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Abstract

Inspection cars that have been used to measure rail irregularities are costly and need

operators. This thesis proposes a method to estimate rail irregularities by measuring

accelerations of a passenger car instead of direct measurement by using a conventional

inspection car.

Using a System Identification technique and data obtained by simulations based on a

three-dimensional rail vehicle model with actual rail irregularities, the proposed method

identifies an inverse system where inputs are accelerations of a vehicle and outputs are

rail irregularities. The resulting model is assessed through comparing the estimated

irregularity with the actual irregularity. Validation results show that the estimate agree

well with the actual irregularity for the Vertical Irregularity. Though the estimation

error for the Lateral Irregularity is larger than that for the Vertical Irregularity, the error

is acceptable form a practical point of view. The quality of the estimation is evaluated

quantitatively by using the Mean Square Error. In addition, resolution of the

estimation is presented in order to demonstrate the accuracy of the estimation.

Model uncertainties are assessed for a practical implementation. The effects due to

two major uncertainties, mass variations and speed variations, are evaluated by using

the Singular Value Decomposition in order to present the limitations of the estimation

using a nominal model. In addition, this thesis proposes a compensation method for

mass variations and speed variations.

Thesis Supervisor: Kamal Youcef-Toumi

Title: Professor of Mechanical Engineering
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1 Introduction

1.1 Problem Statement

Railroad companies spent a large amount of money on maintenance of facilities

such as railway tracks, rolling stocks and station buildings. Therefore, reduction of

maintenance work is a matter of great interest to them. In particular, maintenance of

railway tracks has been among the most laborious work since the railroad system was

invented. On the other hand, the maintenance of railway tracks has been extremely

important for both safety and service for passengers. Rail irregularities cause

deterioration of riding comfort. Derailments that endanger passengers have occurred

because of rail irregularities.

Rail maintenance work consists of measuring irregularities and adjusting the

alignment of rails. Both parts had been done manually by maintenance workers until

inspection cars and multiple tampering machines were developed. Inspection cars are

equipped with special mechanisms and sensors for measuring. However, railway

maintenance by using inspection cars is costly because inspection cars themselves are

expensive and still need operators.
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Some approaches have been researched to reduce the cost of inspection cars and

to realize a higher accuracy of measurement [1,2,3,4,5,6,7 and 8]. Recently the idea that

regular passenger cars could be used for measurement of rail irregularities has started to

be researched. Because passenger cars that measure rail irregularities would not need any

special inspection car and operators, they would produce a more frequent and labor-

saving rail inspection.

Takeshita [9] proposed a method using passenger cars instead of inspection cars.

In the method, an accelerometer is mounted on an axle box for detecting vertical

irregularities. The estimate is calculated by the double integration of the accelerations.

However, the double integration of the accelerations is unstable for low-frequency

irregularities, because the gain of the double integration becomes large at low

frequencies. The study proposes the design of a high-pass filter to solve this problem.

Optical sensors and gyros are mounted on a bogie to measure other types of irregularities.

Optical sensors measure the position of a rail by using reflection of a light from the rail.

Gyros estimate the level irregularity by measuring the angle of the bogie. The results of

the estimation and comparisons with the actual irregularity have not been presented by

this method.

Bryan [10] proposed a method using onboard sensors such as tilt sensors and

accelerometers that detect rail abnormalities such as broken rails, weak rail ties and

cracked rails. Measured accelerations and angular movement information of the vehicle

are simply compared with historical status data instead of estimating the rail irregularity.

The results of the estimation and comparisons with the actual irregularity have not been

presented by this method.
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The above methods have some practical problems. First, using sensors on the

axle box and on the bogie instead of a car body deteriorates the accuracy of the

measurement, because it is not a good environment to place sensors. Next, using many

sensors is costly. So as to take more advantage of the merit of using passenger cars

instead of costly inspection cars, less costly methods should be researched. In addition,

comparing the estimate with the actual irregularity is needed to assess methods of

estimating the rail irregularity.

This thesis uses only accelerometers, which is costless, because one of the

objectives is to propose a costless method instead of using conventional inspection cars

and operators. The accelerometers are placed on the floor of a vehicle instead of an axle

box and a bogie. In addition, this study presents the results of the estimation and

comparison with the actual irregularity. To estimate the rail irregularity with the

acceptable error by a costless method is one of technical challenges.

The idea of using a passenger car's vibrations for estimating rail irregularities is

in a sense contradictory to the concept of suspensions that absorb vibrations. If the ideal

suspension absorbed vibrations completely, the idea of estimating rail irregularities from

car vibrations would never be realized. However, such an ideal suspension has never

been developed and the main idea of this thesis deserves study. Therefore, to understand

how we can retrieve information of rail irregularities from vehicle vibrations that are

alleviated by suspensions is another technical challenge.
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1.2 Objectives of the Thesis

The main objective of this thesis is to propose a method for estimation of railway

irregularities by measuring the accelerations of a passenger car. While an actual system

has inputs of rail irregularities and outputs of a vehicle's vibrations, the system that this

project considers has an inverted relationship of inputs and outputs. An important

technical challenge of this thesis is dealing with the inverted relationship of inputs and

outputs.

Since there has been no work that presents the results of comparisons between

the estimate and the actual rail irregularity by using a passenger car, we cannot

quantitatively compare the method proposed by this thesis with others. However, it will

be important to quantitatively evaluate the estimation results in order to practically

implement this thesis's method. Therefore, to present a method for evaluation of the

estimation results is one of this thesis's objectives.

In addition, considerations for system uncertainties are needed. Generally, it is

very rare for a system to possess no uncertainty. A system usually has some properties

that cannot be mathematically dealt with and variations of parameters. Therefore, this

thesis must consider effects produced by some uncertainties and propose a method to

compensate for the effects.
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1.3 Thesis Outline

This thesis proposes a method for estimation of rail irregularities by measuring

accelerations of a passenger vehicle. In Chapter 2, the definitions of the rail irregularities

are presented. In addition, Chapter 2 outlines selection of a software package of a rail

vehicle's dynamics simulation and modeling of components of a rail vehicle. Chapter 3

details a method for the estimation of rail irregularities and presents evaluations for the

accuracy of the estimation. Chapter 4 assesses the effects due to model uncertainties such

as mass variations and speed variations. Chapter 5 presents conclusions and

recommendation for future work.
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2 Rail Irregularities and Vehicle Dynamics

2.1 Introduction

Basics for estimating rail irregularities are presented in this chapter. Definitions

of rail irregularities and an outline of simulation that generates data for their estimation

are presented. In addition, modeling of components of a vehicle is presented as well.

2.2 Rail Irregularity

2.2.1 Types of the Rail Irregularity

Rail tracks support weights of trains and help trains smoothly run. However,

operations of trains cause gradual rail irregularities. The rail irregularity is an important

item for maintenance work, because they can affect the riding quality and the safety of

rail vehicles.

The absolute positions of two rails at any points can be defined by using four

variables (Il, i', , ,, and Ivr), as shown in Figure 2.1. Because it is laborious and costly

for railroad companies to measure the values of the four variables along lines in the

absolute coordinate (Y - Z ), they generally define four types of the rail irregularities

[11]:

1) Irregularity of Line (I,)
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This is the irregularity in the lateral direction. The distance between a 10-meter string

and a side surface of a rail, which is referred to as the Versine, represents the

Irregularity of Line at a certain point in Figure 2.2 (a).

2) Vertical Longitudinal Irregularity (Ib)

This is the irregularity in the vertical direction. Similarly to the Irregularity of Line,

the Versine represents the Vertical Longitudinal Irregularity, as shown in Figure 2.2

(b).

3) Level Irregularity ( I,)

This is a difference in the vertical direction between the right rail and the left rail at a

certain point, as shown in Figure 2.2 (c).

4) Gauge Irregularity (Ig)

Figure 2.2 (d) shows the Gauge Irregularity. This is a deviation from the standard

gauge, which is 1435 [mm].

Left Rail

Right Rail

Z

Figure 2.1 Absolute Positions of Rails ll
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. m. . . 5

S 5m 5M , String

ii Zeft Rail

Right Rail

Versine a leeper

(a) Irregularity of Line

,435 VM

In case of straight lines Level Irregularity I,

Normal Cant

In case of curve lines

(c) Level Irregularity

Veraine bSleeper

(b) Vertical Longitudinal Irregularity

Gauge j

1435 [mm] Irregularity g

(d) Gauge Irregularity

Figure 2.2 Four Definitions of Rail Irregularity

The Irregularity of Line and the Vertical Longitudinal Irregularity are defined by

using the Versine. Because the 10-meter Versine is a relative position based on two

distant (5 meters) positions, it is not a position in the absolute coordinate. For example, if

we have a sinusoidal irregularity whose wave length is 5 [m] on a rail, the irregularity

cannot be detected by using the 10-meter Versine. On the contrary, when we have a

sinusoidal irregularity whose wave length is 10 [m], the corresponding Versine is twice

as much as the actual irregularity. Therefore, the gain of the Versine method depends on

the irregularity's wave length.

