
Embedded Networks:
Pervasive, Low-Power, Wireless Connectivity

Robert Dunbar Poor

Submitted to the Program in Media Arts and Sciences School of Architecture

and Planning in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at the Massachusetts Institute of Technology

January 2001

(c) 2001 Massachusetts Institute of Technology. All Rights Reserved.

Author
Prolram in MedA Arts an ~ nces

December 1, 2

~NIt 6)
Certified by

V Michae J. Hawley
Asstnt Professor of Media Arts nd Sciences

Thesis Advisor

Accepted by

Stephen A. Benton
Chair

Departmental Committee on Graduate Students
Program in Media Arts and Sciences

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUN 1 3 2001

LIBRARIES

ROTCH, 1

Abstract

The lack of effective networking technologies for embedded microcontrollers is

inhibiting the emergence of smart objects and "Things That Think."

A practical communication infrastructure for Things That Think will require wire-

less network connections built directly into microcontroller chips. After showing

that digital processing, application languages, and wireless links are not the bottle-

neck, this thesis turns its attention to network designs. It presents architectures and

algorithms that implement self-organizing networks, requiring minimal pre-plan-

ning and maintenance.

The result is a radically new model for networks-embedded networks-designed

specifically to interconnect untethered embedded microcontrollers. The thesis cul-

minates in the design, implementation and evaluation of a hardware system that

tests and validates the approach.

Thesis Advisor:
Michael J. Hawley
Assistant Professor of Media Arts & Sciences

This research was sponsored by the Things That Think Consortium. The author
gratefully thanks the Motorola Fellows Program, the AT&T Fellows Program and
DARPA for their support.

Embedded Networks:
Pervasive, Low-Power, Wireless Connectivity

Robert Dunbar Poor

The following people have served as readers for this thesis:

/14

Reader
Andrew Lippman

nior Research Scientist
Media Laboratory

Massachusetts Institute of Technology

Reader

William J. Kaiser
Professor

Electrical Engineering Department
University of California, Los Angeles

Contents

CHAPTER 1 A Network on Every Chip 7
A n unfulfilled prom ise ... 7

Networking: the missing link .. 8

Embedded Networking ... 9

The domain of Embedded Networking ... 9

Constraints imposed by the host... 10

Constraints imposed by the application.. 12

Contributions of this thesis..13

The prom ise, revisited ... 15

What will happen?.. 15

CHAPTER 2 Precedents in Wireless Networks 17
L egacy system s..19

Local Area Networks... 20

W ide A rea N etw orks ... 22

Other multi-hop protocols .. 23

W hat's m issing? 24

CHAPTER 3 Multi-hop Communications................25
The virtues of whispering.. 25

Single-hop and multi-hop: an idealized comparison.......................................26

Pow er savings.. 28

Effects of non-uniform spacing ... 30

Sum m ary30

CHAPTER 4 GRAd: Gradient Routing for Ad Hoc Networks 32
T he challenge... 32

The G RA d algorithm .. 34

Simulation and results of GRAd ... 43

Proposed extensions to GRAd.. 54

Sum m ary 56

CHAPTER 5 Distributed Synchronization 57
Running the algorithm ... 58

An example: synchronization for spread spectrum ... 60

Sum m ary 6 1

CHAPTER 6 Statistical Medium Access.................62
C hannel sharing ... 62

4

Medium Access and Collision Avoidance...63

A statistical approach ... 64

C hoosing p 65

Likelihood of successful transmission.. 66

Statistical Medium Access in multi-hop networks....................67

M isjudging N 68

Sum m ary 69

CHAPTER 7 ArborNet: A Proof of Concept..............70
M otivation 70

H ardw are system .. 71

Softw are system ... 75

The ArborNet packet mechanism... 75

D ata flow in A rborN et...78

A R Q processing... 81

T im ing services... 83

Field tests and results ... 84

Topology tests... 85

Received packet error rates .. 89

G oodput tests .. . 90

Distributed temperature sensing ... 92

Battery power: trends and outliers...95

Synchronization ... 97

CHAPTER 8 Conclusions & Future Work...............100
Som e lessons learned...100
U nturned Stones 101

A cknow ledgem ents ... 103

APPENDIX A References ... 105
APPENDIX B ArborNet Host Code Listing 111

APPENDIX C ArborNet "BART" Code Listing 157

List ofFigures

FIGURE 1. Context and constraints of embedded networking 10

FIGURE 2. Distance versus bit rate for wireless standards..............................18

FIGURE 3. Single hop communications .. 26

FIGURE 4. Multi-hop communications ... 27

FIGURE 5. Per-node transmitter power (relative to single hop)......................29

FIGURE 6. Reply Request from node A to node B...40

FIGURE 7. Node B replies using the reverse path... 41

FIGURE 8. Packet delivery fraction...45

FIGURE 9. Average delay .. 46

FIG U RE 10. Routing load .. 47

FIGURE 11. GRAd vs. 802.11 MAC .. 49

FIGURE 12. Disabling Route Repair .. 52

FIGURE 13. Linear network, diameter-6 ... 58

FIGURE 14. Time to converge increases exponentially with network diameter ...59

FIGURE 15. Convergence improves exponentially at each iteration.................60

FIG U RE 16. C ollision ... 64

FIGURE 17. Probability of successful transmission ... 65

FIGURE 18. Adjusting p as a function of the number of transmitters 66

FIGURE 19. Goodput for any of N nodes succeeding 67

FIGURE 20. Overestimating and underestimating p...68

FIGURE 21. One of twenty-five ArborNet nodes .. 70

FIGURE 22. Constellation block diagram..71
FIGURE 23. Threads and data paths in ArborNet..79

FIGURE 24. Layout of nodes in Office I test...88

FIGURE 25. Percentage of packets received with valid CRC............................89

FIGURE 26. Goodput versus node ... 91

FIGURE 27. Residential II: indoor temperatures .. 93

FIGURE 28. Residential II: outdoor temperatures ... 94

FIGURE 29. Office I: building temperatures .. 95

FIGURE 30. Distribution of Synchronization Deviation 98

FIGURE 31. Individual synchronization deviation (10 minute snapshot) 98

Embedded Networking

CHAPTER 1 A Network on Every Chip

A trillion dumb chips connected into a hive mind is the hardware. The software
that runs through it is the Network Economy. A planet of hyperlinked chips emits a

ceaseless flow of small messages, cascading into the most nimble waves of sensi-

bility. Every farm moisture sensor shoots up data, every weather satellite beams

down digitized images, every cash register spits out bit streams, every hospital
monitor trickles out numbers, every Web site tallies attention, every vehicle trans-

mits its location code; all of this is sent swirling into the web. That tide of signals is

the net.

-Kevin Kelly "New Rulesfor the New Economy" [Kelly 1997]

An unfulfilled promise

For years, visionaries have predicted that tiny computers will soon be woven into

the everyday fabric of our lives and a world densely populated with "smart

objects," giving rise to "Ubiquitous Computing," [Weiser 1991], "The Network

Economy" [Kelly 1997], and "Things That Think" [Gershenfeld 1999]. These pre-

dictions have not yet been realized. Why not?

Processing power has become cheap and plentiful. Dollar for dollar, microcontrol-

lers are a thousand times faster than a decade ago [Moravec 1998]. In the year 2000

alone, the total production of microcontrollers exceeded the world population [Ten-

nenhouse 2000]. These tiny chips are being embedded into everyday objects-

watches, pacemakers, smart cards, traffic lights, children's toys-at a prodigious

rate. Clearly, available processing power is not the limiting factor.

Languages for microcontrollers have also proliferated. Mobile agents [Minar

1999], "thin clients" [emWare 2000], JINI [Sun 2000] and dozens of other compu-

tationally lightweight languages have been developed to support dedicated applica-

A Network on Every Chip

tions in embedded devices. Availability of these languages has not resulted in the

predicted explosion of smart objects.

The steadily falling price of microcontrollers has resulted in situations where the

cost of a single connector can exceed the cost of the microcontroller it connects'. In

the last few years, industry standards such as IrDA [IrDA 1998], IEEE 802.11

[IEEE 1999], and Bluetooth [Bluetooth 1999] have created wireless interconnect

systems that are less expensive than their wired counterparts. Since these wireless

technologies themselves make heavy use of semiconductor technologies, they

enjoy progressively lower cost and increased communication rates per unit power.

Despite the availability of these essential ingredients-cheap, abundant processing;

lithe application languages; and inexpensive wireless links-few everyday objects

show any signs of increased intelligence.

Networking: the missing link

A typical embedded microcontroller works in relative isolation, unable to draw

upon information or exert any influence beyond its immediate realm. For all its

computing power, it is like a genius sequestered in a basement: smart and capable,

but having neither sensory inputs to give it context nor the means to express what it

knows. We are left with ubiquitous but senseless computing and billions of Things

That Think which cannot relate.

Legacy networks are ill-suitedfor Talk is cheap, at least among humans. But for the tiny embedded microcontrollers

linking embedded microcontrol- found in common objects, the cost of discourse remains relatively high. Today's
lers.

digital networks were originally designed to interconnect mainframe and mini-

computers and have been adapted, somewhat awkwardly, to connect PCs and lap-

1. A spot check of a popular electronics part supplier shows that in quantities of one hun-

dred, the popular DB9 serial connector costs $3.12, a microcontroller that processes one

million instructions per second costs only $0.94.

A Network on Every Chip

top computers. These legacy networks are ill-suited for embedded processors: they

cost too much, they consume too much power, and they don't scale well to handle

the hundreds and thousands of connections required in a world of Things That

Think.

Embedded Networking

The lack of effective networking technologies for embedded microcontrollers is

inhibiting the emergence of smart objects. What is required is a new model of net-

working-embedded networking-designed specifically to interconnect embedded

microcontrollers.

A network must attain a critical mass if it is to be useful. As proposed by "Met-

calfe's Law," the value of a network rises as the square of the number of devices

connected. In a world where the number of embedded microcontrollers is growing

exponentially, the only reliable way to arrive at and to maintain critical mass is to

put the network connection directly on the chip.

The domain of Embedded Networking

Herb Simon points out that it is useful to consider a technology as "an 'interface'...

between an 'inner' environment, the substance and organization of the artifact

itself; and an 'outer' environment, the surroundings in which it operates." [Simon

1969]. Embedded Networks are built into embedded processors and provide com-

munication links for specific applications in a relationship portrayed below in Fig-

ure 1. These contexts dictate the fundamental design requirements of embedded

networks.

A Network on Every Chip

Embedded Networking is imple-
mented on microcontrollers (its
"inner environment') and inter-
acts with dedicated applications
(its "outer environment'). Each
environment dictates constraints

upon its design.

FIGURE 1. Context and constraints of embedded networking

Constraints imposed by the host

An Embedded Network node must
not overly tax the microcontroller

chip on which it is built.

The host microcontroller on which the Embedded Network node is fabricated-its

"inner environment"-imposes a set of constraints. The power of microcontrollers

lies in their generality: a single microcontroller architecture is suitable for a broad

range of applications. For embedded networking to be viable, it too must be adapt-

able to a broad range of applications. Since the embedded network system resides

on the microcontroller chip itself, it must not impose a significant burden on the

chip, giving rise to the following design principles:

Low POWER CONSUMPTION

For an embedded network node to be an attractive candidate for integration onto a

microcontroller, it should not exceed the power consumption of the microcontroller

itself.

A Network on Every Chip

One of the consequences of Moore's Law-the proposition that the number of tran-

sistors per unit area of integrated circuit doubles every eighteen months-is that of

reduced power. Smaller devices have lower parasitic capacitance, which in turn

results in reduced switching currents. Microcontrollers now exceed 109 instructions

per second ("1 GIP") per watt, or "one MIP per milliwatt,"2 allowing substantial

computation to be powered by relatively small batteries.

Some of the more aggressive radio designs to date have yielded systems that con-

sume approximately 4 nano Joules per transmitted bit [Carvey 1996]. With a con-

tinuous transmission at 100 KBits/second, these radios will consume 400 kWatts-

a figure on par with the power consumption of modern host microcontrollers.

SMALL SILICON FOOTPRINT

The manufacturing cost of silicon microcontroller chips is correlated to die size.

More smaller chips can be packed onto a single silicon wafer, and smaller chips

have higher yields. In order to keep costs low, the circuitry that implements embed-

ded networking should account for a small percentage of the overall chip size. This

favors networking algorithms with small routing tables and computational simplic-

ity.

Low COMPUTATIONAL OVERHEAD

Computing consumes power. Networking algorithms that require less computation

will be suitable for wider range of applications, especially those that are limited by

available power.

2. As of this writing, several processor families meet or exceed 1000 MIPs per Watt, includ-

ing Intel's XScale based StrongARM, Hitachi SDH-4, Texas Instruments MSP430 and

Toshiba TX19. The list is growing rapidly.

A Network on Every Chip

Constraints imposed by the application

The application-the "outer environment" of Embedded Networking-imposes a

.3second set of design constraints

Things That Think will become woven into our everyday environment, standing

ready to serve wherever and whenever we want them and fading into the back-

ground whenever we don't. The networks linking these devices will create their

own invisible mesh of communication without pre-planning, intentional placement

or maintenance. If a device demands our attention, it should be due to an applica-

tion-specific imperative and not due to a failing of the network4.

The major design principals for Embedded Networking imposed by its Outer Envi-

ronment can thus be summarized as follows:

INSTANT INFRASTRUCTURE

It is unreasonable to expect people to configure and administer a network of Things

That Think. An Embedded Network must serve its users, not the other way around.

This requires a network system that is created upon demand and automatically

reconfigures itself as devices are added to or removed from the network.

SELF-CONFIGURING, "DISPOSABLE" NODES

Properly designed Things That Think will have networking built in, not added on,

which will be reflected in their usage: devices will become integrated into a net-

work simply by physically bringing then into the networking environments. The

3. In this setting, application means "the task to which the system is applied" as opposed to

"software written in support of a task."

4. In the terminology of philosopher Martin Heidegger, Embedded Networking should sup-

port devices that are "ready to hand" without causing them to become "present at hand."

A Network on Every Chip

network should support dynamic discovery and routing so that network services

remain available as much as possible, even as devices go off-line or move.

The lifetime of a network connection will be the same as the lifetime of the object

into which it is embedded. The day you dispose of an object, you dispose of the net-

work connection without giving it a second thought.

CASUAL PLACEMENT

Conventional wireless networks are carefully planned with respect to location,

usage patterns and density. By contrast, the quantity and density of an Embedded

Network cannot generally be known beforehand. The design of an Embedded Net-

work should support a broad range of possible device configurations, from the few

to the many and from very sparse to very dense.

Contributions of this thesis

GRAD - GRADIENT ROUTING FOR AD HOC NETWORKS

Chapter 4 describes "GRAd," a decentralized, self-organizing, multi-hop network

architecture that addresses many of the design issues outlined above. GRAd's rout-

ing algorithms offer dynamic discovery and routing, and are shown to be robust

even in networks with a high degree of topological change. Its multi-hop approach

offers significant savings in radio transmit power. The decentralized approach used

by GRAd avoids the congestion of a single base station or access point, allowing it

to support up to thousands of nodes. By allowing redundancy among relaying

nodes, GRAd exhibits improved reliability over unreliable links. GRAd exploits a

simplified Medium Access (MAC) layer to attain lower power per transmitted bit

than other comparable networking algorithms. By storing only information about

5. Some applications may call for "imprinting" a device prior to its use, for example to

establish ownership. See [Stajano 1999] for an excellent description of how this can be

implemented.

A Network on Every Chip

routing endpoints, GRAd's routing tables stay relatively small, and its networking

algorithms are computationally simple-both of these points work together to make

GRAd ideal for direct implementation on embedded microcontrollers.

DISTRIBUTED SYNCHRONIZATION

While multi-hop routing can significantly reduce the power used for radio transmis-

sions, it doesn't address the power used for reception, which has been shown to

dominate the power budget of conventional self-organizing wireless networks

[Wheeler 2000]. Chapter 5, "Distributed Synchronization," shows how nodes in a

wireless network can synchronize to one another without depending on a central-

ized time base. Once synchronized, nodes can significantly reduce their power con-

sumption by enabling their radio receivers at selected times.

STATISTICAL MEDIUM ACCESS

Because the placement of nodes in an embedded network are not generally pre-

planned, the network can experience a wide range of node density. Chapter 6, "Sta-

tistical Medium Access," explores the effects of variable density. It will be shown

that nodes can use a technique of "statistical medium access," to maximize the like-

lihood of successful transmission in a crowded environment. The probability of

success converges as l/e for an arbitrary number of co-located nodes.

ARBORNET

Chapter 7 presents "ArborNet," a prototype implementation of an embedded net-

work. Built from commercial off-the-shelf components, ArborNet employs the

basic techniques developed by this thesis to implement a self-organizing, wireless

sensor network.

A Network on Every Chip

The promise, revisited

An Embedded Network is a new paradigm in networking, and offers several bene-

fits over conventional wireless networks.

* Instant Infrastructure-A node in an Embedded Network can join a network

simply by bringing it within range of other nodes. This is important for creating

"ad hoc" networks quickly on demand, such as in military and emergency appli-

cations. Embedded Networks are especially well suited for consumer applica-

tions, since new devices can be integrated into a network with minimal effort.

" Proxy Intelligence-A clock should know how to set itself. A child's toy should

be able to recognize its owner's voice. No particular "intelligence" is required in

the clock or toy when an Embedded Network links these devices to other com-

putational services.

" Data Aggregation-Today's computers have been described as "deaf and

blind" [Pentland 1998], sensorially deprived and unable to act sensibly. Embed-

ded Networks can be used to gather crude data from hundreds or thousands of

sources for distillation into high-quality information.

" Cheap Links-In many cases, the cost of physical links is a significant part of a

total system budget. For example, a light switch costs only about $2 for the

switch itself, but the cost of conduit, copper wire, and installation time brings

the installed cost to over $70. In many cases, Embedded Network links offer

inexpensive alternatives to wired connections.

What will happen?

What will happen when every embedded microcontroller comes equipped with its

own wireless, self-organizing, scalable network connection? Answering this ques-

tion is a bit like trying to anticipate the effects of the Internet a decade ago. It was

widely believed that the Internet could make a large difference in the way we com-

municate, but few people could anticipate the depth and breadth of its effects.

A Network on Every Chip

So it is with embedded networking. While it may not be possible or practical to

anticipate the specific manifestations of embedded networking, it is entirely reason-

able to believe that the implications will be large. Some of the applications are easy

to imagine:

" ArborNet-understanding the biosphere of the forest floor A paper company

owns thousands of acres of forest but, short of sending in survey crews, has little

knowledge of the ecology and health of the forest. So they create a small "dart"

with a tiny analysis lab in the tip and a radio link in the tail. Thousands of these

darts are scattered from an airplane over the forest, forming a complete commu-

nication mesh that informs the company about drought, flood, or fire conditions.

* OmniSense-an office building on-line. Once every light switch, thermostat,

door jamb and motion detector of a building are connected to a network, power

and security systems can be precisely managed. Over time, the system can learn

the patterns of usage, allowing it to anticipate ordinary events and to flag abnor-

mal conditions.

" Vox Populi-an inter-village telephone system. Imagine a telephone system that

is as easy to set up as handing out telephone handsets. There is no expensive

base station-the telephones themselves become the network. And as a boon (or

a bane) to the prevailing government, a system can be designed for which cen-

tralized control is neither necessary nor possible.

" GridKey-a solution to urban gridlock. Each street corner of a city has a simple

sensor that detects the passage of cars. All of the sensors are networked together

so analysts-both human and computer-can form a city-wide picture of traffic

patterns, adjusting traffic signal timing and issuing advisories to reduce conges-

tion. Individuals can access this information via mobile devices and plan their

routes accordingly.

Perhaps the best way to learn about the implications of embedded networking is to

build them. Herein lies the crux of this thesis.

Embedded Networking

CHAPTER 2 Precedents in Wireless Networks

Existing standards do not address
the needs of Embedded Networks.
In their quest to communicatefur-

ther andfaster, none yield net-
works that are simultaneously

self-organizing, low-power and
scalable.

In the early 1970s, the Packet Radio Program, funded by the Advanced Research

Projects Administration (ARPA), and Norm Abramson's AlohaNet laid the

groundwork for wireless digital networks [Kleinrock 1987][Abramson 1985].

Since that time, wireless digital communication systems have grown both in range

and capability. Satellite-based systems provide global wireless networks. Locally,

high-speed wireless links are commonplace in today's office buildings.

Wireless Local Area Networks (WLANs) offer high speed communication over

short distances. The popular 802.11 standard offers communication rates of 11

megabits per second over a range of 200 meters [IEEE 1999]. Wireless Wide Area

Networks (WWANs) offer longer range at reduced bit rates, as exemplified by the

UMTS standard with a bit rate of two megabits per second carried over cellular

telephone networks [UMTS 2000].

BLESSED ARE THE MEEK...

Wireless LAN's are optimized for speed, wireless WAN's are optimized for dis-

tance. By contrast, the important attributes for embedded networks are neither

speed nor distance, they are power and scalability at a low cost. When voice or

image data need to be transmitted, current networks may be the most appropriate.

However, for many everyday objects, communication rates on the order of bits per

hour-not megabits per second, will suffice. Figure 2 highlights the natural home

Precedents in Wireless Networks

of embedded networks: low bit-rate short-haul communications, an area left

untouched by conventional wireless networks.

10 Hi
8

1 Bluetooth)Home

0.1

Embedded
0.01 Networks

0.001

perLAN
02.11

Roofto 'P tIETS

'EDGE

GPRS

'choch t NPCS
R N

OBITEX
>' CDPD

100 1000

Distance (Meters)

10000 100000

FIGURE 2. Distance versus bit rate for wireless standards

As established in Chapter I, a viable embedded network will have a multi-hop

architecture with decentralized control. It will have dynamic routing and will also

incorporate power conservation techniques in its core design. As shown in Table 1

below, in their quest to communicate further and faster, none of the existing stan-

dards simultaneously address all four of these attributes.

Precedents in Wireless Networks

TABLE 1. Packet switched wireless networks

wireless standard attributes

comments
4-

o 0 o

AlohaNet x x full flood

Packet Radio x x x long-haul

Bluetooth x x Eight nodes per piconet

802.11 x x base station mode

802.11 peer-to-peer x x peer to peer mode

Hiperlan/1 x x similar to 802.11

Hiperlan/2 x x proposed multi-hop option

DECT x x designed for packetized voice

HomeRF x x Hybrid of 802.11 and DECT

Metricom Ricochet

Nokia Rooftop

MANET working group

CDPD, UMTS, EDGE, GPRS

N-PCS, MOBITEX

fixed "pole top" units

One Access Point per dozen nodes.

Not a commercial standard (yet)

Cellular Telephony networks

Two-way pager networks

Legacy systems

ALOHANET

AlohaNet was developed in the 1970s by Norman Abramson and his colleagues,

and is one of the earliest packet-switched wireless digital networks. It used ground-

based radios transmitting on a single shared channel. While this architecture is not

generally scalable--congestion increases with the number of nodes-AlohaNet and

Precedents in Wireless Networks

its analysis spawned many other systems, including Ethernet and TDMA protocols

for satellite communication.

PACKET RADIO

Packet Radio systems are among the earlier examples of multi-hop wireless com-

munication systems1 . In 1972, the ARPA launched the Packet Radio Program,

designed to develop robust communication systems for the battlefield. In the late

1970s, amateur radio operators developed "Terminal Node Controllers" (TNCs) to

form digital links among meshes of ham radios. Since then, TNCs have evolved to

support several forms of multi-hop communications, including static and dynami-

cally discovered routing (ROSE and NET/ROM respectively).

Local Area Networks

BLUETOOTH

Developed by an industry consortium, Bluetooth specifies a radio and access proto-

col. The radios are spread-spectrum in the 2.4GHz band, and will form ad-hoc

"piconets" of up to eight devices. Within each piconet, one device is the local mas-

ter and chooses a spreading code. Other devices within that piconet use the master

for control and synchronization. One master may participate in multiple picnonets

to form a "scatternet," but the specification does not support multi-hop communica-

tion.

802.11 WIRELESS LAN

IEEE 802.11 has been widely adopted as an industry standard for Wireless Local

Area Networks. Links are specified as 2.4 GHz spread-spectrum transceivers using

1. To be fair, Packet Radio was hardly the first multi-hop wireless communication network:

Napoleon's Optical Telegraph, built before the turn of the 19th century, predated packet

radio by 170 years.

Precedents in Wireless Networks

CSMA protocols. Channel data rate is as high as 11 MBits/sec. 802.11 works well

for linking several dozen devices to a wired Access Point (base station), but will not

scale well to higher densities.

802.11 also specifies an ad hoc mode, which provides point to point links at the

expense of frame relay and power savings support.

HIPERLAN

Hiperlan/1 (High Performance European Radio Local Area Network) has been

developed by ETSI (the European Telecommunications Standards Institute) as a

second generation wireless local area network. It supports bit rates of 20 MBits/sec-

ond at distances of up to 50 meters. The standard specifies the physical layer (PHY)

and the Medium Access Layer (MAC), and while it admits the possibility of a

multi-hop architecture, it does not specify how it should be implemented.

Hiperlan/2 is a new WLAN standard being developed at ETSI. It specifies channel

bit rate of 54 MBit/second with intra-nodes distances up to 100 meters.

DECT

Development of the DECT (Digital Enhanced Cordless Telecommunications) spec-

ifications was started in the mid-1 980s and finished in 1992 by ETSI. Originally

developed as a standard for cordless telephones, the scope of DECT has been

expanded to support general digital radio access. The current standard offers a base

station architecture with wireless data links of 1.152MBits/second over a range of

100 meters. According to Ericsson, DECT permits the highest user densities of any

cellular system, up to 100,000 nodes per square kilometer2

2. See the online document http://www.ericsson.com/BN/dect2.html for more

information.

Precedents in Wireless Networks

HOMERF

The HomeRF Working Group is creating specifications for low-cost intra-home

networking named SWAP (Shared Wireless Access Protocol). SWAP has adopted

a hybrid approach, using 802.11 protocols to carry data and DECT protocols to

carry voice. A SWAP network will support up to six voice conversations and up to

127 devices in each network.

As in 802.11 networks, a SWAP network can work in ad hoc mode, in which all

devices have equal access to the network, and in managed mode, in which one cen-

tral device coordinates the operations of the other nodes in the network.

Wide Area Networks

RICOCHET

Developed by Metricom Corporation of Los Gatos, CA, the Ricochet Network is

one of the first commercial multi-hop wireless digital networks. A mesh of Net-

work Radios, typically mounted on utility poles one to four kilometers apart, relay

packets between Wireless Modems and wired Access Points. The first generation

of Wireless Modems offered users a channel data rate of 28.8 kilobits per second;

newer Modems provide 128 kilobits per second.

A Ricochet network is a multi-hop system, but not self-organizing: adding a new

Network Radio to the mesh requires manually incorporating it into the network and

setting up static routing to the nearest wired Access Point.

ROOFTOP

Rooftop Communications (recently purchased by Nokia) offers wireless network-

ing products that form a multi-hop, dynamically routed mesh of terrestrial radios.

Each radio runs in the 2.5 GHz ISM band, supports link rates of 1.6 MBits/second,

and has a range of approximately three miles.

Precedents in Wireless Networks

CDPD, UMTS, EDGE, GPRS

CDPD (Cellular Digital Packet Data), UMTS (Universal Mobile Telecommunica-

tion Systems), EDGE (Enhanced Data Rates for Global Evolution) and GPRS

(General Packet Radio Service) are wireless systems that use cellular telephone net-

works to carry digital data. Data rates range from 19.2 kilobits per second (CDPD)

to a predicted rate of 2 megabits per second (UMTS).

N-PCS, MOBITEX, ARDIS

N-PCS (Narrowband Personal Communication Services), MOBITEX and ARDIS

(Advanced Radio Data Information Services) are essentially two-way pager sys-

tems. Low bit-rate data is transferred between individual mobile units and high

power base stations. Data packets are usually of limited size, and data rates range

between 8 and 24 kilobytes per second.

Other multi-hop protocols

MANET

The mobile ad-hoc network (MANET) working group is an effort within the IETF

(Internet Engineering Task Force) to develop and evolve routing specifications for

wireless ad-hoc networks containing "up to hundreds" of nodes. The working

group has already published ten Internet Drafts for discussion and debate, and cov-

ers such topics as adaptive routing and quality of service.

A standard benchmark for MANET network protocols assumes that they are imple-

mented using 802.11 wireless links running in point-to-point "ad hoc" mode. In this

mode, individual neighbors must be known in order to achieve media access, and

the three way handshake at each packet transfer increases latency. Power conserva-

tion is not possible as the receiver cannot be turned off.

Precedents in Wireless Networks

OTHER PROTOCOLS

The last few years have seen many developments in ad hoc, multi-hop routing pro-

tocols. Active areas of research include data-directed routing for network effi-

ciency, data aggregation to reduce network traffic and choosing cluster heads

dynamically to reduce per-node power requirements [Intanagonwiwat 2000], [Hei-

nzelman 2000]. These techniques show promise as important components of

Embedded Networking systems.

What's missing?

Although existing wireless standards address a range of applications from low bit

rate, long distance communication to high-bandwidth, short haul systems, none of

them have the right mix of scalability, self-organization and low-power required as

a basis for embedded networking. A re-thinking of the network is needed.

Embedded Networking

CHAPTER 3 Multi-hop Communications

Imagine you are at a party where the conversation flows as freely as the cham-

pagne. Suddenly, a guest picks up a bullhorn and shouts out in a booming voice to

his friend on the opposite side of the room, askingfor some more duck canape. The

sound is deafening, and all other conversation comes to an abrupt stop.

The virtues of whispering

Many familiar wireless communication systems, including cellular telephones,

two-way pagers and wireless LANs use a single-hop design: a central base station

or access point maintains direct radio communication with each terminal node of

the network. A single-hop system can be likened to that bullhorn: whenever the

base station transmits, it precludes other communication within its area.

By contrast, in a multi-hop wireless network, each node transmits with reduced

power, communicating with a set of neighboring nodes within a limited range.

Those neighboring nodes in turn relay the message on behalf of the originator, and

so on, until the message arrives at intended destination.

Multi-hop communication con-
serves transmitter power and
increases system bandwidth.

Multi-hop networks offer advantages over their single hop counterparts. By reduc-

ing the transmit range in each node, multi-hop networks offer substantial power

savings. Multi-hop networks exploit spatial reuse, yielding higher effective band-

width. And by reducing the overall levels of radio interference and noise, multi-hop

networks can scale to handle more nodes than single-hop networks.

Multi-hop Communications

Single-hop and multi-hop: an idealized
comparison

In a single-hop network, each radio transmits with sufficient power to reach its ulti-

mate receiver without intervening relays. In a multi-hop system, each radio trans-

mits with enough power to reach one or more neighboring nodes, which will in turn

relay the message until it reaches its final destination.

A representation of single hop communication is shown in Figure 3.

FIGURE 3. Single hop communications

/
I

/

N0 distance = D NA

I
I

I

Multi-hop Communications

In Figure 3, No is the originating node, ND is the destination node, and the two

nodes are separated by a distance D. The transmit power required to span a distance

of D is defined to be P.

A multi-hop uses multiple relay stations to get the message from No to ND, as illus-

trated in Figure 4.

FIGURE 4. Multi-hop communications

Given a system that requires P units of power to transmit its message in a single

hop and a path loss exponent of e, the per-node power required to send the message

using h hops can be approximated by

Multi-hop Communications

P,(h) = Ph e (EQ 1)

The system-wide transmit power is the sum over h hops, or

P,(h) = Ph e (EQ 2)

The path loss exponent in free space has a theoretical value of 2 for free space, but

is typically cited as 4 or higher for office or urban environments.

Assume for the moment that each transmitter covers a perfectly circular area, and

the distance covered by a single hop system is D. Assume that the transmitters in an

h hop system are equally spaced at distance d = D/h. If each transmitter uses the

minimum amount of power to reach the next receiver, the total area covered by the

transmitters is given by

A,(h) = nd 2 +(h - l)d2(- 1 (EQ 3)

If we define k = - 1) , Equation 3 can be written as:

At(h) = d2hk+d 2 Ot-k). (EQ 4)

Substituting D/h for d in equation 4 yields:

A,(h) = D2(+ (2 k)7c - . (EQ 5)

Equation 5 tells us that the area covered by transmitters in a multi-hop system

decreases roughly linearly with the number of hops.

Power savings

The rather idealized system using h hops has several advantages compared to its

single-hop counterpart. The power required by each node is reduced by h', while

Multi-hop Communications

the total power consumed by the system is reduced by a factor of h(e-) and the total

area covered by transmission is reduced by a factor slightly larger than h.

As an example, assume a single hop system with a transmit distance of 100 meters

in an office environment with a path loss exponent of 4. If we replace the single hop

system with a 10 hop system, the transmit power per node is reduced by a factor of

10,000, the total system power is reduced by a factor of 1,000, and the area covered

by the transmissions is reduced by approximately a factor of 12.

Figure 5 summarizes the relative transmit power for a variety of hops and path loss

exponents.

1

0.1

0
0.
(D 0.01

0.001

0.0001
1 2 3 4 5 6

nurber of hops

7 8 9 10

FIGURE 5. Per-node transmitter power (relative to single hop)

Multi-hop Communications

The power savings in a multi-hop network can be substantial. For example, in an

environment with a path loss exponent of 4, transmitters in a five hop system

require 0.0016 of the power compared to a single hop system.

Effects of non-uniform spacing

In the multi-hop scenario given above, relaying nodes are assumed to be evenly

spaced between the source and the destination with the transmitter power set to the

absolute minimum for reliable communication. In a practical embedded network,

nodes will unevenly spaced, and some amount of redundancy and overlap must be

expected if there is to be a continuous, reachable path between the originator and

destination nodes.

The effect of overlap does not change the per-node transmitter power required, but

it does increase the number of nodes involved in relaying the message and thus the

total system-wide transmit power. Assuming a factor of N redundancy, the system-

wide power of Equation 2 becomes:

P,(h) = PNh e (EQ 6)

Revisiting the example of a ten hop network with a path loss exponent of 4: if this

network has a factor of five redundancy, this represents a factor of 200 reduction in

total transmitted system power compared to its single-hop counterpart.

The effect of overlap is to increase the total system-wide power by a linear multi-

plier, while the savings in power through reduced distance are exponential. The net

effect is that a multi-hop system conserves transmit power compared to a single-

hop system, even when taking non-idealized spacing of nodes into account.

Summary

Multi-hop systems offer several advantages over single-hop systems.

Multi-hop Communications

REDUCED TRANSMITTER POWER

In a multi-hop system, the reduced distances between nodes allows the transmitter

power to be reduced exponentially. For example, assuming a path loss exponent of

4, if the 100 meter range of an 802.11 wireless LAN node is reduced to ten meters,

its transmitter power may be reduced by 40 db, or a factor of 10,000. This reduction

in power results in longer battery life for individual nodes, and reduces the overall

amount of clutter in the airwaves.

SPATIAL REUSE

In a single-hop system, transmissions from a base station to a single mobile node

blanket the airwaves surrounding the base station. In a multi-hop system, the area

covered by transmissions are localized by approximately a factor of h, where h is

the number of hops. This permits simultaneous transmissions to take place in phys-

ically separate parts of the network-a technique sometimes referred to as Spatial

Division Multiple Access (SDMA). Since the airwaves can support multiple trans-

missions, the effective bandwidth of the overall system increases.

MAPPING THE TOPOLOGY

In a single-hop system, a node is either within range of the base station or not: noth-

ing is learned about the topology of the network. In a multi-hop system, the topol-

ogy of the network can be acquired as the nodes converse with one another. This

information can be used to establish optimal routes or physically locate a node. 1

1. Using a wireless network topology to model physical topography doesn't always work as

well as one would hope, as will be shown in Chapter 7.

Embedded Networking

CHAPTER 4 GRAd Gradient Routingfor Ad Hoc
Networks

This chapter presents Gradient Routing (GRAd), a novel approach to routing and

control in wireless ad hoc networks. A GRAd network attains scalability through a

multi-hop architecture: nodes that are not within range of one another can commu-

nicate by relaying messages through intermediate neighbors. Routing information

is established on-demand and is updated opportunistically as messages are passed

among nodes.

Unlike other ad hoc routing techniques, a node in a GRAd network does not single

out a particular neighboring node to relay its message. Instead, it advertises its

"cost" for delivering a message to a destination, and only those neighboring nodes

that can deliver the message at a lower cost will participate in relaying the message.

In this way, a message descends a loop-free "gradient" from originator to destina-

tion.

Since multiple neighbors can participate in the relaying of messages, GRAd main-

tains good connectivity in the face of frequently changing network topologies. A

node does not need to know the identities of its neighbors and establishes routes on

demand, making periodic "hello" beacons unnecessary and increasing the overall

security of the network. Because GRAd does not use link to link handshakes, end-

to-end latencies remain small.

The challenge

In any wireless ad hoc network, a major challenge lies in the design of routing and

network control. Lacking any centralized point of control, nodes in an ad hoc net-

GRAd: Gradient Routing for Ad Hoc Networks

work must cooperatively manage routing and medium access functions. Nodes may

be mobile, creating continual changes in the network topology. Also, wireless links

are not as robust as their wired counterparts; high bit error rates and packet losses

are commonplace.

