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Abstract

As the cost of video technology has fallen, surveillance cameras have become an integral part
of a vast number of security systems. However, even with the introduction of progressive
video displays, the majority of these systems still use interlaced scanning so that they may be
connected to standard television monitors. When law enforcement officials analyze
surveillance video, they are often interested in carefully examining a few frames of interest.
However, it is impossible to perform frame-by-frame analysis of interlaced surveillance
video without performing interlaced to progressive conversion, also known as deinterlacing.
In most surveillance systems, very basic techniques are used for deinterlacing, resulting in a
number of severe visual artifacts and greatly limiting the intelligibility of surveillance video.
This thesis investigates fourteen deinterlacing algorithms to determine methods that will
improve the quality and intelligibility of video sequences acquired by surveillance systems.
The advantages and disadvantages of each algorithm are discussed followed by both
qualitative and quantitative comparisons. Motion adaptive deinterlacing methods are shown
to have the most potential for surveillance video, demonstrating the highest performance both
visually and in terms of peak signal-to-noise ratio.
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Chapter 1

Introduction

When the first US television standard was introduced in 1941, interlaced scanning, or

interlacing, was used as a compromise between video quality and transmission

bandwidth. An interlaced video sequence appears to have the same spatial and temporal

resolution as a progressive sequence and yet it only occupies half the bandwidth due to

vertical-temporal sampling. This sampling method takes advantage of the human visual

system, which tends to be more sensitive to details in stationary regions of a video

sequence than in moving regions. Prior to the introduction of the U.S. High Definition

Television (HDTV) standard in 1995, interlaced scanning had been adopted in most

video standards [24]. For instance, in 1941, the National Television Systems Committee

(NTSC) introduced an interlaced-based television standard that was used in the United

States exclusively until the introduction of HDTV. As a result, interlacing is still widely

used in video systems and is found throughout the video chain, from studio cameras to

home television sets.

A videoframe is a picture made up of a two-dimensional discrete grid of pixels. A video

sequence is a collection of frames, with equal dimensions, displayed at fixed time

intervals. The scan mode is the method in which the pixels of each frame are displayed.

As shown in Figure 1-1, video sequences can have one of two scan modes: progressive or

interlaced. A progressive scan sequence is one in which every line of the video is

scanned in every frame. This type of scanning is typically used in computer monitors and

high definition television displays. An interlaced sequence is one in which the display

alternates between scanning the even lines and odd lines of the corresponding progressive

frames. The standard convention is to start enumeration at zero, i.e. the first line is line 0

and the second line is line 1. Thus, the first line is even and the second line is odd. The
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term field is used (rather than frame) to describe pictures scanned using interlaced

scanning, with the even field containing all the even lines of one frame and the oddfield

containing the odd lines. The terms topfield and bottomfield are also used to denote the

even and odd fields, respectively.

Interlaced Progressive

n-i n-i
n n

field frame

(a) (b)

Figure 1-1: Scan modes for video sequences. (a) In interlaced fields either the even or the odd lines are
scanned. The solid lines represent the field that is present in the current frame. (b) In
progressively scanned frames all lines are scanned in each frame.

While interlacing does succeed in reducing the transmission bandwidth, it also introduces

a number of high frequency spatio-temporal artifacts that can be distracting to the human

eye, such as line crawl and interline flicker. In addition, there are a number of

applications where interlaced scanning is unacceptable. For instance, freeze frame

displays and the photographic capture of a television image both require a whole frame to

be displayed at once. With advances in technology, it is also becoming more popular to

view video on a progressively scanned computer monitor or high definition television set.

These applications all require interlaced to progressive conversion. A simple conversion

method is to combine the even and odd fields to form a new frame. However, this results

in severe blurring in regions of significant motion. The desire to eliminate interlacing

- 16-
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artifacts provides motivation for developing high quality algorithms for interlaced to

progressive conversion, also known as deinterlacing.

One particular application where deinterlacing is very useful is in video surveillance

systems. As video recording equipment has become more affordable, the use of video

surveillance has become an integral part of security systems worldwide. Nearly every

retail store, restaurant, bank, and gas station has some form of video surveillance

installed. For the same reasons that interlacing is found throughout broadcast television

systems, interlaced scanning is used in the vast majority of security systems as well. The

bulk of all existing displays use interlacing in order to facilitate easy interoperability with

other interlaced video devices such as cameras, VCRs, or DVD players. Since the rest of

the security system is coupled to the display, interlacing is found throughout the video

chain. While it is possible that progressively scanned systems may become more

commonplace in the future, especially with the recent introduction of HDTV, at the

present time nearly every surveillance system uses interlaced scanning.

Typically, when criminal investigators view surveillance footage, they only need to

analyze a few frames of interest. They often want to view the frames one at a time,

looking for one good image that can help to identify a suspect or analyze a region of

interest. Since the video source is interlaced, this type of frame-by-frame analysis is

difficult without deinterlacing. Video sequences should be deinterlaced and then

analyzed on a high quality, progressively scanned display to improve the intelligibility of

the video.

The overall goal of this thesis is to investigate different deinterlacing algorithms to

determine methods that will improve the quality and intelligibility of video sequences

acquired by surveillance systems. The deinterlacing problem has been studied since

interlacing was first introduced, and many different algorithms have been proposed to

-17-
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Introduction

deinterlace video sequences in general. However, security video sequences have certain

attributes that differentiate them from other sequences. Deinterlacing algorithms for

surveillance video sequences do not need to consider a number of characteristics that

occur in general video sequences, such as scene changes, global camera motion, or

zooming. This greatly simplifies the deinterlacing problem. Secondly, surveillance

systems often record video at temporal rates as low as 5 to 10 fields per second. This is

significantly lower than the 60 fields per second used in the NTSC standard. As a result

of these low temporal rates, adjacent fields are less temporally correlated. Deinterlacing

algorithms that rely on this temporal correlation for effectiveness will not work well on

this type of video. This thesis will test a number of different deinterlacing algorithms in

order to determine which algorithm best fits these characteristics and helps aid in the

identification of individuals present in these sequences.

Chapter 2 provides an in depth look at a typical surveillance system. The video analysis

methods currently used in practice are also discussed. Formal definitions of interlacing

and deinterlacing are provided in Chapter 3. Chapter 4 discusses the deinterlacing

algorithms that were examined in this thesis. The advantages and disadvantages of each

algorithm are also discussed. One particular class of deinterlacing algorithms showed

excellent potential throughout this research. These methods, known as motion adaptive

deinterlacing algorithms, are examined in detail in Chapter 5. In addition to the details of

the experiments conducted for this thesis, results and analysis are provided in Chapter 6.

Finally, Chapter 7 provides the final conclusions and suggestions for further research.

- 18 -
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Chapter 2

Surveillance Systems

As video technology has improved, the expense of installing a surveillance system has

dropped significantly, leading to an exponential increase in the use of security cameras.

Today it is nearly impossible to enter a shopping mall or to eat at a restaurant and not be

video taped.

As shown in Figure 2-1, a typical security camera system is made up of three

components: the video camera itself, a time-lapse recorder, and a monitor. The video

signal flows from the camera to the time-lapse recorder where it is recorded onto a VHS

tape. The signal also passes through the recorder to the monitor for possible real-time

viewing. Often black-and-white cameras are used to reduce cost, but color cameras are

not uncommon. Time-lapse videocassette recorders are essentially high quality VCRs, as

can be found in any consumer entertainment system. The only difference is that time-

lapse recorders have the ability to record at extremely low temporal rates. The monitor

used in this type of system can be any video display, such as a standard television. If a

black-and-white camera is used, the monitor is often black-and-white as well, again to

help reduce costs. At a given location, there may be many cameras multiplexed into one

or more different recorders, but the overall system will be similar to the one depicted in

Figure 2-1.

Since the video camera and monitor are both self-explanatory, the component that is

really of interest is the time-lapse recorder. These recorders take the video signal from

the camera, and record it onto standard VHS tapes. They record the video at very low

temporal rates so that the recording time per tape is maximized and fewer tapes are

needed. For instance, a standard VHS tape can hold about 8 hours of video using a
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Surveillance Systems

standard VCR. However, by using a time-lapse recorder up to 40 hours of video can be

recorded on the same tape by recording only 12 fields per second compared to the 60

fields per second recorded by a standard VCR. Requiring the end-user to change

videotapes every 8 hours is unacceptable for many surveillance situations, and thus, time-

lapse recording makes these surveillance systems feasible. Time-lapse recorders give

users the ability to select temporal rates much lower than the NTSC standard of 60 fields

per second. Rates such as 30 fields per second, 20 fields per second, and 12 fields per

second are common.

Video Camera Time-lapse Monitor
Videocassette Recorder

Figure 2-1: A typical security camera system. The video signal is taken from a video camera typically

mounted on a wall or ceiling and recorded with a time-lapse videocassette recorder. The

recorded tape can then be viewed later on a monitor.