16
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A conventional inspection car uses three bogies. One of two wheelsets of the

middle bogie is used to measure the Versine, while one of two wheelsets of the leading

bogie and one of two wheelsets of the trailing bogie play a role as the both ends of a

string. Since the Versine is not the actual irregularity, the digital filter is necessary in

order to estimate the actual irregularity of a rail [12].

In this thesis, combined absolute positions in Figure 2.1 and conventional types of

the irregularity, the following new definitions of the irregularity in Figure 2.3 will be

used.

1)

2)

3)

4)

Left Lateral Irregularity (the lateral position of the left rail): I,,

Left Vertical Irregularity (the vertical position of the left rail): I,,

Level Irregularity: I,

Gauge Irregularity: Ig

Left Vertical
Irregularity vi

Level

Z Irregulari

ye

Right Rail

Left Rail

ty

Gauge
Irregularity

1435 [mm] I9
Y

Left Lateral
Irregularity

Figure 2.3 Definitions of Rail Irregularities
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Table 2.1 shows the standard range of the rail irregularity for rail maintenance

work [11]. If the rail irregularity is outside the standard range, alignment must be done.

Table 2.1 shows the standard range for the rail irregularity, which is used for practical

maintenance work. We will use the same standard for the irregularities defined in Figure

2.3. For example, the standard range of the irregularity of the conventional line is

1067 ± 7[mm].

Table 2.1 Standard of Rail Irregularities

Unit The conventional The Shinkansen
line (1067[mm]) Line (1435[mm])

Irregularity of Line mm 7 4
Vertical Longitudinal mm 7 7
Irregularity
Level Irregularity mm 7 3
Gauge Irregularity mm +3 +3

1 1 -2 -2

2.3 Simulation by Using a Vehicle Dynamics Software Package

2.3.1 Simulation Software Package

Because the main objective of this thesis is to estimate rail irregularities by using a

vehicle's accelerations, data of accelerations that are caused by certain rail irregularities

are needed. The idea of this thesis must be evaluated before utilization in field

experiments. Therefore, simulation software package is adopted instead of experiments.

The following specifications are the requisites for the software package:

1) Rail Irregularities as system inputs

18



2) Three dimensional analysis

3) Arbitrary positioning of sensors to measure the positions, speeds and accelerations of

a car body.

According the benchmark test for rail vehicle simulation [13], there are five major

software packages. There are generally good agreements between them in the benchmark

test. However, because the Gensys software package can deal with the elasticity of a

wheel and a rail in the contact area, Gensys is selected to use.

2.3.2 Modeling of a Rail Vehicle

Since a rail vehicle is a complicated system, modeling of components is an

important process [14]. Linearization of components is effective in some analyses.

However, since we cannot expect how much effect linearization has for the estimation of

rail irregularities, a lot of non-linear factors shall be included in the model. While

Appendix A. details the properties of vehicle components, explanations on components

and modeling in Gensys is outlined:

1) Rail Track

Rails are modeled as rigid bodies. Rails and ground points are coupled by

stiffness (k,,) and damping (c,,) in the lateral direction, and stiffness (k,) and damping

(c, ) the vertical direction. Figure 2.4 shows these components.

2) Creep Force

Forces between wheels and rails are important factor in rail vehicle' dynamics.

Unlike automobile's case, the surface between a wheel and a rail is not a plane but a

curved surface. The force is referred to as the Creep Force.

19



In simulations, the Linear Creep Force Theory is used. The Creep Forces (T, and

T2 ) are proportion to the Creepage (v, and v 2 ), which is the slip speed of a contacting

surface.

T, =KIVI

T2 =K 2 V 2

where K, and K2 are the Creepage coefficients.

The Creepage is computed form the positions of the surface and the angle of the

axle. The Spline Function interpolates the curves of a wheel tread and a rail surface to

obtain the position of contacting surfaces and the angles of the contact in Gensys.

3) Wheelset

A wheelset is modeled as a rigid body that has a mass (M,) and mass moments

of inertia (Jwr , JwP , and JW)

4) Bogie Frame

A bogie frame is modeled as rigid body that has a mass (Mb) and mass moments

of inertia (JbrI Jbp, and J,

5) Primary Suspensions

Suspensions between a bogie frame and an axle are called Primary Suspensions.

Primary Suspensions consist mainly of two Axle Springs. An Axle Spring has stiffness

(kV , k ,,, and k.,) in the three directions and non-linear damping (c, , c,, and c 3 ) in

the vertical direction. Damping in the lateral and the longitudinal directions are

neglected.

6) Secondary Suspensions

20



Suspensions between a car body and a bogie frame are called Secondary

Suspensions. Components of Secondary Suspensions are summarized. Unless otherwise

specified, the property of stiffness or damping is linear.

* Air springs are modeled as three-directional stiffness ( kai, ikp2 and ka 3 ) and

damping (k0 1 ) in the lateral direction.

* A traction rod, which transfers forces from a bogie to a car body, has stiffness (k,

and k,1) in the lateral and the longitudinal directions.

* A lateral damper is used to complement lateral damping, because air springs'

lateral damping is not sufficient. It is modeled as a non-linear damping (c,, and

c1 ).

* Two yaw dampers, which prevent a hunting phenomenon and helps smooth

movements in curves, consist of non-linear damping (cr1 and c,2 ) in the yawing

direction.

* A lateral bump stop, which prevents excessive movement of a bogie in the lateral

direction, is modeled as nonlinear factor. When it works, it is modeled as a

stiffness (kb,).

7) A Car Body

A car body is modeled as a rigid body, which has a mass (Me).

8) Passengers

A passenger is considered a mass of 80 [kg]. Mass of passengers is added to the

weight of a car body, when mass variations of a vehicle are assessed in Chapter 4. The

movement of passengers on the floor is ignored in this thesis.

21



Car Body M,
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Lateral Bt mp Stop /1,2

kbi Air S

Secondary Suspensions

pring kv,, 3

Traction Bar

kal

Bogie

Mb Jb, Jbp Jby

Primary Suspensions -*

kp k,, kp.,, , Wheel Set

M, J, Jp

Rail
C91 kg
rr 

kg.u 
d o'1Ground Point

JWY

Figure 2.4 Modeling of a Rail Vehicle
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2.4 Summary

This chapter outlines basics for proposing a method of estimating rail

irregularities that is presented in the next chapter. Section 2.2 details definitions of rail

irregularities. Since conventional definitions that have been used for maintenance work

does not represent absolute positions, new definitions are presented. Section 2.3 outlines

simulation by using a software package for rail vehicle's dynamics. Modeling of

important components of a vehicle is summarized.
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3 Estimation of Rail Irregularities

3.1 Introduction

This chapter proposes a method for estimation of rail irregularities. Section 3.2

details the method using a System Identification technique. Section 3.3 presents the

results of the model construction. Section 3.4 presents validation of the resulting models

in two methods. One method evaluates errors of estimates quantitatively. The other

proposes a warning system for practical rail maintenance work.

3.2 System Identification of an Inverse Model

3.2.1 An Inverse Model

In an actual vehicle system, rail irregularities can be considered as inputs and

vehicle vibrations can be considered as outputs. Because the objective of this thesis is to

estimate rail irregularities, inputs and outputs need to be inverted, as shown in Figure 3.1.

Thus, the main objective of this section is to identify this inverse model.
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Input

Rail Irregularities

Output

Accelerations of a Vehicle

Output

Rail Irregularities

Inverse Model
Input

Accelerations of a Vehicle

Figure 3.1 The Actual Model and an Inverse Rail Vehicle System

Before proceeding to a method to identify the inverse model, it is important to

consider causality of a system. A system is said to be causal if the output at any time

depends only on values of the inputs at the present time and in the past [22].

Figure 3.2 shows lateral irregularities and lateral accelerations of a car body for a

SISO system, where there is no other irregularity. For example, some peaks of the lateral

acceleration from 33 [sec] to 35 [sec] follows some peaks of the lateral irregularity from

30 [sec] to 33 [sec]. The lateral accelerations are attenuated after 35 [sec], because the

lateral irregularities are getting small from 33 [sec] to 42.5 [sec]. The arrow in the figure

shows causality between input and output. Thus, car body accelerations of an actual

vehicle model depend on the rail irregularities at the present time and in the past.
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0.5

0

Causality

0
02-0.

CIO

-5

20 25 30 35 40 45

Time [sec]

Figure 3.2 Causality between Rail Irregularities and Car Body Accelerations

Although we need to exchange inputs and outputs to realize an inverse model, the

operation of simply exchanging inputs and outputs loses causality in the inverse system.

Therefore., the order of data of inputs and outputs in the inverse system is reversed in the

time axis. The inverse system is ready to catch causality, if there is causality between

input and output. Figure 3.3 shows an example of reversing data in the time axis. Figure

3.3 (a) shows the lateral accelerations, a(t) where 0 :! t :! 100 [sec] , response to the three

rail irregularities (lateral, vertical and level). Figure 3.3 (b) shows the lateral

accelerations -a(t) reversed in time, that is -a(t) = a(t. - t) , where tf is the final time.
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(a) Before Reversing

0.5

0

-0.5

-1

I /
0 10 20 30 70 80 90

(b) After Reversing

i I I _________

0 10 20 30 40 50 60 70
Time [sec]

3.3 Reversing the Order of Data in the Time Axis

80 90 100

for Causality

We have a system whose inputs are accelerations of a car body, outputs are rail

irregularities, and time axis has the reverse order of the actual order. Therefore, the order

shall be reversed again after estimation by a method that this thesis proposes.