In the last decade, a number of ad hoc network protocols have been proposed. As an

indicator of the amount of activity in this field, the Internet Engineering Task Force

(IETF) recently formed the Mobile Ad Hoc Networking (MANET) working group

to develop ad hoc protocol specifications and introduce them into the Internet Stan-

dards track [Macker 2000]. At this time, there are eight separate ad hoc routing

protocols under consideration by the working group.

GRAd falls under the category of on-demand routing protocols, in which routes are

established only when nodes wish to communicate with one another; no attempt is

made to maintain state when there is no data to send.

In other on-demand routing protocols such as the Ad Hoc On-Demand Distance

Vector Routing protocol (AODV) [Perkins 1999] and the Dynamic Source Routing

protocol (DSR) [Johnson 1999], a node relays a message by sending to a particular

neighboring node. The popular 802.11 MAC layer protocol uses "virtual carrier

sensing" as part of its collision avoidance mechanism for such unicast transmis-

sions [IEEE 1999], requiring a request to send! clear to send handshake (RTS/

CTS) between each pair of wireless links. This exchange contributes to significant

delays in the relaying of messages, resulting in long latencies.

By comparison, a node in a GRAd network makes no attempt to identify which of

its neighbors is to relay a packet. Instead, it includes its "cost to destination" infor-

mation in the packet and broadcasts it. Of all the nodes that receive the broadcast,

only those that can deliver the packet at a lower cost will relay the message. In this

way, the packet descends a loop-free "gradient" towards the ultimate destination.

GRAd: Gradient Routing for Ad Hoc Networks

Since each transmission is a local broadcast, GRAd does not (and in fact, cannot)

use the RTS/CTS handshake associated with unicast transmissions. Consequently,

GRAd exhibits very low latencies.

GRAd collects cost information opportunistically: each message carries with it the

cost since origination, which is recorded at each node that overhears the transmis-

sion, and is incremented when the message is relayed. Thus, the simple act of pass-

ing a message quickly and efficiently updates the cost estimates in nearby nodes.

GRAd demonstrates very good immunity to rapidly changing topologies. Since

each message reaches a number of neighboring nodes, a single link failure will not

cause a break in the communication path as long as another neighbor is available to

relay the message.

The GRAd algorithm

ASSUMPTIONS

GRAd is designed for use in multi-hop wireless networks, and makes relatively few

assumptions about the underlying physical medium. It does assume that links are

symmetrical: if Node A can receive messages from Node B, then Node B can

receive messages from Node A. In a practical wireless network, strict symmetry is

impossible to guarantee due to the mobility of the nodes and time-varying environ-

mental noise. As will be shown in by simulation, GRAd continues to work well in

cases where only partial symmetry holds.

GRAd assumes a local broadcast model of connectivity. When a node transmits a

message, all neighboring nodes within range simultaneously receive the message.

GRAd provides best effort delivery of messages with the understanding that higher-

level protocols will handle retransmission and reordering of packets as needed.

GRAd: Gradient Routing for Ad Hoc Networks

The propagation of a message through the network establishes and updates reverse

path routing information to the originator of the message. Consequently, GRAd is

most efficient when the network traffic has a "call and response" pattern, such as

streamed packet data with periodic acknowledgments.

GRAD MESSAGE FORMAT

Messages passed among nodes in a GRAd network carry a header containing the

fields shown in Table 2. A description of each field follows.

msgtype originator-id seq_# target-id accrued-cost remaining value

TABLE 2. GRAd message format

msgtype: Takes on one of two values, MREQUEST for a reply request message

and MDATA for all others.

originator id: The id of the node originating this message. This id may be stat-

ically assigned, or may be dynamically generated on a per-session basis.

seq_#: A sequence number associated with the originator id, and incremented

each time the originator issues a new message. The combination of

[originator id, sequence_#] uniquely identifies a message, so a receiving

node can distinguish a new message from a copy of a message already received.

targetid: The id of the ultimate target for this message.

accruedcost: Upon origination, the accruedcost of a message is set to 0.0.

When the message is relayed, the relaying node increments this field by one. Thus,

accruedcost represents the estimated number of hops required to return a mes-

sage to originator id.

remaining-value: Upon origination, this field is initialized to the estimated

number of hops to targetid. Whenever the message is relayed, this field is dec-

GRAd: Gradient Routing for Ad Hoc Networks

remented by one. The remainingvalue field represents the "time to live" of the

message: if it ever reaches zero, the message is dropped.

COST TABLE

Each node maintains a cost table, analogous to the routing table of other algo-

rithms 1 . The cost table plays two important roles in GRAd. First, the cost table can

answer the question "Is this message a copy of a previously received message?"

This is determined by comparing the seq_# in the message from a particular origi-

nating node against the last seq_# recorded in the cost table for that originator.

Second, it can answer the question "What is the estimated cost of sending a mes-

sage to target node X?" This cost estimate is formed by recording the

accruedcost fields for each origninator id in received messages.

COST TABLE FORMAT

Each entry in the table holds state information about a remote node, as shown in

Table 3.

targetid seq_# est cost expiration

TABLE 3. Cost table entry

target id: The id of a remote node to which this cost entry refers.

seq_#: The highest sequence # received so far in a message from target id.

When compared against the seq_# of a newly arrived message, this field discrimi-

nates between a new message and a copy of a previously received message.

estcost: The most recent and best estimated cost (number of hops) for deliver-

ing a message to target_id.

1. The term "cost table" is chosen over the more conventional "routing table" to emphasize

that GRAd does not prescribe a specific route to a target node, but rather it maintains an

estimated cost to the target.

GRAd: Gradient Routing for Ad Hoc Networks

expiration: When a cost entry is updated, this field is set to the current time plus

cost_entry_timeout. If the current time ever exceeds expiration, the cost

entry is purged from the table.

COST TABLE MAINTENANCE

When a message is received at a node, the originator id of the message is com-

pared against the target_id of each entry in the cost table.

If no matching entry is found, a new cost entry is created, for which target id is

copied from the message's originator id, seq_# is copied from the seq_#

field, and estcost is copied from the accruedcost field. The message is

marked as "fresh."

If a targetid is found that matches the originator id of the incoming mes-

sage, and if seq_# in that entry is lower than the seq_# of the incoming message,

the message is marked fresh and the cost entry fields are updated from the corre-

sponding fields in the message.

Otherwise, the message is marked as "stale"-it is a copy of a message previously

received. However, if the messages offers a lower cost estimate in its

accrued-cost field than the recorded cost in the est cost field, the lower cost

is recorded. This has the effect that if a copy of a previously received message sub-

sequently arrives by means of a shorter path, the shorter path is recorded.

MESSAGE ORIGINATION AND RELAYING

When a node wishes to send a message to a destination for which the cost to the tar-

get is known, it transmits a message with the msgtype field set to MDATA, speci-

fying the destination in the target _id field and the cost to that destination in the

remaining-value field.

Of the neighboring nodes that receive the message, only those that can relay the

message at a lower cost, as indicated by their cost tables, will do so. Before a neigh-

GRAd: Gradient Routing for Ad Hoc Networks

boring node relays a message, it debits the remaining-value field by one. As this

process repeats, the message "rolls downhill," following an ever decreasing gradi-

ent from the originator to the target.

At the same time, the message carries the originator of the message in the

originationid field and the accumulated relay cost since origination in the

accruedcost field. Upon origination, the accruedcost is set to 0. Each node

that receives the message increments the accruedcost field of the message and

then updates its cost table entry for the originating node based on this information.

If and when the message is relayed, it is re-sent using the incremented

accruedcost. By this process, any node that receives a message can update its

cost estimate for returning a message to the originating node, whether or not the

node is actively involved in relaying the message.

REPLY REQUEST MESSAGES

When a node wishes to send a message to another node for which there is no entry

in the cost table, it initiates a "reply request" process. To do so, the originating node

transmits a message whose msgtype field is set to MREQUEST, specifying the

destination in the target_id field and initializing the remaining-value field to

defaultrequest cost.

Relaying of the message proceeds much in the same manner as for a MDATA meS-

sage, but with one important exception: any node that receives an MREQUEST mes-

sage will always relay the message the first copy of the message it receives, unless

the remaining-value field has reached zero. As with an MDATA message, the

node will increment the accruedcost and decrement the remaining-value

fields of the message before relaying the message.

If a node receives a copy of a previously received message, it will update its cost

table entry for the originator of the message if the copy represents a lower cost to

the originator, but the node will not relay the copy.

GRAd: Gradient Routing for Ad Hoc Networks

Two important things happen in the reply request process. First, if the destination

node is present anywhere in the network (within a radius of

def ault_requestcost hops), it will receive the MREQUEST message and ini-

tiate a reply. Second, each node that receives the MREQUEST message establishes a

cost estimate for returning a message to the originator. Consequently, when the des-

tination node responds to the originating node's request, it can use the more effi-

cient MDATA message to deliver the reply.

CALL AND RESPONSE

GRAd is uses on demand routing: none of the nodes have any a priori knowledge

of one another. Until a node turns on its transmitter, its presence in the network is

not known to other nodes. The general rule for such networks is "if you wish to be

spoken to, you must first speak."

The following two figures illustrate the Reply Request process in an ad hoc net-

work, in which Node A initiates a request to Node B, and Node B subsequently

responds. It is assumed that initially none of the nodes in the network have any

knowledge about nodes A or B.

Figure 6 shows the state of the network after the propagation of a Reply Request

message from Node A to Node B. The dashed circle around Node A shows the

range of an individual transmitter. Node A starts by transmitting a Reply Request

message with an accrued cost of 0 and a target id set to the ID of Node B. The two

neighbors to A each increment the accruedcost field of the message, record the

fact that they are each one hop away from A, and relay the message. This process

GRAd: Gradient Routing for Ad Hoc Networks

continues until all the nodes in the network have received and relayed the Reply

Request message.

FIGURE 6. Reply Request from node A to node B

By the time A's Reply Request message has arrived at node B, all of the interven-

ing nodes in the network have established a cost estimate for returning a message to

A, as shown by the numbers next to each node in Fig. 1.

When Node B receives the Reply Request message from Node A, it responds by

originating an "ordinary" message with msgtype set to MDATA, accruedcost set

to 0, and remainingcost set to 3, the known cost required to reply to Node A.

Referring to Figure 7, when B transmits this message, the neighboring nodes C and

D lie within range and receive the transmission. The cost table of C indicates that A

is two hops away, and since the message has an advertised remainingcost of

three, node C should relay the message after decrementing its remainingcost.

Node D, on the other hand, is four hops away from node A, and since it is unable to

relay the message at a cost lower than the remainingcost advertised by the

message, it drops the message.

Al=0

cost to A = 0

GRAd: Gradient Routing for Ad Hoc Networks

FIGURE 7. Node B replies using the reverse path

As the message is relayed towards A, intermediate nodes also create entries for

returning a message to node B. Figure 7 shows the state of the cost tables after the

reply has been received at Node A. Next to each node that participated in the reply,

the estimated cost for sending a message to node A is shown to the left of the verti-

cal bar, the cost to node B is shown to the right.

In this example, nodes D and E received the message from B, but did not actively

participate in relaying it. Nonetheless, by virtue of "overhearing" the message,

these nodes have established an estimated cost for sending a message to Node B

should the need ever arise.

ROUTE REPAIR

As nodes in the network enter or leave the network, or move relative to one another,

the topology of the network can change dynamically, rendering the individual

nodes' cost estimates inaccurate.

If the path between originator and target becomes shorter, GRAd will automatically

compensate for the change by "skipping over" one or more intervening nodes, and

GRAd: Gradient Routing for Ad Hoc Networks

the revised cost estimates will be reflected in the participating nodes' cost tables

after a single call and response pair of messages.

In the event that the path become longer, or intervening nodes change their posi-

tions, there is the possibility that the originator's cost estimate no longer has suffi-

cient "potential" to reach the target destination.

GRAd uses end-to-end acknowledgments. If an acknowledgment is not received

within a fixed amount of time, the originator can re-send the message, but this time

using a higher estimated cost to the destination in the remainingcost field of

the message. This has the effect that more intermediate nodes will participate in

relaying the message towards its destination. As before, by the time the message

reaches its destination, all of the intermediate nodes will have fresh cost estimates

for returning a message to the originator, so the destination node's acknowledge-

ment will be able to follow an updated gradient back to the originator.

If the first attempt to re-send a message with an increased estimated cost fails to

reach the destination, the originator can repeat the process, incrementing the initial

estimated cost each time.

If, after several attempts, the message fails to reach the destination, the originator

can issue a new Reply Request message to create fresh cost estimates from scratch.

IMPLICIT ACKNOWLEDGMENT

To reduce the number of redundant messages transmitted, GRAd uses a variant of

passive acknowledgment called implicit acknowledgment. A message to be relayed

is stored in a MAC-level buffer while it awaits transmission. If a node overhears a

neighbor relay a copy of that same message, but at a lower remaining_cost, then

the node can assume that the neighbor has succeeded in delivering the message

closer to the destination than this node, therefore it can delete the message from the

MAC queue and cancel its transmission.

GRAd: Gradient Routing for Ad Hoc Networks

When the ultimate target node receives a message, it re-transmits the message with

a remainingcost set to zero. This has the effect of notifying any neighbors still

waiting to relay the message that the target has received the message and that they

may abandon their efforts.

Simulation and results of GRAd

Performance of GRAd was simulated using Jasper [Poor 2001], an event driven

network simulator. The main objectives of the simulation were to characterize the

performance of GRAd as a function of transmitted packets and the amount of

mobility among the nodes in the network.

SIMULATION ENVIRONMENT

Jasper provides detailed models for components of a multi-hop, mobile, wireless ad

hoc network.

The radio modelled by Jasper emulates an FM or spread-spectrum radio, such as

would be used in a wireless local area network, operating in an urban or dense

office environment. In the absence of other transmissions, a transmitter/receiver

pair has a nominal range of 250 meters. Transmit power falls off as the cube of the

distance, and a receiver can acquire lock on a transmitter if the signal to interfer-

ence ratio exceeds 10db. Once locked, a receiver can hold lock as long as the signal

to interference ratio exceeds 6db. During reception of a packet, if the signal to inter-

ference ratio drops below 6db, the packet is marked as corrupted. The bit rate of the

transmitter is 2Mb/sec.

GRAd's MAC layer uses a technique of carrier sense with exponential backoff:

when a node wishes to transmit a packet, it first waits for a random interval

between Tb and 2 Tb seconds. At the end of that time, if the carrier sense detects that

the local airwaves are in use, it doubles the value of Tb (up to an upper limit) and

waits again. If the airwaves are free, it halves the value of Tb (down to a lower

GRAd: Gradient Routing for Ad Hoc Networks

limit) and transmits the packet. If the MAC transmit buffer becomes empty, Tb is

reset to its minimum value.

Mobility and traffic models were chosen to emulate those described in [Brooch

1998]. Fifty nodes in a 1500m x 300m arena travel according to the random way-

point algorithm: each node travels towards randomly chosen locations within the

arena at random speeds (evenly distributed between 0 and 20m/sec.). After reach-

ing its destination, the node pauses for a fixed amount of time before setting out for

its next randomly chosen location. The pause time is varied from 0 seconds for con-

tinuous motion to 900 seconds in which case the nodes are stationary for the dura-

tion of the simulation.

Traffic is generated by constant bit rate (CBR) sources, randomly chosen among

the 50 nodes. Each CBR source targets a randomly chosen destination among the

remaining 49 nodes. A CBR source generates four 64 byte packets per second. The

load on the network is controlled by the changing number of CBR sources. In the

tests, 10, 20, 30 and 40 CBR sources were used to generate traffic.

Messages from the CBR source sit in a queue until a route is discovered. To prevent

indefinite buffering, messages are dropped if they remain in the queue for over 30

seconds.

Entries in cost tables are set to time out if not updated within four seconds.

In the simulation, a target sends a 32 byte acknowledgment to the CBR source once

every two seconds. This acknowledgement message has the dual effect of notifying

the CBR source that messages are reaching the target, but more importantly, it

refreshes the path from the CBR to the target.

Each test was run for 900 simulated seconds and the results were averaged over ten

consecutive runs in order to account for different network topologies.

GRAd: Gradient Routing for Ad Hoc Networks

EVALUATION AND DISCUSSION

Three key performance metrics are evaluated: (i) Packet Delivery Fraction-the

ratio of data packets successfully delivered to those originated; (ii) the Average

Latency-the measure of the total end-to-end delay in delivering a packet to a des-

tination; (iii) Normalized Routing Load-the ratio of the total number of packets

transmitted by any node to the number of packets successfully delivered to the des-

tination.

Figure 8 shows the Packet Delivery Fraction as a function of pause time and for dif-

ferent numbers of CBR sources. As can be seen from the graph, GRAd is insensi-

tive to variable mobility-the percentage of good packets delivered remains

essentially constant as the pause time changes.

100%

90%

80%

70% -- +10 Sources
20 Sources

60% -,-- 30 Sources
-x - 40 Sources

50%

40%
0 100 200 300 400 500 600 700 800 900

Pause Time (sec)

FIGURE 8. Packet delivery fraction

GRAd is robust in the face of changing topology because it enlists multiple neigh-

boring nodes to relay messages from one place to another. If one node moves out of

place, other nodes are often available to relay the packet without resorting to

rebuilding the route.

GRAd: Gradient Routing for Ad Hoc Networks

Figure 9 shows the average end-to-end latency for successfully delivered packets.

In GRAd, latency remains under 7 milliseconds, even under conditions of high

mobility and load. By contrast, [Das 2000] reports end-to-end delays of more than

100 milliseconds, and as high as one second for heavily loaded networks. It must be

pointed out that is not an exact comparison: in [Das 2000], packet size was 512

bytes and the radio is simulated using a different path loss model.

0.01
0.009
0.008
0.007-

0.006 XX X

D 0.005
0.004 10 Sources
0.003 --- 20 Sources

< 0.002 -- 30 Sources

0.00,-x - 40 Sources

0 1 1 1 |

0 100 200 300 400 500 600 700 800 900
Pause Time (sec)

FIGURE 9. Average delay

In any practical implementation, GRAd is still likely to show small latencies since

it avoids the RTS/CTS link to link handshake used in other protocols.

GRAd: Gradient Routing for Ad Hoc Networks

However, there is a price to pay for the "fast and loose" routing approach used by

GRAd. Fig. 5 shows the routing load for various pause times and CBR sources.

10 -

9

6X

8 8

20 Souce

-J7

0 S5
FU10 Sources

p ris t20 Sources
t l be 30 Sources
0
z 2- -x -40 Sources

1

0 100 200 300 400 500 600 700 800 900

Pause Time (sec)

FIGURE 10. Routing load

As Figure 10 shows, for every one data packet received at the ultimate destination,

between six and eight packets have been transmitted. Some of these "extra" packets

are inevitable, for example, if a path requires two hops from source to destination,

this will be recorded as a routing load of two. A destination node always sends an

imrplicit acknowledgment notification, as described in the section on "Implicit

Acknowledgement," which contributes to the load. Relatively few of the overhead

packets are Reply Request messages, even in scenarios with high mobility2. The

majority of the overhead packets are due to multiple neighbors attempting to relay

the same packet. A consequence of this overhead is that GRAd networks exhibit

more congestion than other network algorithms for the same offered load.

2. In a typical test with 10 sources and 0 second pause time, only 2.5% of all messages

transmitted were MREQUEST messages.

GRAd: Gradient Routing for Ad Hoc Networks

CHOICE OF MAC LAYER

In any ad hoc network, there is no centralized control to control access to the air-

waves, so nodes depend upon the MAC mechanism to cooperatively share the air-

waves. GRAd, in particular, taxes the MAC layer since multiple neighboring nodes

will attempt to relay a message soon after receiving it. It was therefore suspected

that performance of GRAd would be sensitive to the choice of MAC layer.

The 802.11 MAC layer [IEEE 1999] is considerably more "fair" than GRAd's sim-

ple carrier sense and exponential back off approach described in the section on

"Simulation Environment." In the 802.11 approach, the MAC layer implements a

countdown timer which is initialized to a random duration proportional to an expo-

nential back off constant. The timer counts down only when the local airwaves are

clear. When the timer expires, the MAC layer transmits the packet. This approach

distributes air time evenly among neighboring nodes.

The tests were run for 10 CBR sources using the 802.11 MAC layer and compared

against the same tests using the GRAd MAC layer-the results are shown in Figure

11. It is interesting to note that there was little effect on the overall performance of

GRAd using two substantially different MAC layers.

GRAd: Gradient Routing for Ad Hoc Networks

100%

90%

80%

70%

60% + 802.11 MAC

50% + GRAd MAC

Uo

0 100 200 300 400 500 600 700 800 900
P0 Tause 1 rovsec

(a) Packet Delivery Fraction (10 Sources)

FIGURE 11. GRAd vs. 802.11 MAC

GRAd: Gradient Routing for Ad Hoc Networks

0.01

0.009

0.008

0.007

>, 0.0061

0.005
a)
C 0.004

a 0.003 802.11 MAC

0.002
0.-0- GRAd MAC

0.001

0 100 200 300 400 500 600 700 800 900

Pause Time (sec)

(b) Average Delay (10 Sources)

10 -

9

0
-j 7

6
0

5CD
4

E 3 - 802.11 MAC
0
Z 2

-U-GRAd MAC
1

0
0 100 200 300 400 500 600 700 800 900

Pause Time (sec)

(c) Normalized Routing Load (10 Sources)

FIGURE 11. GRAd vs. 802.11 MAC

GRAd: Gradient Routing for Ad Hoc Networks

DISABLING ROUTE REPAIR

A previous section describes GRAd's mechanism for Route Repair: if the receiver

fails to receive a packet from a sender within the expected period of time, it sends a

reply to the sender with an increased remainingcost.

To gain insights to the effectiveness of the route repair mechanism, the tests were

run with route repairs disabled: if the network topology changed so an originator no

longer reached its destination (more accurately, if an originator stopped receiving

packets from its destination), the entries in the cost table would time out and the

originator would start a new Reply Request process.

Figure 12 shows the effects of disabling the Route Repair mechanism. The packet

delivery fraction drops almost insignificantly, but somewhat surprisingly, the aver-

age latency and routing load are both improved.

GRAd: Gradient Routing for Ad Hoc Networks

100%

90%

80%

70%

60%

50%

40%-
0 100 200 300 400 500 600 700 800 900

Pause Time (sec)

(a) Packet Delivery Fraction

FIGURE 12. Disabling Route Repair

-x-40 Sources

0 100 200 300 400 500 600 700 800 900

Pause Time (sec)

(b) Average Delay

-+- 10 Sources
--- 20 Sources
-a- 30 Sources
-x-40 Sources

0 100 200 300 400 500 600 700 800 900
Pause Time (sec)

(c) Normalized Routing Load

FIGURE 12. Disabling Route Repair

GRAd: Gradient Routing for Ad Hoc Networks

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0

10

9

ki 8
0

-j 7

6
0

5
0
N 4

0

z 2

1

0

GRAd: Gradient Routing for Ad Hoc Networks

Proposed extensions to GRAd

The results of GRAd are encouraging, but there are a number unanswered questions

whose answers may give insights to the operation of GRAd and suggest areas for

improvement.

CONSIDERING MORE THAN NUMBER OF HOPS

Throughout this chapter, the term "cost" has been used to mean "number of hops,"

but metrics other than the number of hops are possible. For example, a node can

charge a higher cost for relaying a message if it notices that its local airwaves are

becoming congested, or if its local topology is changing rapidly. The higher relay

cost will cause messages to flow around the node if there are other nodes that can

relay at a lower cost.

To generalize, in a multi-hop wireless network, the only real choice a node can

make is whether or not to relay a message that it has received, and if so, when to

relay it. As suggested in [Kramer 1999], it may be useful to structure the problem of

routing as a set of software agents residing in the nodes and in the messages; the

agents decide what should be relayed and when. The network can then be viewed as

a series of activation and inhibition functions, the former causing a message to be

transmitted, the latter preventing it [Intanagonwiwat 2000].

PREFERRED NEIGHBORS

GRAd and AODV share many traits, including on-demand route discovery and

updating reverse path information as a message is relayed from one node to next.

GRAd permits any neighbor to participate in relaying a message, AODV insists

upon a particular neighbor. A compromise between these two approaches shows

some promise: A relaying node advertises a cost for relaying a message (a la

GRAd) and suggests a preferred neighbor to do the relaying (a la AODV). If that

neighbor is not observed to relay the message within a certain amount of time, then

non-preferred neighbors may attempt to relay the message. This approach could

GRAd: Gradient Routing for Ad Hoc Networks

reduce some of the routing overhead observed in GRAd while still maintaining

robustness in dynamically changing networks.

FUNCTIONAL ADDRESSING

The broadcast nature of GRAd's Reply Request encouragesfunctional addressing,

in which a node initiates an MREQUEST message containing a predicate rather than

a specifying a fixed target ID. The predicate is a piece of software that embodies a

query such as "Are you a color printer?," "Are you a gateway to a wired network?,"

or "Are you an ARP server?" Each receiving node evaluates the predicate and

sends a reply to the requestor if the predicate evaluates to be true. If the requestor

receives multiple replies, it can choose the reply that offers the lowest

accruedcost (i.e. is topologically closest) or that best satisfies some other appli-

cation specific criteria.

PER-SESSION ADDRESSING

In GRAd, routes are created on demand, entries in cost tables are short lived and

persist only for the duration of a dialog between two nodes. The identities of the

intermediate nodes are not required for passing messages. This opens the possibil-

ity of per-session addressing, in which an originating and replying nodes choose

network IDs at random to be used for the duration of a session.

The space of IDs can be made large enough so the chance of two nodes choosing

the same ID is insignificant.

Per-session addressing offers two advantages. The first is security: by changing its

advertised address for each session, a node gains some measure of anonymity and

protection against malicious eavesdroppers.

Second, manufacturing costs are reduced since network IDs don't need to be

assigned and individually burned in at the time of manufacturing.

GRAd: Gradient Routing for Ad Hoc Networks

Summary

GRAd offers a new approach to ad hoc, on-demand routing. Rather than sending

unicast packets, it exploits local broadcasting to contact multiple neighboring

nodes. Messages descend a cost gradient from originator to destination without

needing to identify individual intermediate nodes. Cost functions are updated

opportunistically as messages are passed from one node to the next.

Through simulation, the performance of GRAd has been tested and characterized

under a variety of load and mobility conditions. The results of the tests show that

GRAd exhibits very low end-to-end packet delays and offers good immunity to rap-

idly changing topologies.

Embedded Networking

CHAPTER 5 Distributed Synchronization

In a decentralized multi-hop network, it is often desirable to distribute shared infor-

mation among all the nodes in the network. Since each node can communicate with

only a subset of the rest of the network, information must propagate in multiple

hops if it is to reach all of the nodes in the network.

Of particular interest are the dynamics of attaining synchronization across a net-

work of nodes. Using today's technology, it is unreasonable to assume that nodes

will be fabricated with permanent real-time clocks or will have access to a common

wireless time base, such as Global Positioning System (GPS) timing information.

Consequently, timing must be agreed upon dynamically.

The algorithm for distributed synchronization is simple: once every Ts seconds1 ,

node n broadcasts its internal time value, 'P,, to its neighbors. Upon receiving a

message from a neighbor, a node adjusts its internal time to the average of its previ-

ous time and the time advertised in the message.

Given a network of N co-located nodes in which every node can receive the trans-

missions of all other nodes, it is easy to show that the maximum spread of the

shared time will decrease by a factor of two each time a node broadcasts its value,

or a factor of 2 N every Ts seconds.

Predicting the rate of convergence for networks that are not co-located is not so

simple. The maximum error among the nodes depends on both initial conditions

1. In practice, the Ts interval will be randomized slightly to reduce the chance of repeated

collisions among neighboring nodes.

Distributed Synchronization

and the order in which the nodes advertise their times, so a strict analytical

approach is difficult. But using statistical models, it is straightforward to determine

an upper bound for the rate of convergence.

In modeling the rate of convergence, the single most important parameter is the

"diameter" of the network, where the diameter is defined to be the number of hops

in the shortest path between the furthest pair of nodes. The worst case for conver-

gence is when the nodes are arranged in a linear array with the node at one end of

the array initialized to a maximum value (assumed in these tests to be 1.0) and all

other nodes set to 0.0:

1, n =0
0 0 (EQ 7)

A linear network of diameter 6 is shown in Figure 13, below.

FIGURE 13. Linear network, diameter=6

Running the algorithm

At the beginning of each trial run, a random permutation P(n) on the set of integers

0...N-1 is generated. This determines the order in which nodes broadcast.

In the course of a single iteration, each node broadcasts its internal time value, P,,

to its neighboring nodes, so that the function:

'1,n 1 = (Vn+ Vn_)/2
(EQ 8)

T', 41 = (qjn+ Vn,1)/2

Distributed Synchronization

is performed N times, once for each n.

In the results shown below, deviation is defined as the maximum magnitude differ-

ence from the mean of all ',,, and iterations is how many iterations were required

to bring the deviation below a given threshold.

100000

y 1.82x
10000 174

y 1.49X

y= 1.34x1 .4-
E 1000

10

1

1 10 100 1000
network diameter

.1% deviation .1% deviation + .01 % deviation

FIGURE 14. Time to converge increases exponentially with network
diameter

Figure 14 shows that the number of iterations required to attain a given deviation

increases exponentially with the diameter of the network. While theoretically trou-

bling, this is unlikely to be a problem in practice. Both the constant and the expo-

nent are small. To put this in context, a circular network of 1000 nodes and no

overlap will have a diameter of 34. If every node in the network runs its algorithm

once every second, the system is guaranteed to converge to within 0.01% of maxi-

mum deviation within approximately 1,000 seconds, or 17 minutes. For many

applications, this is a trivially short amount of time.

Distributed Synchronization

Figure 15, below, shows deviation as a function of iterations for a variety of net-

work diameters. It is reassuring to note that the deviation improves exponentially

over linear time.

rate of convergence

. cia=3 - dia=6 x dia=15 w dia=10

50 100
1.E+00

1.E-01

1.E-02

1.E-03

1.E-04

1.E-05

1.E-06

150 200

FIGURE 15. Convergence improves exponentially at each iteration

An example: synchronization for spread spectrum

Decentralized synchronization can be used to dynamically establish a common time

base among nodes in a network. A common time base can be used to coordinate the

hopping sequence in spread spectnnm receivers in the network, dramatically reduc-

ing the time required to attain synchronization in the receivers. The 802.11 (FH)

wireless Local Area Network standard specifies a hop duration of 10 mSec. If the

receivers can tolerate a 10% timing error to attain synchronization, it is sufficient to

synchronize the nodes within I mSec of one another. The hop sequence repeats

Distributed Synchronization

once every 660 mSec, so synchronization within 1 part in 660, or 0.15%, is suffi-

cient.

If 100 nodes are arranged evenly in a circular area, the resulting network will have

a diameter of approximately 11. By running the simulator (or by extrapolating from

the Figure 15 above) it is shown that the system will converge in under 100 itera-

tions. From a cold start, if each node transmits a timing beacon once every second,

the system will attain synchronization in under two minutes.

Summary

These results show that a network can cooperatively establish a shared value where

each node node periodically broadcasts its time information to its immediate neigh-

bors and takes the average when receiving it. This approach is provably stable, and

shows exponential reductions in maximum deviation in linear time for a given net-

work diameter.

It is important to note that the figures given here are for worst-case initial condi-

tions. Several factors can lead to substantial reductions in the time to attain a given

deviation. First, perhaps contrary to intuition, mobility among nodes will tend to

decrease the time required to attain a given deviation since mobility causes the

errors to diffuse more rapidly.

The convergence time can be substantially reduced for nodes entering a pre-exist-

ing network simply by having the newcomers "listen but don't talk" for a period of

time. This will cause the new nodes to converge rapidly on the values that the

incumbent nodes have already agreed upon.

Embedded Networking

CHAPTER 6 Statistical Medium Access

Channel sharing

If it were necessaryfor a node to
know the identities of its neigh-

bors before communicating with
them, how would the node dis-

cover their identities?

In any network, it is often desirable to provide a communication channel to be

shared among all nodes in the network. In a self-organizing network, this channel

takes on special significance since it provides a mechanism for a node to share state

information with its neighbors without any a priori knowledge of their individual

identities.

Since this mechanism is used for network control and discovery, we will refer to

this channel as the control channel through the rest of this section.

There are several ways to implement a shared channel in wireless systems, depend-

ing on the link layer communication scheme.

A DEDICATED LINK

A node can be built with two wireless links: one to carry network control informa-

tion and the other to carry data packets. This approach has several advantages. The

control channel link can be implemented as a low power, low bit rate radio. Its

receiver can be always on, and the rest of the system lies dormant until a message is

received. Additionally, this scheme does not require nodes to be synchronized to

one another.

This approach has disadvantages. The cost of the additional radios may be signifi-

cant. Due to differing propagation characteristics, connectivity among control

channel links may be different from connectivity among the data channel links.

Statistical Medium Access

A DEDICATED TIME SLOT

Nodes can agree on a common time slot to be used for control information. The pri-

mary advantage of this approach is cost and simplicity: no extra radio systems are

required.

There is a price to pay for this approach: all nodes must be synchronized to one

another. This synchronization requires that nodes are aware of one another, which

is at odds with the stated design goal that the control channel is the mechanism used

for nodes to discover one another.

A DEDICATED SPREADING CODE

For systems that use spread spectrum communication, a predetermined spreading

code can be dedicated to the control channel. This has the advantage that control

information can be transmitted at any time with minimal impact on data transmis-

sions.

Using a dedicated spreading code for the control channel requires that the radio

receiver in every node has two demodulators-one for the data channel and one for

the control channel. This will increase the cost and power consumption of the sys-

tem. If the radio systems are to attain fast synchronization at the start of each

packet, the nodes themselves must be synchronized to one another.

Medium Access and Collision Avoidance

Whether the control channel is implemented as a dedicated radio frequency, time

slot or spreading code, it is still a shared resource and subject to contention. If mul-

Statistical Medium Access

tiple nodes transmit on the control channel simultaneously, there may be collisions

resulting in lost information.

/ /N /

A

FIGURE 16. Collision

For example, the figure above depicts three nodes. Nodes A and C are within trans-

mit range of node B. If both A and C transmit simultaneously on the control chan-

nel, B will not be able to discriminate between the two transmissions and the

information will be corrupted, leading to lost data.

A statistical approach

In order for information to be conveyed on a shared channel in a given time slot,

exactly one node must transmit. If zero nodes transmit data, no information is con-

veyed. Similarly, if two or more nodes transmit, there is a collision, and again no

information is conveyed.

In statistical channel access, every node that wishes to communicate on a shared

channel does so at an agreed upon time slot, but with some probability less than

one. The goal is to find the probability that optimizes the chance of successful com-

munication, in particular, that exactly one node transmits data.

Statistical Medium Access

Choosing p

If there is one receiving node within range of N potential transmitting nodes, and

each transmitting node transmits with probability p, the likelihood of one and only

one of the N nodes transmitting is given by:

(EQ 9)

When p is set to zero, the transmitters never transmit, so f(0) is zero. When p is set

to one, the transmitters always transmit, so if there is more than one neighbor,

transmissions always collide. Somewhere in between the two, f(p) rises to a maxi-

mum, depending on the number of transmitters in the vicinity of the receiver. The

plot below shows the "goodput," or probability of a successful transmission for dif-

ferent number of transmitters as p varies from 0 to 1.

0.16 N I -I

0.14

0.12

0.1

0.08

0.06

0.04

0.02

N=4

0.2 0.4 0.6 0.8 1

FIGURE 17. Probability of successful transmission

To find the value of p that maximizes the goodput, we take the derivative of (EQ 9)

and solve for f'(p) = 0:

f'(p) (1 Np)(1 -p)N2 = 0

f(p) = p(1 -p) N-1

(EQ 10)

Statistical Medium Access

By inspection, it is easy to see that there are N-2 zeros when p=1 and one remaining

zero when (1-Np)=O, or p=1/N.

This indicates that in order to maximize the goodput, a node that wishes to transmit

to a particular receiver should do so with a probability of 1/N, where N is the num-

ber of transmitters wishing to transmit and within range of that receiver.

Likelihood of successful transmission

Substituting 1/N for p in equation (EQ 9) gives optimal goodput:

f(N) = (N- 1) 1

N N
(EQ 11)

A plot of goodput versus number of nodes follows. The topmost line is the optimal

goodput, attained when p is set to 1/N, where N is the number of transmitters that

simultaneously wish to transmit. The two other curves correspond to p=.5(1/N) and

p=2(l/N) to show the effect of non-optimal choice of p.

0.25

).15

0.1

p=.5 (1/N)

p=2 (1/N)

2 4 6
N

8 10

FIGURE 18. Adjusting p as a function of the number of transmitters

0.05

p=1/N (optiml)

Statistical Medium Access

This is a function that falls off essentially as K/N, where N is the number of nodes

that wish to transmit on the medium and K is 1/E, or 0.367879.

Statistical Medium Access in multi-hop networks

In multi-hop networks, it is often the case that multiple nodes attempt to relay an

identical message on behalf of their neighbors. In this case, if N nodes are attempt-

ing to deliver the same message, it does not matter which one of the N nodes suc-

ceed. To reflect this, (EQ 11) can be multiplied by a factor of N, producing:

f(p)N N (N , (EQ 12)

As the following plot shows, the probability of successful transmission converges

on l/e (0.367879) as N increases.