Once video is recorded onto the VHS tape, it can be played back by the time-lapse

recorder and viewed on a monitor. The recorder can play the tape back at the appropriate

speed to match the rate at which the video was originally recorded. Since the monitor

requires a NTSC signal with a temporal rate of 60 fields per second, the recorder must

adjust the output signal. To accomplish this, many recorders use line repetition, the

simplest of all deinterlacing algorithms. Line repetition is discussed in more detail in

Chapter 4. In the line repetition algorithm, the lines of one field are simply repeated to

generate the missing lines and create a whole frame. Figure 2-2 shows an example of

using line repetition to convert a 20 field per second signal into a 60 field per second

NTSC signal. The display of a single frame on an interlaced monitor is done in the same

manner, however in this case, a single field is continuously repeated for as long as

desired.

-20-
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VHS Tape

(a)

Video Display

(b)

Figure 2-2: Conversion from VHS storage to NTSC video. (a) Two consecutive fields recorded at 20
fields per second as stored on a VHS tape. (b) Display of the same two fields as an NTSC
signal at 60 fields per second. In this example, each field is displayed three times in order
to generate a valid NTSC signal. This has the same effect as line repetition, which is
discussed in Chapter 4.

Line repetition is one of the simplest methods of deinterlacing and will be shown in later

chapters to result in very poor performance. However, this simple algorithm leads to a

simple, low-cost implementation. Therefore, line repetition is the method implemented

on most time-lapse recorders. For this reason, in most surveillance systems, investigators

are forced to view video obtained using line repetition. The remainder of this thesis

investigates more advanced methods of deinterlacing the video, so that it may be

analyzed with higher intelligibility on progressively scanned displays.

-21 -
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Chapter 3

Deinterlacing

A progressive scan sequence consists of frames, in which every line of the video is

scanned. An interlaced sequence consists of fields, which alternate between scanning the

even and odd lines of the corresponding progressive frames. A video sequence is a three-

dimensional array of data in the vertical, horizontal, and temporal dimensions. Let

F[x, y, n] denote the pixel in this three-dimensional sequence at horizontal position x,

vertical position y , and time n . Assuming that the video source is progressively

scanned, F[x, y, n] is defined for all integers x, y , and n within the valid height, width,

and time duration of the sequence. If J,[x,y,n] is an interlaced source generated from

the progressive source F[x, y, n], then 1J[x, y, n] is defined as follows

F[x, y, n] mod(y,2)= mod(n,2)

0 otherwise (1)

where the null symbol, 0, represents pixels that do not exist since they are not scanned,

and mod(y, 2) is the modulus operator defined as

r0 z even
mod(z,2)={ zodd (2)

Thus, the interlacing operation alternates between selecting the even field or the odd field

from the corresponding progressively scanned frame.

-23-



Deinterlacing a video sequence involves converting the interlaced fields into

progressively scanned frames. Ideal deinterlacing would double the vertical-temporal

sampling rate and remove aliasing [5]. However, this process is not a simple rate

conversion problem, since the Nyquist criterion requirement is generally not met. Video

cameras are not typically equipped with the optical pre-filters necessary to prevent

aliasing effects in the deinterlaced output, and if they were, severe blurring would result

[5].

For a given interlaced input FJ[x,y,n], the output of deinterlacing, F, [x,y,n], can then

be defined as

F,[x,y,n], mod(y,2)=mod(n,2)
F,[x, y, n] = (3)

F[x, y, n], otherwise

where the pixels F[x, y, n] are the estimation of the missing lines generated by the

deinterlacing algorithm. The existing, even or odd, lines in the original fields are directly

transferred to the output frame. These definitions will be used throughout this thesis:

F[x, y, n] is the original frame, FI [x, y, n] is the interlaced field, and F, [x, y, n] is the

result of deinterlacing.

The main difficulty in deinterlacing can be seen in the following figure. Figure 3-1 (a)

shows the frequency spectrum of an interlaced signal along the vertical-temporal plane.

The interlaced sampling lattice results in the quincunx pattern of spectral repetitions [5].

The darker regions in Figure 3-1 (a) represent aliasing due to the interlaced sampling.

The ideal deinterlacing algorithm would remove the central repeated spectra to give the

spectrum depicted in Figure 3-1 (b). The areas of overlap in (a) cannot be perfectly

recovered by any deinterlacing algorithm, so the result in (b) is not possible in general.

-24-
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Deinterlacing

f (C/ph) f4 (C/ph)

ft(Hz)

(a) (b)

Figure 3-1: Vertical-temporal spectrum of interlaced video. (a) General vertical-temporal spectrum of
interlaced video sequence. Interlaced sampling causes a quincunx pattern of spectral
repetitions. Dark regions represent areas that are unrecoverable due to aliasing. (b) Ideal
output of deinterlacing algorithm. Central spectral repetition is removed.
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Chapter 4

Deinterlacing Algorithms

Deinterlacing methods have been proposed ever since the introduction of interlacing.

With increases in technology, progressive displays have become feasible and the interest

in deinterlacing has increased. The methods that have been suggested vary greatly in

complexity and performance, but they can be segmented into two categories: intraframe

and interframe. Intraframe methods only use the current field for reconstruction, while

interframe methods make use of the previous and or subsequent frames as well. Note

that, all the methods attempt to reconstruct the missing scan lines without the knowledge

of the original progressive source.

The purpose of this thesis is to investigate a number of deinterlacing methods and analyze

their performance when applied to surveillance camera footage. To this end, fourteen

different algorithms have been compared. Given the extent to which this problem has

been studied, it was impossible to implement every algorithm that has ever been

suggested. However, these fourteen methods are believed to be a fair representation of

the different types of deinterlacing algorithms that have been suggested to date.

The following sections specify the details of the algorithms that were explored as well as

their individual advantages and disadvantages.

4.1 Intraframe Methods

Intraframe or spatial methods only use pixels in the current field to reconstruct missing

scan lines. Therefore, they do not require any additional frame storage. Initially, the

-27-



memory required to store one video frame was expensive, so intraframe methods were

attractive. Since spatial methods consider only one frame at a time, their performance is

independent of the amount of motion present in the sequence or the frame-recording rate.

Robustness to motion is one characteristic that is very useful for deinterlacing low frame

rate surveillance video. However, considering only the information in the present field

greatly limits these algorithms due to the large temporal correlation that typically exists

between successive fields.

4.1.1 Line Repetition

Line repetition is one of the simplest deinterlacing algorithms, and thus, was one of the

first to be considered. In this method, the missing lines are generated by repeating the

line directly above or below the missing line. The top field is copied down to fill in the

missing lines, and the bottom field is copied up as illustrated in Figure 4-1.

Top Field Bottom Field

44 4 ft f t t
*0 0

44 4 ft f t t

44444 ft ft t

Figure 4-1: Illustration of line repetition. The top field is copied down to fill in the missing bottom
field. The bottom field is copied up to fill in the missing top field.

-28-
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Chapter 4 Deinterlacing Algorithms

The mathematical definition of line repetition is as follows.

For top fields:

[x, y,n] =Fjx,y,n],
FF][x,y-l,n],

For bottom fields:

F[x~yn] = J[x, y, n],

Fx[x,y+,n],

y even
otherwise

(4)

y odd

otherwise

An example of the result of line repetition is shown in Figure 4-2.

Original
(a)

Interlaced Line Repetition
(b) (c)

Figure 4-2: Example of line repetition. (a) Original progressive frame. (b) Interlaced field. (c) Output
of line repetition. The lines in the interlaced field are repeated to generate the output frame.

As is shown by the figure, this type of zero-order-hold interpolation often has poor

performance. In addition to introducing jagged edge artifacts caused by aliasing, line

repetition can also cause severe "jitter" in deinterlaced video due to improper

reconstruction of vertical details. A demonstration of the cause of this artifact is shown

in Figure 4-3.

-29-
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Figure 4-3: Jitter Caused by Line Repetition. (a) (b) Consecutive progressive frames of a stationary
image with a horizontal edge. (c) (d) Corresponding interlaced fields. (e) (f) Result of
reconstruction using line repetition. Comparing the deinterlaced frames, the incorrect
reconstruction of the horizontal edge causes a 2 pixel shift in successive frames. This shift
will make the output sequence appear to shake.

As seen in this example, vertical details such as the edge in Figure 4-3 will be incorrectly

reconstructed. These errors will make video sequences appear to shake slightly in the

vertical direction. The rate of this vibration corresponds directly to the frame rate of the

video sequence. At high frame rates, this shaking may be so fast that it becomes

unnoticeable to the human eye. However, at lower frame rates this effect becomes very

noticeable and extremely annoying.
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Deinterlacing Algorithms

4.1.2 Linear Interpolation

Linear interpolation is another simple deinterlacing algorithm that is only slightly more

advanced than line repetition. In linear interpolation the missing lines are reconstructed

by averaging the lines directly above and below. The formal definition of linear

interpolation is

[F[x,y,n] , mod(y,2)=mod(n,2)

F[x,y,n]= F,[x,y+l,n]+F,[x,y-l,n] (5)
, otherwise

This type of algorithm results in a slightly smoother picture than line repetition, but still

has fairly poor performance. The same problems caused by line repetition, such as

aliasing artifacts and jitter, exist with linear interpolation as well.