3.2.2 The ARX Model

As mentioned in Chapter 2, dynamics of a rail vehicle contain both linear and

nonlinear properties. However, the dynamics in the vertical direction are almost linear

[14]. Although the effects of nonlinear properties in the lateral direction cannot be

27
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ignored, in this thesis we shall consider linear models for simplicity. The nonlinear

property will be considered as one of the model's uncertainties.

A generalized model structure of a SISO linear discrete system is expressed [15]

as,

= (q) C(q)A(q)y(t)= u(t) + e(t)
F(q) D(q)

(3.1)

where

q-1 is the delay operator,

u(t) is the system's input,

y(t) is the system's output,

e(t) is the system's disturbance, and

A , B,C , D, and F are polynomials.

The simplest input-output relationship is obtained by describing it

difference equation:

y(t)+ aly(t -1)+...+ any(t - n) = biu(t)+ b2u(t -1)...+ bu(t - m +1)+ e(t)

Equation (3.2) can be expressed as,

A(q)y(t) = B(q)u(t - k) + e(t)

as a linear

(3.2)

(3.3)

where

A(q) = I+a,q-1 +...anq-"

B(q) = b + b2q~ +... + bq-", and

k is the number of delays from input to output. This model is called the Auto-Regression

model with eXtra inputs (ARX).
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The next step is to estimate parameters in Equation (3.3) by using data obtained in

simulations or experiments. If we introduce the parameter vector :

0 = [a, --- a, b ---b,,,]T (3.4)

and the regressor vector p(t):

p(t) = [- y(t - 1)- y(t - n) n(t -. ).- U(t - M)]T (3.5)

then Equation (3.3) can be rewritten as

y(t)= Y(t)90. (3.6)

In order to estimate the parameters in Equation (3.4), the Prediction Error Method (PEM)

is used. A quadratic performance measure V is defined as:

1 Ni 2
VN( Z)N-_ ZC(iO )(3.7)

N j 2

where

N is the number of data,

ZN = {u(1), y(1),...,u(N), y(N)}, which is a data set from simulations, and

e(i,0) = y(i) - A(i 0) ,where 5(i I 0) is the estimate of y(i) using a parameter vector 0,

denotes the prediction errors. The parameter vector estimates

$N NN00

Since VN of Equation (3.7) is quadratic in0, we can find the minimum value easily by

setting the derivative to zero:

d 2 ( &

0 =dVN (0, Z NN) i(~)-,W N)dO NMj=

which gives

= N N

ON L T 1W (P)U 38
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Consequently, 0N is analytical function provided that lip(i)qJ (i)is invertible. Since

d 20 N =1

d 2
this is ensured if VN (9,ZN) iS positive definite. In general, in other cases than the

ARX, the predictor y(t) is not linear in 9 and we cannot derive analytical expressions for

the parameter estimate ON. Instead, we must use numerical search algorithms [16].

To ensure ~p(i)p'(i) in Equation (3.8) is invertible, it is important to prepare
i=1

informative experiments. Inputs must excite sufficiently the system. Therefore, it is

important to prepare inputs whose magnitudes and frequencies cover whole the range

where the system is practically used.

3.2.3 Vehicle Dynamics Simulation for System Identification

To estimate the parameters in a model using the ARX model with the PEM

technique, data were collected in simulations. Table 3.1 details the conditions of the

simulations. Appendix A. details the properties of a vehicle used in the simulations.
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Table 3.1 Conditions of Vehicle Running Simulations

Item Value
Vehicle Type E2
Bogie Type TR7004A
Gauge 1435[mm]
Track Geometry Tangent
Rail Irregularities Data from the Chuo

Line,Japan
Speed 72 [km/h] (20 [m/s])
Total Distance 10,000 [mn]
Distance for Model Construction 8,000 [m]
Distance for Model Validation 2,00 [m]
Data Sampling Rate -120 [Hz]

Figure 3.4 E2 Type Shinkansen Train

We consider the location of the accelerometers. At the first attempt, two

accelerometers were placed in the middle of the vehicle's floor, as shown in Figure 3.5

(a). One was for the lateral accelerations ( A,, ) and the other was for the vertical
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accelerations ( A,m ). Since there was no accelerometer to detect the accelerations

associated with Level Irregularities, we could not detect Level Irregularities.

Next, three accelerometers were placed in the middle of the vehicle's floor, as

shown in Figure 3.4 (b). Two accelerometers for the left lateral accelerations (A,,) and

the left vertical accelerations (AV) were placed on the left side of the middle of the

vehicle's floor. The other for the right vertical accelerations (Av,) was on the right side

of the middle of the vehicle's floor. The difference between the vertical accelerations on

the left side and on the right side (Av - A,,) can be associated with Level Irregularities.

Forces generated by rail irregularities were transferred to the vehicle through the bogies.

Since there is a distance from the leading bogie to the middle of the vehicle, accelerations

in the middle of the vehicle is attenuated and has a time delay. Therefore, we place the

three accelerometers on the vehicle's floor over the leading bogie, which is the first point

excited by the rail irregularities. Figure 3.4 (c) shows the final locations of three

accelerometers.
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- Y

X

(a) Two Accelerometers in the Middle of the Vehicle's Floor

zytZ 1

X

(b) Three Accelerometers in the Middle of the Vehicle's Floor
Z

Y

Leading bogie

(c) Three Accelerometers over the Leading Bogie

Figure 3.5 Positions of the Accelerometers
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Figure 3.6 details how we identify an inverse model. First, in the original model,

three types of irregularities and three accelerations are selected as inputs so that each

input corresponds to each output. While lateral and vertical accelerations (A,, and Ar,) on

the left side of the car correspond to Lateral Irregularities (I,,) and Vertical Irregularities

(I,,) respectively, the difference between the vertical accelerations on the left side and on

the right side ( Avr - Ar,) is associated with Level Irregularities ( I ).

As a result, the inverse system can be modeled as a three-input and three-output

MIMO system.

Input u

I"
Lateral Irregularities (Left rail)

I b_______

Vertical Irregularities (Left rail)

Level Irregularities

Output y I _

I 4e

Output y

0 A,,
Lateral Accelerations (Left)

Vertical Accelerations (Left)

Difference Between two Vertical Accelerations

-A,

Input u

Figure 3.6 An Inverse System
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The ARX model for the MIMO system can be described as,

y(t)+ Cly(t -1)+...+Cy(t - n) = Du(t)+ D 2 u(t -1)+...+D,,u(t-m +l)+e(t) (3.9)

where

[I,,(t)1

y(t) = LIVI(t)j,
Ie(t)

A,,(t) 1
ut)= AA,(t) j

A,,. - AI (t )

C.. .Cn and DI*..*DM are 3 x 3 parameter matrices, and

e(t) is a 3 x 1 disturbance vector.

Equation (3.9) can be expressed as,

A(q)y(t) = B(q)u(t - k) + e(t) (3.10)

where

A(q) = I + Cjq-I +.... + Cq -",

B(q) = DI + D2q ' +... + Dq-'"*, and

k is the number of delays from input to output.

Figure 3.7 shows the model construction period and the model validation period.

At the first attempt, we select 4000 meters were used for the model construction. The

results of the estimation were not good, because 4000 meters are not enough to excite the

system sufficiently. Thus, we select 8000 meters for the model construction period. The

last 2000 meters will be used for the model validation.
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A N

To obtain the parameter vector estimate ON ( Wi) T (i) in Equation (3.8) must

be invertible. To ensure this, inputs must excite sufficiently outputs. For example, some

of the left vertical irregularities are outside the standard range in Figure 3.7 and excite the

system sufficiently. Therefore, vertical accelerations sufficiently excite the left vertical

irregularity for an inverse model. Although we need 8000 meters for the model

construction, we do not need such a long distance data if inputs sufficiently excite the

outputs.

The next two sections describe the model construction and the model validation.

Model Construction Period
8000 [m]

Model Validation Period
2000 [m]

Standard Range

0 50 100 150 200 250 300 350 4 0 450 50C

0 50 100 150 200 250 300 350 400 450 500

Figure 3.7 A Model Construction Period and a Model Validation Period
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3.3 Model Construction

3.3.1 Results of Model Construction

Based on the inverse model in Fig.3.5, the input is expressed as

All (t)

u(t)= A,,(t)1

A,,. - AI (t )

and the output is expressed as

111(t)

Ie(t)

The data of the irregularity for the model construction period in Figure 3.6 are

given every 1 meter in the simulations. In practice, waves of 25-meter lengths, which

come from the length of a rail, are dominant in rail irregularities, and an inspection car

practically measures the rail irregularity every 1 meter [11]. The irregularity data are

given every 1 meter, which is enough to represent 25-meter waves of the irregularity.