0.8z

4 0.6

p=1/N

0.4 -

p=.5 (1/N)

0 0.2
p=2(1/N)

2 4 6 8 10
N

FIGURE 19. Goodput for any of N nodes succeeding

Statistical Medium Access

Misjudging N

In general, it is impossible to know exactly the number of neighbors surrounding

the intended recipient of a message. What happens to the overall efficiency if send-

ing nodes over- or under-estimate the node density?

To understand the effects of non-optimal choice of p, assume a constant node den-

sity-every node has N neighbors-and that every node wants to transmit.

0.25

p=1/ 2

0.2

0.15

p=1/4

0.1

0 p=1/8
3 0.05

p=1/16

2.5 5 7.5 10 12.5 15 17.5 2C
N

FIGURE 20. Overestimating and underestimating p

Figure 20 shows the likelihood of successful transmission using probabilities of 1/

2, 1/4, 1/8, and 1/16. When p is chosen too large (as in underestimating N), the effi-

ciency drops off quickly as the number of nodes increases. When p is chosen too

small (as in overestimating N), the efficiency starts out lower than it would for opti-

mal p and tapers off gradually.

Consequently, if the number of neighbors is not known precisely, it is better to

overestimate N and choose a value of p smaller than optimal.

Statistical Medium Access

Summary

Statistical Media Access can provide a simple and fair mechanism for multiple

transmitters to gain access to a shared communication channel in a decentralized

network. In a multi-hop wireless network where each transmitter has limited range,

Shared Media Access is ideal for broadcasting information to neighboring nodes.

Unlike other media access strategies, such as MACA or MACAW, it is not neces-

sary for each transmitting node to know the identities of the receiving nodes in

order to initiate a transmission. All that is required for efficient communication is

an estimate of how many nearby nodes wish to transmit. When multiple nodes are

attempting to convey the same piece of information, worst-case efficiency is 1/E, or

0.367879.

Embedded Networking

CHAPTER 7 ArborNet: A Proof of Concept

Motivation

Up to this point, this dissertation has moved in the virtual domain, using statistics

and simulation to predict the behavior of Embedded Networks. But there are

insights to be gained by building physical systems and reducing theory to practice.

Thus it was that ArborNet was created.

ArborNet is self-organizing network consisting of twenty-five wireless nodes. Each

node is housed in a small weatherproof plastic box, and contains a microcontroller,

a digital radio transceiver, three AA sized batteries, a collection of sensors, Light

Emitting Diodes (LEDs) and assorted "glue logic." An ArborNet node with its clear

plastic cover removed is shown below in Figure 21.

FIGURE 21. One of twenty-five ArborNet nodes

ArborNet: A Proof of Concept

Hardware system

The heart of an ArborNet node is the "Constellation" board, designed by Andy

Wheeler with assistance by the author. The Constellation board integrates a versa-

tile 8-bit microcontroller with a short-range radio transceiver, and has proven itself

to be a sound platform for network development and testing.

A block diagram of the primary components of the Constellation board is shown

below in Figure 22.

FIGURE 22. Constellation block diagram

PROCESSOR

The Constellation board is built around an Analog Devices ADuC824 microcon-

troller. The processor is a variant of the mature 8051 family of 8-bit microcontrol-

lers, and contains a set of features that make it especially appealing for Embedded

Processing applications.

Power: the ADuC824 is a low-power device for its class. The system uses a 32KHz

watch crystal as its primary system clock which is frequency multiplied via a Phase

Locked Loop (PLL) to 12MHz, giving a nominal instruction cycle time of I micro-

second with excellent power management features. The processor draws a nominal

TX 0
1-8

i
E

RX -

2 0

ArborNet: A Proof of Concept

5mA while running, but can be put to sleep, during which time the power consump-

tion drops to approximately 5uA.

Real Time Clock: The ADuC824 has an on-board Real Time Clock (RTC), which

measures years, months, days, hours, minutes, seconds with resolution down to 1/

128 of a second. When the main processor is put to sleep, the RTC keeps running,

so time measurements are unaffected by processor sleep times.

Digital Input/Output: The ADuC824 has a large collection of input/output lines,

with support for serial I/O, 12C and ISP devices.

Analog Telemetry: The ADuC has a high-resolution A/D converter with variable

gain, multiplexed inputs-a design that made it easy to add sensors to the Constel-

lation board with a minimum of additional circuitry. The ADuC824 also has a pair

of 12 bit D/A converters, though they were not used in ArborNet application.

FLASH/RAM EXPANSION

Since the ADuC (and most 8051 based systems) are limited in RAM size, the Con-

stellation includes a PSD813F memory and I/O expansion chip, manufactured by

Wafer Scale Integration. The PSD813F adds 128KBytes of FLASH program mem-

ory and 2K of general purpose RAM to the system. It includes a JTAG program-

ming port, which greatly speeds up development time during multiple revisions of

the firmware.

The PSD813F also provides 32 general I/O ports. Some of these are dedicated to

communication with the ADuC824, the remaining lines connect to LEDs and the

BART radio interface (q.v.).

RADIO SYSTEM

The Constellation board uses the TR1000 radio transceiver, a single-chip device

designed by RF Monolithics. It supports bi-directional digital communications at

rates up to 115K Bits/second using an unlicensed ISM frequency band of 915MHz.

ArborNet: A Proof of Concept

The antenna is an integrated patch device made by Lynx technologies. The radio

system has been measured to communicate reliably at a range of 30 meters in an

open space.

"BART" RADIO INTERFACE

The ArborNet radio communicates at a basic channel rate of 113,630 bits per sec-

ond, requiring accurate 8.8 uSec timing per bit. To reduce the real-time processing

requirements on the system microcontroller, the BART (Block Asynchronous

Receive/Transmit) interface serves as an intermediary between the ADuC824

microcontroller and the radio. BART is implemented by a PIC 1 6F84 microcontrol-

ler clocked at 20MHz.

To the microcontroller, the BART presents an 8-bit parallel porti with a 32 byte

internal buffer. For the radio, the BART manages the serial data streams, providing

accurate timing on transmit and byte- and bit-level framing on receive

The BART provides DC balancing of the data: every 8 bits of host data is converted

to 12 bits of DC balanced data upon transmission, and converted back to 8 bits

upon receipt. The BART also generates and strips synchronization headers at the

start of each packet, and doesn't initiate a transfer to the host microcontroller until a

valid header is seen. This drastically reduces the amount of time the host microcon-

troller spends servicing spurious packets.

All higher level processing, including the generation and verification of per-packet

CRC codes, is handled by the host microcontroller.

1. The BART's parallel port actually connects to the PSD expansion chip, not to the micro-

controller. From a programmer's point of view, the distinction is unimportant.

2. It is worth noting that the BART chip attains bit level synchronization of the received

radio bit stream to within four processor cycles, or 800 nanoseconds, without the addition

of special purpose hardware.

ArborNet: A Proof of Concept

POWER SUPPLY

The ArborNet node is powered by three primary AA cells wired in series, which

will deliver 4.5 volts when the batteries are new, drooping to under 2.4 volts over

time. Since components on the Constellation board require a regulated 3.3 volts, a

switching step-up/step-down voltage regulator has been included to provide a con-

stant supply of 3.3V over the life of the batteries.

SENSORS

The Constellation board provides inputs for one high resolution (24 bit) and one

medium resolution (16 bit) analog signals. In addition, the ADuC824 has an on-

chip temperature sensor, calibrated in degrees Celsius. The Constellation board also

connects a battery voltage monitor to one of the analog inputs on the ADuC A/D

converter, so each node can monitor and report its own battery status.

Although the Constellation boards have been tested using photo sensors and exter-

nal temperature sensors, the experiments described here use only the on-chip tem-

perature and battery voltage sensors.

CONNECTORS

The Constellation board has number of connectors for communication and configu-

ration, listed here.

Serial I/O 4 pins for serial input and output. Provides RX, TX, GND, +3.3V

JTAG Port 14 pins. Used to program the microcontroller and PSD expansion
chips.

PIC programmer 6 pins. Used to program the on-board PIC (BART chip).

Analog In 6 pins. Provides GND, +3.3V and two analog inputs.

Jumper block 8 pins. Controls programming of the ADuC824 (_PSEN and
_EA), and connects to two general purpose inputs on the
ADuC824 for user configuration bits.

12C/SPI 6 pins. 12C and SPI high-speed serial interface for small periph-
eral devices, such as real time clocks, D/A converters, flash RAM.

TABLE 4. Constellation's I/O Connectors

ArborNet: A Proof of Concept

Software system

One of the design challenges for ArborNet was fitting the software system into an

eight-bit microcontroller with limited code and data storage. For the task, a small

real-time kernel, "RTX51 Tiny" by Keil Software, was chosen as the basic frame-

work for the ArborNet system.

The bulk of the ArborNet system was implemented in 3300 lines of C code over a

period of four months. The development tools from Keil were easy to use. The

ArborNet system made extensive use of the RTX51 thread mechanism, which

resulted in code that was easy to maintain and understand. Even though the RTX51

kernel offers round robin scheduling, it was disabled in the ArborNet system to

simplify the coding and eliminate the risk of race conditions. Given this conserva-

tive approach, the RTX51 kernel proved to be robust: no system errors were

observed that could be ascribed to the kernel.

The ArborNet packet mechanism

SERVICES, NOT LAYERS

Classic network architectures such as the Open Systems Interconnection (OSI) net-

working suite defines networking as a set of layers of abstraction, providing well-

defined functionality and interfaces at each layer. A layer is designed as a "black

box," hiding implementation details and communicating only its immediate super-

and sub-layers. This approach is designed to simplify the implementation and test-

ing of network systems, but in hiding information at each level from other levels,

information that is required at several layers must be replicated, leading to compu-

tational and storage inefficiencies.

Embedded Networking algorithms such as GRAd thrive on "hints," and can take

advantage of all available information to increase the network efficiency. As an

example, it can be useful for the MAC system in a wireless network to keep track of

how many distinct neighbors are in the vicinity of the node-the MAC can use this

ArborNet: A Proof of Concept

to predict congestion and adjust its holdoff times accordingly. In a typical layered

network model, the MAC is precluded from examining any except the MAC header

of received packets, so the network ID of the sending node must be included both in

the MAC header as well as in the routing header.

This replication of information results in longer transmitted packets and more stor-

age in the microcontroller. Since conserving power and storate are priorities in the

design of Embedded Networking, ArborNet abandons the classic layered model in

favor of a "services" oriented design.

LINKING, NOT ENCAPSULATION

In ArborNet, the basic unit of information transfer is a datapacket-when the radio

transmits data, it transmits a single packet. Each packet is implemented as a linked

list of segments, where each segment carries a segment type and a payload specific

to that type. The format of each segment is published and comes with a set of soft-

ware functions to access the specific fields.

Consequently, any software module in the ArborNet system is allowed to examine

an entire received packet for segments that it might find useful. On transmission, a

packet is formed quickly and efficiently by pushing segments onto a linked list and

is passed around as a single unit-no copying of memory is required as it would be

for an model that uses encapsulation.

Software modules may "decorate" a packet, augmenting the information carried by

the packet simply by pushing additional segments onto it. As an example, this tech-

nique was used to add networking statistics information to packets to ArborNet dur-

ing system testing and debugging.

ArborNet: A Proof of Concept

PACKET MEMORY MANAGEMENT

The Constellation board has only 2KBytes of RAM memory, which is dominated

by packet buffer storage. In this limited environment, the use of linked segments for

representing packets made memory management unexpectedly efficient.

The message packet system is initialized with a pool of fixed-size segment struc-

tures, all linked into a single freelist. When any software module wishes to allocate

a segment, the next available segment is simply removed from the head of the

freelist. Each segment is filled in with its segment type, segment size and any

appropriate data. When a software module is finished with the segment, it is pushed

back onto the freelist.

The size of the fixed-length segment structure is chosen to be long enough to hold

the longest segment data. Consequently, many segment types don't fill out the

entire segment storage. During radio transmission, the segment is compressed by

sending a single byte length field followed by the segment type and only as many

bytes of the segment payload as are actually used. Upon reception, the inverse pro-

cess takes place: compressed segment structures are expanded out into fixed length

segments as they are received, the component segments of a packet are linked into a

single list and, if the packet is observed to be free of errors, passed to other software

modules for processing. After the last software module has processed the packet,

the entire packet is returned to the segment freelist.

ArborNet: A Proof of Concept

PACKET SEGMENT TYPES

The ArborNet system implements the following segment types.

SEGGRAD Gradient Routing segment. Contains originating node ID, destination
node ID, packet sequence number, accrued cost and remaining budget.

SEGDISCO Gradient Discovery segment, identical in content to a SEGGRAD
packet, but obeys different rules for relaying.

SEGCOSTL Cost Table segments, containing the contents of the originating node's

SEG COST H cost tables. This is split into two segment types, one for the low half of
- the table and one for the high, because of hardware limitations on the

maximum packet size.

SEG STATS Node Statistics segment used for debugging and network testing. Con-
tains various statistics, such as the number of packets originated, number
of packets received, number of packet relayed.

SEG TELEM Telemetry information. Contains the readings of the sensor array on the
originating node.

SEGARQ Automatic Retry Request segment. The packet carries with it the retry ID
and a number of retries remaining before giving up.

SEG ACK Acknowledgement segment, sent in response to a SEGARQ. Contains
the retry ID of the SEGARQ being acknowledged.

SEGAPPX Request for Application Transmission segment. The packet names a des-
tination node that is requesting regular updates in the form of
SEG COST_L, SEG COST_H, SEG TELEM, SEG STATS and
SEGTIME packets from the receiving node.

SEGPING Ping segment. Contains node ID and local system time. Used to advertise
presence and synchronization information to neighboring nodes.

SEG TIME Time and synchronization status. The packet contains the sending node's
current time, the maximum timing error recently seen and the number of
SEGPING packets generated and received.

TABLE 5. Segment types in ArborNet

Dataflow in ArborNet

The ArborNet system is implemented using a number of threads and packet queues.

Figure 23 below shows the arrangement: rounded boxes represent processing

ArborNet: A Proof of Concept

thread, bracketed boxes represent packet queues, and lines with arrows trace the

flow of packets.

FIGURE 23. Threads and data paths in ArborNet

MAIN THREAD

The Main thread handles the initialization of the system, spawning all the other

threads. Once the system is running, it monitors the RS232 serial input line for

commands and displays the synchronization status of the real time clock by flash-

ing the on-board yellow LED once every two seconds.

ARQ THREAD

The ARQ thread manages the retransmission of ARQ (automatic reply request)

packets. A full description of the ARQ mechanism is described below in "ARQ

processing."

ArborNet: A Proof of Concept

SYNC THREAD

The Sync thread generates periodic "ping" packets that broadcast the nodes's Real

Time Clock timing information to its immediate neighbors. Upon receiving a ping

packet, the system adjusts its Real Time Clock as described in Chapter 5, "Distrib-

uted Synchronization." Implementation details of the synchronization mechanism

are described below in "Timing services."

APPR THREAD

The Application Receive thread monitors the APPR queue, waiting for packets

received by the radio mechanism to come available. When a packet is inserted in

the APPR queue, the APPR thread wakes up, removes the packet from the queue,

and distributes the packet on a segment-by-segment basis to other software mod-

ules. For example, if the incoming packet contains a segment of SEGTYPEPING,

it passes the packet to the synchronization system for processing.

The APPR thread also prints the contents of each incoming packet in hexadecimal

form to the serial output port. This is useful for debugging 3, but is designed so any

node can be a "gateway node" and log incoming packet data via the serial port.

APPX THREAD

The Application Transmit thread is responsible for sending periodic status reports

to a remote node. It waits until it receives a packet containing SEGTYPEAPPX,

that identifies a node wishing to receive status reports and how often those status

reports should be sent. It then enters a loop, composing and transmitting cost table

3. The printing of each received packet almost certainly results in some dropped packets:

Due to the non-preemptive scheduling of threads, if a new packet arrives while the sys-

tem is printing another packet, the 32-byte BART FIFO can overflow, resulting in a trun-

cated packet which will be discarded due to a CRC mismatch.

ArborNet: A Proof of Concept

reports, analog sensor readings, synchronization status, and packet statistic packets

to the requesting node.

As written, the APPX thread sends a packet on the average of once every ten sec-

onds.

MAC THREAD

The Medium Access thread monitors the MAC queue for available packets to trans-

mit. When a packet becomes available, the MAC thread delays for a random hold-

off interval, using the 802.1 -style exponential backoff technique described in the

chapter on Gradient Routing. When the holdoff expires, the radio transmitter is set

to transmit mode and the packet is passed to the BART radio interface for transmis-

sion.

RRCV THREAD

The Radio Receive Thread waits for an interrupt from the BART radio interface,

announcing the arrival of a new packet, and proceeds to read bytes from the BART

as they become available. Upon reading the end of the packet, the Radio Receive

Thread verifies the packet. If the packet is valid, it is stored in the APPR queue and

the APPR thread is notified of its arrival.

ARQ processing

ArborNet implements a simple but effective Automatic Repeat Request (ARQ)

mechanism. As described in Chapter 5, Gradient Routing works by using reverse

path routing information, so sending occasional acknowledgements to an originat-

ing node is a natural and useful mechanism for keeping the routing information up

to date4.

Prior to transmission, an application may augment any packet that contains a GRAd

routing segment with an ARQ segment (of type SEGTYPEARQ), containing an

ArborNet: A Proof of Concept

ARQ reference number and a retry count. The packet is subsequently inserted in the

MAC queue for normal transmission.

When the MAC module removes a packet from its queue just prior to transmission,

the packet is examined. If the packet contains an ARQ segment and the retry count

of the segment is non-zero, a copy of the entire packet is installed in the ARQ's

Retry Queue. The original packet is transmitted as normal.

Whenever a packet containing an Acknowledgement segment (of SEGTYPEACK)

is received, its reference number is compared against that of each ARQ segment of

packets waiting in the Retry queue. If the reference number matches, the corre-

sponding packet in the Retry queue is removed and freed-it has been acknowl-

edged and no further retries are required.

Concurrently, the ARQ thread is run whenever a packet is installed in the Retry

queue. It sets a time-out counter before attempting retransmission (typically 500

milliseconds). After the time-out expires, the ARQ thread checks to see if there is

still a packet available in the Retry queue, since the queued packet may have been

acknowledged and removed in the interim. If the packet is still available at the end

of the timeout period, its retry count is decremented and its routing header updated

before installing it in the MAC queue for subsequent transmission.

When a node receives a packet containing an ARQ segment, it responds by creating

a packet with an Acknowledgement segment (of type SEGTYPEACK) with a

matching reference number and sending it to the originating node.

4. In the experiments described later in this chapter, the ARQ retry count was set to zero.

This means that the recipient would generate ACK replies, but an unreceived ACK never

results in retransmission of the original message.

ArborNet: A Proof of Concept

Timing services

ArborNet nodes implement the synchronization mechanism previously described in

Chapter 5, "Distributed Synchronization." This section describes the details of the

implementation.

In an ArborNet node, local time is represented by an integer indicating 1/128ths of

a second and is taken modulus 7680. Consequently, the system has a time resolu-

tion of 7.8125 milliseconds and cycles once every minute. These values were cho-

sen based on the resolution of the ADuC824 Real Time Clock hardware and the

limits of imposed by representing values in a sixteen bit unsigned integer. As an

implementation detail, the current time is formed by reading the Real Time Clock

and adding its value to an offset. When adjusting the local time, ArborNet code

never explicitly sets the Real Time Clock, it only modifies the local offset.

A ping segment has the following fields:

fNodelD Node ID of the transmitting node.

fTimeX Local time of the sending node.

ffimeR Local time of the receiving node.

TABLE 6. Contents of a SEGTYPEPING packet

The purpose of the SYNC thread is to broadcast the node's local time to its immedi-

ate neighbors quasi-periodically. The thread first pauses for a randomly chosen

amount of time between 0.5 and 1.5 seconds then generates a packet containing a

single ping segment (of type SEGTYPEPING). Although the segment contains a

structure slot for the local time (f Timex), it isn't filled in yet. The packet is

installed in the MAC queue for transmission like any other packet.

The MAC contains code for special handling of SEGTYPEPING segments. At the

onset of every transmission, the MAC code caches the local time. While the packet

is being copied into the transmit buffer for processing by BART, if a segment of

type SEGTYPEPING is detected, the previously cached time is written into the

ArborNet: A Proof of Concept

f TimeX slot of the segment. This technique eliminates any timing jitter introduced

by the MAC exponential backoff mechanism.

Similarly, upon receipt, the Radio Receive mechanism caches the local time when a

packet first starts to arrive. In the course of reading the packet, if the Radio Receive

code detects a segment of type SEG_TYPEPIN, then it copies the cached local

time into the f TimeR slot. The packet is then installed in the Application Receive

queue like any other packet. This technique eliminates any timing error that would

result while the packet sits waiting for processing in the Application Receive

queue.

When the Application Receive thread eventually dequeues the packet, it is passed

to the synchronization mechanism for processing. There, the error between f Timex

and f TimeR is computed and the system clock is advanced or retarded by one half

of the error.

In addition to its role as keeper of local time, the synchronization system also main-

tains statistics on how many ping packets were sent, how many were received, and

a measure of the maximum timing error observed recently. These statistics are

made available for transmission in a SEGTYPETIME segment whenever the appli-

cation transmit thread requests them.

Field tests and results

ArborNet was subjected to field tests in two different locales. The first tests were

conducted in a residential setting, for which the nodes were placed around the

author's house and garden. Other tests were conducted in an office setting: the

nodes were distributed around the fourth floor of the MIT Media Laboratory.

ArborNet: A Proof of Concept

A summary of the tests are show in Table 7, below.

Test name Locale Start Time End Time Duration # nodes

Residential I Residence 01:16 08:04 7h50m 15

Residential II Residence 08:15 12:15 4h00m 15

Office I Media Lab 21:00 00:00 3h00m 21

TABLE 7. Field test overview

In each test, node A ("Aspen") was designated as the collection point and gateway

for ArborNet data. Its serial port was connected to a laptop computer which was

used to log the incoming data for subsequent analysis. Tests ranged from three

hours to nearly eight hours, during which time over five megabytes of raw data

were collected.

The logged data consists of reports from each node in the network as it was

received wirelessly at the central collection point. Reports gave a historical view of

the state of each node at ten-second intervals, describing the node's cost tables, syn-

chronization status, packet reliability statistics, on-chip temperature and system

battery voltage.

Topology tests

As part of the GRAd routing mechanism, each node maintains a cost table indicat-

ing the cost (or number of hops) required to relay a packet to a particular destina-

tion. This cost estimate is formed by observing how many hops were previously

required to receive a packet from the destination node. Inherent in this technique is

the assumption of symmetrical communication channels: if node X can receive

packets from node Y, then it is assumed that node Y can receive packets from node

X. In practice, radio links are not symmetrical.

Since each node reports its routing costs for all the other nodes, and since that data

is collected at a single point, it is possible to derive full connectivity graphs for the

network. Two such snapshots are shown below in Table 8 and Table 9. Each row

ArborNet: A Proof of Concept

displays one node's costs, measured in hops, to the node in each column. An aster-

isk indicates an unknown cost. If the system has completely symmetrical links, the

graph will be symmetrical around the diagonal.

A few things can be observed from these graphs. Nodes E, G P, and U (aka Elder,

Ginkgo, Pear, Sycamore, and Uri) were not active during these tests, and as the

gateway, node A (Aspen) did not log reports on itself.

The smaller network deployed in the residential setting displays nearly perfect sym-

metry. Few of the paths require more than one hop and the physical environment

didn't pose a challenge to RF communications: the paths were short and there were

no significant sources of RF interference.

A B C D E F G H I J K L M N O P Q R

0

1 0 1 1 * 1 * 1 1 2 1 1 1 2 * 11

1 1 0 1 * 1 * 1 1 1 1 1 1 1 2 * 1 2

11 10 * 1 * 11 1 2 1 2 2 2* 2 2

* * * * * * * * * * * * * * * * * *

1 1 1 1 * 0 * 1 1 2 1 1 1 2 * 1 1

* * * * * * * * * * * * * * * * * *

111 1 0 1 1 2 1 1 1 2*11

1111 * 1 * 1 0 1 2 1 1 1 2 * 11

I 1 0 2 1 1 1 2 * 1 1

2 1 2 * * 2 2 0 1 1 1 2 * 1 2

1111 * 1 *0 1 1 2 *1 2

I 1 1I 1 0 1 1 * 1 2

1 1 1 2 * 1 * 1 1 1 1 1 0 1* 1 1

2 2 2 2 * * 2 2 2 2 1 0* 1 2

I 1 1 2 * 1 * 1 1 1 1 1 1 1 1 * 0 2

2 1 2 1 * 1 * 1 1 1 2 2 2 2 2 * 2 0

TABLE 8. Connectivity graph for Residential I and II tests

S\D

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

Q
R

ArborNet: A Proof of Concept

The cells of the table that correspond to asymmetrical links are highlighted in gray

in these tables. For clarity, only cells on the lower diagonal of the table are high-

lighted.

The connectivity graph for the Office I test paints a different picture, as seen in

Table 9 below.

A B C D E F GHI J KLMNOP Q R S T U V WX Y Z

0

1 0 1 1 *1 2 2 123 3 312* 3 2 * 3 * 4 3 4 1 2

1 1 0 1 *2 *3 3 1 1 2 3 3 2 * 3 2 *3 *4 3 4 2 3

2 1 0 *2 *3 3 1 2 3 3 3 1 *2 1 *2 *2 2 3 2 1

* *

11 1 2 * 0* 1 1 2 2 2 3 5 2 * 2 2 * 3** 3 5 2 1

2 22 * 1 * 0 2 2 2 2 3 3 1 * 3 2 * 3 * * * * 3 2

2 2 * I * 0 **3 * 5 2 *13 *******3 2

1 1 1 1 * 2 * 2 0 1 3 2 2 1 * 22 * 3 * 33 4 2 2

2 2 1 * 2 2 1 0 1 2 2 1 2 2 *3 4 3 4 2 2

3 *, 3 1 1 0 1 1 1 2 2 *13 4 3 4 1 1
3 * * **2 1 0 1 2 ** * * * * * * 2 2 2

4 * *1 01 *1 1 * 2

2 2 2 1 *2 * 1 1 1 2 2 0 3 2 *2 *3- 2 4 2 1

2 |*2 2 3 2 2 2 34 1*0 1 *2 *2 1 3 3 1

2 2 2 1 *2 *332 2 2 3 2 * 1 0 * 1 * 1 1 2 3 1

3 *** **** **** *$ **2 1 *0 * 1 2- 1 *2

4 ** * *** * ** i *2 1 * 1 *0 2 1 *2

3 ******** 3*52 *1 1 *2 *2 0 3 *2

4 * * * * * ** *1 *1) 0**

2 1 22*2 * 131 3 2 R 1 2 2 2 *3 3 * * d 0 21
2 2 * 1 * 1 * 1 2 2 1 2 1 2 1 2 21 1 * 1 1 * 2 * 21 3 "a 0

TABLE 9. Connectivity graph for Office I test

s\d

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

Q
R

S

T

U

V

W

x

Y

z

ail -ROW0MO N 00- BQ A Ri -M__

ArborNet: A Proof of Concept

The network is not only larger, but the paths are longer and asymmetry is prevalent.

The Media Lab is a modem office building with concrete load-bearing walls, metal

doors and equipped with wireless networking gear competing in the same 915MHz

frequency band as the ArborNet transceivers.

A diagram of the physical layout of the Media Laboratory and the placement of the

nodes offers some additional insights to the network, shown below in Figure 24.

FIGURE 24. Layout of nodes in Office I test

Each circle represents the placement of a node. The letter is the node ID, the num-

ber is the number of hops from the central collection point (node A) located in

Room 468 towards the east side of the building.

ArborNet: A Proof of Concept

One thing to note is that physical distance is not necessarily a good indicator of the

number of hops requires to relay a message. For example, node H (Holly) reported

a cost of three hops to relay a message to node A, while node I (Ironwood) required

only two hops, even though it was further away and on the far side of a metal door.

Received packet error rates

Each node keeps statistics on packets transmitted and received and reports these

statistics back to the data collection node in SEGTYPE_STATS packets. One set of

statistics is maintained by the radio receive process, and simply logs how many

packets are received with valid CRCs and how are invalid. A rough measure of the

quality of reception at each node can be had by computing

validPackets
validPackets + invalidPackets

(EQ 13)

This success rate for the Office I is shown for each node below in Figure 25. These

figures do not account for packets with damaged synchronization headers since

such packets are filtered out by the BART radio interface chip without notifying the

host processor.

90%

80%

70%

Co 60%

50%

*40%

30%

20%

10%

0% k

B C D F H I J K L M N 0 Q R T V W X Y Z

Node ID

FIGURE 25. Percentage of packets received with valid CRC

ArborNet: A Proof of Concept

It can be seen that nodes J, L, N, and X have marginal reception, as evidenced by

their low percentage of valid packets received. Although not shown in the floor-

plan, nodes L, N and X are relatively isolated and separated from other nodes by

steel fireproof doors, which could account for their poor reception. It is not clear

why node J has poor reception. It is located near a 915MHz wireless network

access point, but so are nodes D and K, which didn't suffer from poor reception.

Goodput tests

While the number of valid packets received is one way to characterize the network,

it doesn't answer how successful the network is in relaying messages back to a cen-

tral collection point. A more significant measure is the ratio of the number of pack-

ets originated at each node versus the number of good packets received at the

collection point, or the "goodput."

Nodes were programmed to transmit a status report to the central collection node

approximately once every ten seconds, so in the course of a three hour test one

would expect 1062 reports from each node. An examination of the log files show

that three nodes stopped transmitting before the full three hours had elapsed, so in

measuring the goodput, number of transmitted nodes was prorated by the duration

of the each node's lifetime. Figure 26, below, shows the goodput for each node.

ArborNet: A Proof of Concept

10^'%

90%

80%

70%

3 60%

B CD F H I J K L MN 0 QR TV W X Y Z

Node ID

U packets received/packets onrnated U normalized by hops

FIGURE 26. Goodput versus node

For each node, two values are shown: one is the goodput, which is simply the ratio

of the number of packets received to the number of packets originated. The other

value is the goodput normalized by the number of hops:

norm = goodput "/(ops (EQ 14)

which is a measure of the average reliability of each link independent of the number

of hops.

This goodput shows some unexplained anomalies compared to Figure 25. For

instance, node J showed a high percentage of bad received packets (as seen in Fig-

ure 25), yet is among the most successful at delivering packets to the collection

point (Figure 26). It is possible that there is something about the placement or even

the fabrication of the node that makes its radio receiver less sensitive.

By contrast, Figure 25 showed that Node M was able to receive packets reliably, yet

it shows the poorest performance in delivering packets to the collection point.

Looking at the floorplan in Figure 24 offers a hint as to what might be going on.

Packets from node M are relayed through node N, which is demonstrably bad at

ArborNet: A Proof of Concept

A network ofsimple temperature
sensors can detect when a house

mate is taking a shower or when a
cloud passes overhead

receiving packets. It is likely that N is dropping many of the packets that M expects

it to relay on its behalf.

Despite these low percentages, most of the network continued to deliver reliable

data over the course of the test. Many of the techniques described in GRAd were

omitted in these tests, including timing out of cost table entries and Route Repair,

so higher goodput should be easily attainable.

Distributed temperature sensing

Each ArborNet node is equipped with a temperature sensor incorporated into the

ADuC microprocessor. The microprocessor itself consumes about 15 mW of

power, so it contributes little to the overall heat of the system. When located away

from direct sunlight, the air temperature inside the box is a reasonable approxima-

tion of the external air temperature, making it a useful tool for measuring the ambi-

ent temperature.

For both residential tests, ArborNet nodes were scattered indoors as well as out-

doors, so a single data collection point served to measure the entire environment. A

plot of the indoor temperatures, measured between 8:15 AM and 12:15 PM on a

chilly Cambridge day tells an interesting story, as shown here in Figure 27.

ArborNet: A Proof of Concept

10

35

25-

20

15

8:15 830 8:45 9:00 915 930 9:45 10:00 10:15 10:30 10:45 1100 11:15 11:30 11:45 12:00 12:15

Time of Day

-beech -chestnut dogwood -fig - holly - ironwood -juniper

FIGURE 27. Residential II: indoor temperatures

The plot of indoor temperatures shows several significant features. The downstairs

rooms (as measured by Beech, Chestnut and Dogwood), are approximately four

degrees colder than the upstairs rooms (measured by Holly, Ironwood and Juniper).

Ironwood, located in the upstairs bathroom, detected someone taking a shower at

09:15. The water and drain pipes run alongside the downstairs bathroom, causing it

to warm up as well (Chestnut). Fig reports that the utility closet, containing the fur-

nace for the baseboard heaters, is a balmy 37 degrees during the night as it struggles

to keep the house warm, but cools off by more than ten degrees during the day as

the rising outdoor temperatures reduce the thermal burden on the furnace.

ArborNet: A Proof of Concept

70

60

50

40

30

10

10 -

8:15 830 845 900 9:15 930 9:45 10:00 10:15 10:30 10:45 1100 11:15 11:30 11:45 12:00 12:15

Time of Day

- kapok - linden magnolia nyssa olive quince redwood

FIGURE 28. Residential II: outdoor temperatures

A plot of the outdoor temperatures, measured by the same network over the same

period of time, shows even greater dynamics. The night air was below freezing, but

temperatures climbed after sunrise. The temperatures in ArborNet node packages

subjected to direct sunlight (Kapok, Linden, Magnolia) rose quickly to above 60

degrees. Kapok was located below a horizontal plank that acted as a gnomon, cast-

ing a shadow on it between 10:15 and 11:00 and causing it to cool. A cloud passed

overhead around 10:50, as evidenced by a dip in temperature across all of the out-

door nodes.

It is significant that nodes equipped with something as simple as a single tempera-

ture sensor can be linked in a distributed network to glean information that would

not be possible from more complicated sensors located at a single source.

A temperature graph created from the Office I test shows considerably less move-

ment over time than the residential tests, as shown in Figure 29 below.

ArborNet: A Proof of Concept

FIGURE 29. Office I: building temperatures

Three of the nodes (Beech, Willow, Yew) are located on metal window sills, so

they register a temperature much colder than the rest of the building. Nodes Mag-

nolia and Olive were placed on top of lighted exit signs, thus registering a consider-

ably warmer reading. But one office, Room 490 as reported by Ironwood, clearly

stands out as several degrees colder than the rest of the building.

When dense networks of sensors are located in and around office buildings, mainte-

nance personnel can monitor large heating and air conditioning systems continu-

ously and to a level of detail not otherwise possible, which will lead to less wasted

energy and happier building occupants.

Battery power: trends and outliers

As previously stated, it is important for nodes in a self-organizing network to be as

autonomous as possible. In a typical network, nodes that are powered by batteries

can be problematic, since it may not be clear if a loss of communication is due to

the batteries running out or due to some other failure.

35
- Beech

- Chestnut

Dogwood

3C- Fig

- Holly

------ VA- - Ironwood

25 - Juniper
- Kapok

- Linden

Magnolia
Room 490 Neem

I- Oive

Quince
15 Redwoo

Tupelo
Vibumu

10 Willow
21:00 21:30 22:00 2230 23:00 23:30 0:00 Xylosma

Time of Day Yew
Zenobia

ArborNet: A Proof of Concept

Nodes in ArborNet include an on-board battery monitor (measured before the volt-

age regulator), and are programmed to report their battery status regularly to the

central data collection point. The table below shows the battery voltages in each

node at the start and end of each of the three field tests, as reported wirelessly to the

logging node.

Residential 1 Residential II Office I

Node ID start end start end start end

B 4.245 4.138 4.134 4.111 4.050 3.961

C 4.443 4.250 4.244 4.202 4.212 4.169

D 4.467 4.263 4.259 4.201 4.216 4.174

F 3.922 3.859 3.856 3.798 3.740 3.689

H 4.536 4.318 4.312 4.260 4.251 4.219

I 4.527 4.320 4.315 4.265 4.237 4.191

J 4.488 4.314 4.310 4.261 4.263 4.219

K 4.429 4.141 4.136 4.217 4.199 4.152

L 4.259 3.965 3.963 4.164 4.148 4.102

M 4.496 4.194 4.188 4.228 4.249 4.225

N 4.536 4.205 4.199 4.177 4.246 4.242

0 4.548 4.227 4.221 4.279 4.280 4.254

Q 4.514 4.189 4.182 4.140 4.231 4.188

R 4.514 4.192 4.186 4.111 4.204 4.165

T -na- -na- -na- -na- 4.643 4.488

V -na- -na- -na- -na- 4.625 4.578

W -na- -na- -na- -na- 4.591 4.423

X -na- -na- -na- -na- 4.625 4.565

Y -na- -na- -na- -na- 4.698 4.494

Z -na- -na- -na- -na- 4.684 4.480

TABLE 10. Battery voltages before and after each field test.

Even after a total of fifteen hours of service, the voltage in most of the batteries is

still over 4.1 volts. It is clear that node B and F (Beech and Fig) were used for addi-

tional tests before the start of the field tests, and that the batteries in nodes T

through Z (Tupelo through Zylosma) were fresh at the start of the Office I test.

