
An Active Protocol Architecture for Collaborative Media
Distribution

by
Dimitrios Christos Vyzovitis

MSc, Advanced Computing
Imperial College of Science, Technology, and Medicine

University of London, UK, 2000

Diploma, Electrical and Computer Engineering
Aristotle University of Thessaloniki, Greece, 1999

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of
Master of Science in Media Arts and Sciences

at the
Massachusetts Institute of Technology

June 2002

@ 2002 Massachusetts Institute of Technology. All Rights Reserved

Signature of Author
Program iri Me r s and Sciences

May 20, 2002

Certified by
Dr. An1rew Lippman

Senior Research Scientist
Program in Media Arts and Sciences

Thesis Advisor

Accepted by

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUN 2 7 2002

LIBRARIES

Dr. Andrew Lippman
Chairperson

Departmental Commitee in Graduate Studies
Program in Media Arts and Sciences

An Active Protocol Architecture for Collaborative Media
Distribution

by
Dimitrios Christos Vyzovitis

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

on May 20, 2002
in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences
at the

Massachusetts Institute of Technology

Abstract
This thesis embarks on distributing the distribution for real-time media, by developing a

decentralised programmable protocol architecture.
The core of the architecture is an adaptive application-level protocol which allows collab-

orative multicasting of real-time streams. The protocol provides transparent semantics for
loosely coupled multipoint interactions. It allows aggregation and interleaving of data fetched
simultaneously from diverse machines and supports the location and coordination of named
data among peer nodes without additional knowledge of network topology. The dynamic
stream aggregation scheme employed by the protocol solves the problem of network asymetry
that plagues residential broadband networks. In addition, the stateless nature of the proto-
col allows for fast fail-over and adaptation to departure of source nodes from the network,
mitigating the reliability problems of end-user machines.

We present and evaluate the algorithms employed by our protocol architecture and pro-
pose an economic model that can be used in real-world applications of peer-to-peer media
distribution. With the combination of an adaptive collaborative protocol core and a reason-
able economic model, we deliver an architecture that enables flexible and scalable real-time
media distribution in a completely decentralised, serverless fashion.

Thesis Advisor: Dr. Andrew Lippman
Title: Senior Research Scientist, Program in Media Arts and Sciences
This work was supported by the MIT Media Laboratory Digital Life Consortium and Intel.

An Active Protocol Architecture for Collaborative Media
Distribution

by
Dimitrios Christos Vyzovitis

The following people served as readers to this thesis:

Thesis Reader I-. - -4I/
P Dr. V. Michael Bove Jr.

Principal Research Scientist
MIT Media Laboratory

Thesis Reader
Dr. Hari Balakrishnan

Assistant Professor of Electrical Engineering and Computer Science
MIT Laboratory for Computer Science

Acknowledgements

First and foremost, I would like to thank Andy Lippman, my advisor, for his patience and

guidance. His perserverance in identifying the essence of problems and how they relate to
real life, and his patience with my infinite last minute experimentation disposition, have been

instrumental in the development of this thesis. Similarly, I would like to thank my readers,
Mike Bove and Hari Balakrishnan, for taking the time to read and comment on the thesis.

Jeremy Silber has helped in the implementation of very early versions of the DRMTP
protocol and contributed in the discussion of economics for collaborative media distribution.

Ali Rahimi has inadvertently played a role in this thesis, as many of my ideas about a

distributed protocol architecture have evolved from our post-midnight and 6 am breakfast

discussions.
Finally, I would like to thank Tom Gardos and David Reed for the discussions we have

had over time. These discussions, on distributed protocols, peer-to-peer systems and other

themes, have certainly contributed in the ideas presented in this thesis.

Contents

1 Introduction

1.1 Technical Hurdles. .

1.2 Socioeconomic Hurdles

1.3 Contribution of this Work

1.4 Thesis Overview .

2 Towards Collaborative Media Distribution

2.1 A System Model .

2.2 Peer-to-Peer Systems .

2.2.1 N apster .

2.2.2 G nutella .

2.2.3 Advanced Peer-to-Peer Lookup Algorithms . . .

2.3 The Promise of Multicast

2.3.1 IP Multicast .

2.3.2 Multicast Transport

2.3.3 Scalable Reliable Multicast

2.3.4 Multicast Congestion Control

2.4 Programmable Networks

2.4.1 Session Discovery and Configuration

2.4.2 Active Networks and Active Service Frameworks

2.5 Concluding Remarks .

19

. 20

. 21

. 22

. 24

. . .- - . 26

. 30

. 30

.- - - . . - - - 34

. 35

. 37

. 3 7

. 38

. 40

. 4 1

. - - 45

. 45

. 46

. . . .- - - . . - - - - 47

3 A Protocol Architecture for Collaborative Media Distribution

3.1 Building an Active Protocol Architecture .

10 Contents

3.1.1 Protocol Design Considerations

3.1.2 Architecture Outline

3.2 Session Structure .

3.3 Implosion Control .

3.4 DRMTP: The Distributed Real-time Transport Protocol .

3.4.1 Stream Control .

3.4.2 Stream Establishment

3.4.3 Detection of Error Conditions

3.4.4 Error Correction

3.4.5 Congestion Control

3.4.6 Source and Primary Controler Failure Recovery . .

3.5 SDCP: The Session Discovery and Configuration Protocol

3.5.1 File Discovery .

. 49

. 5 1

. 52

. 55

. 56

. 56

. 59

. 63

. 67

. 68

. 71

. 72

. 72

3.5.2 Address Discovery and Allocation, and Source Configuration

3.6 Concluding Remarks .

4 Analysis and Evaluation

4.1 Scalability and Latency Bounds

4.1.1 Number of Feedback Messages

4.1.2 Feedback Latency

4.1.3 Choosing the Parameters of the Distribution

4.2 Experimental Evaluation in a Network Testbed . . .

4.2.1 The Network Testbed

4.2.2 Traffic Localisation

4.2.3 Source Failure Recovery

4.2.4 Scalability in the Presence of Network Effects

4.3 Protocol Behavior in Boundary Conditions

4.3.1 Source Upstream Congestion Control

4.3.2 Protocol Fairness

75

. 75

. 76

. 77

. 78

. 8 1

. 8 1

. 8 3

. 83

. 87

. 89

. 89

. 90

4.4 Concluding Remarks 90

Contents 11

5 An Economic Model for Collaborative Distribution of Media 95

5.1 Licensing . 96

5.2 Affinity Points . - . . 97

5.3 Paym ent .. . - - - 99

5.4 Concluding Remarks . 100

6 Conclusion 103

A Protocol Specification 117

A.1 M essage Format 117

A.1.1 Message Envelope .. . 117

A.1.2 DRMTP Messages . 118

A.1.3 SDCP M essages . 118

A.2 Node Application Programming Interface . 120

Contents

List of Tables

A.1 Message Envelope Fields.118

A.2 DRMTP messages 119

A.3 Compound types in DRMTP messages. 119

A.4 SDCP messages. 120

14 List of Tables

List of Figures

2.1 An illustration of the sytem model. 26

2.2 Simplified Napster system model. (a) A node registers and advertises local files.

(b) The node submits a query. (c) The server returns a recommendation. (d)

The node selects a source and transfers the file. 31

2.3 Napster as an overlay network . 33

2.4 Query propagation in Gnutella. (a) Node N1 broadcasts the query to neigh-

bouring nodes in the overlay. (b) Second hop propagation. (c) The query

reaches N2, where it is matched, and N2 contacts N1 with the match. 36

2.5 Congestion in multicast transport protocols, in a flow from the source S to

sinks R 1, R 2 , R 3 , R 4 . (a) Global congestion caused by a congested link near the

source. All sinks lose packets of the flow. (b) Local congestion for a receiver

subset. Only sinks downstream the congested path (R1 , R 2 , R 3) lose packets. 42

3.1 Local patching for late joins. (a) Initial configuration, with N1 providing Si

(red) to N2, N3, and N 4. (b) N5 joins S1 and N3 locally patches with S2 (blue). 54

3.2 Real-time operation with aggregation of two half-rate streams. 54

3.3 Stream error conditions. 67

4.1 Expected number of feedback messages from an exponentially distributed timer,

as a function of the number of feedback nodes, for A = 10 76

4.2 Expected feedback latency from an exponentially distributed timer, as a func-

tion of the number of feedback nodes, for A = 10 78

4.3 Growth of Wmax,d and Nd as a function of scope depth. (a) Wmax,d (b) Nd . . 79

16 List of Figures

4.4 Expected number of messages and feedback latency as a function of d for our

choice of Wmax,d and Nd, and effects of poor estimates (a) Expected number of

feedback messages (b) Expected feedback latency 80

4.5 Network testbed . 82

4.6 Stream establishment traffic in the first experiment. (a) 18.85.9.x subnet. (b)

18.85.45.x subnet. 84

4.7 Data traffic in the first experiment. (a) 18.85.9.x subnet. (b) 18.85.45.x subnet. 85

4.8 Control traffic in the source failure experiment. (a) 18.85.9.x subnet. (b)

18.85.45.x subnet. 86

4.9 Data traffic in the source failure experiment. Trace taken from the 18.85.9.x

subnet............ .. 87

4.10 Data trace for the network effect experiment. (a) 18.85.9.x subnet. (b) 18.85.45.x

subnet........... .. 88

4.11 Evolution of session population and the number of streams in each subnet. . . . 88

4.12 Source upstream congestion experiment scenario. R is the primary controler of

the stream, and S1 , S2 are two sources with limited upstream capacity. 89

4.13 ns trace from the source upstream congestion experiment. (a) Throughput

stream S1 -+ R (b) Throughput for stream S2 -+ R (c) Aggregate throughput. 91

4.14 Source upstream congestion experiment scenario. R is the primary controler of

the stream, and S1, S2 are two sources. Nodes A and B establish a TCP flow,

competing for the bottleneck link....... 92

4.15 ns trace for the protocol fairness experiment. (a) Throughput for stream Si -+

R (b) Throughput for stream S2 -+ R (c) TCP flow throughput (d) Aggregate

throughput for R...... 93

5.1 Affinity point distribution with a pyramid scheme. Nodes ni, n 2, n3 are the

first order referal set of n, receiving jaft affinity points. Nodes n5, n6 are the

second order referal set, as first-order referals to node ni, receiving a2 affinity

p oints. 99

A.1 Node Application Programming Interface . 121

List of Algorithms

1 Stream establishment by a DRMTP receiver . 59

2 Request supression for DRMTP streams . 60

3 Bid supression for new DRMTP streams . 62

4 Error correction for a DRMTP receiver . 69

5 Caching and supression of SDCP match messages. 73

18 List of Algorithms

Chapter 1

Introduction

The Internet has grown from a medium for computer communications to one that is becoming

the backbone for communications in general, including telephony, entertainment and sensor

networks. In this context, a primary problem is how we distribute and share information

throughout networked communities. In particular, there are issues of scale, flexibility, and

dynamism that have not been addressed by existing systems. This is an imperative for fun-

damental cultural reasons that are suggested by Napster and Instant Messaging: after having

used the network as a static library, increasing numbers of people are using it to access each

other rather than servers. For example, since the introduction of ICQ in the mid-90's, instant

messaging has grown to one of the most widely used services in the network [47, 14]. Similarly,

the Napster network grew to millions of members within a year of its inception [6].

This cultural imperative is supported by the technology. With time, as raw computing

power, connectivity, and bandwidth increase, the difference between computers diminishes

and they become a network of peers - even if some are idiosyncratically labeled as servers. In

such an environment the traditional model of broadcast distribution of information loses its

meaning. Every node on the network can act as a distributor, every user can be a broadcaster.

And when it comes to digital media, this environment presents an oppurtunity for information

to spread efficiently and effectively by following user interactions. The premise follows from

the group forming nature of the Internet. As David Reed puts it in [62], in networks that sup-

port affiliations among their members, the value of connectivity scales exponentially. In this

context, shared responsibility for information distribution has economic as well as technical

Chapter 1: Introduction

implications for the efficacy and efficiency of delivery. Hence we coin the term Collaborative

Media Distribution.

1.1 Technical Hurdles

The main issue is network scaling. Central networks, built around the client-server model,

have a limit to scalability. For example, a server-based system requires significant resources

just to service an HTTP connection. In 1996, the Netscape server system was delivering more

bits than are stored in the US Library of Congress each day. This was an arduous task in

and of itself, causing delays and overaloading the network connection of Netscape. The same

problem is faced by all major content sites in the present day, mandating the development

distributed networks of servers - such as those built by Akamai [82] - simply to carry the

load.

One response to this was a renewed interest in multicast. Multicast was introduced to the

Internet in the early '90s [15], mapping broadcast techniques onto a fundamentally point-to-

point system. However, broadcasting did not easily translate from the airwaves or printing

press to the Internet. A host of issues interfered, generally derived from the fact the the In-

ternet is an inherently heterogeneous environment and multicast packet delivery is unreliable.

The first attempts to introduce reliability resulted in poor scalability, as the more receivers the

greater the error rate and its diversity among receivers. The ensuing avalanche of error reports

and corrections caused multicast to begin to drown, a phainomenon known as implosion.

An important limiting factor of early multicast transport protocols was their server-centric

approach. Recognizing the fact that any node receiving data in a multicast group can act as

a sender, later protocols addressed issues of scalability with distributed error correction and

local recovery schemes. This experience illustrates again the basic principle that makes the

Internet a distinct communication network: Every client can be a server [45]. Recent work in

the Media Lab [40] explored this approach for the distribution of real-time data. The simple

theory was that if every client became a server, then the network could combine local repair

with widespread reception of real-time data, and it could thus simulate an infinite bandwidth

network.

While these systems and protocols hinted on the efficiency of collaborative media distribu-

1.2 Socioeconomic Hurdles

tion, it was not until the advent of peer-to-peer systems that its potential efficacy was realised.

Peer-to-peer systems exposed the idea to the general public by providing simple mechanisms

for locating media available at end-user machines. They serve as an elegant example of a group

forming network by generating unprecedent momentum: The Napster network had over 20

million users on its heyday.

Nevertheless, the first generation of peer-to-peer systems employed inefficient algorithms

for location and strictly point-to-point distribution, limiting their scalability for real-time

transmission of information and high bandwidth types of media like movies. Recent work in

lookup algorithms [69, 79, 65, 61] has significantly improved data location capabilities, but

peer-to-peer systems still today do not take advantage of the progress made with multicast

transport protocols. They also make clear another problem that may constrain the applica-

bility of the paradigm: The Network is asymetric. End-users with broadband connections

may have access to significant downstream capacity, but their upstream capacity is dispro-

portionaly limited. In addition, end-user nodes are inherently unreliable; nodes come and go

at unpredictable times adding an additional hurdle to protocol reliability.

1.2 Socioeconomic Hurdles

The flipside lies on the socioeconomic obstracles of building and sustaining a collaborative

media distribution scheme. While the cultural imperative of group forming networks and the

technical advances suggest unrestricted collaborative distribution as a natural solution, it is

a destabilising issue for entities that rely on a centralised architecture for revenue.

The tractability of centralised revenue models, backed by support from current day le-

gal systems, provides the backbone of entertainment and publishing industries and creates a

structure for royalty flow towards content creators. The lack of a viable revenue model for

distributed schemes of content distribution poses both an economic and social problem. Copy-

right owners and related industries are fighting to preserve their revenue and power, despite

the fact that scarcity of resource no longer justifies a centralised model of distribution. Simul-

taneously, content creators are reluctant to support a scheme that can potentially commoditise

their work without providing economic gains. The result so far is a push for legislation like

Chapter 1: Introduction

the HRA1 and DMCA 2 acts and the proposed SSSCA/CBDTPA bill3 [83], which criminalises

common behavior and rendered the first generation of peer-to-peer systems commercially un-

sustainable. These developments are nothing more than manifestations of the battle between

established economic forces and rising cultural and technical phainomena. As Lessig argues

in [44], the balance is thin and there is a clear danger of falling into a new era of dark ages.

However, there is reason to believe that a combination of cultural imperative and technical

support can override legal systems. The 55 MPH speed limit is an example. Lacking a

technological limit on automobile speed, it was widely disregarded [56, 48, 26]. In this case,

the cultural imperative is the increasing amount of media sharing that is in progress [9, 42, 81].

The technological support is the raw ability for every computer to become a server. Note how

Sun's image of the networked computer as a diskless engine permanently attached to a server

missed the point. Given this combination, there is a structural threat to industries that rely

on the legally or technically supported central model.

1.3 Contribution of this Work

This work provides a solution to reconciling the technical and cultural impetus for collabora-

tive media distribution with the economic forces behind it. It is in the context of distributing

the distribution that we embark on the work of this thesis. We carry it to an extreme and

show how a distributed programmable protocol can do all of what we want.

We develop a high level active protocol architecture, which adheres to the end-to-end design

prinicple [66] of the Internet and provides the primitives for flexible and efficient location and

distribution of information. On the same time we enable security and privacy, accountability,

and embed cost and loyalty distribution model. These primitives are used for developing a

programmable protocol substrate, demonstrated with a prototype implementation and backed

by an economic model for real-time collaborative media distribution.

The cornerstone of the architecture is DRMTP (Distributed Real-time Multicast Transport

Protocol), an adaptive application-level [13] protocol core which allows collaborative multi-

'Home Recording Act
2 Digital Millenium Copyright Act
3Security Systems Standards and Certification Act/Consumer Broadband and Digital Television Promotion

Act

1.3 Contribution of this Work zJ

casting of real-time streams. The protocol provides transparent semantics for loosely coupled

multipoint interactions. It allows aggregation and interleaving of data fetched simultaneously

from diverse machines and supports the location and coordination of named data among peer

nodes, such as a record album or television program, without additional knowledge of net-

work topology. The dynamic stream aggregation scheme employed by the protocol solves the

problem of network asymetry that plagues residential broadband networks. In addition, the

stateless nature of the protocol allows for fast fail-over and adaptation to departure of source

nodes from the network, mitigating the reliability problems of end-user machines. Coupled

with well established techniques, like traffic localization [54], stream patching [40, 67, 37], and

TCP-friendly congestion control [25, 77], we deliver a protocol that enables scalable real-time

media distribution in a completely decentralised, serverless fashion.

DRMTP is supported by a dynamic content and source discovery protocol, which deter-

mines the properties of the network and availability of information based on high-level content

description. This way, users are able to locate and access media without ever knowing about

the existence of potential sources in the network and without noticing intermittent failures in

the act of the distribution.