The data for the input u(t) and y(t) in the model construction period are used to

obtain parameters in A(q) and B(q) of Equation (3.10). Equation (3.8) is used to obtain

ON, which minimizes V in Equation (3.7).

Table 3.2 shows the obtained model orders. Because orders of the model

structure can be infinite, these were obtained by trial and error so that the order was made

as low as possible. First, the maximum number of the order is selected. Next, the mean

square error for the predicted for the model construction period is calculated for all the
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models up to the selected maximum order. The high the order is, the smaller the mean

square error is. However, the decrease of the mean square saturates at a certain order,

which is selected as the order of the model. Appendix C shows the Transfer Function of

the model.

Table 3.2 Orders of the ARX model

Output: n Input: m Delay: k

10 10 1

Figure 3.8 shows the actual Left Lateral Irregularity (I,,) and the predicted Left

Lateral Irregularity (I,,) by using the resulting model for the entire model construction

period. The corresponding error (IR, - t4) is shown in Figure 3.9. The acceptable range

is based on Table 2.1. Some peaks of error are outside the acceptable range, because

there is a small gap in phase between the actual irregularity and the predicted irregularity,

which is shown in Figure 3.10. Figure 3.10 presents a comparison between the actual

Left Lateral Irregularity and its corresponding predicted irregularity for the range from

120 [sec] to 130 [sec]. Although Figure 3.10 shows a good agreement in magnitude,

there is a small gap in phase at the peak where time is 125 [sec]. The gap equals to 0.2

[sec]. Since the speed of a vehicle is 20 [m/sec], the gap equals to 4 [m]. From a

practical point of view, the gap of 4 [m] is acceptable for the maintenance work, when we

can find a rail that has unacceptable irregularity by the magnitude.

In the same manner, Figures 3.11 and 3.12 present results of the Vertical

Irregularity and Figures 3.13 and 3.14 present results of the Level Irregularity. As for the

Vertical Irregularity, Figure 3.12 shows that the predicted irregularity agree well in both
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magnitude and phase. However, in Figure 3.15 for the Level Irregularity, the model has a

good agreement in phase, while performance for magnitude is not acceptable.

We must consider the reason that we have error in predicted irregularities,

although we construct a model with known inputs and outputs. We use the ARX Model

that is described as Equation (3.3), which is based on the assumption that there is a linear

relationship between inputs and outputs. However, as explained in Chapter 2, we have

many non-linear components in the vehicle's suspensions. The Error for the Lateral

Irregularity is larger than that for the Vertical Irregularity, because the effects of non-

linear components are larger in the lateral direction than in the vertical direction. As for

the error of Level Irregularity, the estimate does not agree well with the actual

irregularity, especially in magnitude. The locations and the number of accelerometers

should be studied.
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3.3.2 A Practical Issue for Model Construction

In practice, we cannot use the inverse model obtained by the simulation to

estimate the actual irregularity, because the properties of an actual vehicle differ from

those of a modeled vehicle in the simulation. Therefore, we must consider how to

construct an inverse model in practice.

We can measure the actual rail irregularity by using a conventional inspection

car. After obtaining data of accelerations by making a vehicle run on the rail, we can use

the same technique as this section to identify an inverse model.

When we locate the rail whose irregularities are outside the standard range,

maintenance workers manually measure the rail irregularity before aligning rails.

Therefore, we can obtain known irregularities and accelerations from this location. We

can calibrate and update the model by using these data.
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3.4 Model Validation

3.4.1 Results of Validation

In order to validate the model obtained in Section 3.2, estimates generated by the

model are evaluated using irregularity data that were not used for constructing the model.

Figures 3.15 and 3.16 show, respectively, error between the actual Left Lateral

Irregularity and its corresponding estimate, and the actual Left Lateral Irregularity and its

corresponding estimate for the range from 430 [sec] to 440 [sec]. Some peaks of the

error are outside the acceptable range, since there are small phase gaps at the peaks, as

shown in Figure 3.16. This gap equals to 4 [meter], as explained in Subsection 3.3.1.

From a practical point of view, the gap of 4 [m] is acceptable.

Figures 3.17 and 3.18 show, respectively, error between the actual Left Vertical

Irregularity and its corresponding estimate, and the actual Left Vertical Irregularity and

its corresponding estimate for the range from 430 [sec] to 440 [sec]. Figure 3.17 shows

error is acceptable. Figure 3.18 shows that the estimate agrees well with the actual

irregularity in both phase and magnitude at the peak where time is 439.5 [sec].

Figures 3.19 and 3.20 show, respectively, error between the actual Level

Irregularity and its corresponding estimate, and the actual Level Irregularity and its

corresponding estimate for the range from 430 [sec] to 440 [sec]. Some peaks of the

error are outside the acceptable range, since estimate does not agree well with the actual

irregularity, as shown in Figure 3.20.
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3.4.2 Evaluation by the Mean Square Error

The Mean Square Error (MSE) is a general method of evaluating errors:

Z (y(k) - y,(k)) 2

MSE- =k=1
N

where

N is the number of data,

y(k) is an actual irregularity to be obtained, and

y, (k) is an estimated irregularity.

Table 3.3 shows the MSE values for the resulting model and model validation.

The simulations were executed under the conditions shown in Table 3.1. The results in

Figures 3.18, 3.11, and 3.14 are used to compute the MSE values for the resulting model.

The results in Figures 3.17, 3.20, and 3.23 are used for the MSE values for model

validation.

As shown in Figures 3.18, 3.11, and 3.14, and Table 3.3, there are errors in the

estimates. This is because the system has non-linear properties. The MSE values for the

resulting model are limitations in estimates produced by the ARX model.

Table 3.3 MSE for Model Simulation and Validation

Types of Irregularities MSE for Resulting Model MSE for Validation
Lateral Irregularities 0.948 1.070
Vertical Irregularities 1.336 1.336
Level Irregularities 0.718 0.761
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Although the MSE values for Level Irregularities are smaller than others in

Table 3.3, this does not necessarily mean that estimates for Level Irregularities are the

best of all. Since the entire range for each irregularity differs, the range should be

included in the assessment. Table 3.4 shows the upper and lower limits for each

irregularity.

The MSE values can be considered as absolute values of average errors in

estimates. The resolution is the minimum value that can be discerned by the estimation.

Since the actual irregularity is within the range of the estimate ± MSE value, the

resolution can be considered as twice as much as MSE value:

Resolution = 2 x MSE

The third column of table 3.4 shows the resolutions for irregularities, which are

twice as much as the second column of Table 3.5. In order to compare the resolutions for

irregularities, we define the resolving power in the following equation:

Resolving Power = Total Range of the Irreuglarity
Resolution

The forth column of Table 3.4 shows the resolving powers for the irregularities. For

example, for the Lateral Irregularity, the ratio of the total range for the resolution of the

estimation is 9.494. Contrary to the MSE value, the resolving power for Vertical

Irregularities is the highest of all, followed by that for Lateral Irregularities. This means

that estimation for the Vertical Irregularity has the finest scale for the total range.
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Table 3.4 Resolutions of the Estimation

Types of Irregularities Upper and Lower Total Resolution Resolving
Limits Range Power

Lateral Irregularities 9 [mm] 18 [mm] 1.896 9.494
Vertical Irregularities ±15 [mm] 30 [mm] 2.672 11.228
Level Irregularities ± 5 [mm] 10 [mm] 1.436 6.964

3.4.3 Evaluation by the Warning Test

From a practical point of view, the main objective of estimation is to locate rails

whose irregularities go over the limit rather than to obtain the accurate values of

irregularities throughout a section. As mentioned in Chapter 2, we have a standard value

for each type of irregularity for maintenance work. If a measurement goes over the

standard value, alignment of rails must be done.

Therefore, this project introduces a warning system that provides us with

warnings when estimates go over a certain value. In Table 3.5, thresholds for three types

of irregularities are selected and Figure 3.25 shows an example of warnings for the

Vertical Irregularities. As shown in Figure 3.25, 0.25-sec time slots are set and either a

warning or no warning is given in each slot according to the estimates in the slot. Thus,

the total number of warnings is 400 times in 100 [sec] of total period of validation.

Table 3.5 Thresholds for Warnings

Types of Irregularity Thresholds
Lateral ±3 [mm]

Vertical ±5 [mm]
Level ±1 [mm]

51



Rules of the warning system are outlined as follows:

1) If one of the estimates in a slot goes over a threshold, a warning for an abnormal

irregularity is given.

1-1) If the corresponding actual irregularity is abnormal, the warning is considered

a correct warning.

1-2) If the corresponding actual irregularity is normal, the warning is incorrect.

This error is referred to as a Type 1 Error.

2) If one of the estimates in a slot does not go over a threshold, a warning for an

abnormal irregularity is not given.

2-1) If the corresponding actual irregularity is normal, the warning system is

correct.

2-2) If the corresponding actual irregularity is abnormal, the warning system fails

to work. This is referred to as a Type 2 Error. Obviously, we should avoid

Type 2 Errors rather than Type 1 Errors for safety.

