
Stochastic processes on graphs with cycles: geometric and
variational approaches

by

Martin J. Wainwright

Submitted to the Department of Electrical Engineering and Computer Science in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

ifanuary, 2002

© 2002 Massachusetts Institute of Technology
All Rights Reserved.

Signature of Author:

Department of Electrical Engineering and Computer Science
January 28, 2002

Certified by:
I

Alan S. Willsky
Professor of EECS
Thesis Supervisor

Certified by:

Tommi S. Jaakkola
Afisitant Pr sor of EECS

esis,-pervisor

Accepted by:

MA SSACHUSETTS INSTIUTE
OFTECHNOLOGY

A PR, 1 6 2002

LIBRARIES

Arthur C. Smith
Professor of Electrical Engineering

Chair, Committee for Graduate Students

11





Stochastic processes on graphs with cycles: geometric and
variational approaches

by Martin J. Wainwright

Submitted to the Department of Electrical Engineering
and Computer Science on January 28, 2002

in Partial Fulfillment of the Requirements for the Degree
of Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract
Stochastic processes defined on graphs arise in a tremendous variety of fields, including
statistical physics, signal processing, computer vision, artificial intelligence, and infor-
mation theory. The formalism of graphical models provides a useful language with
which to formulate fundamental problems common to all of these fields, including esti-
mation, model fitting, and sampling. For graphs without cycles, known as trees, all of
these problems are relatively well-understood, and can be solved efficiently with algo-
rithms whose complexity scales in a tractable manner with problem size. In contrast,
these same problems present considerable challenges in general graphs with cycles.

The focus of this thesis is the development and analysis of methods, both exact and
approximate, for problems on graphs with cycles. Our contributions are in developing
and analyzing techniques for estimation, as well as methods for computing upper and
lower bounds on quantities of interest (e.g., marginal probabilities; partition functions).
In order to do so, we make use of exponential representations of distributions, as well
as insight from the associated information geometry and Legendre duality. Our results
demonstrate the power of exponential representations for graphical models, as well as
the utility of studying collections of modified problems defined on trees embedded within
the original graph with cycles.

The specific contributions of this thesis include the following. We develop a method
for performing exact estimation of Gaussian processes on graphs with cycles by solv-
ing a sequence of modified problems on embedded spanning trees. We introduce the
tree-based reparameterization framework for approximate estimation of discrete pro-
cesses. This perspective leads to a number of theoretical results on belief propagation
and related algorithms, including characterizations of their fixed points and the associ-
ated approximation error. Next we extend the notion of reparameterization to a much
broader class of methods for approximate inference, including Kikuchi methods, and
present results on their fixed points and accuracy. Finally, we develop and analyze
a novel class of upper bounds on the log partition function based on convex combi-
nations of distributions in the exponential domain. In the special case of combining
tree-structured distributions, the associated dual function gives an interesting perspec-
tive on the Bethe free energy.

Thesis Supervisors: Alan S. Willsky and Tommi S. Jaakkola
Title: Professors of Electrical Engineering and Computer Science





Notational Conventions

Symbol Definition

General Notation
absolute value

| | L 2 norm

V gradient operator
V2  Hessian operator
ai the ith component of the vector A
Aij element in the ith row and jth column of matrix A

ek indicator vector with 1 in the kth component and 0 every-
where else

R real numbers
kN vector space of real-valued N-dimensional vectors
[0, 1]N closed unit hypercube in JRN

(0, I)N open unit hypercube in RN

Ra(F) range of the mapping F
F o G composition of mappings F and G
I identity operator
x random vector
XN sample space of N-dimensional random vector x

y observation vector

p(x) probability distribution on x

p(x I y) conditional probability distribution of x given y
H(p) entropy of distribution p
D(p 1[ q) Kullback-Leibler divergence between p and q
A(p, A) Gaussian distribution with mean M and covariance A
U[a, b] uniform distribution on [a, b]
L Lagrangian of a constrained optimization problem

5



6 NOTATIONAL CONVENTIONS

Symbol Definition

Graphical models
g undirected graph
V vertex or node set of graph
&E edge set of graph
C graph clique
C set of all cliques of g
9 triangulated version of 9
C set of all clique of 9
S separator set in a junction tree
S set of all separator sets

Vkc compatibility function on clique C
Z partition function
N number of nodes (i.e., IVI)
m number of discrete states
s, t indices for nodes

(s, t) edge between nodes s and t
j, k indices for discrete states

N(s) neighbors of node s in 9
T embedded spanning tree of 9

S(T) edge set of T
KN complete graph on N nodes
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NOTATIONAL CONVENTIONS 7

Symbol Definition

Exponential families and information geometry
0 exponential parameter vector
d(0) number of components in 0

bc potential function

<0 collection of potential functions

p(x; 0) exponential distribution on x defined by 0
(D log partition function
T' negative entropy function (dual to (D)

mean parameters (dual variables)
A Legendre mapping between 0 and 97
Me e-flat manifold

Mm m-flat manifold
D(0 1 6*) Kullback-Leibler divergence between p(x; 0) and p(x; 0*)
E [f] expectation of f (x) under p(x; 0)
covg{f, g} covariance of f (x) and g(x) under p(x; 0)
cumo{fi,... , } kth-order cumulant of fi(x),. . . fk(x) under p(x; 0)
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Symbol Definition

Tree-based reparameterization
TV embedded spanning tree
i index for embedded spanning trees
L total number of spanning trees used

Mst;k belief propagation message from node s to t

Ps;j, Pst;jk exact marginal probabilities
Ts;j, Tst;jk approximate marginal probabilities
K arbitrary normalization constant

pt (x) tree-structured component of p(x)
qZ(x) set of residual terms (i.e., p(x)/p 2 (x))
8(xS = j) indicator function for x, to take value j
A set of composite indices (s; j) and (st; Ik)
AZ composite indices corresponding to T2

C constraint set for pseudomarginals
C2 constraint set based on tree V
0 mapping from T to 0
' reparameterization operator
HiI projection operator onto tree 7
ill injection operator from 7' to full set
Qi combined reparameterization-identity mapping based on 7r
{Ion} sequence of TRP iterates
A step-size at iteration n
i(n) spanning tree index at iteration n
G(T; 0) cost function (approximation to KL divergence)
Es;j log error log Ts;j - log Ps;J
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NOTATIONAL CONVENTIONS 0

Definition

Advanced
A
9(A)

QA(x)
PA(x)

Cmax(A)

Csep(A)
R
A

QA u A(x)
PA U A (x)

A

9A; R

MT

A(B)

1B

OB* iB
HB

I

OA

OA U A

Symbol

inference techniques
core structure
graph induced by the core structure
approximating distribution defined by the core structure
components of original distribution over the core structure
set of maximal cliques in A
set of separator sets associated with A
residual partition
particular residual element of R
auxiliary distribution on augmented structure A U A
components of original distribution on augmented structure
AUA

augmented residual partition
elements of R
marginalization operator
approximation to KL divergence based on A and R
collection of approximating distributions
core structure valued messages
exponential parameter for target distribution
indices associated with elements of B

f Oa I cEGA(B)}
ZaEB aa
projection operator of an exponential parameter onto B
injection operator into full set A
exponential parameter for QA
exponential parameter for QA u A
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Symbol Definition

Convex upper bounds
set of all spanning trees of 9

A7 probability distribution over trees T
p(T) probability of spanning tree T
supp(1) support of the distribution fi
11e edge appearance probabilities Prg~e c T}
O(T) exponential parameter vector structured according to tree T
0 collection of tree-structured exponential parameter vectors

Eg[0] convex combination Ey f(T)(T)
A(0*) set of feasible pairs (9; /) such that E4[0] = 0*
Q(A; 0*) Lagrangian dual function
A, r dual parameters
IITprojection operator onto tree T
L(9) set of tree-consistent mean parameters
M(g) set of globally consistent mean parameters

HS single-node entropy at x,
ist mutual information between x. and Xt

T(9) spanning tree polytope
r(-) rank function
v(A) number of vertices touched by edges in A C E
c(A) number of connected components of 9(A)

l(A;iMe; 0*) function for optimal upper bounds

A(Me) optimal set of mean parameters (as a function of Me)
pMe optimal set of edge appearance probabilities

v(T) edge incidence vector corresponding to spanning tree T
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Chapter 1

Introduction

A fundamental problem in applied probability theory is that of constructing, repre-
senting and manipulating a global probability distribution that is based on relatively
local constraints. This issue arises in a tremendous variety of fields. For example, in
statistical image processing or computer vision [e.g., 65,73,126,171], one relevant set of
random variables are the grey-scale values of the image pixels. Of course, since images
are locally smooth, neighboring pixels are likely to share similar intensity values. This
fact imposes a large set of local constraints on the grey-scale values. In order to form a

model suitable for applications like image coding or denoising, it is necessary to combine
these local constraints so as to form a global distribution on images. Similar issues arise

in building models of natural language [e.g., 138] or speech signals [e.g., 144]. In chan-
nel coding [e.g., 71,167], reliable transmission of a binary signal over a noisy channel

requires a redundant representation or code. Linear codes can be defined by requiring

that certain subsets of the bits have even parity (i.e., their sum is zero in modulo two
arithmetic). Each of these parity-checks typically involves only a relatively small frac-
tion of the transmitted bits. The problem of decoding or estimating the transmitted
codeword, however, requires a global distribution on all possible codewords. Finally,
in statistical mechanics [e.g., 135,165], the behavior of many physical phenomena (e.g.,
gases, crystals, magnets) is well-described by positing local interactions among a large

set of quantities (e.g., particles or magnets) viewed as random variables. Of interest

to the physicist, however, are global properties of the system as a whole (e.g., phase

transitions, magnetization).
The development of methods to attack problems of this nature has varied from field

to field. Statistical physicists, dating back to Boltzmann and Gibbs [e.g., 75], made
the first inroads. For example, Ising [90] in 1925, seeking to qualitatively understand
phase transitions in ferromagnetic materials, introduced the model that now bears his
name. In coding theory, Gallager [69, 70] in the early 1960s proposed and analyzed
low-density parity check codes. Although they received relatively little attention at the
time, they have since become the subject of considerable research [e.g., 37, 124, 129,
148,149]. Onwards from the 1970s, statisticians and probability theorists have studied
the relations among Markov fields, contingency tables, and log-linear models [e.g., 21,

48, 49, 52, 76, 79, 122, 160]. Markov random field models and the Gibbs sampler were
introduced to image processing in the late 1970s and early 1980s [e.g., 73,84,112,177].
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Pearl [137] spearheaded the use of probabilistic network models in artificial intelligence,
and also studied the formal semantics of both directed and undirected networks.

Since this pioneering work, it has become clear that the approaches of these different
fields - though ostensibly disparate - can be unified by the formalism of graphical
models. Graphical models provide a powerful yet flexible framework for representing

and manipulating probability distributions defined by local constraints [49,67,101,104,
121]. Indeed, models in a wide variety of fields, including the Ising model of statistical
physics [90], graphs associated with compound codes (e.g., turbo codes [18,130], and
low-density parity check codes [70,124,149]), and various models for image processing

and computer vision [e.g., 21,73,112,126,171,177] can all be viewed as particular cases
of a graphical model.

At the core of any graphical model is a graph - that is, a collection of nodes joined
by certain edges. Nodes in the graph represent random variables, whereas the edge

structure encodes particular statistical relations among these variables. These models

derive their power from fundamental correspondences between graph-theoretic ideas,

and concepts in probability theory [104,121]. A special case of such a correspondence
will be known by any reader familiar with (discrete-time) Markov processes. The defin-

ing feature of such processes is that the random variables in the past and future are
conditionally independent given the present state. In graphical terms, samples of the
Markov process can be viewed as living at nodes of a linear chain. The graphical prop-
erty corresponding to conditional independence is that removing any single node will
break the chain into two components (past and future). For graphs with more structure
than a chain, there exists a correspondingly more general set of Markov properties. The
well-known Hammersley-Clifford theorem [38,79] is a precise specification of the general
correspondence between Markov properties and graph structure.

0 1.1 Research areas related to graphical models

Graphical models, while providing a unifying framework, are by no means a panacea.
Indeed, it could be argued that these models pose more problems than they solve.
Undoubtedly, however, graphical models provide a convenient language with which to
formulate precisely a number of problems common to many fields. In this section, we

provide a high-level overview of a subset of these problems.

0 1.1.1 Estimation or inference

In many applications, it is desirable to estimate or make inferences about a collection
x = {x} of random variables, based on a set of noisy observations y = {ys}. A
Bayesian approach to this problem entails combining any prior information about x
with the new information introduced by the observations. In the context of this thesis,
the prior information about x is represented by a distribution specified by a graphical
model.

For example, in image processing, each y, could correspond to a noise-corrupted ob-

24 CHAPTER 1. iNTRODUCTION



servation of the grey-scale intensity x, at image location s. Any statistical dependency
among the grey-scale values {x} - that is, the prior information - is specified by
a particular graphical model. Denoising an image refers to the procedure of using the
noisy observations y so as to infer the true grey-scale values x. The resulting estimate

can be thought of as a "denoised" image. A similar task arises in channel coding: here

the elements of y correspond to the received bits, which may have been corrupted by

transmission through the channel. We use these received bits to estimate the transmit-
ted codeword x, where the structure of the code (i.e., the set of permissible codewords)

is represented by a graphical model.

N 1.1.2 Model selection

A related problem is that of model fitting. Suppose that we are given a set of samples
x(1), .... ,x("), drawn independently from some unknown distribution. Presumably these
samples provide some information about the structure of the underlying distribution.

The problem of model selection, then, is to make use of these samples so as to infer
or fit an appropriate model for the underlying distribution. Any procedure for model
selection depends, of course, on the criterion of model fidelity that is specified.

As an example drawn from image processing, each x(') might correspond to a sample

of a particular image texture (e.g., wood or grass). On the basis of these samples, we
want to select a model that captures the statistical structure of the given texture.

* 1.1.3 Sampling

Given a distribution defined by a graphical model, an important problem is how to draw
random samples from this distribution. Although this sampling problem might appear
straightforward at first blush, it is, in general, an exceedingly difficult problem for large-
dimensional problems. The tutorial paper by MacKay [128] gives helpful insight into
the nature of the difficulties; see also Ripley [150].

Returning to our image processing example, suppose that we have specified a model
for a particular texture - for example, wood. The ability to draw samples would allow

us to assess whether or not the model captures the visually salient features of wood. If
indeed the model were realistic, then an efficient sampling procedure would allow us to

synthesize patches of wood texture.

Of course, these research areas are all interconnected. Indeed, the process of model
selection typically entails performing inference as a subroutine. Moreover, any proce-
dure for drawing random samples from a distribution forms the basis for a Monte Carlo

method [28,150] for performing (approximate) inference. The bulk of this thesis focuses
on estimation and inference; due to these interconnections, however, our results have

implications for other research areas as well.
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0 1.2 Principal methods

In this section, we provide a broad overview of the principal methods used in this thesis.
In particular, our analysis draws primarily from the following three bodies of theory:

" exponential families and information geometry

" convex analysis and duality

" variational theory and methods

The set of distributions defined by a graphical model can be formulated as an expo-
nential family. These families and their associated geometry have been studied exten-
sively in applied probability theory and statistics [e.g., 5,7,13,33,43,45,82]. Exponential
families have a rich geometric structure, in which the Fisher information matrix plays
the role of a Riemannian metric [145]. Indeed, an exponential family constitutes a
differential manifold of distributions, for which the exponential variables constitute a
particular parameterization. A distinguishing feature of manifolds formed by exponen-
tial families is the existence of a second set of parameters, which are coupled to the
exponential variables. From this dual parameterization arises a considerable amount

of additional geometric structure, in which the Kullback-Leibler divergence assumes a
central role. This body of theory is known collectively as information geometry.

At a broad level, convex analysis [e.g., 59,86,151] is the study of convex sets and
functions. Ideas and techniques from convex analysis play important roles in various
fields, from statistical physics [135] to information theory [41]. Especially important is
the notion of convex duality, of which there are various related forms (e.g., Fenchel, Leg-
endre, Lagrangian). Convex duality not only provides conceptual and geometric insight,
but also has important practical consequences for developing optimization algorithms.

Variational formulations, along with the associated body of theory and methods, are
integral to many disciplines of science and engineering [e.g., 92,153,179]. At the heart
of such methods is the idea of specifying a quantity of interest in a variational fashion
- that is, as the minimizing (or maximizing) argument of an optimization problem.
A variational formulation makes it possible to study or approximate the quantity of
interest by studying or approximating the corresponding optimization problem.

As will become clear later in the thesis, there exist deep connections between these
three areas. For example, exponential families arise most naturally as maximum en-
tropy distributions [179] subject to linear constraints - that is, in a variational fashion.
Moreover, the two sets of parameters for an exponential family are coupled by a par-
ticular form of convex duality, namely the Legendre transform [151]. Convex analysis
is also intimately linked to many variational methods [see, e.g., 59].

* 1.3 Main problems and contributions

In this section, we discuss the problems that are addressed by this thesis, as well as the
nature of our specific contributions. The main problems tackled in this thesis are the
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following:

* inference on graphs with cycles:

(a) exact inference for Gaussian processes

(b) approximate inference for discrete processes

* computable bounds on probabilistic quantities (e.g., the so-called partition func-
tion; 1 marginal distributions)

Before proceeding to an in-depth discussion of these problems, we pause to discuss

the unifying theme of this thesis. An important subclass of graphs are those without

cycles, which are known as trees. One fact highlighted by our work is that graphs with

cycles are fundamentally different than trees. As we will see, for trees, all three of

the problems described in Section 1.1 are relatively well-understood, and can be solved

by very fast algorithms. In contrast, these same problems are intractable for general

graphs with cycles.
At a very high level, all the work described in this thesis is based on the following

simple observation: embedded within any graph with cycles are a large number of trees.

Given a problem on a graph with cycles, it is tempting, therefore, to consider modified
problems defined on trees. As demonstrated by our results, the remarkable fact is that
studying this simpler set of modified tree problems can lead to considerable insight

about the original problem on the graph with cycles. Although the work described
here focuses primarily on embedded trees, it should be clear that similar ideas can be

applied to triangulated subgraphs with more complex structure than trees (e.g., graphs

of higher treewidth 2) embedded within the original graph.

We now turn to discussion of the main problems addressed in this thesis.

* 1.3.1 Inference in graphs with cycles

As noted above, a fundamental fact is that the complexity of inference depends very

strongly on graph structure. A simple case, one which may be familiar to many readers,

should help to illuminate the role of graph structure in inference. Suppose that we wish

to estimate a discrete-time Markov process x = {xt I t = 0,... , N - 1 }, based on an

associated set of noisy observations y ={yt} where each yt is a measurement of the

corresponding Xt. For this Markov chain problem, there exist well-known and very

efficient algorithms for carrying out standard estimation tasks [e.g., 100,109,144,146].
For example, in one version of the so-called smoothing problem, we want to compute, for

each time t = 0,..). , N - 1, the marginal distribution of ct conditioned on the full set

y of observations. Any efficient algorithm for this task has a recursive form, typically

'As we will see in the sequel, the partition function plays an important role in graphical models.
2An ordinary tree is a graph of treewidth one; roughly speaking, graphs of higher treewidth cor-

respond to trees on clusters of nodes from the original graph. See [17, 162] for further discussion of

hypergraphs and treewidth.
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involving a forward and backward sweep. For example, in the Gauss-Markov case, the

forward sweep corresponds to the Kalman filter [100,109,110], whereas one version of
the backward sweep corresponds to the Rauch-Tung-Striebel smoother [146]. Going
through the derivation reveals that Markov properties of the chain - namely, that past

and future are conditionally independent given the present - are exploited heavily.

Interestingly, recursive algorithms for exact estimation, rather than being limited to
chain-structured graphs, are more generally applicable to the class of acyclic graphs or
trees. (Note that a simple chain is a special case of a tree). An important fact is that
the nodes of any tree-structured graph can be put into a partial order by arbitrarily

designating one node as the root, and then measuring the scale of other nodes in terms

of their distance from the root. This partial ordering, in conjunction with Markov
properties of a tree, permit the derivation of efficient recursive techniques for exact

estimation on a tree [e.g., 35,137]. The most efficient implementation of such algorithms
again have a two-pass form, in which the computation first sweeps from outer nodes

towards the root node, and then from the root node outwards.

Graphs with cycles, on the other hand, are fundamentally different than acyclic
graphs. In the presence of cycles, nodes cannot be partially ordered, so that it is no
longer possible to exploit Markov properties of the graph to derive recursive algorithms.

As we will discuss in Chapter 2, although there exist general-purpose algorithms for
exact inference on graphs with cycles, they are all based on suitably modifying the graph
so as to form a tree. Moreover, the complexity of these exact methods, in general, scales
poorly with problem size.

It is therefore of considerable interest to develop efficient algorithms for exact or
approximate inference on graphs with cycles. Although a great deal of work has been
devoted to this area, there remain a variety of open problems. In the following sections,
we discuss the open problems addressed in this thesis, first for Gaussian and then for
discrete-valued processes.

* 1.3.2 Exact inference for Gaussian processes

In the Gaussian case, exact inference refers to the computation of both the conditional

means and error covariances at each node of the graph. The complexity of the brute
force approach to this computation - namely, matrix inversion - scales cubically as
a function of the number of nodes N. In many applications [e.g., 62,126], the number
of nodes may be on the order of 10 5 or 106, so that an O(N 3 ) cost is unacceptable.

Tree-structured Gaussian processes are especially attractive due to the tractability

of inference. In particular, the computational complexity of a two-pass algorithm for
exact inference on a tree is O(N) (see Chou et al. [35]). In order to leverage these

fast algorithms for problems in signal or image processing, one strategy is to use a
multiscale tree in order to model dependencies among a collection of random variables,
representing a time series or 2-D random field, in an approximate fashion. The variables

to be modeled are viewed as lying at the finest scale of the tree. In the context of

image processing, these fine scale variables might correspond to grey-scale intensity
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values at each pixel, whereas coarser scale variables might correspond to aggregate

quantities (e.g., wavelet coefficients). Instead of modeling dependencies among the fine

scale variables directly, the approach is to build a tree model on top of them, in which

variables at higher levels of the tree capture dependencies among subsets of the fine scale

variables. This general modeling philosophy, in conjunction with efficient techniques

for stochastic realization of these multiscale tree models [e.g., 63, 88, 89], have been
applied successfully to various problems [e.g., 47,62,87,126].

It turns out that these tree-structured models tend to capture long-range depen-

dencies well, but may not be as effective at modeling short-range interactions. To

understand the source of this problem, consider again the example of image processing,
in which fine scale variables correspond to grey-scale intensity values. Of course, inten-

sity values at spatially adjacent pixels tend to be highly dependent. However, certain

pairs of such pixels are mapped to pairs of tree nodes that are separated by a very large

tree distance. A tree model will fail to capture the dependency between such a pair of

variables, a deficiency which manifests itself with abrupt jumps (or boundary artifacts)

in samples drawn from the approximate tree model [see, e.g., 89,126].
A number of ad hoc methods [e.g., 88] have been proposed to deal with boundary

artifacts, but none are entirely satisfactory. Indeed, the most natural solution is to add
extra edges to the tree as necessary. With the addition of these edges, however, the new

graph is not a tree (it has cycles!); as a consequence, efficient inference algorithms for

trees [35] are no longer applicable. This fact necessitates the development of efficient

algorithms for exact estimation of Gaussian processes on graphs with cycles.
There are a variety of methods for efficiently computing the conditional means of

a Gaussian problem on a graph with cycles. The options include techniques from
numerical linear algebra [54], as well as the so-called belief propagation algorithm [137],
which will be discussed at more length in the following section. However, none of these

methods compute the (correct) error covariances. This is a serious deficiency, since in

many applications [e.g., 62,126], these error statistics are as important as the means

themselves.

In Chapter 4, we develop a new iterative algorithm for exact estimation of Gaussian
processes on graphs with cycles. As a central engine, it exploits the existence of efficient

algorithms [35] for solving any Gaussian estimation problem defined on a tree embedded

within the original graph. For this reason, we call it the embedded trees (ET) algorithm.
At each iteration, the next iterate is generated by solving an appropriately modified

Gaussian estimation problem on a spanning tree of the graph. We will prove that if

the sequence of tree problems is suitably constructed, then the sequence of iterates

converges geometrically to the true means and error covariances on the graph with
cycles.

0 1.3.3 Approximate inference for discrete-valued processes

For discrete-valued Markov processes on graphs, one important inference problem is to

compute marginal distributions at each node of the graph. It can be shown [39] that
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this problem is NP-hard. As a result, techniques for approximate inference are the focus
of a great deal of current research.

The belief propagation algorithm [137], also known as the sum-product algorithm

in coding theory [e.g., 117, 130], is a well-known and widely studied method [e.g.,
3,130,147,173,180] for approximate inference. This algorithm is used in a wide variety
of fields, ranging from artificial intelligence and computer vision [e.g., 65, 68, 133] to
coding theory, where it shows up as a highly successful iterative decoding method for
turbo codes [18,130] and low-density parity check codes [71,124,129,149]. As a result,
belief propagation has generated tremendous excitement in a number of communities.

Belief propagation (BP) is a technique for computing approximate marginal dis-
tributions at each node of the graph. It is an iterative algorithm, in which so-called
messages are passed from node to node along edges of the graph. On a tree-structured

graph, it is guaranteed to yield the correct marginals in a finite number of iterations.
On a graph with cycles, in contrast, the algorithm may not converge, and even when it
does, the resulting approximations are of variable accuracy. Accordingly, the behavior
of BP in application to graphs with cycles has been the focus of a great deal of recent
research [e.g., 2,8,147,173,180]. We provide a brief review of this work in Section 5.1
of Chapter 5. For now we highlight the recent results of Yedidia et al. [180], who pro-
vided a variational interpretation of BP. In particular, their analysis established that
points to which BP can converge (i.e., fixed points) correspond to extremal points of the
so-called Bethe free energy from statistical physics. Nonetheless, despite the advances
of recent work, there remain a number of open questions associated with belief prop-
agation, perhaps the most important of which being the nature of the approximation
error.

This area is the focus of Chapter 5, in which we advocate a conceptual shift away
from the traditional message-passing view of approximate inference (as in standard BP).
In lieu, we develop the notion of reparameterization. Any graphical model is specified
by a product of so-called compatibility functions defined over cliques of the graph;
however, this representation is not necessarily unique. A reparameterization operation,
then, corresponds to choosing a different set of compatibility functions for the factored
representation of the distribution. On one hand, we will show that BP updates can
be re-formulated as a very local form of such reparameterization; on the other hand,

we will consider more general forms of reparameterization that entail performing exact

computations on spanning trees of the graph. These more global operations will be

called tree-based reparameterization (TRP) updates.
The perspective of TRP gives rise, in a very natural way, to a number of new theo-

retical insights. First of all, we give an intuitive characterization of fixed points: they
must be consistent, in a suitable way to be defined, with respect to every acyclic sub-
structure embedded within the original graph.3 Secondly, we establish a fundamental
property of TRP or BP updates: when viewed as a sequence of reparameterizations,
they leave the original distribution on the graph with cycles unchanged. This invari-

3 Spanning trees are maximal acyclic subgraphs.
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ance has a number of consequences, of which the most important is the resulting insight
into the approximation error - i.e., the difference between the TRP/BP approximate
marginals, and the actual marginals. Results pertaining to this error have been ob-
tained in certain special cases: single loops [173], and the graphs corresponding to
turbo codes (147]. The TRP perspective allows us to give an exact expression of the
approximation error for an arbitrary graph. This exact expression is the starting point
for deriving error bounds. Interestingly, although our insights emerge in a natural way
from the TRP perspective, most of them apply in an algorithm-independent manner to
any constrained local minimum of the Bethe free energy, regardless of how it is obtained.

It is well-known that belief propagation tends to give poor results on certain kinds
of graphs (e.g., those with many short cycles). It is therefore desirable to develop
principled methods for improving the BP approximation. In Chapter 6, we present a
framework for developing and analyzing such extensions. The basis of this framework
is a decomposition of the graph with cycles into a core structure, over which exact
computations can be performed, and a set of residual elements (e.g., edges and/or
cliques) not captured by the core. We show that the notion of reparameterization, as
developed in Chapter 5, extends in a natural way to all approximations in this class.
As a consequence, most of our results on TRP have corresponding generalizations.
We establish that fixed points are characterized by consistency conditions over certain
embedded substructures. For example, in the case of Kikuchi approximations, we find
that clique trees4 embedded within the original graph play the same role that spanning
trees do for the Bethe free energy of belief propagation. Moreover, we prove that the
original distribution remains invariant under the reparameterization updates, and we
also analyze the approximation error. An ancillary contribution of Chapter 6 is to unify
two previously proposed extensions: the Kikuchi approximations of Yedidia et al. [180],
and the expectation-propagation technique of Minka [131].

E 1.3.4 Upper and lower bounds

It is often desirable to obtain upper and lower bounds on various quantities associated
with a probability distribution, including marginal probabilities at particular nodes (or
subsets of nodes), as well as the partition function. In the context of estimation, a set
of upper and lower bounds on a particular marginal provides much stronger informa-
tion than a mere approximation - namely, the guarantee that the desired marginal
probability must lie within the specified window. Bounds on the partition function are
important for a variety of problems, including model selection [105] and large deviations
analysis [158]. Given a set of data points, the partition function has the interpretation as
the likelihood of observing that particular set of data under the given model. Selecting
a model according to the principle of maximum likelihood [113,118], then, corresponds
to choosing model parameters so as to maximize the partition function. The theory of
large deviations [e.g., 53,158] deals with the exponential rate at which the probability

4 A clique tree for a graph is an acyclic graph in which the nodes consist of certain clusters of nodes
(i.e., cliques) from the original graph.
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of observing an unlikely event (a so-called large deviation: e.g., 900 or more heads in
1000 tosses of a fair coin) decays asymptotically as the number of samples tends to
infinity. In this context, the (log) partition function is well-known to play the role of a
rate function - that is, it specifies these exponential error rates.

Mean field theory (e.g., 105], as described in Section 2.3, provides a well-known
lower bound on the partition function. This lower bound, in conjunction with the
EM algorithm [55], forms the basis of an important method for approximate model
fitting [105]. Strengthened versions of the mean field lower bound, derived by including
higher order terms in a Taylor series, have been proposed by [123]. In comparison,
upper bounds appear to be much more difficult to derive. For the case of binary-
valued nodes with pairwise interactions, Jaakkola and Jordan [94] exploited ideas from
convex analysis to derive a recursive node-elimination procedure for upper bounding
the partition function.

In Chapter 3, we derive both lower and upper bounds on the expectation of an
arbitrary function (say f). These lower bounds are closely related to standard mean
field, in that they follow from exploiting the convexity of the log partition function -
in our case, a partition function modified in a way dependent on f. We then derive a
new set of upper bounds that are based on taking convex combinations of exponential
parameters. We also develop a technique for strengthening an arbitrary bound, based
on the idea of decomposing the function f in an additive manner. We prove that for
both the lower and upper bounds developed in Chapter 3, this technique is guaranteed
to yield (in general) strictly tighter bounds. The bounds developed in Chapter 3 play
a fundamental role in our analysis of the error in approximate inference techniques, as
described in Chapters 5 and 6.

The new class of upper bounds based on convex combinations are studied more
extensively in Chapter 7. We consider, in particular, the set of convex combinations
formed from all spanning trees embedded within a graph with cycles. A crucial fact
here is that the number of such spanning trees is typically extremely large. (E.g., the
complete graph KN has NN- 2 spanning trees [168].) Despite the apparent intractability
of optimizing over such a huge number of trees, we show that exploiting ideas from La-
grangian duality leads to a drastic reduction in problem complexity. This simplification
enables us to develop an efficient method for optimizing both the choice of exponential
parameters as well as the choice of convex combination over all spanning trees. More-
over, this dual formulation of the problem gives a new and interesting perspective on
the Bethe free energy. 5 In particular, our analysis leads to functions which, though
closely related to the Bethe free energy, have the following attractive properties. First
of all, they are strictly convex, so we are guaranteed a unique global minimum that can
be found by standard methods from nonlinear programming [20]. Secondly, this global
minimum yields an upper bound on the log partition function.

5 As discussed in Section 1.3.3, the Bethe free energy plays an important role in the belief propagation
algorithm for approximate estimation on graphs with cycles.
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0 1.4 Thesis overview

In summary, the primary contributions of the thesis are as follows:

* a new iterative algorithm for exact estimation of Gaussian processes on graphs
with cycles

" the tree-based reparameterization framework for approximate estimation of discrete-
valued processes on graphs with cycles

" a unifying framework for the development and analysis of more advanced tech-
niques for approximate inference

" a new class of upper bounds on the log partition function

The remainder of the thesis is organized, on a chapter by chapter basis, in the
following manner:

Chapter 2: Background

This chapter sets out the background that underlies developments in the sequel. It
begins with an overview of basic concepts in graph theory, followed by a self-contained
but brief introduction to graphical models. We include a discussion of the junction tree
representation of distributions [121,1221, as well as the exact inference technique of the
same name. We then introduce exponential families of distributions, and develop the
associated theory of information geometry. The final section treats variational methods,
with particular emphasis on mean field theory as an illustrative example.

Chapter 3: Perturbations and Bounds

This chapter illustrates the use of exponential representations in developing perturba-
tion expansions and bounds on expectations of an arbitrary function (e.g., single-node
marginal distributions). The perturbation expansions yield helpful information about
the sensitivity of various quantities (e.g., marginal distributions) to changes in the model
parameters. We then turn to the development of bounds on expectations of arbitrary
functions. We show how to apply the lower bound from mean field theory to a tilted log
partition function in order to obtain lower bounds on the expectation of an arbitrary
function. We also derive a new class of upper bounds, based on the idea of taking
convex combinations of exponential parameters. For the expectation of an arbitrary
function, we develop a method for strengthening the bounds by performing an additive
decomposition. We illustrate these bounds with some simple examples.

Chapter 4: Embedded trees algorithm for Gaussian processes

This chapter develops and analyzes the embedded trees (ET) algorithm for exact estima-
tion of Gaussian processes defined on graphs with cycles. The ET algorithm generates
a sequence of iterates (means and error covariances) by exactly solving a sequence of
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modified problems defined on trees embedded within the graph. We prove that when
the sequence of modified tree problems is appropriately chosen, the sequence of iterates
converges to the correct mean and covariances for the original problem on the graph
with cycles. The algorithm is illustrated in application to a problem on a nearest-
neighbor grid. Theoretical extensions of this work as well as related empirical results
can be found in [163].

Chapter 5: Tree-based reparameterization for approximate estimation

This chapter develops the tree-based reparameterization (TRP) framework for approx-
imate inference on graphs with cycles. We show that belief propagation (BP) can be
re-formulated as a special case of reparameterization, and establish that more global
tree updates have superior convergence properties. We prove that fixed points of
TRP updates satisfy the necessary conditions to be local minima of a cost function
that is an approximation to the Kullback-Leibler divergence. Although this cost func-
tion is distinct from the Bethe free energy [180], the two functions coincide on the
constraint set, which allows us to prove equivalence of TRP and BP fixed points. The
TRP perspective leads to a new characterization of TRP/BP fixed points in terms of
consistency over embedded acyclic subgraphs. We also establish that TRP and BP
updates leave invariant the distribution on the graph with cycles, a result which has a
number of important consequences. Finally, we use the fixed point characterization and
invariance to analyze the approximation error. We first develop an exact expression for
the error in an arbitrary graph with cycles. This expression, though conceptually inter-
esting, is not tractable to compute in general. This difficulty motivates us to develop
computable upper and lower bounds on the approximation error using the results from
Chapters 3 and 7. We illustrate these bounds with some simple empirical examples.

Chapter 6: Exploiting higher-order structure for approximate estimation

This chapter provides a unified framework for developing and analyzing more advanced
techniques for computing approximations to the marginals of a target distribution. Each
approximation in this framework is specified by a cost function that depends on a set
of so-called pseudomarginals. These pseudomarginals implicitly define a distribution,
and the associated cost function constitutes an approximation to the Kullback-Leibler
divergence between this distribution and the target distribution. We construct these
approximations by decomposing the graph with cycles into a core structure, over which
the pseudomarginals are updated by exact computations, and a set of residual terms

(e.g., edges or cliques) not covered by the core structure. We demonstrate that various
known approximations, including the Bethe free energy, Kikuchi approximations [180],
and the proposal of Minka [131], are special cases of this framework. Moreover, we
develop algorithms, analogous to the tree-based reparameterization updates of Chap-
ter 5, for performing constrained minimization of the cost functions. The minimizing
arguments constitute approximations to the actual marginals of the target distribution.
Significantly, most of the theoretical results from Chapter 5 have natural generalizations
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to all of the approximations in this framework. In particular, the ideas of reparameter-
ization and invariance are generally applicable. We use these principles to characterize
fixed points, and to analyze the approximation error.

Chapter 7: Upper bounds based on convex combinations

This chapter presents a new class of computable upper bounds on the log partition
function that are applicable to an arbitrary undirected graphical model. The bounds
are formed by taking a convex combination of tree-structured exponential parameters.
The weight on each tree can be viewed as its probability under a distribution over all
spanning trees of the graph. We consider the problem of optimizing these bounds with
respect to both the tree-structured exponential parameters as well as the distribution
over spanning trees. We show that a Lagrangian dual reformulation of the problem
leads to substantial simplification. As a result, despite the extremely large number of
spanning trees embedded in a general graph, we are able to develop an efficient algorithm
for implicitly optimizing the bounds over all spanning trees. This dual reformulation
also gives a new perspective on the Bethe free energy of approximate estimation. We
illustrate the use of these bounds in application to random choices of distributions
on various graphs. The methods developed in this chapter are broadly applicable. For
instance, there are natural extensions to convex combinations of distributions structured
according to clique trees, which in turn lead to a new perspective on Kikuchi free
energies.

Chapter 8: Contributions and Suggestions

This chapter summarizes the contributions of the thesis, and points out a number of
directions for future research. We also consider briefly the possible implications of
the perspective and results of this thesis for related research areas, including network
information theory, iterative decoding, and large deviations analysis.
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Chapter 2

Background

This chapter outlines the background necessary for subsequent developments in this
thesis. Graphical models provide a flexible framework for specifying globally consistent
probability models based on local constraints. The primary focus of this thesis is
problems that arise in using such models. We begin in Section 2.1 with an introduction
to the basics of graphical models, and the relevant problems of inference and estimation.
As a prelude to introducing graphical models, this section also contains a brief primer
on graph theory. Section 2.2 introduces a particular representation of distributions
defined by graphical models - namely, the exponential family. Associated with such
families are a variety of elegant results, known collectively as information geometry. A
third concept central to this thesis is that of a variational formulation. Accordingly, we
devote Section 2.3 to an overview of variational methods, with a particular emphasis
on mean field theory.

* 2.1 Graphical models

Graphical models are a powerful framework for representing and manipulating prob-
ability distributions over sets of random variables. Indeed, stochastic processes de-
fined on graphs arise in a variety of fields, including coding theory [71], statistical
physics [15,31,135], artificial intelligence [137], computer vision [65], system theory [14]
and statistical image processing [126]. The power of graphical models derives from
the correspondence that they establish between the probabilistic concept of conditional
independence, and the graph-theoretic notion of node separation.

We begin in Section 2.1.1 with a brief but self-contained introduction to the basics
of graph theory. There are many books available to the reader interested in more
background on graph theory [e.g., 16,22,25,26]. In Section 2.1.2, we turn to the basics of
graphical models. More background on graphical models can be found in the books [67,
101,104,121]; another helpful source is the edited collection of papers [103]. Section 2.1.3
introduces the problem of estimation or inference in graphical models, which is central
to many parts of this thesis. Section 2.1.4 briefly discusses exact inference algorithms
for tree-structured graphs; more details can be found in Appendix A. In Section 2.1.5,
we describe the notion of a junction tree, which is important both in a purely graph-
theoretic context and for the purposes of inference in graphical models.

37



0 2.1.1 Basics of graph theory

A graph Q = (V, 8) consists of a set of nodes or vertices V = {1, ... , N} that are joined
by a set of edges S. Edges in a graph can either be directed or undirected; this thesis
will focus exclusively on undirected graphs. For an undirected graph, the notation (s, t)

(or equivalently, (t, s)) denotes an undirected edge between nodes s and t in the vertex
set. For any s E V, the set of neighbors of s in g is given by

Af(s) 4 {tcG V I(s, t)CS } (2.1)

The degree of a node s, denoted d(s), corresponds to the number of neighbors (i.e., the
cardinality IM(s)I of the neighbor set).

A subgraph ( of a graph g is formed by a particular subset of the vertices and
edges of 9. It is often convenient to consider subgraphs induced by particular subsets
of the vertex set, or by particular subsets of the edge set. First of all, given a subset
S of the vertex set V, the subgraph induced by S is given by 9[S] = (S, S[S]) where
E[S] = { (s, t) C £ I s, t, C S }. The graph 9[S] is called a node-induced subgraph.

Similarly, given a subset F C E of the edge set, the subgraph induced by F is given
by 9(F) = (V(F), F), where

V(F) A {u C V 1 3 vCE V s. t (u, v) C F}

This graph 9(F) is called an edge-induced subgraph.
Examples of node and edge-induced subgraphs are given in Figure 2.1.

6 6 6
1 5 1 5 :' -. -- -- 57 Pt

2 8

3 7 3 8 3 8

(a) (b) (c)
Figure 2.1. Illustration of node and edge-induced subgraphs. Vertices and edges in the
subgraph are shown in dark circles and solid lines (respectively), while those not in the
subgraph are shown with dotted open circles and dotted lines (respectively). (a) Graph
9 with cycles. (b) The node-induced subgraph G[S] for S = {1, 2, 3, 5, 6, 8}. (c) The
edge-induced subgraph 9('W) with F = {(1, 2), (2, 3), (3, 5), (4, 6), (6, 8)}.

A path is a graph P consisting of the vertex set V(P) = {so, si,... , s} and edge
set E(P) = {(so, s1),... (sk-1, Sk) }. The vertices so and sk are the end vertices of the
path, and 1(P) = k is the length of the path. We say that P is a path from so to sk. A
cycle is a path from a node s back to itself formed of a sequence of distinct edges. I.e.,
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a cycle consists of a sequence of distinct edges { (s1, s2), (S2, 83), ... , (sk- 1 , Sk) } such
that Si = sk.

We say that a graph is connected if for each pair {s, t} of distinct vertices, there is
a path from s to t. A component of the graph is a maximal connected subgraph. The
notation c(9) denotes the number of (connected) components in the graph 9.

An important subclass of graph is those without cycles:

Definition 2.1.1 (Forests and trees). A tree T is a cycle-free graph consisting of a
single connected component. A forest is formed by the union of a collection of trees.
Given a graph 9, a spanning tree is an embedded tree (i.e., a tree-structured subgraph
of 9) that reaches each vertex. See Figure 2.2. for illustration of these concepts.

Definition 2.1.2 (Cliques). A clique of a graph 9 is any fully connected subset of
the vertex set V. A clique is maximal if it is not properly contained within any other
clique.

Figure 2.3 illustrates the structure of cliques of sizes one through four. Note that
any single node is itself a clique, but not a maximal clique unless it has no neighbors.
If we return to Figure 2.1(a), nodes {1, 2, 5} form a 3-clique, but nodes {1, 2, 5, 3} do
not four a 4-clique, since node 1 is not connected (directly) to node 3.

Let C = C(9) denote the set of all cliques in a graph 9. For instance, given a tree
T, the clique set C(T) consists of the union V U S of the vertex set with the edge set.
We use C to denote an arbitrary member of C (i.e., a particular clique of 9).

Given a subset of the clique set C, it is natural to define the following generalization
of an edge-induced subgraph:

Definition 2.1.3 (Clique-induced subgraphs). Given a subset B C C of the clique
set, let 9(B) denote the subgraph of 9 induced by the cliques in B. More precisely,
9 (B) = (V(B);89(B)) where

V(B) 4 {scVIsEC forsomeCCEB} (2.2a)
8(B) 4 {(s,t)ESs,teC forsomeCEB} (2.2b)

Note the clique set of 9(B) can be strictly larger than B. For example, if we consider
a single loop 9 on three nodes with B = {(1, 2), (2, 3), (1, 3)}, then 9(B) = 9, so that
the clique set of 9(B) includes the 3-clique {1, 2, 3} V B.

An important subclass of graphs are those satisfying the following property:

Definition 2.1.4 (Triangulated). A graph 9 is triangulated if every cycle of length
4 or greater has a chord (i.e., an edge joining two vertices not adjacent in the cycle).
See Figure 2.4 for illustrations of triangulated versus non-triangulated graphs.

This notion of triangulation will play a central role in the junction tree representa-
tion of graphical models, to be discussed in Section 2.1.5. Given a graph that is not
triangulated, it is always possible to form a triangulated version C by adding chords to
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(a) (b) (c)
Figure 2.2. (a) Graph g with cycles. (b) A forest embedded within g. (c) Embedded
spanning tree that reaches each vertex of g.

0

Figure 2.3: Graph cliques of size 1 through 4.

1 2 3

4 5 6

7 8 9

(a)

1 2 3

4 5

7 8 9

(b)
Figure 2.4. Illustration of a non-triangulated versus triangulated graph. (a) This
3 x 3 grid is not triangulated; it has many four cycles (e.g., the cycle formed by nodes
1 - 2 - 5 - 4 - 1) that lack a chord. (b) Here is one triangulated version of the 3 x 3
grid, formed by adding the extra edges {(2, 4), (4, 8), (2, 6), (6,8), (2,8)}. The extra edge
(2,8) is added as a chord for the 4-cycle formed by nodes 2 - 4 - 8 - 6 - 2.
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Sec. 2.1. Graphical models

cycles as necessary. However, this triangulated version need not be unique; that is, a
given untriangulated graph Q may have a number of possible triangulations.

It is useful to distinguish vertices (and edges), that if removed from the graph,
increase the number of connected components:

Definition 2.1.5 (Cut vertices and bridges). A vertex is a cut vertex if its deletion
from the graph increases the number of connected components. A bridge is an edge
whose deletion increases the number of connected components. (See Figure 2.5).

C

S

Figure 2.5: Vertex s is a cut vertex in the graph shown, whereas edge c is a bridge.

U 2.1.2 Basics of graphical models

Given a graph 9 = (V, E), a probabilistic graphical model is formed by associating
with each node s C V a random variable x, taking values in the sample space X.
This sample space can be either a continuum (e.g., X =IR), or the discrete alphabet
X = {0,... , m - 1}. In this latter discrete case, the underlying sample space XN is the
set of all N vectors x = {X8 I s E V} over m symbols, so that IXN = mN

In a graphical model, the edges of the underlying graph represent probabilistic
dependencies between variables, and come in two varieties - directed or undirected.
Although the probabilistic interpretation of directed and undirected edges is different,
any directed graph can be converted to an equivalent 1 undirected graph [see, e.g., 137].
In this thesis, we restrict our attention to undirected graphs.

The stochastic processes of interest are those which are Markov with respect to the
underlying graph. To define this concept, let A, B and C be subsets of the vertex set V.
Let xAxI be the random variables in A conditioned on those in B. The set B separates
A and C if in the modified graph with B removed, there are no paths between nodes in
the sets A and C (see Figure 2.6).

Definition 2.1.6. A stochastic process x is Markov with respect to the graph 9 if xAS
and xCiB are conditionally independent whenever B separates A and C.

This definition of Markovianity constitutes a generalization of the concept as applied
to a discrete time series. Indeed, a time series sampled at discrete instants can be viewed

'However, it may no longer be possible to read directly certain conditional independencies from the
undirected graph.
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B

A C

Figure 2.6. Illustration of the relation between conditional independence and graph

separation. Here the set of nodes B separates A and C, so that xA]B and xcis are

conditionally independent.

as a stochastic process defined on a chain. For such a graph, Definition 2.1.6 corresponds

to the usual notion that the past and future are conditionally independent given the

present.

A graph strongly constrains the distribution of a Markov process. Indeed, the

Hammersley- Clifford theorem [21,79] guarantees that distributions of Markov processes

over graphs can be expressed in factorized form as products of so-called compatibility

functions defined over the cliques:

Theorem 2.1.1 (Hammersley-Clifford). Let g be a graph with a set of cliques C.

Suppose that a distribution2 p over a discrete random vector x is formed as a normalized

product of nonnegative functions over the cliques:

P(x) =+1H c(x) (2.3)
cEC

where fcr(x) is a compatibility function depending only on the subvector xc ={x I s E

C}; and Z Ex E HEqc (x) is the partition function. Then the underlying process

x is Markov with respect to the graph. Conversely, the distribution p of any Markov

random field over g that is strictly positive (i.e., p(x) > 0 for all x C XN) can be

represented in this factorized form.

Remarks: There a variety of proofs of this result [e.g., 21, 79]; see Clifford [38] for

a historical overview. One of the most elegant proofs [79] uses the M6bius inversion

formula [see, e.g., 28]. Note that this theorem generalizes the usual factorizations

of Markov chains, for which the compatibility functions are formed by forward (or

backward) transition functions defined on the edges (i.e., maximal cliques for a chain).

See Lauritzen [121] for an example of a non-positive distribution (i.e., p(x) = 0 for some

x E XN) for which the converse is false.

2 Strictly speaking, p is a probability mass function for discrete random variables; however, we will

use distribution to mean the same thing.
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Sec. 2.1. Graphical models

0 2.1.3 State estimation or inference

A problem that arises in many applications of interest is that of estimating the random
vector x ={ x I s E V} based on a set of noisy observations y = {y I s E V}. For
instance, in image processing or computer vision [65,126], the vector x could represent
an image defined on a grid, and y could represent a noisy or blurred version of this
image. Similarly, in the context of channel coding [67,71], the vector x would represent
message bits, whereas y would correspond to the received bits.

In all cases, the goal is to estimate or to draw statistical inferences about the
unobserved x based on the observations y. The observation model can be formulated
mathematically in the form of a conditional distribution. In particular, we assume
that for each node s e V, the variable y, is a noisy observation of xc, specified by
the conditional density p(ys cc). We assume that the observations y are conditionally
independent given the hidden variables 3 x, so that p(ylx) = J8"P(ys xs).

Of central interest for problems of estimation or inference is the posterior density
p(xly), which defines a variety of estimators:

1. The maximum a posteriori (MAP) estimate corresponds to the peak or mode of
the posterior density - that is: XAR = arg maxCXGN PX y)

2. Also of interest are posterior marginals of a subset of variables. For instance, for
a discrete process x, the single node marginals are given by

p(xsly) = p(x'1y) (2.4)
x' s.t x'8=x8

Here the notation means summing over all configurations x' c XN such that
I'= .. For a continuous-valued process, this summation should be replaced by

integration.

By combining the prior in equation (2.3) with the observation density via Bayes
rule, we have:

p(x y) = R fi Wc(x) J7Jp(ysIcs) (2.5)
zCEC S

Note that each individual node forms a singleton clique, meaning that some of the
factors in (2.3) may involve functions of each individual variable. As a consequence,
the transformation from the prior distribution p(x) of equation (2.3) to the condi-
tional distribution p(x I y) of equation (2.5) is simply to modify the singleton factors of
equation (2.3). As a result, from here onwards, we suppress explicit mention of mea-
surements, since problems of estimation or inference for either p(x) or p(xIy) are of
identical structure and complexity.

3 This assumption entails no loss of generality, since any observation that is a function of variables
at multiple nodes can be merged into a clique potential that includes those nodes.
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The computations of the MAP estimate or of the single-node marginals are both
well-defined tasks. The focus of this thesis will be the latter task. Difficulties arise from
different sources, depending on whether x is a discrete or continuous-valued process.
For a continuous process, it may not be possible to evaluate analytically the necessary
integrals. This difficulty is relevant even for small problems. For a discrete process, on
the other hand, computing a marginal simply involves a discrete summation, which is a
straightforward operation for small problems. Here the difficulty arises as the problem
size grows. In particular, given a discrete-valued process on N nodes with m > 2
states, the number of terms in the summation of equation (2.4) explodes exponentially
as mA- 1. Consequently, for sufficiently large graphs, it will be impossible to perform
the discrete summation. A similar curse of dimensionality applies to the computation
of the MAP estimate.

0 2.1.4 Exact inference in trees

For a hidden Markov chain, there exist highly efficient algorithms for computing the
MAP estimate, or the single-node marginals at each node. These algorithms exploit
the Markov properties of a chain - namely, that the past and future are conditionally
independent given the present - to perform the necessary computations in a recur-
sive and hence efficient manner. For the linear-Gaussian problem, this formulation
leads to the Rauch-Tung-Striebel smoother [146]. For a discrete-state hidden Markov
chain, the resulting algorithm is known as the a - 0 algorithm in the speech processing
literature [143].

Interestingly, these recursive algorithms can be generalized to trees, which are singly-
connected graphs without cycles. (A chain is a special case of a tree.) An important
property of trees is that their nodes can be assigned a partial ordering in terms of their
depth in relation to an arbitrary node designated as the root. That is, the root is scale
0; the immediate descendants (i.e., children) of the root are scale 1; and so on down to
the leaves (terminal nodes) of the tree. With this partial ordering, the most efficient
implementation of a tree inference algorithm follows a two-pass form, first sweeping
up from the leaves to the root, and then downwards from the root to the leaves. For
a discrete process, the computational complexity of these algorithms is O(m 2 N). See
Appendix A for more details about such tree algorithms.

0 2.1.5 Junction tree representation

The set of cliques of a Markov chain are single nodes and pairs of adjacent nodes. In
this case, the compatibility functions {Vc} of equation (2.3) can always be written as a
function of local marginal and conditional distributions. For example, the standard for-
ward factorization of a Markov chain on three nodes is in terms of an initial distribution
and transitions:

p(x) = p(xI) p(x2 I Xi) p(x 3 I X2 )
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There is an alternative factorization that is symmetric with respect to the nodes -
namely p(x) = [p(xi, X2)/p(xi)p(x2 )] [p(x2, x 3 )/p(X2 )p(x3 )]p(xi)p(x2 )p(x3 ). More gen-
erally, the same kind of symmetric factorization holds for any tree-structured graph
T:

p(x) = flp(xs) J7J p(xs,x)(2.6)
sEV (s,t)ESp(xs)p(xt)(

That is, for a tree, the compatibility functions of equation (2.3) can always be repre-
sented directly in terms of local marginal distributions: 0, (x,) = p(Xs) for each node
s E V; and O/t(x, 7xt) = [p(xs, xt)/p(xs)p(xe)] for each edge (s, t) E E.

In contrast, for a graph with cycles, the compatibility functions do not, in general,
have any direct correspondence with local marginal distributions on those same cliques. 4

However, such a correspondence does hold on a graph formed of suitably aggregated
nodes, which is the subject of the junction tree representation. The basic idea is to
cluster nodes within the original graph g so as to form a clique tree - that is, an
acyclic graph whose nodes are formed by cliques of g. We use the calligraphic C to
refer to a given node of the clique tree (i.e., a given clique of 9).

Having formed a tree, it is tempting to simply apply a standard tree inference
algorithm. However, the clique tree must satisfy an additional restriction so as to
ensure consistency of probabilistic inference on the tree. To understand the source of
this problem, consider the single loop on 4 nodes shown in Figure 2.7(a), as well as
the clique tree (one of many possible) shown in Figure 2.7(b). Here ellipses represent
nodes of the clique tree (i.e., cliques of the original graph), whereas the boxes represent
separator sets, which correspond to intersections of nodes adjacent on the clique tree.
Observe that node 3 occurs twice in the clique tree, once in each of the cliques {1, 3}

1
12 1 13

2 2

24 4 34
4

(a) (b)
Figure 2.7. A simple example showing the necessity of the running intersection prop-
erty for probabilistic consistency. (a) Single loop on 4 nodes. (b) One possible clique
tree for the graph in (a). This clique tree fails the running intersection property.

and {3, 4}. However, any tree inference algorithm applied to the clique tree of (b) will
4 The simplest example to consider is the single loop on 4 nodes; here the pairwise compatibility

functions can never correspond to Pst/P 3 P.
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not enforce the implicit constraint that the corresponding random variable X3 in clique
{1, 3} must match the X3 in clique {3, 4}. As a result, running a tree inference algorithm
on the graph in (b) will not yield the correct results for the single loop of (a).

What is required is a mechanism for enforcing consistency among the different ap-
pearances of the same random variable. Note that the same problem does not arise
for node 2, although it also appears in both of the two cliques {1, 2} and {2, 4}. The
difference is that node 2 also appears in all separator sets in the path between these
two cliques, which provides a pipeline for transmitting and enforcing the associated
consistency constraints. This motivates the following definition:

Definition 2.1.7. A clique tree has the running intersection property if for any two
clique nodes C1 and C2, all nodes on the unique path joining them contain the intersec-
tion C fn C2. A clique tree with this property is known as a junction tree.

For what type of graphs can one build junction trees? It is clear that no clique tree of
the single loop in Figure 2.7(a) has the running intersection property. (Since the clique
tree of Figure 2.7(b) does not satisfy running intersection, by a symmetry argument
neither can any other clique tree.) An important result in graph theory establishes a
correspondence between junction trees and triangulated graphs (see Definition 2.1.4).

Proposition 2.1.1. A graph g has a junction tree - it is triangulated.

Proof. See Lauritzen [121]. H

This proposition leads to a method for exact inference on arbitrary graphs:

Algorithm 2.1.1 (Junction tree).

1. Given a graph with cycles g, triangulate it by adding edges as necessary.

2. Form a junction tree associated with the triangulated graph 9.

3. Run a tree inference algorithm on the junction tree.

Although this procedure is sound in principle, its practical use is limited. For most
applications of interest, the size of the cliques in the triangulated version 7 grows
with problem size. As a result, the state cardinality of the supernodes in the junction
tree grows exponentially, meaning that applying tree algorithms rapidly becomes pro-
hibitively complex. This explosion in the state cardinality is another demonstration of
the intrinsic complexity of exact computations for graphs with cycles.

Example 2.1.1. To illustrate the junction tree procedure and its associated complex-
ities, we consider the_3 x 3 grid shown in Figure 2.8(a). The first step is to form a
triangulated version 9, as shown in Figure 2.8(b). Note that the graph would not be
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1 2 314 236

2 6 2 4

4 4 5 6 45 258 56
8 8

4 8 6 8

7 8 9 7 8 9 478 689

(a) (b) (c)
Figure 2.8. Illustration of junction tree procedure. (a) Original graph is a 3 x 3 grid.
(b) Triangulated version of original graph. Note the two 4-cliques in the middle. (c)
Corresponding junction tree for triangulated graph in (b), with maximal cliques depicted
within ellipses, and separator sets within rectangles.

triangulated if the additional edge joining nodes 2 and 8 (shown in a dashed line) were
not present. Without this edge, the 4-cycle (2 - 4 - 8 - 6 - 2) would lack a chord. As
a result of this additional edge, the junction tree has two 4-cliques in the middle, as
shown in Figure 2.8(c). Consequently, running a tree inference algorithm on the junc-
tion tree involves dealing with variables with state cardinalities of m 4 . This difficulty
only worsens as the grid size grows.

