
Efficient Threshold Cryptosystems

by

Stanislaw Jarecki

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2001

@ Massachusetts Institute of Technology 2001. All rights reserved.

A u th or
Department of Electrical Engineering and Computer Science

April 20, 2001

Certified by.
A v....... Shafi *;Goldwasser

Professor of Computer Science
Thesis Supervisor

A ccepted by

Chairman, Departmental

MASSACHUSETTS NSTMTUTE
OF TECHNOLOGY

BARKER JUL 112001

LIBRARIES

.........
Arthur C. Smith

Committee on Graduate Students

I>

Efficient Threshold Cryptosystems
by

Stanislaw Jarecki

Submitted to the Department of Electrical Engineering and Computer Science
on April 20, 2001, in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Abstract

A threshold signature or decryption scheme is a distributed implementation of a cryptosys-
tem, in which the secret key is secret-shared among a group of servers. These servers can
then sign or decrypt messages by following a distributed protocol. The goal of a threshold
scheme is to protect the secret key in a highly fault-tolerant way. Namely, the key remains
secret, and correct signatures or decryptions are always computed, even if the adversary
corrupts less than a fixed threshold of the participating servers.

We show that threshold schemes can be constructed by putting together several simple
distributed protocols that implement arithmetic operations, like multiplication or exponen-
tiation, in a threshold setting. We exemplify this approach with two discrete-log based
threshold schemes, a threshold DSS signature scheme and a threshold Cramer-Shoup cryp-
tosystem. Our methodology leads to threshold schemes which are more efficient than those
implied by general secure multi-party computation protocols. Our schemes take a constant
number of communication rounds, and the computation cost per server grows by a factor
linear in the number of the participating servers compared to the cost of the underlying
secret-key operation.

We consider three adversarial models of increasing strength. We first present distributed
protocols for constructing threshold cryptosystems secure in the static adversarial model,
where the players are corrupted before the protocol starts. Then, under the assumption
that the servers can reliably erase their local data, we show how to modify these protocols
to extend the security of threshold schemes to an adaptive adversarial model, where the
adversary is allowed to choose which servers to corrupt during the protocol execution.
Finally we show how to remove the reliable erasure assumption. All our schemes withstand
optimal thresholds of a minority of malicious faults in a realistic partially-synchronous
insecure-channels communication model with broadcast.

Our work introduces several techniques that can be of interest to other research on
secure multi-party protocols, e.g. the inconsistent player simulation technique which we
use to construct efficient schemes secure in the adaptive model, and the novel primitive of
a simultaneously secure encryption which provides an efficient implementation of private
channels in an adaptive and erasure-free model for a wide class of multi-party protocols.

We include extensions of the above results to: (1) RSA-based threshold cryptosystems;
and (2) stronger adversarial models than a threshold adversary, namely to proactive and
creeping adversaries, who, under certain assumptions regarding the speed and detectability
of corruptions, are allowed to compromise all or almost all of the participating servers.

Thesis Supervisor: Shafi Goldwasser
Title: Professor of Computer Science

3

Acknowledgments

I would like to thank my advisor, Shafi Goldwasser, for supporting my studies and my re-

search, for her advice and guidance throughout, for supervising this thesis, and in particular

for asking me to write this material in a more formal way than I initially intended. Even

though it took longer to write it, in this way my work has become more sound and intel-

lectually satisfying, and hopefully also more useful to the research community. Secondly, I

want to thank Hugo Krawczyk, who co-supervised this thesis, with whom I had a pleasure

of working on several research projects which have contributed to it, and who have always

given me judicious advice and much encouragement.
I want to thank all other scientists with whom I have worked on research projects in

cryptography. My thesis is based on results of many of these collaborations. I was lucky

to be learning from them and to share with them the camaraderie of doing a good work

together. Thus my gratitude, respect, and warm greetings go to Ran Canetti, Rosario

Gennaro, Amir Herzberg, Markus Jakobsson, Anna Lysyanskaya, Andrew Odlyzko, Tal

Rabin, and Moti Yung.
It is also my great pleasure to thank all other researchers, both professors and students,

whose friendship and good advice have given me support during my studies, and whose

expertise and excitement about cryptography have been an inspiration and a source of

ideas to me. Thus I would like to thank Yevgeniy Dodis, Yael Gertner, Shai Halevi, Ari

Juels, Tal Malkin, Silvio Micali, Daniele Micciancio, Zulfikar Ramzan, Leo Reyzin, Ron

Rivest, Adam Smith, and Salil Vadhan. I am afraid that this short list unfairly omits some

people, whom I hereby ask for forgiveness.
I want to gratefully acknowledge the help I received from Jim Horning, the director of

the Strategic Technology and Research Lab at InterTrust Technologies, and from the whole

STARLab team, for allowing me to spend the first four months at STARLab on completing

the write-up of this thesis. Similarly, I want to thank the Institute of Foundations of

Computer Science in Warsaw (IPI PAN), and in particular Dr. Marian Srebrny, who hosted

me for a month while I was working on this write-up in Poland.

I want to thank all my dear Boston friends, who cheered me on and shared with me the

joys and challenges of a graduate student life at MIT.

Finally, my biggest gratitude goes to my dear mother, to my loving sister Dorota, and

to Stephanie Malloy, who gave me an invaluable support during my last year at MIT. I

dedicate this work to them.

4

II

Contents

1 Introduction 9
1.1 Threshold Cryptosystems: Exposition . 9
1.2 Contribution of This Thesis . 11

1.2.1 Our Approach: Protocol Building Blocks for Arithmetic Operations 12
1.2.2 Organization of the Thesis: Adversarial Models Considered 13
1.2.3 Contributions to Research on Secure Protocols 15

1.3 Applications of Threshold Schemes . 15
1.3.1 Fault Tolerance . 15
1.3.2 Division of Trust . 17
1.3.3 Importance of Threshold Schemes for Standard Systems 18

1.4 History of Research on Threshold Cryptosystems 18

2 Modeling Security of Threshold Schemes 23
2.1 Standard Model . 23
2.2 Variants of the Model . 26
2.3 Efficiency Criteria . 29
2.4 Formal Definitions of Security of Threshold Schemes 31
2.5 Methodology for Proving Security of Threshold Schemes 36

3 Preliminaries 41
3.1 Definitions . 41
3.2 Notational Conventions . 43

4 Static Threshold Cryptosystems 47
4.1 Introduction . 47
4.2 Distributed Key Generation for DLog-based Schemes 47

4.2.1 Introduction . 47
4.2.2 Requirements of a Secure DKG Protocol 49
4.2.3 The Insecurity of a Common DKG Protocol 51
4.2.4 Joint Sharing of a Random Secret and Distributed Coin-Flip 55
4.2.5 Threshold Exponentiation Exp and Secure DKG Protocol 71

4.3 Threshold DSS Signatures . 78
4.3.1 DSS Signature Scheme . 78
4.3.2 Sharing of a Refresh Polynomial . 78
4.3.3 Threshold Multiplication of Two Shared Secrets 82
4.3.4 Threshold Inverse Computation Protocol 94
4.3.5 Threshold DSS Scheme . 98

5

4.4 Optimally Resilient Threshold DSS Signatures 110
4.4.1 Simultaneous Zero-Knowledge Proof 110
4.4.2 Optimally Resilient Multiplication of Shares 116
4.4.3 Optimally Resilient Computation of Inverses and DSS Signatures 126

5 Adaptive Threshold Cryptosystems 133
5.1 Adaptive Security of PedVSS-based threshold protocols 138

5.1.1 Adaptive Security of PedVSS, RVSS, and ZVSS 138
5.1.2 Adaptive Security of the Simultaneous Proof Protocol 141

5.1.3 Adaptive Security of Threshold Multiplication Protocol Mult-opt 145
5.1.4 Adaptive Security of Inverse Computation Protocol Reciprocal-opt 149

5.2 Adaptively Secure Key Generation and DSS Signatures 150
5.2.1 Adaptively Secure Threshold Exponentiation Protocol 150
5.2.2 Adaptively Secure Threshold DSS Scheme 153

6 Erasure-Free Adaptive Threshold Cryptosystems 155
6.1 Private Channels in the Adaptive Erasure-Free Model 156

6.1.1 General Multi-Party Protocols and Non-committing Encryption . . . 156
6.1.2 Our Threshold Protocols and Simultaneously Secure Encryption . . 157

6.2 Adaptive Erasure-Free Threshold Protocols 166
6.2.1 Insecure-Channels-Enabled Protocols based on RVSS and Ad-Exp . . 166
6.2.2 Insecure-Channels-Enabled Threshold Multiplication 167
6.2.3 Remaining Insecure-Channels-Enabled Protocols 170

7 Distributed Generation of a Pedersen Commitment Instance 171

A Adaptive Threshold Cramer-Shoup Cryptosystem 191
A.1 The Cramer-Shoup Cryptosystem . 191
A.2 Threshold Cramer-Shoup Key Generation 192
A.3 Threshold Cramer-Shoup Decryption . 194

B Proactive Security: Extensions to Stronger Adversarial Models 197
B.1 Measures against the Mobile Adversary . 199
B.2 Measures against the Creeping Adversary 199

C Adaptive Erasure-Free Threshold RSA 203

D Threshold Cryptosystems vs. General MPC Protocols 205

E Insecure Variants of the Joint-Feldman Protocol 209

F 3-Round Honest-verifier Public-coin Zero-knowledge Proofs of Knowl-
edge 213

G Parallelizable Zero-knowledge Proof of Knowledge of Discrete Log 223

6

List of Figures

4-1 Feldman's Verifiable Secret Sharing . 52
4-2 An insecure solution for a Distributed Key Generation Protocol 54
4-3 (PedVSS, PedVSS-REC): Pedersen's Verifiable Secret Sharing 58
4-4 Properties of a correct secret-sharing PedVSS-data 59
4-5 Tpeavss: Auxiliary procedure for simulation of PedVSS 60
4-6 (RVSS,RVSS-REC): Distributed Coin-Flip 65
4-7 Properties of a correct joint secret-sharing RVSS-data 67
4-8 TjRss: Auxiliary procedure for simulation of RVSS 70
4-9 Exp: Statically Secure Threshold Exponentiation Protocol 73
4-10 DKG: Statically Secure Distributed Key Generation Protocol 76
4-11 (ZVSS,ZVSS-REC): Refresh Polynomial Sharing & Reconstruction 80
4-12 Tzvss: Auxiliary procedure for simulation of ZVSS 82
4-13 Mult: n/4-Threshold Multiplication of Two Shared Secrets 84
4-14 TECSS: Auxiliary simulation procedure . 86
4-15 Scale: Protocol for "Scaling" a Joint Secret-Sharing 91
4-16 Reciprocal: n/4-Threshold Inverse Computation Protocol 95
4-17 DSS -TSig: n/4-Threshold DSS Signature Generation 100
4-18 SIMss: Simulator for threshold DSS signature scheme TSS 107
4-19 Framework for a THPZP Proof System . 111
4-20 Framework for a Simultaneous Proof Protocol SP-THPZP 112
4-21 Mult-opt: n/2-Threshold Multiplication of Two Shared Secrets 118
4-22 Recon: Share Reconstruction Protocol . 119
4-23 TMult: Auxiliary simulation procedure . 122
4-24 Reciprocal-opt: n/2-Threshold Inverse Computation Protocol 127
4-25 DSS -TSig-opt: n/2-Threshold DSS Signature Generation 131

5-1 TPedvSS: Auxiliary procedure for adaptive simulation of PedVSS 140
5-2 Adaptive Simulation of the Simultaneous Proof Protocol SP-THPZP 142
5-3 Ad-Exp: Adaptively Secure Threshold Exponentiation Protocol 152

6-1 Scenario for the Simultaneous Security of an Encryption Scheme 160
6-2 Simultaneously Secure Encryption Scheme E 162
6-3 I.C.E.-Mult: Insecure-Channels-Enabled Threshold Multiplication. 168

7-1 Ped-IG: Distributed Generation of Pedersen Commitment Instance 171
7-2 DL-IG: Distributed Generation of the Discrete-Log Instance 172
7-3 h-IG: Dist. Generation of value h in the Pedersen Commitment 174
7-4 Step 2 of h-IG: Parallel Execution of n x n ZKPK-DL proofs 175

7

8

A-i CS-DKG: Threshold Cramer-Shoup Key Generation 193

A-2 CS-TDec: Threshold Cramer-Shoup Decryption Protocol 194

B-i Refresh: Distributed Refreshment of a Secret-Sharing 200

F-1 THPZP-DL: proof of knowledge of discrete logarithm 218

F-2 THPZP-Rep: proof of knowledge of (equal) representation 219

F-3 THPZP-MULT: proof of knowledge of committed a, b, c s.t. ab = c 220

G-i Parallelizable ZKPK proof of knowledge of discrete logarithm 223

II

Chapter 1

Introduction

1.1 Threshold Cryptosystems: Exposition

In a standard public-key cryptosystem the secret-key operation is performed by a single
server that stores the secret key. We will call such implementations of a secret-key operation
a centralized cryptosystem. Since public-key cryptosystems are used to guarantee some level
of protection against dishonest behavior of some entities, such dishonest entities will try to
attack this single server in an attempt to steal or to destroy the secret key, and thus destroy
the protection established by this cryptosystem. The idea of a threshold cryptosystem is to
remove this single point of failure by distributing the secret-key operation among a group of
servers. The goal of a threshold cryptosystem is to design this distributed implementation of
the secret-key operation in such a way that the cryptosystem remains secure in the presence
of adversaries that can break into, spy on, disconnect, crash, or in any other way corrupt
some of the participating servers, as long as the number of such corrupted servers is smaller
than certain threshold.

In this work we consider two types of public-key cryptosystems: encryption schemes and
signature schemes. In the first the secret key is used to decrypt, in the latter to sign. Both
operations can be fault-tolerantly distributed, the first with a threshold signature scheme,
the latter with a threshold decryption scheme. We will refer to either one as simply a
threshold scheme.

A threshold signature scheme replaces the single server, who is the sole holder of the
secret key and who performs the signature operation, with a group of servers, often referred
to as players in a threshold scheme. This group of servers together "holds" the secret key in
such a manner that they can, as a group, produce signatures even if some of these servers
are controlled by an adversary and diverge from the prescribed protocol in an arbitrarily
malicious way. There are two security objectives that threshold signature schemes must
achieve: i) A threshold scheme must be robust, i.e. a correct signature must be efficiently
produced as long as the subset of the corrupted servers stays below a certain threshold.
ii) Furthermore, under the same condition, the underlying signature scheme must remain
unforgeable, i.e. the adversary who corrupts less than a specified threshold of servers and
participates in the signature protocol, invoked on the messages that the adversary adaptively
chooses, remains unable to forge signatures.

Similarly for the encryption schemes, a secret key can be held in a distributed way by a

9

10 CHAPTER 1. INTRODUCTION

group of servers which perform a decryption operation via a threshold decryption protocol.

The adversary who corrupts less than a certain threshold of the servers can neither disrupt

the remaining servers from producing correct decryptions nor can he break the semantic

security of the underlying encryption scheme.

In a (t, n)-threshold scheme, n servers maintain the private key and participate in the

private key operation. The adversary needs to break at least t + 1 of the servers to be able

to forge signatures (respectively, decrypt messages), or to stop the system from efficiently

producing valid signatures (respectively, decryptions). Thus the threshold schemes essen-

tially provide fault-tolerant protection of secrecy and of availability of the secret key, in the

presence of computer break-ins or any other local computer faults

Attempts at Simple Solutions. We can elucidate the functionality of threshold schemes

by examining a few straightforward attempts at achieving their desirable properties.

Attempt 1: For example, a replication of the secret key among a group of servers would

protect its availability in the presence of computer break-ins, i.e. the production of correct

decryptions or signatures would be assured as long as at least one of the servers remained

uncorrupted, but such replication would obviously weaken the protection of the secrecy of

the key.

Attempt 2: A better attempt would be to use standard secret sharing to distribute the

secret key among n players, and whenever the secret-key operation needs to be performed,

to reconstruct this key at some server, perform the reconstruction, and erase the key, so

that only the shares of the key persist. This solution would still not remove a single point

of failure. The adversary learns the secret key if he corrupts this one server at the time the

secret-key operation is performed.

Attempt 3: A much closer approximation to the functionality of an (Ly j, n)-threshold

signature scheme could proceed as follows. Let's use any regular signature scheme as a

black-box, and let each of the n servers create its own signing key and public key pair

(let's call them "partial keys"), and let the set of all the n public keys be the public key

of the new scheme. We define a valid signature of the new scheme as a collection of valid

signatures under more than [2 j of these partial keys. If the underlying signature scheme

is secure, such scheme would be both robust and unforgeable as long as the adversary does

not corrupt more than the majority of the servers. One can also propose a similarly fault-

tolerant encryption scheme. Every server has its own instance of a standard encryption

scheme, and a ciphertext is formed by first encrypting a message under some symmetric

key, then secret-sharing this key and encrypting each share under a public key of each server.

The ciphertext is a concatenation of all these ciphertexts.

A clear drawback of the above proposals is that the size of the public key and of each

signature (resp., ciphertext), as well as the time to verify each signature (resp., encrypt a

message), grows by the factor of n. This would be too inefficient for many applications, e.g.

in wireless communication.

Moreover, this attempt at approximating the functionality of threshold schemes does

not provide transparency to the system users. If someone wanted to use the above methods

to add fault-tolerance to an existing standard centralized cryptosystem, they would have

to change the public key of the cryptosystem, and also change the signature verification

(resp., message encryption) software of every system user, since the public-key operations

of the new schemes are non-standard. Furthermore, in the case of a signature scheme, they

III

1.2. CONTRIBUTION OF THIS THESIS

would have to either make all the previous signatures invalid or they would have to re-sign
them. Such global operation would be both costly and difficult to carry out securely. In
contrast, a threshold scheme can add fault tolerance to existing cryptosystems in a way
which is transparent for the system users. The signature (resp., decryption) output by the
group of servers will be the same as in the standard centralized scheme. In any system that
utilizes a signature (resp., decryption) service one can replace the server that implements
the secret-key operation with a threshold scheme, and no other element of the system needs
to change.

A Complex Solution: Secure Multi-Party Computation. Threshold schemes are
actually implied by the general results on secure multi-party computation (MPC), which
provide protocols for computing any function, including signature and decryption operations
of any public-key cryptosystem, in a threshold setting.' Since the introduction of secure
multi-party computation by [Yao82, GMW87], there appeared many MPC solutions, e.g. in
the works of [BGW88, CCD88, RB89, BMR90, Bea9l, MR91, B1192, BOCG91, CFGN96,
CDD+99, CanOO]. These solutions were increasingly more efficient, and provably secure in
increasingly stronger computational, communicational and adversarial models.

The generality of the above solutions implies certain inefficiencies when such protocols
are used to implement threshold cryptosystems for schemes like DSS, Cramer-Shoup, or
RSA. Namely, all the above solutions are based on protocols that compute a single arith-
metic or Boolean gate in a threshold setting. Such protocols are then composed to compute
any arithmetic or binary circuits in a threshold setting. Thus the complexity of the resulting
threshold protocols depends on the complexity of the circuit representation of the computed
function. If we look at two particular efficiency measures of a distributed protocol, namely
the number of communication rounds and the computation cost of each participating player,
then all the above general solutions except [BMR90] imply threshold DSS, Cramer-Shoup,
and RSA schemes with non-constant number of rounds, while [BMR90] implies schemes in
which every player performs a very high number of cryptographic operations. Such costs
are prohibitive for the applications of threshold schemes that we consider. 2

1.2 Contribution of This Thesis

This thesis shows how efficient threshold schemes can be built from distributed protocols
that fault-tolerantly implement simple arithmetic operations on secret-shared data. We ex-
emplify this methodology by constructing a threshold DSS signature scheme, which involves
adding, multiplying, exponentiating, and inverting secret-shared data. We also show that
such techniques can be applied to other discrete-log based schemes, like a Cramer-Shoup
cryptosystem, or to schemes working over composite moduli, like RSA.

Our techniques lead to efficient threshold schemes. In a realistic partially-synchronous
insecure-channels point-to-point communication model with broadcast,3 each execution of

'See Appendix D for an explanation of how threshold schemes can be implemented with general MPC
protocols.

2See Appendix D for a more detailed discussion of the costs of implementing threshold cryptosystems
with general MPC protocols.

3 See Chapter 2 for a discussion of the communication model.

11

12 CHAPTER 1. INTRODUCTION

our threshold key generation, signature generation, or decryption protocol takes a small

constant number of communication rounds (which can often be further reduced if some

work is performed off-line, for example to only one round in the case of threshold DSS), and

bears the following amortized costs per each participating player. Each player broadcasts

O(nk) bits and privately sends to other servers O(nk) bits, where n is the number of

participating players, and k is the security parameter. The local computational cost of

each player is O(nk) modular k-bit multiplications if k = Q(n 2 log n). 4 Furthermore, unlike

in the case of the general MPC protocols, the cost of implementing private channels for

our threshold schemes in the adaptive erasure-free model is comparable to the cost of a

conventional public-key encryption scheme.

The methodology and the results presented in this thesis summarize the contributions to

threshold cryptography that were developed in a series of works written by Rosario Gennaro,

Stanislaw Jarecki, Hugo Krawczyk, Tal Rabin, and Ran Canetti [GJKR96b, GJKR96a,

GJKR99, CGJ+99], and in a recent work written by Stanislaw Jarecki and Anna Lysyan-

skaya [JLOO]. We also present the extensions to proactive security created by Amir Herzberg,

Stanislaw Jarecki, Hugo Krawczyk, Moti Yung, and Markus Jakobsson [HJKY95, HJJ+97.

1.2.1 Our Approach: Protocol Building Blocks for Arithmetic Operations

Our main contribution is a presentation of distributed protocols from which efficient se-

cure threshold cryptosystems can be built. Since algorithms of many cryptosystems can be

broken down to a series of simple arithmetic operations, our methodology is to construct

distributed protocols that implement such arithmetic operations in a threshold setting,

and then to put together such building-block protocols to construct threshold key gener-

ation, signing, or decryption protocols for various signature schemes or cryptosystems. In

particular, we show how to use our building-block protocols to construct two discrete-log

based schemes: a complete threshold DSS signature scheme [NIS91] (i.e. threshold DSS

key generation and threshold DSS signature generation), and a complete threshold Cramer-

Shoup cryptosystem [CS98] (i.e. threshold Cramer-Shoup key generation and threshold

Cramer-Shoup decryption). This should be contrasted with the general secure multi-party

computation methodology, which is to break down the circuit that computes a crypto-

graphic operation into gates, and give a protocol for computing each gate in a threshold

setting. This "arithmetic-operation-based" rather than "circuit-based" approach to finding

efficient protocols for useful threshold schemes is often referred to as threshold cryptogra-

phy. It started with the work of [Des88, Boy89, CH89, DF89, Fra89] who looked for ways to

fault-tolerantly compute an exponentiation operation without recoursing to general secure

computation protocols. (For an early survey on threshold cryptography see also [Des94].)

The departure from the per-gate approach of the general multi-party computation proto-

cols is of major consequence for the techniques and the efficiency of threshold cryptosystems.

In particular, it is worth noting that the building block subprotocols we provide are not

secure multi-party computation protocols for any circuit. Yet, as we show in this thesis,

these subprotocols can be composed into provably secure threshold schemes.

4 The exact number of modular multiplications is O(nk + n2 min(nlog n, k)).
5 See Section 2.2 for an explanation of the adaptive and erasure-free adversarial models.

III

1.2. CONTRIBUTION OF THIS THESIS

We can explain our methodology on the example of a version of an ElGamal signature
scheme. Let p be a prime and g a generator of the multiplicative group Z*. The ElGamal
key generation is composed of two steps: (1) picking a secret key x C [1,p] at random;
and (2) computing the public key y = g' mod p. The generation of a signature on message
m E [1, p] is then a series of the following steps: (3) picking a random temporary secret
k c [1, p]; (4) computing a public value r = 91/k mod p; and (5) computing public value
s = k(m+ ±xr) mod (p - 1) and outputting (r, s) as the signature on M. 6

The threshold ElGamal key generation protocol that can be constructed following our
methodology would be a composition of the following distributed protocols: (A) a protocol
to pick a shared secret x at random in [1,p]; and (B) a protocol to exponentiate modulo p
a known value g to a shared secret x. A threshold ElGamal signature generation protocol
needs three more building block protocols: (C) a protocol to exponentiate modulo p a
known value g to an inverse of a shared secret k; (D) a protocol to create a sharing of a
secret (m + xr) mod (p - 1) from public values m and r and from the sharing of secret x;
and (E) a protocol to multiply two shared secrets, k and (m + xr), modulo p - 1. Each
of these protocols must guarantee that the shared secret values are indeed secret, and that
the correct outputs are computed, even if t of the n participating servers are corrupted and
behave in an arbitrarily malicious way.

1.2.2 Organization of the Thesis: Adversarial Models Considered

All our schemes are secure in a realistic partially-synchronous insecure-channels communi-
cation model. They all tolerate adversaries who can corrupt up to a minority of the partic-
ipating players, which is the maximum number of faults a threshold scheme can tolerate,7

and who can make the corrupted players behave in an arbitrarily malicious way.8

This thesis is divided into three major parts, each of which present separate techniques
to handle the following three variants of the general adversarial model described above,
in the order of increasing adversarial power and increasing technical difficulty of designing
protocols that are provably secure against them.9 In each part we present protocols that
securely implement basic arithmetic operations in a given variant of the threshold setting.
Furthermore, we exemplify the usefulness of these building-block protocols by putting them
together into a threshold DSS signature scheme and proving its security in the given setting.

* In Chapter 4 we provide techniques for protocols that are secure if the malicious
adversary is modeled as a static adversary, which means that the subset of t players
the adversary can corrupt must be chosen before the execution of the protocol. This
chapter is based on material previously published in [GJKR96b], [GJKR99], [CGJ+99]
and [JLOO].

6 This version of ElGamal is a similar to DSS. Compare Section 4.3.1.
7
1t is easy to why threshold schemes cannot handle more than a minority of corrupted players. If n < 2t

and t corrupted players refused to participate, for example in the threshold signing protocol, then the
remaining t players could not perform the signature operation on their own. If they could, the t-threshold
adversary who corrupted those t players would learn how to sign messages on his own. Thus if n < 2t then
a threshold scheme would be either not robust or not unforgeable in the presence of a t-threshold adversary.

8See Chapter 2 for a detailed discussion of our adversarial setting.
9 1n Section 2.2 we describe these three variants of the threshold adversarial model in detail.

13

CHAPTER 1. INTRODUCTION

" In Chapter 5 we provide additional techniques to extend the security of protocols

presented in Chapter 4 to a strictly stronger model where the malicious adversary is

modeled as an adaptive adversary, i.e. where he is allowed to choose which servers

to corrupt during the protocol execution. These techniques, however, enable efficient

threshold schemes under an additional assumption of the ability of servers to reli-

ably erase their local data. This chapter is based on material previously published

in [CGJ+99] and [JLOO].

* Finally, in Chapter 6 we show how to remove the assumption of reliable erasure of

local data. Thus we provide threshold schemes that are secure in adaptive erasure-free

adversarial model. This chapter is based on material previously published in [JLOO}.

Furthermore, we provide some important extensions of the above results:

* In Appendix A we show that the building-block protocols presented in Chapters 4-6

can be put together to create a threshold Cramer-Shoup cryptosystem. Here we use

the material previously published in [JLOO].

" In Appendix B we show that our distributed protocols can be used, under the as-

sumption of reliable data erasure, to construct schemes that are secure against strictly

stronger attacks than those modeled by a threshold adversary. Namely, instead of a

threshold adversary, who can corrupt no more than t servers throughout the system

operation, we can tolerate adversaries, who, under certain assumptions on the speed

of corruptions and their detectability by the remaining servers, are allowed to com-

promise all or almost all of the participating servers. We provide two formalizations of

such increased adversarial strength: i) A mobile adversary, who can choose a different

subset of t corrupted servers each day (or any other pre-defined time period); and ii)

A creeping adversary, who can permanently corrupt all players except of two, but his

corruptions are detected fast enough for the remaining players to run certain protec-

tive "system-healing" protocols. In this appendix we build on the material previously

published in [HJKY95] and [HJJ+971.

* In Appendix C we describe how our techniques can be applied to cryptosystems work-

ing over composite modulus, and thus generate efficient adaptive and erasure-free

threshold RSA signature (or decryption) schemes. We note however that the result-

ing RSA schemes rely on a single trusted party during the key generation phase. This

appendix is based on material published in [CGJ+99] and [JLOO].

For reader's orientation we quickly overview the remaining chapters of this thesis:

* In Chapter 2 we explain our communication and adversarial model in detail.

* Chapter 3 contains some preliminary definitions and important notational conventions

we adopt in the technical part of this thesis.

* Chapter 7 describes certain initialization protocols, i.e. distributed generation of an

instance of a discrete-log problem or an instance of a Pedersen commitment scheme,

which enable the threshold protocols discussed in Chapters 4-6.

14

'>rtU~+.ik4k%&M~t

1.3. APPLICATIONS OF THRESHOLD SCHEMES 15

1.2.3 Contributions to Research on Secure Protocols

We consider the most important contribution of this thesis to be our framework for express-
ing security properties of threshold protocols in a way which allows for modular composition
of such protocols into larger threshold schemes. We show that a secrecy property of a pro-
tocol P7)p which implements some arithmetic operation op in the threshold setting can be
phrased in terms of an existence of a simulator SIMp, which simulates an execution of

P, and faciliates a simulation of any subsequent protocol that executes on the outputs of
Pop. We show furthermore that once such properties are established for some protocols Pp,
and Pp,2 then they imply a corresponding property about a sequential composition of these
two protocols, which shows that such composition properly implements a composition of
operations opi and op2 in a threshold setting.

Apart of validating in this way the "arithmetic building-block" approach to secure multi-
party computation, our work provides several other specific contributions to research on
secure multi-party protocols:

* We show that composition of simple distributed protocols into larger protocols must
be done carefully. For example, we show that a simple and widely known distributed
key generation protocol for discrete-log based schemes, first proposed in [Ped9lb], is
insecure. We also show how to replace it by a similarly simple but secure protocol.
This is the subject of Section 4.2 in Chapter 4.

* We present the single inconsistent player simulation technique of [CGJ+99, FMY99b],
which enables efficient adaptively-secure protocols for a threshold computation of an
exponentiation function, and thus enables efficient adaptively-secure threshold cryp-
tosystems. This technique is likely to be applicable in the design and analysis of other
adaptively-secure protocols. We explain it in Chapter 5.

* We present the first efficient implementation of private channels in the adaptive
and erasure-free model, for a wide class of multi-party protocols which includes our
threshold DSS, Cramer-Shoup, and RSA schemes. We achieve this by identifying a
novel class of simultaneously secure public-key encryption schemes, a notion which
is stronger than semantic security but weaker than the non-committing encryption
proposed by [CFGN96] to implement private channels in the adaptive and erasure-
free model for general multi-party protocols. In contrast to the best currently known
non-committing encryption implementations, we provide an implementation of a si-
multaneously secure encryption whose efficiency is comparable to a regular encryption
scheme. This novel encryption primitive was introduced by [JLOO], and we explain it
here in Chapter 6.

1.3 Applications of Threshold Schemes

1.3.1 Fault Tolerance

Whenever the security of a system depends on the inability of a malicious adversary to
learn or destroy some secret key, there is a need for a threshold scheme to maintain such
key in a fault-tolerant way.

16 CHAPTER 1. INTRODUCTION

A good example of a system whose security relies on the secrecy and availability of cer-

tain root secret key is a Key Certification Authority. All security properties of a public-key

infrastructure depend on the authenticity of KCA's signatures on users' public-key creden-

tials. Consequently, a KCA is the primary target for attacks on a public-key infrastructure.

Whoever breaks into the KCA server and learns its secret key can impersonate any user.

Another example of a central signature key that gives high rewards to someone who learns

it, is a secret key of a bank in an e-cash (or any electronic commerce) scheme. Moreover,

one needs to protect not only the secrecy but also the availability of such sensitive keys. If

a key is lost, a new (public,secret) key pair must be picked, the new public key must be

securely redistributed, and all the existing signatures need to be re-signed. This operation

would not only be costly, but it would also lead to further security threats.

On the other hand, it is difficult and costly to make a single computer truly attack-

resistant. First of all, computers often fail accidentally, because of software faults or power

outages, or they "fail" in a planned way, e.g. when they need to be shut down for mainte-

nance. Moreover, if a computer provides a sensitive service, e.g. a signature service played

by a KCA, it is a potential target of attacks. The adversary might try to learn the secret

signature key by infiltrating the signing server with a virus, or he might be interested in

disabling the service from performing its function, and plant a virus which would change

the secret key of the signing server or otherwise modify its signing algorithm. Even if the

signing server was exceptionally secure against virus intrusions, an adversary could still

break into it by a physical intrusion or even by bribing the personnel that maintains this

server.

Sensitive secret-key decryption services could also be subject to such attacks. Borrowing

an example from [CG99], we can imagine that mail to any member of some organization is

encrypted under a single public key of that organization. If the corresponding decryption

key is stored on a single server, that server would constitute a single point of failure in

the system and would be a subject to similar attacks as those described above. Therefore,

the decryption key can be held instead in a distributed way by a group of servers, and

each message can be decrypted via a threshold decryption scheme. (Note that in this

application the output of threshold decryption should be held only by the final addressee of

the message.) In such way, the secrecy and the availability of the secret decryption key of

this organization can be protected in a highly fault tolerant way. The adversary would have

to break into more than a certain threshold of the servers in order to read the encrypted

messages or to destroy the secret key of the organization. There are other applications that

can use a threshold decryption scheme to gain fault-tolerance against computer break-ins

and break-downs, for example the optimistic exchange of secrets [Mic99] and secure data

storage [GGJR97].

Implementation Considerations. The threshold approach relies on the assumption

that the difficulty of corrupting servers grows with the number of corruptions. This is not

always the case, for example if the administration of the servers makes it trivial to corrupt

all of them after corrupting the first one. However, we can increase the resistance of a

threshold scheme against such single points of failure by a careful administration of the

servers. Indeed, a threshold scheme should never be the only security element of a fault-

tolerant system. The servers that participate in a threshold scheme should be additionally

protected with intrusion-detection software, firewalls, back-ups, and physical access control

III

1.3. APPLICATIONS OF THRESHOLD SCHEMES

mechanisms.

One such protective measure which could be viewed not as an enhancement but an alter-
native to threshold schemes is key delegation. We explain this method as follows. In some
applications the authority of the root signature key, e.g. the signature key of a KCA, can
be delegated to a temporary signature key which for some time period produces signatures
on behalf of the root key. The root key must previously sign a certificate that includes the
verification part of the temporary key and the time period in which its signatures are valid.
The signatures of the temporary key must be accompanied by this certificate.

Compared to threshold schemes, key delegation has some advantages. Namely, com-
pared to the off-line storage of the root signature key in the key delegation mechanism,
the on-line threshold distribution of this key introduces some vulnerability to the system
by complicating the interface of a server that stores the root key. With the key delega-
tion method this interface can be tightly controlled, for example by elaborate human-access
control procedures [Ve00], because the root key needs to be used only once a certain time
period, e.g. once a day, to sign the certificate of the temporary signature key. In contrast,
distribution of the secret key via a threshold scheme requires that the participating servers
be connected via a network, and that they respond to on-line requests for signatures from
untrusted users, which opens the signature service up to more attacks. On the other hand,
key delegation has also some disadvantages compared to threshold schemes. Namely, it has
several single points of failure. For example, an adversary that can break into an on-line
server can disable the on-line temporary key, or learn it and forge signatures for the time
limited by its certificate.

However, one can combine the benefits of the two methods, because each single point of
failure in the key delegation method can be made more secure via threshold cryptosystems.
The tolerance to on-line attacks can be increased by distributing the temporary signature
key among a group of Internet servers and implementing the signing operation via a thresh-
old signature scheme. Fault-tolerance can also be added to the storage of the root key by
implementing it with a threshold scheme over a local area network built in some protected
"vault". Moreover, threshold cryptography can help maintain the key that controls phys-
ical access to this vault. We can imagine that the door to the vault is equipped with an
electronic lock and that its key is distributed in a threshold way onto hand-held devices
connected with a wireless network, each device held by one employee of the company that
maintains the signature service. To open the door, these devices must then participate in a
threshold signature protocol to authenticate themselves to the door lock and authorize an
opening of the vault.

1.3.2 Division of Trust

In addition to achieving fault-tolerance by distributed implementation of traditionally cen-
tralized services, threshold cryptosystems can also be used for "naturally distributed" appli-
cations, in which a group or an organization decides that some function should be performed
on its behalf, only if more than some threshold of the group members agree to it. Such
arrangement in the organization reflects the apportioning of trust within the group. Thus
we might have an organization where no single member is free to decide to perform an
operation, but a group of more than a certain threshold of members is entrusted to do so.

17

18 CHAPTER 1. INTRODUCTION

A threshold scheme can also be used to alleviate the need of trust in systems that use a

trusted third party, but where there is no single entity that all (or even most) system users

would trust to implement this third party in an honest and disinterested way. Instead of a

single authority, the trusted third party can be implemented by a group of authorities who

would maintain the required secret-key service via a threshold scheme. Mistrustful users

would be assured that the service is not abused, provided that they believed that no more

than a threshold of this group of authorities is dishonest. Threshold decryption schemes

are used in this way in multi-authority election schemes [CF85] and in key escrow [Mic92].

1.3.3 Importance of Threshold Schemes for Standard Systems

We described above the applications of threshold signatures (KCA, bank's key, organiza-

tion key) and threshold decryption (gateway decryption, secure databases, multi-authority

election, key escrow). Most of these applications could utilize any (threshold) signature or

public-key encryption scheme. However, if possible, it is preferable to base them on standard

schemes like DSS signature [NIS91] and RSA signature and encryption [RSA78], because

the security properties of these two schemes are well established and accepted. Further-

more, these two schemes are already used by Key Certification Authorities in Public-Key

Infrastructures, and this creates a specific need for upgrading their secret-key operations

with threshold schemes, i.e. with threshold protocols for DSS or RSA signature. The re-

cent cryptosystem of Cramer-Shoup [CS98] is potentially also quite important, because its

efficiency is comparable (it is worse by a small constant factor) to that of RSA (it is simi-

lar to the efficiency of ElGamal), but it is proven secure against adaptive chosen message

attack, the strongest standard notion of security for encryption schemes. Consequently, in

this thesis we chose to exemplify our methodology with a construction of threshold schemes

for these specific public-key systems. We construct a threshold DSS signature scheme and

a threshold Cramer-Shoup cryptosystem, and we explain how to use our building-block

protocols in a threshold RSA.1 0

1.4 History of Research on Threshold Cryptosystems

As we discussed in Sections 1.1 and 1.2, threshold schemes are implied by general secure

multi-party computation results.1 1 However, the protocols such general results imply for

specific threshold schemes like DSS or RSA are too computationally expensive to be practi-

cal. In response to this drawback, the work of [Des88, Boy89, CH89, DF89, Fra89] started

the field of threshold cryptography, namely a design of efficient protocols for threshold com-

putation of specific arithmetic operations, (and compositions of such operations), which

eventually led to efficient and practically feasible protocols for threshold DSS, RSA, and

other important cryptosystems, like Cramer-Shoup.

The progress in research on threshold cryptography has been marked by threshold

schemes that are either more efficient or secure against increasingly more powerful ad-

10 For the history of research on threshold schemes for DSS, RSA, and Cramer-Shoup cryptosystems, see

Section 1.4.
"See also Appendix D.

I

1.4. HISTORY OF RESEARCH ON THRESHOLD CRYPTOSYSTEMS

versaries, and thus offering higher fault-tolerance for protecting the secret-key operation.
We summarize the history of this research below. The discussion of different adversarial
models considered for threshold cryptography is a subject of Chapter 2. We refer the reader
to that chapter for an explanation of the terms used in the following research summary.

The following works mark the progress of Threshold DSS:

* The DSS signature scheme is a modification of the ElGamal signature [ElG85b]. The
first threshold cryptosystem for an ElGamal-like signature scheme is due to [Har94].
The protocol of [Har94] is secure against t <n/2 passive faults.

* The first solution for shared DSS was given by [CM193]. It is secure in a static
adversary model and it tolerates t < n/3 faults among n players. However, this
solution implicitly relies on a non-standard DDH-like assumption.

* Shared DSS was independently studied by [Lan95], whose solution tolerates only t <
- /h passive, i.e. gossip-only faults. 12

* [GJKR96b] provided a static n/3-threshold DSS protocol whose security is based
solely on the hardness of forgery of regular DSS signatures. Furthermore, this solution
allows much better on-line efficiency of signature generation. The static threshold DSS
scheme we present in Section 4.3 is based on this result.

* Threshold DSS schemes provided in [CM193] and [GJKR96b] can both be proac-
tivized, i.e. made secure against mobile adversaries, using the proactive secret-sharing
techniques of [HJKY95, HJJ+97]. We present these techniques in Section B.1.

e A simplified protocol for multiplication of shared secrets was introduced in [GRR98]
(presented here in Section 4.4.2). Together with the techniques of [GJKR96b], this
multiplication protocol yields a threshold DSS scheme with optimal n/2-threshold
resilience (presented here in Section 4.4.3).

Moreover, [GRR98] introduced a "fast-track" verifiable secret-sharing protocol which
enables a factor of n increase in the computation efficiency of threshold schemes for
the common case of execution without active faults.

* However, solutions of [CMJ93] and [GJKR96b], as well as the proactivization tech-
niques of [HJKY95, HJJ+97], utilize as a subprotocol a distributed key generation
protocol of [Ped9lb], which contains a subtle bug that invalidates the security proofs
of all these subsequent protocols. Fortunately, this bug was identified and fixed
by [GJKR99]. We explain why the protocol of [Ped9lb] is insufficient in Section 4.2.3
and present the fix in Sections 4.2.4-4.2.5.

1 2 Langford presents some additional schemes but of more limited applicability, a 2-out-of-n scheme that
withstands up to one faulty party, and a general t-out-of-n scheme that uses pre-computed tables of one-time
shares and that requires a higher level of trust for the generation of these tables. See [Lan95] for details.

.1A

20 CHAPTER 1. INTRODUCTION

" A further improvement was made by [CGJ+99, FMY99b, FMY99a], who modified

the statically-secure protocols to achieve an optimal-threshold proactive shared DSS

secure against an adaptive adversary in the erasure-enabled computational model. The

adaptive threshold schemes of [CGJ+99] is a subject of Chapter 5. The extension of

these threshold schemes to the mobile adversarial model is discussed in Section B.1.

* These adaptively secure results were then improved by [JLOO] who removed the need

to recourse to reliable erasure in these protocol. These improvements are presented

in Chapter 6.

" The adaptively secure results were also recently improved by [Lys99] in a different di-

rection. The participating players continue to use erasures but the resulting protocols

can be proven secure under concurrent composition. In other words, the players that

implement a threshold DSS scheme of [Lys99] can be involved in multiple concurrent

executions of the threshold DSS signature generation protocol, each instance signing

a different message.

Research on Threshold RSA signature/decryption generation also progressed gradually:

" In two independent works [Boy89, Fra89] gave a simple protocol for shared RSA signa-

ture generation which uses straightforward additive secret-sharing instead of Shamir

secret-sharing [Sha79]. This protocol is secure only against spying faults.

* [DF91] gave a heuristic solution to threshold RSA that is secure against a n/2-

threshold of halting faults.

" [FD92, DDFY94] gave a provably secure RSA scheme in the same context.

* Independent results of [FGY96, GJKR96a] introduced robustness to these protocols,

thus providing full n/2-threshold RSA secure in a static adversary model.

" The first proactive RSA secure in the static model was given by [FGMY97b], but that

solution did not tolerate the optimal threshold of faults.

" [FGMY97a, Rab98, Sho00] gave increasingly simpler and more efficient solutions for

optimal-threshold RSA secure in the static model. Furthermore, [FGMY97a, Rab98]

provide also proactive versions of their RSA protocols.

* Adaptively-secure, optimal-threshold proactive RSA are given by [CGJ+99, FMY99b,

FMY99a]. Protocols of [CGJ+99] are based on the statically-secure proactive thresh-

old RSA of [Rab98] while protocols of [FMY99b, FMY99a] extend the static proactive

results of [FGMY97a].

* [JL00] improved the above adaptive threshold RSA results, by improving their effi-

ciency and eliminating the need to recourse to local data erasure. This solution to

threshold RSA is described in Appendix C.

III

1.4. HISTORY OF RESEARCH ON THRESHOLD CRYPTOSYSTEMS 21

We point out, however, that all the above solutions to threshold RSA require additional
trust assumptions during the initialization of the system of n players that will implement
the shared RSA signature/decryption protocol (see Sec. 2.2). There is an independent line
of research that aims at reducing these trust assumptions, i.e. searches for secure protocols
that generate the shared RSA key (i.e. protocols that are resilient and protecting the secrecy
of the generated shared RSA key, in the presence of an adversary that corrupts a threshold
of the players), whatever form of the shared RSA key is demanded by the above-listed
threshold RSA signature/decryption protocols. See [BF97, FMY99c, Gil99].

The research on threshold Cramer-Shoup [CS98] appeared as follows:

" The first threshold Cramer-Shoup cryptosystem was a statically-secure protocol given
in [CG99]. This protocol could be separated into off-line pre-computation stage and
a non-interactive on-line protocol.

* In [JLOO], the threshold Cramer-Shoup protocol of [CG99] was modified to achieve
security in the adaptive erasure-free model. However, the [JLOO] protocol was no
longer non-interactive. The adaptively-secure threshold Cramer-Shoup protocol of
[JLOO] is presented here in Appendix A, and the erasure-free techniques of [JLOO] are
presented in Chapter 6.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Modeling Security of Threshold
Schemes

In this chapter we describe the computation and communication model used by the threshold
signature and decryption schemes we propose. We also explain several ways in which we
model faults and other adversarial behavior. We then formalize the notion of security for a
threshold signature scheme (and a threshold cryptosystem) relative to a specific adversarial
model. In this thesis we consider three main different models, each corresponding to fewer
constraints on the adversarial behavior, and hence to an increasing strength of the attack
against a threshold scheme. The stronger the adversarial model relative to which a scheme
is proven secure the more fault-tolerant the scheme is.

2.1 Standard Model

Computation and Communication Model. Our computation model consists of a set of
n dedicated players {P 1 , ... , P} and an adversary. We model each of those n+1 parties as
a probabilistic polynomial-time (PPT) interactive Turing Machine (TM) [GMR89]. The n
players model the servers that implement the distributed signature (or decryption) service.
We assume that the number of servers n is polynomially related to the security parameter k.
Each player Pi starts its operation having as input this security parameter encoded in binary.
We stress that we do not model the user of a threshold scheme with a separate PPT TM.
Instead, we assume that the adversary is the sole user of the threshold scheme. This reflects
an assumption that the user of a threshold scheme can be dishonest.

We assume that all n+1 parties are connected by a complete network of insecure point-
to-point channels, to which we will often refer to as links. However, in the presentation of our
protocols we will assume that the parties are connected by a complete network of authenti-
cated point-to-point channels, because authentication on these channels can be implemented
using standard signature schemes, under an appropriate computational assumption.1 In ad-
dition, we will also assume that the parties have access to a dedicated and authenticated

'See [BCK98] on implementing authenticated channels for a network of players. Note that to establish
the authenticated channels we also need to assume initial secure distribution of verification keys.

23

24 CHAPTER 2. MODELING SECURITY OF THRESHOLD SCHEMES

broadcast channel; by dedicated we mean that if some party X broadcasts a message, it is

received by every other party and recognized as coming from X. Such broadcast can be

implemented over authenticated point-to-point channels with an authenticated Byzantine

agreement protocol [DS83].

We assume that the communication channels provide (partially) synchronous message

delivery. By partially synchronous communication model we mean that the messages sent

on either a point-to-point or the broadcast channel are received by their recipients within

some fixed time bound. A failure of a communication channel to deliver a message within

this time bound can be treated as a failure of the sending party.2 While messages arrive

in this partially synchronous manner, the protocol as a whole proceeds in synchronized

rounds of communication, i.e. the honest players start a given round of a protocol at the

same time. To guarantee such round synchronization, and for simplicity of discussion, we

take the standard assumption for synchronous networks that the players are equipped with

synchronized clocks. Note that in the authenticated channels setting synchronized clocks

can be achieved in the presence of a minority of malicious faults [LMS85, HSSD84].

Interface with the User. The user of the fault-tolerant service that the n players

implement can communicate with this service in two ways. The communication can proceed

through a proxy, i.e. a special player designated as a gateway between the n players and the

user. This gateway forwards user's messages to the n players and decides on the messages

sent back to the user by taking the majority of the final outputs originated by the n players.

Such gateway guarantees full transparency of the distributed signature or decryption service

to the user, i.e. the user communicates with it as if it was a standard centralized signature

or decryption scheme. Notice that if a gateway is corrupted, the most it can do is to stage

a denial of service attack. We can easily protect our system from such attack by having any

of the participating players serve as a gateway. If it refuses to work properly then another

player takes over the role of a gateway server. Such replication of a gateway functionality

does not compromise security.

The second possibility is that the user communicates with each of the n servers directly.

This option requires a (minimal) modification to the user's code when upgrading a system

that uses a standard centralized implementation of some signature or decryption service.

However, it also reduces communication between the servers.

In both cases we make a simplifying assumption that the honest players agree on which

input to perform the threshold protocol, i.e. for example in the case of a threshold signature

scheme we assume that the uncorrupted servers agree whether to sign any given message.

For example they might have the same policy for deciding which message to sign, or they

might agree via some voting protocol.

Modeling Faults with a "Threshold" Adversary. To provide truly fault tolerant

secret-key services (signature and decryption), we assume that some threshold of t out of

n of the participating players can exhibit faults. We model such local computer faults

2 Treating a denial-of-service attack on the link as an attack on a sender might in some adversarial

settings unnecessarily decrease the resilience of the distributed system. An alternative approach can be

taken following the work of [CHH97]. Namely, if each sender disperses each of its messages to all other

serves who then relay it to the receiver, then message delivery is assured even if the adversary stages

a denial-of-service attack on a minority of links coming out of every server. This solution increases the

number of communication rounds by the factor of two and the number of messages sent by the factor of 2n.

III

2.1. STANDARD MODEL

in the most general way. We assume the worst case that all faults are orchestrated by a
single malicious adversary who schedules which computers to corrupt and decides on the
actions of each corrupted server, for example an exposition of its secrets, or any other any
modification of its prescribed behavior. Thus we will use the terms "fault" and "adversary"
interchangeably. Furthermore, we only consider adversaries whose actions can be encoded as
an execution of some efficient adversarial algorithm. In other words, we model an adversary
as another interactive probabilistic polynomial-time machine (PPT TM). In particular, his
computational resources might thus be constrained based on some complexity assumptions.
We note that this is a necessary constraint. Since we aim to create threshold schemes for
standard public-key systems, we must assume those systems secure, which always implies
computational limitations for the adversary.

Specifically, all our schemes require the discrete-logarithm assumption, and whatever
assumption necessary to implement authenticated channels. To implement private channels,
our static and adaptive erasure-enabled schemes require whatever assumption necessary to
implement semantically-secure encryption (either public-key or symmetric-key), while our
adaptive erasure-free schemes require a Decisional Diffie-Hellman (DDH) assumption. (See
Section 2.2 below for explanation of the variants of our model, and for a separate paragraph
on implementation of private channels.) Furthermore, each threshold scheme requires the
same assumption that enables the standard public-key scheme, e.g. threshold DSS requires
an assumption of unforgeability of DSS, threshold Cramer-Shoup requires existence of a
universal family of one-way hash functions (UOWHF) [NY89J, etc.

We assume a t-threshold adversary who can corrupt up to t among the n players that
implement the threshold scheme. (In Section 2.2 we discuss a crucial restriction on when
the adversary is allowed to make a decision upon which t servers to corrupt.) In this
thesis we consider thresholds t which are a constant fraction of the number of players n.
The default threshold we consider is an optimal threshold of minority of faults, i.e. t =

Lflyl. We will also discuss, for the purposes of exposition, protocols resistant to smaller
thresholds, specifically t = ['J. For simplicity of notation, we will denote these models
as "n/2-threshold" or "n/4-threshold". With the exception of a mobile adversarial model
(see Section 2.2 below), a corrupted player is assumed to be corrupted for the rest of the
computation.

The point to point links between players are insecure, and hence the adversary can listen
to all messages sent on every channel. However, as we discuss in Section 2.2 below, under
appropriate assumptions we efficiently implement private channels in each adversarial model
we consider. Since we thus always implement both link authentication and link privacy, in
the description of our protocols we will assume that the point-to-point links are secure, i.e.
both authenticated and private.