Along those lines, we have also developed a novel dynamic, mostly functional language

named MAST (Meta Abstract Syntax Trees). The language has full support for mobile code

and distributed computation and can be embedded in the payload of the content discovery

protocol or even DRMTP itself. However, the presentation of the language is beyond the

scope of the thesis, as we limit to the basic components of the protocol architecture.

Finally, we develop a micro-payment scheme for cost distribution and loyalty payment,

which explicitly allows redistribution of content by end users. Our scheme includes an affin-

ity point computation algorithm, which rewards end-users for redistribution, thus providing

economic incentives for the sharing of media. The ramification of this approach is that end-

users are encouraged to provide access to their media store, thus maximizing the efficiency of

the distribution with DRMTP. Simultaneously, the cost of distribution for copyright owners

and content providers is drastically reduced, and availability of information is automagically

determined by popularity, transcending the lifetime of the original host.

Chapter 1: Introduction

1.4 Thesis Overview

We review the fundamental techniques of peer to-peer-systems, multicast and programmable

networks in Chapter 2. They will be the basis for the solution we present. We also note

how this can become a realtime medium suitable for dynamic shared access to information

as well as archived (newspaper-like) delivery. We stress communal access to stored material

in this thesis. Rather than redesign a point-to-point telephone network, this work focuses on

information such as entertainment, news and data that changes slowly relative to the amount

of access.

Chapter 3 describes the basics of our protocol architecture: the DRMTP protocol and the

session discovery and configuration protocol. We present the basic algorithms, defering some

of the details for Appendix A

We analyse the properties and performance of our protocol architecture in Chapter 4.

There we discuss scalability bounds through simple mathematical analysis, illustrate fail-over

capabilities and scalability in the presences of network effects with a prototype implementa-

tion, and congestion control through simulation.

We close with the description of our economic model for collaborative media distribution in

Chapter 5. There, we embed in the distribution a payment protocol modeled on a combination

of the Amway model with the existing distribution structure for music.

Chapter 2

Towards Collaborative Media

Distribution

The popularity of peer-to-peer systems, such as Napster [87], Gnutella [84], Morpheus [86],

and Kazaa [85] to name a few, has clearly demonstrated the paradigm of collaborative media

distribution. Any digitally encoded media file can be available throughout the network, in a

large number of otherwise unrelated end-user nodes. Furthermore, nodes have large enough

storage capacity and capability to hold a copy of any local media file for as long as users of

the node desire. Likewise, with broadband connectivity, the bandwidth available at end users

increases quickly. For end-users interacting with the network, it doesn't matter where the bits

come from. Users are interested in locating files matching their interests and transnfering

them to their local node, preferably at a rate that allows real-time playback.

Within this framework we are trying to answer the question of designing a scalable system

for efficiently locating and transfering a media file. The file may be available to many different

nodes and a suitable subset of them should be used for the transfer. Similarly, transfer should

happen in a way that minimises network overhead and if possible aggregates traffic towards

multiple nodes concurrently accessing the same file. Transfer should support online real time

playback if network conditions allow, and it should dynamically adapt to contigencies. Such

contigencies include congestion in the network and unexpected node failures.

In this chapter we set the stage for the work in this thesis. We develop a system model for

collaborative media distribution and discuss the current generation of peer-to-peer systems.

26 Chapter 2: Towards Collaborative Media Distribution

Figure 2.1: An illustration of the sytem model.

We then argue for the use of multicast as the fundamental communication paradigm and the

benefits of a programmable multicast protocol substrate, on our way to outlining the protocol

architecture developed in this thesis.

2.1 A System Model

The operating environment is a connectionless global area internetwork, the Internet. Any

host in the Internet can be a node for the system. Figure 2.1 illustrates the system model for

a portion of the network, depicting routers and the local organisation of hosts.

Each node maintains a local store of media files, which can be locally accessible by the

owner or transmitted in part or whole to other nodes. The set of content files that can be

part of the system is infinite countable: each file is distinct and new files can be added at

any time. Of course not all hosts are active in the network at all times, as new hosts can be

added at any time, and existing hosts may depart unexpectedly. Similarly, not all content files

O Node

C Local Network

O Router

0P Data Flow

2.1 A System Model 27

are available in the system on the same time, and new files can be added or existing files be

removed from any node. Thus, if nodes is the set of all nodes and files is the set of all files in

the system, act(nodes) C nodes denotes the set of active nodes and act(files) C files denote

the set of files available in the network. In Figure 2.1, act(N) = {N 1, N2, N3, N4, N5, N6}-

Each file f C files has a unique immutable identifier' ident(f), a well defined length2

length(f) in bytes, and for the purposes of distribution a well defined framing F fil. The

framing is a subdivision of the file in smaller parts, each with a well-defined length, and allows

us to define a real-time operation for the distribution. Let

Ff ie = {fi ... fn}1 (2.1)

be the framing of a file f. A schedule for the framing is a sequence of relative times at which

frames become available:

schedule(F fil) = ti, , n (2.2)

Real-time access to a file is defined by an immutable schedule Rfile, intrinsic to the file:

ff

R f"e= ri,...rn (2.3)

A schedule schedule(Fji") is real-time, if

Vti E schedule(F fle),r E Ri'let < ri (2.4)

Individual frames can be locally stored at a node, with local store including storage devices

of the node and temporary memory. A node n has a complete file f in store if and only if it

has all the frames of the file:

store(n, f) - Vfi E F ile, store(n, fi) (2.5)

A file is available in the network if and only if all frames are available in the network, possibly

Such an identifier can be constructed with a digest function like MD5 [63]
2Live content does not have a well defined length. However, we can define a file that includes a prediction of

the frames that will be produced by the generation process, and insert frames to the network as they become

available.

Chapter 2: Towards Collaborative Media Distribution

in different nodes:

f E act(f les) ++ Vfi E Ffile,]n E act(nodes), store(n, fi) (2.6)

In addition to ident(f), files have a high-level, human-readable description. The descrip-

tion however depends on the node where the file is stored; the user-owner of the node can

attach the description to files, and modify it at will. We denote by desc(n, f) the description

of file f in node n. The description captures the meta-data of the file. Meta-data include

information about the type of the file, a type-specific structured description, and so on. For

example, a music file encoded in MP3 format may have meta-data like artist, track and album

names, year of publication, label of publication (and copyright owner), etc. Similarly, a user

could add a description or assessment of the file in his own terms. Users locate files in the

system by a means of queries on descriptions. A query is a user-defined boolean function

which matches a description of a file at a node. Hence, a user may be inerestested in accessing

a file f, if a query query matches at some node n, that is if 3f, n, query(desc(f, n)).

Files are transfered in the system in sessions. A session is specific to a file, and includes

all participating nodes. Some nodes participate as sources, and other nodes participate as

sinks. A source in a session provides one or more frames of the file to one or more sinks.

By this definitions, nodes may participate both as sources and sinks in the session. Since

the file identifier is unique and immutable and a session is associated with a specific file, the

sessions are also unique and immutable. If sessions is the set of all sessions, with a one to one

correspondence to the files set, then act(sessions) C sessions is the set of sessions which are

active in the system.

With these definitions in mind, we can provide a high-level description of system operation:

1. A user, interacting with a node n constructs a query query which describes the file of

interest.

2. n evaluates the query to one or more other nodes in the system, until at least one node

m is found such that query(desc(m, f)) evaluates to true.

3. n joins the session for file f, as a sink initially, and transfers the file from some of the

sources in the session. By receiving some of the frames in the session, n immediately

2.1 A System Model

becomes a potential source in the session.

The problem has many facets. A mechanism is necessary for the query to be evaluated to

a subset of act(nodes) so that a match is found. Next, the session must be initiated: sources

that can provide the file in parts or whole must be located in the network and prepare to

serve data streams. And finally, frames must be transfered by the sources of the session to

the node.

In general, a node is aware only if its local store. It does not have any knowledge about

the existence of other nodes in the network or the files or frames available in their local

store. Nodes communicate with each other by message passing. Messages, which may contain

operation instructions and frames, are transported by the network in the form of packets. The

overall efficiency of system operation can be expressed in terms of number of messages that

are exchanged, and packets that are transported by the network. In addition, the system does

not operate in isolation; rather, since the nodes are Internet hosts, there is background traffic

carried by the network, mainly in the form of TCP flows. Hence, operation of the system can

be evaluated in terms of:

* The number of messages Em exchanged in order to locate and transfer a file, between

any number of nodes.

* The number of packets E, generated in the network from these messages

" The effect of system traffic on competing traffic in the network.

* The time it takes to complete location and transfer.

For example, consider again Figure 2.1, and let f be a file of interest for nodes N2, N3, and

N5 , available at nodes N1 and N 4. In order to locate the file, the sinks must reach the sources

by sending query messages. A great deal of complexity arises by the discovery process itself,

as the sinks require a way to become aware of the presence of sources and prepare them for the

file transfer. We discuss how this could be done in the next few sections, so for the moment let

us assume that the sinks are aware of the sources and have perfect knowledge of the topology,

which allows them to select the closest source. If sinks operate without coordination between

each other, based solely on point-to-point messages, then we require Em = 3 messages for

establishing the data transfer: N 2 -- + N1 : get, N3 -- + N1 : get, and N 5 -- + N 4 : get. This

Chapter 2: Towards Collaborative Media Distribution

also requires E, = 7 packets to be routed in the network, as packets are forwarded by routers.

Messages from L 2 to L1 require two packets, since the two local networks are one hop away

from each other. Similarly, messages from L3 to L 4 require 3 packets. For the file transfer,

we require a minimum of |Ff "I messages for each, assuming a perfect network that does not

lose messages and that a single packet is used for each frame. This translates to a minimum

of 7 IFJ |e packets in the network. The minimum time necessary for each transfer would be

roughly equal to the time require to cross the network links between the source and the sink,

if the source was able to perfectly pipeline the packets for arrival and no other traffic was

crossing the routers. Of course, even with no competing traffic in the network, the transfers

NI -- + N 2 and N -- + N3 will cross the same network links and require some queueing in

the R1 router.

This example illustrates some of the complications that arise: sources must be located

by the exchange of messages, files must be transported by more messages, and the overall

interaction results in many more packets in the network. However, things are even more

complex: packets may be lost and sources may unexpectedly fail in the midst of file transfer.

To deal with packet loss contigencies we must use protocols for reliable transfer. Furthermore,

the protocols in use should generate the minimum traffic possible and compete fairly with

background traffic when it appears in order to avoid congestion, which causes the packet loss

[23]. And in order to deal with failure contigencies, our protocols should use a loosely coupled

model, that does not rely in a source surviving an entire file transfer. We discuss approaches

to the problem in the remaining of the chapter.

2.2 Peer-to-Peer Systems

2.2.1 Napster

The primary example of peer-to-peer system is Napster. Napster is a very simple system,

which attempts to solve the discovery problem with the use of a centralised registry or server

(Figure 2.2).

The system works as following:

1. A node joining the network registers with the napster server, and provides a list of

files that is sharing. This is accomplished with an advertise message, which contains

2.2 Peer-to-Peer Systems 31

regis

4
a- a4

* a

* aaa a

(a)

a..----

aa*aaaa

aaa

* a
a a a~e~,nimenda

* U
U 4*

* a
U 4a
* a

- .3-..c&o

* U , L.

D4U

(b)

2.®
rv--

N,

Figure 2.2: Simplified Napster system model. (a) A node registers and advertises local files.

(b) The node submits a query. (c) The server returns a recommendation. (d) The node selects

a source and transfers the file.

trarnsfer

****.(D

Chapter 2: Towards Collaborative Media Distribution

descriptions of all the files locally available. The description is limited to a file name,

which can be considered a limited form of meta-data.

2. A query message is submitted to the napster server, which matches the query against

all active advertisements. The server returns a recommendation of matching nodes to

the querier. The query is limited to wildcard matches for file names.

3. The node selects one of the sources and establishes a point-to-point connection to the

source for transfering the file.

In a first approximation, the system requires just two messages for resolving the query

(query and recommend), plus the number of messages required for transferring the file. The

actual network utilisation is not simple to estimate though - a great deal of problems are

hidden under the hood.

The problems have to do with the scaling, efficiency, and faul-tolerance characteristics of

the system. First, the centralised design requires that all nodes advertise their entire local

state to the registry. Apart from the state maintenance problems that this involves, given

the capacity of local stores of modern personal computers, the state transfer may require

significant bandwidth. Furthermore, the server must be powerful enough to handle the state

of all the nodes and efficiently process queries on it. Hence, the server becomes the bottleneck

of operation, limits the scalability of the system, and reduces the efficiency by generating

significant network traffic for state maintenance. In addition, the system's fate is bound to

the server. If the server fails, then the system goes down with it - ironically, this is was the

fate of the original Napster network.

In addition, the system does not offer any mechanism for managing network traffic, placing

an additional burden to scalability. To appreciate the problem, let us overlay the transfer

part of Figure 2.2 to an example model of the underlying network infrastructure. Figure 2.3

illustrates the situation. There are two things to notice: First, the N1 , which is the query node,

is unaware of the actual network topology of the network. Therefore, the selection of the source

can be completely incorrect - in the example the selected source is N2 . By transfering the file

from N2 instead of N3 which is closer in the network, parts of the network are unecessarily

loaded. In addition, given that TCP is used for the transfer, the actual throughput of the

transfer is reduced. This is not immediate without an understanding of how TCP works:

2.2 Peer-to-Peer Systems 33

Figure 2.3: Napster as an overlay network

The throughput is inversely proportional to the round-trip time of the network path [55].

Hence, longer connections peak at lower transfer rates and, as a result, the unecessary load

of the network is extended for a longer time3 . Of course, there are ways to select an optimal

path to different nodes, as for example with Resilient Overlay Networks [5]. Unfortunately,

these techniques require significant communication for maintaining information about network

topology, practically limiting scalability to a few hundred nodes.

The other detail to notice is that N1 is completely unaware of a concurrent transfer of the

same file, that takes place between N3 and N 4 . As a result, the actual network traffic is more

than double the traffic that would be necessary if N3 was simultaneously transmitting to both

Ni and N4 . Although the probability of concurrent transfer may seem remote, network effects

of media distribution should be taken into account. During popularity surges, popular media

3 Traffic localisation is one of the premises of Content Distribution Networks like Akamai [82]. However,

in such systems, replication of the content is required in each edge server, while the store of end users is not

leveraged at all.

Chapter 2: Towards Collaborative Media Distribution

files will tend to be accessed by many nodes in a short time. To quantify this, consider a high-

quality encoded MP3. Typically, such a file will have a size of 10MBytes for a 5 minute track.

With a 1Mbps downstream connection, even if the full bandwidth is completely utilitised by

a single node4 , the transfer will require 78 seconds. Therefore, at most 1000 users can access

the file in a day without any temporal overlap of the file transfer. If we extrapolate this to a

2-hour movie encoded in MPEG format, the number of completely non-overlapping users in a

day drops to 10 or 15. These examples serve to illustrate the effects of unmanaged traffic for

media distribution can be on the network, and hint on the use of multicast as the underlying

transport technology.

2.2.2 Gnutella

Gnutella takes a different approach to file location. Instead of relying on a centralised registry,

with all the faul-tolerance and scalability problems that this implies, it constructs an overlay

network. In the overlay, each node maintains connections to some other nodes it is aware

of. There is no state exchange between the nodes; rather queries are propagated along the

overlay. Each node locally evaluates the query; if the query is successful it directly replies

to the source of the query, otherwise it forwards the query to all known nodes with which

it maintains connections. The propagation of query messages is controled by a time-to-live

(TTL) parameter, which is decremented with every hop on the overlay. When the TTL reaches

zero, the message is not further propagated.

Figure 2.4 illustrates an example of query propagation in the gnutella network. We take

the same setting as the previous example, with the target file available in N2 and N3, but

do not show query propagation further than 3 hops. If the query TTL was higher than that,

node N3 will also receive the query and reply to N1 with a match. Once again, after the

search completes, Ni selects a matching node and transfers the file from it, with a similar

strategy as Napster. Hence, the transfer process suffers from the same deficiencies as content

transfer in Napster. The difference is that scalability and fault-tolerance is not restricted by

the existence of a centralised registry. But a different problem creeps in: query propagation

is very expensive. For example, a query with an initial TTL of s in an overlay with an

4Broadband connectivity is based on sharing the downstream bandwidth between local nodes.

2.2 Peer-to-Peer Systems 35

average degree5 d will result in O(dS) messages. Furthermore, the actual links in the overlay

network bear no relationship to the actual network topology, resulting in multiple packets

in the network per message. Finally, an additional hidden cost in gnutella includes network

maintenance by periodically exchanging messages between adjacent nodes in the overlay.

2.2.3 Advanced Peer-to-Peer Lookup Algorithms

As we have seen, scalability problems of the first generation of peer-to-peer systems 6 affect

both content discovery and transport. The content discovery scalability problem has different

manifestations in the two approaches we discussed. In the centralised registry approach,

the system is limited by registry scalability. In decentralised approaches based on Gnutella,

scalability is limited by the number of messages and network traffic generated by the search

algorithm. The problem of transport is similar in both approaches.

These scalability problems have spurred a wave of research in peer-to-peer systems and

algorithms. So far, the result is new generation of lookup algorithms, including Chord [69],

Tapestry [79], Pastry [65], and CAN [61]. These algorithms are used so far for cooperative

storage and file systems - for instance Chord is used in CFS [18] and Tapestry is used in

OceanStore [16], but they can be used as a more general overlay network routing mechanism.

The approach taken by these algorithms is to construct a distributed hash-table: Given a

key k describing a content file, locate a node n where k is mapped in a purely decentralised

manner. All four algorithms operate with local knowledge, require each node to maintain a few

links to other known nodes in the network, and can return a match in O(log n) messages. Such

algorithms are excellent for session discovery, as the key can be the file identifier. However,

content discovery with high level queries remains unresolved. Similarly, although some of

the algorithms can support proximity routing for locating the closest (in network sense) node

matching the key, the transport problem remains largely unresolved. Finally, these algorithms

have a hidden maintenance cost, the effect of which in scalability for highly dynamic is not

clearly understood yet.

5The degree is the number of connections of a node to other nodes.
6From newer first generation systems, Kazaa is based on proprietary protocols, with no publically available

specification. Morpheus and Limewire, two other popular peer-to-peer clients are based on Gnutella.

36 Chapter 2: Towards Collaborative Media Distribution

(a)

N41

.4 0

queryy

(b)

NN

A..

.. ''-|||.

(c)

Figure 2.4: Query propagation in Gnutella. (a) Node Ni broadcasts the query to neighbouring

nodes in the overlay. (b) Second hop propagation. (c) The query reaches N2, where it is

matched, and N2 contacts N1 with the match.