4.1.3 Parametric Image Modeling

A more advanced form of spatial deinterlacing utilizes image modeling. Parametric

image modeling algorithms attempt to model a small region of an image through a set of

parameters and basis equations. Missing lines are reconstructed using linear

interpolation. The model attempts to determine the contours of a shape in an image and

interpolates along this direction to reduce interpolation errors. Martinez and Lim, and

Ayazifar and Lim have suggested models, which can be used to spatially interpolate,

interlaced video fields. Martinez suggests a Line Shift Model in which small segments of

adjacent scan lines are assumed to be related to each other through a horizontal shift [18].

Ayazifar similarly suggests a generalization of the Line Shift Model through a Concentric

Circular Shift Model in which small segments of concentric arcs of an image are related

to adjacent arcs by an angular shift [1].

- 31 -

Chapter 4



Deinterlacing Algorithms

One of the benefits of these methods is that they tend to be less susceptible to noise.

When attempting to fit an image to a model, pixels corrupted by noise often do not

correctly fit the within the model, and thus the model tends to disregard them. However,

the system must also be over-determined in order for the model to closely match the

actual image, which requires considering a large area of the image as well as more

computations. Depending on the order of model selected, the complexity of this

algorithm can be greater than other methods.

The Line Shift Model method suggested by Martinez and Lim has been included in this

study [18]. Figure 4-4 illustrates the general idea of this algorithm. The algorithm begins

by selecting a certain group of pixels surrounding the missing pixel that is to be

reconstructed. The algorithm implemented for this study uses a group of 10 pixels, 5

pixels on two lines, as suggested by Martinez in [18]. The parameters for the image

model are then estimated for the selected group of pixels, and these parameters are used

to estimate the appropriate line shift vector. Once the shift vector is determined,

interpolation is done along the direction of the estimated line shift as is shown in

Figure 4-5.

Estimate
Current Field 0 Select Model

Samples Parameters

Calculate
Line Shift

Interpolate Output Pixel

Figure 4-4: Implementation of Martinez-Lim spatial deinterlacing algorithm
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Missing Field Line - Q Q Q Q Q -Known Field Lines

0 0 0 0 4--

Figure 4-5: Interpolation by Martinez-Lim algorithm. Appropriate line shift is calculated and
interpolation is done along this direction. In this example, the missing pixel at the center of
the figure is reconstructed by averaging the two pixels along the edge direction.

A comparison of the spatial deinterlacing algorithms that have been mentioned is shown

in Figure 4-6. Of these three, the Martinez-Lim algorithm tends to generate the

smoothest, most realistic images. While it also suffers from some of the jitter effects

found in line repetition, these effects are significantly reduced when compared to the

other two methods.

(a) (b) (c)

Figure 4-6: Comparison of intraframe interpolation methods. (a) Line repetition. (b) Linear
interpolation. (c) Martinez-Lim algorithm.
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4.2 Interframe Methods

While the performance of spatial methods is independent of the amount of motion present

in an image, they essentially ignore a significant amount of information in adjacent

frames that may be useful. For instance, if a video sequence contains one perfectly

stationary image, this sequence could be perfectly deinterlaced by simply combining the

even and odd fields. Interframe or temporal methods consider previous and/or

subsequent frames to exploit temporal correlation. These methods require storage for one

or more frames in their implementation, which may have been a serious difficulty in the

past. However, the cost of frame storage is not as serious an issue with the reduced cost

of memory.

4.2.1 Field Repetition

Field repetition refers to the generation of missing scan lines by copying lines from the

previous frame at the same vertical position. Specifically, field repetition is defined as:

{[x,y,n], mod(y,2)=mod(n,2)

,, Ji[x,y,n-1], otherwise

This type of deinterlacing would provide essentially perfect reconstruction of stationary

video. However, field repetition can cause severe blurring if the video contains motion.

Consider the example presented in Figure 4-7.

At high frame rates, the temporal correlation between two adjacent fields may be very

high. If this is the case, field repetition can perform well with minor noticeable blurring.

Yet, at lower temporal rates, as is used in surveillance video, this blurring effect becomes

-34-

Chapter 4 Deinterlacing Algorithms



more pronounced. Figure 4-8 shows an example of the effects of field repetition being

used in a moving region of a video sequence.

Stationary

Even Field

Time 1

Odd Fieldl
Time 2

Field

Repetition

Moving

Even Field

Time 1

Odd Field

Time 2

Field
Repetition

Figure 4-7: Example of deficiency in field repetition algorithm. The stationary circle is perfectly
reconstructed by combining the even and odd fields. However, in the second example, the
image is blurred since the even and odd fields are no longer properly aligned due to the
motion of the circle between frames.

(a) (b)

Figure 4-8: Blurred frame caused by field repetition. (a) Original progressive frame. (b) Frame
produced using field repetition. Motion of the ballerina causes edges to be distorted
resulting in a blurred image.
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Since surveillance video systems use stationary video cameras, most regions of the video

contain no motion. For instance, the background regions, where no motion is taking

place, make up the majority of these video sequences. In these regions, field repetition

will have excellent performance. Yet, given the extremely low frame rates used in

surveillance video, field repetition can cause severe artifacts wherever motion is present.

Thus, it is not suitable for this application, since the areas of motion are likely to be the

main areas of interest. However, it was included in this study for comparison purposes.

4.2.2 Bilinear Field Interpolation

Bilinear field repetition uses the average of the previous and future lines to deinterlace

the current missing line. The formal definition is

F[x,y,n] , mod(y,2)=mod(n,2)

F[x,y,n]= F[x, y,n+1]+JF[x,y,n-1] (7)
1. 2 , otherwise2

Field interpolation has essentially the same benefits and issues as field repetition. This

method works very well in stationary regions, and works poorly in moving regions. Field

interpolation actually introduces more blurring artifacts in the presence of motion since it

blends three frames together rather than just two. Figure 4-9 shows an example of this

distortion. The three separate fields are each visible in image (b). The current field

shows up in the center with the strongest color. The previous and future fields show up,

slightly blended into the background. The result is a "ghostly" image with badly blurred

edges. In this sense, when compared to field repetition, field interpolation is even more

unacceptable.
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(a) (b)

Figure 4-9: Blurred frame caused by field interpolation. (a) Original progressive frame. (b) Frame
produced using bilinear field interpolation. Three fields of the video sequence are blended
together leaving a severely distorted result in the presence of motion.

4.2.3 Vertical-Temporal Median Filtering

As with all interframe methods Vertical-Temporal (VT) filters use pixels in adjacent

frames, however VT filters also utilize neighboring pixels in the current frame. In VT

median filtering, as its name implies, a median operation is used rather than a linear

combination of the surrounding pixels. VT median filtering has become very popular due

to its performance and ease of implementation. The simplest example of a VT median

filter is the 3-tap algorithm as suggested in [5]. To calculate the pixel X as seen in Figure

4-10, one simply finds the median of the two vertically adjacent points, A and B, and the

temporally adjacent point in the previous field, C, as described in (8).
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n-i n

field number

Figure 4-10: Pixel definitions for 3-tap VT Median Filtering

X = med(A, B, C) (8)

This is formally described as

F ri =f[J~F[x,y,n] , mod(y,2)=mod(n,2)

[x, y median(F [x,y+1,n], F[x,y-1,n], [x,y,n-1]) , otherwise

Median filtering adapts itself to moving and stationary regions on a pixel-by-pixel basis.

If the image is stationary, pixel C is likely to take on a value somewhere between A and

B. Thus, pixel C will be chosen by the median operation resulting in temporal filtering.

If the region is moving, pixel C is likely to be very different than A or B, and thus, A and

B will typically have a higher correlation with each other than with pixel C. The median

filter will then select either pixel A or pixel B resulting in spatial filtering. A number of

variations on this median filter have been suggested. For instance, filters with more taps

have been used such as the seven-tap filters suggested by Salo et al [21] or Lee et al [15].
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For this research two median filters have been implemented; the three-tap median filter as

presented in (9), and a modification of the seven-tap weighted median filter presented by

Lee et al [15]. In their weighted median filter, the following median operation is

implemented.

Let

A=J [x,y-1,n] E=A+B
2

B=F [x,y+1,n] F =C+D
2

C = F, [x,y,n-1]

D=i, [x,y,n+1]

F [x, [x, y,n] , mod(y,2) =mod (n,2)

median(A, B, C, D, E, E, F) , otherwise

Again, this type of median filter will be robust to motion and will be likely to select a

spatial deinterlacing method in the presence of motion. However, in the presence of

motion, linear interpolation (pixel E) becomes somewhat more likely than line repetition

(pixels A and B) since pixel E is given twice as much weight in the median filter.

4.2.4 Motion Compensated Deinterlacing

The most advanced techniques for deinterlacing generally make use of motion estimation

and compensation. There are many motion estimation algorithms that can be used to

estimate the motion of individual pixels between one field and then next. If accurate

motion vectors are determined, motion compensation (MC) can basically remove the

motion from a video sequence. If motion were perfectly removed, temporal interpolation

could theoretically restore the original frames. However, motion vectors are often
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incorrect and any motion compensated deinterlacing methods have to be robust enough to

account for this. In general any non-MC algorithm can be converted to a MC algorithm.