Despite its limited practical use, the junction tree procedure provides conceptual
insight into the inherent complexity of a given distribution on a graph. In particular, it
gives rise to an alternative representation of the distribution, in terms of local marginal
distributions on maximal cliques and separator sets. That is,

P(x) -HC'CP(xc) (2.7)
1s's P(XS)

where C is the set of all maximal cliques of 9, and S is the associated set of separators.

Unlike the representation of equation (2.3), equation (2.7) provides a decomposition
directly in terms of local marginal distributions. The price to be paid is that the
decomposition involves functions defined over larger clusters of variables. Note that
equation (2.6) is a particular case of this decomposition, where the maximal cliques are
the edges of the ordinary tree, and the separator sets correspond to nodes with degree
greater than one.

0 2.2 Exponential families and information geometry

Exponential families of distributions and their associated geometry have been studied
extensively in applied probability theory and statistics. Work in this area dates back to
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Rao [145] in 1945, who developed the geometric role of the Fisher information matrix.
Subsequent contributions were made by a variety of people, including Chentsov [32,33],
Csiszir [42-45], Barndorff-Nielson [13] and Amari [5-7]. This section contains a brief
introduction to this body of theory, which is often referred to as information geometry.
We emphasize only those concepts necessary for our subsequent development; see the
references above, or the edited collection of papers in [82] for further details. Although
information geometry applies to any exponential family of distributions, we focus here
on such distributions in the specific context of graphical models.

0 2.2.1 Exponential representations

Equation (2.3) decomposes a graph distribution as a product of compatibility func-
tions defined on the cliques. A related representation is the Gibbs form, in which a
distribution is specified as the exponential of a sum of functions on the cliques. In
the context of graphical models, an exponential family constitutes a collection of such
Gibbs distributions:

p(x;O0) = exp {Oaq0a(x) - P(0)} (2.8a)
a

(0) = log ( exp{ 6aqa(x)}) (2.8b)
xCXN a

The quantity 4? defined in equation (2.8b) is the log partition function that serves to
normalize the distribution; when the sample space XN is continuous, the summation
defining 4? should be replaced by an integral.

Any exponential family is specified by a collection of potential functions {,1 j E A},
where A is a finite index set. The domain of the exponential parameter vector 0 is the
set

E C { CERI I () < 00

In the discrete case, this imposes no restrictions (i.e., E - lRIA); in continuous examples,
0 can be a strict subset of RJAJ. In this thesis, we focus primarily on the discrete case.

Each parameter vector 0 E 0 indexes a particular member p(x; 0) of the family,
assuming that the set of clique potentials q5 = {ba} is fixed. With some abuse of
notation, we will often use the parameter vector 0 itself as a shorthand for the associated
distribution.

Minimal representations

It is typical to define an exponential family with a collection of functions 4 = {bc}
that are linearly independent. Indeed, if there were any linear dependencies, they could
be eliminated without sacrificing any expressive power of the exponential model. This
condition gives rise to a so-called minimal representation [e.g., 13], in which there is a
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unique parameter vector 0 associated with each distribution. In this case, the dimension
of the exponential family, denoted by d(O), is given by JAL.

To illustrate these definitions, we consider some simple examples:

Example 2.2.1. Consider a scalar Gaussian random variable x - K(, c.2). Then its
density has the exponential representation

p(c; 0) = exp{Oi + 022 - (0)}(2.9)

I.e. here we have 01(x) = x and #22(X) = 22. By completing the square, we obtain
relations between the exponential parameters (01, 02) and the mean and variance -
namely, 02 = -1/[2o 2 ] and 01 = p/. 2 . Here the dimension of the family is d(0) = 2.
Moreover, the domain of 0 is the half plane

E={(1, 0 2)C v8 R2 02 < 0}

The restriction on 02 is required so that the associated integral defining the log partition
function - namely, 4(0) = f_ exp{01 x + 0 2 cX2 }dc- is finite.

Example 2.2.2. Now consider a binary process (i.e., x E {0, 1}N) defined on a graph
with pairwise maximal cliques. The standard (minimal) representation corresponds
to the Boltzmann machine [e.g., 105], also known as the Ising model in statistical
physics [15,31]:

p(x; 0) = exp { >0,x + > OstXscct - 4P(0)} (2.10)
seV (s,t)ES

where 0
st is the strength of edge (s, t), and O, is the node parameter for node s. In this

case, d(0) = IVI + S = N + 8E1, and the domain 0 of 0 is all of I0d).

Examples 2.2.1 and 2.2.2 illustrate that the sample space X is critical in assessing
the linear independence of a set of functions {b}, and hence the minimality of the
representation. In Example 2.2.1, the functions x and x 2 are linearly independent over
R, so that equation (2.9) constitutes a minimal representation. In contrast, these same
functions are not linearly independent over {0, 1}. As a consequence, including X2 terms
in the Ising model of Example 2.2.2 would lead to an overcomplete representation.

Example 2.2.3. We now consider an extension of Example 2.2.2, with x E {0, 1}N.
The Ising model corresponds to pairwise maximal cliques. To incorporate higher-order
cliques (e.g., the 3-clique {s, t, u}), we add a multinomial of the form ccxtccc, with
corresponding exponential parameter 0 st. Cliques of higher order are incorporated in
a similar fashion, so that the minimal representation of the most general distribution
(i.e., possibly on the complete graph) is of the form:

n

p(x; 0) = exp { Z 8c + O1t: t ± 5 O+ +cc:ccx . . .

s=1 s<t s<t<U

. . . +01...Ncc1 2 ... N - (0)} (2.11)
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It can be verified that the set of functions {x}N-1 U {cxIs}s<t U ... U {x . . x4I are
linearly dependent over {0, 1}N, and span the space of all real-valued functions on
{0, 1}N. Hence the dimension of the family is given by:

d(6) = ( + + ... + Z = 2N_d()- 1 2 N 2NI

Since any distribution on the binary vector x E {0, 1}N has 2 N - 1 degrees of freedom, 5

we see that any distribution can be represented in the form equation (2.11).
Of course, the Ising model of equation (2.10) arises as a particular case of equa-

tion (2.11), where we place the restriction that Oj = 0 for all subsets J C {1,... , N}
of size IJI > 2. Indeed, a nested sequence of exponential families T k can be defined
by imposing restrictions of the form 0 = 0 for all |IJ > k, for k = 1,... , N - 1. See
Amari [6] for details on such nested families. In the context of graphical models, these
restrictions correspond to a limit on the maximal clique size in the associated graph.

Examples 2.2.2 and 2.2.3 can be extended to minimal exponential representations
of m-ary processes (m > 2) as well. In particular, the analog of the Ising model for an
m-ary process is specified in terms of the functions

R(s) { I a=I1,..., m - 1} for s CV (2.12a)

7(s, t) {x4 X a, b = 1,... ,m - 1} for (s,t) E (2.12b)

The dimension of this exponential family is given by d(O) = (m - 1) N + (m -1)2 .1 .In-
corporating higher order cliques entails adding higher degree multinomials to the clique
functions of equation (2.12). This procedure, though conceptually straightforward, can
lead to cumbersome notation. See Amari [6] for further details.

Overcomplete representations

In addition to such a minimal parameterization, parts of our analysis (especially Chap-
ter 5) make use of an overcomplete representation, in which the {#5} are linearly de-
pendent. In this case, the lack of linear independence means that there exists an entire
manifold of parameter vectors 0, each associated with the same distribution.

Example 2.2.4 (Overcomplete representation of binary process). An overcom-
plete representation of a binary process on a graph with pairwise cliques entails spec-
ifying a 2-vector for each node s E V, and a 2 x 2 matrix of values for each edge
(s, t) in the graph. To do so, we choose our clique potentials as indicator functions:
that is, the collection of functions {J(x, = j) |IJ = 0, 1} for each node s E V, and
16(x, = j)(xt = k) I J, k = 0,1 } for each edge (s, t) E E. Here, the indicator or delta

5 Any distribution can be represented by a 2 N vector, and we lose one degree of freedom due to the
normalization Z p(x) = 1.
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function J(x 8 = j) is equal to 1 when node x, takes the state value j, and 0 otherwise.
The corresponding representation would be of the form

p(x; 0) = exp { S Os;jd(Xs =j) + SOst;jk(Xs = j)&(xt = k) - @(O)}
sCV j=0 (s,t)cEEj,k=0

(2.13)

where 0 is the corresponding overcomplete parameter vector.

It is straightforward to generalize this type of overcomplete representation in terms
of indicator functions to m-ary processes.

Different types of binary potentials

Given a distribution over a binary vector defined by a graph with pairwise cliques, it
will often be useful to specify potential types from one of the following classes:

(a) in a graph with attractive potentials, all pairs of neighboring random variables are
more likely to take the same values than opposite values.

(b) conversely, in a graph with repulsive potentials, all neighboring variables are en-
couraged to take opposite values.

(c) a graph with mixed or frustrated potentials consists of a combination of attractive
and repulsive potentials.

In the statistical physics literature [e.g., 15,31], these types of distributions are referred
to as ferromagnetic, anti-ferromagnetic, and paramagnetic respectively.

The convention of this thesis will be that a binary random variable xs takes values
in {0,1}. In order to specify potential types, it is useful to consider a so-called spin
representation in which a binary random variable u, takes values in {--1, +1}. The term
"spin" comes from the statistical physics literature [31]; for instance, one can think of
us as giving the orientation (up or down) of a magnet at node s. We let

p(u; w) = exp{ 5 wou8 + >Wtu8 ut - 4F(w)} (2.14)
(S't)

be a minimal exponential representation corresponding to the spin vector u C {0, 1}N,
where w is the associated vector of exponential parameters. In this spin representation,
the nature of the interaction between u, and ut is determined entirely by the sign of
Wst. In particular, the potential is attractive (respectively repulsive) if and only if Wst
is positive (respectively negative).6

6 Note that the same statement does not hold for the exponential parameter 0
st in a {0, 1} represen-

tation (see, e.g., equation (2.10)). For this representation, if we disregard the single node parameters
0, setting 0st > 0 places higher weight on the configuration (x, xt) = (1, 1), but equal weights on the
remaining configurations {(0, 0), (1, 0), (0, 1) }.
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Thus, a spin representation is convenient for constructing random distributions on
graphs with particular types of potentials. Moreover, any spin parameter W specifies a
unique exponential parameter 0. In particular, we substitute the relation u = 2, - 1,
which converts from {0, 1} variables to spins, into equation (2.14), and then equate
coefficients with the Ising model of equation (2.10). In this way, we obtain the following
relations:

08 = 2 [w3 - Z ] (2.15a)
teo(s)

Ost = 4wst (2.15b)

We now define for future reference a few ensembles of random potentials. In all
cases, we set the node parameters w, = 0 for all nodes s C V. Let U4a, b] denote the
uniform distribution on the interval [a, b]. Given a particular edge weight d > 0, we
then choose the edge parameters as follows:

(a) for the uniform attractive ensemble with edge weight d > 0, set at ~-U{0, d]
independently for each edge (s, t) E £

(b) for the uniform repulsive ensemble, set cvt ~-U[-d, 0] independently for each edge

(s,t) CS

(c) for the uniform mixed ensemble, set tdt ~-U{-d, d] independently for each edge

(si) E £

Given the (randomly-chosen) distribution p(u; w) specified in terms of the spin param-
eter w, we then convert to the distribution p(x; 0), where 0 is obtained from w via
equation (2.15).

U 2.2.2 Properties of 4

In this section, we develop some important properties of the log partition function <J
defined in equation (2.8b), including its convekity. Given a distribution p(x; 0) and a
function f : XN -+ R, we define the expectation of f(x) with respect to p(x; 0) as
follows:

Eo [f (x)] = > p(x; ) f (x) (2.16)
x EXN

When the sample space X is continuous, this summation should be replaced by an
integral.

With this notation, we can show that the function D is closely related to the cumu-
lant generating function7 associated with the random variables {#q,,(x) }. In particular,

"Another interpretation of 4 arises in statistical physics, where it is known as the Helmholtz free

energy [31,135].
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given a parameter vector 0 E Rd(O) and another vector c E R(o), we compute:

log(E[exp{ZEacct1$x)}]) =4(9+E) -- D() (2.17)
a

The quantity on the left-hand side is the cumulant generating function (or the logarithm
of the moment generating function) [80]. Equation (2.17) shows that this cumulant
generating function is equal to the difference between the function 4 at two distinct
values.

Using this relation, it can be shown that derivatives of (D with respect to 9 correspond
to the cumulants of { 0(x)}. For example,

04
F() = Eo [0] (2.18a)

8ac

24 (0 ) = covo {f a , # l A} 4 E o (( -1 E o [# a]) ( gp - F o [ 0 3]) (2 .1 8 b )

are the first and second order cumulants. In general, let cumo{a0,... , #I} denote
the kth-order cumulant of {#,,... , q,,} under p(x; 0). Then higher order cumu-
lants are defined recursively by successive differentiation of lower order cumulants; e.g.,
cumo{ 0 , O 2 , #qa3 } = ao[[cumo{qOa 1 , a2 }]-

The second order cumulant in equation (2.18b) reveals an important property of
the log partition function:

Lemma 2.2.1. The function (D is convex as a function of 9. The convexity is strict
when the representation is minimal.

Proof. Note that the quantity in (2.18b) is an element of the Fisher information ma-

trix (-OI6 { 02 }). Therefore, the Hessian V2 4 is positive semi-definite (strictly
positive definite for a minimal representation), so that 4 is convex (respectively strictly
convex). H

The convexity of 4 will play a central role in subsequent geometric developments.

0 2.2.3 Riemannian geometry of exponential families

An important feature of exponential families of distributions is their geometric struc-
ture. In this section, we provide a very brief introduction to the differential geometry
of these families. See Amari [5-7] and the edited collection of papers [82] for further
details.

Consider an exponential representation in terms of the d(0)-dimensional parameter
0, assumed to be minimal. For each 0 E e, we have p(x; 0) > 0 for all x E XN
Therefore, we can associate with each point 0 E & a function - namely, the log dis-
tribution logp(x; 0). Under suitable regularity conditions [13], this association defines
a d(O)-dimensional differential manifold M of functions {logp(x; 0) 0 E 6}. When
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the sample space XN is discrete and hence finite, we can view M as embedded within
RIXN 1; otherwise, it is embedded within an infinite-dimensional function space. The
mapping 9 F log p(x; 9) is the co-ordinate mapping of the manifold, as illustrated in
Figure 2.9.

log p(x; 0)

Figure 2.9. The exponential parameters 0 serve as the co-ordinates for the d(O)-
dimensional differential manifold of log distributions logp(x;9). Associated with each
0 C E is a log distribution logp(x;0); the association 0 -+ logp(x;9) defines the co-
ordinate mapping.

Given a line 9(t) in 0, we can consider the curve in M defined by its image
log p(x; 9(t)) under the co-ordinate mapping. The set of all tangent vectors to such
curves at a particular value of 9 defines the tangent space of M at the point log p(x; 9).
It can be seen that this tangent space is a d(9)-dimensional vector space. In particular,
letting e, be a d(9)-vector of zeros with a single one in element a and zero elsewhere,
consider the co-ordinate line 9(s; a) = (1 - s)9 + se0 . By straightforward calculations,
the tangent vector t, to the curve logp(x; 9(s; a)) is given by

a
ta = logp(x;90) = (x) - E[0a]1(x) (2.19)

where 1(x) = 1 for all x E XN. In computing this derivative, we have used equa-
tion (2.18a). It can be shown that the set {t0,[ a c A} spans the tangent space at
log p(x; 9).

We now use p(x; 9) to define a weighted inner product on the tangent space. Of
course, it suffices to specify the inner product for any pair {t,, t4 }, which we do as
follows:

(t0 , t,3 )o = E 0  logp(x; ) a logp(x; 9) = covo{#a), q# } (2.20)

where we have used equations (2.18b) and (2.19) to see the equivalence to a covariance.
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The quantities g,/(0) A covo{q$,, #$O} are elements of the Fisher information ma-
trix, denoted by G(0). For a minimal 0-representation, it can be seen that the Fisher
information matrix is strictly positive definite for all 0. It therefore defines a Rieman-
nian metric, with the squared distance between the distribution 0 and an infinitesimally
perturbed distribution 0 + A given by

[d(0,j0-+A)] 2 = 1g'f(0)AaA' = ATG(0)A A=IA 112 (2.21)

The Fisher information matrix and the induced distance function of equation (2.21)
also play important roles in other contexts, as we will explore in subsequent sections.

0 2.2.4 Legendre transform and dual variables

The aspect of information geometry that sets it apart from classical Riemannian ge-
ometry is the existence of a dual parameterization, coupled to the exponential 0-
parameterization. The coupling arises from convex duality associated with the log
partition function 4. The monograph of Rockafellar [151] provides a comprehensive
treatment of convex duality; a more elementary and geometric treatment of duality
can be found in Bertsekas [20]. In this section, we exploit the convexity of (D to apply
notions from convex analysis - in particular, the Legendre transform - from which
we obtain a second set of parameters dual to the exponential 0-representation. In a
later section, we use the Legendre duality to develop a geometric interpretation of the
presence or absence of certain cliques in a graph-structured distribution.

The convexity of 4 allows us to apply the Legendre transform. Here we assume that
the domain 0 of 0 is either all of RIAI, or some convex subset. The Legendre dual of 4
is defined as:

T(7) = sup{yTO - 4)(0)} (2.22)
0

where 71 is a vector of the same dimension as the exponential parameter 0. Since the
quantity to be maximized (i.e., q7 - 4(0)) is strictly concave as a function of 0, the
supremum in equation (2.22) is attained at some point 0. Taking derivatives to find
stationary points, and making use of equation (2.18a) yields the defining equation:

7a=77a(0) = E[qa] (2.23)

Since they are obtained by taking expectations, these dual variables 7 are often referred

to as the mean parameters. Substituting the relation in (2.23) back into equation (2.22)
yields the relation

(0))= OE[#a] -q() = E[logp(x;0)] (2.24)

so that the Legendre dual I is the negative entropy. Note that IF is itself a convex
function, so that we can again apply the Legendre transform. It is not difficult to show
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that applying the Legendre transform twice in this manner recovers the log partition
function; that is,

N) = sup{0Tn -- '()} (2.25)
77

The Legendre duality of 4) gives rise to a mapping A : 0 -* r, defined explicitly by

[A(6)c- 4D()= [0a](2.26)

For a minimal representation, Lemma 2.2.1 guarantees that 4 is strictly convex, in
which case the mapping is one-to-one [151]. It is therefore invertible on its image, with
the inverse map A-' : -> a0 defined by the corresponding relation

-t()] )a(2.27)

On the basis of these mappings, we can specify distributions either in terms of the expo-
nential parameter 0, or the associated dual parameter 77. Given a valid dual parameter
ry in a minimal representation, the quantity p(x; r) denotes the equivalent exponential
distribution p(x; A' (7)).

A few examples help to give intuition for the Legendre mapping:

Example 2.2.5 (Legendre transform for Gaussian). Let x ~KY(0, P) be a zero-
mean Gaussian random vector with covariance P. Then the density has an exponential
representation of the form:

p(x; 0) = exp{ >30X2+ ± SOtxzxt - (0)} (2.28)
s=1 s<t

Here 0 specifies elements of the inverse covariance (i.e., P7- = -_t).8 From equa-
tion (2.26), the dual variables are given by:

s= I[x] = var(x,)
7st = E0[sxt] = cov(xs, xt)

so that q specifies elements of the covariance matrix P. That is, the Legendre transform
maps back and forth between the matrix inverse pair P and -P-1.

Example 2.2.6. We now return to the Ising model (see Example 2.2.2), where the
random vector x £- {0,i}N has a distribution of the form

p(x; 0) = exp { 5:0,x, + 5 OstX 5Xt -- 4()}
sEV (s,t)Ee

8We require that 6 belongs to the set for which P-1 (6) > 0.
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In this case, the dual variables are given by the expectations:

7S =Eo[XS] =p(S = 1;9)

77st = E[zxt] E p(x =1, xt = 1;90)

That is, the dual variables correspond to particular marginal probabilities at individual
nodes, and pairs of nodes (s, t). Note that the dual variables fully specify the single
node marginals, and pairwise marginals for (s, t) C E:

p(xs; 9) =[(1-- m7) 77 ]T; pr(s, t; 9) = [(1+stc-s --Qt) 7t - 7st
[ 77S -

7 st lst J

When the underlying graph g of the Ising model is a tree, these local marginals de-
termine the full distribution p(x; 9) explicitly via the tree factorization given in equa-
tion (2.6). For a graph with cycles, such a local construction is not possible; however,
whenever the dual variables {q,, ,st} belong to the range of the Legendre transform,
then the invertibility of this transform guarantees that the dual variables still completely
specify the distribution.

The Legendre mapping is also closely related to the Fisher information matrix.
In particular, by differentiating equation (2.23) with respect to 0p, we see that the
Jacobian of the mapping A : 9 -± rj is given by the Fisher information matrix [G(9)]a, =

covo{q#a, q#g}. That is,

77(9 + AG) - 7(0) G(G)A9 (2.29)

up to first order in the perturbation AO. Similarly, the inverse Fisher information
matrix G-1, which is guaranteed to exist when FI is strictly convex, corresponds to the
Jacobian of the inverse mapping A- 1 : 77 v-a 9.

U 2.2.5 Geometric consequences for graphical models

In the specific context of graphical models, the Legendre duality also leads to an inter-
esting geometric interpretation of the presence or absence of given clique potentials. In
particular, consider the constrained maximum entropy problem:

Smax H (p) (2.30)

Geometrically, the maximization takes place over a polyhedral set, formed by the inter-
section of the probability simplex P= {p(x) 10 p(x) < 1; Exp(x) = 1 } with the
hyperplane constraints {p(x) IEXp(x)#a(x) _ 70 }. It is well-known [41] that the
solution to this problem assumes the familiar Gibbs form of equation (2.8), where the
exponential parameter G. now corresponds to the Lagrange multiplier associated with
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the constraint >§ p(x)#$a(x) : 5%. That is, it reflects the sensitivity of the problem to
perturbations in the associated %p constraint.

By the Karush-Kuhn-Tucker conditions [20], the Lagrange multiplier Oc is zero
whenever the %j-constraint is inactive (i.e., not met with equality.) On this basis, the
presence or absence of particular cliques in a graphical model can be related to hyper-
plane constraints. In particular, we can add a given clique potential 0, by imposing
a hyperplane constraint of the form j:.p(x)#0(x) < 9. Progressively lowering 770 so
as to tighten the constraint will eventually ensure that the associated Lagrange mul-
tiplier is non-zero, meaning that the clique potential O appears in the exponential
representation with a non-zero weight 03. Conversely, we can remove a given clique

from the graphical distribution by loosening the associated constraint. Eventually, the
constraint will become inactive, so that the Lagrange multiplier 00 is zero and the clique
is effectively absent from the graph.

EXp(x)0p(x) = 77,3

Zp(x)#cr(x) =g

p(x; 0*)

Figure 2.10. Geometry of graph-structured distributions. Distributions p(x) are re-
stricted to the simplex P = { p(x) 1 0 < p(x) < 1; Ep(x) = 1 }, and lie on the
intersections of hyperplane constraint sets { p(x) I E p(x)$,(x) = 7r, } imposed by
the clique potentials {q0#}.

0 2.2.6 Kullback-Leibler divergence and Fisher information

The Kullback-Leibler divergence [118] can be viewed as a measure of the "distance"
between two distributions. For a discrete random vector, its usual definition [see, e.g.,
41] is D(p I q) = E.XN p(X)[logp(x) - log q(x)]. The definition shows that it is not a
true distance, since (for example) it is not symmetric in p and q. However, it can be
shown using Jensen's inequality that D(p 1I q) _ 0 for all p and q, with equality if and
only if p = q.

With a minor abuse of notation9 , we let D(0 II 0*) denote the KL divergence between
two distributions in exponential form p(x; 0) and p(x; 0*). The exponential parameter-

9Strictly speaking, the divergence applies to distributions p(x; 9) and p(x; 9*), and not to the pa-
rameters 9 and 9* themselves.
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ization leads to an alternative representation of this KL divergence:

D (0||11*0 = .0 E[0[,p] [0 - 0* ]a+ P (0* (P-(0)
D(O_ *1 O*) = D(0

= 77 T[ - 0*] + (9*) - 4(0) (2.31)

where Qa = [A(0)] 0 . That is, the pair (0,,q) are dually coupled via the Legendre
transform.

Equation (2.31) shows that the KL divergence D(0 | 1*) can be viewed as a Breg-
man distance, induced by the convex log partition function 4 . In particular, since

E,[0,], the KL divergence D(0 1 0*) is equivalent to the difference between
4 (0*) and the first-order tangent approximation 4(0) + VT4(0)(0* - 0), as illustrated

N()

(0*)

0 Q~*0

Figure 2.11. Kullback-Leibler divergence as a Bregman distance induced by the log
partition function 4. The KL divergence D(0 | 0*) is equal to the difference between
,(0*) and the tangent approximation (D(0) + VT(b(0)(0* - 0).

in Figure 2.11. Bregman distances are defined in precisely this manner; see Censor and
Zenios [30] for more details on Bregman distances and their properties. For a minimal
representation, the strict convexity of 4 guarantees that this tangent approximation is
always an underestimate of 4 (0*), so that the KL divergence is positive for 0 J *.'0

It is also possible to re-write the KL divergence in terms of the dual variables 'q. In
particular, from the Legendre duality between 4 and 1&, we have for all dually coupled

pairs (0,,q):

7 o=4 (O) + it()

Substituting this relation into equation (2.31), we obtain an alternative representation
10For overcomplete representations, it is possible to have distinct parameters 0 $ 0* that induce the

same distribution, in which case D(O I1 0*) = 0.
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of the KL divergence:

D(0 |110*) = (o*)T[7[* - q] ± +T(7) - {(Q*) (2.32)

Comparing equations (2.32) and (2.31), we see that the former is obtained from the
latter by replacing 4I with its dual {, and interchanging the roles of 0 and 0* (and their
associated dual parameters y and ry*). Equation (2.32) gives rise to the notion of the
dual of the KL divergence, as studied by Chentsov [32, 33].

The Kullback-Leibler divergence is very closely related to the Riemannian metric
defined in equation (2.21). In particular, by Taylor series expansion of log p(x; 0), we
obtain

1 1D(0 || 0*) ~[0 - *]TG(O)[O - 0*1 = - 10 - 0*||2o (2.33)2 2 GO

where the approximate equality holds up to second order. In this sense, the squared dis-
tance induced by the Fisher information G(0) is an approximation to the KL divergence.
This notion will arise again in Section 2.2.8.

N 2.2.7 I-projections onto flat manifolds

In this section, we define a pair of optimization problems canonical to information ge-
ometry. In particular, they entail projecting (where the KL divergence serves as the
"distance") a given distribution onto certain types of "flat" manifolds. The dual param-
eterizations allow us to specify two types of flat manifold, depending on whether distri-
butions are specified in terms of the exponential parameters 0, or the mean parameters
,. This procedure of projecting onto a flat manifold, known as an I-projection, consti-
tutes the basic building block for a variety of well-known optimization algorithms [e.g.,
42, 134].

We begin with definitions of e and m-flat manifolds:

Definition 2.2.1. Given a linear subset of 0, an e-flat manifold corresponds to its
image under the coordinate mapping 0 -± p(x; 0). That is,

Me={=p(x; 0) 1 AO = a } (2.34)

for some matrix A and vector a.
An e-geodesic is a 1-dimensional e-flat manifold - that is, a family of distributions

specified by a line in the exponential coordinates:

{p(x;0(t)) j0(t) = (I-t) 0 + t 0 1, t E R}

for some fixed 00 and 01.

With a minor abuse of notation, we shall often use 0 e Me to mean that 0 belongs to
the linear subset defining the e-flat manifold. To illustrate, we consider a few examples:
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Example 2.2.7. For the Ising model (Example 2.2.2), an important type of e-flat
manifold is induced by the linear subset Fo = { 0 1O = 0 V (s, t) E E }. Any
distribution in this family has the representation

N

p(x; 0) = exp { S, 8x - (O)}
s=1

That is, these distributions are fully factorized, with no interactions between different
components x, of the random vector x.

We specify an m-flat manifold in a similar fashion:

Definition 2.2.2. An m-flat manifold is the set of distributions corresponding to a
linear subset of the dual variables:

MMr=n{p(x; rj) jBg= b} (2.35)

Recall that p(x; TI) refers to the exponential distribution given by p(x; A- 1(q)).
We define an m-geodesic in a similar fashion to an e-geodesic: that is, as a 1-

dimensional family of distributions specified by a line in the dual coordinates. Again,
we shall often abuse notation by writing 77 E Mm to mean that q belongs to the linear
subset defining Mm.

Note that an m-geodesic corresponds to the familiar type of mixture of distributions.
That is, given the line q(t) = (1 - t)yo + t 1 , the induced m-geodesic corresponds to
mixtures of distributions in the form

p(x;7(t)) = (1 - t)p(x;y7o) + t p(x; 71i)

We consider a few examples of m-flat manifolds:

Example 2.2.8. Consider a scalar Gaussian random variable with exponential rep-
resentation p(x; 0) = exp{0 1 x + 02X2 - ()}. Here the dual parameter is given by
77 = EO [x] = p, and 'q72 = 1E0 [x 2] g2 + U.2, where p and o are the mean and standard
deviation respectively. Thus, we see that the set of scalar Gaussian distributions with
fixed mean corresponds to an m-flat manifold.

Example 2.2.9. Consider the Ising model (see Example 2.2.2). The mean parameters
consist of the probabilities 7, =-p(Xc = 1; 0) and st = p(x8 = 1, cc = 1; 0). Thus, the
set of all distributions with a specified set of single-node marginals

{fp(x;7) 1r77S=4S}

forms an m-fiat manifold.

The notions of e-flat and m-flat manifolds give rise to a pair of canonical optimization
problems in information geometry. We begin by considering the problem of projecting
onto an e-flat manifold.
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Projection onto an e-flat manifold

For a fixed reference distribution 9* and e-flat manifold Me, consider the constrained
optimization problem:

{mingeD(9*i0) 
(2.36)

s. t 0 c Me

From equation (2.31) and the convexity of <b, we see that the KL divergence D(9* 90)
is a convex function of its second argument. Therefore, problem (2.36) is a convex
optimization problem with linear constraints, so that it has a unique global optimum
- say 9 = arg minom D(9* 911). Using equations (2.18a), and (2.31), we compute the
gradient VoD(9* 911) = q - i*. By the standard condition for a global minimum of a
convex function over a linear manifold [20], we obtain:

[n*i-/ ] [ 9_]=0 (2.37)

for all 9 E Me. Equation (2.37) is the defining condition for 0, which is known as the
I-projection of the point 9* onto Me.

Many e-flat manifolds of interest are obtained by zeroing a subset of the exponential
parameters - that is:

jU={ I 10,= 0 Va J}

The set of fully factorized distributions, described in Example 2.2.7, is an important
case. The optimality condition of equation (2.37) has strong consequences for projec-
tions onto such manifolds. In particular, for any index 0 C 5, we can form a perturba-
tion A9 = e8 of all zeros except for a one in the #-entry. This perturbation A lies in
the e-flat manifold Fj, so that it must be orthogonal to [9* - ]. Using equation (2.37),
this implies that

r)3=4# V £ E 3 (2.38)

That is, the dual parameters of the projection 4 must agree with the dual parameters
7* of the original distribution for all indices / that are free to vary.

Example 2.2.10. Consider again the Ising model (Example 2.2.2), and consider the
problem of projecting 9* onto the set Fo = { | It = 0 V (s, t) C & } of fully
factorized distributions (see Example 2.2.7). Then equation (2.38) ensures that the
I-projection 9 satisfies:

E4[x81 = i7 = ,* = E o[xs]

Since x E {0, 1}N is a binary random variable, the dual variables are equivalent to
node marginal probabilities. Therefore, the single node marginals of the I-projection
p(x; 9) agree with those of p(x; 9*). This type of property holds for more general nested
families of distributions, as described in Amari [6].
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Projection onto a m-flat manifold

The problem of projecting onto an m-flat manifold Mm is effectively dual to the problem
of projecting onto an e-flat manifold. In this case, the relevant optimization problem is

{mino D(0||*) 
(2.39)

s. t 0 EMmn

Note that in contrast to problem (2.36), here we optimize over the first argument of the
KL divergence. This change should be understandable, in light of the relation between
the KL divergence in (2.31), and its alternative formulation in equation (2.32).

On the basis of equation (2.32), it can be shown that problem (2.39) is convex and
linearly constrained in the dual variables q, and so has a unique global optimum 4.
Again, straightforward computations yield the defining condition for this optimum:

[ *Q-]T0[Q ] J0 V7 E Mm (2.40)

0 2.2.8 Geometry of I-projection

Associated with equations (2.37) and (2.40) is an elegant geometric picture. Here
we present this viewpoint for the I-projection onto an e-flat manifold, noting that a
similar picture holds for I-projection onto an m-flat manifold. The Pythagorean results
of this section (Theorems 2.2.1 and 2.2.2) date back to Kullback [118, 119]; see also
Csiszar [42,43].

To develop the geometry, note first of all that for any 0 E Me, the vector [0 - 0] can
be viewed as the tangent vector to some e-geodesic lying within Me, as illustrated in
Figure 2.12. Secondly, consider the m-geodesic joining the points 0* and 0. Although it
is linear by definition in n-coordinates, it will be a curve in the 0-coordinates - namely:

0(t) = A- 1 (+ t[* -4]) (2.41)

This curved m-geodesic is illustrated in Figure 2.12. We calculate the tangent vector to
the curve (2.41) at 4 (i.e., at t = 0) as G- 1(4) [* -4 ], where we have recalled that the
Jacobian of the inverse mapping A-' is given by the inverse Fisher information G-".

Now consider the inner product, as defined by the Fisher information matrix G(O),
between these two tangent vectors. In particular, using the fact that G(6)G- 1 (4) =.r,
we compute:

([0 - 0], G-(4) [Q* - ])()= [* - 0 -- 0 (2.42)

which must vanish by equation (2.37). Therefore, the geometric consequence of equa-
tion (2.37) is that the m-geodesic joining 0* and 0 forms an orthogonal intersection
with the e-flat manifold Me, as illustrated in Figure 2.12. Here orthogonality on the
left side of equation (2.42) is measured using the Riemannian inner product (, )
induced by the Fisher information matrix (see Section 2.2.3), whereas the right side
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O*
m-geodesic

0 e-geodesic0

Figure 2.12. The point 0* is projected onto the e-flat manifold Me by following an

m-geodesic. This yields the I-projection 9. The tangent vector to the M-geodesic joining

0* and 0Ois orthogonal to the manifold Me.

corresponds to Euclidean inner product of two vectors in Rd(O). Since the I-projection
of 0* onto an e-flat manifold is obtained by following an m-geodesic, it is often called
an m-projection.

Recall from equation (2.33) that the KL divergence is closely related to the Rie-
mannian metric induced by the Fisher information matrix. The geometric picture of
I-projection allows us to further develop this relation by showing that, as with Hilbert
space norms, the KL divergence satisfies a type of Pythagorean relation:

Theorem 2.2.1 (Pythagoras for m-projection). Let 9 be the I-projection of a
point 9* onto an e-flat manifold Me. Then for all 9 C Me, we have:

D(9* j 9) = D(9* 1 0) + D(0 10) (2.43)

Proof. We provide the proof here, since it follows in a straightforward manner from our
earlier development. We first use the form of the KL divergence in (2.31) to write:

D(9* 10) +D(11 9) = [y*]T[* -] + T[-o0] +b(9*) -4()

We then use the optimality condition of equation (2.37) to rewrite the second term on
the RHS as [7 *]T[Q- 0]. Cancelling out the [77*]TW terms then yields the result. 0

Figure 2.12 again illustrates this geometry, where the points 9, 9 and 0* correspond
to the vertices of a "right" triangle, with the segment between 9 and 9* corresponding
to the hypotenuse. The "distances" between these three points are related by the
Pythagorean relationi of equation (2.43).

We note that a geometric picture similar to that of Figure 2.12 also holds for the I-
projection of 9* (or alternatively, r*) onto an m-flat manifold. The primary difference is
that the picture holds in the dual coordinates ', rather than the exponential coordinates.

"In passing, we note that this Pythagorean relation holds more generally for projections onto linear
sets, where the projection is defined by any Bregman distance. See [30] for further details on Bregman
distances and their properties.
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In this case, the projection 4 is obtained by following a e-geodesic (curved in the 97-
coordinates) between ry* and 4. For this reason, this operation is often called an e-
projection (onto an m-flat manifold). Moreover, a Pythagorean relation analogous to
that of equation (2.43) also holds:

Theorem 2.2.2 (Pythagoras for e-projection). Let Obe the I-projection of a point
0* onto an m-flat manifold Mm. Then for all 0 C Mm, we have:

D(01 [*) =D(oI110)+ D(o 11o*)

Proof. The proof of this result is entirely analogous to that of Theorem 2.2.1. 0

Various extensions to Theorems 2.2.1 and 2.2.2 are possible. For example, if we
project onto a convex set of distributions (as opposed to a m-flat or linear manifold),
then the equality of Theorem 2.2.2 is weakened to an inequality (i.e., from a Pythagorean
result to the triangle inequality) [see 41].

Moreover, I-projections constitute the basic building blocks for a variety of well-
known iterative algorithms. These algorithms can be divided into two broad classes:
successive projection algorithms, and alternating minimization algorithms. Csiszr [43]
established the convergence of the successive projection technique; in a later paper [45],
he showed that the iterative scaling procedure [50] is a particular case of such an al-
gorithm. Csiszir and Tusnidy [42] present alternating minimization algorithms, and
provide conditions for their convergence. The tutorial introduction by O'Sullivan [134]
shows how many well-known algorithms (e.g., expectation-maximization [55], Blahut-
Arimoto [9,24]) can be reformulated as particular cases of alternating minimization.

* 2.3 Variational methods and mean field

The term variational methods refers to a variety of optimization problems, and asso-
ciated techniques for their solution. Its origins lie in the calculus of variations [72],
where the basic problem is finding the extremum of an integral involving an unknown
function and its derivatives. Modern variational methods encompass a wider range of
techniques, including the finite element method [157], dynamic programming [19], as
well as the maximum entropy formalism [98, 99, 179]. Here we begin with a simple
example to motivate the idea of a variational method; we then turn to an exposition
of mean field methods. For more details, we refer the reader to the tutorial paper [92],
which provides an introduction to variational methods with emphasis on their applica-
tion to graphical models. The book by Rustagi [153] gives more technical details, with
particular applications to problems in classical statistics.

To motivate the idea of a variational method, consider the following example, also
discussed in [92]. Suppose that for a fixed vector b c R and symmetric positive definite
matrix Q E R", we are interested in solving the linear equation Qx = b. Clearly,
the solution is -= Q- 1 b, which could be obtained by performing a brute force matrix
inversion, and then forming a matrix-vector product. For large problems, this brute
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force approach will be intractable. A variational formulation of the problem motivates
a more efficient technique, and suggests natural approximations to the optimum. In
particular, we consider the cost function J(x) = XTQx - bTX. Clearly, J(x) is convex
and bounded below, and so has a unique global minimum. Indeed, the minimizing
argument of J(x) is the desired optimum; that is, we can compute i by minimizing
J(x). Moreover, to obtain approximations to the optimum, we need only perform a
partial minimization of J(x). The method of choice for such problems is the conjugate
gradient method of numerical linear algebra [54]. It generates a sequence {Xk }, such that
each xk minimizes J(x) over a k-dimensional subspace. Thus, the nth iterate x will
be equal (aside from possible numerical inaccuracies) to the optimum X-; however, the
iterations are typically terminated for some k <n, thereby yielding an approximation

0 2.3.1 Mean field as a variational technique

We now describe particular subclass of variational methods known under the rubric of
mean field. This term refers to a collection of techniques for obtaining approximations
to distributions. While we take a variational approach to mean field, these methods can
be motivated and derived from a variety of perspectives [e.g., 31,135]. Our exposition
shares the spirit of the tutorial introductions given in [92,105]; it differs in details in
that we make extensive use of exponential representation of equation (2.8).

Let p(x; 0*) be the distribution of interest. We assume that this distribution is
intractable, so approximating it is a natural problem. Consider the variational problem
of minimizing the Kullback-Leibler divergence

D(0 110*) =ZE[0c] [0 - 0*], + (9*) - @(0) (2.44)
a

between p(x; 0) and p(x; 0*). Of course, if we could perform an unconstrained min-
imization, we would trivially recover 0 =-0*. However, since calculating the KL di-
vergence in (2.44) entails taking expectations under p(x; 0), it is necessary to restrict
the minimization to a tractable family F of distributions. In particular, we form an
approximation p(x; 0) by computing:

0 = arg minD(0 | 10*) (2.45)
E

That is, we compute the optimal approximation in some family, where optimality is
measured by the KL divergence. It is important that this optimization problem does not
correspond to an I-projection. Indeed, although we will see that F typically corresponds
to an e-flat manifold, the optimization in equation (2.45) is over the first argument of
the KL divergence, and not the second as it would be for a projection onto an e-flat
manifold (see problem (2.36)). The fact that mean field is not an I-projection has
important consequences, as we will discuss later.
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(a) (b)
Figure 2.13. Illustration of the mean field approximation. (a) Original graph is a 3 x 3
grid. (b) Fully disconnected graph, corresponding to a naive mean field approximation.
Wavy lines at each node represent adjustable input parameters.

The form of the KL divergence in (2.44) suggests an alternative interpretation of
this optimization. By the convexity of the log partition function and equation (2.18a),
we have

(Q*) > )(0) + Eo[#] [0* - 0], (2.46)

for all 0. This lower bound also appears in the statistical physics literature, with slightly
different notation, as the so-called Gibbs-Bogoliubov-Feynman inequality [see 31, 182].
As a consequence of equation (2.46), the optimization of (2.45) can be viewed as max-
imizing a lower bound on the (intractable) log partition function 4(0*). This interpre-
tation is important in the application of mean field methods to parameter estimation
via the EM algorithm [see 105].

The formulation in (2.45) encompasses a variety of mean field techniques, where a
specific technique corresponds to a particular choice of e-flat manifold for the approxi-
mating family F. For example, given the Ising model of equation (2.10), consider the
family To = { 0 1O, = 0 V (s, t) E £ } - that is, the e-flat manifold of fully factorized
distributions (see Example 2.2.7)). Performing the minimization of equation (2.45) with
this choice corresponds to finding the best fully factorized approximation. Doing so en-
tails finding zero points of the gradient, and a particular iterative scheme for solving
this fixed point equation give rise to the (naive) mean field equations. 12

The graphical consequence of the naive mean field approximation is to decouple
all nodes of the graph. Figure 2.13 illustrates this transformation: the original graph,
shown in (a), is a 3 x 3 grid. The mean field distribution is fully factorized, and so has the

"In naive mean field, a fully factorized binary distribution is represented as
q(x) = fl 8 p (1 - ps)x3, where the quantities {p} are the mean field parameters. Taking
gradients with respect to p yields the usual mean field equations. Our exponential parameterization is
related via 9, = log[p /(1 - y,,)].
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structure of the fully disconnected graph shown in (b). The mean field approximation
introduces the additional variational parameters ps (or O, = log[ps/(1 - p,)]), which
can be viewed as adjustable inputs to each node. This is typical of a variational trans-
formation: it simplifies the problem (i.e., removes edges) with the additional expense
of introducing variational parameters to optimize.

The naive mean field approximation can be quite accurate in certain cases. An im-

portant example is a large and densely connected graphical model in which the pairwise
couplings between variables are relatively weak. By the law of large numbers, the con-
fluence of many effects on a given node converges to a "mean effect", so that the actual
distribution is close to fully factorized. (See Jaakkola [92] for further discussion of such
issues.) However, a fully factorized approximation is unable to capture multimodal
behavior, and can often be a very poor approximation. For this reason, it is natu-
ral to use approximations with more structure, but that nonetheless remain tractable.
Natural examples include factorized distributions formed by clustered nodes, as well as
tree-structured distributions. Accordingly, different choices of F - corresponding to
distributions with more structure than a fully factorized distribution - lead to more
advanced mean field methods. For example, given a particular tree embedded within
the original graph with edge set tree C E, we can set

Ftree = {OI str=0 V (s,t) Stree} (2.47)

which corresponds to the e-flat manifold of distributions structured according to the
tree. This general idea of obtaining approximations richer than a fully factorized dis-
tribution is known as structured mean field; such approaches were pioneered by Saul
and Jordan [155], and have been investigated by a number of other researchers [e.g.,
12,74,91,95,176].

0 2.3.2 Stationarity conditions for mean field

As noted earlier, mean field optimization, as formulated in equation (2.45), does not
fall within the purview of standard information geometry. In particular, although the
family F is an e-flat manifold, the minimization does not take place over the second
argument (which would correspond to an m-projection), but rather over the first ar-
gument. For this reason, mean field theory fails to share the geometry and optimality
conditions of the m- or e-projections described in Section 2.2.7. For instance, solutions
of mean field equations are not necessarily unique, and can exhibit undesirable prop-
erties such as "spontaneous symmetry breaking", in which the mean field solution is
asymmetric despite complete symmetry of the actual distribution. See [92] for a simple
but compelling example. Nonetheless, mean field solutions do have certain geometric
properties, which we develop in this subsection for future reference.

We now derive an alternative set of stationary conditions for mean field in the
general case. We first take derivatives of the KL divergence with respect to 0 to obtain
VoD( j 0*) = G(0) [0 - 0*] where [G(0)]o = covO{q , q0,3} is the Fisher information
matrix evaluated at 0. Let J be a subset of the potential index set, such that the
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approximating family has the form Fj = { 0 910 = 0 V a ( 5 }. Then the
stationary conditions for a mean field solution 9 are:

G() (9-- 9*) = [G()],i [0- *]P = 0 V a c j (2.48)
L aC

From equation (2.29), recall the role of the Fisher information matrix as the Jacobian
of the mapping between 9 and the dual variables 77[ = Eq9[#. By a Taylor series
expansion, this ensures that

[ii7Q*]a0 V a j

where the approximate equality holds up to first order in the perturbation [0 - 9*].
That is, the mean field stationary conditions in (2.48) ensure that the dual variables i'
match the desired statistics r* up to first order for all free indices (i.e., a E 5).

As a concrete illustration, in the case of naive mean field for an Ising model, the
mean field stationarity conditions guarantee that

EW[Xs] =p(x =1; 0) ~P(Xs = 1;9*) = EO [XS]

for all nodes s E V. That is, the single node marginals of the mean field approximation
are approximately equal (up to first order) to those of the original model. To emphasize
the difference with standard information geometry, recall from Example 2.2.10 that the
m-projection of 9* onto the set of fully factorized distributions T o (i.e., computing
arg minoey, D(9* I1 9)) would guarantee the equality of these first order marginals.
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Chapter 3

Perturbations and Bounds

U 3.1 Introduction

In this chapter, we demonstrate the use of exponential representations of graph-structured
distributions in application to two important problems:

(a) assessing model sensitivity to changes in parameters and structure;

(b) deriving computable bounds on quantities of interest (e.g., partition functions;
marginal distributions).

The first problem is fundamental to all types of modeling; indeed, sensitivity analysis
is critical in fitting and validating models. In this context, a useful tool is the pertur-
bation expansion, which quantifies the deviations in model behavior as parameters are
perturbed from a nominal setting. The first topic of this chapter, then, is the develop-
ment of such perturbation expansions for graphical models. The second goal - that of
developing bounds - is important for any graphical model in which exact inference is
intractable. In particular, bounds are useful as an approximate inference tool [93,96],
for model fitting [e.g., 105], and also for large deviations analysis [e.g., 158]. Accord-
ingly, the second part of this chapter focuses on the use of exponential representations
in developing such bounds.

Although this chapter presents a number of new results, in the context of this thesis
as a whole, it serves primarily as a basis for future developments. In particular, the
bounds derived in this chapter will play important roles in Chapters 5, 6 and 7.

* 3.1.1 Use of exponential representations

As we saw in Section 2.2, any exponential family is specified by a collection of functions
= {# }. When the exponential family represents a collection of graphical models, the

are potential functions defined on cliques of the underlying graph. Specifying the
collection 4, therefore, specifies the structure of the graphical model. The associated
vector of exponential weights 0 corresponds to the model parameters. For a given clique
potential q,, the quantity 0. represents its weight in the exponential representation.
As a result, the exponential parameters can also be used to capture graph structure,
since the absence or presence of any clique is controlled by whether or not the corre-
sponding exponential parameters are zero (see Section 2.2.5). Indeed, the exponential
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parameters corresponding to graphs with particular structure constraints (e.g., a bound
on the maximal clique size) form e-flat manifolds in information geometry, as described
Section 2.2.

Consider a particular graph-structured distribution, specified in an exponential fash-
ion as p(x; 0*), which we shall refer to as the target distribution. Many quantities of
interest can be represented by an expectation of the form

E_[f]E= p(x;0*)f (x) (3.1)

for an appropriate function f : XN R. (When x takes values in a continuous space,
the summation of equation (3.1) should be replaced by an integral.) As an example,
suppose that x is discrete-valued (i.e., X = {0,... ,m - 1}). If we choose f as the
indicator function 6(x, = j) for the random variable x, to assume value j E X, then
Eo [f] = p(x8 = j; *) is the marginal probability at node s. More generally, given a
subset S c V, let xS denote the collection {x I s E S}. For a configuration e E XN,

let

S(xs = es) J6(x, = e) (3.2)
sES

denote an indicator function for the event that xr= e for all s E S. Taking the
expectation of such an indicator function is equivalent to computing the value of a
marginal distribution over the nodes in S. On the other hand, as an example for a
continuous-valued process, the conditional mean of the variable at node s corresponds
to setting f (x) x=,.

Given a target distribution p(x; 0*), we develop expansions for the expectations
IE0 [f] and log E0. [f] in terms of quantities computed using a related distribution p(x; 9).
At a conceptual level, the coefficients of these expansions provide valuable information
on the sensitivity to specified perturbations. On the practical side, in the case where
p(x; 0*) is intractable whereas p(x; 9) is tractable, such expansions may be computation-
ally useful, in that they provide a succession of approximations to E [f]. In Chapter 4,
we shall develop an exact inference algorithm for Gaussian processes based on such an
idea.

The basic thrust in our development of bounds is similar to the perturbation expan-
sions; in detail, however, the analysis is of a different flavor, since we require quantities
that are explicit bounds and not just approximations. To develop bounds on the expec-
tation F0. [f], we make use of results from convex analysis, applied to the log partition
function of a suitably modified model. We first develop a set of bounds based on a sin-
gle approximating distribution p(x; 9); these bounds represent an extension of the mean
field bounds described in Section 2.3.1. Indeed, for the special case f (x) = 1, our results
reduce to the usual mean field bound on the log partition function (see equation (2.46)).
It is not surprising, then, that the stationary conditions for the exponential parameter(s)
optimizing these bounds are similar to the mean field conditions [e.g., 92,105].
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In the context of an exponential representation, it is natural to consider the idea

of taking convex combinations of exponential parameters. The convexity of the log
partition function then allows us to apply Jensen's inequality [e.g., 41], which leads to

a new set of bounds. These bounds, in contrast to the first set, are based on multiple

approximating points {p(x; 9)}. We will return to these bounds in Chapter 7, where

we consider the problem of optimizing both the weights in the convex combination as

well as the choice of exponential parameters on spanning trees of the graph.

We then consider the problem of strengthening the bounds. In order to tighten

both sets of bounds on E. [f], we exploit the idea of an additive decomposition of the
form f = Ek fk. Such decompositions lead to a family of bounds, nested in terms of

the fineness of the decomposition of f. Although refining the additive decomposition
increases the cost of computing the bounds, we prove that refinements are, in general,

guaranteed to yield stronger bounds.
The remainder of this chapter is organized as follows. In Section 3.2, we present

perturbation expansions for E0- [f] and log EO- [f ], and illustrate their interpretation
with some simple examples. In Section 3.3, we derive two sets of bounds on these same

expectations, either based on a single approximating point, or multiple approximating
points. Section 3.4 then is devoted to the development of techniques for strengthening

the basic form of these bounds. In Section 3.5, we illustrate our results in application to

bounding the log partition function of some simple graphs. We conclude in Section 3.6
with a summary, and discussion of role of these results in the remainder of the thesis.

N 3.2 Perturbations and sensitivity analysis

Given the target distribution p(x; 6*), consider the expectation E. [f] of a function
f : XN - JR. In this section, we derive perturbation expansions for this expectation (as

well as for log Eo [f]) about an approximating distribution p(x; 0). Coefficients of these

expansions are given by cumulants computed under the approximating distribution.

Related results have been derived by other researchers [e.g., 11,29,51,115,120]. For

example, Laskey [120] showed how to perform sensitivity analysis of a directed tractable
Bayesian network by taking first derivatives with respect to model parameters. Dar-

wiche [51], using a representation that is closely related to an overcomplete exponential
parameterization (see Example 2.2.4), developed a differential approach that gives an

alternative perspective on exact inference in tractable models. Perhaps most closely

related to our work are the results of Barber and van der Laar [11], who developed per-

turbation expansions of the log partition function about a tractable distribution, and

also considered methods, akin to mean field, for attempting to optimize such expansions.
These results are basically equivalent to our expansions of EO [f] when f (x) = 1.

N 3.2.1 Expansions of the expectation E. [f]

The starting point of our development is the fact, as pointed out in Section 2.2.2,

that the log partition function F (0) is very closely related to the cumulant generating
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function [80] of p(x; 0), or more precisely to the cumulant generating function of the
random variables { 0 (x)} under this distribution. In particular, the first and second-
order cumulants of these variables are given by, respectively:

E[(] = 0)(3.3a)

covo{q5, q5,3} = 02c4D0(3.3b)
40c, a

Higher-order cumulants are specified by recursive differentiation. For example, the
third-order cumulant cumo{q0, #0, ,} is given by ( covo{q#, qg}, which can be eval-
uated as:

cumo{qa, #0, ,}1 = Eo [# # q] - E [] LE [# ,3 ] - E [0] E[a o]

- O K[] La [K #a/] + 2a [#a]E [ ]aE [c,] (3.4)

Now for an arbitrary function f : XN -> IR, it is also possible to consider the
expectation Ea [f] under p(x; 0*) as a type of first-order cumulant. Consequently, it is
straightforward to apply Taylor's theorem [161] in order to expand it about p(x; 0) in
terms of higher-order cumulants. We summarize the result as follows:

Proposition 3.2.1. Let E = 0* - 0 be the difference between two arbitrary parameter
vectors, and let f : XN -+ R be arbitrary. Then we have:

E. [f] = Eo[f] + covo{f, q#} q, + 1>cumo{f, #0, 00}co p + O(WcII13) (3.5)

Remark: Although equation (3.5) gives terms only up to second order, it should be
clear that we can continue such expansions to arbitrary order.

The first-order coefficient corresponding to the perturbation element ra is the co-
variance

covO{f, OI} = Ea[f #a] - Eo[f]EO[0aj] (3.6)

It has a sensitivity interpretation as a (first-order) measure of the effect of perturbations
in the strength of clique potential 0., on the expectation La. [f]. If f (x) = 4,(x) for some
o-, then this covariance of equation (3.6) corresponds to the element g, of the Fisher
information matrix (see Section 2.2.3), in which case this sensitivity interpretation is
well-known.

Suppose that the approximating distribution p(x; 0) is tractable, in which case La [f]
can be computed and viewed as a zeroth order approximation to LO [f]. Adding in the
covariance terms gives rise to a first-order approximation, but is the computational cost
of doing so prohibitive? This cost depends on the nature of the function f. By defini-
tion, the clique potential 0,, depends only on a limited subvector x of the full vector
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x. If in addition the function f depends only a local and small subvector - say xf -
then these covariance terms will involve interactions only among relatively small sub-
sets of variables, so that computation will be tractable. Natural choices of f for which
this local support assumption holds are the indicator functions f(x) = 6(x, = j) and
f (x) =6(x j)6(xt = k). In such cases, as long as the nominal distribution p(x; 0)
is tractable, computing these sensitivity coefficients will be computationally feasible.
As an example, for an N-node graph with pairwise cliques and a tree-structured ap-
proximating distribution p(x; 0), computing the sensitivity coefficients associated with
f (x) = 6(x, = j) for a discrete-valued process assuming m states would entail a cost of
at most 0(m4 N).

Example 3.2.1. To illustrate the sensitivity interpretation of Proposition 3.2.1, con-
sider the choice f(x) = 6(x, = j) (so that the expectation E. [f] is equivalent to the
marginal probability p(x8 = j; 0*) at node s). If the clique potential 0, is a function
only of the random variables at a subset of nodes sufficiently "far away" from node s,
then the random variables q0 (x) and f (x) should be approximately independent under
p(x; 0), in which case

covo{f, Q} = E [f ka] -Eo[f]E[# j 0

That is, perturbations in the clique potential 0,, should have little effect on the expec-
tation.

Figure 3.1 illustrates this effect for the single cycle in (a), and the tree in (b) obtained
by removing the single edge (4, 5). We formed a distribution p(x; 0*) over a binary-
valued vector x on the single cycle in (a), using a set of relatively homogeneous set of
attractive potentials (i.e., that encourage neighboring nodes to take the same value).
The vector 0 corresponds to 0*, with the element corresponding to edge (4, 5) set to
zero. Panel (c) plots the error { IEo.[f] - E [f] } versus node number. Notice how the
error is largest at nodes 4 and 5 (adjacent to the cut edge), and decays for distant nodes

(e.g., 1 and 8).

Continuing the expansion of Proposition 3.2.1 to higher order provides, in principle,
a sequence of approximations to lE0 - [f]. (As noted earlier, the nominal expectation
IE [f] represents a zeroth-order approximation, whereas adding in the covariance terms
would yield a first-order approximation.) One would expect that the approximation
should improve as higher order terms are incorporated; however, such monotonicity is
not guaranteed. Moreover, for a discrete process, the computation of higher order terms
becomes progressively more costly, even in the case where f depends only on a local
subvector and p(x; 0) is a tractable distribution. In general, the kh -order coefficient will
require computing a term of the form E [f HlJ2 #r0]. For a discrete-valued process,
this will be an intractable computation for sufficiently large k.

For a Gaussian process, it turns out that the necessary higher-order terms can be
computed recursively in terms of lower order quantities. This leads to one derivation
of an algorithm for exact inference of Gaussian processes, which we will explore in

Chapter 4.
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Figure 3.1. Panel (c) shows the error {IEo*[f]-Eo [f]} between actual marginals Eo0 [f]
on a single cycle (a), and the zeroth-order approximations EO [f] from a tree obtained
by removing edge (4,5) (b). Note how the error is maximal around nodes 4 and 5, and
decays as the distance between the node and the cut edge increases.