ArborNet: A Proof of Concept

Being able to continuously monitor the supply voltage of each node has already

shown itself to be an important feature in the development and maintenance of bat-

tery powered wireless nodes. By reading many nodes at once, it is possible to detect

overall trends as well as individual exceptions.

Synchronization

The nodes in ArborNet implement the synchronization techniques described in

Chapter 5, "Distributed Synchronization." To verify correct operation of the syn-

chronization algorithm, each node issues regular reports on its synchronization

state, indicating the node's local time, the maximum short-term inter-node timing

difference, and the number of SEGTYPE_P ING packets issued and received.

The real time clock on the Constellation board has a resolution of 1/128 of a sec-

ond, which sets ArborNet's limits of synchronization 5 . The synchronization status

reports will only report synchronization to within 3/128 of a second, even while the

internal synchronization is more accurate 6. Consequently, the minimum reported

error will be never be less than 23.4 milliseconds.

A graph of the error distribution of the synchronization reports in the Office I test

indicate that nodes are synchronized within 300 milliseconds of their neighbors

over 93% of the time, shown here in Figure 30.

5. This resolution could easily be improved by using software or hardware phase locked

loops.

6. The short-term timing difference decays exponentially as each PING packet is received.

The exponential decay is computed using simple integer arithmetic and errors less than 3

are internally truncated to zero. Fixpoint arithmetic would solve the problem handily.

ArborNet: A Proof of Concept

FIGURE 30. Distribution of Synchronization Deviation

However, that there are any errors greater than 300 milliseconds is unexpected. A

snapshot of the individual synchronization errors across five nodes offers a some

insights, shown below in Figure 31.

10.00

0

01

"O

0.01
100 101 1:02 1:03 1:04 1:05 1:06 107 108 1:09 1:10

time (hh:mm)

FIGURE 31. Individual synchronization deviation (10 minute snapshot)

100% - - - - -

90%

80%

70% -

50%

40% -

.0

30% -

20% -

10% -

0%
<30mS <300mS <3S <30S

synchronization deviation (S)

ArborNet: A Proof of Concept

Plotted on a logarithmic scale to accentuate the errors, it can be seen that the nodes

report the minimum synchronization error (23.4 milliseconds) most of the time, but

occasionally report errors in excess of one second. These errors do not appear to be

the isolated to individual nodes; whatever the source, the errors spread like small

firestorms through all the nodes in the network.

Although the log files don't capture enough information to pinpoint the source, it is

possible to make some educated guesses as to the cause of the errors.

One unlikely scenario is that the real time clocks internal to the ADuC824 exhibit

sufficient drift that they will fall out of synchronization after a few minutes. If a

node is isolated from its neighbors for an extended period of time due to transmis-

sion errors, when it finally manages to exchange a SEGTYPEP ING packet with its

neighbors, its internal clock has drifted sufficiently far that it causes a ripple of syn-

chronization error to be propagated through the network. However, the 32.768 KHz

crystals used for the Constellation board's timing have an accuracy of 20 parts per

million, or about 1.2 milliseconds maximum drift per minute, which doesn't

explain the large timing deviations observed in the network.

A more likely cause of these errors is that nodes incorrectly exchange their internal

time reference with their neighbors. For example, if the advertised synchronization

information was constantly slightly behind the node's internal real time, then all the

nodes in the network would retard their internal clocks as a group. However, if one

node fell out of communication with other nodes, it would be free to run at the

proper speed. When it re-establishes communication with other nodes, it would

cause a large perturbation in the overall synchronization of the network.

A solution to this problem will require more detailed data collection and analysis.

Despite these occasional timing errors, the fundamental goal has been achieved,

showing that nodes can synchronize accurately to one another in a decentralized

network.

Embedded Networking

CHAPTER 8 Conclusions & Future Work

Because it has no other means to communicate, a smoke detector in the basement
can only scream when it detects smoke and beep futilely when its batteries run low.
Given a more sensible means of expression, it could do a much better job ofpro-
tecting a home and its occupants.

Microprocessor chips have already reached the point where their usefulness is not

limited by their processing power, but rather by a lack of context. Isolated from the

rest of the world, the majority of these chips can neither sense the world around

them nor participate in any meaningful discourse with other chips in their environ-

ment.

Some lessons learned

This thesis has presented Embedded Networking, an integrated approach to scal-

able, self-organizing networks designed to give voice to microprocessors. Several

good and surprising results have arisen in the course of developing this art.

Embedded Networks are attainable. Embedded Networks can be built today. A

practical implementation does not hinge upon as-yet-undeveloped technologies or

exotic components. Because Embedded Networking has been designed to be "radio

agnostic," it can use existing radios and still take advantage of the inevitable devel-

opments in new wireless technologies.

Data aggregation is a powerful tool. It is astonishing how much can be learned by

having multiple data points. As an example, the interplay of outdoor temperatures,

measured at just seven different points during the course of a sunrise, told a much

more interesting story than seven readings from one sensor possibly could.

100

Conclusions & Future Work

Embedded Networks must be proactive. David Tennenhouse is right: if computing

systems are to become useful, they must do so with a minimum of attention from

their human stewards [Tennenhouse 2000]. For example, it proved to be remark-

ably useful to have each node in the ArborNet proof of concept system monitor its

own battery voltage. This simple approach removed doubts as to whether nodes

were running low on power or not. As an unexpected benefit, it proved very easy to

answer the question "do alkaline batteries run down faster when they are subjected

to sub-freezing temperatures?" (The answer was that they did not drain appreciably

faster than their warmer neighbors.)

Gradient Routing works in theory and in practice. Gradient Routing, a cornerstone

of the Embedded Networking systems described here, proved itself to be an effec-

tive technique. It succeeded in relaying data packets from one wireless node to

another without either the need for preplanning the network or for human interven-

tion during its operation.

Unturned Stones

Paradoxically, the hallmark of satisfying research is that it leaves one hungry to do

more, and the work here has been no exception. This early exploration into the the-

ory and practice Embedded Networking has perhaps raised one new question for

every question answered. A few of these "unturned stones" are offered with the

thought that they might prove to be interesting and worthwhile avenues for further

research.

DEEPEN UNDERSTANDING OF RADIO PROPAGATION

It would be informative to conduct a detailed study of the connectivity characteris-

tics among all nodes in a network, directly measuring the bit error and packet error

characteristics between each combination of nodes. Although the error rates will

depend upon radio technology and environment, some other questions will fall out

as a direct consequence: How symmetrical are wireless communication links in

101

Conclusions & Future Work

practice? What is a good estimate of path loss, and how well does spatial division

multiplexing work? How closely does physical topography correspond to network

topology? This kind of information is typically difficult to gather, but a decentral-

ized multi-hop wireless network such as ArborNet makes it quite easy.

BUILD A WIRELESS SUNDIAL

Chapter 5 described techniques for a community of nodes to agree on a common

time base, appropriate for sub-millisecond measurements, but not rooted in any

physical time base. Working with ArborNet suggests a somewhat whimsical

approach to accurate timekeeping in an unattended network by building a "wireless

sundial" from multiple embedded networking nodes.

Each node is powered entirely by solar cells, so it would only wake up when there

was sun to measure. Once awake, a node would track the position of a shadow cast

by a gnomon using simple photocells, and report the position of the shadow to its

neighbors. Using multiple nodes would eliminate errors due to clouds, and on clear

days, the network could accurately report both the solar time of day and the day of

the year. The system would be guaranteed to be free of any long-term drift.

IMPLEMENT DYNAMIC DUTY CYCLE

Distributed Synchronization is a first step towards power savings. If all nodes in the

network can agree on a common time base, they can all sleep at the same time and

wake up simultaneously in order to exchange packets during network "business

hours."

Assume that nodes draw no power while they sleep and constant power while they

are awake, independent of radio activity. Let Twake denote the amount of time that

the they are awake and Tleep the time during which they sleep, the duty cycle for

the system is then:

102

Conclusions & Future Work

T = wake (EQ 15)
DC Twake + Tsieep

The system power consumed will be reduced by a factor of TDC, while the load on

the airwaves will be increase by the same factor.

Since many embedded network applications need only communicate to for a few

milliseconds out of every minute, this approach can lead to substantial power sav-

ings.

DEVELOP MECHANISMS FOR RELOADING CODE

For all its ease in measuring and gathering data, the Embedded Networks presented

here don't offer any mechanism for reloading code over the network. Part of this is

due to limitations in hardware: the Constellation boards used in the ArborNet sys-

tem have no provisions for dynamically reloading code. But a degree of caution

influenced the design: one bad byte distributed among all the nodes could immedi-

ately bring down the network.

Nonetheless, the value in being able to dynamically reload code in order to conduct

different networking tests is obvious. An embedded network system designed to

dynamically update its own networking code would be an extremely useful

research tool. A longer-term goal would be to create robust mechanisms for dynam-

ically reloading code for applications outside of the laboratory.

Acknowledgements

Entering the Media Laboratory is like embarking on some strange and wonderful

journey: When I started five years ago, I didn't know where it would lead me, but I

had a hunch that I would have many adventures and encounter some wonderful

people along the way. Time has validated my intuition, and in retrospect, I could

not have scripted a better cast of characters.

103

Conclusions & Future Work

My advisor, Mike Hawley, jarred me loose from my everyday life and into the Lab

in the first place, and it is his ongoing vision of building smart, useful objects that

has kept me happily working late nights. Committee member and sailing captain

Andy Lippman has always offered good criticisms of my work, backed up with

sound reasoning. Bill Kaiser, expert in the field of self-organizing networks, has

always expressed enthusiasm about my work, sensibly tempering my elation by

introducing me to work other people have already done in the field. I've had many

stimulating talks with LCS professor Hari Balakrishnan and his students about the

finer points of embedded networks-it is wonderful to have a local expert in the

field. David Tennenhouse did me a great service by making me promise that I

would stay focussed on completing the dissertation before being distracted by the

Next Big Thing.

I have been fortunate to have been supported as a Motorola Fellow for much of my

time as a Media Lab student. But the support hasn't been simply financial: I've

been constantly inspired by my interactions with the engineers and managers of

Motorola, and I especially appreciate Sheila Griffin's handling of the program.

I feel particularly lucky to be part of Hawley's Personal Information Architecture

team. Past members Maria Redin, Manish Tuteja and John Underkoffler have

remained great friends and helped me through the inevitable bumps along the road

to a degree. Current colleagues Chris Newell, Roshan Baliga and especially Paul

Pham have spent large blocks of their time making ArborNet into a reality, and I

have come to depend upon Bill Butera for seeing technical holes that I have missed.

Two people deserve special mention, without whose help I cannot imagine this

research coming to fruition. Andy Wheeler designed the Constellation board and

many other elegant (though often unsung) hardware systems. Through his own

example, Andy has pushed me to think harder and build more. Charlotte Burgess

advanced this research in more ways than can be counted, from proofreading and

graphic design to emotional and moral support. Charlotte has a talent for asking the

question that unties whatever Gordian knot I am struggling with. To both Andy and

Charlotte, I give special thanks.

104

Embedded Networking

APPENDIX A References

[Abelson 1995] Hal Abelson, Tom Knight, Gerald Sussman. "Amorphous Comput-

ing." MIT LCS internal White Paper. Draft of October 14, 1995.

[Abramson 1985] Norman Abramson. "Development or the ALOHANET" IEEE

Transactions on Information Theory, Vol. IT-31, pp. 119-123, March 1985.

[Bertsekas 1992] Dimitri Bertsekas, Robert Gallager. "Data Networks" Second

Edition. Prentice Hall Englewood Cliffs, New Jersey, 1992. A dependable textbook

on the networking and queuing theory.

[Bluetooth 1999] Bluetooth specification, available online at http://www.blue-

tooth.com/developer/specification/specification.asp

[Broch 1998] J. Broch, D. A. Maltz, D. B. Johnson, Y-C. Hu, J. Jetcheva. "A per-

formance comparison of multi-hop wireless ad hoc networking protocols," in Pro-

ceedings of the 4th International Conference on Mobile Computing and

Networking (A CMMOBICOM '98), pp. 85-97, October 1998.

[Bult 1996] K. Bult, A. Burstein, D. Chang, M. Dong, M. Dielding, E. Kruglick, J.

Ho, F. Lin, T. H. Lin, W. J. Kaiser, R. Mukai, P. Nelson, F. L. Newburg, K. S. J.

Pister, G. Pottie, H. Sanchez, 0. M. Stafsuff, K. B. Tan, C. M. Ward, G. Yng, S.

Xue, H. Marcy, J. Yao. "Wireless Integrated Microsensors." Proceedings of the

1996 Hilton Head Transducers Conference, June 1996. An early paper on Bill Kai-

ser s excellent WINS program.

[Carvey 1996] Phillip Carvey. "BodyLAN." IEEE Circuits and Devices, V4 No 12

July 1996. Describes the design for Phil Carvey ' ultra low-power radio design-a

105

nifty bag of tricks that attains 4x10 9 Joules per received bit and 2x10-9 Joules per

transmitted bit.

[Das 2000] S. Das, C. Perkins, E. Royer. "Performance comparisons of two on-

demand routing protocols for ad hoc networks," Proceedings of the IEEE Confer-

ence on Computer Communications (INFOCOM), Tel Aviv, Israel, March 2000,

pp. 3-12.

[Demers 1994] Alan Demers, Scott Elrod, Christopher Kantarkiev, Edward Rich-

ley. "A Nano-Cellular Local Area Network Using Near-Field RF Coupling." CSL-

94-8 Xerox Corporation, Palo Alto Research Center. October 1994. Describes a

nobel radio system developed at Xerox PARC as part of their Ubiquitous Comput-

ing program. They essentially use inductively coupled systems and exploit the rapid

fallofffor high-density wireless systems.

[emWare 2000] Documentation available online at http://www.emware.com/solu-

tions/emit/. em Ware makes a suite of "thin clients" that run on small microcontrol-

lers connected (generally via wired links) to larger systems that act as proxies.

[Fall 1998] K. Fall and K. Varadhan (editors) "ns Notes and Documentation."

Lawrence Berkeley Nantional Laboratories, August 1998. Available online at http:/

/wwwmash.cs.berkeley.edu/ns/. ns has become is the industry standard for quanti-

fying the performance of network protocols.

[Gershenfeld 1999] N. Geshenfeld. "When Things Start To Think." Henry Holt and

Company, New York, 1999. Articulates the vision of Things That Think.

[Heidegger 1968] Martin Heidegger (translators John Macquarrie and Edward Rob-

inson). "Sein und Zeit." Harper & Row, San Francisco. 1962. Thisfamous existen-

tialist starts with first principals in describing the relation of humans to the world

around them. As such, he has a greater influence in the topic of user interfaces than

some might imagine.

106

[Heinzelman 2000] W. Rabiner Heinzelman, A. Chandrakasan, and H. Balakrish-

nan "Energy-Efficient Communication Protocol for Wireless Microsensor Net-

works," Proceedings of the 33rd International Conference on System Sciences

(HICSS '00), January 2000. This paper describes LEACH (Low Energy Adaptive

Clustering Hierarchy), a technique that dynamically chooses local cluster heads in

multi-hop, ad hoc networks in order to balance and reduce the total amount of

energy spent by individual nodes.

[IEEE 1999] IEEE Std. 802.11, 1999 Edition. "Information technology-Telecom-

munications and information exchange between systems-Local and metropolitan

area networks-Specific requirements-Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications." IEEE Standards Asso-

ciation, 1999. ISBN 0-7381-1809-5 Description of 802.11 wireless LAN standard

[Intanagonwiwat 2000] Chalermek Intanagonwiwat, Ramesh Govindan, and Debo-

rah Estrin. "Directed Diffusion: A Scalable and Robust Communication Paradigm

for Sensor Networks." Proceedings of the Sixth Annual International Conference

on Mobile Computing and Networks (MobiCOM 2000), August 2000.

[IrDA 1998] Infrared Data Association, IrDA specification, available online at

http://www.irda.org

[Johansson 1999] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek. "Routing

protocols for mobile ad hoc networks-a comparitive performance analysis," Pro-

ceedings of the 5th International Conference on Mobile Computing and Network-

ing (A CMMOBICOM '99), pp. 195-206, August 1999.

[Johnson 1996] D. B. Johnson, D. A. Maltz. "Dynamic source routing in ad hoc

networks," in Mobile Computing, T. Imielinski and H. Korth, Eds., Kulwer, 1996,

pp. 152-81.

107

[Kelly 1997] Kevin Kelly. "New Rules for the New Economy." Wired Magazine,

5.09 pp 140-197, September 1997. Kevin Kelly ' vision, notjust of a world densely

populated with smart devices, but how these devices will change the rules.

[Kleinrock 1987] Leonard Kleinrock and John Silvester. "Spatial reuse in multihop

packet radio networks." Proceedings of the IEEE, 75(1):156-167, January 1987.

MANET was not the first foray into multi-hop packet radio systems.

[Kramer 1999] K. H. Kramer, N. Minar, P. Maes. "Tutorial: Mobile Software

Agents for Dynamic Routing," Mobile Computing and Communications Review

(ACMSIGMOBILE), vol. 3, no. 2, 1999, pp. 12-16.

[Kumar 2000] S. Kumar. "Sensor Information Techology (SenseIT) Program",

described in http://www.darpa.mil/ito/research/sensit/, DARPA Information Tech-

nology Office, April 2000.

[Macker 2000] J. Macker, S. Corson. "Mobile Ad-hoc Networks (manet) Charter."

http://www.ietf.org/html.charters/manet-charter.html, February 2000

[Metcalfe 1976] Robert M. Metcalfe and David R. Boggs. "Ethernet: Distributed

packet switching for local computer networks." Communications of the ACM 19, 7

July 1976, pp 395-404. One of the originalpapers on Ethernet.

[Mills 1991] David L. Mills. "Internet time synchronization: the Network Time

Protocol." IEEE Trans. Communications COM-39, pages 1482-1493, October

1991. Available online as http://www.eecis.udel.edu/~mills/database/papers/

trans.ps

[Minar 1999] Nelson Minar, Matthew Gray, Oliver Roup, Raffi Krikorian, Pattie

Maes. "Hive: Distributed Agents for Networking Things." Presented at ASA/MA

August 1999. Available on-line as http://www.hivecell.net/hive-asama.html

[Moravec 1998] Hans P. Moravec. Robot: mere machine to transcendent mind.

Oxford University Press, November 1998. Has an excellent graph ofMTPs per dol-

108

lar See also the online WEB pages for regularly updated numbers: http://

www.frc.ri.cmu.edu/-hpm/book97/ch3/processor list

[Pentland 1996] Alex P. Pentland. "Smart Rooms." Scientific American, 274(4) pp.

68-76. April 1996. At the time this article was published, Pentland made a convinc-

ing argument that computational systems of were sensorially deprived Five years

later it still holds true.

[Perkins 1999] C. Perkins and E. Royer. "Ad-hoc on-demand distance vector rout-

ing," Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and

Applications, pp. 90-100, February 1999.

[Poor 2001] R. Poor. "Jasper: a Java-based dynamic simulator for ad hoc wireless

networks," unpublished.

[Simon 1969] Herb Simon. "The Sciences of the Artificial." MIT Press, Cambridge

Massachusetts, 1969. Economics meets Artificial Intelligence meets Complexity

Theory, offering useful tools for thinking about problems. A wonderfully readable

survey of Simon's work.

[Stajano 1999] Frank Stajano and Ross Anderson. "The Resurrecting Duckling:

Security Issues for Ad-Hoc Wireless Networks." Chapter in Security Protocols, 7th

International Workshop Proceedings, Lecture Notes in Computer Science, 1999.

Springer-Verlag Berlin Heidelberg 1999. Describes techniquesfor "imprinting" in

wireless devices in ad-hoc networks can be "imprinted" to describe ownership and

other security attributes.

[Sun 2000] Sun Microsystems. "JINI Architecture Specification, Version 1.1."

available online at http://www.sun.com/jini/specs/

[Tennenhouse 2000] David Tennenhouse. "Proactive Computing." Communica-

tions of the ACM, May 2000, Volume 43, #5. David makes the argument that since

there are so many embedded computers, they must operate autonomously and sen-

109

sibly-humans must be able to "get out of the loop." This issue of CACM is dedi-

cated to the topic of "Embedding The Internet."

[UMTS 2000] Information available online at http://www.umts-forum.org. UMTS

(universal mobile telecommunication system) is being being developed by the Inter-

national Telecommunications Union as the successor to GSM cellular telephone

systems, featuring bandwidths between 144KBps and 2MBps.

[Weiser 1991] Mark Weiser. "The Computer for the Twenty-First Century." Scien-

tific American, 265(3) pp. 94-104, September 1991. Mark Weiser 'sfamous paper

on Ubiquitous Computing. It still make good sense after all these years, and

reminds us of some of the things we are trying to attain.

[Wheeler 2000] Andy Wheeler, Aggelos Bletsas. "Energy Efficiency Study of

Routing Protocols for Mobile Ad-hoc Networks" Final project paper for 6.899

Computer Networks, taught by Professor Hari Balakrishnan.

[W3C 2000] World Wide Web Consortium (W3C). "Extensible Markup Language

(XML) 1.0" second version edition 6 October 2000. Available on the web at http://

www.w3.org/TR/REC-xml

110

APPENDIX B ArborNet Host Code Listing

Following is the ArborNet C source code that is executed by the ADuC824

host processor on the Constellation board. More information on the ArborNet

system can be found in Chapter 7.

#ifndef ADC H
#define ADC H
// *- Mode: C++ -
//
// File: adc.h
// Description: routines to read the A/D converters

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must

// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

#include "pkt.h"

// routines to read, packetize, print the analog to digital converter

// thermistor (external temp) on AIN1
// photocell on AIN1 (aux)
// Battery monitor on AIN4 (aux)
// chip temperature on aux

(primary)

typedef struct _adcPayload {
// unsigned long fExtTemp;
// unsigned int fLight;
unsigned int fIntTemp;
unsigned int fVBATMon;
adcPayload;

void adc init();

pkt t xdata *adc_report(pktt xdata *next);
// create packet and fill with a fresh set of readings

#endif

Fie: ad c

// -*- Mode: C++ -

// File: adc.c
// Description: routines to read the A/D converters

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

111

Media Laboratory, MIT. Permission to use, copy, or modify this

software and its documentation for educational and research

purposes only and without fee is hereby granted, provided that this

copyright notice and the original authors' names appear on all

copies and supporting documentation. If individual files are

separated from this distribution directory structure, this

copyright notice must be included. For any other uses of this

software, in original or modified form, including but not limited

to distribution in whole or in part, specific prior permission must

be obtained from MIT. These programs shall not be used, rewritten,

or adapted as the basis of a commercial software or hardware

product without first obtaining appropriate licenses from MIT. MIT

makes no representations about the suitability of this software for

any purpose. It is provided "as is" without express or implied

warranty.

#include
#include
#include
#include
#include
#include
#include
#include

"arbor.h"
<rtx5ltny.h>

<aduc824.h>
"constell.h"
"adc.h"
<string.h>

<stdio.h>
"screen.h"

// for os wait()...

// aduc register defs

// leds, etc

// NOTE: With the current board design, VBATMON will stay pegged at

// full scale until VBAT drops to less than 1.25V.

i === == == == == == === == == == == ==

// internal routines

#define PHOTOCELL CHANNEL Ox0O

#define VBATMON CHANNEL 0x10
#define CHIPTEMP CHANNEL 0x20

#define AINS CHANNEL Ox30

/* AIN3 */
/* AIN4 */
/* AINTEMP */
/* AINS */

static void adcread secondary(unsigned char adlcon) {

// Take a reading on a secondary ADC channel. 16 bit result is in

// AD1H,AD1L upon returning from the routine.

AD1CON = adlcon;

ADMODE = BITMASK(0,0,0,1,0,0,1,0); // secondary, single shot

RDY1 = 0;

while (IRDYl)

os wait2(KTMO, 1); // buzz...

void adcread(adcPayload xdata *ap)

// take a reading of the four analog sources: photocall, battery

// monitor, chip temperature, and thermistor. Store results in

// adcPayload structure, passed by reference.

thermistor is on primary A/D...

ADOCON = BITMASK(0,0,0,0,0,1,1,l);
ADMODE = BITMASK(0,0,l,0,0,0,l,0);

RDYO = 0; // start

while (!RDYO)
os wait2(K_

ap->fExtTemp
ap->fExtTemp

ap->fExtTemp
ap->fExtTemp
ap->fExtTemp
ap->fExtTemp

{
TMO, 1); // buzz...

= (ADOH << 16) | (ADOM << 8) | ADOL;
= ADOH;

< 8;

ADOM;
<<= 8;

1= ADOL;

// adcreadsecondary(BITMASK(0,0,0,0,1,0,0,0) PHOTOCELLCHANNEL);

// ap->fLight = (AD1H << 8) 1 AD1L;

adcreadsecondary(BITMASK(0,0,0,0,1,0,0,0) CHIPTEMP CHANNEL);

ap->fIntTemp = (AD1H << 8) | AD1L;

adc readsecondary(BITMASK(0,0,0,0,1,0,0,0) VBATMON CHANNEL);

ap->fVBATMon = (ADlH << 8) 1 ADlL;

// published routines

void adc init()

// fastest, noisiest input

SF = OxOd;

pkt t xdata *adc_report(pktt xdata *next)

// allocate a packet, take a set of readings. Note that adcread()

// is asynchronous, and may take significant time to complete.

pktt xdata *pkt = pkt-alloc();
pkttype(pkt) = SEGTYPEADC;
pktsize(pkt) = sizeof(adcPayload);
adcread((adcPayload xdata *)pktpayload(pkt));
pkt next(pkt) = next;
return pkt;

// AIN1-GND, unipolar, 2.56V
// primary, single shot

conversion on primary A/D

112

Fie:Smr~

#ifndef APPR H
#define APPR H

/ -*- Mode: C++ -

//
// File: appr
// Description: Appl
//
// Copyright 2001 by
// rights reserved.
//
// This MIT Media La
// Advanced Research
// content of the in
// position or the p
// endorsement shoul
//
// For general publi
//
//-
//
//-
//-
//-
//-
//-
//-
//-
//-
//-
//
//
//-
//-
//

. h
ication Receive process

the Massachusetts Institute of Technology. All

boratory project was sponsored by the Defense
Projects Agency, Grant No. MOA972-99-1-0012. T
formation does not necessarily reflect the
olicy of the Government, and no official
d be inferred.

c use.

This distribution is approved by Walter Bender, Director of the
Media Laboratory, MIT. Permission to use, copy, or modify this
software and its documentation for educational and research
purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT

makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied
warranty.

/ -*- Mode: C++ -

// File: appr.c
// Description: Application Receive: manage incoming packets
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012.
content of the information does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred.

The

For general public use.

This distribution is approved by Walter Bender, Director of the
Media Laboratory, MIT. Permission to use, copy, or modify this
software and its documentation for educational and research
purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT
makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied
warranty.

#include "pkt.h"

void appr recvPkt(pkt_t xdata *pkt);
// stuff a received packet into the receive queue, notify
// the receive process

// void apprtask(void) _task_ APPRTASK
// application receive thread.

void apprdidXmit(pktt xdata *pkt);
// called from the mac layer immediately after a packet has been
// passed to the radio and just before it is freed.

#endif

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

"adc.h"
"appx.h"

"arbor.h"
"arq.h"
"costTable.h"
"grad.h"
"id.h"
"sync.h"
"pkt.h"

"mac.h"
"screen.h"
"stats.h"
"vector.h"
<rtx5ltny.h>
<stdio.h>

// ct costTo()
// grad seqno()

// for oswait() ...

// queue for received packets waiting for processing by APPR TASK

113

// (the application receive thread)

#define APPRQUEUESIZE 10
DEFINEVECTOR(gAppRQueue, APPRQUEUESIZE);

// Queue up a received packet. Packets are put here by the radio
// receive thread and are removed by the application process. If
// the queue fills up, dump the oldest.
// ## must not be called until APPRTASK has been started

void apprrecvPkt(pkt_t xdata *pkt) {
// handle a packet received by the radio process by putting in the
// APP receive queue and notifying the APR task. Normally called
// from within RADRTASK

pktfree(vectorshove(VECTOR(gAppRQueue), pkt));
// statsappQueuePkt(vectorcount(VECTOR(gAppRQueue)));
os_send signal(APPRTASK); // notify app task there's a packet

//=
// Application Receive task

// Wait for a packet to arrive in the receive queue, then distribute
// the packet to the various services that might want to know about
// it.

static void apprservicePkt(pkt_t xdata *pkt, pktt xdata *gradSeg);

void appr_task(void) _task_ APPRTASK {

// one-time initialization of the application's receive queue
vectorinit (VECTOR (gAppRQueue), APPR QUEUESIZE);

while (1) {
pkt t xdata *pkt;
pkt-t xdata *gradSeg;

while ((pkt = vector dequeue(VECTOR(gAppRQueue))) == NULL)
os_wait2(KSIG, 0); // appr-recvPkt() will generate signal

gradSeg = grad find segment(pkt);
if (gradSeg == NULL) {

// no routing header? Pass it along anyway...
apprservicePkt(pkt, gradSeg);
pktfree(pkt);

else if (!gradsegIsFresh(gradSeg))
// packet is stale - drop now
SCREEN TASK(("stale"));
pktfree (pkt);

else {
if (grad isForMe(gradSeg))
appr servicePkt(pkt, gradSeg);

// relay or drop the message. Either way, pkt is guaranteed
// to be freed by grad relayIfNeeded().
grad relayIfNeeded(pkt, gradSeg);

static void apprservicePkt(pkt_t xdata *pkt, pktt xdata *grad)
// always print received packet in hex on serial port

#ifdef SCREENENABLE
screengoto(14, 1);

#endif
pktdumpHex(pkt);

// do additional servicing as needed
while (pkt != NULL) {

switch (pkttype(pkt))
case SEGTYPE GRADIENT:
case SEGTYPEDISCOVERY:

// grad updates already happened in apprtask() above
break;

case SEG TYPE ARQ:
arqserviceArq(pkt, grad);
break;

case SEGTYPEACK:
arqserviceAck(pkt);
break;

case SEGTYPEAPPX:
appxserviceSeg(pkt);
break;

case SEG TYPEPING:
syncserviceSeg(pkt);
break;

case SEGTYPETEXT:
case SEG TYPECOSTL:
case SEGTYPE COSTH:
case SEGTYPESTATS:
case SEG TYPEADC:
case SEG TYPE-TIME:
default:

// contents of the packet has already been printed (above)
break;

}
pkt = pktnext(pkt);

void apprdidXmit(pkt t xdata *pkt)
// Called after pkt has been transmitted by the radio, appr didXmit)
// gives individual services a chance to take some action when the
// transmission has finished. Notably, arq needs a chance to grab
// a copy of any packets that need rescheduling
arqdidXmit(pkt);

114

#ifndef APPXH
#define APPXH
// -*- Mode: C++ *

//
// File: appx.h
// Description: Application Transmit support

//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The

// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

#include "arbor.h"
#include 'pkt.h'

// Application Transmit process periodically sends info from this
// node to a designated collection point.

typedef struct _appxPayload
node id fHost;
unsigned int fDelayTics;
appxPayload;

// host to send data to
// inter-report delay (in system tics)

void appx startReporting(nodeid destination);
// broadcast a SEG TYPE APPX to all nodes, asking them to start
// sending reports to the named destination node.

void appxstopReporting();
// broadcast a SEGTYPEAPPX to all nodes, asking them to stop
// sending reports.

pkt t xdata *appx makeSeg(pktt xdata *next, node id host);
// allocate a appx segment, link it in with next

void appxserviceSeg(pktt xdata *seg);
// act upon an incoming appx message

#endif

File: appxxc

// -*- Mode: C++ -*-

//
// File: appx.c
// Description: Application Transmit: generate periodic reports
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

"adc.h"
"appx.h"
"arq.h"
"constell.h"
"costTable.h"
"grad.h"
"id.h"
"mac.h"
"sync.h"
"screen.h"
"stats.h"

// for arq_makeArq()

// for ctreport(), ctresetexcept()

115

// for os wait)...
// printf
// rand()

// sDirectives stores the recipient for reports and the report interval

static appxPayload sDirectives;

// Note that even though there's a slot in an appxPayload packet

// specifically to control the delay time between appx reports, it

// will always be set to DEFAULTAPPX DELAY. This could be made

// variable, if needed.

#define DEFAULTAPPX DELAY 1060

// set a limit to the minimum delay between appx reports

#define MINAPPXDELAY (OSTICSPERSECOND/2)

void appx startReporting(nodeid destination)

// broadcast a SEGTYPEAPPX to all nodes, asking them to start

// sending reports to the named destination node.

mac xmitPkt(grad makePkt(appxmakeSeg(NULL, destination),

BROADCASTNODE));

}

void appxstopReporting()

// broadcast a SEG TYPEAPPX to all nodes, asking them to stop

// sending reports.

macxmitPkt(grad makePkt(appx makeSeg(NULL, 0), BROADCASTNODE));

pktt xdata *appx makeSeg(pkt t xdata *next, nodeid host)

// create a SEGTYPE APPX packet, requesting that nodes send periodic

// reports to <host>

pktt xdata *seg = pktalloc();
appxPayload xdata *xp = pkt payload(seg);
pkttype(seg) = SEG TYPE APPX;
pkt size(seg) = sizeof(appxPayload);
xp->fHost = host;
xp->fDelayTics = DEFAULT APPXDELAY;

pkt-next(seg) = next;
return seg;

void

//-
//-
//
//-
//

appx_serviceSeg(pktt xdata *seg) {
When a SEGTYPE APPX packet is received, copy the appxPayload to

the local state and notify the APPXTASK. The APPXTASK will

start sending the requested information to the host specified in

the header.

As a side effect, an APPX packet also resets all the statistics

information and routing table info for the node. Short of creating

a new packet type, this is the only convenient way to clear all

the logging and statistics info.

appxPayload xdata *xp = pktpayload(seg);

#include <limits.h>

#include <rtx5ltny.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

SCREEN TASK(("h=%bx d=%Obx", SDirectives.fHost,
sDirectives.fDelayTics));

// I: send low half of cost table and sync state

_wrapAndSend(ct report_l(syncreport(NULL)));

_bide(SDirectives.fDelayTics);

// II: send high half of cost table and sync state

_wrapAndSend(ct report h(syncreport(NULL)));

116

SCREEN TASK(("appx_ss()")); PKTPRINT(seg);

memcpy(&sDirectives, xp, sizeof(appxPayload));

stats reset); // reset packet statistics

sync reset(); // reset sync statistics

ct reset except(xp->fHost); // reset cost table except to host

ossendsignal(APPX TASK);

static void _wrapAndSend(pktt xdata *pkt)

// "Decorate" pkt with a request for reply (arq) and a grad

// header before passing it to the MAC system for transmission.

LEDON(GREENLED);

macxmitPkt(grad makePkt(arqmakeArq(pkt), sDirectives.fHost));

LED OFF(GREENLED);

static void _bide(unsigned int tics)

// wait for the given number of tics to elapse. Each tic is

// approx 9.6 mSec, or 106 tics per second.

while (tics != 0) {
unsigned char t = (tics > UCHARMAX)?UCKARMAX:tics;
os wait2(K TMO, t);

tics -= t;

// Wait until we're directed to send our status to a particular host,

// then start sending periodic updates.

//
void appx task(void) _task_ APPXTASK

// one-time initialization

sDirectives.fHost = 0;

sDirectives.fDelayTics = 0;

while (1) {
SCREENTASK(("appx-task(l)"));

while (sDirectives.fHost == 0)

os wait2(K SIG, 0);

// before starting the appx process, choose a random delay

// to cut down on collisions

os wait2(K TMO, rand());

// enforce minimum delay

if (sDirectives.fDelayTics < MINAPPX DELAY)
sDirectives.fDelayTics = MIN APPX DELAY;

bide(sDirectives.fDelayTics);

// III: send packet statistics and ADC values

wrapAndSend (statsreport (adc report (NULL)))
bide(sDirectives.fDelayTics);

#ifndef ARBORH
#define ARBOR H
// -*- Mode: C++ -*-

//
// File: arbor.h
// Description: General system definitions for ArborNet nodes
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

#ifndef NULL
#define NULL (void *)0
#endif

// pervasive data types

typedef unsigned char node id;
typedef unsigned char cost-t;
typedef unsigned char seq_t;

// too handy not to define

#define BITMASK(b7,b6,b5,b4,b3,b2,bl,b0) \
((b7<<7)| (b6<<6) (b5<<5)1(b4<<4)|(b3<<3)| (b2<<2) (bl<<l) (bO))

// units for os wait), assuming 12Mhz clock
#define OSTICSPERSECOND 106

// system-wide definitions

117

#def/ine
#define
#define
#define
#def ine
#define
#define

MAIN TASK

RADR TASK

MAC TASK
SYNC TASK

APPR TASK

ARQ TASK

APPXTASK

radio receive thread
radio transmit thread
periodic ping thread
packet receiver task
retry packets until ack'd
send data to collection point

#endif // ARBOR H

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

/ -* Mode: C++ -*-

/ File: arbor.c
/ Description: initialization and main process loop for ArborNet

/ Copyright 2001 by the Massachusetts Institute of Technology. All

/ rights reserved.

