with a gray code, and then

sequentially projects each gray-coded pattern. However, this requires several projections

per sample.

Baba and Konishi (1999) instead use a system of lenses that direct each light

stripe to a specific image sensor. Therefore, identifying the stripe is easy and only one

projection needs to be performed per sample. The result is a faster imaging system.

Calibration, however, is still necessary.

1.3.3 Visually Located, Structured Light Source

A structured-light range finder developed by Fisher, Ashbrook, Robertson, and

Werghi (1999) attempts to remove the difficulties of calibration by using a system that

does not require prior knowledge of the distance between the light source and the light

sensor (camera) or the distance between the camera and the surface. Instead of projecting

light rays onto an object, it uses an obstruction to cast a shadow on part of the object. The

line of difference between the lighted section and shadowed section of the object is

similar to the line created when a laser beam intercepts the object. The obstruction also

contains marks that, when captured by the camera, can provide range information.

The obstruction used is a long, marked opaque triangular prism. One face of the

prism is painted black and is pointed away from the camera. Another face of the prism is

painted white, and this is presented toward the camera. Also on this face are two dark

marks. These marks are two parallel bands whose thickness and separation are known.

The image captured partially includes both faces of the prism as well as the shadow it

casts on the object. The amount of the white face showing versus the amount of the black

face showing determines the angle that the wand is rotated towards the camera.
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Point Light Source

I

WandA

Image Plane Camera Centre

C

Surface to be Captured

Shadow Cast by Wand

Figure 6 Visually Located, Structured Light Source. (Figure reproduced from [7] by permission of the

authors.)

Additionally, since the distance between the bands is known, one can calculate how far

away the prism is from the camera by the distance between the bands in the image. From

this, we derive the position of the prism. Finally, depth can be determined from the

position of the object in the image, the pose of the prism, and the position of the light

source.

1.3.4 Mars Rover

Structured light has also been used for obstacle detection during robot navigation.

Matthies, Balch, and Wilcox (1997) of the Jet Propulsion Laboratory developed such a

system for planetary rovers. Their basic arrangement consists of a camera angled towards

the ground and a laser beam that is also directed downwards. The laser beam is diffused

into 15 co-planar beams using a diffraction grating. The resulting image captured by the

camera contains a line of 15 laser spots. If one or more of the beams strikes an object,

their position in the image along the line would thus be shifted, and the shifted spots

would therefore supply information about the obstacle. The distance to the obstacle can

be computed by using the expected position of a spot and its offset.
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9.7deg

Ocm 41.5cm Side

50cm

47cm 98.8cm Top

Figure 7 Multiple Spot Laser Setup. (Figure Figure 8 Front View of Rover. (Figure reproduced

reproduced from [10] by permission of the authors.) from [10] by permission of the authors.)

In order to differentiate the 15 spots from the scene, Matthies et al. (1997) align

the camera and the laser such that the line of spots that appears in the camera's image will

coincide with the optical centers of the camera. Therefore, the line of spots will always

lie on the vertical center line of the image. The 15 spots would always be co-planar since

spots will only shift left or right upon contact with an obstacle. In case the line of spots

moves, the system need only find the scanline on which the spots lie. Since the spots will

only appear on a specific scanline, image processing becomes greatly reduced.

1.4 Sensor Comparison

As discussed in Section 1.1, ultrasonic sensors yield poor angular resolution.

Therefore, when using such sensors for robot navigation, the location of specific points

on the object cannot be determined accurately. A potential consequence is the

misdirection of the robot. For example, consider the case of a small robot approaching a

chair. Because of the size of the robot, it may proceed through the legs of the chair.
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(C)

(a) (b)

(d)

Figure 9 Thin-Pole Obstacles. (a) Original starting position (b) Rotation after sensing object (c) One
possible result after sensing object. (d) Second possible outcome from sensing.

However, if a wide-beam sensor detects a leg of the chair, it cannot ascertain the precise

size and location of this obstacle. Therefore, it will advise the robot to maneuver away

from the chair. In the worst case, the robot may position itself such that the sensor

encounters the other leg of the chair. Depending on the obstacle avoidance algorithm

used, two interesting cases may result. It may reorient itself to advance in an opposite

direction to the original path, which is an undesired result. In the second case, it may end

up rotating back to the previous orientation, thereby sensing the first leg again. If this

occurs, it will persistently alter between facing the first and the second leg, and would

thus never progress from its current position.

If the robot was equipped with a sensor that exhibited a narrower beam, the robot

could proceed through the thin poles without having to deviate from the original course.

Also, accurately determining the shape of an obstacle is difficult with wide-beam

systems, such as ultrasonic and UWB. Distinct points on a surface cannot be
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distinguished since such sensors will only detect the closest point of all points being

swept by the beam. The set of points covered is large due to the width of the beam.

We would like our robot to take advantage of its size and maneuver through small

passages. In addition, since our robot is small, it will approach obstacles within shorter

distances than larger robots. Consequently, the shape of an obstacle becomes more

important. Therefore, ultrasonic and UWB sensors are not practical as they cannot detect

shape and cannot approach obstacles in close proximity. A laser based system, which

emits a narrow beam, would then be the best solution for our purposes. Because a laser

will only hit points that it will ultimately contact, our robot would not be falsely warned

of potential obstacles. Since a laser's beam divergence is very small, even points at

further distances can be targeted precisely. The beam's intensity would not attenuate

significantly as well. Control of the laser is also simple - lasers can be switched on and

off with low or high TTL levels.

Figure 10 Importance of Shape

1.5 Technique Comparison

In the structured light methods discussed in Section 1.3, the camera is always

positioned above the object being observed. However, because our robot is small, the top

of obstacles will generally be above the plane of view of the camera. The rough distance

between the object and the camera also changes, unlike the fixed structure systems in
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traditional methods. Calculations used in these conventional methods may also become

complex. Therefore, a different method needs to be used.

1.6 Coplanar Multiple Source Structured Light Ranging

We propose to reduce complexity in the calculations by functioning in only one

plane, rather than 3-dimensional space as done in previous work. Therefore, the camera

will be placed on the same axis as the laser. The distance between the laser module and

the camera in real space will ideally be related to the distance between the laser spot and

the horizontal center in the image plane. The laser spot offset from the center is also

correlated to the distance from the laser to the obstacle. Through knowledge of the

camera's focal point and sensor array dimensions, and the distance between the camera

and the laser, one can use triangulation to calculate the distance to the obstacle.

dw p
r f

4- dw Object

Laser Camera r
Beam

Laser

f Camera

Image Plane

a) Front View b) Top View

Figure 11 Proposed Structure

The triangulation methods in Section 1.3 detect shape by "striping" or projecting a

pattern of rays onto an object. Because these pattern generation techniques disperse a

laser beam across wide angles, one loses information about the distance dw. In our
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proposed method, this information is crucial to estimating the distance to the obstacle.

Therefore, in order for us to detect shape, we must not alter the original laser beam.

Since multiple points are required to determine shape, we may either use mirrors or

motors to scan the beam, or use multiple lasers. To avoid movable mechanical

components, which add a source of complexity as well as potential mechanical failure to

our design, we choose the multiple laser option. As stated previously, available laser

modules are inexpensive, low power, and lightweight. Thus, the idea of employing

multiple lasers is very realistic. Each reflection from each laser will give distance

estimation to a specific target on the obstacle. We can map these points to a function that

describes the contour of the object's surface.

Because of the relationship between the range of the obstacle and the distances

between the laser(s) and the camera, we can actually control the specifications of our

system, specifically the minimum distance required for correct functionality.

dw -f
minimum distance = 2 maximum image plane width

With all other systems previously mentioned, complex, interior physical changes

are required by the sensors in order to adjust their distance requirements. With the

proposed system, one need only position the lasers closer to the camera for reduced

minimum distance requirements. To increase the field of view, one may simply slide the

lasers away from the camera or add a lens to the camera.

1.7 Goals

With this design in mind, and considering specifications that other sensors have

achieved, we wish to satisfy the following requirements for our system: range from a
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minimum of 10 cm to a maximum of 5 m, distance acquisition times of 30Hz, total

power consumption less than 1 W, weight of at most 1 lb, an accuracy of 1%, and a cost

of less than $1000.

2 Design Issues

There arises a multitude of issues with our proposed design. This section will

address them. In the next section, we will attempt to solve these problems.

2.1 Textures of Surfaces

The first potential problem with this system involves types of surfaces. If a

surface is highly reflective or absorbent, the resulting laser spot cannot be discerned by

the camera, and thus, range finding cannot be performed. Surfaces that are highly

reflective include mirrored objects. If the target surface is near 100% reflective, then a

spot will not appear on the surface due to the specular nature of the reflection. If the

reflected beam does strike another object, and appears on the target's surface, this point

will appear in the camera's field of view. The resulting point on the image would yield

false distance measurements.

If a surface is highly absorbent, then no visible light from the laser will be

reflected. Therefore, no spot will show up on the camera's image. Distance cannot be

determined in this case as well.

2.2 Color of Surfaces

Another concern with different surfaces is the color of a surface. If the color of a

target surface is very close to the wavelength of the laser, then the camera might not be

able to differentiate the laser spot from the object. Thus, no laser spot will appear, and

distance measurement cannot occur.
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A complication may arise when the laser hits an object that alters the color of the

reflecting beam. If the system was expecting a certain color for the spot, then the system

may overlook spots that reflect a different color. Distance measurements would also be

affected in such cases.

2.3 Visibility

If the intensity of the ambient light is greater than that of the laser light, a "wash-

out" may occur. Therefore, the camera may not detect the spot. Additionally, if other

lasers are present in the environment, and are emitting a beam with a similar wavelength,

our system may confuse those spots with our own. Atmospheric conditions such as fog,

rain, and smoke, will also affect visibility.

The spot size of the laser beam may affect distance measurements. The further

away an object is, the larger the spot size will be. Therefore, we will need to accurately

determine the center of the spot in order to accurately determine range.

Another issue involves image quality. Small cameras generally have a sensor

array of dimensions 4.8 mm x 3.6 mm. The pixel array consists of 320 to 640 horizontal

pixels by 240 to 480 vertical pixels. Therefore, there is much image degradation when

small cameras capture the scene. Efforts need to be made to preserve as much

information about the scene as possible.

2.4 Arrangement

A different design issue is the number of lasers we choose to use in our system.

Only one point is needed to determine distance to the object. However, since one point

will provide only a limited field of view, we will need multiple points to ensure that our

vehicle does not collide with an object. Therefore, we need to determine a minimal, yet
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reasonable, number of lasers to locate obstacles a majority of the time. At least two lasers

will give us incline information about the surface if the surface is angled. At least three

lasers may give us curvature information about the target. Also, it would be wise to

include extra lasers in case other lasers fail or cannot detect an obstacle in their limited

range. In addition, whether to use an odd or even number of lasers should be considered.

An even number of lasers may aid in simplifying calculations due to symmetry.

Laser Camera Laser

(1) (2) (3)

Figure 12 Possible Laser Configurations

Furthermore, we must consider how to arrange the lasers around the camera.

Potential configurations included orienting the lasers horizontally or vertically in the

same plane as the camera, or even diagonally or in a circle around the camera. In

addition, the spacing between lasers should be considered. Lasers can be spaced evenly,

or in some manner that maximizes accuracy. Some configurations may yield better results

than other configurations.

2.5 Detection

We should consider the case where all lasers miss. If we encounter thin poles that

none of the lasers detect, we may end up hitting them. For example in the case of a chair,
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the vehicle may be absolutely centered and approaching the leg head on. Since the lasers

will not detect this leg, a collision will result. We may need to add some auxiliary

hardware to prevent such a case.

There also arises the situation where some lasers miss, and some lasers hit. A

problem arises as to which laser spot corresponds to which laser, since calculations are

dependent on this information. A system for resolving such ambiguities needs to be

developed.

2.6 Obstacle Shape

As stated previously, since our robot is small, the shape of an obstacle is

important. If the vehicle is approaching an incline, then calculations as to the closest

point of the incline could be made if we know the angle of approach. If the vehicle is

headed towards a curved object, we can derive the closest point of that object if we know

the radius of curvature. With such knowledge, a laser beam is not required to hit the

closest point of the object. Therefore, we need to produce algorithms that not only

provide shape, but also the polynomial that fits the points of the obstacle.

In some environments, our robot may encounter negotiable obstacles - objects

that are permeable or navigable. A vehicle may easily traverse grass and similar

lightweight objects. However, such objects will appear as obstacles to the system. As a

vehicle approaches an inclined ramp, it will also detect an obstruction. However, a

vehicle can easily climb a ramp. Since most surfaces are not completely flat, this

problem needs to be addressed.
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Figure 13 Incline Perceived as an Obstacle

3 Design

In this section, we will propose a model for obstacle detection that satisfies our

criteria as defined in Section 1.7 as well as resolves the issues addressed in the previous

section.

3.1 Laser Configuration

As stated in Section 1.6, the lasers that we are using have to be positioned on the

same plane as the camera. The laser spots will therefore fall along a line that will

intersect the center of the image. To reduce image processing requirements, we can

predetermine which line the spots would appear on. Therefore, we need only scan this

line for points. The easiest way to scan a line would be either horizontally or vertically.

The only advantage to positioning the lasers diagonally would be the fact that the

diagonal axis provides a larger field of view than either the horizontal or vertical axis.

However, in this case, the extra field of view does not warrant the extra amount of

processing.

Since the image array consists of 640 pixels horizontally and 480 pixels vertically,

image resolution would be improved if we placed the lasers horizontally. However, this

orientation does not allow us to detect vertical inclines such as ramps. Therefore, it

would be useful to include both horizontal and vertical lasers. We only need a minimum
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of two lasers vertically to determine potential inclines. If the vehicle is expected to

encounter only flat terrain, then we may remove the lasers along the vertical axis.

One problem that arises with including both horizontal and vertical lasers involves

points at a far distance. These points will translate close to the horizontal and vertical

center of the image. However, the scanline may shift left or right for the vertical lasers,

or up and down for the horizontal lasers due to mechanical inconsistencies. Points that

are close to the center cannot be distinguished as belonging to the vertical line of lasers or

the horizontal line of lasers, as they could be shifted from either orientation. These

points generally correspond to objects that are at a considerable distance away, and can be

deemed non-threatening. Therefore, we may ignore such obstacles because they cannot

harm the robot. If we happen to get closer to such an object, the system should be able to

distinguish the resulting points, as they should be far from the center of the image.

3.2 Number of Lasers

Next, we need to determine the number of lasers. As stated before, a minimum of

three lasers is needed to detect a curve described by a second-degree polynomial.

However, calculations would be greatly simplified if we used an even number of lasers

since we can exploit symmetrical properties. Also, an extra laser would reinforce the

current system should points be missing or a laser fail. Therefore, a total of four lasers in

the horizontal plane would be reasonable. Since our robot is small, it does not seem

likely that it would encounter a shape that has greater than four important points of

curvature.
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3.3 Laser Spacing

The next issue concerns the spacing between lasers. We would like to space

lasers symmetrically since this would simplify our distance-finding equations. One

option would be to equally space all lasers across the front of the vehicle. Another option

would be to equally space the lasers on each side of the camera by a gap dw, resulting in a

separation of 2-dw between the two center lasers.

fE- dw > - d

dw d2

(1)

- -- dw -)>|< --- 2

(2)

>I< dw

I"Aa

dw --Iw
Figure 14 Possible Laser Spacings

In terms of accuracy, the latter option is the better choice. This is due to the fact

that the farther away a laser is from the camera, the more accurate the distance reading

will be. Let dw represent the distances between lasers, dp represent the distance between

pixels, and dr be the difference between two ranges. As seen in Figure 15, as dw

increases, dp increases. Since the distance between pixels is increased, the pixel

resolution is increased, and therefore, more accurate measurements result. In addition,

positioning two lasers closer to the camera will appear to overprotect the center. Since

collisions with the center of the vehicle are less likely than collisions with outer points,

having more sensors toward the sides should prove more beneficial. In the chance that
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such an event would occur, we can safeguard the vehicle by placing a physical bumper

below the camera.

dw2

dw

Image Plane

dp2  dp,

Figure 15 Relationship Between Accuracy and Distance Between Lasers

3.4 Spot Differentiation

In order to avoid problems with interference from the scene or additional light

sources in the environment, we use image subtraction to differentiate spots from the

background. Therefore, two images are acquired for each distance calculation, one with

the lasers enabled and one with all lasers disabled. After the second image is subtracted

from the first, only the laser spots will remain. In cases where the spot hits a similarly

colored object, the intensity of the spots with the lasers switched on will differentiate the

spot from the object. We assume that the speed of pulsing is sufficiently high as to avoid

any major changes between scenes as the laser is pulsed on and off.

This method of laser pulsing will also reduce power consumption. The lasers will

be only triggered half of the time, and thus will only consume half of the power of lasers

that are always enabled. The tradeoff is more complexity with control of the lasers as

well as the image subtraction process. Image subtraction will effectively double the

38



response time. However, the power savings generated with this scheme is more than

enough to compensate for the power resulting from the added complexity.

The laser spot will appear as a circle whose intensity is strongest in the center, and

gradually fades as you move outward. Therefore, the first step in extracting the absolute

center of a laser spot would be thresholding. Any pixel value from the subtracted image

that is less than a certain value should be disregarded as a potential center. If no pixels

remain after thresholding, then our initial threshold value is too high and should be

decremented until a logical number of pixels appear. If it seems that too many pixels are

apparent, i.e. more clusters of pixels exist than the number of lasers, then our estimated

threshold value may be too low and background noise may be included. The current

threshold value should thus be incremented. The end result of thresholding should result

in four circles. By knowing the diameter of the circle, we can calculate the exact center

of the circle. This value can be used to calculate distance.

Additionally, if we cannot determine which one pixel of several pixels should be

chosen, we can give higher priority to points that seem to lie along the scan line of the

other points that have appeared.

We assume that most of the objects encountered do not alter the color of the laser

beam as few objects in the environment we expect to encounter display this characteristic.

Therefore, to increase the accuracy of detecting our own spots versus other light sources,

as well as to aid the thresholding process, we will apply a narrow band pass interference

filter that will only allow certain frequencies to reach the camera. The wavelength of

these signals must fall within some tolerance of the wavelength of the lasers we intend to

use. The color filter will also partially solve the problems associated with high ambient
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light intensity, as most light waves from this source will be filtered out. However, some

of the wavelengths contained in ambient light may match that of our laser. We will need

to ensure that the power of our laser is high enough for the distances and environments

we expect to encounter.

3.5 Missing Points

If we successfully capture four points, we can associate each point with a laser.