M 3.2.2 Expansions for log]Egs.[f]

We now consider perturbation expansions of the quantity log E. [f]. This expansion
has an interesting form, and different properties than that of Proposition 3.2.1. It is
based on a representation of log E. [f] as a difference between the original log partition
function (O*), and a second log partition function that is suitably modified (in a
manner to be described).

For subsequent developments, we need to ensure that Eo. [f] > 0 so that taking
logarithms is well-defined. In the case of a strictly positive distribution (i.e., p(x; 9*) > 0
for all x E XN), this condition is ensured by the following:

Assumption 3.2.1. The function f takes, only non-negative values (i.e., f(x) > 0 for
all x C XN) and f is not identically zero (i.e., f(x) > 0 for at least one x E XN).

For developments in the sequel, it is helpful to introduce now the notion of a tilted
distribution. This concept is central in both importance sampling [150], and large
deviations theory [e.g., 53, 158]. Suppose that we are given a function f satisfying
Assumption 3.2.1, as well as a distribution in exponential form:

p(x; 9) = exp { > 0 q(x) -4,(0)
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We then form a new distribution, denoted p(x; 0), by "tilting" the original distribution
with the function f. To be precise:

p(x; Of) cx exp{0aa(x) }f (x) (3.7)
a

We denote by Ff(0) the log partition function associated with this representation:

f ()A log[ SE exp {SaE0 a(x) } f (x) (3.8)
XXN a

The function 1 f has important property: by a simple re-arrangement of equa-
tion (3.8), we obtain the relation

log FE[f] = Df (0) - D(0) (3.9)

This equation is a reformulation, in terms of exponential parameters and log partition
functions, of a relation used in statistical physics for expressing moments as ratios of
partition functions [e.g., 15].

Equation (3.9) will play a fundamental role in our development of bounds in Sec-
tion 3.3. For now, we observe that the derivatives of 4(0) (respectively 'tv(0 )) cor-
respond to cumulants of the random variables {q#,(x) } under the distribution p(x; 0)
(respectively p(x; Or)). On this basis, it is straightforward, again by a Taylor series
approach [161], to obtain a perturbation expansion for log E. [f].

Proposition 3.2.2. Let E = 0* - 0 be the difference between two arbitrary parameter
vectors, and consider a function f : XN -+ [0, 00) satisfying Assumption 3.2.1. Then
we have the expansion:

log E- [f] = log ESo [f] + {Eo [0a] - FEW[o]} ca + leT {G(Of) - G(0)}E + O(HeIt 3)2

(3.10)

Here Eof [qa] denotes the expectation of qa(x) under p(x; 0); and G(0f) and G(0)
are the Fisher information matrices corresponding to p(x; 0) and p(x; 0) respectively.
(Explicitly, we have [G(0)]a = covo{qa, qg}).

It is helpful to interpret Proposition 3.2.2 for particular choices of the function
f. Given some subset S C V, suppose, in particular, that f is an indicator function
J(xs = es), as defined in equation (3.2), for xs to assume the configuration es. In
this case, the distribution p(x; Of) is equivalent to p(x; 0) but with the variables xs
fixed to the values in es. Thus, the first-order term {Eo [qa] - E 0 [q#a]} corresponds
to difference between the mean of q,(x) under a clamped distribution, and its mean
under the original distribution p(x; 0). Similarly, the second order term is the difference
between the two respective Fisher information matrices. The factor controlling the
accuracy of the expansion is how much cumulants of {q0a (x)} under the distribution
p(x; 0) are affected by conditioning on the subset of variables xs.
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N 3.3 Bounds on expectations

The goal of this section is more ambitious; rather than approximating the expectation
E9. [f], we seek to generate upper and lower bounds. Our analysis makes use of standard
tools from convex analysis applied to log partition functions.

Central in our development is the representation of log 14. [f] as the difference
between two log partition functions, as given in equation (3.9). We established in
Lemma 2.2.1 of Chapter 2 that (D is convex as a function of 0, and strictly so for a
minimal exponential representation (see Section 2.2.1). A similar argument establishes

that 4D, as the log partition function of a tilted distribution, is also convex.
The convexity of these log partition functions allows us to exploit standard prop-

erties of convex functions to derive bounds on log F0. [f]. We use, in particular, the
following two properties [see, e.g., 20] of any differentiable convex function F. First of
all, for any two points y, z, the (first-order) tangent approximation to F(y) based on z
is an underestimate:

F(y) > F(z) + VTF(z) (y - z) (3.11)

Secondly, for any collection of points {y } and set of weights p ;> 0 such that >p = 1,
we have Jensen's inequality [41]:

F(u y2) >jipf(y) (3.12)
2 i

The analysis in this section will be performed under a slightly stronger version of
Assumption 3.2.1:

Assumption 3.3.1. The function f : XN - [0,1] and f(x) > 0 for at least some
X E XN.

For a discrete-valued process, this assumption entails no loss of generality, since we
can define m = minx f(x) and M = maxx[f(x) - m], and then form the new function
f (x) = [f (x) -im] which satisfies Assumption 3.3.1. By the linearity of expectation,

bounds for ]Eo [f] can immediately be translated to bounds for E'0-[f].

0 3.3.1 Relation to previous work

The first set of bounds that we present are very closely related the standard mean field
lower bound [e.g., 92,105] on the log partition function. As described in Section 2.3.1,
both naive and structured mean field are extensively studied and used [e.g., 12,74,123,
155,176]. Instead of bounding the original log partition function D(9*), as in ordinary
mean field, we bound the tilted partition function 4 f (0*). This procedure leads to
a bound on the expectation o.[f] for an arbitrary function f. This bound has an
interesting form, and reduces to the ordinary mean field bound when f(x) = 1 for all
x E XN. Accordingly, we show that the stationary conditions for the tightest form of
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this bound are very similar to the corresponding mean field stationary conditions. The
additional flexibility of allowing f to be arbitrary pays dividends in Section 3.4.1, in
which we present a simple method for tightening any mean field bound.

Based on a review of the literature, it appears that upper bounds are more diffi-
cult to obtain. There are only a limited number of upper bounds, and their domain
of applicability is limited. For example, using a variational upper bound on the func-
tion log[exp(u) + exp(-u)], Jaakkola and Jordan [94] derived a recursive procedure
for obtaining quadratic upper bounds on the log partition function for the Boltzmann
machine (i.e., a binary process with pairwise maximal cliques). For relatively weak
interactions, these upper bounds are much stronger than the standard (linear) mean
field lower bound. However, generalizing this procedure to discrete processes with more
than two states is not straightforward. For the class of log concave models (a particular
subclass of directed networks), Jaakkola and Jordan [93] developed upper bounds on
marginal probabilities using other bounds from convex analysis.

In Section 3.3.3, we derive a new set of upper bounds on the expectation log E0 .[f]
that are applicable to an arbitrary undirected graphical model. These upper bounds
generalize an idea used by Jaakkola and Jordan [96] to obtain bounds for the QMR-DT
network. We also show in Section 3.4.2 that the idea of additive decompositions can
also be used to strengthen these bounds, again with an adjustable price in computation.

U 3.3.2 Basic bounds based on a single approximating point

By applying the property in equation (3.11) to the tilted partition function 4's, it is
straightforward to derive the following bound:

Proposition 3.3.1. Let f: XN -+ IR satisfy Assumption 3.3.1, and consider distribu-
tions at parameter values 9* and 0. Then the expectation Eo [f] is bounded below and
above as follows:

Eo [f] IE [f] exp - D( 9110*) + Q covo{f, qa0}(9* -- 9)} (3.13a)

EO- [f]< 1- (1 - Ee[f]) exp{- D(0H110*) l+ f] covo{f, #0a}(99-)a
1 - EOV] a

(3.13b)

Here cove{f, qa} = Eo[f qa] - Eo[f]Eo[#,] is the covariance between f and #b, and
D(9 1I 9*) is the Kullback-Leibler divergence between p(x; 9) and p(x; 9*).

Proof. See Appendix B.1. H

Since the function f satisfies Assumption 3.3.1, the expectation E*[f(f] necessarily
lies in [0, 1]. A desirable feature of both the lower and upper bounds of Proposition 3.3.1
is that they respect this interval requirement. Indeed, it can be seen that the RHS of
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equation (3.13a) is always non-negative, and similarly, the RHS of equation (3.13b) is
always less than or equal to one. Thus, the corresponding bounds are never vacuous. 1

As noted above, a caveat associated with Proposition 3.3.1 is that the bounds, in
the form given, contain the intractable log partition function <F(9*). (In particular,
it appears as part of the KL divergence D(9 911 *) term). For a undirected graphical
model, evaluating this partition function is, in general, as difficult as computing the
original expectation. In order to evaluate these bounds, we require a computable upper
bound on the log partition function. The methods presented in Section 3.3.3 provide
precisely such bounds.

It is interesting to consider the bounds of Proposition 3.3.1 when we choose 9 equal
to an optimum mean field point (see Section 2.3.2). In particular, fix some substructure
of the graph 9 - say, for concreteness, an embedded spanning tree - that is represented
by the e-flat manifold Ftree. (See equation (2.47) of Chapter 2). Now suppose that we
perform structured mean field optimization; that is, we compute

09= arg min D(9 9| *) (3.14)
OCtree

The elements 0g over which we optimize are those corresponding to any single node
potential function, or any edge belonging to the tree. We obtain stationary conditions
by setting to zero the gradient of D(9 II 9*) with respect to each such element. From
our analysis in Section 2.3.2, these stationary conditions are given by

Z a s) [9* -- ]= 0 (3.15)

for all free indices 8: i.e., those indices corresponding to elements 0,8 that are free to
vary in the variational problem (3.14). Here gafl(O) = covj{q#, ,} is an element of

the Fisher information matrix evaluated at p(x; 9).
Suppose that the function f corresponds to a potential function #,3 for some free

index 13. For the tree example used here, such functions include the indicator function
f (x) = 6(x, = a) for any node s and state a E X, as well as f(x) = 6(x, = a)S(xt = b)
for any edge (s, t) in the tree, and pair of states (a, b). For such choices of f, it can
be seen that the summation E covgjf, 0a}(* - 0), in equation (3.13a) vanishes, so
that the bound reduces to the much simpler form:

Eo* [f] E[f] expI{ - D(O 0 *)} (3.16)

A similar simplification applies to equation (3.13b).

Optimizing single-point bounds

Suppose that we are allowed to choose the approximating point 9 from some class of
distributions (e.g., the e-flat manifold FTree formed by a spanning tree, as above). It is

'Other types of bounds (e.g., the union bound) can give meaningless assertions (e.g., a probability
is less than 3).
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tempting to believe that equation (3.16), due to its attractive simplicity, corresponds
to the optimized form of the bound (3.13a). A bit of reflection establishes that this is
not the case; note that equation (3.16) does not take into account the particulars of f,
as it would if it were optimized for f.

In order to optimize the bound of equation (3.13a), we need to return to its deriva-
tion. Recall that it is based on lower-bounding the tilted partition function <hf (0) by the
first-order tangent approximation in equation (3.11). To optimize the bound, we want
to make this tangent-approximation as tight as possible. This problem is equivalent to
the mean field optimization problem, albeit applied to a tilted log partition function.

With this insight, it is straightforward to derive stationary conditions for a zero-
gradient point of this optimization problem. We simply take derivatives of the logarithm
of the RHS of equation (3.13a) with respect to parameters 0,3 that are free to vary, and
obtain the following necessary conditions for an optimum:

( E o [f # . # ,31 _ EO [f 0 ] E o [f 0 ,3] [ -- O*] U = 0 V free ind ices 16 (3 .17)Eo[fl ] Eo[f] Eo[f]I

The term with curly braces in equation (3.17) can be recognized as an element gp(f)
of the Fisher information matrix corresponding to the tilted distribution p(x; 0f) defined
in equation (3.7). Note the correspondence with the stationary conditions for ordinary
mean field (see equation (2.48) of Section 2.3.2). This correspondence is not surprising,
however, since the optimization problem is equivalent to mean field with the tilted log
partition function. Thus, the set of gradient equations in (3.17) can be solved with the
usual mean field updates [105], or other methods from nonlinear programming [e.g.,
20].

* 3.3.3 Bounds based on multiple approximating distributions

The bounds of Proposition 3.3.1 are based on a single (tractable) approximating dis-

tribution p(x; 0). In this section, we derive a new set of bounds, complementary to
those of Proposition 3.3.1 in the sense that they are based on multiple approximating
distributions. As a concrete example, suppose that the set of distributions that can be
used to form approximations are those that are tree-structured. Then the bounds of
Proposition 3.3.1 are based on using only a single tree. Since any graph with cycles has
a large number of embedded trees, it is natural to consider bounds based on multiple
trees.

We begin by letting 6 = {O I i E 1} denote a collection of exponential parameters
corresponding to a set of approximating distributions { p(x;Qi) 1 i E I }. We are
interested in weighted combinations of these points, so that we define a vector of weights

S{piiiCI >0; > P=1 } (3.18)

The vector f can be viewed as a probability distribution over the set of approximating
distributions.
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We use these weights and approximating points to generate convex combinations of
exponential parameters, which are defined as follows.

Definition 3.3.1. Given such a distribution / and a collection of exponential vectors
6, a convex combination of exponential parameter vectors is defined via the expectation:

E[6] =Er ,4[0] A p'20 (3.19)
iEI

Now recall that 0* is the exponential parameter vector of a distribution p(x; 0*)
defined by the original graph 9. We are interested in sets of approximating points 6
for which there exists a convex combination that is equal to 0*. Accordingly, we define
the following set of pairs (0; jf):

A(0*) A{(6; ) Eg[6] 0= *(3.20)

That is, A(0*) is the set of all pairs (6; /) of exponential parameters 6 = { Z i E I }
and distributions ' for which the convex combination Ej[0] is equal to the target
parameter 0*.
Note: The expectation notation will be used more generally in the following way: given
some function F and the function values F(02 ) for all i E I, we define

Eg[F(6)] =Eg[F(0')] = Zp'F(0)
ZET

Example 3.3.1. To illustrate these concepts, consider a binary distribution defined by
a single cycle on 4 nodes, as shown in Figure 3.2. Consider a target distribution of the
form

p(x; 0*) = exp{xix2 ± X2X3 +X3X4 + X 4XI - (*)

That is, the target distribution is specified by the minimal parameter 0* = [0 0 0 0 1 1 1 1],
where the zeros represent the fact that 0* = 0 for all s E V. We consider the four span-
ning trees associated with the single cycle on 4 nodes, and define a corresponding set
of four exponential parameter vectors 6 = {' S i = 1, 2, 3, 4} as follows:

01 = (4/3)[0000 1110]
02= (4/3)[0000 1101]

3= (4/3)[0000 1011]

4= (4/3)[0000 0111]

Finally, we choose p = 1/4 for all i = 1, 2, 3, 4. It is not difficult to check that this
choice of a uniform distribution ensures that Eg[Oi] 0=0*; that is, the specified pair
(0; i) belongs to A(9*).
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Figure 3.2. A convex combination of exponential parameters of four distributions
p(x; 90), each defined by a spanning tree, is used to approximate the target distribution
p(x; 9*) on the single-cycle graph.

The motivation behind the convex combinations in Definition 3.3.1 is that they allow
us to apply Jensen's inequality (3.12) to generate upper bounds on log partition func-
tions. By using equation (3.9), these bounds can be translated to bounds on log E0. [f].
The results are summarized in the following:

Proposition 3.3.2. Let f : XN - IR satisfy Assumption 3.3.1, and let 9* be the
exponential parameter of target distribution p(x; 9*). For any pair (; p') C A(9*), we
have the bounds:

log EO*[f] Ezlog]Eoi [f]] + Eg [4b(01)] -(9*) (3.21a)

< E #log Eoi[f] { + Eg E [Z(Oi - 9*)aq a(x) } (3.21b)

We can also derive a set of lower bounds of similar form by applying the upper bounds
in equation (3.21) to the function f (x) = 1- f (x), which also satisfies Assumption 3.3.1.

Proof. See Appendix B.2. H

There are some caveats associated with the bounds of Proposition 3.3.2. First of
all, recall that Assumption 3.3.1 implies that log F 0*-[f 1 <0, so that the upper bounds
of equation (3.21) are meaningless if the right-hand sides are larger than zero. Unlike
Proposition 3.3.1, this condition is not guaranteed for these bounds.

Secondly, as with the form of bounds given in Proposition 3.3.1, the bound of
equation (3.21a) is not computable, since it also involves the log partition function

(9*). Required in this case is a lower bound on G(b*). Standard mean field theory [e.g.,
105], as described in Section 2.3.1, provides a well-known lower bound on this log
partition function. Indeed, in deriving equation (3.21a) from equation (3.21b), we have
made use of the mean field lower bound (see equation (2.46)). Of course, it is possible
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to use tighter lower bounds on the log partition function that include higher order
terms [e.g., 1231 , which will lead to correspondingly tighter forms of equation (3.21b).

Proposition 3.3.2 also has important consequences for Proposition 3.3.1, in which
the bounds were not computable due to the presence of a log partition function 4(0*)
in the KL divergence term D(0 II 0*). What is required in this case is an upper bound
on F(0*). In the special case that f = 1, equation (3.21a) provides such an upper
bound. Indeed, all the terms involving f vanish, and we are left with the familiar form
of Jensen's inequality:

4 (Q*) < <E [()] = Z i4D(0i) (3.22)
iEI

This upper bound can be applied in conjunction with Proposition 3.3.1 so as to yield
computable bounds.

Optimizing multiple point bounds

It is also natural to consider the problem of optimizing the exponential parameters
0 = {0}, as well as the distribution f. For concreteness, let us consider the special
case of f = 1, in which case the problem is to minimize the RHS of equation (3.22) -
that is, F(f ; 6) = E ji4L(0') subject to the constraint

Eg[0"] = Zp' = 0* (3.23)

Interestingly, the cost function F is convex in 6 with f fixed, and linear (hence convex)
in f with 6 held constant. Moreover, the constraint of equation (3.23) is linear in 6
with f fixed, and similarly for f with 0 held fixed. The minimization of a convex
function subject to linear constraints is well-behaved (e.g., the minimum is unique for a

strictly convex function), and there are a variety of available algorithms [20]. Therefore,
optimizing over the collection of exponential parameters 6 with f fixed (or over f with
o fixed) is possible.

However, the joint optimization over 0 and ft is much trickier. In this case, the
constraint set consists of (unpleasant) quadratic equality relations. Moreover, even if
we could perform this joint optimization, there remains the nagging issue of choosing
the set of possible approximating distributions. 2 To be concrete, suppose that we decide
to optimize over the set of all spanning trees embedded within the graph. The number
of such trees is prohibitively large for typical graphs - e.g., NN- 2 for the complete
graph KN on N nodes [e.g., 168]. Due to this curse of dimensionality, optimizing the
cost function F over all trees appears hopeless. So it is natural to restrict ourselves to
a subset of trees, but how to choose them in a principled way?

Remarkably, it turns out these challenging issues - i.e., choice of trees, and the
explosion in dimension - can be sidestepped entirely by a suitable dual reformulation

2 This issue is equally applicable to the single optimization over 6 with p# fixed.
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of this optimization problem. As we will show in Chapter 7, this dual reformulation

allows us to develop an efficient algorithm for optimizing these bounds over all spanning
trees of the graph, albeit in an implicit manner.

0 3.4 Extension to the basic bounds

In this section, we describe a method for strengthening the basic bounds described in
the previous section. In particular, we ask what factors control the tightness of the
bounds in Proposition 3.3.1 and 3.3.2. One important factor turns out to be the choice
of the function f. In particular, suppose that for some configuration e E XN, we set
f (x) = 6(x = e). Note that the support of this function f is as small as possible

without being empty; it consists only of the single configuration e.
Now consider the equality:

p(x = e;O=*) exp { ( )- (*) + 0,, (e * - 9)}
p(x =e;O0)

Since E 0 [6(x = e)] = p(x = e; 9*), it can be seen (following a bit of algebra) that this
equation is equivalent to the bounds of Proposition 3.3.1 holding with equality.

This observation suggests that these bounds becomes tighter as the support of the

function f decreases. It also forms the basis of a principled method for tightening

bounds on the expectation Fa [f]. In particular, given some function f satisfying As-

sumption 3.3.1, we consider additive decompositions of f in the form:

L

f =Zf k (3.24)
k=1

We call the set {fk} a partition of f, and L is the size of the partition. Many functions
of interest can be decomposed additively in this manner.

Example 3.4.1. For the choice f (x) = 6(x, = j), we have the decomposition

M

f(x) = Z8(xs = j)(xt = k)
k=1

for some node t and state value k. If we take expectations with respect to p(x; 0), then
this is simply a decomposition of the single node marginal p(r = j; 9) into a sum of
joint marginal terms p(x8 = j, Xj = k; 9).

In the following sections, we show how to exploit additive decompositions to tighten
the bounds of both Proposition 3.3.1 and 3.3.2.
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E 3.4.1 Tighter single point bounds

The basic procedure is very simple: given an additive decomposition of the form in
equation (3.24), we can use Proposition 3.3.1 to derive bounds on each EO [f k], and
then add these individual bounds to derive a new bound on Eo [f]. The following
summarizes this procedure, and establishes that it will, in general, improve the bound
on Fo.*[f1.

Proposition 3.4.1. Consider the additive decomposition f = Z_ 1 fk, where f and
each fk are functions from the state space XN to R satisfying Assumption 3.3.1. Then
we have the bound

Eo[f] [[f k] exp{ -D(0 *)+ +covo{f k, q$*(0 -0)]

(3.25)

Moreover, this bound is also at least as good as the bound (3.13a) of Proposition 3.3.1.
It is strictly superior as long as the terms 1 §: covo{fk, q1}(0* ---0), are not equal

for all indices k.

Proof. See Appendix B.3. E-

Clearly, computing the bound of Proposition 3.4.1 requires more work - roughly L
times more - than the bound of equation (3.13a) in Proposition 3.3.1 . Nonetheless,
it has the desirable feature that (in general) performing more computation guarantees
a superior result. We shall provide empirical results in Section 3.5.2 showing the gains
that can be achieved by this strengthening procedure.

There is an interesting case for which the bound of Proposition 3.4.1 is no better than
the lower bound of Proposition 3.3.1. Suppose that we perform mean field optimization
over some structure (say a tree), thereby obtaining the optimal mean field parameter 0.
Suppose moreover that for each k = 1,... , L, we have fk -- #b(k) for some free index
#(k). The free indices in mean field optimization over a tree correspond to any single
node potentials, and any edge in the tree; see the discussion following Proposition 3.3.1.

In this case, the stationary conditions of mean field, as in equation (3.15), dictate
that E covg{fk, qa1}(9* -O) = 0 for all k. Returning to Proposition 3.4.1, the bound
in equation (3.25) then reduces to

Eo*[f] Z E[fk] exp{---D(ot}1*)}
k

= E[f]exp{ -D(010*)} (3.26)

As a consequence, the {fk} partition plays no role, and cannot improve the bound. In-
deed, equation (3.26) is equivalent to the form of Proposition 3.3.1 that is obtained when
0 is equal to a mean field optimum 0. (In particular, compare it to equation (3.16).)
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Sec. 3.5. Results on bounding the log partition function

It should be noted that obtaining a (structured) mean field optimum can be a very
computationally intensive procedure (much more so than computing bounds for the
{ fk}), so that it is not always feasible. However, presuming that a mean field solution
is obtained, using a partition {f k} that includes functions not involved in the mean field
optimization will, of course, improve the bounds. Therefore, Proposition 3.4.1 can still
be used to strengthen a mean field solution. Section 3.5.2 gives an empirical illustration
of these phenomena.

E 3.4.2 Tighter multiple point bounds

Similar intuition suggests that additive decompositions should also be useful for tight-
ening the bounds in Proposition 3.3.2 based on multiple points. As before, we consider
the function f(x) =SJ(x = e). Then it is not hard to see that the following equality

O*q$(e) - (9*) = Eg{ZO'0,(e) - (%')}+ Eg[d(9t)] - 4(o*)

corresponds to the bound in equation (3.21a) holding with equality. This observation
leads us to suspect again that the tightness of the bounds increases as the support of f
decreases.

This intuition is in fact correct: given an additive decomposition f = E fk, we
can strengthen the bound of Proposition 3.3.2 by bounding each fk individually, and
then summing the bounds. We summarize as follows:

Proposition 3.4.2. Consider the additive decomposition f -Ek fk, where f and
each fk are functions from the state space XN to R satisfying Assumption 3.3.1. Then
we have the bounds

Eo [f] < >E [J(Eo[f k] exp p4(O0) - (*)} (3.27a)

E0-[f] > i -z[yjQ -1E4f])]exp{ZM4 (Oz) -lb(0*)} (327b)k i )9

Moreover, these bounds are tighter than those given in Proposition 3.3.2 as long as the
quantities {IE9, [fk]/EO [f]} are not all equal.

Proof. See Appendix B.4.l

N 3.5 Results on bounding the log partition function

By setting f = 1, all of the bounds described in the previous sections reduce to partic-
ular bounds on the log partition function (<*). In this section, we present the results
of applying these bounds to various problems. We focus, in particular, on the bounds
of Propositions 3.3.1 and 3.4.1.
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Consider a partition of f_= 1: i.e., a set of functions {fk} such that Ek f k 1. For
any such partition, Proposition 3.4.1 gives a lower bound on the log partition function

(D (*):

(9*) > N() +log[EEO[fk] exp {Z[O* - b I]B[f ka ]1 (3.28)

Equation (3.28) follows by substituting f =1 in equation (3.25), and then taking
logarithms and simplifying.

In order to illustrate this family of bounds, we focus on additive decompositions
{fk} of the form:

1 > 6(xs = es) (3.29)
esEXISI

The indicator function S(xs = es) for xs to assume the configuration es is defined
in equation (3.2). With these choices of functions {fi}, the expectations JE [fi] in
equation (3.28) correspond to the values of marginal distributions over the nodes in S.

For a given graph 9 = (V, 8), we performed simulations for a binary process
x E {0, 1}N by forming a distribution p(x; 9*) with a random choice of 9* from either
the uniform attractive ensemble, or the uniform mixed ensemble, in both cases using

edge strength d = 2. See Section 2.2.1 for the definitions of these ensembles of distribu-
tions. In all cases (experimental conditions and graphs), we investigated the effect of
increasing the number of nodes (and correspondingly, the number of functions) in the
partition given in equation (3.29). Note that for a binary process, a partition of this
form based on ISI nodes consists of 21SI functions. The special case JSI = 0 corresponds
to choosing only a single function f1 (x) = 1, so that the bound of equation (3.28)
reduces to the ordinary mean field bound, as in equation (2.46) of Section 2.3.1.

For each trial, we computed bounds based on some approximating point 9, chosen
in a way to be specified below. Given this approximating distribution p(x; 9), we first
computed the ordinary mean field bound3 for ISI = 0. Then for sizes ISI = 1, 2, 3, we
computed the bound of equation (3.28) for each of the ('Y) possible subsets of size ISI
in a graph on N nodes.

U 3.5.1 Unoptimized bounds

We first investigated the effect of refining the partition on two graphs (a 3 x 3 grid,
and the fully connected graph K9 on N = 9 nodes). The small problem size facilitates
comparison of the bounds to the true value of 4(9*). For each each graph, we performed
simulations under both the attractive and mixed conditions. To form the approximating
distribution, we first used Kruskal's algorithm [107, 116] to compute the maximum
weight spanning tree T based on the edge weights 10*1 on each edge (s, t) E E. Let

3 This is not an optimized mean field bound unless 6 is a mean field optimum.
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S(T) c E be the edge set of maximum weight spanning tree. We then formed a tree-
structured distribution by setting

0* if a = s E V

0a = s* if a = (s, 0)CES (T)

0 if a = (s, t) E E/S(T)

Using the distribution p(x; 9), we computed bounds as described above.
The results are shown in Figure 3.3, with plots for the 3 x 3 grid shown in the top

row, and those for the fully connected graph shown in the bottom row. On the abscissa,
we plot the number of nodes IS used in the refinement, ranging from 0 to 3; on the
y-axis, we plot the relative error in bounds (i.e., [4(9*) - Bound]/(9*)). For each size

1S, we show in a vertically-oriented scatter plot the relative error in all () possible
bounds based on subsets of this size. We also plot the mean relative error averaged over
all possible subsets. Finally, for the purposes of comparison, in the column lSI = 2,
we plot a single point with a diamond that corresponds to the relative error in the
optimized structured mean field solution for the spanning tree T.

We see that refining the partition (in general) improves the bounds, as illustrated by
the downward trend in the means. The scatter plots of the individual bounds show that
the tightness of the bounds varies a fair bit, especially for the case of mixed potentials.
This variability underscores the fact that finding methods for choosing good subsets of
nodes is important.

Note that Proposition 3.4.1 guarantees that refining the partition will (in general)
improve a pair of bounds that are nested. For example, it ensures that the bound based
on nodes {1, 2} is better than that based on node {1}; it does not, however, guarantee
that the former bound will be better than that based on any other single node s $ 1, 2.
As a consequence, we can see that for k = 1,2, not all of the bounds with S1= k + 1
are better than the best of the bounds with lSI = k. However, we see that the worst
(respectively the best) of the bounds with 181 = k +I1 are always better, or at least as
good, as the worst (respectively the best) bounds with S1I= k.

The mean field solution (plotted with a diamond in column S = 2) is better than all
of these bounds in three out of four cases. Of course, such a comparison is not really fair,
since each iteration of structured mean field optimization 4 requires roughly O(N + Il)
as much computation as a single bound of the form in equation (3.28). Moreover, many
iterations are typically required; for these examples, mean field required more than 20
iterations to converge to a precision of 1 x 10- 4 , measured in terms of percentage change
in the bound value. In the following example, we shall do a more direct comparison to
mean field.

4There are a variety of ways of performing structured mean field optimization, but roughly, each
iteration requires computing the Fisher information matrix, which is expensive.
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Figure 3.3. Improved bounds on the log partition function based on refining the
partition for an unoptimized approximating point 0. Each panel plots the relative er-
ror [<(9*) - Bound]/4<(0*) in the bounds versus the partition size (number of nodes
S= 0, 1, 2, 3). Shown for each k are the errors for all (9) possible bounds (correspond-
ing to all possible combinations of k nodes from 9 nodes in total). Also shown are the
average error, and the error in the structured mean field bound (plotted at k = 2). Top
row: 3 x 3 grid. Bottom row: Fully connected graph on 9 nodes.
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* 3.5.2 Bounds with optimal mean field vector

In our second simulation, we used a mixed parameter vector 0* on a 3 x 3 grid to compare
the effect of refining the partition for an unoptimized parameter vector 0 (chosen as in
the previous experiment), and the structured mean field optimum 0.

The results are plotted in Figure 3.4. Panel (a) shows a plot, analogous to those
of Figure 3.3, for the unoptimized approximating point. The qualitative behavior is

3 X 3 grid; Mixed 3 X 3 grid; Mixed

0.01 -
0.02 -

0.015- 
-

0.008-

a0.006 -00

1 0.01 - 7
75 0 00.004 -

0.005 - Individual bounds 0.002 Individual bounds
-o- Average of bounds -o- Average of bounds

0 Mean field 0 Mean field

0 10230
Fineness of partition Fineness of partition

(a) Unoptimized (b) Optimized (mean field)

Figure 3.4. Effect of refining the partition for unoptimized versus mean field solution
on a 3 x 3 grid. Each panel plots the relative error [(0*) - Bound]/<b(0*) in the bounds
versus the partition size (number of nodes k = 0, 1, 2,3). Shown for each k are the errors
for all (9) possible bounds (corresponding to all possible combinations of k nodes from
9 nodes in total), as well as the average errors. (a) Unoptimized solution on spanning
tree. (b) Optimal structured mean field solution on spanning tree.

similar to the top panel of Figure 3.3. Note that the relative error in the optimized
structured mean field bound, shown with a diamond, is quite good.

Panel (b), in contrast, shows the effect of refining the partition when using the
optimal structured mean field vector 0 as the approximating point. Since we are us-
ing this optimal point, the base error for ISI = 0 has decreased to ~ 0.008 (or 0.8%).
An interesting feature of this plot is that using a refined partition of size IS[ = 1 has
absolutely no effect on the tightness of the bound. The discussion following Propo-
sition 3.4.1 gives a theoretical explanation of this effect: in particular, the functions
{S(x= j)} associated with any refinement of size one all correspond to functions that
are optimized under structured mean field. Hence, refinements using these functions
have no effect. A similar statement applies to certain subsets of size ISI = 2 - namely,
those corresponding to edges in the approximating tree. As a consequence, the plot of
the mean relative error is somewhat misleading. It is skewed upwards for both ISl = 1
and 2, since the average includes many subsets that we know a priori will not improve
the mean field solution. For larger partitions, however, refinements will typically lead



to further improvements upon the optimized mean field solution.

0 3.6 Discussion

Exponential families of distributions capture, in a compact manner, both the model
structure and model parameters. In this chapter, we have demonstrated their power
in application to two important problems: understanding model sensitivity via pertur-
bation expansions, and deriving computable lower and upper bounds on quantities of
interest, including marginal distributions and partition functions. Indeed, the new class
of upper bounds derived in this chapter, as described Section 3.3.3, follow in an elegant
way from the perspective of an exponential representation.

The bounds of this chapter play an important role in developments in the sequel.
In particular, in Chapter 5, we will apply the results of this chapter, as well as those
of Chapter 7, in order to derive upper and lower bounds on the approximation error
that arises in applying the belief propagation error. Moreover, these same results will
be used to bound the error in the more advanced techniques for approximate inference
that are analyzed in Chapter 6. Finally, Chapter 7 is devoted to a detailed analysis of
the upper bounds presented in Section 3.3.3.
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Chapter 4

Embedded trees algorithm for
Gaussian processes

* 4.1 Introduction

In areas like coding theory [71, 117], artificial intelligence [137], and speech process-
ing [143], graphical models typically involve discrete-valued random variables. How-
ever, in other domains such as image processing, control theory, and oceanography [35,
62, 126], it is often more appropriate to consider random variables with a continuous
distribution. In this context, Gaussian processes defined by graphical models are of
great practical significance. Moreover, the Gaussian case provides a valuable setting for
developing an understanding of estimation algorithms [152,174].

Accordingly, the focus of this chapter is estimation of Gauss-Markov processes on
graphs. Throughout this chapter, the term estimation refers to the computation of
conditional means and error covariances at each node of the graph. For a Gauss-
Markov process on a tree-structured graph, Chou et al. [35] developed a recursive and
very efficient algorithm for exact estimation. This algorithm has a two-pass form,
and represents a generalization of the Kalman filter [109,110] and Rauch-Tung-Striebel
smoother [146]. This estimation algorithm, and associated techniques for constructing
tree-structured models [e.g., 63,88,89], have been used successfully in a wide variety of
applications [e.g., 47, 62, 87, 126].

A well-known problem associated with tree models is the presence of boundary
artifacts. In particular, tree models may introduce artificial discontinuities between
pairs of nodes that, though spatially or temporally close, are separated by a great
distance in the tree. Various methods have been proposed to deal with this problem [e.g.,
88], but these proposals are not entirely satisfactory. The most natural solution is to
add extra edges, as necessary, to account for statistical dependencies neglected by a tree
model. With the addition of these edges, however, the resulting graph contains cycles,
meaning that efficient tree algorithms [35] for exact estimation are no longer applicable.

An important problem, therefore, is to develop algorithms for exact estimation of a
Gauss-Markov process defined on a graph with cycles. In this chapter, we develop and
analyze an algorithm that exactly computes both the conditional mean and error vari-
ances of a Gaussian random vector x based on a set of noisy observations y. As a central
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engine, we exploit the existence of fast algorithms for performing exact computations
with tree-structured distributions. Each step of the algorithm entails extracting a tree
embedded within the original graph with cycles, and performing exact calculations with
a modified distribution defined by this tree. For this reason, we call our technique the
embedded trees (ET) algorithm. Given a set of noisy measurements, it computes the
conditional means with an efficiency comparable to or better than other techniques for
graphs with cycles. Unlike other methods, the ET algorithm also computes exact error
covariances at each node of the graph. In many applications [e.g., 62,126], these error
statistics are as important as the conditional means.

This chapter is organized in the following manner. In Section 4.2, we provide back-
ground on estimation of Gaussian processes defined on graphs. Section 4.3 introduces
the embedded trees (ET) algorithm, and presents results on its convergence properties.
We conclude in Section 4.4 with a summary, and directions for future research. The
work described in this chapter was based on collaboration with Erik Sudderth, and
portions of it have appeared previously in the conference paper [172]. Extensions to
this work are described in [163].

S4.2 Estimation of Gaussian processes

This section provides the basics of linear-Gaussian estimation, with particular empha-
sis on Gaussian processes that are Markov with respect to a graph. More details on
Gaussian processes and estimation can be found in the book [108], as well as in [163].

* 4.2.1 Prior model and observations

We consider a zero-mean 1 Gaussian random vector x ~P1(0, P) with strictly positive
definitive covariance matrix P. We assume that x is partitioned into a set of subvectors
{ xS I s = 1,... , N }. Denoting by I(x) the dimension of x, the total number of
elements in the vector x is given by I(x) = z__1 1(x 5). We let d = max, 1(x5 ) denote
the maximal size of any of the subvectors x.

Let y be a set of noisy observations of x. In many problem domains, the observa-
tions2 y = {ys s E A C {1,... ,N} } are naturally expressed as a noise-corrupted
linear function of x as follows:

y = Cx+v (4.1)

Here v ~ A(0, R) is zero-mean additive Gaussian noise, independent of x. We assume
that both C and R have a block-diagonal structure that respect the partition of x into
subvectors { xS5 I s =1,... , N }. As a consequence, observations y and yt at distinct
nodes s $ t are conditionally independent given x, (or given xt).

'It is straightforward to incorporate a non-zero mean by the appropriate addition of terms.
2 The set A C {1, ... , N} may be a subset, since we may not have observations of every subvector

xS.
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0 4.2.2 Linear-Gaussian estimation

For estimation purposes, we are interested in the conditional density p(xIy) of x given
the observations y. With a linear observation model of the form in equation (4.1), it
can be shown that x and y are jointly Gaussian [108], and moreover that x conditioned
on y is Gaussian. Therefore, the density p(x I y) is Gaussian, and can be characterized
completely by its mean R and covariance P. Also of interest are the marginal densities
p(x, I y) of x, conditioned on the noisy observations y for each node s E V. Since
the full conditional density is Gaussian, these marginal densities are also Gaussian; in
particular, p(xs8 I y) -A/(i 8 , P). Standard formulae exist for the computation of these
quantities - viz.:

= CTR-ly (4.2a)

P- = [P- ± CT R-C] (4.2b)

The vector i is the conditional mean of the random variable x conditioned on y. The
quantity P is often called the error covariance matrix, since it corresponds to the
covariance matrix of the error e = x - x in the error. The smaller 1(x) x 1(x8 )
covariance matrices P8 correspond to block diagonal elements of the full error covariance
P. Equations (4.2a) and (4.2b) are the normal equations [108] that define the problem
of linear-Gaussian estimation.

0 4.2.3 Gauss-Markov processes and sparse inverse covariance

As we will discuss, there exist iterative algorithms from numerical linear algebra [54]
for solving the linear system in equation (4.2a). Otherwise, calculating the full error
covariance P by brute force matrix inversion would, in principle, provide error variances

(as well as the conditional means). Since the computational complexity of matrix
inversion is O([dN] 3 ), this proposal is not practically feasible in many applications,
such as large-scale image processing and oceanography [e.g., 62, 126, 127, 171], where
d N may be on the order of 10 5 . The intractability of the general case motivates
considering problems with more structure.

An important type of structure arises for a Gaussian random vector x ~P1(0, P)
that is Markov, in the sense of Definition 2.1.6, with respect to an undirected graph
G = (V, S). With respect to this graph, the subvectors x, forming x lie at particular
nodes s E V = {1,... , N} of the graph. In this case, it can be shown [see 160] that the
inverse covariance matrix P-1 inherits a sparse structure from G. In particular, if P-1
is partitioned into blocks according to the subvectors { x I s C V }, the (s, t)th block
can be nonzero only if edge (s, t) E E.

For scalar Gaussian variables at each node, the relation between the structure of
the graph and that of the inverse covariance is illustrated in Figure 4.1. Panel (a)
shows a simple graph 9, whereas panel (b) shows the structure of an inverse covariance
matrix consistent with a Gaussian random vector that is Markov with respect to 9. In
particular, the locations of (possibly) non-zero entries are shown in black. The matrix
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(a) (b)

Figure 4.1. Gauss-Markov processes have inverse covariances that respect graph struc-
ture. (a) Simple graph 9 with cycles. (b) Structure of inverse covariance with non-zero
entries shown in black. Entry (s, t) is non-zero only if edge (s, t) belongs to the graph.

elements shown in white (e.g., (3, 5)) must be zero, since the associated graph lacks an
edge between the corresponding nodes (e.g., there is no edge between nodes 3 and 5).

N 4.2.4 Estimation techniques

There are a variety of techniques for estimation of Gaussian processes that are based
on exploiting Markov structure. First of all, when G is tree-structured, Chou et al. [35]
have shown that both the conditional mean x, and error covariances P, at each node
can be computed by a very efficient 0(d3 N) algorithm [35]. It entails first specifying
an arbitrary node as the root of the tree, and then passing means and covariances up
the tree from the leaves to the root, and then back down from the root to the leaves.
Thus, it has a two-pass form, and represents a generalization of classic Kalman and
Rauch-Tung-Striebel smoothing algorithms [109,146] for time series. A full derivation
of this algorithm can be found in Chou et al. [35]; see also Appendix A for a related
algorithm for estimation on trees.

Secondly, one of the best-known and most widely studied inference algorithms is
belief propagation [137]. This algorithm has attracted a great deal of attention, due to
its use in computer vision and artificial intelligence [e.g., 65,68,133], and also for its role
in decoding turbo codes [130] and low density parity check codes [70], in which context
it is known as the sum-product algorithm [e.g., 1,117]. Later in this thesis (Chapters 5
and 6), we will discuss belief propagation (BP) at much more length. 3 The viewpoint
taken in these later chapters will be of BP as an approximate inference technique for
discrete-valued processes.

Of interest in this chapter is BP in application to Gaussian problems. For tree-
structured graphs, belief propagation produces results equivalent to the tree algorithm
of Chou et al. [35]. In recent work, two groups [152, 174] have analyzed BP in appli-
cation to Gaussian processes defined on graphs with cycles. For graphs with cycles,
these groups showed that when belief propagation (BP) converges, it computes the

3 See Section 5.1 for an overview of previous work on BP, and Section 5.2.2 for the belief propagation
equations.
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correct conditional means. That is, the BP means are exact (when the algorithm con-
verges). However, in general, the error covariances computed by BP are incorrect. The
complexity per iteration of BP on a graph with cycles is O(d 3N), where one iteration
corresponds to updating each message once. 4 See [163] for a more thorough exposition
and analysis of Gaussian belief propagation.

Thirdly, it can be seen from equation (4.2a) that computing the conditional mean x
is equivalent to solving a linear system. Given the sparsity of P 1 , a variety of iterative
techniques from numerical linear algebra [54] could be used to solve this linear system.
For a symmetric positive definite system like equation (4.2a), the method of choice
is conjugate gradient [54, 85], for which the associated cost is O(d 2 N) per iteration.
However, such techniques compute only the means and not the error covariances.

0 4.3 Embedded trees algorithm

In this section, we develop an iterative algorithm for computing both the conditional
means and exact error covariances of a Gaussian process defined on any graph. Central
to the algorithm is the operation of cutting edges from a graph with cycles to reveal
an embedded tree - i.e., an acyclic subgraph of the original graph. Standard tree
algorithms [35] can be used to exactly solve the modified problem, and the results are
used in a subsequent iteration.

Interestingly, the algebraic analog of removing edges from the graph is a matrix
splitting of the inverse covariance matrix. Matrix splitting is widely used in numeri-
cal linear algebra; see, for example, Demmel [54] for an overview of standard matrix
splitting methods, and their role in Richardson methods like Gauss-Jacobi iterations.
In contrast to classical matrix splittings, those considered here are based on exploiting
particular features of the graph structure.

0 4.3.1 Embedded trees and matrix splitting

An important fact is that embedded within any graph 9 are a large number of spanning
trees - i.e., acyclic subgraphs that reach every node of 9. (See Section 2.1.1 for relevant
definitions from graph theory). In general, the number of spanning trees in a graph can
be computed via the Matrix-Tree theorem [e.g., 168]. Figure 4.2 provides an illustration
for the 5 x 5 nearest-neighbor grid drawn in panel (a). Depicted in panels (b) and (c)
are two of the 557,568,000 spanning trees embedded within the 5 x 5 grid.

For a Gaussian process on a graph, the operation of removing edges corresponds
to a particular modification of the inverse covariance matrix. Specifically, given the
original inverse covariance P-1 , we apply a matrix splitting

P - -4 -= P + K (4.3)

4This complexity assumes that the graph is relatively sparse, in that the number of neighbors per
node is 0(1) relative to the total number of nodes N.
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(a) (b) (c)
Figure 4.2. (a) Original graph 9 is a 5 x 5 grid. Panels (b) and (c) show two different

spanning trees embedded within g.

where K is a symmetric cutting matrix. It is chosen to ensure that P-1 corresponds to
a valid tree-structured inverse covariance matrix. I.e., P- must be positive semidefi-
nite, and respect the structure constraints of the associated tree.

For a Gaussian process with a scalar random variable at each node, Figure 4.3
illustrates the correspondence between the algebraic matrix splitting of equation (4.3),
and its graphical consequences. Panel (a) shows the original graph 9 with cycles,
whereas panel (b) shows the corresponding inverse covariance matrix (black squares
indicate non-zero entries). We decide to cut to the spanning tree shown in panel (c);
the corresponding tree-structured inverse covariance matrix is shown in panel (d). (Note
that since the tree of (c) is, in fact, a chain, the inverse covariance of (d) has the familiar
tridiagonal structure of a Markov time series.) Cutting to this tree entails removal of
edges (1, 4) and (2, 5) from 9, as shown in (e). The structure of the simplest possible
cutting matrix K is shown in (f). Algebraically, this cutting matrix can be written as

K = -Pj- [eief + e4 e1 ] -- P 1 [e2e + eef]

where e, denotes the vector of all zeros, with a single one in position s. Here we have
assumed that the diagonal entries of K are zero, although modifying them is also a
possibility.

0 4.3.2 Recursions for computing the conditional mean

On the basis of matrix splitting of equation (4.3), we can rewrite the defining normal
equation (4.2a) for the conditional mean i as follows:

P-e+ cTR-lC]-2i= K i+ ±+CTR-ly (4.4)

Because the "observations" (Ki+CTR-ly) in equation (4.4) depend on the conditional
mean i, equation (4.4) does not provide a direct solution to the original inference
problem. It does, however, suggest a natural iterative solution. Let {T}_-t be a set
of spanning trees of 9, and {K}_I-- a corresponding set of symmetric cutting matrices
such that for each n=0,1,... ,L- 1, the matrix

Jn A P-1 + Kn + CT R-C P-1 + CT R--C (4.5)
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(b) Original inverse covariance (d) Tree inverse covariance (f) Cutting matrix

Figure 4.3. Graphical illustration of tree-cutting operation for a Gaussian process
with a scalar random variable at each node. (a) Structure of original graph 9 with
cycles. (b) Inverse covariance P 1 for Gaussian process on original graph. Black squares
correspond to non-zero entries. (c) Spanning tree embedded within original graph. (d)
Tree-structured inverse covariance PIJe. (e) Edges to be removed by the cutting matrix.
(f) Structure of cutting matrix K.

has a sparsity pattern that respects the Markov properties of the tree T. Moreover,
we assume that each K, is chosen such that each J is positive definite.5

At each iteration, we choose a spanning tree index i(n) E {0,... , L - 1} according
to some rule. A natural choice is the cyclic ordering in which

i(n) = n mod(L) (4.6)

A variety of other orderings, some of them random, are discussed in [30].
Using equations (4.4) and (4.5), we may start with some initial vector x0, and

generate a sequence of iterates {i}n, via the recursion

Ji(n)x = K()i- 1 + CTR-ly (4.7)

If the cutting matrix Ki(n) is chosen so that Ji(n) is positive definite, equation (4.7)
is precisely equivalent to a Gaussian inference problem defined on a tree-structured

5 We make this assumption in order to make a clear connection to tree-structured inference algo-
rithms. More generally, however, it is sufficient to choose K so that J is invertible.
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Markov random field. It can therefore be solved using standard fast algorithms [e.g., 35],
allowing i" to be calculated as

I=J- (K (n)2n- R-±ily) (4.8)

The computational cost associated with equation (4.8) is 0(d3 N + cd2 ), where N is
the number of nodes, c = 1E1 - (N - 1) is the number of cut edges.6 Typically c is at
most O(N), and the overall cost of each iteration is 0(d3 N).

Taking the difference between the relations implied by equation (4.7) at iterations
n - 1 and n leads to the relation:

JX(n)X - J(nIX = Kt()i 1 - Ki(nl)x 2  (4.9)

Noting from equation (4.5) that Jij() - Ki(n) = i(n-1) - Ki(- 1 ), we may rewrite (4.9)
as

-(n)Ki(n1) (iX-1 - in- 2 ) (4.10)

where the initial condition (i 1 - i 0) is determined according to equation (4.8). Equa-
tion (4.10) explicitly reveals the important fact that the dynamics of the ET algorithm
depend solely on the chosen set of cutting matrices K. The observations y act only
to set the initial conditions, and do not affect the rate at which the the algorithm con-
verges (i.e., the rate at which the successive differences (in - in-1) decay). This data
independence will play an important role in our subsequent analysis of the convergence
properties of the ET iterations.

U 4.3.3 Convergence analysis

In this section, we determine the conditions under which the embedded trees itera-
tion (4.7) converges. We have assumed that the cutting matrices Kn are chosen so that
Jn is positive definite, ensuring that each iterate may be unambiguously calculated us-
ing equation (4.8). This equation defines a linear system, so that eigenvalues play a
crucial role in the analysis. Let the set of all eigenvalues of a matrix A by denoted by
{A (A)}. The spectral radius of A is defined as p (A) 4 maxA{A(A)} A[.

Our analysis focuses on the evolution of the error " 4 (ic - i) between the
estimate _n at the nih iteration and the solution i of the original inference problem in
equation (4.2a). Using equation (4.2a), we may rewrite the ET recursion (4.7) as

Ji(n)X" = K()i' + Jorig i = Ki(n) 1 + (J(n) - Kign() i (4.11)

where Jorig P-1  CTR-lC. This equation may be rewritten to relate the errors at
subsequent iterations:

r6n=-J1 K g- (4.12)
(n) 

(n

Together, equations (4.12) and (4.10) lead to the following result.
6Here we have used the fact that any spanning tree of a graph with N nodes has N - 1 edges.
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Proposition 4.3.1. For any starting point i 0 , the conditional mean i of the original
inference problem (4.2a) is the unique fixed point of the iterates {i} _1 generated by
the embedded trees recursion (4.8). Moreover, the error 4= (' - i) evolves according
to:

[Y K(n).... J4Ki(2) Kil) d0  (4.13)

Proof. The uniqueness of the fixed point i follows directly from the invertibility of orig
and A = Jorig + Kn. Equation (4.13) follows by induction from equation (4.12). E

Although Proposition 4.3.1 shows that the ET recursion has a unique fixed point
at the optimal solution i, it does not guarantee that ZX will converge to that fixed
point. In fact, if the cutting matrices K are poorly chosen, i' may diverge from i at
a geometric rate. The following result specifies the conditions, for a cyclic ordering of
trees, under which the ET recursions converge or diverge.

Proposition 4.3.2. With a cyclic ordering of trees, convergence of the ET algorithm
is governed by the spectral radius of

A A [J1 1 KL1... J-T1KJ1J- 1Ko (4.14)

In particular, if p(A) < 1, then (in - i) n 0 geometrically at rate ' p
whereas if p(A) > 1, then the algorithm will not converge.

Proof. With a cyclic ordering of trees, the error in in the ET algorithm evolves accord-
ing to the dynamics of periodic time-varying linear system (see equation (4.13)). After
subsampling it at intervals of L, it becomes a homogeneous linear system controlled by
the matrix A. Thus, the convergence or divergence of the ET iterates is controlled by
the spectral radius of A. H

On the basis of Proposition 4.3.2, we see that it is important to choose the cutting
matrices so that the special radius of A is less than one. It is not straightforward
to analyze this spectral radius in general, since it depends on interactions between

successive cutting matrices. Nonetheless, for the special case of cutting to a single tree,
the following theorem, adapted from results in [10], gives conditions guaranteeing the
validity and convergence of the ET algorithm.

Theorem 4.3.1. Define Zrig R PI-J CTIlC, and 1 4 7 orig + K. Suppose the
cutting matrix K is symmetric and positive semidefinite. Then we are guaranteed that
p(J-lK) < 1. In particular, we have the bounds:

Amax(K) _ p(W'K) < Amax (K) (4.15)
Amax (K) ± Amax(Jorig) Amax(K) + Amin(Jorig)

101Sec. 4.3. Embedded trees algorithm



CHAPTER 4. EMBEDDED TREES ALGORITHM FOR GAUSSIAN PROCESSES

Proof. First of all, since -1 and K are symmetric and positive semidefinite, we have

Amin (k 1 K) > Amin(J- )Amin(K)

so that the eigenvalues of 7-1K are all non-negative. Therefore, the spectral radius
p(J-iK) is given by the maximal eigenvalue. Equation (4.15) then follows from the
bounds of Theorem 2.2 in Axelsson [10] on the maximal eigenvalue. El

Observe that the upper bound of equation (4.15) is always less than one for positive
definite Jorig. Therefore, Theorem 4.3.1 gives sufficient conditions for the convergence
of the ET algorithms. To illustrate Theorem 4.3.1, we consider the simple example of
a single cycle.

Example 4.3.1 (Optimal tree for single cycle). Suppose that we have a Gaussian
process with scalar variables at each node, defined on a graph 9 that is a single cycle.
In this case, it suffices to cut a single edge in order to obtain a tree. Let e denote the
vector of zeros with a single one at entry u. We consider a cutting matrix of the form

K = -P,,j,'[ee T + e~e5T ± ee T + e~eIT]

which corresponds to removing edge (U, v) from the graph. Note that the form of this
cutting matrix is distinct from that illustrated in Figure 4.3; in particular, this cutting
matrix also modifies the diagonal entries of the inverse covariance.

The matrix K is rank one, with only one non-zero eigenvalue -2P-1. We suppose
that PgJ < 0 for all edges (u, v), so that K is positive semidefinite, and Theorem 4.3.1
is applicable. To obtain an ET iteration that converges quickly, we would like to
minimize the upper bound of equation (4.15). This corresponds to minimizing the
largest eigenvalue of K. Consequently, for this single cycle case, removing the weakest
edge (i.e., the edge with smallest P.-1I) from the graph leads to the best tree (in the
sense of equation (4.15)). This finding agrees with the natural intuition.

A few remarks on Theorem 4.3.1 are in order. First of all, note that the hypotheses
of the theorem require K to be positive semidefinite. Modifications to K so as to ensure
positive semidefiniteness (e.g., adding multiples of the identity) are likely to increase the
maximal eigenvalue Amax (K). As this maximal eigenvalue increases, the upper bound of

equation (4.15) can become arbitrarily close to one. Thus, the theoretical convergence
rate (at least the upper bound) can become extremely slow. In practice, we find that
indefinite cutting matrices, as opposed to the positive semidefinite matrices required by
the hypotheses of the theorem, typically lead to faster convergence.

Secondly, although the conditions of Theorem 4.3.1 are sufficient, they are by no
means necessary to guarantee convergence of the ET algorithm. Even when cutting to
a single tree, it is easy to construct examples in which the conditions of the theorem
are not satisfied, but still Jis positive definite and p(J-1 K) < 1 so that the algorithm
converges. A related caveat associated with Theorem 4.3.1 is its failure to address
the superior performance typically achieved by cycling through several embedded trees.

102



Indeed, it is possible to combine two trees - a "good" tree for which p(JJ-K1) is

small, and a "bad" tree for which p(J72K 2 ) is large - such that the spectral radius

of the combination p(J72K 2J7-K,) is smaller than that of the good tree. We refer
the interested reader to [163] for further examples of the benefits of cutting to multiple
trees, as well as extensions to Theorem 4.3.1 that capture such effects.

0 4.3.4 Calculation of error covariances

As described in Section 4.2.4, there exist a variety of iterative algorithms for computing
the conditional mean of a linear-Gaussian problem. However, none of these methods
correctly compute error covariances at each node. (See Schneider [156] for a Krylov

subspace method that does compute error covariances, though under assumptions com-

plementary to those of this chapter). We show here that the ET algorithm can efficiently
compute these covariances in an iterative fashion. For many applications (e.g., oceanog-
raphy [62]), obtaining these error statistics is equally as important as computing the
conditional means. Indeed, in a statistical context, an estimate of the mean without
any measure of uncertainty is arguably of limited use.

Assume for simplicity in notation that i 0 = 0. We then expand the recursion of
equation (4.8) for n = 1, 2, 3,... as follows:

R1 = Mt1cTR-1y

2[=MKLKi( 2 )M-J) + M;i cTRy

i= MtKi(3)M- Ki(2)ML ± MjKi(3 )M( + M- CTR-ly

From these equations, the general pattern can be discerned: for any iteration n = 1, 2,...
we have:

x =(y) = [FM-n)]CTR-ly (4.16)

where the matrix Fn satisfies the recursion

F n= M-)Ki(n) [Fn-' + M(4.17)

with the initial condition F1 0.
Let i(y) denote the correct conditional mean as a function of the data y. By the

data independence pointed out at the end of Section 4.3.2, if the recursion for the
conditional means {i2(y)}, given in equation (4.8) is convergent for some data vector,
then it converges to i(y) for all data vectors y. Moreover, from equation (4.2a), we
have

i(y) = pCTR-1y
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for all y. Therefore, whenever the mean recursion converges, then the matrix sequence
{F" + M- } converges to the full error covariance P.

Moreover, the cutting matrices K are typically of low rank, say O(c) where c is the
number of cut edges. For example, given the edge set E(T) of some tree, the sparsest
possible cutting matrix (i.e., one which does not modify the diagonal entries) can be
written as

K =wUV [eeT + eeT] (4.18)
(isv) E&/&(T)

where wu, is a weight on edge (u, v). This cutting matrix is of rank (at most) 2c.
With this type of low rank decomposition for K, it can be shown that each F' can

also be decomposed as a sum of 0(cd) rank 1 matrices. Directly updating this low-
rank decomposition of F' from that of F- 1 requires O(d 5 c2 N) operations. However,
an efficient restructuring of this update requires only O(d 4 cN) operations [see 163].
The diagonal blocks of the low-rank representation may be easily extracted and added
to the diagonal blocks of M-, which are computed by standard tree smoothers. All

together, we may obtain these error variances in O(d 4 cN) operations per iteration.
Thus, the computation of error variances will be particularly efficient for graphs where
the number of edges c that must be cut is small compared to the total number of nodes
N.