However, only those techniques that perform better on stationary images will most likely

be improved. Some straightforward MC methods include field repetition, field

interpolation, and VT median filtering.

The most common method for determining motion vectors is through block matching

algorithms. The image is segmented into blocks, for instance, 8x8 blocks of pixels are

fairly common, and then each of those blocks is compared to the previous frame in a

given search area, such as -15/+16 pixels in both the horizontal and vertical directions.

The block within the search area, which most closely "matches" the original block, is

selected to compute the motion vector. The "matching" criterion that is typically used is

either mean square error or mean absolute error. There are a number of variations on this

algorithm that involve different search regions or different criteria for selecting the most

closely matching block. Other algorithms have been used which use phase correlations of

adjacent frames to determine shifts of objects within the frames. The two-dimensional

Fourier transforms for the two fields are calculated and a phase correlation surface is

determined. From this surface it is possible to locate peaks corresponding to shifts of

objects from one frame to the next, and map these shift back onto the original field.

A number of problems can arise when using this type of motion estimation scheme. For

instance when objects pass in front of one another, there are appearing and disappearing

regions of the fields, which cannot be accounted for with motion vectors. Also, if an

object moves beyond the motion vector search area, the motion vector will not be

accurately determined. Another fundamental problem with motion compensation is that

the pixels may have sub-pixel motion. In this case, the motion vector actually should

point between pixels or at missing lines in the previous field. In the horizontal direction,

the video is assumed to be sampled at a high enough rate that the general sampling
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theorem can be used to correctly interpolate the needed value. However, in the vertical

direction, the data is sub-sampled and band limited interpolation will not provide an

appropriate result.

In the general deinterlacing problem, motion compensation can be used to compensate

for translational motion of static objects, meaning objects that shift from one position to

another without deforming or changing shape. Thus, motion compensation can be very

effective when deinterlacing a video sequence acquired from a panning camera.

However, this type of motion seldom occurs in surveillance situations that use a

stationary camera. The objects that are static, such as walls and doors, are not moving

because the camera is not moving. The objects that do move are not static; they are

typically individuals who change shape quite often. This type of motion is not

translational, and is thus beyond the scope of the two-dimensional translational model. In

this type of situation, accurate motion vectors cannot be found, since they do not exist.

This problem is compounded by the low temporal rates used in these sequences, which

decreases temporal correlation between adjacent frames.

This thesis looks at three different methods that use motion compensation: field

repetition, field interpolation, and a three-tap VT median filter. Half-pixel motion

estimation algorithms were used with 8x8 blocks and a search range of -31/+32 pixels.

The large search range was selected because of the large amounts of motion that are

possible between successive frames due to the low temporal recording rates.

4.2.5 Motion Adaptive Deinterlacing

Interlaced sequences can be essentially perfectly reconstructed by interframe methods in

the absence of motion, while intraframe methods perform well in the presence of motion

[25]. Motion adaptive methods use a motion detector to take advantage of this fact by

separating each field into moving and stationary regions. Based on the output of the
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motion detector, the deinterlacing algorithm then fades between a temporal method that

works well for stationary images and a spatial method for moving images. The output of

this type of motion adaptive algorithm can be represented as in (11) where a represents a

motion detection parameter that indicates the likelihood of motion for a given pixel

_F [x, y,n], mod(y,2) =mod(n,2)

a- F,,,, [x,y,n]+(1-a).Fsat[x,y,n], otherwise

The pixels F,,, (x, y, t) are calculated for stationary regions using a temporal method, and

the pixels F,,,,, (x, y, t) are calculated for moving regions using a spatial method.

Preliminary results indicated that motion adaptive methods had the most potential for use

with low frame rate surveillance video. Motion adaptive methods correspond well with

surveillance video. For example, the majority of these sequences consist of stationary

background type regions due to the stationary camera system. These background areas

can be deinterlaced using field repetition or interpolation with very high accuracy.

Another benefit of motion adaptive methods is that their performance is not significantly

degraded when used on sequences with low frame rates. For these reasons, motion

adaptive methods were given the most attention during this study. The details of motion

detection and motion adaptive methods are examined in detail in the following chapter.
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Chapter 5

Motion Adaptive Deinterlacing

Motion adaptive deinterlacing methods are designed to take advantage of the varying

information that is present in different regions of a video sequence. In stationary images,

there exists significant correlation between the present field and the adjacent fields.

Temporal methods such as field repetition are designed to benefit from this fact. In

moving regions, this temporal correlation does not exist, and more information can be

found in adjacent pixels on the current field. Spatial methods take advantage of this fact.

Motion adaptive deinterlacing attempts to combine the benefits of both temporal and

spatial methods by segmenting each image into moving and stationary regions.

Stationary regions are reconstructed with a temporal method while moving regions are

reconstructed with a spatial method.

In order to segment a video sequence into moving and stationary regions, motion

adaptive methods must use some form of motion detection. The next section covers

some of the issues with detecting motion in interlaced sequences and describes the

different algorithms that were implemented in this study.

5.1 Motion Detection in Interlaced Sequences

The goal of motion detection is to detect changes in a video sequence from one field to

the next. If a significant change is detected, that region declared to be moving. If no

significant changes are detected the region is assumed to be stationary. This task is

straightforward for a progressive sequence. A simple frame difference can be used to

detect changes and a threshold can be applied to indicate the presence or absence of

motion. An example of this idea is shown in Figure 5-1.
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(a)

(b)

CIL ~ .

AL

(c)

Figure 5-1: Example of motion detection using progressive frames. (a) (b) Two successive frames
from a video sequence. (c) Result of absolute frame difference. Result of frame
differencing can be used as an indication of the presence or absence of motion.

Frame differencing cannot be used for interlaced sequences. In fact, it is impossible since

consecutive fields do not have the same pixel locations, i.e. an even field cannot be

subtracted from an odd field since the corresponding pixels do not exist. The following

sections discuss some of the proposed solutions for motion detection in interlaced

sequences.
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5.1.1 Two-Field Motion Detection

The simplest approach to interlaced motion detection is to convert the fields to frames,

using any deinterlacing method. Once the fields have been deinterlaced, motion

detection is straightforward, and can be performed as in the progressive case discussed

above [17]. Any spatial deinterlacing method can be used for this purpose, such as line

repetition, linear interpolation, or the Martinez-Lim algorithm. Figure 5-2 illustrates this

idea.

* 0

* 0

n-2 n-i n n+1 n+2

Time

Figure 5-2: Two-field motion detection scheme for determining the presence or absence of motion at
pixel location 'X'. The dark circles represent pixels in a video sequence on different scan
lines at the same horizontal position. The pixel at location 'X' is interpolated, represented
in the picture by the light circle, and then an absolute difference is computed between the
interpolated pixel and the pixel from the previous field.

This figure depicts five separate fields of a video sequence. The dark circles symbolize

pixels on varying scan lines at the same horizontal position. The alternating odd and

even fields can be seen in this figure. Suppose the location 'X' is the pixel for which

motion is being estimated. In two-field motion detection the pixel at location 'X' is

interpolated spatially, which is represented here by the light-colored circle. Then an

absolute difference is computed between the interpolated pixel and the pixel from the

previous field. This pixel difference is represented in this figure by the double arrow

symbol.
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A more theoretical approach to this problem is presented by Li, Zeng, and Liou [17].

Since the difference between an even sampled field and an odd sampled field is a phase

shift, they suggest applying a phase correction filter to one field so that it may be more

appropriately compared with the opposite polarity field for motion detection. They use

the following 6-tap filter for phase correction of the current frame:

F0[x y n =F [x, y,n], mod(y,2)=mod(n,2) (2
F,[x~~n]=(12)

3-Fi[x,y,n 5]-21Fi[x,y,ni3]+147-Fi[x,y,n ], otherwise

Obviously, their method does not result in perfect reconstruction, since it is unable to

remove the aliasing terms. However, this method does provide an interesting theoretical

solution to the problem through an application of sampling theory. Their method also

showed the best performance over the other spatial deinterlacing methods for use in this

type of two-field motion detection and was used for two-field motion detection in this

study.

The problem that arises with two-field motion detection is that, without perfect

reconstruction, there will be some errors made in the interpolation step. These errors can

make vertical details in the picture appear as motion. For instance, the pixels above and

below pixel 'X' in Figure 5-2 do not necessarily have any correlation to the actual value

of pixel 'X'. Thus, the interpolation may be done incorrectly and the absolute difference

will not be an appropriate measure of motion. Thus, motion may be detected when none

was present. This error leads to a significant number of false-detections. As a result,

more regions of the video sequence will be deinterlaced spatially than necessary,

resulting in lower quality.
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5.1.2 Three-Field Motion Detection

The only way to avoid the problems introduced by two-field motion detection is to only

compare pixels on identical lines. For instance, no interpolation should be done in order

to compare two pixels that are not on corresponding lines. With this in mind, the

simplest method of motion detection is a three-field motion detection scheme suggested

in [15] and presented in Figure 5-3.