/ This MIT Media Laboratory project was sponsored by the Defense

/ Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The

/ content of the information does not necessarily reflect the

/ position or the policy of the Government, and no official

/ endorsement should be inferred.

/ For general public use.

/ This distribution is approved by Walter Bender, Director of the

/ Media Laboratory, MIT. Permission to use, copy, or modify this

/ software and its documentation for educational and research
/ purposes only and without fee is hereby granted, provided that this

/ copyright notice and the original authors' names appear on all

/ copies and supporting documentation. If individual files are
/ separated from this distribution directory structure, this

/ copyright notice must be included. For any other uses of this

/ software, in original or modified form, including but not limited

/ to distribution in whole or in part, specific prior permission must

/ be obtained from MIT. These programs shall not be used, rewritten,

/ or adapted as the basis of a commercial software or hardware
/ product without first obtaining appropriate licenses from MIT. MIT

/ makes no representations about the suitability of this software for

/ any purpose. It is provided "as is" without express or implied
/ warranty.

/ Main startup file for arbor system.

#include "arbor.h"

#include "adc.h"
#include "appx.h"

#include "arq.h"
#include "constell.h"
#include "costTable.h"

// adc init)
// appxstartReporting(
// arq_init()
// for LEDs

// ct init()

"grad.h"
"id.h"
"pkt.h"

"rad.h"

"screen.h"
"serial.h"

"stats.h"
"sync.h"
<aduc824.h>

<rtx5ltny.h>
<stdio.h>
<stdlib.h>

gradinit()
nodeName ()...
pkt_init)
rad init)

serial init)
stats reset)
syncgetLocalTime()

for PLLCON

for os wait)...
puts()
srand()

#define BIDE(tics) os wait2(K TMO, (tics))
// sleep for the given number of tics. Each tic is approximately

// 9.4 mSec. tics must be less than 256.

void test leds)
int i;

for (i=0; i<2; i++)
LED ON(AMBER LED);

LED OFF(YELLOW LED);
BIDE(20);
LED ON(RED LED);
LED OFF(AMBERLED);
BIDE(20);
LED ON(ORANGE LED);

LED OFF(RED LED);
BIDE(20);
LED ON(GREEN LED);
LED OFF(ORANGELED);

BIDE(20);
LED ON(YELLOW LED);
LED OFF(GREENLED);
BIDE(20);

LEDOFF(YELLOWLED);

// Install jumper_0 to blast packets directly to the radio.
// Used for debugging.

static void _blastpackets()
os delete task(SYNC TASK);
while (JUMPER 0())

// blast packets
pktt xdata *pkt = adcreport(NULL);
rad-xmitPkt(pkt);

pktfree(pkt);
os wait2(KTMO, 20);

}
os-create task(SYNC TASK); // restart sync task.

// ===== =

// ======= == == == == == === == == == == == === == == == == == ==

// program entry point here

118

void init() _task_ MAIN TASK {
// experiment to see if setting radio pins early makes a difference...

TR1000 CTL DIRECTION = BITMASK(0,0,0,0,0,1,1,0); // setup mode ctl pins

TR1000 CTL DRIVE = OxO; // standard CMOS I/O

TR1000 CTLO = 1; // set TR1000 to receive mode

TR1000_CTL1 = 1;

BIDE(4);

PLLCON = Ox0O; // 12 MHz

TIMECON = 0x13;

LEDINIT(;

test leds(;
srand(nodeID();

serial inito;
pktinit();
BIDE(10);
printf("\r\n\r\narbor xO.10

LED ON(AMBER LED);

adc init(;
ct init();
grad init();

rad init(;
stats reset();

LEDOFF(AMBERLED);

os create task(MAC TASK);
os create task(APPR TASK);

os-create task(APPX TASK);

os create task(ARQ TASK);
// MACTASK must be started

os-create task(SYNC TASK);

os create task(RADR TASK);

configure TIMECON to:

x0xxxxxx - count hours 0 to 255

xx0lxxxx - count in seconds

xxxx0xxx - auto reload TIC

xxxxx0xx - clear TIC interrupt flag

xxxxxxlx - enable counting of TIC

xxxxxxx1 - enable counting of RTC

// set up baud rate

/ init packet storage

%s\r\n", nodeName());

initialize analog module
init cost tables
init gradient routing module

init radio module

// start mac process
// app receive thread

before SYNCTASK
// start sync task.

// restart receiver

// Note that syncgetLocalTime() returns time in units of 128ths
// of a second. When assigned to prevRTC and tmp, it's truncated
// to an unsigned char, or 256 tics, or two seconds.
prevRTC = syncgetLocalTimeo; // truncated to 2 seconds
while (!serialcharIsAvailable()

// blast packets if jumper 0 installed

if (JUMPER 0() _blastpacketso;

tmp = sync getLocalTime(; // also truncated...

if (tmp < prevRTC) { // virtual RTC rolled over

LED ON(YELLOW LED);

if ((syncgetLocalTimeo) & 0xff00) == 0)

oswait2(KTMO, 20); // long flash on the minute

else {
oswait2(KTMO, 1); // blip otherwise

LED OFF(YELLOW LED);

else {
// One RTC tic is 7.8125 mSec. One OS tic is 9.44 tics.
// We expect tmp to roll over in 256 - tmp RTC tics, so

// we conservatively wait (256-tmp)/2 OS tics before

// checking again.
oswait2(KTMO, (256-tmp)>>1);

// os-wait2(KTMO, ((256-tmp)>>1)+10);

prevRTC = tmp;

// here when a serial char became available
tmp = getchar();
if (tmp == 'H')

printf("...start reporting");

appx~startReporting(nodeID();
else if (tmp == 'S') {
printf("...stop reporting");

appx stopReportingo;
else {
putchar('?');

SCREEN CLEAR);

while (1) {
unsigned char prevRTC, tmp;

SCREENTASK(("%s command: ", nodeName());

// This loop does two things: It breaks when a character has been

// typed on the serial input. While it's waiting, it flashes the

// yellow LED whenever the local clock crosses a 2 second boundary.

// This should give a visual indication of synchronization among

// nodes.

119

File: arq.h

#ifndef ARQ H
#define ARQ H
// -* Mode: C++ -
//
// File: arq.h
// Description: Header file for Automatic Reply reQuest mechanism
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
/ This distribution is approved by Walter Bender, Director of the
/ Media Laboratory, MIT. Permission to use, copy, or modify this
/ software and its documentation for educational and research
/ purposes only and without fee is hereby granted, provided that this
/ copyright notice and the original authors' names appear on all
/ copies and supporting documentation. If individual files are
/ separated from this distribution directory structure, this
/ copyright notice must be included. For any other uses of this
/ software, in original or modified form, including but not limited
/ to distribution in whole or in part, specific prior permission must
/ be obtained from MIT. These programs shall not be used, rewritten,
/ or adapted as the basis of a commercial software or hardware
/ product without first obtaining appropriate licenses from MIT. MIT
/ makes no representations about the suitability of this software for
/ any purpose. It is provided "as is" without express or implied
/ warranty.

#include "pkt.h"

// an originator that wants a reply installs an arq segment in
// the message. The receiver will send an ack packet in reply.

// segments with SEGTYPEARQ or SEGTYPEACK have this
// as their payload. The originator and destination
// ids are assumed to be available in a grad seg in the
// same packet. the fTimeout and fRetries fields are
// artifacts that simplify the programming and offer
// a little debugging info.

// BIG OL' NOTE: The ARQ DETAULTRETRIES has been set to zero, which
// effectively prevents the ARQ system from ever sending repeat packets.
// The number of ARQ (requests) issued and the number of ACK (replies)
// are logged in the statistics, though.
//
// This is because the ARQ/ACK sytem has been shown to work, but for
// testing, we don't want the variability introduced by repeated ARQ

// packets -- we'd rather just drop the packet than retry.

#define ARQDEFAULT RETRIES 0
// ARQ quits re-sending a packet after RETRIES attempts

typedef struct _arqPayload
unsigned char fReference;
unsigned char fRetries;
arqPayload;

// packet ID
// # of times remaining

typedef struct _ackPayload
unsigned char fReference;
ackPayload;

pkt-t xdata *arqmakeArq(pktt xdata *pkt);
// install SEGTYPE ARQ segment in pkt

pkt-t xdata *arq_makeAck(pktt xdata *pkt, unsigned char reference);
// install SEGTYPE ACK segment in pkt

void arqserviceArq(pkt t xdata *seg, pktt xdata *grad);
// Handle an incoming ARQ packet. Respond by creating an ACK packet and
// sending it to the originator.

void arqserviceAck(pktt xdata *seg);
// Handle an incoming ACK packet. Respond by finding and deleting the
// corresponding packet in the retry queue.

void arq_didXmit(pkt_t xdata *pkt);
// Called by the MAC thread when a packet is sent. If the packet
// contains an ARQ header and its retry count is greater than 0,
// create a copy of the packet and install the copy in the retry
// queue.

// void arq task(void) task ARQTASK
// Task regularly examines retry queue. If there is a packet in the
// retry queue, remove it from the queue and pass it to the MAC layer
// for transmission.

#endif

// -* Mode: C++ -*-

//
// File: arq.c
// Description: Automatic Reply reQuest: manage ARQ and ACK packets
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official

120

// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

pkt_size(arqSeg) = sizeof(arqPayload);
pkttype(arqSeg) = SEGTYPEARQ;
pkt next(arqSeg) = pkt; // link to main packet

return arqSeg;

pktt xdata *arq_makeAck(pktt xdata *pkt, unsigned char reference)
// add an ack segment to packet
pktt xdata *ackSeg = pktalloc(;
ackPayload xdata *ap = pkt payload(ackSeg);

ap->fReference = reference;
pktsize(ackSeg) = sizeof(ackPayload);
pkttype(ackSeg) = SEG TYPEACK;
pkt-next(ackSeg) = pkt; // link to main packet

stats_arq);

return ackSeg;

// log a request for acknowlegement

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

"appr.h"
"arbor.h"
"arq.h"
"grad.h"
"fid.h"
"mac. h"
"pkt.h"
"screen.h"
"stats.h"
"vector.h"
<rtx5ltny.h> // for oswait(...
<stdio.h>

// The gRetryQueue is the home for packets awaiting an ACK
// from a remote host.
#define RETRYQUEUE SIZE 4
DEFINEVECTOR(gRetryQueue, RETRYQUEUESIZE);

#define ARQ INTERVAL TICS OS TICS PERSECOND
// Once every ARQINTERVAL_TICS, examine the retry queue. If there
// is a packet available, remove it and pass it to the MAC layer for
// retransmission. This limits the maximum rate of retries.

static unsigned char gReference;
// A reference number for each ACK packet generated.

// ==-===== == == == === == == == == === == == == == === == == == ==

// -======= == == == == == === == == == == == === == == == == == ==

// public routines

pktt xdata *arg makeArq(pktt xdata *pkt)
// add an arq segment to this packet
pkt t xdata *arqSeg = pkt alloc(;
arqPayload xdata *ap = pkt payload(arqSeg);

ap->fReference = gReference++;
ap->fRetries = ARQDEFAULT RETRIES;

void arq_serviceArq(pkt t xdata *seg, pktt xdata *grad) {
// Handle an incoming ARQ packet. Respond by creating an ACK packet
// and sending it to the originator. seg is known to be a segment of
// type SEGTYPEARQ, grad (if non null) is SEGTYPEGRAD.
gradPayload xdata *gp;
arqPayload xdata *ap;

// can't handle a packet with no return address
if (grad == NULL) return;
gp = (gradPayload xdata *)pktpayload(grad);
ap = (arqPayload xdata *)pkt payload(seg);

macxmitPkt(grad makePkt(argmakeAck(NULL, ap->fReference),gp-
>fOriginator));

void arq_serviceAck(pktt xdata *seg)
// seg is known to be SEGTYPEACK, and part of a packet targeted
// for this node. If it is an acknowlegement for an ARQ packet
// festering in the retry queue, now is the time to delete it.

// ## don't call before ARQ TASK is started

ackPayload xdata *ackh = pktpayload(seg);
unsigned char i = VECTOR(gRetryQueue)->fCount;

stats ack); // log an acknowlegement received

while (i--) {
pktt xdata *retryPkt;
pktt xdata *arqSeg;
retryPkt = fast vectorref(VECTOR(gRetryQueue), i);
arqSeg = pktfindsegment(retryPkt, SEGTYPEARQ);
if (arqSeg != NULL) {
arqPayload xdata *arqh = pktpayload(arqSeg);

121

if (arqh->fReference == ackh->fReference) {
// found a match. Remove retryPkt from the retry queue.
pkt_free(fastvectorremove(VECTOR(gRetryQueue), i));
return;

void arq_didXmit(pktt xdata *pkt) {
// Called by the MAC thread when a packet is sent. If this node
// is the originator and it has an ARQ header and its retry count
// is greater than 0, create a copy of the packet and install it
// in the retry queue.

// ## don't call before ARQTASK is started

pktt xdata *arqSeg;
pktt xdata *gradSeg;
arqPayload xdata *ap;

if ((arqSeg = pktfind segment(pkt, SEG TYPE ARQ)) == NULL)
// no ARQ segment in the packet - fuggeddaboudit
return;

}

if (((gradSeg = grad find segment(pkt)) == NULL) [|
(((gradPayload xdata *)pktpayload(gradSeg))->fOriginator 1=

nodeID()))
// we weren't the originator
return;

ap = (arqPayload xdata *)pktpayload(arqSeg);
if (ap->fRetries-- > 0) {

// There are one or more retries left in this packet. Make a
// copy of the packet and install the copy in the retry queue.
pkt = pktcopy(pkt); // make a copy
pkt free(vector shove(VECTOR(gRetryQueue), pkt));
os_send signal(ARQTASK); // tell ARQ TASK to check retry queue

void arq_task(void) _task_ ARQ TASK
// Task regularly examines the retry queue, passing messages to the
// MAC layer for retransmission as they become available.
pktt xdata *pkt;

// one time initialization
vectorinit(VECTOR(gRetryQueue), RETRYQUEUE SIZE);
gReference = 0;

while (1)

do {
// Block until there might be a packet in the retry queue.
if (vector count(VECTOR(gRetryQueue)) == 0) {
os_wait2(KSIG, 0); // arqdidXmit() will generate signal

}
// This wait() regulates the max rate at which retries are sent
os wait2 (KTMO, ARQINTERVALTICS);
// the packet may have been removed by serviceAck() while we were
// waiting. Check if the packet is still there before continuing.
while ((pkt = vectordequeue(VECTOR(gRetryQueue))) == NULL);

// pkt is the packet to be retransmitted. Update grad info
// and pass ot MAC layer for retransmission
gradupdateSeg(pkt);
macxmitPkt(pkt);
SCREENTASK(("arqtask(3) %bu", vector_count(VECTOR(gRetryQueue))));

122

#ifndef CONSTELL H
#define CONSTELLH_

// -* Mode: C++ -

//
// File: cons

// Description: hard

// Author: Paul
//
// Copyright 2001 by

// rights reserved.

//
// This MIT Media La

// Advanced Research

// content of the in

// position or the p

// endorsement shoul

//

{
char byte;
Register bits;

MixedReg;

// address offsets of PSD control registers

tell.h
ware-specific definitions for Constellation board

Pham

the Massachusetts Institute of Technology. All

boratory project was sponsored by the Defense

Projects Agency, Grant No. MOA972-99-1-0012. The
formation does not necessarily reflect the

olicy of the Government, and no official
d be inferred.

// For general public use.

//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,

// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for

// any purpose. It is provided "as is" without express or implied
// warranty.

#define PSDREGBASE 0x2000

// general structure of 8-bit register allowing bit access
typedef struct

unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

Register;

char
char
char
char
char
char
char
char

bitO
bitl
bit2
bit3
bit4
bit5
bit6
bit7

// union allowing either byte or bit access to 8-bit register
typedef union

#define
#define
#define
#def ine

#define
#define

#define
#def ine
#def ine

#def ine
#def ine
#def ine
#define
#def ine

#def ine
#define
#def ine
#def ine
#define
#def ine
#define
#define
#define
#define
#define
#define
#define
#def ine
#def ine
#def ine

#define
#define
#define
#define
#def ine
#define

DATAIN A
DATAINB

DATAIN C
DATAIN D

DATAOUT A
DATAOUT B
DATAOUT C
DATAOUT D
DIRECTION A
DIRECTION B

DIRECTION C
DIRECTION D
DRIVE A
DRIVE B
DRIVE C
DRIVE D
OUTENABLE A
OUTENABLE B
OUTENABLE C
OUTENABLE D
CONTROL A
CONTROL B
IMC A
IMC B
IMC C
OMC AB
OMC BC

OMCMASK AB
OMCMASK BC
MAINPROTECT

ALTPROTECT
JTAG

PMMRO
PMMR2
PAGE
VM

//PSD PORTA

#define PAO

#define PA1

#define PA2
#define PA3
#define PA4

#define PA5

#define PA6
#define PA7

//PSD PORTB
#define PBO

#define PB1
#define PB2

#define PB3

((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile
((volatile

Mixed Reg
Mixed_Reg
Mixed Reg
Mixed_Reg
Mixed Reg
Mixed Reg
Mixed Reg
Mixed Reg
Mixed Reg
Mixed_Reg
Mixed Reg
Mixed_Reg
Mixed Reg
Mixed_Reg
Mixed Reg
Mixed_Reg
Mixed Reg
Mixed_Reg
Mixed Reg
Mixed Reg
Mixed Reg
Mixed_Reg
Mixed Reg
Mixed_Reg
Mixed Reg
Mixed_Reg
Mixed Reg
Mixed_Reg
Mixed Reg
Mixed_Reg
Mixed Reg
Mixed_Reg
Mixed Reg
Mixed Reg
MixedReg
MixedReg

xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata

(PSD REG BASE+OxOO))
(PSD REG BASE+OxO1))
(PSD REGBASE+0x10))

(PSD REG BASE+Oxll))
(PSDREGBASE+0x04))
(PSD REG BASE+0x05))
(PSD REG BASE+0x12))
(PSDREG BASE+0x13))
(PSD REG BASE+0x06))
(PSD_REGBASE+0x07))
(PSDREGBASE+0x14))

(PSD REGBASE+Ox15))

(PSD REG BASE+0x08))
(PSD REGBASE+0x09))
(PSD REG BASE+0x16))
(PSD REG BASE+0x17))
(PSDREGBASE+0xOC))

(PSD REG BASE+0xOD))
(PSDREGBASE+O0xlA))

(PSD REG BASE+0xlB))
(PSD REG BASE+0x02))
(PSD REG BASE+0x03))
(PSD REGBASE+Ox0A))

(PSD REG BASE+OxOB))
(PSD REG BASE+0x18))
(PSD REG BASE+0x20))
(PSD REG BASE+0x21))
(PSD REG BASE+0x22))
(PSD REG BASE+0x23))
(PSD REG BASE+OxCO))
(PSD REG BASE+0xC2))

(PSD REG BASE+0xC7))
(PSD REG BASE+0xBO))

(PSD REG BASE+0xB4))
(PSD REGBASE+0xEO))

(PSDREGBASE+0xE2))

bitO
bitl
bit2
bit3
bit4
bit5
bit6
bit7

bitO
bit1
bit2
bit3

123

File: constell.h

#define PB4

#define PB5

#define PB6
#define PB7

//PSD PORTC
#define PCO

#define PCi

#define PC2

#define PC3

#define PC4

#define PC5

#define PC6

#define PC7

//PSD PORTD

#define PDO
#define PD1

#define PD2

//PSD JTAG

#define JEN

//PSD PMMRO

#define APDENABLE

#define PLD TURBO
#define PLD ARRAY CLK

#define PLDMCELLCLK

//PSD PMMR2
#define PLD CNTLO

#define PLD CNTL1

#define PLD CNTL2

#define PLD ALE

#define PLDDBE

//PSD VM
#define SRAM CODE
#define EE CODE
#define FL CODE

#define EE DATA
#define FL DATA
#define PIO EN

// Flash parameters

#define NVMDATAPOLL
#define NVMDATATOGGLE

#define NVM ERROR

bit4
bitS
bit6
bit7

bitO
bit1
bit2
bit3
bit4
bitS
bit6
bit7

bitO
bit1
bit2

bitO // JTAG enable

bit1
bit3
bit4
bit5

bit2
bit3
bit4
bit5
bit6

bitO
bitl
bit2
bit3
bit4
bit7

0x80 // flash status "data poll" bit at DQ7
0x40 // flash status "toggle poll" bit at DQ6
0x20 // flash status "error" bit at DQ5

#def ine
#define
#def ine
#def ine
#def ine
#def ine
#def ine
#def ine
#def ine
#define
#def ine
#def ine

#def ine

#def ine
#def ine

TR1000 CTL1 DATAOUT D->bits.PD2
TR1000 CTL DIRECTION DIRECTIOND->byte

TR1000_CTLDRIVE DRIVE_D->byte

BARTDATADIRECTION DIRECTION_B->byte
BARTDATADRIVE DRIVE_B->byte
BART DATACONTROL CONTROLB->byte

BARTDATAOUT DATAOUTB->byte
BARTDATA IN DATAINB->byte

LEDDIRECTION DIRECTION A->byte

LEDDRIVE DRIVE A->byte

LEDCONTROL CONTROL A->byte
LED SET DATAOUT A

BART READY INTO

BART CLOCK TO
BART-MODE T1

// values for BART MODE

#define BART MODE XMIT 0

#define BARTMODERECV 1

// values for xxx DIRECTION registers
#define XMIT OxFF

#define RECV OxO0

#define LEDINIT() LEDDIRECTION = Ox1F; \
LEDDRIVE
LEDCONTROL

LED SET->byte = OxFF

= Ox00; \
= OxOO; \

// To turn LED on, pull pin down to ground because other end is connected to
// Vcc. To turn LED off, pull pin up.

#define LED ON(b)
#define LED OFF(b)

#define ALLLEDS ON()
#define ALLLEDSOFF()

#def ine
#def ine
#def ine
#def ine
#def ine

AMBER LED
RED LED

ORANGE LED

GREEN LED

YELLOW-LED

// return true when ji

#define JUMPER 0()
#define JUMPER1()

#endif // CONSTELLH

LED SET->bits.b = 0

LED SET->bits.b = 1

LEDSET->byte = OxOO
LEDSET->byte = Oxff

0
1

2
3

4

mper installed
(!DATAIN C->bits.PC2)
(!DATAIN C->bits.PC7)

// For F2 with EEPROM boot

#define MAX EEPROMRETRY OxOFFF
// Maximum number of attemps to check status after

/ a write opertaion to EEPROM

/ sfr PLLCON = OxD7;

#define TR1000CTLO DATAOUT D->bits.PD1

124

File: costTable.h

// -*- Mode: C++ -*-

//
// File: costTable.h
// Description: header file for cost table routines
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

#ifndef COST TABLE H
#define COSTTABLEH

#include "arbor.h"
#include "grad.h"
#include "pkt.h"

// for gradPayload
// for pktt def

#define COST UNKNOWN ((cost t)Oxff)

// A costRecord represents this node's cost to a given originator. A
// message leaves behind a trial of costRecords as it hops from node
// to node.

// ## NB: Since the cost table is now layed out with the N'th entry
// corresponding to fOriginator == N, the fOriginator field in the
// costRecord structure isn't really required.

typedef struct {
nodeid fOriginator;
segtt fSequence;
costt fCost;

// originator of this costRecord
// orignator's sequence number
// accrued cost since origination

costRecord;

// Support for costRecords

void ct init();
// initialize the cost table

void ctreset except(nodeid target);
// reset all entries in the cost table except for
// target. If target is out of range, resets all.

bit ct_update(gradPayload xdata *gh);
// Create or update a costRecord for originator, returning true if
// originator/sequence pair corresponds to fresh message. Even if the
// message is stale, the hops field is updated if the new record is
// advantageous.

bit ctshouldRelay(gradPayload xdata *gh, bit isDiscovery);
// Look up the cost for destination in the routing table. If a record
// for the destination doesn't exist, return false. If a record does
// exist, return true if the cost table's hop count is smaller than
// the given budget. Otherwise return false.

costt ct costTo(node id node);
// Return the cost to the given node, or COSTUNKNOWN if there is no
// costRecord in the routing table.

pkt-t xdata *ctreport_l(pktt xdata *next);
pkt t xdata *ctreporth(pktt xdata *next);
// return packets with low half and high half of routing table.

#endif

File: costTablexc

// -* Mode: C++ -*-

//
// File: costTable.c
// Description: maintain cost estimates to other nodes
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
I//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this

125

// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

// Support for cost tables
//
// 08Nov2000 r@media.mit.edu

// Modified fancy LRU cost table to direcly indexed one node/one entry
// form. This is simple and fast, but not scalable.

#include "costTable.h"
#include "id.h"
#include <stdio.h>

// the actual storage for vector and costRecords

#define MAX COSTRECORDS 26
#define COSTREPORT SIZE 13

// IDs are biased by this offset
#define MINID 'A'

// allocate a static pool of cost records
static costRecord xdata costRecords [MAXCOSTRECORDS];

// ======= == == == === == == == == === == == == == === == == == ==

// internal procedures

static int _findRecord(nodeid originator);
static void _createRecord(gradPayload xdata *gp)

#define NULL ORIGINATOR (node id)O

static int _recordIndex(node_id originator)
// map a node id to a cost table index, returning -1 if the
// node id is out of range.
if ((originator < MINID) (originator >= (MINID + MAX COSTRECORDS)))

return -1;
else {
return originator-MIN ID;

static void _createRecord(gradPayload xdata *gp) {
// copy gradPayload's salient points into the cost table.
unsigned char index = _recordIndex(gp->fOriginator);

if (index != -1) {
costRecord xdata *cr = &_costRecords[index];
cr->fOriginator = gp->fOriginator;
cr->fSequence = gp->fSequence;
cr->fCost = gp->fCostAccrued;

// -=====- -- - - -- - -

// exported procedures

void ct init()
// initialize the cost table with unused cost records
ctreset except(NULLORIGINATOR);

}

void ct reset-except(nodeid target)
// clear cost entry for all nodes except the specified target
unsigned char i;

for (i=O; i<MAXCOSTRECORDS; i++)
costRecord xdata *cr;
if (i != _recordIndex(target))

cr = &_costRecords[i];
cr->fOriginator = NULLORIGINATOR;
cr->fCost = COSTUNKNOWN;

#define ISNEWER(seqA, seqB) ((((seqB)-(seqA)) & OxfO) != 0)
// ISNEWER() returns true if sequence number A is newer than sequence
// number B, in this case, within 16 counts. A and B are interpreted to
// be MOD 256 (one byte).

bit ct_update(gradPayload xdata *gp)
// Create or update a cost record for originator, returning true if
// originator/sequence pair corresponds to fresh message. Even if
// the message is stale, the cost field is updated if the new record
// is advantageous.
unsigned char index;
costRecord xdata *cr;

if (gp->fOriginator == nodeID() {
// I was the originator of this message.
return 0;

Feggadaboudit.

index = _recordIndex(gp->fOriginator);

if (index == -1) {

_createRecord(gp);
return 1;

cr = & costRecords[index];

if (IS NEWER(gp->fSequence, cr->fSequence))

126

cr->fSequence = gp->fSequence; return ct report(SEGTYPE COST L, 0, next);
cr->fCost = gp->fCostAccrued;
return 1;

pkt-t xdata *ct report h(pkt t xdata *next)
}/ create a packet with the high half of the routing table in

if ((gp->fSequence == cr->fSequence) && (gp->fCostAccrued < cr->fCost)) { / the payload
// this sequence number already seen, but adverized cost is better return ct report(SECTYPECOST H, COSTREPORTSIZE, next);
// Update cost estimate
cr->fCost = gp->fCostAccrued;

return 0;

bit ct pshouldRelay(gradPayload xdata *gp, bit is*icovery)
// if not discovery: look up cost to destination in cost table.
// if unknown, return false.
// else return true if the message's cost budget is larger than
// this node's cost to the destination.
// if discovery:
// return true if the message's cost budget is larger than 0
costt myCost = (cost t) ((isDiscovery)?0:ct_costTo(gp->fDestination));
if (myCost == COSTUNKNOWN)
return 0;
else {
return (gp->fCostBudget > myCost);

cost t ctcostTo(nodeid node)
/Return the cost to the given node, or COSTUNKNOWN if there is no

// record in the routing table.
int i = recordIndex(node);
if (i == -1)
return COSTUNKNOWN;
else {
costRecord xdata *cr = & costRecords[i];
return cr->fCost;

static pkt_t xdata *ctreport(segtype t,
unsigned char offset,
pktt xdata *next)

unsigned char i;
pktt xdata *pkt = pktalloc();
unsigned char *p = pktpayload(pkt);
pkttype(pkt) = t;
pktsize(pkt) = COST REPORT SIZE;
for (i=0; i<COST REPORTSIZE; i++)

*p++ = (_costRecords[i+offset]).fCost;

pktnext(pkt) = next;
return pkt;

pktt xdata *ct reportl(pkt t xdata *next)
// create a packet with the low half of the routing table in
// the payload

127

File: grad.h

4ifndef GRADH
#define GRAD H
// *- Mode: C++ -
//
// File: grad.h
// Description: header file for gradient routing support
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

#define DEFAULTDISCOVERYCOST 25

// ASSERT(sizeof(gradPayload)<MAXPAYLOAD SIZE, "gradPkt payload too big");

void grad init();
// intialize the gradient routing system

pktt xdata *grad findsegment(pktt xdata *pkt);
// find a SEGTYPEGRADIENT or SEGTYPE DISCOVERY segment in the packet

pkt t xdata *grad-makePkt(pktt xdata *pkt, node_id dest);
// install a GRAd segment in this packet.

void grad updateSeg(pkt t xdata *pkt);
// find the SEGTYPE DISCOVERY or SEGTYPEGRADIENT segment in this
// packet. In-place, fixup current sequence number and cost info.

bit grad segIsFresh(pktt xdata *gradSeg);
// seg must refer to a packet segment of type SEGTYPEDISCOVERY
// or SEGTYPEGRADIENT. Updates cost tables, returns true if
// this packet hasn't been seen before.

bit grad isForMe(pkt-t xdata *gradSeg);
// seg must refer to a packet segment of type SEGTYPE DISCOVERY
// or SEGTYPEGRADIENT. Returns true if the packet is destined
// for this node (dest is either BROADCAST NODE or this node).

void grad relayIfNeeded(pktt xdata *pkt, pkt t xdata *gradSeg);
// seg must refer to a packet segment of type SEG TYPEDISCOVERY
// or SEGTYPE GRADIENT. Relay pkt if appropriate, else just
// free it.

#endif

File: grad.c

-*- Mode: C++ -*-

#include "arbor.h"
#include "pkt.h" // for pkt_t

// A gradPayload contains the information used by the gradient routing
// mechanism. A gradPayload can be found in the payload of any packet
// segment whose type is SEGTYPEGRADIENT or SEGTYPE DISCOVERY.

typedef struct _gradPayload
nodeid fOriginator;
unsigned char fSequence;
unsigned char fCostAccrued;
nodeid fDestination;
unsigned char fCostBudget;
gradPayload;

// a node that will never be a target
#define BROADCAST NODE Oxff

// File: grad.c
// Description: To relay or not to relay? Answered here...
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research

128

purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT
makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied
warranty.

GRAd is responsible for the routing of packets. Upon reception,
GRAd decides whether to relay a packet, pass it to the application
level, or to drop it. For transmission, GRAd appends a routing
header that will be used by the GRAd service in receiving nodes.

#include
#include
#include
#include
#include
#include
#include
#include

"arbor.h"
"grad.h"
"costTable.h"
"lid.h"
"stats.h"
"mac.h"
"arq.h"
<stdio.h>

// ct costTo() ...
// nodeID()
// stats origPkt()
// mac xmitPkt()...
// arqrecvPkt()

static unsigned char gSequence;
// Sequence number for next originated packet.

// ==-
// exported routines

void grad init)
gSequence = 0;

pktt xdata *grad find segment(pktt xdata *pkt)
// search the list of segments for a packet that contains a
// gradPayload.
while (pkt != NULL)

seg_type t = pkttype(pkt);
if ((t == SEGTYPEGRADIENT) || (t == SEGTYPEDISCOVERY)) return pkt;
pkt = pktnext(pkt);

return NULL;

static seg_type grad prepPayload(gradPayload xdata *payload, nodeid dest)

// fill in a gradPayload with dest, cost, sequence, etc. Returns
// SEG TYPE DISCOVERY or SEG TYPEGRADIENT as appropriate.
cost t cost = ctcostTo(dest);
payload->foriginator = nodeID(;
payload->fSequence = gSequence++;
payload->fCostAccrued = 1; // receivers are already one hop away
payload->fDestination = dest;

if (cost == COST UNKNOWN) {
payload->fCostBudget = DEFAULT_DISCOVERY COST;
statsfloodPkt(); // note a flood packet
return SEGTYPEDISCOVERY;
else {
payload->fCostBudget = cost;
stats origPkt(; // note a routed packet
return SEGTYPE GRADIENT;

void grad updateSeg(pkt t xdata *pkt) {
// find the SEGTYPEDISCOVERY or SEGTYPEGRADIENT segment in this
// packet. In-place, fixup current sequence number and cost info.
// Currently, this routine is used to update ARQ packets when they
// are retransmitted.
pktt xdata *gradSeg;
gradPayload xdata *gp;

if ((gradSeg = gradfindsegment(pkt)) == NULL)
return;

}
gp = (gradPayload xdata *)pktpayload(gradSeg);
pkttype(gradSeg) = gradprepPayload(gp, gp->fDestination);

pkt t xdata *grad makePkt(pktt xdata *pkt, node_id dest)
// Tack a GRAd routing header on the front of this packet. If the
// cost to dest is known, it creates a regular GRAd data packet. If
// the cost isn't known, it creates a discovery packet.
pktt xdata *seg = pktalloc();
pktsize(seg) = sizeof(gradPayload);
pkttype (seg) = gradprepPayload((gradPayload xdata *)pktpayload(seg),

dest);
pktnext(seg) = pkt; // link pkt in as next in line
return seg;

}

bit grad segIsFresh(pktt xdata *gradSeg)
// seg must refer to a packet segment of type SEG TYPE DISCOVERY
// or SEGTYPEGRADIENT. Updates cost tables, returns true if
// this packet hasn't been seen before.
return ct update((gradPayload xdata *)pkt payload(gradSeg));

}

bit grad isForMe(pkt t xdata *gradSeg)
// seg must refer to a packet segment of type SEG TYPE DISCOVERY
// or SEGTYPEGRADIENT. Returns true if the packet is destined
// for this node (dest is either BROADCAST NODE or this node).
gradPayload xdata *gp = pktpayload(gradSeg);
return (gp->fDestination == nodeID() ||

(gp->fDestination == BROADCASTNODE);

void grad relayIfNeeded(pktt xdata *pkt, pkt t xdata *gradSeg)
// seg must refer to a packet segment of type SEG TYPE DISCOVERY
// or SEGTYPE GRADIENT. Relay pkt if appropriate, else just

129

// free it.
gradPayload xdata *gp = pktpayload(gradSeg);
if (ct shouldRelay(gp, pkttype(gradSeg)==SEG TYPEDISCOVERY))

// pkt should be relayed. Update the grad header and schedule the
// packet for re-transmission.
gp->fCostAccrued++; // one hop further from originator
gp->fCostBudget--; // one hop closer to destination
statsrelayPkt(; // note a relayed packet
mac-xmitPkt(pkt);
else {
// Packet is not to be relayed. Drop it.
pkt_free(pkt);

//
//!
//
//-
//
II

//

#ifndef ID H
#define IDH
// -*- Mode: C++ -*

//
File: id.h
Description: header file for node IDs

Copyright 2001 by the Massachusetts Institute of Technology. All
rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
content of the information does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred.

For general public use.

This distribution is approved by Walter Bender, Director of the
Media Laboratory, MIT. Permission to use, copy, or modify this
software and its documentation for educational and research
purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT
makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied
warranty.

char *nodeName();
unsigned char nodeID(;

#endif

// -*- Mode: C++ -*-

//
// File: id.c
// Description: defines nodeName) and nodeID)
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//

130

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The char *nodeName()
// content of the information does not necessarily reflect the return NODE-NAME;

// position or the policy of the Government, and no official
// endorsement should be inferred.
// unsigned char nodeID()

// For general public use. return NODENAME[0];

// }
// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this

// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited

// to distribution in whole or in part, specific prior permission must

// be obtained from MIT. These programs shall not be used, rewritten,

// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT

// makes no representations about the suitability of this software for

// any purpose. It is provided "as is" without express or implied

// warranty.

#include "id.h"

// NODE NAME can be defined from the command line

// Maybe.