In addition, the lower the number of total warnings is, the more reliable a warning

system is.
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Figure 3.21 An Example of a Warning Test

The results of warning tests are shown in Tables 3.6, 3.7 and 3.8. The results of

warning tests depend on the setting of warning thresholds. The Type 1 Errors increase

and the Type 2 Errors decrease if the thresholds are low. On the other hand, if the

thresholds are high, the Type 1 Errors decrease and the Type 2 Errors increase.

Therefore, the thresholds in Table 3.5 are selected so that the rates of the Type 2 Error are

less than 2 %. Type 1 Errors are less than 20% and Type 2 Errors are less than 2% for

the Lateral Irregularities and the Vertical Irregularities. These results seem that the

53



warnings for the Lateral Irregularities and the Vertical Irregularities are reliable.

However, the implementation of these estimations depends on whether Type 1 Errors and

Type 2 Errors are acceptable for a practical management of maintenance work. To find

out the optimal thresholds for Type 1 Errors and Type 2 Errors is needed for the

improvement of the results.

While reliabilities for warnings are more than 80 % in both Lateral Irregularities

(81.8 %) and Vertical Irregularities (85.7 %), reliability for warnings is 43.2 % in Level

Irregularities. This is because the estimation for Level Irregularities does not agree well

in magnitude, as shown in Figures 3.15 and 3.24. This means that we have to improve

the location and the number of accelerometers to detect Level Irregularities.

Table 3.6 Results of Warning Test for Lateral Irregularities

Warning by Estimation
No Warning Warning

Actual Normal 371 (times) 4 (times)
Lateral Rail 98.1 (%) 18.2 (%)
Irregularity Abnormal 7 (times) 18 (times)

1.9(%) 81.8(%)
Subtotal 378 (times) 22 (times)

94.5 (%) 5.5 (%)
Total 400 (times)
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Table 3.7 Results of Warning Test for Vertical Irregularities

Warning by Estimation
No Warning Warning

Actual Normal 369 (times) 4 (times)
Vertical Rail 99.2 (%) 14.2 (%)
Irregularity Abnormal 3 (times) 24 (times)

0.8 (%) 85.7 (%)
Subtotal 372 (times) 28 (times)

93 (%) 7 (%)
Total 400 (times)

Table 3.8 Results of Warning Test for Level Irregularities

Warning by Estimation
No Warning Warning

Actual Normal 358 (times) 21 (times)
Vertical Rail 98.6 (%) 56.7 (%)
Irregularity Abnormal 5 (times) 16 (times)

1.4(%) 43.2(%)
Subtotal 363 (times) 37 (times)

92.5 (%) 7.5 (%)
Total 400 (times)
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3.5 Summary

A method for estimating rail irregularities is proposed. A MIMO system is

presented to identify an inverse system whose inputs are accelerations and outputs are

irregularities. The ARX model for the MIMO system is obtained by using simulation

data. To validate the resulting ARX model, resolutions of estimation are presented. In

addition, a warning test for practical maintenance work is proposed. Both results show

that estimates for the Vertical Irregularities agree well with actual irregularities.

We consider the reason that we have error in predicted irregularities. We use the

ARX Model that is described as Equation (3.3), which is based on the assumption that

there is a linear relationship between inputs and outputs. However, as explained in

Chapter 2, we have some non-linear components in the vehicle's suspensions. Therefore,

non-linear components can be considered one of the reasons for the error. Another reason

is the location of the accelerometers. In particular, as for the Level Irregularity, the

estimate does not agree well with the actual irregularity. The locations and the number of

accelerometers should be studied.
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4 Assessment of Practical Implementation

4.1 Introduction

Chapter 3 considered the system with no uncertainty. However, in practice,

various uncertainties exist. In this study, we consider two major. One is mass variation

due to the change of the weight of a passenger car at each station. The other is speed

variation, which may change at any time. Section 4.2 assesses effects of these

uncertainties by using Singular Value Plots. Section 4.3 proposes a compensation

method for these effects.

4.2 Effects of System Uncertainties

4.2.1 Mass Variation

Chapter 3 presented how accurately we can estimate irregularities if we do not

have any uncertainties. We must assess how the model with uncertainties. First, this

subsection assesses mass variation.

Generally, two types of uncertainty models are used when we deal with

unstructured uncertainties. Figure 4.1 shows the Additive Uncertainty and the

Multiplicative Uncertainty. The Multiplicative Uncertainty has an advantage over the

Additive Uncertainty when we design a controller for a plant [17]. However, this

methodology does not involve any controllers. In addition, while the Multiplicative
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Uncertainty covers unmodeled high-frequency dynamics of sensors and actuators, the

Additive Uncertainty treats additive plant errors. Since the mass variation and the speed

variation can be considered additive plant errors, we select the Additive Uncertainty. The

effects of the uncertainties are expressed as

A(s) = G(s) - G(s) (4.1)

where

G, (s) is the transfer function of an actual continuous model with an uncertainty from

mass variation or speed variation and G(s) is the transfer function of a nominal model

without uncertainties.

A(s) = G(s)-G(s)

A(s)

G(s)--+

Additive Uncertainty

G,(s) = G(s)(I + A(s))

- - A(s)

G(s) Po

Multiplicative Uncertainty

Figure 4.1 Uncertainty Models
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While the Bode Plot is used to obtain frequency responses for SISO systems, the

Singular Value Plot can play a similar role for MIMO systems. We have a discrete three-

input and three-output MIMO system expressed as

Y(z) = G(z)U(z)

where

Y(z) is the Z Transform of y(t)= I,,(t) and

LIe(t)

Al (t)

U(z) is the Z Transform of u(t)= A,,(t) .

A,, - A,, (t

The Singular Value Decomposition at the frequency w for G(z) is:

Uax 0 0

G(eiw)=U2V* =[Umn U 2  uJ [ 02 0 [Vm V2 V.m ] (4.2)
0 0 ami

where

Umax , U 2 ,Umin , Vm , V2 , and Vm, are 3 x 1 vectors, and the operator * indicates the

transpose and complex conjugate. The vector V. is the direction where output y has the

maximum magnitude, IIYI12 = CmUma|2 = am and Vmin is the direction where output

has the minimum magnitude, y112 = jminUmin12 = Umi-

Before computing the Singular Values for uncertainty models, we consider the

range of inputs. If we can show a certain range is dominant in inputs, we do not compute
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the Singular Values along the all frequencies. Figures 4.2 and 4.3 present the Fourier

Transforms of input signals. While the frequencies from 0.9 [Hz] to 1.85 [Hz] are

dominant for the lateral accelerations, the range from 1.35 [Hz] to 1.80 [Hz] is main for

the vertical accelerations. Since the range for the lateral accelerations includes the range

for the vertical accelerations, the range for the lateral accelerations will be the range of

interest for Singular Value Plots.

10

10 -

0-4

10

0.9 Hz 1.85 Hz
10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency [Hz]

Figure 4.2 FFT of Lateral Accelerations
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0.5 1 1.5 2 2.5

Frequency [Hz

3 3.5 4 4.5 5

Figure 4.3 FFT of Vertical Accelerations

In Chapter 3, we obtained G(z) for the model, which is described in Appendix

C. Equation (4.1) for a continuous system can be expressed as

A(z) =G,,(z) - G(z) (4.3)

for a discrete MIMO system. Figure 4.4 shows the Singular Value Plot for the nominal

model G(z) in which the mass is 52,000 [kg] and A(z) where G,,(z) has a 1% increase

(520 [kg]) of a vehicle's mass. 520 [kg] is the mass of 7 passengers. Figure 4.4 indicates

that the uncertainty model A(z) attenuates most of the input signals in the range of

interest, compared to the nominal model. Outputs that are magnified by the uncertainty

model A(z) seem to be much smaller than outputs from the nominal model.
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Figure 4.4 Singular Value Plots for a Nominal Model (Mass = 52000 [kg]) G(z) and

an Uncertainty Model A(z) with 1 % (520 [kgJ) Mass Increase

Instead of calculating the Singular Value Decomposition along all the frequencies

of interest in Figure 4.2, the case where A(z) has the maximum Singular Value will be

considered. The maximum magnitude for -ma of A(ej 7 ) )can be obtained in the Singular

Value Decomposition. We define the decomposition as

A(e170)Imass=1% = U, 1 M1 V 11 .