When the adversary corrupts a party P, he learns P's current internal state. Further-
more, from this point on, all messages directed to P become known to the adversary. The
adversary can also send messages in the name of P. In every communication round the ad-
versary decides upon the order in which players (both corrupted and uncorrupted) should
be activated to perform their protocol for that round. When the adversary activates an
uncorrupted party P, this party receives the messages sent to it in the previous round and
it generates its messages for this round. Once all the uncorrupted parties were activated,
the adversary generates (according to his own protocol) the messages to be sent by the

25

26 CHAPTER 2. MODELING SECURITY OF THRESHOLD SCHEMES

corrupted servers, and the next round of computation can begin.

The adversarial ability to schedule the order in which players are activated reflects

a partially synchronous communication model where all messages can still be delivered

relatively fast, in which case, in every round of communication, the malicious adversary can

wait for the messages of the uncorrupted players to arrive, then decide on his computation

and communication for that round, and still get his messages delivered to the honest parties

on time. Therefore we can in fact assume the worst case that the adversary speaks last

in every communication round, as described by the model above. In the cryptographic

protocols literature this is also known as a rushing adversary.

In the formal model of security of threshold schemes we assume that the adversary

controls also the user of the scheme. It is a standard way of modeling an attack on a

cryptographic system to assume that the user that interacts with the system tries to spoil

it somehow.

2.2 Variants of the Model

Restrictions on Maliciousness of Faults. The above description is the default adver-

sarial model we adopt in this paper. The ability of the adversary to control the behavior

of the corrupted players is referred to as a (fully) malicious adversary model. Protocols

which are resistant in the presence of such malicious adversary are often called robust. In

the secure multi-party computation and threshold cryptography literature, as well as in

the literature on non-cryptographic distributed algorithms, two crucial restrictions on this

adversarial power are often considered. Thus we can consider an eavesdropping, or "gossip-

only", adversary who learns all the information stored and received by the corrupted players

and sent on the broadcast channel, but can neither divert the corrupted players from their

prescribed protocol nor send any messages on the broadcast channel. Such restriction mod-

els only network viruses or dishonest server operators who manage to spy on certain players,

or maybe spy on only certain parts of these players' memory, but cannot modify players'

behavior. Thus such faults are sometimes referred to as "passive" faults, while the mali-

cious faults are called "active". A weaker restriction is a halting adversary model, where the

adversary has the eavesdropping power plus the ability to stop any of the corrupted servers

at any time in the protocol. This model extends the previous one by including "stopping"

faults, caused for example by flooding a server with messages and effectively disconnecting

it from the network, by a virus attack that crashes the operating system, by a power failure,

etc. We stress however that our protocols are by default resistant against the worst-case

scenario of a fully malicious adversary.

Scheduling of Faults. Another major distinction between security models for dis-

tributed protocols is whether the attacker is static or adaptive (the latter is also sometimes

called "dynamic"). In both cases the threshold adversary is allowed to corrupt up to t par-

ties. However, in the case of an adaptive adversary the decision of which parties to corrupt

can be made at any time during the run of the protocol and, in particular, it can be based

on the information gathered by the attacker during this run. In contrast, in the static case

the attacker is restricted to choosing its victims independently of the information it learns

during the protocol. Therefore, in the static model the subset of corrupted parties can be

seen as chosen and fixed by the attacker before the start of the protocol's run. Formally, in

III

2.2. VARIANTS OF THE MODEL

the adaptive case the description of the interaction between the adversary and the protocol
in Section 2.1 must be modified as follows. Unless the adversary has corrupted t players al-
ready, in every communication round he decides not only on the order in which he activates
the uncorrupted players, but also on whether to corrupt some of them.

Static adversary models well the adversarial behavior that is caused by inherently dis-
honest human operation. This is a meaningful threat in applications which distribute trust
among different entities. For example, if Key Escrow is administered by several organi-
zational entities, only some fraction of which we hope is dishonest, then it is natural to
assume that those entities are dishonest inherently rather than dynamically become so. In
other words, in this case the identities of the corrupt parties are chosen independently from
the protocol execution, and hence this type of faults is sufficiently modeled by the static
adversary.

On the other hand, the static fault model imposes an artificial restriction if the faults
are not due to inherent dishonesty of participants but due to a coordinated attack by an
adversary who searches for vulnerabilities of the participating players. Such adversary can
attack both the hardware that carries out the computation on behalf of a player (e.g. by
searching for a hole in the operating system of a server, by cryptoanalyzing its communica-
tion keys, or by disconnecting a server from the network) and the people that maintain the
computing facility (e.g. by bribing them). Each such attempt represents the adversary's
decision to apportion some resources of time and money to attacking some player, and hence
there is no reason to assume that the adversary cannot make these decisions dynamically,
on the basis of the information he gathers about the protocol execution so far.

It is known that protocols secure in the static model can be insecure in the adaptive one
unless the number of participating players n is only logarithmic in the security parameter k
[CFGN96, CDD+99, CanOO]. Therefore, since the adaptive adversary model appears to
better capture threats facing fault-tolerant distributed applications, threshold schemes that
are provably adaptively secure are preferable to static ones. Even though the bulk of
published works on distributed cryptography assumes a static adversary, it is due to the
difficulties encountered when trying to design and prove protocols resistant to adaptive
adversaries, rather than due to a belief that static adversary is a sufficient model of fault
scheduling. In fact, in this thesis we also start the presentation of our threshold protocols
in Chapter 4, which are provably secure only under the simplifying restriction of the static
adversarial model. 3 Such presentation allows us to separate the technical difficulties that
are common to both models and to better explain the solutions to those difficulties. It also
allows us to isolate in Chapter 5 a different set of techniques which enable efficient protocols
that are resistant in the adaptive model.

Assumption of Reliable Data Erasure. The adaptively-secure threshold protocols
we present in Chapter 5 rely on the ability of the participating players to erase some of the
local data that they produce during the protocol. For brevity we will refer to this assumption
as to an erasure-enabled computation model. This is a drawback because secure erasure of

3 We note, however, that our statically secure protocols of Chapter 4 suffer no known vulnerabilities in
the adaptive model. Their "only" drawback is our inability to prove them secure in the adaptive model
for n larger than O(log k). Again, given the results of [CFGN96, CDD+99, CanOO] mentioned above, if
n = w(log k) then a threshold scheme which is provably secure in the adaptive model is preferable.

27

28 CHAPTER 2. MODELING SECURITY OF THRESHOLD SCHEMES

data is difficult to guarantee in practice. On the hardware level, it is difficult to permanently

erase information from physical storage devices. On the system maintenance level, the need

to permanently erase date complicates standard computer system bookkeeping and backup

procedures. Finally, perhaps the most difficult problems arise on the operating system level,

since in order to securely erase the data, one needs to erase it from all the caches and from

the part of the hard drive that was used for page swaps, etc.

In Chapter 6, we show that in the adaptively secure threshold setting it is possible to get

rid of the need of secure data erasure altogether. Namely, we provide threshold protocols

that stay adaptively secure, as those of Chapter 5, but can be executed without recoursing

to data erasure. The new protocols are also not significantly more computationally intensive

compared to those of Chapter 5, and hence they seem to provide the most efficient way to

handle the difficulty of implementing reliable erasure of local data on standard hardware

and operating systems.

We refer to a computational model which does not provide a reliable procedure to erase

local data as an erasure-free model. Formally, the interaction between the adversary and

the protocol described in Section 2.1 is the same in both models except that the current

internal state revealed to the adversary upon a corruption of a player contains a whole

computational history of that player in the erasure-free model, while in the erasure-enabled

model it contains only the local data that has not been previously erased.

Implementing Private Channels. We assume a realistic communication model of

insecure channels. On the other hand the threshold protocols we propose require private

and authenticated communication between the participating players. We mentioned that

authentication can be implemented with standard signatures. However, the task of explicitly

providing means to establish link secrecy can be non-trivial, depending on the adversarial

model considered. We explain this difficulty in detail in Section 6.1 while here we only state

its conclusions.

Efficient implementation of private channels in the static adversarial setting is easy.

Given appropriate complexity assumptions we achieve private communication via semanti-

cally secure encryption. In adaptive adversarial setting there is an inexpensive technique of

[BH92] which implements private channels under the assumption of availability of reliable

data erasure. Thus in both Chapter 4, where we present protocols secure in the static

adversarial setting, and in Chapter 5, where we consider an adaptive but erasure-enabled

model, we can assume that the point-to-point channels are private, and thus present our

protocols as executing over such channels. However, no practical and general implemen-

tation of secure channels is so far known in the adversarial model which is both adaptive

and erasure-free. We come close to such general implementation in Chapter 6, where we

construct a novel primitive of a simultaneously secure encryption scheme. Simultaneously

secure encryption implements private channels in the adaptive erasure-free model for a wide

class of distributed protocols which includes our threshold schemes. We explain this issue

further in Section 6.1.4

Relaxation of the Adversarial Model: Trusted Party during the Initialization.

The threshold techniques we propose imply adaptive erasure-free protocols for threshold

RSA signature or decryption generation. However, they do not imply secure protocols for

4Implementing private channels is also non-trivial in the proactive model discussed below.

III

- %-~

2.3. EFFICIENCY CRITERIA 29

threshold generation of RSA secret key. Therefore our RSA function-application protocols
need to be preceded with a key generation protocol that assumes a trusted dealer. Positing
an existence of a single trusted party during the initialization of the system is a relaxation
of the adversarial model, but it can be justifiable in some scenarios.

Beyond a Threshold Adversary: Mobile and Creeping Adversarial Models.
In Appendix B we show that in an erasure-enabled computational model our building-blocks
protocols can be used to create schemes that withstand stronger attacks than those modeled
by a threshold adversary. While a threshold adversary can corrupt no more than t servers
throughout the system operation, we can also consider the following two strictly stronger
models: 1) A mobile adversary, introduced in the work of [OY91], who can choose a different
subset of t corrupted servers every day (or any other fixed time-period); and 2) A creeping
adversary, who can corrupt all players except two, but his corruptions must be detected
fast enough so that the remaining players can trigger certain protective protocols.

We call schemes that are secure in either of these two adversarial settings "proactive".
When proactive systems were introduced in [OY91, CH94, HJKY95], this term was used to
designate resistance solely to the mobile adversary, and this is also how we use this term
in the research review in Section 1.4. Here we extend the notion of proactive security and
proactivization to security in the creeping adversarial model.

Proactive schemes provide better security especially for long-lived systems, where the
adversary might have enough time to eventually corrupt almost all participating players.
However, as long as these attacks are detectable and do not happen all at once - which is
modeled, albeit differently, by both the mobile and the creeping adversarial model - the
currently uncorrupted players can "proactively" perform various self-healing protocols that
neutralize the adversary's advantage gained from corruptions staged so far.

The self-healing protocols we consider are based on re-randomization of the secret-
sharing of a secret key, which makes the information learned by the adversary so far useless
in his consecutive corruptions. Additionally, for protection against a creeping adversary,
when some player is corrupted and this corruption is detected by the remaining players,
these players must be able to reduce the degree of the secret-sharing polynomial during
such re-randomization. Similarly, when a new player is added, the players must be able to
increase the degree of the secret-sharing polynomial. In fact, all these techniques should be
implemented and used together, so that the resulting scheme is secure against combinations
of mobile and creeping adversarial behaviors.

2.3 Efficiency Criteria

Threshold schemes can differ by the level of security they offer, namely by the adversarial
model in which they can be proven secure. Thus we talk about an "static" or "adaptive"
threshold schemes, meaning schemes which are secure respectively in static or adaptive
adversarial models. However, threshold schemes can also greatly differ in efficiency. We list
here some important efficiency criteria for threshold schemes:

e Computation and Communication Complexity: We measure the amount of lo-
cal computation and of bits sent by each participating player. We count the amount
of private and public communication separately. If the interface between a user a

30 CHAPTER 2. MODELING SECURITY OF THRESHOLD SCHEMES

distributed secret-key service does not include a gateway, we also measure the com-

putation and communication cost carried by the user. Because the most expensive

arithmetic operation in the threshold schemes we design is a modular exponentiation,

the amount of local computation in our schemes is driven by the number of "long"

exponentiations, i.e. modular exponentiations where the bit-length of the exponent is

about its maximum.

" Communication Rounds: We assume that our protocols proceed in synchronized

communication rounds, during which the participating servers send messages to one

another. The communication rounds are synchronized via synchronized clocks. All

our protocols take a constant number of such rounds. However, the rounds have

to be long enough to tolerate standard delays in message delivery provided by the

underlying network.5 Therefore the number of such rounds should be minimized.

* Non-Interactive Schemes: Because the synchronized communication rounds are

expensive, it is important to search for non-interactive threshold schemes where the

participating servers do not need to communicate with one another at all. Instead,

given that the user communicates with the secret-key service without a gateway (see

the "Interface with the User" paragraph in Section 2.1), then after receiving the user's

input each server communicates only with that user. At the end of such communica-

tion, the user locally reconstructs the (signature or decryption) output of the threshold

scheme. This communication might take several rounds, but the rounds do not need

to be synchronized. We call such threshold schemes non-interactive.6 Non-interactive

threshold schemes are possible, often in the optimistic execution mode (see below),

often only in the on-line part of the protocol (see below), and often at the price of

extending the public key of the cryptosystem by some verification information that

allows the user to filter out incorrect messages the user might receive from corrupted

servers. Examples of such schemes are the threshold DSS of [GJKR96b] presented

here in Chapter 4, many threshold RSA solutions, e.g. [GJKR96a, ShoOO], and the

threshold Cramer-Shoup of [CG99].

* Efficient Optimistic Execution: Threshold schemes should be designed so that

they can be executed more efficiently in an "optimistic" manner, i.e. assuming that

there are no active faults. This idea was proposed in [GRR98], who showed how to

execute a Verifiable Secret-Sharing protocol (see Section 4.2.3) in a "fast-track" mode.

If the faults do occur, the full-fledged version of the protocol is executed, and the

proper verification checks identify and eliminate the faults. This optimistic execution

could be for example applied to the non-interactive threshold signature protocols. The

user might first try to reconstruct the signature from the partial outputs received from

51f the bounds on message delivery are set too short then the fault-tolerance of a scheme decreases, because

too many network delays are going to be interpreted as player faults. This negative effect of network delays

can be somewhat decreased by the techniques of [CHH97], see footnote 2, page 24.
6In some threshold cryptography publications the term "non-interactive threshold schemes" is applied

only to a more restrictive scenario in which the above communication between the user and the servers takes

only one round.

III

t ~v tS~.

2.4. FORMAL DEFINITIONS OF SECURITY OF THRESHOLD SCHEMES 31

any large-enough group of servers, and only if it is incorrect the user should request
that the servers execute the truly fault-tolerant protocol.

* Off-line/On-line Division of Computation: In many applications of secret-key

services one would like to minimize latency of function computation. This is possible
in many threshold schemes, including the DSS and Cramer-Shoup schemes we provide,

if the players pre-compute part of the protocol during spare time, and then complete

the rest quickly when the input comes. We call the pre-computation stage "off-
line", and the latter stage an "on-line" computation. For both our DSS and Cramer-

Shoup threshold schemes, the on-line part of the protocol takes just one round of
communication, and thus it can be non-interactive in the sense discussed above.

* Use of Broadcast: The broadcast communication mechanism is implemented with
the (authenticated) Byzantine-Agreement protocol of [DS83], which is expensive. It

can take up to t + 1 rounds of (synchronized) communication in the presence of t

faults. Worse, the source of a fault might not be completely identified. For example,

if player A claims that player B did not send any message to A, only A and B know

which one is cheating, and the faulty player cannot be uniquely identified by all the

honest players. Therefore, the adversary can theoretically inject such faults during

every single broadcast. (In practice, the system maintenance will be alerted that
either of the two players is faulty and should be examined until the source of fault is

found and dealt with.) Even in the default fault-free execution, each broadcast still
takes two communication rounds where every player signs and resends the broadcast

message to every other player. Unfortunately, all our threshold schemes which are not

non-interactive, i.e. in which the participating players communicate with one another,
use broadcast. This concern should motivate a further research on efficient threshold

protocols that are either non-interactive or do not use broadcast.

* Elimination (and Amortization) of Active Faults: A crucial efficiency criterion

is whether active faults that prolong the computation (for example by switching the

execution from running in the efficient optimistic mode) can be identified by all the
honest players, and in particular unequivocally identified by the human personnel who

maintains the servers. If that's the case then if a threshold protocol is executed often,

then the amortized cost of each execution is the cost of an optimistic execution where

the active faults are not present.

2.4 Formal Definitions of Security of Threshold Schemes

We provide formal definitions of secure Threshold Signature Schemes. These definitions

are relative to an adversarial model described in Section 2.1 and 2.2, where we specified
the execution of a distributed protocol in the three adversarial models we consider in this

thesis: static, adaptive erasure-enabled, and adaptive erasure-free. 7

7 Our model of a network attack follows the work of [MR91, CanO0] which defined such attack formally
in the context of general multi-party computation.

m mog mlplwlpomlomppllm I,

32 CHAPTER 2. MODELING SECURITY OF THRESHOLD SCHEMES

Our definition of unforgeable threshold signature schemes is an extension of the stan-

dard definition of secure signature scheme of [GMR88] to the threshold setting where the

functionality of the private key holder is distributed among multiple servers. Thus we ex-

tend the capabilities of the signature-scheme adversary of [GMR88], namely the adaptive

chosen message attack, with the capabilities of a threshold adversary which attacks these

multiple servers, learns their private states and possibly diverts them from the prescribed

protocol. We present our definitions in a communication model where an authenticated

broadcast channel is available.

First we recall the [GMR88] definition of chosen message attack (CMA) security of a

standard signature scheme and then we describe an equivalent definition for security of a

threshold signature scheme.

Definition 1 (CMA Security of a Signature Scheme) A secure signature scheme SS

is a triple of efficient algorithms (Key-Gen, Sig-Gen, Ver), where Key-Gen is a key generation

algorithm which on input a security parameter 1k outputs a pair (s, v) where s is a secret

key and v is a public key. The signing algorithm Sig-Gen on input a message M and the

secret key s outputs signature u s.t. the verification algorithm Ver on input (u, v, M) accepts

the signature as correct.

Consider the following interaction between an adversary algorithm i.e. a family of in-

teractive probabilistic polynomial-time algorithms A = (A, A 2, ...), and an interactive al-

gorithm Oss, called signature oracle, which implements the SS signature scheme. First,

on common input 1k, Oss runs the Key-Gen algorithm to generate (s, v) and sends v to

Ak. Then Ak can send messages M 1, M 2 , ... of its choice to Oss, which on each received

message Mi returns to Ak signature ui = Sig-Gen(s, M). At some point Ak can also output

a candidate (message,signature) pair M, s. We say that Ak forges if M $ Mi for all i and

Ver(v, M, s) = 1.

We say that SS is chosen-message attack (CMA) secure signature scheme if the proba-

bility that Ak forges is a negligible function of the security parameter k.

An n-server threshold signature scheme (TSS) r is a triple (Key-Gen, Sig-Gen, Ver),

a distributed key generation protocol, a distributed signature generation protocol, and a

verification algorithm (see a detailed description below). We require (Definition 2 below)

that -r is unforgeable, i.e. that the threshold adversary that attacks the n servers and

participates in the protocols they execute should be unable to come up with a valid signature

on a message that was not signed by the servers, even after invoking the servers to sign

any sequence of adaptively chosen messages. We also require (Definition 3 below) that the

signature scheme T is robust, i.e. that if the servers execute a key generation and then a

signing protocol then a valid public key and valid signatures are always generated. We

formalize the three components (Key-Gen, Sig-Gen, Ver) of a TSS as follows:8

* Key-Gen, a distributed key generation protocol, is a probabilistic polynomial-time protocol

run by the n servers. Each server has a public input a security parameter k, random input

81n the description of Sig-Gen the adversary is the only user of the signature service implemented by the

TSS. Such formalization allows for concise definitions of both unforgeability and robustness of a TSS, where

we assume that the adversary invokes the signature protocol either (or both) to learn to forge signatures, or

to try to disrupt the servers from successfully executing the protocol.

" IF

III

2.4. FORMAL DEFINITIONS OF SECURITY OF THRESHOLD SCHEMES

ri,9 and generates a private output si, a share of the signature key, and a public output v,

the public key. We establish a convention that a public output of a protocol is defined to be

the majority of what our protocols denote as "public output" of the players. Our protocols

will maintain an invariant that, under some hardness assumptions ensuring robustness, all

uncorrupted players have the same "public output". Since the uncorrupted players are a

majority, the public output can be defined by what the majority outputs. To simplify the

interaction between the servers and the user (modeled here as an adversary), we assume

that the public output is sent out by the players on the broadcast channel.

* Sig-Gen, a distributed signature generation protocol, is a probabilistic polynomial-time pro-

tocol run by the n servers. This protocol is invoked by an adversary when he sends a

message of a form ' [sign,M] on the broadcast channel. Each server has public inputs

M and v, a private input si, and a random input ri.10 (Presumably, values si and v are

private and public outputs of a run of the key generation protocol.) This protocol has only

public output, a signature u on message M, which we will denote by C [signed, M,u] '.

* Ver, a signature verification algorithm, is a polynomial-time algorithm which can be run

by any party. It takes an input v and a pair (M, u). (Presumably, v is the public output

of the key generation protocol, M is some message, and u is a signature.) The output is

pass/fail.

Adversarial Run of a Threshold Signature Scheme. We define the security of a

threshold scheme in a non-uniform model of computation. We model a t-threshold adversary

as a family of interactive probabilistic polynomial-time Turing Machines (PPT TM) A =

(A1 , A 2 ,...), where Ak is the algorithm the adversary follows if the public input is a security

parameter k. 11
An adversarial run of a TSS r = (Key-Gen, Sig-Gen, Ver) with a t-threshold adversary A

consists of an execution of protocol Key-Gen with the participation of A, on public input a

security parameter k encoded in unary, and on a vector F of random inputs for the servers

and the adversary. We assume that the number of servers n is at most polynomial in k. A's

participation in an execution of a distributed protocol depends on the adversarial model

(staticadaptive erasure-enabled, or adaptive erasure-free). We describe it formally in the

"Adversarial View" paragraph below. Let v and sj...s, denote, respectively, the public and

private outputs of the servers from this execution of Key-Gen. Next, each time the adversary

submits a message ' [sign, M I on the broadcast channel, the servers run protocol Sig-Gen,

with the participation of A, on public inputs M, v, private inputs si of the servers, and a

vector of random inputs F for the servers and the adversary. We stress that A can invoke

9 For the sake of conciseness, in the descriptions of the distributed protocols we give in this thesis, we do

not explicitly mention the random inputs of the players, although the players do indeed require randomness

in all the protocols we discuss.
10 The servers and the adversary use a different part of their random strings r in vector F as their source

of randomness for the execution of Key-Gen and for each instance of Sig-Gen.

"We adopt a convention to denote the adversary that participates (i.e. attacks) any threshold scheme or

its subprotocol (e.g. protocols Key-Gen and Sig-Gen), by the same symbol "A". We can assume that the

messages of the honest players in any protocol are extended by a tag which specifies which protocol they are

executing. Hence a single adversarial algorithm A can represent a family of different adversarial algorithms

for attacking different distributed algorithms. E.g., a single interactive PPT TM algorithm A can specify

the adversary's behavior during an execution of Key-Gen and the adversary's behavior during an execution

of Sig-Gen.

33

34 CHAPTER 2. MODELING SECURITY OF THRESHOLD SCHEMES

many copies of protocol Sig-Gen. However, all the invocations of Sig-Gen are assumed to
be sequential, i.e. a new invocation does not start until the previous one is completed. The
output of this adversarial run of the threshold signature scheme T, denoted out,A(k, F), is
the public output v of Key-Gen, followed by the concatenation of all the messages of the
type '[sign, M] ' sent on the broadcast channel by the adversary, and the messages of the
type '[signed,M,u] ', sent on the broadcast channel by the parties and the adversary.
Let out,-,A(k) denote the distribution of out,A(k, F) where F is uniformly chosen from its
domain. Now we can formalize the notions of unforgeability and robustness of a TSS.

(In the definition below we use a concept of a negligible function. We call function f(k)
negligible if it is asymptotically smaller than an inverse of any polynomial, i.e. if for every
polynomial p(k), there exists ko s.t. f(k) < 1/p(k) for all k > ko.)

Definition 2 (Unforgeability of TSS)
A TSS T = (Key-Gen, Sig-Gen, Ver) is unforgeable in certain adversarial model if for any ad-
versary A in that model, the random variable out,A(k) satisfies the following property,
except for probability negligible in k: If outT,A(k) contains a public key v and a mes-
sage ' [signed,M,u] ' such that Ver(v, M,u) = pass, then it contains also a message

'[sign, M]'.
Informally: If the output includes a message 'signed, M, uPI with a valid signature u
on a message M, then this message must have been produced by the distributed signature
protocol invoked on message M by a message ' [sign, M] ' that also appears in the output.
In other words, the adversary A cannot produce signatures otherwise but by asking the
signing servers to do it.

Definition 3 (Robustness of TSS)
A TSS -r = (Key-Gen, Sig-GenVer) is robust in certain adversarial model if for any adversary

A in this model, the random variable outT,A(k) satisfies the following property, except for
probability negligible in k: 1) outT,A(k) starts with a public key v; and 2) If out,,A(k) contains
a message ' [sign, M] I then it also contains a message ' [signed, M,u] ' s.t. Ver(v, M, u)
= pass.

Informally: If the signing servers are asked to sign some message M then the adversary
cannot disable them from producing a valid signature on that message.

Definition 4 (Security of TSS)
A TSS r is secure in certain adversarial model if it is both robust and unforgeable in that

adversarial model.

Remark 1: On the influence of other protocols on the servers. Our definition of
security postulates that, upon corrupting a server, the adversary sees the current internal
state of the server; however, unlike in the definition of general multi-party protocols, only
the state of the current execution of the TSS is seen. In particular, the adversary does not
see internal data that pertains to other protocols that may be in execution at that server.
This assumption can be justified in the context of threshold protocols if the n players that
participate in the protocol are dedicated to the TSS task and do not run any additional
protocols.

1.1

2.4. FORMAL DEFINITIONS OF SECURITY OF THRESHOLD SCHEMES

Remark 2: Other definitions of security of TSS. A somewhat different approach to
defining security of TSS is taken in [CHH97]. There, an ideal distributed signature service

is formulated; A TSS is secure if it "emulates" the ideal process, in some well defined way.
That formalization provides a natural way for defining security even when no broadcast

channels (nor any authenticated communication channels) exist. In contrast, our definition
and protocols are presented in a convenient communication model where the parties are

provided with a broadcast channel. Note that if there is no broadcast channel then defining

security of TSS becomes considerably more tricky. In particular, it is no longer clear that

all servers invoke each copy of Sig-Gen with the same input message.

Remark 3: On robustness in practice. Note that in both definitions it does not matter
whether messages '[sign,M] ' and ' [signed,M,u] ' are adjacent in the output of the
adversarial run of a threshold signature scheme. It follows in particular that the above
definition of robustness is very liberal, since it considers a scheme robust just as long as
every request for a signature is eventually satisfied. In practice we want threshold schemes

which process the requests at some reasonable rate.

The Adversarial View. A central tool in the proofs of security of our threshold schemes
is the concept of an adversarial view of an execution of a threshold scheme. The adversarial

view is the computational history of the interactive probabilistic polynomial-time Turing
Machine (PPT TM) A during an adversarial run of a threshold scheme. This history is

fully determined by the content of A's input tape, its random tape, and all the messages it
receives on its interactive tapes.

We can formally model the interaction between the adversary and the players in the

adversarial run described above as a computation of the interactive PPT TM A and another
interactive PPT TM P which follows the prescribed protocols Key-Gen and Sig-Gen on behalf

of the currently uncorrupted players. In this computation, A is connected to P by the
following interactive tapes, whose number depends on the current number d (where d < t)
of the corrupted players: (1) n - d read-only tapes that correspond to the authenticated
broadcast channels of the uncorrupted players; (2) d write-only tapes that correspond to

the authenticated broadcast channels of the corrupted players; (3) d(n - d) read-write

tapes that correspond to the authenticated point-to-point links between each corrupted and
each uncorrupted player; (4) A read-write tape on which A writes the identity of a player

it decides to corrupt (a static adversary starts the computation by writing an identity

of some t players on this tape), and as long as d < t, A immediately receives from P
the current computational history of the requested player (in the adaptive erasure-enabled

model A receives only the current computational state of the requested player, i.e. the

currently unerased local data of that player); (5) A write-only tape on which the adversary

can broadcast a public input '[sign, M]' which models a request sent by the user of the

threshold signature scheme to sign message M; (6) A write-only tape on which the adversary

writes an identity of an uncorrupted player it wants to activate, i.e. an identity of player the
adversary wants to trigger to perform its prescribed protocol of a current round. When P
receives such request for some uncorrupted party Pi, it delivers to Pi the messages sent to it
in the previous round and it generates its messages for this round. In particular, P delivers

to A the messages broadcast by Pi or the messages it sends to the corrupted players. Once
all the uncorrupted parties have been activated, A can send to P some messages on behalf

35

36 CHAPTER 2. MODELING SECURITY OF THRESHOLD SCHEMES

of the corrupted servers, and the next round of computation can begin.

We will denote the view of an adversary A in its run against some protocol P on inputs

in,, in2 , ... (as specified by this protocol) as Viewp,A (in, in2 , ...). Such view is a random
variable whose distribution is induced by the uniform choice of vector f'of random inputs of

the adversary and the servers. We will often extend this notation and consider an adversarial

view of a random execution of a protocol on inputs ini, in2 , ... subject to a constraint that

some of the public outputs of this execution attain particular values outI, out2 We will

denote an adversarial view of such execution as Viewp,A(inl, in2, ...; out1 , out2 , ...). The

distribution of this random variable is induced by the distribution of the vector F of random

inputs of the adversary and the servers chosen uniformly among those vectors which cause

the execution of protocol P in the presence of adversary A on inputs in1 , in2, ... to output

values out1 , out2 , ... as public outputs.

In the security proofs of our protocols, we will consider either an adversarial view of an

execution of a protocol, or an adversarial view of a simulation of this protocol. The latter is

defined as a computational history of the same adversary PPT TM A, but whose interactive

tapes are connected not to the actual network of players that follow the prescribed protocol

(i.e. to the above PPT TM P), but to a special-purpose PPT TM SIM called a simulator.

We explain the usefulness of such simulators for our security proofs in Section 2.5 below.

We denote the adversarial view of a simulation, where the adversary A interacts with the

simulator SIM, as ViewsIM,A(inl, in2 , ..., insIM), where inputs in, in2 , ... , insIM are specified
in the description of the simulation process (it must be specified there whether the inputs

are public or private, and whether they are inputs to the adversary or to the simulator).

We will also consider specific executions of the simulation process, subject to the constraint

that the public outputs of this simulation attain particular values out1 , out2,.... We denote

the adversary's view of such simulation as ViewsIM,A(in, in2 , ..., inslM; outI, out2 , ...). The
public output of a simulation is defined similarly to the public output of any protocol,

i.e. as a majority of outputs tagged as "public output" by the players controlled by the

adversary and by the virtual players controlled by the simulator. These values will often

be either broadcast by each player (including the virtual players in the simulation), or they

will be computable from such broadcasts. In other words, they will be computable from

the information sent on the public channels.

Defining Secure Threshold Cryptosystems. We can define the (chosen ciphertext)

security of a threshold cryptosystem in the same manner as we defined the (adaptive chosen

message) security of a threshold signature scheme above. Namely, we can extend the [NY90]

definition of the chosen ciphertext security of a standard cryptosystem to the threshold

setting. Such definition of a security of a threshold cryptosystem was given in [SG98].

2.5 Methodology for Proving Security of Threshold Schemes

We discuss the general technique of proving security of a threshold signature or decryption

scheme by reducing it to the security of the underlying public-key scheme. For simplicity

and concreteness, our presentation focuses mainly on threshold signature schemes. However,

most of the issues we raise are applicable to other threshold functions and cryptosystems.

I

2.5. METHODOLOGY FOR PROVING SECURITY OF THRESHOLD SCHEMES 37

Proof by Reduction and the Role of Simulators and Extractors. We use the usual

"reductionist" approach in proofs of security of threshold signature schemes. To prove

unforgeability, we show that given a t-threshold adversary A that forges signatures when

interacting with a threshold signature scheme TSS, we can construct a forger F that forges

signatures of the underlying centralized signature scheme SS. (We assume here that TSS is

a threshold realization of some standard centralized signature scheme SS.) Thus we reduce

the claim that the threshold signature scheme TSS is unforgeable to the assumption that

the centralized signature scheme SS is unforgeable.

Recall that a (chosen-message attack) unforgeability of a centralized signature scheme SS

is formalized via an interaction between some forger F (PPT TM) and an oracle Oss which

implements the SS scheme [GMR88]. The interaction proceeds as follows. On common

input a security parameter k, the oracle Oss runs the key generation algorithm specified

by SS, gives the resulting public key v to F and keeps the secret key s to itself. Then

F is allowed to ask for signatures on messages Mi, m2, ... of its choice, and for each mi it

sends to Oss, the oracle runs the signing algorithm specified by SS on mi and s, and sends

back the resulting signature ui to F. We say that scheme SS is (chosen-message attack)

unforgeable if for every PPT TM F the probability that in the above interaction F outputs

at some point a valid signature u under key v on some message m, where m is not equal to

any message mi that Oss signed for F, is a negligible function of the security parameter k.

A key ingredient in the reduction of unforgeability of TSS to unforgeability of SS is a

simulation of the adversary's view in its run against the threshold scheme.1 2 The forger

F plays the role of a simulator of an adversarial view of the threshold scheme. F builds

a virtual distributed environment composed of n virtual servers and interacts with the

adversary A on their behalf. Note that A is a PPT interactive algorithm and thus it can

be used not only in an actual attack against a network of real players, as described in

the "Adversarial View" paragraph in Section 2.4 above, but against a network of virtual

players who all follow instructions of the forger F (we will call these players "simulated"

by F). Adversary A expects first to participate in the distributed key generation and

then in a series of executions of the distributed signature protocol invoked on messages

of his choice.1 3 Therefore F has to first simulate to A an execution of the distributed

key generation protocol. However, to later translate A's forgery against TSS into a forgery

against SS, forger F has to simulate to A an execution of the distributed key generation that

results in the public key v chosen by the Oss oracle. Then A will successively invoke the

distributed signature protocol on messages rin, rn2, ... of his choice, and F, having access to

the oracle Oss, will obtain a signature ui on each such message m under the public key v,

and it will simulate to A its view of an execution of the distributed signature protocol

which on input mi outputs u. Eventually, if A outputs a forgery in this simulated, virtual

environment, F can output it as a forgery against SS.14

12 The technique of simulation of adversary's view in a protocol was introduced by [GMR85].
13See the interaction between the adversary and the network of players implementing TSS described in

the "Adversarial Run of a Threshold Signature Scheme" paragraph in Section 2.4.
14 Such construction of the forger F is exhibited for example in the proof of unforgeability of the threshold

DSS signature scheme in Theorem 3, page 106. In the proof of Theorem 3 the forger F discussed above is

denoted SIM, because, as we explained above, the forger simulates the execution of the threshold scheme to

the threshold adversary A.

38 CHAPTER 2. MODELING SECURITY OF THRESHOLD SCHEMES

The crucial element in the construction of this forger is a demonstration that the adver-
sary's view of the simulated interaction is indistinguishable from its view of a real interaction
with parties running the threshold scheme. 15 Thus the technical core of proofs of unforge-
ability of our threshold schemes is a construction of appropriate simulator algorithms. Such
simulators must be able to generate views that are indistinguishable from the adversary's
view of a corresponding protocol under specific input/output conditions. Namely, the run
of the distributed key generation must be simulated to output a given public key chosen
by the oracle that implements the underlying centralized scheme. Similarly, the distributed
signature scheme must be simulated to output a particular signature given by the same
oracle. We refer to this as the problem of hitting a particular value in the simulation.

A corresponding standard technique for proving robustness of a threshold scheme is to
exhibit a knowledge extractor S, which, on input an instance of some hard problem (e.g. the
discrete logarithm problem), interacts with the adversary algorithm A by playing the part
of the honest players in the protocol, and in case the adversary A succeeds in inducing the
honest players into producing an invalid output, it extracts from the adversary's behavior a
solution to the hard problem which was its input. By exhibiting such extractor, we reduce
the robustness of our threshold protocol to some standard hardness assumption.

"Building Block" Subprotocols and their Simulators and Extractors. The thresh-
old schemes we propose are constructed from "building block" subprotocols that perform
simple arithmetic operations on shared data, for example create a random shared number,
compute its inverse, multiply two shared numbers, etc. (See the discussion and the example
of our methodology in Section 1.2.1.) Therefore our approach to exhibiting a simulator for
a threshold signature scheme, and thus to proving its unforgeability, is to exhibit a simu-
lator for every building block subprotocol this scheme is composed of, and to show that a
simulator of the threshold scheme can be built by composing the simulators of the building
block subprotocols.

A simulator of each building block subprotocol exhibits a secrecy property of this sub-
protocol, which states that the adversary learns nothing from the protocol beyond the public
inputs and outputs of this protocol, or in other words, that the adversary learns as much
by participating in the threshold implementation of some arithmetic operation as he would
learn from observing this operation as a black-box. To exhibit such secrecy a simulator must
produce the adversarial view of the protocol given as inputs the protocol's public inputs and

outputs.
However, many simulators of our building-block subprotocols take more as an input

than the public inputs and outputs of that subprotocol. This happens if an execution of
some protocol always follows an execution of some other protocol. We will explain this
by taking as an example the simulator SIM,, of a threshold exponentiation protocol Exp
(Figure 4-9). To understand why this simulator takes more than a public output A =m
of the Exp protocol we must consider that protocol Exp can be executed only subsequently
to some previous threshold protocol which establishes a secret-sharing of an exponent a.
Let us consider a distributed key generation protocol DKG (Figure 4-10). It consists of
two subprotocols, a "joint" verifiable secret-sharing protocol RVSS (Figure 4-6) in which,
on the public input a Pedersen commitment instance, the players generate a sharing of a

1
5 The notion of computational indistinguishability was introduced in [Yao82] and [GM82].

III

2.5. METHODOLOGY FOR PROVING SECURITY OF THRESHOLD SCHEMES 39

random number, a secret key x, and protocol Exp which computes the public key y = g
from that sharing. These protocols are all discussed in detail in Chapter 4. Here we want
to point out that the RVSS protocol outputs an ensemble of some public data, some private
data output by each player, and some data output by the adversary. We call this set of

data a joint secret-sharing of the created value x, and we denote it as RVSS-data[x]. In the
subsequent exponentiation protocol Exp, the inputs that each participating party takes to
execute Exp are the outputs this party computed in the preceding protocol RVSS, i.e. its
data in RVSS-data[x]. For the sake of this discussion let us treat as the only public output
of Exp (and DKG) the publicly computed value y = g.16

Since the public output of DKG is a random value y in Gq, the input to simulator

SIMDKG of DKG just such random value y in Gq. The aim of SIMDKG is to present to
the adversary a view that is computationally indistinguishable from its view of a random
run of DKG which outputs this y. (By convention, we denote such "target" inputs to
the simulators with a star, and so in Figure 4-10 the input of SIMDKG is denoted as y*.)
To simulate the DKG protocol, SIMDKG first simulates the RVSS protocol. However, this
simulation consists simply of executing this protocol on behalf of the uncorrupted players

(see Figure 4-10). In particular, SIMDKG gets the public outputs and the private outputs
of the uncorrupted players of such execution of RVSS. SIMDKG then passes these outputs,
together with the target value y to the simulator SIMap which simulates the second step
of DKG, i.e. the Exp protocol. This is why a simulator of a building-block subprotocol
like Exp can receive more inputs than the public inputs and outputs of this subprotocol.

The same logic applies to almost all the building-block protocols we discuss in this thesis,
e.g. a threshold multiplication protocol Mult or a threshold inverse-computation protocol
Reciprocal. Such protocols are executed always within some larger protocol P which first
creates secret-sharings of some values, e.g. secret-sharings of values to be multiplied by Mult
or inverted by Reciprocal. Consequently, simulators of such protocols receive as inputs, from
a simulator SIMp of P, the data that corresponds to the private data of the uncorrupted
players in such secret-sharings.

To prove robustness of a given building block protocol we either build an extractor
for that protocol, or we show how robustness follows from the robustness of subprotocols
from which the protocol in question is composed. The purpose of exhibiting an extractor
algorithm for some protocol is to show that if some adversary A has a non-negligible prob-

ability of disrupting this protocol, then there exists an efficient algorithm which on input
an instance of some hard computational problem can efficiently extract an answer to this
problem from an interaction with the adversary A.

16 The reader might notice that an execution of Exp on input RVSS-data[x] is not guaranteed to output g.
However, for the sake of simplifying the present discussion, let's assume that this output is always computed.

40 CHAPTER 2. MODELING SECURITY OF THRESHOLD SCHEMES

III

- .. III

Chapter 3

Preliminaries

We provide some preliminary definitions and we explain the notational conventions we use
throughout the technical part of the thesis.

3.1 Definitions

In this work we concentrate on threshold schemes based on the discrete-logarithm problem. 1

We first define a Discrete-Log Instance:

Definition 5 (Discrete-Log Instance) A discrete-log instance is a triple (p, q, g) such
that p and q are primes, q divides p - 1, and g is a generator of a multiplicative subgroup
of Z* of order q, which we denote as Gq

We restrict ourselves to working in a prime-order subgroup Gq of Z* instead of in Z*
directly, because prime order of the group simplifies both the threshold protocols and the
proofs of their security. We note that most discrete-log based cryptosystems are either
designed to work in this subgroup or can be modified to do so.

An instance of a discrete logarithm problem must be generated before any of our discrete-
log based protocols is executed. It can be generated by any participating server, but since
that server might be already corrupted from the start, we require it to use a verifiable
discrete-log instance generation procedure:

Definition 6 (Verifiable Discrete-Log Instance Generator IG)

The verifiable discrete-log instance generator IG is a pair (G, V) of a probabilistic polyno-
mial-time algorithm G, and a polynomial-time algorithm V, which satisfy the following two
properties:

1. G(i1k) outputs a triple (p, q, g) and a string proof s.t. V(lk, p, q, g, proof) accepts

2. V(1k, p, q, g, proof) accepts if and only if (p, g, g) is a discrete-log instance and \q| = k

'The DLog-based threshold schemes we present can be generalized to groups based on elliptic curves.

41

42 CHAPTER 3. PRELIMINARIES

We note that such verifiable discrete-log instance generation procedures exist, for ex-
ample the algorithm of [Bac85].

The robustness of the distributed protocols we present in this chapter relies on the
assumption of hardness of computing discrete logarithms on DLog instances that are gen-
erated in our protocols. We first define a notion of a negligible function, namely a function
which is asymptotically smaller than any polynomial:

Definition 7 (Negligible Function) We call function f(k) negligible if for every polyno-
mial p(k), there exists ko s.t. f (k) < 1/p(k) for all k > ko.

Definition 8 (Discrete-Log Instance Family) We call an infinite sequence of strings

DL = (s1 , S2,...) a discrete-log instance family if there is a polynomial p(z) s.t. each string

sk encodes a discrete-log instance (pq,g) s.t. q| = k and |p < p(k). We call the triple
(p, q, g) encoded by sk a discrete-log instance of security parameter k in DL.

Definition 9 (Discrete-Log Intractability Assumption) For every discrete-log in-
stance family DL, and every non-uniform family of probabilistic polynomial-time algorithms

A = (A1 , A 2 ,...), the probability Prob[Ak(p, q, g, g' mod p) = x], is a negligible function of
k, where (p, q, g) is a discrete-log instance of security parameter k in DL, and the probability
is taken over random bits of A and the choice of x distributed uniformly in Zq.

We note that all known algorithms for computing discrete logarithms in Z* run in
time which is asymptotically larger than any polynomial in the length of the largest prime
factor of p - 1 (see e.g. [Kob94]). In particular, if (p, q, g) is output by some verifiable
discrete-log instance generator on input a security parameter k (even if its random choices
are determined by the adversary), then p - 1 is divisible by prime q of length jq = k.
Therefore we can assume that the probability that any probabilistic algorithm running in
time polynomial in k computes the discrete logarithm in group Gq is negligible in k.

We recall the definition of statistical difference between two random variables. This
notion is used in the analysis of our distributed protocols. Recall that a support of a
random variable is a set of values the variable can attain.

Definition 10 (Statistical Difference) If X and Y are two random variables with finite

support, then the statistical difference 6(X, Y) is defined as

6(X, Y) = Prob[X = a] - Prob[Y = a]|
2

Variable a in the above sum ranges over the union of the supports of the two random

variables.

Pedersen's Trapdoor Commitment Scheme. An important tool used throughout
the threshold schemes we discuss in this thesis is a trapdoor commitment scheme due to

Pedersen [Ped9la]. We briefly summarize this scheme here below.
A commitment scheme is a protocol between two parties S and R, and the scheme of

Pedersen works as follows. On instance (p, q, g, h), where (p, q, g) is a discrete-log instance

AD

III

3.2. NOTATIONAL CONVENTIONS

of an appropriate security parameter, and h is a random element in Z, party S can commit

itself to some string x E Zq by picking a random ± in Zq and sending to R value C =

g9hX mod p. Party R learns no information about x because for every g $ h in Gq, for

every x C Z there exists a unique i s.t. C = gxhx mod p. After this "commit stage", S can

decommit and reveal x by sending (x, it) to R. Therefore this scheme protects the secrecy

of the commitment information in the information theoretic sense.
The second essential property of a commitment scheme is the assurance it gives to party

R that S, once committed to some value, cannot decommit itself in two different ways.

Pedersen's scheme guarantees this property in under the discrete-log assumption in the

following sense. Note that if g'hX = gx'hx' then log, h = (- x')/(y' - y), and therefore if

discrete-log is intractable then for all efficient algorithms S*, for any discrete-log instance

(p, q, g) of security parameter k, and for h a randomly chosen element in Gq, there is at

most negligible probability (in k) that S* chooses C E Gq from which it can successfully

decommit itself in two different ways, i.e. as x, i or x', i' where x J :-'.

The commitment scheme given by Pedersen has an additional property that together

with the public instance (p, q, g, h) there can be generated a "trapdoor" value which allows

an efficient algorithm to successfully decommit itself to any string x. In the case of the

scheme by Pedersen, this trapdoor value is a- = logg h. Note that knowing a- allows S to

open C = gxhx= gX+UX to any x' E Zq by sending to R a pair (/', i') where x'+cr-' =x+ o-.
All three properties of Pedersen's commitment scheme are crucial for security of Peder-

sen's Verifiable Secret Sharing protocol (see Section 4.2.4), which is a basic building block

of threshold protocols we discuss in this thesis.

Representation. In our protocols and security proofs we will use the notion of a repre-

sentation of one number in Z* as a product of exponentiations of some other numbers in

Z*. Let go E Gq and gi,...,g, be n distinct elements in Gq. We say that a1 ,...,an e (Zq)n
is a representation of go in bases gi,...,gn, if go = gc1 . . .-gan mod p. Note that every repre-
sentation of go in gi,...,gn gives a linear equation aixi + - + ancv = 1 mod q for variables

xi = logg gi mod p.

3.2 Notational Conventions

We bring together the notational conventions we use in the technical part of this thesis.

Notation for Modular Operations. From now on all exponentiation and discrete loga-

rithm operations will be implicitly carried out modulo p, and hence we will write y = g' and

x = logg y. All mathematical operations in this section are always carried either modulo p
or q, and most of the time we abbreviate the notation and skip the specification of which
of the two modulus a given operation needs. The rule of thumb is that operations on secret

data, e.g. secrets, shares, private random values, are carried out modulo q, and operations

on public data, e.g. commitments or public verification values, are carried out modulo p.

Conventions for Protocols and Simulators. All the threshold protocols discussed in
this thesis take as their public input a discrete-log instance (p, q, g). The sole exception is the

discrete-log instance generation protocol DL-IG. Furthermore, all the threshold protocols

we discuss need as a public input a second element h of Gq. Values (p, q, g, h) together

form an instance of a Pedersen commitment scheme [Ped9la]. Again, the only protocol

.0 4-77

43

CHAPTER 3. PRELIMINARIES

we discuss which does not take h as an input is the h-generation protocol h-IG. These
initialization protocols are discussed in Chapter 7. We refer to a composition of DL-lG and

h-IG as to a Pedersen commitment instance generation protocol Ped-G. In many threshold

protocols we present, the commitment instance (p, q, g, h) is not explicitly mentioned as a

public input to a protocol because it is subsumed by other inputs, e.g. by a secret-sharing

data-structure RVSS-data, defined in Figure 4-7, which contains values (p, q, g, h) as public

data.

Sometimes we accompany some distributed protocol P we propose by a description of

a simulator SIMp which is needed in an analysis of the security of this protocol. The

process of simulation is a computation of two interactive algorithms, the simulator SIM and

the adversary A, where the simulator controls the uncorrupted players, and the adversary

controls the corrupted players. Therefore a description of a simulation process is similar to
a description of the protocol itself. (See the description of the adversary as an interactive

algorithm in Section 2.4 and the discussion of the simulation process in Section 2.5.)
In the descriptions of the simulation processes we denote the set of corrupted players

as Bad and the set of uncorrupted players as Good, where Bad U Good ={P 1 ,-..., P. In

Chapter 4 we assume that the adversary is static, and therefore in the proofs of security

in Chapter 4 we can assume that the adversary corrupts the maximum allowed threshold

of players before the protocol starts. A static adversary must decide on the identity of the

corrupted players before the protocol starts. Even if the adversary physically corrupts them

only at some later point in the protocol, we can still model it as an immediate corruption

and just give the adversary the extra knowledge for free. In particular, in the descriptions

of the simulators in that chapter we will assume that jBadj = t.

This changes in Chapters 5 and 6 where we consider an adaptive adversary who does

not have to choose the identities of players in set Bad at the beginning of the protocol

execution. In these two chapters Bad and Good will denote, unless otherwise stated, sets of

the currently corrupted and uncorrupted players.

Concise Dictionary of Terms

For a quick reference we provide a list of terms which we commonly use when discussing

threshold protocols:

* protocol: Any efficient (i.e. probabilistic polynomial time) protocol, i.e. a (PPT) in-

teractive algorithm which specifies the actions of the n participating players.

* simulator, extractor: Interactive Probabilistic Polynomial Time Turing Machines

(PPT TM), i.e. efficient interactive algorithms. The notion of a simulator and an

extractor is discussed further in Section 2.5.

* adversary: A non-uniform family of interactive PPT TMs, denoted A = (A, A 2 , .

We model the adversary as following the instructions of algorithm Ak when the public

input to the distributed protocol which the adversary attacks is a security parameter k.

Our way of modeling an adversary is described formally in Section 2.4, with more

discussion in Sections 2.1-2.2.

ill

44

3.2. NOTATIONAL CONVENTIONS

" adversarial history or adversary's view (of either a protocol or a simulation): A com-
putational history of the adversary, during his interaction with the servers that im-
plement the protocol or with a simulator algorithm. This interaction is explained in
Section 2.4. Note that the lenght of the adversarial history is upper-bounded by some
fixed polynomial in the security parameter k, because an adversary is a probabilistic
polynomial-time algorithm.

* adversary's input and output: During either the execution or the simulation of any
protocol, the adversary's input always includes an adversarial history from execu-
tions of any previous protocols. The adversary's output consists of his computational
history at the time the protocol terminates.

" public output: In most protocols every uncorrupted player tags some of its outputs
as "public". A public output is defined as a majority of such values marked by all
the participating players. Our protocols maintain it as an invariant that all honest
players mark the same value as a "public output", and therefore, since the uncorrupted
players are always a majority, a public output is well-defined. (This invariant holds
often only under an assumption of a discrete logarithm intractability, and often except
for probability which is at most negligible in the security parameter.)

" DLog instance of security parameter k: A discrete-log instance (p, q, g) of parameter
k in some Discrete-Log Instance Family DL. In particular, the bit-length of prime q
is equal to the security parameter k, while the length of prime p is bound by some
fixed small polynomial in k (see Definition 6 above).

* negligible function: A function of a security parameter k which is asymptotically
smaller than an inverse of any polynomial. I.e., f((k) is negligible if for any polynomial
p(k), there exists ko s.t. for all k ;> ko, f(k) < 1/p(k).

45

46 CHAPTER 3. PRELIMINARIES

____ I___-_-- -.-or

Chapter 4

Static Threshold Cryptosystems

4.1 Introduction

In this chapter we present building blocks of discrete-log based threshold schemes secure
in a static adversarial model. Since in the static model the adversary picks the threshold
of players it wants to corrupt before the protocol starts, we will denote by Bad the set of
those corrupted players and we will assume the worst case that JBadl= t.