#ifndef NODE NAME
/ #define NODENAME "Aspen" // 0x41
/ #define NODE NAME "Beech" // 0x42

/ #define NODE NAME "Chestnut" // 0x43
/ #define NODE NAME "Dogwood" // 0x44
/ #define NODE NAME "Elm" // 0x45
/ #define NODENAME "Fig" // 0x46
/ #define NODENAME "Ginkgo" // 0x47
/ #define NODENAME "Holly" // 0x48

/ #define NODE NAME "Ironwood" // 0x49
/ #define NODE NAME "Juniper" // Ox4a
/ #define NODENAME "Kapok" // Ox4b
/ #define NODE NAME "Linden" // Ox4c

/ #define NODENAME "Magnolia" // Ox4d
/ #define NODENAME "Nyssa" // Ox4e

/ #define NODE NAME "Olive" // Ox4f

/ #define NODE NAME "Pear" // Ox5O
/ #define NODE NAME "Quince" // Ox51

/ #define NODE NAME "Redwood" // 0x52

/ #define NODENAME "Sycamore" // 0x53

/ #define NODENAME "Tupelo" // 0x54

/ #define NODE NAME "Uri" // Ox55
/ define NODE NAME "Viburnum" // Ox56

/ #define NODE NAME "Willow" // 0x57

/ #define NODENAME "Xylosma" // Ox58
/ #define NODE NAME "Yew" // 0x59

#define NODE NAME "Zelkova" // Ox5a
#endif

131

// this will queue the packet until GRAd fetches it. Otherwise, it is
// passed directly to grad recvPkt() for processing.

#endif

#ifndef MACH
#define MAC H
// -* Mode: C++ -

// File: mac.h
// Description: header file for Medium Access support
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012.
content of the information does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred.

The

// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

#include "pkt.h"

// void mac task(void) _task_ MAC-TASK;

void mac startTimer();
// Grab TMR1 and use it to count down gBackoffCounter for MAC timing.
// TMR1 is "stolen" by the radio whenever a packet is actively being
// transmitted or received, so counting stops when the radio is active.
// (This is a feature, not a bug.)

void mac xmitPkt(pktt xdata *pkt);
// queue a packet for subsequent transmission by the MAC task. Called
// by anybody that wishes to send a packet, but normally called from
// the GRAd thread.

void mac recvPkt(pkt_t xdata *pkt);
// Pass a packet to the MAC layer. If GRAD runs in a separate thread,

// -* Mode: C++ -*-

//
// File: mac.c
// Description: medium access. defer transmission until presumed safe.
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

// queue for outgoing and incoming packets

#include "mac.h"

#include
#include
#include
#include
#include
#include
#include
#include
#include

"arbor.h"
"stats.h"
"vector.h"
<aduc824.h>
<rtx5ltny.h>
<stdlib.h>
"rad.h"
"appr.h"
"screen.h"

for DEFINE VECTOR)...
for register defs
for K SIG, etc
for rand)
rad xmitPkt()...
for appr-didmit()

132

#define MAC BACKOFF TICS (0x10000 - 5000)
// non-essential timing: we want to generate a TRM1 ISR once every
// 5 mSec, or once every 5000 TMR1 tics, not counting when the
// radio is in use

// queue for packets waiting to be transmitted by MAC_TASK
#define MAC QUEUE SIZE 10
DEFINEVECTOR(gMacQueue, MACQUEUE SIZE);

// =-====== == == == === == == == == === == == == == === == == == ==

// binary exponential backoff

// counts down whenever radio is idle. When it hits zero, we send
// the next packet.
unsigned char gBackoffCounter;

static unsigned char gBackoffExponent;
#define MAXBACKOFF 8

static unsigned char const _masks[MAX BACKOFF] -

Ox07, OxOf, Oxif, Ox3f, Ox7f, Ox7f, Ox7f, Ox80

static unsigned char const _mindly[MAXBACKOFF] -

Ox02, Ox04, OxO8, Ox1O, Ox20, Ox40, Ox80, Ox80

// gBackoffExponent is the exponent of the backoff. The range of possible
// backoff values returned by backof() looks something like this:
// dly: 01234567890123456789012345678901234567890123456789012345678
// g=0: --------

//g=1: ----------------

// g=2: -------------------------------
// g=3: .
static unsigned char generateBackoff(){

// compute a random delay, measured in tics, according to the
// current backoff exponent.
unsigned char dly;
dly = _mindly[gBackoffExponent] + (rand) & masks[gBackoffExponent]);
statsbackoff(dly); // log longest backoff
return dly;

static void resetBackoff)
gBackoffExponent = 0;

static void incrementBackoff)
if (gBackoffExponent != MAXBACKOFF-1) gBackoffExponent++;

#if 0
static void decrementBackoff)

if (gBackoffExponent != 0) gBackoffExponent--;

#endif

// MAC routines

// ==-= - - - - - - - - - -

// MAC transmit thread.
// loop: [1] wait for a packet to appear in gMacQueue
// [2] set backoff counter, wait for it to count down
// [3] if packet is still in gMacQueue, transmit it
// [4] loop
// The actual transmission is handled in this thread.
//
void mactask(void) _task_ MACTASK

// one-time initialization
vectorinit(VECTOR(gMacQueue), MACQUEUE SIZE);
resetBackoff();
gBackoffCounter = 0;
mac startTimero;

while (1) {
pktt xdata *pkt;
// Wait for a packet to become available. Don't remove from the
// queue it until after we've waited for the backoff interval,
// since some other thread might wish to prune the packet from the
// queue in the interim.
SCREENTASK(("mactask(1)"));

while (vectorcount(VECTOR(gMacQueue)) == 0)
resetBackoff);
oswait2(K_SIG, 0); // mac xmitPkt() will generate signal

// Initialize the backoff counter according to the current backoff
// exponent and then wait until it counts down to zero
gBackoffCounter = generateBackoff();
while (gBackoffCounter > 0) {

// tmrl_interrupt() will signal us when gBackoffCounter hits 0
os wait2 (KSIG, 0);

// backoff has expired. If there's still a packet available,
// format and transmit the packet. Tell APP that the packet
// was sent, then free it.
if ((pkt = vector dequeue(VECTOR(gMacQueue))) 1= NULL)

rad xmitPkt(pkt);
SCREENTASK(("mac xmt: ")); PKTPRINT(pkt);
apprdidXmit(pkt);
pkt_free (pkt)

void tmrlinterrupt(void) interrupt 3 using 2
// Called regularly whenever TMR1 is configured as the MAC backoff
// counter, namely, whenever the radio isn't sending or receiving.
// This has the effect that gBackoffCounter only decrements

133

// when the airwaves are idle. When gBackoffCounter hits zero,
// this ISR sends a signal to the MAC task.
TH1 = MAC BACKOFF TICS>>8; // reload TMR1
TL1 = MAC BACKOFF TICS&Oxff; // ...
if (gBackoffCounter > 0) {

if (--gBackoffCounter == 0) isr sendsignal(MACTASK);

void mac startTimer()
// Configure TMR1 to count down MAC backoff tics, generating an
// interrupt once every 1 mSec.
//
// see also rad startTimer() in rad.c
TR1 = 0; // stop running
TMOD &= OxOf; // clear bits for TMR1
TMOD J= BITMASK(0,0,0,1,0,0,0,0); // 16 bit mode for TMR1
TH1 = MAC BACKOFF TICS>>8; // setup reload value
TL1 = MAC BACKOFFTICS&Oxff; // ...
TR1 = 1; // start running
ETl = 1; // enable TMR1 interrupts

// =-- - - - - - - - - - -

// queue a packet for subsequent transmission by the MAC task
// Called by anybody that wishes to send a packet, but normally
// called from the application thread. If the queue fills up,
// throw away the oldest.

void mac xmitPkt(pktt xdata *pkt)

// ## don't call until MACTASK has been started

pktfree(vectorshove(VECTOR(gMacQueue), pkt));
// statsmacQueuePkt(vector count(VECTOR(gMacQueue)));
if (rad isBusy)) incrementBackoff();
os_sendsignal(MACTASK); // tell mac that a packet is waiting

// -*- Mode: C++ -
#ifndef PKT H
#define PKT H
// -*- Mode: C++ -*-

// File: pkt.h
// Description: support for packets, segments and payloads
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

// A packet carries information among nodes. A packet has an external
// and an internal representation. The external form of a packet is a
// serial stream of bytes, passed to the radio. The internal form is
// a linked list of pkt structures. Each pkt structure corresponds to
// an abstraction layer, and can be conveniently appxed onto the head
// of the pkt list when generated or popped from the list when
// received.

// payload size determined by size of largest packet, currently the
// cost table reports.
#define MAX PAYLOAD SIZE 16

// Each packet segment carries a type with it. Perhaps this is not
// the cleanest abstraction, but all the specific packet types are
// listed here.
typedef enum {
SEGTYPEEOP = 0,

134

SEGTYPEGRADIENT,
SEGTYPEDISCOVERY,
SEGTYPETEXT,
SEGTYPECOSTL,
SEGTYPECOSTH,
SEGTYPE STATS,
SEGTYPEADC,
SEGTYPEARQ,
SEGTYPEACK,
SEG TYPE APPX,
SEGTYPEPING,
SEGTYPETIME,
MAXSEGTYPE
seg type;

01 payload contains
02 payload contains
03 payload contains
04 payload contains
05 payload contains
06 payload contains
07 payload contains
08 payload contains
09 payload contains
Oa payload contains
Ob ping packet
Oc time report

gradient routing info
discovery routing request
text
low half of cost table
high half of cost table
logging statistics
analog readings
request for reply
reply
params for appx process

typedef struct _pktt {
struct _pktt xdata *fNext;
seg type fType;
unsigned char fSize;
unsigned char fPayload[MAX PAYLOADSIZE];
pktt;

// initialize the packet system
void pkt init);

pktt xdata *pktalloc(;
// allocate a single packet segment

void pktfree(pkt t xdata *head);
// free a chain of packet segments

pktt xdata *pktcopy(pktt xdata *pkt);
// make a "deep copy" of pkt

#define pkttype(p) ((p)->fType)
// get/set the packet type for this segment
// segtype pktgetType(pkt t xdata *pkt);
// void pktsetType(pktt xdata *pkt, seg type type);

#define pktsize(p) ((p)->fSize)
// get/set the number of bytes in the payload.
// unsigned char pktgetSize(pkt_t xdata *pkt);
// void pktsetSize(pktt xdata *pkt, unsigned char size);

#define pkt next(p) ((p)->fNext)
// get/set the next packet in the list of packets
// pktt xdata *pktgetNext(pktt xdata *pkt);
// void pkt setNext(pktt xdata *pkt, pktt xdata *next);

#define pktpayload(p) ((p)->fPayload)
// reference the first byte of the payload
// unsigned char xdata *pktgetPayload(pktt xdata *pkt);

pktt xdata *pktfind segment(pktt xdata *pkt, seg_type type);
// find a packet segment of the given type in the packet
// chain, returning NULL if not found

void pktprint(pkt-t xdata *seg);

// print one segment in hex

void pktdumpHex(pkt_t xdata *pkt);
// print a string of segments in hex

#endif

// -*- Mode: C++ -*-

// File: pkt.c
// Description: support for packets, segments and payloads

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

#include
#include
#include
#include
#include
#include
#include
#include
#include

"pkt.h"
"arbor.h"
"constell.h"
<stdio.h>
<string.h>
"screen.h"
"grad.h"
"arq.h"
"appx.h"

// =ackets

// managing packets

135

// a global pool of pkt structures
static pkt_t xdata * data gFree = NULL;
static unsigned char gAvail = 0; // debug

#define MAX PACKETS 30
static pktt xdata _pkts[MAX PACKETS];

static char _isvalid(pktt xdata *p)
return (_pkts <= p) && (p < &_pkts [MAXPACKETS])

static void _pktfreeseg(pkt t xdata *seg)
// return a single packet segment to the freelist
// PRINTF(("pkt fs(%x) ", (short)seg));
if (! _isvalid(seg)) return;
gAvail++;
seg->fNext = gFree;
gFree = seg;
SCREEN(("Avail=%2bu", gAvail));

void pkt_init)
// set up the pool of packet structures
int i=MAX PACKETS;
gFree = NULL;
gAvail = 0;
while (i--)

_pktfreeseg(&_pkts[i]);

pktt xdata *pktalloc)
// pop a packet segment from the freelist
pktt xdata *p;

// PRINTF(("pkt a() => %x
if (gFree == NULL) {

printf("no more packets");
while (1);

(short)gFree));

p = gFree;
gFree = p->fNext;
if (1_is-valid(gFree))
printf("freelist clobbered");
while (1)

gAvail--;
SCREEN(("avail=%2bu", gAvail));
p->fNext = (short)0;
return p;

// free the entire packet chain headed by head.
void pktfree(pkt t xdata *seg)
while (seg) {

pkt t xdata *next = pktnext(seg);
_pktfreeseg(seg);
seg = next;

// make a deep copy of a packet chain
pkt t xdata *pktcopy(pktt xdata *pkt)

pkt t xdata *first = NULL;
pkt-t xdata *prev = NULL;

while (pkt != NULL) {
pktt xdata *seg = pkt alloc(;
// I could be clever and only copy
// active, but ...
memcpy(seg, pkt, sizeof(pkt t));
if (prev == NULL)

first = seg;
else
pktnext(prev) = seg;

{

the part of the payload that's

prev = seg;
pkt - pktnext(pkt);

return first;

pktt xdata *pktfind segment(pktt xdata *pkt, seg_type type)
// find a packet segment of the given type in the packet
// chain, returning NULL if not found
while (pkt != NULL) {

if (pkttype(pkt) == type) return pkt;
pkt = pktnext(pkt);

}
return NULL;

// since we're sending raw binary over the serial port, the
// author of the server wanted a little error check to help
// stay in sync. Each segment count byte has the high order
// bit turned on, each packet size byte has the high two order
// bits turned on.
#define SEG COUNT FLAG Ox80
#define PKTSIZE FLAG OxCO

static unsigned char pktcountsegs(pkt t xdata *pkt)
unsigned char i = 0;
while (pkt != NULL)

i++;
pkt = pktnext(pkt);

return i;

static unsigned char code toHex[16]={
'0','1','2','3','4','5','6',7',
'8','9','a','b','c','d','e','f'};

static void puthex(unsigned char ch)
putchar(toHex[ch>>4]);

136

putchar(toHex[ch&OxOf]);

void pktprint(pkt t xdata *seg)
unsigned char i = seg->fSize;
char *p = pktpayload(seg);
puthex(i+l);
puthex(seg->fType);
while (i--) {

puthex(*p++);
}

void pktdumpHex(pkt_t xdata *pkt) {
// dump pkt to serial port in sligtly formatted hex form
printf("\n");
puthex(pktcountsegs(pkt));
while (pkt != NULL)

printf("\n ");
pkt print(pkt);
pkt = pkt next(pkt);

File: rad.h

#ifndef RAD H
#define RAD H
// -*- Mode: C++ -*

//
// File: rad.h
// Description: low-level radio support
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

#include "pkt.h"

void rad init);
// cold start for the radio

#if 0
void radprintBuffero;
#endif

bit rad_isBusy(;
// returns true whenever the radio is actively transmitting or
// receiving.

void rad xmitPkt(pkt_t xdata *pkt);
// Transmit contents of packet immediately. Kills RADR TASK thread,
// handles transmission in caller's thread, the restarts RADRTASK.
// NOT to be called from the RADRTASK thread.

pkt-t xdata *radrecvPkt();

137

// Block until a buffer of data has been received. Parse the buffer
// into a pktt structure and (if CRC is valid) return it. If CRC is
// invalid, returns NULL. MUST be called from within RADRTASK

void radstandby();
// shut down radio

#endif

// -* Mode: C++ -

// File: rad.c
// Description: low-level I/O support for BART and TR1000 radio

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

#include "rad.h"
#include "pkt.h"

#include
#include
#include
#include
#include
#include
#include
#include

"arbor.h"
<rtx5ltny.h>
<aduc824.h>
"constell.h"
"id.h"
"stats.h"
"sync.h"
"appr.h"

// for oswait()...
// for register defs
// for LEDs

// for nodeID)

// for appr recvPkt) ...

#include "mac.h"
#include "screen.h"
#include <stdio.h>

// for mac startTimer()

#define BART HOLDOFF TICS (256-35)
// essential timing: BART needs BARTCLK stable for 35 uSec after each
// transition. Assuming a 12MHz system clock and a 1 uSec cycle time,
// TMR1 must roll over once every 35 tics.

#define AWAITBART) oswait2(KTMO |KSIG, 1)
// #define AWAITBART) os wait2(K5SIG, 0)

#define BART ISREADY() (IBARTREADY)

// Set the holdoff timer counting. TF1 will be set at the end of
// the holdoff period.
#define RESTART HOLDOFF)

TL1 = BARTHOLDOFF TICS;
TF1 = 0

// Busy wait until holdoff flag is set. Assumes RESTARTHOLDOFF)
// has been invoked previously
#define AWAIT HOLDOFF) while (!TFl)

// Local function prototypes

static void rad setRecvMode);
// configure the radio (and bart chip, and timers, and data lines)
// for receive mode.

static void rad recvBuffer);
// configure radio to receive, await a packet of data, and read it
// into this module's internal buffer

static unsigned char _rad_getByte);
// get a single byte from the radio (via the BART chip)

static pkt t xdata *rad import));
// convert the "raw" contents of the radio's internal buffer
// into a linked packet structure. Return NULL for bad packet.

void rad export(pktt xdata *pkt);
// copy and convert the contents of a linked packet structure
// into "raw" format in the radio's internal buffer.

static void _rad xmitBuffer();
// configure the radio to transmit, send a packet of data from this
// module's internal buffer, reconfigure radio to receive

static void _rad_putByte(unsigned char b);
// write a single byte to the radio (via the BART chip)

static void rad setBARTXmit(;
// configure the bart chip for transmit mode.

static void _rad_finishBARTXmit(;
// finish any transmit in progress, then configure bart chip for receive.

138

typedef short crct;
static crc t gCRC;

#define _crcstate() gCRC
static void _crc inito);
static unsigned char _crc(unsigned char c);

unsigned char hexToNibble(unsigned char ch);

// This has the properties we want: when the radio is
// busy sending or receiving data, we want to inhibit
// the counting down of the gMACBackoffCounter. This
// is an approximate implementation of the 802.11 style
// MAC layer.

bit gRadIsBusy;

// Radio "staging" buffer

// The radio requires high-speed data transfer into and out of a

// dedicated buffer. The STAGINGAREA macro defines in which
// segment this buffer resides

// #define STAGING IN PDATA
// STAGINGINPDATA doesn't work. Every packet sent and received

// appears to have a bad checksum. Without resorting to a 'scope,

// my guess is that data transfers between pdata and the radio are

// slow, resulting in under- and over-runs.

// STAGING BUFFER SIZE is hand chosen to fill out the area without
// overflowing it. It determines the maximum number of bytes that

// may be transmitted in a radio packet. This controls the number

// of byte in data space dedicated to a "staging" buffer for the
// low-level radio I/O. There are only 128 bytes of data space available

// in the system, so if choosing STAGING BUFFER SIZE is a tradeoff: too

// small and packet size is limited. Too large, data space is eaten up.

#ifdef STAGING IN PDATA
#define STAGINGAREA pdata
#define STAGINGBUFFERSIZE Oxfe

#else

#define STAGING AREA data
// #define STAGINGBUFFERSIZE 43

#define STAGINGBUFFERSIZE 43

#endif

// Dedicated buffer in data space for radio I/O. See note in

// rad recvBuffero) regarding the +1 .
static unsigned char STAGING AREA sRadBuf[STAGINGBUFFERSIZE + 1];

// place to cache RTC clock values at the onset of receiving a
// packet. Used as part of the time synchronization process.

static vtimet gRecvTime;

// TMR1 management

// When start macTimer() is called, it sets up TMR1 to

// interrupt once every millisecond. The TMR1 interrupt
// service decrements gMACBackoffCounter, and if it hits
// zero, signals the MAC task.

//1
// When start radio timer() is called, it sets up TMR1 to
// set its flag every 35 uSec, and disables its interrupt
// flag to inhibit the calling of the interrupt service.

static void rad startTimer()
// Configure TMR1 to auto-reload once every BART_
// disable interrupts.
ET1 = 0; // disable TMR1 interrupts
TR1 = 0; // stop running
TMOD a= OxOf; // clear bits for TMR1
TMOD | BITMASK(0,0,1,0,0,0,0,0); // auto reload
TH1 = BARTHOLDOFFTICS; // setup reload value
TR1 = 1; // start running
RESTARTHOLDOFF();

_HOLDOFFTICS,

(mode 2) for TMR1

// initialization and interrupt code

void rad inito)
TR1000 CTL DIRECTION = BITMASK(0,O,O,0,1,1,0); //
TR1000_CTLDRIVE = OxO; // standard CMOS I/O
BARTDATACONTROL - OxO0; // for pins PBO - PB7
BARTDATA DRIVE = OxOO; // standard CMOS I/O

// enable external interrupts on
ITO = 1; /
EXO = 1; //
_radsetRecvMode(); //

setup mode ctl pins

INTO, edge trigger

INTO edge triggered
enable INTO interrupts
configure for receive mode

void intO interrupt(void) interrupt 0 using 2 {
// Notify the RADRTASK that BARTREADY has come true. Note that
// INTO interrupts arrive as interrupt 0. This routine uses
// register bank 2 to avoid copying registers.
isr send signal(RADRTASK);

bit rad-isBusyo)
return gRadIsBusy;

}

#if 0
void radprintBuffer()

unsigned char i;
for (i = 0; i<RADBUF SIZE; i++)
printf("%02bx ", sRadBuf[i]);
if ((i+l)%16 == 0) puts("");

#endif

// 1===

139

// Receiving Data

// Receive Task

// Repeatedly try to read a packet from the radio. When a valid
// packet is found, call macrecvPkt() to process it.

void radrtask() _task_ RADR TASK

pktt xdata *p;

while(1) {
SCREEN TASK(("radrtask(1)"));

p = rad_recvPkt();
if (p != NULL)

PKTPRINT(p);
statsgoodRecvPkt(; //
apprrecvPkt(p);
else {
stats badRecvPkto; //

static void _rad_recvBuffer()
// fetch a packet of data from the radio into sRadBuf[].
// [1] Force the BART chip to search for new sync header. BART
// (in _rad_getByte()) will return the first character found
// after a sync header.
// [2] Read the byte. If it is not RADPKTLEADER, goto [1].

// [3] Read in a series of segments. Each segment starts with
// a byte count, followed by that many bytes of data. The
// subsequent byte is the byte count for the next segment.
// A byte count of zero terminates the chain.
// (4] Return
unsigned char data len;
unsigned char STAGINGAREA * data p;
unsigned char STAGINGAREA * data pEnd;

LED OFF(REDLED);

note a good packet

not a good packet.

// clear bad pkt indicator

p = sRadBuf;
pEnd = &sRadBuf[STAGINGBUFFERSIZE];

rad setRecvMode();

while (!BARTISREADY())

AWAIT BART();

pktt xdata *radrecvPkt()
pktt xdata *pkt;
pktt xdata *pingSeg;

// block (in rad recvBuffer() until a low-level buffer of data

// has been received. Parse the buffer into a pktt structure

// and (if CRC is valid) return it. If CRC is invalid, returns

// NULL.
rad recvBuffer();

pkt = rad import() ;

// If there is a PING segment in the received packet, fill in the
// received time field with the onset time of reception, gRecvTime,
// as captured by _rad_recvBuffer(;
if ((pingSeg = pktfind segment(pkt, SEG_TYPEPING)) 1= NULL)

pingPayload xdata *pp = pktpayload(pingSeg);
pp->fTimeR = gRecvTime;

return pkt;

static void rad setRecvMode()
// configure radio, BART, and TMR1 for receiving radio data

rad_startTimer(); // momentarily steal TMR1

gRadIsBusy = 1;
rad_setBARTXmit(; // force BART into known mode

_rad finishBARTXmit(; / .
TR1000-CTLO = 1; // set TR1000 to receive mode

TR1000 CTL1 = 1;
mac_startTimer(); // resume counting MAC backoff tics
gRadIsBusy = 0;

rad startTimer();
gRadIsBusy = 1;

// got first char, stop counting mac tics

gRecvTime = syncgetLocalTime(); // capture time at onset of reception

LED ON(ORANGELED);

len = _rad_getByte(;
// actively receiving

while (len != 0) {
// this loop can overshoot the buffer length by one, so we've
// made the buffer one extra byte long...
*p++ = len;
while ((len--) && (p<pEnd))

*p++ = _rad_getByte(;

if (p >= pEnd) break;
len = _rad_getByte(;

*p = 0;

LEDOFF(ORANGE LED);
AWAIT HOLDOFF(;
mac startTimer();
gRadIsBusy = 0;

// write terminating byte

// no longer receiving

// start counting MAC backoff again

static unsigned char _rad getByte()
// receive a byte from the radio via the BART interface. If the
// BART receive buffer is empty, the caller's thread will be
// blocked. Assumes the radio is in receive mode.
unsigned char b;
AWAIT HOLDOFF(; // buzz until prior holdoff elapses

140

// BARTREADY line is now guaranteed to valid. Check its value,

// block this thread if BART's input FIFO is empty.

while (!BARTISREADY())
AWAITBART(;

}I

BART-CLOCK = 1;
RESTARTHOLDOFF(;

AWAIT HOLDOFF(;

// request the data
// hold BARTCLOCK high for holdoff period

// ..

b = BARTDATA IN; // data now valid. latch it

BART-CLOCK = 0; // finish data transfer

RESTART HOLDOFF(; // hold BARTCLOCK low for holdoff period
// next call to _radgetByte() will complete the holdoff
// AWAITHOLDOFF(;

return b;

}

static unsigned char _pktisReasonable(unsigned char len, unsigned char

type) {
// try to filter out stupid packets before we allocate storage for them

if ((len == 0) | (len > MAXPAYLOADSIZE+1)) return 0;
if ((type == SEGTYPEEOP) I (type == Ox88)) return 0;
return 1;

static pkt_t xdata *rad import()

// read the radio's raw data buffer into pkt structures,
// perform checksumming, etc. Return a packet structure
// if the data is intact, NULL otherwise

unsigned char STAGINGAREA *src;
unsigned char len, type;
unsigned short crcFound;
unsigned char xdata * data pay;
pktt xdata * data pkt;

pktt xdata * data prev;
pktt xdata * data head;

src - &sRadBuf[0];
crc init();

head = prev = NULL;

while (1) {
len =crc(*src++);
type - _crc(*src++);

if (!_pkt isReasonable(len,type)) break;
len--; // account for type field just read.

pkt = pktalloc(;
pktsize(pkt) = len;
pkt type(pkt) = type;
pay = pkt payload(pkt);
while (len--) {
*pay++ = _crc(*src++);

// link this packet into chain of packets
if (prev == NULL)
head = pkt;

else
pktnext(prev) = pkt;

prev = pkt;

crcFound = 0;
if ((type == SEG TYPEEOP) && (len == 5))

// good prospects. Read in last 4 bytes as hex chars,
// compare against accumulated CRC value

for (len = 0; len < 4; len++)
crcFound <<= 4;
crcFound += hexToNibble(*src++);

if (_crc state() ==
LED OFF(REDLED);

return head;
else {
LED ON(RED LED);
pkt free(head);

return NULL;

crcFound) {

// a valid packet!

// bad pkt indicator
// release bogus segments

// ===-====== ======= ======= ======

// Transmitting Data

void radxmitPkt(pktt xdata *pkt)
// Transmit a packet immediately. NOT to be called from within the
// RADR TASK thread.
pktt xdata *pingSeg = pktfind segment(pkt, SEGTYPEPING);

SCREEN TASK(("rad xmitPkt(l)"));

os deletetask(RADRTASK); // stop the receiver

// If the packet contains a SEGTYPEPING segment, copy the
// nodeID and local time into it just prior to transmission.
if (pingSeg != NULL) {
pingPayload xdata *pp = pktpayload(pingSeg);
pp->fNodeID = nodeID(;
pp->fTimeX = syncgetLocalTime(;

SCREENTASK(("radxmitPkt(2)"));
radexport(pkt); // copy in to data-space buffer

radxmitBuffer(; // blurt
// MAC is responsible for freeing the packet
// pktfree(pkt); // free the packet
SCREEN TASK(("rad xmitPkt(3)"));
os createtask(RADRTASK); // restart receiver

141

void rad export(pkt t xdata *pkt)

// write the contents of the pkt structures headed by pkt into the

// radio's low-level buffer, complete with checksum.

unsigned char STAGINGAREA *dst;
unsigned char len;

unsigned char xdata *pay;

dst = &sRadBuf[0];
crc init(;

while (pkt)

len = pktsize(pkt);
*dst++ = crc(len + 1); // payload + type
*dst++ = _crc(pkttype(pkt));

pay = pkt_payload(pkt);
while (len--) {

*dst++ = _crc(*pay++);

pkt = pktnext(pkt);

// output a final segment with len = 5, type = EOP, payload = CRC

// as a hex string, and a final terminating null

*dst++ = crc(S);

*dst++ = crc(SEG TYPE EOP);

sprintf(dst, "%04x\0", _crc-stateo);

// Now rad buffer() has been loaded up. Send it...

// rad xmitBuffer();
dst = &sRadBuf[0];

static void _radxmitBuffer()
// send the contents of sRadBuf[] to the radio. sRadBuf[] is

// expected to consist of one or more packets. Each packet starts

// with a byte count, followed by that many bytes of data. The next

// byte following is the number of bytes in the subsequent packet.
// A byte count of zero terminates the chain. The terminating zero

// is transmitted.
unsigned char len;

unsigned char STAGINGAREA *p = sRadBuf;

rad startTimer();

gRadIsBusy = 1;
rad setBARTXmit(;

TR1000 CTLO = 0;
TR1000 CTL1 = 1;

// grab TMR1 for radio (no mac tics)

// configure TR1000 for ASK transmit

LED OFF(REDLED); // clear bad pkt indicator
LED ON(AMBERLED); // indicate transmit mode
while ((len = *p++) 1= 0)

_radputByte(len);
while (len--) _radputByte(*p++);

_rad-putByte(0); // transmit terminating byte

// get the radio out of transmit mode gracefully...
rad finishBARTXmit(; // wait for BART xmit fifo to drain

TR1000 CTLO = 1; // switch TR1000 to receive mode
TR1000 CTL1 = 1;

LED OFF(AMBER LED);

mac startTimer();

gRadIsBusy = 0;

// indicate end of transmit mode
// resume counting MAC backoff tics

static void _rad_putByte(unsigned char b) {
// Send a byte to the radio via the BART interface chip. If the
// BART transmit buffer is full, the caller's thread will be
// blocked. Assumes the radio is in transmit mode.
BARTDATAOUT = b; // set up the data on the i/o lines
AWAITHOLDOFF(; // buzz until prior holdoff elapses

// BARTREADY line is now guaranteed to valid. Check its value,
// block this thread if BART's input FIFO is full.
while (!BARTISREADY())

AWAIT BARTO;

BART CLOCK = 1;
RESTARTHOLDOFFO;
AWAIT HOLDOFFO;

// announce the data

// hold BARTCLOCK high for holdoff period

// ...

BART-CLOCK = 0; // finish data transfer
RESTARTHOLDOFFO; // hold BART CLOCK low for holdoff period
// next call to _rad-putByte() will complete the holdoff
/AWAITHOLDOFFO;

// === - - -- - - -- - - -

// switching BART modes

//
// In BARTRECVMODE, bart reads serial data from the radio and
// writes it to the parallel port. BART_READY stays false until
// at least one byte is available in the fifo.

//
// In BARTXMITMODE, bart reads bytes from the parallel port and
// sends serial data to the radio. BARTREADY stays true unless
// the host fills up the fifo.

static void _rad_setBARTXmit()
// Configure BART to transmit data. (More importantly, set
// the BART chip into a well defined state.) Upon exit:
// - bart parallel port set to receive
// - bart in transmit mode and ready to receive host data
// If this routine is called while BART is already in transmit
// mode, nothing particularly bad happens. Note that this routine
// doesn't set the radio control lines.
BART-CLOCK = 0;
BART MODE = BARTMODE XMIT; // Tell BART to switch to xmit mode
AWAIT HOLDOFFO;

// ### SOME RADIOS SEEM TO GET HUNG HERE AT STARTUP. WHY?
while (!BARTISREADY() { // wait until BART is ready
AWAIT BARTO;

142

BARTDATADIRECTION = XMIT; // set data direction towards BART unsigned char hexToNibble(unsigned char ch)
if (ch <= '9') {
return ch - '0';

static void _rad finishBARTXmit() { } else if (ch <= 'F')
// Tell BART to leave transmit mode and wait for any buffered data return ch - 'A' + 10;
// it has in its fifo to transmit before returning. Assumes that } else if (ch <= 'f') {
// BART has been in transmit mode, that TMR1 is set up as a holdoff return ch - 'a' + 10;
// timer.

if (BART MODE == BART MODERECV)
// quit now if BART is already configured in receive mode,
// else the "while (!BARTISREADY)) ... " below would hang.
return;

AWAIT HOLDOFF();
BARTCLOCK = 0;

// BART asserts the BARTREADY line while the fifo is draining,

// so we must handle the rare case that the fifo is full upon
// entering rad finishBARTXmit() by letting the fifo get to a
// non-full state before continuing...
while (!BARTISREADY())

AWAITBARTO;

}

BART DATA DIRECTION = RECV; // set data direction from BART
BART MODE = BART MODE RECV; // tell bart to enter receive mode
// Unconventional: BART will assert BART IS READY() until its fifo
// drains. This is because in the recv mode, the BARTISREADY()
// is asserted when the fifo is EMPTY.
while (BARTISREADY)) { // wait for BART's fifo to drain
oswait2(KTMO, 0); / KSIG won't work here...

// BART's transmit fifo is now empty.

// CRC generation and checking
// The CRC polynomial is feeble but simple to compute...

static void _crcinit)
gCRC = Oxflfl;

static unsigned char _crc(unsigned char c)

if (gCRC < 0) {
gCRC = (gCRC << 1) + c + 1;

} else {
gCRC = (gCRC << 1) + c;

return c;

// auxiliary routines

143

File: screen.h

#ifndef SCREEN_H
#define SCREENH
// -*- Mode: C++ -

//
// File: screen.h
// Description: diagnostic printout to VT100 compatible screen

//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

// de-comment the following line to enable the SCREEN xxx macros.
// Displayed on a HyperTerm or equivalent communications program,
// this will display diagnostics: each thread state is printed on
// its own line.
// #define SCREENENABLE

#ifdef SCREEN ENABLE
#include <stdio.h>

void screen cleareol(void);
void screen clear(void);
void screen goto (unsigned char row, unsigned char col)
void screentaskprefix(void);

#define SCREEN CLEAR) screen clear)
#define SCREENTASK(string) screen task-prefix) ; printf string;
screen cleareol();

screen_goto(l, 1); \
printf string

#define PKTPRINT(pkt) pkt print(pkt)

#else // SCREEN ENABLE

#define SCREEN CLEAR)
#define SCREENTASK(string)
#define SCREEN(string)
#define PKTPRINT(pkt)

#endif // SCREEN ENABLE

#endif // ifdef SCREEN H

-*- Mode: C++ -*

File: screen.c
Description: diagnostic printout to

Copyright 2001 by the Massachusetts
rights reserved.

VT100 compatible screens

Institute of Technology. All

// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

#include "screen.h"

#define SCREEN(string) \ #ifdef SCREENENABLE

144

#include <rtx5ltny.h>
#include <stdio.h>

static unsigned char gCount;

void screencleareol()
printf("%bc[0K", Ox1b);

void screengoto(unsigned char r, unsigned char c)
printf("%bc[%bd;%bdH", 0x1b, r, c);

void screenclear)
printf ("%bc [2J", Ox1b);
gCount = 0;

// erase screen

void screen taskprefix)
unsigned char id = os running_task id));
screen goto(id+4, 1);
printf("%2bd:%3bu: ", id, gCount++);

I

#endif // ifdef SCREEN-ENABLE

File: serial.h

#ifndef SERIAL H
#define SERIAL H
// -*- Mode: C++ -*-

// File: serial.h
// Description: header file for serial I/O routines
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

void serial init(void);

bit serialcharIsAvailable);
// returns true if a char has been typed

// bit serialhasInput);
// returns true if a line of text has been typed

// char *serialinputo;
// returns the serial input buffer

#endif // ifndef SERIAL H

// -*- Mode: C++ -*-

145

// File: serialc
// Description: hardware support for serial I/O on ADuC824 processor
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

#include "arbor.h"
#include <aduc824.h> // for register definitions

// The processor xtal clock is 12582912. As best as I can measure
// and guess, the input to TH2 is xtal/32 = 393216. Using TH2 in
// auto reload mode, some reasonable for 256-T and the resulting
// baud rates are:
//
// T actual target %err
// 10 39321.6 38400 0.024
// 20 19660.8 19200 0.024
// 41 9590.6 9600 -0.001
// 82 4795.3 4800 -0.001
// 164 2397.7 2400 -0.001

#define BAUD_38400 10
#define BAUD 19200 20
#define BAUD 9600 41
#define BAUD 4800 82
#define BAUD 2400 164

void serial-init()

PCON BITMASK(1,0,0,0,0,0,0,0); // "double" baud rate
SCON = BITMASK(0,1,0,1,0,0,0,0); /mode 1, rcv enable, 8 bit

// Use TMR2 for baud rate generation
T2CON BITMASK(0,0,1,1,0,0,0,0); // Rx,Tx BRG, timer, auto-reload
RCAP2H = Oxff;
RCAP2L = 256-BAUD_38400; // set baud rate

TR2 = 1;
TI = 1;

// run the clock
// ready to send first char

bit serialcharIsAvailable()
// return true if a character is in the input buffer
return RI;

146

#ifndef STATS_H
#define STATSH
// -*- Mode: C++ -

//
// File: stats.h
// Description: gather statistics on packet-level I/O

//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The

// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this

// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited

// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT

// makes no representations about the suitability of this software for

// any purpose. It is provided "as is" without express or implied
// warranty.