If we substitute w)= 7.0 into G(eIW') in Appendix C and G0 (e')., ,ass-1%, A(ej 7
,
0 ) can

be obtained from Equation (4.3);
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-0.0708-0.1193j 0.0130+0.0026j 0.1580+1.0062j
A(ej-) =1 0.0200 -0.0225j -0.0865+ 0.0833j 0.1016 - 0.0300j

-0.0834 -0.0481j 0.0031- 0.0007j 0.1408 + 0.2781j

By the Singular Value Decomposition for A(e 70) ,ass=1%' Urn will be

UM, =Umnax Umlmi Umr,n]

- 0.5106 -0.8012j 0.0180+0.0389j 0.2367+0.1987j
-0.0709+0.0601j -0.6862+0.7044j -0.1078+0.1127j
-0.2311-0.1879j 0.1618+0.0703j -0.8756-0.3369j

E,, 1 will be

a,im 0 0  1.0819 0 0

EM, = 0 oamlmd 0 = 0 0.1301 0,

0 0 a ,minY 0 0 0.0488

and V, will be

VmI = Vmima Vm Vmid mn

0.1454 -0.4027 0.9037

0.0017- 0.0084j 0.9132- 0.0231j 0.4067- 0.0089j
-0.9064+0.3965j -0.0495+0.0301j 0.1238-0.0504j

The above Singular Value Decomposition means that if

0.1454

U = VMIm = 0.0017 -0.0084j ,

- 0.9064 + 0.3965j

the output will be

-0.5106 -0.8012ji -0.5524 -0.8668j

Y =m,maxUm,max =1.0819 -0.0709+0.0601j = -0.0767+ 0.0650j . (4.4)

L -0.2311-0.1879ji -0.2500 - 0.2033j

63



On the other hand, the Singular Value Decomposition for the nominal model G(z) at the

same frequency can be define as

G(e'7 0 )=UGZG VG*

If we substitute co = 7.0 into G(eIWO)in Appendix C, G(e 70 ) will be

-10.9990 -12.9412j

G(e )= -1.4298+0.4482j
-6.7775-3.3851j

-0.2203+0.4728j

9.9854 - 9.4613j

0.4933 - 0.1549j

2.9353 +15.8930j

2.4379 -1.1657j

1.9691+3.8661j

By the Singular Value Decomposition for G(e' 7-0 ), U,,l will be

UG = [UGmax UGmid

- 0.5989 - 0.7071j

= -0.1181+0.1169j

-0.2964 - 0.1608j

UGm

0.1483+ 0.0564j 0.2801+ 0.1942j

-0.3684+0.9136j 0.0409+0.0187j

0.0476 + 0.0470j - 0.9078 - 0.2404j

1, will be

G G,max

2:G aG,mid

25.1881 0 0

0 '36667 0

C-G,min _ 0'19917_

and VG will be

VG=[VG,max VG,mid VG pI

0.7350 -0.1395 0.6636

0.1036+0.0145j - 0.9009+ 0.4086j - 0.0746+ 0.0699j

- 0.5807+ 0.3342j -0.0261-0.0355j 0.6376-0.3776j

From the above computation, we can see that the maximum Singular Value for

the nominal model a-Gmax (25.1881) is much greater than o-ma, (1.0819). In Equation

(4.4) each element shows the effect to the corresponding irregularities. To evaluate the
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contribution of A(z) , these effects should be compared with the standard of rail

irregularities (Table 4.1). The standards for rail irregularities means the acceptable upper

or lower bounds for rail irregularities. If an actual irregularity is the standard range, the

rail must be aligned. Since norms of elements in Equation (4.4) are much smaller than

the standards, the contribution of the 1% mass variation can be considered small

compared to the output of the nominal model.

Table 4.1 Standards of Rail Irregularities

Standards for Maintenance Work
Lateral Irregularity ±4 [mm]
Vertical Irregularity ±7 [mm]
Level Irregularity ±5 [mm]

The acceptable upper bound of mass variation that satisfies the standards of rail

irregularities should be found. Figure 4.5 shows the Singular Value Plots for the model

with 7 % mass increase. The maximum Singular Value for A(z) in the range of interest is

7.15 at the frequency co = 7.2 [rad]. We define the decomposition as

( j 7.2 )1Mass=7% = Um 7 Zn,7 V. 7 .

If we substitute co = 7.2 into G(ej") in Appendix C and G(eW ),,ass,7%, A(eI72) nass=7%

can be obtained from Equation (4.3) as

-1.9071+5.7153j 0.4696+0.0459j 0.8488+1.3735j

A(ej72) =1 0.5413-0.5248j -6.1680-1.5133j -0.5628+0.2823j

0.0742+2.5265j -0.1721-0.2938j 0.4964+0.2331j

By the Singular Value Decomposition for A(e 1 7
2 ) , U,, 7 will be
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U, 7 = [U,7max U mmid Um7,min

- 0.2560+0.7002j 0.1417 -0.5255j 0.3686 -0.1099j

= 0.3687-0.4711j 0.4676-0.6478j 0.0317-0.0537j

0.0348+0.2917j 0.0269-0.2546j -0.7396+0.5487j

I,7 will be

m70

0 0

am7,mid 0=i

0 am7,mm n _

7.1561

0

0

0

5.9995

0

010

0,

0. 1802_

and V, 7 will be

Vm7 = [Vm7,max Vm7,mid m7,min

0.7932 -0.5537 0.2534

=- 0.2433 +0.5260j - 0.2985 +0.7503j 0. 1093 - 0.0072j
0.0684+0.1738j -0.1823-0.0901j -0.6122-0.7409j

If input u is in the direction of V,,m,, that is,

0.7932

U = VM7,ax = 0.2433 + 0.5260j

0.0684 + 0.1738j ]
the output will be

-0.2560 + 0.7002j

y = m,7,.ma,max = 7.1561 0.3687 --0.4711j

0.0348+0.2917j J
-1.8319+5.0109j 1

2.6385 -3.371 lj

0.2487 + 2.0873j

The norm of each element of y will be

[
-1.8319+5.0109j -5.33

12.6385 - 3.371j1 L 4.2.

10.2487 +2.0873jl _-2. 10_
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Equation (4.5) shows that the output for the Lateral Irregularity is greater than the

standard (+4) for the Lateral Irregularity in Table 4.1. This means that the deviation

produced by 7% increase of the mass is greater than the standard in the worst case.

Therefore, we cannot use the nominal model in the case where mass variation goes over

7 %.

CS

40 1,. I I I I
Range of Input

20 ~17.09 [dB] =7.15 ---

0 ..........--.

S ............................................... ........ ------ - -.. .. .. .. .. .

- I

-40--

-60-

10-'

G(z)

.............- A(z)

100 0.90 [Hz] 101 1.85 [Hz]
5.97 [rad/sec] 11.62 [rad/sec]

Frequency (rad/sec)

Figure 4.5 Singular Value Plots for a Nominal Model (Mass = 52000 [kg]) G(z) and

an Uncertainty Model A(z) with 7 % (3640 [kg]) Mass Increase

Table 4.2 summarizes the results of the assessment for mass variations. The

more mass variation the model has, the more effect each irregularity has. Therefore, the

acceptable upper bound for the nominal model is 5 % for mass variations. Typically, a

Shinkansen vehicle has 100 passengers. 5 % mass increase corresponds to 32.5

passengers.
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Table 4.2 Deviations by the Mass Variation

1% 5% 7% Standard
520 [kg] 2600 [kg] 3640 [kg]

Lateral Irregularity 1.03 [mm] 3.07 [mm] 5.33 [mm] 4 [mm]
Vertical Irregularity 0.14[mm] 2.02 [mm] 3.88 [mm] 7 [mm]
Level Irregularity 0.27 [mm] 1.85 [mm] 2.10 [mm] 5 [mm]

4.2.2 Speed Variation

Speed Variation is another main factor of model uncertainties. The speed of a

vehicle ranges from 0 [km/h] to 270 [km/h] in the case of a bullet train, such as the

Shinkansen.

We can assess the effect of Speed Variation in the same manner as in Subsection

4.2.1. Table 4.3 shows the results of the assessment. For 10% and 25 % speed

variations, the deviation in each irregularity is smaller than the standard of rail

irregularities. However, for 30 % speed variation, the deviation in the Lateral Irregularity

is outside the standard. In addition, the more speed variation the model has, the more

effect each irregularity has. Therefore, the acceptable upper bound for the nominal model

is 25 %.

Table 4.3 Deviations by the Speed Variation

10% 25% 30% Standard
(79.2[km/h]) (90 [km/h]) (93.6 [km/h])

Lateral Irregularity 1.87 [mm] 2.12 [mm] 5.79 [mm] 4 [mm]
Vertical 1.20 [mm] 2.03 [mm] 1.62 [mm] 7 [mm]
Irregularity
Level Irregularity 0.89 [mm] 1.76 [mm] 2.76 [mm] 5 [mm]
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4.3 A Compensation Method for System Uncertainties

From the results of Section 4.2, the effects of mass variation and speed variation

are considered significant for the nominal model. We cannot use a nominal model for all

situations. Therefore, compensation methods for them are needed.

Assessment for mass variation showed that the upper and lower limits of mass

variation that can be covered by the nominal model were 5 % in Section 4.2. While the

mass of a passenger car that has no passenger is 52,000 [kg], the mass of a passenger car

that is full of passengers is 68,000 [kg]. The middle point is 60,000 [kg]. Since a

nominal model covers ±5% range from the nominal mass, we need at least three models

in order to cover all the range of mass variation, as shown in Table 4.4. The first model

will be constructed so that the nominal mass is 54,600 [kg]. The second model's nominal

mass is 60,000 [kg], followed by the third model whose nominal mass is 65,000 [kg].

Table 4.4 Assignments of Models for the Mass Variation

Mass [kg] 52,000154,600157,300 60,000162,600 65,000 68,000
Assignment No.1 No.2 No.3
of Models + ------ -+.+- - ---- 0.