The leftmost point is associated with the rightmost laser, and so on. However, we expect

that oftentimes we will not be able to recover all points from the lasers. Therefore, there

is ambiguity as to which point is associated with which laser. In such a case, we may

execute the following procedure. We first fire the leftmost laser only. From the resulting

spot, we can determine that the resulting point belongs to it, and we may calculate the

distance of the point on the object as well. Next, we pulse the next adjacent laser, and

complete the same steps. After incrementing through each of the lasers, we should be

able to establish which distances correspond to which laser. From this list of distances,

we may determine the shape of the obstacle.

It is possible that we erroneously include points that did not originate from one of

our lasers. If we use four lasers, after thresholding we may find four center points that we

assume are correct. However, if one of these points is an external point, then this may

significantly alter the real distance measurement. We assume that we will be taking

many measurements in a small time period, and that this external point will not be present

in all measurements. Therefore, one or two atypical measurements may be ignored by the

system.
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3.6 Reflective and Absorbent Surfaces

Finally, we consider the case of highly reflective and absorbent objects. For the

purposes of our project, we will assume that such objects are rare and thus will not be

encountered. If a robot encounters an object from which it cannot extract any points, it

may advance in small increments in case forward positions may provide more

information. If it still cannot observe any spots, the robot should alter its orientation until

it is in a position to safely detect obstacles.

3.7 Plan

For this project, we will create a simulation of the environment, create a

simulation of what appears on the image plane, and test the functionality and accuracy of

our system using this simulation. After debugging is completed, and the system works

reliably, we shall implement the hardware version and verify the precision of our system.

4 Calculations

With the design in place, we will now derive equations that we will use to

calculate distance as well as determine shape.

4.1 Distance Computation

The model that we use for the camera's lens equations is a pinhole model. Since

we are not measuring distances on the order of the lens thickness, we can approximate the

camera's lens to a pinhole. Therefore, the resulting image on the sensor array will be an

inverted and horizontally mirrored view of the scene. For example, any objects in the

top, left portion of the scene will appear mirrored on the bottom, right side of the image.

Additionally, because we are not operating on the scale of the lens, we can ignore any

spherical aberrations that are associated with rays that hit the edge of the lens.
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The image plane lies behind the lens. The distance between the lens (pinhole) and

the image plane is the camera's focal length,f. In the real world, the image plane is an

array of charge-coupled sensors. This array of sensors maps to an array of pixels in

simulation. We will denote the width of the sensor array as sw and the height of the

sensor array as sh. The pixel array width will be symbolized by pw and the pixel array

height will be symbolized by ph. The range to an object will be abbreviated as r, and dw

will refer to the distance between lasers. Each measurement associated with laser i will

be subscripted with the number i.

Object -- -
<--dw-> 

_

/r

Laser

Camera

Image Plane
dx

Figure 16 Calculation Diagram

To simulate the system, we will need to determine where points will fall on our

sensor array. To calculate the point on the sensor array that corresponds to a laser spot on

an object, we use triangulation.

dw dx

r f

dx = dw-f (4.1)
r

The next step would be to convert this real distance value into a pixel value. For

horizontal pixels, this value would translate to:
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dp _ dx

pw SW

dp = dx P (4.2)
SW

If the laser was positioned to the right of the camera, then the point will fall to the

left of the image center in the sensor array. Therefore, the final pixel position, p will be

at:

P = PW - dp
2

Similarly, if the laser was positioned to the left of the camera:

p - P + dp
2

Therefore, if given the pixel position of the point on the pixel array, we can easily

calculate the range of the object:

dp= -p forp < (4.3)
2 2

dp = p for p >
2 2

= dp -sw

pw

r dw-f
dx

For a vertical orientation, substitute ph for pw, and sh for sw.

Rounding error may occur in this case since pixels are integer values. We can

determine the error in distance by calculating the distance if the pixel was incremented by

one-half and decremented by one-half.
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r min = dw-f -pw
(dp +0.5) -sw

r max = dw-f pw
(dp-0.5)-sw

(r - r min) + (r max- r) (44)error =(4)
2

4.2 Laser Spot Size and Intensity

The next step is to determine the spot size of a laser spot at a distance r. Let 0 be

the full-angle beam divergence, di be the initial diameter of the beam (at distance 0). The

beam diameter is defined to be the distance across the center of the beam for which the

irradiance equals l1e 2 of the maximum irradiance. The spot size is then half this

distance. This spot size, o, is calculated as:

d'= r .6 +di

d' = r-6 +di

2 2

We approximate the spot size to a circle and in order to simplify calculations, we

do not consider elliptical spots that will occur when approaching a surface at an angle.

The intensity of a point a distance r from the center of a laser spot is defined by

Equation 4.6.

- 2r 2

I(r) = 10 -e 0 2( = spot size (4.6)

The maximum intensity level, 10 can be determined empirically.
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The brightness of a pixel inside a simulated laser spot is proportional to the

intensity of the corresponding point within the real laser spot. To determine the value, ip,

of a pixel inside a simulated laser spot:

ip I(r) n

ipmax I n

-2r 2

Inorm e 2

ip = I * -Pmax (4.7)

To find the center of a laser spot, we can use the centroid calculation. As given

above, the center of a laser spot is more intense than the edges. Therefore, pixels with

higher values are more likely to be towards the center of a laser spot. To determine the

center, then, one needs to weight each pixel position by its intensity, and compute the

weighted average.

-Xl'ip

Center = (4.8)
ijp1

4.3 Shape Determination

We now address the problem of determining the shape of the object. We assume

that the shape of the object can be described by a polynomial, y(x) = a, + a2x +a3x + .

+a,+,xM. This polynomial is a linear combination of equations:

f(x) = E ak . xk
k=1

To determine the shape of our object, we need to find the parameters aj for j=1 to

m + 1. However, we cannot expect that our ranges will fit the polynomial given by the
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parameters aj perfectly. Therefore, we need to define a figure-of-merit function. We can

use the least squares method as a measure of "fit" between the range, y(x), and the

positions of the lasers, x. Let oi be the variance of the value y, For simulation purposes, a

is set to the round off errors calculated in Equation 4.4.

n Yi -IE a -x xk

=1 Jx2k= J (4.9)

The best fit, therefore, will occur when the function is minimized, i.e. when the

derivative of X 2 equals zero.

N m

0 = 2 Y1 -Eax -x fork= 1...m (4.10)
i=1 Ci j=1

This equation is commonly referred to as the Normal equation of the least-squares

problem [12]. We can use the Normal equations to find the parameters of our polynomial.

We choose the Gauss-Jordan elimination method to solve this set of linear equations.

The measure of confidence in our derived polynomial can be determined using the chi-

square function. For the chi-square test, the number of degrees of freedom equal the

number of lasers -1.

5 Implementation

Our implementation consists of four major components: software control, image

processing, software simulation, and hardware implementation. A software simulation

was developed to simulate the image captured by the camera, as well as the spots created

on an obstacles by the lasers. Therefore, this simulation can be used to verify correct

functionality of range determination without the problems associated with hardware
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inconsistencies. A software simulation can also be used to test various hardware

configurations. Thus, the configuration that yields the best results can be implemented in

hardware.

5.1 Equipment

The development environment chosen was Microsoft Visual C++, since it

provides a software development kit for video input devices as well as various functions

to paint to the screen. The computer used was a 500 MHz Pentium II processor, with 128

MB RAM. The operating system was Windows 2000.

5.2 Software Implementation

The software implementation is divided into three different categories: main

control, distance calculation, and image processing.

The main control is the central commander that initiates and directs image capture

and distance calculation.

The distance calculation unit is responsible for calculating spot size, calculating

threshold, pixel-to-real world value conversion, determining pixel positions given

distance, calculating range given pixel positions, and determining shape.

The image processing unit is responsible for capturing an image to a buffer,

displaying images to the screen, image subtraction, point extraction, pixel filtration, and

drawing simulated points to the screen.

5.2.1 Main Control

The main control of our system is responsible for initialization, determining when

to enable and disable lasers, selecting which lasers to pulse, deciding when to capture an

image, detection of missing points, and handling of any errors in the subsystems. In
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simulation mode, the main control is also responsible for reading user input, such as

specifications, and setting simulation variables.

5.2.1.1 Initialization

Initialization in the main control consists of registering and creating the image

capture window. This requires creating a double buffer to store the image of a scene with

lasers enabled and a scene with lasers disabled. For non-simulation operation, we must

also connect to the frame grabber board, handshake with the card, and retrieve properties

of the card, link the output buffer of the card to our double buffer, as well as define

settings for the mode of operation of the card, e.g. image resolution, frame rate, and color.

In addition, for stand-alone simulation (where the user defines distances and shape

rather than a simulated environment) the user dialog needs to be created and default

settings for input fields should be defined.

5.2.1.2 Main Calling Block

Next is the main calling block of the program. The flowchart for our main

function is shown in Figure 17.

We first assume that all lasers are finding target points on the obstacle at readable

distances. Therefore, Main Control enables all lasers and captures the scene into the

primary buffer. Main Control then directs the image processing unit to display this

primary buffer. The next step requires disabling all lasers and capturing this scene into

the secondary buffer. Again, we call the image processor for displaying the second scene.

With the two buffers defined, the image processor is then called to perform image

subtraction, pixel extraction, and pixel filtration. After the final pixel positions are

determined, the image processor calls the distance calculator to estimate range and shape.
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Figure 17 Flowchart for Main Control
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If both horizontal and vertical orientations are chosen, then the distances corresponding to

the horizontal axis and the vertical axis are computed separately, and then weighted by

their corresponding resolutions, and averaged. The shape of the object horizontally is

determined independently of the vertical shape, and both pieces of information are

provided. These values are returned to the main control with a status message. If the

status message indicates successful distance determination, the distance and shape

calculated is displayed, and the process is repeated. If the distance calculator fails to

determine distance, it will immediately exit with an error and return the last orientation

considered as well as any distances successfully measured. This range is stored into a

variable hdist, which has been initialized to zero at the start of every cycle of distance

determination. If no points were collected, hjdist is set to -1. If only a few points were

resolved, Main control must then enter Alternative Capture mode. In this mode, each

laser is fired sequentially rather than simultaneously, and distance measurements are also

computed individually.

After each laser is fired, only one spot should appear after image subtraction,

point extraction, and pixel filtration. After the distance calculator determines the distance

corresponding to this point, main control stores the pair (the position of the current

enabled laser and distance calculated) in a list.

Assume that the system failed to extract enough points and that the last orientation

considered by the distance calculator is horizontal. During the sweeping of the horizontal

lasers, a list of points resulting from each laser is updated. Upon completion, the distance

calculator is called again with this new set of coordinates. The distance calculator can
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determine the shape from these points, as well as extrapolate the closest point of the

object to the robot. This value is stored into hdist.

If the vertical orientation is not chosen, then the distance hdist is final. If hdist

is less than zero, then an error message will be returned. Since the next set of points may

all be successfully acquired, we reset the system to the original configuration with all

lasers being enabled and exit the Alternative Capture mode. The process is then repeated.

If the vertical orientation is chosen, we sweep the vertical lasers, and compute

distance and shape in a similar manner to the horizontal-only configuration. If no points

from the vertical lasers are recovered, h-dist can be used as the final range estimation. If

h_dist is undefined, then the system failed to retrieve distance and shape, and an error

message is returned. If range calculation for the vertical orientation was successful, then

both distance measurements can be averaged to better estimate distance.

One can conclude that the worst case scenario of range calculation in terms of

time would be a horizontal and vertical enabled orientation, where only some points from

the horizontal lasers and some points from the vertical lasers can be extracted. The best

case scenario in terms of time would be a one-orientation system where no points are

extracted. The best case scenario in terms of results would be a two-orientation system

where all points are successfully extracted.

5.2.2 Distance Calculation

The next unit is the distance calculator. As stated before, the distance calculator is

responsible for calculating spot size, calculating threshold, conversion, computing pixel

positions given distance, determining distance given pixel positions, and approximating

shape.
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5.2.2.1 Distance to Pixel Conversion

One function of the distance calculator is to compute pixel values corresponding

to given distance values. Given the current laser being considered, and the number of

lasers in the system, the distance calculator uses Equation 4.2 to determine the center of

the simulated laser spot in the image array.

To perform the opposite function, converting distances to pixels, an analogous

method is followed.

5.2.2.2 Spot Size Calculation

The calculation of spot size is straightforward. Given distance, Equation 4.5 is

used to compute spot size. Equation 4.6 yields spot intensity given spot size and distance

from the center of the spot.

5.2.2.3 Shape Estimation

After the corresponding range for each pixel point is computed, they should be

delivered to the shape estimator. The shape estimator attempts to determine whether the

object has one of three different surfaces: flat perpendicular, flat angled, or round. Based

on these shapes, the shape estimator will also return what it deems to be the closest

distance to the obstacle. The first step it performs is to send the distance values, and the

corresponding laser positions to the best-fit function. The best fit function requires,

among other things, the estimated degree of the polynomial. In order to first determine

whether the object is flat, it will test with a degree of one. (The polynomial will thus be a

linear equation, y(x) = a, + a2 x). The best-fit function will return with a list of

coefficients for the polynomial that best describes the object. If the chi-square that it

returns is reasonable, then the object surface is determined to be flat. The coefficient a2
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corresponds to the incline of the object. If it is zero or close to zero, then the object is

orthogonal to the vehicle's direction. The range is stored in the coefficient a,.

If a2 is not close to zero, then the object has an inclined surface. The slope of the

incline is stored in a2. Determining the minimum distance is relatively easy. Basically,

the closest point of the obstacle will be near one of the edges (left or right for horizontal,

top or bottom for vertical). Therefore, applying the function for the outermost laser

positions will yield the farthest and closest distances to the target.

If the chi-square is not reasonable, the estimator will attempt to fit the object to a

curve. The maximum degree of this curve is the number of lasers. Naturally, the best fit

curve corresponds to a polynomial with the highest number of degrees. Therefore, our

function will always return a polynomial with the maximum degree allowed. To ensure

that the best-fit function checks lower-degreed curves first, we upper bound the

polynomial to two degrees, and then increment this limit until a satisfactory fit is

returned. To determine the closest point of the resulting curve, we use the polynomial

returned by the best-fit function to calculate the distance to the object from each point

across the front of the vehicle. We then return the minimum distance in this set as our

closest range to the obstacle.

minimum distance = min (f(x) for x=0, 0.1, 0.2, ... , width of vehicle)

Because the vehicle is small, the number of points to consider is few. Therefore,

using brute-force should be faster than attempting to calculate the derivative of the

function.

Theoretically, we should always achieve a perfect fit with a polynomial whose

degree is equal to the number of lasers. However, it is possible that the closest point
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returned by the polynomial is "behind" the vehicle, i.e., the minimum of the function is

less than zero. In that case, we may conclude that the shape of the object cannot be

determined. Therefore, the minimum value of the distances given is returned, without a

determined shape.

5.2.3 Image Processing

The image processing subsystem is responsible for capturing an image to a buffer,

displaying images to the screen, image subtraction, point extraction, pixel filtration, and

drawing simulated points to the screen.

5.2.3.1 Information Storage

The image processing unit (IPU) contains the storage unit for image points.

Therefore, main control calls the IPU rather than directly calling the distance calculator to

determine distance and shape. This prevents unneeded structure and data passing.

5.2.3.2 Image Display

Image capture will occur when main control notifies the image processing unit to

display an image. If a simulation is running, the IPU will produce a scene illuminated by

lasers, or draw a scene with lasers switched off. Otherwise, the image captured by the

camera will be displayed.

5.2.3.2.1 Image Simulation

If a simulation is running, then a line of spots must be created. The distance

values that these spots map to can be defined in two ways. First, an external independent

simulation may provide these distances. Second, the user may input the desired type of

surface and minimum distance to the target. In the latter case, the IPU must call a
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procedure to create a list of distance values based on the surface type and minimum

range.

Once these distances are defined, the distance calculator is called to convert them

to a list of pixel coordinates. These coordinates represent the centers of the laser spots to

be drawn.

To create a simulated laser spot centered at pixel (x, y), the IPU first retrieves the

simulated spot diameter, d, from the distance calculator. The simulated spot can be

described by a d x d grid of pixels. The top, left corner of this square lies at (x-d/2, y-d/2)

and the bottom, right coordinate of this square is (x+d/2, y+d/2). Therefore, to paint the

spot, the IPU increments through each pixel in this square, and computes the distance

from this pixel to the center (x, y). This will yield the radius r at which the pixel lies.

Given r, the resulting value of the current pixel can be computed using Equation 4.7.

Any pixel with r greater than d/2 will be ignored.

5.2.3.2.2 Video Capture

If a simulation is not occurring, we will receive images from the camera. A

callback function is executed each time a message is sent from the frame grabber board

indicating that a full image has been captured by the video camera. During each callback,

we copy the image in the video buffer to a storage buffer. Main control manages the rate

of video capture such that each image received alternates between a scene illuminated by

a laser(s) and a non-illuminated scene. Image subtraction between the current video

buffer and the storage buffer can be performed to isolate the laser spots.
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5.2.3.3 Point Extraction

After image subtraction is completed, the next step is point extraction. A pointer

is incremented through the result buffer. At each step, the data addressed by the pointer

is examined. If it is above the noise threshold (calculated by the distance calculator), the

coordinates of the pixel are added to a list. If not, the data byte is ignored. Image

extraction then returns this list of points.

5.2.3.4 Point Filtration

The list of pixels acquired needs to be further filtered to retrieve the centers of the

laser spots. These center coordinates will be the points used to compute distances. Points

corresponding to the horizontal and vertical orientations will be stored in their separate,

respective lists. Filtering requires detecting pixels along the scanlines, and if there are

groups of pixels, to determine the centers of these spots. The filtering function examines

each point's coordinates. Any pixel extracted will be pigeonholed into the horizontal or

vertical set of points, based on its x,y coordinates. More specifically, if the x or y value of

the pixel lies along the vertical or horizontal scanline, respectively, these points should be

included as potential points in laser spots. Before including these points, the filter must

confirm that this point lies outside the ambiguous zone in the center of the image (see

Section 3.1). If a point is judged to be a neighbor of another point, this point should be

removed from the list of final points and placed in a temporary list of points that

corresponds to that laser spot. Once all points corresponding to this laser spot is

extracted, the centroid of these points will be calculated, and then included in the final list

of pixels from which distance will be determined. (If only the horizontal orientation was

chosen, all points which passed filtration will be put on the horizontal list. An analogous
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procedure is performed if only the vertical orientation was chosen). With this list of

pixels, distance computation and shape determination is ready to be completed.