Example 4.3.2 (Square grids). Consider a square grid with N nodes; the case N = 5
is illustrated in Figure 4.2(a). Place a single Gaussian random variable x, at each node,
thereby forming a random vector x of length N. It can be shown that the square grid
has 2V5Nh(VH - 1) edges in total. Any spanning tree on a graph with N nodes has
N - 1 edges, so that we have to remove

c = 2V(V--1) - [N - 1] = [I -1] 2

edges to form a tree. Asymptotically, c - N so that the computational complexity
of our error covariance computation for a square grid is O(N 2 ). This is inferior to
the nested dissection method for matrix inversion [54], which has complexity O(N 3 /2 ).
Nonetheless, there exist many graphs with less than 0(vKAY) additional edges (beyond
those associated with a given spanning tree) for which our algorithm would lead to
gains.

* 4.3.5 Results

We have applied the ET algorithm to a variety of graphs, ranging from graphs with
single cycles to densely connected MRFs on grids. Here we show some sample results;
additional results on the empirical behavior of the ET algorithm are given in [163].

Figure 4.4(a) compares the rates of convergence for three algorithms: conjugate
gradient (CG), embedded trees (ET), and belief propagation (BP) on a 20 x 20 nearest-
neighbor grid. We made a random choice of the inverse covariance matrix P-1 , subject
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Figure 4.4. (a) Convergence rates for computing conditional means i (normalized L
error). Plot compares rates of ET to belief propagation (BP) and conjugate gradient
(CG). (b) Convergence rate of ET algorithm for computing error variances.

to the constraint of being symmetric and positive definite. The measurement matrix
C and noise covariance R were both chosen as the identity. The ET algorithm em-
ployed two embedded trees, one analogous to that shown in Figure 4.2(b) and the other
a rotated version of this tree. We find that CG is usually fastest, and can exhibit
supergeometric convergence. In accordance with Proposition 4.3.2, the ET algorithm
converges geometrically. Either BP or ET can be made to converge faster, depending
on the choice of clique potentials. However, we have not experimented with optimizing
the performance of ET by adaptively choosing edges to cut. Figure 4.4(b) shows that in
contrast to CG and BP, the ET algorithm can also be used to compute the conditional
error variances, where the convergence rate is again geometric.

E 4.4 Discussion

In this chapter, we developed the embedded trees algorithm for exact estimation of
Gauss-Markov processes on graphs with cycles. Like structured mean field (see Sec-
tion 2.3.1), this ET algorithm exploits the fact that exact computations can be per-
formed efficiently for trees embedded within the graph with cycles. In contrast to mean
field, the ET algorithm takes advantage of the fact that graphs with cycles have a
(typically large) number of spanning trees. Indeed, although ET can be implemented
using only a single spanning tree, its application is usually more powerful when it cycles
through some set of embedded trees.

For computing means, the ET algorithm is comparable to other techniques. In con-
trast with other techniques, the ET algorithm also computes the correct covariances of
the error in the estimate. The error covariance computation is especially efficient for
graphs in which cutting a small number of edges reveals an embedded tree. Moreover,
the ET algorithm suggests other ways in which embedded tree structures can be ex-
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ploited: e.g., as preconditioners for the conjugate gradient method [54]. Extensions of
this nature are discussed in more detail in [163], and also in Chapter 8 of this thesis.

Although the focus of this chapter was Gaussian processes, we shall see in the fol-
lowing chapter that similar concepts can be developed for discrete-valued processes.
Indeed, the focus of Chapter 5 is tree-based reparameterization, which also entails per-
forming (different) exact computations using distributions defined by embedded trees.



Chapter 5

Tree-based reparameterization for

approximate estimation

U 5.1 Introduction

Given a distribution p(x) defined by a graphical model, one important problem is com-
puting marginal distributions of variables at each node on the graph. For tree-structured
graphs, standard and highly efficient algorithms exist for this task; see Appendix A for
description of one such algorithm. In contrast, exact solutions are prohibitively com-
plex for more general graphs of any substantial size [39]. As a result, there has been
considerable interest and effort aimed at developing approximate inference algorithms
for large graphs with cycles.

Perhaps the best-known and most widely studied [e.g., 3,130,147,173,180] approx-
imation method is that known variously as belief propagation in the graphical model
community [137], and the sum-product algorithm in coding theory [e.g., 117,130]. The
interest in this algorithm has been fueled in part by its use in fields such as artificial
intelligence and computer vision [e.g., 65, 68, 133], and also by the success of turbo
codes and other compound codes, for which the decoding algorithm is a particular in-
stantiation of belief propagation [e.g., 71,117,130]. While there are various equivalent
forms for belief propagation [137], the best known formulation, which we refer to here
as the BP algorithm, entails the exchange of statistical information among neighboring
nodes via message-passing. If the graph is a tree, the resulting algorithm can be shown
to produce exact solutions in a finite number of iterations. The message-passing for-
mulation is thus equivalent to other techniques for optimal inference on trees, some of
which involve more global and efficient computational procedures. On the other hand,
if the graph contains cycles, then it is the local message-passing algorithm that is most
generally applicable. It is well-known that the resulting algorithm may not converge;
moreover, when it does converge, the quality of the resulting approximations varies

substantially.
Recent work has yielded some insight into the dynamics and convergence properties

of BP. For example, several researchers [2, 8, 106, 173] have analyzed the single cycle

case, where belief propagation can be reformulated as a matrix powering method. For
the special case of graphs corresponding to turbo codes, Richardson [147] developed a
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geometric approach, through which he was able to establish the existence of fixed points,
and give conditions for their stability. More recently, Yedidia et al. [180] showed that
BP can be viewed as performing a constrained minimization of the so-called Bethe free
energy associated with the graphical distribution,1 which inspired other researchers [e.g.,
175, 181] to develop more sophisticated algorithms for the minimization of the Bethe
free energy. Yedidia et al. also proposed extensions to BP based on cluster variational
methods [114]; related extensions using higher order structures have been proposed by
Minka [131]. These advances notwithstanding, much remains to be understood about
the behavior of this algorithm, and more generally about other (perhaps superior)
approximation algorithms.

This important area constitutes the focus of this chapter. In particular, this chapter

provides a new conceptual view of a large class of iterative algorithms that includes BP.
Central to the framework presented here is the idea of performing exact computations

over acyclic subgraphs embedded within a graph with cycles. This idea was exploited in
Chapter 4 to develop an iterative algorithm for exact estimation of Gaussian processes
on graphs. One of the motivations for the research presented in this chapter is to show
how such tree-based updates can also be applied to discrete processes on graphs with
cycles.

As discussed in Section 2.1, a key idea in graphical models is the representation of a
probability distribution as a product of factors, each of which involves variables only at a
subset of nodes corresponding to a clique of the graph. Such factorized representations
are far from unique, which suggests the goal of seeking a reparameterization of the
distribution consisting of factors that correspond, either exactly or approximately, to

the desired marginal distributions. If the graph is cycle-free (i.e., a tree), then there
exists a unique reparameterization specified by exact marginal distributions over cliques.
Indeed, such a parameterization is the cornerstone of the junction tree representation

(see Section 2.1.5).
For a graph with cycles, on the other hand, exact factorizations exposing these

marginals do not generally exist. Nevertheless, it is always possible to reparameter-

ize certain portions of any factorized representation - namely, any subset of factors
corresponding to a cycle-free subgraph of the original graph. We are thus led to con-
sider iterative reparameterization of different subsets, each corresponding to an acyclic
subgraph. As we will show, BP can be interpreted in exactly this manner, in which

each reparameterization takes place over the extremely simple subgraph consisting of

a pair of neighboring nodes. One of the consequences of this interpretation is a more
storage-efficient "message-free" implementation of BP.

More significantly, this interpretation suggests a more general class of updates where
reparameterization is performed over arbitrary cycle-free subgraphs. Although the
choice of cycle-free subgraphs is arbitrary, in this chapter we focus primarily on up-
dates involving maximal cycle-free subgraphs - that is, spanning trees. We refer to

'Several researchers have investigated the utility of Bethe tree approximations for graphical models;
we refer the reader to [e.g., 164,178].
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this class as tree-based reparameterization (TRP) algorithms. Since each update on a
spanning tree propagates information globally to each node of the graph, one might
expect a TRP algorithm to have better convergence properties than the purely local
two-node updates of BP. Indeed, experimentation with TRP supports this conclusion:
when applied to problems for which BP converges, TRP typically converges at least as
quickly, and for many problems much more quickly. More importantly, we find that
TRP converges in cases where BP does not.

At one level, the more global updates of TRP can be viewed as a schedule for
message-passing based on spanning trees (though with a more efficient implementation
via reparameterization). Indeed, one of the practical contributions of this chapter is to
demonstrate that such tree-based updates have convergence properties superior to those
of BP. At a more abstract level, however, the reparameterization perspective leads to a
number of new conceptual insights, including a novel characterization of fixed points;
and an invariance intrinsic to the TRP or BP algorithms. These two properties, when
applied in conjunction, allow us to characterize the approximation error. Many of our
results, though not obvious from the more traditional message-passing viewpoint, follow
in a natural way from the reparameterization framework.

In the next section, we introduce the background and notation that underlies our
development. In the process, we illustrate how distributions over cycle-free graphs can
be reparameterized in terms of local marginal distributions. In Section 5.3, we introduce
the class of TRP algorithms. In this context, it is convenient to represent distributions
in an exponential form using an overcomplete basis. Our choice of an overcomplete basis,
though unorthodox, makes the idea of reparameterization more transparent, and easily
stated. In this section, we also show an equivalent formulation of BP as a sequence of
local reparameterizations. Moreover, we present some experimental results illustrating
the benefits of more global TRP updates, which include a greater range of problems for
which convergence is obtained, as well as increased speed of convergence.

Section 5.4 contains analysis of the fixed points of the TRP updates, as well as the
question of convergence. Central to the analysis is a geometric characterization of suc-
cessive iterates, which reveals interesting links between tree-based reparameterization and
successive projection algorithms for constrained minimization of Bregman distances [e.g.,
30]. On this basis, we show that fixed points of the TRP algorithm satisfy the necessary
conditions to be a local minimum of a certain cost function that arises as an approxi-
mation to the Kullback-Leibler divergence. This result allows us to make contact with
the work of Yedidia et al. [180]. Specifically, we show that although the cost function
minimized by our TRP algorithms is not the same as the Bethe free energy, TRP fixed
points do coincide with extremal points of the Bethe free energy (i.e., with the fixed
points of BP). An important benefit of our formulation is a new and intuitive charac-
terization of the fixed points: in particular, any fixed point must be consistent, in a
suitable sense to be defined, with respect to any acyclic subgraph; and at least one such
fixed point of this type is guaranteed to exist. In addition, the geometric viewpoint also

allows us to formulate sufficient conditions for convergence in the case of TRP using
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two spanning trees.

A fundamental property of our reparameterization updates is that they leave in-
variant the distribution on the full graph. This result has a number of important
consequences, which are also developed in Section 5.4. For example, by adapting this
invariance to the Gaussian (as opposed to discrete) case, we obtain a short and ele-

mentary proof of a known result [152, 174] - namely, the means must be exact when
TRP/BP converges.

The final topic of this chapter is the analysis of the approximation error arising
from application of TRP or BP. Previous results on this error have been obtained
in certain special cases. For a single cycle, Weiss [173] derived a relation between

the exact marginals and the BP approximations, and for a binary processes showed

how local corrections could be applied to compute the exact marginals. Empirically,
he also observed that in certain cases, approximation accuracy is correlated with the
convergence rate of BP. In the context of turbo decoding, Richardson [147] provided a
heuristic analysis of the associated error. Despite these encouraging results, a deep and
broadly applicable understanding of the approximation error remains a challenging and
important problem. Our characterization of the TRP/BP fixed points, in conjunction

with the invariance property, allows us to contribute to this goal by analyzing the
approximation error for arbitrary graphs. In particular, our development in Section 5.5
begins with the derivation of an exact relation between the correct marginals and the
approximate marginals computed by TRP or BP. We then exploit this exact relation to
derive both upper and lower bounds on the approximation error. The interpretation of
these bounds provides an understanding of the conditions that govern the performance
of approximation techniques like TRP or BP. Moreover, using results from Chapter 7,
these bounds are computable in polynomial time. We illustrate their performance on

some sample problems. The chapter concludes in Section 5.6 with a summary.

* 5.2 Estimation in graphical models

The focus of this chapter is the (approximate) computation of marginal distributions
associated with a graph-structured distribution p(x). In particular, the distribution
p(x) is defined by a product of compatibility functions Vbc over the cliques of a graph
9, as in equation (2.3). Throughout this chapter, we shall assume that the clique set
C of 9 consists only of singletons and edges (i.e., C = V U S). At a purely formal level,
this assumption entails no loss of generality since it is always possible to cluster the
nodes of any graph so as to form an equivalent graph with a maximal clique size of
two [e.g., 66]. However, modifying the graph so as to create pairwise cliques can lead
to aggregated nodes with excessively high state cardinalities, so that clustering may
not be helpful in a practical sense. Although we focus on the case of pairwise cliques,
it is straightforward to extend our reparameterization approach to larger cliques, as in
cluster variational methods [e.g., 114].

Under these assumptions, the prior distribution p(x) is defined by a product of



singleton and edge terms as follow:

P X)- = Q0s (XS) fl Ost(Xs, t) (5.1)
SEV (s,t)cE

Figure 5.1(a) gives an example of the assignment of pairwise compatibility functions ?/st

and single-node functions O%. With a minor abuse of notation, for an m-state discrete
process, the quantity Jst lying on the edges (s, t) can be thought of as a M x m matrix,

where the (j, k) element st;jk is equal to the function value of /'t for {x = J, X = k}.
Similarly, the single node functions &b, can be thought of as an m-vector, where the 'th

component 4 s;j equals the value of 0, for {x, = j}.
The specific goal of this chapter is to (approximately) compute the marginal prob-

abilities Ps = p(Xs) of p(x) at each node of the graph. For general graphs with cycles,
this task requires summations involving exponentially many terms; indeed, it can be
shown to be a NP-hard problem [39]. For tree-structured graphs, there exist direct al-
gorithms for optimal estimation. For graphs with cycles, suboptimal algorithms (such
as BP) are used in an attempt to compute approximations to the desired marginals. In
the following sections, we elaborate on both of these topics.

0 5.2.1 Exact estimation on trees as reparameterization

Algorithms for optimal estimation on trees have appeared in the literature of various
fields, including coding theory [117], artificial intelligence [137], and system theory [14].
See Appendix A for a detailed derivation of one algorithm for optimal estimation on
trees. As described in Section 2.1.5, such tree inference algorithms can, in principle,
be applied to any graph by clustering nodes so as to form a junction tree. However, in
many cases of interest, the aggregated nodes of the junction tree have exponentially large
state cardinalities, meaning that applying tree algorithms is prohibitively complex. This
explosion in the state cardinality is another demonstration of the intrinsic complexity
of exact computations for graphs with cycles.

An important observation that arises from the junction tree perspective is that
any exact algorithm for optimal estimation on trees actually computes marginal dis-
tributions for pairs (s, t) of neighboring nodes. In doing so, it produces an alternative
factorization of the distribution p(x), namely:

p(x) = fr P fJ 144(5.2)
sEV (s't)eE

where P8 = p(x,) and Pt = p(x8 , xt). As an illustration, Figure 5.1(a) shows a simple
example of a tree, labeled in terms of compatibility functions ?fr and V)t, which leads
to the factorization in equation (5.1). Figure 5.1(b) shows this same tree, now repa-

rameterized in terms of the local marginal distributions P and Pt. The representation
of equation (5.2) can be deduced from a more general factorization result on junction
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121 13P1

W 1 2 3 P 2 P 1 1 ,

V2. 2 3 - V3 P 2 2 1P3 

W24 '35 W3 6 14 P35P3

P2 P4  P3 P P3 P6
4 5 6 4 5 6

W4 W5 W6P4 P5 6

(a) (b)

Figure 5.1. A simple example of a graphical model; circles correspond to state vari-
ables x,, whereas squares correspond to observations. (a) Original parameterization of
distribution p(x) = } H8~v s H(,,t)E V)st on the tree in terms of compatibility func-

tions $st and 4 . (b) Final parameterization p(x) = Hsev P H( s ,)ce - in terms of
marginal probabilities Ps and joint probabilities Pt.

trees [e.g. 101, 122].2 We thus arrive at an alternative interpretation of exact inference
on trees: it entails computing a reparameterized factorization of the distribution p(x)
that explicitly exposes the local marginal distributions; and also does not require any
additional normalization (i.e., with partition function Z = 1).

* 5.2.2 Belief propagation for graphs with cycles

As we have indicated, the message-passing form of belief propagation (BP), in addition
to being exact in application to trees, yields an iterative message-passing algorithm for
graphs with cycles. In this section, we summarize for future reference the equations
governing the BP dynamics. The message passed from node s to node t, denoted
by M8t, is an m-vector in which element Mst-k gives its value when Xt = k. Let
K(s) = {t E V | (s, t) C 8} be the set of neighbors of s in g. With this notation, the

2 Alternatively, equation (5.2) can be seen as a symmetrized generalization of the well-known fac-
torization(s) of Markov chains. For example, the variables at the three nodes {1, 2, 4} in Figure 5.1(b)
form a simple Markov chain, meaning that the joint distribution can be written as

P1 2 4 = Pi (P 2 11 )(P 41 2 )

= P1 (P12/P1)(P 2 4/P 2 )

= P1 P2P4 (P12/P 1 P2 )(P24 /P2 P4 )

where the last equality is precisely the form of equation (5.2). Note that the final line removes the
asymmetry present in those that precede it (which resulted from beginning the factorization from node
1, as opposed to node 2 or 4).
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message at iteration (n + 1) is updated based on the messages at the previous iteration
n as follows:

M-1

tl= nstejk?)s;j H Mu) J
jz=O uEAf(s)/t

where K denotes a normalization constant. 3 At any iteration, the "beliefs"
approximations to the marginal distributions - are given by

BK %bs;yHI Mus;,
UGE(s)

(5.3)

that is,

(5.4)

* 5.3 Tree-based reparameterization framework

Key to TRP is the concept of an embedded tree within an arbitrary graph 9 with
cycles - i.e., a tree formed by removing edges from the graph. A spanning tree is
an embedded tree that connects all nodes of the original graph. Figure 5.2 illustrates

(a) (b) (c)

Figure 5.2. Illustration of spanning trees. (a) Original graph is a nearest neighbor
grid. (b) One particular choice of spanning tree for the grid. (c) Another spanning tree.

these definitions: panel (a) shows a nearest neighbor grid, whereas panels (b) and (c)
illustrate embedded spanning trees. Of course, these are just two examples of such
embedded spanning trees. Indeed, a graph generally has a (large) number of spanning
trees, and we exploit this fact in our work. Specifically, suppose that r,... , TL-1
(with corresponding edge sets So, .. . , EL-1 C ) is a given set of spanning trees for the
graph G. Then for any i E {O,0... , L - 1}, the distribution p(x) of a stochastic process
over G (as in equation (5.1)) can be factored as:

p(x) = pt (x) r(x) (5.5)
3 Throughout this paper, we will use , to refer to an arbitrary normalization constant, the definition

of which may change from line to line. In all cases, it is easy to determine r, by local calculations.
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where p2 (x) includes the factors in equation (5.1) corresponding to cliques of T', and
rt(x) absorbs the remaining terms, corresponding to edges in 5/E2 removed to form P.

Because TV is a tree, the reparameterization operation in equation (5.2) can be ap-
plied to p2 (x) in order to obtain an alternative factorization of the distribution p2 (x).
With reference to the full graph 9 and distribution p(x), this operation simply modifies
the compatibility functions for cliques in 9, but without modifying the actual distri-
bution p(x). In a subsequent update using this new set of functions and choosing a
different tree Ti, we can write p(x) = pi(x)r' (x), where p (x) includes compatibility
functions over cliques in 7J. We can then perform reparameterization for p (x), and
repeat the process, choosing one of the 7' at each step of the iteration.

Figure 5.3 illustrates the basic steps of this procedure for a simple graph with
cycles. Panel (a) shows the original parameterization of p(x) in terms of compatibility
functions Vi and tst, as in equation (2.3). A spanning tree, formed by removing edges
(4, 5) and (5, 6), is shown in panel (b): that is, ri(x) = 045 /56 in this case. The tree

T TT
31T T 2  T TT 12 T 2 23 T

TV2  13 TT 2  2 T2 T3  3 t T2  T 3  3

1244 V23 ~4 T4  T2 T5 T 36 T4  TT 3 T6
4 5 36T6 T2 TT3 T ' T4 T2 T

4 5  l556 6
4V45 T56 6 T T T T 'V45T 56 T6

(a) (b) (c)
Figure 5.3. Illustration of TRP update. (a) Original parameterization in terms of
compatibility functions 0, and ot. (b) Tree reparameterization update on the spanning
tree. (c) New parameterization after a single iteration.

distribution p2 (x), corresponding to the product of all the other compatibility functions,
is reparameterized in terms of marginals T and T8t computed from the tree T. The
quantities {T8 , Tet} are exact marginals for the tree, but represent approximations to the
actual marginals {P,, Pt of the graph with cycles. The graph compatibility functions
after this first update are shown in panel (c). In a subsequent update, a different tree
is chosen over which reparameterization is to be performed.

As should be clear from the preceding discussion, each step of the algorithm4 repa-
rameterizes the density p(x) but does not modify it (aside from the normalization con-
stant). To formalize this basic idea, in this section we introduce a particular exponential
parameterization of distributions p(x; 0), such that iterations of the type just described
can be represented as explicit functional updates 0' v- 90+1 on these parameters. We
also show that BP iterations can be interpreted as reparameterization operations using

4 Here we have described an unrelaxed form of the updates; in the sequel, we present and analyze a
suitably relaxed formulation.
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especially simple non-spanning embedded trees, and we present experimental results
illustrating the potential advantages of TRP over BP.

U 5.3.1 Exponential families of distributions

Recall from Section 2.2 the definition of an exponential family of distributions:

p(x;O) = expj{ Oqt(x) - 4()} (5.6a)
a

4(O) = log( >E exp{ OaqO(x)}) (5.6b)
X1N a

where (I is the log partition function that normalizes the distribution.

It is standard to specify an exponential family of the form in equation (5.6a) using
a set of functions q5 = {q, a E A } that are linearly independent. This gives rise to
a so-called minimal representation [e.g., 13]. However, in this chapter, we will find it
convenient to use a non-minimal set of functions. Specifically, let s, t E V be indices
parameterizing the nodes of the graph, and let the indices j, k run over the m possible
states of the discrete random variables. We then take the index set for a, denoted by A,
to be the set of pairs (s; j) or 4-tuples (st; jk), and choose the potentials #a as indicator
functions for x to take on the indicated value (or values) at the indicated node (or pair
of nodes). That is,

0 (x) = 6(x=j) for a= (s;j) (5.7a)

#a(x) = 6(x, = j)r(xt = k) for a = (st; Jk) (5.7b)

Here, the indicator or delta function 6(x, = j) is equal to 1 when node x, takes the
state value j, and 0 otherwise. With this choice of {b}, the length of 6 is given by

d(O) = mN+m 2 tE7 I(5.8)

In contrast to a minimal representation, the exponential parameterization of equa-
tion (5.7) is overcomplete (i.e., there are linear relations among the functions {q0 }). 5

As an example, for any edge (s, t) E E, we have the linear dependence

M-1

S6(x=j)(xt = k) = 6(xt = k) for all k=0,..,7M-1
j=0

An important consequence of overcompleteness is the existence of distinct parameter
vectors 6 0* that induce the same distribution (i.e., p(x; 0) = p(x, 9*)). This many-to-
one correspondence between parameters and distributions is of paramount importance

to our analysis because it permits reparameterization operations that leave the overall

distribution unchanged.
5 There are also nonlinear relations, but it is the linear dependencies that distinguish between minimal

and overcomplete representations.
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0 5.3.2 Basic operators

Given a distribution p(x; 0) defined by a graph 9, the quantities that we wish to compute
are elements of the marginal probability vector

P = {Ps 1s8E V }U {Pt I (s,t)CEE} (5.9)

where P5 ;j = p(x = j;6) defines the elements of the single-node marginal P; and

Pst;jl = p(Xs = j, cc = k; 0) defines the elements of the pairwise marginal P5t.
We now observe that elements of the marginal probability vector P arise as ex-

pectations under p(x; 0) of the potential functions {q2} defined in equation (5.7) -
viz.:

Ps;j = Io[63(x =y)] (5.10a)

Pst;jk = E0[(x, j) 6(xt = k)] (5.10b)

On this basis, we conclude that P constitutes a set of mean parameters dual to the
exponential parameters 0. These two parameters are coupled via the relation:

P = A(0) (5.11)

where A is the Legendre transform. (See Section 2.2.4 for more information about the
Legendre transform and its properties). Therefore, the vector P can be viewed as an
alternative set of parameters for the distribution p(x; 0).

Note that the range of A, denoted Ra (A), is a highly constrained set of vectors. First
of all, any T e Ra(A) must belong to the unit hypercube (0, 1)d(0). Secondly, there are
normalization constraints (single-node and joint marginal probabilities must sum to
one); and marginalization constraints (pairwise joint distributions, when marginalized,
must be consistent with the single node marginals). That is, Ra(A) C C, where

C = {T T E (0, 1)d(O); Ts;j = 1 for sE V; ZTst;jk = Ts;j for (s, t) E }
k

(5.12)

The elements of T C C define a locally consistent set of pairwise and single node
marginal distributions on the graph. When 9 is a tree, then any T E C can be extended
(via the tree factorization of equation (5.2)) to a unique distribution p(x; 0) such that
T = A(0). Thus, for tree-structured graphs, Ra(A) = C.

For a graph with cycles, in contrast, Ra(A) is strictly contained within C. Indeed, for
graphs with cycles, there exist elements of C that cannot be realized as the marginals
of any distribution (Markov or otherwise). This strict containment reflects the fact
that for a graph with cycles, the local consistency conditions defining C are no longer

sufficient to guarantee the existence of a globally consistent distribution.

For a general graph with cycles, of course, the computation of A(0) in equation (5.11)
is very difficult. Indeed, algorithms like BP and TRP can be formulated as iteratively
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generating approximations to A(O). To make a sharp distinction from exact marginal
vectors P c Ra(A) C C, we use the symbol T to denote such pseudomarginal vectors -
i.e., vectors that belong the unit hypercube (0, 1) d, but need not satisfy the marginal
constraints (i.e., Ek Tst;jk = Tsj) required for membership in C.

We will also make use of the following mapping that is defined for any such T:

{flog Ts;j if a = (s;cj) E A
a[ ) log[Tstk /(ZjTsetik)(ZkTst;ik) if a=(st;jk) eCA

The quantity 0(T) can be viewed as an exponential parameter vector that indexes a
distribution p(x; 0(T)) on the graph 9. In fact, consider a marginal vector P E Ra(A).
If 9 is a tree, then not only is the computation of (5.11) simple, but we are also
guaranteed O(P) indexes the same graphical distribution as that corresponding to the
marginal vector P - that is:

A(E(P)) = P (5.14)

This equality is simply a restatement of the factorization of equation (5.2) for any
tree-structured distribution in terms of its single-node and joint pairwise marginals.

However, if 9 has cycles, then in general the marginal distributions of p(x; 0(P)) need
not agree with the original marginals P (i.e., the equality of equation (5.14) does not
hold). In fact, determining the exponential parameters corresponding to P for a graph
with cycles is as difficult as the computation of A() in equation (5.11). Thus, the
composition of operators A o 6, mapping one marginal vector to another, is the identity
for trees but not for general graphs.

Alternatively, we can consider composing 0 and A in the other order:

R(0) = (90o A)(0) (5.15)

which defines a mapping from one exponential parameter vector to another. For a

general graph, the operator R will alter the distribution (that is, p(x; 0) # p(x; R())).
For a tree-structured graph, while R is not the identity mapping, it does leave the
probability distribution unchanged; indeed, applying R corresponds to shifting from
the original parameterization of the tree distribution in terms of 0 to a new exponential
parameter R() that corresponds directly to the factorization of equation (5.2). As a
result, in application to trees, the operator R is idempotent (i.e., R o R = R).

0 5.3.3 Tree-based reparameterization updates

The basic idea of TRP is to perform reparameterization updates on a set of spanning
trees T,*.. . , T-- in succession. The update on any given spanning tree TV involves
only a subset A' = {(s; j), (st; Jk) I s E V, (s, t) C E} of all the elements of 0. To move
back and forth between parameter vectors on the full graph and those on spanning tree
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T, we define projection and injection operators

Ji(0) ={OI a E A } (5.16a)

0, i f EA
Ii(fli(0)) = { (5.16b)

0 if a A(

We let A2, L0 and V/ denote operators analogous to those in equations (5.11), (5.13)
and (5.15) respectively, but as defined for TV.

Each TRP update acts on the full-dimensional vector 0, but changes only the lower-
dimensional subvector Hi (0) = {0,1 a E A2 }. For this reason, it is convenient to use
the underbar notation to define operators of the following type:

a'(0) = T (Vi(Wi(0))) (5.17a)

A'(0) 2=7r(A'(H(0))) (5.17b)

For instance, A2 projects the exponential parameter vector 0 onto spanning tree Ti;
computes the corresponding marginal vector for the distribution p(x; rif(0)) induced on
the tree; and then injects back to the higher dimensional space by inserting zeroes for
elements of edges not in 72 (i.e., for indices a c A/A 2 ). Moreover, analogous to C, we
define a constraint set 0 by imposing marginalization constraints only for edges in the
spanning tree (i.e., as in equation (5.12) with E replaced by E2). Note that C D C, and
since every edge is included in at least one spanning tree, we have that niC = C.

Using this notation, the operation of performing tree-reparameterization on span-
ning tree 72 can be written compactly as transforming a parameter vector 0 into the

new vector given by:

Q2(0) = RJ() + [I - o Hi](o) (5.18a)

= 0 + [ii() - VT(Hi(0))] (5.18b)

where I is the identity operator. The two terms in equation (5.18a) parallel the decom-
position of equation (5.5): namely, the operator RK performs reparameterization of the
distribution p2 (x), whereas the operator [I -I' oWI"] corresponds to leaving the residual
term r' (x) unchanged. Thus, equation (5.18a) is a precise statement of a spanning tree
update (as illustrated in Figure 5.3), specified in terms of the exponential parameter 0.

Given a parameter vector 0, computing Qi(0) is straightforward, since it only in-

volves operations on the spanning tree V. The tree-based reparameterization algorithm
generates a sequence of parameter vectors {f0l} by successive application of these op-

erators Qi. The sequence is initialized 6 at 0 using the original set of graph functions

{f0} and {bt} as follows:

00 = flog bs;j if a = (s;j)
a____log0t- if a = (st; jk)

6Other initializations are also possible. More generally, 0 can be chosen as any exponential param-
eter that induces the same distribution as the original compatibility functions {,} and {t }.
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At each iteration n, we choose some spanning tree index i(n) from {,... , L - 1}, and

then update using the operator on spanning tree T:

gn+1 __ Qi(n)(n) (5.19)

In the sequel, we will also consider a relaxed iteration, involving a step size A' C (0, 1]
for each iteration:

=n+1 An i(n) (on) + (1 -- A)on (5.20)

where A' = 1 recovers the unrelaxed version.

The only restriction that we impose on the set of spanning trees is that each edge
of the full graph g is included in at least one spanning tree (i.e., UiA 2 = A). It is
also necessary to specify an order in which to apply the spanning trees - that is,
how to choose the index i(n). A natural choice is the cyclic ordering, in which we set
i(n) = n (mod L). More generally, any ordering - possibly random - in which each
spanning tree occurs infinitely often is acceptable. A variety of possible orderings for
successive projection algorithms are discussed in [30].

* 5.3.4 Belief propagation as reparameterization

In this section, we show that BP can be reformulated in a message-free manner as a
sequence of local rather than global reparameterization operations. Specifically, in each
step, new compatibility functions are determined by performing exact calculations over
extremely simple (non-spanning) trees formed of two nodes and the corresponding edge
joining them.

We denote by MO the m-vector corresponding to the chosen initialization of the
messages. This choice is often the vector of all ones, but any initialization with strictly
positive components is permissible. The message-free version of BP iteratively updates
approximations to the exact marginals P = {P3 , Pst}. Initial values of the approxi-
mations T = {T 8 , T3t} are determined from the initial messages M and the original
compatibility functions of the graphical model as follows:

T2 =rK4' Js Mf for allsEV (5.21a)
iCu(s)

To = Kr/)sts}t 7 M,% JJ Muot for all (s, t) £ £ (5.2 1b)
ucH(s)/t ucAf(t)/s

where K denotes a normalization factor.
At iteration n, these quantities are updated according to the following recursions:

rn-1

Ti r= Tnt ]J Tn 7 1Z 1k (5.22a)
teAf(s) sj k=O

TJk = -Tjk -T.(5.22b)
(Ej=r T)(E T
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The update in equation (5.22b) is especially noteworthy: it corresponds to perform-
ing optimal estimation on the very simple two-node tree formed by edge (s, t). As an
illustration, Figure 5.4(b) shows the decomposition of a single-cycle graph into such
two-node trees. This simple reparameterization algorithm operates by performing op-
timal estimation on this set of non-spanning trees, one for each edge in the graph, as
in equation (5.22b). The single-node marginals from each such tree are merged via
equation (5.22a).
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Figure 5.4. (a) Toy example of original graph. (b) Two node trees used for updates in
message-free version of belief propagation. Computations are performed exactly on each
two-node tree formed by a single edge and the two associated observation potentials
as in equation (5.22b). The node marginals from each two-node tree are merged via
equation (5.22a).

We now claim that this reparameterization algorithm is equivalent to belief propa-
gation, summarizing the result as follows:

Proposition 5.3.1. The reparameterization algorithm specified by equations (5.21)
and (5.22) is equivalent to the message-passing form of BP given in equations (5.3)
and (5.4). In particular, for each iteration n = 0, 1,... and initial message vector MO,
we have the following relations:

n rm-i

Mn1 = .Mk 1 Ttk
i=O t")k j=0nk

B -= T for all s E V

where , denotes a normalization factor.

for all (s, t) E E

Proof. See Appendix C.1.

(5.23a)

(5.23b)

El

3' 4

120



Despite the equivalence of this alternative form of BP with the message-passing
version, the two schemes differ in their implementation; in particular, the reparame-
terization form permits in-place computation wherein new potentials overwrite the old
ones. As a consequence, the reparameterization form requires only half of the storage
used by the standard message-passing updates.

0 5.3.5 Empirical comparisons of BP versus TRP

Given the more global nature of a TRP iteration (in contrast with the local updates of
BP), one might expect TRP to have superior convergence properties. Indeed, this has
proven to be the case in various experiments that we have performed. In this section, we
present results from simulations of a binary process (m = 2) on three different graphs:
a dense 5-node graph, a 15-node single cycle, and a 7 x 7 grid.

Convergence rates

At first sight, the more global nature of TRP might suggest that each TRP iteration is
more complex computationally than the corresponding BP iteration. In fact, the oppo-
site statement is true. Each TRP update involves 0(m2 (N - 1)) operations, whereas
each iteration of BP requires O(m 2181) operations, where |I > N - 1 is the number
of edges in the graph. Consequently, each TRP iteration is slightly cheaper than a
BP iteration for tree-like graphs (e.g., a single cycle); and considerably cheaper for
denser graphs (such as the grid used in this section) where IE > N. Therefore, in
order to make comparisons fair in terms of actual computation required, whenever we
report iteration numbers, they are rescaled in terms of relative cost (i.e., for each graph,
TRP iterations are rescaled by the ratio (N - 1)/jSI < 1).

For each graph, we performed simulations under three conditions: edge potentials
that are repulsive (i.e., that encourage neighboring nodes to take opposite values);
attractive (that encourage neighbors to take the same value); and mixed (in which some
potentials are attractive, while others are repulsive). For each of these experimental

conditions, each run involved a random selection of the initial parameter vector 0
defining the distribution p(x; 00). In all experiments reported here, we generated the
single node parameters 0 s;j as follows:7 for each node s E V, sample a ~- (0, (0.25)2),
and set [0s;o Os;1] = [a, - a8]. To generate the edge potential components Ostjk, we
began by sampling b5t ~A/(0,1) for each edge (s, t), With Sjk denoting the Kronecker
delta for j, k, we set the edge potential components in one of three ways depending on
the experimental condition:

(a) repulsive condition: Ost;jk =-( 2 6jk - 1) IbstI.

(b) attractive condition: Ost;jk = ( 2Jjk - 1) Ibstl-

(c) mixed condition: 9 stjk = (2 jk - 1) bt.
T27

TThe notation (0, oa2) denotes a zero-mean Gaussian with variance a,2
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For each graph and experimental condition, we ran a total of 500 trials, comparing the
performance of TRP to BP. On any given run, an algorithm was deemed to converge
when the mean L2 difference between successive node elements (1 E,1+1_ - H12)
reached a threshold 8 of c = 1 x 10- 1 6. A run in which which a given algorithm failed

Graph Single 15-cycle 7 x 7 grid
R A M R A M

BP 500 23.2 500 23.4 500 23.6 455 62.3 457 65.8 267 310.1
TRP 500 8.1 500 8.0 500 8.2 500 30.5 500 30.8 282 103.2

Table 5.1. Comparison of convergence behavior of TRP versus BP for a single cycle
of 15 nodes; and a 7 x 7 grid. Potentials were chosen randomly in each of the three
conditions: repulsive potentials (R); attractive potentials (A); mixed potentials (M).
First and second numbers in each box denote the number of convergent runs out of 500;
and the mean number of iterations (rescaled by relative cost and computed using only
runs where both TRP and BP converged) respectively.

to reach this threshold within 3000 iterations was classified as a failure to converge. In
each condition, we report the total number of convergent trials (out of 500); and also
the mean number of iterations required to converge, rescaled by the ratio (N - 1)/|E8
and based only on trials where both TRP and BP converged.

Table 5.1 shows some summary statistics for the two graphs used in these experi-
ments. For the single cycle, we implemented TRP with two spanning trees, whereas we
used four spanning trees for the grid. Although both algorithms converged on all trials
for the single cycle, the rate of TRP convergence was significantly (roughly 3 times)
faster. The superiority of TRP is easily understandable in the single cycle case. A
single iteration of TRP suffices to transmit information from each node to every other
node in the graph, whereas the local updates of BP will require as many iterations as
the graph diameter ([N/2J for a cycle of N nodes).

For the grid, algorithm behavior depends more on the experimental condition. The
repulsive and attractive conditions are relatively easy, though still difficult enough for
BP that it failed to converge on roughly 10% of the trials, in contrast to the perfect
convergence percentage of TRP. In terms of mean convergence rates, TRP converged
more than twice as quickly as BP. The mixed condition is difficult for suitably strong
edge potentials on a grid: in this case both algorithms failed to converge on almost half
the trials, although TRP converged more frequently than BP. Moreover, on runs where
both algorithms converged, the TRP mean rate of convergence was three times faster
than BP.

Figure 5.5 compares the convergence behavior of BP and TRP. Plotted is the log
error between the single-node elements of O' and 0* at each iteration, where 0* is a fixed

point common to BP and TRP, versus the iteration number. Panel (a) illustrates the
8 This value was chosen by examining the behavior of each algorithm, and the successive differences

in iterate values over a number of runs.
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Figure 5.5. Convergence plots of log error (log E 0 - 11*2) versus iteration
number n for the 7 x 7 grid under two conditions. Here both BP and TRP converge to
the same fixed point 0*.

attractive condition, in which the error in TRP begins decreasing earlier than BP, with
the asymptotic rate being similar. Examples in the repulsive condition show similar
convergence behavior. On the other hand, in the mixed condition shown in (b), the
global updates of the tree-reparameterization updates take effect after a few iterations,
leading to much swifter convergence for the first 80 iterations or so. For later iterations,
the convergence of TRP slows down, which may be due to numerical precision issues
or other effects related to the choice of trees in TRP iterations. For example, each
TRP update ignores some local interactions corresponding to the edges removed to
form the spanning tree. These edges are covered by other spanning trees in the set
used; however, it remains an open question how to choose trees so as to maximize the
rate of convergence. In this context, one could imagine a hybrid algorithm (in which
BP iterations are interspersed with TRP iterations). If one considers the example
of Figure 5.5(b), a switch from TRP to BP after iteration 80 would lead to faster
convergence than either algorithm alone. The exploration of such issues remains for
future research.

Domain of convergence

The dense 5-node graph shown in Figure 5.6(a) serves to illustrate how TRP updates
tend to converge for a wider range of potentials than BP. We simulated a binary process

over a range of potential strengths p ranging from -0.3 to -1.0. Explicitly, for each
value of M, we made a deterministic assignment of the potential for each edge (s, t)
of the graph as 0 st;jk=-- (26Jk - 1)p. For each potential strength we conducted 100
trials, where on each trial the single-node potentials were set randomly by sampling

as  A /(0, (0.25)2) and setting [,;o 0s;i] = [a8  - as]. On any given trial, the conver-
gence of a given algorithm was assessed as in Section 5.3.5. Plotted in Figure 5.6(b) is
the percentage of successfully converged trials versus potential strength for TRP and
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Figure 5.6. (a) Simple 5-node graph. (b) Comparison of BP and TRP convergence
percentages versus function of potential strength on graph in (a). Plotted
along the abscissa as a measure of potential strength is the multi-information
D(p(xi,... ,xz) H7 1 p(x,)). Both TRP and BP exhibit a threshold phenomenon,
with TRP converging for a wider range of potentials.

BP. Both algorithms exhibit a type of threshold behavior, in which they converge with
100% success up to a certain potential strength, after which their performance degrades
rapidly. However, TRP updates extend the effective range of convergence, even on such
a small graph. Moreover, there is a range of potential settings for which BP almost
never converges, whereas TRP converges for almost every trial. 9

0 5.4 Analysis of fixed points and convergence

In this section, we present a number of results related to the fixed points and con-
vergence of TRP and BP. In Section 5.4.1, we define and develop properties of a cost
function G that arises as an approximation to the Kullback-Leibler divergence. In Sec-
tion 5.4.2, we show that fixed points of the TRP algorithm satisfy necessary conditions
to be a constrained minimum of this cost function. At the heart of our analysis is a
geometric characterization of successive iterates; it is of independent interest because
it establishes links to successive projection techniques for constrained minimization of
Bregman distances [e.g., 30]. By combining our results with those of Yedidia et al. [180],
we are able conclude that fixed points of the TRP algorithm coincide with those of BP.
Moreover, our analysis allows us to formulate sufficient conditions for convergence of

the TRP algorithm in the case of two spanning trees, which we present in Section 5.4.3.
In Section 5.4.4, we formalize the fundamental property of reparameterization updates

- namely, that they leave unchanged the distribution on the full graph. Some of
the consequences of this invariance can be found in an investigation of the geometry
of TRP in Section 5.4.4, and in the elementary proof in Section 5.4.5 of the result
originally developed in [152, 174] concerning the behavior of BP for jointly Gaussian

9 This result is not dependent on the symmetry of the problem induced by our choice of edge poten-
tials; for instance, the results are similar if edge potentials are perturbed from their nominal strengths
by small random quantities.
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distributions.

0 5.4.1 Approximation to the Kullback-Leibler divergence

The cost function G central to our analysis arises as an approximation to the Kullback-
Leibler (KL) divergence [41], one which is exact for a tree. Let T C (0,1)d(') be a
pseudomarginal vector, and let 0 be a parameter vector for the original graph 9 with

cycles. We then define

G(T;0) Z Ta [(T) - 0]a (5.24)
acA

To see how this cost function is related to the KL divergence as defined in equa-

tion (2.31), consider the analogous function defined on spanning tree T for a vector
T E :

G2 (HI(T);IH(0)) = TJ[EV( 1(T)) - 0], (5.25)

where Hi(9) and Hi(T) are exponential parameter vectors and marginal vectors, respec-

tively, defined on V. With the exponential parameterization of equation (5.7) applied
to any tree, we have T, = Eei(ni(T))[a] for all indices a c A. As a result, the function

G is related to the KL divergence as follows:

D(E11(((T))911(0)) = G2(HI(T); fli(9)) + 'D(fIl(9)) (5.26)

In establishing this equivalence, we have used the fact that the partition function of the
factorization in equation (5.2) is unity, so that the corresponding log partition function
is zero (i.e., 4(8(I(T))) = 0). Therefore, aside from an additive constant D(Hi(9))
independent of T, the quantity G(UI(T); TV(9)), when viewed as a function of H2 (T),
is equivalent to the KL divergence.

Now consider the problem of minimizing the KL divergence as a function of T,
subject to the constraint T E C. The KL divergence in equation (5.26) assumes its
minimum value of zero at the vector of correct marginals on the spanning tree -

namely, P = A'(H(0)) E V. By the equivalence shown in equation (5.26), minimizing
the function G2 (i (T); fP(9)) over T E 0 will also yield the same minimizing argument
P.

For the original graph 9 with cycles, the cost function G of equation (5.24) is not
equivalent to the KL divergence. The argument leading up to equation (5.26) cannot
be applied because A(®(T)) $ T for a general graph with cycles. Nevertheless, this
cost function lies at the core of our analysis of TRP. Indeed, we show in Section 5.4.2
how the TRP algorithm can be viewed as a successive projection technique for con-

strained minimization of the cost function G, in which the reparameterization update

on spanning tree Ti as in equation (5.19) corresponds to a projection onto constraint
set 0. Moreover, we will see that G and the Bethe free energy, though different for
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points outside the set C defined in equation (5.12), agree on this constraint set. This
allows us to use recent results of Yedidia et al. [180] to link the fixed points of TRP with
those of BP.

0 5.4.2 Tree reparameterization as a successive projection technique

The first result of this section is of a geometric nature: it shows how successive iterates
On and 0n+1 are related via the cost function G.

Proposition 5.4.1. Assume that the sequence {971} generated by equation (5.20) with
step sizes A' remains bounded. Let i = i(n) be the tree index used at iteration n. Then

for all U E O':

G(U; 9") = G(U; On+1) + AG(A(Q(9n)); 9n) (5.27)

where A' is defined in equation (5.17b).

Proof See Appendix C.2. D

An important special case of Proposition 5.4.1 is the unrelaxed update (A' = 1), in
which case equation (5.27) simplifies to

G(U; 91) = G(U; 9n+1) + G(AZ(971; 97) (5.28)

Figure 5.7 illustrates the geometry of Proposition 5.4.1 in this unrelaxed setting, for
which we are guaranteed the existence 1 0 of a pseudomarginal Tn such that 97 = e)(Tn).
We project the point T' onto the constraint set ', where the function G serves as the
distance measure. This projection yields the point A('+'1) E C', and we have depicted
its relation to an arbitrary U also in 0'.

We note that a result analogous to equation (5.28) holds for the minimum of a Breg-
man distance over a linear constraint set [e.g., 30]. Well-known examples of Bregman

distances include the L2 norm, and the KL divergence. Choosing the KL divergence as
the Bregman distance leads to the I-projection in information geometry [e.g., 7,33,43].
Even when the distance is not the L2 norm, results of the form in equation (5.28) are
still called Pythagorean. Indeed, the function G plays the role of the squared Euclidean
distance, with the three points T", A'(9'+ 1) and U analogous to the vertices of a right
triangle, as illustrated in Figure 5.7. In addition, a wide class of algorithms can be
formulated as successive projection techniques for minimizing a Bregman distance over
a set formed by an intersection of linear constraints (e.g., generalized iterative scal-
ing [50]). The Pythagorean relation is instrumental in establishing the convergence of

such techniques [30,43].

"'The image of the unit hypercube (0, 1)d(6) under the map E is not all of Rd 0(), since, for example,
given any pseudomarginal T E (0, 1 )d(O), we have [E(T)]s;j = log Ts;j < 0. Nonetheless, for unrelaxed
updates producing iterates ?', it can be seen that the inverse image of a point 0' under E will be
non-empty as soon as each edge has been updated at least once.
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Figure 5.7. Illustration of the geometry of Proposition 5.4.1. The pseudomarginal
vector T' is projected onto the linear constraint set C t . This yields the point A('n+1)
that minimizes the cost function G over the constraint set 0.

The problem at hand is similar, since we are interested in minimizing a function
over a constraint set formed as an intersection of linear constraint sets (i.e., C = ni).
However, the function G is certainly not a Bregman distance since, for instance, it
can assume negative values. Nonetheless, Proposition 5.4.1 allows us to show that any

fixed point 9* of the TRP algorithm satisfies the necessary conditions for it to be a
local minimum of G(T; 90) over the constraint set C. Although the result extends to
other orderings, for concreteness we state it here for a cyclic ordering of spanning trees
't0,... ,'T-1: i.e., the tree index for iteration n is chosen as i(n) = n(mod L).

Theorem 5.4.1. Consider a sequence of iterates {07§ generated by equation (5.20)
with a cyclic tree ordering, and using step sizes An( E [E, 1] for some e > 0. Suppose that
the sequence {0'n} remains bounded and converges to some 0*. Then

(a) The point 0* is a fixed point of all the tree operators Qi. I.e., 0* = Qi(9*) for
all indices i = 0,... , L - 1. Therefore, each fixed point 0* is associated with a
unique pseudomarginal vector T* E C.

(b) The pseudomarginal vector T* satisfies the necessary conditions for it to be a
local minimum of G(T; 00) over the constraint set C:

9G
> a (T*;00) [U -- T*] = 0

for all U in the constraint set C.

(c) The TRP algorithm always possesses at least one fixed point.

(d) Fixed points of the TRP algorithm coincide with those of BP.
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A few remarks about Theorem 5.4.1 are in order. First of all, to clarify the result

stated in (a), the unique pseudomarginal vector T* associated with Q* can be con-
structed explicitly as follows. For an arbitrary index a, pick a spanning tree TV such
that a c A'. Then define T* = [A(H(0*))]a; that is, T* is the value of this (single
node or pairwise) marginal for the tree distribution on TV specified by Hi (0*). Note
that this is a consistent definition of T*, because the condition of part (a) means that
[A(H(0*))], is the same for all spanning tree indices i C {,... , L - 1} such that
a C A'. Moreover, this construction ensures that T* E C, since it must satisfy the
normalization and marginalization constraints associated with every node and edge.

Figure 5.8 illustrates this characterization of fixed points in terms of T*. Shown

2 2*3 T* T 12T* T2*3 T
S T2 T* T*TT T2 T*T* 3

T* T* T2*T 36 14 _33

1 2 2 32

TrT T2*5 T3*6 T4 T2T T36

TTT*

T*T* T IT* T* T3* T * T*T* T2*T* 3* T6
T45 T56

T4*T *T*T6
4 5 6

T* T *T*T* T *T*47164156

(a) Fixed point on full graph (b) Tree consistency condition.

Figure 5.8. Illustration of fixed point consistency condition. (a) Fixed point {T,*, T,*}
on the full graph with cycles. (b) Illustration of consistency condition on an embedded
tree. The quantities {T,*, T,* } must be a consistent set of marginal probabilities for
any tree embedded within the full graph.

in panel (a) is an example of a graph with cycles, parameterized according to the
approximate marginals T,*t and T,*. The consistency condition implies that if edges are
removed from the full graph to form a spanning tree, as shown in panel (b), then the

quantities T,* and T,* correspond to a consistent set of marginal distributions over the
tree. This statement holds for any acyclic substructure embedded within the full graph
with cycles - not just the spanning trees used to implement the algorithm. Thus,
Theorem 5.4.1 provides an alternative and very intuitive view of BP or TRP: such
algorithms attempt to reparameterize a distribution on a graph with cycles so that it is
consistent with respect to each embedded tree. In this regard, part (c) of Theorem 5.4.1
is noteworthy, in that it guarantees that any positive distribution on a graph can be
reparameterized in a form that satisfies the tree-based consistency condition of part (a).
It is interesting that such a result, though obvious for any tree, should also hold for a
positive distribution on an arbitrary graph with cycles.

It is also interesting to note the link between this fixed point characterization, and

Freeman and Weiss' [66] analysis of the max-product algorithm. This is a technique for
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computing an approximate MAP assignment, in contrast with the approximate marginal
distributions computed by BP/TRP. In particular, they show that the approximate
MAP assignment of max-product is guaranteed to be correct on node-induced subgraphs
that contain at most a single cycle.

Part (d) of Theorem 5.4.1 follows because our cost function G and the Bethe free
energy coincide on the constraint set C. It is also possible to establish this equivalence in
a more constructive manner. In particular, any fixed point {M,*} of the message updates
in equation (5.3) can be transformed into a pseudomarginal vector T* = {T*, T,*t} as

follows:

T*; = ,4;j J M*;j (5.29a)
uEA/(s)

T,, = stj ;t;k 1 M*, 1[Q Ms (5.29b)
st~jk st~ykHj 11 s;) H1 utk

ucH(s)/t Uelx(t)/s

The message fixed point condition of equation (5.3) guarantees that the corresponding
T* belongs to the constraint set C. Membership in C guarantees that T* is locally
consistent with respect to all the simple two-node trees formed by single edges (s, t) E S,
as illustrated in Figure 5.4. This local consistency on two-node trees then implies that
the vector T* must be consistent on any acyclic substructure (using the equivalence of
local and global consistency for trees). That is, T* satisfies the tree-based consistency
condition of part (a), as illustrated in Figure 5.8.

Even more generally, a similar line of reasoning establishes that any constrained
local minimum of the Bethe free energy, whether obtained by TRP/BP or an alternative
minimization technique [e.g., 175,181], can be identified with a pseudomarginal vector
T* satisfying the conditions of Theorem 5.4.1(a). Therefore, although the fixed point
characterization of Theorem 5.4.1(a) (as illustrated in Figure 5.8) emerges very naturally
from the TRP perspective, it is actually an algorithm-independent result.

0 5.4.3 Sufficient conditions for convergence for two spanning trees

Proposition 5.4.1 can also be used to derive a set of conditions that are sufficient to
guarantee the convergence in the case of two spanning trees. To convey the intuition of
the proof, suppose that it were possible to interpret the cost function G as a distance
function. Moreover, suppose U were an arbitrary element of C = niC, so that we could
apply Proposition 5.4.1 for each index i. Then equation (5.27) would show that the
"distance" between Q' and an arbitrary element U C C, as measured by G, decreases at
each iteration. As with proofs on the convergence of successive projection techniques for
Bregman distances [e.g., 30,43], this property would allow us to establish convergence
of the algorithm.

Of course, there are two problems with the use of G as a type of distance: it is not
necessarily non-negative, and it is possible that G(AZ(Q'(0)); 0) = 0 for some Q : Qi(0).
With respect to the first issue, we are able to show in general that an appropriate choice
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of step size will ensure the non-negativity of G(A 2 (Q(0)); 0) (see Appendix C.4). The
following result then states sufficient conditions (including assuming that the second
problem does not arise along TRP trajectories) for convergence in the case of two
spanning trees:

Theorem 5.4.2. Consider the application of TRP with two spanning trees T and '1.
Suppose that the sequence of iterates {'} remains bounded, and that:
(a) for i = 0, 1, the condition G(A t(Q2 (9")); 0') -+0 implies that [Qi(Qn) - on] -± 0.
(b) there exists some integer K such that the condition

G(AN(Q1 (0));0)G(Al(Q0(on));0 o) > 0

holds for all n> K.
Then there exist choices of the step sizes A such that the sequence O' converges to
some O* in the desired constraint set. I.e., 0* = Qi(Q*) for i = 0, 1.

Proof See Appendix C.4, which includes a characterization of the step size choices that
ensure convergence. E

This result, though its hypotheses cannot be checked a priori, provides some insight
into the factors that cause failures of convergence when applying TRP/BP. In particular,
the proof of Theorem 5.4.2 shows that assumption (a) is analogous to the gradient-
relatedness condition of standard descent algorithms for nonlinear optimization [20].

0 5.4.4 Geometry and invariance of TRP updates

In this section, we establish a fundamental property of TRP updates- namely, that
they leave invariant the full distribution on the graph with cycles. We then exploit this
invariance to develop the geometry of TRP updates.

Recall that a crucial feature of the exponential 0-parameterization of equation (5.7)
is its overcompleteness. For this reason, given a fixed exponential parameter 0, it is

interesting to consider the following subset of Rd(O):

M(O) A {O E R () p(x;O) =p(x;)} (5.30)

where d(O) denotes the length of 0 as defined in equation (5.8). This set can be seen
to be a closed submanifold of R() - in particular, note that it is the inverse image
of the point 0 under the continuous mapping 0 F- p(x;0). To further understand the
structure of M(0), we need to link the overcomplete 0-parameterization to a minimal

parameterization, specified by a linearly independent collection of functions.
We begin with the special case of binary-valued nodes (m = 2). Recall from Exam-

ple 2.2.2 of Section 2.2.1 that the standard minimal representation of a distribution on
a binary vector with pairwise potentials has the form:

p(x;-y) = exp{ ysxs + SE ystxsxt - <P(y)} (5.31)
S s,tEE
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Here we use the parameter -y to distinguish this minimal representation from the over-
complete parameter 0 used in TRP updates. Similarly, as shown by the discussion
of Section 2.2.1, an m-ary process on a graph with pairwise potentials has a minimal
representation in terms of the collection of functions:

R(s) 4 {xI a =I,..., m - 1} for s CV (5.32a)

,(s,Xt) = { I a, b = 1,... ,m - 1} for (s, t) GEC (5.32b)

As in the binary case illustrated above, we let -y be a parameter vector of weights on
these functions.

In contrast to the overcomplete case, the minimal representation induces a one-to-
one correspondence between parameter vectors y and distributions p(x; -y). Therefore,
associated with the distribution p(x; 0) is a unique vector 5 such that p(x; 0) = p(x; 3).
The dimension of the exponential family [see 5] is given by the length of -y, which
we denote by d(y). From equation (5.32), we see that this dimension is given by
d(y) = [(m- 1) N + (m - 1)2 Ij ]. On the basis of these equivalent representations,
the set M(0) can be characterized as follows:

Proposition 5.4.2. The set M(W) of equation (5.30) is a linear submanifold of Rd(o)

of codimension d(-). It has the form {0 E Rd(') IA = 3 }, where A is an appropriately
defined d(y) x d(0) matrix of constraints.

Proof See Appendix C.5. E

Based on this proposition, we now prove a fundamental property of TRP updates:

Theorem 5.4.3. Consider a sequence of TRP iterates {W"} generated by the relaxed
updates:

0n+F1 = A" ")(on)+(1- A)o (5.33)

Then the distribution on the full graph with cycles is invariant under the updates: that
is, 6 E M( 0 ) = {0 E IR(e) I p(x;0)-=p(x;0 0 )} for all n = 1, 2,.... Moreover, any
limit point 9* of the sequence also belongs to M(00 ). In addition, the same statements
hold for the reparameterization form of BP presented in Section 5.3.4.