The chapter is organized as follows. In Section 4.2 we construct a protocol for threshold
key generation for discrete-log based schemes. In Section 4.3 we show a threshold DSS
signature generation protocol which is resilient against n/4 threshold of faults. These two
protocols together form threshold DSSl signature scheme TSS which is as secure in the
presence of a n/4-threshold adversary as a standard DSS in the presence of an adversary
who cannot corrupt the central server but can stage a chosen message attack. Then in
Section 4.4 we show how to improve the resistance of this threshold scheme to withhold a
n/2 threshold of faults. We include the n/4-threshold protocols because they are simpler
than the n/2-threshold ones. In particular they rely on a much simpler shared multiplication
subprotocol which tolerates however only n/4-threshold of faults. We then show that the
resilience of the DSS scheme becomes optimal if this building-block protocol is replaced
with a more involved but optimally-resilient shared multiplication protocol.

We note that all the protocols discussed in this chapter rely on public input an instance
of a Pedersen commitment scheme. A distributed initialization protocol which securely
generates such an instance is described in Chapter 7.

This chapter is based on material published in [GJKR99] (Section 4.2), [GJKR96b]
(Section 4.3), and [CGJ+99] (Section 4.4).

4.2 Distributed Key Generation for DLog-based Schemes

4.2.1 Introduction

We first present a protocol for secure Distributed Key Generation for DLog-based schemes,
for example for threshold DSS. We abbreviate a protocol with this functionality as DKG.
Distributed key generation is a main component of threshold cryptosystems. It allows a set
of n servers to jointly generate a pair of public and private keys according to the distribution

47

48 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

defined by the underlying cryptosystem without having to ever compute, reconstruct, or
store the secret key in any single location, and without assuming any trusted party (dealer).
While the public key is output in the clear, the private key is maintained as a (virtual) secret
shared via a threshold scheme. In particular, no attacker can learn anything about the key
as long as it does not break into a specified number, t + 1, of servers. This shared private
key can be later used by a threshold cryptosystem, e.g., to compute signatures as in the
threshold DSS signature protocol of Section 4.3, without ever being reconstructed in a single
location. For discrete-log based schemes, distributed key generation amounts to generating
a secret-sharing of a random, uniformly distributed value x c Z, and making public the
value y = g'. We refer to such a protocol as DKG.

A DKG protocol must be robust, i.e. it must be able to run in the presence of a malicious
adversary who corrupts a fraction (or threshold) of the players and forces them to follow
an arbitrary protocol of his choice. Informally, we say that a DKG protocol is secure if
the output of the non-corrupted parties is correct (i.e. the shares held by the good players
define a unique uniformly distributed value x and the public value y satisfies y = gT), and
the adversary learns no information about the chosen secret x beyond, of course, what is
learned from the public value y.

Solutions to the shared generation of private keys for discrete-log based threshold cryp-
tosystems [DF89] have been known and used for a long time. Indeed, the first DKG scheme
was proposed by Pedersen in [Ped9lbl. It then appeared, with various modifications, in sev-
eral papers on threshold cryptography, e.g., [CM193, Har94, LHL94, GJKR96b, HJJ+97,
PK96, SG98], and distributed cryptographic applications that rely on it, e.g., [CGS97].
Moreover, a secure DKG protocol is an important building block in other distributed pro-
tocols for tasks different than the generation of keys. One example is the generation of
randomizers in discrete-log based signature schemes (for example the r value in a (r, s) DSS
signature as in Section 4.3). Another example is the generation of the refreshing polynomial
in proactive threshold schemes discussed in Appendix B.

The basic idea in Pedersen's DKG protocol [Ped9lb] (as well as in the subsequent
variants) is to have n parallel executions of Feldman's Verifiable Secret Sharing (VSS)
protocol [Fel87] (presented below in Figure 4-1) in which each player Pi acts as a dealer of
a random secret xi that he picks. The secret value x is taken to be the sum of the properly
shared xi's. Since Feldman's VSS has the additional property of revealing yi = gi, the
public value y is the product of the y's that correspond to those properly shared xi's.

In this paper we show that, in spite of its use in many protocols, Pedersen's DKG
cannot guarantee the correctness of the output distribution in the presence of an adversary.
Specifically, we show a strategy for an adversary to manipulate the distribution of the
resulting secret x to something quite different from the uniform distribution. This flaw
stresses a well-known basic principle for the design of cryptographic protocols, namely, that
secure components can turn insecure when composed to generate new protocols. We note
that this ability of the attacker to bias the output distribution represents a flaw in several
aspects of the protocol's security. It clearly violates the basic correctness requirement
about the output distribution of the protocol; but it also weakens the secrecy property of
the solution. Indeed, the attacker acquires in this way some a-priori knowledge on the secret
which does not exist when the secret is chosen truly at random. Moreover, these attacks
translate into flaws in the attempted proofs of these protocols; specifically, they show that

III

4.2. DISTRIBUTED KEY GENERATION FOR DLOG-BASED SCHEMES

simulation arguments used to prove the secrecy of these protocols must fail.

In contrast to the above, we present a protocol that enjoys a full proof of security. We

first present the formal requirements for a secure solution of the DKG problem, then present

a particular DKG protocol and rigorously prove that it satisfies the security requirements. In

particular, we show that the output distribution of private and public keys is as required, and

prove the secrecy requirement from the protocol via a full simulation argument. Our solution

is based on ideas similar to Pedersen's DKG (in particular, it also uses Feldman's VSS as

a main component), but we are careful about designing an initial commitment phase where

each player commits to its initial choice z in a way that prevents the attacker from later

biasing the output distribution of the protocol. For this commitment phase we use another

protocol of Pedersen, i.e., Pedersen's VSS (Verifiable Secret Sharing) protocol as presented

in [Ped9la]. Our solution preserves most of the efficiency and simplicity of the original

DKG solution of [Ped9lb], in particular it has comparable computational complexity and

the same optimal threshold of t < n/2.

Organization: In Section 4.2.2 we define a secure DKG protocol. In Section 4.2.3 we

describe previously proposed solutions to the DKG problem, and we show where they fail.

Section 4.2.4 presents an important subprotocol used by this solution, namely a Verifiable

Secret Sharing [VSS] by Pedersen, while Section 4.2.5 presents the secure DKG protocol

and its full analysis.

4.2.2 Requirements of a Secure DKG Protocol

In this section we define the minimal requirements for a secure distributed key generation

protocol. As we mentioned above, distributed generation of keys in a discrete-log based

scheme amounts to generating a discrete-log instance (p, q, g), a secret-sharing of a random,

uniformly distributed value xC EZq, and making public the value y = g. The protocol can

also generate some other public and private outputs which allow subsequent efficient and

robust reconstruction (or efficient and robust use, as in the threshold signature or decryption

schemes) of the shared secret x.

As described in Section 2.4, we model the adversary as a non-uniform family of inter-

active PPT TM's A = (A 1, A 2 , ...), and we model an execution of the DKG protocol in

the presence of an adversary as an interaction of two interactive PPT algorithms, the ad-

versarial algorithm A and an algorithm which implements the protocol DKG on behalf of

the uncorrupted players. In the definition below we use the notions of an adversarial view

defined in Section 2.4. See also Section 2.5 for a discussion of the notion of an adversarial

view during a simulation of a protocol. Recall also that function f(k) is called negligible if

for every polynomial p(k), there exists ko s.t. f(k) < 1/p(k) for all k > ko.

Definition 11 A DKG protocol is a probabilistic polynomial-time protocol run by n servers

on public input a discrete-log instance (p, q, g). A DKG protocol is executed in the presence

of an adversary A = (A 1, A 2 ,-...), We denote the private outputs of the n servers as s1, ... ,sn5.

We call a DKG protocol DKG t-secure in a given adversarial model (static, adaptive

erasure-enabled, adaptive erasure-free) if it satisfies the following correctness and secrecy

requirements:

49

CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Correctness: For every t-threshold adversary A in a given adversarial model, and for
every discrete-log instance family DL, protocol DKG satisfies the following requirements:

(Cl) Except for probability at most negligible in k, a random execution of DKG on input

a discrete-log instance (p, q, g) of security parameter k in DL is sharing-successful,
which we define as an instance of DKG where the outputs of the uncorrupted players

satisfy the following property:

The outputs si of the uncorrupted servers contain values a E Zq which form a Shamir
secret-sharing over group Zq. Namely, if there exists a unique t-degree polynomial f
over Zq such that f(i) = a mod q for each i, and thus all subsets of t + 1 shares of
the honest players define the same unique shared secret key x = f(0) mod q.

(Cl') There is an efficient protocol Rec such that if an execution of DKG is sharing-successful

and it is followed by Rec on its outputs, then, except for the probability negligible in
k, the public output of Rec is the unique value x defined by property (C).

(C2) For every (pq, g) in DL the distribution of values x defined by a random sharing-
successful execution of DKG is uniform in Z7. (In other words, this distribution of x

is defined by a run of DKG where the vector of random inputs of the adversary and
the players is chosen uniformly among those that lead to sharing-successful executions

of DKG.)

(CS) Except for probability at most negligible in k, a random execution of DKG on input

a discrete-log instance (p, q, g) of security parameter k in DL is successful, which we
define as a sharing-successful instance of DKG where the outputs of the uncorrupted

players satisfy the following two additional properties:

- Outputs si of the uncorrupted players contain the same value of a public key

y CGq. Thus in this case y can be called a public output of DKG (see Remark 1
below).

- y = g' where x is defined by the sharing-successful property of this DKG instance.

Secrecy: There exists a simulator SIM, such that for every t-threshold adversary A in a
given adversarial model, for every discrete-log instance (p, q, g) of security parameter k, and
for every y C Gq, the following two distributions are identical:

* ViewDKG,A((p, q, g); y), an adversarial view of a random execution of protocol DKG
which on public input (pq, g) produces the public output y.

* ViewSIM,A((p, q, g), y; y), an adversarial view of a random simulation of DKG (i.e. an
interaction of SI M and A) which on public input (p, q, g) and on SIM 's private input

y produces public output y.

Less Formally: There exists a simulator which on input y simulates to the adversary his
view of a random instance of protocol DKG that outputs such y.
Informally: The adversary learns nothing about the secret-shared value x generated in
the protocol except for what is implied by the public output y = g mod p.

50

4.2. DISTRIBUTED KEY GENERATION FOR DLOG-BASED SCHEMES

Remark 1. Recall from Section 2.4 that by convention we define a public output of a
protocol as a majority of values marked as "public outputs" by the participating servers.
Therefore if DKG is a secure DKG protocol, we can call the value of the public key y defined

by the correctness condition (C3) a public output of DKG.

Remark 2. Correctness conditions (Cl), (C2), and (C3), form a minimal set of require-
ments needed in all known applications of such a protocol. In many applications a stronger
version of (Cl) is desirable, namely condition (C1'), which reflects two additional aspects:
(1) It requires the existence of an efficient procedure to build the secret x out of any t + 1

shares of honest players; and (2) it requires this procedure to be robust, i.e. the recon-
struction of x should be possible also in the presence of malicious parties that try to foil
the computation. We will show that property (Cl') is useful not only in applications that
require explicit reconstruction of the secret, but also in applications (such as threshold
cryptosystems) that use the secret x in a distributed manner (without ever reconstructing
it) to compute some cryptographic function, e.g. a signature.

Remark 3. Alternatively, we can define the Distributed Key Generation protocol as start-
ing on input a security parameter k alone, and generating first a discrete-log instance (p, q, g)
s.t. jqj = k. This is an approach we take in the definition of a threshold signature scheme
(Definition 4, Section 2.4), where a key generation protocol Key-Gen is assumed to be run-
ning on public input lk only. In the Definition 11 above we consider a DKG protocol as
taking (p, q, g) as inputs because this definitional choice allows us to express the secrecy
property of the Distributed Key Generation protocol on its own. We note that this defini-
tion seems unsatisfactory in the sense that we do not know how to apply it to prove that
a threshold signature scheme, which utilizes a DKG protocol secure in the sense of this
definition, is secure in the sense of Definition 4. A more robust definition of security of the
DKG protocol would be preferable.

4.2.3 The Insecurity of a Common DKG Protocol

Feldman's Verifiable Secret Sharing. The simple but insecure DKG protocol originally
proposed in [Ped9lb] relies on a Verifiable Secret Sharing [VSS] protocols due to Feldman

[Fel87]. Verifiable Secret Sharing (VSS) is a protocol between a dealer who wants to share a
secret, and a group of n players which receive shares of this secret and can later reconstruct
it. (In our uses of VSS protocols, the dealer is also one of the recipients).

In Shamir's original secret-sharing protocol [Sha79], to share a secret x E Zq, the dealer
chooses at random a polynomial f(z) over Zq of degree t, such that f(0) = x. It then
secretly transmits to each player Pi a share ai = f(i) mod q. It is clear that t or less players
have no information about the secret while t + 1 can easily reconstruct it by polynomial

interpolation.

It is well known however that in the presence of a malicious adversary, Shamir's secret
sharing protocol is not secure. Indeed it is possible for a dealer to share values which do
not lie on a polynomial of degree t. Also dishonest players may contribute incorrect shares
at reconstruction time. A verifiable secret sharing (VSS) protocol is intended to prevent

this possibility.
Feldman's verifiable secret sharing protocol [Fel87] extends Shamir's secret sharing

51

III

52 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

method in a way that allows the recipients of shares to verify that the shares they receive

from the dealer are consistent (i.e., that any subset of t + 1 shares determines the same

unique secret), and to filter out the incorrect shares submitted by the dishonest players at

reconstruction time. The protocol can tolerate up to t < n/2 malicious faults including the

dealer. We present this protocol, denoted FeIVSS, in Figure 4-1.

Protocol FeIVSS, (2t + 1 < n)

Public Input: DL-instance (p, q, g)
Secret Input of Dealer P: x the secret value in Zq to be shared

Secret Output of Player P2: ai = f(i) the share of x

(or null if Pi disqualified the dealer P)
[If Pi = P, also polynomial f (z)]

Public Output: verification function F(z) = gf(z)

(a) P chooses a random t-degree polynomial f (z) = co + ci z + ... + ctz' in Z, where

co = f(0) = x. P sends shares a0 = f(j) to each P $ P and broadcasts values

Ck gCk for k = 0, ... , t, which defines a verification function F(z) H=]j _o(Ck)zk.

(b) Each P checks if the share received satisfies a verification equation g0 = F(j).

If the check fails, P5 broadcasts a complaint against P.

(c) If P receives P's complaint then P broadcasts value 05 s.t. gai = F(j). Each

player P5 decides to disqualify the dealer P if and only if

* There were more than t complaints broadcast in Step (b), or

* P does not respond with a5 that satisfies the verification equation.

Reconstruction: Each Pi broadcasts share a s.t. gi = F(i). Any I + 1 shares that

pass this verification are interpolated into a t-degree polynomial f(z), and the secret x
is recovered as f (0).

Figure 4-1: Feldman's Verifiable Secret Sharing

Feldman's VSS is resistant to malicious faults. If there are less than t < n/2 faulty

players, if the honest players do not disqualify the dealer then the reconstruction procedure

is guaranteed to produce a unique secret x. Secondly, if the dealer is honest then the honest

players always accept its sharing, and the reconstructed value a is equal to the dealer's

input.

Notice however that the value x is shared with only computational secrecy, e.g., infor-

mation F(0) -=gO = gX is leaked. However, it can be shown that an adversary that learns t
or less shares cannot obtain any information on a beyond what can be derived from g.

The proof of this fact uses a simulation argument which we sketch here. Given any t (or

fewer) shares (known to the adversary) and gX = F(0), one can generate the distribution of

the other public information in the protocol, i.e. values C 1 ,... ,C, as follows. Assume the

known shares are o, . . . ,at. Thus we know gfW=) gI, i 1,... t, as well as gf(0) = g.

This allows us to compute Ck for k = 1. .., It using the equation Ck = gck -_Ht= 0 (fiAki

Aff

4.2. DISTRIBUTED KEY GENERATION FOR DLOG-BASED SCHEMES

where Aki are coefficients such that ck = Z0o Akif(i). 1

Note that FeIVSS allows a trusted dealer to share a randomly chosen secret key x among
n parties in a way that produces a public key y = x = F(O) as a public output of the
protocol. In other words, FeIVSS satisfies the security requirements for a DKG protocol as

long as the dealer is not corrupted by the adversary.2

The Insecure DKG Protocol: Joint-Feldman. Pedersen [Ped9lb] proposed the first
solution to the Distributed Key Generation problem, i.e. the first DKG protocol. The

proposal specifies the run of n parallel executions of FeVSS as follows. Each player Pi
selects a random secret xiC E Z and shares it among the n players using FeIVSS. This
defines the set Qual of players who were not disqualified as dealers, i.e. the set of players
whose shared secrets can be robustly reconstructed. The random secret x is set to be the
sum of the properly shared secrets, and each player can compute his share of x by locally
summing up the shares he received. The value y can be computed as the product of the
public values yj = g'i generated by each of the FeVSS protocols. Similarly, the verification
function F(z) necessary for robust reconstruction of x in FeVSS, can be computed from
the verification values generated in each FeIVSS.

In Figure 4-2 we present a simplified version of the protocol proposed in [Ped9lb], which
we call Joint-Feldman. By concentrating on the core of the protocol we are able to emphasize

the central weakness in its design. 3

An Attack Against Joint-Feldman. We show how an adversary can influence the distri-
bution of the public output y of Joint-Feldman to a non-uniform distribution.

It can be seen, from the above description of the protocol that the determining factor
for what the value x will be, is the definition of the set Qual. The attack utilizes the
fact that the decision whether a player is in Qual or not, even given the fully synchronous
communication model, occurs after the adversary has seen the values y of all players. The
values yj are made public in Step a and the disqualification of players occurs in Steps b-c.
Using this timing discrepancy, the attacker can affect the distribution of the pair (X, y), for
example by forcing the last bit of y to equal 0.

More specifically the attack works as follows. Assume the adversary wants to bias
the distribution towards keys y whose last bit is 0. It assumes two faulty players, say
P1 and P2 . In Step a, P 1 gives players P3 , ... , Pat2 shares which are inconsistent with his
broadcast values, i.e. they do not pass the test of Step b. The rest of the players receive
consistent shares. Thus, in Step b there will be t complaints against P1 , yet t complaints
are not sufficient for disqualification. Now, at the end of Step a the adversary computes
a = H> 1 yj and 13 = H y2 i. If a ends with 0 then P1 will do nothing and continue the
protocol as written. If a ends with 1 then the adversary forces the disqualification of P1

in Step c. This is achieved by asking P2 to also broadcast a complaint against P1 , which
brings the number of complaints to t + 1. This action sets the public value y to 0 which

'if [f(0), . . , f(t)f" = A - [co,. .. , c]t, where A is a (t + 1) by (t + 1) Vandermonde matrix with ik in row
= ,... , t and column k = 0,... ,t, then [co,.. . , ct]= A-' . [f (0), .. . , f (t)JT and Ai's are entries of A - 1.

2 More precisely, if the adversary can corrupt the dealer then the protocol does not achieve the secrecy
property and the correctness property (C3).

3 Many variants of this protocol have appeared in the literature and they each exhibit the same essential
flaw. We review these variants and argue their flaws in Appendix E.

53

II

54 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Protocol Joint-Feldman, (2t + 1 < n)

Public Input: DL-instance (p, q, g)
Public Output: set Qual E {P1, ..., P4} of qualified players

verification function F,,(z),

including value y = F1(0) =g,
verification functions F2,(z) for PiC Qual

Secret Output of Player P2 : f,,,(z) the polynomial Pi secret-shared
aji the share of P's polynomial for P C Qual
a the share of generated key x

Steps (a-c): Each Pi chooses its input xi at random in Z, and performs the FeVSS

protocol on that input as a dealer. All these instances of FeIVSS proceed in parallel.

We denote the polynomial used by Pi to secret-share xi as f,, its shares as aij for

j =, ... ,n, and its public verification function as F1 ,(z). We denote y = ghi = F F(0).

At the end of Step (c) each player forms a set of non-disqualified players Qual and

computes its final secret-share as ai = Ep ai. The verification function F(z)

is defined as H. jQual F1, (z). The public value y is equal to F,(0). The secret shared

value x itself is not computed by any party, but it is equal to x = EPJ E r 2i.

Figure 4-2: An insecure solution for a Distributed Key Generation Protocol

ends with 0 with probability 1/2. Thus effectively the attacker has forced strings ending

with 0 to appear with probability 3/4 rather than 1/2.

Why the Simulation Fails. An attempt to prove this protocol secure would use a simula-

tion argument. Following is an explanation of why such a simulator would fail. Consider a

simulator SIM which receives the value y and needs to produce an adversarial view that looks

like an execution of the Joint-Feldman protocol that ends with y as a public output. Assume

that the adversary controls t players P 1, ..., Pt. In Step a, the simulator has to broadcast as

part of the Feldman verification data the values y = F1,(0) for each uncorrupted player Pi,

and hence S I M has to commit itself to the values xi = logg yj shared by each uncorrupted

player P. Therefore, if SIM could predict in Step a the set Q of faulty players which will

belong to set Qual in Step c, then it would broadcast the values y, Pi C Good, so that

(H PCQ) (HPjEGood yi)= y mod p. However, the attack described in the paragraph above

can be easily extended to a strategy that allows the adversary to decide in Steps b-c on the

set Q. Moreover, the adversary can behave in Step a in such a way that in Steps b-c it can

decide to make Q any subset of {Pi, ..., Pt}. Therefore, from the point of view of SIM, there

are 2t possibilities for Q, and so it seems that SIM has no effective strategy to simulate this

computation in polynomial time.

Essential Problem: No Perfectly Secret Commitment on the Inputs. Essentially,

we are dealing here with the same pitfall that characterizes the distributed coin-flipping

problem. A problem of distributed coin-flip, introduced by Blum for the case of two parties

in [Blu82], asks whether a group of players, some of whom may be dishonest, can compute

as a common output an unbiased random bit. A possible solution to both the distributed

4.2. DISTRIBUTED KEY GENERATION FOR DLOG-BASED SCHEMES

coin-flipping and the distributed key generation problem is to create a random number by
letting each player contribute its own random number and then summing up the results.

However, if the dishonest player can first see the contribution of the honest players and base

his contribution on that knowledge, then the dishonest player will be able skew the result.

The Joint-Feldman protocol allows th5 dishonest players to do just that because it is not

perfectly secret and not non-interactive in the presence of faults. Namely, Joint-Feldman
protocol has two bad properties: 1) The gi information about each xi is leaked in Step (a);

and 2) Faulty players do not truly submit their xi contributions to x in Step a of the protocol

because each contribution of a faulty player can still be withdrawn during the complaint

resolution procedure of Steps b-c. The two properties combined allow the faulty players

to decide their contributions based on some knowledge of the contributions of the honest

players even in the perfectly synchronous communication model.

4.2.4 Joint Sharing of a Random Secret and Distributed Coin-Flip

Once we identified the essential problem of the Joint-Feldman protocol, it is easy to fix it by
following the paradigm of the original solution of [CGMA85] to the problem of distributed

coin-flipping. This solution has also become a paradigm for general multi-party secure

computation. Namely, the contributions xi must be committed to in a way that is both

perfectly secret and which guarantees that the contributions cannot be withdrawn. Perfectly

secret verifiable secret sharing scheme implements a commitment which satisfies both of

these two properties. The particular perfectly secret VSS which is secure against n/2-
threshold of faults and enables efficient extraction of key y = gf from the shared values xi

is a VSS by Pedersen [Ped9la], which we denote PedVSS and present here in Figure 4-3.

In this section we first describe the properties of this protocol, and then we show that a

protocol RVSS (Figure 4-6), which consists of parallel execution of PedVSS by each player

on a random input xi, generates a sharing of a random secret x defined as a sum of the

Xi's shared by the non-disqualified dealers. Because the generated shared secret is random

and unbiased, we will refer to the RVSS protocol followed by reconstruction of x as to a

Distributed Coin-Flip protocol, even though x is not a random bit but a number uniformly

distributed in group Zq. The RVSS protocol is secure under parallel composition, which

makes it easy to use in threshold schemes, where it is often useful to generate many random

shared numbers at the same time. In Section 4.2.5 we will show how y = g can be quickly

extracted from the data generated by RVSS, and we argue why the resulting protocol,

denoted DKG, is a secure Distributed Key Generation protocol for DLog-based threshold

schemes.

Pedersen's Verifiable Secret Sharing

We present the Pedersen's VSS protocol, denoted PedVSS, in Figure 4-3. The PedVSS

protocol requires, in addition to the parameters (p, q, g) which are inherent to the DKG
problem, a second generator h of group Gq. Values (p, q, g, h) together form an instance of

Pedersen's perfectly secret Trap-door Commitment which is used heavily in PedVSS. This

element h does not need to be chosen uniformly in G, but it must be created so that

under the discrete logarithm intractability assumption the adversary cannot find logg h,

the discrete logarithm of h relative to the base g. In Chapter 7 we describe a distributed

55

III

56 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

protocol Ped-IG which picks an instance of a Pedersen commitment in a way which achieves

the above property.

We call the ensemble of outputs of the PedVSS protocol, i.e. the public output and
the private outputs of all the parties, a secret-sharing, and we denote it by PedVSS-data,

or PedVSS-data[a], PedVSS-data[b], etc, where "a" and "b" (and the corresponding Greek
letters "a", "3",...) are labels with which we designate all the data in the PedVSS-data

ensemble. 4 We call such ensemble a correct secret-sharing if the outputs satisfy the correct-

ness properties described in Figure 4-4. We call an execution of PedVSS which outputs a

correct secret-sharing successful. In other words, this is an execution in which the adversary

didn't manage to cheat, i.e. to prevent the outputs of PedVSS from forming a correct secret-

sharing. By PVSS-'DATA(pq,g,h) we denote a set of all correct secret-sharings PedVSS-data

which contain a Pedersen commitment instance (p, q, g, h) as its public data.

In Lemmas 1 and 2 below we show two important robustness properties of the PedVSS

protocol. First, under the discrete-log assumption, a random execution of PedVSS is suc-

cessful, i.e. its outputs PedVSS-data form a correct secret-sharing, except for probability

negligible in the security parameter k. In other words, if discrete logarithm is hard then a

probabilistic polynomial-time adversary has only a negligible probability of cheating in the

PedVSS protocol. Secondly, under the discrete-log assumption, the unique secret-shared

value x defined by a correct secret-sharing PedVSS-data[x] can be reconstructed by the

subsequent PedVSS-REC protocol, again except for negligible probability.

In Lemma 3 we express the secrecy property of PedVSS. This property says that

PedVSS hides the shared secret x in information theoretic sense, i.e. that there is no dif-

ference between the adversarial view of an execution of PedVSS which shares some given

secret x from an execution which shares some other secret x*. In Lemma 3 we phrase

this property in a way that is useful for building more complicated distributed protocols

using PedVSS as a tool. Namely, if an execution of PedVSS in which the dealer P shares

some value x* is followed by some distributed protocol P which takes the created secret-

sharing PedVSS-data [X*] as an input, for example the reconstruction protocol PedVSS -REC

which reconstructs the shared secret x*, then an adversarial view of a series of executions of

PedVSS on P's input x* followed by PedVSS-REC, is identically distributed to an execution

of PedVSS on some other input x E Z of P followed by a simulation of the PedVSS-REC,

where the value x* is given to the simulator as a target to be reconstructed. 5

In the threshold schemes we propose in this thesis, the secret-sharing PedVSS-data cre-

ated by protocol PedVSS is used in a variety of other protocols, each of which has its

corresponding simulation process. We thus need to phrase the above property of PedVSS

without referring to any particular protocol P. We do this by isolating a common element

in the simulation processes of threshold protocols that use a secret-sharing PedVSS-data as

their input. Namely, for each such protocol P we will argue that its simulator can perform

4 An exception from this convention is the notation which we use for sharing of a secret denoted as x. We
denote the sharing of x as PedVSS-data[x], and we label all the data associated with this sharing with variable
name x. However, for the lack of an appropriate Greek letter we label the polynomial shares associated with
this sharing with a. See, for example, Figure 4-3.

5 Note that an adversarial view in this statement is a random variable whose distribution is determined,
in the first case by the uniform distribution of random inputs of the adversary and the uncorrupted players,
and in the second case by the uniform distribution of random inputs of the adversary and the simulator.

4.2. DISTRIBUTED KEY GENERATION FOR DLOG-BASED SCHEMES

protocol PedVSS on some input x, which creates a sharing PedVSS-data[x], followed by a sim-
ulation of P in which the simulator, on input some target value x* replaces PedVSS-data[c]
with an appropriately chosen secret-sharing PedVSS-data[x*] which shares x* instead, and
then simply performs the protocol P on this new secret-sharing. We isolate this process of
replacement of data in the form of procedure T PedVSS presented in Figure 4-5, which takes as
inputs a given secret-sharing PedVSS-data[] and outputs its replacement PedVSS-data[*].
Note that the data which is visible to the adversary, i.e. the public data and the private
data of the players controlled by the adversary, must remain the same in PedVSS-data[]
and PedVSS-data [c*], so this "replacement" is always only a modification of the private
data of the players controlled by the simulator.

The essence of the proof of Lemma 3 is that for any uncorrupted dealer P and every x
and x*, the distribution of PedVSS-data[x*] output by Tpedvss(PedVSS-data [], x*), where
PedVSS-data[x] is output by a random execution of PedVSS on P's input x, is the same
as the distribution of PedVSS-data[c*] output by a random execution of PedVSS on P's
input X*.

This implies, and we state it in Lemma 3, that if we consider the following simulation
of the (PedVSS;P) sequence of protocols (for any P, x, x*), in which the simulator, on
input x*, the "target output of P", first performs PedVSS on the uncorrupted dealer's
input x, then modifies the private data of the uncorrupted players by replacing the resulting
output PedVSS-data[x] with PedVSS-data[x*] = TPedvss(PedVSS-data[x], o-, x*), and then
performs P on PedVSS-data[*], then the adversarial view of such simulation is the same
(i.e. it is identically distributed) as the adversarial view of PedVSS performed on input x*
followed by P. This complicated statement can be simply summed up as "sequence of
protocols (PedVSS;P) is simulatable". Note that the above simulation is possible only if
the simulator is able to perform the TPedVSS procedure, i.e. if the simulator knows the
Pedersen commitment trapdoor value o- =log9 h (see Figure 4-5).

The proofs of both the secrecy and the robustness properties of PedVSS are based on
the proofs that appear in [Ped9la]. Our contribution is the formalization these properties
are given here, which enables us to argue that the PedVSS protocol can be combined with
others into larger distributed protocols.

Definition 12 We call an execution of protocol PedVSS successful if and only if its outputs
PedVSS-data[a] form a correct secret-sharing, which means that they satisfy the following
properties:

1. All honest players make the same decision as to whether to disqualify the dealer.

2. If the dealer is not disqualified then each honest player Pi holds shares a, &, s.t. these
shares interpolate to unique t-degree polynomials f,(z), f±(z)

3. If the dealer is not disqualified then all honest players hold the same verification func-
tion F1 (z), such that F,(z) = gf-Z)hf±(z).

4. If P is uncorrupted then the above polynomials f, fE are chosen by P in Step a, and
the secret-shared value f1 (0) is equal to P's input x.

57

CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Protocol PedVSS, (2t + 1 <n)

Threshold Parameter: t, the degree of the generated polynomials

Public Input: Pedersen commitment instance (p, q, g, h)

Secret Input of Dealer P: x the secret value in Zq to be shared

Secret Output of Player Pi: a, the polynomial share of x
&, its associated randomness

(or null if Pi disqualified the dealer P)
[If Pi = P, also polynomials f1 (z), f±(z)]

Public Output: verification function F1 (z) = gf(Z)hh(z) (or null)

(a) P chooses two random polynomials f1 (z), fj (z) over Zq of degree t:

f 1 (z) = co + ciz+... + ctztzt

where co = f;(0) = x. P sends shares a5 = f:(j),&s = fj(j) to each P7 # P

and broadcasts values Ck = gckhak for k = 0, ... , , which defines a verification

function F;(z) = Hlt=o(Ck)zk.

(b) Each P checks if the shares he received satisfy Pedersen's verification equation:

g9a hj= - Fr(j) (4.1)

If the check fails, P5 broadcasts a complaint against P.

(c) If P receives P's complaint then P broadcasts (aj, &) s.t. gas ha, = F,(j). Each

Pj disqualifies the dealer P and sets public output to null if and only if

" P received more than t complaints in Step c, or

" P does not respond with (a5 , &) that satisfy the verification equation.

Reconstruction Protocol PedVSS-REC:

Each Pi broadcasts values (a3, &) s.t. gihei = F,(i). If all shares a, that pass this

verification interpolate into some t-degree polynomial ft (z), then the public output is

x = f T(0). Otherwise, the public output is null.

Figure 4-3: (PedVSS, PedVSS-REC): Pedersen's Verifiable Secret Sharing

Lemma 1 (Robustness of PedVSS)

Consider an execution of (1) protocol Ped-IG (Figure 7-1) which on public input 1k outputs

a Pedersen commitment (p, q, g, h), (2) any other protocol P, and (3) protocol PedVSS on

public input (p, q, g, h) with outputs denoted PedVSS-data[x].

Under the discrete logarithm intractability assumption, in the presence of a static secure-

channels n/2-threshold adversary A, the above instance of PedVSS is successful except for

probability at most negligible in the security parameter k.

Proof: First note that property (1) and (4) are trivially satisfied. Second, if the dealer P is

uncorrupted then properties (2) and (3) follow. Third, note that if property (2) holds then

SW

58

4.2. DISTRIBUTED KEY GENERATION FOR DLOG-BASED SCHEMES

Correct Secret-Sharing PedVSS-data[a] of value a

We call the data ensemble which satisfies the properties listed below a correct secret-

sharing PedVSS-data[a] of a. A set of such correct secret-sharings for a given Pedersen

commitment instance (p, q, g, h) is denoted as PVSS-DATA(p,,,,) .

Threshold Parameter: t, the degree of the secret-sharing polynomials
Identity of the dealer: P, one of the players P1, ..., P
Public Data: Pedersen commitment instance (p, q, g, h)

bit Q (Q = 0 iff dealer P is disqualified)
verification function Fa : Zq - Gq, 5s.t.

F(z) = gf(Z)hfa(z) for some unique
t-degree polynomials fa,fa s.t. fa(O) = a
(or null if Q = 0)

Private Data of each Pi E Good: shares (al, di) s.t. for all Pi E Good,
ci = fa(i) and &jt= fa(i) (or null if Q = 0)

Private Data of P (only if honest): "secret-sharing" polynomials f, fa
Private Data of the Adversary: the adversary's computational history

Figure 4-4: Properties of a correct secret-sharing PedVSS-data

property (3) holds too. First note that all the uncorrupted players indeed hold the same
verification function F1 (z). Since F (i) = f Oh for every Pi E Good, then since IGoodj > t
and since by property (2) values aj, &i for Pi E Good lie on t-degree f1 (z) and ft (z), then
(3) follows. Therefore it remains to show that, under the discrete-log assumption, if the
dealer is corrupted then property (2) still holds, except for probability which is at most
negligible in the security parameter.

In other words, the lemma follows if we show how to violate the discrete logarithm
intractability assumption if there exists an adversary A = (A 1, A2 ,-...) who participates in
an execution of Ped-IG followed by some other protocol P and then an execution of PedVSS,
such that with probability not negligible in k, A "breaks" PedVSS, where by "breaking"
PedVSS we mean that A causes the outputs of PedVSS to violate property (2). (We note
that the fact that the Ped-IG and PedVSS protocols can be interleaved by any other protocol
P does not influence the proof.)

We reduce such adversary to computation of discrete logarithm in a very simple way.
Extractor E first follows the DL-IG part of Ped-IG to create a DLog instance (p, q, g), and
then to compute logg 4 on input a DLog challenge 4 in Gq, it uses the simulator SIMh 2 I
for the h-IG part of the Ped-IG protocol (see Figure 7-1) to generate Pedersen commitment
value h for which it knows a representation a, b in bases g,4. In other words S simulates
h-IG so that the simulated protocol generates a public output h = g"4h. We will show that
if A manages to cheat in the subsequent execution of PedVSS, then S gets two different
representations of some number, namely a Pedersen verification value F(i) generated in
this PedVSS, in bases g, h, which lets & compute log9 h, and hence lets & compute also
logg 4 = a + b logg 4. Below we fill out the remaining technical details.

59

60 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

PedVSS-data[x] - PedVSS-data[x*] replacement procedure T
PedVSS

Input: (Implicit: identity of the dealer P)

public and private data of uncorrupted players in PedVSS-data[x]
target value x*

Pedersen's trapdoor a- -- log, h

Output: (private data of uncorrupted players in) secret-sharing PedVSS-data[x*]

Let Bad, Good be the identities of the corrupted and uncorrupted players (QBadj = t).

Assume that the dealer P in PedVSS-data[x] is not corrupted.

Let f., ft be the outputs of the (uncorrupted) dealer P in PedVSS-data[x].
T

PedVSS computes t-degree polynomials fx*, fj* s.t.:

f,*(i) = f,(i) for Pi E Bad and fO*(0) = x*
f.*(z) + a-fj*(z) = f.(z) + a-f (z) (for all z)

TPedVSS forms PedVSS-data[x*] by replacing the private data of each player Pi in Good

with a< f*(i) and &* = fj*(i), and the data of dealer P with polynomials f* f.

Figure 4-5: TPedVSS: Auxiliary procedure for simulation of PedVSS

Assume that there exits an adversary A that breaks property (2) with not negligible

probability, i.e. that there exists polynomial pA(z) s.t. for all ko there exists k ;> ko s.t.

A breaks property (2) with probability at least 1/pA(k). Note that for every k there is a

vector of random coins r- utilized by the servers and the adversary during the DL-IG part

of the Ped-IG protocol (see Figure 7-1), such that the DLog instance (p, g, q) produced by

this DL-IG maximizes A's probability that statement (2) does not hold. Let the discrete-log

instance family DL be the family of these instances, and let A' = (A', A', ...) be the family

of algorithms s.t. each A' first simulates the run of DL-IG to Ak, where each party is fed

random inputs specified by the above vector 4-, and then follows the algorithm of Ak during

the execution of h-IG (the second part of Ped-iG) and the subsequent execution of P and

then PedVSS, on the public input the above instance (p, q, g). If A makes statement (2)

untrue with at least certain probability, than so does A'.

We construct a PPT TM algorithm family E = (I, E2,), called "extractor", such that

the probability Prob[Sk(p, q, g, g' mod p) = x] is not a negligible function of k, where (p, q, g)

is a discrete-log instance of security parameter k in DL, and x is uniformly distributed

in Z. The existence of such extractor breaks the discrete-log intractability assumption.

We describe the algorithm E as follows. On input (p, q, g, 9) where j is picked at random in

Gq and (p, q, g) is a DLog instance of security parameter k in DL, algorithm S simulates to

A' the execution of h-IG by running the simulator SIM2IG of Figure 7-3 on input (p, q, g,

Under the discrete-log assumption, by Lemma 36, page 177, SIM(runs in polynomial

time and there is only a negligible statistical difference between the view of A' in this

interaction and the view of A' in an execution of the h-IG protocol on input (p, q, g). In

particular, this difference is smaller than 1/(2pA(k)) for all large-enough k, and hence for

all ko there exists k ;> ko s.t. the probability that Ak makes statement (2) untrue in the

II

4.2. DISTRIBUTED KEY GENERATION FOR DLOG-BASED SCHEMES

subsequent execution of PedVSS is at least 1/(2pA(k)). Furthermore, by the same lemma,

there exists ksIM s.t. for all k > kSIM, S receives from SIM72I values a, b E Zq such that

gapb - h where h is output in this (simulated) run of h-IG, except for probability 1/(4pA(k)).
Therefore, for every ko there exists k> >ko s.t. with probability at least 1/(4pA(k)), A breaks
property (2) in the subsequent PedVSS and S knows a, b s.t. gaj6 = h.

Now, E follows the protocol P and then the protocol PedVSS on input (p, q, g, h) in the
presence of A' on behalf of the uncorrupted players. We show that if A' makes (2) untrue in
this interaction then E can compute o- = logg h = a+b log9 g, and thus compute logg j. First
note that set Good must have at least t+ 1 players. If IGoodl = t +1 then (2) is trivially true.
If jGood t + 2 and (2) is not true, i.e. not all values aj, Pi E Good lie on some t-degree
polynomial, then we compute o = log9 h as follows. Note that since P is not disqualified,
shares (at, di), Pi E Good must satisfy Pedersen's verification equation 4.1, and hence values
ai + cr&i lie on some t-degree polynomial p(z) = Zk-o. dz) in Z.. If not all values a,
Pi C Good lie on some t-degree polynomial then also not all values & = (p(i) - a)/O- lie on
some t-degree polynomial. And therefore we can recover a by solving a system of t+2 linear
equations of the form -&i + p(i) =-a&i + do + dii + d2i 2 ... + dit = a with unknowns
a, do, d, ..., dt. This system can be solved because if some t + 2 values &j do not lie on a
t-degree polynomial, they define t + 2 linearly independent vectors [--&, 1, i, i2,..., it].

Therefore, by our assumption on S, it follows that for all ' >kSIM, there exists k> A'
s.t. S outputs logg 4 with probability at least 1/(4pA((k)), which means that the probability
that S computes discrete-log is not a negligible function of k, and hence completes the proof
of the lemma.

Lemma 2 (Robustness of PedVSS-REC)
Consider an execution of the following sequence of protocols: (1) protocol Ped-IG (Figure

7-1) which on public input 1k outputs a Pedersen commitment instance (p, q, g, h), (2) some
protocol P which on input (pq, g, h) produces outputs which contain some secret-sharing
PedVSS-data[x], and (3) protocol PedVSS -REC on input PedVSS-data[x].

Under the discrete logarithm intractability assumption, in the presence of a static secure-
channels n/2-threshold adversary A, except for probability negligible in the security param-
eter k, if the output of P contains some PedVSS-data[x] E PVSS-DATA(p,q,g,h) where the
dealer was not disqualified, then PedVSS -REC produces as a public output value x = fx(0)
where f T is the unique t-degree polynomial defined by (the outputs of the uncorrupted players

in) PedVSS-data[x].

Proof: The lemma follows if we show that if there is an adversary A = (A, A 2 , ...) who
participates in the above executions, such that PedVSS-data[x] E PVSS-DATA(pqgh) and
the dealer is not disqualified, but with a probability higher than negligible in k, A "breaks"
PedVSS-REC, then we can break the discrete logarithm intractability assumption. Here

by "breaking" PedVSS -REC we mean that A can force the outputs of PedVSS -REC not to
produce ft. To do that, some corrupted player Pi would have to reveal some a, &i s.t.
gih' = Fx(i) but act ft (i), where fx is defined by (the data of the uncorrupted players

in) PedVSS-data[x].
The proof below is a trivial extension of the proof of Lemma 1. We show that £ knows

all values fT (i) and ft(i) of the secret-sharing defined by PedVSS-data[x], and therefore if

61

62 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

A publishes acv, &i as above, E gets two different representations of F (i) in bases g, h, and

hence can compute logg h and break the discrete-log assumption. We give the details below.

As in the proof of Lemma 1 we show that if there exists an adversary A which breaks

PedVSS-REC in the above sense, then there exists a PPT TM algorithm family S6=

(Ei, E2, ...) called "extractor" and a discrete-log instance family DL such that the probabil-

ity Prob[9S(p, q, g, g mod p) = x] is higher than negligible, where (p, q, g) is a discrete-log
instance of security parameter k in DL, and x is uniformly distributed in Zq. Assume that

A breaks PedVSS -REC with higher than negligible probability. As in the proof of Lemma 1,
we argue that for every k there is a vector of random coins 4e utilized by the servers and

the adversary during the DL-IG part of the Ped-IG protocol (see Figure 7-1), such that

the DLog instance (p, g, q) produced by this DL-lG maximizes A's probability of breaking

PedVSS-REC. Let the discrete-log instance family DL be the family of these instances, and

let A' = (A', A', ...) be the family of algorithms s.t. each A' first simulates the run of DL-IG

to Ak, where each party is fed random inputs specified by the above vector 4k, and then

follows the algorithm of Ak during the execution of h-IG (the second part of Ped-G) and

the subsequent execution of P and then PedVSS-REC on input PedVSS-data[x] contained

in the outputs of P. If A breaks that PedVSS -REC with higher than negligible probability
than so does A'.

We describe the algorithm E as follows. For each k, let (p, q, g) be the DLog instance

of security parameter k in DL specified above. As in the proof of Lemma 1, on input

(p, q, g, j) where j is picked at random in Gq, algorithm S simulates to A' the execution

of h-IG by running the simulator SIM 2 IG of Figure 7-3 on input (p, q, g, g). Under the

discrete-log intractability assumption, by Lemma 36, page 177, there is only a negligible

statistical difference between the view of A' in this interaction and the view of A' in an

execution of the h-IG protocol on input (p, q, g). Therefore, the probability that later on A

breaks PedVSS -REC remains higher than negligible. Furthermore, S receives from SIM 2 ,

except for negligible probability, values a, b c Zq such that gjb = h where h is output in

this (simulated) run of h-IG.

Then S follows the protocols P and PedVSS-REC, in the presence of A', on behalf of

the uncorrupted players. We show that if A' breaks PedVSS-REC then S can compute

a = logg h = a + b logg j, and thus compute logg j. Since we assume that the outputs of

P contain some PedVSS-data[x] E PVSS-DATA(p,q,g,h), then S can interpolate the t-degree

polynomials f1 , ft s t. ai = f__i) and &= fi(i) for Pi E Good. Let p(z) = f'(z) + af(z).
Note that we have gfx(z)hfz) = gP(z) = F1 (z). Now, if for some Pi E Bad, Pi broadcasts

(ai, &) that satisfy Eq. (4.1) and s.t. ca= $ f1 (i) then E gains an instance of two different

representations of F(i) in bases g, h, i.e. S holds two pairs (a, a') # (b, b') s.t. gaha' = g bhb'.
But then ga-b = h '-a' and hence logg h = (a - b)/(b' - a'). E

Lemma 3 (Polynomial Secrecy of PedVSS)

There exists a simulator SIM s.t. for every n/2-threshold static secure-channels adversary

A with history ah, for any distributed protocol P, for every discrete-log instance (p, q, g),

for every h c Gq, for every two elements x, x* in Zq, for every uncorrupted player P playing

the role of the dealer, the following two adversarial views are identically distributed:

* an adversarial view of the following sequence of protocol executions:

III

I !P ----I -,

4.2. DISTRIBUTED KEY GENERATION FOR DLOG-BASED SCHEMES

- a run of protocol PedVSS with dealer P, on public input (p, q, g, h), A's input ah,

and P's input x*, with outputs denoted PedVSS-data[x*]

- a run of P on input PedVSS-data[x*]

* an adversarial view of the following simulation, where the uncorrupted players are

controlled by the simulator SIM whose private inputs are (a, x*), where a = logg h

- a run of protocol PedVSS with dealer P, on public input (p, q, g, h), A's input ah,

and P's input x, with outputs denoted PedVSS-data [x]

- a replacement of the private data in PedVSS-data[x] of the simulated players with

the data specified by PedVSS-data[x*] = TPedVss(PedVSS-data[x], x*, a) and then
a run of protocol P on input PedVSS-data[x*]

Less Formally: For any x and x*, if the dealer P is uncorrupted then there is no difference

between the adversarial view of an execution of secret-sharing PedVSS in which P shares x*,
from a view of PedVSS in which P shares x.

Proof: Let pc stand for an instance (p, q, g, h) of Pedersen commitment. Let f1, ft be

any t-degree polynomials s.t. f,(O) = x. Consider a run of PedVSS in which P uses

polynomials f2, fi and the random input of A is rA. Note that once we fix fh, fh, rA

then everything else in the run of this protocol is determined. Denote the outputs of

such run as PedVSS-dataA,p((ah, rA),pc; f2, f7). Note that for any t-degree polynomials

f*(z), f*(z) s.t. f*(i) = f (i) for Pi C Bad and f,(z) + Ofj(z) = f,*(z) + Ofl(z) where

o = logg h, the adversary's output in PedVSS-dataA,p((ah,rA),pc; f, fl) is the same as in

PedVSS-dataA,P ((ah, rA), pc; fx, fh).
It follows that for every f, ft, rA the adversarial views in the following two executions

are the same:

1. a run of PedVSS on f4*, fT*, rA followed by a run ofP on the resulting PedVSS-data[x*],

where f t,*,jj* are t-degree polynomials s.t. (1) f*(O) = x*; (2) f*(i) = ft(i) for Pi E

Bad; and (3) ft(z) + o-fj(z) = fx*(z) + afj*(z) for all z

2. a run of PedVSS on fT, fj, rA which outputs PedVSS-data[x] followed by a run of P on

input PedVSS-data[X*] (and A's randomness rA), where PedVSS-data[x*] is returned

by TPedVSS (PedVSS-data [x], x*, o)

If we fix x,, X*, and rA, and range the polynomials fx, fi among all t-degree polynomials

s.t. fm (O) = x, then we see that the distributions of the adversary view in the following two

cases are equal, for every x, x*,rA:

1. PedVSS on f*, f*, rA followed by P on the resulting PedVSS-data,

where f,*, fj* are random t-degree polynomials s.t. (0) f*(0) = X*; (1) fj*(i) = ft(i)
on Pi c Bad; (2) f*(z) + afj(z) = f T (z) + af±(z)

where fx, ft are random t-degree polynomials s.t. f(0) = x

2. PedVSS on fx, fi, rA with outputs denoted PedVSS-data[x], followed by P on inputs

PedVSS-data[x*] output by Tpedvss(PedVSS-data[x], x*, o-)

where ft, ft are random t-degree polynomials s.t. fT (O) = x

63

CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

The second item above describes the same distribution as the second item in the claim of the
lemma we are proving. Furthermore, the first item above describes the same distribution
as the first item in the claim of the lemma, because (1) since ft is a random polynomial s.t.
f,(0) = x, then f,* is a random polynomial s.t. f,(0) = x*; and (2) there is a one-to-one
mapping between a choice of ft and a choice of fi*, and thus since ft is a random polynomial
then so is ftr

Finally, since this argument holds for every rA, the lemma follows. E

The Coin-Flip Protocol RVSS: Parallel Execution of PedVSS

We can extend the secrecy property of PedVSS expressed in Lemma 3 above to the case of
parallel execution of polynomially-many instances of PedVSS, where each of the n players
acts as a dealer in some number of PedVSS protocols. An extension of Lemma 3 for such
case would state that for any two sets of inputs V and V* which determine the values secret-
shared by the uncorrupted players, there is no difference between the adversarial view of
such parallel PedVSS instances in which the uncorrupted players share values specified by
set V, and the adversarial view of such parallel PedVSS instances in which the uncorrupted
players share values specified by set V*. The proof of Lemma 3 above can be easily extended
to such case.

It follows that if all the players run, in parallel, n instances of PedVSS protocol in which
each player shares a randomly chosen input, then each of the secrets shared by the uncor-
rupted players remains hidden from the adversary in the information theoretic sense. There-
fore we can now fix the two problems that make the Joint-Feldman protocol an insecure DKG
protocol, by executing first a "Random Verifiable Secret Sharing" protocol RVSS which con-
sists of such n parallel executions of PedVSS by each player on a randomly chosen input, and
then "summing up" the created secret-sharings PedVSS-data[xi1, ..., PedVSS-data[xJ into a
"joint secret-sharing" RVSS-data[x] where x = x,1+... + x. We will show later on that the
public key y = g' can be efficiently extracted from such joint secret-sharing RVSS-data[x]
via a threshold exponentiation protocol Exp. Indeed, the RVSS is a building block of all
threshold protocols we discuss in this thesis, like the threshold multiplication protocol Mult,
threshold inverse computation Reciprocal, and in effect in any threshold signature scheme or
threshold cryptosystem built according to our methodology, like the threshold DSS scheme
DSS-TSig presented in Section 4.3.5.

We present the RVSS protocol in Figure 4-6. It fixes the problems of Joint-Feldman
because the adversary learns nothing about the shared secrets xi, Pi E Good, from the
secret-sharings of the uncorrupted players, and hence the secrets xic, Pi E Bad n Qual that
the corrupted players decide to share, are distributed independently from the secrets shared
by the uncorrupted players. Hence the overall shared secret

X = I:3Xi= >: cXi + E> X
PiEQual Pi CGood PiEBadnQual

is distributed uniformly in Zq as well. Because the shared secret x generated by RVSS
is uniformly distributed in Z., we often call protocol RVSS followed by the secret-sharing
reconstruction protocol RVSS-REC a "Distributed Coin-Flip".

Furthermore, as we state formally in Lemma 6 below, not only the shared value x, but

64

4.2. DISTRIBUTED KEY GENERATION FOR DLOG-BASED SCHEMES

the whole secret-sharing polynomial f1 (z) looks to the adversary as a random polynomial
chosen subject to the constraint that it agrees with the shares ai = fz(i) that the adversary
holds. We will use this "polynomial secrecy" property to argue the security of protocols that
build on top of RVSS. We state this property in the same manner as we stated the secrecy
property of PedVSS above, namely using the "replacement" procedure T Rvss, Figure 4-8,
which modifies the outputs of the simulated players in a way that allows future simulations
of some protocol P that proceeds RVSS (see Lemma 6 below).