2.3 The Promise of Multicast

2.3 The Promise of Multicast

Collaborative media distribution is an inherently multipoint communication activity. Even if

a node looks ahead during playback, the rest of the file must still be received. Multiple nodes

may be requesting the same file concurrently, and similarly multiple nodes may be providing

the same file, in part or in whole. Thus a mechanism for true multipoint communication can

vastly improve system scalability, both by simplifying the problem of content and session dis-

covery, and by providing the means for aggregating data transfer between hosts. For example,

consider Figure 2.3 once again. With a suitable multipoint communication mechanism, both

file transfers could be provided by N1 . Similarly, the transfers N1 -- + N 2 and N1 -- + N3

would be generating half the network packets than two point-to-point connections, as they

are sharing the same network path.

2.3.1 IP Multicast

The suitable low-level technology for multipoint communications already exists in the Internet:

IP multicast [15]. Although it has not yet been fully deployed, large portions of the Internet

are already multicast-enabled and it is an inherent part of IPv6, the next generation IP

protocol [34]. The model of IP-multicast is best effort unreliable delivery of datagrams to

logical addresses, known as multicast groups. Multicast addresses are part of the reserved

class-D addresses, offering an 28-bit address space.

Multicast groups are open; that is, any host on the Internet can receive packets destined

for multicast addresses by simply joining the group. Similarly, a member of a group has no

means for finding other members of the group. Information about membership in various parts

in the network is exchanged between hosts and routers and propagated among routers using

the Internet Group Management Protocol (IGMP) [22]. On receiving information about the

state of membership in the network, routers can construct distribution trees for each group.

The distribution trees include the routers towards which multicast packets should be sent;

their construction is part of the multicast routing protocol [73, 15, 21, 17, 8].

A sender to the group can control the scope of a packet by setting the TTL field. As with

any IP packet, routers will decrement the TTL packet before forwarding and drop packets for

which the TTL is zero. Therefore, a node can limit multicast packets to a particular distance

Chapter 2: Towards Collaborative Media Distribution

in the network with a suitable TTL value; for example, a TTL of 1 will only deliver the packet

to the local network. A second mechanism for restricting the scope of multicast packets is

administrative scoping [511, where scoping boundaries can be assigned to specific multicast

addresses. The two approaches can co-exist, as administrative scoping is a static address-

based scoping mechanism for enforcing routing boundaries, while decision while TTL-scoping

is a dynamic per-packet based mechanism for controling the scope of the packet within the

distribution tree of an address.

2.3.2 Multicast Transport

Multicast transport presents significant challenges in itself. Most of the problems arise from

the difference between multipoint and point-to-point communications. While the latter is an

understood topic, with TCP [59] being the prevalent protocol in use in the Internet today,

the semantics of multipoint communication are fundamentally different. The main problem

arises from heterogeneity among the members of a group. Since members are scattered in the

different parts of the network, they suffer different packet losses and in general are able to

sustain different transmission rates. How can the sender of a packet ensure that the packet

is received, if reliability is necessary? When should packet tranmission in a stream progress?

How can the members of the group synchronise their decisions of packet transmissions? These

are just some of the fundamental problems that multicast transport protocol designers have

to face.

An influential idea that pervaded the design of early protocols, was the reliable broadcast

algorithm by Chang and Maxemchuck [12]. With this algorithm, progress and permission to

transmit was controled by the circulation of a token among members. The use of a token of-

fered a control mechanism for senders in the protocol, and was used by the Multicast Transport

Protocol (MTP) [7] for providing a protocol with sender-controled streams. Sender-control

mechanisms accomodated for a protocol design that is close to the semantics of point-to-point

communication.

Protocols which are based in explicit positive acknowledgement of packet receipt, such as

MTP, are called sender-initiated. Unfortunately, sender-initiated protocols suffer from a very

serious deficit: the protocol cannot scale. As the number of receivers in the group increases,

so does the traffic for providing acknowledgements to the sender, defeating the purpose of

2.3 The Promise of Multicast 39

multicast. The solution to this problem is to use a receiver-initiated approach [711. With

receiver-initiated approaches, receivers do not report positive acknowledgements. Instead,

when a packet loss is detected by a receiver, the receiver can report the error with a negative

acknowledgement and request a retransmision. However, this solution is not scalable either.

When a packet is lost by a large number of receivers - for example when the loss occurs near

the source - the scheme will result to an avalanche of negative acknowledgement, a problem

known as implosion.

The solution to defeating implosion is to synchronise error reporting among receivers. An

approach to synchronisation is polling: the sender periodically polls receivers for errors, simul-

taneously limiting the set of receivers that can report. Once a report is received, the sender

multicasts the missing packet, which can then be received by any member of the group. This

approach is used in [2], but the result is high latency between error occurence and correction.

Furthermore, not all receivers may have suffered the same loss, making transmission redun-

dant for some of them. If some of the receivers are experiencing heavy congestion, correction

will involve many more retransmissions, worsening of the actual congestion.

A different approach was taken by Reliable Multicast Transport Protocol (RMTP) [58]:

In RMTP, some receivers are statically assigned the role of a designated receiver. Desig-

nated receivers are responsible for providing feedback to the sender, which is also statically

assigned. Non-designated receivers locally report errors to the designated receivers with uni-

cast messages, which are responsible for requesting retransmissions by the sender. While this

approach scales better and reduces the implosion impact, it comes with a serious drawback:

the sender and designated receivers are statically assigned. Furthermore, selection of the des-

ignated receivers requires knowledge of the network topology, making the protocol unsuitable

for dynamic operation. The eXpress Transport Protocol (XTP) [20, 36] proposed a different

approach: multicast of control traffic with a randomised slotting and damping of receiver feed-

back. The scheme allowed receivers to synchronise with a randomised algorithm, providing

the first scalable solution for the implosion problem. This scheme was further extended by

Scalable Reliable Multicast (SRM), as we describe in the sequel.

40 Chapter 2: Towards Collaborative Media Distribution

2.3.3 Scalable Reliable Multicast

By large, the problem of implosion and dynamic protocol state was solved by Scalable Reliable

Multicast (SRM) [24]. SRM solves the receiver synchronisation problem by employing a

randomised algorithm for error reporting. When a receiver perceives a packet loss, instead of

immediately reporting an error it establishes a random timer. When the timer expires, and

if error reporting has not been suppressed as we describe shortly, the receiver multicasts the

error report to the entire group, and sets a new timer. If no correction is received before the

timer expires, for example because the error report message or the correction packet was lost,

the error reporting process restarts. This process is followed by all the receivers in the group;

and since error reports are multicast, they will be received by all the members in the group.

Thus, a receiver waiting to report the error can suppress the report on receiving an error

report message from another receiver or the correction itself. Naturally, the effectiveness of

the scheme depends on the selection of timer intervals [52, 53, 60]; an optimal timer interval can

be selected according to the size of the group, the distance from the sender or by dynamically

adapting to observed control traffic levels.

This simple and elegant algorithm provides with a mechanism for controling supression.

Furthermore, since error reports are themselves multicast, any member of the group can pro-

vide correction packets allowing for distributed error correction among members of the group.

Hence, sessions in SRM are lightweight: the protocol places no restrictions on membership

or the roles of participating nodes. Multiple senders can easily be accomodated in the SRM

framework, and any receiver can act as a sender. Similarly, members can join or leave the

session at any time, without altering protocol operation.

There are a few variations in the basic SRM algorithm that provide more fine-grained

control of the correction process [46, 391. These variations try to localise the error correction

process and avoid sending the correction packets further than it is necessary [54]. The first

variation in localising error correction traffic is to restrict the scope of correction packets,

so that it covers only the receivers suffering the loss. The second variation includes the use

of multiple multicast groups, with receivers suffering the same losses joining a new multicast

group where corrections can be multicasted. The combination of these two techniques leads to

the concept of local groups [57, 35], where receivers locally organise for creating new multicast

groups for retransmissions to be directed.

2.3 The Promise of Multicast 41

The framework of SRM and the local correction techniques that have been developed,

is a good starting point for building a collaborative media distribution scheme. Kermode

[40] used these concepts for developing the Hierarchically Partioning Real Time Protocol

(HPRTP), used by a smart caching system for media distribution, paving the way towards

collaborative media distribution.

2.3.4 Multicast Congestion Control

SRM set the stage for scalable reliable multicast, but did not attempt to provide a congestion

control scheme in the system. Throughout the design, the assumption was that in general

there is enough bandwidth provide for the basic requirements for tranmission of protocol data.

Unfortunately, this is not always the case in the Internet, where congestion can appear in paths

of the network. The congestion problem becomes even more evident in a large scale system

for collaborative media distribution, where a very large population of nodes may distribute an

even larger number of content files. Every modern protocol design should include mechanisms

for congestion avoidance and control [38]. Furthermore, the protocol should behave like a

good citizen in the Internet, where the vast majority of traffic is carried by TCP streams [23].

Protocols that react to congestion and adjust the sending rates in a manner similar to TCP

are known as TCP friendly [23, 25].

The problem of congestion control for multicast protocols is harder than the problem for

point-to-point protocols. From one side, when global congestion is experienced in a session -

for example when there is a single source and a congested path exists near it - the suitable

reaction is to globally decrease the rate of the protocol, similar to what a TCP connection

would do. On the other hand, if congestion is experienced only in some paths of the network

and affects only a subset of the receivers in the group, a global decrease may not be the

right decision to make, as the rate is unecessarily decreased for all the receivers. Figure 2.5

illustrates the difference between global and local congestion, for an example session with a

single source and a number of scattered receivers. In Figure 2.5(a), there is a congested path

near the source, having a global impact on all receivers. In Figure 2.5(b), the problem affects

only a few of the receivers. Things can get worse than this scenario, when there are multiple

congested paths in the network with uncorrelated loss characteristics.

One of the first attempts in introducing congestion control for heterogeneous multicast

42 Chapter 2: Towards Collaborative Media Distribution

(b)

Figure 2.5: Congestion in multicast transport protocols, in a flow from the source S to sinks

R1, R 2 , R 3 , R 4 . (a) Global congestion caused by a congested link near the source. All sinks

lose packets of the flow. (b) Local congestion for a receiver subset. Only sinks downstream

the congested path (R1, R2 , R 3) lose packets.

2.3 The Promise of Multicast 4

groups was Receiver-driven Layered Multicast (RLM) [49]. RLM was developed in conjunc-

tion with a layered video codec, and introduced layered transmission with multiple multicast

groups. With RLM, there is a base layer carrying the traffic for basic video quality, and

additional layers offering improved quality in a pyramid scheme. The more layers a receiver

is able to tune in, the better the video quality. Initially, each receiver starts with the base

layer and performs join experiments for additional layers. Receivers synchronise their join ex-

periments with a randomised exponential back-off scheme and by announcing their intentions

to other local receivers. While the join experiments are successful and all currently active

layers are received wihout losses, receivers will keep adding layers until full quality video is

achieved. If losses are perceived, the receiver deems the latest join unsuccessful and drops the

highest layer, simultaneously backing off the interval for the next join experiment. Because

experiments are announced to all receivers, the learning experience is shared; if a receiver

joins a layer and other local receivers do not perceive any loss, then they also join the layer.

If loss is perceived, other local receivers know that the source of the loss is another receiver

performing a join layer and adjust their timers without dropping any currently joined layer.

Unfortunately, there are some serious problems with this approach. First, if the base layer is

causing congestion itself, its rate cannot be adapted, resulting in receivers entirely dropping

out of the session. This is an artifact of real-time encoding, as explained in [68]. A second

problem is not visible in the protocol design: router slack time. Tree pruning with IGMP is

a slow process, and even when a layer has been dropped by all receivers in a network path,

packets destined for the layer's multicast group will continue being forwarded for times in the

order of minutes, causing packet losses to all layers. Finally, there is a problem of granularity

in the layering scheme.

A partial solution for the problem of router slack time for layered rate adaptation is

dynamic layering [19, 72]. With dynamic layering, the rate is temporarily increased within a

particular layer to the rate of that would be achieved by joining the next layer, at well defined

times. If a receiver perceives no losses, it can proceed and join the next layer. The scheme has

been further extended to fine-grained layering [11], and is usually used in conjunction with

Forward Error Correction (FEC) codes.

While these approaches solve the granularity of the layering, they cannot entirely fix the

router slack time. When congestion is caused at some path because of sharing it with a

44 Chapter 2: Towards Collaborative Media Distribution

competing flow, even if the receiver perceives congestion and leaves the highest layer, packets

will continue to be received. As a result, if the competing flow is a TCP connection, it will

be effectively shut-down for the router slack time, while the actual traffic generated by the

higher layer is simply lost. In addition, these approaches are unsuitable for our system model

for a variety of reasons. Firstly, forward error correction is very resource intensive, with

complexity increasing sharply when improving the efficiency of the code. Second, the digital

carousel model employed by these schemes assumes a server constantly serving a stream of

FEC packets. Thus, acting as a source requires significant resources. This limits the serving

scalability, especially when we consider the fact that the number of content files in the system

can be very large. Finally, in order for parts of the file to be decoded, complete code blocks

must be received first, and if the begining of the stream is missed, the receiver should wait for

the carousel to rotate. Therefore, even if the achieved rate is sufficient for real-time operation

for a node n receiving a file f, real-time playback will not be possible.

Despite the practical problems, dynamic layering is an interesting scheme for solving the

path loss multiplicity problem. Coupled with TCP-friendly rate adaptation scheme for adjust-

ing the throughput within the actual layers, we can leverage the density of the network and

oppurtunistically use multiple sources for providing parts of the file. Of course, one problem

remains: how to adjust the rate of a layer in a TCP-friendly manner. Fortunately, recent

research has produced protocols with the desired characteristics using equation-based rate

adaptation [25]. The cornerstone of these schemes is the approximation of TCP throughput

through the equation

1R = tRT(2.7)
t RTT/pV(2/3 + 63/2p(l + 32(2))

where R is the througput in packets per second, tRTT is the round-trip time of the TCP

connection, and p is the loss probability. The recently developed TCP-friendly Multicast

Congestion Control (TFMCC) [77] scheme, explicitly uses the equivalent TCP throughput

equation for a single-rate (non-layered) multicast congestion control. The scheme uses for the

p and tRTT values of the receiver which suffers the worse losses to globally adapt the rate. In a

similar scheme, PGMCC [64] uses a dynamically designated receiver (the acker) in the group,

as the floor for congestion control. The acker is selected again based on perceived losses by

2.4 Programmable Networks 45

the receivers, but the rate adaptation scheme is less smooth than TFMCC. These techniques

are well-studied and are part of our protocol design for collaborative media distribution.

2.4 Programmable Networks

2.4.1 Session Discovery and Configuration

By using multicast as a low level transport mechanism, we can design a protocol for efficient

distribution of information within a session. However, we have not yet discussed a suitable

mechanism for session discovery and configuration. The session discovery problem is compli-

cated by the necessity to submit high level queries for matching meta-data to actual session

identifiers. Once a session identifier has been obtained, we need to configure participants in

the session, so that data flow can begin.

The session discovery approach used in conjunction with SRM, is the Session Announce-

ment Protocol (SAP) [32]. With SAP, a session directory maintains a list of current active

sessions, together with a textual description, and periodically multicasts announcements con-

taining both the description and configuration of the session. The payload of SAP messages

is governed by the Session Description Protocol (SDP) [31]. Unfortunately, this approach

cannot scale to a collaborative media distribution environment. The problem is twofold: first,

announcements can cause significant network traffic, especially for large numbers of active

sessions. And second, it suffers from the same registry scalability problems that napster-like

systems suffer from. In addition, the session description protocol was designed for human users

interacting in multicast conferences using SRM; as such, it does not contain any provision for

automatic session configuration.

A more scalable solution for session location is to use the Service Location Protocol (SLP)

[29]. SLP has provisions for scoped service discovery and multiple directories; however, the

service description mechanism is intended for human users that require to access specific

services by name. Hence, the naming problem is not resolved. Furthermore, the current

design of the protocol is geared for enterprise users, which require to access relatively few

and static services; it is not designed for a collaborative media distribution environment with

many dynamic service access points, as we describe it in Section 2.1.

Chapter 2: Towards Collaborative Media Distribution

2.4.2 Active Networks and Active Service Frameworks

The main problem with session discovery and configuration is flexibility. The problem stems

from constraints placed on applications by the Internet service model itself. On the one hand,

the design of the Internet service model abstracts away how messages are forwarded through

the network, divorcing applications from the complexity of the communication substrate.

On the same time, in a system that follows the model and scale for collaborative media

distribution, this design makes it hard for application to exploit detailed knowledge of the

underlying network in order to enhance their performance and reduce network load.

For example, within the collaborative media distribution framework, we need to support

disemination of high level user queries which perform computation in order to deduce the

suitability of a file description. Similarly, after locating a session identifier, we need to locate

the closest potential sources in the network and perform configuration tasks. For scaling

reasons, it is not possible to have preconfigured sessions for any given file in the network,

have nodes constantly serving as sources for their locally stored files, or maintain a registry

of active sessions. We need a mechanism for performing computation on demand, locally at

each node of interest.

The active networks initiative [4, 78] sought to modify the Internet service model towards a

programmable network architecture. In the active network model every entity in the network,

especially routers, can be dynamically programmed to support new protocols. The IP service

model is modified from a black box network transport to a fully configurable programming

environment. The basic paradigm behind active networks is mobile code [27, 30]: executable

code (usually interpreted) is transported in network packets and installed in routers. The

installed code modifies the behavior of the router for specific types of packets, according to

application specific semantics. Of the most succesful active network toolkit is ANTS [76],

which has been used for implementing a wide variety of routing and router-assisted transport

protocols [75]. Of particular interest is the Active Reliable Multicast (ARM) [43] protocol.

ARM implements a router-assisted variant of SRM, which increases the efficiency of local error

recovery by leveraging router knowledge about network topology.

Despite the flexibility of the active network paradigm, it is not the only way that pro-

grammability can be introduced in the network. Active network bring a radical change in the

IP service model, a model which has worked reliably for a long time and has been very widely

2.5 Concluding Remarks 4

deployed. In addition, there are performance drawabacks, deployment problems, and serious

security implications of enabling a fully programmable network core [74, 10].

Much of the flexibility of active networks can be accomplished by a less radical shift: a

programmable service architecture [3]. With a programmable service architecture the core

of the network and the IP service model remain unchanged. A programmable service archi-

tecture allows applications and user to download and execute code at strategic locations for

the application. But instead of executing on routers, user code executes on normal hosts,

preserving the end-to-end design principle of the Internet [28]. This model is known as active

services.