Table 4.5 shows an assignment of models for speed variation. In the same

manner as the case of mass variation, 7 models are needed to cover whole the range of

speed..
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Table 4.5 Assignments of Models for the Speed Variation

Speed[km/h] 0 18 36 54 72 90 108
Assignment No.1 No.2 No.3
of Models 4 4--

126 144 162 180 198 216 234

No. 4 No.5 No.6

252 270 288

No.7

The system can have mass variation and speed variation simultaneously.

Therefore, 21 models (3 x 7) must be prepared in advance in order to cover all variations.

In practice, we must know the weight of a passenger car to make sure that the

actual mass is within the uncertainty requirement. If the mass is outside the acceptable

range, we have to select another model as a nominal model. For Sinkansen trains and

express trains, the system that automatically checks the tickets of passengers instead of a

train conductor is being researched. With this system, the exact number of passengers

can be determined. Therefore, we can estimate the total weight of a vehicle. On the

other hand, the speed of a vehicle is easily available from the speed meter.
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4.4 Summary

This chapter presents assessment for practical implementation. It evaluates the

effects of two major model uncertainties, which are mass variation and speed variation,

by using the Singular Value Decomposition. Since both effects are significant for the

nominal model, this chapter proposes a compensation method that prepares multiple

models in order to cover all the range of mass variation and speed variation.
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5 Conclusions & Recommendations

A method for estimating the rail irregularity by using accelerations of a rail

vehicle's car body was presented. A MIMO system model in which inputs are

accelerations and outputs are rail irregularities was constructed by using the System

Identification technique and simulation data.

Comparisons between the estimate and the actual irregularity in the model

validation, and quantitative analysis of the estimation error reveal the followings:

(1) The estimate of the Left Vertical Irregularity agrees well with actual Left Vertical

Irregularity in both phase and magnitude. The error between the estimate and the

actual irregularity is acceptable.

(2) The estimation error in the Left Lateral Irregularity is larger than in the Left

Vertical Irregularity, since there is a small gap between the estimate and the

actual irregularity in phase. From a practical point of view, the

(3) gap in phase is acceptable.

(4) The estimate of the Level Irregularity does not agree well with the actual Level

Irregularity. The locations and the number of accelerometers need to be

improved.

(5) The accuracy of the estimation is expressed by the resolution. The resolution for

the Vertical Irregularity is the highest. The resolution for the Lateral Irregularity

is second, followed by that for the Level Irregularity.

Uncertainties produced by speed variations and mass variations of a vehicle were

assessed. Since the effects of these two variations are significant, we cannot use a
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nominal model for whole the range of those variations. To compensate for these effects,

this thesis proposes using multiple models to cover whole the range of the vehicle's speed

and mass.

The reason that the estimation for the Lateral Irregularity was not as good as that

for the Vertical Irregularity is that a vehicle's properties in the lateral direction contain

non-linear factors. Therefore, non-linear models instead of the ARX model can be

recommended for future work. In addition, the locations of accelerometers used to

estimate the Level Irregularity more accurately should be studied.

In order to implement the method proposed by this thesis, we need field

experiments using actual vehicles and rail tracks. In addition to the uncertainties that

were assessed by this thesis, disturbances such as wind, the effect of passengers'

movement in the vehicle, and sensor noises have to be assessed.

If the proposed method of this thesis is implemented in the future, a train will be

provided information about rail irregularities, which will enable us to control a vehicle's

suspensions more efficiently. An interesting area of research will be the study of how to

control active suspensions by using information on rail irregularities in order to realize a

smart rail vehicle.
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Appendix A. Specifications for Properties of a Vehicle and Rails

Table A.2 Properties of Stiffness and Damping between Rails and Ground Points

Variable Values Unit
Lateral Stiffness kg, 4200 kgf /mm
Direction Damping Cg, 240 kgf -s cm

Vertical Stiffness kg, 18000 kgf / mm
Direction Damping c, 200 kgf- s rcm

Table A.2 Properties of Mass (E2 and TR7004A)

Name of Direction Variable Value Unit
Component

Car body Mass M 52000 kg

Center of h 1800 mm 0: Top
Mass Surface of

Rails

Bogie Mass Mb 2459 kg

Mass Rolling Jbr 1900 kgm2 i = 0.88
Moment of i: Radius of

Inertia Gyration [m]
Pitching Jbp 1200 kgm2  i= 0.70

Yawing Jby 2900 kgm2 i = 1.09

Center of hb 509 mm 0: Top
Mass Surface of

Rails

Wheelset Mass MW 3987 kg

Mass Rolling Jwr 980 kgm2  i = 0.70
Moment of Pitching J 130 kgm2  i = 0.26

Inertia
Yawing J 980 kgm2  i = 0.70

Center of h 430 mm 0: Top
Mass Surface of

Rails
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Table A.3 Properties of Suspensions of a Bogie (TR7004A)

78

Name of Direction Variable Value Unit
Component

Primary Stiffness of Vertical k, 85.1 kgf /mm
Suspension Support of Lateral k 500 kgf /mm

Axlebox 1 _

Longitudinal k, 900 kgf /mm
Vertical Oil Vertical C, 100 kgf V = 5cm /s

Damper cp2 200 kgf V=10cm/s

c 500 kgf V=30cm/s

Sencondary Stiffness of Vertical k0vl 17.6 kgf / mm No
Suspension Airsprings Passenger

kay2  19.2 kgf /mm 100%
Passenger

ka3 20.7 kgf /mm 200%
passenger

Lateral ka, 17.1 kgf /mm

Lateral Oil Lateral C11 200 kgf V = 5cm /s
Damper C12 375 kgf V =15cm/s

Yaw Yawing Cy 450 kgf V= O.6cm/s
Damper cy 1200 kgf V =6.Ocm/s

Traction Longitudinal k,, 445 kgf/mm
Rod Lateral k, 10 kgf / mm

Lateral Lateral kb, 150 kg/ / mm
Bump Stop



Appendix B. Additional Results of Model Validation

Subsection 3.3.1 details the results of the model validation. Because Figures

3.18, 3.21, and 3.24 show the limited areas of the total validation period, Figures B.1,

B.2, and B.3 are added to cover all the area.
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Figure B.1.1 Actual Irregularities vs. Estimates for Lateral Irregularities

(from 400 [secl to 420 [sec])
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Figure B.1.2 Actual Irregularities vs. Estimates for Lateral Irregularities
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Appendix C. G(z) of the Inverse Model

g11(z) g12(z) g13(z)~

G(z)= g21 (z) g22 (z) g23 (z)

g (z) g 2 (z) g3 (z)_

The denominator of all elements

= zA36 - 6.352 zA35 + 18.22 zA34 - 29.77 zA33 + 28.15 zA32 - 12.26 zA31

- 1.686 zA30 + 2.048 zA29 + 2.721 zA28 - 1.33 zA27 - 2.083 zA26

- 0.2924 zA25 + 4.434 zA24 - 3.421 zA23 - 0.1971 zA22 + 0.9767 zA21

+ 0.1576 zA20 - 0.0127 zA19 - 0.8977 zA18 + 0.8072 zA17 - 0.1002 zA16

-0.1466 zA15 + 0.003516 zA14 + 0.04896 zA13 - 0.001576 zA12 + 0.01005 zAl1

-0.05032 zAlO + 0.05281 zA9 - 0.02733 zA8 + 0.007653 zA7 - 0.0009686 zA6

The numerator of g,1

= 0.4683 zA34 - 2.167 zA33 + 4.935 zA32 - 6.428 zA31 + 3.623 zA30 + 2.701 zA29

- 6.864 zA28 + 6.493 zA27 - 6.768 zA26 + 10.29 zA25 - 10.76 zA

+ 4.963 zA23 + 0.1223 zA22+ 0.3401 zA21 - 1.687 zA20 + 0.3189 zA9

+ 0.8227 zA18 + 0.098 zA17 - 0.7882 zA16 + 0.2012 zA15 + 0.2942 zA14

- 0.1706 zA13 + 0.08916 zA12 - 0.2084 zAl 1 + 0.2391 zAlO - 0.1504 zA9

+ 0.07027 zA8 - 0.02858 zA7 + 0.00925 zA6 - 0.001911 zA5 - 3.54e-016 zA4

-2.996e-016 zA3 - 1.02le-016 zA2 + 4.852e-016 z - 3.475e-016
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The numerator of g12