Protocol RVSS creates a joint secret-sharing RVSS-data, (2t +I1 < n)

[Note: RVSS is a parallel execution of n instances of PedVSS on random inputs, whose
outputs are then "added up". Moreover, RVSS -R EC and PedVSS -REC are identical.]

Threshold Parameter: t, the degree of the generated polynomials
Public Input: Pedersen commitment instance (p, q, g, h)
Public Output: set Qual E {P1 , ..., P} of qualified players

verification function F (z)
verification functions F2,(z) for Pi E Qual

Secret Output of Player P: fa (z), feji(z), secret-sharing polynomials of Pi

Xi = f-i (0),:i= fti(0), additive shares of Pi
agi, 4j shares sent by P to P for P E Qual
ai, &i, polynomial shares of Pi

(a)-(c) Each Pi chooses its input xi at random in Z, and performs the PedVSS protocol
(with threshold parameter t) on that input as a dealer (Steps (a)-(c), Figure 4-3).
All these instances of PedVSS proceed in parallel. We denote the two polynomials
used by Pi to secret-share xi as f,(z), fij(z), the shares Pi sends out as ai =

f, (j), dij = fi (J), and its public verification function as F,(z) = gfx(Z)hfiZ).

(d) After Step (c) each player forms a set of non-disqualified players Qual and com-
putes its final secret-shares as ai = EP.EQu cxi and &i = EPEQ. Xi. The
verification function F(z) is defined as HPj EQua, F, (z).

(The secret shared value x itself is not computed by any party, but it is equal to
X = E, Q Xi. Note, however, that it is well-defined only if the execution of

RVSS was successful, see Lemma 4.)

Reconstruction Protocol RVSS-REC:

Each Pi broadcasts values (ai, &j) s.t. gihi = F;(i). If all shares ac that pass this
verification interpolate into some t-degree polynomial fT (z), then the public output is
x = fz(O). Otherwise, the public output is null.

Figure 4-6: (RVSS,RVSS -R EC): Distributed Coin-Flip

We call an ensemble of outputs generated by RVSS, i.e. the public output and the private
outputs of all the parties involved, a joint secret-sharing, and we denote it as RVSS-data.

wpm

65

IiI

66 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

We call such joint secret-sharing correct if it satisfies the correctness conditions listed in

Figure 4-7. We call an execution of RVSS which outputs a correct joint secret-sharing

successful. In other words, this is an execution in which the adversary didn't manage to

cheat, i.e. to prevent the outputs of RVSS from forming a correct joint secret-sharing. By

'ZVSS-DATA(p,q,g,h) we denote a set of all correct joint secret-sharings RVSS-data which

contain a Pedersen commitment instance (p, q, g, h) as its public data. (This is a very similar

terminology to the one used for PedVSS.)

Since in further protocols we use RVSS multiple times, we will index a particular in-

stantiation of such joint secret-sharing, with Latin letters a, b, etc, as in RVSS-data[a],

RVSS-data[b], etc (when referring to polynomial shares we will use the corresponding Greek

letters a, 13, etc).6

We also write RVSS-data[a, b] for a data structure which contains two instances of a joint

secret-sharing, RVSS-data[a] and RVSS-data[b]. Sometimes we will consider joint secret-

sharings where the threshold parameter t' is different than t. We will denote such distributed

data-ensembles as RVSS-datat' [a], RVSS-datat, [b], etc.

The RVSS protocol, since it is nothing more than n parallel instances of PedVSS, in-

herits the robustness properties of PedVSS. Namely, in Lemma 4 we show that under the

discrete-log assumption, a random execution of RVSS is successful, i.e. it produces a cor-

rect joint secret-sharing, except for negligible probability. In other words, the adversary

has a negligible chance of cheating in the RVSS protocol. Similarly, in Lemma 5 we show

that under the discrete-log assumption, the unique polynomial f defined by a correct joint

secret-sharing RVSS-data[x] can be reconstructed by the subsequent RVSS-REC protocol,

except again for negligible probability.

Definition 13 We call an execution of protocol RVSS successful if and only if its outputs

RVSS-data[a] form a correct joint secret-sharing, which means that they satisfy the following

properties:

1. All honest players have the same view of the set of qualified players Qual. Further-
more, all the uncorrupted players Good belong to Qual.

2. For each P3 E Qual, each honest player Pi holds shares ai,&ji s.t. these shares

interpolate to unique t-degree polynomials fx,(z), fi, (z)

3. For each P E Qual, all honest players hold the same verification function F15 (z) =

gfi(z) hk (z)

4. All honest players hold shares ai = ZP.EQUal i and &i = ZP7EQuale&ji, which in-

terpolate to unique t-degree polynomials f&(z), flj(z), where f 1 (z) =ZPjEQaL fXrjz)
and ff (z) =E PcQual f (z).

6 Similarly as for PedVSS-data (see footnote 4, page 56), we make an exception from this convention for

joint sharing of a secret denoted as x. We denote such joint sharing as RVSS-data[x], and we label all the

data associated with this sharing with variable name x. However, we label the polynomial shares associated
with this sharing with ai (and acj, 8ij, etc). See, for example, Figure 4-6.

-ill

4.2. DISTRIBUTED KEY GENERATION FOR DLOG-BASED SCHEMES

Correct Joint Secret-Sharing RVSS-data[a] of value a

[Note: RVSS-data[a] is essentially a collection of secret-sharings PedVSS-data[ai, ..., a,].]

We call the data ensemble which satisfies the properties listed below a correct joint
secret-sharing RVSS-data[a] of a. A set of such correct secret-sharings for a given Ped-
ersen commitment instance (p, q, g, h) is denoted as 'ZVSS-DATA(p,q,g,h)-

Threshold Parameter:
Public Data:

Private Data of each Pi E Good:

Implicit Secret Data:

Private Data of A:

t, the degree of the secret-sharing polynomials
Pedersen commitment instance (p, q, g, h)
set Qual of qualified players
verification functions Fa, : Zq- Gq for P, E Qual

s.t. Fai(z) = gf%(z)hfai(z) for some
unique t-degree polynomials fai, fas
(Fa,(z) is nulI if Pi g Qual)

verification function Fa(z) = 1pEQLIFa (z)

"secret-sharing" polynomials fa2 , fa
secret-shared values ai = f,(0), a, = fai (0)

called "additive shares" of a
shares aji = fag(i), aji = fa,(i) for P1 E Qual

(or null if P Qual)
shares 02 = ZPIcQual p, &i = ZPjEQuaI6 %

called "polynomial shares" of a
"secret-sharing" polynomials fa, fa,

where fa(Z) SPiEQ-1afa(Z)

and fa (z) = PiEQual fa (Z)
generated shared secret a = fa(0)
the adversary's computational history

Figure 4-7: Properties of a correct joint secret-sharing RVSS-data

5. All honest players hold the same verification function F" such that F;(z) = gf(z)hh(z)

=|HpQuaiFx(z).

Lemma 4 (Robustness of RVSS)
Consider an execution of (1) protocol Ped-IG (Figure 7-1) which on public input 1k outputs

a Pedersen commitment (pq, g, h), (2) any other protocol P, and (3) protocol RVSS on
public input (pq,ggh) with outputs denoted RVSS-data[x]

Under the discrete logarithm intractability assumption, in the presence of a static secure-
channels n/2-threshold adversary A, the above sequence of protocols satisfies the following
two properties:

1. Except for probability negligible in the security parameter, the above instance of RVSS
is successful.

2. The unique secret x defined by RVSS-data[x] generated by a random successful instance
of above RVSS is uniformly distributed in Zq.

67

III

68 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Proof: Protocol RVSS consists of n parallel executions of PedVSS, each with a different

player as a dealer. By the same argument as used in Lemma 1 we can show that if the

adversary has a higher than negligible probability of causing any of these executions not

to output a correct secret-sharing RVSS-data[xi] then we can compute discrete logarithms.

Therefore, under the discrete-log assumption, except for negligible probability, the players

hold a correct secret-sharing RVSS-data[xi] for every P. Furthermore, for each Pi c Good,

Pi is not disqualified, and therefore Good C Qual. Thus property (1) of the Lemma follows.

As for property (2), by the secrecy property of PedVSS (Lemma 3), at the end of Step (c),
the adversary learns no information about values xi shared by the uncorrupted players Pi E
Good. Therefore, values {xi}PiEGood, each of which was chosen with uniform distribution by
some honest player, are distributed independently of values {Xi}Pi(BadnQual), and therefore
value X >=ZP'EQualXi= Z P EGood x,+ jPi E(BadnQual) xi is uniform in Zq.

Lemma 5 (Robustness of RVSS-REC)
Consider an execution of the following sequence of protocols: (1) protocol Ped-IG (Figure

7-1) which on public input 1k outputs a Pedersen commitment instance (p, q, g, h), (2) some

protocol P which on input (p, q, g, h) produces outputs which contain some joint secret-

sharing RVSS-data[x], and (3) protocol RVSS-REC on input RVSS-data[x].
Under the discrete logarithm intractability assumption, in the presence of a static secure-

channels n/2-threshold adversary A, except for probability negligible in the security pa-

rameter k, if the output of P contains some RVSS-data[x] c RVSS-DATA(pqgh), then

RVSS-REC produces as a public output value x = f1 (O) where fT is the unique t-degree

polynomial defined by RVSS-data[x].

Proof: Note that F (z) =H] i cQua! F , (z) = gZ icEQua! f1i(z) hZPiEQua! fl(z) -gfx(z)hfl(z).

If a dishonest player can with higher than negligible probability publish a, d* such that

a $ f7 (i), but which satisfies the Pedersen verification equation F(i) = gi hai, then we

can break the discrete-logarithm intractability assumption by the exact same argument as

in the proof of robustness of reconstruction PedVSS -REC of a single PedVSS, i.e. Lemma 2.

Here we sketch this reduction. (The full picture can be filled in following the proof of

Lemma 2.) An efficient extractor E controls the uncorrupted players and performs RVSS

and RVSS-REC on their behalf. If RVSS is successful, i.e. if its output RVSS-data[x] is a
correct joint secret-sharing, then £ can interpolate polynomials fT, ft. In particular it holds

that F(i) = gf()hfi(i). If a dishonest players publishes a*, &4 such that a $ f,(i), but

s.t. F1(i) = g'7h , then S gets two representations of F,(i) in bases g, h, and thus can

compute logg h. Since S precedes the execution of (RVSS;RVSS-REC) with a simulation

of h-IG during which S embeds an instance g, j of a discrete log problem in the generated

value h so that h gapb and S knows values a, b, learning logg h allows S to learn logg g.)
H

Lemma 6 (Polynomial Secrecy of RVSS)

There exists a simulator SIM s.t. for every n/2-threshold static secure-channels adversary

A with history ah, for any distributed protocol P, for every discrete-log instance (pq, g)
for every h C Gq, the following two adversarial views are identically distributed:

* an adversarial view of the following sequence of protocol executions:

--m--

*~m~g*S~ * W~*9 JY q~

4.2. DISTRIBUTED KEY GENERATION FOR DLOG-BASED SCHEMES 69

- a run of RVSS, on public input (p, q, g, h), A's input ah, with outputs denoted
RVSS-data[x]

- a run of P on input RVSS-data[x]

* an adversarial view of the following simulation, where the uncorrupted players are

controlled by the simulator SIM which has a private input a = logg h

- a run of RVSS, on public input (p, q, g, h), A's input ah, with outputs denoted
RVSS-data[x]

- a replacement of the private data in RVSS-data[x] of the simulated players with

the data specified by RVSS-data[x*] = TRvss(RVSS-data[x], a) and then a run of

P on input RVSS-data[x*]

Less Formally: A (static) adversarial view of an execution of the (RVSS,P) sequence is
the same as an adversarial view of an execution of RVSS, a modification of the private data

of the uncorrupted players according to procedure TRVSS (which, if RVSS-data[] is correct,
replaces it with a sharing RVSS-data[x*] of a random x* in Zq), and then an execution of P.
Informally: A static secure-channels n/2-threshold adversary learns nothing about poly-
nomial ft (z) shared in RVSS protocol except of the shares ft(i), Pi E Bad, it receives.

Proof: The lemma follows straightforwardly from Lemma 3, because the modification of
the joint secret-sharing performed by TRVSS is really only a modification of one of the
secret-sharings in the same way as would be done by TPedVSS. This can easily be seen by
inspection, but the formal argument follows.

Let Ps be the uncorrupted player whose outputs are substituted in procedure TRVSS.
Note that Lemma 3 can be extended (and it is easy to see that the proof of Lemma 3 holds
for such extension) to a case when in parallel with protocol PedVSS performed by dealer
Ps, there are other instances of the PedVSS protocol executed, each with a different player

as a dealer. The extension of Lemma 3 to this case states that an adversarial view of the
following two execution sequences is the same (for any x, x* E Zq and any protocol P):

1. an execution of PedVSS on Ps's input x* in parallel with other instances of PedVSS
where other players are dealers, followed by an execution of P on the resulting output

2. an execution of PedVSS on Ps's input x in parallel with the other instances of PedVSS
as above, followed by a modification of the private data of the uncorrupted play-
ers in PedVSS-data[x] created by the PedVSS where Ps was the dealer, namely the
replacement of this data with the corresponding data given in PedVSS-data[X*] =

Tpedvss(PedVSS-data~x], x*, o-), and then followed by an execution of P on the result-

ing output.

(Note that the fact that the other protocols executed in parallel with the PedVSS where Ps
is a dealer are also instances of PedVSS, does not matter in the above argument.)

Note furthermore, that if the above statement holds for any x, x* in Zq, then it holds also
when x and x* are random values uniformly distributed in Z. In other words, we modify
the above slightly to get the following equality of (distributions of) adversarial views in:

III

70 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

RVSS-data[x] -> RVSS-data[x*] replacement procedure Tvss

Input: public and private data of uncorrupted players in RVSS-data[x]
Pedersen's trapdoor a-= log9 h

(Optional:) "target output" element x* in Z

Output: (private data of uncorrupted players in) secret-sharing RVSS-data[x*]

[Note: TRVSS modifies RVSS-data[x] by replacing one of its "component secret-

sharings", PedVSS-data[xs], for some Ps E Good via procedure T
Pe4VSS of Figure 4-5.]

Let Bad, Good be the identities of the corrupted and uncorrupted players (IBad = t).

Let Ps be any uncorrupted player. Take polynomials f1s, fis contained in Ps's outputs

in RVSS-data[x], i.e. the polynomials this player dealt to create RVSS-data[x].
TRVSS picks random t-degree polynomials f,*s sf s.t.:

f,*s(i) = fxs(i) for Pi & Bad

f,*s(z)+o-fl*s (z) = fs (z)+afjs (z) (for all z)

and then forms RVSS-data[x*] from RVSS-data[xJ by:
- replacing the private data f 1 s, fis of Ps with f,*s s

- replacing the private data xs, is of Ps with x* = f*s(0) and ±s = fs(0)

- replacing the private data asi, ds of each P in Good with a4i = fx*s (i) and *i = f*s (i)
- replacing the private data ai, &i of these players with values

'4 = ZgQa\Ps and &8*= ZfljC a\{ Ps} &ii ±&i

Optional: If the optional "target output" element x* is provided, Tvss picks the

above polynomials f,*S, f*s subject to the additional constraint that

f5*s(0)= x*- - ftJ(0)
Pi E Qua\{Ps }

where for each Pi E Bad n Qual, f, is a t-degree polynomial which TRvss interpolates

from any t + 1 shares ai , Pj E Good.
(Note that if x* is chosen at random in Z then this additional constraint does not

change the distribution of outputs of TRvss.)

Figure 4-8: IRVSS: Auxiliary procedure for simulation of RVSS

1. an execution of PedVSS on random input of Ps's in parallel with instances of PedVSS

performed by other players on random inputs, followed by an execution of P on the

resulting output

2. an execution of PedVSS on random input of Ps in parallel with the other instances of

PedVSS as above, followed by a replacement of the private data of the uncorrupted

players in PedVSS-data dealt by Ps with the corresponding data in PedVSS-data* =

Tpedvss(PedVSS-data, x*, a-) wherex* is chosen at random Zq, and then followed by
an execution of P on the resulting output.

<~1~~~

4.2. DISTRIBUTED KEY GENERATION FOR DLOG-BASED SCHEMES

Notice that in both cases above we consider an execution of PedVSS in which player
Ps shares a random input in parallel with n-1 executions of PedVSS in which each other

player shares a random input. This is exactly Steps (a)-(c) of RVSS. Therefore, for any
distributed protocol P' which takes a joint secret sharing as an input, if in the above

statement we take P to be a sequence consisting of (1) Step (d) of RVSS (see Figure 4-6);

and (2) an execution of protocol P' on the resulting joint secret-sharing, then the following

equality of the adversarial views is implied:

1. an execution of RVSS followed by an execution of P'

2. (a) an execution of Steps (a)-(c) of RVSS

(b) replacement of private data of the uncorrupted players in PedVSS-data dealt by

Ps with the corresponding data in PedVSS-data* = TpdvsS(PedVSS-data,?x*, -)
where f* is chosen at random in Zq

(c) an execution of Step (d) of RVSS

(d) an execution of P'

Finally, note that if the adversary is static, then the adversary does not see a difference
if the actions of the uncorrupted players correspond to steps (b) and (c) above, or if they

correspond to an execution of these steps in a reverse order, i.e. if the uncorrupted players
perform first Step (d) of RVSS and then the appropriate data in the resulting joint secret-
sharing RVSS-data is replaced according to procedure T RVSS. Thus the lemma follows. H

Parallel Composition. Note that a similar secrecy property can be stated about the

parallel composition of polynomially-many instances of RVSS. Namely, if several instances
of RVSS are executed in parallel, and they create multiple secret-sharings RVSS-data[ai],

RVSS-data[a2], ..., RVSS-data[ak], then the adversary's view of any subsequent protocol P
is the same if the private data of the uncorrupted players in these joint secret-sharings

is modified according to the TRVSS replacement procedure. The reason why the above
Lemma 6 can be extended in this way is that the secrecy property of PedVSS can be
extended, as we discussed before, to parallel execution of polynomially-many instances of

PedVSS.
The robustness property extends straightforwardly to the case of parallel execution of

multiple instances of RVSS.

4.2.5 Threshold Exponentiation Exp and Secure DKG Protocol

The secure Distributed Key Generation protocol we propose is composed of the following

steps: (1) on input a DLog instance (p, q, g), the players jointly generate the Pedersen
commitment value h C Gq via the h-IG protocol described in Chapter 7, (2) the players

perform RVSS (Figure 4-6) to generate a secret-sharing RVSS-data[x] of a uniformly dis-
tributed secret x; and (3) the players perform a threshold exponentiation protocol on input

RVSS-data[x] to extract the public key y = gX as a public output. The last step is achieved
via protocol Exp, which we describe in this section.

For notational convenience, we denote Steps (2) and (3) above as a DKG protocol,

shown in Figure 4-10. When we want a secure DKG protocol in the sense of Definition 11,

71

III

72 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

page 49, we consider protocol h-IG+DKG, i.e. an execution of h-IG, Figure 7-3, followed

by an execution of DKG. Similarly, if we want a key generation protocol in the sense of

definition of a threshold signature scheme (Definition 4, page 34), then we consider protocol

Ped-IG+DKG, i.e. an execution of Ped-IG, Figure 7-1, a protocol that picks both the discrete-

log instance (p, q, g) and the additional element h in Gq, followed by an execution of DKG.

(See Remark 3, page 51.)
We note that once a public value h in Gq is determined, protocol DKG enjoys the same

flavor and simplicity as the insecure DKG protocol Joint-Feldman discussed in Section 4.2.3.

I.e., each player shares a random value and the random secret is generated by summing up

these values. The computation costs incurred per player in DKG are also comparable to

those in Joint-Feldman. All the long modular exponentiations needed during the extraction

phase have already been computed during the RVSS phase, thus Exp is basically "for free"

from a computational point of view.

Furthermore, we note that even though DKG, unlike Joint-Feldman, needs to be preceded

by the h-generating protocol h-IG, the cost of this additional protocol may be amortized

in many applications, because once h is initially chosen it can be reused by all subsequent

executions of the DKG protocol.

Threshold Exponentiation protocol Exp

We first present a protocol that generalizes the public-key extraction needed by the dis-

tributed key generation protocol DKG discussed above, namely a Threshold Exponentiation

protocol Exp, presented in Figure 4-9. This protocol allows the players to exponentiate any

element m E Gq to a secret value a shared with RVSS-data [a], and produce a public output

A = ma. In DKG, protocol Exp is executed on the sharing of the secret key RVSS-data[xl
and on the element g, to output the public key y= g.

Apart from generalizing the public-key-extraction in DKG, protocol Exp serves as a basis

for the distributed Cramer-Shoup key generation protocol and the threshold RSA signature

generation protocol (see Appendices A and C). This protocol can be also generalized to

computing values expressible as m- m 2 ... - m k where Mi1 , M2 , ... , m are public inputs
and each ai is a secret shared with a different joint secret-sharing RVSS-data[ai]. Examples

of such generalization of protocol Exp can be seen in the distributed key generation and

the threshold decryption procedure of the threshold Cramer-Shoup cryptosystem given in

Appendix A. Another use of the exponentiation protocol Exp is a generation of a new

random element g' in Gq by first generating a secret-sharing RVSS-data[a] of a random secret

a E Zq via a distributed coin-flip protocol RVSS, and then executing Exp on RVSS-data[a]

and the public input g (or any other element in Gq) to output g' = ga. We use this

capability of Exp in the threshold key generation for the Cramer-Shoup cryptosystem (see

Appendix A).
We note that the Exp protocol is also secure under parallel composition.

Definition 14 We call an execution of protocol Exp on input a correct joint secret-sharing

RVSS-data[a] and some element m G Gq successful if it outputs a public value A = ma

where a is the unique shared secret defined by RVSS-data[a].

4.2. DISTRIBUTED KEY GENERATION FOR DLOG-BASED SCHEMES

Protocol Exp, (2t + 1_<n)

Public Input: element m E Gq
Other Input: secret-sharing RVSS-data[a] (See Fig.4-7)
Public Output: value A = ma, where a is defined by RVSS-data[a]

1. Each player Pi E Qual, broadcasts Ak = mCik for k = 0, ..., t, where cik's are the
coefficients of fa2 (z) from RVSS-data[a]. Denote Ai = Ao.

2. Each player P checks the Feldman verification equation for the values broadcast
by all the other players Pi E Qual:

t

mai= H(Aik)ik mod p (4.2)
k=O

If the check fails for an index i, P1 complains against Pi by broadcasting values
apj, dij that agree with verification function F,,,(z) established in RVSS-data [a],
i.e., such that g" 2jh ' = Fa2 (j), but which do not satisfy Eq. (4.2).

3. For players Pi who receive at least one valid complaint, the other players run the re-
construction protocol PedVSS-REC on PedVSS-data[a] contained in RVSS-data[a]
to compute a2 and Ai = mai in the clear. Compute A = HcQual A. If any
reconstruction fails (outputs null) then the output of Exp is null too.

Simulator SIMmp of Exp (interacting with A):

Public Input: element m E Gq, public data in RVSS-data[a]
SIMap's Private Input: private outputs of all Pi E Good in RVSS-data[a]

the "target output" value A* E Gq
A's Private Input: adversary's output in RVSS-data[a]

Pick some uncorrupted player (assume P) and perform some pre-computations:

(a) Compute Ak = mcik for Pi E Good \f{P}, k =0,...,t. Denote An as A

(b) For each Pi E (Bad n Qual), interpolate polynomial f, from ac 's for P E
Good in RVSS-data[a]. (If RVSS-data[a] is incorrect then some fa, might be
of higher degree than t.)

(c) Compute Ai = mf-i0) and set A%0 = A* = A*.- Hp2 E(Qu\{p,)(Ai)--

(d) Compute Ank = (A~0)Aka - HnPiEBa(mni)Aki for k = 1, ... ,t, where Aki's

are derived from Lagrange interpolation coefficients, i.e. they are coefficients

computed so that Ho=0(A.k) = mat = mf-() for Pi G Bad

1. For k =0,..., t, SIMp broadcasts A4g and Ak for Pi E Good \f{Pn}

2. SIME, follows Step 2 of the protocol on behalf of the uncorrupted players, except

that the uncorrupted players do not send any complaints against player P.

3. SIMa, follows Step 3 of the protocol on behalf of the uncorrupted players.

Figure 4-9: Exp: Statically Secure Threshold Exponentiation Protocol

73

III

74 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Lemma 7 (Robustness of Exp)
Consider an execution of the following sequence of protocols: (1) protocol Ped-IG (Figure

7-1) which on public input 1k outputs a Pedersen commitment instance (p, q, g, h), (2) some

protocol P which on input (p, q, g,h) produces outputs which contain some correct joint

secret-sharing RVSS-data[a], and (3) protocol Exp on input RVSS-data[a] and some public

input m in Gq.
Under the discrete logarithm intractability assumption, in the presence of a static secure-

channels n/2-threshold adversary, if the output of P contains some RVSS-data[a] in

JZVSS-DATA(p,q,g,h), then, except for probability negligible in the security parameter k, a

run of Exp is successful.

Proof: Let a be the secret shared with RVSS-data[a] generated by P, let a be its additive

shares, and fai the secret-sharing polynomials. We need to show that value A (computed

by the honest players) is indeed A = ma (under the discrete-log assumption and except for

negligible probability). We will show that (under the discrete-log assumption and except

for negligible probability) for all Pi C Qual, each uncorrupted player computes Ai = mai,

and thus also computes A =HiEQua Ai = HiEQal mai = m icQua ai = ma.
For parties P C Qual against whom a valid complaint has been issued in Step 2,

value ai is publicly reconstructed and A set to mai. Under the discrete-log assumption,

the correct reconstruction of a is guaranteed (except for negligible probability) by the

robustness property of protocol PedVSS-REC (Lemma 2). Now we need to show that for

each Pi c Qual against whom a valid complaint has not been issued, the value A is set

to m'i as well. Values {Ak}ko,...,t broadcast by player Pi in Step 1 define a t-degree

polynomial fa, in Zq by equation m (Z) =k-=o(Aik)zk. Since we assume that no valid

complaint was issued against Pi then Eq. 4.2 is satisfied for all honest players, and thus

fa, and fai have at least t + 1 points in common. Hence they are equal, and in particular

Ai = Ao = mI"t = mfai(0) = mai.

Secrecy of Exp. The following lemma expresses an essential technical property of pro-

tocol Exp and its simulator SIMp. Given this lemma, and given that the public output of

a simulation of Exp in which SIMap's private input is A* is equal to either A* or null (see

Fact 1 below), we conclude that for every A in Gq, an adversarial view of a random execu-

tion of the (RVSS,Exp) sequence which outputs A is the same (has the same distribution)

as an adversarial view of a simulation in which the simulator's input is the "target value"

A, and which produces this A as its public output. We use this reasoning to prove that the

DKG protocol, Figure 4-10, is a secure Distributed Key Generation protocol.

Fact 1 For every adversary A with history ah, for any joint secret-sharing RVSS-data[x]

(not necessarily a correct one), for any A* c G, the public output of a simulation of Exp

via the simulator SIMmp of Figure 4-9, on input RVSS-data[a], on A's private input ah, on

the simulator's SIMap private input A*, is equal either to A* or to null.

Proof: This can be verified by inspection of the simulation procedure SIMap, Figure 4-9.

Note that if for some Pi the shares acy, Pj E Good, do not interpolate to a t-degree polyno-

mial then the simulation will eventually output null because some of the uncorrupted players

4.2. DISTRIBUTED KEY GENERATION FOR DLOG-BASED SCHEMES

will send a complaint against Pi and then the output of the PedVSS -REC on PedVSS-data [a]
will be null, and hence the public output of this simulation will be null too. H

Lemma 8 (Static Secrecy of Exp)
For every n/2-threshold static secure-channels adversary A with history ah, for every

discrete-log instance (p, q, g), for every h E Gq, and for every m E6Gq, the following two
variables are identically distributed:

* an adversarial view of the following sequence of protocol executions:

- a run of RVSS (Figure 4-6) on public input (p, q, g,h) and A's input ah, with
outputs denoted RVSS-data[a]

- a run of Exp on inputs RVSS-data[a] and m

* an adversarial view of the following simulation:

- a run of RVSS on public input (p, q, g, h) and A's input ah, with outputs denoted

RVSS-data[a]
- a simulation of Exp with simulator SlMimp (Figure 4-9), on inputs RVSS-data[a],

m, and on SIMap's additional private input A* picked at random in Gq

Less Formally: The adversarial view of the execution of RVSS followed by a simulation
performed by SIM.p on a random input A* looks like a random execution of the (RVSS,Exp)
sequence. Given that a public input of a simulation of Exp on simulator's SIM&p private
input A* can be either A* or null (see Fact 1 above), this implies that, for every A, a
simulation of the (RVSS,Exp) sequence to a target output A looks like a random execution
of this sequence which outputs A.
Informally: An execution of Exp on RVSS-data[a] and m hides everything about a shared
in RVSS-data[a] apart of the computed public value A = ma.

Remark. In the discussions of threshold protocols which utilize Exp as a building block,
we will refer to a successful simulation of Exp via simulator SIMap, by which we mean an
instance of the simulation in which the public output is equal to the input A* of SIM 1 p
and not to null. (Compare Fact 1 above.)

Proof: Secrecy of the threshold exponentiation protocol Exp follows immediately from
the polynomial secrecy property of RVSS as stated in Lemma 6.

Note that publishing values Ank= mCnk in the protocol Exp is equivalent to publishing
a function .Fa,(z) = H=o(Ank)zk =mZ Ek=ockzk = mfan(Z). Values Ak in the simulation
are computed so that they correspond to function F*(z) = m n(z), where f* (0) = a and
f* agrees with adversary's shares, i.e. fa*,(i) = Uai for Pi c Bad.

Because A* is random in Gq, polynomial fa* is a random t-degree polynomial subject to
the constraint that it agrees with f, defined in RVSS-data[a] on points Pi E Bad. Therefore
by Lemma 6 (assume that the player Ps used in the replacement procedure TRVSS is the
player Pa), the above f,*, is perfectly compatible with the adversary's view of RVSS which

produced RVSS-data[a]. Therefore, function ia*,(z) = gftt,(z) is also perfectly compatible
with the adversary's view, and the lemma follows. H

75

CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Protocol DKG, (2t + 1 < n)

Public Input: Pedersen commitment instance (p, q, g, h)
Public Output: generated public key y E Gq
Other Output (Private and Public):

secret-sharing data RVSS-data[] (See Fig. 4-7),
where x = fx(0) = logg y

1. Players perform protocol RVSS (Fig.4-6) on input (p q, g, h) to generate a secret-

sharing data-structure RVSS-data[] (See Fig.4-7)

2. Players perform protocol Exp (Fig.4-9) on input a sharing RVSS-data[x] and an

element g in Gq to generate the public key y = g'

Simulator SIMDKG of DKG (interacting with A):

Public Input: Pedersen commitment instance (p, q, g, h)

SIMDKG'S Private Input: the "target public key" value y* E Gq

1. SIMDKG follows Step 1 of the protocol on behalf of the uncorrupted players, i.e.
performs RVSS on input (p, q, g, h) to generate a secret-sharing RVSS-data[x)

2. SIMDKG simulates Exp by running the SIMp of Figure 4-9 on sharing
RVSS-data[x], and on SIMgp's private input the target value y*

Figure 4-10: DKG: Statically Secure Distributed Key Generation Protocol

Secure Distributed Key Generation Protocol

As mentioned above, our proposal for a secure DKG protocol h-IG+DKG], which consists of

the h-generation protocol h-IG, Figure 7-3, followed by protocol DKG of Figure 4-10, which
generates sharing RVSS-data[x] of a uniformly distributed secret key x in Z and extracts
the public key y = g'. For notational purposes we define the notion of a successful execution

of protocol DKG:

Definition 15 We call an execution of protocol DKG successful if and only if it includes a

successful instance of RVSS and a successful instance of Exp.

Theorem 1 (Static Security of DKG)
Under the discrete logarithm intractability assumption, protocol h-IG+DKG, which con-

sists of protocol h-IG, Figure 7-3, followed by protocol DKG, Figure 4-10, is an n/2-secure
Distributed Key Generation protocol in a static secure-channels adversary model.

Proof: See the properties of a secure DKG protocol in Definition 11, page 49. It is easy to

see that the correctness properties of secure DKG are satisfied by h-G+DKG. Properties
(CI) and (C2) are stated in Lemma 4 (note that protocol h-lG+DKG is sharing-successful,

a notion defined in (Cl) of Definition 11, if and only if the RVSS in Step 1 of DKG is
successful). Property (C') follows from Lemmas 4 and 5. Property (C3) is shown in
Lemma 7.

76

4.2. DISTRIBUTED KEY GENERATION FOR DLOG-BASED SCHEMES

It remains for us to show that h-IG+DKG satisfies the secrecy property of a secure DKG.
We argue that simulator SIM which on input (p, q, g) and a "target public key" y* c Gq,
first follows the h-IG protocol on behalf of the uncorrupted players and then simulates
DKG via simulator SIMDKG of Figure 4-10, on public input (p, q, g) and h output by h-IG,
and on SIMDKG's input y*, satisfies the secrecy property stated in Definition 11. It is a
straightforward implication of Lemma 8 and Fact 1, and we argue it formally below.

Consider a random execution of protocol h-IG+DKG conditioned by the constraint that
it outputs a specific element y in Gq. Let pc = (p, q, g, h) be a Pedersen commitment
instance. Lemma 8 together with Fact 1 implies that the following adversarial views are
identically distributed, for all pc, all A and ah, and for all m and A in Gq:

" an adversarial view of the following sequence of executions:

1. a successful execution of RVSS on pc, with outputs denoted RVSS-data[a]

2. a successful execution of Exp on m and RVSS-data[a] which outputs value A

* an adversarial view of the following simulation via SIMDKG:

1. a successful execution of RVSS on pc, with outputs denoted RVSS-data[a] (in
Step 1 of the simulation of DKG)

2. a successful simulation of Exp on m and RVSS-data[a] and on SIM&p's input A
(in Step 2 of the simulation of DKG)
(i.e. a simulation of Exp which outputs A, see a remark after Lemma 8)

Consider a vector Xh-IG of random inputs used by the adversary and the players (actual
or simulated) in the h-IG protocol. Such vector fixes the resulting values h and the adver-
sarial history ah output by h-IG. Therefore, for every y* in Gq, every DLog instance (p, q, g),
every rhIG, and for (h, ah) output by h-IG on public inputs (p, q, g) and random inputs
rh-IG, the adversarial view of a simulation of DKG which on input (p, q, g, h) and ah and on
simulator's SIMDKG input y produces public output y is the same as the adversarial view of
an execution of DKG which produces y. If we take the distribution of the above two views
induced by a uniform distribution of the random vector th-IG, this implies that for every y
and (p, q, g), the adversarial view of a simulation of h-IG+DKG which outputs y* on public
input (p, q, g) and on SIM's input y* is the same as the adversarial view of an execution of
h-IG+DKG which outputs y* on public input (p, q, g). Thus h-IG + DDKG achieves the secrecy
property of a secure Distributed Key Generation. m

Note on the simulation technique. We note that for the sake of proving the n/2-
threshold security of h-IG+DKG, simulator SIM used in the above proof does not need to
simulate the h-IG protocol, because the following protocol DKG can be simulated without
knowing the trapdoor a = logg h of the Pedersen commitment instance (p, q, g, h). This
changes when h-IG+DKG is executed as a first step of a run of an optimal-threshold DSS
signature scheme TSS-opt of Section 4.4, because we know only how to simulate subsequent
executions of the optimal-threshold DSS signature generation protocol DSS -TSig-opt if the
simulator knows the trapdoor o-.

ma

77

III

78 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

4.3 Threshold DSS Signatures

We present further basic building blocks of discrete-log based threshold protocols and we

show how to construct a threshold DSS signature generation protocol, which together with

the distributed key generation protocol of the preceding section forms a secure threshold

DSS signature scheme. We first recall the standard DSS signature scheme, then we present

some building blocks of our protocols, and then we construct threshold DSS signature

generation. Protocols in this section have only n/4-threshold resilience. In Section 4.4

we show how to improve them to optimal n/2-threshold resilience. All the protocols we

present have non-rewinding simulators and extractors and thus can be securely performed

in parallel.

4.3.1 DSS Signature Scheme

The Digital Signature Standard (DSS) [NIS91] is a signature scheme based on the ElGamal

[ElG85a] and Schnorr's [Sch9l] signature schemes, which was adopted as the US standard

digital signature algorithm. Following [GJKR96b', our description of the DSS protocol uses

the notation introduced in [Lan95], which differs from the original presentation of [NIS91]

by switching k and k- 1 . This change allows a clearer presentation of our threshold DSS

signature protocols that follow.

Key Generation. A DSS key is composed of public information (p, q, g), a public key y

and a secret key x, where:

1. p is a prime number of length 1, where 1 is a multiple of 64 and 512 < < 1024.

2. q is a 160-bit prime divisor of p - 1.

3. g is an element of order q in Z*. The triple (p, q, g) is public.

4. x is the secret key of the signer, a random number 1 < x < q.

5. y = g mod p is the public verification key.

Signature Algorithm. Let M be the message to be signed. The message is first hashed

using the hash function SHA-1, let m be the resulting hash value. The signer picks a random

number k such that 1 K <k < q, calculates k- 1 mod q, and sets

r = (gk' mod p) mod q

s = k(m+ xr) mod q

The pair (T, s) is a signature of m.

Verification Algorithm. A signature (r, s) of a message M can be publicly verified by

first computing the SHA-1 hash m of M and then by checking that r = (gms 1 Yrs 1 mod

p) mod q, where the inverse of s in the exponent is computed modulo q.

4.3.2 Sharing of a Refresh Polynomial

A basic building block of many threshold protocols is a protocol that refreshes a secret-

sharing, denoted ZVSS, which first appeared in [BGW88]. Such protocol generates a collec-

tive sharing of a "secret" whose value is zero. This is achieved by running a slightly modified

RVSS, where each player instead of choosing the secret a that he wants to share at random,

fixes it as ai = 0. Namely, ZVSS proceeds as RVSS except that in the sharing, polynomials

Al>-

4.3. THRESHOLD DSS SIGNATURES

fc, and f&, have free coefficients equal to zero, and thus a verification value gfai(0)h (0)

is equal to 1 (i.e. Fa,1 (0) = 1 for all Pi E Qual). We include this protocol in Figure 4-

11. We call the outputs of ZVSS a zero-sharing, denoted ZVSS-data[a] (or ZVSS-data[b],

ZVSS-data[c], etc), and we call it correct, and the execution of ZVSS successful, if these

outputs form a correct joint secret-sharing, i.e. if they satisfy the properties of Figure 4-7,

with the additional property that all the secret-sharing polynomials defined by the shares

of the uncorrupted players have the free coefficients equal to zero.7 Both the robustness

and secrecy properties of RVSS naturally carry over to ZVSS. We state these properties in

Lemmas 9 and 10 below. In particular, note that the secrecy property of ZVSS is stated

similarly to that of RVSS, namely in terms of a simulation of any distributed protocol P

which takes a zero-sharing ZVSS-data as its inputs where the simulator replaces the private

data of the (simulated) uncorrupted players according to procedure 7 Tzvss of Figure 4-12.

This procedure is a straightforward modification of the corresponding procedure TRVSS

(Figure 4-8) used to express the secrecy property of protocol RVSS.

Applications of ZVSS: "Refreshment" of a Secret-Sharing. Notice that if polyno-

mial f 0 secret-shares some secret a = fa(0), then if an execution of ZVSS creates a "refresh"

secret-sharing ZVSS-data[b] with a polynomial fb s.t. fb(O) = 0, then the two polynomials

can be added to create a new secret-sharing polynomial f' which shares the same secret

a = fa'(0), but is otherwise independent from fa. In this way we obtain a re-randomization of

the secret-sharing of a without changing the secret itself. Indeed, to refresh a secret-sharing

data structure RVSS-data[a] we create ZVSS-data[b] with ZVSS, and each player can locally

compute its part of a new secret-sharing RVSS-data[a'] of the same secret a' = a. This is

the typical way that the ZVSS protocol is used in threshold cryptography. (The idea that

a "zero-sharing" polynomial can be used in this way to re-randomize an existing secret-

sharing dates back to [BGW88].) In the threshold protocol discussed in this thesis, ZVSS

is utilized in this way in the threshold multiplication protocol of Section 4.3.3 and in the

proactive protocols of Appendix B.

Definition 16 We call an instance of ZVSS successful if its outputs ZVSS-data[b] form a
correct joint zero secret-sharing, which means that they form a correct joint secret-sharing

which satisfies an additional property that for every P C Qual, the secret-shared polynomials

fb, (z), ft (z) satisfy constraint fb5 (0) = fg (0) = 0, and thus the secret-shared polynomials

fb(z), f4 (z) satisfy constraint fb(0) = fb (0) = 0 too.

Lemma 9 (Robustness of ZVSS)

Consider an execution of (1) protocol Ped-IG (Figure 7-1) which on public input 1 k outputs

a Pedersen commitment (p, q, g, h), (2) any other protocol P, and (3) protocol ZVSS on

public input (p, q, g, h).
Under the discrete logarithm intractability assumption, in the presence of a static secure-

channels n/2-threshold adversary A, except for probability negligible in the security param-

eter k, the above instance of ZVSS is successful.

7 See Figure 4-7. By all secret-sharing polynomials defined by a correct joint secret-sharing RVSS-data[a]
we mean polynomials f,, fa, and the polynomials shared by all players in Qual, i.e. fa , fa, for Pi E Qual.

79

CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Protocol ZVSS creates a "refreshment" secret-sharing ZVSS-data, (2t + 1 ; n)

[Note: The only difference between these protocols and RVSS and RVSS -REC of

Figure 4-6 is that here the secret-shared values are equal to zero.]

Threshold Parameter: t, the degree of the generated polynomials
Public Input: Pedersen commitment instance (p, q, g, h)
Public Output: set Qual E {P1, ..., P} of qualified players

verification function Fb(z)

verification functions Fb, (z) for Pi E Qual
Secret Output of Player P2 : fb, (z), fg(z), secret-sharing polynomials of Pi

3j,/ 3p shares sent by P to Pi for Pj E Qual
A%, /A, polynomial shares of Ai

(a)-(c) Each Pi performs the PedVSS protocol (with threshold parameter t) as a dealer
(Steps (a)-(c), Figure 4-3), using polynomials fba(z) and ft.(z) s.t. fb,(0) =

f6,(0) = 0. All these instances of PedVSS proceed in parallel. We denote the

shares Pi sends out as /hj= fb,(j), jj = ft,(j), and its public verification func-

tion as Fs (z) = gfbi(z)hf(Z)

(d) After Step (c) each player forms a set of non-disqualified players Qual. This
set excludes also all players P2 such that the verification function they published
does not satisfy Fbj (0) = 1. Each player computes its final secret-shares as

P3 EQual 4i and j = > , ,ua /. The verification function Fb (z) is defined as

Hp 1 EQual F5 (z).

Reconstruction Protocol ZVSS-REC:

Each Pi broadcasts values (0, /%) s.t. gh4,i = F5 (i). If all shares O% that pass this
verification interpolate into some t-degree polynomial f 5 (z) such that fs(O) = 0, then
the public output is this polynomial. Otherwise, the public output is null.

Figure 4-11: (ZVSS,ZVSS-REC): Refresh Polynomial Sharing & Reconstruction

Proof Sketch: Protocol ZVSS is a slight modification of RVSS of Figure 4-6. The same
proof of the robustness properties of RVSS (Lemma 4) implies that the shares of the honest

players interpolate into unique t-degree polynomials f,, fsb is.t. Fs(z) = gfAi(z)h fi(z) for
P C Qual. The only new robustness property is that we demand that all the accepted
secret-sharing polynomials fj,, faj have the free coefficient equal to zero.

We can show that under the discrete-log assumption this happens except for at most
negligible probability by using an almost identical reduction to the one used in the proof of
Lemma 1. Namely, we show that if a corrupted player P manages to get the honest players
to accept, with higher than negligible probability, secret-sharing polynomials fy, fsj such

that gAfb(0) hf (0)= 1 but (ftj (0), ft (0)) -# (0,0), then there exists a PPT TM algorithm

80

4.3. THRESHOLD DSS SIGNATURES

S, called extractor, which can compute discrete-logarithms logg 4 on input a DLog instance
(p, q, g) and a random 4 E Gq. This extractor construction is a slight variation of the

one used in the proof of Lemma 1. By following the simulator SIMh) during the h-IG

part of the Ped-IG protocol (Figures 7-3 and 7-1), on public input (p, q, g) and SIM()s

private input 4, extractor S embeds the instance 4 of the discrete-log problem into the

generated Pedersen commitment instance h = ggb. By Lemma 36, page 177, A's view
of this interaction is only negligibly different from its view of an actual h-G protocol.
Therefore if A has a higher than negligible probability of cheating in an execution of ZVSS

which follows h-IG, then it has also a higher than negligible probability of cheating in an
execution of ZVSS which follows the above simulation of h-IG. Furthermore, except for
negligible probability, S learns the representation a, b of the created h in bases g,4. When
in the subsequent execution of ZVSS, the adversary cheats in the way described above, then
E gets two representations 0,0 and fb5 (0), ft (0), of 1 in bases g, h. (Note that S, who has

control over t + 1 players, can reconstruct polynomials fb and fg. shared by P.) Thus 8

can compute logg h, and consequently also logg 9. E

Lemma 10 (Polynomial Secrecy of ZVSS)
There exists a simulator SIM, such that for every n/2-threshold static secure-channels

adversary A with history ah, for any distributed protocol P, for every discrete-logarithm
instance (p, q, g), for every h c Gq, the following two variables are identically distributed:

* an adversarial view of the following sequence of protocol executions:

- a run of ZVSS on public inputs (p, q, g, h) and A's input ah, with outputs denoted

ZVSS-data [b]

- a run of P on input ZVSS-data[b]

* an adversarial view of the following simulation, where the uncorrupted players are

controlled by the simulator SIM which has a private input o = logg h

- a run of ZVSS on public inputs (p, q, g, h) and A's input ah, with outputs denoted

ZVSS-data [b]

- a replacement of the private data in ZVSS-data[b] of the simulated players with
the data specified by ZVSS-data[b*] = Tzvss(ZVSS-data[b],o-) and then a run of
P on input ZVSS-data[b*]

Less Formally: A (static) adversarial view of an execution of the (ZVSS,P) sequence is
the same as an adversarial view of an execution of ZVSS, a modification of the private data

of the uncorrupted players according to procedure Tzvss (which replaces ZVSS-data[b] with
a sufficiently random-looking ZVSS-data[b*]), and then an execution of P.

Informally: A static secure-channels n/2-threshold adversary learns nothing about poly-

nomial fb(z) shared in ZVSS protocol except of the shares fb(i), Pi E Bad, it receives.

Proof Sketch: The proof is a straightforward extension of the polynomial secrecy of a
single PedVSS protocol, i.e. of Lemma 3, to the case where the secret-sharing polynomials

81

82

III

CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

ZVSS-data -* ZVSS-data* replacement procedure Tzvss

Input: public and private data of uncorrupted players in zero-sharing ZVSS-data
Pedersen's trapdoor o = logg h

Output: (private data of uncorrupted players in) zero-sharing ZVSS-data*

Let Bad, Good be the identities of the corrupted and uncorrupted players (lBadl = t).

Let Ps be any uncorrupted player. Take polynomials fbs, fs contained in Ps's outputs

in ZVSS-data, i.e. the polynomials this player dealt to create ZVSS-data.
T zvss picks random t-degree polynomials f f*sRs s.t.:

s

f*s (i) =fbAS(i) for Pi E Bad and fbs (0) fs(0) = 0

f 5*s (z) + af1 (z) = fb (z) + fbs (z) (for all z)

and then forms ZVSS-data* from ZVSS-data by:
- replacing the private data fS, f 6s of Ps with f *PbS

- replacing the private data Psi, Psi of each Pi in Good with si = f s (i) and P S = f 5 (s
- replacing the private data /3, f1i of these players with values

P = EPQual\Ps} #32 +* P.and P* = ZPeQuaI\{PS} Pji + P1

Figure 4-12: T zvss: Auxiliary procedure for simulation of ZVSS

fbi, fbi used by player Pi have a free coefficient equal to zero. Then, by the same argument
as used in the proof of secrecy of RVSS, i.e. in Lemma 6, the lemma follows.

Namely, note that for any uncorrupted player P, the adversarial view of the secret-

sharing PedVSS performed by P using some t-degree polynomials fbj, fg, s.t. fb, (0) =

f6 (0) = 0 is the same as the adversarial view if P1 used any other polynomials f>* 4*
s.t. f1*(0) = (0) = 0, where *(z) + af*c(z) = fbj (z) + o-fj(z), and fb, and f*, agree on

3f 3

values corresponding to players Pi C Bad. Therefore, the private data of the uncorrupted

players in ZVSS-data[b] can be replaced according to the procedure Tzvss, and thus the

adversarial view of a sequence

ZVSS -> ZVSS-data ; Tzvss(ZVSS-data, a-) -> ZVSS-data* ; P(ZVSS-data*)

has the same distribution as the adversarial view of a sequence

ZVSS -> ZVSS-data ; P(ZVSS-data)

E

4.3.3 Threshold Multiplication of Two Shared Secrets

We present a distributed multiplication protocol Mult which computes a product of two

shared secrets. Given two secret-sharing data structures RVSS-data[a] and RVSS-data[b],

we show how to compute sharing c1, ..., c, of product c = ab, and then reconstruct c. The

111

4.3. THRESHOLD DSS SIGNATURES

multiplication protocol Mult is very simple. If we have sharings of two t-degree polynomials

fa and fb such that ft (0) = a and fb(0) = b, then we can create a sharing of 2t-degree
polynomial fc(z) = fa(z) * fb(z). Namely, given RVSS-datat[a] and RVSS-datat[b], each
player Pi locally multiplies his polynomial share at of a and his polynomial share /i of b,

and the result is a share ci of c = ab on a polynomial fc(z) of degree 2t.

Consequently, the value c can still be reconstructed by polynomial interpolation of

enough correct shares. However, the new sharing can be reconstructed only with a lower

t < n/4 threshold of faults, because we do not create any public verification information for

it. Instead, to assure robust reconstruction of c we rely on error-correcting codes. We will

use notation ECSS-REC to denote a reconstruction procedure where each player broadcasts

its share ci = ai/3i of c = ab and each player computes the value c by using the Berlekamp-

Welch error-correction procedure [BW], which we denote as c = EC-\nterpotate(ci,-..., ca).
If .ci,... , cn} (4t + 1 < n) is a set of values broadcast by players during the ECSS -REC

procedure, and if at least 3t of the values lie on some 2-degree polynomial f 0 (z), then c is

defined as fc(0) and can be efficiently computed. We will call the outputs of Mult, i.e. the

shares ci of the uncorrupted players and an adversarial history output by the adversary, an

EC-sharing of c, and we will denote this distributed data-structure as ECSS-data 2 t[c. We

will call such sharing correct if the shares of the uncorrupted players interpolate to some

2t-degree polynomial.

Note that we need a re-randomization procedure to protect the secrecy of the multiplied

secret. This randomization is essential because a polynomial of degree 2t which is a product

of two polynomials of degree t is not a random polynomial, and might therefore expose

information about a and b. Such randomization is achieved by generating ZVSS-data 2 t[d]
and adding the resulting shares to the shares of ab (see Figure 4-13).

We note that the above threshold multiplication protocol is a simplified version of the

protocols presented in [BGW88, CCD88].8

Definition 17 We call an instance of protocol Mutt executed on correct joint secret-sharings

RVSS-data[a, b] successful if and only if the instance of ZVSS invoked within this Mult was

successful.

Remark. The above definition is more restrictive than a natural definition of Mutt's success
would be, namely that Mult is successful if it outputs a correct sharing ECSS-data[c] s.t. c =
ab, where a, b, c are defined by correct sharings RVSS-data[a], RVSS-data[b], ECSS-data[c].

We adopt a more restrictive definition strictly for the purpose of simplifying notation when

expressing the secrecy property of the Mult protocol (Lemma 12 below), as well as the

81n contrast to those works, in the case of the threshold DSS protocol we present in this chapter, shared
secrets are multiplied only once, thus saving most of the complexity of the solutions in the above works which
deal with the problem of repetitive multiplication. This is it is enough that the Mult protocol produces a
secret-sharing ECSS-data2 t [c], which shares c with a 2t-degree polynomial and has worse verifiability threshold
than Pedersen-VSS-like "joint secret-sharing" RVSS-datat[c]. We note that the idea of avoiding complicated
degree-reduction steps when there is only one multiplication to perform appears also in [Bea87]. However,
in Section 4.4.2 we present an optimally-resilient (t < n/2) distributed multiplication protocol of [GRR98]
which on input a secret-sharing of two variables outputs a secret-sharing of their product which can then
be used as an input to another instance of the distributed multiplication protocol. Namely, the threshold
multiplication protocol of Section 4.4.2 produces RVSS-datat[c] as its output.