5.2.3.5 Distance Computation

We first set our initial distance measurement to 0. If no points exist in the list of

filtered points, a status message of NOPOINTS is returned. If the horizontal orientation

is not selected, we proceed to considering the vertical case. If the horizontal orientation

is selected, we check whether there are any points in the horizontal list of distances.

If there are fewer horizontal points than horizontal lasers, we set the last

considered orientation to horizontal and return with a status message of

NOTENOUGHPOINTS. If there are enough horizontal points, we call the distance

calculator with a structure containing the horizontal pixel points, as well as other

necessary data. We save the resulting range. Next we consider the vertical axis.

If the vertical orientation is selected, we determine its corresponding distance in a

similar manner.

If both vertical and horizontal distance was successfully found, then we weight-

average these values. Specifically, we multiply the horizontal value with its resolution

and repeat the same with our vertical value. Then we sum these two values, and divide

the result by the sum of the horizontal and vertical resolutions. We then return the result

with a status message of DONE.

Horizontal and vertical shape information is actually stored in the distance

calculator. Since main control initialized an instance of the image processing unit, and

the image processing unit has an instance of the distance calculator, the main control has
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access to the distance calculator's public members, and thus has access to the horizontal

and vertical shape results.

Each time main control disables a laser, a range calculation needs to be

completed. Therefore, the IPU finds the distance measurement for the current laser, and

adds it to the list of calculated distances. The order of addition is important. Since our

model of the camera is based on a pinhole camera, points corresponding to lasers on the

left side will appear on the image on the right side, as a pinhole camera mirrors the image

horizontally. Therefore, additions occur at the head of the list rather than at the tail, as

our distance calculator expects points corresponding from the left laser first to the right

laser last.

If the current laser is the last laser being evaluated for the current orientation, the

image processing unit returns a DONE status message to main control. At this point,

main control notifies the IPU to retrieve shape and distance. The IPU then calls the

distance calculator which returns with a closest distance and shape estimation.

5.3 Environmental Simulation

The last component of our software simulation system is the environmental

simulation. This model creates a three-dimensional simulation of the environment in

which our robot will operate. Since it is important that the simulation development

environment be compatible with our previous work, WorldUp, a software package that

allows three-dimensional interactive and real-time animation, was chosen. WorldUp also

provides extensive support for integrating Visual C++ and MATLAB source files with

simulations.
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The most important output of the WorldUp simulation is the list of distances

between the lasers and the impending obstacle. Main control also notifies the simulation

package when to power the lasers. As an added option, the distance and shape

estimations may be used to direct the autonomous vehicle when to proceed.

5.3.1 Communication

In order to link Main Control with WorldUp, the code is compiled into a

dynamically linked library. From this, WorldUp gains access to all functions. However,

we need to command WorldUp to call our main control.

In order to accomplish this task, we have WorldUp create a new custom object. If

we add this object to our simulation, each time a frame is rendered, the object will

execute its callback procedure. In this callback function we can plant calls to our

routines. This object may also be an intermediary for messages. Specifically, it can hold

the values for distance variables. After the simulation finds distances to the target, it can

store the values in the custom object. Because the custom object has access to the main

control, it can pass this data to any routine.

Also, because the object has access to the simulation environment, it has access to

the laser models. Therefore, it can enable and disable the lasers pursuant to the output

from Main Control.

5.4 Hardware

Our hardware components were selected to be as inexpensive and as widely

available as possible to make for a very realistic and cost-effective solution. The main

components of our hardware, besides the computer, are the following: laser diode
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modules, CCD digital camera, narrow-band pass interference filter, frame grabber video

card, and digital 1/0 board.

5.4.1 Lasers

The laser diode modules selected are developed by Quarton, Inc. model number

650-002LPA/LPT. These modules were selected based on their size, power

requirements, power output, cost, and availability. In addition, these sensors were

selected to be of similar or better value than the sensors discussed in Section 1.1. These

modules feature a variable resistor for output power adjustment. The power output of the

laser is less than 3 mW, therefore classifying the laser as a class IlIa type laser, which

may cause eye injury under specific conditions. As the output power of the laser can be

adjusted, this laser can be operated under 1mW. This would classify the laser as a class II

type laser, which is not considered to be an optically dangerous device unless the

observer's eye is subjected to an extended period of time in direct line of the beam. The

voltage requirement of this laser is between 2.7 to 5V, the operating current is about 40

mA, the wavelength of the laser is between 645 and 665 nm, and the beam divergence is

1.6mrad. The diameter of the housing module is 10.52 mm, with a length of 27.6 mm

discounting the leads. The modules cost about $35 each.

5.4.2 Camera

The digital camera selected is a Ganz EMH200 Series 1/3" monochrome camera.

We selected a monochrome camera rather than a color camera since we will be using a

color filter to reject any other wavelengths. A monochrome camera would be more

sensitive to grayscale and thus more accurate for our application. Monochrome cameras

tend to provide greater contrast and a better signal-to-noise ratio than similarly priced
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color cameras. The digital camera has an imaging area of 4.8 mm by 3.6 mm and a pixel

array of 768 pixels wide and 492 pixels tall. The focal length of the camera is 3.8 mm

and the field of view is 71.5' (horizontal). The scanning frequency is 30 frames per

second, and the signal to noise ratio is 45 dB. The minimum illumination is 0.6 lux . The

electronic shutter speed is 1/60 to 1/80,000. It requires a 9 V power source that provides

20 mA of current. The cost of the camera is about $200.

5.4.3 Filter

The Edmund Optics narrow-band pass color filter used has a central wavelength

of 650.0 nm and a 0.950" diameter. The full width-half maximum is 11.4 nm. The cost

of the filter is about $65. Filters with smaller diameter are less expensive but were not

available at this time.

5.4.4 Frame Grabber

The frame grabber board chosen was Hauppage's WinTV-dbx Model 401. This

board is actually designed for receiving broadcast TV, but also features video, image, and

frame capture as well. We chose this board because of its low cost and ease of use. Its

card format is a PCI card. Video can be captured at 30 frames per second when using a

resolution of 320x240. It can capture a 24-bit image using 4:2:2 digitizing . It can

support an image size of up to 640x480 for NTSC video sources and 758x576 for PAL.

The cost of this card was $85.

5.4.5 Input/Output

We decided to use a digital I/O board because it was much simpler than

constructing a circuit to convert the output from our system (via a RS232 port) to TTL

levels. The digital I/O board also takes care of noise reduction. The digital 1/0 board is
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the PC-DIO-96 manufactured by National Instruments. This board fits a PCI slot and

features 96 lines (5 V/TTL) static 1/0 in 8-bit ports. The board allows both unidirectional

and bi-directional communication. The connection runs through an industry standard 50-

pin connection. The cost is about $300.

6 Testing

Our testing phase was divided into two portions, software and hardware. The

software testing phase included both testing of functionality, as well as testing the

efficiency and accuracy of our system under simulation. Since the camera has a finite

resolution, the accuracy of our system cannot reach 100%. Therefore, our simulation,

which functions in ideal conditions, can determine the maximum accuracy with which

our system can estimate range and shape. The hardware testing measured the precision

and accuracy of our system in real-world situations not accounted for by our simulation,

primarily time delays and environmental effects.

6.1 Software

6.1.1 Stand-Alone Simulation

In the stand-alone simulation, the user defines the environment in which the

vehicle operates. The options available are: minimum distance to obstacle, distance

between lasers, frame rate, number of lasers, and shape. For shape, the possibilities were

flat perpendicular, angled, and round. If an angled incline was chosen, the desired angle

must be specified. If the round option was chosen, the degree of the polynomial and the

coefficients of the polynomial must be selected. One may also select one or two

orientations. If two orientations are selected, the distance between lasers, number of
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lasers, and shape of one orientation may be independent of the second orientation. The

minimum distance to the target is not independent.

If we are not running a stand-alone simulation, simulated distance values will be

retrieved from a virtual environment.

6.1.2 Virtual Environment

Our three-dimensional simulation environment consisted of a small vehicle

equipped with four lasers and a camera if only one orientation was used, or eight lasers

and a camera if two orientations were selected. The vehicle was sized to be very small -

the dimensions of the base of the vehicle were 240 mm long, 120 mm wide, and 30 mm

deep. The centers of the wheels coincided with the centers of the side of the base. The

wheels had a radius of 60 mm and a width of 30 mm. Therefore, the total dimensions of

our vehicle was 240 mm long, 180 mm wide, and 120 mm deep.

Two simulation environments were created. One environment consisted of a flat

terrain with four walls, and three obstacles. The obstacles consisted of a large cube, an

angled rectangular prism, and a cylinder. The cube measured 200 mm x 200 mm x

200mm. The angled rectangular prism is 1000 mm x 200 mm x 200 mm and tilted at an

angle of 30' to the path of the vehicle. The cylinder had a radius of 200 mm and a height

of 200 mm. The centers of each obstacle was placed at a distance of 6000 mm from the

object. For vertically oriented lasers, an extra block was added at a vertical incline of

30'. This environment tested the vehicle's ability to recognize shape as well as its ability

to determine distance and shape when hitting the edges of these objects. The second

environment simulated a real-world office space and contained everyday obstacles such

as chairs, tables, shelves and walls. The chairs and tables contain legs which test the
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vehicle's ability to maneuver in a thin-pole scenario. The office environment was also

used for a simulation of a vehicle using ultrasonic sensors, so comparisons can be made

between the two as well.

Figure 18 Simulation - Simple Environment with three obstacles

Figure 19 Simulation - Lab Environment
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To detect the minimum distance between a laser module and an obstacle, a motion

vector was created originating from the base of the laser module, and rotated to the

current rotation of the vehicle. The distance between the origin of this vector and the

closest intersection of this vector with any other polygon, if any, is returned. If no

obstacle is detected, the distance is set to the maximum length of the environment. The

reason behind originating this vector at the base rather than the center of the module is

due to the fact that this space is being occupied by the laser beam itself, which is modeled

as a long thin cylinder. If we were to position the vector in the center, the first obstacle it

would detect would be the laser beam, which would result in a distance of zero.

This distance detection scheme is repeated for each module and stored in the

custom object described in Section 5.3.1. A script was written and attached to our vehicle

such that this cycle is repeated at each rendering. In addition, the values of these distances

are displayed in the simulation's development window, as well as written to a file for

accuracy analysis later.

6.1.3 Tests To Perform

For each orientation, nine tests need to be executed. For each shape (flat

perpendicular, flat inclined, and round) the following conditions need to be tested: no

points observed, some points observed, and all points observed. In addition, testing needs

to be performed at the minimum detectable distance to the maximum detectable distance,

and at angles ranging from 0' to 90'. Two-degree, three-degree, and four-degree curves

also need to be tested, as well as combinations of both horizontal and vertical

orientations.
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6.2 Hardware

In terms of hardware, the most questionable element of our system is the intensity

of ambient light in the environment. It is difficult to simulate the effects of shadows as

we approach obstacles or pass by objects in the scene, as well as the effect that ambient

light will have on the visibility of the laser spot. Therefore, hardware testing will be of

utmost value in this respect.

In addition, it is difficult to estimate in simulation where a light beam will hit the

sensor array, as photons of one beam may strike two adjacent pixels.

An interesting case related to the laser spot size is that at longer distances, the

calculated spot size is less than one pixel. The beam diameter is described by Equation

4.5. In our case, the initial diameter of our laser is 1.5 mm. The divergence is 1.6 mrad.

To determine the distance at which the spot's diameter falls less than a pixel:

1 pixel x
640 pixels 4.8

x = 0.0075

Plugging in these values to equation 4.2 and 4.5:

0.0075 1.5 +1.6 -10-3 -d
3.8 d

d = 3166.67 mm

Therefore, we should closely examine spot size at distances over 3100 mm. It is

possible that these points may not even register on the sensor array.

Also, we would like to test the signal-to-noise ratio of our system, and especially

measure the improvements when using a color filter. In addition, we would like to

identify any loss of important information that is associated with the color filter.
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Finally, we would like to analyze the ability of our system to accurately detect

shape as well as the minimum distance required to the target to detect shape.

7 Results

7.1 Simulation Testing

Figure 20 presents a screen capture of the image plane simulation during laser

illumination of the scene. The system used both the horizontal set and vertical set of four

lasers each. The spacing between the lasers were 30 mm, symmetric about the camera.

Figure 20 Screen Snapshot of Camera View Simulation
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The first test performed tested the accuracy of distance measurement on approach

to a flat, orthogonal surface using horizontally oriented lasers.
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Figure 21 Distance Measurement Error for a Flat, Orthogonal Surface - Horizontal
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Figure 22 Distance Measurement Error for a Flat, Orthogonal Surface - Close Range

The maximum distance that the system can resolve is 12.6 m. However, the

accuracy at that range is very poor. We analyzed distances between 45 mm, which is the

range at which at least one point can be detected, to 5 m. The accuracy of the system at 5

m is within ± 0.05. At closer ranges, under 1.5 m, the accuracy is within ± 0.01. Under

1 m, the accuracy is within ±0.005.

The reason for the oscillations evident in the error plot is due to the fact that a

certain range of distances will fall into one pixel. However, when calculating the distance

using that pixel value, only one distance (say, dist_final) will be returned. Therefore, the
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entire range of distance will map into distfinal. If the vehicle happens to be distfinal

away from the target, then the error in measurement will be zero. If the vehicle happens

to be at the extreme end of the range of distances that will correspond to that pixel, a high

error will be returned.

The relatively high error at 45 mm can be explained by the fact that the vehicle is

so close to the object that only one point is detected. The lack of information contributes

to the decline in accuracy.

The same test was computed for vertically oriented lasers. The error is slightly

higher, due to the decrease in pixel resolution in the vertical axis (480 pixels versus 640

pixels for horizontal).

The flat, orthogonal test was also applied to a system using both horizontally and

vertically oriented lasers. The result is an accuracy that falls between the vertical-only

results and horizontal-only results. The horizontally oriented lasers improve the accuracy

rate of vertical distance measurements, however, the inclusion of the vertical distance

measurements degrade the overall weighted-average distance calculation.

The next test conducted was applied to flat, inclined surfaces. The range tested

started at 45 mm and ended at 5 m, and tested angles of 30' and 60'.

As seen in Figure 23, the distance error measurements for an angled surface are

slightly higher than those for a flat, orthogonal surface. However, this is expected, since

angled surfaces include points at farther distances as well as close distances, and

resolving these ranges is more complicated than with flat surfaces. Therefore, surfaces

that are more angled yield less accurate results.
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Figure 23 Distance Measurement Error for a Flat, Inclined Surface - Horizontal

The angle measurement error was also calculated.
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Figure 24 Angle Measurement Error for a Flat, Inclined Surface - Horizontal

As seen in Figure 24, measuring higher degree angles yields more accurate

results. This is due to the fact that larger angles are easier to detect than flatter surfaces.

Correct detection of angle and shape starts to decline around 1500 mm for 30'

angled surfaces. Angle measurement error is about ± 0.05 under 1 m. As expected, at far

distances, the system will perceive targets as flat orthogonal surfaces. For 600 angled

surfaces, shape and angle estimation degrades at around 2500 mm.

An identical set of angled tests were performed for vertically oriented lasers. As

expected, the error measurements are slightly higher due to the decreased resolution in

the vertical plane. However, accuracy is still high at close ranges.
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Next, tests for round surfaces were run.

We first tested an obstacle described by a 2nd degree polynomial. The equation for

this polynomial was y(x) = 0.02 x2.

We tested the system at horizontal shifts of 0 mm and 60 mm.
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Figure 25 Shape of 2-degree Round Obstacle (shifted by 60 mm)
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Figure 26 Distance Measurement Error for a Round Surface 2 degree

The maximum error for a non-shifted object was ±0.05. Between 100 and 900

mm, where all points were detected, the maximum error was 0.002, which is quite low for

a round surface. Shape estimation declined after 900 mm. Between 45 mm and 100 mm,

only some points were extracted, therefore, the degree of the polynomial was incorrectly

determined.

The polynomial for a 3rd degree curved obstacle was y(x) = 0.0003 x'. The

obstacle was also shifted by 60 mm as well.
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Figure 27 Shape of 3rd Degree Round Obstacle (shifted by 60 mm)
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Figure 28 Distance Measurement Error for Round Surface 3 degree

The maximum error rate between 100 and 5000 mm is around ±0.05. Again, the

high error between 40 and 100 mm is due to missing points that fall outside the field of

view of the camera. The degree of the curve was successfully found at ranges up to 600

mm. At ranges from 600 mm to 1500 mm, the system found a curve of degree 2.

The last curve tested was a 4 h degree polynomial. The equation describing this

polynomial is y(x) = -16.4 x + 0.403 x 2 - 0.003186 x3 + 0.0000073 x4.

The measurement error for this curve is less than ± 0.015 under 1500 mm. The

error increases significantly after 1500 mm. This is due to the fact that shape cannot be

estimated well at longer distances, especially for a shape that is this complicated.
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Figure 29 Shape of a 4th Degree Round Obstacle
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Figure 30 Distance Measurement Error for Round Surface 4 degree

The error at greater distances is higher than the lower-degree curves. This is

partially due to the fact that the complexity of the shape makes fitting more difficult.

The error rates for scenarios including missing points are also similar. The

maximum error is ± 0.05 from 45 mm to 5m.

7.2 Hardware Testing

7.2.1 Setup

The setup of the lasers and the camera is shown in Figures 31 and 32. Each laser is

spaced 30 mm apart (with the exception of the two center lasers, which are spaced 60 mm

apart). The plane from which the beams from the lasers originate is referred to as the

base.
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Figure 31 Setup of Lasers and Camera (Front View)

Figure 32 Setup of Lasers and Camera (Back View and Side View)

Before testing was conducted, two configuration steps were necessary. First, the

four lasers were aligned such that their beams are collinear with each other as well as

normal to the surface of the base. Second, the exact focal length of the camera was

calculated.

To calculate focal length, the base was set 500 mm away from an orthogonal

surface. An image was captured, and the resulting pixel values were examined. Using

these pixel values and Equations 4.1 and 4.2, the average focal length can be calculated.
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One issue that arose with image capture was the offset between the optical center of

the camera and the center of the image. Specifically, the image was shifted slightly

downwards and to the right. The horizontal offset was accounted for by adjusting

Equation 4.3:

dp' = dp - xoffset

The vertical offset was corrected by specifying the scanline as ph/2 + yoffset,

rather than ph/2.

An interesting result from initial tests was the effectiveness of the color filter. In

indoor environments, the color filter isolates the laser spots sufficiently to eliminate the

need for image subtraction. Therefore, image subtraction was not performed during

testing. In addition, a "visor" was placed above the lens to further block out ambient

light from overhead.