In the context of our model of collaborative media distribution, an active service architec-

ture can solve the session discovery and configuration problem, by turning all participating

nodes into active service nodes. Instead of having a fixed interaction with the network, nodes

allow mobile code to execute in their local address space. The code can carry high-level

queries and session configuration parameters. In conjunction with the open model and scal-

ability properties of IP-multicast we can construct a flexible and highly dynamic system to

serve our purposes.

2.5 Concluding Remarks

In this chapter we set the background for the protocol architecture developed in this thesis. We

developed a system model which captures the reality of digital media distribution in a highly

networked world with a set theoretic approach. We discussed the peer-to-peer distribution

paradigm, as set by first generation systems developed recently, and showed how the lack of a

suitable transport protocol hampers the scalability and performance of the system. Then, we

discused research experience with multicast transport protocols and programmable networks.

In the next chapter we show how we can reconcile this research experience with our system

model, and develop a scalable high performance protocol architecture which leverages the

redundancy and distributed nature of the model.

48 Chapter 2: Towards Collaborative Media Distribution

Chapter 3

A Protocol Architecture for

Collaborative Media Distribution

We are now in position to outline our active protocol architecture for collaborative media

distribution. Our architecture is heavily based on multicast and mobile code, and is built

around an end-to-end programmable protocol for scalable media distribution. The reasons

for desiring programmability in the protocol level stem from the active service paradigm. An

application level protocol that supports embedding of code within messages is necessary for

session discovery and configuration. At the same time, as we make no assumptions about

the framing of the data or the security and privacy requirements of pariticipating nodes, the

protocol architecture must be flexible enough to support any choice for these options. Hence,

instead of making a fixed protocol that operates on fixed data representation, we can construct

protocol messages that contain mobile code for interpretation in the end nodes.

3.1 Building an Active Protocol Architecture

3.1.1 Protocol Design Considerations

There are a few considerations that need to be made with regards to protocol design. As we

have mentioned, it is of interest to provide real-time streaming of media files, by meeting the

framing schedule (Section 2.1). Real-time operation allows users to access media files as they

are transported. For real-time streams, As we mentioned previously, Shenker argues in [68]

Chapter 3: A Protocol Architecture for Collaborative Media Distribution

that the utility of the distribution has stepwise behaviour as a function of the actual transfer

rate1 . If the transfer rate falls below a threshold, the utility sharply drops to 0. While this is

certainly the case for the adaptation quality of current generation media codecs, this utility

model is not directly applicable to our system model.

In our model, file access is not restricted to online playback. Rather, node users can access

locally stored media offline. Similarly, nodes can act as future sources for the file. For these

reasons, we constrain real-time operation to be a desired feature of the distribution protocol;

the protocol should try to achieve reliability and real-time rate, but when this is not possible

it should opt for reliable transmission of the file.

The distinction between real-time operation and reliability becomes sharper when network

conditions are taken into account. Unfortunately, congestion is a phainomenon which occurs

regularly in the Internet. Modern transport protocols are required to react to incipient con-

gestion but decreasing the transmission rate in order to avoid congestion collapse. Real-time

transport protocols that insist of maintaining their intrinsic rate in the presence of congestion

are harmful for the network, and can have rippling effects that affect all nodes in an area of the

network. Therefore the design of the protocol should incorporate congestion avoidance and

control mechanism. Furthermore, routers are designed for giving congestion signals to network

flows by dropping packets. To avoid further dropped packets and disruption of operation, the

protocol should behave in a TCP-friendly manner.

In addition, we are designing for an operation environment with high node density and

multiplicity of sources. The presence of multiple sources for a media file provide with an

oppurtinity for traffic localisation, increasing protocol scalability. Hence the protocol should

opt for local file transmission. The network effects of media provide for an additional incentive

for traffic localisation. Popular files are expected to be widely propagated, providing ample

opportunity for ad-hoc local caching.

Finally, care should be taken for the scalability of session discovery and configuration traf-

fic. For the system to scale to large numbers of nodes, it must be able to sustain large number

of session messages. Hence, a local caching mechanism is necessary for session information as

well.

'As experienced by the receiver.

3.1 Building an Active Protocol Architecture 51

3.1.2 Architecture Outline

With these design considerations in mind, we can outline the two components comprising our

architecture:

" A dynamic session discovery and configuration protocol. The protocol allows us to

locate session identifiers using high-level queries expressed as code, dynamically configure

sources for a transport session, and locate information about session status. We achieve

this by using a thin message specification; session messages do not specify the payload,

and it is up to the end nodes to interpret them. The protocol operates in a completely

decentralised manner, using scoped multicast packets for all messages. The protocol also

uses opportunistic caching of query results at edge nodes and includes a traffic control

mechanism for scaling with the number of sessions and nodes in the system.

" A distributed multicast transport protocol for dynamic M to N streaming. The protocol

is designed with the semantics of the collaborative media distribution model in mind:

multiple sources may be available in the system, some of them storing only a subset

of frames for the target file, and multiple unsynchronised receivers may concurrently

access it the same time. The protocol builds on ideas from SRM [24], TFMCC [77],

and HPRTP [40], adapts to congestion in TCP-friendly manner, and on the same time

attempts to leverage mutiple source availability in order to achieve real-time operation.

By using multiple sources in different network paths, the protocol can maintain the

real-time rate with a dyanamic layering scheme based on adaptive stream splitting and

aggregation.

The protocol architecture is complemented by the MAST programming language. MAST

is a new dynamic mostly functional language based on Scheme [41, 1], with transparently

integrated support for mobile and distributed computation. The language is used in the

prototype implementation as a scripting shell for the protocol architecture and a mechanism

for expressing SDCP messages. However, we will not discuss it futher as such a discussion is

beyond the scope of the protocol architecture.

The remaining of the chapter discusses considerations behind protocol design and presents

our basic protocols. We discuss the algorithms employed by the protocols and the exchange

Chapter 3: A Protocol Architecture for Collaborative Media Distribution

of messages from a high level point of view. Details of protocol implementation are presented

in the appendix.

3.2 Session Structure

Recall from the system model of Section 2.1 each content file is accessed in the network

through a session, and that the set of active sessions is isomorphic to the set of active files.

When a session is active it is not necessary that any data transport takes place or any node

is configured to provide or receive data from it. Rather, an active session can be used for

data transmission. Each session uses a multicast address for carrying configuration traffic

between paricipating nodes. The multicast address is not statically assigned; when the need

for accessing a session arises, a multicast address is allocated for the period of network activity

and pariticipating nodes are configured with the Session Discovery and Configuration Protocol

(SDCP). SDCP is a soft-state protocol, that is the state of the session is retained as long as

there is activity. In addition, node activation for a session is localised. Only nodes which have

frames of the file in question locally stored in the neighbourhood of a node requesting session

data need be configured and join the session.

Data flows in the session within streams of the Distributed Real-time Multicacst Transport

Protocol (DRMTP). Each stream represents a localised flow of file frames within a single

multicast address. The frames that comprise the stream are a subset of the file frameset.

That is, in a session session(f) providing the file f, a stream s represets a flow for a frameset

Fjtream such that

Fstream c Ff (3.1)

The set of streams in a sessions is denoted as streams(session(f)). At any given time, there

is activity in a sessions if and only if streams(session(f)) # 0.

Data in a stream flows in a single multicast address, locally allocated with SDCP. It should

be stressed that streams are local; that is the data flow in a stream has a scope large enough

to cover participating nodes only, and multicast addresses can be reused in different parts

of the network for different streams. Each stream has a single source, which is aware of the

frames that comprise it. The stream frame set, as perceived by the source, is updated as

frames are transmitted. The frame set can also be explicitly modified by request of the sinks.

3.2 Session Structure

When the frame set becomes empty, that is all frames have been transmitted, the stream can

be discarded.

A node can participate in a stream either as a source or a sink. Within the stream we

maintain point-to-multipoint transmission semantics, with a source transmitting data and a

sink receiving. A node however can participate in more than one streams at the same time,

acting as a source in some streams and as a sink in others. Therefore, every sink in a stream

can become a source in another one; and a node can aggregate data from multiple streams,

acting as a sink.

There are two important consequences of this stream aggregation mechanism. First, we

can consistently handle late joins in a stream, with local patching. And second, we can

aggregate a number of slow interleaved streams to provide real-time operation for a node,

even when none of the sources of each stream can support it. Figure 3.1 illustrates the first

case, while Figure 3.2 illustrates the second.

In Figure 3.1, node N1 is serving a stream Si for file f, where initially Fjtream = Fle
1f.

Nodes N2, N3 and N4 participate in the stream as sinks. Some time t after the stream

flow has started, node N5 joins the session for receiving the entire file. At the time of join,

Fstream(t) C Ff", as some frames have already been served. N5 joins S1 , and on the same

time receives the missing frames from N3 in a new locally established stream S2 . We explain

later how this scenario is seamlessly accomodated with the DRMTP stream establishment

algorithm. Note that the total number of packets in the network for transfering the file in

this particular scenario is E, = 6|Ff I + 2|Fgtream(t)|. By comparison, if point-to-point

connections were used, all provided by N1 acting as a server, we would require 18F fle I

packets in the network.

Figure 3.2 illustrates real-time operation with aggregation of two half-rate streams. Recall

from the model of Section 2.1 that a stream Fstream is real-time if the frames are delivered

with a real-time schedule. Let Ff'le be the file of the session and Rfl"e be the real-time

schedule of the file and assume for the sake of the example that the frame-rate is uniform R

frames per second, that is

li 1
Vri, rj- E Rf " ri+ - ni - rj~ - rj - R (3.2)

54 Chapter 3: A Protocol Architecture for Collaborative Media Distribution

(b)

Figure 3.1: Local patching for late joins. (a) Initial configuration, with N1 providing S1 (red)

to N2, N3, and N4 . (b) N5 joins S1 and N3 locally patches with S 2 (blue).

R -- --- -- ---- --0..........2f, a i
R/2

44sa Lfif, fF

Figure 3.2: Real-time operation with aggregation of two half-rate streams.

3.3 Implosion Control 55

Partition the file in two streams si and s2, such that

Fstream = {fili = 2k A fi E Fzle} (3.3)

Fstream ={fIi = 2k + 1 A fi F, (3.4)

If we deliver the two streams with the same schedule as the real-time schedule of the file, then

each stream has a rate R/2. But the sink receives frames with an aggregate rate of R, because

the two streams are interleaved. Hence, we can achieve real-time operation when the sink has

enough downstream capacity, but the two sources have an upstream capacity R/2. Note that

a similar scenario matches assymetric residential connections. We later explain how stream

splitting is handled by DRMTP as part of the congestion control algorithm.

3.3 Implosion Control

The key to scalability of multicast based systems is an effective mechanism for controling

implosion. Implosion can occur in several occasions, as we explain in later in this chapter:

" In a stream request by a sink, multiple sources may be able to satisfy the request.

" In establishing a new stream, multiple sources may concurrently request the same

stream. This is especially the case when the new stream is established as a correc-

tion for missing frames.

" In providing feedback for controling packet transmission within a stream.

* In congestion circumstances that affect multiple sinks.

The basic mechanism for controling implosion is coordination among nodes. Unfortu-

nately, nodes are not aware of each other, hence coordination needs to be performed without

knowledge about competing nodes. We achieve these objectives by electing a single node as

the feedback controler for scheduling packet transmission and using a randomised feedback

supression algorithm (Section 2.3.3).

Effectiveness of the feedback supression algorithm depends on the distribution of timer

intervals. As is shown in [53], the optimal timer for large groups is generated using a truncated

Chapter 3: A Protocol Architecture for Collaborative Media Distribution

exponential distribution:

fz(z) = J e'-1 . e(A/T)z 0 < z (3.5)

0, otherwise

where A is a parameter of the distribution and T is the upper bound of the distribution. A

is chosen by an estimate of the number of nodes that may emmit a message, while T is an

upper bound on the delay of transmitting a response. The advantages of the exponential

distribution are manyfold. It is possible to avoid implosion while keeping the T interval

small. In addition, the distribution is not very sensitive to the A parameter, and can provide

with good imploision control even if the parameter is misestimated by order of mangitudes.

Finally, the effectiveness of implosion control is not sensitive to loss of feedback messages

or heterogeneous delays between nodes. These characteristics make exponential distributed

timers ideally suited for our system model, and are used for feedback supression both on

DRMTP and SDCP.

A timer interval with an exponential distribution can be generated with a uniformly dis-

tributed random value U[0, 1] as

T[T, N] = T - logN(1 + (N - 1)U[0, 1]) (3.6)

where N is chosen as an estimate of the number of competing nodes, as we explain in Chapter 4.

3.4 DRMTP: The Distributed Real-time Transport Protocol

DRMTP controls data flow in session streams. Here we present the algorithms employed by

the protocol in terms of messages, assuming that the session has already been configured with

SDCP (Section 3.5).

3.4.1 Stream Control

For each DRMTP stream, there is a single source and a primary controler elected during

on stream establishment. The source (or sender) is passive and transmits frames in bursts

according to a schedule provided to it by the primary controler. The primary controler is solely

3.4 DRMTP: The Distributed Real-time Transport Protocol 57

responsible for scheduling. Therefore, even when there are more than one sinks (or receivers)

receiving packets from a stream, we can maintain point-to-point semantics for feedback and

control.

The controler schedules bursts by multicasting schedule messages to the stream group.

The schedule message is of the form

schedule (B schedule(B) P,0 6,Oek.)

Thus, each message contains the next burst to transmit, the schedule of the burst. ti0c is

an estimate of the one way distance from the primary controler pc to the source s and jLcT,

is an estimate of its mean variance.

The schedule of a burst B(fbl ... fb.) containing frames {f-- fb } is of the form

schedule(B(fb, -.. fa,)) = ti,...,ti (3.7)

where ti is the transmission interval between frames fb,_1 and fbi, with ti the time interval

from the receipt of the schedule.

After receiving the schedule message at time t"chedule(B) the source transmits the frames

of the burst at times

t". = max {t b , t edule} + ti (3.8)

k=1

where t'x is the transmission time of the last frame in the previous burst and tscedule is
f 1 -1

the arrivel time of the schedule message. The schedule of frame transmissions in the burst

follows the schedule of the file, unless the protocol is in congestion control mode. In the latter

case the schedule is adjusted as we explain in Section 3.4.5. Hence, if RfiIl is the schedule of

the file, the schedule of the burst will be

ti = rbi - rbi __1 (3.9)

By multicasting the schedule to the entire group, we allow all sinks to compute distance

samples from the source and the primary controler. The samples are used in selecting the

schedule transmission times, setting time outs for detecting packet losses and primary controler

or source failure.

With a burst size of at least two frames, the primary controler can obtain samples of

Chapter 3: A Protocol Architecture for Collaborative Media Distribution

both the round-trip and one way trip time from the sender. Simultaneously, by observing the

spacing of two sequential frames in a burst, every receiver in the stream can obtain a sample

of the one-way trip time from the sender. We compute trip time estimates and mean deviation

by using the same algorithm that TCP uses [59]. That is, for an estimator of the trip time t,

an estimator of the mean deviation 6t and a sample m , we use the update rule

e m- (3.10)

i <- + a-e (3.11)

de6 < a - (|el- d) (3.12)

where a = [38].

The controler computes a sample of the round-trip time sample from the source as

tRTT - r ttx j(.3
C-- - schedule - (3-13)

where tr is the arrival time of frame fbl, and ttjxhedule is the time when the schedule was sent

to the group. Similarly, any receiver r can obtain a sample of its one-way trip time from the

sender as

trOT = trx - trx - (ti - 4-1) (3.14)

Notice that if a burst larger than two frames is used, a receiver can obtain multiple samples

of the trip time. Hence, the primary controler can select the schedule tranmission time by

tracking the one-way trip time to the sender. If the last schedule has been transmitted at

time tt hedule,the next schedule schedule' message will be transmitted at time

tx _x + T ^OT (.5
tschedule' tschedule + tk - pc s + 4 vpc+s) (3.15)

k:fbk EB

to accomodate for one-way trip time variance.

A Receiver r can obtain a sample of its distance from the primary controler pc as

OT = tOe +t OT
tr-+ pc pc-* s s-+ r (3.16)

3.4 DRMTP: The Distributed Real-time Transport Protocol 59

where t~,-s is the one-way trip time estimate from the primary controler to the sender, and

tT is the one-way trip time estimate from the sender to r. Obtaining the first sample is

simple, if the primary controler piggybacks distance estimates to schedule announcements.

3.4.2 Stream Establishment

A sink uses the SDCP to configure the session, and then proceeds to locate a stream for

receiving frames. The session control protocol provides the node with the session group.

The session group is a multicast group used for locating and establishing streams within the

session. All sources configured in the session are members of the group, listening for stream

requests while there is activity in the session. Sources use SDCP periodically for detecting

when the session is inactive and they should stop waiting for stream requests.

The stream establishment algorithm operates in rounds. Each round has four phases:

request, bid, accept, and announce/retract. The sink will engage up to a maximum number of

rounds, until enough streams have been found to provide the entire frame set. For a receiver,

this is Algorithm 1, where Frequest is the request frame set. The details of the algorithm,

together with the respective actions by the actions of a source, are described in the sequel.

Algorithm 1 Stream establishment by a DRMTP receiver

d <- 1
repeat

request (Freq d) at depth d
receive set of bids, bids
if bids / 0 then

select bids accept, such that Va, a' E accept, a n a' = 0
accept bids in accept
receive announcements, announce
join announced streams
Freq <- Freq _ Uosuannouncements
if Vb, b' c bids, b ' = 0 then

d <- d + 1
end if

end if
until d > Dsession or Freq _ 0

Entering a request phase, the sink node is unaware of any sources present or any streams

flowing in the network. Streams are discovered using Expanding Ring Search [151: the node

sends stream request messages with increasing scope, with a round completed within a scope

60 Chapter 3: A Protocol Architecture for Collaborative Media Distribution

of the expanding ring search. Each successive request message contains the current scope of

the request, and the set of frames Freq that the stream should provide:

request : := (F'e d)

The source can locate one or more streams that will provide the requested frame set. After

sending a request at scope depth d, the node deterministically waits for an interval Wmax,d,

where Wmax,d is a parameter used by the sources in randomising bid offers in scope d as

we explain below. If at least one bid is received, the receiver proceeds to the accept phase.

Otherwise the receiver increases the scope to d+ 1. If the scope has not exceeded the diameter

of the session, as provided by the session control protocol, the receiver repeats the bidding

process in the expanded scope.