83

84

IiI

CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Statically Secure n/4-Threshold Mult, (4t + 1 < n)

Input: sharings RVSS-datat[a] and RVSS-datat[b] (See Fig. 4-7)

Output: error-correcting sharing ECSS-data2 t[c], which consists of:

- share ci for each uncorrupted player P,

- adversarial output ah

(where c = ab if the adversary does not cheat)

1. Players execute ZVSS with security parameter 2t, to create ZVSS-data2 t[d]. De-

note the polynomial share of Pi in ZVSS-data2t[d] as 6j.

2. Each player computes its share ci = aoi + 6i of a 2t-degree polynomial fc which

secret-shares c = ab.

Reconstruction Protocol ECSS - R EC:

Each Pi broadcasts ci in ECSS-data 2 t[c] and computes c = EC-lnterpolate(ci,..., ca).

Figure 4-13: Mult: n/4-Threshold Multiplication of Two Shared Secrets

secrecy properties of other threshold protocols that utilize Mult as their building block, i.e.

Reciprocal and DSS-TSig which we present subsequently.

Lemma 11 (Robustness of n/4-Threshold Mult)

Consider an execution of the following sequence of protocols: (1) protocol Ped-IG (Figure

7-1) which on public input 1k outputs a Pedersen commitment instance (p, q, g, h), (2) some

protocol P which on input (p, q, g, h) produces outputs which contain two instances of joint

secret-sharing RVSS-data[a, b, and (3) protocol Mult on input RVSS-data[a, b].

Under the discrete logarithm intractability assumption, in the presence of a static secure-

channels n/4-threshold adversary (i.e. 4t+ 1 > n), if the output of P contains two instances

RVSS-data[a, b] E RVSS-DATA(p,q,g,h) then, except for probability negligible in the security

parameter k, the above instance of Mult is successful.

Moreover, such instance of Mult outputs a correct EC-sharing ECSS-data2 t[c] s.t. c = ab

where a and b are shared in RVSS-data[a, b] and c is shared in ECSS-data2 t[c].

Proof: That Mult is successful except for at most negligible probability follows immediately

from the fact that under the discrete-log assumption protocol ZVSS is successful except for

at most negligible probability.

From the robustness properties of RVSS and ZVSS it also follows that if these protocols

are successful then every honest party Pi holds a, /j, S s.t. shares 3i of honest players

lie on a unique 2t-degree polynomial fd s.t. fd(O) = 0, while shares a and /i of honest

players lie on unique t-degree polynomials fa, fb. Therefore shares ci broadcast by the

honest players in Step 2 all lie on some 2t-degree polynomial fc(z) = fa(z)fb(z) + fj(z) s.t.

fc(O) = fa(O)fb(0) + fd(O) = ab + 0 = ab. E

4.3. THRESHOLD DSS SIGNATURES

The robustness of the reconstruction of c from ECSS-data2 t[c] created by Mult is guaran-

teed by the Berlekamp-Welsh error-correction procedure [BW]:

Fact 2 When the reconstruction procedure ECSS-REC is executed in the presence of n/4-

threshold adversary (i.e. if n > 4t + 1) on a correct EC-sharing ECSS-data2 t[c] then the

public output of this ECSS-REC is c shared in ECSS-data2 t [c], i.e. c = fc(O) where ft is the
2t-degree polynomial defined by the shares of the uncorrupted players.

Secrecy Property of the Mult Protocol

The Mult protocol does not reveal any information about the secret-sharing polynomials

fA, fb in RVSS-data[a] and RVSS-data[b]. We state this secrecy property of protocol Mult in
Lemma 12 below, by considering an adversarial view of an adversary who participates in two
instances of the secret-sharing protocol RVSS, which create RVSS-data[a] and RVSS-data[b],

in protocol Mult which outputs ECSS-data2 t[c] on input RVSS-data[a, b] (with the property
that c = ab provided that the adversary does not manage cheat in these protocols), and
in some subsequent protocol P on inputs RVSS-data[a, b] and ECSS-data2 t[c], for example
a reconstruction of all these secret-sharings via RVSS-REC and ECSS-REC. We will show
that this view is identical to the adversarial view of a simulation in which the simulator
first follows the protocol of two RVSS's and Mult, and then replaces the private data of the
uncorrupted players in RVSS-data[a, b] and ECSS-data2 t [c] in a way which corresponds to
replacement of all secret-sharings performed by some uncorrupted player with secret-sharing

of new uniformly distributed values. If all these protocols are successful (i.e. the adversary
does not cheat) then this corresponds to a replacement of the secret-sharings of a, b and
c = ab with secret-sharings of new uniformly distributed values a*, b* and c* = a*b*. In

this sense, Lemma 12 states that the Mult protocol does not reveal anything about a, b, c
except the fact that ab = c. The proof of that Lemma is a straightforward implication of the
privacy of RVSS and ZVSS, because the Mult protocol itself is just a creation of zero-sharing

RVSS-data[d] via ZVSS and computing fc = fafb -± fd. Therefore, as we show in Lemma 12,
any distributed protocol P, which follows an execution of Mult with inputs RVSS-data[a, b]
and outputs ECSS-data[c], and which uses RVSS-data[a, b] and ECSS-data[c] as its inputs,
can be simulated to random outputs a*, b*, c* subject to the only constraint that c* = a*b*.
This claim is formalized using the auxiliary simulator procedure TRVSS which replaces M ult's
inputs RVSS-data[a, b] with random RVSS-data[a*, b*], and using the auxiliary simulator

procedure T
ECSS, Figure 4-14, which replaces Mult's outputs ECSS-data[c] with a random

EC-sharing ECSS-data[c*] subject to the constraints that it agrees with ECSS-data[c] on
points held by the adversary, and to the constraint that the secret-shared value c* is equal

to a*b* defined by the above RVSS-datata*, b*].

Lemma 12 (Static Secrecy of n/4-Threshold Mult)
There exists a simulator SIM, such that for every n/4-threshold static secure-channels

adversary A with history ah, for any distributed protocol P, for every discrete-logarithm

instance (p, q, g), and for every h E Gq, the following two adversarial views are identically

distributed:

* an adversarial view of the following sequence of protocol executions:

85

III

86 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Replacement procedure TECSs

Input: public and private data of uncorrupted players in

EC-sharing ECSS-data2 t[c]
"target output value" c* E Zq

Output: (private data of uncorrupted players in) EC-sharing ECSS-data2t[c*]

[Note: The following procedure works only if the values ci, P C Good, interpolate to a
2t-degree polynomial.]

Let Bad, Good be the identities of the corrupted and uncorrupted players (IBadI =t).

1. TECSS picks a random 2t-degree polynomial fj* s.t. f*(0) = c* and f*(i)=(),
where fc is a 2t-degree polynomial interpolated from values ci, Pi E Good

2. TECSS forms ECSS-data2t[c*] by replacing shares ci in ECSS-data2t[c], for each
Pi E Good, with c = f*(i)

Figure 4-14: TECSS: Auxiliary simulation procedure

- a run of two successful instances of RVSS (either parallel or sequential), on public
input (p, q, g, h) and adversarial input ah, with outputs denoted RVSS-data[a, b)

- a successful run of Mult on input RVSS-data[a, b], with outputs ECSS-data2t[c]

- a run of P on inputs RVSS-data[a, b], ECSS-data 2t [c]

e, an adversarial view of the following simulation, where the uncorrupted players are

controlled by the simulator SIM which has a private input o- = log9 h

- a run of two successful instances of RVSS (either parallel or sequential, as in

the corresponding step of the sequence above), on public input (p, q, g, h) and

adversarial input ah, with outputs denoted RVSS-data[a, bj

- a successful run of Mult on input RVSS-data[a, b], with outputs ECSS-data2 t[c]

- a replacement of the private data in RVSS-data[a,b], and ECSS-data2 t[c] of the

simulated players with

* RVSS-data[a*] TRvss (RVSS-data[a], a*, o)

* RVSS-data[b*] = TRvss(RVSS-data[b], b*, -)
* ECSS-data2t[c*] = TEcss(ECSS-data2t[c], c*)

where a*, b*,c* c Zq are random subject to the constraint that a*b* = c*

and then a run of P on RVSS-data[a*, b*] and ECSS-data2 t[c*]

Less Formally: A (static) adversarial view of successful executions of RVSS, Mult on
their outputs, and then a random run of protocol P, is the same as an adversarial view
of a successful execution of 2x RVSS, and Mult, a modification of the private data of the

uncorrupted players via TRVSS and T ECSS (which replace the sharings of a, b, c with sharings

of random a*, b*, c* subject to the constraint that c* = a*b*), and then an execution of P.

4.3. THRESHOLD DSS SIGNATURES

Informally: A static secure-channels n/4-threshold adversary learns nothing about secret-

sharing polynomials fa, fb, ft from an execution of Mult which on input RVSS-data[a, b]

outputs ECSS-data2 t[c], except of the shares fa(i), fb(i), f(i), Pi E Bad, that it receives,

and apart of the fact that c = fc(O) is equal to ab = fa(O)fb(O).

Note on the Secrecy Property of Mult. The formalization of the secrecy property of

Mult is different than that of RVSS, Exp, or ZVSS, in that we claim simulatability only

in the case if the initial RVSS secret-sharings which provide the inputs to Mult were suc-

cessful, i.e. if the sharings RVSS-dataa, b] these protocols produced are correct (see Section

4.2.4). The reason is that, unlike in the protocols we discussed so far, if the adversary

manages to cheat in the creation of the inputs to Mult, i.e. if the adversary cheats in secret-

sharing his contribution fa --(z) = PEQualnBad fai(z) and fb ~(z) = HP, eQualnBad fbi(z) to
RVSS-data[a] or RVSS-data[b], then during the Mult protocol he can actually learn some

additional information about the contribution of the uncorrupted players faG fbG to these

sharings (where faG fIGA are defined as faB fbB above but for Pi c Good). For example, if

faB (z) = Zt and fbB (z)(z) = z9t, but fd (z) = fd W(z) + fdG (z) is a 2t-degree polynomial,
then the adversary learns fc(z) = (fd(z) + faG (ZAGf() + Z2 b(Gz) ± z3 faz -GW z5, _dur-

ing the reconstruction ECSS-REC on ECSS-data[c] produced by Mult(RVSS-data[a, b]), and

since the first part of that expression is a 2t-degree polynomial, if n > 5t the adversary can

interpolate this polynomial and learn the entire fac (z) and fb0G(z).

Since we had to restrict the secrecy claim to executions of Mult on correct inputs

RVSS-data[a, b] only, we also restricted the claim only to successful executions of Mult itself,

which, given that the inputs are correct, is the same to say that we restrict ourselves to

the case when the adversary does not cheat in the ZVSS protocol. This restriction is not

necessary, but we do it for convenience and readability of the simulation algorithm.

This does not matter much in practice because, as we show in Lemma 4, under the

discrete-log assumption the probability that the adversary manages to cheat in the RVSS

protocol is negligible. And so is the probability that, once RVSS-data[a, b] are correct, the

adversary cheats during Mult itself. Therefore, under the discrete-log assumption, for every

protocol P, there is a negligible statistical difference between the distributions of adversarial

views considered in the above Lemma, once it is modified so that, in both cases, instead of

random successful execution of the (2x RVSS;Mult) sequence, we consider simply a random

execution of these protocols. Consequently, under the discrete-log assumption, it does not

matter what the simulator of Mult does when the adversary with whom it interacts does

manage to cheat in any of these protocols.

Proof: This lemma follows straightforwardly from the secrecy of RVSS which shares a

and b and from the secrecy of ZVSS which shares the refresh polynomial fd. Below we argue

this implication formally.

Let Correct(RVSS-datat [a]) be a function which outputs 1 if RVSS-datat [a] is correct and 0

otherwise. Note that this function can operate only on the adversary's view in RVSS-datat [a],

because RVSS-datat [a] is incorrect if and only if some polynomial fa, (and hence also fa)
for P C Badn Qual, as defined by the shares aij sent by P, to the honest players Pj E Good,

has a degree higher than t. (Note, btw, that this cannot happen if n = 2t + 1.) Therefore,

the equality of distributions of two adversarial views stated in Lemma 6 holds if we restrict

87

III

88 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

both to executions of RVSS- RVSS-data s.t. Correct(RVSS-data) = 1. We will denote a
random successful run of RVSS as Succ-RVSS -> RVSS-data.9

By Lemma 6, the following two adversarial views have the same distributions:

2 x Succ-RVSS -> RVSS-data[a, b]

Mult(RVSS-data[a, b]) -> ECSS-data[c]
P(RVSS-data[a, b], ECSS-data[c])

and

2 x Succ-RVSS -+ RVSS-data[a,b]

TRvss(RVSS-data[a, b], o) -> RVSS-data[a*, b*]
Mult(RVSS-data[a*, b*]) -> ECSS-data[c*]

P(RVSS-data[a*, b*], ECSS-data[c*])

Note that Mult is a composition of ZVSS-> ZVSS-data[d] and a local translation of shares
Mult St.2

RVSS-data [a, b], ZVSS-data [d] -- ECSS-data[c] performed in Step 2, Figure 4-13. There-
fore, Mult executes successfully on correct RVSS-data[a, b] if and only if the execution of
ZVSS inside Mult is itself successful. Therefore, we have a following equality of distribution
of adversarial views:

2 x Succ-RVSS - RVSS-data[a, b]

Succ-Mult(RVSS-data[a, b]) -> ECSS-data[c]

P(RVSS-data [a, b], ECSS-data [c])

and

2 x Succ-RVSS -> RVSS-data[a, b] (4.3)

TRVSS(RVSS-data[a, b], o) -> RVSS-data [a*, b*] (4.4)

Succ-ZVSS -> ZVSS-data[d] (4.5)
Mult St 2

(RVSS-data[a*, b*], ZVSS-data[d]) -' ECSS-data[c*] (4.6)
P(RVSS-data[a*, b*], ECSS-data[c*) (4.7)

Note that given that the adversary is static, the last view remains the same if Steps 4.4 and
4.5 in the above sequence are switched, because they both represent only local computation
of the (simulated) uncorrupted players. Furthermore, by the secrecy of ZVSS, Lemma 10,

9 We define Succ-ZVSS, Succ-Mult, etc in the same way, as random successful instances of the appropriate
protocol. Note that for any protocol P running on some inputs I, if P is defined as successful iff its outputs
are correct, and if this correctness can be determined from the information visible to the adversary during
P, i.e. from the public information produced and from the messages exchanged between the adversary and
the uncorrupted players, then we can perform a similar restriction for P as we did above for RVSS. I.e. it
then follows that if the adversarial view of sequence P1 -> I; P(I) is identical to the adversarial view of
P2 -, I; P(I), then also the adversarial views of sequence Pi -> I; Succ-P(I) and P2 -> I; Succ-P(I) are
identical.

4.3. THRESHOLD DSS SIGNATURES

also restricted to successful executions of this protocol, it follows that the adversarial view
of the above sequence has the same distribution as the following adversarial view:

2 x Succ-RVSS -> RVSS-data[a,b] (4.8)
Succ-ZVSS -> ZVSS-data[d] (4.9)

TRvss(RVSS-data[a, b], a) - RVSS-data[a*, b*] (4.10)

Tzvss(ZVSS-data[d], a) --- RVSS-data[d*] (4.11)
Mut St .2

(RVSS-data[a*, b*], ZVSS-data[d*]) -'+ > ECSS-data[c*] (4.12)
P(RVSS-data[a*, b*], ECSS-data[c*]) (4.13)

Moreover, we argue that a sequence of Steps [4.10; 4.11; 4.12], looks identical, to a static
adversary, as the following sequence:

MuttSt2
(RVSS-data [a, b], ZVSS-data[d]) - . ECSS-data[c] (4.14)

TRVSs(RVSS-data[a, b], a) - RVSS-data[a*, b*] (4.15)

TECSS(ECSS-data[c], c* = a*b*) - ECSS-data[c*] (4.16)

Since Steps 4.9 and 4.14 together describe a random successful execution of Mult, sequence
[4.8; 4.9; 4.14; 4.15; 4.16; 4.13] describes exactly the distribution of an adversarial view
during a simulation of Mult specified in the claim of the lemma we are proving. Hence, the
equality of adversarial views in [4.10; 4.11; 4.12] and [4.14; 4.15; 4.16] implies our lemma.

In other words, and this is an essence of this lemma, we show that the simulator of
Mult can first perform the Mult protocol on RVSS-data[a, b], the data that the simulator
knows, and then simulate any protocol P to some "target outputs" RVSS-data[a*, b*] and
ECSS-data[c*] given by transformations of RVSS-data[a, b] and Mult's output ECSS-data[c],
as specified by TRVSS and TECSS and by the constraint that a*b* = c*.

The equality of [4.10; 4.11; 4.12] and [4.14; 4.15; 4.16] in the eyes of a static adversary,
where both are executed on correct RVSS-data[a, b] and ZVSS-data[d] (or more precisely,
when both are preceded by [4.8; 4.9]), is easy to see. First note that since the adversary is
static, we can switch steps 4.14 and 4.15, and so we need to show that given a view of

2 x Succ-RVSS -> RVSS-data[a, b] (4.8)

Succ-ZVSS -> ZVSS-data[d] (4.9)

TRvss(RVSS-data [a, b], a) -> RVSS-data[a*, b*] (4.10)

the adversarial view of the following two sequences are identical:

Tzvss(ZVSS-data[d], a) -* RVSS-data[d*] (4.11)
MuttSt.2(RVSS-data[a, b*], ZVSS-data[d*]) - tECSS-data[c*] (4.12)

and

(RVSS-data[a, b], ZVSS-data[d]) M) ! ECSS-data[c] (4.14)

89

III

90 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

TEcss(ECSS-data[c],c* = a*b*) -> ECSS-data[c*] (4.16)

This is easy to see because in both cases shares c in the resulting ECSS-data[c*] interpolate

to a 2t-degree polynomial f,* which is random subject to the constraints that f,*(0) = c* =

a*b* and that f*(i) fc(i) for Pi c Bad, where f,(i) = fa(i)fb(i) + fd(i), and fa, fb, fd are

defined by (the outputs of honest players in) outputs of sequence [4.8; 4.9]. E

Secrecy of Repetitive Execution of Mult

Unfortunately, Lemma 12 does not seem to be general enough to imply the secrecy prop-

erty of the Mult protocol under repetitive execution. Namely, we need to know whether a

repeated execution of Mult on secret-sharing RVSS-data[a] and a sequence of secret-sharings

RVSS-data[bi], RVSS-data[b2], ..., RVSS-data[bp(k)], where p(z) is some polynomial, does not

reveal anything about the secret-sharing polynomials fa, fb1, fb2 , ... , fb(k) > and the created

polynomials f, 1, f12 , ... , fc(k), apart of the fact that fa(0)fbs,(0) = fc (0) for all i = 1, .. , p(k).

Such "repetitive secrecy" of Mult is needed to argue that a repeated use of the DSS signature

generation protocol DSS -TSig (Section 4.3.5) does not reveal the key material, and thus

allows us to prove the unforgeability of the threshold DSS scheme which uses the DSS -TSig

protocol (Theorem 3). The repetitive secrecy of Mult is relevant there because each time

DSS-TSig runs to sign some message m, it executes Mult on RVSS-data[x] which secret-

shared the DSS secret key x and on RVSS-data[ki] which is a secret-sharing created in the

i-th instance of the DSS -TSig protocol to share a one-time DSS secret k.

Once we identify a need for such re-formulation of the secrecy property of Mult we

should take care of a few further extensions of this property which reflect the use of the Mult

protocol in a threshold DSS signature scheme of Section 4.3. First, note that it can be shown

by following the arguments of the proof of Lemma 12, that if an execution of Mult which

outputs ECSS-data2 t[c] on input RVSS-data[a, b] is preceded by some distributed protocol P

on inputs RVSS-d ata[a, b] and followed by some other protocol P' on inputs (RVSS-data[a, b],

ECSS-data 2 t[c]), then the adversarial view of such sequence of executions is still identical to

the adversarial view of a simulation of these protocols, in which the simulator performs Mult

on RVSS-data[a, b] but instead of executing P and P' on RVSS-data[a, b] and ECSS-data2 t[c],

executes them instead on RVSS-data[a*, b* and ECSS-data2 t[c*i, where RVSS-data[a*, b*]

and ECSS-data2 t[c*] are modifications of sharings RVSS-data[a, b] and ECSS-data2 t[c] via

TRVSS and T ECSS as in Lemma 12. The proof that this simulation produces a correct view

is only a slight variation of the proof of Lemma 12.

In Lemma 13 below, we state a more general claim in the sense that we consider an exe-

cution of RVSS-> RVSS-data[a] followed by some protocol P1(RVSS-data[a]) with outputs 1,

then an execution of RVSS-> RVSS-data[b] followed by some protocol P 2 (RVSS-data[b], I1)

with outputs 12, and only then Mult(RVSS-data[a, b] -> ECSS-data[c]) and P3 (RVSS-data[a,

b], ECSS-data [c], I1, 12). However, for ease of notation we restrict the generality of this claim

by considering protocols P 2 (respectively, P3) which takes as inputs only the public outputs

of P, (respectively, P and P2).
This observation is relevant to the use of protocol Mult in the threshold DSS signature

generation protocol DSS-TSig, where Mult is executed on secret-sharing RVSS-data[x] that

shares a DSS secret key x and a secret-sharing RVSS-data[kj that shares a one-time secret

mmmmmmmmm

4.3. THRESHOLD DSS SIGNATURES

k. However, before a run of the DSS-TSig protocol (and thus before the execution of Mult),
sharing RVSS-data[x] is used as an input to the exponentiation protocol which generates the
public key y = gX from RVSS-data[x] (this exponentiation is a part of the key generation
protocol with which a threshold DSS scheme must start, see the DKG protocol).

Secondly, the Mult protocol inside DSS-TSig is performed not on sharings RVSS-data[ki]
and RVSS-data[x] but on RVSS-data[ki] and RVSS-data[a4], where RVSS-data[x'] is derived
in the i-th instance of the DSS-TSig protocol from RVSS-data[x] by scaling all the secret-
sharing values by a multiplicative factor ri and an additive factor mi, both of which are
public values: mi is the i-th message submitted by the user for signing and ri is a first
part of the DSS signature on mi, computed as a public value in the first part of the i-th
instance of DSS-TSig. Such scaling computation, denoted Scale, is presented in Figure 4-15
below. We will call any such protocol executed on some a, b which are parts of the public
data, i.e. they are marked as public by all honest players, as Scale(RVSS-data[x], Sel), where
Sel is a selection procedure which identifies variables a and b in the public transcript of an
execution of a threshold scheme so far. In the case of the i-th instance of the DSS-TSig
protocol, the selection procedure SelDSS-Tsig identifies a as the message mi submitted for
signing, and b as the public output ri of the first part of this instance of DSS -TSig. If the
last value is null, i.e. if the adversary managed to cheat in that protocol, then the honest
players abandon this instance of DSS -TSig and the scaling is not executed anyway.

"Scaling" of a Joint Secret-Sharing: Scale(RVSS-data[x], a, b) -> RVSS-data[x']

Input: sharing RVSS-data[]
Public Input: additive factor a and multiplicative factor b
(alternatively, the public input is a selecting procedure Sel, with which honest players
identify values a, b in the public output produced by the threshold scheme so far)
Output: sharing RVSS-data[x']

Each Pi forms RVSS-data[x'] as a + bRVSS-data[x] as follows:

f?;(z) , fy(z) a + bf(z) , a + bf±(z)

a c, = a + baoi , a + b&pi if Py E Qual and null otherwise

ad, d' A a+bai, a b&i

F. (z) = a(Fj (z))b if Pj E Qual and null otherwise

F,(z) a(F

Figure 4-15: Scale: Protocol for "Scaling" a Joint Secret-Sharing

We summarize this discussion by formalizing the "repetitive secrecy" of Mult in a way
that is tailored to the use of Mult in the threshold DSS signature scheme of Section 4.3, and
can be used directly in the proof of unforgeability of that scheme in Theorem 3, page 106.

91

III

92 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Lemma 13 (Static Secrecy of Repetitive Executions of n/4-Threshold Mult)

There exists a simulator SIM, such that for every n/4-threshold static secure-channels

adversary A with history ah, for every distributed protocols Pi,P2,P3 and any selection

procedure Sel, for every discrete-logarithm instance (pq,g) of security parameter k, for

every h E Gq, for any polynomial p(z), the following two adversarial views are identically

distributed:

" an adversarial view of the following sequence of protocol executions:

- a successful run of RVSS on public input (p, q, g, h) and adversarial input ah,

with outputs denoted RVSS-data[a]

a run of P1 on RVSS-data[a] with public outputs denoted I1

a cycle of the following executions, for j = 1, ...,p(k):

* a successful run of RVSS on (pq, g, h) with outputs denoted RVSS-data[b]

* a run of P2 on RVSS-data[b1] and I1 with public outputs denoted 2

* scaling procedure Scale(RVSS-data[a], Sel) -> RVSS-data[a.]

* a successful run of Mult on RVSS-data[abj], with outputs ECSS-data2t[cJ]

* a run of P3 on (RVSS-d ata[a, b1], ECSS-data2t[c3],11, 12)

* an adversarial view of the following simulation, where the uncorrupted players are

controlled by the simulator SIM which has a private input a-= log9 h:

- a successful run of RVSS on public input (pq, g, h) and adversarial input ah,

with outputs denoted RVSS-data[a]

- a replacement of the private data in RVSS-data[a] of the simulated players with

RVSS-data[a*] = TRvSS(RVSS-data[a], o), and then a run of P 1 on RVSS-data[a*]
with public outputs denoted 1

- a cycle of the following executions, for j = 1, ...,p(k):

* a successful run of RVSS on (p, q, g, h) with outputs denoted RVSS-data[b]

* a replacement of the private data in RVSS-data[b] of the simulated players

with RVSS-data[bf] = TRVss(RVSS-data[bJ],o-), and then a run of P2 on

RVSS-data[b] and I1 with public outputs denoted 2

* scaling procedure Scale(RVSS-data[a], Sel) -> RVSS-data[a9]

* a successful run of Mult on RVSS-data[abj], with outputs ECSS-data[c,]

* a replacement of the private data in ECSS-data[cj] of the simulated players

with ECSS-data[c] = TECSS(ECSS-data[c],c), and then a run of P3 on
(RVSS-data[a*, bj], ECSS-data[c], I1,12), where c = a *b = (Ai+ A2 a*)b;

and A,, A2 are the public factors identified by Sel in the Scale procedure above.

Informally: A static secure-channels n/4-threshold adversary learns nothing about secret-

sharing polynomials fa, fb, ..., fb p(k and fi) , ... , fc, from the executions of Mult

which, for each j = 1,...,p(k), multiply RVSS-data[a] with every RVSS-data[bj1 and out-
put ECSS-data[ci], apart of the values of these polynomials held by the corrupted players,

and apart of the fact that c = fe (0) is equal to ab, = (A1 + A2fa(0))fb,(0) where A1, A2

4.3. THRESHOLD DSS SIGNATURES

are the additive and multiplicative factors identified by procedure Sel in the public output

of the protocol.

Proof: The proof is a simple extension of the proof of Lemma 12. We will prove it formally

by induction on j, the number of loops of Mult.

The base case, for j = 0, i.e. that the adversary view of

Succ-RVSS -> RVSS-data[a]

P1 (RVSS-data[a])

is distributed identically to its view of

Succ-RVSS --> RVSS-data[al (4.17)

TRVss(RVSS-data[a], a) -> RVSS-data[a*] (4.18)

Pi(RVSS-data[al) (4.19)

is implied by the secrecy property of RVSS shown in Lemma 6.

Now, for the recursive case, let's assume that the adversary's view of j - 1 loops of (suc-

cessful) execution and successful simulation of the above "repetitions of Mult with P1, P2, P3
mixed in" protocol are identically distributed. It means that, by the secrecy of RVSS and

ZVSS, j loops of (successful) protocol execution (where we consider only successful execu-

tions of RVSS and Mult but random executions of P1, P2, P3, as in the statement of the

lemma) look like:

Succ-RVSS -+ RVSS-data[a] (4.17)

TRVss(RVSS-data[a], a) - RVSS-data[a*] (4.18)

Pi(RVSS-data[a*]) - I1 (4.19)

followed by j - 1 loops of the simulation (as in the statement of the lemma) and then

Succ-RVSS -> RVSS-data[b1] (4.20)

TRvss(RVSS-data[bj], a) -> RVSS-data[bf] (4.21)

P2(RVSS-data[bj],1) -I12 (4.22)

Scale(RVSS-data[a*], Sel) - RVSS-data[a7*] (4.23)

Succ-ZVSS -> ZVSS-data[dj] (4.24)

Tzvss(ZVSS-data[d], a) -- RVSS-data[dj] (4.25)

(RVSS-data[a *, bj], ZVSS-data[d*]) St.2ECSS-data[c] (4.26)

P3(RVSS-data[a*, bf], ECSS-data[cj], 1, 12) (4.27)

Because the adversary is static we can move Step 4.23 after Step 4.24, and then we note

that, similarly to the proof of Lemma 12, that after participating in execution of Steps

Succ-RVSS -> RVSS-data[a] (4.17)

TRVSS(RVSS-data[aJ, a) -> RVSS-data[a*] (4.18)

93

III

94 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

P1(RVSS-data[a*]) --> 1 (4.19)
(j - 1 loops of the simulation procedure, see the lemma statement)

Succ-RVSS -+ RVSS-data[bg] (4.20)

TRVSS (RVSS-data[ba], o) -> RVSS-data[b] (4.21)

P2(RVSS-data[bj],I) -- > 12 (4.22)
Succ-ZVSS -> ZVSS-data[dj] (4.24)

the adversarial view of Steps

Scale(RVSS-data[a*], Sel) - RVSS-data[a7] (4.23)
Tzvss(ZVSS-data[d], o) -> RVSS-data[dj] (4.25)

(RVSS-data[a*, b], ZVSS-data[d*]) Mijt.2 ECSS-data[cJ] (4.26)

P3(RVSS-data[a*, bj], ECSS-data[c], I,12) (4.27)

look the same as the following view:

Scale(RVSS-data[a], Sel) -> RVSS-data[a] (4.28)
MultSt .2

(RVSS-data[a , b1], ZVSS-data[d]) . ECSS-data[cyl (4.29)

TECSS(ECSS-data[[cj], c = (A\ + A2 a*)bj) -ECSS-data[cfl (4.30)

P3(RVSS-data[a*, b], ECSS-data[cj], I1,1 2) (4.31)

(where Al, A2 are the factors identified by the above instance of Sel.)

The equality holds for the same reason as in the proof of Lemma 12, i.e. in both

cases polynomial fc*, interpolated by the shares of the honest players in the resulting
ECSS-data[c*] is a 2t-degree polynomial which is random subject to the constraints that

fc*(0) c = a1*b = (A1 + A2 a*)b, and that fc,(i) = fc (i) for Pi E Bad, where
fc (z) (A1 + A2 fa(z))f6 j (z) + f(z), and fa, fb, fd are defined by (the outputs of honest

players in) outputs of Steps 4.17, 4.20, and 4.24.

Since Steps [4.28; 4.29; 4.30; 4.31] above describe the adversary's view during the j-th
loop of a successful simulation, it follows that j loops of successful protocol execution look
like j loops of successful simulation, which proves our lemma. E

Remark. The proof of the inductive case in Lemma 13 above is very similar to the proof
of Lemma 12, which seems to suggest that there should be a way of isolating this similarity

and stating the secrecy property of the Mult protocol in a way that would imply also the
above "repetitive secrecy" property.

4.3.4 Threshold Inverse Computation Protocol

In the distributed DSS protocol we are faced with the following problem. Given a shared

secret k, we need to generate public value g(k- 1 mod q), without any other revealing informa-
tion on k. To achieve this we use a protocol Reciprocal due to Bar-Ilan and Beaver [BB89},

--,nT--

4.3. THRESHOLD DSS SIGNATURES

which given a secret-sharing of k creates a secret-sharing of k- 1 mod q. This protocol,

given a sharing RVSS-data[a] creates a sharing RVSS-data[e] where e = a-- by creating a

sharing RVSS-data[b] of a random value, multiplying RVSS-data[a] and RVSS-data[b] with

Mult and reconstructing the output with ECSS-REC to get c = ab as a public output (both

in Figure 4-13). The Reciprocal protocol we present in Figure 4-16 below is secure only

against n/4-threshold adversary because it uses the n/4-threshold multiplication protocol

Mult. When we replace this multiplication protocol with an optimal t/2-threshold multi-

plication protocol Mult-opt of Section 4.4.2, Reciprocal gains an optimal threshold resilience

too.

Statically Secure n/4-Threshold Reciprocal, (4t + 1 < n)

Input: sharing RVSS-data[a] (See Fig. 4-7)
Output: sharing RVSS-data[e]

(where e = a- 1 mod q if the adversary does not cheat)

1. Players perform RVSS to create a new sharing RVSS-data[b].

2. Players compute ECSS-data[c] <- Mult(RVSS-data[a], RVSS-datatb])

3. Players compute c <- ECSS-REC(ECSS-data[c]), see Figure 4-13

4. Players compute RVSS-data[e] <- Scale(RVSS-data[b], 0, c-1), see Figure 4-15

Simulator SIMRpl1 of Reciprocal (interacting with A):

Public Input: public data in RVSS-data[a]
SIMRu,'s Private Input: private outputs of all Pi E Good in RVSS-data[a]

A's Private Input: adversary's output in RVSS-data[a]

1.-2. SIMRpcI follows Steps 1-2 of Reciprocal on behalf of the uncorrupted players.

3. SIMjpcl picks c* uniformly in Z, and replaces the private data of the simulated

players with the data specified by ECSS-data[c*] = TECSS(ECSS-data[c], C*).

Then SIMRpdl performs the ECSS-REC protocol on input ECSS-data[c*] on behalf
of the simulated players.

4. SIMRpcl follows Step 4 of Reciprocal on behalf of the uncorrupted players.

(Note that if the adversary does not cheat then the public output of the previous

step is c* chosen by SIMRpc, and thus the scaling factor used in this step is (c*)-1.)

Figure 4-16: Reciprocal: n/4-Threshold Inverse Computation Protocol

In [BB89] it is proven that such protocol is secure against an eavesdropping n/2-threshold

or halting n/3-threshold adversary, i.e. that on input a secret-sharing of a it correctly com-

putes a sharing of a-1 and reveals no extra information (i.e. is simulatable). Intuitively,

the value c revealed in the protocol gives no information on a since c is the product of a

95

III

96 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

with a random element b. We show that in the presence of a malicious n/4-threshold adver-
sary, protocol Reciprocal does not reveal any information on either the input secret-sharing
polynomial fa in RVSS-data[a] nor the output secret-sharing polynomial fe in RVSS-data[e),
apart of the shares of fa and f, held by the corrupted players, and apart of the fact that
they share values which are inverses of one another, i.e. ae = fa(O)fe(O) = 1. We formalize
this secrecy property of Reciprocal in Lemma 15.

However, the secrecy property of Reciprocal, just like the secrecy of protocol Mult which
is used inside Reciprocal, is stated in terms of executions which run on correctly-formed
inputs, i.e. on a correct secret-sharing, and during which the adversary does not manage to
cheat. Therefore, for notational convenience, in the statement of the robustness property of
Reciprocal in Lemma 14 below, we define a successful execution of Reciprocal as an execution
which not only outputs a correct secret-sharing of e = a-1 where a is defined by the correct
inputs to Reciprocal, but an execution in which the adversary did not cheat in any of the
intermediate steps.

Definition 18 We call an instance of protocol Reciprocal executed on correct joint secret-
sharing RVSS-data[a] successful if and only if this execution included successful instances of
protocols RVSS and Mult (invoked by Steps 1 and 2 of Reciprocal).

Remark. This definition is more restrictive than a natural definition of correctness of an
Reciprocal protocol. Similarly as in the case of Mult, we adopt this definition for concise-
ness of expressing the secrecy property of Reciprocal (Lemma 15 below), and of threshold
protocols that build on Reciprocal, i.e. the threshold DSS protocol DSS-TSig.

Lemma 14 (Robustness of n/4-Threshold Reciprocal)
Consider an execution of (1) protocol Ped-IG (Figure 7-1) on public input 1k, which outputs

a Pedersen commitment instance (p, q, g, h), (2) some protocol P on input (p, q, g, h), whose
outputs contain some joint secret-sharing RVSS-data[a], and (3) protocol Reciprocal on input
RVSS-data[a].

Under the discrete logarithm intractability assumption, in the presence of a static secure-
channels n/4-threshold adversary (i.e. t + 1 > n), if the output of P contains a joint
secret-sharing RVSS-data[a] E7ZVSS-DATA(p,q,g,h), then the above instance of Reciprocal
is successful except for probability at most negligible in the security parameter k.

Moreover, such instance of Reciprocal outputs a correct joint secret-sharing RVSS-data[ej
which shares value e = a- 1 mod q, where a is secret-shared in RVSS-data[a].

Proof: The first part of the lemma follows immediately from the fact that under the
discrete-log assumption both RVSS and Mult are successful except at most for a negligible
probability.

By the robustness property of Mult, if the inputs RVSS-data[a] are correct and the RVSS
and Mult of Step 1 and 2 in Reciprocal are successful, then the output c computed in Step 2
is equal to c = ab where b = fb(O) is the secret shared in RVSS-data[b], and a = fa(O)
is defined by RVSS-data[a]. Furthermore, all the correctness properties of RVSS-data[e]
are inherited from the correctness properties of RVSS-data[b] because data in RVSS-data[e]
output by each player is just a scaling of RVSS-data[b] by factor c-1. Therefore, the output

4.3. THRESHOLD DSS SIGNATURES

of a successful instance of Reciprocal on correct input RVSS-data[a] forms a correct joint
secret-sharing RVSS-data[e] such that e = fe(O) = c-'fb(O) = (ab)- 1b = a-1 mod q. E

Lemma 15 (Static Secrecy of n/4-Threshold Reciprocal)
There exists a simulator SIM, such that for every n/4-threshold static secure-channels

adversary A with history ah, for any distributed protocol P, for every discrete-logarithm
instance (p, q, g), and for every h C Gq, the following two adversarial views are identically
distributed:

* an adversarial view of the following sequence of protocol executions:

- a successful run of RVSS on public input (p, q, g, h) and adversarial input ah,
with outputs denoted RVSS-data[a]

- a successful run of Reciprocal on RVSS-data[a}, with outputs denoted RVSS-data[e]

- a run of P on input RVSS-data[a] and RVSS-data[e]

* an adversarial view of the following simulation, where the uncorrupted players are
controlled by the simulator SIM which has a private input o= logg h:

- a successful run of RVSS on public input (p, q, g, h) and adversarial input ah,
with outputs denoted RVSS-data[a]

- a successful simulation of Reciprocal (see a remark below) via simulator proce-
dure SIMRpcl, Figure 4-16, on input RVSS-data[a], whose output we denote as
RVSS-data[e]

- a replacement of the private data in RVSS-data[a, e] of the simulated players via
transformations RVSS-data[a*] = TRVss (RVSS-data[a], a*, a) and RVSS-data[e*]
= TRVSS(RVSS-data[e], e*, a), where a*, e* are random elements in Zq subject to
the constraint that a*e* = 1, and then an execution of P on RVSS-data[a*, e*]

Less formally: A (static) adversarial view of successful executions of RVSS, Reciprocal,
and then a random run of protocol P, is the same as an adversarial view of a successful
execution of RVSS, a successful simulation of Reciprocal, a modification of the private data
of the uncorrupted players via two TRvss transformations which replace the sharings of a, e
with sharings of values a* and e* which are random subject to the constraint that a*e* = 1,
and then an execution of P.
Informally: A static secure-channels n/4-threshold adversary learns nothing about ei-
ther secret-sharing polynomials fa and fe from an execution of Reciprocal which on input
RVSS-data[a] outputs RVSS-data[e], apart of the shares of these polynomials received by
the corrupted players, and apart of the fact that ae = fa(O)fe(O) = 1.

Remark. By a "successful simulation of Reciprocal via simulator procedure SIMRcI", we
designate an instance of an interaction between an adversary and the simulator SIMRpc of
Figure 4-16, in which the RVSS and the Mult protocols which SIMRc performs on behalf
of the uncorrupted players in Steps 1-2, were successful. Thus a successful simulation of
Reciprocal via SIMRpc is defined similarly to a successful execution of Reciprocal.

97

III

98 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Proof: The proof follows immediately from the secrecy property of protocol Mult. In-

tuitively, a simulation of Reciprocal and the subsequent protocol P is a particular case of

simulating a distributed protocol running on outputs of Mult. We provide the details below.

For any distributed protocol P which takes RVSS-data[a, e] as its inputs, let P' be a pro-

tocol which takes (RVSS-data[a, b], ECSS-data[c]) as inputs, performs Steps 3-4 of Reciprocal,

i.e. performs ECSS-REC(ECSS-data[c]) and RVSS-data[e] <- Scale(RVSS-data[b, 0, c-1) (see

Figure 4-16), and then performs P on the resulting RVSS-data[a, e]. By the secrecy prop-

erty of Mult (Lemma 12), given an adversary who witnesses successful executions of RVSS-*

RVSS-data[a], RVSS-> RVSS-data[b], and MuIt(RVSS-data[a,b]) -> ECSS-data[c], an adver-
sarial view of an execution of]P' on (RVSS-data [a, b], ECSS-data[c]) is distributed identically

as a view of (first the above three protocols 2 x RVSS+Mult and then) an execution of P' on

RVSS-data[a*, b*], ECSS-data[c*] instead, where a*, b*, c* are random elements of Zq subject

to the constraint that a*b* = c*.

Now note that SIMRc takes a random c* in Zq, substitutes ECSS-data[c*]1= TECSS(

ECSS-data[c],c*) and performs the first step of P', i.e. ECSS-REC on ECSS-data[c*]. Note

that since we consider only the case where RVSS-data[a, b] are correct and Mult was suc-

cessful, the public output of this ECSS-REC is the c* value chosen by the simulator. Then

SIMRcil performs the second step of P', i.e. RVSS-data[e]z= Scale(RVSS-data[b], 0, (c*)-).

Subsequently the simulator we are considering picks a* at random in Zq, computes e* =

(a*)-l mod q, and performs P on inputs RVSS-data[a*] = TRvss(RVSS-data[al, a*, a) and
on RVSS-data[e*] = TRvss(RVSS-data[e), e*, a).

Note that since RVSS-data[b] is correct, steps

RVSS-data[e = Scale(RVSS-data[b], 0, (c*)-1) (4.32)

e* = (a*)-' 1 mod q (4.33)

RVSS-data[e*] = TRvSS(RVSS-data[e], e*, a) (4.34)

are equivalent to

b* = C*(a*)- 1 (4.35)

RVSS-data[b*] = TRvss(RVSS-data[b], b*, a) (4.36)

RVSS-data[e*] = Scale(RVSS-data[b*], 0, (c*)-') (4.37)

In both procedures RVSS-data[e*] equals to RVSS-data[e]z= Scale(RVSS-data[b], 0, (c*)-1),

except that the private data of one simulated player Ps chosen by the simulator (see the

TRVSS procedure in Figure 4-8) contains a random t-degree polynomial f*s which agrees

with fs on Pi E Bad and such that e* = ZPeQuai\{Ps} fe-(0) + f 5*s(0) is equal to (a*)-.

(Note that since RVSS-data[b] is correct then RVSS-data[e] is correct too, all hence the above

polynomials fe, Pi C Qual \{PS}, are well defined.)

4.3.5 Threshold DSS Scheme

We first present a threshold DSS signature generation protocol and then we discuss the

security of a threshold DSS signature scheme which employs this protocol and the key

generation protocol DKG presented in Section 4.2.

4.3. THRESHOLD DSS SIGNATURES

Threshold DSS Signature Generation Protocol

We put together the threshold multiplication, the threshold inverse-computation, and the

threshold exponentiation protocols into a n/4-threshold DSS signature generation protocol

DSS-TSig. We present this protocol in Figure 4-17. Recall that in the DSS signature
scheme, to sign message m, where m is a hash of an actual message M, with the private

key x, the signer picks a random k E Zq, computes its inverse e = k~1 mod q, and the

signature is a pair (r, s) where r = (ge mod p) mod q, and s = k(m ± ir) mod q. (See

Section 4.3.1 for more details about DSS.)

Note that value r' = g mod p can be computed from a valid signature (r, s) and the

public key y = g' mod p as r' = gm/syr/s mod p. (Recall that the DSS verification equation

checks whether r = (gm/syr/s mod p) mod q.) Therefore, in a threshold DSS signature

generation protocol, value r' can be a public output along with values r and s. Thus the

threshold DSS generation protocol proceeds as follows. First the players execute a coin-
flip protocol RVSS to generate RVSS-data[k], a sharing of a random value k. Then they

compute a sharing RVSS-data[e] of its inverse e = k- 1 with a threshold inverse computation
protocol Reciprocal on input RVSS-data[k]. Then they compute public value r' = ge (and r =
r' mod q) by running the distributed exponentiation protocol Exp on input RVSS-data[e].

Then the players create a secret-sharing RVSS-data[x'] of x'= m + xr by scaling the secret-

sharing RVSS-data[x] by a multiplicative factor r and an additive constant m using the Scale

procedure. Finally, the players compute public value s = kx' by running the distributed

multiplication protocol Mult on inputs RVSS-data[k] and RVSS-data[x'].

The n/4 value of the threshold is acquired from a n/4-threshold resistance of Mult (and

consequently of Reciprocal). In Section 4.4 we show that if these subprotocols are replaced

by their optimally-resilient versions then the resulting threshold DSS signature protocol is

optimally resilient too.

Definition 19 We call an execution of DSS-TSig (on inputs m E Gq, a correct joint
secret-sharing RVSS-data[x], and on y = g' where x is uniquely defined by RVSS-data[x])

successful if during this execution protocols RVSS, Reciprocal, Exp, and Mult performed in

Steps 1,2,3,5 of DSS-TSig were all successful.

Lemma 16 (Robustness of n/4-Threshold DSS-TSig)
Consider an execution of (1) protocol Ped-IG (Figure 7-1) on public input 1k, which outputs

a Pedersen commitment instance (p, q, g, h), (2) some protocol P on input (p, q, g, h), whose

outputs contain some joint secret-sharing RVSS-data[x] and a public value y = gX, and (3)
protocol DSS-TSig on inputs RVSS-data[x], y, and some element m E Gq.

Under the discrete logarithm intractability assumption, in the presence of a static secure-

channels n/4-threshold adversary (i.e. 4t+1 > n), if the output of P contains a correct joint

secret-sharing RVSS-data[x] E lZVSS-DATA(p,q,,h) and the public value y = g',a then for
every m c 29, the above instance of DSS-TSig is successful, except at most for a probability

negligible in k.
Furthermore, if DSS -TSig is successful then it outputs a valid DSS signature on m

under the public key y, i.e. a pair (r, s), such that r = (gms'Yrs-1 mod p) mod q, where the
inverse of s is computed modulo q.

99

100 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Statically Secure n/4-Threshold DSS -TSig, (4t + 1 < n)

Input: secret-sharing RVSS-data[x] of the secret key (see Fig. 4-7),

public key y = g, (hashed) message m C Zq to be signed
Adversarial Input: adversarial history ah

(including adversary's output in RVSS-data[x])
Public Output: (r, s), the DSS signature on message in under key y

1. Players compute RVSS-data[k] <- RVSS

2. Players compute RVSS-data[e] <- Reciprocal(RVSS-data[k]) to share e = k-1

3. Players compute r' <- Exp(RVSS-data[e], g) and then r - r' mod q

4. Players compute RVSS-data[x'] <- Scale(RVSS-data[x], IM, r)

5. Players compute ECSS-data[s] <- Mult(RVSS-data[x'], RVSS-data[k])

6. Players reconstruct ss -- ECSS -REC(ECSS-data[s])

Simulator SIMDSS-Tsig of DSS -TSig (interacting with A):

Public Input: public data in RVSS-data[x], public key y* E Gq,
(hashed) message i E Zq

SlMDSS-TSig's Private Input: private outputs of all Pi E Good in RVSS-data[x]
"target output" signature (r*, s*), two elements in Zq

A's Private Input: adversarial history ah

(including the adversary's output in RVSS-data[x])

1. SlMDSS-Tsig follows Step 1 of DSS-TSig on behalf of the uncorrupted players.

2. SIMDSS--TSig simulates Reciprocal on RVSS-data[k] with SIMRl of Figure 4-16.

3. SIMDSS-Tsig computes r'* = 9'/*(y*)'*/5* mod p and simulates Exp via SIM ,
of Figure 4-9 on input RVSS-data[e] and g and on SIMp's target output r'*.

4.-5. SIMDSsTSig follows Steps 4-5 of DSS-TSig on behalf of the uncorrupted players.

6. SIMDSS-TSig replaces the private data of the uncorrupted players via transforma-

tion ECSS-data[s*] <- TEcss(ECSS-data[s], s*) and participates in ECSS-REC on
the resulting ECSS-data[s*] on behalf of the uncorrupted players.

Figure 4-17: DSS -TSig: n/4-Threshold DSS Signature Generation

Proof: The lemma follows from the robustness of the building-block protocols RVSS,

Reciprocal, Exp, and Mult.

Assume that the discrete-log is intractable. Denote the protocol P in the statement

of this lemma as Po. By the robustness of RVSS (Lemma 4) it follows that in Step 1 the

players create a joint secret-sharing RVSS-data[k], except for negligible probability. If Step 1

does succeed, then by the robustness property of Reciprocal (Lemma 14), where protocol P

in that lemma is protocol P followed by Step 1 of DSS-TSig), Step 2 produces a correct

l-

4.3. THRESHOLD DSS SIGNATURES

joint secret-sharing RVSS-data[e] such that e = k-', again except for negligible probability.
If Step 2 succeeds too, then by the robustness property of Exp (Lemma 7, where protocol P
in that lemma is protocol Po followed by Steps 1-2 of DSS-TSIg), Step 3 produces a correct
joint secret-sharing RVSS-data[e] such that e = k-- 1, except for negligible probability. If
Step 3 succeeds then so does Step 4, because the correctness properties of RVSS-data[x']
are inherited from the correctness properties of RVSS-data[x]. Finally, if all these steps are
successful, then by the robustness property of Mult (Lemma 11), where protocol P in that
lemma is protocol Po followed by Steps 1-4 of DSS -TSig), Step 5 produces as public input
value s = kx' = k(m+ ±xr), except for negligible probability. Therefore, except for negligible
probability, r = (g1/k mod p) mod q, and 1/k = (m + xr)s-1 = ms-1 + xrs-1 mod q, and
thus g/k = gms- yrs- 1 mod p. Thus the lemma follows. E

We state the secrecy property of the DSS-TSig protocol in terms of an adversary who
participates first in the distributed key generation protocol DKG, which creates (via pro-
tocol RVSS) a secret-sharing RVSS-data[x] of a secret key x, and a public key y = g t (via
protocol Exp on input RVSS-data[x] and g), and second in an execution of DSS-TSig which
produces a DSS signature (r, s) on inputs RVSS-data[x], y, and some message m. We con-
sider the view of an adversary who participates in either the execution of these protocols
or in their simulation, to a random target public key y* and a random target DSS signa-
ture (r*, s*) of m under that key. Furthermore, we consider only instances of DSS -TSig on
correct RVSS-data[x] and y = g, and we consider only successful instances of such execu-
tions. Similarly we consider only successful instances of a simulation of DSS -TSig which on
simulator's input r*, s* produce this signature as a public output. We show in Lemma 17
below that the above two distributions of adversarial views are identical. In Theorem 3 we
extend the argument to prove this lemma to the case of a repeated execution of DSS -TSig
on a series of messages m 1 ,. , mp(k) adaptively chosen by the adversary.

Lemma 17 (Static Secrecy of n/4-Threshold DSS -TSig)
There exists a simulator SIM, such that for every n/4-threshold static secure-channels ad-
versary A with some adversarial history ah, for every discrete-logarithm instance (pq, g),
for every h C Gq, and for every m in Z7, the following adversarial views are identically

distributed:

* an adversarial view of the following sequence of protocol executions:

- a successful run of D KG (Figure 4-10) on public input (p, q, g, h) and adversarial
input ah, which outputs sharing RVSS-data[x] and a public key y (see remark 1
below).

- a successful run of DSS-TSig (Figure 4-17) on inputs RVSS-data[x], y, and m
(see remark 1 below).

* an adversarial view of the following simulation, where the uncorrupted players are
controlled by the simulator SIM:

- a successful simulation of DKG via simulator SIMDKG, Figure 4-10 (see remark 2
below), on public input (p, q, g, h), adversarial input ah, and simulator's SIMDKG

I..