Another result from initial tests is the fact that our system was strict in determining

shape. The system often found a flat surface to be a third-degree polynomial because our

initial tolerances were too low. Therefore, we increased our tolerances.

We also experienced a problem with the lens of the camera. There was a bit of

distortion with the lens of the camera at very near distances. The results of this

distortion will be discussed in the next section.

The obstacles were located at ranges between 125 mm to 4500 mm. Due to the

horizontal offset of the image plane, we could not test at the minimum range of 45 mm

that we had predicted was possible. The maximum range was set to 4500 mm due to the

dimensions of the test room. The texture for all obstacles was plain white paper. Five

measurements were recorded for each range and shape.
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7.2.2 Tests

The first test performed measured distances to a flat perpendicular surface. The

results of this test is shown in Figure 33. (The absolute value of the error measurements

are plotted).

0.04
Mean -

-0.03 - ---- Max
- Min

0.02

01~
0 500 1000 1500 2000 2500 3000 3500 4000

Range (mm)

Figure 33 Actual Distance Measurement Error for a Flat, Orthogonal Surface

The relatively high error at ranges less than 200 mm is likely due to the distortion

of the lens. However, the average range error is less than 2.5%, and is therefore still

fairly accurate. There are numerous methods that correct for lens distortion, which may

be implemented in future work.
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Figure 34 Standard Deviation of Distance Measurements for a Flat, Orthogonal Surface

The precision of our system is rather low, as evidenced in Figure 34. A likely

reason for this outcome is the noise inherent in the camera. If noise corrupts the image,
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especially near or at the laser spots, the accuracy of the centroid calculation will be

decreased, and thus distance estimations will be affected. The maximum error rate is

reasonable, however, and thus precision does not appear to be a major issue. If needed, a

camera with a higher signal-to-noise ratio should solve this problem.

Interestingly, at 4500 mm, the distance between laser spots could not be resolved

by the camera. The system needed to individually pulse each laser to isolate each spot to

determine distance. This successfully resulted in a range estimate, with an error of about

0.035.

Situations where points were missing were also tested. The average error rates

resulting from removing one laser spot and three laser spots were less than 0.06.

Overall, the results of the flat, orthogonal test verified the results of our simulation.

The next test performed involved inclined surfaces. The absolute error rates for

range determination and angle measurement is plotted in Figures 35-38.
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Figure 35 Actual Distance Measurement Error for a Flat, Inclined Surface at 300

Relatively high error rates occur at 125 mm. The distance error is most likely due

to the angle measurement error, as the distance to an object depends on the angle returned

by the shape estimator. Again, lens distortion may have caused the inaccuracy in angle
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calculation. Since each of the four lasers provide range information that are used to

determine angle, one inaccurate measurement would significantly affect the angle

returned.
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Figure 36 Actual Distance Measurement Error for a Flat, Inclined Surface at 600
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Figure 37 Actual Angle Measurement Error for a Flat, Inclined Surface at 300
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Figure 38 Actual Angle Measurement Error for a Flat, Inclined Surface at 600
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Figure 39 Standard Deviation of Distance Measurements for a Flat, Inclined Surface
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Figure 40 Standard Deviation of Angle Measurements for a Flat, Inclined Surface

The error rates under 500 mm are higher than the rates our simulation yields.

However, this is expected, since simulation computations did not take into account the

elliptical spots that would result from directing a laser beam towards an inclined surface.

The last test performed involved a round surface. A cylinder with a diameter of

178 mm was used and was centered along the same axis as the camera. The results are

shown in Figure 41. (Absolute values are graphed).
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Figure 42 Standard Deviation of Distance Measurements for a Round Surface

The system performs reasonably well in the case of a round surface. The average

error rate does not exceed 0.05.

7.3 Discussion

The accuracy of the system is quite respectable. At long distances, the accuracy is

slightly worse than accuracies of other sensors discussed in Section 1.1. However, our

error rate is better than that of these sensors at close range, and this is most important for

a small vehicle. In addition, the minimum distance ranges for our system are closer than

can be achieved with comparable sensors. The accuracy of our system can be improved

with a higher resolution camera.

80



However, the speed of our system is not as fast as other sensors, since we are

limited by the camera's capture speed. For this system, capture rates are about 30 frames

per second.

8 Future Work

There are several improvements as well as interesting additions that can be added

to this project.

First, the system can be improved by incorporating a diagonal line of lasers to

improve resolution and field of view for the same camera. The increase in computing

power, however, should be examined.

Also, we can make this system more portable. This project required the use of a

500 MHz Pentium II processor since we were also simulating our environment and

camera output. We can remove the simulation code as well as reduce the size of the

resulting code in order to fit the software onto a microprocessor. In addition, we may use

an embedded frame grabber instead of the PCI card used for this project. The result of

these changes would allow an onboard processing unit that is lightweight and requires

little power and space.

We may also consider using a laser of a different color. Cameras tend to have

higher sensitivity readings for wavelengths in the 575 nm to 605 nm region. This would

increase our spot visibility. However, lasers generating wavelengths in this range tend to

be more expensive.

In addition, rather than firing each laser sequentially to identify missing points,

we can tag laser spots easily by using different color lasers. However, this would require

developing a filter that would accept all of the various wavelengths of the lasers while
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blocking out other wavelengths. It is possible that image subtraction alone may yield

reliable results in certain environments, eliminating the need for a specialized filter.

Using multi-colored lasers would greatly reduce the response time of our system.

Also, to better detect shape, we can employ a scanning-head laser system.

Distance can be calculated if the angle of the laser is known.
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Figure 43 Diagram for a Scanning Laser
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However, more shape information comes at the cost of mechanical stability, as

well as higher complexity in timing issues and motor control.

9 Conclusion

Overall, we have developed a small, low-cost, low power, and lightweight system

to perform obstacle detection for robot navigation using structured light. Our system's

total dimensions are 13cm x 8cm x 7cm and weighs less than 500 g. The accuracy of the
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system is greater that 95% under 5 m and can achieve an ideal minimum range of 45 mm.

The cost of the entire system (discounting the computer) is around $600. The time to

detect distance and shape in the best-case scenario is 33 ms, and in the worst case

scenario 0.13s. Our power consumption is estimated to be less than 1.85 W for a four

laser, one camera system.

In addition, the setup of our system is highly flexible and can be adjusted to the

specifications of the user. Because only one laser is needed to determine range, and we

incorporate four lasers in our design, our system is more resilient to errors. Also, our

system offers an advantage over laser rangefinders because of its high accuracy at very

close ranges. Furthermore, our system can estimate shape without the use of moving

components, which allows for a highly mechanically stable system.

Therefore, the features of our system makes it a favorable system for obstacle

detection for small autonomous vehicles.
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APPENDIX A

Main Control

// laserdistDlg.cpp : implementation file
// Main control

// D. Tran 2001

#include "stdafx.h"
#include "laserdist.h"
#include "laserdistDlg.h"
#include "nidaqex.h" // for digital/ttl i/o

// for hardware testing
#define DOHORZ 1
#define DO-VERT 0
#define NUMLASERS 4

// CLaserdistDlg message handlers

BOOL CLaserdistDlg::OnInitDialog()
{

CDialog::OnInitDialog(;

// create capture window
m_hCapWnd = thisProcess.Create(this->GetSafeHwnd(), 10,10);

// Initialize Lasers
InitLasers();

m_status.SetWindowText('Status: Idle");
m_bOn TRUE;
m_bAlt = FALSE;
m_bTest = FALSE;
return TRUE; // return TRUE unless you set the focus to a control

}

'///
// Non-simulation functions

void CLaserdistDlg::OnSingleCapture()
{

// for hardware testing - single measurement
float dist = 0.0;
char distTxt[10];
m_simSettings.ManualSetSettings(DOHORZ, DO9VERT, 0,

0, NUMLASERS, 0.0, 30.0, 0, 0, "",

0, NUMLASERS, 0.0, 30.0, 0, 0, "");
OnStartSimTest(DOHORZ, DOVERT);

capOverlay(mhCapWnd, FALSE);
thisProcess.SetLaserMode(FALSE);
OnTimerNoSubtract();
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EnableLasers(0,NUMLASERS,0);

}

void CLaserdistDlg::OnTimerNoSubtract()
{

int status;
float dist = 0.0;
char distTxt[10];
int recall 1;
if (mbAlt) {

EnableLasers(miLaserNum, NUMLASERS, 1);
thisProcess.AltCapture(miCurrOrientation, miLaserNum);

} else
EnableLasers(0, NUMLASERS, 1);

// capture image

Sleep(100);
BOOL fResult = capGrabFrame (m hCapWnd);
// display image
thisProcess.TestImageSubtract();

if (m-bAlt) { // calculate distance laser by laser
status = thisProcess.AltUpdateReadings(miCurrOrientation,

m_iLaserNum++);
if (status == DONE) {

dist = thisProcess.AltFindDistance(m-iCurrOrientation);
if ((miCurrOrientation == HORZ) && DOVERT){

// then try vertical
m_iCurrOrientation = VERT;
m rHDist = dist;
miLaserNum = 1;
m_iPaintHorz 0;
m_iPaintVert = 1;

mbAlt = FALSE;
} else { // currently vertical

if (dist < 0) {
if (m-rHDist > 0) {

// already got a distance from horizontal, use that
sprintf (distTxt, "%.2f", m-rHDist);
m_DistanceText.SetWindowText((CString) distTxt);
m_status.SetWindowText("Type of surface detected: " +

thisProcess.mdistCalc.msShape);
// reset to initial settings
miLaserNum = 1;
recall = 0;

} else {
// tried every possible way to determine distance
AfxMessageBox("Cannot determine distance", MBOK, 0);
recall = 0;

}
} else { // found distance (less points) fine

// average with m_rHDist
if (mrHDist > 0)

dist = (dist*CAPHEIGHT +
m_rHDist*CAPWIDTH)/(CAPHEIGHT+CAPWIDTH);

sprintf (distTxt, "%.2f", dist);
m iLaserNum = 1;
m_DistanceText.SetWindowText((CString) distTxt);
m_status.SetWindowText("Type of surface detected: " +

thisProcess.mdistCalc.msShape);
recall = 0;
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}
}

}
} else { // enough points found

status = thisProcess.simFindDistance(&m-iCurrOrientation, &dist);
if (status == NOPOINTS) {

if (m-rHDist > 0) {
sprintf (distTxt, "%.2f", m-rHDist);
m_DistanceText.SetWindowText((CString) distTxt);
m_status.SetWindowText("Type of surface detected: " +

thisProcess.mdistCalc.msShape);
} else {

m_DistanceText.SetWindowText("No Distance Available.");
m_status.SetWindowText("No Points Detected.");

}
recall = 0;

}
else
if (status == NOTENOUGHPOINTS) {

if (!(mrHDist > 0)) // might have previous horz dist
m_rHDist = dist;

// if mrHDist > 0, means that we have horz dist, so maintain
// current mrHDist
m_bAlt = TRUE;
miLaserNum = 1;

} else {
if (m-rHDist > 0)

dist = (dist*CAPHEIGHT +
m_rHDist*CAPWIDTH)/(CAPHEIGHT+CAPWIDTH);

sprintf (distTxt, "%.2f", dist);
m_DistanceText.SetWindowText((CString) distTxt);
m_status.SetWindowText("Type of surface detected: " +

thisProcess.mdistCalc.m-sShape);
recall = 0;

}
}

if (recall)
OnTimerNoSubtract();

}

'///
// Simulation functions

void CLaserdistDlg::OnStartSim()
{

// Start Timer
// repaints capture window every _FRAMERATE_ seconds
m_simSettings.DoModal();
m_status.SetWindowText ("Status: Simulation Running");
int framerate = (int) 1000/r_simSettings.miSimFrameRate;

// pass on horizontal laser info to CImageProcess
if (m_simSettings.m-radioCheckedH)

thisProcess.setSettings(&msimSettings.mpH);

// pass on vertical laser info to CImageProcess
if (msimSettings.m-radioCheckedV)

thisProcess.setSettings(&m-simSettings.m_pV);
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m_iPaintHorz = msimSettings.m-radioCheckedH;
miPaintVert = msimSettings.mradioCheckedV;
miCurrOrientation = msimSettings.miradioCheckedH;
m_bOn TRUE;
mbAlt = FALSE;

m_rHDist = 0.0;

SetTimer (REFRESHID, framerate, NULL);

}

void CLaserdistDlg::OnTimer(UINT nIDEvent)
{

// For software simulation
int status;
float dist = 0.0;
char distTxt[10l;
if (mbOn) { // lasers on

if (mnbAlt) {
// EnableLasers(m-iLaserNum, NUMLASERS, 1);

thisProcess.AltCapture(injCurrOrientation, miiLaserNum);
miPaintHorz = miCurrOrientation;
m_iPaintVert = !miCurrOrientation;

I else{
// EnableLasers(0, NUMLASERS, 1);

}
thisProcess.PaintSimulatedCaptureWindow(mriPaintHorz,m-iPaintVert);

mbOn FALSE;
} else { // lasers off

// EnableLasers(0,NUMLASERS,0);

thisProcess.PaintOff();
if (mRbAlt) { // calculate distance laser by laser

status = thisProcess.AltUpdateReadings(miCurrOrientation,
miLaserNum++);

if (status == DONE) {
dist = thisProcess.AltFindDistance(mjiCurrOrientation);
if ((miCurrOrientation == HORZ) &&

(msimSettings.mradioCheckedV)){
// then try vertical
miCurrOrientation = VERT;
mrHDist = dist;

miLaserNum = 1;
miPaintHorz = 0;
miPaintVert = 1;

mbAlt FALSE;
} else { // currently vertical

if (dist < 0) {
if (mirHDist > 0) {

// already got a distance from horizontal, use
// that

sprintf (distTxt, "%.2f", mirHDist);
mDistanceText.SetWindowText((CString) distTxt);
mstatus.SetWindowText("Type of surface
detected: " + thisProcess.mdistCalc.msShape);
if (mibTest) {

fprintf (m_pStream, "%f\t", mirHDist);
fprintf (m_pStream, "%% %s\n",

thisProcess.mdistCalc.msShape);
mbTestDone = TRUE;

}
// reset to initial settings
miLaserNum = 1;
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miPaintHorz = msimSettings.mradioCheckedH;
m_iPaintVert = msimSettings.mradioCheckedV;
m_bAlt = FALSE;

} else {
// tried every possible way to determine
// distance
AfxMessageBox("Cannot determine distance",

MBOK, 0);
OnStopSim();

}
} else { // found distance (less points) fine

// average with mrHDist
if (mrHDist > 0)

dist = (dist*CAPHEIGHT +
m_rHDist*CAPWIDTH)/(CAPHEIGHT+CAPWIDTH);

sprintf (distTxt, "%.2f", dist);
m_iLaserNum = 1;
m_DistanceText.SetWindowText((CString) distTxt);
m_status.SetWindowText("Type of surface detected: " +

thisProcess.mdistCalc.msShape);
// IF TESTING

if (mbTest) {
fprintf (m-pStream, "%f\t", dist);
fprintf (m-pStream, "%% %s\n",

thisProcess.mdistCalc.msShape);
m_bTestDone = TRUE;

i
m_iPaintHorz = msimSettings.mradioCheckedH;
m_iPaintVert = m_simSettings.m_radioCheckedV;
m_bAlt = FALSE;

}
}

}
} else { // enough points found

status = thisProcess.simFindDistance(&mjiCurrOrientation,
&dist);

if (status == NOPOINTS) {
if (mrHDist > 0) {

sprintf (distTxt, "%.2f", mrHDist);
m_DistanceText.SetWindowText((CString) distTxt);
m_status.SetWindowText("Type of surface detected: " +

thisProcess.mdistCalc.msShape);
// IF TESTING
if (mrbTest) {

fprintf (mpStream, "%f\t", m-rHDist);
fprintf (mpStream, "%% %s\n",

thisProcess.mdistCalc.msShape);
m_bTestDone = TRUE;

}
} else {

m_DistanceText.SetWindowText("No Distance Available.");
m_status.SetWindowText("No Points Detected.");
// IF TESTING
if (m=bTest) {

fprintf (mpStream, "%f\t", -1.0);
fprintf (m_pStream, "%% %s\n", "N/A");
m_bTestDone = TRUE;

}

m_iPaintHorz = msimSettings.mradioCheckedH;
m_iPaintVert = msimSettings.mradioCheckedV;
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}
else
if (status == NOTENOUGHPOINTS) {

if (!(mrHDist > 0)) // might have previous horz dist
m_rHDist = dist;

// if mrHDist > 0, means that we have horz dist, so
// maintain current mrHDist
m_bAlt = TRUE;
m_iLaserNum = 1;

} else {
if (m-rHDist > 0)

dist = (dist*CAPHEIGHT +
m_rHDist*CAPWIDTH)/(CAPHEIGHT+CAPWIDTH);

sprintf (distTxt, "%.2f", dist);
m_DistanceText.SetWindowText((CString) distTxt);
m_status.SetWindowText("Type of surface detected: " +

thisProcess.mdistCalc.msShape);
// IF TESTING
if (mbTest) {

fprintf (mpStream, "%f\t", dist);
fprintf (m-pStream, "%% %s\n",

thisProcess.mdistCalc.m_sShape);
m_bTestDone = TRUE;

i
m_iPaintHorz = msimSettings.mradioCheckedH;
m_iPaintVert = m_simSettings.m_radioCheckedV;

}
}
m_bOn = TRUE;

}
if (!mnbTest)
CDialog::OnTimer(nIDEvent);

}

void CLaserdistDlg::OnStopSim()
{

KillTimer(REFRESHID);
m_status.SetWindowText("Status: Simulation Stopped");

}

// Testing functions

void CLaserdistDlg::OnStartSimTest(int dojhorz, int dovert) {
// pass on horizontal laser info to CImageProcess
if (do-horz)

thisProcess.setSettings(&msimSettings.mpH);
// pass on vertical laser info to CImageProcess
if (do-vert)

thisProcess.setSettings(&msimSettings.mpV);
m_iPaintHorz = dohorz;
miPaintVert = do_vert;
m_iCurrOrientation = dohorz;
m_bOn = TRUE;
m_bAlt = FALSE;
m_rHDist = 0.0;
m_bTestDone = FALSE;

}
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/////
// Laser control functions

void CLaserdistDlg::InitLasers()
{

i16
il6
i16
il6
il6
il6
i16

iStatus = 0;
iRetVal = 0;
iDevice = 1;
iPort = 0;
iMode = 0;
iDir = 1;
iIgnoreWarning = 0;