In order to avoid request implosion, the request phase includes a request suppression

algorithm (Algorithm 2). Before a receiver r tries to establish a stream for a frame set Freq,

it waits for a random interval Wreq. The timer is selected as T[Wmax,d, Nd]. For any request

received by a receiver r' during this interval, the frame set F, is extracted by the request

frame set. Thus implosion is avoided when multiple receivers are trying to establish a stream

for compatible frame sets.

Algorithm 2 Request supression for DRMTP streams

Fre+ Freq

set request timer Wreq +- T[Wmax,d, Nd]
repeat

if receive request for F and Frreq n Fpee # 0 then
Fre <- Freq - F req

end if
until request timer expires
if Fq f 0 then

send request Freq
end if

On receiving a request, a source checks if it can provide some of the frames. If so, the

bidding phase is entered. The node waits for a random interval and makes a bid for a stream.

Each bid message contains a description of the set of frames Fbid that can be provided by

the stream, and additional information whether the stream is already actively flowing in the

network:

bid : := (Fbid)

3.4 DRMTP: The Distributed Real-time Transport Protocol 61

If the source is already serving a compatible stream, that is a stream that includes some

of the frames in the request frame set (i.e. a stream with a frame set that is not disjoint with

the request frame set), it immediately re-announces the stream. Similarly, if it there is an

already pending bid that is compatible with the request, that bid is reused - the node need

not submit two bids, as both requests will be covered by the first one. Otherwise, the source

constructs a bid for a new stream that contains the maximal set of frames that are included

in the request, can be provided by the source, and are not part of a compatible stream that

is already beeing served or is in bidding process. This is described by the equation

Fbid = Freq - Fstream - U Fbid (3.17)
sEstreams bEbids

where streams denotes the set of active streams sourced at the node, and bids denotes the

set of pending bids.

After deciding on the bid, the source sets a wait timer and submits the bid after it expires.

The wait interval Wbid is again selected randomly:

Wbid <- T[Wmax,d, Nd] (3.18)

where Wmax is a maximum wait time and d is the depth of the scope. Randomisation is used

for two purposes. First, there may be multiple stream requests that can be partially served

by a single stream. Second, and most important, there may be multiple sources reachable in

the scope. By randomising the response interval, we can avoid implosion by multicasting all

bids to the stream control group. Other sources can hear a bid offer, and supress their bid.

When a source m waiting to submit a bid for a frame set Fbid receives a competing bid

message Fbid or announcement from a source n, it compares the stream description with the

stream that it can provide. Depending on the description, it can choose to offer an alternate

bid or supress the bid altogether. If the source is not already serving the stream (i.e. the

bid will create a new stream), the action taken by m is determined by Algorithm 3. If the

stream is active, then the only modification is that the scope of the stream is increased to

max dreq, dstream-2

2We assume that the forward and reverse path length from source to sink is the same. The increase can be
adjusted to accomodate routing protocol and topology details.

62 Chapter 3: A Protocol Architecture for Collaborative Media Distribution

Algorithm 3 Bid supression for new DRMTP streams

AF = Fbd - Fbid

if AF = 0 then
suppress bid

else if Fbid is not for an active stream then
if Fbidl nFbid 0 then

Fbid + AF

dbid +- max dbid , dreq

maintain bid timer
else

maintain bid timer
end if

end if

In the acceptance phase, the requesting node selects a subset of the offered streams to

accept. Ideally, by the bid supression algorithm, the bid offers should contain disjoint subsets

of the requested frame set. Nevertheless, due to the concurrency and randomisation of the

bidding procedure, it may happen to have non-disjoint elements in the bid set. Non-disjoint

bids are ignored, and the frame set they provide is left for resolution at the next round of the

stream establishment algorithm. The depth of the scope for the next round will remain un-

changed if the elements of the bid set were not pairwise disjoint, otherwise it will be increased

by 1.

After selecting the set of bids to accept, the node waits for a random interval Waccept

drawn with the same distribution as the bid wait time:

Waccept - T Wmax,d, Nd] (3.19)

The reasons for the randomisation is once again implosion avoidance when multiple sinks

accept the same bid. Any stream acceptance or announcement that is received during the wait

interval supresses an acceptance that is in the acceptance set. After the interval expires, the

node sends an accept message to the stream control group for each element of the acceptance

set that has not been supressed.

On receiving an acceptance for a submitted bid, the source of the bid needs to establish

the stream, select the primary controler, and send an announcement for the stream. If a new

stream is established, the frame set specified in the bid is used and the sender of the accept

message is selected as a primary controler. Otherwise, the source checks the current status of

3.4 DRMTP: The Distributed Real-time Transport Protocol 63

the stream and uses the current frame set and primary controler in the announcement. The

announcement also includes the depth of the stream, so that the primary controler can adjust

the scope of schedule tranmission:

announce ::= (<address> <controler> Fstream d)

The announcement is delayed by

Wannounce +- T[Wmax,d, Nd] (3.20)

where d is the depth of the stream. The frame set of any compatible announcement received

during the announce interval will be removed from the frame set of the announced stream.

When the timer expires, if the frame set is not empty, the stream is announced and created at

the node. If the frame set is empty, the announcement is suppressed, and the stream is not cre-

ated. In addition, actively flowing streams can be passively announced by sinks participating

in the stream. If a node receives a request compatible with a stream on which it is partici-

pating as a sink, it schedules an announcement for the stream with a delay Wannounce. The

frame set of the pending announcement is similarly modified by compatible announcements -

if it becomes empty the announcement is suppressed.

Finally, each receiver 'closes' the announcement phase on its side by joining any announced

streams in the acceptance set and obtaining control for those streams that has been designated

as the primary controler.

3.4.3 Detection of Error Conditions

During the lifetime of a stream there are four classes of error conditions that can arise:

" Frame loss for some receivers. Frame loss occurs when packets are lost in some network

links, but with a rate that does not signify congestion. In general, receives will perceive

different frame loss rates, as the paths from the source may differ.

" Persistent congestion for some receivers. Congestion occurs when losses for some re-

ceveirs exceed a rate to be defined below.

" Primary controler failure. The primary controler may unexpectedly fail, leaving the

stream without a scheduler. Frames cannot be transmitted from the source without a

64 Chapter 3: A Protocol Architecture for Collaborative Media Distribution

primary controler providing a schedule.

* Source failure. Sources may also fail unexpectedly, ending the stream abruptly.

A receiver can detect frame loss in two ways: By time out, and by receiving a frame out

of order with regards to the schedule. Missing frames are added to a list. Receivers can

detect out-of-order delivery even if the schedule message has been lost, as the frame set of the

stream is known by all participating nodes. Periodically, and if no persistent congestion has

been detected, receivers attempt to recover the missing frames as we describe in Section 3.4.4.

The frame reception timeout is calculated conservatively, using the distance of the primary

controler to the source and the distance of the receiver from the source. Upon receiving a

schedule message from the controler, a receiver r computes the time-out for frame fi in the

schedule as

timeoutx = ti + s + 4i,c-+ + Zsar + 4f3~ir (3.21)

The first three quantities are included in the schedule message, while the last two are calculated

by the receiver. The primary controler itself has a more accurate timeout:

timeoutc = ti + ZR s R4c (3.22)

When a lost frame is detected by a receiver, a loss event interval is initiated. The loss

interval includes the number of successfully received frames between losses. Each receiver

r maintains the length of past few loss intervals, and uses them for computing the aver-

age loss interval length lr,k as a weighted moving average of m most recent loss intervals

lk, ... ,
t r,k-m+1I

Ei 0 1 Wilr,k-i
r,k M-1 W (3.23)

This is the same as the approach is used by TFRC [25] and TFMCC [77]. From lr,k we

can compute a loss event rate at each receiver at any time as

1
Pr = ____ (3.24)

max{lr,k, lr,k--1}

where the previous average loss interval length is included in the computation as the current

loss interval may not yet be complete.

3.4 DRMTP: The Distributed Real-time Transport Protocol 65

When intermittent packet loss occurs, there is no reason to adjust the transmission rate of

the stream; receivers can simply recover the lost frames. But when packet loss occurs because

of congestion, the stream rate should be reduced in a TCP-friendly manner. In order to

detect congestion, we compute the equivalent throughput of a TCP stream operating under

similar conditions. An approximation of the TCP throughput in relation to the loss rate and

round-trip time is given by Equation 2.7 in packets per second:

1R TCP = tRT - I__(3.25)
t RT TFp(2/3 + 6 /2p(l + 32p 2))

A problem with this equation is what the round-trip time actually is. In TCP, the round-trip

time has well defined point-to-point semantics. We can't say the same for the multicast case

though. Should the RTT be the RTT of a particular receiver? Or should each node use a

separate RTT estimate? How do we define the RTT and how do we calculate it?

In DRMTP, similar to TFMCC, we choose to treat each receiver independently and decide

that a receiver is in a congested path if the protocol throughput exceeds the throughput of

an equivalent TCP connection for the same packet loss rate and RTT. Every receiver detects

congestion separately, and based solely on local knowledge. This decision is compatible with

the fact that only a subset of the receivers in the stream may experience congestion. Receivers

compute the equivalent throughput of a TCP connection by assuming point-to-point semantics

to the source. Thus, every receiver treats the stream as a point-to-point connection to the

source. The primary controler uses the real RTT estimate, while other receivers assume path

symmetry and compute the RTT as

SRTT - 0 (3.26)s-+r = 2s-+r

Hence, each receiver r computes an equivalent TCP connection throughput as

12CP _((3.27)
r jRTTVp9 _(V2/5+ 6V/5 IZr (1 + 32p2))

Chapter 3: A Protocol Architecture for Collaborative Media Distribution

A receiver decides that is suffering from congestion when the protocol rate exceeds the

throughput of the equivalent TCP connection in the loss interval:

bDRMTP >TCP

where NDRMTP is the DRMTP throughput in frames per second within the duration T 088 of

the m most recent loss intervals. The DRMTP throughput can be computed as

ADMRTP _ # of frames in T 0ns (3.29)
Tioss

This decision ensures that the protocol will not be more aggressive than an equivalent TCP

connection in the same conditions. On the other hand, if the rate of the protocol is less than

that of a competing TCP connection, the protocol should not yield to packet loss. Finally, we

use the set of known transmitted packets in the throughput computation because the protocol

is rate-based. Unlike TCP, which is self-clocked and only transmits a packet when an ACK

is received, DRMTP will transmit packets with a specific rate in open loop. Therefore, any

packet transmited loads the network and should be taken into account in the rate computation

regardless of whether it is acutally received.

The last two error conditions result to total disruption of the stream. When the primary

controler fails, no schedule or frames are received in the stream. When the source fails,

schedule messages are received in the stream, but no frames from the source. The primary

controler publishes the schedule according to Equation 3.15. Therefore, a source failure can

be detected when after a number of schedule messages have been received, no frames from the

source have been received. Similarly, a receiver r expects to receive a new schedule schedule'

at most tez , after the previous schedule message, with

tschedule' - tpcir + ti (3.30)
fiEschedule

A receiver decides that the primary controler has failed if there are no frames or schedule

received # t ,hedule, after the last schedule, where # is a threshold parameter. If frames are

received, but no schedule, the receiver deduces that the schedule message was lost and resets

the timer.

3.4 DRMTP: The Distributed Real-time Transport Protocol 67

Figure 3.3: Stream error conditions.

Figure 3.3 summarises the relationship between error conditions in the stream, with a

state transition diagram. The actions taken on each condition are described in the sequel.

3.4.4 Error Correction

Within the stream, there are never any frame retransmissions. A frame may be lost only

for a subset of the receivers, so retransmitting the frame to all the receivers is unecessary.

Furthermore, after transmitting a frame, the source removes it from the stream specification.

Thus, the stream can never revisit a frame that has been transmitter previously, clarifying

both the semantics of the stream specification, and setting the stage for local error correction.

Error correction is handled by each receiver independently establishing a new stream for

receiving missing packets. The scheme is a local error correction scheme, without any addi-

68 Chapter 3: A Protocol Architecture for Collaborative Media Distribution

tional effort. Every node in the stream can act as a source, and by the stream establishment

algorithm a local source will be discovered first.

When a frame loss is detected, a receiver initiates a loss interval. In order to distinguish

intermittent error conditions from persistent congestion, a receiver will not attempt error

correction before m loss intervals have been completed, where m is the same m used at average

loss rate computation above. At the end of the interval, the receiver computes the protocol

and loss rate of the interval and the equivalent TCP rate. If the protocol rate is higher than the

equivalent TCP rate, the receiver decides that it is experiencing congestion (Equation 3.28),

and congestion avoidance must be initiated for the stream. Congestion avoidance cannot be

handled locally, as the rate of the stream must be adjusted. On the other hand, if the receiver

decides that it does not experience congestion, it engages in error correction by establishing a

correction stream. A delay of Wcorrect is added before establishing the correction stream, to

allow congestion information to be propagated in the stream, using congestion messages.

The process is summarised in Algorithm 4. Note that the request algorithm in stream

establishment involves a supressions scheme (Algorithm 2 above). Therefore implosion is

avoided even if multiple receivers perceive the same losses and simultaneously proceed to

establish a correction stream. Note that since the node is maintaining an estimate of the

distance to the source, it can fine-tune the selection of Wcorret""":

Wcorrection XRTTmax,d oct 3s.3r

3.4.5 Congestion Control

Although congestion may affect only a subset of the receivers in the stream, information is

propagated with the congestion message so that it can be globally dealt with. The rate of the

stream should be adjusted globally so that there are no congested receivers. An alternative

would be to force the congested receivers out of the stream and have them establish an

alternative one. This approach will not work however because of router slack time. That

is, even if congested receivers leave the stream, routers keep forwarding packets for some

additional time - which may be in the order of minutes.

Congestion avoidance and control is initiated by the primary controler. When a congestion

3.4 DRMTP: The Distributed Real-time Transport Protocol 69

Algorithm 4 Error correction for a DRMTP receiver

if f is lost then
Ferr <- {f}
initiate loss interval WOSS
congestion <- f alse

repeat
if f is lost then

Ferr <- Ferr U {f}
end if
if receive congestion message then

congestion +- true

end if
until congestion = true or loss interval ends
if congestion = true then

initiate congestion control
else

compute Piloss, issMTP I lP
if fiDRMTP > fTCP then

loss loss
send congestion message
initiate congestion control

else
initiate congestion announcement interval Wos
repeat

if receive congestion message then
congestion +- true

end if
until congestion = true or congestion announcement interval ends
if congestion = true then

initate congestion control
else

establish stream for Ferr
Ferr 0

end if
end if

end if
end if

70 Chapter 3: A Protocol Architecture for Collaborative Media Distribution

message is received, the controler adjusts the stream rate for a recovery period. After the

recovery period, the original rate is reinstated. If congestion reappears within a Wrecover

interval, then some of the s -+ r paths in the stream are permanently congested. The controler

then adjusts the stream rate again and attempts to split the stream. If the stream split attempt

is successful, the controler informs the receivers about the new stream and adjusts the frame

set of the original split. If the split is unsuccesful, the controler continues with the original

stream in reduced rate and periodically attempts to reinstate the original rate.

To be more specific, let Fstream = {fi . . . fj be the stream frame set and schedule(Fstream) _

{ti,... , tj } the original long term stream schedule. On receiving a congestion announcement

the primary controler schedules frames so that the rate of the stream is half the original rate.

Thus, the schedule becomes

schedule(',') (Fstream) = 2 - schedule (Fstream) = {2ti, ... , 2tj} (3.32)

where the notation schedule(c',) implies that this is the first congestion back-off for the stream.

After Wrecover, the controler resets the schedule to T(cO) - Ttream. If a new congestionstream - strm Ifanwcgeto

report arrives, the rate is set again to schedule(c,l)(Fstream) and a partition is prepared. A

split Fftream, F2stream is prepared so that

Flstreamtream e 0 (3.33)

Fptream u Ftream = Pstream (3.34)

and the rate of the two streams is approximately equal:

Vi, j, f, c Fstream, fj C Fstream,ti+1 - - ty (3.35)

The controler then sends a unicast exclude message to the sender, which instructs the

sender to ignore stream requests for Fjtream, and attempts to establish a new stream for

Fstream using the stream establishment algorithm. Since the sender has been excluded from

F2stream, a discovered stream will likely have different network paths than the original stream.

To ensure that alternative sources in the same LAN as the same source do not bid for the

stream, as they would have exactly the same network paths and suffer from the same conges-

3.4 DRMTP: The Distributed Real-time Transport Protocol 71

tion conditions, the sender re-multicasts the exclude message with a TTL scope of 13 .

If the primary controler is successful at establishing the new stream, it multicasts a join

message to the current stream, instructing the members of the stream to join a newly announce

stream and abort the current. Simultaneously, the sender removes F2tream from the stream

specification, converting the stream frameset to Fstream.

If the attempt fails, the controler enters a congestion control phase, where it attempts

to restore the stream in decreasingly frequent intervals. On future congestion build ups, the

controler will not attempt to split the stream. Rather, it will use directly the rate adaptation

scheme. Again, let 1 be the current congestion level, with 1 = 1 after the failure to split the

stream. The rate adaptation between level transitions is always is a division by 2 scheme:

Vti G schedule(c,+') (Fstream), t' E schedule(cl) (Fstream), t, = 2t' (3.36)

The adjustment attempts are made in exponentially decreasing intervals. If k is the number

of failed increase attempts since the level was entered, then the next attempt will occur at

eer= 2+k+Wrecover (3.37)

with the grace period always being Wrecover

3.4.6 Source and Primary Controler Failure Recovery

Receivers react similarly to both primary contoler and source failure: they abort the current

stream an proceed to establish a new stream. If Frem is the frame set remaining to be

transmitted in the stream, and Ferr is the error current error set, the receiver establishes a

new stream for Frem U Ferr. The request supression algorithm in the request phase ensures

that implosion is controled by the concurrent decision of all receivers in the stream to abort

it.

An important detail in the case of primary controler failure, is that the source should also

detect the failure and disband the stream. If the source has not decided that the primary

controler has failed, it will bid for the existing stram without assigning a new controler. This

3 Unless the exclude message is lost. The primary controler can detect loss of the exclude message if it

receives a stream offer from the excluded source.

72 Chapter 3: A Protocol Architecture for Collaborative Media Distribution

is handled if the source tracking schedule messages by the primary controler. When a schedule

message has not been received for some time the source decides that the primary controler

has failed and disbands the stream.