Proof As previously described, the unrelaxed TRP update of equation (5.19) does
indeed leave the distribution unchanged, so that Qi(0) E M(0) for all 0. The relaxed
update of equation (5.33) is nothing more than a convex combination of two exponential
vectors (on and Qi(T) (on)) that parameterize the same distribution, so that by recourse
to Proposition 5.4.2, the proof of the first statement is complete. As noted earlier,
M (00) is a closed submanifold, so that any limit point of the sequence {O> must also
belong to M(90). An inductive argument establishes that the reparameterization form
of BP also leaves invariant the distribution on the full graph.

El
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0*

gi(n) (on)

nn+1
on

Figure 5.9. Geometry of tree-reparameterization updates in the exponential domain.
Iterates are confined to the linear manifold M(90). Curved lines within M(90) corre-
spond to the intersection Di n AM(90), for a particular spanning tree constraint set 1W.
Each update entails moving along the line between 0" and the point Qi) ( n) on Dn).
Any fixed point 9* belongs to D = n1i.

Like Theorem 5.4.1, the most important part of Theorem 5.4.3 - namely, that the
fixed point 0* is invariant - is also an algorithm-independent result. In particular, it
is not difficult to show that any local minimum of the Bethe free energy, no matter
what algorithm [e.g., 175, 181] is used to obtain it, is also invariant in the sense of
Theorem 5.4.3. The special property of TRP/BP updates are that all iterates - not
just the fixed points - are invariant.

In conjunction, Proposition 5.4.2 and Theorem 5.4.3 also lead to a geometric under-
standing of the TRP updates in the exponential domain (i.e., in terms of the parameter
vector 0). In order to describe this geometry, we begin by defining an exponential
analog of the constraint set C as follows:

TD =-{-f010=S)(T) for some TEC} = (C) (5.34)

If a vector 9 belongs to the set ID, then it must satisfy certain nonlinear convex con-
straints (e.g., log[Zg exp(O,;j)] = 0 for all s E V; and log[Zg exp(Ostjk + Os;)] = 0 for
all (s, t) c 8). For each spanning tree constraint set Cs, we also define the set 1W in an

analogous manner, and note that by construction D = nID.
Figure 5.9 illustrates the geometry of the TRP updates in the exponential domain.

First of all, in agreement with Theorem 5.4.3, all iterates 0' are confined to the linear
manifold M(0 0 ). The intersection 1W n M(00 ) will trace out some curved set within the
linear manifold. Each step of TRP entails moving along the line between the current
iterate 0" and the projection Qi(n) (0"). This latter point belongs to the spanning
tree constraint set ID"). When the sequence 9' converges to some 0*, then we are
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guaranteed that 0* E ID m M( 0 ).

U 5.4.5 Implications for continuous processes

The reparameterization approach can be extended and has important implications for

continuous processes as well. In particular, by extension to the Gaussian case, we obtain
an elementary proof of a generalization to TRP of the result [152,174] that when BP
converges, the means are, in fact, correct. To establish this result, let us consider the
Gaussian analog of TRP. For simplicity in notation, we treat the case of scalar Gaussian
random variables at each node (though the ideas extend easily to the vector case). In
the scalar Gaussian case, the approximate marginal distribution T8 (,) at each node
s C V is parameterized by a mean p[L and variance ar2. Similarly, the approximate joint

distribution Tt (x,, xt) can be parameterized by a mean vector Vt t [vst;8 vst;t]', and

a covariance matrix. At each iteration, the edge (s, t) is labeled with the edge function

Tst/Tst;sTst;t, where Tst;s(Xs) = f' Tt(x8 , xt)dxt is the marginal distribution over x,
induced by T8t. This edge function is parameterized by the mean vector Vet, and a
quadratic form A8 t = [ast;s ast ; ast ast;t]. With this set-up, we have:

Proposition 5.4.3. Consider the Gaussian analog of TRP or BP, and suppose that it
converges. Then the computed means are exact, whereas in general the error covariances
are incorrect.

Proof From the original problem specification, we have

- logp(x) = 1/ 2 A(x-)TP-1 (x-) +C (5.35)

where P-1 is the inverse covariance; C is a constant independent of x; and /^ are the

correct means on the graph with cycles.
We begin by noting that the Gaussian analog of Theorem 5.4.3 guarantees that this

distribution will remain invariant under the reparameterization updates of TRP (or
BP). At any iteration, the distribution is reparameterized in terms of T and the edge
functions as follows:

- log p(x) = ast;s(xs -- vSt;s)2 + 2ast(x, - v'st;s)(xt - vst;t) + at;t (x- t'st;tJ)

(s,t)e6

+_Z(s -uS)2 /C2 + C (5.36)
8

Note that the pseudomarginal vector {T 8 , T8t} need not be consistent so that, for ex-
ample, Tst;s (x) need not equal T8 (cc). However, suppose that TRP (or BP) converges
so that these quantities are equal, which, in particular, implies that p = P t s for all
(s, t) such that t e K(s). That is, the means parameterizing the edge functions must
agree with the means at the node marginals. In this case, equations (5.35) and (5.36)
are two alternative representations of the same quadratic form, so that we must have
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p, = p, for each node s C V. Therefore, the means computed by TRP or BP must be
exact. In contrast to the means, there is no reason to expect that the error covariances
in a graph with cycles need be exact. E

It is worth remarking that there exist highly efficient techniques from numerical lin-
ear algebra (e.g., conjugate gradient [54]) for computing the means of a linear-Gaussian
problem on a graph. Therefore, although TRP and BP compute the correct means (if
they converge), there is little reason to apply them in practice. There remains, however,
the interesting problem of computing correct error covariances at each node: we refer
the reader to [172] for description of an embedded spanning tree method that efficiently
computes both means and error covariances for a linear-Gaussian problem on a graph
with cycles.

0 5.4.6 When does TRP/BP yield exact marginals?

It is clear that the TRP/BP algorithm will yield the exact single node marginals of
any p(x) defined on a tree-structured graph. In this section, we address of the question
of whether there exist particular problems on graphs with cycles for which a TRP/BP
solution will be exact. If so, how large is the set of such problems? Theorems 5.4.1
and 5.4.3 provide the insights that are key to our analysis; these theorems place very
severe restrictions on cases where TRP/BP fixed points can be exact.

Let T* E C be a consistent fixed point of the TRP algorithm in the sense of
Theorem 5.4.1. Let Ps denote the actual marginals of the given distribution p(x). We
begin by defining two distinct notions of exactness:

Definition 5.4.1 (Exactness).

(a) The point T* is weakly exact if all the single node marginals are correct. I.e.,

T = Ps;j for all sC V, j = 0,1 (5.37)

(b) The point T* is strongly exact if all the marginals, both single node and pairwise,
are correct. I.e., in addition to equation (5.37), we have

T*t;jk = Pst;jk for all (s, t) E£8, j, k = 0, 1 ... m - 1 (5.38)

The fixed point characterization of Theorem 5.4.1 provides a straightforward tech-
nique for constructing TRP/BP fixed points. In particular, we simply specify a dis-
tribution in terms of a vector T* E C that is locally consistent (see equation 5.12) as
follows:

p(x; T*) oc u TT (5.39)
sEV (s,t)CE

Since T* belongs to C, it is consistent on any spanning tree embedded within the
graph (i.e., it belongs to the constraint set C corresponding to tree T) and therefore
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is guaranteed to be a fixed point of the TRP updates. The invariance result of Theo-
rem 5.4.3 guarantees that any distribution can be put into the form of equation (5.39)
without altering the distribution. As a consequence, the question of exactness reduces
to understanding when the T4* and T* are equivalent to the corresponding marginal
distributions of P, and Pt of p(x; T*).

Example 5.4.1 (Symmetric cases). By exploiting the fact that TRP/BP updates
preserve any symmetries in the problem, it is easy to develop symmetric examples that
are weakly exact. For example, for a binary-valued vector x defined on any graph, let
us specify a set of symmetric pseudomarginals as follows:

Ts*=[0.5 0.5]' (5.40a)

T* = P 0.5 -p )(5.40b)
0.5 - p P

where p e [0, 0.5] is arbitrary. It is clear that the corresponding vector T* for any such
problem instance is an element of C, and a fixed point of TRP. Moreover, for such a
choice of T*, symmetry considerations dictate that the actual single-node marginals of
p(x; T*), formed as in equation (5.39), will be uniform [0.5 0.5]'. Therefore, TRP/BP
is weakly exact for any such problem instance.

We now investigate the relation between the joint pairwise pseudomarginals T*t, and
the actual marginals Pet. From equation (5.29b), it can be seen that any pseudomarginal
T*t is always related to the original compatibility function 44t via:

Ts* = x ?st jk Ps;jPt-k

for some vectors ps, pt, and normalization constant K . For any tree-structured distri-
bution, a relation of this form also holds for the actual marginals. 1 1 Indeed, a tree-
structured distribution is characterized by the property that the dependency between
x. and Xt, for any pair of nodes (s, t) C 8, is mediated entirely by the compatibility
function 44 t. Indeed, if the compatibility function Ob is removed, then x, and Xt will
be independent in the new distribution.

This intuition motivates us to define a notion of degenerate compatibility functions,
for which TRP/BP will be exact for uninteresting reasons. To understand the idea of
degeneracy, first consider a distribution p(x) of a binary-valued vector x for which at
least one compatibility function qpt is rank one. Le., 4',t be written as the outer product
Vst= Ps (' for a pair of 2-vectors Vs and pt. These 2-vectors can be absorbed into
the single-node functions /s and Ot, so that edge (s, t) can effectively be removed from
the graph. Thus, for example, for a binary process, any distribution on a single cycle
with at least one rank one compatibility function is equivalent to a tree-structured

distribution.

" 1This is necessarily the case, since TRP/BP is exact for tree-structured problems.
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Xia X1b

X3a X2a

£3bn -2b

Figure 5.10. Degeneracy of compatibility functions for a 4-state process. Each random
variable x, is decomposed into two random components xsa and Xsb, each of which is a
binary random variable. These subcomponents are coupled by compatibility functions
indicated in lines. Example courtesy of Tommi Jaakkola.

The picture for m-ary processes is a bit more complicated. Here it is possible that
all compatibility functions have a rank larger than one, and yet the overall distribution
still exhibits degeneracies. Figure 5.10 illustrates a particular example of this degener-
ate behavior. The graph is a single cycle formed of three nodes, for which the associated
random variables { x, s = 1,2, 3} each assume 4 states. Each x, is decomposed into
two random components Xsa and Xsb, each of which is a binary random variable. The
connections between the random variables x, are shown in solid lines. For instance, X2b

is directly coupled to X3b, but not to X3a. None of these compatibility functions are rank
one, so that the associated edges cannot be removed without altering the distribution.

However, any distribution on this graph still has the property that removing the com-
patibility function between any pair of variables x, and x, leaves them independent in
the new distribution.

These illustrative examples motivate the following:

Definition 5.4.2 (Degeneracy). A set of compatibility functions (or the associated
distribution) is degenerate if for at least one (s, t) E 8, the compatibility function 4't
(viewed as a m x m matrix) has rank strictly less than im.

The significance of Definition 5.4.2 will become clear in the proof of Proposition 5.4.4,
which relies on the fact for a non-degenerate distribution on a tree, two random vari-

ables x, and x, (for arbitrary u, v e V) are never independent. 12 Therefore, given a
non-degenerate distribution defined by a a single cycle, it is never possible to make a
pair of random variables x,, and x, independent by removing only a single edge.

Proposition 5.4.4 (No exact pairwise marginals on single cycles).
Consider a distribution p(x) of a binary-valued vector x defined by a set of non-

degenerate compatibility functions on a single cycle. Let T* be TRP/BP fixed point
for this problem. Then none of the joint pairwise marginals are correct (i.e., T* -#- Pqt
for all (s, t) E E).

12 The same statement does not hold for a graph with cycles, as Example 5.4.2 will demonstrate.
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Proof A remark on notation before proceeding: throughout this proof, we shall treat
the quantities T*(x,, xt) as functions of x,, Xt, rather than matrices.

Let (u, v) E & be an arbitrary edge. By definition, we have:

Puv (xu,xv) ==: (5.41a)S: p(x';T*)
xE XN I ( xx)

f K 171 §1(xD
sC

() ( Ts*A(X2 ' 1
(s~)G/(UV)Ts* (x'S)Tt* (xt)

T*V (XU, x)

(5.41b)

where K is a normalization constant. The quantity within square brackets is the joint
marginal distribution Te (XU, x) of a distribution structured according to the tree TF
specified by the subset of edges E(T) = S/ (u, v). (For future reference, we refer to this

1 7TT* 12T*
1 T 2

4 3
T4* Ts*T7Tt

(a)

T*

T*4 T*
1 2

27T TT T

T* T4* T 2

4 3
T,4 T,3

(b)
Figure 5.11. Relevant graphs for analyzing non-exactness of pairwise marginals on
a single cycle. (a) Distribution p(x; T*) on graph g. (b) Tree-structured distribution
p(x;IIT(T*)) formed by removing edge (u, v) = (3,4).

tree-structured distribution as p(x; HT(T*)).) We rewrite equation (5.41b) as:

T* (x Ixv)Puv (Xu u IX) = K Tuv (xuI x ) u
T* (XU)TV* (zu)

(5.42)

We now proceed via proof by contradiction. If P,,,, (x) = T*(x,, x,) for all
rU , xV, then equation (5.42) reduces to

Tu (xu, xv) = T* (x )T7*>(Xz) (5.43)

which implies that x. and xv are statistically independent under the tree-structured
distribution p(x; HT(T)). This can occur only if at least one of the potential functions
T,* for (s, t) C E/(u, v) is degenerate. This degeneracy contradicts the assumptions of
the proposition, allowing us to conclude that Pav -$ T*, for all (u, v) E E. 0
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Interestingly, the proof of Proposition 5.4.4 is not valid for graphs with multiple
cycles. The final step of the proof is based on the fact that for a tree-structured
distribution, the condition of xu and x, being independent is equivalent to degeneracy
(in the sense of Definition 5.4.2) of the compatibility functions.

This property is not true for graphs with cycles, so that if we try to extend Propo-
sition 5.4.4 to graphs with multiple cycles, the proof breaks down at the final stage.
Indeed, for a graph with cycles, it is possible to construct a distribution such that x.
and x, are independent, even though all the compatibility functions in the graph are
non-degenerate (i.e., full rank).

Example 5.4.2. In this example, we shall construct a family of problems for which
the TRP pseudomarginals are correct for all single nodes, and for all but a single edge.
I.e., the TRP solution is weakly exact, and strongly exact with the exception of a single
edge.

Consider the 2-cycle graph shown in Figure 5.12(a), and a distribution p(x; T*) of
a binary vector x parameterized in terms of a TRP fixed point T*. We specify the set

T 7

T* TIT72TT 2 *TT T T2T-92
T* T TT T 4

T13 '4

3 4 TXL IL 3Bt 47T~L 4
_T_**T_ T . _T 4 T* 3 TT_ 4

TT* T T; T

(a) (b) (c)

Figure 5.12. Example of a graph and compatibility functions for which a TRP/BP
solution is nearly exact. (a) Original graph parameterized in terms of a TRP fixed point
T*. (b) Computing exact marginals on the graph by decomposing into two separate
subgraphs. The top subgraph sends a message Q34 to the bottom graph. We choose
the compatibility functions to ensure that Q34 TIQ .~ is a constant function. (c) The
cancellation leaves us with a tree.
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of pseudomarginals as follows:

Ts* = [0.5 0.5]' for all s e V (5.44a)

P 1.5 - p)
T*= (i 0.5tP)Pfor all (s,t) C S/(3,4) (5.44b)

T3 = (5 0.5-)(5.44c)
0.5 -0#

The parameter p C (0, 0.5) is arbitrary; we shall specify # c (0, 0.5) as a function of P.
It can be seen that the vector T* is an TRP fixed point, and is therefore consistent

on any embedded tree. Consider now the following procedure for obtaining the exact
marginals at nodes 3,4,5 and 6. We split the graph of Figure 5.12(a) into two subgraphs,
as illustrated in panel (b). We marginalize the distribution over nodes 1 and 2, which
yields a 2 x 2 matrix Q34 (a function of £3 and £4) that is passed as a message to the
remaining nodes in the lower subgraph.

We now choose 0, thereby specifying T3*4 , in such a way to ensure that:

Q34jkT3T4;jk
3; j T4;k

where n is a normalization constant. Since the single node marginals are uniform, this
is equivalent to T3*4;jk = i '/Q34;jk, where ,'is chosen so that the entries of T3*4 sum to
one.

With this choice of T3*4 , Q34 effectively cancels out the compatibility function on
edge (3,4). To complete the computation of the actual marginals, we simply need to
operate over the tree shown in Figure 5.12(c). The compatibility functions on this tree
are already in standard form, so that the pseudomarginals { T* I s = 3,4,5,6 } and
{ T* 1 (s, t) C {(3, 5), (4, 5), (5, 6)} } must be equivalent to the exact marginals P and

P3 t. By symmetry, a similar argument applies to the upper subgraph. Therefore, all of
the single node marginals T,* agree with the actual ones, and all of the joint pairwise
marginals T,*t, except T3*4, are correct.

As a concrete numerical example, it can be verified that with p = 0.4, the choice
/= 0.196 yields a graph with the above property. It makes intuitive sense that /3 <0.25,
since the compatibility function on edge (3, 4) serves to weaken the dependencies that
build up between the other two indirect paths between 3 and 4.

* 5.5 Analysis of the approximation error

An important but very difficult problem is analysis of the errors that arise from approx-
imation techniques such as BP and TRP. In fact, to date very few results are available
on characterizing the error, as described briefly Section 5.1. Empirical simulations show
that BP gives good approximations for certain graphs (e.g., those with long cycles rel-
ative to potential strength); in other cases, however, the approximations can be very
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poor. In the absence of error analysis, it is impossible to gauge the validity of the
approximation. In this section, we provide a contribution to this important problem.

Our analysis of the approximation error is based on two fundamental properties of
a fixed point 0*. First of all, part (a) of Theorem 5.4.1 dictates that for an arbitrary
spanning tree V, the single node elements 0*. = log T*1 correspond to a consistent set
of marginal distributions on the spanning tree. That is, the quantities T,* have two
distinct interpretations:

(a) as the BP or TRP approximations to the exact marginals on the original graph
with cycles.

(b) as the single node marginals of a distribution defined by the spanning tree V.

Secondly, by the invariance stated in Theorem 5.4.3, the distribution p(x; 0*) induced by
the fixed point 0* is equivalent to the original distribution p(x; 00). In conjunction, these
two properties imply that the exact marginals on the full graph with cycles are related to
the approximations T,* by a relatively simply perturbation - namely, removing edges
to form a spanning tree. On this basis, we first derive an exact expression relating

expectations under two different distributions, from which we proceed to derive lower
and upper bounds on the approximation error.

In the development to follow, we will use the notation and perspective of the
TRP algorithm. However, it should be noted that like Theorems 5.4.1 and 5.4.3, our
analysis of the approximation error is again algorithm-independent. That is, it applies
to any local minimum of the Bethe free energy, whether obtained by TRP/BP or an
alternative minimization technique.

0 5.5.1 Exact expression

Our treatment begins at a slightly more general level, before specializing to the case of
marginal distributions and the TRP algorithm. Consider a function f : XN - IR, and
two distributions p(x; 0) and p(x; 0). Suppose that we wish to express the expectation
E~f(x)] in terms of an expectation over p(x; 0). Using the exponential representation
of equation (5.6), it is straightforward to show that

E[f (x)] = E [exp { Z( - )a0a(x) + (0) - 4(O)} f (x) (5.45)

Note that this is a change of measure formula, where the exponentiated quantity can

be viewed as the Radon-Nikodym derivative.
We now specialize equation (5.45) to the problem at hand. Let us denote the actual

single node marginal p(x, = J; 00) on the graph with cycles by

PS;j 4 Ego [6(x 8 = j)] = E. [6(js = j)] (5.46)

where 6(x, = j) is the indicator function for node x, to take value j. To derive

equation (5.46), we have used the invariance property (i.e., p(x; 0) = p(x; *)) of
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Theorem 5.4.3. Assume that TRP (or BP) converges to some exponential parameter

0*, with associated pseudomarginal vector T*. In this case, Theorem 5.4.1 guarantees
that the single-node elements of T* can be interpreted as the following expectations:13

T* Eri (G*)[6 (xs =j](5.47)

We now make the assignments 0 = 0*; 0 = JT1(*); and f(x) = S(x, = j) in equa-
tion (5.45) and re-arrange to obtain

PS j - TS*;j= Ei (*) [(exp { 0*S 00(x) - 4i(O*)} - 1) J(xS = J (5.48)
cqAi

where we have used the fact that 4(H 2 (O)) = 0. Equation (5.48) is an exact expres-
sion for the error (Ps;j - T* ) in terms of an expectation over the tree-structured dis-

tribution p(x; H2I(0*)). Note that equation (5.48) holds for all spanning tree indices
i C 0,... ,L-1}.

* 5.5.2 Error bounds

It is important to observe that equation (5.48), though conceptually interesting, is of
limited practical use. The problem stems from the presence of the residual term

rZ(x) A exp{ 5*0#b(x)}

within the expectation on the right-hand side. For most problems, computing the ex-
pectation of r (x) will not be tractable, since it is a function of all nodes x, incident
with any edge removed to form spanning tree T7. Indeed, if the computation of equa-
tion (5.48) were easy for a particular graph, this would imply that we could compute
the actual marginals, thereby obviating the need for an approximation technique such
as BP/TRP.

This intractability motivates the idea of bounding the approximation error. In order
to do so, we make use the bounds derived in Chapter 3. In particular, on the basis of
Proposition 3.3.1, we can derive the following error bounds:

Theorem 5.5.1. Let Q* be a consistent fixed point of TRP/BP, giving rise to approx-
imate marginal distributions T*g, and let Ps j be the actual marginal distributions on

the graph with cycles. Define the log error Es --A log T* 1 - log Ps;j. Then for each of

the spanning trees T, we have:
Lower bound:

Es;j D(H4(*) Ii 0*) - 1 0* covnji(e*){ 6(xs =j), qa} (5.49)
131

1 The tree-based consistency condition of Theorem 5.4.1 ensures that T,;j = R(*>[( = j)]
independent of the choice of spanning tree index i E {0, . . . , L - 1}.
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Upper bound:

ES; ;> logT*. - log [1 - (1 - T,*)exp(A)] (5.50a)

A -D(Hi(9*) II 9*)- 1 Z* * covi(.) {6(xJ = ( ), # (5.50b)
";j a~

Proof. The bounds of this theorem follow by appropriately applying Proposition 3.3.1
from Chapter 3. We first make the identifications 9 = 0* and 0 fi(fi(9*)) and
then set f (x) = J(x, = j), a choice which satisfies the assumptions of Proposition 3.3.1.
Equation (5.49) then follows by applying Proposition 3.3.1, followed by some algebraic
manipulation. The lower bound follows via the same argument applied to f (x) = 1 - =(x=

which also satisfies the restrictions of Proposition 3.3.1. F1

A number of remarks about Theorem 5.5.1 are in order. For practical purposes,

the primary consideration is the cost of computing these lower and upper bounds. The
summations appearing in equations (5.49) and (5.50) are tractable. In particular, each
of the covariances can be calculated by taking expectations over tree-structured dis-
tributions, and their weighted summation is even simpler. On the other hand, within
the KL divergence D(Hi(9*) 1I 9*) lurks a negative log partition function -<(9*) asso-
ciated with the graph with cycles. In general, computing this quantity is as costly as
performing inference on the original graph. To obtain computable bounds, we require
an upper bound on the log partition function. In Chapter 7, we derive a set of such
upper bounds, which allow us to compute bounds of the form in Theorem 5.5.1.

On the conceptual side, Theorem 5.5.1 highlights three factors that control the
accuracy of the TRP/BP approximation. For the sake of concreteness, consider the
upper bound of equation (5.49).

(a) the KL divergence D(Hi(9*) 91 0*) measures the discrepancy between the tree-
structured distribution p(x; 11(9*)) and the distribution p(x; 9*) on the graph
with cycles. It will be small when the distribution p(x; 9*) is well-approximated
by a tree. This term reflects the empirical finding that BP performs well on graphs
that are approximately tree-like (e.g., graphs with fairly long cycles).

(b) the covariance terms in the second summation measure the strength of the in-
teraction, as measured under the tree distribution p(x; 1IP()), between the delta
function at node s and clique potential 0,. When the removed clique potential
0, interacts only weakly with the delta function, then this covariance term will
be small and so have little effect.

(c) the weight 9* on each covariance term measures the strength of the clique poten-
tials {q$} that were removed to form the spanning tree.

A number of extensions to the bounds presented in Theorem 5.5.1 are possible.
First of all, it is worthwhile emphasizing that Theorem 5.5.1 provides L bounds on the
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single-node marginal Ps;j- one for each of the L spanning trees used in the algorithm.14
This allows us to choose the tightest of all the spanning tree bounds for a given index
(s; j). Point (b) above suggests that one should expect tighter bounds when using a
tree formed by removing edges "relatively far" away from node s of interest. Indeed,
the covariance between 6(x, = j) and the removed clique potential #a captures this
notion in a precise fashion.

Secondly, equation (5.45) as well as Proposition 3.3.1 both hold for arbitrary choices
of the function f : XN [0,1]. Different choices will allow us to derive bounds on the
error of other approximate marginals. For instance, making the choice of function

f (x) =( = J) (xt = k) will lead to bounds on the pairwise marginal Pstjk. Thirdly,
note that the bounds of Theorem 5.5.1 are first-order, because they account for the
interaction between the function f and clique potentials 0, only up to first order (i.e.,
covo{f, 0,}). On the basis of equation (5.48), it is possible to derive stronger bounds
by including higher order terms (as in [e.g., 123]), though with an associated price
of increased computation. A thorough analysis of various bounds and the inherent
tradeoffs is open for future work.

0 5.5.3 Illustrative examples of bounds

The tightness of the bounds given in Theorem 5.5.1 varies, depending on the graph
topology, the choice of clique potentials, and the choice of spanning tree. In this section,
we give some simple numerical illustrations. In all cases, we use the results of Chapter 7
to compute an upper bound on the log partition function <I(Q*), so that the results of
Theorem 5.5.1 are actually computable. Observe that bounds of Theorem 5.5.1 can be

transformed into lower and upper bounds on the exact marginals. Specifically, a lower
bound (respectively upper bound) on the log error EJ = logT,*g - log Ps;1 gives rise
to an upper bound (respectively lower bound) on the actual marginal via the relation
Ps; = T*, exp{-Es,;}.

Varying the clique potentials

We first consider the choice of clique potentials. Figure 5.13 illustrates the behavior
of TRP and the corresponding error bounds for a binary-valued process on the 3 x 3
grid shown in panel (a) for different settings of clique potentials. Shown in panels
(b) through (d) are the actual marginals P;i= p(x, = 1; 9*) compared to the TRP
approximations Th., plotted on a node-by-node basis. We have also used the TRP/BP
fixed point to compute lower and upper bounds on P3,; these bounds on the actual
marginal are plotted in panels (b) through (d) as well.

Panel (b) illustrates the case of weak potentials, so that TRP /BP leads to the very
accurate approximation of the exact marginals PS;1. The gap between the corresponding
lower and upper bounds on the exact marginals is narrow, which assures us that the

14 More generally, results of the form of Theorem 5.5.1 hold for any acyclic subgraph embedded within
the graph, not just the spanning trees used to implement the algorithm.
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Figure 5.13. Behavior of the bounds of Theorem 5.5.1 for the 3 x 3 grid shown in panel
(a) under various settings of clique potentials. Panels (b) through (d) show the actual
marginals P,;1 versus the TRP approximations T,*1, as well as upper and lower bounds
on the exact marginals. (b) For weak potentials, TRP gives a good approximation, and
the gap between the lower and upper bounds on the exact marginals is very narrow.
(c) For strong attractive potentials, the approximation is poor, and the gap becomes
relatively large. (d) Similarly, the approximation is also poor for strong mixed potentials.
Note how for certain nodes in (c) and (d), the TRP/BP approximation lies above the
upper bounds on the actual marginal PJg.

approximation is excellent.
Panel (c), in contrast, displays the more interesting choice of strong attractive clique

potentials, for which TRP/BP approximations tend to be skewed towards an extreme
value (one in this case). The gap between the upper and lower bounds on the exact
marginals is large in comparison to those shown in panel (b). Despite the relative
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looseness of the bounds, note how the TRP/BP approximate marginals T,* exceed the

upper bounds for certain nodes (in particular, nodes 5 through 9). Consequently, the
error bounds inform us that the BP approximation is very inaccurate for these nodes.

Panel (d) displays the case of strong mixed potentials, where the TRP/BP approx-
imation is again inaccurate. Once more, the TRP/BP approximation lies outside the
window of bounds for the actual marginal for certain nodes (e.g., nodes 4,5,7,8).

Choice of spanning tree for bounds

As mentioned earlier, bounds of the form in Theorem 5.5.1 hold for any spanning tree

(or more generally forest) embedded within the graph 9. Here we show that the choice
of spanning tree can also make a significant difference in the tightness of the bounds.
Shown in panels (a) and (b) of Figure 5.14 are the actual marginals P,.; and TRP/BP

Bounds on single node marginals Bounds on single node marginls
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Figure 5.14. The narrowness of the bounds can depend strongly on the choice of
spanning tree. Both panels show the exact marginals P,., compared to the TRP/BP
approximations Ts*; on a node-by-node basis, as well as lower and upper bounds on
the actual marginals. (a) The maximum weight spanning tree in the graph yields very
narrow bounds. (b) The minimum weight spanning tree yields very poor bounds.

approximations T* for a particular binary problem on the 3 x 3 grid. Note that the
TRP/BP approximation is very good in this case.

As in the previous section, we also used the TRP/BP fixed point to calculate upper
and lower bounds on the actual marginal P,;i; here we investigated the effect of varying
the spanning tree used to compute the bound. Our choice of spanning tree was based
on the following heuristic. We first computed the minimal exponential parameter -y*

(as in equation (5.31)) corresponding to the overcomplete representation p(x; 9*). We
then computed the maximum and minimum weight spanning trees with Kruskal's al-

gorithm [107,116], using y*I as the weight on edge (s, t). Panels (a) and (b) show the
lower and upper bounds on the exact marginals obtained from the TRP solution using
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the maximum and minimum weight spanning trees, respectively. The disparity between
the two sets of bounds is striking. Further work should address techniques for choosing
spanning trees that yield relatively tight bounds.

N 5.6 Discussion

The contributions of this chapter are both practical and theoretical. On the practical
side, we have introduced a class of iterative algorithms for approximate estimation of

stochastic processes on graphs with cycles. Common to algorithms of this class is the
operation of reparameterizing distributions defined on embedded trees. We showed,
for example, that belief propagation (BP) is a special case of such an algorithm and

derived a "message-free" implementation of BP that requires less computational stor-
age than the traditional message-passing formulation. More generally, we considered
updates that involve global operations over spanning trees of the graph. The conver-
gence properties of these tree-based reparameterization (TRP) algorithms were shown
to be superior to those of BP. There is great freedom in the detailed specification of
TRP algorithms - in particular, in the choice of spanning trees (where the only con-
straint is that each edge in the graph with cycles belong to at least one tree). This
freedom suggests open questions of a graph-theoretic nature: how to choose a set of
spanning trees so as to make the bounds of Section 5.5 as tight as possible, to guar-
antee convergence, or to optimize the rate of convergence. One possibility is to choose
spanning trees randomly from the full graph, a task for which there exist well-known
algorithms [e.g., 141].

The reparameterization framework also led to a number of important theoretical
results. In particular, we obtained a new and intuitive characterization of the fixed
points of any TRP algorithm (including BP as a special case) in terms of consistency
conditions over any tree embedded within the graph with cycles. We also proved a
result which, though obvious from a reparameterization perspective, is nonetheless fun-
damental - namely, any TRP algorithm does not alter the full distribution on the
graph with cycles. This invariance has a number of important consequences. In par-
ticular, in conjunction with the fixed point characterization, this invariance enabled
us to derive an exact expression for the error between the TRP/BP approximations,
and the exact marginals on an arbitrary graph with cycles. We also derived upper and
lower bounds on this error, which illuminate the conditions governing performance of
such approximation methods. In conjunction with the results of Chapter 7, these error
bounds are computable, and thus provide valuable information on the performance of

TRP/BP.
The theoretical results of this chapter followed very naturally from the perspective

of tree-based reparameterization. However, it should be noted that most of these results
- most importantly the characterization and invariance of fixed points, and associated

error analysis - are, in fact, algorithm-independent. That is, the same results apply
to any local minimum of the Bethe free energy, regardless of the algorithm [e.g., 175,
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181] used to find it. Moreover, this chapter focused exclusively on reparameterization
algorithms which involved only singleton and pairwise cliques. However, as we will
see in Chapter 6, the ideas and results from this chapter can be extended to more
advanced approximation techniques that either operate over larger cliques [e.g., 114,
180], or make use of more complex approximating structures [131]. We shall extend the
same fixed point characterization, invariance and error analysis to these higher-order
reparameterization algorithms.
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Chapter 6

Exploiting higher-order structure for

approximate estimation

* 6.1 Introduction

The focus of Chapter 5 was one of the most widely-studied algorithms for the approx-
imate computation of marginal distributions - namely, the belief propagation (BP)
or sum-product algorithm [e.g., 3, 130, 147, 173, 180]. It is well-documented that the
performance of BP varies considerably, depending both on the graph topology and the
settings of the potentials. It is therefore desirable to develop principled methods for
improving the approximation.

In this chapter, we present a framework for developing and analyzing a large class of

more advanced algorithms for approximate inference. Each approximation is specified
by a subgraph of the original graph (known as the core structure) and a corresponding

set of residual cliques, such that the union of the core and the residual terms covers
the clique set of the full graph. This framework is quite general, in that it includes a
large number of approximations, including the Bethe free energy associated with belief
propagation, as well as more advanced methods such as Kikuchi approximations [180],
and the structured approximations of Minka [131]. Although techniques that exploit
more structure than the Bethe free energy entail a higher computational cost, the hope
is that they lead to better approximations to the actual marginal distributions.

Worthy of note is that the notion of reparameterization from Chapter 5 carries over
to these more advanced approximations in a very natural way. As a consequence, many

of the important results from Chapter 5 also have analogs for these more advanced
methods. For instance, a central result of Chapter 5 was that TRP/BP updates do not
alter the distribution on the full graph with cycles. This invariance had a number of
important consequences, perhaps the most important of which being its role in char-
acterizing the approximation error. All of the approximations that we consider in this
chapter satisfy a generalized form of this invariance. As with our work in Chapter 5,
this invariance allows us to derive an exact expression for the approximation error, as

well as upper and lower bounds. By recourse to the results of Chapter 7, these bounds

are computable. Indeed, we shall provide examples for which the error analysis pro-

vide valuable information for assessing when the use of a more advanced technique is

149



CHAPTER 6. EXPLOITING HIGHER-ORDER STRUCTURE FOR APPROXIMATE ESTIMATION

appropriate.

0 6.1.1 Variational formulation

The goal of this chapter is to compute approximations to the single node marginals of
a given distribution p(x). I.e., we want to compute:

P(Xs) = E p(x') (6.1)
X'E XN.X=

Despite its simple formulation, this problem is difficult because the number of terms in
the summation ( O(mN)) explodes exponentially in the number N of nodes.

As in Chapter 5, the variational problem that underlies the approximations that we

shall consider is that of minimizing the Kullback-Leibler (KL) divergence between p(x)
and some approximating distribution q(x). For discrete-valued random vectors x, this
divergence is given by:

D(q |11p) = q(x) log (x)(6.2)

It is well-known [41] that the KL divergence D(q 11 p) is non-negative, and equal to zero if
and only if q = p. Therefore, if we actually performed this unconstrained minimization,
we would simply recover the quantity p(x) which, as a vector with mN elements, is so
large as to be impossible to store or manipulate. Therefore, this initial try does not
bring us much closer to computing local marginal distributions.

While this direct approach is not helpful, other approximate formulations turn out
to be fruitful. The Bethe free energy [180] is a particular approximation to the KL
divergence. It depends on a set of pseudomarginals Q = {Qs, Qt}, which are required

to be locally consistent (i.e., >, Q(xs, x') = Q8 (x8 )). We use these pseudomarginals
to specify a distribution q on the graph:

q (x) I1 flQ s(x8 ) j1j QSt(xs,xt) (6.3)
Z(Q) sCV (s't)e& Qs(xs)Qt(xt)

If 9 is a tree, then not only are we guaranteed that the pseudomarginals Q are globally
consistent (i.e., they are a valid set of marginals for some distribution over g), but in
fact they correspond to the marginals of q. In this case, the associated partition function

Z(Q) is equal to one. On the other hand, if g is not tree-structured, the Q may not
satisfy global consistency; moreover, even if they do satisfy this property, they may not
be the correct marginals associated with q. Nevertheless, it is the pseudomarginals Q
on which the Bethe free energy focuses.

The Bethe free energy arises from substituting the factorization of q given in equa-

tion (6.3) into the KL divergence D(q 11 p). There are a few catches: in performing
this substitution, we neglect the fact that for a graph with cycles the partition function
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Z(Q) is not equal to one (as it would be for a tree); and we assume that the pseudo-
marginals {Q,, Qat} are, in fact, the exact marginals of q. Therefore, the Bethe free
energy is, in general, only an approximation to the KL divergence. Since minimizing
the KL divergence would yield the true distribution p, the hope is that minimizing
the Bethe free energy, as an approximation to this divergence, will yield minimizing
arguments Q* that are approximations to the true marginals. As shown by Yedidia
et al. [180], belief propagation is one particular algorithm for attempting to solve this
minimization problem.

The approaches described in this chapter are based on this same guiding principle.
In particular, we approximate the KL divergence of equation (6.2) using cost functions
that depend only on (relatively) local pseudomarginal functions. The aim is then to
minimize these cost functions so as to obtain approximations to the marginals of p.

0 6.1.2 Related work

A number of improvements to the Bethe free energy have been proposed in previous

work. First of all, Yedidia et al. [180] developed extensions based on Kikuchi ap-
proximations [114] from statistical physics. Note that the representation of q given in
equation (6.3) depends only on single node Q, and pairwise pseudomarginals Qat; as a
result, the Bethe free energy is a function only of these local quantities. Kikuchi approx-
imations extend the Bethe free energy in a natural way by including higher order terms
(i.e., marginals over larger subsets of nodes). Yedidia et al. developed a message-passing
algorithm, analogous to BP, for minimizing such Kikuchi approximations, and found
empirically that Kikuchi approximations typically lead to more accurate estimates of
the marginal distributions. Secondly, several researchers have observed that belief prop-
agation corresponds to updating a fully factorized approximation [e.g., 77,131,132,147].
Based on this observation, Minka [131] proposed extensions to belief propagation that
entail updating distributions with more complex structure (e.g., a distribution induced
by a tree). He also proposed an algorithm, which he called expectation-propagation,
for updating such distributions. An ancillary contribution of this chapter is to show
how both the Kikuchi approach of Yedidia et al. [180] and the expectation-propagation
of Minka [131] can be formulated within a common framework.

* 6.1.3 Overview of the chapter

This chapter is organized as follows. Section 6.2 describes the key elements of the ap-
proximations to the KL divergence (i.e., the cost functions) to be considered in this
chapter. In Section 6.3, we develop properties of these cost functions, including condi-
tions that govern when and how they are exact representations of the KL divergence.
We illustrate these properties with a number of examples. The focus of Section 6.4 is
not the cost functions themselves, but rather their optimizing arguments. It is these
arguments that are of primary interest for the purposes of approximate inference. The
key result of Section 6.4 is an invariance satisfied by the local minima of any of the
approximations to the KL divergence considered in this chapter. This invariance, in
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fact, is algorithm-independent, in that it holds for any local minimum regardless of the
particular algorithm used to find it. We also provide a general set of updates, specified
either in terms of message-passing or reparameterization, to try to minimize these cost
functions subject to appropriate marginalization constraints. Particular versions of this
algorithm are closely related to either the generalized belief propagation updates of
Yedidia et al. [180], or the expectation-propagation updates of Minka [131]. The gener-
alized message-passing updates have the interesting property that each of the iterates

(and not just its fixed points) corresponds to a different reparameterization of the orig-
inal distribution. In Section 6.5, we exploit the invariance to derive an exact expression
for the error between the approximate and true marginals, as well as lower and upper
bounds on this error. In Section 6.6, we illustrate properties of the approximations of

this chapter by applying them to simple problems. We conclude with a discussion in
Section 6.7.

0 6.2 Elements of the approximations

In this section, we describe in detail the following four key elements of our framework
for approximations:

(a) the core structure, which is given by a subgraph of G (or more generally, of a
triangulated version of G) over which an approximating distribution is optimized.

(b) a set of residual elements - namely, cliques that are in G but are not included in
the core structure.

(c) a set of auxiliary distributions defined on augmented subgraphs formed by adjoin-
ing additional cliques to the core structure.

(d) a set of marginalization operators that enforce constraints between the auxiliary
distributions and the core distributions

0 6.2.1 Basic definitions and notation

In this section, we introduce the basic definitions and notation required for subsequent
developments. The development of this section presupposes familiarity with the graph-
theoretic concepts and notation introduced in Section 2.1.1.

Given a graph 9, it will often be useful to consider a triangulated version. Although
this triangulated version is not unique in general, we assume throughout this chapter
that a particular triangulated version g is chosen and fixed. The set of cliques of 9 will
be denoted by d; this is (in general) a superset of the set of cliques of 9, denoted by
C.

Let p(x) denote the distribution whose marginals we would like to approximate; this
target distribution is defined as a product of compatibility functions ?/c on the cliques
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of G as follows:

P(x) Z(p) U 4'c(xc) (6.4)
CEC

In addition to this target distribution, there exist other distributions that can be formed
as a product of compatibility functions Vkc for C belonging to a subset of the full clique set
C. We shall use the notation P(.) to refer to distributions constructed in this manner.
In contrast, we reserve the notation Q(.) to refer to approximating distributions. In
particular, the marginal distributions of a given Q(.) will represent approximations to
the marginal distributions of the target distribution p.

0 6.2.2 Core structures and distributions

The primary ingredient of any of the approximations developed in this chapter is the
core structure, over which an approximating distribution QA will be defined. A core

structure is specified by a subset A of the cliques C of the triangulated version 9. We
make the following important assumption about the subgraph 9(A) of 9 induced by
the subset A:

Assumption 6.2.1. The graph 9(A) induced by core structure A must be triangu-
lated.

Example 6.2.1. To illustrate Assumption 6.2.1, consider the 3 x 3 grid illustrated in
Figure 6.1(a). One possible triangulated version 9 is shown in Figure 6.1(b). Shown in
panel (c) is the graph 9(A) induced by the set of edges A = E /{(1, 4), (4, 7), (3, 6) (6, 9)};
it is a tree, and therefore satisfies the triangulation criterion of Assumption 6.2.1. In
contrast, panel (d) shows the graph 9(A) induced by A = 8/{(4, 7), (3, 6)(6, 9)}, which
fails Assumption 6.2.1.

Let QA(x) denote a distribution defined by potential functions on the cliques in the
core set A. The significance of Assumption 6.2.1 is in guaranteeing, via the junction
tree representation, that QA(x) factorizes as a product of local marginal distributions.

Since the induced graph 9(A) is triangulated, it has an associated junction tree [121].
Let Cmax(A) denote the set of maximal cliques in this junction tree, and let Csep(A)
be the corresponding set of separator sets. (See Section 2.1.5 for background on the
junction tree representation). We then have the factorized representation

QA (x) = HfcCmax(A) Q(xe)(6.5)
HCcCsep(A) Q(xc)

of the core approximating distribution (CAD). As we will see, this local product rep-
resentation is the key to being able to optimize efficiently the choice of approximating
distribution QA. The implicit assumption here is that in contrast to the target distri-
bution on the graph 9, the junction tree representation of QA over 9(A) is manageable
(i.e., the maximal cliques are small enough so that exact inference is tractable).
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Figure 6.1. Illustration of triangulated and non-triangulated induced graphs 9(A).

(a) Original graph 9 is the 3 x 3 grid. (b) One possible triangulated version 9 of 9.
Note the two 4-cliques {2,4,5,8} and {2,5,6,8} at the center of the graph. (c) The

graph 9(A) induced by the core structure A = £/{(1,4),(4,7),(3,6)(6,9)}. It is a
tree, and therefore triangulated. (d) The graph 9(A) induced by the core structure
A = E/{(4, 7), (3, 6)(6, 9)}. It is no longer triangulated, since the 4-cycle 1- 2-5-4-1
lacks a chord. This problem can be rectified by adding the 3-clique {1, 2, 4} that appears

in 9.

Similarly, we let PA be a distribution formed over the core structure by a product
over those compatibility functions of the target distribution of equation (6.4) contained
within the core:

PA (x)x fi 0/C(X) (6.6)
ceAnC

Herein we refer to this distribution as the core of the target distribution (CTD). Note
that the single node marginals associated with the CTD will, in general, be different
than the single node marginals of the target distribution.

We illustrate these definitions with a few examples:

Example 6.2.2. Consider a graph G = (V, 8) with pairwise maximal cliques, in which
case the set of all cliques C is equal to V U E.

(a) Let A = V, so that g(A) is a completely disconnected graph. In this case, both
the CAD and CTD are fully factorized:

QA(x) = ]7JQ(xs)
sCV

PA (x) c flz 3 (xs)
sEV

As we have mentioned and will be made explicit in Example 6.3.2, this choice of
a fully factorized CAD corresponds to belief propagation.
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(b) Let A = V U E(T) where S(T) C E is the edge set of an embedded tree. In
this case, g (A) corresponds to this particular embedded tree. The CAD is tree-
structured, and factorizes as a product of marginals over the nodes and edges in

8(T):

QA (X) =fl1Q(xs) y Q(xs, t)

sev (s, t)GE (T)Q(xs)Q(xt)

The CTD also factorizes into a product of vertex and edge terms:

PA(X) OC flbs(Xs) 1 Vtt(xs,xt)
sEV (s,t)ES(T)

0 6.2.3 Residual partition

The second key element is the residual set - namely, the subset C/(A n C) c C of
cliques in C not covered by elements of the core set A. (Note that since A is a subset
of the clique set C of the triangulated version g, it may not be a subset of C.) We use
the notation A to denote a particular subset of those cliques in the residual set.

Definition 6.2.1. Let R denote a partition of the residual set into a collection of
subsets {A} (which need not be disjoint). I.e., the union Uaa is equal to the residual
set. Such a decomposition is called a residual partition.

Example 6.2.3. We illustrate with a continuation of Example 6.2.2:

(a) In Example 6.2.2(a), the vertex set was chosen as the core structure (A = V). In
this case, the residual set is given by C/V = S£- that is, the set of all edges in
the graph. These edges can be partitioned into subsets A in a variety of ways.
The simplest choice is for each A to be a single edge (s, t) E 8. The union
A U R = V U S covers the set of all cliques C.

(b) Consider again Example 6.2.2(b), in which A = V U 8(T) for some embedded
tree T. Here the residual set corresponds to those edges in g but not included
in the tree (i.e., the set of edges 8/8(T)). Again, the simplest partition of this
residual set is into single edge terms (i.e., A = (s, t)). The union A U R =
V U E(T) U (8/8(T)) covers the clique set C.

Figure 6.2 illustrates a particular case of this decomposition. Shown in (a) is the
original graph 9 - here a 3 x 3 grid. Panel (b) shows the spanning tree induced
by A = V U 8(T), whereas panel (c) shows the residual set of edges in 8, but not
in 8(T).

Note that the core and residual structures in these examples satisfy an important prop-
erty that we will always impose:
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(a) (b) (c)
Figure 6.2. Illustration of core and residual structures. (a) Original graph (3 x 3 grid).
(b) Spanning tree core (A = V U S(T)). (c) Residual set E/8(T) of edges not covered
by the spanning tree.

Assumption 6.2.2. The union of the cliques in the core and residual sets covers the
clique set (i.e., A U R D C).

Note that the set of cliques C can be a strict subset of A U R, since the core structure
A can include cliques in C/C. Assumption 6.2.2 will play an important role in later
analysis.

0 6.2.4 Auxiliary distributions

In equations (6.5) and (6.6), we defined two distributions QA and PA that were struc-
tured according to the core set A. Similarly, given any element A E R, it will be useful
to define distributions structured according to the augmented set A U A. As an analog
to PA, we define the distribution

PA u A(x)oc fi 'bc(x) (6.7)
CEAuA

as a normalized product of compatibility functions over cliques in the augmented set
A uA.

In a similar fashion, we let QA u A be an approximating distribution structured
according to the cliques in the augmented set. To give an explicit expression for QA U A
is a bit more subtle: in particular, it requires that we consider a triangulated version
of 9(A U A).

Definition 6.2.2. For each A c R, an augmented residual set A D A is a subset of
cliques in C such that the induced graph g(A U A) is triangulated.

Although the choice of this augmented residual set is not necessarily unique, we shall

assume that a particular choice is made and fixed.
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Given an augmented residual set, we can exploit the junction tree representation of

Section 2.1.5 to decompose the auxiliary distribution as follows:

Q A u ac(x) = (6.8)
Y1ce~sep(AUA) Q(xe)

Here we use the notation Q to distinguish these local marginals from those in the
definition of the core distribution QA in equation (6.5).

To illustrate, we continue with Example 6.2.3:

Example 6.2.4.

(a) In Example 6.2.3(a), the core set is A = V; the residual set given by the edge set
8; and the residual set is partitioned into individual edges (i.e., A = (u, v) E 8).
In this case, the augmented graph A U A = V U (u, v) remains triangulated, so

that there is no need to augment A. The auxiliary distributions are given by:

PAuA(x) xc a (uv ]7J4f)s(Xs) (6.9a)
sCV

QAuA(x) = Q(Xx))(6.9b)
Q(X'L)Q(zu ) E

(b) In Example 6.2.3(b), the core set is A = V U S(T), where S(T) is the edge set of
an embedded tree T. (See Figure 6.2(b)). As in (a), we partition the residual set
8/8(T) into individual edges (A = (u, v)). Consider the augmented set

A U A = V U 8(T) U (u, v)

In this case, the auxiliary distribution PA u A has the form

PA u A(x)cflqs(xs) ]7 Pt (Xs,Xt)
sEV (s,t)e&(T-)U{(u,v)}

Now if T is a spanning tree, then adding an extra edge will add a cycle to the
graph. In this case, since we assumed that 9 has pairwise maximal cliques, the
augmented set will no longer be triangulated. We therefore need to augment A

to form A so that 9(A U A) is triangulated.

To provide a concrete illustration of this augmentation procedure, consider the
3 x 3 grid illustrated in Figure 6.2(a). Let us add edge (1, 4) to the spanning tree
shown in Figure 6.2(b); we have drawn the corresponding subgraph 9(AU(1, 4)) in
Figure 6.3(a). This subgraph is not triangulated, since the 4-cycle 1 -2- 5 - 4 -1
lacks a chord. Therefore, we form A by adding the chord (2, 4) to A = (1, 4) to
obtain the triangulated subgraph shown in Figure 6.3(b).
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(a) (b)

Figure 6.3. Augmented subgraph and its triangulation for 3 x 3 grid. (a) Augmented
subgraph A U A formed by adding a single edge A = (1, 4) to the spanning tree core

set. (b) Triangulated version A U A of the augmented subgraph. The edge (2,4) must
be added to triangulate the graph.

Now the maximal cliques of this triangulated graph are given by

{(124), (245), (23), (56), (58), (78), (89)}

By the junction tree representation, we can decompose any auxiliary distribution

QA U A as:

Q124 Q245 Q23 56 QSS58 78 Q89

Q249Q2(Q5)2 (Q)2

where we have omitted the explicit dependence of Q on x for notational simplicity.

M 6.2.5 Marginalization operators

Recall the definitions of the core approximating distribution (CAD) QA and auxiliary
distribution QA u A:

QA(x) = HcEcmax(A) Q(xc) (6l0a)
HcEcsep(A) Q(Xc)

QAuA = HCCeCmax(AUi) Q(xc) (6.1b)
HCECsep(AuA&) Q(Xc)

Note that both of these distributions are defined in terms local marginal distributions
over subsets of cliques and separator sets. A key constraint is that the local marginals

defining the auxiliary distribution must agree with those defining the core distribution,
whenever they overlap. In this section, we define marginalization operators that will be

used to enforce these constraints.
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To be precise, for any A e R, we define a set of clique pairs as follows:

93(A) A { (C, D) I CE C(A); DC C(A U A) s.t C c D} (6.11)

For any pair (C, D) e 9(A), let QC and Qr be the corresponding local marginals in the
definitions of QA and QA U A respectively. For any such pair, we require that

QD(X') = QC(xC)
X' s.t X=xc

Ie., the quantity Qr, when marginalized down, agrees with QC. We write this equation
compactly as

M(QD) = Qc (6.12)

where M is a marginalization operator. We write M(QA U A) = QA to mean that
equation (6.12) holds for all pairs (C, D) E 93(A).

Example 6.2.5. We continue with Example 6.2.4 (a), in which A = V, and each resid-
ual term A consisted of a single edge (u, v). This gave rise to an auxiliary distribution
of the form:

Q(U I , z)~
QA u A(x) - Q~x)Qx s ( )

Q(XU)Q(xv) a y

The marginalization condition M(QA U A) = QA consists of the following constraints:

ZQ(zx' XV) = Q(Xr) (6.13a)

E 5xxl)= Q(xU) (6.13b)
X/

Q(X 8 ) = Q(X,) V s E V (6.13c)

Note that equations (6.13a) and (6.13b) are identical to the pairwise marginalization
constraints enforced in standard belief propagation.

0 6.3 Approximations to the Kullback-Leibler divergence

In this section, we use the formalism and machinery described in Section 6.2 to develop
a variety of approximations to the Kullback-Leibler (KL) divergence. It is simplest to
do so when the residual partition satisfies a certain property (to be defined) related

to disjointness. Capturing Kikuchi approximations [114,180] requires the use of non-
disjoint residual partitions, which are conceptually similar but more complex in terms
of notation.
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Each of the approximations to be considered here is specified by a particular choice
of the core set A and residual partition R. The central quantity is a cost function

QA;R(Q) that depends a collection of approximating distributions Q. The notion of
exactness is defined as follows:

Definition 6.3.1. The approximation is said to be exact if there exists a distribution q
over 9 that marginalizes down to the local marginals defining Q such that 9A;a(Q) is
equal to the Kullback-Leibler divergence D(q 11 p) (aside from constants not dependent
on Q or q).

As we will see, the Bethe free energy corresponds to a special case of a 9 A;R(Q)
approximation, one which is exact for a tree-structured graph. Of course, the more
general and interesting case will be when the function 9 A; R is only an approximation
to the Kullback-Leibler divergence.

0 6.3.1 Disjoint and non-disjoint residual partitions

We first define the notion of disjoint and non-disjoint residual partitions. One might
define the residual partition R to be pairwise disjoint if A, and A6 are disjoint for
all Aa, A6 E R. It turns out to be necessary to define disjointness at the level of the
augmented residual sets A specified in Definition 6.2.2. We denote the full collection of
these augmented residual sets as follows:

R {AIAER} (6.14)

With this notation, we have:

Definition 6.3.2. A residual partition R is pairwise disjoint if Aa m nA = 0 for all
distinct Aa, A6 in the associated augmented residual set R. Otherwise, it is non-disjoint.

Example 6.3.1. To illustrate Definition 6.3.2, consider the 2-square graph 9 shown
in Figure 6.4(a), as well as the triangulated version 9 shown in panel (b). As the core
structure, we choose the embedded spanning tree shown in panel (c). We partition the
residual set into the two edge terms Al = (3, 4) and A2 = (5, 6), which are disjoint.
Adding the first term A1 to the core A gives rise to the augmented structure A U A 1

shown in panel (d). Here we need augment A 1 to form A 1i= {A1, (1, 4)} in order to
triangulate the graph. Similarly, adding A2 yields the augmented structure shown in
panel (e); here we need to form A2 = {A2 , (1, 4), (3, 4), (3, 6)} in order to triangulate
the graph. Thus, A1 n A2 = (1, 4), so that the partition is not disjoint at the augmented
level.

We will follow up Example 6.3.1 in Example 6.3.6 to demonstrate the necessity of
defining disjointness at the level of the augmented residual sets.
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Figure 6.4. An example of disjointness at the A-level, but not at the A-level. (a)
Original 2-square graph 9. (b) Triangulated version 9. (c) Core structure of embedded
spanning tree. (d) Augmented structure formed by adding A1 = (3,4); edge (1,4) is
added to triangulate. (e) Augmented structure formed by adding edge A2 =(5, 6); here
we must add edges (3, 6), (3, 4) and (1, 4) to triangulate.

M 6.3.2 Approximation for a disjoint partition

In this section, we develop the basic form of the approximations for the case of a
pairwise disjoint residual partition. (i.e., Aa ,n A6 = 0 for all Aa $ Ab E R). Given
such a residual partition R and a core set A, we define:

GA;R(Q) = D(QA I1 PA) + Z:{D(QA uA Al PAu A) - D(QA I11PA)} (6.15)
AcR

The function gA; depends on the collection of distributions

Q :'QA U {QAU A IA CR}

where the core approximating distribution QA was defined in equation (6.5); and the
auxiliary distributions QA u A are defined in equation (6.8). The variational problem
of interest is the following:

QnA;a(16)
{s. t M(QA U A) =QA V A R

To illustrate the case of a disjoint residual partition, we present a simple example
that leads to the Bethe free energy [180] of belief propagation:
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Example 6.3.2 (Bethe free energy). Consider the set-up of Example 6.2.5, where
A = V; and the core and auxiliary distributions have the form:

QA(x) = flQ(s)
S&V

Q(xa,xon)
QAU(X)(x) = QQ(x ) (S)

Q(XU)Q(xzu) E

PA (x) c flOs (Xs)
seV

PAUU )X) c 4'v (xu, xv) fl Osb(xs)
sCV

Here we have dropped the distinction between Q and Q in defining QA U (u,, since the
marginalization constraints ensure that they are the same.

Substituting these relations into equation (6.15) yields, after some re-arrangements,
the following cost function:

UA;R(Q) = C+> Q>Q(XS)log0Q(XS)
sEV x.

+ Q(xSIxt) log [ Q(xS, rt) -logV'st(xsrrt)] (6.17)
(s't)C&tS ,Xt LQ(xs)Q(xt)

where C is a constant independent of Q.
The first summation in equation (6.17), which arises from the KL divergence term

D(QA 11 PA) in equation (6.15), can be viewed as a prior encouraging the fully factorized

QA to be close to the fully factorized PA. In addition to this prior, each edge (s, t) £ S
contributes a term to the second summation, which couples adjacent pairs of random
variables x, and xt.