/* Configure port as output. */
iStatus = DIGPrtConfig(iDevice, iPort, iMode, iDir);
iRetVal = NIDAQErrorHandler(iStatus, "DIGPrtConfig",

iIgnoreWarning);

void CLaserdistDlg::EnableLasers(int lasernum,
{

i16 iStatus = 0;
i16 iRetVal = 0;
i16 iDevice = 1;

i16 iPort = 0;
il6 iLine = 0;
il6 iIgnoreWarning = 0;
i32 iPattern = 0;

if (state && (laser num == 0)) {
for (int i = 0; i < max; i++)

iPattern += pow(2,i);
} else {

if (state && (lasernum 0))
iPattern += pow(2, lasernum-1);

}

int max, bool state)

iStatus = DIGOutPrt(iDevice, iPort, iPattern);
iRetVal = NIDAQErrorHandler(iStatus, "DIGOutPrt",

}

void CLaserdistDlg::calibrate()
{

float dist = 0.0, total=0.0;
char distTxt[10];
int status;
int lnum;
m_simSettings.ManualSetSettings(DOHORZ, DOVERT,

0, NUMLASERS, 0.0, 30.0, 0, 0, "",

0, NUMLASERS, 0.0, 30.0, 0, 0, "");
OnStartSimTest(DOHORZ, DOVERT);
thisProcess.SetLaserMode(FALSE);
for (lnum=l; lnum<NUMLASERS+1; lnum++)

EnableLasers(lnum,1,1);
Sleep(50);
m_iCurrOrientation = HORZ;
for (int i = 0; i<l0; i++) {

BOOL fResult = capGrabFrame(mhCapWnd);

iIgnoreWarning);

0,
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// display image
thisProcess.TestImageSubtract();
thisProcess.AltCapture (m_iCurrOrientation, 1);
thisProcess.AltCapture (miCurrOrientation, lnum);
status = thisProcess.AltUpdateReadings(miCurrOrientation,

lnum);
dist = thisProcess.AltFindDistance(mjiCurrOrientation);
if (dist < 0) {

// tried every possible way to determine distance
AfxMessageBox("Cannot determine distance", MB_OK, 0);

} else { // found distance (less points) fine
// average with mrHDist
sprintf (distTxt, "%.2f", dist);
mDistanceText.SetWindowText((CString) distTxt);
m_status.SetWindowText("Type of surface detected: " +

thisProcess.mdistCalc.msShape);
// IF TESTING
if (mbTest) {

fprintf (m-pStream, "%f\t", dist);
fprintf (m-pStream, "%% %s\n",

thisProcess.mdistCalc.msShape);
m_bTestDone = TRUE;

}
}
Sleep(10);

}
EnableLasers(0,1,0);

}
}

CBestFit Class

// BestFit.cpp: implementation of the CBestFit class.
// Functions to fit data to a polynomial
// D. Tran 2001

#include "stdafx.h"
#include "laserdist.h"
#include "BestFit.h"
#include <math.h>

// matrix functions

// from Numerical Recipes in C
float ** CBestFit::matrix(int nrl, int nrh, int ncl, int nch)
{

// Allocates a float matrix with range[nrl..nrh][ncl..nch]
int i;
float **m;

// Allocate pointers to rows
m=(float **) malloc( (unsigned) (nrh-nrl+l)*sizeof(float*));
if (!m) fprintf(stderr,"allocation failure in matrix()");
m -= nrl;

// Allocate rows and set pointers to them
for (i=nrl; i<=nrh; i++) {

m[i]=(float *)malloc ((unsigned) (nch-ncl+l)*sizeof(float));
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if (!m[i]) fprintf(stderr,"allocation failure 2 in matrix()");
m[i] -= ncl;

}

// Return pointer to array of pointers to rows
return m;

}

// from Numerical Recipes in C
float * CBestFit::vector(int nl, int nh)
{

// Allocates a float vector with range [nl..nh]
float *v;

v=(float *)malloc((unsigned) (nh-nl+l)*sizeof(float));
if (!v) fprintf(stderr,"allocation failure in vector()");
return v-nl;

}

// from Numerical Recipes in C
int * CBestFit::ivector(int nl, int nh)
{

//Allocates an int vector with range [nl..nh]
int *v;
v = (int *) malloc((unsigned) (nh-nl+l)*sizeof(int));
if (!v) fprintf (stderr, "allocation failure in ivector(");
return v-nl;

}

// from Numerical Recipes in C
void CBestFit::free_matrix(float **m, int nrl, int nrh, int ncl,

int nch)
{

// Frees a matrix allocated with matrix
int i;

for(i=nrh;i>=nrl;i--) free((char *) (m[i]+ncl));
free((char*) (m+nrl));

}

// from Numerical Recipes in C
void CBestFit::freevector(float *v, int nl, int nh)
{

// Frees a float vector allocated by vector()
free((char *) (v+nl));

}

void CBestFit::freeivector(int *v, int nl, int nh)
{

// Frees an int vector allocated by ivector()
free((char *) (v+nl));

}

// best fit functions

// from Numerical Recipes in C
void fpoly(float x, float p[], int np)
{

int j;
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p[1]=1.0;
for (j=2; j<=np; j++) p[j] = p[j-l]*x;

}

// from Numerical Recipes in C
void CBestFit::lfit(float x[], float y[], float sig[], int ndata,

float a[], int ma, int lista[], int mfit,
float **covar, float *chisq,
void (*funcs) (float, float[], int))

{

int k, kk, j, ihit, i;
float ym, wt, sum, sig2i, **beta, *afunc;
beta = matrix(l,ma,1,1);
afunc = vector (1,ma);
kk = mfit+1;
for (j=l; j<=ma; j++)

ihit = 0;
for (k=l; k<=mfit; k++)

if (lista[k]==j) ihit++;
if (ihit == 0)

lista[kk++] = j;
else

if (ihit > 1) fprintf (stderr,"Bad LISTA permutation in
LFIT-l");

if (kk != (ma+1)) fprintf(stderr, "Bad LISTA permutation in LFIT-2");
for (j=1; j<= mfit; j++) {

for (k=l; k<=mfit; k++) covar[j][k] = 0.0;
beta[j] [1]=0.0;

I
for (i=1;i<=ndata;i++) {

(*funcs) (x[i], afunc, ma);
ym = y[iI;
if (mfit < ma)

for (j=(mfit+l); j<=ma;j++)
ym - a[lista[j]*afunc[lista[j]];

sig2i=1.0/square(sig[i]);
for (j=1; j<=mfit; j++) {

wt = afunc[lista[j]]*sig2i;
for (k=1; k<=j; k++)

covar[j][k] += wt*afunc[lista[k]];
beta[j][1] += ym*wt;

}
}
if (mfit > 1)

for (j=2; j<=mfit; j++)
for (k=1; k<=j-l; k++)

covar[k][j] = covar[j][k];
gaussj(covar, mfit, beta, 1);
for (j=l; j<=mfit; j++) a[lista[j]] = beta[j][1];
*chisq=0.0;
for (i=l; i<=ndata; i++) {

(*funcs) (x[i], afunc, ma);
for (sum=0.0, j=1; j<=ma; j++) sum += a[j]*afunc[j];
*chisq += square((y[i]-sum)/sig[i]);

}
covsrt(covar, ma, lista, mfit);
freevector(afunc, 1, ma);
freematrix(beta,l,ma,1,1);
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}

// from Numerical Recipes in C
void CBestFit::covsrt(float **covar, int ma, int lista[],
{

int i,j;
float swap;

for (j=l; j<ma; j++)
for (i=j+l; i<=ma; i++) covar[i][j]=0.0;

for (i=l; i<mfit; i++)
for (j=i+l; j<=mfit; j++) {

if (lista[j] > lista[i])
covar[lista[j]][lista[i]]=covar[i][j];

else
covar[lista[i]][lista[jl]=covar[i][j];

swap = covar[l][1];
for (j=1; j<=ma; j++) {

covar[l] [j] = covar[j][j];
covar[j][j] = 0.0;

}
covar[lista[1]][lista[1]]=swap;
for (j=2;j<=mfit;j++) covar[lista[j]
for (j=2;j<=ma;j++)

for (i=l; i<=j-1; i++) covar[i][i

int mfit)

][lista[j]]=covar[1][j];

]=covar[j] [i];

I

#define SWAP(a,b) {float temp=(a); (a)=(b); (b)=temp;}

// from Numerical Recipes in C
void CBestFit::gaussj(float **a, int n,
{

int *indxc, *indxr, *ipiv;

float **b,

int i, icol, irow, j, k, 1, 11;
float big, dum, pivinv;

indxc= ivector (1,n);
indxr= ivector (1,n);
ipiv= ivector (1,n);
for(j=l;j<=n;j++) ipiv[j]=0;
for (i=1; i<=n; i++) {

big=0.0;
for(j=1; j<=n; j++)

if (ipiv[j] != 1)
for (k=l; k<=n; k++) {

if (ipiv[k] == 0) {
if (fabs(a[j][k]) >= big)

big=fabs(a[j][k]);
irow=j;
icol=k;

}
} else if

{

(ipiv[k] > 1) fprintf (stderr,"GAUSSJ: Singular
Matrix-l");

a~icol][1]);

}
++(ipiv[icol]);

if(irow != icol) {
for (1=1; l<=n; 1++) SWAP(a[irow][1],
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for (1=1; l<=m; 1++) SWAP(b[irow] [ 1] , b [icol] [1]);

indxr[i]=irow;
indxc [i] =icol;
if (a[icol][icol] == 0.0)

pivinv=1.0/a[icol][icol];
a[icol][icol]=1.0;
for (1=1;1<=n;l++) a[icol]
for (1=1;1<=m;l++) b[icol]
for (11=1; ll<=n; ll++)

if (11 != icol) f
dum=a[ll] [icol];
a[ll][icol]=0.0;
for (1=1; 1<=n; 1++)

for (1=1; l<=m; 1++)

}
}
for (1=n; 1>=1;1--) {

if (indxr[l] != indxc[1])
for (k=l; k<=n; k++)

SWAP(a[k] [indxr[1]],
}
freeivector(ipiv,l,n);
freeivector(indxr,l,n);
freeivector(indxc,l,n);

}

// calling functions

void CBestFit::getParams (int degree,
{

fit-params[0] = 0;
for (int i=1; i<degree+2; i++) {

fit params[i] = i;
}

fprintf (stderr,"GAUSSJ: Singular
Matrix-2");

[1] *= pivinv;
[1] *= pivinv;

a[ll] [11 - a[icol] [1]*dum;
b[ll][1] - b[icol][1]*dum;

a[k] [indxc[1]]);

int* fit-params)

}

void CBestFit::getCoeffs (int degree, float* coeffs)
{

coeffs[0] = 0;

for (int i=2; i<=degree; i++)
coeffs[i] = 1;

coeffs[l] = 1; // change init val?
coeffs[degree+1] = 1;

}

float CBestFit::findBestFit (CList <PointInfo, PointInfo> *points, int
degree, float *coeffs)
{

int numPoints = points->GetCount();
POSITION pos = points->GetHeadPosition();
FLOATCOORD tempCoord;

float *x-data, *y-data;
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float **covar, chisq, *sig;
int i;
// degree of polynomial shouldn't be more than the number of points
if (degree > numPoints)

degree = numPoints;
// only have the form a*x^degree + b
int *lista = (int *) malloc ((degree+2)*sizeof(int));
getParams(degree, lista);
float *a= (float *) malloc ((degree+2)*sizeof(float));
getCoeffs(degree, a);
int mfit = degree+1;
// fill in xdata and ydata
// x_data and y-data are expected to be: xdata[l..numPoints];
xdata = (float *) malloc ((numPoints+l)*sizeof(float));
y-data = (float *) malloc ((numPoints+l)*sizeof(float));
sig = (float *) malloc ((numPoints+l)*sizeof(float));
x_data[0] = 0; y-data[0] = 0; sig[O]=l;
for (i=1; i<numPoints+l; i++) {

tempCoord = points->GetAt(pos).c;
x_data[i] = tempCoord.X;
y_data[i] = tempCoord.Y;
// variance
sig[i] = ((points->GetAt(pos).err-max-ydata[i]) +

(ydata[i] - points->GetAt(pos).err-min))/2; //
sig[i]=l; // if uncertainity is unknown, sig[i]=l

points->GetNext(pos);
}
int ma = degree+1;
covar (float **) malloc((ma+l)*sizeof(float *));
for(i 0; i < ma+1; i++)

covar[i] = (float *)malloc((ma+l) * sizeof(float));
lfit(xdata, ydata, sig, numPoints, a, ma, lista, mfit, covar,

&chisq,
fpoly);

// copy resulting coeffs
if (coeffs)

for (i=0; i<degree+l; i++)
coeffs[i] = a[i+1];

}

for(i = 0; i < ma+1; i++)
free(covar[i]);

free(sig);
free(covar);
free(a);
free(lista);
free(x-data);
free(y-data);

return chisq;
}

CDistCalc Class

// DistCalc.cpp: implementation of the CDistCalc class.
// Functions to calculate distance
// D. Tran 2001
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#include "stdafx.h"
#include <math.h>

#include "laserdist.h"
#include "DistCalc.h"
#include "bestfit.h"

float square (float x) {
return x*x;

}

// functions to create lists of distances from user specifications

void CDistCalc::getSimPointsGiven(CLaserSettings *ls, CList <float,
float> *distances)
{

int numPoints = ls->miNumLasers;
float dist;
POSITION pos;
int i;
CList <float, float> distances2;

pos = distances->GetHeadPosition(;
for (i=l; i<ls->miLaserNum;i++) {

distances->GetNext(pos);
}
for (i=O; i<numPoints;i++) {

dist = distances->GetAt(pos);
distances2.AddTail(dist);
distances->GetNext(pos);

}

convertDistToPixels(&distances2, ls);
}

void CDistCalc::getSimPointsStraight(CLaserSettings *ls)
{

float dist = ls->mrDist;
int numPoints = ls->miNumLasers;
int i;
CList <float, float> distances;

for (i=0; i<numPoints;i++) {
distances.AddTail(dist);

}

convertDistToPixels(&distances, is);
}

void CDistCalc::getSimPointsIncline(CLaserSettings *ls)
{

float dist = ls->mrDist;
int numPoints = ls->m_iInitNumLasers;
float angle = ls->mrAngle;
float dw = ls->mrDW;

float real dist;
int i;
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CList <float, float> distances;

for (i=ls->miLaserNum; i<ls->mjiLaserNum+ls->m-iNumLasers; i++) {
if (i < numPoints/2+1) {

// get real distances
realdist = dist + (i-l)*dw*tan(angle);
distances.AddTail(real-dist);

}
else {

realdist = dist + i*dw*tan(angle);
distances.AddTail(real-dist);

}
}
convertDistToPixels(&distances, ls);

}

void CDistCalc::getSimPointsRound(CLaserSettings *ls)
{

// fills in distances in *points from right to left
float dist = ls->mrDist;
int numPoints = ls->m_iInitNumLasers;
float *coeffs = ls->m-pCoeffs;
int degree = ls->miDegree;
float shift = ls->mrShift;
float dw = ls->mrDW;

float realdist, x;
int i,j;
CList <float, float> distances;

for (i=ls->miLaserNum; i<ls->miLaserNum+ls->miNumLasers; i++) {
if (i < numPoints/2+1) {

// get real distances
x = (i-l)*dw;
realdist = 0.0;
// y = coeffs[0]*x^O + coeffs[l]*x^l+...coeffs[degree]*x^degree
for (j=0; j <= degree; j++)

realdist = realdist + coeffs[j]*powf(x-shift,j);
distances.AddTail(real dist);

}

else {
x = i*dw;
realdist = 0.0;
// y = coeffs[o]*x^O + coeffs[l]*x^l+...coeffs[degree]*x^degree
for (j=0; j <= degree; j++)

realdist = realdist + coeffs[j]*powf(x-shift,j);
distances.AddTail(real-dist);

}
}

convertDistToPixels(&distances, ls);

}

// conversion functions

void CDistCalc::convertDistToPixels(CList <float, float> *distances,
CLaserSettings *ls)
{
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// expects distances from left laser to right laser - therefore will
// be calculating pixels from right pixel to left pixel
float dist, d, p;
int i;
FLOATCOORD tempCoord;
CList <FLOATCOORD, FLOATCOORD> *pixels = &ls->points;
int numPoints = ls->miInitNumLasers;
int bHorizontal = ls->mbHorizontal;
float dw = ls->m-rDW;
float real dia;

POSITION pos = distances->GetHeadPosition(;

for (i=ls->miLaserNum; i<ls->miLaserNum+distances->GetCount(); i++)

if (i < numPoints/2+1) {
dist = distances->GetAt(pos);
// find the distance of this spot from the center of the array
d = FL*(numPoints/2-i+l)*dw/dist;
// now convert mm to pixels
if (bHorizontal) {

p = CAPWIDTH/2 - d*CAPWIDTH/SENSEWIDTH; // + if reversed
// add to points list

tempCoord.X = p;
tempCoord.Y = CAPHEIGHT/2;
}

else {
p = CAPHEIGHT/2 - d*CAPHEIGHT/SENSEHEIGHT;// + if reversed

// add to points list
tempCoord.X = CAPWIDTH/2;
tempCoord.Y = p;
}

pixels->AddTail(tempCoord);
// find spot size
realdia = findSpotSize(dist);
// transform to image distance
realdia = realdia*FL/dist;
// convert to pixels
ls->m-pSpotDiams.AddTail(realdia*ls->miMaxDP/ls->mrMaxDX);

distances->GetNext(pos);
} else {

dist = distances->GetAt(pos);
// find the distance of this spot from the center of the array
d = FL*(i-numPoints/2)*dw/dist;
// now convert mm to pixels
if (bHorizontal) {

p = CAPWIDTH/2 + d*CAPWIDTH/SENSEWIDTH; // - if reversed

// add to points list
tempCoord.X = p;
tempCoord.Y = CAPHEIGHT/2;

} else {
p = CAPHEIGHT/2 + d*CAPHEIGHT/SENSEHEIGHT;// - if reversed

// add to points list
tempCoord.X = CAPWIDTH/2;
tempCoord.Y = p;

}
pixels->AddTail(tempCoord);
// find spot size
realdia = findSpotSize(dist);
// transform to image distance
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realdia = realdia*FL/dist;
// convert to pixels
ls->mpSpotDiams.AddTail(real dia*ls->m-iMaxDP/ls->mrMaxDX);

distances->GetNext(pos);
}

}

}

void CDistCalc::convertPixelToDist (float *x, float *y, int numPoints,
float ppos, float dw, int laserNum, int maxDP,

float maxDX, float err)
{

float x-pos;