This figure is similar to Figure 5-2, except that no interpolation is needed, and so the light

colored pixel is omitted. Assume that motion is being detected for the location marked

by the symbol 'X'. In a three-field motion detection scheme, the pixel in the previous

field is compared to the same pixel in the next field. Since the previous and the next field

have the same spatial location, the absolute difference can be computed without any

interpolation. An absolute difference of these two pixels is computed as an indication of

the likelihood of motion.

0 0
~ S 0

n-2 n-1 n n+1 n+2

Time

Figure 5-3: Three-field motion detection scheme for determining the presence or absence of motion at
pixel location 'X'. An absolute difference is computed between the pixel in the previous
frame and the pixel in the next frame. Only pixels on corresponding scan lines are
compared, so no interpolation is needed.

While two-field motion detection results in many false alarms (detecting motion when

none is present), three-field motion detection results in many missed detections (not
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detecting motion when motion actually is present) because it is unable to detect fast

moving regions. The following example illustrates an example of a missed detection

when utilizing three-field motion detection.

(a) (b) (c)

Figure 5-4: Sequence of frames which will cause three-field motion detection to fail.

Figure 5-4 presents three sequential frames of a video sequence. In Figure 5-4 (b),

consider the ballerina's left arm. In this example, the three-field motion detection

scheme would incorrectly label this area as stationary. In this region, images (a) and (c)

look exactly alike. This motion detection algorithm will compare (a) with (c), assume

that nothing has changed in that particular region, and label it as stationary. The result of

deinterlacing using these erroneous motion detection parameters can be found in

Figure 5-5.

Figure 5-5: Results of motion adaptive deinterlacing when errors are made in motion detection
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The artifacts caused by missed detection are similar to those caused by field repetition.

The dancer's left arm is blurred out, leaving only a ghostly outline. The same artifact

occurs in other regions of this image for identical reasons.

5.1.3 Four-Field Motion Detection

In an attempt to improve upon three-field motion detection by reducing the number of

missed detections, one can use a four-field motion detection algorithm [15]. The idea

behind four-field motion detection is presented in Figure 5-6.

a)

U
ci) 0 +-

n-2

0

0

n-I

-
0
x

0

n

Time

0

n+I

0

0

n+2

Figure 5-6: Four-field motion detection scheme for determining the presence or absence of motion at
pixel location 'X'. Three absolute differences are computed. This results in a better
detection of fast motion. Only pixels on corresponding scan lines are compared, so no
interpolation is needed.

In this scheme, three pixel comparisons are used rather than the one set of pixels that are

compared in the previous two algorithms. The additional two pixel differences help to

protect against the error that was demonstrated in Figures 5-4 and 5-5. Figure 5-7 shows

the final result after this error has been corrected.
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Figure 5-7: Results of motion adaptive deinterlacing using four-field motion detection. Missed
detections that were made by the three-field motion detection have been removed.

The output of this motion detector is the maximum of the three pixel differences.

A= 1F [x,y,n -1]- [x,y,n + 1
B = IF, [x, y - 1, n] - J, [x, y -1, n - 2]I
C = }F [x, y +1, n] - [x, y+ 1, n- 2]|

motiondetected = max (A, B, C) (13)

While this method has better performance than three-field motion detection, it can still

miss detections. The occurrences are far less likely, but they can occur. The following

sequence of sequential frames demonstrates an example where four-field motion

detection claims a region is stationary when motion is actually present.

(a) (b) (c) (d)

Figure 5-8: Sequence of frames which will cause four-field motion detection to fail.
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In this sequence, consider the position of the waving hand in frame (c). In frame (a) the

hand is also approximately in the same position. The two frames are not identical, but at

least some regions of the hand and arm are similar. The four field motion detection will

compare frames (a) and (c) and will assume that nothing has changed for the majority of

the pixels. Similarly, the algorithm will perform a comparison of frames (b) and (d).

While these frames (b) and (d) are clearly very different, they are nearly identical in the

area in question, so the algorithm will assume nothing has changed in that region either.

The end result will be that no motion will be detected in this area, while frame (c) and

frame (b) are quite different. The effects of this type error are similar to that shown in

Figure 5-5.

5.1.4 Five-Field Motion Detection

The final motion detection algorithm that was investigated is a five-field based method

that was suggested by the Grand Alliance, developers of the United States HDTV

standard, for HDTV format conversion [2]. This method improves upon four-field

motion detection by reducing the number of missed motion detections. The method they

propose is illustrated in Figure 5-9.

0 0

0 0

* 0

n-2 n-I n n+1 n+2

Time

Figure 5-9: Five-field motion detection scheme for determining the presence or absence of motion at
pixel location 'X'. A weighted combination of five absolute differences is used.
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Let

A= IF, [x, y, n -1] - F, [x, y, n + i]
B = IF, [x,y -1,n]-F, [x,y -1,n-211

C =IF [x,y+1,n]-F [x,y+1,n-2]!

D = IF, [x,y-1,n]-F [x,y -1,n+2]1

E = IF, [x,y+1,n]-F, [x,y+1,n+2]1

The output of this motion detector is then the following combination of these five pixel

differences.

motiondetected = max A, B+C D+E (14)
2 2

In this maximum operation, the two pixel differences between the fields at time n and n-2

are averaged, and the two pixel differences between the fields at n and n+2 are averaged.

This method also allows for one additional improvement. The previous methods, with

the exception of the three-field motion detector, look for motion in one direction in time.

In particular, they are all orientated to find differences between the current frame and the

previous frames. Thus these methods will all use the previous field for temporal

deinterlacing. However, the five-field method, in some sense, looks for motion in both

the forward and backward directions. Thus it is not immediately clear whether the

motion adaptive deinterlacing algorithm should use the previous field or the next field for

temporal interpolation. In this case, a type of median filter is used for temporal

deinterlacing, as suggested by the Grand Alliance, the following median operation is used

for temporal deinterlacing [2].
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n-i n

field number

Figure 5-10: Pixel definitions for modified VT-median filter used in five-field motion
detection algorithm

X = med ,AB C,D (15)

F,[x,y,n] , mod(y,2)=mod(n,2)

F [x, y, n]= meinFj[x, y + 1, n] + F[x, y - 1, n] Fxynlj~~-1 le(16)
medin ,Fj~, yn+1]F;[, yn -] ,else

2

This operation calculates the median of the pixel in the previous frame, the pixel in the

next frame, and the linear interpolation of the adjacent pixels. In some sense, it repeats

either the pixel in the previous frame or the pixel in the future frame depending on which

pixel is closest to the value generated by spatial linear interpolation.

While this method does perform the best of all the methods studied it is still possible for a

combination of frames to cause the motion detection algorithm to miss areas of motion.
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This algorithm will not detect a sequence of fields with some region that flickers between

two images once every field over a five-field duration. These types of motion detection

algorithms can only compare even fields with even fields or odd fields with odd fields.

Any sequence that flickers at the frame rate cannot possibly be detected. The only type

of motion detection that could detect this is a two-field based scheme, which has poor

performance for the reasons mentioned earlier in this chapter. A motion detection

scheme similar to this one but using seven fields or nine fields could be used to help

reduce this problem, but eventually it becomes unreasonable to look so far into the future

or past. Using five fields was determined to be sufficient in reducing missed detections.

Some errors occasionally occur, but these are rare and require very fast, periodic motion.

At the rates typically used in surveillance video this type of error rarely occurred and it is

more unlikely at higher frame rates.

5.2 Motion Adaptive Deinterlacing

Using a motion detection algorithm, the benefits of both spatial and temporal methods

can be combined. The idea is to switch or fade between a spatial method and a temporal

method based on the presence or absence of motion as indicated by the motion detector

[5]. Equation (17) and Figure 5-11 depict this central idea.

F [xyn] -JF [x, y,n], mod(y,2) =mod(n,2)
a -F,,, [x,y,n]+(l-a).F,,,, [x,y,n], otherwise

The pixels F,,,, (x, y, t) are calculated for stationary regions using a temporal method, and

the pixels F,,, (x, y, t) are calculated for moving regions using a spatial filter. The motion

parameter a must be a real number between 0 and 1. However, the motion detector

outputs a pixel difference with values between 0 and 255. This conversion, symbolized
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by the "switch" in Figure 5-11 was implemented with the transfer function depicted in

Figure 5-12.

Interlaced
Video

-4

Motion

Detection

Spatial

Interpolation

Progressive
Video

Temporal

Interpolation

Figure 5-11: General concept behind motion adaptive deinterlacing. Motion detection is used to
switch or fade between the use of spatial deinterlacing and temporal deinterlacing.

a

1 -

0.8 -

0.6 -

0.4 -

0.2 -

0

0 5 10 15

$--+-+-- -e-

255

Output of Motion Detector

Figure 5-12: Transfer function between the output of motion detection and the motion parameter a
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Some initial tests indicated that a pixel intensity difference greater than 10 resulted in

noticeable artifacts in the deinterlaced output, so the switch between stationary and

moving regions was chosen just under this point.