In this specific context, the variational problem (6.16) assumes the following form:
minimize the cost functional of equation (6.17) as a function of {Q, Qat}, subject to
the marginalization constraints derived in Example 6.2.5:

>3Q(xS1xt) = Q(xt)

>3Q(x8 ,xl) = Q(xS)

for all node pairs (s, t) E 8.
The functional of equation (6.17), aside from the additive constant, is equivalent to

the Bethe free energy [180]. Note that with the exception of tree-structured graphs,
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the function 9A;a(Q) J D(qII p) + C. Herein arises the primary source of error in the
approximation. 1

As shown by Yedidia et al. [180], the belief propagation (BP) algorithm is a particu-
lar technique for attempting to minimize the Bethe free energy subject to the marginal-
ization constraints associated with variational problem (6.16). Overall, these relations
illustrate that BP, as a technique for attempting to minimize the Qa1 functional with
a fully factorized core set, can be viewed as a sequence of updates to a fully factor-
ized distribution QA. This fact has been pointed out by a number of researchers [e.g.,
77,131,132,147].

U 6.3.3 Approximation for a non-disjoint partition

When the partition R is no longer pairwise disjoint, a minor modification to the cost
function of equation (6.15) is required. In particular, for a non-disjoint partition, an
unmodified QA;R would count each element that appears in a non-empty intersection
Aa n A, more than once. It is therefore necessary to subtract off terms corresponding
to these intersections. If all the higher-order intersections Aa n A n Ac are empty, then
we are finished; otherwise, we need to add back in triplet terms. The basic principle at
work here is that of inclusion-exclusion [168].

When there are at most pairwise intersections among elements a of the augmented
residual partition I, we define the following family of cost functions:

QA;R(Q) = D(QAII1 PA)+ SE{D(QA u AII1 PAu A)--D(QA l11PA)}
AcR

- D(QAUA A nAb 1 PAuA nnA) -D(QA II PA)} (6.18)

where the second sum ranges over all distinct pairs Aa, A, e R. For this non-disjoint
partition, the notation Q refers to the collection of distributions

Q 4 QA U {QA u AIAE R } U {QA uanA IAa, ACR;anab#0} (6.19)

It is clear that equation (6.18) can be further generalized to the case where higher-order
intersections of residual sets are also non-empty. In particular, to include triplet terms,
we would need to add back in terms involving D(QA u a.nanAc I Q1 A). In the interests
of notational simplicity, we limit ourselves to at most pairwise intersections.

The associated variational problem is the following:

mingA; a(Q)

s.t M(QA u alnA) = QA V Aa$Aj, s.t anAz= 0 (6.20)

and M(QA u A) = QA VA ECR

'Another source of error is the possibility of obtaining local minima in solving the associated varia-
tional problem (6.16).
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Figure 6.5. 4-plaque Kikuchi approximation on a 3 x 3 grid. (a) 4-plaque clustering
of original grid. (b) Fully disconnected core approximation on clustered variables. (c)
Auxiliary structure formed by adding in the edges a 1 associated with the 4-plaque
{1, 2,4,5}. (d) Let a 2 be the augmented residual set associated with the 4-plaque
{ 4, 5, 7, 8}. Overlap between residual terms A1,uand 2 .

The following example illustrates a non-disjointpartition in the context of a Kikuchi
approximation [1141:

Example 6.3.3 (Kikuchi approximation). We now consider a form of Kikuchi ap-
proximation known as 4-plaque clustering, as applied to a regular grid by Yedidia et
al. [180]. In particular, the 4-plaques arise from clustering the nodes of a 3 x 3 grid
into groups of four, as shown in Figure 6.5(a). The associated core structure is the
fully disconnected graph shown in Figure 6.5(b), whose nodes are formed by particu-

lar clusters of the original graph. In particular, we retain all the 2-node intersections
between adjacent 4-plaques (shown in rectangular boxes), the 1-node intersections of
these intersections, plus any remaining singleton nodes. In Figure 6.5(b), node 5 is the
single example of an intersection between the intersections (node pairs) of 4-plaques.

For this 3 x 3 grid, the residual set R consists of four terms, each of which corre-
sponds to adding in the interactions associated with a particular 4-plaque. For instance,
including the 4-plaque { 1, 2, 4, 5} is equivalent to adding in the set of edges

Al1 = {(1, 25), (1,45),1(5, 25), (5,45)} (6.21)

where the notation (s, hi) denotes the edge between node s and the clustered node
{ t, u}. However, so that the induced graph is triangulated, we need to augment this
residual set to a 1 = { Al, (1, 5)}; the resulting triangulated graph 9(A U al) is shown in
Figure 6.5(c). Here it should be understood that (for example) the edge between {4, 5}
and 5 means that the two random variables labeled with 5 are equated. The pairwise
constraint 'b45 between X 4 and X 5 is incorporated when defining the cluster {4, 5}.

The partition is not disjoint, since for example the residual sets A 1 defined in equa-
tion (6.21) and the residual set

A2 A {(5,45),(5,58),(7,58),(7,45)}
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associated with the 4-plaque {4, 5,7, 8} have a non-empty intersection (5,45). This non-
empty intersection is represented by the dotted ellipse in Figure 6.5(d). For this reason,
it is necessary to use the modified cost function of equation (6.18). This cost function
is equivalent (aside from constants not dependent on Q) to the Kikuchi approximation
used by Yedidia et al. [180].

Thus, like the Bethe free energy of belief propagation in Example (6.3.2), this
Kikuchi approximation corresponds to using a fully factorized core distribution, albeit

one defined on a graph formed by clustering nodes.

0 6.3.4 Properties of the approximation

In what sense do the cost functions of equations (6.15) and (6.18) constitute approxima-
tions to the Kullback-Leibler divergence? Moreover, what factors govern their accuracy?

In this section, we establish a number of properties that help to answer these questions.
Suppose that we are given a target distribution p of the form in equation (6.4), and

that q is an approximation to p. We split the KL divergence between q and p into three
terms:

D(q Ip) = -H(q) - >3 q(x) E log &C(x) + log Z(p) (6.23)
xEXN eeC

Here H(q) = - ExxN q(x) log q(x) is the entropy of q. Following the terminology of
statistical physics [135], we shall refer to the second term as the average energy. The
log partition function log Z(p) is a constant independent of q, so that we can ignore
it. We shall show that the cost functions of equations (6.15) and (6.18) both treat the
energy term exactly, whereas the treatment of the entropy term, in contrast, is usually
approximate.

Lemma 6.3.1. If A U R - C (i.e., Assumption 6.2.2 holds), then the cost functions
of equation (6.15) and equation (6.18) both capture the average energy term in equa-

tion (6.23) exactly.

Proof. We give the details of the proof for the disjoint residual partition of equa-
tion (6.15). Using the definition of PA u A in equation (6.7), it can be seen that each
term D(QA U A PA u A) - D(QA I PA) contributes energy terms of the form:

SE3Q (xc)log Xc(x)
xeXN CeA

Including the terms contributed by D(QA 11 PA), we have:

E [>Q(Xcc) logOc (x) ± S ZQ(xc)logkc (x)] S Q (xc) log0C(x)
xEXN cEA AERCEA xEXNECE

where we have used Assumption 6.2.2 and the fact that the partition is pairwise disjoint.

Thus, the average energy term is treated exactly.
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The non-disjoint partition of equation (6.18) can be treated similarly. Here the
second summation corrects the overcounting induced by the non-disjoint residual sets.

F

While the energy is always captured exactly, the entropy term is usually treated in
only an approximate manner. The nature of the approximation depends on the relation
between the core structure A and partition R, and the structure of the original graph.
There are some straight-forward situations in which the cost function will be exact in
the sense of Definition 6.3.1:

(a) for any graph, the approximation is exact whenever the core structure corresponds
to the full graph (so that the residual set is empty).

(b) for any graph and core structure, the approximation is exact whenever the residual
set is partitioned only into a single element A. For instance, using a spanning
tree core on a single loop will always yield an exact result.

Neither of these cases are interesting, since such choices of (A; R) mean that computing
the cost function QA;a is as costly as computing the original KL divergence. However,
there are tractable and non-trivial choices of A and R for which the cost function is
still exact. Important cases include a fully factorized core approximation applied to
tree-structured graph (to be discussed in the following paragraph), and generalizations
of this case (which are covered by Proposition 6.3.1 below). The exactness, and more
generally the relative accuracy of the 9A;R approximation, depends on an interaction
between the structures of the core, residual set, and full graph.

Interestingly, the core structure need not cover any significant portion of the full
clique set C in order for the approximation to be exact. This property is best illustrated
by Example 6.3.2, where the core structure is the vertex set V, and the residual partition
is formed of individual edges (A = (u, v)). When the underlying graph 9 is tree-
structured, the cost function of equation (6.17) is equivalent to the KL divergence.
This exactness holds despite the gap between the core structure (V) and the set of
cliques of the full graph (V U 8). The key property turns out to be whether or not the
core structure and residual set cover the maximal cliques of a triangulated version of 9.
With reference to our example, a tree is already triangulated and its maximal cliques
correspond to the edges; hence, the set V U S trivially contains all the maximal cliques.

This observation can be suitably generalized as follows:

Proposition 6.3.1. Let 6 be the clique set of a triangulated version 9 of the orig-
inal graph. For a disjoint residual partition, the 9 A;R function of equation (6.15) is

equivalent to the KL divergence in the sense of Definition 6.3.1 if and only if A UR = C.

Proof. If A U R = C, then the function 9Aa will include a term for every maximal

clique and separator set in a junction tree corresponding to C. Moreover, the disjoint-
ness of the residual partition ensures that it includes the correct number of such terms,
as specified by the junction tree representation of q(x).
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Conversely, if A U R is a strict subset of C, then there is some maximal clique C* in
C not covered by A U R. By the junction tree representation of q(x), the entropy H(q)
will be a function of the local marginal distribution Q(xc.). This dependence will not
be captured by the QA;R function of equation (6.15); hence, it will in general be only
an approximation to the KL divergence. E

S6.3.5 Illustrative examples

In this section, we consider a number of illustrative examples to develop further insight.

Example 6.3.4 (Exactness with a disjoint partition). To provide an illustration
of Proposition 6.3.1, consider the simple 2-square graph 9 shown in Figure 6.6(a). Panel
(b) shows a particular triangulated version 9. As the core structure A, we choose the

edges (and vertices) corresponding to the spanning tree shown in Figure 6.6(c). We
then partition the residual set into the two edges A1 = (1, 2) and A2 = (5, 6). With
these choices, Minka [131] showed that his expectation-propagation algorithm would
yield an exact result. We shall also establish an algorithm-independent exactness -
in particular, by showing that in this case, the cost function QA; R is equivalent to
the Kullback-Leibler divergence. Therefore, the approximation is exact in the sense of
Definition 6.3.1, and any technique for solving the associated variational problem (6.16)
will yield the exact marginals of the target distribution p.

We first demonstrate exactness by recourse to Proposition 6.3.1. We begin by
considering the augmented structures A U A, i = 1, 2. We form the augmented edge
sets A 1 = {A 1 , (1, 4)} and A2 = {A 2 , (3, 6)} so that the respective induced subgraphs
9(A U As), i = 1, 2, illustrated in Figures_6.6(d) and (e) respectively, are triangulated.
It is not difficult to see that the set A U R covers the clique set C of the triangulated
version 9 shown panel (b). Therefore, Proposition 6.3.1 assures that the QA; R function
is an exact representation of the KL divergence in the sense of Definition 6.3.1.

It provides additional insight to demonstrate this exactness in a constructive fashion.
According to the junction tree representation applied to the triangulated version 9 of
(b), any distribution q(x) that is Markov with respect to 9 factorizes as:

q(x) = Q124Q134Q346Q356 (6.24)
Q14Q34Q36

where we have omitted the explicit dependence of the Q terms on x for notational
simplicity. The terms in the numerator of equation (6.24) correspond to maximal
cliques of a junction tree given by 9, whereas the terms in the denominator correspond
to separator sets.

Next, any core distribution over the tree shown in Figure 6.6(c) must factorize as

QA = Q13Q24Q34Q35Q46(6.25)

Now consider the auxiliary distribution QA u A defined on the graph in panel (d); by
applying the junction tree representation to this triangulated graph, we are guaranteed
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Figure 6.6. Non-trivial case where the 9A; R approximation is exact. (a) Original

2-square graph g. (b) Triangulated version 9. (c) Core structure is the spanning tree
shown. Residual set is partitioned into A, = (1, 2) and A2 = (5, 6); these sets are
augmented to form A1 and A2 . (e) Auxiliary structure A U A 1. (e) Auxiliary structure

A U A2 .

that QA U A, factorizes as

QAu A, = Q124Q134Q35Q46 (6.26)
Q14Q3Q4

Similarly, any auxiliary distribution QA u A 2 over the graph in Figure 6.6(e) factorizes
as

QA UA 2 = 9356Q346Q13Q24 (6.27)
Q36Q3Q4

Finally, we will show that the cost function QA;a of equation (6.15) combines the
terms QA and QA u Aj in such a way so as to exactly represent the entropy of q(x). In
particular, using equation (6.15), the entropy terms of GA; a are given by:

2

QA (X) log QA (x) + 3 QA U Aj (x) [1log QA u Ai (x) - log QA (X)] (6.28)
XN{ (x)]

Substituting the representations of QA and QA U A , Z = 1, 2 (given in equations (6.25),
(6.26) and (6.27) respectively) into equation (6.28) yields, following some algebra, the
following expression:

xEN{Q 12 4 (x) log Q1 24 (X) + Q13 4 (x) log Q34(X) + Q346(x) log Q346(X)

+ Q356(x) log 9 3 56 (X) - Q 3 4 (X) log Q14 (X) - Q 34 (X) log 9 3 6 (X) - Q 3 6 (X) log Q1 4 (X)
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By computing the negative entropy -H(q) (where q is defined in equation (6.24)), we
see that this is an exact representation of the (negative) entropy of q. Therefore, we
have established in a direct and constructive manner that the cost function g9A,. is
exact in the sense of Definition 6.3.1 for the graph of Figure 6.6(a).

It is also interesting to consider the Kikuchi approximation obtained by the 4-plaque
clustering {1, 2, 3,4} and {3,4,5, 6}, in analogy to Example 6.3.3. To be precise, the
core structure consists of the set of nodes {1, 2, (34), 5, 6}, where (34) denotes the node
formed by clustering 3 and 4 together, as illustrated in Figure 6.7(a). The residual set
associated with {1, 2, 3, 4} is the set of edges A1 = {(1, 2), (1, 34), (2, 34)} as shown in
panel (b), whereas the residual set for {3, 4, 5, 6} is formed of A2 = {(5, 6), (5, 34), (6, 34)},
as shown in panel (c). Here the notation (s, tu) denotes an edge between node s and the
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(a) (b) (c)
Figure 6.7. Kikuchi approximation on 2-square graph. (a) Fully disconnected core with
clustered nodes. (b) Augmented set associated with 4-plaque {1, 2, 3, 4}. (c) Augmented
set associated with 4-plaque {3, 4, 5, 6}.

clustered node (tu). It can be seen that these residual terms cover all maximal cliques
of a triangulated version of the graph in a disjoint manner, so that Proposition 6.3.1
ensures that the Kikuchi approximation is also exact.

Example 6.3.5 (Non-exactness with a non-disjoint partition).
To follow up the previous example, we now illustrate non-exactness, established via
Proposition 6.3.1, in the context of Kikuchi 4-plaque clustering applied to the 3 x 3
grid of Example 6.3.3. In this case, the union of the core structure and the edges A
associated with the 4-plaques does not cover all the cliques of a triangulated version. In
particular, there are two 4-cliques in the center of any triangulated version of the 3 x 3
grid (see Figure 6.1(b)). Neither of these 4-cliques are covered by any of the 4-plaques
in this Kikuchi approximation. Therefore, the function QAxR is, in general, only an
approximation to the KL divergence.

Example 6.3.6 (Disjointness at augmented level). To demonstrate the necessity
of defining the disjointness of a residual partition as in Definition 6.3.2, we continue with
Example 6.3.1. That is, consider again the 2-square graph, which we have illustrated in
Figure 6.8(a). As in Example 6.3.1, we choose as the core set the spanning tree shown
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Figure 6.8. Necessity of defining disjointness at the level of the augmented residual sets.
(a) Alternative spanning tree of 9 from Figure 6.6(a). (b) and (c): Auxiliary structures
formed by adding the residual sets A 1 = (3,4) and A2 = (5,6) respectively. Extra
edges are added to form the corresponding augmented residual sets A 1 = {A 1, (1,4)}
and A2 = {A 2, (1, 4), (3, 4), (3, 6)} to ensure triangulation. The partition is disjoint at
the level of the Ai, but not at the level of the augmented Ai.

in Figure 6.8(b), with the corresponding residual partitions A, = (3, 4) and A2 = (5, 6).
This gives rise to the auxiliary structures shown in Figure 6.8(c) and (d) respectively.
As discussed in Example 6.3.1, the partition {A 1, A2 } is disjoint, whereas the aug-
mented partition formed by A1 = {(3, 4), (1, 4)} and a 2 = {(5, 6), (1, 4), (3, 4), (3, 6)} is
no longer disjoint.

It can be seen that the union A U R covers the clique set C of a triangulated version
9. (In particular, use the triangulated version shown in Figure 6.8(c)). If disjointness
were defined in terms of A 1 and A2 (as opposed to Definition 6.3.2), then the residual
partition R = {A 1, A2 } would be pairwise disjoint, and we would be led to use a cost
function of the form in equation (6.15). Calculations similar to those in Example 6.3.4
show that the approximation is not exact with the cost function of equation (6.15).
Therefore, applying Proposition 6.3.1 would suggest (misleadingly) that the resultant
approximation is exact.

The apparent contradiction is resolved by noting that at the level of the augmented
residual sets, the partition R = {A 1 , A2 } is not pairwise disjoint. Therefore, we should
use the cost function of equation (6.18), which is applicable for non-disjoint partitions.
It can be seen that in accordance with Proposition 6.3.1, this cost function is indeed
exact in the sense of Definition 6.3.1.

Example 6.3.7 (Non-exactness with a disjoint partition).
We now consider a non-exact case for a disjoint residual partition; this example involves

a very simple graph that nonetheless reveals the factors that control the accuracy of the
approximation. In particular, consider the 5-node graph shown in Figure 6.9(a), with
the core structure being the spanning tree shown in Figure 6.9(b). We partition the
residual set into two edges A 1 = (1, 4) and A2 = (4, 5). In order to assure triangulation
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Figure 6.9. Non-exactness of the 9 A;f approximation with a disjoint partition. (a)
Original graph on 5 nodes. (b) Spanning tree as core structure. (c) Auxiliary structure
formed by A U (1, 4). (d) Auxiliary structure formed by A U (4,5). Extra edges (edges
(1, 3) and (3, 5) in panels (c) and (d) respectively) are added so as triangulate these
auxiliary structures. (e) Triangulated version of the original graph.

of the induced graphs 9(A U A.), we augment the Ai, i = 1, 2 to A 1 = {A1,(1, 3)}
and A2 = {A 2 , (3,5)} respectively. The resulting triangulated graphs 9(A U Ai) are
shown in Figures (c) and (d). From these triangulated graphs, it can be seen that the
auxiliary structure of (c) treats the cliques {1, 2, 3}, {1, 3, 4}, and (2, 5) exactly, whereas
(d) treats {2, 3, 5}, {3, 4, 5}, and (1, 2) exactly. The discrepancy with the exact model
becomes clear upon considering a triangulated version of the original graph, as shown
in (e). Here we see that it is necessary to consider (in addition to the previously listed
2 and 3-cliques) the 4-cliques {1, 2, 3, 5} and {1, 3, 4,_5}, both of which are neglected by
the auxiliary structures of (c) and (d). Since A U R C C, Proposition 6.3.1 indicates
that QA; Rwill not be an exact representation of the KL divergence.

In essence, this 9A. function assumes the existence of a distribution q(x) whose
higher order marginals satisfy certain factorization properties that may not hold -
namely:

-X Q123(x)Q235(x)
Q2 3 (x)

- Q13 4 (x)Q 345 (x)
Q3 4 (x)

Therefore, the cost function PA; will not be exact in the sense of Definition 6.3.1.
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N 6.4 Properties of optimal points

Our analysis in the previous section focused on properties of the cost functions QA;R
of equations (6.15) and (6.18). For the purposes of approximate inference, our interest
lies not so much in properties of these cost functions themselves, but rather in the
associated minimizing arguments Q* of the variational problems (6.16) and (6.20). Of
course, our first order of business is to establish the existence of such minima (whether
local or global). Having done so, we then turn to an investigation of the properties of
such optimal points. Of primary interest here is the relation between such a point Q*,
and the true marginals P of the target distribution p(x).

The key result of this section is a form of invariance satisfied by any local minimum
Q* This property is a generalization of the invariance satisfied by the TRP/BP up-
dates, as developed in Chapter 5. In later sections, we shall explore the consequences of
this invariance, especially its use in characterizing the error between the approximate
and exact marginals.

M 6.4.1 Existence of local minima

We begin by establishing that the variational problems (6.16) and (6.20) always have so-
lutions. It is clear that the set of points that satisfy the marginalization constraints asso-
ciated with these variational problems is always non-empty; in particular, the marginals
corresponding to the target distribution p(x) belong to the constraint set. Therefore, in
order to prove the existence of a solution, it suffices to establish that the cost function
9 A;R is bounded below.

Lemma 6.4.1. The cost function 9 A;R is bounded below for all Q.

Proof We assume without loss of generality that oc (xc) 1 for all C E C and x E XN.
(This assumption can be satisfied by rescaling the compatibility functions as necessary,
which will only affect the normalization constant). We decompose the function 9 A;F
into entropy and average energy terms as follows:

9A;R(Q) = (1- RI) H(QA) + S H(QA u A) - Q(xc)logfrc(xc) + K
AER XCXNCC

where IR denotes the number of terms in the residual partition and K is a fixed finite
constant independent of Q. For discrete random variables, entropy is bounded both
above and below [41]; therefore, the term

(1- RI) H(QA) + 5 H(QA U A)
AER

is bounded below. Since - log'4c (xc) > 0 and Q(xc) > 0 for all x E XN, the second
energy term is also bounded below.

A similar argument establishes that the cost function of problem (6.20) is bounded
below. F
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0 6.4.2 Invariance of optimal points

As developed in Chapter 5, an important property of TRP (or the reparameterization
form of BP) is that the distribution p(x) on the graph remains invariant under the
updates. In this section, we establish a generalized form of this invariance that applies
to local minima Q* of the variational problems (6.16) and (6.20). In particular, we show
that the collection of distributions Q* can be viewed as an alternative parameterization
for the target distribution p(x).

Theorem 6.4.1 (Invariance of local minima).
Any local minimum Q* of variational problem (6.16) is a reparameterization of the

target distribution p in the following sense:

log Q* (x) + [log Q* u A (x) - log Q*X(x)] = log p(x) + K (6.29)
AER

where K is a constant independent of x.
Similarly, any local minimum of variational problem (6.20) is a reparameterization

in the following sense:

log QA(x)+ [log Q*AUA (x) - log Q* (x)]
AER

- S [logQ*AunA (x) -logQ*A(x)] = log p(x) + K (6.30)

Proof We provide a detailed proof of equation (6.29); the proof of equation (6.30)
is extremely similar. To each marginalization constraint M(QA u A) = QA of prob-
lem (6.16), we associate a Lagrange multiplier AA. To specify precisely the nature of
AA, recall from equations (6.12) that the constraint M(QA U A) = QA actually indexes
a collection of marginalization constraints, one for each pair (C, D) in the set ?(A)
defined in equation (6.11). As a result, AA is actually the collection

AA (x) A { A2D(xc) |I(CD) e 3(9) } (6.31)

of Lagrange multiplier functions, where A, (xc) is associated with the constraint

E -D(X'v) = QC (XC)

xgs.t x'2 =xc~rx Q~e

To simplify our notation, we define:

AA(x) 0 [QA (x) - M(QA u A (X))] A 5 A&(xc) Qc(xc) -- x P Q(x)]
(C;')e A(A);-

A (x) e1(x) A 5A7(xc)
(C;D)e]3(A)
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Moreover, we don't enforce the normalization constraints (e.g., E XN QA(X) = 1)
explicitly; instead, we use an arbitrary constant K (whose definition will change from
line to line) to enforce normalization where appropriate.

Given this definition of the Lagrange multipliers AA, we then form the Lagrangian
associated with variational problem (6.16):

£(Q; A) = 9A;R(Q)+ S S AA(x).e [QA(x) -M(QAuA)(x)]
xEXN AER

= (1- R) D(QA 1 PA)+S1:D(QA u AII1 PA u A)
AER

+ 5 5 AA(x). [QA (x) - M(QA u A(x)]
xEXN AcR

From here, the crucial idea is that for any local minimum Q of problem (6.16), we are
guaranteed the existence of an associated collection of Lagrange multipliers A* = {A*}
such that the Lagrangian stationary conditions

VZ(Q *; A*) = 0 (6.33)

hold. The existence of these Lagrange multipliers follows because the marginalization
constraints of problem (6.16) are all linear. 2 As a consequence, we can use the stationary
condition of equation (6.33) to characterize any local minimum Q* of problem (6.16).

By taking derivatives of the Lagrangian with respect to QA and QA u A and setting
them to zero, we obtain a set of equations equivalent to equation (6.33):

(1 - RI) log Q*(x) = (1- RI) log PA (x) -- E A*(x) e 1(x) + Kcor(6.34a)
AeR

log Q*A(x) = logPAuA(x)+ A* (x)e1(x)+KA (6.34b)

where Kcore and KA represent constants to ensure proper normalization of QA and
QA u a respectively.

We now add equation (6.34a) to JRI copies (one for each A E R) of equation (6.20)
to obtain:

(1 - IRI) logQ* (x) + 5 logQ* A(x) = (1 - |RI) logPA(x) + 5 log PA u A(x) + K
AEFR AER

(6.35)

where K = Kcore +EAER KA. Note how the Lagrange multipliers A* themselves have
cancelled out.

Finally, we observe that by construction, the RHS of equation (6.35) is closely
related to the log of the target distribution p(x) x cec 'ikc (xc). In particular, by an

2 Local minima of constrained optimization problems with non-linear constraints don't necessarily
have Lagrange multipliers; see Bertsekas [20] for a counterexample.
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argument similar to the proof of Lemma 6.3.1, we write (omitting explicit dependence
on x for notational simplicity):

(1-IRI) glogPA±+ 1ogPAu A+K = (1-IRI) logc + S log c+ K
AeR CEA AER CcAUA

= logc +±E 1log Oc+ K
CeA AER CCA

= 5log #ct+ K
CeC

= logp + K

where K is an arbitrary constant that absorbs terms not dependent on x (i.e., its
definition can change from line to line). This establishes equation (6.29). A similar
argument can be used to prove equation (6.30).

D

U 6.4.3 Generalized message-passing for minimization

Theorem 6.4.1 is a characterization of local minima that is independent of the technique
used to find them. It is nonetheless interesting to consider iterative schemes that are
generalizations of BP message-passing. In this section, we describe such an algorithm
for problem (6.16); a similar algorithm can be developed for problem (6.20). This
algorithm has the interesting property that all of its iterates (not just its fixed points)
satisfy the invariance principle of Theorem 6.4.1.

The essential intuition lies in the Lagrangian conditions that were exploited to prove
Theorem 6.4.1. In order to develop this intuition, we recall the notation used in the
proof of Theorem 6.4.1:

AA(x) A { c'(xc) I (C, D) e ) } (6.36a)
AA(x) * 1(x) 4 5 A;(xC) (6.36b)

(C;D)e)j3(A)

where the set of clique pairs T(9) was defined earlier in equation (6.11). Note that
each AX D(xc) depends only on the subvector xc. Therefore, AA(x) e 1(x) is defined in
terms of an additive decomposition of relatively local functions. In fact, since for any
pair (C; D) E (A), the clique C is a member C(A), the function AA(x) e 1(x) respects
the structure of the core set A. This local nature of AA is crucial.

With this notation, the Lagrangian stationary conditions of equations (6.34a) and (6.34b)
dictate that the approximating distributions {QA, QA u A} should be defined in terms
of the Lagrange multipliers {AA} as follows:

QA (x) = n PA (x) exp {Ri1 1 S A, (x) * I(x)} (6.37a)
AER

QA u A (x) = r PAuA(x) exp{ AA (x)e l(x)} (6.37b)
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where K denotes a normalization factor. The key is the marginalization constraint
M(QA u A(x)) = QA(x), which places restrictions on the Lagrange multipliers {AA}.

So as to define an algorithm that reduces to belief propagation, we perform a linear
transformation of the Lagrange multipliers, thereby defining a set of (log) messages. In
particular, the set of messages { MA A E R } is linked to the {AA} via the invertible
relations:

logMA (x) = RA T(x) - AA(x) (6.38a)
J ITcER/A R-I

AA (x) = log My (x) (6.38b)
T-cR/A

Each log MA has the same structure as AA; that is, it decomposes into a sum of local
functions on the cliques of A.

As a multiplicative analog to AA * 1(x), define the product notation:

MA(x) 0 1(x) H MfV(x) (6.39)
(C;D')cE3(A)

Then equations (6.37a) and (6.37b) can be re-written in terms of these messages as
follows:

Q A (x) K= PA (x) fJ MA (x) 0 1(x) (6.40a)
A ER

QA u A (x) = K PA u A (x) J MT(x)Q®1(x) (6.40b)
TER/A

where K denotes a normalization factor (whose definition may be different from line to
line).

We now need to update the messages so that the associated marginalization con-
straints M(QA u A) = QA are satisfied; we do so with Algorithm 6.4.1. Although nor-
malizing the messages in equation (6.41) is not strictly necessary, it tends to aid com-
putational stability.

As with the reparameterization algorithms of Chapter 5, we can dispense entirely
with the messages by reformulating the updates in a pure reparameterization form as
follows:

HM[Qn UA(x)]
Q"' (x) = K PA(x) Q () (6.42a)

cR/A Q(x

T ER/A A

Moreover, it is clear by the construction of this generalized message-passing scheme
that its fixed points satisfy the Lagrangian conditions associated with problem (6.16).
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Algorithm 6.4.1 (Generalized message-passing: (GMP)).

1. Initialize messages M% for all A C R.

2. At iteration n = 0,1,..., core and auxiliary distributions QA and QA u A are
specified in terms of the messages {M&} as in equations (6.40a) and (6.40b).

3. Update messages:

MjI(x) = M&(x) [QAUA(x)1 (6.41)
QX(x)

where n denotes a normalization factor.

Therefore, its fixed points obey the invariance principle of Theorem 6.4.1. However, a
much stronger statement can be made. By applying the same argument used in the
proof of Theorem 6.4.1 to the representations of Q and Qu in equations (6.42a)
and (6.42b), it can be seen that all the iterates of generalized message-passing - not
just fixed points - satisfy the invariance principle of Theorem 6.4.1.

To gain intuition for this generalized message-passing, we now consider a few ex-
amples. We begin with the special case where the core structure is A = V, and the
residual structure R is partitioned into individual edges A = (s, t). We show that in
this case the message-passing of the GMP algorithm, modulo some minor notational
differences, corresponds to belief propagation.

Example 6.4.1 (Belief propagation).
When A = V, then the CTD PA(x) takes the form

PA(x) cR J4s (s) (6.43)
sEV

Similarly, since the cliques of A are simply vertices, each message MA =_M", in the
generalized message-passing of the GMP algorithm is a fully factorized quantity, which
we write as follows:

MuV (x) = 7JMuv;s (xs) (6.44)
sEV

I.e., it has a term corresponding to each node s E V.
From the definitions of QA and QA u A in equations (6.37a) and (6.37b) respectively,

as well as the message update equation (6.41), it can be seen that when A ={(u,v)},

then the message components Muv;s are constant for all nodes s $ u, v. Thus, each
M (x) is actually a function of only x and x,. As a consequence, the only actual
messages sent to a node s are from its neighbors Af(s) { t E VI (s,t) c E }.
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Figure 6.10. Illustration of structures involved in BP. (a) Original graph. (b) Fully
disconnected core structure A. (c) Augmented structure formed by a single edge (in
this case edge (1, 2)).

Figure 6.10 illustrates this type of decomposition; panel (a) shows the original graph
g. The CAD QA(x) is defined on the fully disconnected core structure shown in (b).
The message M(i),(x) is associated with the augmented structure obtained by adding
edge (1, 2) to the core structure, as illustrated in panel (c). It is clear that adding edge
(1, 2) will not affect the marginals at nodes s $ 1, 2.

Based on these properties, we can rewrite QA, as defined in equation (6.42a), in the
following way:

QA(x) = K 7J {s(xs) J Mst;s(xs) (6.45)
sEV teN(s)

Note that the term within curly braces in equation (6.45), modulo slightly altered
notation, is precisely equivalent to the usual BP equation for the approximate single
node marginal at node s (see equation (5.4) of Chapter 5).

Similarly, the distribution PA u (u,v) has the form:

PAu (,v)(X)t cx 7J 4s(x 5 ) 4'o (xz, rn) (6.46)
sEV

Using this form of PA u (u,v) and the definition of QA U (u,v) from equation (6.37b), it
can be shown that the auxiliary distribution QA U (u,v) (x) has the following structure:

QA U (u,v)(X) = K ]7J 1/s(Xs) i/' (xu,xT) J7J Msj;u(xu) ]7J Msg;v(x) (6.47)
seV seA(u)/s sCA(v)/s

If we isolate the components of equation (6.47) depending only on x and xv, then we
obtain

QA U (u,)(Xu, Xv) = K QK(xu) ,bv(xv) (z ]7J MsIj;u(xU ) J7J Msv;v(xv)
seA(u)/s seA(v)/s

(6.48)
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Again, equation (6.48), modulo minor differences in notation, is equivalent to the BP
equations for the joint pairwise marginal (see, e.g., equation (5.21b) of Chapter 5).

Overall, we conclude that in the special case where A = V and the residual set is
partitioned into single edges, the generalized message-passing of the GMP algorithm is
equivalent to belief propagation.

Example 6.4.2 (Flow of messages).
To illustrate the flow of messages in GMP, we now consider an example on a more
complex core structure. In particular, we return to the 5-node graph shown of Exam-
ple 6.3.7; we have redrawn it in Figure 6.11(a). As a core structure, we again use the
spanning tree shown in Figure 6.11(b), and we choose the same residual sets AI = (1, 3)
and A2 = (3, 5), which gives rise to the (augmented) structures shown in panels (c) and
(d) respectively.

If GMP is applied to this example, there are only two sets of messages - namely,
{MAs, i = 1, 2}. Computing the CAD QA(x) requires knowledge of the CTD PA(x),
as well as both messages:

QA(x) = K PA(x)MA1 (x)MA2 (X)

Accordingly, we can think of the messages {MA , i = 1, 2} being passed from the
augmented structures {A U Ai, i = 1, 2} to the core structure, as illustrated by the
diagonally upward arrows in Figure 6.11(e). Since the core structure is a tree, the
messages are tree-structured quantities.

To compute the auxiliary distribution QA u A1 requires knowledge of PA u A 1, and
also the message MA 2. Accordingly, we think of the message MA 2 as being passed
from the structure A U A 2 to A U A1 , following the right-to-left arrow in Figure 6.11(e).
Similarly, the message MA, is passed from left to right - that is, from A U A 1 to
Au A2 -

U 6.4.4 Largest globally consistent substructure

Any optimal point Q* of problem (6.16) consists of a collection of distributions: the
core approximating distribution {Q*X} is defined by the core structure G(A), whereas

the auxiliary distributions {QA u A A E R } are defined on the augmented structures

{W(A U A) I A E R}. Recall that the CAD Q* is defined by a product of local

marginals over the maximal cliques and separator sets of a junction tree corresponding
to the triangulated 9(A):

Q*A(X) =HCECmax(A) Q*(xC) (6.49)

HCECep(A) Q*(xc)

The auxiliary distributions Q* A are defined by similar products of local marginals,
as in equation (6.10b).
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Figure 6.11. Illustration of message-passing flow for a simple 5-node graph. (a) Orig-
inal graph. (b) Spanning tree core structure. (c) Augmented graph 9(A U a 1 ). (d)
Augmented graph g(A U A2 ). (e) Flow of messages in GMP.

With respect to the single-node marginals Q* of Q*, each of the auxiliary distribu-
tions are globally consistent, in the sense that they marginalize down appropriately:

S Q*AUA(x') = Q*(Xs) (6.50)
x' s.t X,=X

These marginalization conditions are assured by the constraints associated with prob-
lem (6.16).

A natural question to ask is the following: what is the largest structure over which
solutions Q* are globally consistent? We call this the largest globally consistent struc-
ture. It should be understood that we require any solution Q* to be consistent over this
structure. This requirement excludes the possibility of artfully constructing problems
(as we did in Section 5.4.6 for TRP/BP), such that fortuitous cancellations lead to
consistency. That is, the global consistency of interest in this section is generic, in the

180



Sec. 6.4. Properties of optimal points

sense that it holds for all problem instances.
It is important to note that the largest globally consistent structure can be consid-

erably larger than any of the augmented sets A U A, as demonstrated by the following
example:

Example 6.4.3 (Spanning trees for belief propagation).
Recall the Bethe free energy and belief propagation (BP) as discussed in Examples 6.3.2

and 6.4.1. We found that the BP algorithm can be viewed as updating an approximat-

1 2 3 1 20233 1 22 30 1 2 3

4 5 6 41566 4 5 6 4 5 6

0 0 0 0 0 0
7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

(a) (b) (c) (d) (e)
Figure 6.12. Spanning trees are the largest globally consistent substructure for BP. (a)
Original 3 x 3 grid. (b) Fully disconnected graph is the core of BP. (c) Augmented struc-
ture A U Aj formed by adding the single edge (2,5). (d), (e) BP solution is guaranteed
to be globally consistent over any embedded spanning tree.

ing distribution QA defined on a fully disconnected graph. The CAD is completely
factorized QA(x) = ]]ssy Q,(x,). Residual terms for the usual form of BP correspond
to single edges. Therefore, in addition to the single-node marginals of QA, the collection
of auxiliary distributions QA u A gives rise to set of local pseudomarginals Qat(x,, Xt),
one for each edge (s, t) E 8. As an illustrative example, Figure 6.12(a) shows a 3 x 3
grid, and panel (b) shows the corresponding fully disconnected core structure. The
augmented structure A U A, corresponding to the addition of edge (2,5), is shown in
panel (c).

Upon convergence to a fixed point Q*, each of the pseudomarginals Q* for any
(s, t) c E is guaranteed to be consistent with single node marginals Q* in the following
sense:

Q*(Xs,') = Q*(X) (6.51)

This is equivalent to the condition Z Q*. X (sf(x') QS ), so that the
auxiliary distributions Q*A U A are globally consistent with respect to the single-node
marginals.

However, it can be seen that global consistency holds for much larger substructures.
In particular, given the edge set S(T) of any tree embedded within g, we construct a
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distribution that respects its structure in the usual junction tree manner:

jij(x)AflQ(s) jjQ*(xs, xt) (6.52)
q* x HQs*(XS H s* (XS) Qt* (Xt)sEV (s,t)c(T)Q

For any tree structure, local consistency in the sense of equation (6.51) is equivalent to
global consistency [122] - viz.:

q*(x') = Q*(xs)
x' s.t '=rL;

for all nodes s E V. This argument holds for any tree (or forest) embedded within the
graph g. Therefore, the largest globally consistent substructures are spanning trees;
two particular spanning trees of the 3 x 3 grid in Figure 6.12(a) are illustrated in panels
(d) and (e).

Although the BP solution Q* is globally consistent over any spanning tree, it will
not (in general) be consistent over the full graph. In fact, as pointed out in Section 6.1.1,
it is possible that there exists no distribution that, when marginalized, gives rise to the
{Q*J on the full graph. I.e., the full set of {Q*} may fail to be globally consistent with
any distribution whatsoever. See [57] for a simple example where this degeneracy arises.
The spanning tree condition guarantees only that a subset of the {Q%} - namely, those
corresponding to edges in a spanning tree - are globally consistent. It is for this reason
that the terminology pseudomarginals is appropriate.

For the case of belief propagation, the set A U R (which is equivalent to A U R) is
given by the union V U E C d. Spanning trees correspond to the largest triangulated
substructure that can be formed with this particular subset of cliques (i.e., with vertices
and edges). This property is actually quite general, as summarized by the following
result.

Proposition 6.4.1 (Largest globally consistent substructure). Given an approx-
imation specified by a core set A and (augmented) residual set R, the largest globally
consistent substructures are given by the largest triangulated subgraphs that can be
formed by joining together cliques (not necessarily maximal) from the set A U R.

Proof. Given a triangulated subgraph formed of cliques in A U R, we can always form a
distribution on it by taking a combination of local marginals over the maximal cliques
and separator sets, as specified by the junction tree representation. (See Section 2.1.5
for more details on the junction tree representation). The marginalization constraints
associated with variational problems (6.16) and (6.20) assure that each of these marginal
distributions are locally consistent. Local consistency implies global consistency for a
triangulated graph [121]3, so that the distribution on the triangulated subgraph is

3 Indeed, this is the essence of the junction tree representation: it specifies the necessary degree of
local consistency that assures global consistency.
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Figure 6.13. Embedded 3-clique trees are the largest globally consistent substructures
for this Kikuchi approximation. (a) Fully factorized core formed of clustered nodes. (b)
Edges associated with augmented residual term A for a particular 4-plaque {1, 2, 4, 5}.
Largest globally consistent substructures are 3-clique trees (i.e., graphs of treewidth 2).
Particular examples of such graphs are shown in (c) and (d).

globally consistent. If the subgraph is not triangulated, it will not be possible in a
generic sense to form a locally consistent distribution that remains globally consistent.

To illustrate Proposition 6.4.1, we now consider the largest consistent substructures
for a particular Kikuchi approximation.

Example 6.4.4 (Largest consistent substructures for Kikuchi).
Recall the 4-plaque Kikuchi approximation applied to the 3 x 3 grid, as discussed in

Example 6.3.3. This clustering procedure gives rise to the fully factorized core structure
of clustered nodes, as illustrated in Figure 6.13(a). The augmented structures A U 2K
correspond to the set of edges associated with a given 4-plaque, plus additional edges to
triangulate. For the particular case of adding the 4-plaque {1, 2,4, 5}, the corresponding
augmented structure is illustrated in panel (b).

The analog of a spanning tree for this Kikuchi approximation is a clique tree formed
by 3-cliques. For the 3 x 3 grid, two such 3-clique trees are shown in panels (c) and
(d). Alternatively, these graphs can be said to have treewidth 2; an ordinary tree is
formed of edges (i.e., 2-cliques), and has treewidth 1. See [17,162] for more details on
hypergraphs and the notion of treewidth.

Again, let Q be a fixed point of the variational problem associated with this Kikuchi
approximation. Now consider a distribution formed by taking products of the local
marginals in Q over maximal cliques and separator sets of one of these 3-clique trees. By
a line of reasoning similar to Example 6.4.3, it can be shown that any such distribution
will be globally consistent. Therefore, such 3-clique trees are the analogs for the Kikuchi
approximation of spanning trees for the Bethe approximation. I.e., they are the largest
globally consistent substructures for this Kikuchi approximation.

This notion of largest globally consistent substructure turns out to play an important
role in our analysis of the approximation error.
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0 6.5 Characterization of the error

This section is devoted to analysis of the error between the marginals of the target
distribution p(x), and the approximate marginals of distributions in Q*. As with our
analysis of TRP/BP updates in Chapter 5, the invariance principle of Theorem 6.4.1
allows us to derive an exact expression for this error. This exact relation, though
conceptually interesting, is of limited practical use. However, it does enable us to
derive various bounds on the approximation error. With an upper bound on the log
partition function (see Chapter 7), these bounds are computable, and hence provide
valuable information about the performance of these approximation techniques. For
concreteness, we focus our analysis on the case of single node marginals. However, the
analysis that we describe can be extended easily to marginals defined over larger subsets
of the vertex set.

At a local minimum Q*,the approximate single node marginals Q* are specified by
the core distribution Q*; the desired single node marginals P are specified by the target
distribution p(x). The essential intuition of equation (6.29) is the following: the core
distribution Q* can be viewed as a perturbed version of the target distribution p(x),
where the perturbation is caused by the terms 'AER[log QA A - log QX]. Therefore,
the approximate marginals Q* will also be perturbed versions of the true marginals Ps.

0 6.5.1 Reformulation in exponential parameters

To make this intuition precise, it is convenient to shift our analysis to an exponential
representation. (See Section 2.2 for background on exponential representations and
their properties.) In the analysis to follow, we let 0 = {1a E A } with associated
potentials 45= {,1 a E A } represent a minimal exponential parameterization for the
target distribution p(x) defined on the graph g. We make the following definitions:

(a) let 0 be the exponential parameter distribution of the target distribution; i.e.,
p(x) Ap(x;C).

(b) For any subset B C C, let A(B) C A be the set of indices a associated with
elements of B. Also define

B {aI a CA(B)} (6.53a)

OB * B Y a0.Oa(6.53b)
aEB

(c) for any subset B C C, let 1B be the projection operator onto this structure. That
is:

fJB(g) 4 { 0C a E B } GB B

As an example, we have PA =p(x;HA(6)).

184



Sec. 6.5. Characterization of the error

(d) Similarly, for any parameter vector 0B = { 0 a E A(B) } define an injection
operator to the full set A via

(B , a E CA(B)
0 otherwise

(e) let OA and OA u A be exponential parameters corresponding to the core distribution
QA and auxiliary distributions QA u A respectively.

To illustrate the use of the exponential representation, let * andO0* be expo-
nential parameters corresponding to Q* and Q* u a respectively. Then equation (6.29)
of Theorem 6.4.1 can be restated in the following manner:

I(O*) +> [I(O A) - I(O*)] = a (6.54)
AESR

In the analysis to follow, we will not always be strict in our use of the injection operator;
when it is omitted, it should be understood implicitly that vectors are augmented with
zeroes where necessary so that binary operations make sense.

* 6.5.2 Exact error expression

With this set-up, we can now give an exact characterization of the error between the
approximate and true single node marginals. With d(x3 = j) denoting the indica-
tor function for the random variable x, to assume value j, the exact marginals and
approximate marginals are given, respectively, by the following expressions:

Ps;j = p(xs= j; ) = E[6(x = j)] (6.55a)

Q;j =p(Xs = I; * ) = E [6(x = 1)1 (6.55b)

Using equation (6.54), we now write an exact expression for the error in the single
node marginals:

Ps;j - = *;=E 9= [{exp( [0 u - aAJ kAUA(x) + Nax) - 4 (O) - 1} fs;i(x)j

(6.56)

Although theoretically interesting, the practical use of equation (6.56) is limited, as it
is impossible to exactly compute the LHS. 4 Although the expectation is taken over the
core distribution p(x; 0*) (which is tractable by assumption), within the expectation

is a set of residual terms - namely, exp (ZAER [X A - A* Aua(x)) that

4Indeed, if we could exactly compute this error, then we would have no need for approximate inference
algorithms in the first place.
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includes a term from (at the very least) every edge in G not covered by the core structure
A. Consequently, actually computing this expectation is as difficult as performing exact
inference on the graph !. This intractability motivates the development of bounds on
the error.

0 6.5.3 Exact expression for larger substructures

In deriving equation (6.56), we used the fact that approximations to the single node
marginals are given by Q* = Eox [6(x, = j)]. In fact, the formulation of the variational
problem (6.16) guarantees an additional set of conditions - namely

Q*;j=Eo A[(xs=)] for all A EGR

This relation follows because by the constraints associated with variational problems (6.16)
and (6.20), the auxiliary distribution Q* a (x) = p(x; * Q* ) must marginalize down
to the core distribution Q* . Thus, we obtain an alternative set of expressions for the
difference Ps;j - Q*;j, given in terms of expectations under the distribution p(x; 0X A):

Eo [exp 6**Ax(x)+ z [6Xu-OA]s*AUT±(x)+<(o Au)-<()- 1}(x, = j)

(6.57)

This expression is valid for each A E R.
More generally, error expressions of the form in equation (6.57) are valid for any

distribution (formed from elements of Q*) over a substructure that is globally consis-
tent. As we saw in Section 6.4.4, the largest globally consistent substructure can be
considerably larger than the augmented structures A U A. For example, in the context
of belief propagation, these structures are given by spanning trees (see Example 6.4.3).

* 6.5.4 Bounds on the error

As in Chapter 5, we now derive bounds on the log error in the single node marginals
[log Ps;j - log Q8J]. The first set of bounds in equation (6.58) is based on the fact that
the approximations Q8,i arise from a distribution p(x; 0*) that is a perturbed version
of the target distribution p(x; 6). As a result, we can apply Proposition 3.3.1 to bound
the log difference in the marginals. The second set of bounds in equation (6.59) is based
on the same idea applied to p(x; u A-9,

Theorem 6.5.1. Let * be a local minimum of variational problem (6.16) giving rise to
approximate single node marginals Q8;i. Let P; 4 be the exact marginals corresponding
to the target distribution p(x; 0). Then we have the following upper bound on the error
Es;j = log Q,;j - log P,,j:

Es; < D(O* H 0) - * [O A-- 0*] . covox{1pA, 6(x = j)} (6.58)
Qs;j ACR
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where

[A U A -*OA4] SCoVOX{AuA, 6(x =)} S [0Xu A X-]acOvox{a, 3(x = )}
aEA(AUA)

Similarly, for each A e R, we have the following upper bound:

Es;j < D(0U 116 0*)- . [OcovoxUA{#5(x), 6(x. =j)}

+ S [U -f x *V cov 9 {#T, 6(x =i)} (6.59)
TER/A

Proof. To obtain equation (6.58), we first make use of equation (6.54) to write:

-I(O*) = = [5iI(O uJA) - -(A*X)]
A ER

We then apply Proposition 3.3.1 to the function 6(x= j), and the parameter vectors
9 and 90.

To obtain equation (6.59), we use a different re-arrangement of equation (6.54) -
namely:

S-'(X* U A)='(O*) + [(AXu TU) - (*)]
TER/A;T$A

We then apply Proposition 3.3.1 to the function 6(x5 = j), and the parameter vectors
A and 01A D

Note that as with the analysis of TRP fixed points in Chapter 5, similar arguments
can be applied to derive lower bounds on the error Es;j. We do not write out these
bounds in an explicit form here, as they can be deduced from equations (6.58) and (6.59).

It is also worthwhile noting that equation (6.59) holds for all A E R. Therefore, for a
given node s and state j, we can, in principle, compute the bound of equation (6.58) for
the core distribution, as well as the bound of equation (6.59) for each A E R, and then
choose the tightest of all possible bounds. A similar freedom of choice was associated
with the TRP bounds of Chapter 5, where we were free to choose any spanning tree of
the graph to compute a bound.

A caveat associated with Theorem 6.5.1: it is still necessary to upper bound the log
partition function ND(6), which appears as part of the KL divergence. Techniques for
obtaining such upper bounds are described in Chapter 7.

0 6.6 Empirical simulations

In this section, we illustrate some properties of the approximations considered in this
chapter, as well as the error bounds on their performance (as derived in Section 6.5),
for some simple examples.
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0 6.6.1 When to use an approximation with more complex structure?

We first consider the question of when to use an approximation with more complex
structure. For many problems, TRP/BP fixed points provide accurate approximations
to the marginals, in which case it is undesirable to incur the higher computational cost
associated with a more structured approximation. Here we illustrate with a simple
example that error bounds may be useful in this context.

We begin by forming a distribution p(x; 0*) for a binary valued vector x with a
random choice of attractive potentials (as described in Section 2.2.1) on the 3 x 3
grid. Let P,;1 denote the actual marginal of p(x; 0*) at node s. We then run TRP/BP
on the problem, thereby obtaining a set of approximate single node marginals T*t1 .
We also use this TRP/BP fixed point to compute lower and upper bounds on the
actual marginals P5 , as described in Section 5.5.3. The actual marginals P;, the
TRP/BP approximations T* and these upper and lower bounds are all plotted in panel
(b) of Figure 6.14. As discussed in Example 6.3.2, the core structure underlying the
TRP/BP approximation is a fully disconnected graph; as a reminder, we have plotted
this structure in panel (a).

The TRP/BP approximation in panel (b) is quite poor, as reflected by the relative
looseness of the bounds. Note how the TRP/BP approximation lies beneath the lower
bound on the actual marginals for certain nodes (e.g., node 5), so that we know that it
is a poor approximation even without having to see the actual marginals themselves.

Given that the TRP/BP approximation is poor, we are motivated to try an approx-
imation with a more complex core structure. Here we illustrate a QA; R approximation
using as the core structure the spanning tree illustrated in panel (c), and a set of resid-
ual terms formed by the 4 edges remaining in the 3 x 3 grid that are not included in
this spanning tree. We run the generalized message-passing Algorithm 6.4.1 in order
to find a fixed point of the associated variational problem. The resultant approximate
single node marginals Q*1 are plotted in comparison the actual marginals P;1 in panel
(d). Note that the approximation is excellent. As before, we can use the fixed point Q*
and Theorem 6.5.1 to calculate upper and lower bounds on the actual marginals. In
this case, these bounds are quite tight, which tells us the approximation is quite good.

0 6.6.2 Choice of core structure

Another important question is the effect of varying the choice of core structure used
in a QA; R approximation. Here we investigate the effect of different choices of core
structure of the same complexity - in this case, two different spanning trees of the
same graph.

To investigate this question, we first formed a distribution p(x; 0*) for a binary
valued vector x with a random choice of mixed potentials (as described in Section 2.2.1)
on the fully connected graph on 9 nodes (K9). We then computed the maximum
and minimum weight spanning trees with Kruskal's algorithm [107,116], using 10*j as
the weight on edge (s, t). Using these spanning trees as the core structures, we then
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Figure 6.14. Changes in approximation accuracy and error bounds for TRP/BP com-
pared to a 9A; R approximation using a spanning tree core on the 3 x 3 grid. (a) Fully
disconnected core for BP/TRP. (b) Plots of actual P; 1 and approximate single node
marginals versus node number). Also shown are lower and upper bounds on the actual
marginals, computed from the TRP fixed point. The TRP/BP approximation is quite
poor; the bounds on the exact marginals are relatively loose. (c) Spanning tree core
A for QA; R approximation. (d) Plots of the actual and approximate marginals, as well
as error bounds. The approximation using a spanning tree core is very accurate, as
reflected by tighter bounds.
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computed approximations Q* for the corresponding QA;R approximations, where each
term in the residual set consisted of a single edge.

Panels (a) and (b) of Figure 6.15 show the results for the minimum and maximum
weight spanning trees respectively. In each panel, we plot the approximate marginals
Q* and the actual marginals Ps; versus node number, as well as upper and lower

Bounds on single node marginals Bounds on single node marginals

1- Actual

0.9 - - - . - Structured approx. 0.9 -Structured approx.
- e- Bounds 08 (-Bud0.8 --- --- e---- 0.8 --- Bounds
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0.2 -0,2 - -Q--- -

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Node number Node number

(a) (b)
Figure 6.15. Approximations of the same problem based on different choice of spanning
tree cores. Each panel shows the approximate marginals Q. 1 and the actual marginals
Ps;i versus node number, as well as upper and lower bounds on the actual marginals
computed using the fixed point Q*. (a) Approximation based on minimum weight
spanning tree is poor, and bounds are quite loose. (b) Approximation based on maximum
weight spanning tree is better, and bounds are correspondingly tighter.

bounds on the actual marginal computed from the fixed points Q* using Theorem 6.5.1.
The approximation in panel (a), based on the minimum weight spanning tree, is poor,
and the corresponding bounds on the actual marginal are quite loose. In contrast, the
approximation based on the maximum weight spanning tree, as shown in panel (b), is
better; moreover, the bounds are now tighter.

Note that the cost associated with computing either set of approximations is equiv-
alent, yet the quality of the resulting approximation varies substantially. Although we
have simply used a reasonable heuristic here, this example illustrates that the choice of
core structure, even when restricted to a fixed class (e.g., spanning trees), is important.
We shall discuss this issue of choosing a core structure at more length in Chapter 8.

U 6.7 Discussion

This chapter developed a unifying framework for a wide class of more advanced tech-
niques for approximate inference (including BP as a special case). All of these tech-
niques, like belief propagation and the Bethe free energy, are based on minimizing ap-
proximations to the Kullback-Leibler divergence. The minimizing arguments of these
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variational problems are then taken as approximations to local marginal distributions.
An ancillary contribution of this chapter is to unify two previous extensions to belief
propagation: the Kikuchi approximations of Yedidia et al. [180], and the expectation-
propagation updates of Minka [131].

The analysis of this chapter demonstrated that the idea of reparameterization, first
introduced in Chapter 5, is more generally applicable to all of the approximations con-
sidered in this chapter. As a consequence, most of the significant results from Chapter 5
on tree-based reparameterization (or belief propagation) carry over in a natural way to
the more advanced techniques analyzed in this chapter. In particular, we proved the
existence of fixed points, and showed that they all satisfy a generalized form of the invari-
ance principle from Chapter 5. Moreover, we developed a generalized message-passing
(or reparameterization) algorithm for computing fixed points. Lastly, we analyzed the
error that arises in using these approximations, and developed computable bounds on
this error. Given the understanding and insight provided by this analysis, it is interest-
ing to consider the application of these more advanced methods to large-scale problems
to which BP has been successfully applied, including problems in image processing,
artificial intelligence, and iterative decoding.
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Chapter 7

Upper bounds based on convex
combinations

U 7.1 Introduction

A fundamental quantity associated with any graph-structured distribution is the log
partition function. With the exception of certain special cases, actually computing
the log partition function, though a straightforward summation in principle, is NP-
hard [39,46] due to the exponential number of terms. Therefore, an important problem
is either to approximate or obtain bounds on the log partition function. There is a large
literature on approximation algorithms for the log partition function [e.g., 102,139,140].
A related (and possibly more ambitious) goal is to obtain upper and lower bounds [e.g.,
12,92,93,105,154,176]. The applicability of such bounds on the log partition function is
wide; possible uses include approximate inference [e.g., 94,96], model fitting [e.g., 105],
and large deviations analysis [e.g., 158] .

An important property of the log partition function is its convexity (see Section 2.2).
Mean field theory [e.g., 105], as presented in Section 2.3.1, can be viewed as exploiting
one property of a convex function: namely, that the first order tangent approximation is
always an underestimate [20]. In Chapter 3, we exploited another fundamental property
of convex functions - namely, Jensen's inequality [41] - in order to derive a new class
of upper bounds applicable to an arbitrary undirected graphical model. These upper
bounds were based on taking a particular convex combination of exponential parameter
vectors.

In this chapter, we analyze this new class of bounds in more detail, focusing on the
case where the exponential parameter vectors are drawn from some tractable class for
which exact computations can be performed efficiently. The canonical example of such
a tractable substructure is a tree embedded within the original graph. The weights
in the convex combination are specified by a probability distribution ft over the set of
tractable substructures.

For any given log partition function, there is an entire family of upper bounds, in-
dexed by the choice of exponential parameters as well as the probability distribution
11. It is therefore natural to consider the problem of optimizing both the choice of
exponential parameters, and the distribution over tractable subgraphs, so as to obtain
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the tightest possible bounds on the log partition function. This optimization prob-
lem turns out to have an interesting structure. Indeed, we prove that the problem is
jointly convex in both the distribution J and the exponential parameter vectors, so
that there is a unique optimal pair that yields the tightest possible upper bound. This
uniqueness is in sharp contrast to mean field theory, where the associated optimization
problem is well-known to suffer from multiple local minima, even for relatively simple
problems [e.g., 92].