/* // for reversed
if (laserNum < numPoints/2+1) {

// transform pixel points to distance on CCD array
x_pos = (papos - maxDP/2 + err) * maxDX/maxDP;
// extrapolate real distance, assume evenly spaced lasers from

center
*y = FL*(numPoints/2 - laserNum+l)*dw/x-pos;
*x = (laserNum-l)*dw;

}
else {

// transform pixel points to distance on CCD array
x_pos = (maxDP/2 - p-pos + err) * maxDX/maxDP;
// extrapolate real distance, assume evenly spaced lasers from

center
*y = FL*(laserNum-numPoints/2)*dw/x-pos;
*x = laserNum*dw;

}
*/

// for non-reversed
if (laserNum < numPoints/2+1) {

// transform pixel points to distance on CCD array
x-pos = (maxDP/2 - p-pos + err) * maxDX/maxDP;
// extrapolate real distance, assume evenly spaced lasers from
// center
*y = FL*(numPoints/2 - laserNum+1)*dw/x-pos;
*x = (laserNum-l)*dw;

}
else {

// transform pixel points to distance on CCD array
x_pos = (p-pos - maxDP/2 + err) * maxDX/maxDP;
// extrapolate real distance, assume evenly spaced lasers from
// center
*y = FL*(laserNum-numPoints/2)*dw/x-pos;
*x = laserNum*dw;

}

// distance and shape estimation functions

float CDistCalc::findSpotSize(float dist)
{
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float spot_diam = dist*le-3*BEAMDIVERGENCE + INIBEAMDIAM;
return spot_diam;

}

float CDistCalc::getBestEstimate(CList<PointInfo, PointInfo> *points,
int degree, float dw, int numLasers)
{

float dist;
char angle[20 = "";
char sDegree[5] =
float *coeffs = (float *) malloc ((degree+l)*sizeof (float));
if (isIncline (points, coeffs)) {

if (fabs(coeffs[l]) <0.0001) {
m_sShape = "Flat, Perpendicular";
dist = coeffs[O];
free (coeffs);
return (dist);

}
// if incline, return closest distance
else {

m_sShape = " Incline";
sprintf(angle, "%.4f", atan(coeffs[l])*180/PI);
msShape = angle + msShape;
dist = getMinimumInclineDist(coeffs, (numLasers+1)*dw);
free (coeffs);
return dist;

}
}
int finaldegree;
if (isRound(points, degree, coeffs, &final degree)) {

m_sShape = "Round";
sprintf(sDegree, " %d", finaldegree);
m_sShape = mrsShape + sDegree;
dist = getRoundDist(points, finaldegree,coeffs, dw);
free (coeffs);
return dist;

}
free (coeffs);
m-sShape = "Unknown";
return getMinimumDist(points);

}

float CDistCalc::getDist(CLaserSettings *ls)
{

CList <FLOATCOORD, FLOATCOORD> *points = &ls->points;
CList <PointInfo, PointInfo> realPoints;
float p-pos;
float val;
int i, numPoints;
PointInfo pi;

if (points->IsEmpty)) {
AfxMessageBox ("Error, no points to calculate distance", MBOK,

0);
return 0;

}

// points in list are from order of left pixel to right pixel,
// therefore the laser's results are from right laser to left laser
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numPoints = points->GetCount();
POSITION pos = points->GetHeadPosition( );

// transform pixel points to distances
// realPoints -> Y values are distance, X values are positions of
// lasers

// for (i=numPoints; i>0; i--) // (for reversed)
for (i=l; i<numPoints+l; i++) // i corresponds to the laser number
{

ppos = (points->GetAt(pos)).X;
convertPixelToDist(&pi.c.X, &pi.c.Y, numPoints,ppos,ls->m-rDW, i,

ls->miMaxDP, ls->mrMaxDX, 0);
// provide error information for each pixel
convertPixelToDist(&val, &pi.err-max, numPoints,ppos,ls->m rDW,i,

ls->m_iMaxDP, ls->mrMaxDX, -0.5);//
convertPixelToDist(&val, &pi.err-min, numPoints,ppos,ls->m-rDW,i,

ls->miMaxDP, ls->mrMaxDX, 0.5);//
realPoints.AddTail(pi);
points->GetNext(pos);

}

return getBestEstimate(&realPoints, ls->miNumLasers, ls->m-rDW,
ls->m_iInitNumLasers);

}

bool CDistCalc::isIncline(CList <PointInfo, PointInfo> *points,
float *coeffs)

{

CBestFit bf;
float chisq;

int numPoints = points->GetCount);
chisq = bf.findBestFit(points,l, coeffs);
if (chisq < numPoints-1) // chisq should be less than #of bins-1

// if (chisq < 181) // for less strict cases, e.g. inclines
return TRUE;

else
return FALSE;

bool CDistCalc::isRound(CList <PointInfo, PointInfo> *points,
int degree, float *coeffs, int *finaldegree)

{

CBestFit bf;
float fit;

int numPoints = points->GetCount(;
for (int i=2; i<= degree; i++) {

fit = bf.findBestFit(points, i, coeffs);
if (fit < numPoints-1) { // chisq should be less than #of bins-1

*final-degree = i;
return TRUE;

}
}
return FALSE;

}
float CDistCalc::getAverageDist (CList<Pointlnfo, PointInfo> *points) {
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int i;
float total = 0.0;
int numPoints = points->GetCount();
POSITION pos points->GetHeadPosition( );

for (i=0; i< numPoints; i++)
I

total = total + points->GetAt(pos).c.Y;
points->GetNext(pos);

}

return (total/numPoints);

float CDistCalc::getMinimumDist (CList<PointInfo, PointInfo> *points) {
int i;
int numPoints = points->GetCount();
POSITION pos = points->GetHeadPosition( );

float min = points->GetAt(pos).c.Y;
points->GetNext(pos);
for (i=l; i<numPoints; i++) {

if (points->GetAt(pos).c.Y < min)
min = points->GetAt(pos).c.Y;

points->GetNext(pos);
}
return min;

}

float CDistCalc::getMinimumInclineDist (float *coeffs, float maxx) {

float min dist = coeffs[0]+coeffs[l]*max-x;
if (coeffs[0] < mindist)

return coeffs[01;
else return min-dist;

}

float CDistCalc::getRoundDist (CList<PointInfo, PointInfo> *points,
int degree, float *coeffs, float dw)

{

// use brute force to determine closest point (probably more faster
// than using some algorithm to determine point of concavity)

float real dist, min_dist;
int x, j;

mindist = 0.0;
x=0;
for (j=0; j <= degree; j++)

min dist = mindist + coeffs[j]*powf(x,j);
int spaces = points->GetCount();
for (x=l; x<spaces*dw; x++) {

// calculate distance using coeffs
realdist = 0.0;
// y = coeffs[0]*x^O + coeffs[l]*x^l+...coeffs[degree]*xAdegree
for (j=0; j <= degree; j++)

realdist = realdist + coeffs[j]*powf(x,j);
if (realdist < mindist)

mindist = realdist;
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}
return mindist;

}

ClmageProcess Class

// ImageProcess.cpp : implementation file
// Functions to analyze captured data and display images
// D. Tran 2001

#include "stdafx.h"
#include "laserdist.h"
#include "ImageProcess.h"
#include "distcalc.h"
#include <math.h>

LRESULT PASCAL vidCallbackProc(HWND hWnd, LPVIDEOHDR lpVHdr);
LRESULT PASCAL frameCallbackProc(HWND hWnd, LPVIDEOHDR lpVHdr);
LPVIDEOHDR ptrToOnBuf;
LPVIDEOHDR ptrToOffBuf;
bool gOn;

// CImageProcess

CImageProcess::CImageProcess()
{

// Initialize BITMAP for Simulation

// Fill in the BITMAPINFOHEADER
m_bmpInfo = (LPBITMAPINFO) new BYTE[sizeof(BITMAPINFOHEADER) +

sizeof(RGBQUAD)];
mbmpInfo->bmiHeader.biSize = sizeof(BITMAPINFOHEADER);
mbmpInfo->bmiHeader.biWidth = CAPWIDTH;
m_bmpInfo->bmiHeader.biHeight = CAPHEIGHT;
m_bmpInfo->bmiHeader.biPlanes = 1;
m_bmpInfo->bmiHeader.biBitCount = 24;
m_bmpInfo->bmiHeader.biCompression = 0;
m_bmpInfo->bmiHeader.biSizeImage = 3*CAPWIDTH*CAPHEIGHT;
m_bmpInfo->bmiHeader.biXPelsPerMeter = 0;
m_bmpInfo->bmiHeader.biYPelsPerMeter = 0;
mbmpInfo->bmiHeader.biClrUsed = 0;
mbmpInfo->bmiHeader.biClrImportant = 0;

// Fill in color information for the bitmap
m_bmpInfo->bmiColors[0].rgbBlue = 255;
m_bmpInfo->bmiColors[0].rgbGreen = 255;
m_bmpInfo->bmiColors[0].rgbRed = 255;
mibmpInfo->bmiColors[0].rgbReserved = 0;

milpVHdr = (videohdrtag *) malloc (sizeof (videohdr-tag));
milpVHdr->lpData = (unsigned char *) malloc

(3*CAPWIDTH*CAPHEIGHT*sizeof (unsigned char));
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milpOnBuffer = (videohdrtag *) malloc (sizeof (videohdrtag));
mrlpOnBuffer->lpData = (unsigned char *) malloc

(3*CAPWIDTH*CAPHEIGHT*sizeof (unsigned char));

rlpOffBuffer = (videohdr tag *) malloc (sizeof (videohdrtag));
m-lpOffBuffer->lpData = (unsigned char *) malloc

(3*CAPWIDTH*CAPHEIGHT*sizeof (unsigned char));

// set globals
ptrToOnBuf = mlpOnBuffer;
ptrToOffBuf = mlpOffBuffer;
gOn = TRUE;

}

CImageProcess::-CImageProcess()
{

delete rbmpInfo;
free (mlpVHdr->lpData);

free (mnpVHdr);
free (mlpOnBuffer->lpData);
free (mlpOnBuffer);
free (mlpOffBuffer->lpData);
free (r_lpOffBuffer);

}

/////
// CImageProcess message handlers
// create unvisible child window at (x,y)
HWND CImageProcess::Create(

HWND hwndParent,
int x,
int y

static BOOL bInitDone = FALSE;
// Create a capture window
m_hWndCap = capCreateCaptureWindow(

NULL,

WSCHILD I WSVISIBLE,

x, y, 640, 480,
hwndParent, //
1 //

parent window
child window id

if (m-hWndCap == NULL) {
return(NULL);

}
BOOL bError = capDriverConnect(mhWndCap, 0);

if (!bError)
AfxMessageBox ("Can't connect to capture driver", MBOK,

CAPDRIVERCAPS gCapDriverCaps;
CAPSTATUS gCapStatus;

// Get the capabilities of the capture driver
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capDriverGetCaps(mjhWndCap, &gCapDriverCaps, sizeof(CAPDRIVERCAPS));

// Get the settings for the capture window
capGetStatus(mhWndCap, &gCapStatus , sizeof(gCapStatus));

// initialize capture
if (!capDlgVideoFormat(m-hWndCap))

AfxMessageBox("Can't Set Video Format", MBOK, 0);

capSetCallbackOnFrame(rhWndCap, frameCallbackProc);

return(m~hWndCap);

LRESULT PASCAL frameCallbackProc(HWND hWnd, LPVIDEOHDR lpVHdr)

{

// copy to buffer
if (gOn)

memcpy (ptrToOnBuf->lpData, lpVHdr->lpData, CAPWIDTH*CAPHEIGHT*3);
else {

memcpy (ptrToOffBuf->lpData, lpVHdr->lpData,
CAPWIDTH*CAPHEIGHT*3);

}

return 0;
}

int CImageProcess::Round (float val) // also included in distcalc.cpp
{

if (val < 0)
return ((int) (val-0.5));

else return (int) (val+0.5);
I

float CImageProcess::square (float x) {
return x*x;

}

/////
// structure functions

void CImageProcess::setSettings(CLaserSettings *ls)
{

if (ls->m_bHorizontal) {
m_pHorzDraw.Copy(ls);
m_pHorz.CopyBasics(ls);

}
if (!ls->mbHorizontal) {

mpVertDraw.Copy(ls);
m_pVert.CopyBasics(ls);

}
}

void CImageProcess::SetLaserMode(bool on)
{

gOn = on;
}
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void CImageProcess::AltCapture (int orientation, int laserNum)
{

CLaserSettings *ls, *ls2;
if (orientation == HORZ) {

is = &mnpHorzDraw;
1s2 = &m_pHorz;

}
else {

is = &m-pVertDraw;
1s2 = &mpVert;

}

if (laserNum == 1) { // initialize alternate capturing
ls->m_iInitNumLasers =ls->miNumLasers;
ls->miNumLasers = 1;
if (!ls2->realPoints.IsEmpty()

1s2->realPoints.RemoveAll();
}
if (ls->points.GetCount() > 0)

ls->points.RemoveAll();
if (ls->mpSpotDiams.GetCount() > 0)

ls->m-pSpotDiams.RemoveAll();

ls->m iLaserNum = laserNum;
}

int CImageProcess::AltUpdateReadings(int orientation, int laserNum)
CLaserSettings *ls, *lsDraw;
int status;
float val, p-pos;
PointInfo pi;

if (orientation == HORZ) {
is = &mpHorz;
isDraw = &mpHorzDraw;

} else {
is = &m-pVert;
lsDraw = &m-pVertDraw;

}
// for calibration recording
FILE *stream = fopen("fl_calib.dat", "a+");
extractPoints();
if (filterPoints() -1) {

// similar to CDistCalc::getDist
// add realPoints to ls
// add new point
POSITION pos = ls->points.GetHeadPosition();
p-pos = ls->points.GetAt(pos).X;
fprintf(stream, "%f\t", ppos); // for calibration recording
fclose(stream); // for calibration recording

m_distCalc.convertPixelToDist(&pi.c.X, &pi.c.Y, ls->miNumLasers,
p-pos,ls->mrDW,laserNum,
ls->miMaxDP, ls->mrMaxDX, 0);

// provide error information for each pixel
m_distCalc.convertPixelToDist(&val, &pi.err max, ls->miNumLasers,

p-pos, ls->mrDW, laserNum,
ls->mJiMaxDP, ls->mrMaxDX, -0.5);

m_distCalc.convertPixelToDist(&val, &pi.err min, ls->miNumLasers,
p-pos,ls->mrDW,laserNum,
ls->miMaxDP, ls->mrMaxDX, 0.5);

ls->realPoints.AddHead(pi);
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ls->points.RemoveAll();
status = 0;

} else
status = -1;

if (laserNum ls->miNumLasers) {
ls->miLaserNum = 1; // reset to initial value
ls->miNumLasers = ls->m_iInitNumLasers;
lsDraw->miLaserNum = 1;
lsDraw->miNumLasers ls->m_iInitNumLasers;
status = DONE;

}

return status;
}

float CImageProcess::AltFindDistance(int orientation) {
CLaserSettings *ls;
if (orientation == HORZ)

ls = &m-pHorz;
else

ls = &m-pVert;
if (ls->realPoints.IsEmpty()

return -1;
return mdistCalc.getBestEstimate (&ls->realPoints,

ls->realPoints.GetCount(), ls->m-rDW, ls->m_iInitNumLasers);

}

// paint to window functions

void CImageProcess::PaintWindow(HWND hwnd, LPVIDEOHDR lpVHdr)
{

ASSERT (mbmpInfo);
if(lpVHdr)
{

HDC dc = ::GetDC(m_hWndCap);
StretchDIBits(dc,

0,
0,
CAPWIDTH,
CAPHEIGHT,
0,
0,
( (LPBITMAPINFOHEADER) mbmpInf o) ->biWidth,
((LPBITMAPINFOHEADER) rbmpInfo) ->biHeight,
(CONST VOID *)lpVHdr->lpData,
mbmpInfo,
DIBRGBCOLORS,

SRCCOPY );

::ReleaseDC(mjhWndCap, (HDC) dc);
: :ValidateRect(m~hWndCap, NULL);

I

}

void ClImageProcess: :PaintSimulatedCaptureWindow(int doHorz, int doVert)
{
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unsigned char *ptr;
ptr = mjlpVHdr->lpData;

// make background black
for (int i=0; i < CAPWIDTH*CAPHEIGHT; i++) {

*ptr = 0;
ptr++;
*ptr = 0;
ptr++;
*ptr = 0;
ptr++;

}

// do calculations
if (doHorz) {

switch (m_pHorzDraw.m_iSurfaceMode) {
case 0:

m_distCalc.getSimPointsStraight(&mpHorzDraw);
break;

case 1:
m_distCalc-getSimPointsIncline(&mpHorzDraw);
break;

case 2:
m_distCalc.getSimPointsRound(&mpHorzDraw);
break;

default:
m_distCalc.getSimPointsStraight(&m_pHorzDraw);
break;

}

// draw spots
putSpots(&m-pHorzDraw.points, &m-pHorzDraw.mpSpotDiams);

}

if (doVert) {
switch (mrpVertDraw.miSurfaceMode) {

case 0:
m_distCalc.getSimPointsStraight(&m-pVertDraw);
break;

case 1:
m_distCalc.getSimPointsIncline(&mpVertDraw);
break;

case 2:
m_distCalc.getSimPointsRound(&m-pVertDraw);
break;

default:
m_distCalc.getSimPointsStraight(&mpVertDraw);
break;

}
putSpots(&mpVertDraw.points, &m_pVertDraw.m-pSpotDiams);

}

memcpy (mrlpOnBuffer->lpData, mjlpVHdr->lpData,
CAPWIDTH*CAPHEIGHT*3);

// paint window
PaintWindow (mhWndCap, mlpVHdr);

}
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void CImageProcess::PaintOff()
{

unsigned char *ptr;
int i;
ptr = mjlpVHdr->lpData;

// make background black
for (i=0; i < CAPWIDTH*CAPHEIGHT; i++)

*ptr = 0;
ptr++;

*ptr = 0;
ptr++;

*ptr = 0;
ptr++;

}

memcpy (mlpOffBuffer->lpData, mjlpVHdr->lpData,
CAPWIDTH*CAPHEIGHT*3);

ImageSubtract();

PaintWindow (mhWndCap, m_lpVHdr);

}

void CImageProcess::putSpots(CList <FLOATCOORD, FLOATCOORD> *points,
CList <float, float> *diams)
{