3.5 SDCP: The Session Discovery and Configuration Protocol

The Session Discovery and Configuration Protocol is a bootstrap protocol. It provides with

a well known service access point, as a multicast group and port, for dynamically locating

and configuring sessions in the system. SDCP provides a few basic operations: File discovery,

address discovery and allocation, and source configuration. With these operations, a node

can locate a file and a session identifier from a high level query, locate the session group and

configure sources for the session.

3.5.1 File Discovery

Given a high level query, SDCP discovers the identifier ident(f)of a matching file f. The file

identifier can be then used as a session identifier for the remaining operations. In order to

provide scalable operation for multiple concurrent discovery operations, the protocol uses a

randomised feedback supression algorithm and oppurtunistic local caching.

A query query is a boolean function that operates on file descriptions:

query: desc(f) => <booiean>

Queries are embedded in find messages, which elicits match responses from nodes where the

query is successful:

find : := (query d)

match ::= {(ident(f) desc(f))*}

where d is the current scope of the find message. find messages are transmitted with expand-

ing scope until a desired number of responses has been located or a maximum scope has been

reached. When a node receives a find message, it evaluates the query function on the local

descriptions. Local descriptions include the descriptions of all files in local store, and cached

results from previous matches. On locating a match, a node multicasts a match message to

the SDCP group.

3.5 SDCP: The Session Discovery and Configuration Protocol 73

In order to avoid implosion from multiple matching nodes, a probabilistic feedback supres-

sion mechanism is employed once again. Before transmitting a match message, a matching

node sets an exponentially truncated timer (Equation 3.5). If any other matches are received

during the wait, the node checks the identifier of the match message. If the identifier is part

of the local match set, the match message is supressed for the matching files. Otherwise, the

node maintains the timer for the match and probabilistically caches the query result for fu-

ture queries. The complete algorithm employed by a matching node is shown in Algorithm 5.

Notice that we don't specify the form of the query. User code can be attached in the query

messages, and be interpreted in the current node. The protocol is only interested about the

result of evaluation.

Algorithm 5 Caching and supression of SDCP match messages.

match(query) <- {(ident(f), desc(f))13f i E FJile, store(n, fi) A query(desc(f))}

match(query) <- match(query) U {(ident(f),desc(f))|((ident(f),desc(f)) E cache(n) A
query(desc(f)))
set timer Wmatch <- T[Wmax,d, Nd]

repeat
receive match', {(ident(f) desc(f))*}
for all (ident(f) desc(f)) E match such that query(desc(f)) do

if (idenf (f), desc(f)) (match(query) then
with probability p, cache(n) <- cache(n) U (ident(f) desc(f))

end if
end for
match(query) +- match(query) - match'

until match(query) = 0 or timer expires
if match(query) $ 0 then

send match(query)
end if

3.5.2 Address Discovery and Allocation, and Source Configuration

The address discovery and allocation operation is twofold. Given a session identifier ident(f),

the protocol attempts to locate the session group. If the attempt fails, the protocol selects a

new address for the session and announces it to the network. The address allocation persists

for as long as there is data flowing in DRMTP streams for the session. Like most of the

algorithms employed by DRMTP and SDCP, address discovery proceeds with an expanding

ring search and includes a randomised feedback supression mechanism (Equation 3.5).

74 Chapter 3: A Protocol Architecture for Collaborative Media Distribution

Source configuration is handled by an announcing the discovered address to the session

group. A node within the scope of the announcement that has segments of the file in local

scope becomes an active source, listening for stream requests in the session group. The node

remains active as long as there are announcements pertaining to the session or is serving a

data stream.

Note that we do not bind to a specific method for allocating the actual address. Multicast

address allocation is an active area of development [33, 70] - any low level protocol that

provides the necessary functionality can be used for this purpose.

3.6 Concluding Remarks

In this chapter we presented an active protocol architecture for collaborative media distribu-

tion. We outlined the basic components and delved into the details of the actual protocols and

algorithms, preparing for the performance analysis and evaluation of Chapter 4. The basic

component is the DRMTP protocol; the protocol allows for dynamic splitting and aggregation

of multiple concurrent streams, flowing from multiple sources. Combined with TCP-friendly

congestion control and scalable feedback mechanisms, the protocol offers a scalable substrate

for soft real-time delivery of media streams. DRMTP is complemented by SDCP, which han-

dles session discovery and address allocation. Both protocols provide programmable flexibility

for the application: DRMTP scheduling and frame structure and SDCP query structure and

interpretation are left to the application.

Chapter 4

Analysis and Evaluation

In this chapter we analyse and evaluate the protocol architecture characteristics. Initially, we

analyse protocol scalability with the effectiveness of implosion by exponentially distributed

timers. Then, we explore protocol behavior in a real network testbed, where we can show

how the protocol scales with network effects of media distribution. We close the analysis with

experiments performed with the ns [88] network simulator, evaluating congestion control and

protocol fairness for competing TCP traffic.

4.1 Scalability and Latency Bounds

The most important factor in determining the scalability of our protocol architecture is the

effectiveness of implosion control. We use implosion control in every part of the protocols

where a message or condition may generate multiple new messages. These situations range

from error correction and congestion control, to stream establishment and session discovery

(Section 3.3).

The factor that determines the scalability of a feedback suppression algorithm is the timer

distribution. In Section 3.3 we argued that the truncated exponential distribution is an optimal

choice. We now quantify this choice and explain the derivation of Equation 3.6, based on the

analysis of [53].

Chapter 4: Analysis and Evaluation

Expected numb er of mesages

10, -

10 -

T=c

102c

10

10
10 10 10 10 10 10 10

Figure 4.1: Expected number of feedback messages from an exponentially distributed timer,
as a function of the number of feedback nodes, for A = 10

4.1.1 Number of Feedback Messages

The expected number of feedback messages E{X} from the distribution of Equation 3.5 is

E{X}- = -1) (4.1)
eJ-1 1-e-A

where c is the distance from the N nodes that may emmit feedback messages. The assumption

of homogeneous distance from feedback nodes results to an upper bound on the number of

messages generated in heterogeneous cases, as explained in [53], and we will use it in the

remaining of the analysis.

The number of feedback messages is almost exclusively controled by the selection of the

maximum interval T in relation to the trip time from the feedback nodes. Figure 4.1 draws

the expected number of feedback messages with a parameter of T, and a value of A = 10. As

we can see, for an interval size of T = 10c, suppression is effective to E{X} < 3.5 for a range

of up to 104 nodes.

The parameter choice of A = 10 is not accidental. As the authors show in [53], the expected

number of messages is a convex function of N, with a global minimum. The optimal choice

of A is close to

A0 = 1.1 - InN + 0.8 (4.2)

4.1 Scalability and Latency Bounds 77

Furthermore, the function is not very sensitive to the actual choice of A. Based on these

observations, we can select the parameter of the distribution with a rough overestimate of the

number of nodes that may emit feedback. For a rough estimate N, we can simply choose

\ = Ing (4.3)

Therefore, a choice of A = 10 corresponds to a scale of 104 feedback nodes.

Hence, we can derive the generator function of Equation 3.6 as following:

z) = U[0, 1]

0,1

U = e (A/T)e(A/T)zdz,
1,

U = 1 (e(A/T)z -1)
eA - 1

TZ - ln(1 + (e - 1)u)-

z = T_ - n(1 + (eln N _ _)
In N

z = T - log N(1 + (N - 1)u)

z< 0

O< z < T->

z > T

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

4.1.2 Feedback Latency

The other performance metric of interest is feedback latency. There is a tradeoff between the

effectiveness of feedback supression and latency. Specifically, the expected latency E{M} for

exponentially distributed timers is

(4.10)

Figure 4.2 draws the expected feedback latency as a function of the number of nodes and

parameter T. Once again, A = 10. As we can see, there is a tradeoff between feedback latency

and supression: The better the suppression of feedback messages, the higher the latency. A

selection of T = 10c offers a good tradeoff: the latency is small - in the order of a few round-

trip times - while the suppression is almost perfect. Hence, by using exponentially distributed

timers we have a scalable and fast feedback mechanism. Dynamic changes in the number of

F(

E{M} = T 1(1 - e4 -~)Ndm
fo eA - 1

Chapter 4: Analysis and Evaluation

Expected Feedback Latency

T= 10c

3 T=Sc

T=

10' 101 o 10 to s ,

Figure 4.2: Expected feedback latency from an exponentially distributed timer, as a function
of the number of feedback nodes, for A = 10

nodes by orders of magnitude do not lead to feedback implosion and have only a minor effect

on feedback latency.

We discuss the choices of distribution parameters for DRMTP and SDCP next.

4.1.3 Choosing the Parameters of the Distribution

Recall from Chapter 3 that the timers for both DRMTP and SDCP are adjusted as a function

of scope depth. This is expressed by the wait maximum interval set to Wmax,d, and the number

of feedback nodes set to Nd. In the light of the previous discussion, these choices affect both

the effectiveness of implosion control and the feedback latency. Our choices should take into

account the increase of trip time with the increase of scope depth, and the increase of the

number of reachable nodes [80].

We make the following two choices:

Wmaxd = 10- dvf- cO (4.11)

Nd = 101/2+vfd (4.12)

where co is the single hop latency. For terrestrial links, a reasonable estimate is in the order

of milliseconds. Figure 4.3 plots the increase of the maximum wait interval as a function of

the scope depth, with co as a parameters. Similarly, Nd is plotted as a function of the scope

4.1 Scalability and Latency Bounds 79

W
70 -

50(-

20 --

10 -

0 5 10 15 20 25 30
hop

(a)
Nd

10% -

10"

0 5 10 15 20 25 0

(b)

Figure 4.3: Growth of Wmax,d and Nd as a function of scope depth. (a) Wmax,d (b) Nd

depth. As we can see from the plots, both choices should be reasonable for the majority

of networks that comprise the Internet. Nevertheless, the parameters can be adjusted if

additional knowledge of the topology is available.

The expected number of feedback messages and latency is plotted as a function of d with

these choices of Wmax,d and Nd in Figure 4.4. The figure also plots the same functions, but

with an order of magnitude error in the estimation of Nd. As we can see, these choices provide

good latency and effective implosion control, even if the estimation of Nd is off by an order of

magnitude.

80 Chapter 4: Analysis and Evaluation

Expected Number of Me ges

10 15 20 25 30
hops

(a)
Expected Feedback Latency

0 5 10 15
hops

20 25

(b)

Figure 4.4: Expected number of messages and feedback latency as a function of d for our
choice of Wmax,d and Nd, and effects of poor estimates (a) Expected number of feedback
messages (b) Expected feedback latency

.4 - N=Nd10 -

.2 ---

6I I

.8 -N=N d

6 /

N= 10Nd
4 - ----- ------

4.2 Experimental Evaluation in a Network Testbed 81

4.2 Experimental Evaluation in a Network Testbed

In order to determine the behavior and scalability of the protocol in good network conditions,

we evaluated a prototype implementation in the internal Media Lab network. The objective

of the experiments was twofold: test the behavior of the protocol in the presence of source

failures, and evaluate traffic localisation and scalability for network effects. The behavior of

the protocol in boundary conditions - in the presence of congestion - could not be evaluated

in the network testbed, as the latter has limited topology. We illustrate the behavior of the

protocol in such conditions with simulated experiments in Section 4.3

4.2.1 The Network Testbed

The experiments were carried in two subnets of the internal network with network distance

of 2 hops (Figure 4.5). We used 5 hosts in the 18.85.45.x subnet, and 7 hosts in the 18.85.9.x

subnet. On each host, we ran a number of virtual nodes as separete processes. Hence, we

were able to evaluate the behavior of the protocol for dense constellations of active nodes.

For the experiments presented in this section, we used an MP3-encoded audio file with

size 6994257 Bytes. The file was encoded with a fixed bit rate of 192 Kbps. The file consisted

of 11156 data frames and a header frame, with total duration of 4 min 51 s (291 s). We used

a burst size of 4 frames.

The machines in the 18.85.45.x subnet were dual 1GHz Intel PIII IBM x-330s, running

Linux kernel 2.4.12. 18.85.9.{45,45,54} were dual 1.7GHz Intel Xeon IBM Intellistation ProMs,

running Linux kernel 2.4.18. 18.85.9.{70,71,72} were 1 GHz Intel PIII machines running Linux

kernel 2.4.12, and 18.85.9.60 was a dual 800 MHz Intel PIII machine running Linux kernel

2.4.17. All 18.85.45.x machines were connected with dual bonded 100BaseT ethernet cards to

a 100Mbps ethernet. 18.85.9.{60,70,71,71} were connected with a single 100BaseT NIC each

to a 100Mbps ethernet. 18.85.9.{45,46,54} were directly connected to the gigabit ethernet

backbone with optical gigabit NICs. The link 18.85.45.1 - 18.85.9.1 was part of the gigabit

backbone of the Media Lab network.

82 Chapter 4: Analysis and Evaluation

18.85.45.81

18.85.45.80 18.85.45.82

18.85.45.79 18.85.45.83

18.85.45.1

18.85.9.1

0.1 ms

I
1. 5 ms

0.2

18.85.9.60
18.85.9.72 18.85.9

18.85.9.70 18.85.9.71

Figure 4.5: Network testbed

.45 U 18.85.9.54

18.85.9.46

4.2 Experimental Evaluation in a Network Testbed

4.2.2 Traffic Localisation

The first experiment explores the traffic localisation behavior of the protocol. A source was

initially placed at the 18.85.45.x subnet, and 3 sinks appeared consecutively in the 18.85.9.x

subnet. The first sink joined the session after 13 s, the second after 137, and the last after

371 s. The arrival times were randomly generated by a poisson process with rate 0.01 arrivals

per second.

Figure 4.6 illustrates the packets exchanged on stream establishment by the three sinks.

As we can see, the first sink initiated a new stream from the source. The second sink received

a passive announcement by the first sink and joined the existing stream; the begining of the

stream was locally patched within the 18.85.9.x subnet. Finally, the last sink joined after the

complete file had been received by the first two sinks, and was locally served by one of the

two. Figure 4.7 depicts the data traffic in both subnets, exposing the traffic isolation between

the two subnets and local stream patching.

4.2.3 Source Failure Recovery

The second experiment explored the source failure recovery capabilities of the protocol. The

five hosts in the 18.85.45.x subnet were configured as sources. Once a source started providing

a stream, it would fail randomly with a mean failure time of 2 min. The sources in the 18.85.9.x

subnet where configured as sinks, and started within milliseconds of each other, in order to

be synchronised in the stream. The experiment was repeated 10 times, with similar results;

we present the outcome of a single experiment, as it is representative of the behaviour of the

protocol.

Figure 4.8 illustrates the control traffic generated in the network. Figure 4.8(a) is the

control traffic for the 18.85.9.x subnet, and Figure 4.8(b) was taken from the 18.85.45.x subnet.

The failure events are marked on the time axis. The behavior of the protocol is as expected:

implosion is completely suppressed, and source failure is detected within a few seconds.

The data traffic is illustrated in Figure 4.9, with second scale. Since the sinks were syn-

chronised, all flows where directed from the 18.85.45.x subnet to the 18.85.9.x subnet. The

figure presents the trace from the 18.85.9.x subnet. As we can see, a single stream is flowing

in the network - covering all 7 sinks. Failure is detected within a few seconds, as the schedule

84 Chapter 4: Analysis and Evaluation

Stream establishment packets at 18.85.9.x subnet

0 100 200 300 400 500 600 7C
time (s)

(a)
Stream establishment packets at 18.85.45.x subnet

0 100 200 300 400
time (s)

(b)

Figure 4.6: Stream establishment traffic
18.85.45.x subnet.

in the first experiment. (a) 18.85.9.x subnet. (b)

-. 0

. a . B 8 .
500 600

4.2 Experimental Evaluation in a Network Testbed 85

X 10 Data traffic at 18.85.9.x subnet

4 -

3.5 -. *

3 -

2.5 -

2 -

1.5

05 -
0 100 200 30 4 5 00 70

time (s)

(a)
10 Data traffic at 18.85.45.x subnet

4-

35 -

3 -

2.5 -

2 --

1.5-

1-

0.5

0 1 0 0

time (s)

(b)

Figure 4.7: Data traffic in the first experiment. (a) 18.85.9.x subnet. (b) 18.85.45.x subnet.

500 7"0

Chapter 4: Analysis and Evaluation

0 50 100 150 200 250 3 00 350 40Ctime(s)
(a)

Stream establishment packets at subnet 18.85.45.x

0 50 -100 150 200b
time(s)

(b)

Figure 4.8: Control traffic in the source failure experiment.
subnet.

(a) 18.85.9.x subnet. (b) 18.85.45.x

dmo w W

Stream establishment packets at subnet 18.85.9.x

dwn M dD a

250 300O 350 400

4.2 Experimental Evaluation in a Network Testbed 87

<.0 Data traffic at 18.85.9.x subnet

2 - -

0.5

0 50 10 10 200 250 300 350 400
time (s)

Figure 4.9: Data traffic in the source failure experiment. Trace taken from the 18.85.9.x

subnet.

was transmitted 6 times a second. Stream failover is visible in the figure by the gaps in the

data flow following the failure events, marked with squares in the time axis.

4.2.4 Scalability in the Presence of Network Effects

In this experiment we explore the behavior of the protocol in the propagation of a content

file with network effects. Specifically, the content file was originally available at a single node

in the 18.85.45.x subnet. In order to simulate large scale behavior, we added multiple virtual

nodes on each host, arriving with a poisson process of rate .1s-1. The data traffic trace

for the first 400 seconds of the experiment is present in Figure 4.10, with arrivals marked as

squares in the time axis. As it is visible from the graph, a number of patch streams where

independently established at each subnet. As a result, all nodes where able to achieve the

real-time rate, while keeping the total consumed bandwidth at low levels. This is clearer in

Figure 4.11, where we draw the evolution of the node population over time in conjunction

with the number of streams reaching each subnet. As we can see, even as the population

climbs over 60 within 400 seconds, the number of streams never exceeds 6 on any of the two

subnets. The first stream established was serving all nodes in the network for its duration,

with disjoint patching streams accomodating new arrivals.

Chapter 4: Analysis and Evaluation

Data traffic at 18.85.9.x subnt

200 250 300 30 400ime ()

(b)

Figure 4.10: Data trace for the network effect experiment. (a) 18.85.9.x subnet. (b) 18.85.45.x
subnet.

Figure 4.11: Evolution of session population and the number of streams in each subnet.

4.3 Protocol Behavior in Boundary Conditions 89

128 Kbps
1Oms

128 Kbps
1Oms

512 Kbps
2 Oms

512 Kbps
10ms

R

Figure 4.12: Source upstream congestion experiment scenario. R is the primary controler of

the stream, and S1, S2 are two sources with limited upstream capacity.