101

III

102 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

target input value y* chosen uniformly in Gq. We denote the secret-sharing

created in this simulation as RVSS-data[x]

- a successful simulation of DSS-TSig via simulator SIMDSS--TSig, Figure 4-17 (see

remark 3 below), on inputs RVSS-data[x], y*,m and simulator's Sl MDSS-TSig tar-

get input value (r*, s*), where (r*, s*) is a random DSS signature on m under

the public key y* (i.e. r* = (gl/k* mod p) mod q and s* = k*(m + x*r*) mod q,

where x* = logg y*, and k* is chosen uniformly in Zq)

Less Formally: An adversarial view of an execution of the key generation protocol DKG

which outputs a sharing of a secret key RVSS-data[x and a public key y = gX, followed

by an execution of DSS-TSig on some message m, is the same as an adversarial view of a

simulation of DKG to a random target public key y* and a simulation of DSS-TSig to the

target a random DSS signature under y* on m.

Informally: A static secure-channels n/4-threshold adversary learns nothing new about

the secret key x from the DSS signature generation protocol beyond the resulting signature

(r, s) on message m. (Note that the adversary does know the public key y, which reveals

some information about x.)

Remark 1. Note that in the above statement we consider the adversarial view of only

successful executions of DKG followed by DSS-TSig. Recall that in such execution the joint
secret-sharing RVSS-data[x] output by DKG is correct, and the public key y is equal to gX

where x is defined in RVSS-data[]. Similarly, a successful instance of DSS-TSig, executed

on such inputs, outputs a valid signature (r, s) on m under the public key y (i.e. a pair

r, s C Zq s.t. r= (gm/s yT/s mod p) mod q).

Remark 2. Similarly as in Lemma 15 where we expressed the static secrecy of the Reciprocal

protocol, here by a "successful simulation of DKG via simulator SIMDKG" we designate an

instance of interaction between an adversary and the simulator SIMDKG of Figure 4-10,

in which the RVSS protocol performed on behalf of the uncorrupted players in Step 1

is successful, i.e. outputs a correct joint secret-sharing RVSS-data[x], and in which the

simulation via simulator SIMp.m of the Exp protocol in Step 2 is also successful, in the sense

that its public output is equal to y*, the input to SIMap, rather than to null. (Compare

Fact 1, page 74.)

Remark 3. In the same manner, by a "successful simulation of DSS-TSig via simulator

SIMDsS-Tsig" we designate an instance of interaction between an adversary and the simula-

tor SIMDSS-Tig, during which all the instances of protocols and simulations were successful

themselves. Namely: (1) The RVSS protocol performed by SIMDSS-TSig on behalf of the

uncorrupted players in Step 1 is successful; (2) The simulation of Reciprocal via SIMRpc in

Step 2 is successful (see Lemma 15 and a subsequent remark); (3) The simulation of Exp

via SIMap in Step 3 is successful (see a remark after Lemma 8); and (4) The execution of

Mult in Step 5 is successful.

It is easy to see, by the same argument as used in the proof of robustness of DSS-TSig

(Lemma 16 above), that if the above conditions are satisfied then the public output of this

simulation is a pair (r*, s*) which was an input to SIMDSS-TSig-

Remark 4. We do not use the above lemma directly to prove that a repeated execution of

the DSS-TSig protocol on different messages does not leak any new information about the

4.3. THRESHOLD DSS SIGNATURES

secret key. Such proof is an essence of proving the unforgeability property of the threshold
DSS scheme which utilizes the DSS-TSig protocol (i.e. Theorem 3, page 106). However, the
proof of Theorem 3 is a straightforward extension of the proof of this lemma. It should be
possible to express a property of the DSS -TSig protocol, which together with the "repetitive
secrecy" property of Mult stated in Lemma 13, implies Theorem 3 directly. Even though
the above statement does not seem to imply it, we include it to as an exercise which
builds confidence in the security of the threshold DSS resulting from a combination of the
distributed key generation protocol DKG and the threshold signature generation protocol
DSS -TSig.

Proof: The proof follows straightforwardly from the secrecy properties of the component
subprotocols used in DSS-TSig, i.e. from the secrecy properties of RVSS, Exp, Mult, and
Reciprocal.

The main thing to notice is that the distribution of the (y*, r'*, s*) triple used by the
simulator SIM are distributed as if they are picked according to the following process:
First elements x* and k* are picked uniformly and independently in Z, and then the
following computations are performed: y* = gr*, e* = (k*)-, r' ge, r* = r* mod q,

' = m+a*r*, and s* = k*x'*. By the secrecy of Mult, the adversarial view of the successful
executions of DKG and DSS-TSig is identical to its view of the following sequence:

Succ-RVSS - RVSS-data[x] (4.38)

TRVSS(RVSS-data[X], o) -> RVSS-data[x*] (4.39)

Succ-Exp(RVSS-data[x*]) -> y* (4.40)

Succ-RVSS -- RVSS-data[k] (4.41)

TRvss(RVSS-data[k], o) -> RVSS-data[k*] (4.42)

Succ-Reciprocal(RVSS-data[k*]) RVSS-data[e*] (4.43)

Succ-Exp(RVSS-data[e*]) -r* (4.44)
r'* mod q -> r* (4.45)

Scale(RVSS-data[x], m, r*) RVSS-data[x'] (4.46)

Mult(RVSS-data[', k]) -> ECSS-data[s] (4.47)
TECSS(ECSS-data [s], s* = k*(m + x*r*)) -> ECSS-data[s*] (4.48)

ECSS-REC(ECSS-data[s*]) -> s* (4.49)

(we use Lemma 13 for the case p(k) = 1), where k* and x* are chosen uniformly and
independently in Zq. We will argue that the above view is identical to what the adversary
sees in the simulation of DKG and DSS -TSig via the SIM procedure described in this lemma,
i.e. to the following sequence:

Succ-RVSS -+ RVSS-data[x] (4.50)

Succ-SIMExp(RVSS-data[x], y*) - y* (4.51)

Succ-RVSS -> RVSS-data[k] (4.52)

Succ-SIMRpeL(RVSS-data[k]) -> RVSS-datale] (4.53)

Flip !Impmmipmm

103

III

104 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Succ-SI M,(RVSS-data[e], r'*) -r* (4.54)

r'* mod q -> r* (4.55)

Scale(RVSS-data[x],m, r*) -> RVSS-data[x'] (4.56)

Mult(RVSS-data[x', k]) -> ECSS-data[s] (4.57)

TEcss(ECSS-data[s], s*) - ECSS-data[s*] (4.58)

ECSS-REC(ECSS-data[s*]) - s* (4.59)

where, as we have stated above, values y*, r*, s* are distributed as g, (91/k* mod p) mod q

and k*(m + x*r*) for uniformly chosen x*, k*.

Since y* is chosen uniformly in Gq, the equality of adversarial views of Steps [4.38; 4.39;

4.40] and [4.50; 4.51] is proven in Lemma 8, which expresses the secrecy property of protocol

Exp.

It thus remains only to show that given the adversarial view of Steps [4.50; 4.51] (or

[4.38; 4.39; 4.40], since they are the same), the adversarial view of Steps [4.52; 4.53; 4.54] is

the same as its view of [4.41; 4.42; 4.43; 4.44]. Note that the view of Step 4.54 is the same

as a view of a sequence

TRvss(RVSS-data[e], e*) -> RVSS-data[e*} (4.60)

Succ-Exp(RVSS-data[e*J) (4.61)

where e* = 1/k* = logg r'* and r'* is the value used by SIM. (This is argued in the proof of

the secrecy of Exp in Lemma 8.) Therefore a view of sequence [4.52; 4.53; 4.54] is the same

as a view of [4.52; 4.53; 4.60; 4.61].
Now note that by the secrecy property of Reciprocal, Lemma 15, since e* = 1/k* is

random in Zq, the adversarial view of the latter sequence is equal to the view of a following

sequence:

Succ-RVSS -> RVSS-data[k*] (4.62)

Succ-Reciprocal(RVSS-data[k*]) -+ RVSS-data[e*] (4.63)

Succ-Exp(RVSS-datae*]) -+ r* (4.64)

Therefore, by the secrecy property of RVSS, Lemma 6, this view is the same as the view of

sequence [4.41; 4.42; 4.43; 4.44]. Hence the lemma follows. H

Threshold DSS Signature Scheme

We can now prove the security of an n/4-threshold DSS signature scheme TSS, which

consists of the triple of protocols Ped-IG+DKG, DSS-TSig, and Ver,1 0 where:

o Ped-IG+DKG denotes a sequence of two protocols executed one after the other, first

the protocol Ped-IG of Figure 7-1 in which the participating players on input a security

parameter pick a Pedersen commitment instance (p, q, g, h), and then the "proper"

distributed key generation protocol DKG of Figure 4-10

10 See the definition of a secure signature scheme in Section 2.4.

. lfl-,

4.3. THRESHOLD DSS SIGNATURES

" DSS-TSig is the threshold DSS signature generation protocol of Figure 4-17

" Ver is the DSS verification algorithm described in Section 4.3.1

Technically, Lemma 17 shows that a successful execution of the DKG protocol followed by a
single successful execution of the threshold signature protocol DSS -TSig can be simulated to
the target of a random public key and a random DSS signature under that key. It turns out
that a similar argument, but based on the secrecy property of the repetitive use of protocol
Mult, can show that a repeated successful execution of the DSS-TSig signature generation
protocol on different messages can also be simulated to a target sequence of random DSS
signatures under the given public key on the messages submitted by the adversary. This
implies that a threshold adversary who participates in an execution of the DKG protocol
followed by executions of DSS-TSig on the messages of his choice learns nothing useful
beyond the signatures output by these instances of DSS-TSig, at least in the case that all
the DSS -TSig instances were successful. We first notice, see Theorem 2 below, that the TSS
scheme is robust, and that in particular, under the discrete-log intractability assumption,
each of the DKG and DSS-TSig executions is indeed successful except for at most negligible
probability. It thus follows that under the discrete-log assumption there is at most negligible
statistical difference between the adversarial view of a random execution of the TSS scheme
and an execution in which all the instances of DKG and DSS-TSig are successful. This in
turn implies that, under the discrete-log assumption, we can reduce an adversary that breaks
the unforgeability property of the threshold DSS signature scheme TSS to an adversary that
succeeds in an adaptive chosen message attack against a traditional, i.e. centralized, DSS
signature scheme. The reason is that given the adversary of the first type we can build the
adversary of the second type by simulating the view of the first adversary based solely on
the answers of a DSS oracle. We prove this claim in Theorem 3 below.

For the theorem below see the definition of robustness of a threshold signature scheme in
Definition 3 in Section 2.4.

Theorem 2 (Robustness of n/4-Threshold DSS Scheme)
Under the discrete-log intractability assumption, TSS = (Ped-IG+DKG, DSS-TSig, Ver) is a
robust threshold signature scheme in the presence of a static secure-channels n/4-threshold
adversary.

Proof: The theorem follows straightforwardly from the robustness of DL-IG (Lemma 34),
the robustness of the h-IG+DKG=[h-IG;DKG] protocol (Theorem 1), and the robustness of
the DSS -TSig protocol (Lemma 16). Assume that discrete-log is hard. First, by the correct-
ness properties of Ped-IG=[DL-IG;h-IG] (Lemma 34), a Pedersen commitment (p, q, g, h) of
the required security parameter is always produced. By Theorem 1, page 76 the output of
DKG on (p, q, g, h) is a correct secret-sharing RVSS-data[x] and a public key y = g', except
for a probability negligible in the security parameter k. Secondly, every time the adversary
triggers an execution of the DSS-TSig protocol on RVSS-data[x], y, and m = SHA-1(M)
by broadcasting ' [sign, MI', then by the robustness of DSS -TSig, this protocol produces
as public output a pair (r, s) which is a valid DSS signature on M under the public key y,
except again for negligible probability. E

105

III

106 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

For the theorem below see the definition of CMA security of a signature scheme and of

unforgeability of a threshold signature scheme, i.e. Definition 1 and 2 in Section 2.4.

Theorem 3 (Static Unforgeability of n/4-Threshold DSS Scheme)

If the DSS signature scheme is CMA secure, then TSS = (Ped-IG+DKG, DSS-TSig, Ver)
is an unforgeable threshold signature scheme in the presence of a static secure-channels

n/4-threshold adversary.

Proof: Assume that there exists a static n/4-threshold adversary A that, with probabil-

ity higher than negligible, forges DSS after participating in the distributed key generation

protocol Ped-IG+DKG and in the multiple instances of the threshold DSS signature gener-

ation protocol DSS-TSig invoked on messages of his choice. In other words, assume that

A breaks the unforgeability property of TSS. We show that such attack can be translated

into an adaptive chosen message forgery against regular DSS. We accomplish this reduc-

tion by constructing an efficient algorithm SIM which, given access to an oracle ODSS that

implements a standard DSS signature scheme (see Definition 1 in Section 2.4 which defines

such an oracle), creates a DSS forgery with probability higher than negligible. (In terms of

Definition 1, the adversarial algorithm that forges DSS is the efficient algorithm SIM using

the above efficient algorithm A as a subprocedure.) The strategy of SIM is to first perform

the Ped-IG protocol on behalf of the honest players and then to simulate the DKG and the

DSS -TSig protocols to the adversary A via the simulation procedure SI MTSS of Figure 4-18

below.

We will first argue that it follows from the secrecy properties of the building block

subprotocols used in the TSS threshold scheme that the adversarial view of a random

successful execution of the TSS scheme is distributed identically to the adversarial view of

a random successful simulation of TSS via S I M. We then argue that under the discrete-log

assumption the adversarial view of a successful run of TSS is at most negligibly different

from its view of a random run of TSS. It will thus follow that if A has a higher than negligible

probability of creating a forgery then so does SIM. This will prove our theorem because the

assumption that DSS is CMA secure implies the discrete-log intractability assumption.

First notice that both an execution and a simulation of the TSS scheme starts with

an instance of protocol Ped-IG. Therefore, for every k and every initial adversarial history

ah, and for every (p, q, g, h) and ah', the public output and the adversarial output of some

instance of an execution of Ped-IG on inputs 1k and ah, we consider the remaining steps

of an execution of TSS executing on inputs (p, q, g, h) and ah', and the remaining steps

of simulation of TSS via SIM (i.e. the simulation procedure SIMTSS of Figure 4-18), also

executing on (p, q, g, h) and ah'. We call an execution of these remaining steps of TSS

the "TSS proper", and similarly we refer to its simulation via simulator SIMmsS as to the

"simulation of TSS proper".

We define a successful execution of TSS proper on public input a Pedersen commitment

(p, q, g, h) as an execution in which all the building block protocols are successful, i.e.:

(el) The initial DKG is successful (see Definition 15, page 76)

(e2) Each instance of the DSS -TSig protocol invoked by A is successful (see Definition 19,

page 99)

- Di

4.3. THRESHOLD DSS SIGNATURES

Simulation procedure for a threshold DSS signature scheme

1. On public input (p, q, g, h), SIMTSS triggers the DSS oracle ODSS on input (p, q, g).
The oracle then picks a random DSS secret key x*, chosen uniformly in Z, and

outputs a public key y* = gX* mod p.

2. SIMTss simulates to A the DKG protocol using the simulator SIMDKG of Figure
4-10 on public input (p, q, g, h) and on the simulator's SIMDKG private input the
target value y*. Note that a successful instance of such simulation creates a correct

secret sharing RVSS-data[x].

3. SIMqss performs the following loop until the adversary A broadcasts message

' [signed, M, (s, r)]1' such that Ver(y*, -A, (s, r)) = pass and such that a message

' [sign, M]' has not appeared on the broadcast channel before. In such case,

SIMTSS outputs M and the signature (s, r) as a valid forgery against the instance
of the DSS scheme chosen by the oracle ODSs.

(a) SIMTss waits till the adversary A broadcasts message ' [sign, M] ', i.e. till

A submits some message M to be signed by the threshold signature scheme
TSS.

(b) SIMTss gives M to the DSS oracle ODSS, which outputs a random DSS
signature (r*, s*) on M under the public key y*. Namely, it computes a
SHA-1 hash m E Z of M, picks k* uniformly in Z, and outputs r*

(gl/* mod p) mod q, and s* = k* (m + x*r*) mod q.

(c) SIMTss simulates to A the DSS-TSig protocol using the simulator

SIMDSS-Tsig of Figure 4-17 on input RVSS-data[x] established in the above

simulation of DKG, on public key y*, on message m, and on the simulator's

SIMDss-Tsig private input the target signature pair (r*, s*).

(To designate the variables involved in j-th instance of the above loop, we write

MW, m(V, k(i)*, etc.)

Figure 4-18: SIMmsS: Simulator for threshold DSS signature scheme TSS

Similarly we define a successful simulation of the TSS proper via SIMSS on public input

a Pedersen commitment (p, q, g, h) as an instance of an interaction of the adversary and

SIMSS which satisfies the following constraints:

(si) An instance of simulation of the initial DKG is successful in the sense of Remark 2 on

page 102. In other words, an instance of simulation of DKG via simulator SIMDKG in

Step 2 outputs a correct joint secret-sharing RVSS-data[x] and a public key y* rather

than null, where y* is an input to SIM (and to SIMDKG)

(s2) Each instance of simulation of the DSS-TSig protocol, i.e. each loop of Step 3 in

Figure 4-18, is successful in the sense of Remark 3 on page 102. In other words, each

instance of simulation of DSS -TSig via simulator SIMDSS-si of Figure 4-17 satisfies

the following conditions: (1) The RVSS protocol performed by SIMDSS-Tsig on behalf
of the uncorrupted players in Step 1 is successful (see Definition 13, page 66); (2)

1. 1. lop mmim"I" III.P.1

107

CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

The simulation of Reciprocal via SIMRl in Step 2 is successful (see Lemma 15 and a

subsequent remark); (3) The simulation of Exp via SIM p in Step 3 is successful (see

a remark after Lemma 8); and (4) The execution of Mult in Step 5 is successful (see

Definition 17, page 83).

Since A is an efficient algorithm let p(z) be a polynomial s.t. for all k the number of

messages that A submits for signing is upper bounded by p(k). We claim that for every

Pedersen instance (p, q, g, h) and adversarial history ah', the adversarial view of a random

successful execution of TSS proper is identically distributed to the adversarial view of a

random successful simulation of TSS proper. Note that in Lemma 17 we in fact already

proved a special case of the above statement for p(k) = 1, i.e. for a special case of an

adversary that asks for a signature on just one message.

From the "repetitive secrecy" property of Mult, Lemma 13, it follows that the adversarial

view of p(k) loops of a successful execution of TSS proper is distributed identically as the

adversarial view of the following process:

Succ-RVSS -+ RVSS-data[x] (4.65)

TRvss (RVSS-data[x], o, x*) -> RVSS-dataX*] (4.66)

Succ-Exp(RVSS-data[x*]) - y* (4.67)

followed by p(k) loops of the following process, for j = 1, ... ,p(k):

Succ-RVSS -> RVSS-data[k] (4.68)

TRvss(RVSS-data[ks], o, k) -* RVSS-data[kl (4.69)

Succ-Reciprocal(RVSS-data[k]) - RVSS-data[efl (4.70)

Succ-Exp(RVSS-data[e] -rl*(4.71)

r7 mod q -r* (4.72)

Scale(RVSS-data[xj, m , r) - RVSS-data[x](4.73)

Mult(RVSS-data[xk}]) -+ ECSS-data sy] (4.74)

TECSS(ECSS-data[s8], s) -> ECSS-data[sf](4.75)

ECSS-REC(ECSS-data[sj) -> s* (4.76)

where m's are SHA-1 hashes of messages M submitted by A, element x* is uniformly

chosen in Zq, and for each j element k* is uniform in Zq and s = kj(mg + x*r) where

r- (g mod p) mod q. Note that this is the same distribution as that of a random secret

key x* and random DSS signatures (r7, s) under the public key y* = g* for each m.

First, note that, by the secrecy property of Exp, the adversarial Steps (4.65-4.67) is

identical to its view of a successful simulation of DKG via SIMmsS. Secondly, note that for

every j, the (4.68-4.76) sequence of Steps is the same as Steps (4.41-4.49) in the proof of

Lemma 17. Therefore we can apply the same argument as used in the lemma and it follows

that the adversarial view of such sequence, for each j, is distributed identically its view of

the following loop:

Succ-RVSS --> RVSS-data[kj]

108

(4.77)

4.3. THRESHOLD DSS SIGNATURES

Succ-SIMRpc(RVSS-data[ks]) -* RVSS-data[es] (4.78)

Succ-SIMap(RVSS-data[ej], r*) -- r* (4.79)

r * mod q -> rj (4.80)
Scale(RVSS-data[xJ, mj, r) -> RVSS-data[xjj (4.81)

Mult(RVSS-data[x, k1]) -> ECSS-data [s] (4.82)

TYcss(ECSS-data[si], s) -> ECSS-data[sfl (4.83)

ECSS-REC(ECSS-data[s7]) -+ si (4.84)

where values r*, s* are distributed as (giltk mod p) mod q and k*(mg +x*r4) for a uniformly
chosen k and for x* = logg y*. Since the above sequence is exactly what happens in
a successful simulation of TSS proper, this shows our claim, that adversarial views of a
successful execution of TSS proper and its successful simulation are identical.

Now, by the robustness property of TSS, under the discrete-log intractability assumption
a random execution of TSS proper is successful except of at most negligible probability. It
follows that for every (p, q, g, h), ah' output by Ped-IG on 1k, ah, there is at most negligible
statistical difference between the adversarial views of a random execution of TSS proper
and a random simulation of TSS proper via SIMss. Therefore, for every 1k and ah, there
is also at most negligible statistical difference between the adversarial view of a run of
TSS and its simulation via SIM. It follows (refer to Definition 2, page 34) that if there
is a higher than negligible probability that A forges, i.e. that an adversarial run out,,A(k)
of TSS with A contains a public key y and a message [signed,M, (s, r)] such that
Ver(y, M, (s, r)) = pass, but no request '[sign, M], then there is also a higher than
negligible probability that the public output of a simulation of TSS via SIM has the same
property, i.e. that it contains a public key and A's forgery under that key. Since a public
key such transcript can contain is necessarily equal to y* given to SIM by ODSS, it follows
that SIM breaks the CMA security of centralized DSS, which completes the proof. H

Theorem 4 If the DSS signature scheme is unforgeable under the adaptive chosen mes-
sage attack, then TSS = (Ped-IG+DKG, DSS -TSig, Ver) is a secure n/4-threshold signature
scheme.

Proof: Follows immediately from Theorems 3 and 2.

109

CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

4.4 Optimally Resilient Threshold DSS Signatures

We present protocols that lead to an optimally resilient n/2-threshold DSS signature scheme.

The crucial piece is the n/2-threshold multiplication protocol Mult-opt of [GRR98] and the

simultaneous proof protocol. This section is based on material which appeared in [CGJ+99].

4.4.1 Simultaneous Zero-Knowledge Proof

Some protocols we propose (for example the Mult-opt protocol presented in the following

section) achieve robustness against a minority of faults by having each player perform a

zero-knowledge proof of knowledge. However, one should employ zero-knowledge proofs

in distributed protocol with care. Note that if every player engages in n zero-knowledge

proofs with n other players, each acting as a verifier, then we need to employ proofs that

remain zero-knowledge when performed in parallel with polynomially-many dishonest ver-

ifiers. Furthermore, to prove robustness of the resulting distributed protocols, we need

to use proof systems which remain proofs of knowledge when performed in parallel with

polynomially-many dishonest provers.

Rather than designing efficient parallelizable zero-knowledge proof of knowledge systems,

we give a general technique of a simultaneous proof protocol, which achieves the effect of

0(n2) zero-knowledge proofs of knowledge (where each of the n players proves something to

each of the other players) in a single 3-move public-coin honest-verifier zero-knowledge proof,

where the public coin is implemented with a distributed generation of a random challenge

by all the participating players, i.e. with a coin-flip protocol.1 ' The idea to implement

in this way a parallel execution of honest-verifier public-coin zero-knowledge proofs in the

threshold setting appeared in [BMR90].

Consider a Three-round Honest-verifier Public-coin Zero-knowledge Proof of knowl-

edge system. We will designate such proof systems by an acronym THPZP. Let 1Z be

a polynomial-time computable relation, i.e. a set of pairs (y, w) for which there exists a

fixed polynomial p(z) such that w I < p(ly) for each (y, w) C 7., and for which there exists

a polynomial-time algorithm which given a pair (y, w) decides if it is in 7Z. (From now on,

we will simply say "relation" when we mean a polynomial-time computable relation.) It

follows that L = {y|3-, (y,w) E 7Z} is in NP, because for each y E L there exists a

short (polynomial in y) proof of membership of y in LR. A THPZP proof for relation R
is a protocol between two machines, a prover P and a verifier V acting on common input

an element y, called a "public value", in which P can show to V knowledge of element

W s.t. (y, w) E R, called a "witness" of y in LR. In Appendix F we give formal defini-

tions of the proof-of-knowledge property (Definition 28) and the honest-verifier public-coin

zero-knowledge property (Definition 30) of the THPZP proof system. Because the THPZP

proof takes only three rounds and assumes an honest verifier which only picks a public coin,

such proof system is fully specified by a triple of algorithms P(), V, p(2), and a function

D : {0, 1}* --+ {0, 1}*, s.t. D(y) is a distribution according to which an honest verifier should

pick a public random coin, when proving knowledge of a witness for a given public input y.

"Recall that 3-move zero-knowledge proofs cannot exist for cheating verifiers if the underlying problem
is not in BPP [GK96, IS933. Thus, the distributed nature of the verifier in our implementation is essential
for "forcing honesty".

110

4.4. OPTIMALLY RESILIENT THRESHOLD DSS SIGNATURES

Assume that a triple of algorithms PM), V, p(2) specifies a discrete-log based Three-round

Honest-verifier Public-coin Zero-Knowledge Proof-of-knowledge proof system TH PZP for

relation 7Z.

The THPZP proof proceeds as follows:

Public Input: public value (p, q, y) in LR, s.t. p, q are primes and q divides p - 1
Prover's Input: witness w s.t. ((p, q, y), w) E7Z

P - V: M <-- P()((p, q, y), w, r) where r is P's random input
P <- V: Random coin R, called a "challenge", chosen uniformly in Zq
P - V: m <- P(2)((p, q, y), w, R, r)

V: Accepts the proof if the verification V(m, R, M, (p, q, y)) accepts

(See Figures F-1, F-2, and F-3, for examples of such THPZP proof systems.)

Figure 4-19: Framework for a THPZP Proof System

In Figure 4-19 we describe the framework for a discrete-log based THPZP proof system.

It considers only discrete-log based THPZP's (Definition 26, Appendix F), i.e. proof systems

for relations in which a public value in L'y always includes a pair of primes p, q s.t. q

divides p - 1, and the distribution D(y) according to which an honest verifier should pick

its public coins is always a uniform distribution over Zg. This is a property of all the

THPZP's we enumerate in Appendix F, namely Schnorr's [Sch9l] proof system THPZP-DL

(Figure F-1) of knowledge of discrete logarithm, a proof system THPZP-Rep (Figure F-2)

of knowledge of (equal) representations in some bases, and Cramer-Damgard [CD98] proof

system THPZP-MULT (Figure F-3) of knowledge of three committed values which stand in

a multiplicative relationship.

Assume that THPZP = (PM, V, P(')) is a discrete-log based three-round honest-verifier

public-coin zero-knowledge proof of knowledge system for some relation R. The simultane-

ous proof protocol SP-THPZP based on the proof system THPZP runs on public inputs a

Pedersen commitment instance (p, q, g, h) and a vector of public values -7= (yi, ..., yn) such

that each (p, q, yi) is in LIZ. The private input of each uncorrupted player Pi is a witness

wi such that ((p, q, y), wi) c R, and a random input ri. First each player Pi follows algo-

rithm P)((p, q, y), w, ri) and broadcasts the generated commitment Mi. Then the players

perform the coin-flip protocol to generate a challenge R, a random number in Z, i.e. they

perform the RVSS (Figure 4-6) to generate a secret-sharing RVSS-data[R], and then publicly

reconstruct R by performing RVSS -REC (Figure 4-6) on this secret-sharing. Each player Pi

then broadcasts its response m = =p)((p, q, y), w, R, r2). Finally, each player applies the

test V(mi, 7R, Mi, (p, q, y,)) for each Pi to determine if Pi passes the proof. Clearly, if the

RVSS and RVSS -REC protocols do not fail then all the uncorrupted players make the same

decision as to which players pass the simultaneous proof.

To prove that the uncorrupted players do not leak any information to the adversary

during the simultaneous proof protocol, we need an additional property of the THPZP

proof system we use. Namely, we need the THPZP proof system to be coin-first simulatable

ill

CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

(Definition 31, Appendix F), which means that its zero-knowledge property is exhibited by a

simulator SIM which, on input only the public value y = (p, q, y'), first chooses the verifier's

coin R at random in Zq, and then generates the rest of the transcript, i.e. messages M*, m*

which stand for the prover's messages to the verifier. This property of a THPZP proof

system allows us to construct an efficient simulator for a simultaneous proof protocol based

on such THPZP. We notice that all the THPZP proof systems we enumerate in Appendix F

",M"

Simultaneous Proof Protocol SP-THPZP, (2t +1 n)

Underlying THPZP Proof System: Assume a triple of algorithms p('), V, p(2)
specifies a discrete-log based coin-first simulatable THPZP proof system (see Figure

4-19) for some relation R. Let SIMTHPZP be the simulator that exhibits the coin-first

simulatable property of this proof system (see Definition 31 in Appendix F.)

Public Input: Pedersen commitment instance (p, q, g, h)
public values yi, ... , y7, s.t. each y E LR

Private Input of P2 : witness wi s.t. ((p, q, yi), wi) E 7
A's Private Input: adversarial history ah

1. Each Pi broadcasts Mi = P(M((p, q, yi), wi, ri) for random ri C Zq

2. Players perform protocol RVSS followed by RVSS -REC (Figure 4-6) to create a

secret-sharing RVSS-data(R] and then reconstruct publicly the shared value R. If

RVSS-REC outputs null then the players abort the protocol.

3. Each Pi broadcasts i = P(2)((p, q, yi), wi, R, ri). If V(mj, R, Mj, (p, q, y)) is not

satisfied then each Pi removes Pj from Qual, and we say that Pi fails SP-THPZP.

Simulator SIMsp of SP-THPZP (interacting with A):

Public Input: Pedersen commitment instance (p, q, g, h), values yi ... ,y

SI M Sp's Input: Pedersen's trapdoor a-= log, h

A's Private Input: adversarial history ah

1. SIMgp picks random R* C Z, and for each uncorrupted player Pi E Good, it runs

the simulator SI MTHPZP on instance (p q, g), public value yi, and coin R*, to get

messages (Mi*,)nfl. SI Mgp then broadcasts values Mi*, for Pi E Good

2. SIMs3 follows RVSS on behalf of the uncorrupted players to create secret-sharing

RVSS-data[R], replaces the data of the uncorrupted players as RVSS-data[R*] =

TRvss(RVSS-data[R], R*, -) and performs RVSS -REC on RVSS-data[R*1 on behalf

of the uncorrupted players as in Step 2 of SP-THPZP.

3. SIMsp broadcasts values m*, for Pi E Good, on behalf of the uncorrupted players.

Figure 4-20: Framework for a Simultaneous Proof Protocol SP-THPZP

112

4.4. OPTIMALLY RESILIENT THRESHOLD DSS SIGNATURES

are coin-first simulatable.12

In Figure 4-20 we present a framework for a simultaneous proof protocol, together with
a simulation procedure for such protocol. We designate an instantiation of the simultaneous
proof protocol by acronym SP-X if it is based on a (discrete-log based coin-first simulatable
THPZP) proof system X. For example, by SP-THPZP-DL we designate the protocol of
Figure 4-20 where triple (POD, V, P(2)) is a THPZP-DL proof system (Figure F-1).

Lemma 18 (The Simultaneous Proof Protocol is Zero-Knowledge)
Let (p, q, g, h) be a Pedersen commitment instance. Let THPZP be a discrete-log based coin-

first simulatable three-rounds honest-verifier public-coin zero-knowledge proof-of-knowledge
proof system for relation R. For every static secure-channels n/2-threshold adversary A with

some adversarial history ah, for every vector of public values j = (yi,..., yn) and witnesses
w = (wi, ... , w,) s.t. ((p, q, y),wi) c CR for each Pi £ Good, the following two variables have
identical distribution:

* an adversarial view of an execution of SP-TH PZP on public inputs (p, q, g, h, i), pri-
vate inputs wi of each player Pi C Good, and adversarial input ah

* an adversarial view of a simulation of SP-T H PZ P on public inputs (p, q, g,h,), sim-
ulator's SIMgp input - = logg h, and adversarial input ah

Informally: A static adversary learns no information about the witnesses w held by the
uncorrupted players Pi C Good from participating in the simultaneous proof protocol.

Proof: It follows from the coin-first simulatability property of the THIPZP proof system
(Definition 31) and from the secrecy property of the (RVSS,RVSS-REC) coin-flip protocol
expressed in Lemma 6.

Namely, first, by Lemma 6, the adversarial view of Step 2 of SIMsp (Figure 4-20), i.e. a
view of an execution of RVSS followed by a simulation of RVSS-REC to output R* picked by
SIMSp, is identically distributed to the adversarial view of an execution RVSS followed by
an execution of RVSS-REC, as in Step 2 of the SP-THPZP protocol. Secondly, by the coin-
first simulatability property of the THPZP proof system (see Definition 31), it follows that
for each P E Good, messages (M, *n) are distributed identically to what the adversary
expects to see in the SP-THPZP protocol which generates challenge R*. Thus the lemma
follows.F-

The zero-knowledge property of the simultaneous proof protocol implies also the following
witness-hiding property:

Lemma 19 (The Simultaneous Proof Protocol is Witness-Hiding)
Let (p, q, g, h) be a Pedersen commitment instance. Let THPZP be a discrete-log based coin-

first simulatable three-rounds honest-verifier public-coin zero-knowledge proof-of-knowledge
proof system for relation R. For every static secure-channels n/2-threshold adversary A

1
2 In a similar vain, to prove the equivalent of the proof-of-knowledge property for the simultaneous proof

we put additional restriction on the extractor that exhibits the proof-of-knowledge property of the underlying
THPZP. See the discussion preceding Lemma 20 for more details.

113

"Film- IF - M-Mt

III

114 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

with some adversarial history ah, for every vector of public values Y = (y,..., y,) and

every two vectors of witnesses V= (wi, ...,wn) and i' = (w',...,w') s.t. ((p,q, yi),wi) C
R and ((p, q, y), w) c R for each Pi c Good, the following two variables have identical
distributions:

" an adversarial view of an execution of protocol SP-THPZP on public inputs (p, q, g,Ih,

j), private inputs wi of each player Pi e Good, and adversarial input ah

* an adversarial view of an execution of protocol SP-THPZP on public inputs (p, q, g,Ih,

W), private inputs w of each player Pi E Good, and adversarial input ah.

Proof: This lemma is immediately implied by Lemma 18, just like a zero-knowledge prop-

erty of a proof system implies its witness-hiding property. Namely, we note that Lemma 18

states that both the distribution D of an adversarial view of a run of SP-THPZP on inputs

(p, q, g, h, ',w, ah) and the distribution D' of such view of a run of SP-THPZP on inputs

(p, q, g, h, j, C', ah) are identical to the distribution of an adversarial view of a simulation

on public inputs (p, q, g, hg), SIMsp's input a and adversary's input ah. Thus in particular

D and D' are identical. C

We would like to claim the following robustness property of the simultaneous proof pro-

tocol. Namely, that if any player Pi controlled by the adversary has a higher than negligible

chance of passing in a simultaneous proof on public value y, then a correct witness w s.t.

(yi, wi) c 7Z can be efficiently extracted from such adversary. However, the construction

of an extractor that exhibits such property seems to require that the proof-of-knowledge
property of the underlying THPZP proof system is exhibited in a particular way. Namely,

that the extractor which exhibits the proof-of-knowledge property of the underlying THPZP

system, on input a public value y, queries the prover by sending to it only true random

coins, picked uniformly in Zq. This is because the random challenges in the SP protocol are
generated via the coin-flip protocol (RVSS;RVSS-REC), which means that only a uniform

distribution of coins (or computationally indistinguishable from uniform) can be simulated

to the adversary. Since we consider only discrete-log based THPZP proof systems, this is

equivalent to requiring that their extractors generate challenges in distribution D(y) speci-

fied by the THPZP proof system. In Definition 29 in Appendix F we define such extraction

as oblivious extraction. We note that all the THPZP proof systems we include in Appendix

F have oblivious extractors.

Lemma 20 (The Simultaneous Proof is a Proof of Knowledge)
Let THPZP be a discrete-log based three-rounds honest-verifier public-coin zero-knowledge

proof-of-knowledge proof system for a relation R, with knowledge error at most K(|y|)
2-c'v1 for some constant c > 0. Assume furthermore that THPZP has an oblivious extractor.

Consider an execution of the following sequence of protocols: (1) protocol Ped-IG (Figure

7-1) on public input 1 k, which outputs a Pedersen commitment instance (p, q, g, h), (2)

some protocol P on input (p, q, g, h), whose public output contains a vector of values g =

(yi, ... , yn) and whose private inputs of each uncorrupted player Pi contain a witness wi s.t.
((p, q, yj), wi) c 'P, and (3) protocol SP-THPZP on inputs (p, q,g,Ih,jCt).

. ll

4.4. OPTIMALLY RESILIENT THRESHOLD DSS SIGNATURES

Under the discrete logarithm intractability assumption, for every polynomial p(z) there
exists an efficient (PPT TM) algorithm Esp, such that for every static secure-channels
n/2-threshold adversary A the following two properties hold:

1. EsP interacts with A on common input 1 k by performing the above specified sequence
of protocols Ped-IG, P, and SP-THPZP on behalf of the uncorrupted players.

(However, Esp is allowed to interact with a copy of algorithm A on the side.)

2. There exists ko s.t. for all k > ko, with probability at least 1 - 1, the extractor tsp

produces as a private output a set of witnesses {wi}PEBadQ,,l st. ((p, q, yg), wi) E R
for every Pi E BadQual where BadQual = Bad f Qual is the set of players who are
corrupted but who passed in the above instance of SP-THPZP.

Proof: The proof is an elementary application of the proof-of-knowledge (with an oblivious-
extractor) property of the underlying proof system and the fact that under the discrete-log
assumption the coin-flip protocol produces coins with a distribution at most negligible
different from uniform, and hence the witnesses of the corrupted players who pass the proof
can be extracted (except for at most negligible probability) from their responses to repeated
execution of the coin-flip protocol. We fill in the details of this argument below.

Let BadQual = Bad n Qual be a non-empty set of corrupted players which pass the
SP-THPZP protocol in the above interaction of & and A. Let (p, q, g, h, g, td, ah) be the
inputs to this instance of SP-THPZP, and let rA be the random input used by A in this
instance of sequence Ped-IG, P, and SP-THPZP. Let re be the random input used by £
in this interaction during Ped-IG, P, and Step 1 of SP-THPZP. For any polynomial p(z)
we consider two types of players in Bad: Set Si of those players whose probability of
passing the simultaneous proof on these inputs is at least T(k) = p), and set S2 of
those players for whom it is lower, where the probability is taken over the random coins
of the uncorrupted players (i.e. the extractor E who controls them) used in the remaining
steps of SP-THPZP. We will show a polynomial p'(z) s.t. by interacting with a copy of
A executing on the same public, private, and random inputs as in the original interaction,
machine E, running in time p'(k), extracts the witnesses wi for all players Pi E S except for
probability at most 1 for all large enough k. Since the event that any player in S2 passes2p(k)
the proof in the original interaction of A and E (i.e. the event that S 2 n BadQual $ 0)
happens with a probability smaller than tTp(k) (this is because in the worst case set S2
has t elements), it will follow that for all large enough k, except of probability at most
tT,(k) + 2pk) < nTp(k) + 2pk) < 14, machine & learns witnesses wi for all players in
BadQual. Since this is true for any polynomial p(z), as well as any (p, q, g, h, j, w , ah) and
rA, r, the lemma will follow.

At the end of the interaction with A, machine & repeats the following interaction with a
copy of A for p'(k) times, where p'(z) is a polynomial we will define below. In each of these
interaction machine A runs on the same random input rA as in the "original" interaction
with S. In each of the p'(k) new interactions with A, machine & simply performs the
prescribed sequence of protocols Ped-IG, P, and SP-THPZP, on behalf of the uncorrupted
players, using the same randomness rg throughout protocols Ped-IG, P, and in Step 1 of
protocol SP-THPZP, but using fresh randomness in the remaining steps of SP-THPZP.

.11. -lip III pq ! .q Ipp N..

115

116 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Then S gathers all the transcripts of an interaction with each Pi E BadQual (i.e. generated

coins RQW and the responses m') of Pj for j= 1, .. ,p'(k)) and uses the same procedure as

the oblivious extractor of the underlying THPZP proof system to compute a witness zi s.t.

((p, q, y), wi) c R. (For each Pi the inputs to this extraction procedure are (p, q, g, h, gi, M)

and {RW), m?)j=1,...,p'(k).) Note that the oblivious extractor might not output any witness

for some Pi's. However, as we argue below, for all large enough k, this extraction does work

for all players PiC Si except for at most 2p(k) probability.

Notice that since in protocols Ped-IG and P both sides used the same randomness, these

protocols have the same outputs (p, q, g, h, w, a h). Moreover, since both sides continue to

use the same randomness in Step 1 of SP-THPZP, the commitment messages Mi sent by

all corrupted players in that step are the same as in the original run of SP-THPZP. Note

that for each player Pi E Si, the probability that a single interaction of A and £ produces a

valid transcript of the THPZP proof under the public value y is at least T(k) for all large

enough k (where the probability is taken over the random coins that S uses in Steps 2-3

of SP-THPZP in this interaction). Since THPZP is a proof of knowledge with knowledge

error at most 2-ck, and since its extractor is oblivious, it holds for each Pi c Si that there

exist polynomial q(z) such that for all large enough k, if the random coins R(1), ... , R(P(k))

were distributed independently and uniformly in Zq and if the oblivious extractor is used on

p'(k) > q(k)/ (T(k) - 210)instances of the THPZP proof then it outputs a correct witness

wi except for probability at most 2-(pqy)I < 2 -.

Now, under the discrete-logarithm assumption, by the robustness property of RVSS and

RVSS -REC (Lemmas 4 and 5), each instance of the coin-flip protocol of Step 2 of SP-THPZP

passes except of negligible probability. Furthermore, coin RU) created in the j-th successful

instance of RVSS is distributed uniformly in Zq. It follows that, for every instance of the

interaction of S and A, the statistical difference between the distribution of the public coin

created in this instance and the uniform distribution over Zq is a negligible function of k. It

follows in particular that the statistical difference between the string of coins R(), ..., R(P'(k))

produced in this interaction and a uniform distribution over (Zq)P'(k) is at most 2n(k) for
all large enough k.

Putting the two facts together we have that for all large enough k, for all Pi E Si, the

extractor £ learns a witness w for yi except for probability at most 2-k +2 1 1

Therefore the probability that there is some Pi in S whose witness is not learned by E is

at most tI < 21 for all large enough k. By the argument of the previous paragraphs,

this completes the proof of the lemma. E

4.4.2 Optimally Resilient Multiplication of Shares

We include the n/2-threshold multiplication protocol Mult-opt of [GRR98], modified by the

use of a simultaneous proof to implement the zero-knowledge proofs between each pair of

players. 13 The idea of the protocol of [GRR98] is to simplify the multiplication protocol of

[BGW88] and not to rely on error-correcting codes for resilience, as in the n/4-threshold

Mult protocol of Section 4.3.3. They achieve it by making a fuller use of the verification

13In the original proposal of [GRR98], robustness was provided by pairwise zero-knowledge proofs of

knowledge, which was less efficient.

- ,Il

III

4.4. OPTIMALLY RESILIENT THRESHOLD DSS SIGNATURES

information supplied by Pedersen verifiable secret-sharing. Assume for simplicity of ex-
position that n = 2t + 1. Assume that secrets a, b are shared with RVSS-datat[a, b] and

that we want to compute a sharing RVSS-datat[v] of v = ab. Note that each player Pi
holds shares a&,/i of t-degree polynomials f and fb, and hence each player holds value
vi = Aai~i s.t. v = ab = E' vi for appropriate Lagrange interpolation coefficients A.
Therefore, if each Pi creates a sharing PedVSS-data[vi] by running Pedersen secret-sharing
protocol PedVSS on input vi, and then all these sharings are added together as in the RVSS

protocol, then the result is a joint secret-sharing RVSS-datat [v]. Note that this is the same
protocol as RVSS (Section 4.2.4), except that instead of sharing a random value, each player

Pi shares input vi = Aai/3 derived from its private shares ai, /i in RVSS-dataa, b].
To ensure that every player shares a correctly computed vi, each player performs a zero-

knowledge proof that value vi committed to in F (0), the verification information which is

a part of the created sharing PedVSS-data[vi], is a product of values ac and A/3i committed
to in Fa(i) and (Fb(i))Xi. To guarantee robustness of this protocol we need these proofs
to be proofs of knowledge, so that proper witnesses can be efficiently extracted from any

cheating players. We can achieve the effect of having each pair of parties conduct such proof

between one another with a simultaneous proof protocol presented in the previous section.
Therefore the ZKPK proof system we need must be a three-move public-coin honest-verifier

zero-knowledge proof of knowledge, which is coin-first simulatable and has an oblivious

extractor. Cramer and Damgard [CD98] proposed such proof system for proving knowledge
of values a, b, c = ab committed in public commitments A, B, C. We recall this proof system,

which we denote as THPZP-MULT, in Figure F-3 in Appendix F.
Since v = EPiPat vi, if any player Pk is caught cheating, the other players recover

the missing share Vk = Akack by reconstructing shares 0 k and 3k with protocol Recon.
We present the Recon protocol in Figure 4-22 as a reconstruction of Ak from RVSS-data[a]

only. Clearly, reconstruction of 3 k from RVSS-data[b] works the same way and should be

performed in parallel. Recon relies on the fact that each polynomial share ak in RVSS-data[a]
is itself additively shared as ak = EpjCQuI o ik, in the same way that the generated secret a
is additively shared as a sum of Pi's inputs a. Note that to reconstruct ak we need to

also publicly reconstruct akk, which might not be broadcast by the already faulty player
Pk. We reconstruct this missing additive share by reconstructing the whole secret-sharing

polynomial fak, fdk in the standard way (i.e. via reconstruction of PedVSS-data[ak] shared
by Pk). Note that the values that are published in Recon are already known to the adversary
who corrupted player Pk.

Efficiency Considerations. In case of malicious failures protocol Mult-opt resorts to its

subprotocol Recon to reconstruct the needed shares of the faulty players. This subprocedure

is invoked for every fault, and furthermore, procedure Recon itself is restarted every time

a malicious fault occurs within it. However, note that there can be a total of t faults
within the lifetime of any threshold cryptosystem, because every time a corrupted party
exhibits a fault, it is removed permanently from the set of the participating players. Thus
the amortized additional cost incurred by running all the required instances of the Recon

protocol is negligible.
For notational purposes we introduce a notion of a successful execution of Mult-opt,

defined below in a similar to a successful execution of Mult.

117

PF RFMF .. I...., . . - - . . I INMPRNIMMWWP P 11MMINIM.1 1 .1 11 PWR .

118

III

CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Statically Secure n/2-Threshold Mult-opt, (2t + 1 < n)

Input: sharings RVSS-datat[a] and RVSS-datat[b] (See Fig. 4-7)
Public Output: sharing RVSS-datat[v] where v = ab

1. Let Part be an arbitrary set of 2t + 1 players. Each player Pi E Part computes

its additive share vi = AaiQi of v for appropriate interpolation coefficients A.

2. Players perform a RVSS protocol, where each player in Part uses vi as its input

instead of picking it at random (players not in Part do not participate as dealers,

only as receivers). Denote the created data as RVSS-data[v].

3. Each Pi proves that vi committed in F4 (0) is the product of ao and Ap3 in Fa(i)

and (Fb(i))Ai. To do that, the players perform a simultaneous proof protocol SP-
THPZP-MULT of Figure 4-20 based on the [CD98] proof system THPZP-MULT
(Figure F-3, Appendix F).

4. If some Pk fails either in this proof or in the RVSS sharing of Step 2, his input val-

ues ak, /
3

k are reconstructed from RVSS-data [a, b] via the reconstruction protocol

Recon of Figure 4-22, his vk is publicly computed, and other players incorpo-
rate it in the RVSS-data[v] data, for example by taking constant secret-sharing
polynomials fvk(z) = Vk, fosk(z) = 0.

Figure 4-21: Mult-opt: n/2-Threshold Multiplication of Two Shared Secrets

Definition 20 We call an instance of protocol Mult-opt executed on correct joint secret-

sharings RVSS-data[a, b] successful if and only if (1) the RVSS protocol performed in Step 2,

Figure 4-21, is successful; (2) Each vi, Pi E Bad, shared in that step is correctly computed,

i.e. it is equal to vi = Aiaj where ci, /Ji are defined by RVSS-data[a, b]; (3) If some player

Pi C Bad is disqualified in Step 2 then the subsequent reconstruction of their shares a, fi
via protocol Recon is successful, i.e. proper shares defined by RVSS-data [a, b] are publicly

reconstructed as a, /Ji, and thus the proper value vi = Aia;3i is publicly computed.

Lemma 21 (Robustness of n/2-Threshold Mult-opt)
Consider an execution of the following sequence of protocols: (1) protocol Ped-IG (Figure

7-1) which on public input 1k outputs a Pedersen commitment instance (p, q, g, h), (2) some

protocol P which on input (pq, g, h) produces outputs which contain two instances of joint

secret-sharing RVSS-data[a, b], and (3) protocol Mult-opt on input RVSS-data[a, b].

Under the discrete logarithm intractability assumption, in the presence of a static secure-

channels n/2-threshold adversary (i.e. 2t+I1 > n), if the output of P contains two instances

RVSS-data[a, b] £ RVSS-DATA(p,q,g,h) then, except for probability negligible in the security

parameter k, the above instance of Mult-opt is successful.

Moreover, such instance of Mult-opt outputs a correct joint secret-sharing RVSS-data[v]

s.t. v = ab where a and b are defined by RVSS-data[a, b].

Proof: Assume that the discrete logarithm problem is intractable. Assume that there is a

higher than negligible probability that some n/2-threshold adversary (a non-uniform family

.- r

4.4. OPTIMALLY RESILIENT THRESHOLD DSS SIGNATURES

Share Reconstruction Protocol Recon, (2t + 1 < n)

Input: joint secret-sharing RVSS-data[a]
the identity of the guilty party Pk

Public Output: polynomial share a& held by Pk, contained in RVSS-data[a]

1. Each Pi broadcasts aik, &ik, the shares Pi sent to Pk during formation of

RVSS-data[a], and ai, ctki, the shares Pk sent to Pi

2. Each share ack, cik is publicly verified against the verification data F,. If

gaik h&ik J F (k) then Pi is faulty and its shares aik, ik, together with the whole
secret-sharing polynomials fa, fa, are publicly reconstructed via PedVSS -R EC on
PedVSS-data [az], i.e. each P broadcasts apj, &ij, and the polynomials are inter-
polated from shares that pass verification g0iU hii = Fa,(j)

3. Shares ak, &ki are verified against data Fak, the secret-sharing polynomials

fak, fak are interpolated from shares that pass this verification, and akk, ckk are
publicly computed as fak(k), fa,(k)

4. ak is publicly computed as EPCQuaI Cik

Figure 4-22: Recon: Share Reconstruction Protocol

of PPT TM's) A = (Ai, A 2, ...) breaks the robustness property of the Mu It-opt protocol.
We will show a contradiction, namely we construct a discrete-log family DL and an efficient
algorithm (a non-uniform family of PPT TM's) E = (Si, E2, ...), called an extractor, which
on input an instance (p, q, g) of security parameter k in DL, and a random element in
Gq, interacts with A and computes logg j with probability higher than negligible. In other
words, we reduce breaking Mult-opt to computing discrete logs.

The reduction is simple: Since we have seen earlier that under a discrete-log assump-
tion a computationally bound adversary can cheat in the secret-sharing and reconstruction
protocols only with a negligible probability, the only way that remains for an adversary
to cheat in the Mult-opt protocol is for some corrupt player Pi to pass the simultaneous
proof of Step 3 even if the value vi shared by this player is not equal to Aaii. It follows
from the proof-of-knowledge property of the simultaneous proof that for every player that
passes the proof, the extractor can extract, except for negligible probability, the correct wit-
ness for the proven statement. Therefore, our extractor will on one hand know the shares

,i, &q, Oi, i, vi, ,i that belong to Pi (note that the extractor controls the majority of the
players and hence can interpolate all the secret-sharings), and on the other it will extract
from A values a', &, #34,734, 7, 1< which map to the same commitments, i.e. gi hj= gc4 h
(and the same for O's and v's), and which satisfy the multiplicative relationship Aca o =l .
Therefore, either ai = ac, fli = 13, and vi = v, and hence caii = vi, or the extractor gets
two representations of some value in Gq, and hence can compute log9 h. Using simulator

SiM(') (Figure 7-3), the extractor S can imbed an instance of the discrete-log problem, a

random 9 in Gq, in value h generated in h-IG so that h = gag6 for some values a, b known to
E. (Compare the proof of robustness of Pedersen's VSS in Lemma 3.) Therefore learning

119

II

120 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

logg h allows E to learn logg j. This is the main argument, and below we fill out its details.