FLOATCOORD tempCoord;
POSITION pos, pos2;
unsigned char *ptr;
int i;
float diam;

ptr = mlpVHdr->lpData;
pos = points->GetHeadPosition( );
pos2 = diams->GetHeadPosition( );
// add laser spots
for (i=0; i<points->GetCount); i++) {

tempCoord = points->GetAt(pos);
diam = diams->GetAt(pos2);
PaintSpot(tempCoord, diam, ptr);
points->GetNext(pos);
diams->GetNext(pos2);

}

void CImageProcess::PaintSpot(FLOATCOORD center, float diam, unsigned
char *ptr) {

// ptr points to the head of the buffer
unsigned char *tempPtr;
float r-sq, beamrad-sq, inorm;
beam-rad-sq = (diam/2)*(diam/2);
int pixel-val;

for (int y=center.Y-ceil(diam/2); y < center.Y+ceil(diam/2); y++) {
for (int x=center.X-ceil(diam/2); x < center.X+ceil(diam/2);

x++) {
r_sq = square(x-center.X) + square(y-center.Y);
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}
}

i_norm = exp(-2*rsq/beamradsq);
pixel val = Round(i-norm*MAXINTENSPIXVAL);
if ((x > -4) && (x < CAPWIDTH) &&

(y > -1) && (y < CAPHEIGHT))
tempPtr = ptr + y*CAPWIDTH*3 + x*3;
*tempPtr = pixelval; tempPtr++;
*tempPtr = pixelval; tempPtr++;

*tempPtr = pixel-val; tempPtr++;
}

}

void CImageProcess::TestImageSubtract()
{

PaintWindow(mhWndCap, mlpOffBuffer);
}

/////
// image processing

float CImageProcess::getThreshold()
{

return 50;
}

void CImageProcess::ImageSubtract()
{

// perform image subtraction
for (int i=0; i < CAPWIDTH*CAPHEIGHT*3; i++) {

mjlpOffBuffer->lpData[i] = m.1pOnBuffer->lpData[i] -
m_lpOffBuffer->lpData[i];

}

}

void CImageProcess::extractPoints()

{

int i,j;

// get points that exceed the threshold
unsigned char *ptr;
float threshold;
unsigned char b-val, gval, r-val;
COORD tempCoord;

threshold = getThreshold(;
ptr = mjlpOffBuffer->lpData;
if (!m-extractedPoints.IsEmpty()

m_extractedPoints.RemoveAll();
if (!m-extractedVals.IsEmpty())

m_extractedVals.RemoveAll();
for (i=0; i<CAPHEIGHT; i++) {

for (j=0; j<CAPWIDTH; j++) {
b_val = *ptr; ptr++;
g-val = *ptr; ptr++;
r_val = *ptr; ptr++;
if ((b-val > threshold) && (g-val > threshold)
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(rval > threshold)) {
// add i, j to list
tempCoord.X = j-XOFFSET;
tempCoord.Y = i;
m_extractedPoints.AddTail(tempCoord);
m_extractedVals.AddTail ((bval+gval+rval)/3);

}
}

}
}

int CImageProcess::filterPoints()
{

COORD tempCoord, lastCoordH, lastCoordV;
int numPoints, i, totalpoints;
totalpoints = 0;
FLOATCOORD tempFloatCoord;
// for centroid calculation
float horzcentroidsum = 0.0;
int horzcentroid-points = 0;
float vertcentroidsum = 0.0;
int vertcentroid-points = 0;
float tempVal, lastVal;

if (m_extractedPoints.IsEmpty()) {
return -1;

numPoints = mextractedPoints.GetCount(;
POSITION pos = mextractedPoints.GetHeadPosition( );
POSITION pos2 = mextractedVals.GetHeadPosition( );
lastCoordH.X = 0;
lastCoordH.Y = 0;
lastCoordV.X = 0;
lastCoordV.Y = 0;

if (!mpVert.points.IsEmpty())
m_pVert.points.RemoveAll();

if (!mpHorz.points.IsEmpty())
m-pHorz.points.RemoveAll();

for (i=0; i< mextractedPoints.GetCount(; i++) {
// enter some filtering function here
// try to find the next set of points that are sequential, and
// find the center of it
tempCoord = mextractedPoints.GetAt(pos);
tempVal = mextractedVals.GetAt(pos2);
// horizontal point?
if (((tempCoord.X > CENTERX+2) II (tempCoord.X < CENTERX-2)) &&

(tempCoord.Y == CENTERY) &&
(tempCoord.X > 0)) {
// if point is next to a previous point, delete it from the
// list of points and add it to tempPoints, the centroid of
// which will later be added
if ((tempCoord.X - lastCoordH.X == 1) &&

(tempCoord.Y == lastCoordH.Y)) {
// if lastpoint was added to the final list of points,
// delete it
// add it to the running sum
if (!mpHorz.points.IsEmpty())

if (mpHorz.points.GetTail().X == lastCoordH.X) {
m-pHorz.points.RemoveTail();
totalpoints--;
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horzcentroidsum += lastCoordH.X*lastVal;
horzcentroid-points+= lastVal;

}
// add current to the running sum
horzcentroidsum += tempCoord.X*tempVal;
horzcentroid-points+=tempVal;

}
else {

// if there was a set of points previously collected,
// process it
if (horzcentroid-points > 0) {

tempFloatCoord.X =
horzcentroid-sum/horzcentroid-points;

tempFloatCoord.Y = lastCoordH.Y;
mpHorz.points.AddTail(tempFloatCoord);
totalpoints++;
horzcentroidsum = 0.0;
horzcentroid-points = 0;

}
// add current point as well
tempFloatCoord.X = tempCoord.X;
tempFloatCoord.Y = tempCoord.Y;
m_pHorz.points.AddTail(tempFloatCoord);
totalpoints++;

}
lastCoordH = tempCoord;

}

// vertical point?
if (((tempCoord.Y > CENTERY+2) I| (tempCoord.Y < CENTERY-2)) &&

(tempCoord.X == CENTERX)) {
// if point is next to a previous point, delete it from the
// list of points and add it to tempPoints, the centroid of
// which will later be added
if ((tempCoord.Y - lastCoordV.Y == 1) &&

(tempCoord.X == lastCoordV.X)) {
// if lastpoint was added to the final list of points,
// delete it
// add it to the running sum
if (!mpVert.points.IsEmpty()) {

if (m-pVert.points.GetTail().X == lastCoordV.Y) {
// get .X rather than .Y cuz points are swapped in
// mpVert.points

m-pVert.points.RemoveTail();
totalpoints--;
vertcentroidsum += lastCoordV.Y*lastVal;
vertcentroid-points+=lastVal;

}
}
// add current to the running sum
vertcentroidsum += tempCoord.Y*tempVal;
vertcentroidpoints+=tempVal;

}
else {

// if there was a set of points previously collected,
// process it
if (vertcentroid-points > 0) {

// Since distance finding functions expects points in the
// .X field, swap X and Y for vertical points
tempFloatCoord.X =
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vertcentroidsum/vert-centroid-points;
tempFloatCoord.Y = lastCoordV.X;
m_pVert.points.AddTail(tempFloatCoord);
totalpoints++;
vertcentroidsum = 0.0;
vertcentroid-points = 0;

// add current point as well
// Since distance finding functions expects points in the .X
// field, swap X and Y for vertical points
tempFloatCoord.X = tempCoord.Y;
tempFloatCoord.Y = tempCoord.X;
mrpVert.points.AddTail(tempFloatCoord);
totalpoints++;

}
lastCoordV = tempCoord;

}

m_extractedPoints.GetNext(pos);
m_extractedVals.GetNext(pos2);
lastVal = tempVal;

}

if (horzcentroid-points > 0) {
tempFloatCoord.X = horzcentroidsum/horzcentroidpoints;
tempFloatCoord.Y = lastCoordH.Y;
m_pHorz.points.AddTail(tempFloatCoord);
totalpoints++;

}

if (vertcentroid-points > 0) {
tempFloatCoord.X = vertcentroidsum/vertcentroid-points;
tempFloatCoord.Y = lastCoordV.X;
m-pVert.points.AddTail(tempFloatCoord);
totalpoints++;

if (totalpoints == 0)
return -1;

return totalpoints;

}

int CImageProcess::simFindDistance(int *currOrientation, float *dist)
{

*dist = 0.0;
float total = 0;

extractPoints();

if (filterPoints() == -1)
return NOPOINTS;

if (mpHorz.points.GetCount() > 0) {
*currOrientation = HORZ;
if ((mpHorz.points.GetCount() < mpHorz.miNumLasers)

(m_pHorz.points.GetCount() > m-pHorz.miNumLasers)) {
return NOTENOUGHPOINTS;

}
else {

// weight by resolution
*dist = mdistCalc.getDist(&m_pHorz)*CAPWIDTH;
total = total + CAPWIDTH;

}
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}
if

}

(mpVert.points.GetCount() > 0) {
*currOrientation = VERT;
if ((m-pVert.points.GetCount() < mipVert.miNumLasers)

(m_pVert.points.GetCount() > m_pVert.miNumLasers))
*dist = *dist/total;
return NOTENOUGHPOINTS;

}
else {

float vertDist = mdistCalc.getDist(&mrpVert);
if (vertDist < 0) return (-1);
// weight by resolution
else *dist += vertDist*CAPHEIGHT;
total = total + CAPHEIGHT;

}

*dist = *dist/total;
return 0;

I

CLaserSettings Class

// LaserSettings.h: interface for the CLaserSettings class.
//

#include <Afxtempl.h> // for CList

#define HORZ 1
#define VERT 0

class CLaserSettings
{
public:

void Copy (CLaserSettings *ls);
void CopyBasics(CLaserSettings *ls);

float mrDist; // mm
int miNumLasers;
float n_rDW;
float mrAngle; // radians
int m _iDegree;
float *mpCoeffs;
float m-rShift; // mm
int m-iSurfaceMode;
float mrMaxDX; // mm
int miMaxDP; // pixels
int mbHorizontal;
CList <FLOATCOORD, FLOATCOORD> points;
CList <float, float> mipSpotDiams;
int m_iInitNumLasers;
int m _iLaserNum; // current Laser
CList <PointInfo, PointInfo> realPoint

CLaserSettings();
virtual -CLaserSettings();

};
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// LaserSettings.cpp: implementation of the CLaserSettings class.
// Data Structure
// D. Tran 2001

#include "stdafx.h"
#include "laserdist.h"
#include "LaserSettings.h"

#ifdef _DEBUG
#undef THISFILE
static char THIS FILE[]=__FILE__;

#define new DEBUGNEW

#endif

// Construction/Destruction

CLaserSettings::CLaserSettings()
{

mrDist = 0.0;
miNumLasers = 4;
mrDW = 30.0;
mrAngle = 0;
miDegree = 0;
mipCoeffs = NULL;
mrShift = 0;
miSurfaceMode = 0;
mrMaxDX = SENSEWIDTH;
miMaxDP = CAPWIDTH;
mbHorizontal = TRUE;

CLaserSettings::-CLaserSettings()
{

if (mipCoeffs)
free (mrpCoeffs);

}

void CLaserSettings::Copy(CLaserSettings *ls)
{

int i;
FLOATCOORD temp;
mbHorizontal = ls->mbHorizontal;
miDegree = ls->miDegree;
m_iMaxDP = ls->miMaxDP;
mrMaxDX = ls->mrMaxDX;
miNumLasers = ls->miNumLasers;
m_iInitNumLasers = ls->m_iInitNumLasers;
mrAngle = ls->mrAngle;
mrDist = ls->mrDist;
mrDW = ls->mirDW;
mrShift = ls->mrShift;
miSurfaceMode = ls->miSurfaceMode;
mniLaserNum = ls->miLaserNum;
if (ls->m-pCoeffs) {

if (m_pCoeffs)
free (mpCoeffs);

mipCoeffs = (float *) malloc ((miDegree+l)*sizeof(float));
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for (i=0; i< (m_iDegree+l); i++)

m_pCoeffs[i] = ls->mpCoeffs[i];
}
points.RemoveAll();
m_pSpotDiams.RemoveAll();

POSITION pos = ls->points.GetHeadPosition();
for (i=0; i<ls->points.GetCount(); i++) {

temp = ls->points.GetAt(pos);
points.AddTail(temp);
ls->points.GetNext(pos);

}
}

void CLaserSettings::CopyBasics(CLaserSettings *ls)
{

// copy non-simulation data
m_bHorizontal = ls->mbHorizontal;
m_iMaxDP = ls->miMaxDP;

m_rMaxDX = ls->m_rMaxDX;

m_iNumLasers = ls->miNumLasers;
m_rDW = ls->mrDW;
m_iLaserNum = ls->m iLaserNum;

m_ilnitNumLasers = ls->m_iInitNumLasers;
}

CSimSettings Class

// SimSettingsDlg.cpp : implementation file
// Simulation parameters
// D. Tran 2001

#include "stdafx.h"
#include "laserdist.h"
#include "SimSettingsDlg.h"
#include <math.h>

#ifdef _DEBUG
#define new DEBUGNEW
#undef THISFILE

static char THISFILE[] = __FILE__;

#endif

// CSimSettingsDlg dialog

CSimSettingsDlg::CSimSettingsDlg(CWnd* pParent /*=NULL*/)
CDialog(CSimSettingsDlg: :IDD, pParent)

{
//{{AFX-DATAINIT (CSimSettingsDlg)
m_iNumLasersH = 4;
m_iNumLasersV = 4;
m_rDistBtwH = 30.0f;
m_rDistBtwV = 20.0f;
mrAngleH = 0.0f;
mrAngleV = 0.0f;
mjiDegreeH = 0;
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miDegreeV = 0;
m_sCoeffsH = _T("");
m-sCoeffsV = _T("");
mrShiftH = 0.0f;
mrShiftV = 0.0f;
miSimFrameRate 15;
mrSimDistance = 90.0f;
//}}AFX_DATAINIT

}

'///
// CSimSettingsDlg message handlers

void CSimSettingsDlg::OnOK()
{

CDialog::OnOK);
}

void CSimSettingsDlg::OnApply()
{

char *token;

LPTSTR str;
float mindist;

UpdateData(TRUE);

m_radioCheckedH = mradioH.GetCheck();
m_radioCheckedV = mradioV.GetCheck();

if (!mradioCheckedH && !mradioCheckedV)
AfxMessageBox ("At least one orientation has to be chosen", MBOK,

0);

if (m_radioCheckedH) {
m_pH.mbHorizontal = TRUE;
m_pH.miDegree = m-iDegreeH;
mpH.m-iMaxDP = CAPWIDTH;
m-pH.mrMaxDX = SENSEWIDTH;
mipH.miNumLasers = miNumLasersH;
mipH.miInitNumLasers = miNumLasersH;
m_pH.m rAngle = mirAngleH*PI/180; // convert to radians
mrpH.imrDist = mrSimDistance;
m-pH.m-rDW = mrDistBtwH;
m_pH.m-iLaserNum = 1;
mrpH.mrShift = mrShiftH;
if (mradioFlatH.GetCheck())

m_pH.miSurfaceMode = 0;
else if (m_radioAngledH.GetCheck())

mrpH.miSurfaceMode = 1;
else if (mradioRoundH.GetCheck) {

m_pH.m_iSurfaceMode = 2;
// for y=a0x^O+alx^l... coeffs[O]=aO, coeffs[l]=al...
if (mpH.mpCoeffs) free (mpH.mpCoeffs);
m-pH.m_pCoeffs = (float *) malloc ((m_pH.miDegree +1) *

sizeof (float));
str = msCoeffsH.GetBuffer(nsCoeffsH.GetLength());
msCoeffsH.ReleaseBuffer(;
token = strtok( str, " ");
for (int i=0; i<(m_pH.m-iDegree+1); i++) {
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if (token == NULL) {
AfxMessageBox("Error, not enough coefficients!", MBOK,

0);
}
mpH.m-pCoeffs[i] = atof(token);
token = strtok( NULL, "

}
}

// check that the angle given is valid
mindist = mrSimDistance + (m-pH.miNumLasers+l)*m-pH.m-rDW*

tan(m-pH.m-rAngle*PI/180);

if (mindist <= 0)
AfxMessageBox ("Horizontal Angle and Simulation Distance

Combination Invalid", MBOK, 0);
}

if (mradioCheckedV) {
m_pV.mbHorizontal = FALSE;
m_pV.mjiDegree = m_iDegreeV;
m-pV.miMaxDP = CAPHEIGHT;
mrpV.mrMaxDX = SENSEHEIGHT;
mpV.miNumLasers = miNumLasersV;
m-pV.miInitNumLasers = m_iNumLasersV;
mpV.m-rAngle = m_rAngleV*PI/180; // convert to radians
m_pV.mrDist = m_rSimDistance;
m_pV.mrDW = mrDistBtwV;
m-pV.miLaserNum = 1;
m-pV.mrShift = mrShiftV;
if (m_radioFlatV.GetCheck()

m-pV.miSurfaceMode = 0;
else if (m-radioAngledV.GetCheck())

mnpV.m-iSurfaceMode = 1;
else if (m-radioRoundV.GetCheck()) {

m-pV.m-iSurfaceMode = 2;
// for y=aOx^O+alx^l... coeffs[0l=aO, coeffs[1]=al...
if (m-pV.m-pCoeffs) free (mpV.m-pCoeffs);
mrpV.m-pCoeffs = (float *) malloc ((mpV.mjiDegree +1) *

sizeof (float));
str = msCoeffsV.GetBuffer(msCoeffsV.GetLength());
m_sCoeffsV.ReleaseBuffer(;
token = strtok( str, " ");
for (int i=O; i<(mpV.mjiDegree+1); i++) {

if (token == NULL) {
AfxMessageBox("Error, not enough coefficients!", MBOK,

0);
}
m-pV.mpCoeffs[il = atof(token);
token = strtok( NULL, "

}
}

// check that the angle given is valid
mindist = mrSimDistance + (m-pV.miNumLasers+l)*m-pV.mrDW*

tan(mpV.m-rAngle*PI/180);
if (mindist <= 0)

AfxMessageBox ("Vertical Angle and Simulation Distance
Combination Invalid", MBOK, 0);

}
}
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BOOL CSimSettingsDlg::OnInitDialog()
{

CDialog::OnInitDialog(;

m_radioFlatH.SetCheck(l);
m_radioFlatV.SetCheck(l);
return TRUE; // return TRUE unless you set the focus to a control