In this thesis, the Martinez-Lim algorithm [18] was used for the spatial deinterlacing and

field repetition was used for temporal deinterlacing. The only exception is with the five-

field motion detection algorithm as was mentioned in the previous section.

The security video that was looked at in this thesis contained a significant amount of

noise due to VHS tape degradations. This type of noise can cause the motion detector to

indicate motion in areas that should not be considered as such. To help reduce this effect,

a low-pass filter was used before motion detection. This adjustment led to significant

improvements in video quality. The low-passed video was not used for deinterlacing,

only for motion detection. The final implementation of the motion adaptive deinterlacing

algorithms used in this thesis is depicted in Figure 5-13.

Interlaced
Video

Motion

Detection

Martinez- Lim

Algorithm

Field

Repetition

Progressive
Video

Figure 5-13: Motion adaptive deinterlacing algorithm
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Chapter 6

Experiments and Results

Experimental Setup

The experiments conducted in

deinterlacing algorithms when

of algorithms that were used is

this thesis compare the performance of fourteen different

applied to surveillance camera video sequences. The list

shown in Table 6-1.

This thesis uses Peak Signal-to-Noise Ratio (PSNR) of the luminance channel as a

quantitative measure of the video quality. PSNR is defined as

PSNR = 10 logo (j5J
SMSE)

and the Mean Square Error (MSE) is defined to be the average squared difference

between the original and the resulting video.

M-1 N-1

MSE = y (EF [x, y,n]- F [x, y,n])2
x=O y=O

It should be noted that PSNR and perceived quality are not always directly correlated.

Higher PSNR does not always indicate superior video, but the use of PSNR is a common

practice and has been found to be a sufficient measure of video quality.
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Table 6-1: Summary of deinterlacing algorithms used for testing

Algorithm Algorithm Name

This thesis has studied three separate sets of video data. The first set was made up of two

MPEG test sequences that had properties similar to those of surveillance video

sequences. In particular, both sequences use a stationary camera system and contain

moving individuals. This data was temporally downsampled to simulate the low frame

rates found in surveillance systems. These two sequences were used primarily for

preliminary testing of deinterlacing algorithms. Table 6-2 summarizes the properties of

this set of data. These sequences were originally progressively scanned. Thus, they were

interlaced so that the deinterlacing algorithms could be applied. The results of

deinterlacing these sequences were then compared to the original progressive source.
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Intraframe Methods
1 Line Repetition
2 Linear Interpolation
3 Martinez Lim Algorithm

Interframe Methods
4 Field Repetition
5 Bilinear Field Interpolation

Median Filtering
6 VT Median Filtering
7 Weighted VT Median Filtering

Motion Compensated Methods
8 Motion Compensated Field Repetition
9 Motion Compensated Field

Interpolation
10 Motion Compensated VT Median

Filtering

Motion Adaptive Methods
11 Two Field Motion Detection
12 Three Field Motion Detection
13 Four Field Motion Detection
14 Five Field Motion Detection
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Table 6-2: Summary of MPEG test sequences used for algorithm testing

The second set of data was made up of five sequences taken from an actual surveillance

system. The system used for this purpose contained a Panasonic WV-BP330 series

black-and-white security camera and a Panasonic AG-RT600A time-lapse recorder. All

video sequences were recorded at 12 fields/sec on a professional quality VHS tape made

especially for time-lapse recording. This video was then played off the VHS tape and

recorded digitally using a Pinnacle Systems DV500 digital video editing system. The

edges of the video were cropped slightly to remove some edge artifacts caused by the
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Sequence Name: MPEG Test Sequence
News CIF

Scan Mode: Progressive
Fields: 50
Rows: 288
Cols: 352

Frame Rate: 10 frames / sec

Sequence Name: MPEG Test Sequence
Silent Voice CIF

Scan Mode: Progressive
Fields: 50
Rows: 288
Cols: 352

Frame Rate: 10 frames / sec

I
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time-lapse recorder and the analog to digital converter resulting in interlaced video of

size 464 rows by 704 columns. The digital video obtained through this process is

believed to imitate an actual security system as accurately as possible.

(a) (b) (c)

Figure 6-1: (a) Original interlaced field. (b) Discarding every other field downsamples the sequence by
two in the vertical and temporal direction. (c) Downsampling in the horizontal direction
generates a new progressive frame with the same proportions as the original field.

The full resolution video was used for some informal qualitative tests to verify the results

suggested by quantitative experiments. However, no quantitative performance

evaluations could be performed on the full resolution video since an original progressive

source does not exist. To overcome this, the full resolution video was sub-sampled in all

dimensions to generate smaller sequences that use progressive scanning. This sub-

sampling process is demonstrated through the example in Figure 6-1.

This procedure yielded a set of progressive sequences, which could then be interlaced and

used in quantitative experiments. Table 6-3 summaries the properties of the video

sequences in this set of data.
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Table 6-3: Summary of surveillance footage sequences used for algorithm comparison

Sequence Name:

Scan Mode:
Fields:
Rows:
Cols:
Frame Rate:

Sequence Name:

Scan Mode:
Fields:
Rows:
Cols:
Frame Rate:

Sequence Name:

Scan Mode:
Fields:
Rows:
Cols:
Frame Rate:

Surveillance Footage
ATRP Lab
Sequence A
Progressive
50
232
352
6 frames / sec

Surveillance Footage
ATRP Lab
Sequence B
Progressive
50
232
352
6 frames / sec

Surveillance Footage
ATRP Lab
Sequence C
Progressive
50
232
352
6 frames / sec
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Table 6-3 (continued)

Sequence Name:

Scan Mode:
Fields:
Rows:
Cols:
Frame Rate:

Surveillance Footage
ATRP Lab
Sequence D
Progressive
50
232
352
6 frames / sec

The final set of sequences was generated from the same surveillance system as above.

However, the purpose of this set was to evaluate the performance of each deinterlacing

method at various temporal rates. To accomplish this, a video was recorded at 60 fields

per second and was then sub-sampled, just as above, to generate a progressive source.

This 30 frame per second progressive source was temporally downsampled three times to

generate an additional sequence at 10 frames per second, 5 frames per second, and 2.5

frames per second. Then performance comparisons could be performed with these four

progressive sources. The details of this sequence are presented in Table 5-4.
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Sequence Name: Surveillance Footage
ATRP Lab
Sequence E

Scan Mode: Progressive
Fields: 50
Rows: 232
Cols: 352
Frame Rate: 6 frames / sec

Chapter 6 Experiments and Results



Chapter 6 Experiments and Results

Table 5-4: Summary of surveillance footage sequence used for frame rate comparison

Sequence Name:

Scan Mode:
Fields:

Rows:
Cols:

- I. Frame Rate:

6.2

Surveillance Footage
ATRP Lab
Frame Rate Comparison
Progressive
Various
(120 / 40 / 20 / 10)
232
352
Various
(30 / 10 / 5 / 2.5)

Results

To compare the fourteen deinterlacing algorithms, each was used to deinterlace the

sequences mentioned above. Both qualitative and quantitative comparisons of all the

algorithms have been made.

Using the video sequences for which the original progressive source existed or was

generated (see Figure 6-1), a number of quantitative comparisons have been made. The

PSNR of each frame was computed and the results were averaged over the entire

sequence. The results of these calculations can be seen in Figures 6-2 through 6-8.
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Average PSNR Comparison - MPEG Test Sequence - News CIF

Line Repetition

Linear Interpolation

Martinez Lim Algorithm

Field Repetition

Field Interpolation

VT Median Filtering

Weighted Median Filtering

MC Field Repetition

MC Field Interpolation

MC VT Median Filtering

Two Field Motion Detection

Three Field Motion Detection

Four Field Motion Detection

Five Field Motion Detection

27 29 31 33 35

PSNR (dB)

Figure 6-2: Average PSNR comparison.
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Average PSNR Comparison - MPEG Test Sequence - Silent Voice CIF

Line Repetition

Linear Interpolation

Martinez Lim Algorithm

Field Repetition

Field Interpolation

VT Median Filtering

Weighted Median Filtering

MC Field Repetition

MC Field Interpolation

MC VT Median Filtering

Two Field Motion Detection

Three Field Motion Detection

Four Field Motion Detection

Five Field Motion Detection

27 29 31 33 35 37 39 41

PSNR

Figure 6-3: Average PSNR comparison.
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Average PSNR Comparison - Surveillance Footage
ATRP Lab - Sequence A

Line Repetition

Linear Interpolation

Martinez Lim Algorithm

Field Repetition

Field Interpolation

VT Median Filtering

Weighted Mdian Filtering

MC Field Repetition

MC Field Interpolation

MC VT Median Filtering

Two Field Motion Detection

Three Field Motion Detection

Four Field Motion Detection

Five Field Motion Detection

23 25 27 29 31 33 35 37

PSNM (dB)

Figure 6-4: Average PSNR comparison.
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Average PSNR Comparison - Surveillance Footage
ATRP Lab - Sequence B

Line Repetition

Linear Interpolation

Martinez Lim Algorithm

Field Repetition

Field Interpolation

VT Median Filtering

Weighted Median Filtering

MC Field Repetition

MC Field Interpolation

MC VT Median Filtering

Two Field Motion Detection

Three Field Motion Detection

Four Field Motion Detection

Five Field Motion Detection

23 25 27 29 31 33 35 37

PSNR (dB)