Note that if Pi is disqualified in either Step 2 or Step 3 then vi is computed from a and

Oi reconstructed by Recon (Step 4). Since Recon is just another variation of Pedersen VSS

reconstruction protocol, the proof that Recon is robust under the discrete-log assumption is

virtually identical to the proof of Lemma 2. Therefore, under the discrete-log assumption,

the probability that the adversary cheats in Step 2, i.e. that the players fail to create a

correct joint secret sharing RVSS-data[v], plus the probability that any execution of Recon

fails to reconstruct a proper value, is a negligible function of k. Therefore, if A has a higher

than negligible probability of cheating in Mult-opt, it must have a higher than negligible

probability that some Pi E Bad passes the SP-THPZP-MULT proof but s.t. the value vi this

player shared in Step 2 is not equal to Aaii. We will say in such case that "Pi (or A)

cheats in the SP-THPZP-MULT protocol".

It follows that there exists polynomial pA(z) s.t. for all ko there exists k ;> ko s.t. Ak

cheats in SP-THPZP-MULT with probability at least 1/pA(k). By the same argument as we

used in the proof of robustness of Pedersen Verifiable Secret Sharing (Lemma 3), for every k

we consider only the execution of the DL-IG part of the Ped-IG protocol where the vector r7

random coins used by the adversary and the servers maximizes A's subsequent cheating in

SP-THPZP-MULT. Let DL be a family of discrete-log instances which are output by Ped-IG

on those coins. Extractor Ek, on input an instance (p, q, g) of security parameter k in DL

and an element 4 in G, runs Ped-IG to Ak on random coins of Ak and the servers specified

by vector -. This produces (p, q, g) as a public output.

After this execution of DL-IG the extractor S simulates to A the execution of h-IG (the

second part of Ped-IG) using simulator SIM2IG (Figure 7-3) on input (p, q, g, 4). Under the

discrete-log assumption, by Lemma 36, SIM 2
)G runs in polynomial time and the difference

between A's view of h-IG and A's view of the interaction with SIMh-IG is negligible. In par-

ticular, it is smaller than 1/(2pA(k)) for all large-enough k, and hence for all ko there exists

k > ko s.t. the probability that Ak cheats in the subsequent execution of SP-THPZP-MULT

is at least 1/(2pA(k)). Furthermore, by the same lemma, there exists kSIM s.t. for all

k ksIM, £ receives from SIM 2 IG values a, b E Zq such that gapb = h where h is output in

this (simulated) run of h-IG, except for probability at most 1/(4pA(k)). Therefore, for every

ko there exists k > ko s.t. with probability at least 1/(4pA(k)), A cheats in the subsequent

SP-THPZP-MULT and S knows a, b s.t. gab = h.

After this simulation of h-IG the extractor £ performs protocols P and Mult-opt by

playing the part of the uncorrupted players. Note that since S controls the majority of the

players, by the correctness properties of joint secret-sharing RVSS-data[a] and RVSS-data[b]

created by P, the extractor knows all shares tai, &i and i, /i for all Pi E Qual s.t. gsaih&t

Fa(i) and g/ihfi = Fb(i). By the robustness property of RVSS (Lemma 4), in Step 2 of
Mult-opt a correct joint secret-sharing RVSS-data[v] is generated, except for a negligible

probability. For example we can upper-bound it by 1/(8pA(k)) for all large enough k. In

particular it follows that for all ko there exists k > ko s.t. with probability at least 1/(8pA(k))

the adversary cheats in SP-THPZP-MULT and £ holds shares (vi, bi) = (f t (O), ft (0)) for
every P E Bad n Qual. (E reconstructs them from shares (vi, ij) = (fv (j), fb, (j)) that it

holds for every Pj E Good.)

By the proof-of-knowledge property of SP-THPZP-MULT, i.e. by Lemma 20 in conjunc-

-. - ill

4.4. OPTIMALLY RESILIENT THRESHOLD DSS SIGNATURES

tion with Lemma 41, E can run an efficient subprocedure, the extractor Esp of Lemma 20,
and compute, except for probability at most 1/(16pA(k)), for all corrupted players Pi c
Part which pass the SP-THPZP-MULT protocol of Step 3, witnesses ck4, &>i,/3,, v, D s.t.

Si = Fa (i), g '- = Fb(i), g h = F, 1(0), and such that A a4#3 = Vi.
It follows that for all ko there exists k > ko s.t. with probability at least 1/(16pA(k))

the extractor E learns all the above values but Aai/3i; - vi because A cheated in the

SP-THPZP-MULT protocol. But in such case one of the following three inequalities must

hold: either (aQ&') $ (ai, &i), or (3,Q4) $ (fi,5i), or (v,i<') $ (vi,ti). In either case
£ can compute log9 h, and hence log9 g, because this means that 9 holds two different

representations of some number, either Fa(i), or Fb(i), or F(0), in bases g, h.
Therefore, if discrete-log is hard then RVSS-data[v] contains, except for negligible prob-

ability, a proper secret-sharing of each vi = Aai/i for Pi E Part, and therefore v =

ZPiEQUaI Aiaioif = ab. E

Secrecy Property of Mult-opt

As for the n/4-threshold multiplication protocol Mult, we state the secrecy property of

Mutt-opt in terms of the ability of an efficient simulator to execute MuIt-opt(RVSS-data[a, b])
- RVSS-data[v] and then to simulate any subsequent protocol P that follows an execution

of Mult-opt on secret-sharings RVSS-data[a*, b*, v*] which are related to RVSS-data[a, 6, v],
but where a*, b*, i* are random numbers in Gq subject only to the constraint that a*b* = v*.
To express this property we introduce an auxiliary simulation procedure T Must, Figure 4-

23, which can be thought of as replacing the private data related to each secret-sharing

PedVSS-data[vi], for all Pi E Good.
Note, however, that this replacement procedure does not produce all the secret data

that the uncorrupted players should have as outputs of Mult-opt. Namely, the simulated

players receive only the new polynomial shares vi, j< of the new secret v*. They do not

receive new additive shares i4, i)7 of this secret, nor do they receive the shares of their own

component secret-sharing polynomials f*,, f * (However, each uncorrupted player Pi does

keep the shares vi, pij of their secret-sharing polynomials they sent to the corrupted players

P, E Bad, and shares vji, Ppj received from these players.) We make this explicit in Figure

4-23 by having all these values over-written with question mark signs. This means that any

protocol P that runs on the outputs of Mult-opt can be simulated only if P does not use

(i.e. take as inputs) all the question-marked data. (See also the paragraph below on a more

general secrecy property of the Mult-opt protocol.)

Lemma 22 (Static Secrecy of n/2-Threshold Mult-opt)
There exists a simulator SIM, such that for every n/2-threshold static secure-channels

adversary A with history ah, for any distributed protocol 'P, for every discrete-logarithm

instance (p, q, g), and for every h E Gq, the following two adversarial views are identically
distributed:

e an adversarial view of the following sequence of protocol executions:

- a run of two successful instances of RVSS (either parallel or sequential), on public
input (p, q, g, h) and adversarial input ah, with outputs denoted RVSS-data[a,b]

121

CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Replacement procedure TMut

Input: public and private data of uncorrupted players in RVSS-data[v]
(in fact data Inc-RVSS-data[v] C RVSS-data[v] is enough, see below)
"target output value" v* E Zq
Pedersen's trapdoor a- = logg h

Output: (private data of uncorrupted players in) Inc-RVSS-data[v*]

Let Bad, Good be the identities of the corrupted and uncorrupted players (IBadl = t).
Let Inc-RVSS-data[v] stands for an "incomplete" data-structure RVSS-data[v], where the
private data of each uncorrupted player Pi consists only of its polynomial shares i, Ii.
Note that the secret-sharing polynomials ft, f are defined by the shares Vi, held by
all the uncorrupted players.

TMUIt picks random t-degree polynomials 7, /7 s.t.:

f,*(0) =V*
f,*(i) = fv(i) for Pj G Bad

f/*(z) + aff*(z) f, (z) + a-ff (z) (for all z)

and then forms Inc-RVSS-data[v*] from Inc-RVSS-data[v] by replacing the private data

v = f,(i) and i = ft(i) of each Pi E Good with vi = f,*(i) and Pi, = f/*(i)

Figure 4-23: TMUt: Auxiliary simulation procedure

- a successful run of Mult-opt on input RVSS-data[a, b], with outputs RVSS-data[vj

- a run of P on inputs RVSS-data[a, b], Inc-RVSS-data[v]

* an adversarial view of the following simulation, where the uncorrupted players are

controlled by the simulator SIM which has a private input a = log9 h

- a run of two successful instances of RVSS (either parallel or sequential, as in
the corresponding step of the sequence above), on public input (p,q,g,h) and
adversarial input ah, with outputs denoted RVSS-data[a, b]

- a successful run of Mult-opt on input RVSS-data[a, b], with outputs RVSS-data[v)

- a replacement of the private data in RVSS-data[a, b], and RVSS-data[v] of the
simulated players with

* RVSS-data[a*] = TRvss(RVSS-data[a], a*, a-)

* RVSS-data[b*] = TRvss(RVSS-data[b], b*, o-)

* Inc-RVSS-data[v*] = TMult(RVSS-data[v], v*, ar)
where a*,b*,v* e Zq are random subject to the constraint that a*b* =v*

and then a run of P on RVSS-data[a*, b*], Inc-RVSS-data[v*1

Remark. Notation Inc-RVSS-data[a] in the Lemma above stands for an "incomplete"
joint secret-sharing distributed data structure RVSS-data[a], where the private data of each
honest player Pi consists only of its polynomial shares ai, di. In this way we restrict the

''-. w " I

122

1 "I

4.4. OPTIMALLY RESILIENT THRESHOLD DSS SIGNATURES

type of protocols P that can be efficiently simulated on the outputs of Mult-opt. Namely,

only protocols which take as their inputs no more but the polynomial shares output by

each honest player in protocol Mult-opt. Note that this is also the only data given to
the uncorrupted players in Inc-RVSS-data[v*] output by the simulation procedure TMut of

Figure 4-23. (See also a paragraph below on a discussion of a more general secrecy property

of the Mult-opt protocol.)

Proof: This lemma follows straightforwardly from the polynomial secrecy of RVSS, from
the polynomial secrecy of Pedersen VSS that each player performs in Step 2, and from the

witness-hiding property of the simultaneous proof protocol of Step 3.

For simplicity of notation assume that Part = Bad U Good, i.e. that n = 2t + 1. Con-

sider two successful executions of RVSS which create correct sharings RVSS-data[a] and

RVSS-data[b], and a successful execution of Mult-opt on RVSS-data[a, b] which creates cor-

rect sharing RVSS-data[v] where v = ab. By the polynomial secrecy of RVSS (Lemma 6),
the distribution of outputs of such two instances of RVSS is identical to the distribution of

outputs of two instances of RVSS followed by a replacement of the private data of the un-

corrupted players via procedure TRvss(RVSS-data[a, b], o) -> RVSS-data[a*, b*]. It remains

for us to show that the distribution of Inc-RVSS-data[v*] output by a successful execution of

Mult-opt on RVSS-data[a*, b*] is identical to the distribution of Inc-RVSS-data[v*] output by

Mult-opt(RVSS-data[a, b]) -> RVSS-data[v] followed by replacement TMut(RVSS-data[v], V*,
a-) - Inc-RVSS-data[v*], where v* = a*b*t1

Let fv, Pi c Part, and fv(z) = EpcpEat fjs(z), be the polynomials in RVSS-data[v] cre-
ated in a successful Mutt-opt on RVSS-data[a, b]. Let v7 = fa*(i)fb*(i) for Pi e Good where
fa*, fb* are given in RVSS-data[a*, b*1 = TRvss(RVSS-data[a, b], a). For each Pi E Good, let
f,* be a random t-degree polynomial s.t. f*,(0) = v* and f,*,(j) = fe (j) for all Pj C Bad. Let

fv*(z) = ZPjeBad fv (Z) + EPEGood f*(z). It therefore follows from the polynomial secrecy
of PedVSS (Lemma 3) that the output of a successful execution of Step 2 on RVSS-data[a, b]
followed by a replacement of Tpedvss(PedVSS-data[vj]) --> PedVSS-data[v7] is distributed
as the output of a successful execution of this step on RVSS-data[a*, b*]. It thus fol-

lows that the output of a successful execution of this step followed by a replacement of

TMUlt(RVSS-data[v], v*,) --+ Inc-RVSS-data[v*] is distributed as Inc-RVSS-data[v*] output

by a successful execution of this step on RVSS-data[a*, b*].
In particular it follows that values Fe(i), Fb(i), and Fe, for Pi E Good, are distributed

identically in the two distributions. Therefore, by the witness-hiding property of the SP-
THPZP-MULT protocol of Step 3, the distribution of an adversarial view of that step is also

identical in the two cases.

Note that only a corrupt player can fail in the RVSS or the simultaneous proof protocol,

and hence protocol Recon triggered by Step 4 of Mult-opt can only be executed if the identity

Pk designates an already corrupt player. Therefore all the public information generated in

this step is already contained in the adversarial history.

"Note that the outputs of Mult-opt form a distributed data structure RVSS-data, but in the above state-
ment we are concerned only with the outputs Inc-RVSS-data included in this data structure RVSS-data
(see the remark above). Note furthermore that the data structures Inc-RVSS-data[v] and Inc-RVSS-data[v*]
contain adversarial views of the instances of the Mult-opt protocol that produced them.

123

CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

More general secrecy property of Mult-opt

Among the threshold protocols discussed in this work, only protocol RVSS-REC can be

executed on only the Inc-RVSS-data[a] part of joint secret-sharing RVSS-data[a]. In all

other threshold protocols which take a joint secret-sharing RVSS-data[a] as their inputs the

honest players require more than just their polynomial shares a, ai. However, if we look

closer into what exactly these protocols need, we see that each honest party Pi in protocols

Mult, and Reciprocal, as well as protocol Mult-opt itself and protocol Reciprocal-opt of the

next section, takes as inputs only its polynomial shares ai, &i as well as (1) polynomial

shares aji ,&i received from each Pj E Bad; and (2) polynomial shares av, tji that Pi sent

to each P C Bad. In other words, the only other data the uncorrupted players need is the
data that the adversary has already seen. Therefore the same argument given in the proof

of Lemma 22 above implies that all the above protocols can also be securely executed on

the outputs RVSS-data[v] of protocol Mult-opt, i.e. that such execution can be simulated to

"hit" any target v* using the same auxiliary simulation procedure TMlt of Figure 4-23.15
However, since in the threshold DSS signature scheme (Section 4.4.3) the secret-sharing

output by Mult-opt is always immediately reconstructed via RVSS-REC, Lemma 22 suffices

to prove the security of this particular threshold scheme.16

However, the threshold exponentiation protocol Exp of Section 4.2.5, as well as its adap-

tively secure version Ad-Exp presented in Chapter 5, does need (some of) the remaining

data in a joint secret-sharing RVSS-data[al of the uncorrupted players. Namely, in protocol
Exp each party Pi needs its "component" secret-sharing f,, while in the adaptively secure

version Ad-Exp of this protocol each party Pi needs its additive share ai = fa(0). Therefore

our analysis of the security of Mult-opt does not imply any secrecy property of, for example,

the following sequence of threshold protocols:

2 x RVSS -> RVSS-data[a, b]

Mult-opt(RVSS-data[a, b]) -> RVSS-data[v]

Exp(RVSS-data[a], m) - ma

Exp(RVSS-data[b],m) -m

Exp(RVSS-data[v], m) - mV

Where by "secrecy property" we mean a property we would like to claim of such protocol,

i.e. that the above sequence does not reveal anything more about the generated shared

secrets a and b except of values ga, gb, and gab.

We note that it is likely that under the decisional Diffie-Helman assumption, a simulator

for the above protocol constructed using our techniques'7 presents an adversarial view

which is computationally indistinguishable from an adversarial view of an execution of this

15 We note that this argument holds only for the static adversarial model.
16 The outputs of Mult-opt are used differently in the threshold Cramer-Shoup decryption protocol, and

we need a separate argument why this protocol is secure. (See Appendix A.)
1

Namely, a simulator which on input random A* = g',B* = gb*, *= g.b for random a*, b* in Zq,

performs 2 x RVSS --- RVSS-data[a, b] and Mult-opt(RVSS-data[a, b]) - RVSS-data[v] and then simulates the
three instances of Exp via SIMs E of Figure 4-9, first on inputs RVSS-data[a], A*, then on RVSS-data[b], B*,
and then on RVSS-data(v], V*.

124

4.4. OPTIMALLY RESILIENT THRESHOLD DSS SIGNATURES

protocol. However, even if Mult-opt functions well in this sense in the above example, such

property does not seem as generally useful as the secrecy properties we can show for the

n/4-threshold protocols Mult or Reciprocal, or the n/2-threshold protocol Reciprocal-opt of

the next section.

Note that adding a refreshment sharing ZVSS to the above Mult-opt does not improve its

secrecy property. (Le. creating ZVSS - ZVSS-data[z] and refreshing the secret-sharing of
value ab by outputting RVSS-data[v'] = RVSS-data[v]+ZVSS-data[z] instead of RVSS-data[v]
itself, compare Section 4.3.2.) This is because all the secret-sharing polynomials fz, in
ZVSS-data[z] have free coefficients equal to zero (at least for Pi C Good). Therefore if a re-

vised Mult-opt protocol outputs secret-sharing polynomials fy (z) = f (z)+ fz,(z), then val-

ues v = fvy (0) will still be equal to vi= f (0). Hence they will still be equal to Aai/3i, and

thus they will still be correlated with the secret-sharing polynomials fa, fb. In other words,
the distribution of data in RVSS-data[a, b, V'] is different than in RVSS-data[a*, b*, 0'*1 where
RVSS-data[a*] = TRVss(RVSS-data[a], a*, a), RVSS-data[b*] = TRvss(RVSS-data[b], b*, a),
RVSS-data[v'*] = Tpvss(RVSS-data[v'], a*b*, a), and a*, b* are random in Z4.

Instead, Mult-opt can be amended so that it has the same type of secrecy property as
the other protocols, and hence can be more generally useful as a building block in larger

threshold protocols. To do that we need to refresh the sharing RVSS-data[v] output by
Mult-opt in a manner which re-randomizes all its component secret-sharings. For example,

the above Mult-opt can be followed by RVSS -> RVSS-data[r], RVSS-REC(RVSS-data[r]) -
r, and then local scaling RVSS-data[v'] = RVSS-data[v] + RVSS-data[r] - r, which means

that every party Pi re-computes its component secret-sharing polynomial for example as
fv (z) = fv (z) + frj(z) - , and hence v' = vi + ri - and v' = PEQUa1 V =

ZPEQua(V r -) = v + r - r = v= ab. Then the correlation between values

V'I, ... , v' and the secret-sharing polynomials fa and fb will be lost, except for the proper

constraint that v' is equal to ab.

Security of Repetitive Execution of Mult-opt

The above secrecy property of protocol Mult-opt can be extended to the case of its repeated

execution, just like in Section 4.3.3 we argued that the n/4-threshold multiplication protocol

Mult remains secret if it is executed repetitively. By a repetitive execution of a threshold
multiplication protocol we mean that it is used to compute sharings of values c = a * b for

j = 1, ..., p(k) for some polynomial p(z), where values a and b1 , ..., b(k) are secret-shared
as RVSS-data[a], and RVSS-data[bi], ..., RVSS-data[bp(k)]. We stated such property for Mult

in Lemma 13 in Section 4.3.3. The n/2-threshold multiplication protocol Mult-opt also

remains secure when performed repetitively in the sense that Lemma 22 can be extended

to claim that the following adversarial views are identically distributed:

* an adversarial view of a sequence of successful executions of the following protocol:
RVSS -> RVSS-data[a] and some protocol P1 (RVSS-data[a]), followed by the following
loop for j = 1,...,p(k): RVSS -> RVSS-data[b 1], some protocol P 2 (RVSS-data[b]),
Mult-opt(RVSS-data[a, ba]) -> RVSS-data[vj], and some protocol P3 (RVSS-data[a, ba],
Inc-RVSS-data[vi]).

" an adversarial view of a sequence of successful simulations of the above process,

125

III

126 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

where the simulator performs RVSS -> RVSS-data[a] on behalf of the uncorrupted

players, replaces RVSS-data[a*] <- TRvsS(RVSS-data[a], a*, o) for a random a* E
Zq, performs P1(RVSS-data[a*]), and then for j 1, ... ,p(k) it executes RVSS

RVSS-data[b3] on behalf of the uncorrupted players, replaces RVSS-data[b4] <- TRySS(

RVSS-data[bj], bj, o) for a random b E Zq, executes P2 (RVSS-data[b]), runs Mut-opt(

RVSS-data[a, by]) -> RVSS-data[v], assigns Inc-RVSS-data[vt] <- TMut(RVSS-data[vj],

14, o) where v* = a*bj, and runs P3 (RVSS-data[a*, bj], Inc-RVSS-data[ij]).

Moreover, we can prove a more general statement of the above putting all the ex-

tensions captured in Lemma 13, Section 4.3.3, i.e. where protocols P1, P2, P3 pass public

information between one another, and Mult-opt is executed not on RVSS-data[a] but on

RVSS-data[a'] = Scale(RVSS-data[a], Sel) where procedure Sel selects the scaling factors
from the public output of the threshold protocol so far. The formal proof is a straightfor-

ward extension of Lemma 22, just like the proof of Lemma 13 is a straightforward extension

of Lemma 12.

4.4.3 Optimally Resilient Computation of Inverses and DSS Signatures

The optimal-threshold versions of distributed protocols for computing inverses and for dis-

tributed DSS signature generation are identical to their n/4-threshold versions except that

in place of the n/4-threshold multiplication protocol Mult (which includes the reconstruc-

tion of the secret-shared product), the players execute an optimal-threshold multiplication

subprotocol Mult-opt followed by a reconstruction of the secret-shared product via proto-

col RVSS-REC. For ease of following the security arguments that follow, we present these

optimal-threshold protocols, Reciprocal-opt and DSS-TSig-opt, in Figures 4-24 and 4-25.

Robustness of protocols Reciprocal-opt and DSS-TSig-opt is implied by virtually the

same arguments which we used to show the robustness of Reciprocal and DSS-TSig in

Lemmas 14 and 16. The only part of those arguments that needs to change is that references

to the robustness properties of Mult and the reconstruction procedure ECSS-REC need to

be replaced with references to robustness of Mult-opt and RVSS-REC. Therefore, since

both the claims and the proofs of these properties are virtually identical to those for the

n/4-threshold versions described previously, we omit them here.

The statements and the arguments of the secrecy properties of both Reciprocal-opt and

DSS -TSig-opt are also very similar to those of Reciprocal and DSS -TSig. For completeness,

we include below the secrecy property of Reciprocal-opt in Lemma 23. Finally, in Theo-
rems 6 and 5 we state the security of the optimal-threshold DSS signature scheme TSS-opt

resulting from a combination of the distributed key generation protocol Ped-IG+DKG (see

Section 4.3.5), the optimal-threshold DSS signature generation protocol DSS-TSig-opt pre-

sented here, and the DSS signature verification procedure Ver.

Optimal-Threshold Inverse Computation Protocol

To express the privacy property of the Reciprocal-opt protocol we define a notion of its

successful execution, similarly as we did for protocol Reciprocal in Section 4.3.4.

4.4. OPTIMALLY RESILIENT THRESHOLD DSS SIGNATURES

Definition 21 We call an instance of protocol Reciprocal-opt executed on correct joint

secret-sharing RVSS-data[a] successful if and only if this execution included successful in-

stances of protocols RVSS, Mult-opt, and RVSS-REC (invoked in Steps 1, 2, and 3).

Statically Secure n/2-Threshold Reciprocal-opt, (2t + 1 < n)

Input: sharing RVSS-data[a] (See Fig. 4-7)
Output: sharing RVSS-data[e]

(where e = a- 1 mod q if the adversary does not cheat)

1. Players execute RVSS to create a new sharing RVSS-data[b]

2. Players compute RVSS-data[c] <- Mult-opt(RVSS-data[a], RVSS-data[b])

3. Players compute c <- RVSS-REC(RVSS-data[c])

4. Players compute RVSS-data[e] <- Scale(RVSS-data[b], 0, c- 1), see Figure 4-15

Simulator SIMRpducpt of Reciprocal-opt (interacting with A):

Public Input: public data in RVSS-data[a]

SIMn~cu.opt's Private Input: private outputs of all PiC Good in RVSS-data[a]
Pedersen's trapdoor a = log9 h

A's Private Input: adversary's output in RVSS-data[a]

1-2. SIMRpdu.opt follows Steps 1-2 of Reciprocal-opt on behalf of the good players.

3. SI M Rci..-opt picks c* uniformly in Z and replaces the private data of the simulated

players with the data specified by Inc-RVSS-data[c*]= TMUt(RVSS-data[c], c*, -).

Then SIMRpcupt performs RVSS-REC on input Inc-RVSS-data[c*] on behalf of
the simulated players.

4. SIMpcigopt follows Step 4 of Reciprocal-opt on behalf of the uncorrupted players.

(Note that if the adversary does not cheat then the public output of the previous

step is c* chosen by SIMRpcu_.pt, and thus the scaling factor used here is (c*)-l.)

Figure 4-24: Reciprocal-opt: n/2-Threshold Inverse Computation Protocol

Lemma 23 (Static Secrecy of n/2-Threshold Reciprocal-opt) There exists a simulator

SIM, such that for every n/2-threshold static secure-channels adversary A with history ah,
for any distributed protocol P, for every discrete-logarithm instance (p, q, g), and for every

h E Gq, the following two adversarial views are identically distributed:

* an adversarial view of the following sequence of protocol executions:

127

CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

- a successful run of RVSS on public input (p, q, g, h) and adversarial input ah,
with outputs denoted RVSS-data[a]

- a successful run of Reciprocal-opt on input RVSS-data[a], with outputs denoted
RVSS-data[e]

- a run of P on input RVSS-data[a] and RVSS-data[e]

* an adversarial view of the following simulation, where the uncorrupted players are
controlled by the simulator SIM which has a private input o = logg h:

- a successful run of RVSS on public input (p, q, g, h) and adversarial input ah,
with outputs denoted RVSS-data[a]

- a successful simulation of Reciprocal-opt via SlMRcOpt of Figure 4-24 (see a
remark below) on input RVSS-data[a] and the additional input a-= logg h of
simulator S I MRpCOpt, with outputs denoted RVSS-data[e]

- a replacement of the private data in RVSS-data[a, e] of the simulated players via
transformations RVSS-data[a*] = TRvss(RVSS-data[a], a*, o-) and RVSS-data[e*]
= TRvSS(RVSS-data[e], e*, a), where a*,e* are random elements in Zq subject to
the constraint that a*e* = 1, and then an execution of P on RVSS-data[a*,e*]

Less formally: A (static) adversarial view of successful executions of RVSS, Reciprocal-opt,
and then a random run of protocol P is the same as an adversarial view of a successful
execution of RVSS, a successful simulation of Reciprocal-opt, a modification of the private
data of the uncorrupted players via two T RVSS transformations which replace the sharings
of a, e with sharings of a*, e* which are random subject to the constraint that a*e* = 1, and
then an execution of P.
Informally: A static secure-channels n/2-threshold adversary learns nothing about the
secret-sharing polynomials in RVSS-data[a, e] from an execution of Reciprocal which on in-
put RVSS-data[a] produces a secret-sharing RVSS-data[e], apart of the shares of these poly-
nomials received by the corrupted players, and apart of the fact that ae = fa(O)fe(O) = 1.

Remark. By "successful simulation of Reciprocal-opt via simulator procedure SMR,--plt",
we designate an instance of an interaction between an adversary and the simulator of Fig-
ure 4-24, in which the RVSS, Mult-opt, and RVSS -REC protocols which SIMRcl 0,pt performs
on behalf of the uncorrupted players in Steps 1-3, were successful. Thus a successful sim-
ulation of Reciprocal-opt via SIMRIt,-pt is defined similarly to a successful execution of
Reciprocal-opt.

Proof Sketch: The reasoning is virtually identical to the proof of secrecy of the n/4-
threshold inverse-computation protocol Reciprocal in Lemma 15. Namely, the secrecy prop-
erty of Reciprocal-opt follows straightforwardly from the secrecy of Mult-opt, i.e. from
Lemma 22. As in that proof, we see that the reconstruction RVSS-REC(RVSS-data[c]) -->C,
the scaling Scale(RVSS-data[b], 0, c- 1) -> RVSS-data[e] (Steps 3-4 of Reciprocal-opt) and the
subsequent run of P(RVSS-data [a, e]) are a particular example of some protocol P' exe-
cuting on inputs RVSS-data[a, b] and Inc-RVSS-data[c]. (Note that this protocol takes only
Inc-RVSS-data[c] as an input, because that's all that RVSS-REC needs.) Therefore by the

128

4.4. OPTIMALLY RESILIENT THRESHOLD DSS SIGNATURES

secrecy property of Mult-opt, the successful execution of these steps is distributed as their

simulation where RVSS-data[a, b, c] are replaced with RVSS-data[a*, b*, c*j where c* = a*b*

and a*, b* are uniform in Z. Note that in the simulation of Reciprocal-opt and in subsequent

replacement of RVSS-data[a, e] with RVSS-data[a*, e*], the simulator picks c* at random but

then picks a*, e* subject to the constraint that a*e* = 1, which is equivalent to the con-

straint that a*b*/c* = 1, i.e. that a*b* = c*. Therefore Lemma 23 follows from Lemma 22.

E

Optimal-Threshold DSS Signature Scheme

The optimal-threshold DSS signature generation protocol DSS -TSig-opt, Figure 4-25, differs

from its n/4-threshold version DSS-TSig only by a substitution of the optimal-threshold

multiplication protocol Mult-opt in place of its n/4-threshold version Mut. We include

a simulator SlMnss-rsig-opt of this protocol in Figure 4-25. However, the reader might

recall that the secrecy property of the threshold signature computation protocol turned

out to be equivalent to a particular case of the unforgeability property of the threshold
signature scheme, namely the case when the signature generation protocol is executed on a

single message. (See Section 4.3.5, esp. Remark 4 on page 102.) Therefore here we proceed

immediately to proving the unforgeability of the optimal-threshold DSS signature scheme

which utilizes the DSS -TSig-opt protocol.

We can now prove the security of an n/2-threshold DSS signature scheme TSS-opt

(Ped-lG+DKG, DSS -TSig-opt, Ver), which is very similar to the n/4-threshold DSS signature
scheme TSS = (Ped-IG+DKG, DSS-TSig, Ver) of Section 4.3.5. The only difference is the
replacement of the n/4-threshold DSS signature generation protocol DSS-TSig with its
optimal-threshold version DSS-TSig-opt presented above. Recall that by Ped-IG+DKG we

denote two protocols run one after the other, first the Pedersen instance generation protocol
Ped-iG and then the "proper" distributed key generation protocol DKG. Recall also that

Ver denotes the standard DSS signature verification procedure. The following two theorems

state the unforgeability and the robustness of the threshold DSS signature scheme TSS-opt.
For the definitions of security properties of a threshold signature scheme see Section 2.4.

We note that the proofs of Theorems 5 and 6 below are very similar to the proofs of

the corresponding theorems (Theorems 2 and 3) about the n/4-threshold DSS signature

scheme TSS.

Theorem 5 (Robustness of n/2-Threshold DSS Scheme)
Under the discrete-log intractability assumption, TSS-opt = (Ped-IG+DKG, DSS-TSig-opt,
Ver) is a robust threshold signature scheme in the presence of a static secure-channels n/2-

threshold adversary.

Proof Sketch: Robustness of TSS-opt follows straightforwardly from the robustness of

Ped-IG, DKG, and DSS-TSig-opt, in the same way as robustness of TSS follows from robust-

ness of Ped-IG, DKG, and DSS-TSig, see Theorem 2, page 105.

Theorem 6 (Static Unforgeability of n/2-Threshold DSS Scheme)
If the DSS signature scheme is CMA secure, then TSS-opt = (Ped-IG+DKG, DSS-TSig-opt,
Ver) is an unforgeable threshold signature scheme in the presence of a static secure-channels

n/2-threshold adversary.

129

III

130 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

Proof Sketch: The proof of the unforgeability of the n/2-threshold scheme TSS-opt is

almost identical to the proof of the unforgeability of the n/4-threshold scheme TSS in The-

orem 3 in Section 4.3.5. The only difference between TSS-opt and TSS is the substitution of

DSS -TSig with DSS -TSig-opt. However, the n/2-threshold DSS -TSig-opt can be simulated

only if the simulator knows the Pedersen commitment trapdoor oa = log h. This brings a

few slight but necessary modifications to the argument we use in the proof of Theorem 3.

First, the simulator SIMyss used in the proof of Theorem 3 requires o-a= logg h as an

additional private input, and its Step Step 3c (see Figure 4-18) must be modified so that

SIMmsS simulates the DSS-TSig-opt protocol to A via simulator SIMD)STSjgOpt by passing

to that simulator as its private inputs the target signature (r*, s*) and the trapdoor value oa.

Secondly, the simulation of a run of TSS-opt via SIMTSS must start not by an execution

of Ped-iG = (DL-IG, h-IG) on behalf of the uncorrupted players, but by an execution of

DL-IG and a simulation of h-IG via simulator SIM(') of Figure 7-3. If SIM') outputs

null as a private output then the simulation process is abandoned. Otherwise, if it outputs

o = log9 h then the simulator proceeds to simulate the remaining steps of TSS-opt via

SIMss on its additional private input o.

Third, as in the proof of Theorem 3 we argue that an adversarial view of a successful

execution of the remaining steps of TSS-opt (i.e. everything that follows the initialization

protocol Ped-IG) and a view of a successful simulation of these steps via SIMTSS, are iden-

tically distributed. The difference from Theorem 3 is that the above is true if and only if

SIMwsS has o as a private input. The notions of a successful execution of the remaining

steps of TSS-opt and of a successful simulation via SIMmss are defined similarly as in the

proof of Theorem 3, but for TSS-opt instead of TSS. The proof of the identity of these

views is virtually identical to the argument used in Theorem 3, except here it is implied

by the "repetitive secrecy" of Mult-opt rather than Mult and by the secrecy property of

Reciprocal-opt rather than Reciprocal.

The last modification is that we have to take into account the fact that the simulation

of h-IG via simulator SIM(') might fail to produce trapdoor a as a private output. Let pA

be the polynomial s.t. for every ko there exists k ;> 0ko s.t. A creates a forgery in a run of

TSS-opt on public input 1k with probability at least A_. It follows from the robustness

property of TSS-opt that since an adversarial view of a successful run of (the remaining steps

of) TSS-opt on any (p, q, g, h), ah" output by Ped-IG on 1k and ah is distributed identically

as in a successful simulation via SIMTSS with the additional private input o- = log9 h then,

under the discrete-log assumption, there is a negligible statistical difference between an

adversarial view of a random run of (the remaining steps of) TSS-opt on these inputs and a

random simulation via SIMmsS with o. In other words, it follows that for all large enough k,

for all (p, q, g, h), ah" output by h-IG there is at most 3pj(k) probability that A outputs

a different output in the simulation via SIMss on (p, q, g, h), ah" and oa = logg h then in

the execution of (the remaining steps) of TSS-opt on these inputs. By Lemma 35, there is

an efficient simulator SIM('G which for every (p, q, g), ah' output by DL-IG simulates h-IG

to A on these inputs and returns a- = logg h as a private output with probability at least

1 - 1 for all large enough k. It follows that for all large enough k, for all (p, q, g), ah'
3pA (k)

output by Ped-IG on 1k, ah, there is at most 3PA(k) + 3pA(k) - 3pA(k) probability that A

outputs a different output in the simulation via SM()IG an SIMmsS on (p,q,g),ah' then

iF----

4.4. OPTIMALLY RESILIENT THRESHOLD DSS SIGNATURES

Statically Secure n/2-Threshold DSS -TSig-opt, (2t + 1 < n)

Input: secret-sharing RVSS-data[x] of the secret key (see Fig. 4-7),
public key y = g', (hashed) message in E Zq to be signed

Adversarial Input: adversarial history ah, adversary's output in RVSS-data[x]
Public Output: (r, s), the DSS signature on message im under key y

1. Players compute RVSS-data[k] <- RVSS

2. Players perform RVSS-data[e] <- Reciprocal-opt(RVSS-data[k]) to share e = k-1

3. Players compute r' <- Exp(RVSS-data[e], g) and then r -+ r' mod q

4. Players compute RVSS-data[x'] <- Scale(RVSS-data[x], M, r)

5. Players compute RVSS-data[s] <- Mult-opt(RVSS-data[x'], RVSS-data[k])

6. Players reconstruct s <- RVSS -REC(RVSS-data[s])

Simulator SIMDSS-TSig-.opt of DSS -TSig-opt (interacting with A):

Let RVSS-data[x] be an element of 7ZVSS-'DATA(p,q,g,h)
Public Input: public data in RVSS-data[x], public key y* E G,

(hashed) message m E Zq
SlMDss-Ts 9g-opt's Private Input: private outputs of all Pi E Good in RVSS-data[x]

Pederson's trapdoor value a- = log h
"target output" signature (r*, s*) E (Z X Zc)

A's Private Input: adv. hist. ah, adversary's output in RVSS-data[x]

1. SIMDss-TSig-opt follows Step 1 of DSS -TSig-opt on behalf of the good players.

2. SlMDSS_Tsigopt simulates Reciprocal-opt with simulator's SlM Rpc-pt of Figure
4-24 on input RVSS-data[k] and SIMaRc.p 0 's additional input a.

3. SIMDSSTSjg-Opt computes r'* = gm/s*(y*)r*/s* mod p and simulates Exp with
the simulator SIMpmp of Figure 4-9 on input RVSS-data[e] and g and the SIMFP's
target output r'*. If the simulation is successful then all players compute the
public output as r* = r'* mod q.

4.-5. SIMDSS-Tsig-opt follows Steps 4-5 of DSS -TSig-opt on behalf of the good players.

6. SlMDss-Tsig-opt replaces the private data of the good players via transformation

Inc-RVSS-data[s*] <-- TMulet(RVSS-data[s], s*) and participates in RVSS -REC on
the resulting RVSS-data[s*] on behalf of the good players.

Figure 4-25: DSS-TSig-opt: n/2-Threshold DSS Signature Generation

131

132 CHAPTER 4. STATIC THRESHOLD CRYPTOSYSTEMS

in the execution of (all the steps after the initial DL-IG) of TSS-opt on these inputs. Since
this holds for all output of Ped-IG, and since for all ko there exists k > ko s.t. A outputs a
forgery with probability at least p1,it follows that for all ko there exists k > ko s.t. there

is at least pA
1(k) - 3(k) = 1Jk probability that A outputs a forgery in the simulation

of TSS-opt on 1k, ah. Since a forgery in the simulation of TSS-opt must be a DSS forgery
under the public key y* given to the simulator by the oracle ODSS, this creates a reduction
from A to a successful CMA attack on DSS, which proves the theorem. E

Theorems 6 and 5 immediately imply the following:

Theorem 7 If the DSS signature scheme is unforgeable under the adaptive chosen mes-
sage attack, then TSS-opt = (Ped-IG+DKG, DSS-TSig-opt, Ver) is a secure n/2-threshold
signature scheme.

Chapter 5

Adaptive Threshold Cryptosystems

In this chapter we show how to modify the efficient threshold protocols of Chapter 4 so

that they become provably resilient against an adaptive adversary. In an adaptive model,
the adversary can decide which server to corrupt at any moment during the operation of a

threshold scheme, until the adversary exhausts the admissible threshold of corruptions. By
contrast, in a static adversarial model considered in Chapter 4, the adversary must decide

upon the identities of the players that will ever become corrupted before the threshold

scheme starts. As we argued in the introduction, an adaptive adversary is a more realistic

model of centrally-coordinated attacks facing fault-tolerant distributed systems than a static

model considered in the previous Chapter. 1 Unfortunately, we do not know how to prove
the protocols presented in Chapter 4 adaptively secure if they are left unmodified. It is

known, however, that an adaptive adversary is strictly more powerful than a static one,
as there do exist protocols which are secure in the static model but which can be shown

insecure in the adaptive model [CFGN96, CanOO, CDD+99] 2 Consequently, it is important

to construct protocols which provably resist an adaptive adversary.

As we mentioned in the introduction, it is known how to perform general multi-party
computation in the adaptive adversarial model ([BGW88, CCD88] and the subsequent re-

sults referred to in Section 1.1), but the computational cost of adaptively-secure threshold

DSS or Cramer-Shoup schemes based on these general results would be higher by orders
of magnitude than the cost of statically-secure threshold schemes constructed from the

building blocks we give in Chapter 4.3 In the present chapter we show that a few subtle
modifications to the protocols of Chapter 4 yield protocols that can be proven secure in the
adaptive adversary model. In particular, the modified protocols require only slightly more
computation and communication than the statically-secure protocols of Chapter 4. This
section is based on material published in [CGJ+99] and [JLOO].4

We will argue that the fundamental building block of the threshold protocols of Chap-

'See the "Scheduling of Faults paragraph in Section 2.2, page 26, for a further discussion of the adaptive

and the static models of scheduling of faults.
2Interestingly, [CDD+99] exhibit a protocol which resists even computationally-unlimited static attackers

but succumbs to computationally-bounded adaptive attackers.
3 For a further discussion of efficiency comparisons see Section 1.2.
4Most of the material presented here is given in [CGJ+99], but we also incorporate some modifications

introduced by [JLOO]. See footnote 7, page 137 for further discussion.

133

III

134 CHAPTER 5. ADAPTIVE THRESHOLD CRYPTOSYSTEMS

ter 4, Pedersen's Verifiable Secret Sharing protocol PedVSS and the Distributed Coin-Flip
protocol RVSS, are already secure against an adaptive adversary. The protocols that rely
heavily on RVSS, namely the simultaneous proof protocol SP-THPZP, as well as the optimal-
threshold multiplication Mult-opt and inverse computation Reciprocal-opt, also remain secure
in the adaptive model.

The only protocol that needs to change is the threshold exponentiation protocol Exp
presented in Section 4.2.5, which computes a public output A = ma from secret-sharing
RVSS-data[a] of a secret value a. To tolerate an adaptive adversary we modify this protocol
in two ways: (1) The players use their additive shares a instead of the polynomial shares a of
the secret a (see Figure 4-7); (2) To ensure that the players use their additive shares correctly
they need to perform a simultaneous zero-knowledge proof of knowledge of an appropriate
witness. We denote this adaptively secure version of the exponentiation protocol as Ad-Exp
and we present it in detail in Section 5.2.1. The distributed key generation protocol DKG
and the optimal-threshold DSS signature generation protocol DSS -TSig-opt which both
use the threshold exponentiation protocol Exp as a building block do not need to change
themselves. One needs only to replace the statically secure exponentiation building block
Exp that they use with its adaptively secure version Ad-Exp.

Maintaining Private Channels in the Adaptive Erasure-Enabled Model. In this
chapter we provide protocols which are adaptively secure under a crucial simplifying assump-
tion that the participating players can reliably erase some of their local data. Using the
terminology established in the introduction, we consider here an adaptive erasure-enabled
adversarial model. In this model we can implement private channels between the players
with a simple and inexpensive technique of [BH92]. Consequently, in the proofs of security
of the protocols in this section we consider a secure (i.e. private and authenticated) channels
communication model.

In the [BH92] implementation of private channels, initially each pair of players (Pi, P)
establishes a shared secret seed sij with a key-exchange protocol. Then every message
transmitted from Pi to P3 is encrypted under a new symmetric key, where both players
compute the fresh key material by running a pseudorandom generator on the shared seed sij.
The key, and all previous states of the pseudorandom number generator are erased at the
time the key is used. This adds virtually no computational overhead to the protocols beyond
the cost of symmetric encryption itself because every encryption method requires the use
of a pseudorandom number generator as a source of randomness. Therefore we can assume
private channels in this chapter. However, in Chapter 6 we remove the assumption that
local erasure is available, and we show that private channels can be efficiently implemented
for threshold schemes in the adaptive and erasure-free model with a novel primitive of a
simultaneously secure encryption.

Problems with Simulating an Adaptive Adversary. Recall that we prove that our
protocols have certain secrecy properties by showing that the adversary does not learn
anything from them except of public inputs and outputs. Recall furthermore that our

(only) technique for showing such property is to exhibit a simulator which produces the
adversarial view of a protocol given only its inputs and outputs. However, it is more
difficult to simulate a protocol when an adversary is adaptive. An adaptive adversary
can corrupt any player at any time (as long as the adversary has not already corrupted the

135

allowed threshold of players), and at that point the simulator needs to be able to provide the

attacker with the current internal state of the broken party. In particular, this information

must be consistent with the information previously seen by the adversary. Providing this

information is typically the main difficulty in proving adaptive security of protocols. We

will show that the simulator of the statically-secure exponentiation protocol Exp shown in

Figure 4-9, fails in this way in the adaptive setting. This does not necessarily mean that

this protocol is insecure in the presence of an adaptive attacker, but it shows, at least, that

current analytical techniques are insufficient to prove its adaptive security.

Here we argue the difficulty of simulating a view of the adaptive adversary with a

simplified example taken from the Exp protocol of Figure 4-9. Let a triple (p, q, g) be a

discrete logarithm instance. Assume that each server Pi holds a random secret value ac E Zq

such that values a, ... , a, encode, via Shamir polynomial secret sharing of degree t, a secret

quantity a C Zq.5 We want the players to compute A = ma mod p by having each player

Pi broadcast a value mai mod p, from which A can be computed via interpolation in the

exponent. Namely, for any group G of t + 1 players, A =ma = HiEG(mi)Ai mod p, where

Ai's are the known Lagrange coefficients such that a = iG Aai mod q. To prove that

the adversary learns no other information about the value a throughout the protocol except

A = ma, we have to show a simulator which generates the adversary's view of this protocol

given only A. Specifically, the simulator must produce (1) values in
1 , ... , man which agree

with A; and (2) For each player Pi that the adversary decides to corrupt, value a which

agrees with value mai that the simulator broadcasts on behalf of P.

However, an adaptive adversary might not corrupt any players initially, and decide

which ones to corrupt only after seeing the broadcast mi4 values. He will then expect the

secret exponents at of the corrupted servers to be consistent with the mi values that he

has just observed. Since the ai's encode the secret a (which is unknown to the simulator)

via Shamir secret sharing with a polynomial of degree t, the simulator cannot know more

than t of these values. The simulation of such a protocol is possible in the case of a static

attacker, where the simulator knows in advance the set of corrupted players. A simulator

which faces a static adversary can act as follows.6 Let T = Bad be the subset of t players

corrupted by the (static) adversary. Note that since the simulator controls the majority

of the players, it can interpolate the secret-sharing polynomial fa and compute each share

ai = fa(i), Pi E T. The simulator then computes the appropriate values mai for Pi C T,

and uses these values and A to compute the remaining n - t values m'i via interpolation in

the exponent. We could try to simplistically extend this procedure to the adaptive model

by having the simulator guess the t-element subset T of servers that will be eventually

corrupted. However, the chance that the simulator guesses which players the adaptive

adversary will corrupt is a negligible function of the number of participating players n.

The Single Inconsistent Player Simulation Technique. We overcome the above dif-

ficulty as follows. We design all our adaptively secure threshold protocols so that their

simulators can reveal a consistent state for all simulated players except possibly for one

5In other words, there exists a t-degree polynomial f(z) s.t. cti = f(i) mod q for all i E {1, ..., n} and

a = f(0) mod q. Therefore, the random values ai, ... , an are t-wise independent.
6 This simulation procedure corresponds to the simulator SIMzp of the statically-secure exponentiation

protocol Exp presented in Figure 4-9.

III

136 CHAPTER 5. ADAPTIVE THRESHOLD CRYPTOSYSTEMS

player, whom we will call "inconsistent". We will show that such simulators are suffi-
cient for the proofs of security of threshold schemes. This technique is motivated by the
following observations about the threshold exponentiation protocol discussed above: (1)
Value A = ma can be reconstructed from the joint secret-sharing RVSS-data[a] if every
player publishes Ai = mai where ai is an additive share of a, i.e. ZPEQaa=a (and then
A = ma -HpCQual At), instead of using the polynomial shares ac as described above; (2)
Joint secret-sharing RVSS-data[a] contains as public information a Pedersen's commitment
Fas (0) = gai hi for each additive share ai, and thus we can enforce robustness of the above
protocol with a simultaneous proof protocol in which each player proves to all others that
its broadcast value mai corresponds to such commitment. We will use a zero-knowledge
proof-of-knowledge system for proving knowledge of equal representations to achieve this.

The use of additive shares in the above exponentiation protocol enables the simulator to
reveal a consistent state for all simulated players except of one, whom we call "inconsistent".
Let Good be the set of currently uncorrupted players. Note that since PedVSS is perfectly
secret (Lemma 3), any subset of IGoodl-1 additive shares of the uncorrupted players is
statistically independently from the shared secret a. This allows us to simulate efficiently
a protocol that outputs some value A* without knowing a* = logg(A*) as follows. The
simulator can reveal the actual additive shares a in RVSS-data [a] for all uncorrupted players
Pi E Good except of one player Ps E Good whose identity is chosen at random among the
currently uncorrupted players. The simulator broadcasts the corresponding values Ai =
mai for P E Good \I{Ps}, interpolates the additive shares ai = fa,(0) for Pi E (Bad n
Qual) (the simulator holds more than t values of each secret-shared polynomial fa, in
RVSS-data[a]), and computes A = A*/(HP aP mai). If the adversary ever corrupts
any of the players in Good except of Ps, the simulator will be able to reveal an internal
state of that player which is consistent with value mai the adversary has seen in the above
simulation. If on the other hand the adversary corrupts player Ps then the simulation
will fail as the simulator cannot know logg(A), or otherwise the simulator would be able
to compute logg (A*). However, because the inconsistent player was chosen at random
and because regardless of the identity of Ps the adversarial view of the simulation until
the corruption of Ps looks identical to the adversarial view of the actual protocol, the
probability that the adversary corrupts the player Ps chosen by the simulator is equal to
t/n < 1/2. Consequently, with at most 1/2 probability the simulator will have to rewind the
adversary and attempt the simulation again. Thus the simulation of the protocol succeeds
after expected two trials.

Recall that we compose our protocol building-blocks into threshold signature or de-
cryption schemes, and that the simulator for the threshold scheme is a composition of the
simulators of its subprotocols. In order to compose simulators of the adaptively-secure
protocols which present a perfect view of their protocols except when the adversary cor-
rupts one inconsistent player, this player is picked at the beginning of the simulation of
the whole threshold scheme. If the adversary does not corrupt this player, the simulation
process passes without ever rewinding. If the adversary does corrupt this player at some
point, the whole simulation of a threshold signature or decryption scheme is repeated from
scratch. Because the expected number of such trials is at most two, such simulation process
still establishes a reduction from the security of a threshold scheme to the security of an

137

underlying signature scheme or a cryptosystem.7 We define the notion of a protocol which
is simulatable in the presence of an n/2-threshold secure-channels adaptive adversary in the
above manner as a "single-inconsistent-player-simulatable" protocol:

Definition 22 (Single-Inconsistent-Player-Simulatable Protocol)
We call a protocol Single-Inconsistent-Player-Simulatable if there exists a non-rewinding
simulator S IM which takes as input an identity of some player Ps, called "inconsistent", such
that for every n/2-threshold secure-channels adaptive adversary, if Ps is uncorrupted when
the simulation starts then an adversarial view of the simulation is distributed identically

to the adversarial view of the execution of the protocol, until the moment the adversary
corrupts player Ps (or until the end, if the adversary does not corrupt PS).

Note that in the above definition we do not specify the inputs of the simulator. Such
inputs depend on the inputs and outputs of the simulated protocol, and we specify them
for each protocol separately.

Another important feature of single-inconsistent-player-simulatable protocols, is that
they are secure under parallel composition. (Compare a discussion of parallel composition
of threshold protocols in the presence of a static adversary at the end of Section 4.2.4,
page 71.) If a threshold scheme calls for an execution of multiple instances of some single-
inconsistent-player-simulatable building-block protocol in parallel, then such execution can
be simulated by running multiple instances of the simulator of that building-block protocol
in parallel, each instance using the same player Ps as an inconsistent player. If Ps is not
compromised, all instances are simulated successfully without rewinding. Otherwise, if Ps
is compromised, then the simulation attempt fails and the simulation of the whole threshold
scheme begins from scratch. However, by the same argument we used above, this happens
with at most t/n < 1/2 probability, and thus provides an efficient reduction argument for
the security of a threshold scheme.