0.3077 zA36 - 1.502 zA35 +2.182 zA34+2.212 zA33 - 12.8 zA32+20.61 zA31

- 16.29 zA30 + 5.753 zA29 - 3.53 z^ 28 + 10.7 zA27 - 13.67 zA26

+5.708 z^25+ 3.912 zA24-5.117 zA23+0.631 zA22+0.9894 zA21

+ 1.4 zA20 -2.431 zA19 + 0.4207 z18 + 1.105 zA17 - 0.4452 zA16

- 0.423 z15 + 0.3012 zA14 - 0.1437 zA13 + 0.4922 z^12 - 0.7426 zAl1

+ 0.5528 zAO - 0.2311 zA9 + 0.05301 z^8 - 0.005293 zA7 - 2.967e-015 zA6

+ 2.568e-015 zA5 - 3.341e-015 zA4 + 1.969e-015 zA3 - 4.458e-017 zA2

-6.198e-016 z + 3.843e-016

The numerator of g13

= -0.1096 zA35 - 0.05431 zA34 + 0.8361 zA33 - 0.9699 zA32 - 0.7234 zA31

+ 2.302 zA30 - 2.254 zA29 + 2.575 zA28 - 4.259 zA27 + 5.515 zA26

- 6.524 zA25 + 7.695 zA24 - 5.877 zA23 + 0.644 zA22+ 2.159 zA21

- 0.3061 zA20 - 1.166 zA19 - 0.1246 zl18 + 0.8272 zA17 + 0.3099 zA16

- 0.8913 zA15 + 0.2158 zA14 + 0.2519 zA13 - 0.1297 zA12 + 0.09191 zAl1

- 0.2377 zAlO + 0.255 zA9 - 0.1362 zA8 + 0.03825 zA7 - 0.004464 zA6

- 9.227e-016 zA5 + 1.518e-015 zA4 - 9.718e-016 ZA3 + 2.295e-016 zA2

+ 2.099e-017 z + 1.698e-017
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The numerator of g,,

= -0.01861 zA34 + 0.07333 zA33 - 0.1217 zA32 + 0.08609 zA31 - 0.007686 zA30

+ 0.05029 zA29 - 0.2364 zA28 + 0.3378 zA27 - 0.2054 zA26 + 0.03682 zA25

- 0.07536 zA24 + 0.2096 zA23 - 0.1873 zA22 + 0.04417 zA21 + 0.02928 zA20

- 0.04402 zA19 + 0.09656 zA18 - 0.1398 z^17 + 0.1046 zA16 - 0.04146 zA15

+ 0.01263 zA14 - 0.01113 zA13 + 0.01395 zA12 - 0.01832 zAl 1 + 0.02132 zAlO

- 0.01902 zA9 + 0.01274 zA8 - 0.006142 zA7 + 0.001735 zA6 - 0.0002961 zA5

+ 7.467e-016 zA4 - 5.506e-016 zA3 + 1.616e-016 zA2 + 5.99e-017 z - 1.156e-016

The numerator of g22

= -0.2515 zA36 + 2.28 zA35 - 6.342 zA34 + 7.547 zA33 - 2.976 zA32 + 0.01058 zA31

- 3.561 zA30 + 6.15 zA29 - 5.345 zA28 + 9.642 zA27 - 16.19 zA26

+ 12.17 zA25 - 1.348 zA24 - 1.744 zA23 - 1.932 zA22 + 2.335 zA21

- 0.3326 zA20 +1.361 zA19 -3.211 zA18+2.286 zA17-0.3991 zA16

- 0.07715 zA15 - 0.1613 zA14 + 0.09977 zA13 + 0.0286 zA12 + 0.03808 zAl1

- 0.1159 zAlO + 0.0905 zA9 - 0.03409 zA8 + 0.005656 zA7 + 6.716e-016 zA6

- 1.491e-015 zA5 + 1.361e-015 zA4 - 6.591e-016 zA3 + 2.735e-017 zA2

+ 1.982e-016 z- 1.383e-016

90



The numerator of g2 3

= -0.01582 zA35 + 0.2228 zA34 - 0.6922 zA33 + 0.8782 zA32 - 0.365 zA31 - 0.07591 zA30

- 0.2002 zA29 + 0.5224 zA28 - 0.654 zA27 + 1.356 zA26 - 2.131 zA25

+ 1.626 zA24 - 0.3813 zA23 - 0.06817 zA22 - 0.1531 zA21 + 0.1428 zA20

- 0.02956 zA19 + 0.1811 zA18 - 0.3107 zA17 + 0.2001 zA16 - 0.05968 zA15

+ 0.02202 zA14 - 0.01189 zA13 - 0.005189 zA12 + 0.009154 zA1l

- 0.004835 zAlO + 0.002659 zA9 - 0.001241 zA8 + 0.0002052 zA7

+ 8.153e-005 zA6 + 9.256e-017 zA5 - 6.879e-017 zA4 + 8.909e-017 zA3

- 2.044e-016 zA2 + 7.649e-017 z + 1.362e-016

The numerator of g3

= 0.2423 zA34 - 0.9947 zA33 + 2.372 zA32 - 5.208 zA31 + 10.01 zA30 - 12.98 zA29

+ 9.395 zA28 - 2.911 zA27 + 0.1502 zA26 + 3.72 zA25 - 15.57 zA24

+ 24.69 zA23 - 16.88 zA22 + 1.319 zA21 + 3.311 zA20 + 1.185 zA19

- 1.197 zA18 - 3.224 zA17 + 3.346 zA16 + 0.3978 zA15 - 1.797 zA14

+ 0.4427 zA13 + 0.2936 zA12 + 0.1043 zAl 1 - 0.1995 zALO - 0.1854 zA9

+ 0.3801 zA8 - 0.253 zA7 + 0.08462 zA6 - 0.01243 zA5 + 8.136e-016 zA4

- 1.937e-016 zA3 + 7.86e-018 zA2 - 2.705e-016 z + 3.288e-016
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The numerator of g32

= 0.5514 zA36 - 4.541 zA35 + 16.83 z^34 - 34.62 zA33 + 38.4 zA32 - 16.87 z^31

+ 14.59 zA30 - 107.4 zA29 + 280.1 zA28 - 383.3 zA27 + 302 zA26

- 119.5 zA25S+6.952 zA24+ 1.996 zA23 -3.318 zA22+37.66 zA21

- 51.57 zA20 + 20.77 zA19 + 10.42 zA18 - 11.3 z^17 + 0.7756 zA16

+ 0.768 zA15 + 1.324 z^14 + 1.323 zA13 - 5.144 zA12+ 5.17 zAl1

- 2.695 zAlO + 0.7732 zA9 - 0.1044 zA8 + 0.002671 zA7 + 7.332e

-015 zA6 + 5.396e-016 zA5 - 3.954e-015 zA4 + 3.21le-015 zA3 - 1.329e-015 zA2

+ 1.224e-016 z + 1.871e-016

The numerator of g33

= -0.05511 zA35 - 0.6522 zA34 + 4.363 zA33 - 10.57 zA32+ 12.44 zA31 - 7.295 zA30

+ 9.166 zA29 - 33.96 zA28 + 71.2 zA27 - 90.27 zA26 + 76.55 zA25

- 44.54 zA24 + 16.14 zA23 - 0.5829 zA22 - 5.397 zA21 + 8.049 zA20

-9.093 zA19 +6.448 zA18-1.114 zA17-2.11 zA16+1.512 zA15

- 0.0632 zA14 - 0.2483 zA13 + 0.373 zA12 - 0.9549 zAl1 + 1.243 zAlO

- 0.8771 zA9 + 0.3563 zA8 - 0.07974 zA7 + 0.007779 zA6 + 1.005e-015 zA5

- 1.172e-015 zA4 + 1.469e-015 zA3 - 1.535e-015 zA2 + 1.0lle-015 z - 3.79e-016

92



Appendix D. Matlab Codes for the Singular Value Plot

Ts=0.05;

[numgl,deng]=rth2tf(S01 0101,1);

[numg2,deng]-th2tf(SO1 0101,2);

[numg3,den-g]=th2tf(SO1 0101,3);

[num ml,den-m]Ah2tf(S5_10101,1);

[num-m2,dentm]=th2tf(S5_l0101,2);

[numm3,den-m]=th2tf(S51 0101,3);

gi P-tf(numg I(1,:),deng,Ts);

g2 1 =tf(num_g I(2,:),den-g,Ts);

g3 -tf(numg I(3,:),den-g,Ts);

g12-tf(num_g2(1,:),den-g,Ts);

g22=tf(numg2(2,:),deng,Ts);

g32=tf(numg2(3,:),den-g,Ts);

g 13-tf(numg3(1,:),deng,Ts);

g23=tf(numg3(2,:),den-g,Ts);

g33=tf(num-g3(3,:),deng,Ts);

m 1 -tf(num mlI(1,:),den-m,Ts);

m2 1=tf(num_m1 (2,:),den-m,Ts);
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m31-tf(numml(3,:),denm,Ts);

m12-tf(num-m2(1,:),denm,Ts);

m22=tf(num-m2(2,:),denm,Ts);

m32=tf(num-m2(3,:),den_m,Ts);

ml 3=tf(num m3(1,:),den m,Ts);

m23-tf(num-m3(2,:),denm,Ts);

m33-tf(num_m3(3,:),denm,Ts);

sysG=[gll g12 g13;

g21 g22 g23;

g31 g32 g33];

sysM=[mll m12 m13;

m21 m22 m23;

m31 m32 m33];

sysDelta=sysM-sysG;

NF=pi/Ts; %Nyquist Freq

W=logspace(-1.5,log1O(NF),500);

sigma(sysG,W);

hold on

sigma(sysDelta,W);

hold off
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