The line of analysis that we develop here is quite general, in that it applies to
discrete random variables assuming an arbitrary number of states m, and in principle
to arbitrary sizes of clique potentials. The only restriction that our analysis imposes
on the approximating structures themselves is that they correspond to a triangulated
graph. However, in order to bring our development into sharp focus, this chapter treats
the special case of binary nodes (m = 2) and pairwise clique potentials; moreover,
we assume that the set of tractable substructures, denoted by 7, corresponds to the
set of all spanning trees of the graph 9. Based on an understanding of this case, the
modifications necessary to deal with higher state numbers (m > 2), larger clique sizes,
and more complex approximating structures will be clear.

A major challenge to be overcome lies in the dimension of the problem. The length of
l is equal to the number of spanning trees in the graph 9 (V, E). Reasonably complex

graphs tend have a very large number of spanning trees - one which grows prohibitively
quickly in the number of nodes N = IVI. The collection of exponential parameter vectors
is even larger by an additional factor of 0(N). Fortunately, we are able to sidestep this
combinatorial explosion by applying the theory of Lagrangian duality [20]. Indeed, in
the dual formulation, the entire collection of exponential parameters is replaced by a
single vector of length N + Sj. In addition, the dual function consists of a convex
combination of entropy terms of tree-structured distributions, each of which can be
decomposed as a sum of single node and edge terms. This local decomposition is the
crucial property that permits efficient optimization of the bounds. In particular, for a
fixed distribution over spanning trees of the graph, we develop a constrained Newton's
method to optimize efficiently the choice of exponential parameters. Simultaneously
optimizing both the choice of the exponential parameters and the distribution 11 over
spanning trees requires a more intensive but computationally tractable algorithm with
an inner and outer loop. Interestingly, steps in the outer loop correspond to solving a
maximum weight spanning tree problem [107], which can be interpreted as finding the
tree that best fits the current data [see 36].

This chapter is organized in the following manner. In Section 7.1.1, we introduce
the notation and definitions required for analysis. In Section 7.1.2, we derive the basic
form of the upper bounds to be studied in this chapter. The dual formulation of these
bounds, which is essential in avoiding the combinatorial explosion described above, is
developed in Section 7.2. Section 7.3 builds on this dual formulation by stating and
characterizing the optimal form of the upper bounds, first for the case of a fixed dis-
tribution, and secondly when both the distribution / and the collection of exponential
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parameter vectors are allowed to vary. Section 7.4 is devoted to more practical issues:
we present algorithms for computing the optimal form of the bounds specified in Sec-
tion 7.3. We also present the results of these techniques in application to bounding the
log partition function of randomly generated distributions. We finish up in Section 7.5
with a summary and extensions to the work described here.

* 7.1.1 Set-up

The analysis of this chapter makes heavy use of exponential representations of dis-
tributions, and the associated Legendre transform between exponential and mean pa-
rameters. The reader should consult Section 2.2 for the relevant background. In this
section, we set up the notation necessary for subsequent analysis. So as to provide a rel-
atively self-contained and more readable presentation, we duplicate some material from
Section 3.3.3 of Chapter 3, in which upper bounds of this nature were first introduced.

Let T = T(9) denote the set of all spanning trees of 9. We use the symbol T to
refer to a spanning tree in T. The number T(9) of spanning trees in a graph 9 is
typically quite large; for instance, a well-known result of Cayley [168] states that the
complete graph KN on N nodes has NN- 2 spanning trees. More generally, the number
of spanning trees in a graph can be computed via the Matrix-Tree theorem [168].

We now define a probability distribution over the set of spanning trees T = T(9):

={p(T), T E Tp(T)); u =1} (7.1)
TET

The support of f is defined as

supp(') A { T ETI1p(T) > 0 } (7.2)

In the sequel, it will also be of interest to consider the probability that a given edge
e E S appears in a spanning tree Tchosen randomly under the distribution ft.

Definition 7.1.1. Given a distribution M' over spanning trees, the edge appearance
probability of an edge e E S is defined as follows:

PCe A EI{6i[eET]} = Prg{e e T} (7.3)

where 6[e E T] is the indicator function for edge e to appear in tree T. I.e., this is the
probability that edge e belongs to a spanning tree chosen randomly under distribution

For a random vector x taking values in {O, 1}N, let Q* denote the minimal exponen-
tial parameter of a distribution p(x; 0*) defined on the graph 9 = (V, 8):

p(x; 0*) = exp{ *XS> + 1 0*tx 8 ret - F(*) (7.4)
sGV (st)EE
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We refer to this quantity as the target distribution.
For each spanning tree T E T, let 0(T) be an exponential parameter vector of the

same dimension as 0* that respects the structure of T. To be explicit, if T is defined
by an edge set S(T) C 8, then 0(T) must have zeros in all elements corresponding to
edges not in S(T). For a binary process, such a tree-structured distribution has the
form:

p(x; 0(T)) = exp { 0(T)sxs + > O(T)t xxt - '1((T))} (7.5)
sEV (s,t)E&(T)

Since any spanning tree on a connected graph with N nodes has N - 1 edges, the
parameter vector 0(T) has d(0(T)) 4 2N - 1 non-zero elements for a binary-valued
process.

For compactness in notation, let

60= {0(T)TET} (7.6)

denote the full collection of tree-structured exponential parameter vectors. This quan-
tity can be viewed as a large vector with [(2N - 1) T'1(g)I] non-zero elements. The
notation 0(T) specifies those subelements of 6 corresponding to spanning tree T.

U 7.1.2 Basic form of bounds

The central idea is that of a convex combination of tree-structured parameter vectors:

Definition 7.1.2. Given a distribution f and a collection of exponential vectors 6, a
convex combination of exponential parameter vectors is defined via the expectation:

Eg[0] E S p(T)0(T) (7.7)
TeT

We are especially interested in sets of approximating points 6 for which there exists
a convex combination that is equal to 0*. Accordingly, we define the following set of
pairs (6;4f):

A(0*) I(6; j A) Et[] = 0* (7.8)

It is not difficult to see that A(0*) is never empty.

Example 7.1.1. To illustrate these definitions, consider a binary distribution defined
by a single loop on 4 nodes, as shown in Figure 7.1. Consider a target distribution of
the form

p(x; 0*) = exp{xix2 + x2 x 3 ± + 3 x 4 + x 4 x1 - C(O*)}
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4/3 0 0 4/3 4/3

4/3 0 4/3 4/3 0 4/3 4/3 4/3

0 4/3 - 4/3 60 4/3 00 0

(a) 0(71) (b) 0(73) (c) 0(73) (d) 0(74)

Figure 7.1. A convex combination of four distributions p(x; 0(T3)), each defined by a
spanning tree Ti, is used to approximate the target distribution p(x; 0*) on the single-
cycle graph.

That is, the target distribution is specified by the minimal parameter 0* = [0 0 0 0 1 1 1 1],
where the zeros represent the fact that 0* = 0 for all s C V. The tractable class con-
sists of the four possible spanning trees T = {7I i = 1,... , 4 } on a single cycle on four
nodes. We define a set of associated exponential parameters 6 ={0(T)} as follows:

0(71) = (4/3) [0 0 0 0 1 1 10]

0(3) = (4/3) [0 0 0 0 1 10 1]

0(73) = (4/3) [0 0 0 0 1 0 1 1]

0(T3) = (4/3) [0 0 0 0 0 1 1 1]

Finally, we choose p(i7) = 1/4 for all 77 E T. It is not difficult to check that this choice
of a uniform distribution ensures that E1 [6] = 6*; that is, the specified pair (6;A)
belongs to A(0*).

Recall from Lemma 2.2.1 that the log partition function (D is convex as a function
of 0. This property allows us to apply Jensen's inequality [41] to a convex combination
specified by a pair (6,/i) E A(0*); doing so yields the following result:

Proposition 7.1.1. For any pair (6, 2) E A(0*), the following upper bound is valid:

(0*) < Eg['(0(T))] S (T)4(0(T)) (7.9)
TET

Note that the bound of equation (7.9) is a function of both the distribution # over
spanning trees; and the collection of tree-structured exponential parameter vectors 6.
The primary goal of this chapter is to optimize these choices so as to minimize the RHS
of equation (7.9), thereby obtaining the tightest possible upper bound of the form in
Proposition 7.1.1. We shall consider first the problem of optimizing the choice of 6 for a
fixed /; and then the joint optimization of 6 and /. Despite the relatively simple form
of equation (7.9), these optimization problems turn out to have a rich and interesting
structure.
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0 7.2 Dual formulation with fixed F-

In this section, we develop a Lagrangian dual formulation of the bounds of equa-
tion (7.9). For a fixed distribution f, consider the following constrained optimization
problem:

{minelEm[((T))] 
(7.10)

S. t Eli [0] = 0*

With p fixed, the upper bound E [P(O(T)] is strictly convex as a function of 6, and
the associated constraint is linear in 0.

We assume that P is chosen such that the associated edge appearance probabilities
Pe = Prp{e C T} are all strictly positive. I.e., all edges e E appear in at least
one tree T E supp(p). This assumption is necessary to ensure that constraint set
{ 0 1 (6, A) C A(O*) } is non-empty. By standard results in nonlinear programming [20],
problem (7.10) has a unique global minimum, attained at 0 _6(f). In principle, a
variety of methods could be used to solve the convex program (7.10) (see, e.g., [20]).
However, an obvious concern is the dimension of the parameter vector 6; in particular,
it is directly proportional to ITI, the number of spanning trees in 9, which is typically
very large.

As we will show in this section, the theory of convex duality allows us to neatly
avoid this combinatorial explosion. In particular, we show that the Lagrangian dual of
problem (7.10) depends on a vector A of length N +11, which has the form:

A = {As, S.E V; A5t, (s, t) C S} (7.11)

This vector can be viewed as a set of parameters defining the local marginal distributions
of a binary process on the single nodes and edges of the original graph 9 as follows:

p(xs; A) A [1 - As; As]' (7.12a)

p(xs, xt; A) A ([I+ - At(7.12b)

To ensure that these definitions make sense as marginal distributions (i.e., their elements
lie between zero and one), the vector A must belong to the following polytope:

L(9)={A 0< <Ast As < 1; As + At < 1+ Ast V s E V, (s, t)E S} (7.13)

Let 6 = { (T) T E T } denote the optimum of problem (7.10). The significance
of A is in specifying this optimum in a very compact fashion. For each tree T e T, let
HT(A) denote the projection of A onto the spanning tree T. Explicitly,

II1(A) A {A5 , 1 s E V; (s,t) c (T) }
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consists only of those elements of A belonging to single nodes, or elements of the edge
set C(T) C 8 of the tree T.

Via equation (7.12), any such vector HT(A) defines a set of marginal distributions
for each node s E V and edge (s, t) E E(T). These marginals provide an explicit
construction of a distribution p(x; HT(A)) via the usual factorization of tree-structured
distributions implied by the junction tree representation (see Section 2.1.5) - viz.:

p(x; HT(A))4Jl p(xs; A) jj p(x8 , xt;A) (7.15)
sEV (s,t)E(T) p(xsA)p(cr; A)

The proof of Proposition 7.2.1 below shows that the optimal dual parameter A
specifies the full collection of optimal exponential parameters 6 via the relation:

p(x; 0(T)) = p(x;H1T(A)) for all 7 e T (7.16)

That is, at the optimum, a single vector A of length N + E1 suffices to specify the
full collection 6 = { 0(T) I T E T }. Consequently, the dual formulation reduces
the problem dimension from the size of 0 (which is proportional to TI) down to the
dimension of A (namely, N+ E). It is this massive reduction in the problem dimension
that permits efficient optimization.

An insight that emerges from our analysis is that the collection of tree-structured
distributions { p(x; 6(T)) I T TI } has the following remarkable property:

(a) For every p(x; 0(T)), the single node marginal probability p(xs = 1; 0(T)) is equal
to the same constant As, for all vertices s E V.

(b) For every tree-structured distribution p(x; 0(T)) for which the tree T includes
edge (s, t), the corresponding marginal probability p(x3 = 1, t = 1; 0(T)) is
equal to the same constant Ast.

These conditions are very similar to the consistency conditions satisfied by any fixed
point of tree-based reparameterization (see Chapter 5). Not surprisingly then, the dual
function of Proposition 7.2.1 has a very close relation with the Bethe free energy, as we
point out in Section 7.3.4.

N 7.2.1 Explicit form of dual function

We now state and derive the dual form of problem (7.10). Let W(II T (A)) be the negative
entropy of the tree-structured distribution p(x; HT(A)) defined in equation (7.15), and
recall the definition of the polytope L(9) given in equation (7.13).

Proposition 7.2.1 (Dual formulation). For a fixed weight vector A, we have the
equivalent dual formulation of problem (7.10):

min Et[<b(O(T))] = max Q(A;ft;O*) (7.17)
0s.t EM[0]=0* A \eL(9)
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where

Q(A; P; 9*) A JEg[{(IIT(A))] + A0* (7.18)

Proof For the fixed p, we consider the Lagrangian dual function associated with prob-
lem (7.10):

Q(A;ft;6*) = inff{L(O;A;t;'*)} (7.19)

where the Lagrangian is defined by

L(8; A;;0*) = IEg[<(G(T)] +ZAa{o*- Eft[(fla]} (7.20)
a

The function Q(A; A; 9*) is a function of the dual variables A; in particular, A, is a
Lagrange multiplier associated with the constraint 0* - E [0(7)] = 0. In addition to
these constraints, each 0(T) is restricted to correspond to a tree-structured distribution,
meaning that certain elements 0(T)o must be zero. We enforce these zero constraints
explicitly without Lagrange multipliers.

Now the Lagrangian is also strictly convex as a function of 8, so that the infimum
of equation (7.19) is attained at some value 8 = {0(T)}. By taking derivatives of the
Lagrangian with respect to 0, we obtain the stationary conditions for the optimum:

i(T){E(T)[#a] A} = 0 (7.21)

where

Oa()X= S if a=s eV

XsXt if a = (s,t)E

If p(T) = 0, then the approximating parameter 9(T) plays no role in the problem,
so that we can simply ignore it. Otherwise, if p(T) > 0, equation (7.21) implies that

for all indices a e V U E(T), the Lagrange multipliers are connected to the optimal
approximating parameters 0(T) via the relation:

EV)[#a]-= 4A (7.22)

Recall from Section 2.2.4 that the expectations ER(T)[qa] define a set of mean param-

eters r(0(T)) that are dually coupled via the Legendre transform to the exponential
parameter 0(T). Therefore, equation (7.22) has two important implications:

(a) for all T E supp(p) and nodes s E V, the mean parameters E( T)[xS] are all equal

to a common value A
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(b) similarly, for all T E supp(p) that include edge (s, t), the mean parameters
EW(,) [x, xt] are all equal to a common value A8t

Since 0(T) and HIT() are coupled via the Legendre transform, they correspond to
the exponential parameter and mean parameter respectively of the tree-structured dis-
tribution p(x; 0(T)) - p(x; HT (A)). Here, as is common in exponential families, we are
using the exponential parameter 0(T) and the mean parameter T(A) interchangeably
to index the same distribution. 1

By the Legendre duality between the log partition function and the negative entropy
function, we have the relation:

<)(0(T)) = 0(T)aa - P(HT (A)) (7.23)

where 4'(flT (A)) is the negative entropy of p(x; 6(T)) p(x; HT(A)). Substituting
equation (7.23) into equation (7.20) yields an explicit expression for the Lagrangian
dual function:

Q(A; p; 0*) -I-EAf [P (AT())] + SAc*

Since A must correspond to a set of mean parameters valid for each node and edge,
it is restricted to the polytope L(9) defined in equation (7.13). The cost function is
strictly convex and the constraints are linear, so that strong duality holds [20]; therefore,
the optimum dual value Q*(P; 9*) = maxAEL(g) Q(A; p; 0*) is equivalent to the global
minimum of the primal problem (7.10).

0 7.2.2 Characterization of optimal points

In this section, we characterize both the optimizing argument A of the dual problem
in Proposition 7.2.1, as well as the corresponding optimum 6 of the original primal
problem (7.10). We begin by showing that for finite 0*, the optimal A always occurs
at interior points of the constraint set L(9). Next, we provide an explicit construction
of these optima, specified in terms of 0*, and the edge appearance probabilities ji
associated with the distribution ft.

Lemma 7.2.1. If 110*11 < oo, the optimum A of problem (7.17) is always attained at
an interior point of L(g).

Proof. Consider the dual function of equation (7.18) as a function of A and 9*. Ob-
serve that the function -EA[T(HT(A))] is strictly concave. Therefore, from the form of
equation (7.18), the optimum A =A(0*) and 9* can be put into one-to-one correspon-
dence via the invertible and continuously differentiable Legendre transform [151]. The

Strictly speaking, we should write p(x; A-'(HT(A))) to mean p(x; HT(A)), where A-' is the inverse
Legendre mapping from mean parameters to exponential parameters. (See Section 2.2 for more details).
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domains of A and 0* are L(9) and RN+II respectively. Therefore, extreme points of
the polyhedron L(g) are attained only as 19*11 -+ oo. D

The significance of Lemma 7.2.1 is in allowing us to characterize optima of the dual
function in equation (7.18) in terms of ordinary gradient conditions. That is, it obviates
the need to consider Lagrange multipliers associated with the constraints defining L(9)
in equation (7.13).

Proposition 7.2.2 (Characterization of optimum). For any 110*1 < 00, the opti-
mal pair 0 and A are characterized by the relations:

0*l= E[(T]= L( )J 1 j(7.24a)
(I -- As) tEM(s) s - sI-+ t)

__log(1st) (1 + Ast - As - At)l
s=stst = fst log [(Ase - - - j(7.24b)

where K(s) = { t c V F (s, t) E & } is the set of neighbors of node s in 9.

Proof See Appendix D.1. 0

Equations (7.24a) and (7.24b) can be viewed as an alternative and more explicit
statement of the fact that p(x; 0(T)) = p(x; IIT(A)) for all spanning trees T E T. An
important implication of equation (7.24b) is that that the optimal exponential edge
parameters O(T), are equal for all spanning trees T E T. From equation (7.24b) and
our assumption that p, > 0 for all e E 8, this common value is given by *I/ft. As
a consequence, the only remaining degree of freedom is in the single node parameters
0(T ).

Example 7.2.1 (Single loop). To illustrate Proposition 7.2.2, we return to the single
loop of Example 7.1.1, which has four spanning trees in total. Each edge in the graph
appears in 3 of these 4 spanning trees. As a result, the edge appearance probabilities
under the uniform distribution (i.e., p 7() = 1/4 for all i = 1,... , 4) are given by
y, = 3/4 for all edges e E S. From equation (7.24b) and the fact that

0* [0 0 0 0 1 1 1 ijT

the optimal exponential edge parameters are given by 0,e=60* / (3/4) = 4/3 for all
edges. We now must choose the single node parameters 0(T) of each spanning tree 77
to ensure that the mean parameters are all equal as well. Doing so numerically yields
optimal solutions of the form:

0(71) = [-a - a + a + a (4/3) (4/3) (4/3) 0]
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-a a
4/3

4/3 0

-a4/3 a

Figure 7.2. Illustration of optimal exponential tree parameter 0(71) on a single loop.
All edges are assigned weight (4/3) and single node parameters are specified in terms of
a ~ 0.5043. Other optimal solutions 0(71) are rotated versions of this one.

where a ~z 0.5043. Figure 7.2 gives a graphical illustration of the structure of this
solution. Other optimal solutions 0(7;), i = 2,... , 4 are obtained by rotating W(71).
With this specification of optimal solutions, it can be verified that

ES [0(T)] = (1/4) Z(T) = 0*
T

as required.

U 7.2.3 Decomposition of entropy terms

A major advantage of the dual formulation of Proposition 7.2.1 is the attendant reduc-
tion in the dimension of the problem - namely, from the O(N I(9)1) vector 6 to the
(N + 11)-dimensional vector A. However, a remaining concern with the formulation of
Proposition 7.2.1 is the apparent need to calculate an entropy term for all structures
T C supp(ft). Fortunately, this problem can also be circumvented by using the fact
that for a tree-structured distribution, the negative entropy decomposes into a sum of
node and edge terms.

In particular, using the form in p(x; IIT(A)) in equation (7.15), we can write

T (i7iT(A)) = p(x;H (A)) log p(x; HT (A))

- 5H5(A)-+ > Ist(A) (7.25)

where

HS(A) = -- A. log A. - (1- A8) log(1 - As) (7.26a)

Hst(A) = -Ast log A3t - (1 + A3t - A3 - At)log(1+ A3t - A3 - At)
-(As - Ast)log(As - Ast) - (At - Ast) log(At - Ast) (7.26b)

Ist(A) = H(A)+Ht(A)-Ht(A) (7.26c)
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are the entropy of the single node distribution p(xr; A), the joint marginal entropy of
p(x,, 't; A), and the mutual information between x, and Xt under p(x8 , xt; A) respec-
tively.

Using the decomposition of equation (7.25), we obtain:

E#[P(I T(A))] = Sp(T)f- E Hs(A) + 5 Ist(A)
TET SEV (s,t)E(T)

= - E Hs(A) + E pstIt(A) (7.27)
sEV (s,t)EE

where pst = Prg{(st) C 7} is the edge appearance probability defined in Defini-
tion 7.1.1.

As a consequence, the optimal value of the upper bound depends on the distribution
M only via the vector of edge appearance probabilities ge = {IMI e E t}. In principle,
this result allows us to consider optimizing the choice of distribution ' over all spanning
trees by appropriately adjusting the vector [e. The potential reduction in complexity
is significant, since the vector tie has only |IE entries, as opposed to the IT(9)I entries
of A.

N 7.2.4 Spanning tree polytope

Any procedure for adjusting the elements of Pe needs to ensure that they still correspond
to the edge appearance probabilities of a valid distribution f over spanning trees. I.e.,
they must belong to the set

T(G) = {te I Pe = Eg{6[e E T]} for some f; V e C £ } (7.28)

where 6[e E T] is an indicator function for edge e to belong to spanning tree T. We use
this function to define the spanning tree incidence vector v(T). For a given spanning
tree T, the quantity v(T) is a binary-valued vector of length II with elements

V( 6)e = [e E T] (7.29)

With this definition, we can rewrite the equations pe = E{6j[e C T]} that define
membership in T(9) in a vector form as follows:

e = p(T)v(T) (7.30)
TC T

Equation (7.30) shows that the set 7(9) is the convex hull of the set of spanning tree
incidence vectors { v(T) I T C T }. For this reason, we refer to 7() as the spanning
tree polytope.

By standard results on polyhedra [20], the set T(() must have an equivalent charac-
terization in terms of a set of linear inequalities. Fortunately, the spanning tree polytope
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is a well-studied object in combinatorial optimization and matroid theory [e.g., 34,58].
The following lemma, based on a result of Edmonds [58], provides such a characteriza-
tion of T(9) in terms of linear relations:

Lemma 7.2.2 (Spanning tree polytope). Given a graph 9 = (V,S), and any sub-
set A C &, define the rank of A as r(A) = v(A) - c(A), where v(A) is the number of
vertices covered by edges in A, and c(A) is the number of connected components of the
subgraph induced by A. Then the spanning tree polytope T(9) is characterized by the
following linear relations:

S e r(A) V A CS (7.31a)
eeA

pe = N-1 (7.31b)
eES

Pe ; 0 V e E -9(7.31c)

In order to gain intuition for the constraints in equation (7.31), we consider some
particular cases. The necessity of the non-negativity constraints in equation (7.31c)
is clear, since the p, correspond to edge appearance probabilities. The corresponding
upper bounds p, < 1 are obtained by choosing a single edge set A = {e}. In this case,
we have v(A) = 2 and c(A) = 1, so that r(A) = 1. Equation (7.31a) thus reduces to the
constraint Me < 1. Next, equation (7.31b) can be deduced with the following reasoning.
Let p-*= {p(T)} be the distribution giving rise to the edge appearance probabilities Pe
Then

e = 5 f(T)l(T)e
eE eC& TeT

= p(T ) E V(T e

TET eCE
=N -- 1

where we have used the fact that Eee Zv(T)e = N - 1 (since any spanning tree T on
N nodes has N - 1 edges); and the fact that E-rp(T) = 1.

Note that equation (7.31a) captures a large number of linear inequalities - one
for each subset A of the edge set. For certain choices of A, such inequalities capture
more subtle constraints that arise from the particulars of graph structure. For instance,
consider a connected graph in which the edge c is a bridge. I.e. removing the edge c
breaks the graph into two components. A simple example of such a graph is illustrated
in Figure 7.3. Clearly, any spanning tree T of 9 must include the edge c, which implies
that M, = 1 for any valid spanning tree distribution over this graph.

This constraint pc = 1 is captured by setting A = E/c in equation (7.31a). With
this choice of A, equation (7.31a) indicates that

E Me < r(&/c) = N - 2

eEc
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C

Figure 7.3. A simple example of a graph with a bridge. Removing edge c breaks the
graph into two components, and hence must have edge appearance probability P = 1
in any distribution over spanning trees.

At the same time, from equation (7.31b), we also have that Se tc pe + tc N - 1.
These two equations, along with pc 1, imply that pcc -1 as necessary.

Note that there is a constraint of the form in equation (7.31a) for each edge subset
A C S. Some of these constraints turn out to be redundant; indeed, it suffices to impose
bounds of the form in equation (7.31a) only for a certain collection of subsets A of the
edge set [142]. To characterize these subsets, recall the following definitions from the
background in Section 2.1.1. Given a subset S C V of the vertex set, the node-induced
subgraph ![S] is the subgraph of 9 induced by S. That is, 9[S] = (S,6[5]) where

S[S] 4 { (s,t) E E s,t ES }

A cut vertex or cut node in a graph 9 is a member of V whose removal from 9 increases
the number of components.

With this terminology, we can now define the relevant collection of edge subsets:

Definition 7.2.1. A subset A C 8 is a critical subset means that:

(a) A corresponds to the edge set E[S] of the induced graph 9[S], for some subset
S C V of the vertex set, and

(b) the induced graph [S] is connected and contain no cut nodes.

Any singleton set {e} c S is also critical.

An important result in polyhedral combinatorics [see 142] asserts that a polytope
of the form of 7(9) can be characterized using constraints of equation (7.31a) only for
critical subsets A C E. The number of such critical subsets is at most 2N, corresponding
to the edge sets 8[] of the graphs induced by all 2N possible subsets S of the vertex
set V. Since II ;> N for any connected graph with cycles, this may be a substantial
reduction relative to the total number of edge subsets (2IfI). However, it is still an
intractable number of constraints in general.

Example 7.2.2. In certain cases, condition (b) of Definition 7.2.1 can lead to a sub-
stantial reduction in the number of critical subsets (relative to 2N). For a single loop,
consider any node-induced subgraph 9[S] with 3 <5 S< N. It can be seen such a graph
either has a cut node (Figure 7.4(a)), or is not connected (Figure 7.4(b)). Therefore,
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1 2 1 2

6 3 6 3

5 4 5 4

(a) (b)

Figure 7.4. For a single loop, each node-induced subgraph 9[S] with 3 ISI < N

either has cut node, or is not connected. (a) With S = {1, 2, 3}, node 2 is a cut node in

the induced subgraph 9[S]. (b) With S = {2, 3,5,6}, the induced subgraph 9[S] is not
connected.

the only critical subsets for a single loop are the singleton edge sets {e}, and the full

edge set 9. Consequently, the conditions 0 p, _< I and E, pe = N - 1 are sufficient

to characterize T(9) for a single loop.

0 7.3 Jointly optimal upper bounds

In this section, we begin by specifying the form of the optimal upper bounds on the log

partition function 4D(0*), where the optimization takes place both over the dual variables

A and the set of edge appearance probabilities pe We then turn to characterization of

the optimizing arguments (A, j'). Finally, we point out some connections between the

cost function central to our bounds, and the Bethe free energy of statistical physics [180].

N 7.3.1 Optimal upper bounds on <(0*)

The key insight of Section 7.2.3 is that the expectation E,[4(IIV(A))] depends on

only via the edge appearance probabilities Me (see Definition 7.1.1). Thus, using the

decomposition of entropy terms given in equation (7.27), we can express the function

-Q(A;W;0*) of equation (7.18) as follows:

F(A; ILe; Q*) = - E Hs(A) + E stIst(A) - >A* (7.32)
sEV (s,t)eE

where the entropy H, and mutual information Ist are defined in equations (7.26a)

and (7.26c) respectively. All of our upper bounds will be expressed in terms of this

function evaluated at particular values of A e L(9) (as defined in equation (7.13)) and

Me c T(9) (as defined in equation (7.28)).

Theorem 7.3.1 (Optimal upper bounds).

(a) For an arbitrary f4 E T(g), the log partition function is bounded above as follows:

(O*) - min F(A; pe; 0*) (7.33)
X EL(g)I
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This minimum is attained at a unique A E A(-te) £ L(g).

(b) In addition, we have an upper bound, jointly optimal over both A and ,ue, of the
form:

p(<*) < - max k(/pLe;9*) (7.34)

where

(pe;O0*) AcL() {(A;sue;9*)} (7.35)

Moreover, there is a unique pair (A(4); ji%) E L(9) x T(9) that attains this
tightest possible upper bound of equation (7.34).

Proof. (a) For each ue E T(9), there exists a corresponding distribution f that realizes
the edge appearance probabilities se. Therefore, the function F(A; t'e; 9*) is equivalent
to a function of the form --Q(A; 7; 9*) = Er,[ (HT(A))] -E Aa9* for some distribution
t over spanning trees T E T. Based on this relation, the upper bound of equation (7.33)
follows from Proposition 7.2.1. The negative entropy t(HIT(A)) is strictly concave as a
function of A, so that Y(A; pe;9*) = -Q(A; '; 9*) is strictly convex as a function of A.
Consequently, the associated minimization problem (with linear constraints on A) has
a unique global minimum A(se).

(b) The bound of equation (7.33) holds for all ue E T(g), from which equation (7.34)
follows. Observe that E(A; sue; 9*) is linear in ie. Therefore, R ((pe; 9*) is the minimum
of a collection of linear functions, and so is concave as a function of ue [20]. Conse-
quently, R(pe; 9*) has a unique global maximum J'';, at which the optimal value of
the upper bound in equation (7.34) is attained. The corresponding optimal A given by
AE=A('7). EH

We illustrate Theorem 7.3.1 by following up the single loop case of Example 7.2.1.

Example 7.3.1. Consider a single loop on four nodes, as shown in Figure 7.5(a).

(a) We begin with the choice of exponential parameter

9* = [0 0 0 0 1 1 1 1]T,

as in Example 7.2.1, and fix uniform edge appearance probabilities y, = (3/4) for
all edges e E 8. The optimal mean parameter for the bound of Theorem 7.3.1(a)
can be calculated as

A(spe) = [bi b1 b1 b1 b2 b2 b2 b2]T,

where b1 ~ 0.8195 and b2 = 0.7069. This yields the optimal upper bound of
-F(A; 3/4; 9*) = 4.6422 on the true log partition function 4(9*) ~ 4.6252.

By symmetry of the problem, it can be inferred that the uniform choice of edge
appearance probabilities is indeed optimal in the sense of Theorem 7.3.1(b).
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P12 0.92

1 2 1 2

P14 = 0. 5 4  [23 = 0.54

4 3 4 3

= 34 1

(a) (b)

Figure 7.5. Illustration of optimality conditions on a single loop. (a) Single loop. (b)
Optimal edge appearance probabilities for 9* =-[0 0 0 0 1 1 1 3T.

(b) Now consider the same single loop, but the non-symmetric choice of exponential
parameter

0* = [0 0 0 0 1 1 1 3]T,

If we choose uniform (3/4) edge appearance probabilities, then we obtain an upper
bound -Y(A; 3/4;9*) ~ 6.3451, optimal in the sense of Theorem 7.3.1(a), on the
log partition function d(9*) ~ 6.3326.

Given the inhomogeneous nature of 9*, it is appropriate to consider joint opti-
mization over both A and Me, as dictated by Theorem 7.3.1(b). Performing this
optimization using Algorithm 7.4.2 of Section 7.4, we obtain the following optimal
edge appearance probabilities:

pe ~ [0.92 0.54 0.54 1] (7.36)

Note that the optimum assigns edge appearance probability of one to the edge
with largest weight (i.e., the single edge with weight 3). As a result, this edge
must appear in any spanning tree in the support of the optimizing distribution fl.
This set of edge appearance probabilities, combined with the associated A(j'Z),
yields the upper bound '-((ji;9*) ~~ 6.3387 on the true log partition function
hI(9*) ~ 6.3326. This upper bound is tighter than the previous bound (~ 6.3451)
based on uniform edge appearance probabilities.

0 7.3.2 Alternative proof

In this section, we present an alternative proof of part (a) of Theorem 7.3.1. It provides
a perspective different from that of convex combinations in the exponential domain.
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We begin with the variational representation of @(9*), as guaranteed by the Legendre
transform (see Section 2.2.4):

(*) =max{J * - ' (r)} (7.37)
rEM(g)

where M(9) is the set of valid mean parameters. (I.e., M() is given by the range Ra(A)
of the Legendre mapping).

By the convexity of the negative entropy I, for any tree-structured set of mean
parameters ?tree, we have

,( () , ,tree) * otree t ree) (7.38)

Here we have used the fact that _ (7tree) gtree. For a fixed tree T specified by
edge set E(T) c E, the lower bound of equation (7.38) is tightest, in fact, for the
moment-matched tree distribution

7tree-_ g ) = {7s, Tlst I s E V; (s, t) c E(T) } (7.39)

This fact is most easily seen by noting that the difference between the LHS and RHS of
equation (7.38) is equivalent to the KL divergence D( 77 11 7 tree) between the distributions
p(x; 7) and p(x; tree). (See equation (2.32) for this dual representation of the KL
divergence). Therefore, the problem of maximizing the lower bound on the RHS of
equation (7.38) is equivalent to minimizing this KL divergence, which corresponds to an
I-projection onto the e-flat manifold of tree-structured distributions. (See Section 2.2.7
for details on these notions from information geometry). Therefore, the optimal tree
parameter is given by the moment matching procedure specified in equation (7.39).

For this choice of qtree, equation (7.38) reduces to the simpler form

P() t(HT ( 77)) (7.40)

since the mean parameters of 7 and ?)tree are equal for indices corresponding to single
nodes or edges in the tree, and tr[ee - 0 for all other indices (corresponding to edges
not in the tree). This is a statement of the fact that any distribution on a graph has
lower2 entropy than a moment-matched distribution structured according to any of its
spanning trees.

Since equation (7.40) holds for any spanning tree T, we can consider taking a convex
combination of such bounds, each weighted by some p(T) 0. This yields the weighted
lower bound:

I(r) Z (T)(HTht)) = EB[(llT ( ))] (7.41)
T

2 Remernber that T is negative entropy.

210



Finally, applying the bound of equation (7.41) to the original variational formulation
of equation (7.37) yields:

<(Q*) max { 7T 0 * -- Eg[T(IT())]} (7.42a)
reM(Y)

K max {7TO*-E[T(ITQ())]} (7.42b)
77EL(g)

- min F(7;7ie;0*) (7.42c)
rEL(Y)

where equation (7.42a) follows from the bound of equation (7.41); and equation (7.42b)
follows because the set of tree-consistent mean parameters L(G) is a superset of the set
M(9) of globally 9-consistent mean parameters. Finally, equation (7.42c) is obtained
in a straightforward manner by decomposing the negative entropies into node and edge
terms, and using the definition of F in equation (7.32). This final equation (7.42c) is
equivalent to equation (7.33) in the statement of Theorem 7.3.1(a).

This alternative proof shows more directly why moment-matched tree distributions
arise in the optimal form of the bounds. However, it does not make clear the links to our
original starting point - namely, that of taking convex combinations of exponential
parameters. From this alternative derivative, it is easily seen how to generalize the
bounds to distributions defined by subgraphs of higher treewidth. Indeed, a lower bound
analogous to that of equation (7.38) can be derived for any triangulated subgraph of the
original graph. A similar argument will establish that moment-matching again yields
the optimal form of the bound, as in equation (7.40). Finally, we can use a weighted
combination of negative entropies, thereby yielding upper bounds analogous to that of
equation (7.42).

0 7.3.3 Characterization of joint optima

In this section, we provide a number of results characterizing the joint optima (A(p1;), pM)
of Theorem 7.3.1(b). In particular, we show that these optima can be characterized in
terms of a balancing of mutual information terms Ist(A('4)) on each edge (s, t) of the
graph. Moreover, we develop a geometric relation between this mutual information vec-
tor, and spanning tree incidence vectors v(T). Finally, these results lead to a minimax
result that has a game-theoretic flavor [170].

Our first result is a characterization of the mutual information terms Ist(A(p4)),
which arise from the optimal pair (X(j1), pe).

Proposition 7.3.1 (Characterization of joint optima). Let Ist be the mutual in-
formation as defined in equation (7.26c).

(a) There exist real numbers o > 0 and (A) > 0 such that for each (s, t) c 8, the
optimum (A(pe), 14) is characterized by the following conditions:

IStM(14)) = % + > (A) (7.43)
A(s,t)
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The sum ZA;(st) ranges over all critical subsets A that include edge (s, t).
Moreover, for each critical subset A, we have (A) > 0 only if the constraint

eCA Pe r(A) of equation (7.31a) is met with equality.

(b) Letting (, denote the Euclidean inner product, we have:

(I(A(ji4)), v(T) - We) 0 V T C T (7.44)

for the incidence vector v(T) of any spanning tree T £ T.

Since j C T(g), there exists a distribution over spanning trees I that gives rise to
this set of edge appearance probabilities. Inequality (7.44) holds with equality for
all spanning trees T in the support of j (i.e., spanning trees for which ^(T) > 0).

Proof. See Appendix D.2.

Equation (7.43) of Proposition 7.3.1(a) specifies that at the optimum (A, p4), the
mutual information on each edge (s, t) of the graph (i.e., between the random variables
x, and xt) is balanced in a certain sense. The mutual information on edge (s, t) consists
of a baseline amount t ;> 0, to which we add varying amounts of additional information
(i.e., ZA 9 ((t) 6A) > 0), depending on how many critical sets A corresponding to an
active constraint involve edge (s, t).

Example 7.3.2 (Optimal information terms for a single loop). The conditions
of Proposition 7.3.1 (a) take a particularly simple form for a single loop, where the only
critical subsets A are formed of single edges. In this case, we have

- o if ASt < 1
+o + [(s,t)] iffSt(7=41

Thus, the Lagrangian conditions correspond to an equalization of mutual information
on edges. The mutual information is equal to a constant for all edges (s, t) with appear-
ance probability fst < 1; the mutual information on any edge (s, t) with appearance
probability p4, = 1 is boosted by some quantity [(s, t)] > 0.

To follow up Example 7.3.1(b), the optimal information terms for this problem (with
the same ordering of edges as in equation (7.36)) are given by:

Ie(A(A§) = [6 6o 0o 0o + 6{34 } I
where 6o - 0.012 and {{34} ~ 0.007.

The geometric interpretation of Proposition 7.3.1(b) is interesting, as illustrated
in Figure 7.6. Each spanning tree incidence vector v(T) is an extreme point of the
spanning tree polytope T(g). The inequality (7.44) indicates that the angle between
the information vector I(A(p4)) and the difference vector v(T') - '4 is obtuse for all
spanning trees T' c T. Moreover, this angle is orthogonal for all spanning tree incidence
vectors v(T) in the support of p-Z (i.e., trees for which p^(T) > 0).
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Ie(A(f4))

T(9)

v(T') Ie

v(T)

Figure 7.6. Geometry of the optimal edge appearance vector IL, in the spanning tree
polytope T(Q). Extreme points of this polytope are spanning tree incidence vectors
u(T). The vector 1,t(A(§4)) forms an obtuse angle with v(T') - '4 for all T' e T. It
is orthogonal to v(T) - '4 whenever T E supp(j^).

Proposition 7.3.1(b) also leads to the following result:

Proposition 7.3.2 (Minimax relation).
For all |Q*| < X, the following minimax relation holds:

max min F(A;pe;0*) = min max Y(A;pe;0*) (7.46)
jeET(g) AcEL(Q) AEIL(G) peETI(g)

Proof. The function F(A; Me; 0*) is convex in A and linear (hence concave) in Ue. More-
over, the constraint sets L(P) and T(9) are both convex and compact. Equation (7.46)
therefore follows from standard minimax results [61]. 0

Proposition 7.3.2 has an interesting game-theoretic interpretation. Imagine a two-
person game specified by the payoff function T(A; Me; 0*). The goal of player 1 is
to choose A E L(9) so as to minimize this function, whereas the goal of player 2 is
to choose a spanning tree (or set of spanning trees) so as to maximize this function.
Choosing a single spanning tree can be viewed as a pure strategy in the game-theoretic
sense [170]. Equation (7.46) specifies an equilibrium condition for the optimal solution
pair. In contrast to a pure strategy, this equilibrium involves choosing a distribution I
over spanning trees, which gives rise to the optimal edge appearance vector M,;. Con-
sequently, the optimal strategy for player 2 is not the deterministic choice of a single
spanning tree, but rather the mixed strategy of randomly choosing a spanning tree from
the specified distribution ft
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0 7.3.4 Relation to Bethe free energy

Recall the cost function that (when optimized) gives rise to bounds on the log partition
function:

F(A; Pe; 9*) = - H,(A) + pstIt(A) - Ac* (7.47)
sEV (s,t)EE

The first two terms are a sum of (negative) entropy terms at each node, and a sum
of (weighted) mutual information terms for each pair of random variables joined by an
edge. Borrowing terminology from statistical physics [135], the final term E AQ* can
be viewed as an "average energy".

On this basis, it can be seen that the function of equation (7.47) is very closely
related to the Bethe free energy [180]. (For instance, compare equation (7.47) to equa-
tion (6.17) of Chapter 6.) In fact, the Bethe free energy is a special case of equa-
tion (7.47), in which all the edge appearance probabilities p, are set equal to 1. This
particular choice of Me does not belong to the spanning tree polytope T(g), unless of
course g is tree-structured. Therefore, our analysis does not guarantee that the Bethe
free energy is convex; indeed, the Bethe free energy fails to be convex for many graphs
with cycles, which leads to failures of convergence and multiple local minima.

Nonetheless, this link is interesting. As shown by Yedidia et al. [180], belief propa-
gation (BP) can be viewed as attempting to perform a constrained minimization of the
Bethe free energy. The minimizing arguments are taken as approximations to the actual
marginals of the original distribution. It is not surprising, then, that the optimality
conditions of our variational formulation (see Proposition 7.2.2) are very closely related
to the optimality conditions of tree-based reparameterization or BP (see Theorem 5.4.1
of Chapter 5). Overall, the analysis of this chapter is likely to have interesting impli-
cations for approximate inference. We shall discuss these possibilities at more depth in
Chapter 8.

M 7.4 Algorithms and simulation results

In this section, we develop algorithms for carrying out the optimizations specified in
Theorem 7.3.1. We then present the results of applying these algorithms to compute
upper bounds on the log partition function of randomly specified problems.

E 7.4.1 Inner minimization over A

We begin by describing an algorithm for carrying out the inner minimization step
(i.e., computing minCI(g) {F(A; g-8 ;9*)}) required to evaluate the upper bound of
Theorem 7.3.1(a). The function F is strictly convex in A, and the constraint set L(G)
is formed by a set of O(N+ jS1) linear constraints (see equation (7.13)). Therefore, the
problem is a suitable candidate for constrained Newton's method [20], wherein we take
Newton steps projected back onto the constraint set.
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The steps involved are given in Algorithm 7.4.1. Computing both the gradient
VF(A'; fl,; 0*) and Hessian V 2 7(A; fte9;*) are straightforward tasks. Indeed, since F
decouples into a sum of node and edge terms, the Hessian has a structure that reflects
the edge structure of Q. (Hence, for sparse graphs, the Hessian will also be sparse). The
computation of the descent direction A+ 1 in step 2 of Algorithm 7.4.1 is a quadratic
program (i.e., minimizing a quadratic function subject to linear constraints); and can
be solved efficiently. With suitable choice of step sizes a' (e.g., via the Armijo rule,
or limited minimization rule [see 20]), this algorithm is guaranteed to converge to the
unique global minimum A. The convergence of Algorithm 7.4.1 is guaranteed to be
superlinear in a neighborhood of the optimum with unity step size [20].

Algorithm 7.4.1 (Constrained Newton's method).

1. Initialize A0 E L(g).

2. For iterations n = 0,1, 2,..., compute the descent direction:

A"" =-arg min VF(An; a'e; 0*)'(A - A1) + -(A - A")V 2 (A7(; fe *)(A - Atn)
AeL(g) 2

3. Form the new iterate An+1 = (1_- an)A' + canxn+, where oJ' c (0, 1] is a step
size parameter.

0 7.4.2 Outer maximization over pe

We now consider the maximization maxgET() N (pe; 0*) required to compute the upper
bound of equation (7.34) in Theorem 7.3.1. Neither the Hessian nor the gradient of N
are difficult to compute. It is therefore tempting to apply a constrained Newton's
method once again. However, recall from Lemma 7.2.2 that the spanning tree polytope
T(9) is defined by a very large number (0(2 N)) of linear inequalities. For this reason,
solving a constrained quadratic program over 7(9) (as in step 2 of Algorithm 7.4.1) is
intractable for large enough graphs.

Fortunately, despite the exponential number of constraints characterizing T(9), op-
timizing a linear function subject to the constraint Mee E T() turns out to be straight-
forward. Two observations are key. First of all, from standard results on linear pro-
gramming [20], the optimal value of a feasible linear program is always attained at an
extreme point of the linear polyhedron formed by the constraints. Secondly, extreme

3 The optimal value may be attained at more than one extreme point, or at interior points as well.
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points of the spanning tree polytope T(9) are given by spanning tree incidence vectors
v(T), as defined in equation (7.29) [58].

Algorithm 7.4.2 (Conditional gradient).

1. Initialize pzuj E T(/).

2. For iterations n = 0,1, 2,..., compute the ascent direction as follows:

pen+1 = arg max {(V' (e'O;O*), (Me - Pe)} (7.48)
p.e ET0)

3. Form the new iterate Me 0+±1 = (1 - a")pe" ± anj4+, where a' E (0, 1] is a
step size parameter.

As a consequence, maximizing a linear function over the spanning tree polytope
is equivalent to solving a maximum weight spanning tree problem [see 107]. Using
these facts, it can be seen that the conditional gradient method [20], as specified in
Algorithm 7.4.2, is a computationally feasible proposal.

It is helpful to consider the steps of Algorithm 7.4.2 in more detail. Due to the
exponential number of constraints defining 7(9), even the first step - that of assessing
whether a given vector belongs to T(9) - is non-trivial. For instance, the uniform as-
signment pe = (N- 1)/ItI need not belong to 7(). (Consider the graph of Figure 7.3).
If we are given a distribution pi with a limited support, it is possible to compute the
expectations that define the edge appearance probabilities me (see equation (7.3)) by
direct summation. More generally, it turns out to be useful to consider a particular
class of distributions over spanning trees, defined by:

ji(T; W) oc J We (7.49)
ecT

where W, > 0 is a weight assigned to each edge e E E. That is, the probability of a
given spanning tree T is proportional to the product of the weights on all its edges. For
a distribution in this class, Jaakkola et al. [97] showed how a weighted variant of the
matrix-tree theorem [22,168] could be used to compute expectations under (T; W).
This method can be used to compute a feasible starting point PeO E T(9).

In the second step of Algorithm 7.4.2, given a fixed Me", we first solve a problem
of the form in Theorem 7.3.1(a) using Algorithm 7.4.1 to obtain the optimal A(pe m ).
Having obtained this optimal point, computing the ascent direction of equation (7.48)
is equivalent to solving a maximum weight spanning tree problem. It can be shown (see
Appendix D.2) that

ae(pe;0*) =Ie(A(Me")) (7.50)
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so that the edge weights in the maximum spanning tree problem are mutual information
terms. This computation can be performed efficiently using Kruskal's algorithm [116];
see also [107]. In the third step, the step size ' E (0, 1] can be chosen via the Armijo
rule. (See Bertsekas [20] for details on this and other stepsize selection rules.)

Given equation (7.50), the second and third steps have an interesting interpretation.
In particular, let us view the vector of mean parameters A(pen) as a set of data, which
is used to specify mutual information terms I6 (Aue")) on each edge. In this case, find-
ing the corresponding maximum weight spanning tree is equivalent to finding the tree
distribution that best fits the data in the maximum likelihood sense (or KL divergence
between the empirical distribution specified by the data, and the tree distribution).
See Chow and Liu [36] for more details on this interpretation of the maximum weight
spanning tree procedure. Therefore, at each iteration, the algorithm moves towards the
spanning tree that best fits the current data.4

M 7.4.3 Empirical simulations

In this section, we present the results of applying the previously described algorithms to
compute the upper bounds specified in Theorem 7.3.1. We performed simulations for a
binary-valued vector x (taking values in {0, 1}) for two different types of graphs (square
grids and a fully connected graph) under two different types of interactions (attractive
or mixed potentials). For the purposes of comparison, we also calculated lower bounds
using the naive mean field approximation. See Section 2.3.1 for details on mean field.

For each trial on a given graph, we defined a distribution p(x; 0*) by randomly
choosing an exponential parameter vector 0* from either the uniform attractive ensemble
or the uniform mixed ensemble. See Section 2.2.1 for the definitions of these ensembles
of distributions.

Grids of varying sizes

We first performed simulations for square 2-D grids of varying sizes; the number of nodes
N was either 9, 36, or 81. For each of these grid sizes and each of the two conditions
(attractive or mixed), we ran simulations with edge strengths d ranging 5 from 0 to
4.For each setting of the edge strength, we performed 30 trials for the N = 9 grids,

and 10 trials for N = 36 or 81. The inner minimization minx\Lgg) .F(A; I'e; 9*) was
performed using the constrained Newton's method (Algorithm 7.4.1), whereas the outer
maximization was performed with the conditional gradient method (Algorithm 7.4.2).
In all cases, step size choices were made by the Armijo rule [20]. The value of the actual
partition function E (9*) was computed by forming a junction tree for each grid, and

4There is one minor caveat with this interpretation - namely, as noted previously, the vector AQns")
may not correspond to a valid set of marginals for any distribution.

5 The normalization by 1/V2N guarantees that the effects impinging on a given node are scale-
invariant; they converge to a fixed distribution as the problem size N tends to infinity.
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Figure 7.7. Upper and lower bounds on 4(0*) for a randomly chosen distribution
p(x; 0*) on grids of various sizes: N = 9 nodes (first row), N = 36 (middle row)
or N = 81 (bottom row). Panels on the left (respectively right) correspond to the
attractive (respectively mixed) condition. Each panel shows the mean relative error
[Bound -- (O*)]/<k(9*) versus a normalized measure of edge strength; error bars corre-
spond to plus/minus one standard deviation.
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performing exact computations on this junction tree.6

Shown in Figure 7.7 are plots of the relative error [Bound -<4(O*)]/I(Q*) versus the
edge strength (normalized by 4/VIN for each N so that it falls in the interval [0, 1]). The
three rows of this figure corresponds to problem sizes N = 9, 36 and 81 respectively.
Panels on the left correspond to the attractive condition, whereas those on the right
correspond to the mixed condition. Each panel displays the relative error in two types
of upper bounds. The "unoptimized" curve shows the bound of Theorem 7.3.1(a)
with the fixed choice of uniform edge appearance probabilities P6 = (N - 1)/ tj. The
"optimized" curve corresponds to the jointly optimal (over both A and pT) upper bounds
of Theorem 7.3.1(b). The lower curve in each panel corresponds to the relative error in
the naive mean field lower bound.

The bounds are tightest for low edge strengths d; their tightness decreases as the
edge strength is increased. Optimizing the edge appearance probabilities can lead to
significantly better upper bounds. This effect is especially pronounced as the edge
strength is increased, in which case the distribution of edge weights * becomes more
inhomogeneous. For these square grids, the tightness of the upper bounds of Theo-
rem 7.3.1 decreases more slowly than the corresponding mean field lower bound. In
terms of the relative error plotted here, the upper bounds are superior to the mean field
bound by factors of roughly 3 in the attractive case, and roughly 2 in the mixed case.
The tightness of the bounds, measured in terms of relative error, decreases slightly as
the problem size (number of nodes N) is increased and the edge strengths are rescaled
in terms of 1/vN.

It is worthwhile emphasizing the importance of the dual formulation of our bounds.
Indeed, the naive approach of attempting to optimize the primal formulation of the
bounds (e.g., see problem (7.10)) would require dealing with a number7 of spanning
trees that ranges from 192 for N = 9 nodes, all the way up to the astronomical number

~ 8.33 x 1033 for N = 81 nodes.

Fully connected graph

We also performed simulations on the fully connected graph K 9 on N = 9 nodes, with
edge strengths d ranging from 0 to 4/3. The results are plotted in Figure 7.8. Both types
of bounds (upper convex and mean field) are much poorer for this densely connected
graph (as compared to the grids). Moreover, in contrast to the grids, there is a striking
disparity between the attractive and mixed conditions. In the attractive condition,
none of the bounds are good; however, in a relative sense, the optimized upper bounds
of Theorem 7.3.1(b) are better than the mean field lower bound. We also note that
optimizing the edge appearance probabilities leads to significant improvements; indeed,
the unoptimized upper bound is worse than the mean field lower bound. In the mixed
condition, the mean field lower bound is of mediocre quality, whereas the upper bounds

5 Thank you to Yee Whye Teh and Max Welling for generosity in sharing their code for performing
exact inference on grids.

7 These numbers can be calculated by applying the Matrix-Tree theorem [168] to the square grids.
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Figure 7.8. Upper and lower bounds on (9*) for a randomly chosen distribution

p(x; 9*) on the complete graph K9 . (a) Attractive condition. (b) Mixed condition.

are very poor. Thus, the quality of the bounds in Theorem 7.3.1 appears to degrade
for the case of mixed potentials on densely connected graphs. Of course, at least in the
limit of large problem sizes, mean field would behave very well for densely connected
graphs with mixed potentials, since the aggregation of multiple effects converges to a
mean effect [see 92].

U 7.5 Discussion

In this chapter, we have developed and analyzed a new class of upper bounds for log
partition functions in graphical models. These bounds are based on convex combina-
tions of distributions defined on spanning trees of the graph with cycles. We proved that
there is a unique distribution over spanning trees and an associated set of exponential
parameters that yield the tightest possible upper bound. Despite the prohibitively large
number of spanning trees in a general graph, we developed a technique for optimizing
the bound efficiently - though implicitly - over all spanning trees.

It would be interesting to compare the quality of the upper bounds of this chapter
to the upper bound of Jaakkola and Jordan [94]. In particular, for the Ising model
(i.e., a binary process on a graph with pairwise potentials), they developed a recursive
procedure, in which the contribution of a given node is bounded above (quadratically),
and then eliminated from the graph. As a side effect, all neighbors of the eliminated
node are joined together by a modified set of potentials. The procedure then continues
by selecting a node from this modified graph. For relatively weak choices of potentials,
these bounds are much superior to the (linear) mean field lower bound [94]. However,
they are unlikely to behave as well for very strong potentials.



The bounds that we developed in this chapter have a number of potential uses.
Of particular relevance to this thesis are their application to computing bounds on
the error of the TRP/BP algorithm (Chapter 5), as well as error bounds for more
structured approximating algorithms (Chapter 6). More generally, the techniques in this
chapter can be used to compute bounds on arbitrary expectations E [f ], as described
in Chapter 3.

Another potential application of our techniques is in large deviations analysis [e.g.,
53,158]. It is well-known that the log partition function plays the role of a rate function:
that is, it specifies the exponential rate at which the probability of certain events -
namely, large deviations - decays as the number of samples is increased. In cases for
which exact computation of these error exponents is infeasible, it would be of interest
to obtain bounds. See Chapter 8 for further discussion of this issue.

For clarity in exposition, this chapter focused on the special case of binary-valued
nodes, and graphs with pairwise cliques. However, the line of analysis outlined here
is broadly applicable, in that it extends naturally to more general state spaces (e.g.,
X = R, or the discrete space X = {0, 1,..7. , m - 1}) and larger cliques. Analogs of the
results given in this chapter hold for these cases. It is also possible to consider more
complex approximating structures - e.g., graphs of treewidth k > 2, as opposed to
spanning trees. (See [17,162] for more background on hypergraphs and the notion of
treewidth). One caveat is relevant here: the optimization of the distribution p- would
not be as straightforward as with spanning trees. Although solving the maximum weight
spanning tree problem required as part of Algorithm 7.4.2 is straightforward, its analog
for structures of treewidth k > 2 is NP-hard [111, 162].
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Chapter 8

Contributions and Suggestions

This chapter begins in Section 8.1 with a high-level outline of the contributions of this
thesis. It might be argued that certain portions of this thesis raise more questions than
they answer; accordingly then, we turn to a discussion of some of these open questions
in Section 8.2. Finally, we conclude in Section 8.3 with a rough sketch of the potential
implications of our analysis for related research fields, including network information
theory, iterative decoding, and large deviations analysis.

U 8.1 High-level view

The specific goals of this thesis notwithstanding, its high-level contributions include the
following:

* illustrating the power of exponential families, as well as the associated information
geometry, for studying graphical models

* highlighting the fundamental role of the Legendre transform1 between exponential
and mean parameters

* bringing into sharp focus the crucial differences between tree-structured distribu-
tions2 , and distributions structured according to a graph with cycles

With a retrospective viewpoint, all of the contributions particular to this thesis can
be understood in terms of these high-level issues. Indeed, the problem of estimation or
inference corresponds, in the context of exponential representations, to computing cer-
tain elements of the forward Legendre mapping from exponential to mean parameters.
The estimation problem makes a clear distinction between tree-structured problems
(linear-time algorithms), and graphs with cycles (generally intractable). This distinc-
tion is quite broad: problems involving tree-structured distributions are, for the most
part, well-understood, whereas their counterparts for graphs with cycles present con-
siderable challenges. Accordingly, our strategies for tackling a range of problems were

'The Legendre transform is described in Section 2.2.4.
2 More generally, we consider distributions structured according to a triangulated graph.
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similar: we sought to gain insight about a problem on a graph with cycles by formulat-
ing and studying a set of modified problems defined on embedded trees. It was a line
of attack that paid dividends for various problems, which we summarize briefly here.

The problem of Gaussian inference corresponds to computing the conditional means
as well as the associated error covariances. This problem is equivalent to determining
certain elements of the Legendre mapping from exponential parameters (e.g., specified
by an inverse covariance matrix in the Gaussian case) to the mean parameters (e.g.,
the covariance matrix). For a graph with cycles, the embedded trees (ET) algorithm
developed in Chapter 4 performs exact inference in an efficient manner by leveraging the
existence of fast algorithms for tree-structured problems. Overall, this algorithm has
the curious property of performing computations only on embedded trees, yet managing
to solve exactly a problem on a graph with cycles.