#include "pkt.h"

typedef struct _statsPayload
unsigned int fGoodRecv;
unsigned int fBadRecv;
unsigned int fOrig;
unsigned int fRelay;
unsigned int fFlood;
unsigned int fARQs;
unsigned int fACKs;
unsigned char fMaxBackoff;
statsPayload;

of good packets received
of bad packets received
of packets originated
of packets relayed
of discovery packets
of acks requested
of acks received
max backoff generated

void stats reset();
// reset the statistics counters

void statsgoodRecvPkt();
// note a valid packet received by the radio

void stats badRecvPkt();
i note a packet with bad CRC received by the radio

void statsorigPkt();
// note the origination of a packet by GRAD

void stats relayPkt(;
// note the relaying of a packet by GRAD

void stats floodPkt();
// note the origination of a discovery packet by GRAD

void statsarq(;
// note the sending of an ARQ

void stats ack();
// note the reception of an ACK

void stats backoff(unsigned char backoff);
// note the highest backoff seen

pkt t xdata *statsreport(pktt xdata *next);
// create stat report packet

#endif

IFile: stats.c

// -*- Mode: C++ -
//
// File: stats.c
// Description: gather and report statistics on packet level I/O
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,

147

// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT

// makes no representations about the suitability of this software for

// any purpose. It is provided "as is" without express or implied
// warranty.

#include <stdio.h>
#include <string.h>
#include "pkt.h"
#include "stats.h"

static statsPayload sStats;

#define MAXINT ((1<<(sizeof(int)*8))-1)

static _incclamp(int v)
if (v == MAXINT)
return v;
else {
return v+l;

}

void statsfloodPkt()
// note the origination of a discovery packet by GRAD
INCREMENT(sStats.fFlood);

void stats backoff(unsigned char backoff)
// note increased backoff, track highest seen
if (backoff > sStats.fMaxBackoff) sStats.fMaxBackoff = backoff;

pkt t xdata *stats_report(pktt xdata *next)
// create stat report packet
pkt t xdata *pkt = pkt alloc);
pkt-type(pkt) = SEG TYPESTATS;
pktsize(pkt) = sizeof(statsPayload);
pktnext(pkt) = next;
memcpy(pktpayload(pkt), &sStats, sizeof(statsPayload));
return pkt;

#define INCREMENT(i) i = _inc clamp(i)

void statsreset()
// reset the statistics counters
memset(&sStats, 0, sizeof(statsPayload));

}

void statsgoodRecvPkt()
// note a valid packet received at the radio level
INCREMENT(sStats.fGoodRecv);

void statsbadRecvPkt()
// note a packet at the radio level with bad CRC
INCREMENT(sStats.fBadRecv);

void statsorigPkt()
// note the origination of a packet by GRAD
INCREMENT(sStats.fOrig);

void statsrelayPkt()
// note the relaying of a
INCREMENT(sStats.fRelay);

}

packet by GRAD

void statsarqo {
// note the sending of an ARQ
INCREMENT(sStats.fARQs);

void stats ack)
// note the reception of an ACK
INCREMENT(sStats.fARQs);

148

/ -*- Mode: C++ -

//
// File: sync.h
// Description: support for decentralized synchronization

//
// Copyright 2001 by the Massachusetts Institute of Technology. All

// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The

// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this

// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited

// to distribution in whole or in part, specific prior permission must

// be obtained from MIT. These programs shall not be used, rewritten,

// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT

// makes no representations about the suitability of this software for

// any purpose. It is provided "as is" without express or implied

// warranty.

#ifndef SYNC H
#define SYNCH

#include "pkt.h"

// support for the real time clock and synchronization among nodes.

// a virtual day for the system is defined as one minute,
// measured in 128ths of a second. Time is taken modulo
// 7680.

#define VIRTUAL DAY (60 * 128)
#define VIRTUAL-NOON (30 * 128)

typedef unsigned int vtime t;

// A packet flagged SEGTYPEPING carries synchronization info.

// The fTimeX field is filled in (at the MAC level) just before

// the packet is transmitted. The fTimeR field is filled in

// with the ping that the packet started arriving.

typedef struct pingPayload
unsigned char fNodeID;
vtime t fTimeX;
vtime t fTimeR;
pingPayload;

// sending node id
// sender's time
// receiver's time

// A packet flagged SEGTYPETIME carries information on the
// real time clock and timing of the node relative to other
// nodes.
typedef struct _timePayload
vtime t fLocalTime; this node's time
vtime t fMaxErr; maximum error seen recently
int fSyncSent; # of sync packets sent

/t fSyncRcvd; / # of sync packets received
} timePayload;

void sync_reset));
// reset the sync statistics counters

void syncsetPingInterval(unsigned char tenths);
// set the ping interval.

vtime_t sync getLocalTime);
// return the current real time for this node.

void sync_serviceSeg(pktt xdata *pingSeg);
// called when a segment arrives. Computes the error between the
// xmit ping and the recv ping and adjusts the clock accordingly.

// void synctask(void) _task_ SYNCTASK;
// Periodically transmits a ping packet to node within range.

pktt xdata *syncreport(pktt xdata *next);
// Return a SEGTYPETIME segment containing timing info for this
// node.

#endif

// -*- Mode: C++ *

//
// File: sync.c
// Description: support for decentralized synchronization
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//

149

// For general public use.
//
// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this

// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must

// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT

// makes no representations about the suitability of this software for

// any purpose. It is provided "as is" without express or implied
// warranty.

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

"arbor.h"
"constell.h"
"mac.h"
"sync.h"
"pkt.h"
"screen.h"
<aduc824.h>
<limits.h>
<rtx5ltny.h>
<stdlib.h>
<string.h>

// for register definitions
// for UCHARMAX
// for oswait()...
// rand()
// memset()

Ruminations on timing:

Time is measured by reading the internal real time clock and adding an
offset to it to form "local time." Adjustments to the clock are made
by modifying the offset, not by resetting the real time clock.

Local time has a resolution of 1/128 seconds (determined by the real
time clock hardware), and rolls over once every 60 seconds, or 7680
tics (where 1 tic = 1/128 second) . Thus a "VIRTUALDAY" is defined as
7860 tics.

When a ping packet is received from a neighbor, the remote time is
compared against the local time. If the remote time is "greater than"
the local time, then the local clock is advanced. Similarly, if the
remote time is "less than" the local time, the local clock is retarded.

Since time rolls over once every VIRTUAL DAY, the meaning of "greater
than" and "less than" must be considered carefully. In particular,
define:

err = MOD(remote-local, VIRTUALDAY).

If err is less than VIRTUAL DAY/2, then the remote time is ahead of
the local time by err units. If err is greater than VIRTUALDAY/2,
then local time is ahead by (VIRTUAL DAY-err) units. Note that if
err exactly equals VIRTUALDAY/2, then it's undefined as to which is

ahead.

The algorithm here is designed to set local time to an equally
weighted average between remote time and local time, so if err is
less than VIRTUAL DAY/2, local time is advanced by err/2. If err
is greater than VIRTUALDAY/2, then local time will be retarded by
(VIRTUAL DAY-err)/2. Note that the division by two introduces a
roundoff error in the integer arithmetic used here; the low-order
"half bit" is simulated by a random dither.

#define MAX(a, b)
#define ISODD(a)

(((a)>(b) ?(a):(b))
(((a)&l) != 0)

// send ping once every four seconds (on average)
#define SYNC PINGINTERVAL (OSTICSPERSECOND * 5)

static vtime t sVTOffset;
// The offset added to the real time clock to form the local time

static timePayload sTimeStats;
// place to log statistics of the sync mechanism.

void sync_reset()
memset(&sTimeStats, 0, sizeof(timePayload));

// ===== === ==== == == == === == == == === == == == === == == ==

// real time clock manipulation

vtime_t sync getLocalTimeo)
// fetch the current time from the RTC (plus offset)
unsigned char sec, hthsec;
vtime t vt;

do {
sec = SEC;
hthsec = HTHSEC;
while (sec != SEC);

vt = sec;

vt *= 128;

vt += hthsec + sVTOffset;
return vt % VIRTUAL DAY;

static void rtcadvance(vtime t units)
sVTOffset += units;

sVTOffset %= VIRTUAL-DAY;

static void rtcretard(vtimet units)
sVTOffset -= units;

sVTOffset %= VIRTUAL DAY;

}

150

void sync_serviceSeg(pktt xdata *seg)

// Call syncserviceSeg) when a SEGTYPEPING packet is received

// from a neighbor. The packet has already been time stamped at the

// mac layer with the time of arrival.

pingPayload xdata *pp = pktpayload(seg);

vtime t err;

bit advance;

// note another ping packet received

sTimeStats.fSyncRcvd++;

Careful
Pretend

case A:

case B:
case C:
case D:

handling of unsigned numbers, mod VIRTUALDAY

VIRTUAL DAY is 60 seconds (one minute):

x=15 r=05, e=10 => advance by e/2

x=55 r=05, e=50 => retard by (60-e)/2

x=05 r=15, e=10 => retard by e/2
x=05 r=55, e=50 => advance by (60-e)/2

if (pp->fTimeX > pp->fTimeR) {
err = pp->fTimeX - pp->fTimeR;

advance = 1; // assume case A

else if (pp->fTimeX < pp->fTimeR)
err = pp->fTimeR - pp->fTimeX;

advance = 0; // assume case C

if (err > VIRTUAL DAY/2)
err = VIRTUAL DAY - err;

advance = !advance;

// sTimeStats.fMaxErr is a "leaky peak detector"

// Note that with this code, fMaxErr will "stick" at (2^2)-1, or 3.

// I could use fixpoint arithmetic to make it better, but it's not

// crucial.
sTimeStats.fMaxErr -= (sTimeStats.fMaxErr >> 2); // slow decay...

sTimeStats.fMaxErr = MAX(sTimeStats.fMaxErr, err); // ... fast rise

if (err != 0) {
if (IS ODD(err)) err += rand() & 1; // dither before divide by 2

err = err/2; // divide by 2

if (advance)
SCREEN TASK(("tx=%4u tr=%4u er=+%u, mx=%u",

pp->fTimeX, pp->fTimeR, err, sTimeStats.fMaxErr));
rtc advance(err);
else {
SCREEN TASK(("tx=%4u tr=%4u er=-%u, mx=%u",

pp->fTimeX, pp->fTimeR, err, sTimeStats.fMaxErr));
rtc retard(err);

else

SCREENTASK(("tx=%4u tr=%4u er=0, mx=%u",

pp->fTimeX, pp->fTimeR, sTimeStats.fMaxErr));

// Sync thread.
// Send a periodic PING message to immediate neighbors
// once every PING SECONDS seconds.

static void _bide(unsigned int tics) {
// wait for the given number of tics to elapse.

// approx 9.6 mSec, or 106 tics per second.
// SCREENTASK(("_bide(l) %x", tics));

while (tics != 0)

unsigned char t;

t = (tics > UCHAR MAX)?UCHAR MAX:tics;
os wait2(K TMO, t);
tics -= t;

Each tic is

void sync_task(void) _task_ SYNCTASK

// one-time initialization

sVTOffset = 0;

syncreset();

while (1) {
// initiate a ping packet to advertize this node's local time

pktt xdata *pkt = pktalloc();
pkttype(pkt) = SEGTYPEPING;

pktsize(pkt) = sizeof(pingPayload);

SCREENTASK(("sync-task(l) %x", sync_getLocalTime()));

// BIG NOTE: Since the packet may spend an unknown amount of time

// in the MAC queue, the pingPayload->fTimeX field is filled in by

// rad.c just prior to transmission. This reduces timing errors.

//
// Lesser note: If a node packet decides to relay a ping packet

// rather than originate it, it would be a problem if the packet

// went out with the orinator's nodeID. Consequently, the fNodeID

// field is filled in at the same time as the fTimeX field to

// prevent this possibility.

mac-xmitPkt(pkt);

// note another ping transmitted

sTimeStats.fSyncSent++;

// sleep for SYNCPINGINTERVAL +/- 50%

bide((SYNCPING INTERVAL/2) + (rand() % SYNCPINGINTERVAL));

pkt-t xdata *sync report(pktt xdata *next)
// create a packet that reports the current time statistics for this
// node. Copy the payload from the local sTimeStats.
pktt xdata *pkt = pkt alloc();
timePayload xdata *tp = pktpayload(pkt);

151

pkttype (pkt) = SEG TYPE TIME;
pkt-size(pkt) = sizeof(timePayload)
pktnext(pkt) = next;
sTimeStats.fLocalTime = syncgetLocalTime();
memcpy(pktpayload(pkt), &sTimeStats, sizeof(timePayload));
return pkt;

#ifndef VECTOR_H
#define VECTOR H
// -*- Mode: C++ -

// File: vector.h
// Description: manage a fixed sized array of pointer-sized objects
//
// Copyright 2001 by the Massachusetts Institute of Technology. All

// rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012.
content of the information does not necessarily reflect the

position or the policy of the Government, and no official

endorsement should be inferred.

The

// For general public use.
//
// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this

// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited

// to distribution in whole or in part, specific prior permission must

// be obtained from MIT. These programs shall not be used, rewritten,

// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT

// makes no representations about the suitability of this software for

// any purpose. It is provided "as is" without express or implied

// warranty.

// A vector is a sequence of pointer-sized elements, densely packed

// starting at index 0. The objects referred to by the vector

// are always in OBJECT SPACE, which you can redefine
// according to taste.
#define OBJECTSPACE xdata

// objt is a general pointer into OBJECT SPACE
typedef void OBJECTSPACE * objt;

typedef struct _vector t
unsigned char fCount;
unsigned char fCapacity;
objt fElements [1]
vectort;

// number of elements in the array
// size of the array
// a dense array of objects

// create static storage for a vector, masquerading as an array of char
#define DEFINE VECTOR(name, capacity) \

char name[sizeof(vectorjt) + ((capacity - 1) * sizeof(obj t))]

152

// turn a static char reference into a vector pointer.

#define VECTOR(v) ((vector t *)&v)

// initialize a vector. Must call this before first use

// void vector init(vector t *v, unsigned char capacity)

#define vector init(v, capacity) \
(v) ->fCount = 0; (v)->fCapacity = (capacity)

void vectorprint(vectort *v);

vector-t *vector insert(vector_t *v, obj t elem, unsigned char index);

// insert element into the vector. return v if inserted, or null if

// the vector was full prior to the call or if index is out of range.

objt vector_remove(vector t *v, unsigned char index);

// remove and return the element at the given index, or return

// null if index is out of range.

vector t *vectorswap(vector t *v, unsigned char ii, unsigned char i2);

// swap two elements in the vector. return null if il or i2 are out

// of range.

obj t vectorshove(vectort *v, objt element);

// Like vectorpush(), inserts element at the high end of the

// array. Unlike vectorpush(), removes the first element and

// returns it to make room for the new element as needed.

unsigned char vectorindexof(vector t *v, objt element);

// return the index of the element in the vector, or -1 if not found

objt vectorref(vectort *v, unsigned char index);

// return the indexth entry of the table, or null if index out of range

vector t *vectorset(vector-t *v, obj t element, unsigned char index);

// set the indexth entry of the table to element. Returns v on

// success, null if index is out of range.

// Everything else are macro definitions...

// vector t *vectorclear(vectort *v);

#define vector clear(v) ((v)->fCount) = 0, (v)

// unsigned char vectorcount(vectort *v);

#define vectorcount(v) ((v)->fCount)

// unsigned char vectorcapacity(vectorIt *v);

#define vector capacity(v) ((v)->fCapacity)

// obj t *vector elements(vectort *v);
#define vector elements(v) ((v)->fElements)

// vector t *vectorpush(vector t *v, obj_t element);
#define vectorpush(v, e) vectorinsert((v), (e), (v)->fCount)

// obj_t vector_pop(vector-t *v);

#define vectorpop(v) vectorremove((v), ((v)->fCount)-1)

// vectort vectorenqueue(vectort *v, objt element);
#define vector enqueue(v, e) vectorinsert((v), (e), (v)->fCount)

// objt vector_dequeue (vectort *v);
#define vector-dequeue(v) vectorremove((v), 0)

// boolean vector is-empty(vectort *v);
#define vector_is empty(v) ((v)->fCount == 0)

// boolean vector isfull(vectort *v);
#define vectorisfull(v) ((v)->fCount == (v)->fCapacity)

// fast versions - call only when you know arguments to be safe!

void fastvector insert(vectort *v, objt element, unsigned char index);

obj-t fastvectorremove(vectort *v, unsigned char index);

void fast vector_swap(vector-t *v, unsigned char indexl, unsigned char

index2);

// objt fastvectorref(vectort *v, unsigned char index);

#define fast vectorref(v, i) ((v)->fElements[(i)])

// void fast vectorset(vectort *v, obj_t element, unsigned char index);

#define fast vectorset(v, e, i) ((v)->fElements[(i)]) = e

#define fastvectorpush(v, e) fast vector insert((v), (e), (v)->fCount)

#define fastvectorpop(v) vectorremove((v), ((v)->fCount)-l)

#define fastvector_enqueue(v, e) fast vector insert((v), (e), (v)->fCount)

#define fast vector dequeue(v) fast vectorremove((v), 0)

#endif

// -*- Mode: C++ -*

// File: vector.c
// Description: manage fixed size arrays of pointer sized objects
//
// Copyright 2001 by the Massachusetts Institute of Technology. All

// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official

153

// endorsement should be inferred.
//

// For general public use.
//

// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

#include "vector.h"
#include <stdio.h>

#ifndef NULL
#define NULL (void *)0
#endif

#ifdef UNCALLED SEGMENT
void vectorprint(vector t *v)
unsigned char i;
printf("\r\nv<%p>, cap=%bd, count=%bd
for (i=0; i<v->fCount; i++) {
printf("[%d]%p%s",i, (v->fElements) [i],

#endif

#ifdef UNCALLED SEGMENT
vectort *vectorinsert(vector t *v, obj_t

if ((index < 0)1|(index > v->fCount)||(v-
return NULL;

fast vectorinsert(v, elem, index);
return v;

#endif

void fast vector insert(vector t *v, obj_t
objt *eO, *el, *e2;

v, v->fCapacity, v->fCount);

(i==v->fCount-1)?"":", ");

elem, unsigned char index)
>fCount >= v->fCapacity))

elem, unsigned char index)

// Open a slot for an element at index by rippling all higher
// elements up by one.
eO = &(v->fElements[indexl);
e2 = &(v->fElements[v->fCount++]);
el = e2 - 1;
while (e2 > eo)

*e2-- = *el--;

*e0 = elem;

objt vectorremove(vectort *v, unsigned char index)
if ((index < 0) |1 (index >= v->fCount))

return NULL;

}
return fastvector remove(v, index);

}

objt fastvectorremove(vector-t *v, unsigned char index)
objt *el, *e2, elem;

el = &(v->fElements[index]);
e2 = el+1;
elem = *el;

// close the slot at index by rippling elements down (towards [0])
// by one.
v->fCount--;
while (index++ < v->fCount)

*e1++ = *e2++;

return elem;

objt vector_shove(vectort *v, obj t element)
// Like vectorpusho, but removes (and returns) the first element
// if the vector was full, making room for the new element. Good
// for LRU structures.
objt shoved = NULL;

if (vector is full(v))
shoved = fastvectorremove(v, 0);

fast vector insert(v, element, v->fCount);
return shoved;

#ifdef UNCALLED SEGMENT
vectort *vectorswap(vector-t *v, unsigned

obj t tmp, *elems;
if ((il < 0) || (il >= v->fCount)

(i2 < 0) || (i2 >= v->fCount))
return NULL;

}
elems = v->fElements;
tmp = elems[ill;
elems[il] = elems[i2];
elems[i2] = tmp;
return v;

char il, unsigned char i2) {

#endif

#ifdef UNCALLED SEGMENT
void fastvector_swap(vector t *v, unsigned char il, unsigned char i2) {

154

objt *elems, temp;

elems = v->fElements;
temp = elems[ill;

elems[il] = elems[i2];

elems[i2] = temp;

}
#endif

#ifdef UNCALLED SEGMENT

unsigned char vectorindexof(vector t *v, objt elem)

// return the index of the element in the vector, or -1 if not found

obj t *elems = v->fElements;
unsigned char i = v->fCount;

while (--i > 0)
if (elems[i] == elem) return i;

return -1;

}
#endif

#ifdef UNCALLED SEGMENT

objt vectorref(vectort *v, unsigned char index)

if ((index < 0) |1 (index >= v->fCount))

return NULL;

else {
return fast vector ref(v, index);

#endif

#ifdef UNCALLED-SEGMENT

vector t *vector set(vector t *v, obj_t elem, unsigned char index)

if ((index < 0) || (index >= v->fCount))

return NULL;

fast vector set(v, elem, index);

return v;

#endif

// test suite for vector code

// #define TESTVECTOR
#ifdef TEST VECTOR

#include "arbor.h"

#include <stdio.h>

#define true (l==l)

#define false (1==C)

void print vector(vector t *v)

unsigned char i;

printf("v<%p>, count=%d, ", v, v->fCount);

for (i=0; i<v->fCount; i++) {
printf("[%d]%p%s",i, (v->fElements) [i],

(i==v->fCount-1) ?"\n" : ", ");

void test(objt got, objt expected, char *msg)

if (got != expected) {
printf("%s: got %p, expected %p\n", msg, got, expected);

else {
printf("%s: okay\n", msg);

#define TEST(got, exp, s) test(((obj_t) (got)), ((objt) (exp)), s)

#define CAPACITY 6

DEFINEVECTOR(v, CAPACITY);

void init() _task_ MAINTASK

PLLCON = CxOO; // 12 MHz

LEDINIT();

LED ON(AMBER LED);

//ALLLEDSON));
serial inito; // set up baud rate

os wait2(K TMO, 4);

puts('\r\n\r\nvector test\r\n");

vector init(VECTOR(v), CAPACITY);

TEST(vector-dequeue((vector_t *)&v), NULL, "getting from new vector");

TEST(vector enqueue(VECTOR(v), (obj_t)Oxl), VECTOR(v), "vector enqueue

returns vector");

vectorenqueue(VECTOR(v), (objt)Cx2);

vectorenqueue(VECTOR(v), (obj-t)Cx3);

vector enqueue(VECTOR(v), (obj t)Cx4);

TEST(vector count(VECTOR(v)), 4, "vector size mismatch");

TEST(vector dequeue(VECTOR(v)), Cx1, "getting from vector");

TEST(vector dequeue(VECTOR(v)), Ox2, "getting from vector");

TEST(vector dequeue(VECTOR(v)), Ox3, "getting from vector");

TEST(vector dequeue(VECTOR(v)), Ox4, "getting from vector");

TEST(vectordequeue(VECTOR(v)), NULL, "getting from empty vector");

TEST(vector_is_empty(VECTOR(v)), true, "vector is empty");

// TEST(vectorisfull(VECTOR(v)), false, "vector is not full");

vectorenqueue(VECTOR(v), (obj-t)Cx22);

vectorenqueue(VECTOR(v), (objit)0x33);

vectorenqueue(VECTOR(v), (obj-t)0x44);

vectorenqueue(VECTOR(v), (objit)Cx55);

vectorenqueue(VECTOR(v), (objit)Ox66);

vectorenqueue(VECTOR(v), (objt)Cx77);

TEST(vectoris_empty(VECTOR(v)), false, "vector is not empty");

TEST(vector is full(VECTOR(v)), true, "vector is full");

TEST(vector enqueue(VECTOR(v), (objt)Cx88), NULL, "putting to full

155

vector");

TEST(vectorcount(VECTOR(v)), CAPACITY, "full count = capacity");

TEST(vector remove(VECTOR(v), vectorindex of(VECTOR(v), (obj t)0x55)),

0x55,
"remove from middle");

TEST(vector count(VECTOR(v)), 5, "count after remove");

TEST(vector remove(VECTOR(v), vector index of(VECTOR(v),

(objt) "bogus")),
NULL,

"remove bogus");

TEST(vector count(VECTOR(v)), 5, "count after remove bogus");

TEST(vectordequeue(VECTOR(v)), Ox22, "getting from vector");

TEST(vectordequeue(VECTOR(v)), Ox33, "getting from vector");

TEST(vector dequeue(VECTOR(v)), Ox44, "getting from vector");

TEST(vectordequeue(VECTOR(v)), Ox66, "getting from vector");

TEST(vector dequeue(VECTOR(v)), Cx77, "getting from vector");

TEST(vector count(VECTOR(v)), 0, "count = 0");

TEST(vector clear(VECTOR(v)), VECTOR(v), "clear vector");

vectorenqueue(VECTOR(v), (objt)0xl1);

vectorenqueue(VECTOR(v), (obj_t)0x333);

vectorenqueue(VECTOR(v), (objt)0x444);

print vector(VECTOR(v));
TEST(vectorinsert(VECTOR(v), (objt)x222, 1), VECTOR(v), "insert at

1");
print vector(VECTOR(v));
TEST(vectordequue(VECTOR(v)), Cx111, "getting from vector");

TEST(vector dequsue(VECTOR(v)), 0x222, "getting from vector");
TEST(vectordequeue(VECTOR(v)), Ox333, "getting from vector");

TEST(vectordequeue(VECTOR(v)), Ox444, "getting from vector");
TEST(vector-dequeue(VECTOR(v)), NULL, "getting from empty vector");

TEST(vectorinsert(VECTOR(v), (obj t)0xlll, 1), NULL, "insert beyond

end");
TEST(vectorinsert(VECTOR(v), (objt)Cxlll, 0), VECTOR(v), "insert at

0");
print vector(VECTOR(v));
TEST(vectorinsert(VECTOR(v), (obj_t)0x222, 1), VECTOR(v), "insert at

1");
print vector(VECTOR(v));
TEST(vectorinsert(VECTOR(v), (objt)0x999, 0), VECTOR(v), "insert at

0");

print vector(VECTOR(v));

TEST(vector insert(VECTOR(v), (obj t)0x888, 3), VECTOR(v), "insert at

end");
// v = 0x999 x111 0x222 Cx888
TEST(vectorref(VECTOR(v), 4), NULL, "ref beyond end");

TEST(vectorref(VECTOR(v), -1), NULL, "ref before beginning");
TEST(vector ref(VECTOR(v), 2), Ox222, "ref 2");
TEST(vector set(VECTOR(v), (obj_t)Cx333, 4), NULL, "set beyond end");
TEST(vectorset(VECTOR(v), (obj_t)0x333, 2), VECTOR(v), "set 2");

TEST(vector ref(VECTOR(v), 2), Ox333, "ref 2 redux");

TEST(vector swap(VECTOR(v), 1,

TEST(vector_ref(VECTOR(v), 2),

TEST(vector swap(VECTOR(v), 1,

TEST(vector ref(VECTOR(v), 2),

// v = 0x999 0x111 0x333 0x888

TEST(vectorremove(VECTOR(v),
TEST(vectorremove(VECTOR(v),

TEST(vectorremove(VECTOR(v),
TEST(vector remove(VECTOR(v),
TEST(vector-remove(VECTOR(v),

2), VECTOR(v), "swap");
Ox111, "ref 2 post swap");

2), VECTOR(v), "swap");

Ox333, "ref 2 post swap");

4), NULL, "remove beyond end");
2), Ox333, "remove middle");

0), Ox999, "remove first");

1), Ox888, "remove last");

0), Ox111, "remove first and last");

#endif

156

APPENDIX c ArborNet "BART" Code Listing

Following is the ArborNet C source code that is executed by the PIC 1 6F84

"BART" radio processor on the Constellation board. More information on the

ArborNet system can be found in Chapter 7.

#ifdef BART H

#nolist
#else

#define _BART_H

// -* Mode: C++ -

//
// File: bart.h

// Description: general system definitions for BART radio chip

//
// Copyright 2001 by the Massachusetts Institute of Technology. All

// rights reserved.

//
// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The

// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

//
// For general public use.

//
// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this

// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited

// to distribution in whole or in part, specific prior permission must

// be obtained from MIT. These programs shall not be used, rewritten,

// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT

// makes no representations about the suitability of this software for

// any purpose. It is provided "as is" without express or implied

// warranty.

// I/O pin definitions

struct PORTAMAP

int HDATALO:4;
boolean RADIORCV;

boolean unused a5;

boolean unused a6;

boolean unused a7;

PORTA;

#byte PORTA = 5

struct PORT_B_MAP

int HDATAHI:4;
boolean RADIO XMT;

boolean BART READY;

boolean RCV MODE;

boolean HOST CLK;

PORTB;
#byte PORTB = 6

// TRIS bits for transmit mode (from

struct PORT_A_MAP const PORT_AXMT =
struct PORT_BMAP const PORT BXMT =

// A0:3 low nibble of host data

// A4 serial data (from radio)

B0:3 high nibble of host data

B4 serial data (to radio)

B5 handshake (to host)

B6 recv/xmit control (from host)

B7 handshake (from host)

host to PIC to radio)

{Oxf, 1, 0, 0, 0);

(Oxf, 0, 0, 1, 1};

// TRIS bits for receive mode (from radio to PIC to host)

struct PORT A_MAP const PORT_ARCV = {0x0, 1, 0, 0, 0};

struct PORT_B_MAP const PORTBRCV = (0x0, 0, 0, 1, 1};

// ====-= =

// HARTREADY is a low true signal

#define ASSERT READY(b)

#define READYISASSERTED)

PORT B.BART READY = !(b)

(!PORT B.BART READY)

// Timing definitions

// The bit period for serial (radio) data, measured in TMRO tics

// With a 20 MHz crystal, one tic is .2 uSec, so the bit period

// is 8.8 uSec, or 113.63 KBaud

#define BIT PERIOD 44

157

#endif
#1ist #include "procregs.h"

#include "utils.h"
#include "bart.h"

/ -*- Mode: C++ -

//
// File: bart.c
// Description: initialization and main loop

//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The

// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this

// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited

// to distribution in whole or in part, specific prior permission must

// be obtained from MIT. These programs shall not be used, rewritten,

// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT

// makes no representations about the suitability of this software for

// any purpose. It is provided "as is" without express or implied

// warranty.

#case
#include <16F84.H>

// run with watchdog timer ON so PIC will restart if it gets hung.

#fuses HS,WDT,NOPROTECT,PUT

// All timing is done with TMRO, so software delays aren't needed.

// #use DELAY(clock=20000000)

#use fast io(A)
#use fast io(B)

typedef short int boolean;

// if defined, put state vars on parallel port
// #define BLAT STATE

#include
#include
#include
#include
#include

"codec.h"
"fifo.h"
"host.h"
"radio.h"
"sync.h"

// globals

// gXmtActive is true as long as we're in transmit mode (RCVMODE=0)

// and there are more bits to be sent in the fifo. It will be set

// to false after the last bit has ben transmitted.
short int gXmtActive;

// keep track of how many times reset has been called. Assumes
// memory is not zeroed at reset.
//
int gResetCount;

// included files

// Defines encodenibbleo) and decodenibbleo)

// conversion between 4 bit decoded and 6 bit dc-balanced encoded

#include "codec.c"

// a simple FIFO for buffering data between host and radio
#include "fifo.c"

// managing parallel 1I/ with the host
#include "host.c"

// managing serial 1I/ with the radio
#include "radio.c"

// establishing sync between transmitters and receivers
#include "sync.c"

// initialization and main code

// set up for transmit mode
#inline
void setup transmit()

set tris a(PORT A XMT);
set tris b(PORTBXMT);
HOSTSETUPTX(;
RADIO SETUPTX();
FIFORESET(;

// set up for receive mode

158

#inline
void setupreceive(
settrisa(PORT_A_RCV);
settrisb(PORTB RCV);

HOSTSETUPRX(;
RADIO SETUP RX();

FIFORESET(;

// ===- - - - - -- - - - - -

// blat state() - put state vars on parallel port for debugging

#ifndef BLAT STATE

#define blat state() /* nop */

} while (--i);
gResetCount++;

setup_counters(RTCCINTERNAL, WDT_18MS);

while (1) {

// enter transmit mode, stay there until the host asserts RCVMODE
// and fifo has finished transmitting its contents

setuptransmit();
gXmtActive = 1;

do {
service radio xmt(;

restart wdt(;

while (gXmtActive);

// send serial bits to radio

#else

#inline
void blat state(

output high(PIN B3);
#asm

// radio state on low nibble
movf gRState, w
xorwf PORTA, w
andlw OxOf
xorwf PORTA, f

// host state on high nibble
movf gHState, w
xorwf PORT B, w
andlw 0x07
xorwf PORTB, f

#endasm
outputlow(PINB3);

}

#endif

// ====== == == == === == == == == === == == == == === == == == ==

// mainC

void main(
int i;

set tris a(PORT A XMT);
set tris b(PORTBXMT);

// this loop makes it obvious to a 'scope that we've reset.

i = 30;

do {
ASSERT READY(l);
delaycycles(43);
ASSERT READY(S);

delaycycles(43);

// enter receive mode, stay there until the host drops RCVMODE
setup receive();

do {
service radio rcv(;
restart wdt(;
while (PORTB.RCVMODE);

// receive serial bits from radio

159

File: codec.h

#ifdef _CODECH
#nolist
#else
#define CODEC H
// -*- Mode: C++ -*

//
// File: codec.h
// Description: header file for encoding / decoding DC balanced nibbles
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

// two special values returned by codec decode)

#define DECODE ILLEGAL 0x80
#define DECODESYNCH Oxff

// Convert binary nibble (in low order 4 bits of nibble) into 6 bit,
// DC balanced values. Values may be received using the WRECV()
// macro, as follows:
// codec encode(nibble);
// W RECV(result);

int codec encode(int nibble);

// Convert DC balanced "hexlet" (in low order 6 bits of hexlet) into
// four bit value (returned in W register). Returns DECODEILLEGAL
// for illegal 6 bit patterns, returns DECODESYNCH if a sync header
// pattern is given.

// Values may be fetched using the WRECV() macro, as in:
// codecdecode(hexlet);
/ WRECV(result);

// if (result == DECODEILLEGAL) error();
//
int codec decode(int hexlet);

#endif
#list

// -* Mode: C++ *

//
// File: codec.c
// Description: Convert between 4 bit and 6 bit DC-balanced values
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

#include "utils.h"

// TWO BIG WARNINGS:
// [1] Make sure neither dispatch table crosses a page boundary -
// if so, you must use DISPATCH() rather than SHORT DISPATCH).
// [2] Make sure that codec_{de enlcode is called AS A SUBROUTINE, via
// CALL rather than GOTO. (The CCS compiler will use CALL whenever
// there are two or more subroutine calls in the program.)

160

// Encode 4 bit nibble as a 6 bit DC-balanced value. Upon return, the

// encoded 6 bits are "left justified" in the W register and must be
// stored somewhere via the WRECV() macro (see utils.h). Example call:

// encodenibble(decoded);
// WRECV(result);

// The reason for left justification is that we will be shifting out
// the bits MSB first. "prejustifying" them saves an extra shift

// operation.

int codec encode(int nibble)

nibble &= OxOf;
#asm
SHORT DISPATCH(nibble)

retlw Ob01010100 // 0000

retlw Ob11000100 // 0001

retlw Ob11001000 // 0010

retlw Ob10001100 // 0011

retlw Ob11010000 // 0100

retlw Ob10010100 // 0101

retlw Ob10011000 // 0110

retlw Ob01011000 // 0111

retlw Ob01101000 // 1000

retlw Ob1O100100 // 1001

retlw Ob10101000 // 1010

retlw ObOO101100 // 1011

retlw Ob10110000 // 1100

retlw ObOO110100 // 1101

retlw ObOO111000 // 1110

retlw Ob01110000 // 1111

#endasm

// mask to 4 bits

// Convert DC balanced "hexlet" (in low order 6 bits of hexlet) into
// four bit value (returned in W register) . Returns DECODEILLEGAL
// for illegal 6 bit patterns, returns DECODESYNCH if a sync header
// pattern is given.