4.3 Protocol Behavior in Boundary Conditions

The experiments in the network testbed illustrated the behavior and performance of the

protocol with regards to traffic localisation and session scalability. However, the limited

topology of the testbed did not allow us to explore the congestion control capabilities of the

protocol. For this purpose we describe the results from two simulated experiments.

4.3.1 Source Upstream Congestion Control

When the source of a multicast stream faces upstream congestion, the entire session is affected

and must slow down. This is a significan problem, as it appears very frequently in residential

broadband connections based on ADSL or cable modems.

A scenario that captures these conditions is depicted in Figure 4.12. There are two local

sources for a session with a real-time rate of a 192Kbps constant bit rate - but both sources

have a limit of upstream bandwidth at 128Kbps, and an arbitrary number of sinks condensed

in the primary controler. The routers were drop-tail.

Figure 4.13 depicts a trace from a simulation performed using ns. At time 0, the sink

R requests and establishes a stream from source S1. The sink acts as the primary controler

Chapter 4: Analysis and Evaluation

and attempts to drive the stream at the real-time rate of the session. The upstream capacity

limitation appears as permanent congestion, forbiding a stream from achieving a rate higher

than 128. When congestion is perceived among the sinks of a stream, the protocol temporarily

slows down the rate, as described in Section 3.4.5. Then it proceeds to establish a new stream

for a two-way partition of the frame set - the result is two interleaved streams flowing from

both available sources at 96 Kbps, providing an aggregate rate that matches the real-time

rate of the session.

4.3.2 Protocol Fairness

The second simulated experiment studies the behavior of the protocol in the presence of

competing TCP traffic, which causes congestion in the path from a source. The simulation

scenario is illustrated in Figure 4.14.

For the experiment, summarised in Figure 4.15, the session real-time rate is again 192

Kbps. Source Si provides a stream to R through a bottleneck link with capacity 256 Kbps.

A TCP connection between nodes A and B is established, sharing the bottleneck link, and

causing packet loss as the TCP sender attempts to expand its window. The protocol reacts

with the congestion control mechanism, splitting the stream rate and establishing an inter-

leaved stream from S2, which does not share the bottleneck link. As a result, the bottleneck

bandwidth is fairly shared between the DRMTP stream and the TCP flow; on the same time,

as a by-product of the aggregation mechanism, the protocol achieves the real-time rate by

combining the streams from Si and S2.

4.4 Concluding Remarks

This chapter explored the basic properties of the protocol architecture. We analysed the

implosion control algorithm, and showed how the choice of truncated exponential timer distri-

bution provides as with a highly scalable and fast feedback mechanism. We showed the results

of some experiments conducted in a network testbed in the internal Media Lab network, il-

lustrating the basic scalability and performance properties of the DRMTP protocol. We also

explored the properties of the congestion control algorithm with simulated experiments.

While this analysis and experiments are not a comprehensive evaluation of all aspects

4.4 Concluding Remarks 91

S -> R throughput

0'
0 5 10 15 20 25 30 35 40 45 Sc

time (S)

(a)
S2 - R throughput

.0-

0 5 10 15 20 25 30 35 40 45 5
Ume (a)

(b)

(c)

Figure 4.13: ns trace from the source upstream congestion experiment. (a) Throughput stream

S1 -+ R (b) Throughput for stream S2 -+ R (c) Aggregate throughput.

Chapter 4: Analysis and Evaluation

256 Kbps 256 Kbps
10 Ms 20 ms

6 Kbps 256 Kbps 256 Kbps
O ms 20 ms 10Ms
6 Kbps

120 ms

6 Kbps
VO ms

R

Figure 4.14: Source upstream congestion experiment scenario. R is the primary controler of
the stream, and S1, S2 are two sources. Nodes A and B establish a TCP flow, competing for
the bottleneck link.

of our protocol architecture, they do offer a good indication on the scalability and perfor-

mance properties. The protocol is able to quickly locate sources for providing the stream, and

completely localise traffic only to the region of interest. Similarly, the stream establishment

algorithm successfully groups all related request to a single stream - this aspect greatly con-

tributes to the scalability of the protocol in the presence of network effects, serving the load

with effectively a constant number of non-overlapping streams. Finally, from the simulated

experiments, we see that the protocol can detect upstream capacity limitations of sources and

dynamically split the stream to achieve the real-time rate when multiple sources are available.

The protocol reacts similarly to congestion caused by competing traffic, and is able to achieve

the real-time rate while competing failry with other network flows.

Further experimentation and analysis is left for future work.

4.4 Concluding Remarks 93

S, - R throughput S
2

-> R thrghput

0-

0 5 10 15 20 25 30 35 4
time (a)

(b)
Aggregate throughput

0 5 10 15 20 25 30 35 40 -0 5 10 15 20 25 30 35 40

(c) (d)

Figure 4.15: ns trace for the protocol fairness experiment. (a) Throughput for stream Si -+ R

(b) Throughput for stream S2 -+ R (c) TCP flow throughput (d) Aggregate throughput for

R.

94 Chapter 4: Analysis and Evaluation

Chapter 5

An Economic Model for

Collaborative Distribution of Media

The protocol architecture that we have developed in this thesis leverages the collaborative

capacity of the network. In this manner, we provide a scalable programmable protocol that

can support large numbers of nodes and media stream flows, by aggergating streams, localising

traffic, and explicitly using the resources of any node pariticipating in the system.

However, there is an exogenous economic factor that controls the applicability of the

protocol arhitecture in real world media distribution. Digital media, as other forms of creative

work, are usually copyrighted works. Authors rely on their work for sustaining an income,

and the entire business model of the media distribution industry is based on paying loyalties

to the copyright owner - the publisher of the work. Hence, a system that is explicitly based

on redistribution, in parts or whole, of copyrighted work is in direct conflict with the existing

media distribution infrastructure.

In order to reconcile the economic realities of media distribution with the technical ne-

cessity of network scalability, a suitable economic model is required. We can outline such a

model, for a media distribution system based on our protocol architecture, in the following

terms:

" Any content file distributed in the system as copyrighted work is uniquely identified.

Users storing files in a node must obtain a license for the file.

" Any node storing licensed files, is explicitly allowed to redistribute the file, in parts or

Chapter 5: An Economic Model for Collaborative Distribution of Media

whole, to other nodes in the system.

* By redistributing a file, a node is granted affinity points. The affinity points propagate

with further redistributions from the recipients, and are used by the copyright owner for

providing an economic benefit to the redistributor. Affinity points are also granted by

referal; that is, a user making a referal that results to further distribution of the file in

the system is granted affinity points.

" There is an entity which interacts with the system as a surrogate of the copyright owner.

The surrogate entity is responsible for handling licensing of the files and keeping track

of the affinity points generated by the distribution.

With this model, it is possible to leverage our protocol architecture for scalable media

distribution, without requiring any modification to the current end-to-end best effort service

model of the Internet. Similarly, we provide a mechanism for interfacing with the existing

economic structure of media distribution, without requiring a legal framework that imposes

insurmountable obstacles to a scalable implementation. The interface to the existing media

distribution infrastructure is the role of the surrogate of the copyright owner. The imple-

mentation of the surrogate is orthogonal to the distribution system - today there are already

companies, such as Yaga [89], positioning themselves as transaction clearing houses for digital

media licensing and distribution. Finally, by embedding an affinity point distribution mech-

anism, we provide an additional incentive for users to share and ensure the propagation the

of files - users receive licensing discounts from collected affinity points. Users are encouraged

to share by the licensing scheme and by doing so we increase the efficiency of the distribution

with DRMTP while matching the cultural impetus of media distribution.

We fill the details of the economic model in the remaining of the chapter.

5.1 Licensing

In order to process a file f, a node n must obtain a license. The license is specific to a file

and a node, described as license(n, f). Note that the license covers any frame of the file:

license(n, f) - Vf G EFe , license(n, fi) (5.1)

5.2 Affinity Points Y7

A node obtains a license by registering the file with the surrogate of the copyright owner.

The surrogate computes the license for the node is such a way that it is uniquely identified and

cryptographically hard to reconstruct. This can be handled by any cryptographic signature

scheme [50]. The interaction is described by the following flow of messages, from a node n to

the surrogate Sc:

n -- + Sc: (register In ident(f))

Sc -- + n: (license Ksc{In,ident(f)})

where Ksc{In, f} denotes a cryptographic signature computed by the surrogate, and In is the

identity of the node. The signature is the license for the file, for the specific node:

Ksc{In, ident(f)} -+ license(n, f) (5.2)

The cryptographic signature can be verified by the copyright owner. The means of verifying

the validity of a license by entities other than the copyright owner is outside the context of the

protocol. It can be handled by using a public key cryptosystem, where the signature is signed

by the private key of the surrogate and can be verified with the public key. For instance, a

"secure" media player may contain the public key of the surrogate and verify the license before

enabling playback of the file1 . Since the identity of the node is included in the signature, a

player registered to a specific node can refuse the playback if the embedded node identity does

not match the identity of the current node. Finally, since ident(f) can be computed from the

file itself, the contents need not be encrypted.

5.2 Affinity Points

A node license can be used as a reference from another node in a registration message. For

example, n' may have provided a referal to n for accessing the file or have been a provider

for some of the frames comprising the file. A claim of referal by n can be verified by the

surrogate, if the registration message includes all the referal keys:

n -- + Sc: (register In f Rn,f)

'Or allow only a limited number of playbacks for an unlicened file

Chapter 5: An Economic Model for Collaborative Distribution of Media

where Ra,f is a referal set provided by n. The referal set includes all the license keys of nodes

ni,..., nk that have provided a referal to n4:

Ra,f ={Ks{Ini, ident(f)} -.. Ksc{In,, ident(f)}} (5.3)

By using the referal set on the license registration message, the surrogate can compute and

grant affinity points to each involved node. Let af,t be the affinity coefficient of a file. The

coefficient can depend on both the file and the time of the distribution. Hence, a copyright

owner can fine-tune the incentive for distribution by granting higher affinity coefficients for

specific files that decay over time.

When a node appears in a referal set, it receives the affinity points associated with the file

and the time of registration. Affinity points are maintained by the surrogate and granted on

registration from another node. Hence, if A(n, t) are the affinity points collected by node at

time t, we have the following update rule:

1
Vni, Ksc{In. } E R,fA(ni, t) <- A (ni, t) + -af,t (5.4)j~nj E R~f,|Rnf I

that is, the actual affinity points granted depend on the size of the referal set.

Further, affinity points are propagated to nodes that have contributed as referals to nodes

ni,... , nk with a coefficient that decays with the depth of the distribution. Hence, if n' was a

first order (that is immediate) referal for node ni, it receives oc a2 affinity points as a second

order referal for node n. In general, for kth order referals,

A(n k), t) <- A(nt) + 1 k (5.5)

j=1 |R |~

This model is a pyramid scheme, as illustrated in Figure 5.1. Note that in order for the scheme

to be stable, af,t < 1. Hence, the affinity points decay with the depth of the distribution.

Similarly, if referal coefficients decay over time, the higher order affinity distribution further

decreases. Hence, nodes have an incentive to increase fast distribution of files, even if they

don't themselves receive first-order referal. In addition, this model of affinity distribution

provides for a bounded total affinity. Even if distribution results in an infinite chain, the

upper bound for total affinity is il .

5.3 Payment .9

(1/3)ar, t

Figure 5.1: Affinity point distribution with a pyramid scheme. Nodes ni, n2 , n3 are the first

order referal set of n, receiving lagt affinity points. Nodes n 5 , n 6 are the second order referal

set, as first-order referals to node ni, receiving a affinity points.

Referals can be either explicitly provided by the user or be provided by to the nodes that

contributed frames in the distribution of the file with DRMTP, by embedding the node license

in every frame transmitted by a source . However, for users it doesn't matter when the bits

come from. Hence, the user should have control over the referal. If a user has received a

recommendation by some other user for a file, he can include the other user in the referal set.

In order to be included in the referal set, a node must provide its license key ensuring that

referals cannot be spoofed by fraudulent users. By providing a mechanism for the user to

override the distribution referal with a recommendation referal, the users do not compete on

bandwidth; rather, they compete in spreading the word about the system and specific media

files. This behavior reinforces the network effects of media distribution, and on the same time

increases the distribution efficiency of DRMTP by further spreading files in the network and

increasing the number of nodes that concurrently acces it.

5.3 Payment

The final detail about the economic model is the payment scheme. Payment should incorporate

the affinity points - for instance in the form of a discount. On the same time, payment

Chapter 5: An Economic Model for Collaborative Distribution of Media

should offer protection against affinity point spoofing by user collusion. The solution is to use

micropayments in a pay-per-file setting. Payment is the prerequisite for obtaining the license:

A node cannot obtain a license without payment, which is handed on registration.

When the surrogate receives the registration message from a node, it charges the node's

account with the current price C of the file, adjusted for by a discount function computed on

the node's accumulated affinity points. Affinity points are consumed by the charge:

C(n, f, t) <- C(n, f, t) - D(A(n, t)) (5.6)

A(n,t) <- A(n,t) - D(A(n,t)) (5.7)

The discount D(A(n, t)) cannot exceed a specific amount, as determined by the copyright

owner. In addition, as affinity points are granted only on receiving a payment by an actual

node, fraudulent behavior in the form of user collusion is defeated. Finally, since there is an

upper bound in the total affinity model that can be generated by redistribution, the profit for

the copyright owner is bounded from below by

minprofit(n, f, t) = C(n, f, t) - af,t (5.8)
1 - oft

Therefore, the pricing and affinity coefficient of a file can be adjusted according to the revenue

that the owner should receive.

5.4 Concluding Remarks

In this chapter we outlined an economic model matched to the properties of the protocol

architecture developed in this thesis. The economic model is based on licensing for redistri-

bution. Instead of trying to restrict the user rights and try to criminalise sharing behavior,

we try to reinforce it by providing a suitable licensing and affinity point distribution scheme.

Users are encouraged to share, increasing the efficiency and scalability of distribution with

our protocol architecture. At the same time the distribution cost for the copyright owner

is decreased - as user resources are used for the distribution - and the revenue is increased

by fostering network effects. The model is simple to implement: we only require a copyright

owner surrogate entity for handling licensing and transactions and an license authentication

100

5.4 Concluding Remarks 101

scheme on file playback. There is no need to engage in a content encryption arms race; the

effort can be directed towards economic transaction authentication.

102 Chapter 5: An Economic Model for Collaborative Distribution of Media

Chapter 6

Conclusion

This thesis embarked on distributing the distribution for real-time media. We developed a

high level active protocol architecture, which adheres to the end-to-end design prinicple [66]

of the Internet and provides the primitives for flexible and efficient location and distribution

of information. On the same time we enabled security and privacy, accountability, and an

embeded cost and loyalty distribution model. These primitives were used for developing a

programmable protocol substrate, demonstrated with a prototype implementation and backed

by an economic model for real-time collaborative media distribution.

The cornerstone of the architecture is DRMTP (Distributed Real-time Multicast Transport

Protocol), an adaptive application-level [13] protocol core which allows collaborative multi-

casting of real-time streams. The protocol provides transparent semantics for loosely coupled

multipoint interactions. It allows aggregation and interleaving of data fetched simultaneously

from diverse machines and supports the location and coordination of named data among peer

nodes, such as a record album or television program, without additional knowledge of net-

work topology. The dynamic stream aggregation scheme employed by the protocol solves the

problem of network asymetry that plagues residential broadband networks. In addition, the

stateless nature of the protocol allows for fast fail-over and adaptation to departure of source

nodes from the network, mitigating the reliability problems of end-user machines. Coupled

with well established techniques, like traffic localization [54], stream patching [40, 67, 37], and

TCP-friendly congestion control [25, 77], we deliver a protocol that enables scalable real-time

media distribution in a completely decentralised, serverless fashion.

103

Chapter 6: Conclusion

DRMTP is supported by a dynamic content and source discovery protocol, which deter-

mines the properties of the network and availability of information based on high-level content

description. This way, users are able to locate and access media without ever knowing about

the existence of potential sources in the network and without noticing intermittent failures in

the act of the distribution.

Along those lines, we have also developed a novel dynamic, mostly functional language

named MAST (Meta Abstract Syntax Trees). The language has full support for mobile code

and distributed computation and can be embedded in the payload of the content discovery

protocol or even DRMTP itself. However, the presentation of the language was beyond the

scope of the thesis.

The architecture is placed into context for real-world deployment by an economid model

and embedded micropayment scheme for cost distribution and loyalty payment. Our scheme

explicitly allows redistribution of content by end users and includes an affinity point computa-

tion algorithm which rewards end-users for redistribution. The ramification of this approach

is that end-users are encouraged to provide access to their media store, thus maximizing the

efficiency of the distribution with DRMTP. Simultaneously, the cost of distribution for copy-

right owners and content providers is drastically reduced, and availability of information is

automagically determined by popularity, transcending the lifetime of the original host.

The presentation was based on the system model developed on Section 2.1, where a large

number of autonomous nodes distributed over the Internet stores media files in part or whole.

We evaluated the core of the architecture, the DRMTP protocol, on this model with mathe-

matical analysis, experiments in a real network testbed, and simulation, and showed that it

offers a scalable solution for decentralised media distribution.

The basic premise to scalability is a scalable randomised implosion control scheme and

traffic localisation. We showed the scaling properties of the truncated exponential timer

scheme in Section 4.1. We elaborated in particular choices, and showed that the protocols

can theoretically scale to thousands of nodes per session, while maintaining low feedback

latency. We evaluated traffic localisation, failure recovery, and scalability in the presence of

network effects in Section 4.2. By experimentation with a real implementation in a Media

Lab network testbed we showed that the protocol can successfully control implosion, quickly

discover actively flowing streams, and isolate repair traffic to a local scope. Similarly, even in

104

105

the presence of adverse network effects, the protocol can maintain a constant low number of

conccurent localised streams, which is only dependent on the arrival rate of new nodes. The

congestion control scheme was examined in Section 4.3. There, we examined two simple but

representative scenarios, and showed that the protocol successfully reacts to upstream source

capacity limitations and competes fairly with cross TCP traffic.

A few pointers for future work can be provided among those lines. First, protocol analysis

can be carried further, examining very large scale scenarios and a variety of rate schemes and

congestion scenarios. Second, although the architecture provides a programmable protocol

substrate, we barely scratched the surface on programmability. Further exploration of these

aspects and a development of a full active service architecture for peer-to-peer systems can

be the subject of future work.