The tree-based reparameterization framework of Chapter 5 gives a different perspec-
tive on belief propagation (BP), as well a class of related algorithms - namely, as a
sequence of so-called reparameterization updates. Each such update entails altering the
factorization of a graph-structured distribution, with the ultimate goal of ensuring that
the factorization is consistent in a suitable sense on all embedded trees of the graph.
The Legendre mapping figures prominently in defining the reparameterization opera-
tors. The use of an overcomplete exponential representation clarifies the fundamental
property of reparameterization updates: true to their name, they do not change the
overall distribution. This invariance property, in conjunction with the characterization
of fixed points, has a number of important consequences. Perhaps the most important
single consequence is the resultant insight into the error between the BP approximate
marginals, and the actual marginals on the graph with cycles. In particular, it leads
very naturally to an exact expression for this error, which serves as a starting point for
developing bounds.

In Chapter 6, the notion of reparameterization is shown to be more generally ap-
plicable. Specifically, this chapter provides a unifying framework for a wide class of
approaches to approximate inference, all of which (like belief propagation) are based on
minimizing approximations to the Kullback-Leibler divergence. For each approximation
in this class, we develop a corresponding set of reparameterization updates for attempt-
ing to obtain approximate marginals. Due to the central role of reparameterization, a
satisfying fact is that all of the major results of Chapter 5 - including characterizing
the fixed points of these algorithms, as well as analyzing the approximation error -
carry over in a natural way.

The results of Chapter 7 provide an elegant illustration of the interplay between
exponential representations, variational formulations and convex duality. It is natural,
in the context of an exponential representation, to consider convex combinations of
parameter vectors. As first described in Chapter 3, doing so leads to a new upper
bound on the log partition function <(9*) associated with an intractable distribution
p(x; 0*). In the formulation of Chapter 7, the choice of exponential parameter vectors
and weights in the convex combination ranges over all spanning trees of the graph. Since
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reasonably complex graphs tend to have a very large number of spanning trees, the
problem of optimizing this upper bound appears intractable. Nonetheless, considering
the Lagrangian dual formulation, in which the Legendre mapping plays a central role,
leads to considerable simplification. The dual problem not only gives an upper bound on
the log partition function, but also can be optimized efficiently (albeit implicitly) over
all spanning trees of the graph. Moreover, the form of this dual function brings the work
of this thesis around in a full circle - in particular, by providing a novel and interesting
perspective on the Bethe free energy [180] that is central to belief propagation. Not
surprisingly then, the conditions for the optimum of the dual problem are remarkably
similar to the consistency conditions associated with belief propagation (or equivalently,
tree-based reparameterization).

0 8.2 Suggestions for future research

From this thesis arise various specific problems for future research. In this section, we
outline a number of these problems, as well as possible avenues of attack.

E 8.2.1 Exact inference for Gaussian processes

From the perspective of numerical linear algebra, the embedded trees (ET) algorithm
developed in Chapter 4 is related to the class of so-called Richardson methods [e.g.,
54]. The ET algorithm is distinct from standard Richardson iterations, since it is time-
varying (i.e., the embedded tree used can change from iteration to iteration). Trees, or
more precisely forests, have been used in similar ways in past work (e.g., the alternating
direction implicit (ADI) method [23, 136]). Although this use of embedded trees is
certainly interesting, a more promising direction of research - at least for the goal of
developing fast algorithms - is to consider embedded trees as a means of generating so-
called preconditioning matrices. The convergence rate of various linear system solvers
(e.g., conjugate gradient [54]) is known to depend on the condition number (ratio of
maximum to minimum eigenvalues). The goal of preconditioning is to decrease this
condition number so as to speed up convergence.

One interesting direction, then, is further exploration of trees as preconditioners for
a linear system defined by a graph with cycles. Sudderth [163] gives some promising
examples with regard to the eigenspectrum compression that can be achieved with trees
as preconditioners. Of interest for understanding the behavior of preconditioned systems
are the eigenvalues of quantities like B 1 A, or equivalently the generalized eigenvalues 3

of (A, B). In the context of graphical models, A should be viewed as a matrix respecting
the structure of the graph with cycles, whereas B is the preconditioner (in our case,
a tree-structured matrix). The area of support graph theory [e.g., 10, 27, 78, 81, 166]
provides techniques for analyzing and bounding the eigenvalues of such systems. A
clever idea in support graph theory is that of mapping each path in the original graph
onto a path in the graph corresponding to the preconditioner. For example, if we use

3 The generalized eigenvalues of (A, B) satisfy Ax = ABx for some x :- 0.
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an embedded tree as the preconditioner (B), then every path in the original graph can
be mapped onto a unique path in the tree. A fundamental result is the congestion-
dilation lemma (27,78,81], which relates the eigenvalues of B-1A to a product of the
maximum congestion (roughly, a measure of how many paths use a given edge) times
the maximum dilation (roughly, a measure of weighted path length). Elegant results
of this nature have also been obtained in the spectral analysis of random walks on
graphs [e.g., 56,159].

It is likely that the use of a single tree as a preconditioner can be thoroughly an-
alyzed by extant techniques in support graph theory. The most promising empirical
results, however, are obtained not with a single tree, but rather with multiple trees.
Empirical demonstrations of this phenomenon, as well as preliminary theoretical re-
sults, are presented in [163]. At a high level, the following research questions merit
further study:

" how to precisely capture the effect of using multiple trees?

* how to develop techniques for optimizing the choice and ordering of multiple trees?

Any analysis, rather than being limited to trees, should apply more generally to tri-
angulated graphs (e.g., graphs with treewidth > 2). Overall, the perspective afforded
by graphical models could provide valuable insights into the analysis of preconditioned
linear systems.

0 8.2.2 Approximate inference for discrete processes

The analysis of Chapters 5, 6 and 7, though contributing several important results on
the subject of approximate inference, also raises a host of challenging questions, which
we discuss in this section.

Uses of error bounds

An important result in Chapter 5 is the exact expression for the error between the
approximate marginals computed by belief propagation (BP) and the actual marginals
of p(x; 0*). Since this exact expression cannot be evaluated (in general), we also derived
computable bounds on this error. Chapter 6 extended this error analysis to more
advanced methods for approximate inference.

For the toy examples presented in both chapters (see, for example, Figures 5.13
and Figure 6.14), the error bounds are quantitatively useful: i.e., they provide relatively
narrow windows in which the actual marginals must lie. As a consequence, if an approx-
imate marginal (e.g., the BP approximation) happens to fall outside of these windows,
then perforce it must be a poor approximation. A desirable feature of the bounds is
that they are never vacuous. 4 However, for large problems, the upper bound (respec-
tively lower bound) on the marginals may become arbitrarily close to one (respectively

4 The union bound, for example, can make vacuous assertions: e.g., Pr(A) < 10.
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zero). To understand why, note that a major factor controlling the tightness of the log
bounds is the absolute error in upper bounding the log partition function (*). Unless
the model parameters are somehow rescaled, this absolute error will grow as the prob-
lem size increases, so that the bounds will tend to extreme values. As a consequence,
it is unlikely that (in general) the error bounds will remain quantitatively useful for
large-scale problems.

However, the error bounds might still yield important qualitative information. For
instance, the bounds could be used to assess the rate at which the accuracy of a fixed
approximation deteriorates as the model parameters and/or structure are changed. An-
other possible application, discussed at more length below, is using the error bounds to
assess the relative accuracy of a set of approximations for the same problem. There-
fore, an open direction is exploring the uses of error bounds in application to large-scale
problems. This avenue seems particularly promising given the wide range of important
problems to which belief propagation has been applied [e.g., 65,68,130,133].

The error bounds in Chapters 5 and 6 are formulated in terms of a fixed point of the
minimization algorithm (e.g., BP/TRP in Chapter 5). However, even though it may
not be obvious from the statement of the results, it is possible to compute bounds on the
error at any iteration, thereby obviating the need to wait for convergence. To illustrate,
consider the tree reparameterization (TRP) updates. After any update on a fixed tree T,
the current single node pseudomarginals are guaranteed to be globally consistent with
with respect to the tree. The overall distribution on the graph with cycles is invariant
under the updates, so that (as with TRP/BP fixed points) the approximations following
any TRP iterate are related to the actual marginals by the perturbation of removing
edges to reveal the tree T. An argument of this nature applies more generally to the
reparameterization algorithms described in Chapter 6. As a consequence, it becomes
possible to assess the evolution of the error for each iterate of the algorithm (i.e., in
a dynamic fashion). This type of dynamic assessment could be useful, for example,
in coding applications where the decoding algorithm (an instantiation of BP) is not
necessarily run until convergence. An optimistic view is that understanding the error
evolution could help to specify termination times for which the approximation might
be better than the fixed point obtained when the algorithm ultimately converges.

Choice of substructures

Common to all the approximations considered in Chapter 6 was a decomposition of the
graph with cycles into a core structure, and a set of residual elements. The chapter itself
provided a unified framework for analyzing approximate inference techniques based on
such decompositions; largely left unanswered, however, was the crucial question of how
to partition the graph into core and residual components.

Suppose that we are given two possible core and residual sets, and that we run min-
imization algorithms in order to compute a set of approximate marginals for each. As
mentioned in our previous discussion, the error bounds provide one means of comparing
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the relative accuracy5 of these two sets of approximate marginals, albeit in a post hoc
manner (i.e., only after both approximations have been computed).

Given the problem of computing approximate marginals for some graph-structured
distribution, important but difficult open problems include the following:

* how to choose the optimal core structure from a fixed set of possibilities (e.g., the
set of all spanning trees)

* assessing the potential accuracy of an approximation in an a priori manner (i.e.,
before running the reparameterization algorithm)

* determining the amount of computation required (i.e., how much structure to
incorporate) in order to achieve a pre-specified level of accuracy

At a high level, the analysis and examples of Chapter 6 show that the accuracy of the
approximations depends on the strength of higher-order interactions among subsets of
nodes. As a result, these research problems all touch upon a fundamental question in
graphical models: how to specify precisely the way in which graph structure and the
settings of potential functions control interactions among random variables? Answers
to questions of this nature, though clearly related to the Legendre transform between
exponential and mean parameters, are understood (at best) only partially. We shall
return to discussion of this issue in Section 8.2.3.

Uses of convexified Bethe free energies

As noted in Section 7.3.4 of Chapter 7, for each vector pe in the spanning tree polytope
T(9), Theorem 7.3.1(a) guarantees that

(A; p); 0*) = H (A) + stt(A) - ZA,0 (8.1)
sEV (s,t)EE

is convex as a function of A. In fact, functions in the form of equation (8.1) can be
viewed as a convexified versions of the Bethe free energy [180]. Indeed, making the
(generally) invalid6 choice /'e = 1 in equation (8.1) gives rise to the Bethe free energy.

The results of Yedidia et al. [180] establish that belief propagation attempts to
minimize the Bethe free energy. The minimizing arguments are taken as approximations
to the actual marginals of the original distribution p(x; 9*). A similar program can be
pursued for the family of functions in equation (8.1): namely, given a fixed [,e E T()
and fixed 0*, minimize the function of equation (8.1) subject to A belonging to the linear
polytope L(9) defined in equation (7.13); and then take the minimizing arguments as
approximations to the actual marginals. An advantage of this proposal (compared to

5 The advantage of considering relative versus absolute accuracy is that the intractable log partition
function <b(9*) need not be considered because it cancels out.

6 The vector of all ones does not belong to the spanning tree polytope, except when (of course) 9 is
actually a tree.
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minimizing the Bethe free energy) is that the problem is convex with linear constraints,
so that a unique global minimum is guaranteed to exist, and a variety of techniques [e.g.,
20] can be used to find it.7 As a result, this formulation obviates failures of convergence
and the possibility of multiple (local) minima associated with the Bethe free energy and
belief propagation.

Open questions associated with this proposal include:

* For a fixed choice ,e E r(g), how do the approximate marginals A compare to
the BP approximations, or to the actual marginals of p(x; 0*)?

* How does the choice of Pe affect the approximation? Are certain approximations
best-suited to certain graphs?

For the time being, we note that results of Chapters 5 and 7, when suitably modified,
can be used to derive an exact expression for the error between the actual marginals,
and these new approximations A. Again, this exact expression would form the basis for
developing bounds.

Another interesting problem to tackle is the evolution of the approximate marginals
as a line is traced from a valid choice /ze E T(9) to the vector 1 corresponding to BP. In
this context, methods from homotopy theory [4] should be useful (as in [40]). This line
of research is likely to have practical consequences, such as better techniques for finding
BP fixed points, as well as theoretical implications. For example, tracing the evolution
of fixed points would identify bifurcations in the solution space. Such sharp transitions
must occur, because for any tie E T(9), the associated cost function in equation (8.1)
has a single global minimum, whereas the Bethe free energy typically has multiple local
minima.

M 8.2.3 Bounds
The techniques of Chapter 3, in conjunction with the upper bounds of Chapter 7, permit
the efficient computation of upper and lower bounds on local marginal probabilities
(e.g., the single-node and joint pairwise marginals) associated with any distribution
p(x; 0). Although these results are clearly useful, the analysis itself was myopic, in that
each bound was considered in isolation. Therefore, it is interesting to consider how to
strengthen bounds by taking into account more global relations.

Let us focus on a concrete example for the purposes of illustration. Consider the
Ising model: i.e., a binary vector x E {0, I}N with distribution of the form:

p(x; 0) = exp { :O0x, + 3:Osext - 4(0)} (8.2)
seV (S,t)C&

Recall that the associated set of N +E dual variables is given by

?s = o[s]x = p(x5 = 1; 0) for all s E V

7 Is = E[x, xt] = p(xs = 1, xt = 1;0) for all (s, t) CS
7 The constrained Newton's method described in Algorithm 7.4.1 is one possibility.
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Now it is clear that the set of all valid dual variables is a subset of [0, 1]NS+. It is, in
fact, a strict subset since the dual variables are coupled by a number of relations. Some
of these relations follow trivially from set inclusion properties; e.g., the inequality

P(rs =-1,Xt = 1;0*) <p(x8 = 1;O0*) (8.3)

holds for all pairs of nodes (s, t).
It turns out that for a tree-structured distribution, local inequalities like that of

equation (8.3) between variables at adjacent nodes (s, t) e C are sufficient to character-
ize the set of valid dual variables. For a graph with cycles, in contrast, there are highly
non-local constraints among the dual variables.

Example 8.2.1 (Invalid set for single cycle). Consider a single cycle on 4 nodes,
and set r7 = 0.5 for all s E {1, 2, 3, 4}. Set the pairwise dual variables as 7712 =
723 = 7734 = 0.4 and 7714 = 0.1. It can be verified that any subset of these dual variables
corresponding to a tree embedded within the graph8 is valid. However, as shown in [57],
the full set of dual variables is not consistent with any distribution.

Therefore, characterizing the set of valid dual variables for a graph with cycles is an
interesting problem. Essentially, the question that we have posed is to characterize the
range of the Legendre mapping A : -+ r. In certain cases (e.g., the binary case; the
Gaussian case), this range set can be characterized in some detail. Answering the same
question for more general distributions and graphs remains an important direction to
explore. If we return to the original issue motivating this discussion, it should be clear
that a deeper understanding of these relations would be helpful in tightening bounds.

0 8.3 Possible implications for related fields

This section provides a discussion of related research fields where the results of this
thesis may have implications.

M 8.3.1 Network information theory

The subject of network information theory [e.g., 41,60] is the coding and transmission
of information in a distributed network. The basic problem, at a high-level, is analogous
to that of classical (single-user) information theory - that is, given a set of sources
and receivers and a channel model that describes possible noise and interference, how
to transmit the sources reliably over this channel? Despite this conceptual similarity,
most problems in multiuser information theory have turned out to be far more difficult
than their corresponding analogues in the single-user setting.

For example, one specific problem of interest is computing the capacity region as-
sociated with a particular arrangement of sources and receivers. For a given source-
receiver pair, an achievable rate is one for which information can be transmitted with

8In this case, a subset corresponding to a tree consists of all the single node variables, together with
any three of the four pairwise variables.
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a probability of error that tends to zero asymptotically; see Cover [41]. The capacity
region of a network is the set of achievable rates for all source-receiver pairs. For spe-
cial cases (e.g., broadcast channel; multiple access channel), these regions are relatively
well-understood. For more complicated networks, the most generally applicable tool is
a bound derived from the min-cut/max-flow duality that is well-known from network
optimization [e.g., 26]. The resulting bounds, however, are quite weak in most cases.

From the point of view of exponential representations and graphical models, the
essence of the difficulty is akin to the Legendre mapping problem, as discussed in
Section 8.2.3. That is, it can be extremely difficult to characterize the statistical de-
pendencies that arise among a collection of random variables linked in a network with
cycles. From this perspective, the classic channel in information theory is relatively
easy to analyze precisely because its graphical structure (namely, that of a chain) is rel-
atively simple. The corresponding problems for more complicated graphs, however, are
much more difficult because there can be highly non-trivial and non-local interaction
among subsets of variables. Overall, the framework of exponential representations and
graphical models may be useful in studying problems of network information theory.

M 8.3.2 Analysis of iterative decoding

One manifestation of belief propagation is as a highly successful iterative decoding
technique for various codes defined by graphical models, including turbo codes [e.g.,
18, 130] and low-density parity check codes [e.g., 70,125, 129,149]. As a consequence,
the results of Chapter 5 - especially the error analysis - have implications for coding
theory.

In recent work, several groups of researchers [e.g., 125,148,149] have obtained results
on the performance of belief propagation decoding of low-density parity check codes. For
instance, a remarkable result established by Richardson et al. [149], building from the
work in [125], is a capacity-like notion for BP decoding: namely, the existence of noise
thresholds (dependent on the channel and code) below which the probability of error
tends to zero exponentially in the code length, and above which the error probability is
bounded away from zero. In many cases, the density evolution technique [70,148] can
be used to calculate these thresholds.

Two key features of this work are the following:

9 the analysis is asymptotic as the code length (or number of nodes in the graph)
N tends to infinity

e it entails averaging over all codes in a random ensemble (in addition to averaging
over channel noise)

Considering asymptotic behavior permits the application of powerful concentration the-
orems [e.g., 125]. These results, which are based on martingale sequences [e.g., 80],
establish that the limiting behavior of the decoder on a randomly-chosen code becomes
concentrated around its expected behavior with high probability. Averaging over all
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codes in an ensemble is also important, because it permits probabilistic analysis of the
structure of random graphs (associated with randomly-chosen codes). As N -+ x, the
graphs in a typical ensemble become tree-like, so that the expected behavior of BP
decoding converges to the tree case.9

As a consequence, important open questions in iterative decoding include:

" analyzing BP decoding for codes of relatively short lengths (e.g., 103 bits) for
which asymptotic analysis does not apply

* analysis of BP decoding averaged over the channel noise but for a fixed code

The results in Chapter 5, in which we gave an exact expression and bounds for the
BP error for an arbitrary graph with cycles, appear germane to these problems. It is
conceivable, then, to try to calculate averages of the error over the channel noise (which
amounts to averaging over random choices of the single node potentials).

To sketch a line of attack in a bit more detail, optimal bit-wise decoding of a binary
code is based on the sign of the log likelihood ratio (LLR). Suppose that we represent the
problem of decoding a linear binary code defined by graph in an exponential manner-
that is, as performing inference for a distribution p(x; 0*) that captures both the parity
checks1 0 defining the code, as well as the noisy observations of transmitted bits. With
this notation, the LLR for optimal decoding is given by log[p(x 3 = 1; 9*)/p(x8 = 0; 9*)].
The results of Chapter 5 show that approximate BP decoding is based, instead, on the
sign of the modified LLR log[p(x8 = 1; 1-I(9*))/p(x5 = 0; Ii(9*)), where p(x; IIP(O*)) is a
distribution structured according to a particular (but arbitrary) tree embedded within
the graph with cycles representing the code. This relation suggests a new avenue for
analyzing the error between the optimal and BP log likelihood ratios for an arbitrary
but fixed code.

* 8.3.3 Application to large deviations analysis

Large deviations theory [e.g., 53, 158] treats the probability of certain events in the
limit of large sample sizes. For example, one might be interested in the probability of
obtaining 900 or more heads in 1000 tosses of a fair coin. This is certainly an unlikely
event; alternatively phrased, it is a large deviation in the sample mean of heads (here
900/1000 or 0.9) from the true mean (0.5 for a fair coin). Of particular interest are
the rates that govern the exponential decay of these probabilities as a function of the
sample size. In this context, the log partition function (or equivalently, the cumulant
generating function) is well-known to play the role of a rate function [see, e.g., 158]. As

9 To be precise, most random ensembles have the property that for any positive integer k > 3, the
probability that a graph chosen randomly from the ensemble has cycles of length < k tends to zero [e.g.,
149].

1 0Technically, since parity checks entail deterministic constraints , it would be necessary to either use
an extended exponential representation in which elements 8* can assume infinite values, or to consider
e-approximations to deterministic parity checks.
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a consequence, the bounds of Chapter 7 are potentially useful in application to large
deviations.

Exponential formulation of large deviations

To illustrate, we formulate a simple large deviations result using an exponential rep-
resentation. Consider an exponential family {p(x; O)} of distributions specified by a
set of functions b = {#$}. We assume that there is some underlying graph 9 such
that any potential function on a clique of 9 can be expressed in terms of 0. However,
we also allow the possibility that the set # may include functions in addition to these
clique potentials.1 1 Let p(x; 0) be a distribution in this exponential family, and let
77a = Ej[q#a(x)] be the associated dual variables.

Now suppose that we are given a set of n samples X = {x(,... , x()}, where each
x() is sampled IID from p(x; 0). In the coin tossing example introduced earlier, each
random variable x(') would be a indicator function for the event of obtaining a head on
the ith trial. Let p(X;6n) denote the product distribution H >1 p(x(1;0).

We are interested in the probability that the sample mean of some random variable
- say specified by the linear combination bTq(x) - exceeds its true mean bTU by more
than c > 0. To be precise, the quantity of interest is the probability:

P(n;0;,E) 4 Pr {n b) -] c} (8.4)

where Pr6 , denotes probability under the product distribution p(X;0).
A standard upper bound on this probability is the following Chernoff bound:

P(n;Q0;e) exp - n min D( II)f (8.5)
0 sAt 4 [bT (x)] =bT R+E

where D(0 J) is the Kullback-Leibler (KL) divergence between p(x; 0) and p(x;J).
The key point here is that the optimal error exponent, which governs the rate of decay
as n tends to infinity, is given by the closest (as measured by KL divergence) distribution
to p(x; 0) that satisfies the moment constraint (i.e., FE0 [bT5(x)1 -bT 7 + C).

Applying bounds from Chapter 7

At an intermediate stage in one proof of equation (8.5), the following relation, valid for
all 6 > 0, arises:

1
- log P(n; 0; e) 4(O+ Sb) - 6[b + ] - () (8.6)
n

"This additional flexibility will be important in certain cases, as we will see in Example 8.3.1.
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It is by minimizing this RHS over all 6 > 0 that we obtain the Kulback-Leibler error
exponent of equation (8.5). (See the form of the Kullback-Leibler divergence given in
equation (2.44)).

Now suppose that the reference distribution p(x; J) is simple enough so that it is
possible to compute (W), but that computing ((+ 6b) is intractable.

Example 8.3.1. As a simple illustrative example, suppose that p(x; J) corresponds to
a (first-order) discrete-time Markov chain on N points. This Markov process can be
viewed as living on a linear chain, so that the cliques correspond to singleton nodes and
pairs of adjacent nodes. Suppose moreover that We are interested in the probability
that the product of the end point random variables (i.e., #0(x) = X1XN) exceeds a
threshold. This #0 function is not a clique potential of the original graph, but can be
viewed as a clique potential on an augmented graph (namely, a single cycle).

In this case, the vector b is equal to e - that is, the vector of all zeros with a
single one in element 0. The qf potential couples the starting and end points, so that
for all 6 > 0, p(x; W+ 6ep) is a distribution with the structure of a single cycle. Thus,
the quantity (6 + e) is no longer computable by standard tree algorithms.1 2

One can imagine a variety of such scenarios, in which computing ( + Sb) is not
tractable. For these cases, exact computation of the error exponent in equation (8.5),
would be impossible, so that it would be useful to obtain an upper bound. The results of
Chapter 7 are relevant in this context. Given any ,e e (g), we can use Theorem 7.3.1
to prove that:

log P(n; 0; c) _ -N(e; 0+ Sb) - S [bTh + c] - () (8.7)

where W is defined in equation (7.35). It can also be shown that the RHS is a strictly
convex function of J, so that there is a unique 6 > 0 that attains the tightest possible
upper bound of this form. Equation (8.7) can be viewed as a poor man's version of the
Chernoff bound (8.5), but with the advantage of being computable.

2 For this simple example, 4<(W+6eo) could still be computed, for instance, by applying the junction
tree algorithm (see Section 2.1.5) to the single cycle, but one can imagine more complex scenarios for
which this quantity is truly intractable.
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Appendix A

Algorithms for optimal estimation
on trees

Here we derive the key equations underlying a variety of algorithms for computing
posterior marginal distributions in tree-structured graphs.

* A.1 Partial ordering in scale

The critical property of a tree-structured graph T is that its nodes s E V can be partially
ordered according to their scale. (See [168] for a precise definition of a partial ordering).
In order to define the notion of scale, we begin by designating an arbitrary node as the
root; we assume without loss of generality that that the root is labeled with s = 1. Once
the root is specified, the other nodes (s E V/{1}) can be assigned a scale i = 0,1,.. . , I
based on their distance from the root. This distance is given by the number of edges in
the unique path joining s and the root node. Accordingly, the root is the only node to
be assigned scale i = 0. At the next finest scale i =1 are q(0) nodes, that correspond
to the children of the root node. A node at scale i < I gives birth to its children at
the next scale (i+ 1). The children of node s are indexed by sa,... saq(), and we let
Ch(s) denote the set of all children of node s. Similarly, each node s at scale i > 0 has
a unique parent -Js at scale (i - 1). This hierarchical tree organization is illustrated in
Figure A.1(a).

* A.2 Basic notation

Lying at each node s is a random variable x,to which we will refer as the state variable.
In Figure A. 1(b), these nodes are illustrated with circles. Dangling from each state node
is a node containing an observation y; in Figure A.1(b), these nodes are drawn with
squares. By concatenating these quantities, we define the vectors

X {xsscV} (A.1a)

y {yjsCV} (A.1b)

For any node s, we let T(s) denote the vertices in the subtree of T rooted at node
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S

Yo

X0

Y sai ys-2

----- - ------ ---.
T(s)

(a) (b)
Figure A.1. (a) Basic types of nodes in a tree: node s and its parent s7, and children
{fs,,... s8 q}. (b) Assignment of random variables to nodes of the tree, and definition
of subtree T(s) rooted at s. The data ys consists of all the data { yt I t E T(s) } at
nodes in T(s).

s. We then define

Ys { Y I t e T(s) } (A.2)
to be the collection of observations in the subtree rooted at s. This set y, is illustrated
in Figure A.1(b). We let y= y/y, denote the complement of y, in full data set y.

We shall frequently exploit the following decomposition:

T(s) = {s} U UtECh(s) T(t)] (A.3)

Equation (A.3) expresses the fact that the subtree T(s) is the disjoint union of node s
and the subtrees rooted at children of s.

0 A.3 Markov decomposition

At the heart of the two-pass tree smoothing algorithms is the following decomposition
of the single-node marginal probability p(rs I y):

Proposition A.3.1 (Key decomposition). For any node s, the following decompo-
sition holds:

p(x- I y) = K Ay, I s) P(xs [ Ysc) 11 1
xtEi Ch(t)

P(yt I X,) (A.4)
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where n is a normalization constant independent of x,.

Proof. The proof is a basic exercise in applying Bayes' rule, and exploiting the Markov
properties of a tree-structured distribution. We write:

p(AxSIy) =rKp(yIX5S) p() (A.5a)

= K p(ysI XS) p(yScI XS) p(c) (A.5b)
= K P(Ys IXS) p r5 I y) (A.5c)

= K P(YsIXs)[ fi P(YtIXs)] p(x5Iy ) (A.5d)
tECh(s)

where the definition of the normalization constant K has changed from line to line. Here
equation (A.5a) follows from Bayes' rule; equation (A.5b) follows from the fact that y
and yc are conditionally independent given x,; equation (A.5c) follows from Bayes'
rule applied to p(y I cx,) p(x5 ); and equation (A.5d) follows from Markov properties
associated with the decomposition in equation (A.3).

H

Equation (A.4) reveals the computation of p(x, I y) requires two types of quantities:

(a) the likelihoods p(yt I x,) of the data yt in the subtree T(t) given xc, where t is a
child of s

(b) the conditional probabilities p(c 5 [ yc).

In the following sections, we describe a recursive upward sweep for computing the
likelihoods, and then a downward pass for recursively computing the conditional prob-
abilities.

U A.4 Upward sweep

Proposition A.4.1 (Likelihood calculation). For any node x", the following fac-
torization holds:

p(yS | s') = , p(ysIs) fi P() ytI |s) ( A.6a)
tECh(s)

= K p(y I XS) I1 / p(ytlccxt) p(xtiI xs)dxt (A.6b)
teCh(s) t

where ,is an arbitrary normalization constant.

Proof. Equation (A.6a) follows from the Markov properties associated with the decom-
position of equation (A.3). Equation (A.6b) follows from the relation:

p(yt c5s) = Jp(yt Icc, cct) p(ct I cc)dcc

and the fact that yt is conditionally independent of x, given ct whenever t E Ch(s). 0
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M A.5 Downward sweep

Similarly, the conditional probabilities can be computed by a downward sweep:

Proposition A.5.1 (Conditional calculation). For any node x, the conditional
probabilities p(£s y') can be computed via the following recursions:

p(Xs Iys') = A f P(Ysjxg) [ 1 P(Yt I 1z,) p(, 4 I y- ) p(Xs I )dx,
tECh(sy)/s

(A.7a)

p(ytIXSY) = P(ytI xt)p(xtxs-) dxt (A.7b)

Equation (A.7a) is a recursive formula for computing the conditional probabilities
p(xs I yc) in terms of the parent quantity p(xs5|yIr); the local observation p(y5 Y<zsx);
and the likelihoods p(yt Ixg). The latter quantities can be computed from the upward
sweep via equation (A.7b).

Proof. To establish equation (A.7a), we write:

p(XS Iys) = KP(y, I Xs) P(x 5) (A.8a)

= JP(y. H sI)0P(3%gIXs)P(Xs)dxst (A.8b)

= K p(y'I x45 ) p(sY) p(xsI x-) dxs, (A.8c)

= K JP(ys; I Ix) yt I £- ) [ E p(yt I Xs)1 p(Xs-j) p(Xs I xs7) dx,5
tECh(sy)/s

(A.8d)

= K JfP(ys- |IXS) P(s-I Y y) [fJ p(yt xs< p(xSI xs-7) dx5s
tECh(st)/s

(A.8e)

Here equation (A.8a) follows from Bayes' rule; equation (A.8b) follows from the condi-
tional independence p(yc 1Ixs, x,) = p(y' I xO) and equation (A.8c) is another applica-
tion of Bayes' rule. Next equation (A.8d) follows from the Markov properties associated
with the decomposition:

Y = {ysI} UY U UtECh(s)/s yt

Equation (A.8e) follows from a final application of Bayes' rule.
Equation (A.7b) follows from the fact that p(yt I at, x,-) = p(yt I xt) whenever t is

a child of sj-7.
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On the basis of Propositions A.4.1 and A.5.1, it is possible to develop a number of
recursive algorithms for computing posterior marginals at each node of the graph. For
example, one such algorithm is a generalization of the Maynes-Fraser [64] algorithm for
smoothing of time series (i.e., defined on a chain) to more general graphs. It is also
straightforward to derive an alternative algorithm in which data is incorporated only on
the upward pass. This leads to a downward recursion in terms of the conditional prob-
abilities p(x,8 I y). This algorithm is a generalization of the Rauch-Tung-Striebel [146]
smoother to arbitrary (non-Gaussian) stochastic processes, and general trees.

It is also possible to derive similar algorithms for MAP estimation. These algorithms
are formally equivalent to those for computing posterior marginals, in that all integrals
are replaced by a maximization operation. In fact, dynamic programming algorithms
of this nature can be generalized so as to apply to any commutative semi-ring on which
two binary operations are defined [see 169], a general and elegant view emphasized
recently in [3].
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Appendix B

Proofs for Chapter 3

U B.1 Proof of Proposition 3.3.1

Using equation (3.11) and the convexity of iif, for any pair 0* and 9 we write:

4f (*) f () + 90a [9* - 6]a (B.1)

Using equations (3.9) and (2.18a), we compute 21L (0) = Eo[]+ covef f,02} We substi-

tute this relation, as well as the forms of 4 f () and Df (0*) specified by equation (3.9),
into equation (B.1) to obtain:

(9*) + logIEo [f] F(9) +log E0 [f] + [* -- ]a E [#a] + covo{f, #a}
a E1B[f ]

Applying the form of the KL divergence in equation (2.31) and re-arranging yields the
bound of equation (3.13a).

In order to derive equation (3.13b), we observe that whenever f satisfies Assump-
tion 3.3.1, then so does the function f(x) A 1 - f (x). We can therefore apply equa-
tion (3.13a) to f to derive an upper bound on E. [f].

* B.2 Proof of Proposition 3.3.2

The log partition function 4 ?f corresponding to the tilted distribution is convex, so that
we can apply Jensen's inequality in equation (3.12). For any (; 'i) E A(9*), we have
If(*) -- If (Eg[Ol]) Ep[4f (0 2)]. Using equation (3.9), this is equivalent

4(9*) + log Eo. [f] <Eg [(0i) + logEi [f]]

which, after re-arranging, is equivalent to the upper bound of equation (3.21a). The
weaker upper bound of equation (3.21b) follows by applying the standard mean field
lower bound (see Section 2.3.1) on the the log partition function to each exponential
parameter 0'Q- that is:

D(0*) >j((0i) ± > EOi [$b] 0[* - 9ol],
a
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0 B.3 Proof of Proposition 3.4.1

The bound of equation (3.25) follows by applying Proposition 3.3.1 to each individual
fk, and then summing the bounds to obtain a bound on E0. [f] = Ek I [fk]. To prove
the superiority of this new bound, define

Bk = -D(OH10*)+ f)Zo*- O(f k, q ck)0

and write the log of LHS of equation (3.25) as

log [ZIEO[fk]exp(B k)1 log EO[f] +log [S: exp(Bk)1
k k

> logEo[f]+± [ Bk
k

= log EO[f1] - D(- Q0*) + Y(* - OW( f k, a

= logEo[f] -D(O 1 0*) +E1f] (0*5(* -- )a (f, a)o
EN a

where the final line is the log of the bound given in Proposition 3.3.1. Here the in-

equality follows from the concavity of the logarithm. This inequality is strict as long as

E [fk] > 0 for all k (which holds for all fk k 0), and the Bk terms are not all equal to
the same constant.

M B.4 Proof of Proposition 3.4.2

The bounds of equation (3.27) themselves follow by applying Proposition 3.3.2 to each
f k, and then summing the bounds on each f k to obtain a bound on f.

To prove superiority of these bounds to those of Proposition 3.3.2, we require the

following lemma, proved in §6.9 of Hardy et al. [83]:

Lemma B.4.1. Let pf 0 be weights such that EiY = 1, and let aik be positive
numbers. Then

Ai~
ELkiaJ aic (B.2)

k i - i k

The inequality is strict as long as the quantities [ak/ Ek aik] are not all equal.

We now use Lemma B.4.1 to write:

z.u(Ei rfk])j <_ vz EIfk]
k i1. i k

= (EoiIf 
])A
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where the final line follows from linearity of expectation applied to ESk fk = f. This

inequality is strict as long as the quantities {E 0, [f k] /E, [f]} are not all equal.
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Appendix C

Proofs for Chapter 5

M C.1 Proof of Proposition 5.3.1

We begin by proving equation (5.23a) using induction on the iteration n. The statement
is true for n = 0, since

MSOt TS,0 = KZts fJ MU0,
t X8X3 C-A(s)/t

which is equal to Mt using equation (5.3).
Now let us assume that it holds for n and prove it for n+1. It is equivalent to prove

that M+' = M -L E, TJ}. Using the definition of Tt in equation (5.22b), we write

st M" T7 S (>1Tc. T7)(Z T7) TS"(~a

Tn-<
=)(C.1b)

t T -n -1) Ex

Tn-1
= M ," " s tai $

= M, t - ) T"_ Ts-t T S Tn1  ( T * z

XS (ZX 3st)uC%'s)/t 's xit

M}T> -1
= K T q

(E T - T t- XS
Mg>

uC(s)/t M -

TnM-" Mn_-1}
XS UEG (s)/t 9

(C. Id)

(C.le)

(C.lf)

where we have used the definition of Tj in equation (5.22b) to obtain equation (C.la);
the definition of T, in equation (5.22a) to obtain equation (C.1c); and the induction
hypothesis to go to equation (C.le), and again to equation (C.lf).
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Examining the form of equation (C.lf), we see that we can apply the same sequence

of steps to the term 2>-Z T 1- -2- to obtain:

KM-1{T>T1 i AA
t xs uEA(s)/t u

t 
x

s tn- st8

M U Q Mj}
UEA(s)/t uE-Af(s)/t

Mu

mn - 2
uGA((s)/t 5

The series telescopes in this multiplicative way until we reach n = 0, at which point
the right hand side is equal to:

t os uCG (s)/t 5
= ).s5,st s fi Mn"

cs uE(s)/t

=Mt+1

where we have used the initialization of Tto and T,, given in equations (5.21a) and (5.21b)
respectively.

To establish equation (5.23b), we begin by using the definition of B' in equa-
tion (5.4) to write

Bn+ mn+

t f S3 tGef(s) tn

tENA(s) t

Tn+1
TnS

This equality, in conjunction with the
that B' = T7 for all iterations n.

fact that B' = K l/ H Cg(8) M2 = T2, shows

0 C.2 Proof of Proposition 5.4.1

We begin with some preliminary definitions and lemmas. For a closed and convex set
X, we say that x* is an algebraic interior point [30] if for all x = x * in X there exists
X' C X, and A E (0,1) such that * = Ax+ (1 - A)x'. Otherwise, x is an exterior point.
The following lemma characterizes the nature of a constrained local minimum over X.

Lemma C.2.1. Let f : X -+ R be a C' function, where X is a closed, convex and
nonempty set. Suppose that x* is a local minimum of f over X. Then

Vf (r*)T(x - X*) > 0

for all x C X. Moreover, if x* is an algebraic interior point, then Vf(x*)T(X - X*) = 0

for all x C X.
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Proof. See [20] for a proof of the first statement. To prove the second statement,

assume that x* is an algebraic interior point, so that for an arbitrary x E X we can

write x* = Ax + (1 - A)x' for some x' and A E (0,1). Then:

Vf (x*)T (X* - X') = AVf (X*)T (X - X') > 0
Vf (X*)T(X* - X) = (1 - A)Vf (x*)T(X - X) > 0

Since A E (0,1), this establishes that Vf(x*)T(x/ - X) = 0, and hence also (from the

definition of x* that Vf (x*)T(x - x*) =0. E

Lemma C.2.2. Let U E V be arbitrary. Then for any 9 such that 9 = RJ(9) is

bounded:

Z{U - A(fli(9)),x [- 9] = 0 (C.2)
as A

Proof. We established in Section 5.4.1 that the point A1(H(9)) is the minimizing ar-

gument of the function G defined in equation (5.25) over the linear and hence convex

set CY. This point will be an exterior point only if some element is equal to zero or

one, a possibility that is prevented by the assumption that Ri() = f2(®% (At (TP(9)))

is bounded. Therefore, At (li(9)) is an algebraic interior point, meaning that we can

apply Lemma C.2.1 to conclude that for all U E C', we have

Z{U, - A(())a}T (A(H());) = 0 (C.3)

It remains to calculate the necessary partial derivatives of G. We begin with the

decomposition G t(T; 9) = Zps,ocei Gt(Tt; Ost) + E G(T; 90) where

Gi,.(T5t) = TSt;ik log [Tst;jkA/( Tst;jk)(E Tst;jk) - st;k} (C.4a)
/k k

G(Ts) = :Ts;j[logTs;j - 9s;jJ (C.4b)

Using this decomposition, we calculate:

0G (T;9 ) = f (T)s;j Os;j + 1 for a-= (s;j)
tTC( )(T)st;jk - st;jk - 1 for a = (st;jk)

Substituting these quantities into equation (C.3), evaluated at T = I(At(I(9))), we
obtain:

>{u - ?}+ [- 9 + ]sU ±+ {U - T} jO 9 - 0 - 1];jg =

sEV j (st)E j,k

247Sec. C.2. Proof of Proposition 5.4.1



where by definition 6( = e T(T)a for each a E A. Now since both U and T belong to

C2 , we have E[U - A(Q(0))j = 0 for all s C V and E,k[U - T]st;jk:= 0 for all

(s, t) E E. As a result, the constants 1 or -1 in equation (C.5) vanish in the sums over

j or {j, k}, and we are left with the desired statement in equation (C.2). E

Equipped with these lemmas, we now establish equation (5.27) for A = 1 by writing:

G(U; 0) - G(U;Q(0)) - G(A(Q(G));0) = > [U - Ai(Q'(0))]jQ (0) - 0]a
aEA

= [U - A(Q(o))] [e(A(ut(O))) -aO]a
acAk{ Ga for all a CA/A

where we used the fact that Q(0)a = (
V'(O), for all a E A.

Since R(0) is bounded by assumption, we can apply Lemma C.2.2 to conclude that

G(U;G0) - G(U; Qi(0)) - G(A t(Qt (G));G0) = 0 (C.6)

thereby establishing equation (5.27) for A" = 1, with the identifications 0 Q= and
i = i(n).

To extend the result to An E [0, 1], we use the definition of 0 r+1 given in equa-
tion (5.20) to write:

G(U;0o") - G(U;On+1) = 5uU[n+1 -on]

-AMn5U",[ Qi(n) (on) - Gonl

- A"{G(U;G64) - G(U; Qif)(U))}

- AnG(A)(Q"() (n)); Gn)

where we have obtained the final line using equation (C.6).

U C.3 Proof of Theorem 5.4.1

(a): By the cyclic tree ordering, we have 0 Ln+i+1 0- Ln+i = ALn+i[Qi(GLn+i) GLn+i]
where i is arbitrary in {0,. .. , L - 1}. Since the sequence {97} converges to *, it is

Cauchy so that the left side tends to zero. Since ALn+i > e, this implies that Qi (GLn+i) _

0 Ln+i 0 I_. Le. Qi(G*) Q* for alli E {0,... ,L - 1}.
We now construct the unique T* £ C such that ]Ii(T*) = Ai(Hi(G*)). For an

arbitrary index a E A, pick a spanning tree V2 such that a E A. This is always possible
since UjA t = A by construction. Define T* = [A(I(*))]a, which is a consistent
definition because

[A (rI (O*))], = [A'(III(O*))]a
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for any spanning tree indices i, j such that a E A n A. By construction, it is clear

that T* e C, and that If(T*) = A2 (IHi(0*)).

(b): Let U E C = nO be arbitrary. By applying Proposition 5.4.1 repeatedly, we
obtain

cc

G(U; 0 0) = G(U; 0*) + E W",(C.7)
n2=1

where W_ A AOG(An)(Qi4)(on)); on). By part (a), the parameter 0* induces a unique
pseudomarginal vector T* E nC. We then apply equation (C.7) with U = T* and use
the fact that G(T*; 0*) = 0 by construction to obtain G(T*; 00) - Ei W. Substitut-
ing this result back into equation (C.7), we find that

G(U; 00) = G(U; 0*) + G(T*; 00)

for all U e nCO. To prove that T* satisfies the necessary conditions to be a local
minimum, we note that

0G
G(U; 00 ) -G(U; 0*) -G(T*;00) = IO (T*; 00)[U - T*L

-0

where we have used a sequence of steps similar to the proof of Proposition 5.4.1.

(c) Since the cost function G is bounded below and the constraint set is non-empty, the
problem has at least one minimum. Moreover, because the constraint sets are linear,

the existence of Lagrange multipliers is guaranteed for any local minimum [20]. By
applying Farkas' lemma [20], the condition stated in (b) must be satisfied by any local
minimum.

(d) Part (b) establishes that any fixed point T* satisfies the necessary conditions to

be a local minimum of G over the constraint set C. The cost function G agrees with

the Bethe free energy on this constraint set. Moreover, Yedidia et al. [180] have shown

that BP fixed points correspond the points that satisfy the Lagrangian conditions for
an extremum of the Bethe free energy over C. By recourse to Farkas' lemma [20],
these Lagrangian conditions are equivalent to the condition stated in (b). Therefore,
we conclude that fixed points of the two algorithms coincide.

0 C.4 Proof of Theorem 5.4.2

Throughout this appendix, we will use the notation 4'(0) as a shorthand for the quantity

(Hi(0)). With this notation, we begin with some preliminary lemmas.
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Lemma C.4.1. For all indicesi =0,... ,L-1,we have G(A(IT());H(6)) = -41(0).

Proof. Note that 8(A2 (Hi(0))) and LIU(0) induce the same distribution on spanning
tree 'TV so that D(S(A2 (HI(0))) 11 H2(0)) = 0. The statement of the lemma then follows
from equation (5.26). H

Lemma C.4.2. Let I E {0,... , L - 1} be arbitrary, and let i(n) the tree index used
at the nth iteration. Then:

qj(fn+l) (1 _ AjS(0) ± A l(Q")(Q")) (C.8)

Moreover, in the special case I = i(n), we have

4i(n)(on+1) -= (1 _ \n)(Din)(on) (C.9)

Proof. Recall that gn+1 is formed as the convex combination

on+1= (1 - An)O + AQ(f) ()

This combination remains convex if we apply the linear projection operator I to both
sides, so that equation (C.8) follows from the well-known convexity of the log partition
function P.

In the special case I = i(n), we have (Q'(9')) = 0, so that equation (C.8) reduces
to Dl(n+l) < (I - An)P'(0n). Moreover, by the convexity of 4:

4 Cl(Qn+1) ; > P'(0n) + EIJrI(on) [a] [ 0n+1-_] n(C.10a)

= (DI(o) + A" E (I)q(0 ] [QL(on) -- 0j , (C.10b)

= (1 - A)&1(on) (C.10c)

where we have used the fact that 21(H(0)) - ErlB()(a]to obtain equation (C.1Oa);

the definition of 0'+1 in equation (C.10b); and Lemma C.4.1 in equation (C.10c). El

With these preliminary lemmas, we can begin the proof of the theorem. Let U C C
be arbitrary. By applying Proposition 5.4.1 repeatedly, for any iteration M = 1,2,...,
we obtain

M-1

G(U; 0) - G(U;gM) = >3 W (C.11)
n=O

where W -= AnG(Ad4)(Qd") (on)); on). Lemma C.4.1 and the definition of A2 in equa-
tion (5.17b) lead to the equivalent expressions:

4i(Q") = G2(A(fli(0T ));IHi(on)) (C.12a)

= G(Ai(Qi(on));0on) (C.12b)
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meaning that we can write W, = -An#i")(on).
From this point onwards, our goal is to establish that

lim 4(0') = 0 for i = 0, 1 (C.13)
n-oo

Indeed, if equation (C.13) holds, then using equation (C.12), we see that assumption (a)

implies that Q9(9") -+ 0' as well, which is the statement of the theorem. The essence

of establishing (C.13) is to choose a sequence {A h} of positive step sizes such that

W, > 0 is guaranteed for all n = 0,1, 2,... .. This condition ensures that for some fixed

U E C, the LHS of equation (C.11) - namely, the sequence Am L G(U; 00)- G(U; 0M)
- is non-decreasing in M. Moreover, since the sequence {OM} remains bounded by
assumption, the sequence Am is also bounded above. That is, the sequence {AM} is

both non-decreasing and bounded above, and so must converge. Using equation (C.11),
the convergence of {Am} will allow us to conclude that W, - 0. Finally, we will use

this fact to establish equation (C.13).
Without loss of generality, we assume that 4)(0) < 0 for i = 0, 1, a condition that

can be guaranteed by subtracting a constant from the full vector 00 if necessary. We
formalize the step size choice in the following lemma:

Lemma C.4.3. At each iteration n, define:

n [A (Q ?t0(Ol) ] if 4)i(Qi(n)(on)) > 0

1/(n +1) otherwise

where i(n)=_ n(mod 2) and i-_ (n + 1)(mod 2). Provided that V(D0 ) < 0 for i = 0, 1,
then choosing the step sizes

A 1 =-n(C.14)
2

will guarantee that V(9 7 ") < 0 for all n, i = 0, 1.

Proof. The proof is by induction; the case n = 0 is given, and so we assume it holds

for an even iteration n so that i(n) = 0. From equation (C.9) in Lemma C.4.2, if
40(9T) < 0, then any step size in (0, 1) will ensure that 40('-+1) < 0. Note that by

construction 0 < An < 1, so that it is a valid step size choice.
Now considering i = 1: if 4D(Q0(T)) < 0, then again any choice An+ 1 < 1 will

suffice. On the other hand, if 44(I0(9(o)) > 0, with the step size

-44(9T)

0 <(( = <
4Q190(9T)) -- )1(9n)

the right hand side (i.e., upper bound) of equation (C.8) is zero. Since the upper bound
of equation (C.8) decreases for smaller At , the step size choice of equation (C.14) will

ensure that 4)(92n+1) < 0.
A similar argument can be applied for odd n, where i(n) = 1. Therefore, we have

established that our step size choice ensures that )i(9+1) < 0 for all n, and i = 0, 1. H
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We now prove equation (C.13). By the step size choice of Lemma C.4.3 and our ear-
lier reasoning, we are guaranteed that the infinite sum E"_o W0 1 exists, and that Wn --

0±. So as to exploit assumption (b) of the theorem statement, we now split our analysis

into two cases. Note that for a, b = 0, 1, we have 4a(Qb(Qn)) = G(A(Qb()); Qb(n)
by definition of Aa in equation (5.17b). Therefore, assumption (b) means that the
quantities 4 i(Qo(97)) and &V(Q1 (Q')) are eventually (i.e., for n > K) of the same sign.

Case 1: Suppose first that for a, b = 0,1, we have (p,(Qb(n)) < 0 for all n > K.
This implies that A" = 2(1 for all n > K, so that the infinite sum E>K Wn =

- Z> 4i(n) (o)/[2 (n + 1)] exists. Since - 4 i(n)(on) > 0 for all n by construction,
this implies that 1i (on) - 0 for i = 0, 1.

Case 2: Otherwise for a, b = 0,1 and a b, we have 4 (Qb(n)) > 0 for all n > K.
Let {nk} be the even integers for which i(nk) = 0. Then we have:

00 00

Y, WnY = - > )lk41O(QOk)

nk K n,>K

= 1 4O(0nk)4l(O)(C.15)

2fiSK D1(QO(Onk)) - 4 1(07k)

Since the sequence {0> remains bounded by assumption, the denominator of Wk
is bounded in absolute value. Therefore, the fact that Wnk -+ 0 implies that the
numerator - namely, 4 O(01k) l(0Tk) - must converge to zero. This condition does
not necessarily imply that one of these two log partition functions converges to zero;
for example, we could have 4 (07"k) tending to zero for even k, and 4i(Ofk) tending to
zero for odd k.

With the additional constraints of our problem, we shall now prove that, in fact we
have limfk>_._oo 4i(0k) = 0. We proceed via proof by contradiction: if this were not
the case, then there would exist some infinite subsequence (say {n}) of the even indices

{fnk} such that 4l(0"j) is bounded away from zero. From the condition (D1(9fl)4 O(0fl) ->

0, this implies that 4(0(7i) -- 0. By assumption (a) and the equivalence of Lemma C.4.1,
this implies that [Q0 (071) - 07 i] -- 0. Since 41 is a C2 function and {91} is bounded, we
can apply the mean value theorem to conclude that limnj o 0 inf [4 l(0 7"i )---1 (Q0 (On)] -

0. Moreover, since p, 1 (Q 0(9nU)) > 0 for all n > K by assumption, we have

lim inf4 1(0'U) > lim inf [ 1(40in) - 4 1(QO(07))]
n -*oo nj-+co

=0

Moreover, by our step size choice, we have 4 1 (0") < 0 for all n, thereby ensuring
the relation lim7 <, 0,) sup (D1(0T i ) < 0. In conjunction, these two relations imply that
lim 7 ,_ oo4 > 1 (07j) exists, and is equal to zero, so that we have reached a contradic-

'Note that by definition, <a(Qa(0')) = 0 for a = 0, 1.
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tion. Therefore, our initial assumption must have been false, and we can conclude that

limnfk4%( D1(Onhk) = 0.

On the other hand, to analyze the behavior of i (On), consider the sequence formed
by the odd indices {mk}. This leads to equation (C.15), with the roles of 0 and 1
interchanged. Thus, a similar argument allows us to establish that 4 D(O

m k) -+ 0.

Therefore, we have proved that 41 (97k) - 0 and DO(Omk) -+ 0. These condi-
tions in conjunction imply that the step sizes An are tending to zero for the infinite
subsequences formed by even indices {nk} and odd indices {mk}. Therefore, we can
conclude that the overall sequence On converges to some 9* such that V(9*) = 0, and
hence equation (C.13) is proved, which establishes the theorem.

M C.5 Proof of Proposition 5.4.2

We begin by expressing the delta function 6(x5 = j) as a linear combination of the
monomials in the set R(s) defined in equation (2.12a) as follows:

6(xS=j) = (k - ,) (C.16)
k~j

This decomposition is extended readily to pairwise delta functions, which are defined
by products 6(x, = j)6 (xt = k); in particular, they can be written as linear combi-
nations of elements in the sets R(s) and R(s, t), as defined in equation (2.12a) and
equation (2.12b), respectively. Now suppose that 0 E M(90), so that log p(x; TO) =

log p(x; 9) for all x C X. By construction, both the LHS and RHS are linear combina-
tion of the elements R(s) and R(s, t). Equating the coefficients of these terms yields
a set of d(y) = (m - 1)N + (m - 1)21E1 linear equations. We write these equations
compactly in matrix form as AO =-y0

This establishes the necessity of the linear manifold constraints. To establish their
sufficiency, we need only check that the linear constraints ensure the constant terms in
log p(x; -O) and log p(x; 0) (i.e., (D(7 0) and 1(9) respectively) are also equal. This is a
straightforward verification.
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Appendix D

Proofs for Chapter 7

U D.1 Proof of Proposition 7.2.2

From Lemma 7.2.1, for 110*11 < oc, the optimal A is attained in the interior of L(g). I.e.,
none of the linear inequality constraints defining L() are met with equality. Optimal

points A are therefore given as zero points of the gradient OQ(AM). In order to calculate

this gradient, we use the fact that (A )) = 0(T)0 by definition of the Legendre
duality coupling the log partition function 4 and negative entropy TF. Calculating the
gradient 9Q(Ap;*) and setting it to zero yields the following stationary conditions for
the optimum:

Eg[s(T)st] = * (D.Ia)

E f[(T)s] = 0a* (D.1b)

Now for any spanning tree T E T, we have p(x; 0(T)) = p(x; IIT(A)). By definition,
the distribution p(x; 0(T)) has the following exponential form:

log p(x; 0(T)) = E 0(T)5 s + 0(T),t xxt - ((T)) (D.2)
sEV (s,t)eE(T)

On the other hand, from equation (7.15), we have:

1

log p(x; IT(I)) ELlog p(XS = j; A)6(X8 = j)
sEV j=0

+ log[P(Xs7>,tk; 6(x, =j)6(xe = k) (D.3)
(s,t)EcE(T) j,k=O LI(X3;JA)P(xt=k;A)J

where p(x5 ;iA) and p(x5, xt; A) are defined in equation (7.12).
Using the fact that for binary variables 6(x, = 0) = (1 - x) (and similarly,

J(x, = 1) = x,), we see that equations (D.2) and (D.3) are both binomials in {x}

255



and { xzt}. Equating their respective coefficients yields the following relations:

(Ist) (1 + st -As - t)6(T)st= [(s, t) E T] log[A t A A)(D.4a)
(As - Ast) (At - Ast)

0(7)s=log[+ A + E (s,t) CT] log[ K9 t ](D.4b)
(I - As) tcer(s) [(I+ Ast - As - A).

Taking expectations with respect to ft and using equations (D1a) and (D.1b) yields
the statement of the proposition.

0 D.2 Proof of Proposition 7.3.1

(a) Define the function

W(pe;0*) = min F(A; Me; 0*) = F(A(pe);Mie;0*)
AElL(g)

where A(pe) denotes the optimal A as a function of Ie. Taking derivatives via the chain
rule, we obtain:

O7 (Me;;*) = a+F OA± OF(D.5)
Ost S DAc Ost / 1pst

Now from Lemma 7.2.1, the optimum A(pe) of the problem minACL(g) Y(A; /e; 9*)

occurs at an interior point of L(g). Therefore, none of the constraints defining L()
are active, so that in fact, by the Karush-Kuhn-Tucker conditions [20], we must have

-0
O (9iT ) = (D .6)

at the optimum A. Moreover, straightforward calculations yield

= Ist(A) (D.7)

By combining equations (D.6) and (D.7) with equation (D.5), we are led to conclude
that AWh(pe; 0*) = Ist(I(pe)).

Now form the Lagrangian associated with the problem maxg'.(g) H(ve; 0*):

£(/I;$; 9*) = R(Me; 9*) + 6 [(N - 1) - 5 p] + (A) [r(A) - S ]

eE& AcE eEA
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where the sum EACE ranges over all critical subsets A. Taking derivatives with respect
to pe yields the Lagrangian conditions stated in the proposition. The Karush-Kuhn-
Tucker conditions guarantee that the Lagrange multipliers (A) associated with the
inequality constraints are all non-negative. In particular, (A) > 0 with equality when-
ever the constraint associated with A is inactive.

(b) Since (Me; 0*) = Ist(A(pe)) from part (a) and v(T) C 7(g), the statement

(J(A')), v(T) - je) _ 0 V T E 7 (D.8)

follows from standard necessary conditions [see 20] for the maximum ' of 71 over the
linear (hence convex) set 7(g).

We now establish that inequality (D.8) holds with equality for all T E supp(j).

Since '4 E T(9), there exists some distribution pM over spanning trees that

Z p(T)[eET]=/t V eCE (D.9)
TET

We now multiply equation (D.9) by Ie(ie)) and sum over all e E S to obtain

0 = Ie(A(pe)) P(T J[e ET]-Pe
e E T 7ET

AS^(T) 5 e(A(e)) F [e EGT] - [e
TET eE-

- (T) (I(A(ji;)), v(T) -'
TET

where we have recognized that for fixed T, the function 6[e C T] =v(T)e. Using this
relation and inequality (D.8), we must have (I(AQ7e)), v(T) - = 0 for all T such
that P(T) > 0.
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