// Values may be fetched using the WRECV() macro, as in:
// codecdecode(hexlet);

/ WRECV(result);
// if (result == DECODEILLEGAL) error));

//
int codecdecode(int hexlet)
hexlet &= Ox3f;

#asm
SHORT DISPATCH(hexlet)

retlw DECODE ILLEGAL

retlw DECODE ILLEGAL
retlw DECODE ILLEGAL
retlw DECODE ILLEGAL
retlw DECODE ILLEGAL
retlw DECODE ILLEGAL
retlw DECODE ILLEGAL
retlw DECODEILLEGAL
retlw DECODE ILLEGAL
retlw DECODE ILLEGAL
retlw DECODEILLEGAL

// mask to 6 bits

000000 not used

000001 not used
000010 not used
000011 not used

000100 not used
000101 not used
000110 not used
000111 "anti synch header"

001000 not used
001001 not used
001010 not used

retlw Ob00001011

retlw DECODEILLEGAL
retlw ob00001101

retlw Ob00001110

retlw DECODEILLEGAL

retlw DECODEILLEGAL

retlw DECODE ILLEGAL

retlw DECODEILLEGAL
retlw DECODEILLEGAL

retlw DECODEILLEGAL

retlw ObO000000
retlw ObOO000111
retlw DECODEILLEGAL

retlw DECODEILLEGAL
retlw DECODE ILLEGAL

retlw ObOO001000
retlw DECODE ILLEGAL
retlw Ob00001111

retlw DECODEILLEGAL

retlw DECODEILLEGAL

retlw DECODE ILLEGAL

retlw DECODEILLEGAL

retlw DECODEILLEGAL
retlw DECODEILLEGAL

retlw ObOO000011
retlw DECODEILLEGAL
retlw ObOO000101
retlw Ob00000110

retlw DECODEILLEGAL
retlw DECODE ILLEGAL

retlw ObOO001001
retlw ObOO001010
retlw DECODEILLEGAL

retlw ObOO001100
retlw DECODE ILLEGAL
retlw DECODEILLEGAL

retlw DECODEILLEGAL
retlw DECODEILLEGAL
retlw ObOO000001
retlw ObOO000010
retlw DECODE ILLEGAL
retlw ObOO000100
retlw DECODE ILLEGAL

retlw DECODE ILLEGAL

retlw DECODE ILLEGAL
retlw DECODESYNCH

retlw DECODE ILLEGAL

retlw DECODE ILLEGAL

retlw DECODE ILLEGAL

retlw DECODE ILLEGAL

retlw DECODE ILLEGAL

retlw DECODE ILLEGAL

retlw DECODEILLEGAL

#endasm

001011
001100 not used

001101

001110

001111 not used
010000 not used

010001 not used

010010 not used

010011 not used

010100 not used

010101

010110

010111 not used
011000 not used
011001 not used
011010

011011 not used
011100

011101 not used

011110 not used

011111 not used

100000 not used

100001 not used

100010 not used

100011

100100 not used
100101

100110

100111 not used
101000 not used

101001

101010

101011 not used
101100

101101 not used

101110 not used

101111 not used

110000 not used
110001

110010

110011 not used
110100

110101 not used

110110 not used

110111 not used

111000 synch pattern

111001 not used

111010 not used

111011 not used

111100 not used

111101 not used

111110 not used

111111 not used

161

ile iUo
#ifdef _FIFOH
#nolist
#else
#define _FIFO_H

/ -*- Mode: C++ -*

//
// File: fif
// Description: hea
//
// Copyright 2001 b
// rights reserved.
//
// This MIT Media L
// Advanced Researc
// content of the i
// position or the
// endorsement shou
//
//

//
//
//-
//
//
//-
//-
//-
//-
//-
//
//

//-
//
//
//
//

// and must be fetched as in WRECV(val);

#inline
void fifoget();

#endif
#list

o.h
der file for fifo routines

y the Massachusetts Institute of Technology. All

aboratory project was sponsored by the Defense

h Projects Agency, Grant No. MOA972-99-1-0012. T

nformation does not necessarily reflect the

policy of the Government, and no official
ld be inferred.

For general public use.

This distribution is approved by Walter Bender, Director of the

Media Laboratory, MIT. Permission to use, copy, or modify this

software and its documentation for educational and research

purposes only and without fee is hereby granted, provided that this

copyright notice and the original authors' names appear on all

copies and supporting documentation. If individual files are

separated from this distribution directory structure, this

copyright notice must be included. For any other uses of this

software, in original or modified form, including but not limited

to distribution in whole or in part, specific prior permission must

be obtained from MIT. These programs shall not be used, rewritten,

or adapted as the basis of a commercial software or hardware

product without first obtaining appropriate licenses from MIT. MIT

makes no representations about the suitability of this software for

any purpose. It is provided "as is" without express or implied

warranty.

// fifo capacity must be a power of 2!!
#define FIFO CAPACITY 32
#define FIFO-MASK (FIFOCAPACITY-1)

#define FIFO IS EMPTY() (fifoLen == 0)
#define FIFOISFULL) (fifoLen == FIFOCAPACITY)

#define FIFO RESET() fifoPut=0; fifoGet=0; fifoLen=0

// Store a byte in the fifo. Assumes that the caller has previously

// checked for overflow, as in !FIFOISFULL()
//
#inline
void fifo put(int &b);

// Fetch a byte from the fifo. Assumes that the caller has previously

// checked for underflow, as in !FIFO ISEMPTY(). Returns value in W,

// *- Mode: C++ -
//
// File: fifo.c
// Description: very efficient and dangerous fifo routines
//
// Copyright 2001 by the Massachusetts Institute of Technology. All

// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The

// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the

7/ Media Laboratory, MIT. Permission to use, copy, or modify this

77 software and its documentation for educational and research
77 purposes only and without fee is hereby granted, provided that this

77 copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

77 separated from this distribution directory structure, this

77 copyright notice must be included. For any other uses of this

77 software, in original or modified form, including but not limited

77 to distribution in whole or in part, specific prior permission must

77 be obtained from MIT. These programs shall not be used, rewritten,

77 or adapted as the basis of a commercial software or hardware
77 product without first obtaining appropriate licenses from MIT. MIT

77 makes no representations about the suitability of this software for

77 any purpose. It is provided "as is" without express or implied

77 warranty.
#include "fifo.h"
#include "procregs.h"

int fifoPut;
int fifoGet;
int fifoLen;
int fifo[FIFO CAPACITY];

// # of byte stored in fifo

77 FIFO code

// store a byte in fifo. Assumes caller has checked for overflow

162

#inline
void fifoput(int &b)

// if (fifoLen == FIFOCAPACITY) return;
fifoLen++;

#ifdef DONTBUMCYCLES
fifo[fifoPut++] = b;

#else
#asm
movf fifoPut,W
incf fifoPut,F
addlw fifo
movwf FSR
movf b,W
movwf INDF

#endasm
#endif

fifoPut &= FIFO-MASK;

// overflow, sorry.

// fetch a byte from fifo. Assumes caller has checked for underflow.

// Returns value in W register.
#inline
void fifoget)

fifoLen--;
#asm

movf fifoGet,W
incf fifoGet,F
addlw fifo
movwf FSR // p = &fifo[fifoGet++]
movlw FIFO MASK // fifoGet &= FIFOMASK
andwf fifoGet,F / -
movf INDF,W / w = *p

#endasm
#endif

#ifdef _HOSTH
#nolist
#else
#define -HOST H
// -* Mode: C++ -*
//
// File: host.h
// Description: service host parallel port
//
// Copyright 2001 by the Massachusetts Institute of Technology. All

// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The

// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this

// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited

// to distribution in whole or in part, specific prior permission must

// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT

// makes no representations about the suitability of this software for

// any purpose. It is provided "as is" without express or implied

// warranty.

// warm reset code

#define HOSTSETUPTX)
gHState = SHXA;
ASSERTREADY(0)

#define HOSTSETUPRX)
gHState = SHRA;
ASSERTREADY(0)

#inline
void service host rcv();

void service host xmt(;

#endif
#list

163

// -*- Mode: C++ -*-

//
// File: host.c
// Description: manage communication between BART and host processor

//
// Copyright 2001 by the Massachusetts Institute of Technology. All

// rights reserved.

/ This MIT Media Laboratory project was sponsored by the Defense

/ Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The

/ content of the information does not necessarily reflect the

/ position or the policy of the Government, and no official

/ endorsement should be inferred.
//
// For general public use.

//
// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this

// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited

// to distribution in whole or in part, specific prior permission must

// be obtained from MIT. These programs shall not be used, rewritten,

// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT

// makes no representations about the suitability of this software for

// any purpose. It is provided "as is" without express or implied
// warranty.

// This file implements the following:

//
// void servicehostrcv();
// In receive mode (reading data from radio), monitor the software
// FIFO for bytes and send them to the host via the parallel port

// as they become available.

//
// void servicehost xmt();
// In transmit mode (sending data to radio), monitor the parallel

// port for data transfers from the host and store incoming bytes

// in the software fifo as they are sent.

Timing requirements:
Both servicehostrcv() and servicehost xmt() share processor

/ cycles with the software UART defined in radio.c. Consequently,

/ these routines must execute and return very quickly so as not to

// perturb the serial timing. As a rule of thumb, these functions

// should consume only a small fraction of BITPERIOD tics.

// Edit History:
//
// 08 Oct 2000: r@media.mit.edu
// servicehostxmt() was getting stuck in stateD.

//
// End of Edit History

fixed typo

#include "bart.h"
#include "procregs.h"
#include "utils.h"
#include "host.h

// Variables can be safely shared between service hostrcv() and

// servicehostxmt() since the system can't be receiving and

// transmitting at the same time.

int gHState;
int gHByteBuf;

// servicehostrcv()
//
// Called regularly when the radio is in receive mode, this routine
// transfers data from the FIFO to the parallel port. The caller

// requires 25 cycles, leaving 44-25 = 19 cycles for this routine.
// The odd ordering of the clauses (putting shr_B first after the

// dispatch) shaves off two critical cycles.
//
#inline
void service hostrcv()
#asm

SHORT DISPATCH(gHState)
#define SHR C 0

goto shr_C /
#define SHRA 1

goto shr_A /
// goto shr_B /
// v === fall through

#endasm

/ post data to port, await !HOSTCLOCK

/ bartready <= fifostate, advance if avail
/ wait for HOSTCLOCK, pull data from FIFO

=== v

shrB:
// Await HOSTCLOCK, then fetch a byte from the fifo
if (PORTB.HOST_CLK)
fifoget();
W RECV(gHByteBuf); // fifo-get returns value in W
gHState = SHR C; // gHState was 2(B), now O(C)

return;

shr A:
// Wait for a byte to become available in the fifo.
// Announce readiness in BART READY.
if (FIFOISEMPTY())
ASSERT READY(0);
else {

164

ASSERT READY(l);
gHState++; // gHState was 1(A), now 2(B)

return;

shr C: // gHState = 0

// Output the byte to the host port, await !HOST CLK

#ifdef DONTBUMCYCLES
PORTA.HDATALO = gHByteBuf;
swap(gHByteBuf);

PORT B.HDATAHI = gHByteBuf;
#else
#ifndef BLATSTATE

#asm
// This code requires that HDATALO and HDATAHI appear at the

// low four bits of PORT A and PORTB respectively.

// movf gHByteBuf, w

// xorwf PORT A, w

// andlw OxOf
// xorwf PORT A, f

// super big cheeze hack: lsnibble of PORTA is where we put

// the bits. hsnibble of PORT A is either inputs (A4) or

// unused. cycle shaving to the max...
movf gHByteBuf, w
movwf PORTA

swapf gHByteBuf, w
xorwf PORT B, w

andlw OxOf
// andlw Ox07 //
xorwf PORT B, f

#endasm
#endif // ifndef BLAT STATE

leave B3 for debugging

#endif // ifdef DONTBUMCYCLES

if (!PORTB.HOSTCLK)
gHState++; /

return;

shxA:
if (!FIFO IS FULL())

ASSERTREADY(l);
gHState++;

else {
ASSERT READY(O);

return;

shxB:

// wait for host clock to go true before latching data
// on parallel port
if (PORTB.HOSTCLK)

#ifdef DONTBUMCYCLES
gHByteBuf = PORTB.HDATAHI;
swap(gHByteBuf);
gHByteBuf |= PORTA.HDATALO;

#else
// This code requires that HDATALO and HDATAHI appear at the
// low four bits of PORT A and PORT B respectively.
gHByteBuf = (int *)PORT B & OxOf;
swap(gHByteBuf);

gHByteBuf 1= (int *)PORTA & OxOf;

#endif
gHState++;

}
return;

shx C:

/ store the byte fetched in the previous state, wait for
// host clock to drop before going to next state.
if (JPORTB.HOSTCLK)

fifo put(gHByteBuf);
gHState = SHXA;

return;

/ gHState was 0(C), now 1(A)

service host xmt()

Handle the host port in transmit mode. Loop as follows:

Inform host if there's room in the FIFO by raising BARTRDY

Await HOSTCLOCK, latch data on parallel port
Store data in fifo, await !HOSTCLOCK

void service host xmt()
#asm
SHORTDISPATCH(gHState)

#define SHX A 0
goto shx A
goto shx B
goto shxC

#endasm

// if room in fifo, assert ready
// await host clock, latch data

// store in fifo, await Ihost clock

165

File: procregs.h

#ifdef _PROCREGSH
#nolist
#else
#define PROCREGS H

/ -*- Mode: C++ -

// File: procregs.h
// Description: C definitions of selected PIC processor registers
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012.
content of the information does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred.

short int IRP;
STATUS;

#byte STATUS = 0x03
#byte FSR = Ox04
#byte PORTA = OxO5
#byte PORTB = 0x06
#byte PCLATH = Ox0A
struct {

short int RBIF;
short int INTF;
short int TOIF;
short int RBIE;
short int INTE;
short int TOIE;
short int PEIE;
short int GIE;
INTCON;

#byte INTCON = OxOB

#endif
#list

The

// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

// PCM-C readable register definitions for
// general PICs. This version is tailored
// only for the PIC16F84 and for the 12C672.
//

#byte INDF = Ox00
#byte TMRO = Ox01
#byte PCL = 0x02

struct
short
short
short
short
short
short
short

C;
DC;
Z;
PDL;
TOL;
RPO;
RP1;

166

#define SYNCHDRLENGTH 6 // in 6-bit "hexlets"

#ifdef _RADIO_H
#nolist
#else
#define _RADIO_H
// -*- Mode: C++ -

//
// File: radio.h
// Description: serial interface to TR1000 radio chip

//
// Copyright 2001 by the Massachusetts Institute of Technology. All

// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The

// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

//
// For general public use.

//
// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this

// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited

// to distribution in whole or in part, specific prior permission must

// be obtained from MIT. These programs shall not be used, rewritten,

// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT

// makes no representations about the suitability of this software for

// any purpose. It is provided "as is" without express or implied

// warranty.

// warm reset code

#define RADIOSETUPTX()
gRState = 0

#define RADIOSETUPRX()
gRState = SRRSYNC;
PORTB.RADIOXMT = 0

// number of bit periods to try for a sync header before

// timing out. each sync header is 6 bits long; try for

// 10 periods.
#define SYNCTIMEOUT 60

// number of 6 bit sync chars to send when transmitting a
// header.

// in receive mode, monitor RADIORCV
// data, decode, store in FIFO.
#inline
void service radio rcv();

// in transmit mode, fetch bytes from
// serial data on RADIOXMT line
#inline
void service radio xmt(;

#endif
#list

line, read encoded serial

FIFO, encode and send as

// -* Mode: C++ -

// File: radio.c
// Description: manage exchange of serial data with TR1000 radio
//
// Copyright 2001 by the Massachusetts Institute of Technology. All

// rights reserved.

This MIT Media Laboratory project was sponsored by the Defense

Advanced Research Projects Agency, Grant No. MOA972-99-1-0012.
content of the information does not necessarily reflect the

position or the policy of the Government, and no official

endorsement should be inferred.

// For general public use.
//
// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this

// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited

// to distribution in whole or in part, specific prior permission must

// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT

// makes no representations about the suitability of this software for

// any purpose. It is provided "as is" without express or implied
// warranty.

// NOTE: send/receive MSB first
//
// The servicing of the host parallel port happens only in those bit
// periods where service radiorcv() doesn't have other time consuming

167

The

// operations, such as transfers to the fifo or encoding and decoding
// six bit values. In short, timing is critical!

//
// 06 Nov 2000 r@media.mit.edu
//
// In our noisy environment, BART detects many false sync headers.

// Upon transmission, BART generates a leader char at the start of

// each packet. Upon reception, if the first non-sync char isn't a

// leader char, BART reverts to searching for sync without troubling

// the host. This should cut down on the number of spurious packets

// handled by the host.

#include "radio.h"
#include "procregs .h
#include "utils.h"
#include "sync.h"
#include "fifo.h"

// Variables can be safely shared between serviceradio_rcv) and

// serviceradioxmt) since the system can't be receiving and

// transmitting at the same time.

int gRState;
int gRSerBuf;
int gRBytBuf;

// Every packet has leader
#define LEADER CHAR 'A'
short int gIsPacketStart;

// six bit serial shift register
// holding register for decoded byte

char immediately following the synch header
// got any better ideas?
// true when seeking leader char

#inline
void _get_radiobit();

#inline
void _put radio bit));

// serviceradio rcv() - in receive mode, monitor RADIORCV line,

// read encoded serial data, decode and store in FIFO.

//
// In the initial state, it will search for a sync pattern on the

// radio's receive line. Once it establishes sync, it will read

// serial bits, decode their 6 bit form into a 4 bit nibble, assemble

// pairs of nibbles into bytes, and store the bytes in the FIFO.

//
// This routine essentially implements a software UART. In all but

// the initial state, fewer than BITPERIOD cycles may elapse between

// calls to service radiorcvO, or data will be lost.

#inline
void service radio_rcv)
#asm

SHORT DISPATCH(gRState)
#define SRRSYNC 0

goto srrsync // establish sync, sample bl1 (msb)

#define SRRB11_INITIAL 1
goto srrbllinitial

#define SRRB10_INITIAL 2
goto srr_blO_initial

#define SRRB09 3
goto srr_b09
goto srr_b08
goto srr b07
goto srr_b06
goto srr_b05
goto srr-b04
goto srr_b03
goto srrb02
goto srr_b01
goto srr_bOO
goto srr_bllstore
goto srr_b10_store

#endasm

// b1l & service host port

// b10 & service host port

// b09 & service host port
// bO8 & service host port
// b07 & service host port
// b06 & store high nibble
// b05 & service host port
// b04 & service host port
// b03 & service host port
// b02 & service host port
// bOl & service host port
// bOO & store low nibble
// b1l & service host port
// blO, accumulated byte to fifo

srrsync:
// Here to establish initial sync. Note that unlike other
// routines in service radio rcv) which all complete in
// less than 44 tics, this one might take a relatively long
// time to complete. During this time, host transfers are
// deferred.
gIsPacketStart = 1;
if (!findsync(SYNC_TIMEOUT))

// didn't find sync. Try again at next call to service radio rcv)

gRState = SRRSYNC;
return;

// found sync. From here on, TMRO rolling over (TOIF) marks the

// midpoint of each received bit. Fetch the first bit (b1l, MSB
// first) before returning.
gRState = SRR B11_INITIAL; // next: srr_blO
// --v-- fall through... -- v--

srr bl1 initial:
srr b10 initial:
srr-b09:
srr b08:
srrb07:

// b06 below
srrb05:
srr b04:
srr b03:
srr b02:
srr bOl:

/ bOO below
srr bllstore:

// sample a bit and service the parallel port

_get_radio bit));
service host rcvo);
gRState++;
return;

srr-b06:
// sample bit 6 of input stream. Having accumulated the first

168

// 6 bit packet, decode into 4 bit and store in accum byte.

_getradiobit(;
codec decode(gRSerBuf);

// Following the call to codecdecode(, the decoded 4 bit nibble

// is in the W register. Do the equivalent to:

// gRBytBuf = codecdecode(gRSerBuf);
W RECV(gRBytBuf);
if (gRBytBuf == DECODESYNCH)

gRState = SRR_B1lINITIAL; // strip sync bytes

else {
gRState++;

return;

srrb00:
// sample bit 00 (LSB) , decode accumulated 6 bits to 4 bit,

// merge with gRBytBuf.

// ## Note that we don't check for sync or illegal bit patterns

// ## here - if we get either, gRBytBuf is blithely clobbered.

// ## On the other hand, the sending code will only generate

// ## sync filler for the first nibble, so we don't expect to

// ## get sync filler here.

get radio bit();
swap(gRBytBuf); /make room in lsnibble

codec decode(gRSerBuf);

// After the call to codec decode), the decoded 4 bit nibble is

// in the W register. The following IORWF is equivalent to:

// gRBytBuf |= codecdecode(gRSerBuf);

#asm
iorwf gRBytBuf,f

#endasm
if (gIsPacketStart)

// in srr b06, sync "nibbles" were stripped out. Arrive here

// after finding the first non-sync character. If it was a

// bona-fide leader char, accept it and start reading the rest

// of the packet. If not, start all over again looking for

// sync.
if (gRBytBuf == LEADER CHAR)
gRState = SRRB11_INITIAL; strip sync bytes

gIsPacketStart = 0;

return;
else {
// wasn't
gRState = SRRSYNC;
return;

// sample b1l and store...gRState++;

return;

srr b10 store:

// sample bit 10, store byte previously accumulated (gRBytBuf) in

// the fifo. We wait until bit 10 (rather than bit 11) so that the

// service host rcv() is called every other tic.

get_radiobit();
fifoput(gRBytBuf);
gRState = SRR_B09;
return;

// =-=- - - - - - - - - - -

// Wait for TMRO to roll over, shift the radio serial port into

// the LSB of the serial buffer. Update TMRO before returning.

//
#inline
void _get_radiobit)

AWAITTMRO();
SHIFTBIT LEFT(gRSerBuf, PORTA.RADIORCV);

// outputhigh(PINB3); // ## debug - wiggle b3 when sampling serial

UPDATETMR0(BITPERIOD);

// output low(PINB3); // ## debug

// Serial Transmit (from FIFO to Radio)

//
// Initially, wait for a byte to appear in the fifo (awaitstart).

// Send a stream of sync chars (sync_b05-b00). Thereafter, start

// sending bits from the fifo (send_bll-bOO), MSB first. If the fifo

// ever runs dry, send sync chars until more data is available.

// SYNC CHAR defines the six

// an 8 bit byte

#define SYNCCHAR Ob11100000

#inline

void serviceradio_xmt()

#asm

SHORT DISPATCH(gRState)

#define AWAIT START 0

goto await start

#define SYNC B05 1

goto sync b05
goto sync b04

#define SYNC B03 3

goto sync b03

goto sync b02

#define SYNCB01 5

goto sync bOl

goto sync bOO

#define SEND B11 7

goto send_bll

goto sendblO

goto sendb09

goto send_b08

goto sendb07

goto send_b06

goto send b05
goto sendb04

#define SENDB03 15

goto sendb03

goto send-b02

goto send_bOl

goto send_b00

#endasm

bit sync header char, left justified in

// s=00 loop until at least one byte in fifo

// s=01 send sync bit 5, service host port

// s=02 send sync bit 4

// s=03 send sync bit 3, service host port

// s=04 send sync bit 2, service host port

// s=05 send sync bit 1, service host port

// s=06 send sync bit 0

// s=07 send bit 11 (msb), service host port

// s=08 send bit 10, service host port

// s=09 send bit 09, service host port

// s=10 send bit 08, service host port

// s=11 send bit 07, service host port

// s=12 send bit 06, encode low nibble

// s=13 send bit 05, service host port

// s=14 send bit 04, service host port

// s=15 send bit 03, service host port

// s=16 send bit 02, fetch byte from fifo

// s=17 send bit 01, service host port

// s=18 send bit 00 (lsb), encode high nibble

169

await-start:
// wait for first byte to appear in the fifo.

glsPacketStart = 1;

service host xmt(; // service parallel port
if (PORTB.RCVMODE)

// host is requesting receive mode. Quit now.
gXmtActive = 0;
return;

if (!FIFOIS EMPTY())
gRBytBuf = SYNCHDRLENGTH;
gRSerBuf = SYNCCHAR;
SET TMRO(BIT PERIOD);

// from here on, TMRO marks

/ _putradio bit()
gRState++;

return;

sync b05:
sync-b03:
sync-b02:
sync bOl:
send b1l:
send b10:
send b09:
send b08:
send b07:
send bOS:
send b04:
send b03:
send bOl:

_put radiobit();
service host xmt(;
gRState++;
return;

// # of sync nibbles to send
// set up char to be sent

onset of each bit period, honored by

// send sync 05

// put next msbit of gRSerBuf
// service parallel port

sync b04:
// send sync bit 04 and use gRBytBuf to decide whether to keep

// sending synch chars (syncb03) or to switch to the mainstream
// code (sendb03). By switching to mainstream code, the final

// 3 bits of the synch char will be sent, but the next byte

// will be fetched from the FIFO, encoded and sent.

_put radiobit();
#ifdef DONTBUMCYCLES

if (--gRBytBuf) {
gRState = SYNCB03;
else {
gRState = SEND B03;

#else
#asm
movlw SEND B03
decfsz gRBytBuf, f
movlw SYNC B03
movwf gRState

#endasm

#endif
return;

sync bOO:
// put the last bit of gRSerBuf set state to send_bO5 to send another

// sync char

putradiobit();
if (PORTB.RCVMODE && FIFOISEMPTY()

// host is requesting receive mode and the fifo has drained.
// game over.
gXmtActive = 0;
return;

gRSerBuf = SYNCCHAR;
gRState = SYNCB05;
return;

sendb06:
// send bit 06 and decode

_putradiobit();
swap(gRBytBuf);
codec encode(gRBytBuf);
W RECV(gRSerBuf);
gRState++;
return;

// recharge gRSerBuf with sync char

the low nibble of gRBytBuf

// encode low nibble of gRBytBuf
// into 6 bit value

// next state = send_b05

send-b02:
// send bit 02 and fetch the next byte from the fifo. If the fifo

// is empty, send a synch char after sending bit 0

_putradiobit();
if (FIFO ISEMPTY())
gRBytBuf = 1;
gRState = SYNCB01;
return;

if (gIsPacketStart)
// the very first char in the packet is the leader char
gRBytBuf = LEADERCHAR;
gIsPacketStart = 0;
else {
fifo get();
W RECV(gRBytBuf); // fifoget() returns val in W

gRState++;
return;

// next state = send_bOl

send bOO:
// send bit 00 and encode the

_put-radio bit();
swap(gRBytBuf);
codec encode(gRBytBuf);
W_RECV(gRSerBuf);
gRState = SEND_B11;
return;

high nibble of the next byte

// encode high nibble of gRBytBuf
// into 6 bit value

II ===-

170

// Wait for TMRO to roll over, shift out the MSB of the serial buffer

// (gRSerBuf) and write it to the radio port. Update TMRO before

// returning. Note that gRSerBuf is not only shifted, but in the #asm
// code, may accumulate garbage in its right half.

//
#inline
void _putradio bit()

AWAIT TMRO();
#ifdef DONTBUMCYCLES
output bit(shift left(&gRSerBuf, 1, 0));

#else
#asm

rlf gRSerBuf,f
btfss STATUS.C
bcf PORTB.RADIOXMT
btfsc STATUS.C
bsf PORTB.RADIOXMT

#endasm
#endif
UPDATETMRO(BITPERIOD);

#ifdef _SYNCH
#nolist
#else
#define SYNC H
// -*- Mode: C++ -
//
// File: sync.h
// Description: establish byte and bit level synch with radio
//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

void send sync(int n);
void puthexlet(int hexlet);
void putnibble(int nibble);

// Try for n bit periods to find a sync header. If found, try to
// establish bit level sync. Returns 1 with TMRO primed to roll over
// in the middle of the first bit period, returns 0 otherwise.
//
int find sync(int n);

#endif
#list

171

*- Mode: C++ -

/ File: sync.c
// Description: generate and detect radio packet sync

//
// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.
//
// This MIT Media Laboratory project was sponsored by the Defense
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.
//
// For general public use.
//
// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all
// copies and supporting documentation. If individual files are
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied
// warranty.

// Generating and detecting sync.

// Each transmitted packet starts with a sync header, which is
// a string of sync header characters. Each sync header char
// is 111000, that is, three bit periods on and three off.

//
// The advantage of this particular pattern is that it features
// a 50% DC balance and a single low-to-high transition in the
// middle of the pattern.

// receiving sync

// Try to establish sync. If no SYNCHEADER pattern is discovered
// within N bit periods, the routine returns 0 to indicate failure.
// If a sync header is found, the routine has established byte level
// synch, but not fine-grained bit level sync. It then spends a
// deterministic amount of time (to be documented :) adjusting the

bit level sync.

Upon success, find sync) will return 1 and TMRO will be set up
to roll over in the middle of the first bit period of the next
"hexlet" (a six bit nibble).

Theory:
The SYNC HEADER is a rectangular wave, three bit periods
high followed by three bit periods low, or OxOf when read
from LSB first. One bit period is 44 clock tics long.

findsync) samples once every 44 tics, shifting received bits into
a register. When the bit pattern 00011100 is detected, then the
header is assumed to fall as follows:

> < 44 tics

I I | | |I |
0 0 0 1 1 1
B7 B6 B5 B4 B3 B2

(msb)

| I
0 0
B1 B0

// This is the 8 bit pattern that will be accumulated in tmp
// when timing is between BIT_PERIOD and 2*BITPERIOD tics
// from the onset of the next SYNCHEADER.

#define PRE-SYNC ObOO011100

int find sync(int n)
int tmp, i;

SET TMRO(BIT PERIOD);

// phase 1: Establish byte level synchronization by shifting in bits
// until SYNCHHEADER is detected (or until we exceed our alloted
// number of bit cell times).

tmp = 0;
// outputhigh(PINB3);
do {

// ## debugging

restart wdt();
AWAIT TMRO();
SHIFTBIT_LEFT(tmp, PORT A.RADIO RCV);
UPDATE TMRO(BITPERIOD);
if (!--n) return 0; // timed out
while (tmp != PRE_SYNC);

// outputlow(PINB3);

// At this point, the picture looks like this. BO may have been
// sampled as early as 2*BITPERIOD before the onset of the next
// SYNCHEADER frame:

I
0 0
B6 B5

1 1 0 0 onset
B3 B2 B1 BO

172

0 0 onset
B1 BO

At this point, DLY cycles have elapsed since sampling BO. So

if BC was sampled early, the onset of the next synch frame will

be in 2 * BIT PERIOD - DLY sample hence. If BC was sampled late,

the onset of the next frame will be BITPERIOD - DLY cycles from

now.

All that's left to do is to look for the low-to-high transition

that marks the next sync frame, which is expected no sooner than

BITPERIOD-DLY and no later than 2*BITPERIOD-DLY cycles from now.

At 44 cycles per bit period, we expect the signal to remain low a

minimum of 44-DLY cycles and a maximum of 88-DLY.

DLY measured to be 25, so min

The following code is written

counts.

#asm

btfsc PORT A.RADIORCV

goto early
btfsc PORT A.RADIORCV
goto early
btfsc PORT A.RADIORCV

goto early
btfsc PORT A.RADIORCV

goto early
btfsc PORT A.RADIORCV

goto early
btfsc PORT A.RADIORCV

goto early
btfsc PORTA.RADIORCV

goto early

btfsc PORT A.RADIORCV
goto early
btfsc PORT A.RADIORCV

goto early
btfsc PORT A.RADIORCV

goto early
btfsc PORT A.RADIORCV
goto found

btfsc PORT A.RADIORCV

goto found
btfsc PORT A.RADIORCV

goto found
btfsc PORT A.RADIORCV
goto found
btfsc PORT A.RADIORCV
goto found
btfsc PORT A.RADIO RCV

goto found

= 19, max = 63.

in assembly to guarantee the cycle

cycle

00
01
02
03
04

05
06
07

08
09

10

11

or as late as 1*BITPERIOD tics before the onset:
I--- ~----|~I ---

- - -- I-- - - - ---- |
I I I ^

found:
// Arrive
// true.
// cycles

0 0
B7 B6

here within 5 (min) to 7 (max) cycles of RADIO_RCV going
Assume it was 6, set TMRO to roll over (BITPERIOD/2)-6
from now

// ## NB: If this doesn't leave enough time in the caller's code to

// ## prepare for the bit, this routine could be modified to detect

// ## the middle of the SYNCHEADER rather than the end (the falling
// ## edge rather than the rising edge), and set TMRO to fire in

// ## (3.5 * BIT-PERIOD - 6) rather than (0.5 * BIT-PERIOD - 6)

//
// outputhigh(PINB3); // ###
SET TMRO((BIT PERIOD/2)-6);

// output low(PINB3); // ###
return 1;

173

0 1 1 1
B5 B4 B3 B2

btfsc PORTA.RADIORCV

goto found

btfsc PORT A.RADIORCV

goto found
btfsc PORT A.RADIO RCV

goto found
btfsc PORT A.RADIORCV

goto found
btfsc PORTA.RADIORCV

goto found

btfsc PORT A.RADIORCV

goto found
btfsc PORT A.RADIO RCV

goto found
btfsc PORT A.RADIORCV

goto found
btfsc PORT A.RADIORCV

goto found

btfsc PORT A.RADIORCV

goto found
btfsc PORT A.RADIORCV

goto found

btfsc PORT A.RADIORCV

goto found
btfsc PORT A.RADIORCV

goto found
btfsc PORT A.RADIORCV

goto found
btfsc PORT A.RADIO RCV
goto found

btfsc PORT A.RADIO RCV

goto found

goto late
#endasm

early:
late:

return 0;

32

33

34
35

36

37

38

39

40
41
42
43
44

45
46

47
48
49

50

51
52

53

54
55

56

57

58

59

60

61

62

63
expected a transition bit by now

#ifdef _UTILSH
#nolist
#else
#define _UTILS H
// -* Mode: C++ -*

//
// File: uti
// Description: gen
//
// Copyright 2001 b
// rights reserved.
//
// This MIT Media L
// Advanced Researc
// content of the i
// position or the
// endorsement shou
//
//-
//
//
//-
//-
//-
//-
//-
//
//-
//-
//
//
//
//
//-
//-
//

ls.h
erally useful code hacks for the PIC

y the Massachusetts Institute of Technology. All

aboratory project was sponsored by the Defense
h Projects Agency, Grant No. MOA972-99-1-0012. T
nformation does not necessarily reflect the
policy of the Government, and no official
ld be inferred.

For general public use.

This distribution is approved by Walter Bender, Director of the
Media Laboratory, MIT. Permission to use, copy, or modify this
software and its documentation for educational and research
purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT
makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied
warranty.

#include "procregs.h"

// DISPATCH

// Efficient dispatch table. Takes 11 cycles (including goto...)
// Offset is clobbered. Must be inside #asm context
//
#define DISPATCH(offset)
movplw jmptbl /* offset += low byte of jmptbl add
addwf offset,f /* carry set if crossing page bou
movphw jmptbl /* w = high byte of jmptbl addr
btfsc STATUS.C /* if (carry was set in addwf)

addlw 1 w += 1
movwf PCLATH /* pclath = w
movf offset, w /* w = offset
movwf PCL /* pcl = w

File: utils.h

r
nds

174

jmptbl:

// Shorter DISPATCH(, but valid iff table falls within current page
// (doesn't increment PCLATH). Takes 7 cycles (including goto ...)
// must be inside #asm context
//
#define SHORT DISPATCH(offset) \
movphw jmptbl
movwf PCLATH
movf offset, w
addwf PCL, f /* pcl += offset

jmptbl:

// Working with Timer 0 (aka RTCC)
//
// Primarily intended for critical timing loops, these macros
// assume that the TMRO prescaler is set to "DIV_1" and counts
// once every instruction cycle.

// Set TMRO to roll over after a given number of tics. The
// +2 term accounts for a two cycle inhbit when TMRO is set.
//
#define SETTMRO(tics) TMRO = (256+2-(tics)); INTCON.TOIF=0

// Set TMRO to roll over tics counts AFTER the previous roll over.
// After an initial call to SET TMRO(), you can use UPDATETMRO()
// to prevent accumulating timing errors.
#define UPDATETMRO(tics) TMRO += (256+2-(tics)); INTCON.TOIF=0

// Busy wait for the Timer 0 Interrupt Flag (TOIF). Assumes TMRO has
// been set and that TOIF has been cleared by means of a previous call
// to SETTMRO() or UPDATETMRO().
//
#define AWAIT TMRO() while (!INTCON.TOIF)
//
// Bug catching version. It takes a few extra precious cycles, but
// jumps to damn() with the caller's PC if INTCON.TOIF was set when
// AWAITTMRO() was first called.
//
// #define AWAITTMRO() if (INTCON.TOIF) damn); while (IINTCON.TOIF)
/ int gLoss;

// void damn() { gLoss++;

// make TMRO roll over delta tics sooner than scheduled
#define ADVANCETMRO(delta) TMRO += ((delta)+2)

// make TMRO roll over delta tics later than scheduled
#define RETARDTMRO(delta) TMRO -= ((delta)-2)

// Favorite time savers

// shift srcBit into the LSB of dstByte
// equivalent to shift left(&dstByte, 1, srcBit)
#define SHIFTBITLEFT(dstByte, srcBit)

STATUS.C = srcBit;

#asm
RLF dstByte, F

#endasm
{}

// shift srcbit into the MSB of dstByte
// equivalent to shiftright(&dstByte, 1, srcBit)
#define SHIFTBITRIGHT(dstByte, srcBit)

STATUS.C = srcBit;
#asm

RRF dstByte, F
#endasm

{}

/ Using W for passing arguments

/ direct access to W register, useful for passing single
/ args to functions. eg:
/I void wputc()
/ int ch;
/1 WRECV(ch)

/ ..
// }
//
// ..
// WCALLLIT(wputc, 'a');

#define WPASS(arg)
#asm
movf arg, w

#endasm

#define WPASSL(arg)
#asm
movlw arg

#endasm

#define WRECV(arg)
#asm
movwf arg

#endasm

#define WCALL(func, arg)
#asm
movf arg,w

#endasm
func ()

#define WCALLLIT(func, arg)
#asm
movlw arg

#endasm
func ()

#endif
#list

175