106 Chapter 6: Conclusion

Bibliography

[1] H. Abelson, G.J. Sussman, and J. Sussman. Structure and Interpretation of Computer

Programs. MIT Press, 2nd edition, 1996.

[2] J.C. Bolot amd T. Turletti and I. Wakeman. Scalable feedback control for multicast video

distribution in the internet. In Proc. Conference on Communications, Architectures,

Protocols, and Applications, pages 58-67, 1994.

[3] E. Amir, S. McCanne, and R. Katz. An active service framework and its application to

real-time multimedia transcoding. In Proc. A CM SIG COMM'98, 1998.

[4] D. Tennenhouse and. A survey of active networks research. IEEE Communications, 1997.

[5] D.G. Andersen, H. Balakrishnan, M.F. Kaashoek, and R. Morris. Resilient overlay net-

works. In Proc. ACM SOSP'01, 2001.

[6] S. Ante. Inside Napster: How the music-sharing phenom began, where

it went wrong, and what happens next. Business Week article, 2000.

http://www.businessweek.com/2000/00_33/b369 4001.htm.

[7] S. Armstrong, A. Freier, and K. Marzullo. Multicast transport protocol. Internet Engi-

neering Taskforce (IETF) RFC-1301, 1992.

[8] A. Ballardie. Core based trees (CBT) multicast routing architecture. IETF RFC 2201,

1997.

[9] J. Berst. Why technology can't stop music piracy. ZDNet News online, 2001.

http://www.zdnet.com/anchordesk/stories/story/0,10738,2677668,00.html.

107

Bibliography

[10] I. Brown. End-to-End Security in Active Networks. PhD thesis, University of London,

2001.

[11] J. Byers, M. Luby, and M. Mitzenmacher. Fine-grained layered multicast. In Proc.

INFOCOM'01, 2001.

[12] J. Chang and N. Maxemchuk. Reliable broadcast protocols. ACM Transactions on

Computer Systems, August 1984.

[13] D. Clark and D. Tennenhouse. Architectural considerations for a new generation of

protocols. In A CM SIGCOMM'90, 1990.

[14] K. Dean. Instant messaging grows up. Wired news article, 2000.

http://www.wired.com/news/culture/0,1284,33736,00.html.

[15] S. Deering and D. Cheridon. Multicast routing in datagram networks and extended lans.

ACM Transactions on Computer Systems, 1990.

[16] J. Kubiatowicz et. al. OceanStore: An architecture for global-scale persistent storage.

In Proc. of 9th international Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS 2000), 2000.

[17] D. Estrin et.al. Protocol independent multicast-sparse mode (PIM-SM): Protocol speci-

fication. IETF RFC 2362, 1998.

[18] F. Dabek et.al. Wide-area cooperative storage with CFS. In Proc. A CM SOSP'01, 2001.

[19] J. Byers et.al. FLID-DL: Congestion control for layered multicast. In Proc. Networked

Group Communication, 2000.

[20] J.W. Atwood et.al. Reliable multicasting in the xpress transport protocol. In Proc. of

the 21st Local Computer Networks Conference, 1996.

[21] S.E. Deering et.al. An architecture for wide-area multicast routing. In Proc. ACM

SIGCOMM'94, 1994.

[22] W. Fenner. Internet group management protocol, version 2. IETF RFC 2236, 1997.

108

[23] S. Floyd and K. Fall. Promoting end-to-end congestion control in the internet.

IEEE/ACM Transactions on Networking, 1999.

[24] S. Floyd, V. Jacobson, and S. McCanne. A reliable multicast framework for light-weight

sessions and application level framing. IEEE/A CM Trans. Networking, 5(6):784-803,

December 1997.

[25] S. Floyd, J. Padhye, and J. Widmer. Equation-based congestion control for unicast

applications. In A CM SIGCOMM'00, 2000.

[26] N.J. Garber and R. Cadiraju. Factors affecting speed variance and its influence on

accidents. Transportation Research Board, 1998.

[27] C. Ghezzi and G. Vigna. Mobile code paradigms and technologies: A case study. In

K. Rothermel and R. Popescu-Zeletin, editors, Mobile Agents - First International Work-

shop, MA '97, number 1219 in Lecture Notes in Artificial Intelligence, pages 39-49, Berlin,

DE, April 1997. Springer-Verlag.

[28] R. Govindan, C. Alaettinooglo, and D. Estrin. A framework for distributed active services.

Technical report, Information Sciences Institute, University of Soutern California, 1998.

[29] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service location protocol, version 2.

IETF RFC 2608, 1999.

[30] D. Halls. Applying Mobile Code to Distributed Systems. PhD thesis, University of Cam-

bridge, 1997.

[31] M. Handley and V. Jacobson. SDP: Session description protocol. IETF RFC 2327, 1998.

[32] M. Handley, C. Perkins, and E. Whelan. Session announcement protocol. IETF RFC

2974, 2000.

[33] S. Hannah, B. Patel, and M. Shah. Multicast address dynamic client allocation protocol

(madcap). IETF RFC 2730, 1999.

[34] R. Hinden. IP next generation overview. Communications of the A CM, 1996.

109Bibliography

Bibliography

[35] M. Hoffman. A generic concept for large-scale multicast. In International Zurich Seminar

on Digital Communication, 1996.

[36] M. Hoffman. Adding scalability to tranport level multicast. In Proc. COST 237 Workshop

- Multimedia Telecommunications and Applications, 1997.

[37] K.A. Hua, Y. Cai, and S. Sheu. Patching: A multicast technique for true video on-demand

serivces. In Proc. ACM Multimedia, 1998.

[38] V. Jacobson. Congestion avoidance and control. In A CM SIG COMM'88, 1988.

[39] S.K. Kashera, J. Kurose, and D. Towsley. Scalable reliable multicast using multiple mul-

ticast groups. In Proc. ACM SIGMETRICS International Conference on Measurement

and Modelling of Computer Systems, 1997.

[40] R. Kermode. Smart Caches: Localized Content and Application Negotiated Delivery for

Multicast Media Distribution. PhD thesis, Massachussets Institute of Technology, 1998.

[41] R. Kesley, W. Clinger, and J. Rees. The Revised5 report on the algorithmic language

scheme. Higher Order and Symbolic Computation, September 1998.

[42] J. Lardner. Hollywood vs. high-tech. Business 2.0, 2002.

http://www.business2.com/articles/mag/0,1640,39428,FF.html.

[43] L. Lehman, S. Garland, and D. Tennenhouse. Active reliable multicast. In IEEE INFO-

COM'98, 1998.

[44] L. Lessig. The Future of Ideas. Random House, 2001.

[45] A. Lippman. Personal communication.

[46] C.G. Liu, D. Estrin, S. Shenker, and L. Zhang. Local error recovery in SRM: Comparison

of two approaches. IEEE/A CM Transactions on Networking, 1998.

[47] J. Lyman. Report: Instant messenger use exploding. E-commerce Times article, 2001.

http://www.ecommercetimes.com/perl/story/14793.html.

[48] R. Mann. The need for speed. VU Magazine Article, 2000. http://the-

vu.com/need-for-speed.htm.

110

Bibliography 111

[49] S. McCanne, V. Jacobson, and M. Vetterli. Receiver driver layered multicast. In

Proc. A CM SIGCOMM'96, 1996.

[50] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC

Press, 1996.

[51] D. Meyer. Administratively scoped IP multicast. IETF RFC 2365, 19998.

[52] J. Nonnenmacher and E.W. Biersack. Optimal multicast feedback. In Proc. INFO-

COM'98, 1998.

[53] J. Nonnenmacher and E.W. Biersack. Scalable feedback for large groups. IEEE/A CM

Transactions on Networking, (August), 1999.

[54] J. Nonnenmacher, M. Lacher, M. Jung, E. Biersack, and G. Carle. How bad is reliable

multicat without local recovery? In Proc. Annual Joint Conference of the IEEE Computer

and Communications Societies, 1997.

[55] J. Padhye, V. Firoiu, D.F. Towsley, and J.F. Kurose. Modeling TCP performance: A

simple model and its empirical evaluation. IEEE/ACM Transactions on Networking,

April 2000.

[56] T. Palmaffy. Don't break the big goverment. Policy Review Article, 1996.

http://www.policyreview.org/sept96/labs.html.

[57] C. Papadopoulos, G. Parulkar, and G. Varghese. An error control scheme for large-scale

multicast applications. In Proc. INFOCOM'98, 1998.

[58] S. Paul, K.K. Sabnani, J.C. Lin, and S. Bhattacharyya. Reliable multicast transport

protocol (RMTP). IEEE Journal on Selected Areas in Communications, 1997.

[59] J.J. Postel. Transmission control protocol. IETF RFC 793, 1981.

[60] S. Raman. A Framework for Interactive Multicast Data Transport in the Internet. PhD

thesis, University of California at Berkekeley, 2000.

[61] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-

addressable network. In Proc. ACM SIGCOMM'01, 2001.

illBibliography

Bibliography

[62] D. Reed. Weapon of math destruction. Context Magazine article, 1999.

http://www.contextmag.com/archives/199903/digitalstrategy.asp.

[63] R. Rivest. The md5 message-digest algorithm. Internet Engineering Taskforce (IETF)

RFC-1321, 1992.

[64] L. Rizzo. pgmcc: a TCP-friendly single-rate multicast congestion control scheme. In

Proc. A CM SIG COMM'00, 2000.

[65] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and routing

for large scale peer-to-peer systems. In Proc. A CM SIGCOMM'01, 2001.

[66] J. Saltzer, D. Reed, and D. Clark. The end-to-end argument in system design. ACM

Transactions on Computer Systems, 1984.

[67] S. Sen, L. Gao, J. Rexford, and D. Towsley. Optimal patching schemes for efficient

multimedia streaming. In IEEE INFOCOM'99, 1999.

[68] S. Shenker. Fundamental design issues for the future internet. IEEE Journal on Selected

Areas in Communication, 1995.

[69] I. Stoika, R. Morris, D. Karger, and H. Balakrishnan. Chord: A scalable peer-to-peer

lookup service for internet applications. In Proc. A CM SIGCOMM'01, 2001.

[70] M. Thaler, M. Handley, and D. Estrin. The internet multicast address allocation archi-

tecture. IETF RFC 2908, 2000.

[71] D. Towsley, J. Kurose, and S. Pingaly. A comparison of sender-initiated and receiver-

initiated reliable multicast protocols. IEEE Journal on Selected Areas in Communication,

August 1997.

[72] L. Vicisano, L. Rizzo, and J. Crowfort. TCP-like congestion control for layered multicast

data transfer. In IEEE INFOCMM'98, 1998.

[73] D. Waitzman, C. Partridge, and S.E. Deering. Distance vector multicast routing protocol.

IETF RFC 1075, 1988.

112

[74] D. Wetherall. Active network vision and reality: Lessons from a capsule-based system.

In A CM SOSP'99, 1999.

[75] D. Wetherall. Service Introduction in an Active Network. PhD thesis, Massachussets

Institute of Technology, 1999.

[76] D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS: A toolkit for building and dynam-

ically deploying network protocols. In IEEE OPENARCH'98, 1998.

[77] J. Widmer and M. Handley. Extending equation-based congestion control to multicast

applications. In A CM SIGCOMM'01, 2001.

[78] Y. Yemini and S. DaSilva. Towards programmable networks. In Proc. IFIP/IEEE Inter-

national Workshop on Distributed Systems: Operations and Management, 1996.

[79] B.Y. Zhao, J. Kubiatowicz, and A.D. Joseph. Tapestry: An infrastructure for fault-

tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, Computer

Science Division, U.C. Berkeley, 2001.

[80] E. Zigura, K. Calvert, and S. Bhattachargee. How to model an internetwork. In Proc.

INFO COM'96, 1996.

[81] The RIAA campaign against music piracy. http://www.riaa.org/Protect-Campaign-

1.cfm.

[82] Akamai. http://www.akamai.com.

[83] EFF "intellectual property - security systems standards and certification act (SSSCA)"

archive. http://www.eff.org/IP/SSSCACBDTPA/.

[84] Gnutella. http://gnutella.wego.com.

[85] Kazaa. http://www.kazaa.com.

[86] Morpheus. http://www.musiccity.com.

[87] Napster. http://www.napster.com.

[88] The network simulator - ns-2. http://www.isi.edu/nsnam/ns.

113Bibliograp hy

[89] Yaga. http://www.yaga.com.

114 Bibliography

Appendices

115

Appendix A

Protocol Specification

The complete protocol architecture can be implemented as a library, which interacts with

application-specific code. Application code provides the framing, stream scheduling, and

evaluation of session messages. We specify the protocol in terms of external message repre-

sentation, in the packet level, and the API provided to application level code in a node of the

system.

A.1 Message Format

A.1.1 Message Envelope

All protocol messages are enclosed in a common message envelope. The envelope contains field

for node identification and message demultiplexing. The message envelope is summarised in

Table A.1.

The magic of the protocol is the character string "(AMTP)#OxOO", standing for Active Mes-

sage Transport Protocol. The version field identifies the protocol version, currently 1. The

environment identifiers, with length 128 bits, allows the protocol enging to demultiplex be-

tween messages. Sessions and streams are identified as environments. Similarly, the node

identifier is a unique node key - it can be used for encryption and authentication of messages,

at the discretion of application code.

Each message is identified by a node specific identifier, and has a length specified by

the length field. The maximum packet size is 31768 bytes - larger messages are frag-

117

Appendix A: Protocol Specification

Field Length (bytes) Purpose
magic 7 Protocol identification

version 1 Protocol version
destination-environment 16 Destination demultiplexing

source-node 16 Source identification
source-environment 16 Source environment reference
message-identifier 8 Identifier for reassembly of fragmented messages

length 4 Message size
packet-offset 4 Packet offset for fragmented frames.
packet-length 4 Packet payload length

Table A.1: Message Envelope Fields

mented in multiple packets and reassembled at the destination using the tuple (source-node

source-environment message-identif ier) as a reference. Finally, the envelope is padded with

zeros at the end to a length of 96 bytes.

A.1.2 DRMTP Messages

DRMTP messages are demultiplexed using the destination-environment field of the AMTP

envelope. Each session has a separate environment identifier, and so does each stream within

the session. Each DRMTP message carries a DRMTP magic, the string "(DRMTP) ", a version

byte, and the message payload prepended by a type specifier byte. Table A.2 summarises the

payload of DRMTP messages.

All integral types are represented in network byte order. Compound type representation is

shown in Table A.3, except sockaddr which is the standard UNIX socket address specification.

A.1.3 SDCP Messages

Similar to DRMTP, SDCP messages are demultiplexed using the destination-environment

field of the AMTP envelope. Each session has a separate environment identifier, and so does

each stream within the session. Each message carries a SDCP magic, the string " (SDCP)#OxO",

a version byte, and the message payload prepended by a type specifier byte. Table A.4

summarises the payload of SDCP messages.

118

A.1 Message Format 119

Message Type specifier Parameter Parameter type Purpose
request Ox01 depth u_int8_t Scope depth

frame-set frame-set-t Request frame set
bid Ox02 depth u-int8_t Scope depth

frame-set frame-set-t Bid frame set
accept Ox03 depth u-int8_t Scope depth

frame-set frame-set-t Accepted frame set
announce Ox04 depth u_int8_t Scope depth

stream byte[16] Stream identifier
address sockaddr Group address

frame-set frame-set-t Stream frame set
schedule Ox11 depth u_int8_t Scope depth

controler-source-t u-int32-t jOT in msPC--+
-OTsource-controler-t u-int32_t Oc-s in ms

spec schedule-spec-t Schedule specification
congestion Ox12 depth u-int8_t Scope depth

max-throughput u-int32-t rTCP in bps
exclude Ox13 frame-set frame-set-t Excluded frame set
join Ox14 depth u_int8_t Scope depth

stream byte [16] Stream identifier
address sockaddr Group address

frame-set frame-set-t Stream frame set
data 0x21 depth u_int8_t Scope depth

frame u-int32_t frame ordinal
size u-int32_t frame size in bytes

payload byte[size] frame payload

Table A.2: DRMTP messages

Type Field Field type
f rame-sett size u-int32_t

range-set frame-ranget [size]
frame-range-t begin u-int32_t

end u-int32-t
modulo u-int32_t

index u-int32_t

schedule-spec-t size u-int32_t

frames u-int32_t [size]
delay u-int32-t [size]

Table A.3: Compound types in DRMTP messages

A.1 Message Format 119

Appendix A: Protocol Specification

Message Type specifier Parameter Parameter type Purpose

f ind Ox01 depth u-int8_t Scope depth
size u-int32_t Query size
query byte[size] Query

match Ox02 depth u-int8_t Scope depth

size u-int32_t Description size
desc byte[size] Match description

allocate Ox11 depth u_int8_t Scope depth

stream byte [16] Target stream

propose Ox12 depth u_int8_t Scope depth

stream byte[16] Target stream
address sockaddr Group address

announce Ox13 depth u_int8_t Scope depth
stream byte[16] Target stream

address sockaddr Group address

Table A.4: SDCP messages

A.2 Node Application Programming Interface

The node API for pariticipating in DRMTP and SDCP sessions is summarised in Figure A.1.

Application code provides instances of the drmtp-client and sdcp-client interfaces. To par-

ticipate in the system, the application must first instantiate an sdcp-session, and provide

it with the sdcp-client. The latter receives upcalls from the node kernel on SDCP events.

For each DRMTP session that the application participates, a separate drmtp-session must be

instantiated and provided with a drmtp-client instance for receiving upcalls. SDCP content

search is performed with the find method of sdcp-session, and data is fetched from a DRMTP

session using the fetch method of drmtp-session.

120

121A.2 Node Application Programming Interface

drmtp-session
+fetch(fs:frame_sett)

drmtp client
+schedule(framesett): schedule spec_t
+schedule(frame-set-t,schedulespect,uint32_t): schedulespec t0 +put (uint32_t,data vblock-t)
+get(u-int32_t): data_block-t
+failure (frame_set_t)
+congestion(uint32_t)
+allocate(environment-id_t): envirornent-id-t

sdcpclient
+query(uint8_t,queryt): description-t I nil
+match(description_t)
+announce (environment-id t,u-int8t, sockaddr)
+propose (environment_id-t,uint8_t,sockaddr)
+allocate(environment id t,uint8_t)

Figure A.1: Node Application Programming Interface

sdcpsession
+find(query_t)
+propose(environment-id-t,u-int8_t,sockaddr)
+announce(environment_id t,uint8_t, sockaddr)

|I

- -