Figure 6-5: Average PSNR Comparison.
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Average PSNR Comparison - Surveillance Footage
ATRP Lab - Sequence C

Line Repetition

Linear Interpolation

Martinez Lim Algorithm

Field Repetition

Field Interpolation

VT Median Filtering

Weighted Median Filtering

MC Field Repetition

MC Field Interpolation

MC VT Median Filtering

Two Field Motion Detection

Three Field Motion Detection

Four Field Motion Detection

Five Field Motion Detection

23 25 27 29 31 33 35 37

PSNR (dB)

Figure 6-6: Average PSNR comparison
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Average PSNR Comparison - Surveillance Footage
ATRP Lab - Sequence D

Line Repetition

Linear Interpolation

Martinez Lim Algorithm

Field Repetition

Field Interpolation

VT Median Filtering

Weighted Median Filtering

MC Field Repetition

MC Field Interpolation

MC VT Median Filtering

Two Field Motion Detection

Three Field Motion Detection

Four Field Motion Detection

Five Field Motion Detection

I 7 7

25 26 27 28 29 30 31 32 33 34 35

PSNR (dB)

Figure 6-7: Average PSNR Comparison
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Average PSNR Comparison - Surveillance Footage
ATRP Lab - Sequence E

Line Repetition

Linear Interpolation

Martinez Lim Algorithm

Field Repetition

Field Interpolation

VT Median Filtering

Weighted Median Filtering

MC Field Repetition

MC Field Interpolation

MC VT Median Filtering

Two Field Motion Detection

Three Field Motion Detection

Four Field Motion Detection

Five Field Motion Detection

24 26 28 30 32 34 36

PSNR (dB)

Figure 6-8: Average PSNR comparison.
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From these results, a number of comments can be made. Of the three intraframe methods

in this study, the Martinez-Lim algorithm consistently outperforms the others in PSNR

for each of these seven video sequences. This is also confirmed through visual inspection

since the Martinez-Lim algorithm tends to generate smoother more realistic images, as

shown in Figure 6-9. This is the main reason why the Martinez-Lim algorithm was

chosen as the spatial method in the motion adaptive algorithms.

(a) (b) (c)

Figure 6-9: (a) Line repetition. (b) Linear interpolation. (c) Martinez -Lim algorithm.

Another observation is that all of the motion compensated methods perform poorly

compared to the other methods. If the video was panning or if there were a number of

static objects, then motion compensation methods could potentially provide a significant

amount of improvement. However, in this application, translational motion rarely occurs.

The performance of some methods is actually decreased in some cases due to the errors

made in motion estimation.

It should also be noted that a number of artifacts do not manifest themselves in this type

of PSNR comparison. For instance, consider the surveillance sequences A, B and C.

These sequences contain very little motion, only a small number of pixels in each image

actually change. Thus, the temporal methods fair very well. In particular consider

Sequence A shown in Figure 6-4. The PSNR comparison would indicate that field
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interpolation is clearly superior to the others. However, this is clearly not the case in a

qualitative comparison, see Figure 6-10.

Figure 6-10: Bilinear field interpolation. Significant errors are introduced in regions of motion,
however since the majority of pixels do not move, PSNR is still high.

Just as in Figure 4-10, field interpolation introduces significant artifacts in the presence of

motion. However, since these artifacts are localized to a very small number of pixels, the

PSNR does not drop significantly. Yet since the areas of motion are likely to be the areas

of interest in surveillance sequences, this type of performance is unacceptable, regardless

of the PSNR obtained. This is one example where PSNR and video quality do not

directly coincide. As motion increases, as is the case in the other four sequences, the

PSNR of these temporal methods begins to drop significantly coinciding with their poor
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performance. For this reason, even though field repetition, field interpolation, and the

three field motion detection methods show good PSNR performance for these three

particular sequences, they cannot be reasonably considered.

Of the remaining methods, the five-field motion detection algorithm demonstrates the

best performance in the majority of these sequences and fairs very well in the others. The

median filter methods also show good results, yet their performance tends to fall off more

rapidly as the amount of motion increases. In visual comparisons, the median filters were

seen to result in noisier images than the motion adaptive methods. This is perhaps due to

the fact that, in the presence of motion, median filters default to line repetition, or at best

linear interpolation, while the motion detection methods use the Martinez-Lim algorithm.

The PSNR results from all sequences have been combined in Figure 6-11 showing that,

on average, the five-field motion detection algorithm outperforms other types of methods.

Obviously this is dependant on the particular sequence, for instance field interpolation

will perform best for a sequence with no motion. Yet, on average motion adaptive

methods perform very well in all situations.
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Average PSNR Comparison - Combined Results

Line Repetition

Linear Interpolation

Martinez Lim Algorithm

Field Repetition

Field Interpolation

VT Median Filtering

Weighted Median Filtering

MC Field Repetition

MC Field Interpolation

MC VT Median Filtering

Two Field Motion Detection

Three Field Motion Detection

Four Field Motion Detection

Five Field Motion Detection

23 25 27 29 31 33 35 37

PSNR (dB)

Figure 6-11: Average PSNR comparison. Results of all seven sequences have been
averaged together.
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The following figures present some visual results of this experiment. These figures all

make comparisons between line repetition, weighted median filtering, and the five-field

motion detection algorithm. Five-field motion detection is used since it was the method

shown to have the highest performance while line repetition is included in these

comparisons since it is the method most often used in current systems. Weighted median

filtering is also compared here since it is the method that showed the second best

performance behind the motion adaptive algorithms.

(a) (b)

Figure 6-12:

(c)

MPEG test sequence, News CIF. (a) Line repetition. (b) Weighted median filtering.
(c) Motion adaptive processing
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(a) (b) (c)

Enlarged view of previous figure.
(c) Motion adaptive processing

(a) Line repetition. (b) Weighted median filtering.
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(a)

(b) (c)

Figure 6-14: MPEG Test Sequence - Silent Voice CIF. (a) Line repetition. (b) Weighted median

filtering. (c) Motion adaptive processing.
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(a)

(b) (c)

Enlarged view of previous figure. (a) Line repetition. (b) Weighted median
filtering. (c) Motion adaptive processing.
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(a) (b) (c)

Figure 6-16: Surveillance footage - sequence A. (a) Line repetition. (b) Weighted median filtering.

(c) Motion adaptive processing.

This qualitative analysis also leads to the same conclusion that the motion adaptive

algorithm generally gives the best results. The resulting pictures are smoother and more

realistic than the spatial methods or the median filters, and yet do not contain the serious

artifacts introduced by some of the temporal methods such as field repetition.
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The second experiment that was run was an analysis of the performance of each method

versus frame rate. As mentioned in section 6.1, one particular surveillance camera

sequence was used to generate four sequences at various frame rates. The results of

deinterlacing these sequences were then used for PSNR comparison as shown in

Figure 6-16.

As would be expected the spatial methods show no variation in performance as frame rate

is decreased. These methods only rely on the current frame, and thus have no

dependence on the frame rate of the sequence. Similarly, the temporal methods, field

repetition and field interpolation, perform very poorly as frame rates are decreased. Since

these methods rely on the correlation between successive frames, the further apart in time

each frame is, the worse these methods will do. The median filters show little variation

to frame rate, demonstrating their robustness in the presence of motion.

The motion compensated methods surprisingly show little improvement at higher frame

rates. It was thought that, at higher frame rates, the successive frames might have high

enough correlation that these methods could be used to compensate for the motion. Yet,

it appears that the same problems that the motion compensation methods suffer from at

low frame rates still exist at higher frame rates. The types of motion, which can be

appropriately compensated for, do not typically exist in these types of sequences.

Finally, the five-field motion detection algorithm shows the best performance at each

frame rate. The algorithm has even higher performance as the frame rate is increased.
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VT Median Filtering
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(f)

Comparison of average PSNR versus frame rate. Spatial methods (a), (b), and (c)
show no dependence on frame rate, while the performance of the temporal methods (d)
and (e) drops significantly at lower frame rates. Median filters (f) and (g) show good
robustness to low frame rates with only a slight drop in performance as the frame rate
is lowered.
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Figure 6-17 (continued): Surprisingly, the motion compensated methods, (h), (i), and (j), show little
improvement even at high frame rates.
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Four Field Motion Detection
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Figure 6-17 (continued): Five-field motion detection (n) shows excellent performance at all frame
rates
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Chapter 7

Conclusion

7.1 Summary

As shown in the previous chapter, motion adaptive deinterlacing can be used to

effectively combine the benefits of both interframe and intraframe processing with good

results. The resulting images are deinterlaced with the method that works best for each

region depending on the presence or absence of motion.