// EXCEPTION: OCX Property Pages should return FALSE
}

void CSimSettingsDlg::ManualSetSettings(int do-horz,int dovert,
float rSimDistance,
int iDegreeH,int iNumLasersH,float rAngleH,
float rDistBtwH,float rShiftH,
int iSurfaceModeH, CString sCoeffsH,
int iDegreeV, int iNumLasersV, float
rAngleV,float rDistBtwV,float rShiftV,
int iSurfaceModeV,CString sCoeffsV)

{
char *token;
LPTSTR str;

mradioCheckedH = do-horz;
m_radioCheckedV = do-vert;

if (mradioCheckedH) {
m_pH.m-bHorizontal = TRUE;
m_pH.mjiDegree = iDegreeH;
m-pH.miMaxDP = CAPWIDTH;

mpH.m_rMaxDX = SENSEWIDTH;

m-pH.miNumLasers = iNumLasersH;
m-pH.m-iInitNumLasers = iNumLasersH;
m_pH.m-rAngle = rAngleH*PI/180; // convert to radians
m-pH.mrDist = rSimDistance;
m-pH.mrDW = rDistBtwH;
m_pH.m-iLaserNum = 1;
m-pH.mrShift = rShiftH;
m_pH.mjiSurfaceMode = iSurfaceModeH;
if (iSurfaceModeH == 2) {

// for y=aOx^O+alx^l... coeffs[0]=aO, coeffs[l]=al...
if (m-pH.m-pCoeffs) free (m-pH.m-pCoeffs);
m_pH.mpCoeffs = (float *) malloc ((mpH.mjiDegree +1) *

sizeof (float));
str = sCoeffsH.GetBuffer(sCoeffsH.GetLength));
sCoeffsH.ReleaseBuffer();
token = strtok( str, " " ) ;
for (int i=O; i<(m_pH.mjiDegree+l); i++) {

if (token == NULL) {
AfxMessageBox("Error, not enough coefficients!", MBOK,

0);
}
m-pH.m-pCoeffs[i] = atof(token);
token = strtok( NULL,

}
}

if (mradioCheckedV) {
m-pV.mbHorizontal = FALSE;
mpV.miDegree = iDegreeV;
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m-pV.miMaxDP = CAPHEIGHT;
m-pV.mrMaxDX = SENSEHEIGHT;

mpV.miNumLasers = iNumLasersV;
mpV.m_iInitNumLasers = iNumLasersV;
mpV.m-rAngle = rAngleV*PI/180; // convert to radians
mpV.m_rDist rSimDistance;
m-pV.mrDW = rDistBtwV;
mpV.miLaserNum = 1;
mpV.mrShift = rShiftV;
mpV.m_iSurfaceMode = iSurfaceModeV;
if (iSurfaceModeV == 2) {

// for y=aOx^O+alx^l... coeffs[0]=aO, coeffs[l]=al...
if (mpV.mpCoeffs) free (mpV.mpCoeffs);
m_pV.m-pCoeffs = (float *) malloc ((mnpV.miDegree +1) *

sizeof (float));
str = sCoeffsV.GetBuffer(sCoeffsV.GetLength();
sCoeffsV.ReleaseBuffer();
token = strtok( str, " ");
for (int i=0; i<(mpV.m_iDegree+1); i++) {

if (token == NULL) {
AfxMessageBox("Error, not enough coefficients!", MBOK,

0);
}
m_pV.mpCoeffs[i] = atof(token);
token = strtok( NULL, "

}
}

}
}

// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently
//

#define VCEXTRALEAN // Exclude rarely-used stuff from Windows
// headers

#include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions
#include <afxdisp.h> // MFC Automation classes

typedef struct {
float X;
float Y;
FLOATCOORD;

typedef struct {
FLOATCOORD c;
float err-max;
float err-min;

} PointInfo;

#define CAPWIDTH 640
#define CAPHEIGHT 480
#define PI 3.1415926535897932384626433832795
#define REFRESHID 1
#define SENSEWIDTH 4.8 // mm
#define SENSEHEIGHT 3.6 // mm
#define INIBEAMDIAM 1.5 // mm
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#define BEAMDIVERGENCE 1.6
#define MAXINTENSPIXVAL 255
#define DONE 1
#define NOPOINTS -2
#define NOTENOUGHPOINTS -1

// For Non-Simulation
#define CENTER_X 358.7
#define CENTERY 235
#define XOFFSET 38.7
#define FL 4.06
#define THRESHOLD 50

/*
// For Simulation
#define CENTER_X 320
#define CENTERY 240
#define XOFFSET 0
#define FL 3.6
#define THRESHOLD 0
*/
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Appendix B

Environmental Simulation Files

// WUPLaserDist.cpp : Defines the initialization routines for the DLL.
//

#include
#include
#include
#include
#include
#include

"stdafx.h"
"WUPLaserDist.h"
"LaserdistDlg.h"

<windows.h>

<stdio.h>
<math.h>

#include "wupplugin.h" // This is the World Up API and must be
// included in all plugins.

// Type names defined as constants

char szAuthor[256] = "D. Tran";

char szVersion[10] = "5.0";
const char *TNLASERDIST = "LaserDistGroup";
FILE *stream;

// Custom type prototypes
void UnInitLaserDistGroup(HINSTANCE hDLL);

void InitLaserDistGroup(HINSTANCE hDLL);

WUPENTRYPOINT void AddedLaserDistGroup(WUPobject * pObject,
void * pData );

WUPENTRYPOINT void RemovedLaserDistGroup(WUPobject * pObject,
void * pData );

WUPENTRYPOINT void DoLaserDistGroup(WUPobject * pObject, void * pData );

CLaserdistDlg lDlg;

/////
// The one and only CWUPLaserDistApp object

CWUPLaserDistApp theApp;

/*
* WUPPluginInitialize() is called automatically by World Up upon
* discovering this DLL in
* the .\plugins or project (.up file ) directory.
* myWUPModule : the handle to WorldUp module (worldup.exe or wup*.ocx)
* hDLL : the handle to this DLL
*/

WUPENTRYPOINT void WUPPluginInitialize( HINSTANCE myWUPModule,
HINSTANCE hDLL

{
// Register the World Up API function addresses
BOOL success = InitializeWorldUpAPI(myWUPModule);
if (!success) {

MessageBox(NULL,"Support for some requested functionality was not
found, Exiting...", "Error", 0);

return; //we don't try to proceed unless all our functionality is
// available.

}
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// Create our types
InitLaserDistGroup(hDLL);

I

// WUPPluginShutDown() is called by World Up on exiting the application
//(or project if this DLL was project specific ( loaded with .up file)).
WUPENTRYPOINT void WUPPluginShutDown( HINSTANCE hDLL

{
UnInitLaserDistGroup(hDLL);

}

/ *** *** * ** ** *** * ** ***** * ** * ***** * ** *** *** * ** ** ** *** ** ** ** * ** ** ** ** ** * ***

/* LaserDistGroup
/*
/* LaserDistGroup subtypes the World Up Group type. It has all the
/* functionality of the World Up group type, with the additional
/* functionality specified in the DoLaserDistGroup callback below.
*/
void UnInitLaserDistGroup(HINSTANCE hDLL)
{

wuUnregisterCustomType(TNLASERDIST, hDLL);
fclose(stream);

}

void InitLaserDistGroup(HINSTANCE hDLL)
{

// Retrieve the World Up type we want to derive our custom type from.
WUPtype * pType = wuGetType ( "Group" ) ;

WUPtype * pLaserDistType = wuRegisterCustomType(
hDLL, // Handle to this DLL
TNLASERDIST, // Name of your custom type as it will

// appear in the type browser
pType, // Base Type ( This must be some valid

// World Up/ Type )
"AddedLaserDistGroup", // OnCreate callback function name
"RemovedLaserDistGroup",// OnDelete callback function name
"DoLaserDistGroup", // OnRun callback
(void *)0 ); // This is an optional void pointer in the

// event that you need to pass a data
// structure into a callback ( pased in as
// pData ).

if ( pLaserDistType ) {
wuTypeAddProperty(pLaserDistType, "Rate", WUPTYPESINGLE, NULL,

kIsImportant);
wuTypeAddProperty(pLaserDistType, "Distancel", WUPTYPESINGLE,

NULL, kIsImportant);
wuTypeAddProperty(pLaserDistType, "Distance2", WUPTYPESINGLE,

NULL, kIsImportant);
wuTypeAddProperty(pLaserDistType, "Distance3", WUPTYPESINGLE,

NULL, kIsImportant);
wuTypeAddProperty(pLaserDistType, "Distance4", WUPTYPE_SINGLE,

NULL, kIsImportant);
wuTypeAddProperty(pLaserDistType, "Move", WUPTYPEBOOLEAN, NULL,

kIsImportant);
wuTypeAddProperty(pLaserDistType, "Reference Time",
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WUPTYPESINGLE, NULL, NULL);

wuTypeSetPropertySingle(pLaserDistType, "Distancel", 1.0f);
wuTypeSetPropertySingle(pLaserDistType, "Distance2", 1.0f);
wuTypeSetPropertySingle(pLaserDistType, "Distance3", 1.0f);
wuTypeSetPropertySingle(pLaserDistType, "Distance4", 1.0f);
wuTypeSetPropertyBoolean(pLaserDistType, "Move", 1);
wuTypeSetPropertySingle(pLaserDistType, "Rate", 15.0f);

}

stream = fopen( "data", "w++" );

}

WUPENTRYPOINT void AddedLaserDistGroup( WUPobject * pObject, void *

pData

{
float reftime;

wuStatusMessage( "Added LaserDistGroup:" )
wuStatusMessage(wuObjectGetName( pObject ) );
// Initialize our times. Simtime is seconds elapsed since Sim->Run.
reftime = 0;
wuObjectSetPropertySingle(pObject, "Reference Time", reftime);
AFX_MANAGESTATE(AfxGetStaticModuleState());
lDlg.Create(CLaserdistDlg::IDD,NULL);
iDlg.ShowWindow(SWSHOW);

}

WUPENTRYPOINT void RemovedLaserDistGroup( WUPobject * pObject, void *

pData

{
wuStatusMessage( "Removed LaserDistGroup:"
wuStatusMessage(wuObjectGetName( pObject ) );

}

WUPENTRYPOINT void DoLaserDistGroup( WUPobject * pObject, void * pData
{

float simtime, reftime, rate, dist, intervaltime, final dist;
CList <float, float> distances;
int i, len, go;
WUPobject *lasers[NUMLASERS];
CString prefix, distlist="";
int enabled[NUMLASERS];
char distText[10];

float mindist = 100000;

simtime = wuGetSimulationTime();
rate = wuObjectGetPropertySingle(pObject, "Rate");
reftime = wuObjectGetPropertySingle(pObject, "Reference Time");

prefix = "Distance";
len = prefix.GetLength(;
if (!distances.IsEmpty()

distances.RemoveAll();
for (i=0; i<NUMLASERS; i++) {

prefix.Insert(len, i+48+1);
dist = wuObjectGetPropertySingle(pObject, prefix);
distances.AddTail(dist);
sprintf (distText, "%.5f\t", dist);
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distlist += distText;
if (dist < mindist)

mindist = dist;
prefix.Remove(i+48+1);

}

if ( simtime < 1.0 ) {
reftime = simtime;
wuObjectSetPropertySingle(pObject, "Reference Time", reftime);

}

prefix = "Laser-";
len = prefix.GetLength();
for (i=0; i<NUMLASERS; i++) {

prefix.Insert(len, i+48+1);
lasers[i] = wuGetObject(prefix);
prefix.Remove(i+48+1);

}

lDlg.OnTimer2(&distances, enabled, &final-dist, &go);
wuObjectSetPropertyBoolean(pObject, "Move", go);
if (stream && go) {

fprintf (stream, "%s", distlist);
fprintf (stream, "%.5f\t%.5f\n", final-dist,

(min-dist-final-dist)/min_dist);
}

for (i=0; i<NUMLASERS; i++) {
if (lasers[i])

wuObjectSetPropertyBoolean(lasers[i],"Enabled", enabled[i]);

}
reftime = simtime;
wuObjectSetPropertySingle(pObject, "Reference Time", reftime);

}

// Functions used in WorldUp but not in LaserDist

void CImageProcess::PaintSimulatedCaptureWindow(int doHorz, int doVert,
CList <float, float> *dists)

{

unsigned char *ptr;
ptr = mjlpVHdr->lpData;

// make background black
for (int i=0; i < CAPWIDTH*CAPHEIGHT; i++) {

*ptr = 0;
ptr++;

*ptr = 0;
ptr++;
*ptr = 0;
ptr++;

}

// do calculations
if (doHorz) {

m_distCalc.getSimPointsGiven(&m-pHorzDraw, dists);

// draw spots

128



putSpots(&mrpHorzDraw.points, &m-pHorzDraw.mpSpotDiams);

}

if (doVert) {
mdistCalc.getSimPointsGiven(&m_pVertDraw, dists);

putSpots(&mpVertDraw.points, &mpVertDraw.mpSpotDiams);

}

memcpy (milpOnBuffer->lpData, milpVHdr->lpData,
CAPWIDTH*CAPHEIGHT*3);

// paint window
PaintWindow(mhWndCap, mlpVHdr);

}

// FOR WORLDUP SIMULATION

void CSimSettingsDlg::SimSetVals(int iHorz, int iVert,
int miNumLasersH, int miNumLasersV,
float mrDistBtwH, float mrDistBtwV)

{
mradioCheckedH = iHorz;
mradioCheckedV = iVert;

if (!mradioCheckedH && !mradioCheckedV)
AfxMessageBox ("At least one orientation has to be chosen", MBOK,

0);

if (mradioCheckedH) {
mipH.mbHorizontal = TRUE;
mipH.miDegree = miDegreeH;
mipH.miMaxDP = CAPWIDTH;

mipH.mrMaxDX SENSEWIDTH;

mipH.miNumLasers = miNumLasersH;
mrpH.m_iInitNumLasers = miNumLasersH;
mipH.mrDW = mrDistBtwH;
m_pH.miLaserNum = 1;
mpH.miSurfaceMode = 0;

}

if (in radioCheckedV)
mnpV.mbHorizontal = FALSE;

mipV.miDegree miDegreeV;
m_pV.im_iMaxDP = CAPHEIGHT;

mipV.mrMaxDX = SENSEHEIGHT;

mrpV.miNumLasers = miNumLasersV;
mipV.m_iInitNumLasers = miNumLasersV;
m_pV.mn_rDW = mrDistBtwV;
m_pV.miLaserNum = 1;
m_pV.i_iSurfaceMode = 0;

}

Script Files

// getdist.ebs
Determine distance to nearest obstacle ahead
For horizontally oriented lasers only
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Automatic drive
D. Tran 2001

sub task( obj as Group

Add code here
Commands in this routine will be
executed every frame

dim dir as vect3d
dim trans as vect3d
dim theroot as Node
dim dist as Single
dim shift as Single
dim rot as Orientation

dim mynode as LaserDistGroup
set mynode = GetLaserDistGroup ("DistHolder")

obj.GetTranslation trans
if mynode.move = TRUE then

if trans.z < 4700 then
trans.z = trans.z + 10

end if
obj.SetTranslation trans

end if

obj.GetRotation rot
OrientToDir rot, dir
Vect3DNorm dir

set theroot = getnode("Root-l")

shift = -60.0
dist = FindDist ("Laser-1",
if dist > 0 then

mynode.distancel = dist
end if

shift= -30.0
dist = FindDist ("Laser-2",
if dist > 0 then

mynode.distance2 = dist
end if

shift=30.0
dist = FindDist ("Laser-3",
if dist > 0 then

mynode.distance3 = dist
end if

shift=60.0
dist = FindDist ("Laser-4",
if dist > 0 then

mynode.distance4 = dist
end if

trans, shift, dir, theroot)

trans, shift, dir, theroot)

trans, shift, dir, theroot)

trans, shift, dir, theroot)

end sub

Function FindDist (lasername as String, _
transl as Vect3D, -
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shift as Single, _
direct as Vect3D,
droot as Node) _
as Single

dim laser as Geometry
dim lasertrans as Vect3D
dim stret as Vect3D
dim orig as Vect3D
dim poly as Long
dim geom as Geometry
dim dist as Single
dim ori as Orientation
dim moduleAxis as Vect3D

dist = -l
set laser = GetGeometry(lasername)
laser.GetTranslation lasertrans
laser.GetStretch stret

add 120 to take distance from front
of vehicle rather than center

orig.x = transl.x + 120*direct.x
orig.y = transl.y + 120*direct.y
orig.z = transl.z + 120*direct.z

' move detector up 75 (1/2 of wheel + 1/2 base)
orig.y = orig.y - 75

orientset ori, 0, 90, 0
Vect3dRotate direct, ori, moduleAxis

'shift by shift to appropriate module
orig.x = orig.x + shift*moduleAxis.x
orig.y = orig.y + shift*moduleAxis.y
orig.z = orig.z + shift*moduleAxis.z

poly = RayIntersect (droot,orig,direct,geom,dist)
if poly <> 0 then

message "distance" + str$(dist)
lasertrans.z = dist/2 + 120
stret.y = dist
laser.SetTranslation lasertrans
laser.SetStretch stret

end if
FindDist = dist

end Function

display.ebs
Display distance to nearest obstacle ahead
For horizontally oriented lasers only
D. Tran 2001

declare sub DisplayOffsetText( win as Window, _
HorizontalPosition as Single, -
VerticalPostion as Single, msgstring as String,
returnBottomOfText as Single

sub task( obj as Window

dim message as String
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dim dist as Single
dim vpos as Single
dim temp as Single

dim mynode as LaserDistGroup
set mynode = GetLaserDistGroup("DistHolder")

dist = mynode.Distance3
message = "Distance 3:" + str$(dist)
DisplayOffsetText obj, 0.2, 0, message, vpos

dist = mynode.Distance4
message = "Distance 4:" + str$(dist)
DisplayOffsetText obj, 0.6, 0, message, vpos

dist = mynode.Distancel
message = "Distance 1:" + str$(dist)
DisplayOffsetText obj, 0.2, vpos, message, temp

dist = mynode.Distance2
message = "Distance 2:" + str$(dist)
DisplayOffsetText obj, 0.6, vpos, message, temp

end sub

sub DisplayOffsetText( win as Window, _
HorizontalPosition as Single, _
VerticalPosition as Single, -

msgstring as String, -

returnBottomOfText as Single

dim size as Vect2d
win.TextExtent msgstring, size

' Draw the text centered, along the top
'win.DrawText 0.5 - size.X / 2, VerticalPosition - size.Y, msgstring
win.DrawText HorizontalPosition, VerticalPosition + size.Y,

msgstring

returnBottomOfText = VerticalPosition + size.Y

end sub
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