When compared with interlaced displays, which has the same effect as using line

repetition, motion adaptive deinterlacing has been shown to lead to a significant increase

in video quality. Just the fact that the "jittering" effect of line repetition is removed

significantly improves the video. Yet, there are many other benefits as well. Stationary

regions of the video are deinterlaced using temporal methods, resulting in much higher

resolution, while moving regions are deinterlaced with the high quality spatial method

introduced by Martinez and Lim. For these reasons, it is clear that deinterlacing these

surveillance sequences can help improve their quality significantly. These improvements

may help improve the intelligibility of the tapes and help reduce some of the fatigue

caused by analyzing these sequences in general.

When compared to other deinterlacing algorithms, motion adaptive methods have been

found to have excellent performance in the presence or absence of motion and

independent of the frame rate used.
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Conclusion

7.2 Future Work

In the future, there are a few steps that could be taken to continue this research. The first

is the addition of global motion compensation to the motion detection algorithm. When

implemented as described in this thesis, the motion adaptive deinterlacing algorithm

requires the use of a stationary camera to maximize performance. If the camera were to

move, a larger portion of the video would be deinterlaced spatially, and performance

would go down. The types of security cameras that pan back and forth could be

accounted for with the use of global motion compensation. Global motion compensation

would attempt to register the current field with the previous field in an attempt to

compensate for this type of panning motion. Slight shaking due to camera vibrations

could also be dealt with by using this type of idea. The addition of global motion

compensation would most likely improve performance of the motion detection algorithm

with a moving camera system, yet it would most likely decrease the performance for

stationary cameras due to small motion compensation errors that might be made. Given

that this research primarily looked at stationary camera systems, this has been left for

future studies.

Another area of interest is a real-time implementation of this algorithm for use in a

commercial system. This system would take a video signal from a time-lapse VCR,

convert the analog video to digital video, deinterlace it with this type of algorithm, and

then output the signal to a computer monitor or a high definition television display.
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Appendix A

Experimental Data

This appendix provides the data and numerical results from which the charts in Chapter 6

were generated.

Deinterlacing Algorithm
Line Repetition
Linear Interpolation
Martinez Lim Algorithm
Field Repetition
Field Interpolation
VT Median Filtering
Weighted Median Filtering
MC Field Repetition
MC Field Interpolation
MC VT Median Filtering
Two Field Motion Detection
Three Field Motion Detection
Four Field Motion Detection
Five Field Motion Detection

Average PSNR
28.19
33.98
33.98
29.46
31.86
36.31
37.96
34.60
35.50
34.77
38.56
37.72
39.97
40.61

Table A-1: Average PSNR data used to generate Figure 6-2

Sequence: MPEG Test Sequence - Silent Voice CIF
Deinteulacing Algorithm Average PSNR

Line Repetition 30.72
Linear Interpolation 34.51
Martinez Lim Algorithm 34.64
Field Repetition 30.29
Field Interpolation 32.24
VT Median Filtering 36.84
Weighted Median Filtering 37.91
MC Field Repetition 34.65
MC Field Interpolation 35.39
MC VT Median Filtering 34.71
Two Field Motion Detection 37.95
Three Field Motion Detection 36.88
Four Field Motion Detection 39.66
Five Field Motion Detection 40.26

Table A-2: Average PSNR data used to generate Figure 6-3
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Appendix A Experimental Data

Sequence: Surveillance Video - Febrary 12th, 2001 - Sequence A
Deinterlacing Algorithm Average PSNR

Line Repetition 24.20
Linear Interpolation 28.86
Martinez Lim Algorthm 29.09
Field Repetition 34.40
Field Interpolation 36.20
VT Median Filtering 34.62
Weighted Median Filtering 34.92
MC Field Repetition 28.77
MC Field Interpolation 29.01
MC VT Median Filtering 28.92
Two Field Motion Detection 30.35
Three Field Motion Detection 35.22
Four Field Motion Detection 34.27
Five Field Motion Detection 34.64

Table A-3: Average PSNR data used to generate Figure 6-4

Sequence: Surveillance Video -Febrary 12th, 2001 - Sequence C
Deinterlacing Algorithm Average PSNR

Line Repetition 26.90
Linear Interpolation 28.55
Martinez Lim Algorithm 28.74
Field Repetition 32.23
Field Interpolation 33.85
VT Median Filtering 34.34
Weighted Median Filtering 34.65
MC Field Repetition 28.57
MC Field Interpolation 28.92
MC VT Median Filtering 28.68
Two Field Motion Detection 30.11
Three Field Motion Detection 34.60
Four Field Motion Detection 34.04
Five Field Motion Detection 34.39

Table A-4: Average PSNR data used to generate Figure 6-5

Sequence: Surveillance Video - Febrary 12th, 2001 - Sequence E
Deinterlacing Algorithm Average PSNR

Line Repetition 26.88
Linear Interpolation 28.45
Martinez Lim Algorithm 28.64
Field Repetition 32.54
Field Interpolation 34.40
VT Median Filtering 34.18
Weighted Median Filtering 34.55
MC Field Repetition 28.44
MC Field Interpolation 28.80
MC VT Median Filtering 28.53
Two Field Motion Detection 29.97
Three Field Motion Detection 34.81
Four Field Motion Detection 33.72
Five Field Motion Detection 34.23

Table A-5: Average PSNR data used to
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Appendix A Experimental Data

Sequence: Surveillance Video - Febrary 20th, 2001 - Sequence B
Deinterlacing Algorithm Average PSNR

Line Repetition 26.61
Linear Interpolation 28.29
Martinez Lim Agorithm 28.48
Field Repetition 25.63
Field Interpolation 27.45
VT Median Filtering 32.48
Weighted Median Filtering 32.99
MC Field Repetition 27.19
MC Field Interpolation 27.58
MC VT Median Filtering 27.91
Two Field Motion Detection 29.48
Three Field Motion Detection 32.84
Four Field Motion Detection 34.31
Five Field Motion Detection 34.72

Table A-6: Average PSNR data used to generate Figure 6-7

Sequence: Surveillance Video - Febrary 20th, 2001 - Sequence C

Deinterlacing Algorithm Average PSNR
Line Repetition
Linear Interpolation
Martinez Lim Algorithm
Field Repetition
Field Interpolation
VT Median Filtering
Weighted Median Filtering
MC Field Repetition
MC Field Interpolation
MC VT Median Filtering
Two Field Motion Detection
Three Field Motion Detection
Four Field Motion Detection
Five Field Motion Detection

26.67
28.39
28.59
28.87
31.35
32.88
33.31
27.43
27.80
28.05
29.65
35.25
35.24
35.85

Table A-7: Average PSNR data used to generate Figure 6-8

Sequence: Surveillance Video - Febrary 21st, 2001 - 30 FPS
Deinteulacing Algorithm Average PSNR

Line Repetition 25.49
Linear Interpolation 27.54
Martinez Lim Algorithm 27.76
Field Repetition 32.05
Field Interpolation 35.83
VT Median Filtering 31.47
Weighted Median Filtering 31.75
MC Field Repetition 27.87
MC Field Interpolation 28.15
MC VT Median Filtering 27.68
Two Field Motion Detection 29.20
Three Field Motion Detection 37.88
Four Field Motion Detection 37.78
Five Field Motion Detection 38.13

Table A-8: Frame rate comparison data at 30 frames per second
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Experimental Data

Sequence: Surveillance Video - Febray 21st, 2001 - 10 FPS
Deinterlacing Algodthm Average PSNR

Une Repetition 25.49
Lineer lrterpolation 27.52
Martinez Um Agorithm 27.74
Field Repetition 29.37
Field Interpolation 32.56
VT Median Filtering 31.29
WVighted Median Filtering 31.66
MC Field Repetition 27.72
MC Field Irterpolation 28.02
MC VT Median Filtering 27.65
Tvo Field Motion Detection 29.15
Three Field Motion Detection 37.06
Four Reld Motion Detection 36.90
Five Field Motion Detection 37.58

Table A-9: Frame rate comparison data at 10 frames per second

Sequence: Surveillance Video - Febrary 21st, 2001 -5 FPS

Deinterlacing Algorithm Average PSNR
Line Repetition
Linear Interpolation
Martinez Lim Algorithm
Field Repetition
Field Interpolation
VT Median Filtering
Weighted Median Filtering
MC Field Repetition
MC Field Interpolation
MC VT Median Filtering
Two Field Motion Detection
Three Field Motion Detection
Four Field Motion Detection
Five Field Motion Detection

25.43
27.49
27.70
26.89
29.17
31.05
31.48
27.61
28.06
27.62
29.13
35.35
35.86
36.30

Table A-10: Frame rate comparison data at 5 frames per second

Sequence: Surveillance Video - Febrary 21st, 2001 -2.5 FPS
Deinredacing Algorithm Average PSNR

Une Repetition 25.34
Unear Interpolation 27.50
Martinez Urm Algorithm 27.75
Field Repetition 21.63
Field Interpolation 23.06
Vr Medan Filtering 30.84
Weighted Median Filtering 31.39
MC Field Repetition 27.27
MC Field Interpolation 27.77
MC VT Median Filtering 27.53
Two Field Motion Detection 29.04
Three Field Motion Detection 30.54
Four Field Motion Detection 34.61
Five Field Motion Detection 34.82

Table A-11: Frame rate comparison data at 2.5 frames per second
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