Conventions for Simulators of Adaptive Protocols. In Section 3.2 we argued that
if the adversary is static then in the security proofs one can assume the worst case that
the adversary corrupts its threshold of t players before the protocol starts. As one can
see from our earlier discussion, this is no longer the worst case when the adversary is
adaptive. Therefore in the description of simulators in the security proofs of this section,

7 The single inconsistent player technique was independently discovered by [CGJ+99] and [FMY99b].
However, it is here used somewhat differently than in the simulation arguments used by [CGJ+99, FMY99b].
There the inconsistent player is picked at random in the simulation of each subprotocol. Unlike here, the
simulator then rewinds within a given subprotocol in case of a corruption of a chosen inconsistent player, and
the independence between simulations of consecutive subprotocols is achieved by requiring the players to
erase most of the local data produced during each subprotocol. The proof technique we use here is a subtle
but crucial modification of these ideas proposed in the subsequent work of [JL00} and termed "persistently
inconsistent player technique" to stress that unlike in the analysis used by [CGJ+99, FMY99b] here the
identity of an inconsistent player stays fixed throughout the simulation of a threshold scheme.

One consequence of this analytic technique is that a simulation is never rewound. In case of eventual failure
it simply begins from scratch. This one-pass simulation has a simplifying effect of eliminating a subtle issue
of so-called "post-execution corruptions", which comes up in composition of secure multi-party protocols
in the adaptive model, but only if the simulators used to prove the security of these protocols use local
rewinding. For a discussion of the role of post-execution corruptions in the composition of adaptively-secure
multi-party protocols we refer to [Can00].

i m RM . , , ,1

CHAPTER 5. ADAPTIVE THRESHOLD CRYPTOSYSTEMS

by Bad and Good we denote the sets of currently corrupted and uncorrupted players. When

an adaptive adversary corrupts some player during a simulation, the simulator reveals a

current (simulated) state of that player to the adversary, and the sets Good and Bad are

appropriately modified to reflect this corruption.

In the descriptions of adaptive simulation processes for our threshold protocols we do not

explicitly describe the state of a simulated player that the simulator gives to the adversary

when such player is corrupted. Instead, this state is described implicitly by the following

conventions: (1) In the description of a simulator we use the same variable names as in the

corresponding protocol. When we say that "the simulator participates in the protocol on

behalf of the uncorrupted players", we mean that the simulator generates the appropriate

information and stores it for every simulated player. This is also the default information

that the simulator reveals to the adversary as an internal state of some simulated player

that becomes corrupted. (2) In the descriptions of our simulators we sometimes use a

"starred" variable notation to designate all modifications to the state of the simulated

players performed by the simulator. We often say that the simulator "replaces the private

data of the uncorrupted players" via various "replacement procedures", like TRVSS, Figure

4-8, or TMlt, Figure 4-14. In such cases we implicitly assume that if some simulated player

becomes later corrupted, the simulator reveals this new state for that player.

5.1 Adaptive Security of PedVSS-based threshold protocols

In this section we will show that the fundamental building block of our threshold protocols,

the Pedersen Verifiable Secret Sharing protocol PedVSS remains secure in the adaptive

setting without any modifications. We will also explain why many protocols that use PedVSS

as their main building block remain secure in the adaptive model as well. Specifically, we

argue that the following protocols described in Chapter 4 have the same robustness and

secrecy properties in the adaptive as in the static model: PedVSS, PedVSS-REC, RVSS,

RVSS-REC, ZVSS, the simultaneous proof protocol, Mult-opt, and Reciprocal-opt.8

5.1.1 Adaptive Security of PedVSS, RVSS, and ZVSS

Robustness Property of PedVSS, RVSS, and ZVSS in the Adaptive Setting

The arguments that PedVSS, PedVSS-REC, and ZVSS are robust in the adaptive model are

very similar to the ones we gave in the static setting in Lemmas 1, 2 and 9 in Section 4.2.4

and 4.3.2. The only modification to these arguments we have to make is the following. To

reduce adversary's cheating in any of these protocols to computing discrete logarithms we

construct an extractor that first simulates the h-IG protocol to the adversary via simulator

SIM C') Figure 7-3, page 174. This simulator needs to pick an inconsistent player Ps for
whom it will not know the value Xs = logg(ys). (This allows the simulator to embed its

input instance of a discrete-log problem into the generated Pedersen commitment value h.)

However, in the adaptive setting, if the adversary eventually corrupts this chosen player

8Protocols Mult and Reciprocal remain secure in the adaptive setting as well, but we skip them and

concentrate on their optimal-threshold versions Mult-opt and Reciprocal-opt instead.

138

5.1. ADAPTIVE SECURITY OF PEDVSS-BASED THRESHOLD PROTOCOLS 139

Ps then the extractor cannot show a consistent state of that player to the adversary and
the extraction process has to start from scratch. (Le. the interaction between the extractor
and the adversary is scrapped and a new extraction attempt, i.e. a new interaction of the
extractor and the adversary, is executed on fresh random inputs.) By Lemma 36 in Chap-

ter 7, the adversary's view of an interaction with SIM 2
)_ is statistically indistinguishable

from its view of h-IG until the adversary corrupts the chosen player Ps. Therefore if the
extractor picks Ps at random among the uncorrupted players then the probability that the
adversary corrupts player Ps is at most negligibly higher than t/n < 1/2. Therefore if
the probability that the adversary "cheats" in PedVSS, PedVSS -REC, or ZVSS protocols
is higher than negligible, then the probability that in a single run of an extraction process
this adversary does not corrupt Ps and cheats is still higher than negligible. Since in such
case the extractor can extract an answer to the input discrete-log problem, these protocols
remain robust in the adaptive model.

As in the static model, the robustness of protocols RVSS and RVSS -REC in the adaptive
model is argued almost identically as the robustness of PedVSS and PedVSS -REC. (Compare
Lemmas 4 and 5 in Section 4.2.4.)

Secrecy Property of PedVSS in the Adaptive Setting

PedVSS retains also its secrecy property in the adaptive model. Furthermore, as in the
static model, the secrecy of RVSS and ZVSS in the adaptive model follows immediately
from the secrecy of PedVSS. (Compare Lemmas 6 and 10 in Sections 4.2.4 and 4.3.2.)

To express the secrecy property of PedVSS in the adaptive model we have to rephrase the
statement we give for the static model, i.e. Lemma 3, page 62, as follows: (1) The statement
holds for every player P playing the role of the dealer, not just for every uncorrupted
player P; (2) In the static model we considered an adversarial views of a random PedVSS
with P as a dealer, but here we need to consider a random run of PedVSS during which
P does not become corrupted; (3) To make the secrecy property of PedVSS more useful in
exhibiting security of threshold protocols in the adaptive setting we give the simulator more
flexibility in the way it modifies the sharing PedVSS-data [x] to PedVSS-data [x*] by changing
the data of the uncorrupted players. Namely, the simulator can pick any set, denoted Fixed,
that includes all the currently corrupted players Bad, but has at most t elements and does
not include the dealer P, and change the secret-sharing polynomial from f, to f4* while
keeping it fixed for all players in Fixed, i.e. making f,*(0) = x* instead of f1 (0) = x but
keeping f*(i) = ft,(i) for all Pi E Fixed. We include the modified statement of this lemma
below and we put the modified instructions for the T7 vss procedure in Figure 5-1.

Lemma 24 (Adaptive Polynomial Secrecy of PedVSS)
There exists a simulator SIM s.t. for every n/2-threshold adaptive secure-channels adversary

A with history ah, for any distributed protocol P, for every discrete-log instance (p, q, g),
for every h £6Gq, for every two elements x, x* in Zq, for every player P playing the role of
the dealer, the following two adversarial views are identically distributed:

* an adversarial view of the following sequence of protocol executions:

- a run of protocol PedVSS with dealer P during which P is not corrupted, on

CHAPTER 5. ADAPTIVE THRESHOLD CRYPTOSYSTEMS

public input (p, q, g, h), A's input ah, and P's input x*, with outputs denoted

PedVSS-data[x*]

- a run of P on input PedVSS-data[x*]

* an adversarial view of the following simulation, where the uncorrupted players are

controlled by the simulator SIM whose private inputs are (a, x*), where a, = logg h

- a run of protocol PedVSS with dealer P during which P is not corrupted, on

public input (p, q, g, h), A's input ah, and P's input x, with outputs denoted

PedVSS-data[x]

- a replacement of the private data of the simulated players in PedVSS-data[x] with

the data specified by PedVSS-data[x*] = TPedvss(PedVSS-data[xJ, x*, , Fixed),
where Fixed is any subset of at most t players s.t. Bad C Fixed, and then a run

of P on PedVSS-data[x*]

PedVSS-data[x} - PedVSS-data[x*] replacement procedure T
PedVSS

Input: (Implicit: identity of the dealer P)
public and private data of uncorrupted players in PedVSS-data[x]
target value x*
Pedersen's trapdoor a-= logg h

set Fixed of at most t players s.t. Bad C Fixed

Output: (private data of uncorrupted players in) secret-sharing PedVSS-data[x*]

Assume that the dealer P has been so far uncorrupted.

Let ft, ft be its outputs in PedVSS-data [x].
T

PedVSS picks random t-degree polynomials fx*, fj* subject to the following constraints:

fx*(i) = fx(i) for Pi E Fixed and f,*(0) = x*

f*(z) + a-f*(z) = f T(z) + a-fj(z) (for all z)

TPedVSS forms PedVSS-data[x*] by replacing the private data of each player Pi in Good
with a7 = f*(i) and &= f*(i), and the data ft, ft of dealer P with f4* ft.

Figure 5-1: TPedvss: Auxiliary procedure for adaptive simulation of PedVSS

Proof Sketch: The proof is virtually identical to the proof of Lemma 3, page 62. Just

like in the static setting, it still holds that for every secret-sharing polynomials fT, ft used

by dealer P, for every random input r of the adversary s.t. set Bad(f fJTA) of players

corrupted at the end of an instance of PedVSS on (P's and A's) inputs f,, fe, rA does

not include P, for every set Fixed s.t. BAD(f) p C Fixed and JFixed| < t, the ad-

versarial view of PedVSS on these inputs is identical to its view of PedVSS on inputs

f,*, f*, rA where f,*, ft are any secret-sharing polynomials s.t. f,*(i) = f (i) for P2 c Fixed

and f,*(z) + oft(z) = f,(z) + a-f(z). In other words the outputs PedVSS-data[x*] =

Tpedvss(PedVSS-data[x], x*, o, Fixed) where PedVSS-data[x] = PedVSS(fx, fi, rA) are equal

140

5.1. ADAPTIVE SECURITY OF PEDVSS-BASED THRESHOLD PROTOCOLS 141

to PedVSS-data[x*] = PedVSS(f*, fi*, rA). The lemma follows if we range this equality over
random polynomials f, ft and vectors TA s.t. P ' Bad(fx f-rA) E

Secrecy Property of RVSS and ZVSS in the Adaptive Setting

The adaptive secrecy of the "random" VSS protocol RVSS, Figure 4-6, follows immediately
from the adaptive secrecy of PedVSS, in the same way as in the static setting. However,
to express the secrecy property of RVSS in the adaptive setting we have to modify the
statement given for the static model, i.e. Lemma 6, page 68. This modification corresponds
to the one we made above for PedVSS, i.e. we allow the simulator to change the data of the
uncorrupted players associated while keeping it fixed in some superset Fixed of the set of
the currently corrupted players Bad. In other words, a statement of the adaptive secrecy
of RVSS is just like Lemma 6 except that we let the simulator SIM replace the private
data in RVSS-data[x] of the simulated players with the data specified by RVSS-data[x*] =
TRvSS(RVSS-data [x], a, ,Fixed) where Fixed is any set of at most t players which includes
the currently corrupted ones. Procedure TRVSS of Figure 4-8 should be modified accordingly:

1. TRVSS must use set Fixed, passed as an input, instead of Bad to calculate the new
data in RVSS-data[x*];

2. We require that the special player Ps used by the simulator in this recalculation is
not just currently uncorrupted but outside of set Fixed.

The same applies to the ZVSS protocol, Section 4.3.2, which shares a "refresh" polyno-
mial. To state its secrecy property in the adaptive setting we need to modify Lemma 10,
page 81, so that the simulator SIM replaces the private data of the uncorrupted players
ZVSS-data[b*] = Tzvss(ZVSS-data[b], a, Fs, Fixed) where Fixed is, as above, any superset
of the set of currently corrupted players s.t. IFixed < t. Similarly, the replacement proce-
dure Tzvss of Figure 4-12 needs to be modified to (1) use set Fixed in place of the set of
corrupted players Bad; (2) require that a special player Ps is not in Fixed; and (3) take set
Fixed as an input.

5.1.2 Adaptive Security of the Simultaneous Proof Protocol

Adaptive Zero-Knowledge Property of the Simultaneous Proof

The simultaneous proof protocol (Figure 4-20, page 112) has a weaker "zero-knowledge"
property in the adaptive model. Namely, the simulator can present a perfect view of the
protocol only up to the moment the adversary corrupts the special "inconsistent" player
chosen by the simulator, and only if the simulator knows witnesses wi for values yi in relation
Ap,q for all uncorrupted players Pi E Good except for the inconsistent player PS (we use the
notation of Figure 4-20).9 Recall that in the static model the simulation of any SP protocol
was possible even if the simulator did not know any witnesses for the uncorrupted players.

91n fact, the adaptive simulation of the simultaneous proof protocol remains successful if the simulator
knows all witnesses except for any constant number of the simulated players. However, in the threshold
protocols we present the simulator assumes only at most one inconsistent player.

CHAPTER 5. ADAPTIVE THRESHOLD CRYPTOSYSTEMS

Accordingly, we need to modify the simulator algorithm SIMsp of the simultaneous proof

protocol (see Figure 4-20) for the adaptive setting. The modified simulator SIMsp is shown
in Figure 5-2 below.

Simulator SIMsp of SP-THPZP (interacting with A)

Underlying THPZP Proof System: Assume a triple of algorithms p0), V, p(2)
specifies a discrete-log based coin-first simulatable THPZP proof system (see Figure
4-19) for some relation R. Let SIMTHPZP be the simulator that exhibits the coin-first

simulatable property of this proof system (see Definition 31 in Appendix F.)

Public Input: Pedersen commitment instance (p, q, g, h), values yi,..., y,
SIMsp's Input: Pedersen's trapdoor a- = log, h

identity Ps of the inconsistent player among Good

witnesses w for all uncorrupted players Pi except of Ps
A's Private Input: adversarial history ah

1. For each player Pi e Good \{Ps} the simulator follows the SP-ZKPK protocol,
i.e. broadcasts Mi = POD((p, q,yj),wj,rj) for random ri E Zq on behalf of all

P2 c Good\{ Ps}

For player Ps the simulator picks random R* C Z and runs the simulator
SIMTHPZP on instance (p, q, g), public value ys, and coin R*, to get messages

(Ms*, i). SIMsp then broadcasts M* on behalf of player Ps

2. SIMsp follows RVSS on behalf of the uncorrupted players to create secret-sharing

RVSS-data[R].

Then SIMs5 replaces the data of the uncorrupted players as RVSS-data[R*j
TRvss(RVSS-data[R], R*, o, Fixed), where Fixed is the current set of corrupted
players, and performs RVSS-REC on RVSS-data[R*] on behalf of the uncorrupted

players as in Step 2 of SP-THPZP.

3. SIMsp follows the protocol on behalf of players Pi C Good \{Ps} and broadcasts

values mi = P(2)((p, q, yj),wi, R*, ri) on their behalf

For player Ps the simulator broadcasts value m*.

Figure 5-2: Adaptive Simulation of the Simultaneous Proof Protocol SP-THPZP

Moreover, the "zero-knowledge" and the "witness-hiding" properties of the simultane-
ous proof protocol in the adaptive setting need to be stated somewhat differently than in

Lemmas 18 and 19, page 113, which state these properties in the context of the static

adversarial model. Since in the adaptive model the adversary can corrupt, albeit with at
most 1/2 probability, the one player Ps for whom the simulator SIMsp (Figure 5-2) does not

have a valid witness, an adversarial view of the simulation is identical to an adversarial view
of the protocol only up to the moment the adversary corrupts player Ps. In other words,
the simultaneous proof protocol is single-inconsistent-player-simulatable (see Definition 22,

page 137). The formal statement of this property follows (we use a different font to stress

. I --- No ,

142

.1 . III

5.1. ADAPTIVE SECURITY OF PEDVSS-BASED THRESHOLD PROTOCOLS 143

the differences between this statement and Lemma 18):

Lemma 25 (The Simultaneous Proof Protocol is Single-Inconsistent-Player-
-Simulatable, i.e. "Zero-Knowledge" in the Adaptive Setting)
Let (p, q, g, h) be a Pedersen commitment instance. Let THPZP be a discrete-log based coin-
first simulatable three-rounds honest-verifier public-coin zero-knowledge proof- of-knowledge
proof system for relation 7Z. For every adaptive secure-channels n12-threshold adversary
A with some adversarial history ah, for every vector of public values - = (y1,...,yn) and
witnesses z3 = (wi, ... ,wn) s.t. ((p, q,yi), wi) E Z for each Pi E Good, for every player
Ps uncorrupted at the beginning the SP-THPZP protocol, the following two variables have
identical distribution:

" an adversarial view of an execution of SP-THPZP on public inputs (p, q, g, h), pri-
vate inputs wi of each player Pi E Good, and adversarial input ah, up to the moment
the adversary corrupts player Ps (or until the end if the adversary does not corrupt Ps)

* an adversarial view of a simulation of SP-THPZP on public inputs (p, q, g, h, a), simu-
lator's SIM p inputs a trapdoor J = logg h, an identity of player Fs, and witnesses wi
for all players Pi C Good \ {Ps}, and adversarial input ah, up to the moment the
adversary corrupts player Ps (or until the end if the adversary does not corrupt PS)

Proof: The proof is virtually identical to the one given in the static setting for Lemma 18.
By the adaptive secrecy property of RVSS an adversarial view of Step 2 is identical in
the simulation and the protocol execution. Furthermore, by the coin-first simulatability
property of the THPZP proof system the simulation of this proof on behalf of player Ps is
perfectly distributed unless the adversary corrupts this player. E

Adaptive Witness-Hiding Property of the Simultaneous Proof

Similarly, in the adaptive setting we need to express differently the "witness-hiding" prop-
erty of the simultaneous proof stated for the static setting in Lemma 19, page 113. The
point of the property is that the adversary sees no difference between two instances of
the simultaneous proof protocol in which the vectors of witnesses i9 = (wi,..., w,) and
'1= (wi, ... , w') held by the players differ on the points corresponding to the currently

uncorrupted parties. This is not true in the adaptive setting where, if wi $ wi' for any
P, then the adversary who corrupts this player sees the difference between an instance
of SP on input i3 and an instance on 0'. However, if '6 and ' agree on the points hold
corresponding to all the eventually corrupted parties, then the adaptive adversary can tell
no difference between an execution of SP-THPZP on W- and on w-'. This formalization of
the witness-hiding property of the simultaneous proof protocol turns out to be useful in the
adaptive setting, for example to argue the adaptive security of the threshold multiplication
protocol in the following section.

We re-state the "witness-hiding" property of the simultaneous proof protocol modified
for the adaptive setting in the lemma below. The differences from the statement for the
static case in Lemma 19 are emphasized by a different font:

CHAPTER 5. ADAPTIVE THRESHOLD CRYPTOSYSTEMS

Lemma 26 (The Simultaneous Proof Protocol is "Witness-Hiding" in the Adap-

tive Setting)
Let (pq, g, h) be a Pedersen commitment instance. Let TH PZP be a discrete-log based coin-

first simulatable three-rounds honest-verifier public-coin zero-knowledge proof-of-knowledge

proof system for relation R. For every adaptive secure-channels n/2-threshold adversary A

with some adversarial history ah, for every vector of public values i = (yi, ...,yn), for ev-

ery set Badfin of players that the adversary eventually corrupts, for every two vectors

of witnesses W = (wi, ..., w,,) in W and &' = (w4, ... ,w') s.t. ((p, q,yj),wj) c R and

((p,q,yj),wi) E R for each Pi, and such that wi = w for each Pi e Badfi,, the following

two adversarial views are identically distributed:

* an adversarial view of an execution of protocol SP-THPZP on public inputs (p, q, g, h,

5), private inputs wi of each uncorrupted player, and adversarial input ah

* an adversarial view of an execution of protocol SP-THPZP on public inputs (p, q, g, h,

'), private inputs w of each uncorrupted player, and adversarial input ah

Proof: This lemma is immediately implied by the witness-hiding property of the underlying

ZKPK proof system THPZP used within the SP-THPZP protocol. The distribution of the

adversarial view of the protocol performed by every eventually corrupted player is the

same in the two cases because the inputs of these players are the same in both cases. On

the other hand, the adversarial view of the protocol performed by the players that never

get corrupted is identical in the two cases as well, because for every coin R and every

yj E Liz, the distribution of messages (Mi, mi) generated by THPZP is independent of

the choice of a witness wi. This is a witness-hiding property of the THPZP proof system,

which is a straightforward consequence of its zero-knowledge property (see Definition 30

in Appendix F): If an adversarial view of a run of a THPZP proof (on some witness) is

identical to a view of its simulation (where the simulator has no access to any witness),

then the view of two instances of the proof on two different witnesses must be identical too.
E

Adaptive Proof-of-Knowledge Property of the Simultaneous Proof

The robustness property of the simultaneous proof protocol (Lemma 20, page 114) also

holds in the adaptive adversary model. The same statement as given in Lemma 20 applies

to the adaptive model. The proof of this property in the adaptive setting is very similar to

the corresponding proof in the static setting too (i.e. to the proof of Lemma 20). The only

difference is that we must define the sets S, and S2 (see the proof of Lemma 20 on page 114)

must be defined more carefully. Namely, we define set S1 as the set of all players Pi s.t.

the probability that Pi gets corrupted at the end of the SP-THPZP protocol and passes this

protocol, i.e. that Pi is in Badn Qual at the end of the SP-TH PZP instance, is higher than

T(k) = 2n(k) (where the probability is taken as in the static case over the random coins

of the uncorrupted players in Steps 2-3 of SP-THPZP). The rest of the argument remains

identical, because the threshold 1 is set so that it can tolerate the fact that now the2np(k)

set S1 can include all n players. (In the way that it was defined in the static case, Si could

have at most t players.)

144

5.1. ADAPTIVE SECURITY OF PEDVSS-BASED THRESHOLD PROTOCOLS 145

5.1.3 Adaptive Security of Threshold Multiplication Protocol Mult-opt

The optimal-threshold multiplication protocol Mult-opt (Figure 4-21, page 118) also remains

secret and robust in the adaptive adversary model.

Robustness Property of Mult-opt in the Adaptive Setting

The robustness of Mult-opt in the adaptive model follows from the robustness properties of

the coin-flip protocol and from the proof-of-knowledge property of the simultaneous proof

protocol. As we argued above, both properties hold in the adaptive model as well as in the

static model. The formal statement of robustness of Mult-opt in the adaptive setting is the

same as the one we gave for the static model in Lemma 21 (and Definition 20).

However, the proof of this lemma has to be modified slightly in the adaptive model.

The essence of the proof of robustness of Mult-opt (page 118), is that by the proof-of-

knowledge property of the simultaneous proof, one can extract from the adversary's cheating

in Mult-opt two different representations of some number in Gq in bases g, h, and thus

compute logg h. If during the simulation of the h-IG protocol that precedes Mult-opt the

extractor embeds an input instance of the discrete-log problem in the generated value h, he

can then translate computing logg h to computing the discrete log on this input instance.

This proof goes through in the adaptive model as well as the static one with only one

modification, the same one we needed to make in Section 5.1.1 to argue that protocols

PedVSS, RVSS, and ZVSS remain robust in the adaptive model. Namely, and we recap this

argument verbatim from Section 5.1.1, to embed an input DLog instance in the generated

value h the extractor needs to simulate protocol h-IG via simulator SIM 2 IG, Figure 7-

3, page 174. This simulator needs to pick an inconsistent player Ps for whom it will

not know the value cs = logg(ys). However, in the adaptive setting, if the adversary

eventually corrupts this chosen player Ps then the extractor cannot show a consistent state

of that player to the adversary and the extraction process has to start from scratch. By

Lemma 36 in Chapter 7, the adversary's view of an interaction with SIMh G is statistically
indistinguishable from its view of h-IG until the adversary corrupts the chosen player Ps.

Therefore if the extractor picks Ps at random among the uncorrupted players then the

probability that the adversary corrupts player Ps is at most negligibly higher than t/n <

1/2. Therefore if the probability that the adversary "cheats" in Mult-opt is higher than

negligible, then the probability that in a single run of an extraction process this adversary

does not corrupt Ps and cheats is still higher than negligible. Since in such case the extractor

can extract an answer to the input discrete-log problem, the proof of robustness of Mult-opt

goes through in the adaptive setting.

Secrecy Property of Mult-opt in the Adaptive Setting

Note that the secrecy property of the Mult-opt protocol stated for the static setting in

Lemma 22, page 121, shows secrecy in the sense of "perfect simulatability" only of the

Inc-RVSS-data[v] part of the joint secret-sharing RVSS-data[vl output by Mult-opt (see Fig-

ure 4-23). In other words, we show that the Mult-opt protocol leaks no information about

the shared factors a and b (and their shared product v) only if the subsequent threshold

CHAPTER 5. ADAPTIVE THRESHOLD CRYPTOSYSTEMS

protocols which operate on the generated sharing RVSS-data[v] are restricted to operate on
the Inc-RVSS-data[v] part of this sharing.

We noted in Section 4.4.2 that a stronger secrecy/simulatability property can be stated
about the Mult-opt protocol. This remains true in the adaptive model, and we come back to
this point in a separate paragraph below. However, we first state in the adaptive model the
secrecy property of Mult-opt which corresponds to Lemma 22. As we said, the simulation of
Mult-opt via the auxiliary simulation procedure TMuIt of Figure 4-23 can replace only the "fi-
nal" polynomial shares vi, ki held by the simulated players in the secret-sharing RVSS-data[v
produced by Mult-opt (and thus it can be used to simulate subsequent protocols which only
take these shares as their inputs). This is because the "component" secret-sharing poly-
nomials f,,, fa of each player Pi are correlated with the input secret-sharing polynomials

fA, fb, namely fe,(0) = Aifa(i)fb(i) (i.e. "vi = Aotf3"). Since an adaptive adversary can
corrupt some players after the simulator replaces Inc-RVSS-data[v] with Inc-RVSS-data[v*],lO
the inability of the auxiliary simulation procedure TM It to consistently replace other private
data of all the simulated players in RVSS-data[v] is a problem in the adaptive model.

There are two solutions to this problem. We present a simple solution first, and postpone

a more complicated one to the separate subsection below on more general adaptive secrecy
property of Mult-opt. The easy solution comes about when we notice that since we are
interested (for now) only in the simulatability of protocols which take the Inc-RVSS-data[vl
part of the outputs of Mult-opt as their sole inputs, we can simply require the players
to erase all other private data in RVSS-data[v] at the end of the Mult-opt protocol. In
this way the simulation procedure TMUlt of Figure 4-23 becomes successful in consistently
modifying all the private data held by the uncorrupted players. In other words, we modify
the Mult-opt protocol of Figure 4-21 by adding the following step at the end: Each player
Pi erases its secret-sharing polynomials fj, fj, as well as all shares vUi, C'i for all Pj C
Part it received from other players. Therefore the outputs of Mult-opt consist now only of
the Inc-RVSS-data[v] data-structure, where the private data of each uncorrupted player Pi
includes only its "final" polynomial shares vi, 9i.

The secrecy property of the so modified Mult-opt protocol can be stated as follows:

Lemma 27 (Adaptive Secrecy of n/2-Threshold Mult-opt)
There exists a simulator SIM, such that for every n/2-threshold adaptive secure-channels

adversary A with history ah, for any distributed protocol P, for every discrete-logarithm
instance (p, q, g), and for every h C Gq, the following two adversarial views are identically

distributed:

* an adversarial view of the following sequence of protocol executions:

- a run of two successful instances of RVSS (either parallel or sequential), on public
input (p, q, g, h) and adversarial input ah, with outputs denoted RVSS-data[a, b]

- a successful run of MuIt-opt(RVSS-data[a, b]), with outputs Inc-RVSS-data[v]

'0 For example, this is how we simulate protocols Reciprocal-opt and DSS-TSig-opt, both of which contain
a Mult-opt -* RVSS-data[v]; RVSS-REC(RVSS-data[v]) sequence. A simulator of these protocols needs to
replace the private data of the simulated players in secret-sharing RVSS-data[v] output by Mult-opt to "hit"
some target output value v* in the reconstruction via RVSS-REC.

146

5.1. ADAPTIVE SECURITY OF PEDVSS-BASED THRESHOLD PROTOCOLS 147

- a run of P on inputs RVSS-data[a, b], Inc-RVSS-data[v]

e an adversarial view of the following simulation, where the uncorrupted players are

controlled by the simulator SI M which has a private input o-= logg h

- a run of two successful instances of RVSS (either parallel or sequential, as in

the corresponding step of the sequence above), on public input (p, q, g, h) and

adversarial input ah, with outputs denoted RVSS-data[a, b]

- a successful run of Mult-opt(RVSS-data[a, b]), with outputs Inc-RVSS-data[v]

- a replacement of the private data in RVSS-data[a, b], and Inc-RVSS-data[v] of the

simulated players with

* RVSS-data[a*] = Tvss(RVSS-data[a], a*, a, Fixedi)

* RVSS-data[b*] =Thvss(RVSS-data[b], b*, a-, Fixed2)

* Inc-RVSS-data[v*] =TMut(Inc-RVSS-data[v], v*, a-, Fixed3)
where a*,b*, v* C Zq are random subject to the constraint that a*b* = v*,
and Fixed1 , Fixed2 , Fixed3 are any sets of at most t players which contain

all the currently corrupted players

and then a run of P on inputs RVSS-data[a*, b*], Inc-RVSS-data[v*1

Proof: The proof follows the same logic as the proof of the static secrecy of Mult-opt in

Lemma 22, page 121. By the adaptive secrecy of RVSS, an adversarial view of sequence

2 x RVSS --> RVSS-data[a, b]

MuIt-opt(RVSS-data[a, b]) -- mInc- RVSS-data{v]

P(RVSS-data[a, b], Inc-RVSS-data[v])

is distributed as a view of

2 x RVSS -> RVSS-data[a, b]

(a*,b*) <-s Zq x Zq

TRvss(RVSS-data[a], a*, o-, Fixedi) -> RVSS-data[a*]

TRVss (RVSS-data[b], b*, a, Fixed2) -> RVSS-data[b*]

Mult-opt(RVSS-data[a*, b*]) i-Inc-RVSS-datav*]

P(RVSS-data[a*, b*], Inc-RVSS-data[v*])

where Fixed1 and Fixed2 are some sets of at most t players which include the players cor-

rupted when M u It-opt begins. Because the adversary always sees if an execution of M u It-opt

is successful or not, the identity holds also if we restrict the above sequences to only success-

ful executions of Mult-opt. We will show that the distribution of Inc-RVSS-data[v*] output

by the latter sequence of executions where Fixed1 , Fixed2 are some sets of at most t players

which include the players corrupted at the end of the Mult-opt protocol,1 1 is identical to the

"Although no efficient simulator can guess, before an execution of Mult-opt, the identities of players an

Ill

148 CHAPTER 5. ADAPTIVE THRESHOLD CRYPTOSYSTEMS

distribution of Inc-RVSS-data[v*] output by Mult-opt(RVSS-data[a, b]) -> RVSS-data[v] fol-
lowed by replacement TMt(RVSS-data[v], v*, o-, Fixed3) -> Inc-RVSS-data[v*], where v* =
a*b* and Fixed3 is some set of at most t players which includes all players corrupted at the
end of Mult-opt.

It follows from the adaptive secrecy of PedVSS that the distribution of Inc-RVSS-data[v*]
is the same in both cases. Assume for simplicity of notation that Part = P1 , ..., P and that
Fixed, = Fixed2 . Let Badfi, be the set of players corrupted at the end of Mult-opt.
Note that Badfin g Fixed1 = Fixed2 . Let Fixed3 be any set of at most t players s.t.
Badfi, C Fixed3 . In both cases the inputs of players in Fixed, = Fixed2 are determined
by their parts in RVSS-data[a, b]. For the players in Part \ Fixed,, in one case they execute
PedVSS on inputs *4= Aalf37 and in the other on inputs vi = Aap3j. By the adaptive
secrecy of PedVSS, an adversarial view of the latter execution is identical, for each P C
Part \ Fixed,to a view of an execution of PedVSS followed by a replacement of the private
data of the uncorrupted players in the generated PedVSS-data[vi] by PedVSS-data[vf] =

Tpedvss(PedVSS-data[vi],<* = Aa37, o, Fixed3). Therefore, as in the static case, the final
polynomial shares v = fv(j) = EPCPart f,,(j) of each player Pj Part \ Fixed3 can be
replaced by the simulator with values v-= f*(j) where f,* is a random t-degree polynomial
which agrees with f, on Pj E Fixed3 , and such that fv*(0) = EP.EPart\Fixedi f$ (0) +
ZPicFixedi f 0)=ZPiEPart\Fixedi A Oa3 +ZPEFixedi Aaidi = a*b*. Since this is exactly
the replacement that SIM performs via the auxiliary simulation procedure T

MUIt, and since
all the other private data related to the execution of Mult-opt are erased, it follows that the
distribution of Inc-RVSS-data[v*] is the same in the two cases, and hence the lemma follows.

More General Adaptive Secrecy Property of Mult-opt

First we note that the adaptive secrecy property expressed in the above lemma can be
generalized, as in the static case, to the case of a repetitive execution of Mult-opt, see
Lemma 13. Furthermore, we note that data erasure is not necessary to prove adaptive
secrecy of the Mult-opt protocol. It merely simplifies the proof of adaptive secrecy of this
protocol. Indeed, one can note that even with the data-erasure modification we intro-
duced to Mult-opt above, an uncorrupted player Pi does not modify its data in the input
secret-sharings RVSS-data [a, b]. Hence it still keeps ai,I, from which vi = f& (0) can be
computed. Since it is precisely the relationship between vi and RVSS-data[a, b] that causes
difficulty in the simulation, the erasure of the remaining part of each "component" secret
sharing PedVSS-data[v], i.e. the erasure by each Pi of all other coefficients of its polynomials

fvi, fb, is not essential in the proof of an adaptive secrecy of Mult-opt. Moreover, if the
uncorrupted players leave all the data in the generated RVSS-data[v], protocol Mult-opt re-
mains adaptively secret in a more general sense than expressed in Lemma 27 above. Namely,
similarly as in the static case (we discuss this issue in detail in Section 4.4.2), Mult-opt re-
mains secret in the sense of perfect simulatability of any subsequent protocol in which the

adaptive adversary will corrupt throughout this protocol, here we are considering an adversarial view of
an interaction with a hypothetical simulator. We use this hypothetical interaction only to show that the
adversarial view of the protocol execution is distributed identically to the view of an actual simulation via
the efficient simulator SIM described in the statement of this lemma.

5.1. ADAPTIVE SECURITY OF PEDVSS-BASED THRESHOLD PROTOCOLS 149

uncorrupted players Pi use, apart of their data in Inc-RVSS-data[v], also the polynomial
shares vji, Ii, vij, 1 ij they either sent to or received from the eventually corrupted players.
As we mentioned in Section 4.4.2, this includes protocols Mult-opt and Reciprocal-opt, but

does not include Exp or its adaptive version Ad-Exp presented later on in this chapter.
Without erasure, simulation of the Mult-opt protocol is more complicated. The simu-

lator SIM still simply performs the Mult-opt protocol on RVSS-data[a, b] on behalf of the
uncorrupted players, but once it is done, and once it replaces the private data of the uncor-
rupted players in RVSS-data[a, b] and Inc-RVSS-data[v] via procedures TpedVSS (using sets
Fixed1, Fixed2 , which, for simplicity of discussion we will assume to be equal) and TMult (us-

ing set Fixed3), as described in Lemma 27, the simulator needs also to replace the remaining
private data in RVSS-data[v] of each player Pi C Fixed1. It can do this as follows. It leaves
intact shares vi, Dji received by Pi from other players Pj E Part, but replaces Pi's own
secret-sharing polynomials f Ai, fii with random t-degree polynomials ft*,, ft subject to the
constraints that they (1) agree with fvi, fv; at zero (i.e. (f*,(0), ff*,(0)) = (fO (0), f(0)) =
vi,)i, because Pi is in set Fixed1 = Fixed2 , and hence its value v7 = f*,(0) must be equal to
fv (0) = AiactQ); (2) agree with f, fe, on values corresponding to other players in Fixed1;
(3) agree with shares vi, D7 chosen by T uit, namely f*(i) vt = - ZP P\{ Vfi

and f*(i) =D* = Di - ZEPat\Pi Dji; and (4) agree also with the verification informa-
tion Fi2. It follows from the adaptive secrecy of PedVSS that such f,*,, ff*) are distributed
identically to what the adversary expects to see in an actual execution of Mult-opt.

5.1.4 Adaptive Security of Inverse Computation Protocol Reciprocal-opt

The n/2-threshold inverse computation protocol Reciprocal-opt (Figure 4-24, page 127) re-
mains secure in the adaptive model as well. Its robustness follows trivially from the adaptive
robustness of RVSS and Mult-opt. As for the proof of secrecy, the simulation procedure of
Figure 4-24 already works against the adaptive adversary. For simplicity of analysis, we
assume that in the adaptive setting the Mult-opt step of Reciprocal-opt is modified by the
use of data erasure as discussed in Section 5.1.3 above, and hence in Step 2 (Figure 4-24)
the players compute just Inc-RVSS-data[c] and not RVSS-data[c]. However, as we mention
above, such erasure is not necessary to prove adaptive security of Reciprocal.

To state the adaptive secrecy property of Reciprocal-opt we make similar modifications

as for the other threshold protocols discussed above, namely we give more versatility to the
simulator in the way it replaces the private data of the uncorrupted players in RVSS-data[a]
and RVSS-data[e], the inputs and the outputs of Reciprocal-opt. We also need to clarify that
in the adaptive setting the simulator SIMap,-t~op of Figure 4-24, page 127, after computing
Inc-RVSS-data[c] <- Mult-opt(RVSS-data[a, b]), modifies the data of the simulated players
via procedure Inc-RVSS-data[c*] = TMt(Inc-RVSS-data[c], c*, o, Bad), i.e. it keeps fixed all
the data associated to the currently corrupted players Bad.

Lemma 28 (Adaptive Secrecy of n/2-Threshold Reciprocal-opt) There exists a sim-
ulator SIM, such that for every n/2-threshold adaptive secure-channels adversary A with
history ah, for any distributed protocol P, for every discrete-logarithm instance (pq,g),
and for every h C Gq, the following two adversarial views are identically distributed:

9 an adversarial view of the following sequence of protocol executions:

III

150 CHAPTER 5. ADAPTIVE THRESHOLD CRYPTOSYSTEMS

- a successful run of RVSS on public input (pq, g, h) and adversarial input ah,
with outputs denoted RVSS-data[a]

- a successful run of Reciprocal-opt on input RVSS-data[a], with outputs denoted

RVSS-data[e]

- a run of P on input RVSS-data[a] and RVSS-data[e]

e an adversarial view of the following simulation, where the uncorrupted players are

controlled by the simulator SIM which has a private input o = logg h:

- a successful run of RVSS on public input (pq, g, h) and adversarial input ah,
with outputs denoted RVSS-data[a]

- a successful simulation of Reciprocal-opt via SIMRpc1- 0pt of Figure 4-24 (modified
as discussed above) on input RVSS-data[a] and the additional input o- = logg h of

simulator SlMRpc-opt, with outputs denoted RVSS-data[e]

- a replacement of the private data in RVSS-data[a, e] of the simulated players via

transformations

* RVSS-data[a*] = Thvss(RVSS-data[a], a*, a-, Fixedi)

* RVSS-data[e*] = TRvss(RVSS-data[e], e*, o, Fixed2)

where a*,e* are random elements in Zq subject to the constraint that a*e* = 1,
and where Fixed1 , Fixed2 are any sets of at most t players which contain all the

currently corrupted players, and then an execution of P on RVSS-data[a*, e*]

Proof Sketch: As in the static case, the proof of secrecy of Reciprocal-opt is a straightfor-

ward application of the secrecy property of Mult-opt. As in that proof, the reconstruction
RVSS-REC(Inc-RVSS-data[c]) -> c, the scaling Scale(RVSS-data[b],0, c-1) -=> RVSS-data[e]
(Steps 3-4 of Reciprocal-opt) and the subsequent run of P(RVSS-data[a, e]) are a particu-
lar example of some protocol P' executing on inputs RVSS-data[a, b] and Inc-RVSS-data[c].
Therefore by the adaptive secrecy property of Mult-opt, the successful execution of these
steps is distributed as in a simulation where RVSS-data[a, b] are replaced by RVSSdata[a*, b*]
generated via two T

PedVSS procedures using any sets Fixed1 and Fixed2 of at most t players

which include all players corrupted at the end of Reciprocal-opt, while Inc-RVSS-data[c] is
replaced by Inc-RVSS-data[c*] generated via procedure TMylt using as set Fixed3 the set of
all players corrupted just before the reconstruction protocol RVSS -REC of Step 3. Therefore
Lemma 28 follows from Lemma 27. E

5.2 Adaptively Secure Key Generation and DSS Signatures

5.2.1 Adaptively Secure Threshold Exponentiation Protocol

The Distributed Key Generation protocol DKG, introduced in the context of a static ad-
versary in Section 4.2.5, consists of a joint secret-sharing protocol RVSS which creates a
sharing RVSS-data[xJ of a random secret key x, and a threshold exponentiation protocol Exp
executed on RVSS-data[c] and on element g in Gq, to produce the public key y = gx In the
preceding section we argued that the RVSS protocol remains secure in the adaptive setting.

5.2. ADAPTIVELY SECURE KEY GENERATION AND DSS SIGNATURES

However, as we have argued in the paragraph on "Problems with Simulating an Adaptive

Adversary" in the introduction to this chapter, the threshold exponentiation protocol Exp

(Figure 4-9, page 73) is not known to be adaptively secure.

In Figure 5-3 we present an adaptively secure version Ad-Exp of this protocol which

was proposed in [CGJ+99, FMY99b]. We will follow the terminology of the subsequent

work of [JLOO] where it was called an "additive exponentiation" protocol, in contrast with

the statically-secure "polynomial exponentiation" protocol Exp. The difference is in how

value ma, for any element m C Gq, is extracted from the joint secret-sharing RVSS-data[a].
In the "additive" method, every player Pi broadcasts value mai where a is its additive

share in RVSS-data[a] (see Figure 4-7 for notation), and then all players compute ma =

Hi]Qua mai. In the "polynomial" method, each player broadcasts value m0i where a% is its
polynomial share in RVSS-data[a] , and ma is computed by interpolation of any t+1 of these

values using Lagrange coefficients. We discussed why in the adaptive setting we need to

replace the statically-secure "polynomial" exponentiation method with an above "additive"
exponentiation in the "Single Inconsistent Player Technique" paragraph in the introduction

to this chapter.

To guarantee robustness, each player proves, via a simultaneous proof protocol SP-
THPZP-Rep that the representation of Fa,,(0) = gaihai in bases g, h is the same as the

representation of Ai - mai in bases m,1, which proves that Pi either produced A by
exponentiating m to the proper value a, or that Pi knows some other representation (a, 64)
of Fa,,(0) in bases g, h not equal to (ai, di). However, under the discrete-log assumption the

latter case happens with only negligible probability, because otherwise we could build an

extractor who would use this ability of the corrupted player to efficiently compute discrete

logarithms. We present the details of the "additive" exponentiation protocol in Figure 5-3.

We express the secrecy property of protocol Ad-Exp as the property of single-inconsistent-

player-simulatability of this protocol.

Lemma 29 (Single-Inconsistent-Player-Simulatability of Ad-Exp)
For every n/2-threshold adaptive secure-channels adversary A with history ah, for every

discrete-log instance (p, q, g), for every h E Gq, for every m E Gq, and for every initially

uncorrupted player Ps, the following two adversarial views are have identical distribution:

* an adversarial view of the following sequence of protocol executions until the adversary

corrupts player Ps (or until the end if the adversary does not corrupt PS)

- a successful run of RVSS (Figure 4-6) on public input (p, q, g, h) and A's input

ah, with outputs denoted RVSS-data[a]

- a run of Ad-Exp on inputs RVSS-data[a] and m

* an adversarial view of the following simulation, where the uncorrupted players are

controlled by the simulator SIM whose private input is o- = log9 h, until the adversary

corrupts player Ps (or until the end if the adversary does not corrupt PS)

- a successful run of RVSS on public input (p, q, g, h) and A's input ah, with outputs

denoted RVSS-data[a]

. mmm"I"m w- I , , . .

151

III

152 CHAPTER 5. ADAPTIVE THRESHOLD CRYPTOSYSTEMS

Adaptively Secure Exponentiation Protocol Ad-Exp

Public Input: element m E G
Other Input: secret-sharing RVSS-data[a] (See Fig.4-7)
Public Output: value A =ma, where a is defined by RVSS-data[a]

1. Each Pi E Qual broadcasts Ai = mai.

2. Each player Pi proves knowledge of equal representation of element A in bases

m, 1 and element Fa (0) in bases g, h. To do that, the players perform a simul-
taneous proof protocol SP-THPZP-Rep of Figure 4-20 based on the proof system
THPZP-Rep for showing equality of representations (Figure F-2, Appendix F).

3. If some Pi fails, a and Ai = mai are reconstructed publicly via the PedVSS -REC
protocol on input PedVSS-data[ai] contained in RVSS-data[a].

4. Value A = maHP=.E a, Ais publicly computed.

Simulator SlMadiEx p of Ad-Exp (interacting with A):

Public Input: element m E Gq, public data in RVSS-data[a]
SIMadExp'S Private Input: private outputs of all Pi E Good in RVSS-data[a]

the "target output" value A* C G

Pedersen trapdoor value a = logg h

identity Ps of the inconsistent player among Good

A's Private Input: adversary's output in RVSS-data[a]

1. SlManp interpolates values a and computes Ai = mai for Pi C Bad n Qual. For
all players Pi E Good \ {Ps}, SIMadE, broadcasts correct values A 2 = mi, while
for Ps it broadcasts A = A*/ IiQA.

2. SlMadisp simulates the simultaneous proof protocol SP-THPZP-Rep of Step 2 via
simulator SIMsp of Figure 5-2 on SIMsp's inputs a, Fs, and the witnesses a, di
s.t. Ai = mai and Fi (0) = gihfi for all players in Good except of Ps.

3.-4. SIMacmp performs Steps 3-4 on behalf of the uncorrupted players. (Note that

players controlled by SIMadm, cannot fail Step 2.)

Note that if the adversary does not manage to cheat then the public output value

is reconstructed as A*

Figure 5-3: Ad-Exp: Adaptively Secure Threshold Exponentiation Protocol

- a simulation of Ad-Exp with simulator SIMadap (Figure 5-3), on RVSS-data[a]

and m, and on SIMadnp's additional private inputs the trapdoor a, the identity

of player Ps, and an element A* picked at random in Gq

Proof: It suffices to show that unless the adversary corrupts Ps, SIMadap executed on

RVSS-data[a], m, a, Ps, A* produces an adversarial view identical to a random run of the
protocol Ad-Exp on RVSS-data[a*] = Tvss(RVSS-data[a], a*, a-, Fixed) where a* = log A*,

.-Iff

5.2. ADAPTIVELY SECURE KEY GENERATION AND DSS SIGNATURES

set Fixed includes all eventually corrupted players, and the T RVSS procedure uses the same
player Ps as an inconsistent player. This follows immediately from the adaptive zero-

knowledge property of the simultaneous proof protocol SP-THPZP-Rep. E

Adaptive Robustness Property of Ad-Exp

To express the robustness property of protocol Ad-Exp, we need to pinpoint a notion of

successful execution of this protocol:

Definition 23 We call an instance of protocol Ad-Exp executed on inputs a correct joint

secret-sharing RVSS-data[a] and element m E Gq successful if and only if (1) Each Ai,

Pi E Bad, broadcast in that step is correctly computed, i. e. it is equal to mai where a is
defined as fai (0) interpolated from shares of the uncorrupted players in RVSS-data [a]; (2)

If some player Pi E Bad fails in the proof of Step 2 then the subsequent reconstruction of

their share ai via protocol PedVSS-REC is successful, and thus the proper value Ai = mai
is publicly computed.

It follows that if Ad-Exp is successful on correct RVSS-data[a] then its public output is

ma where a is defined by (the outputs of the uncorrupted players in) RVSS-data[a]. Given
that definition, the robustness property of Ad-Exp in the adaptive setting is expressed in

the same way as the robustness of protocol Exp in the static setting, i.e. as in Lemma 7.

The proof of that property is very similar to the proof of robustness of Mult-opt, another

protocol which uses a simultaneous proof, in the adaptive setting. Namely, we use the

same idea to construct an extractor which on input some discrete-log instance (p, q, g, j)

simulates the Ped-IG protocol to embed in the generated value h. In the adaptive setting,

to simulate Ped-IG in this way the extractor needs to pick an inconsistent player Ps among

the simulated players, and hope that this player is not corrupted later on. If the adversary

then has a higher than negligible chance of cheating in the Ad-Exp protocol, then by the

adaptive robustness of the PedVSS -REC protocol used in Step 3 of Ad-Exp, the only chance

it has of cheating is to cheat in the simultaneous proof protocol. But if the adversary

does that then by the adaptive proof-of-knowledge property of the simultaneous proof, an

extractor can with higher than negligible probability extract witnesses (a', t') from each

cheating P. If the adversary cheats then this witness is different than the correct values

(al, &i) which the extractor can interpolate from RVSS-data[a]. But then the extractor

gets two representations of Fai (0) in bases g, h, which allows him to compute log9 h, and

then translate it into logg j, and thus to efficiently compute discrete logarithms. As in
the argument for adaptive robustness of Mult-opt, this works only if the adversary does not

corrupt the inconsistent player Ps. However the probability that the adversary corrupts this

player is at most negligible different than 1/2. Therefore if the adversary does corrupt that

player the extraction can start from scratch, and this process still establishes an efficient

reduction between a higher than negligible margin of adversarial cheating in this protocol

and breaking of the discrete-log assumption.

5.2.2 Adaptively Secure Threshold DSS Scheme

The adaptively-secure threshold DSS signature generation Ad-DSS -TSig-opt follows the

same procedure as its statically-secure counterpart DSS -TSig-opt presented for the static

153

154 CHAPTER 5. ADAPTIVE THRESHOLD CRYPTOSYSTEMS

model in Figure 4-25, page 131, except that Ad-DSS-TSig-opt uses the above adaptively-
secure Ad-Exp protocol in place of the statically-secure Exp used by DSS -TSig-opt. Similarly,
any call to the simulator SIMnp of Exp should be replaced with calls to the simulator

SI M,d& of Ad-Exp. The proof of unforgeability of the resulting threshold DSS signature
scheme Ad-TSS-opt = (Ped-IG+DKG, Ad-DSS-TSig-opt, Ver), is the same as the proof we
gave for Theorem 6, page 129, which stated the unforgeability of the TSS-opt scheme in the
static setting. The only difference between the two arguments is that here the simulator
SIMss needs to pick an inconsistent player Ps at random among the initially uncorrupted
players. If that player is never corrupted, by the adaptive secrecy of the building-block
protocols used in Ad-TSS-opt, the adversarial view of a successful simulation is identical to
its view of a successful protocol. If that player becomes corrupted, the whole simulation
process against the thieshold adversary A starts anew. However, since this happens with
probability at most negligibly over 1/2, this procedure establishes a reduction between
unforgeability of Ad-TSS-opt and unforgeability of the standard, "centralized", DSS scheme.

Chapter 6

Erasure-Free Adaptive Threshold
Cryptosystems

The adaptive security of protocols of Chapter 5 was proven in the private-channels com-
munication model. To efficiently implement such private channels in the adaptive model
we resorted to the assumption that the participating players can reliably erase local data.
This is a significant drawback because secure erasure of data is hard to achieve in practice. 1

In this chapter we show that in the adaptively secure threshold setting it is possible to
get rid of the need of secure data erasure, and hence that efficient threshold protocols can
be executed on standard hardware and operating systems. We model such computation
formally as an erasure-free model of computation, where the adversary is effectively allowed
to examine the entire computational history of a party it corrupts.

By proposing erasure-free adaptive threshold cryptosystems that efficiently compute
specific arithmetic operations in the threshold setting (e.g. shared multiplication, shared
exponentiation, shared computation of DSS signatures, etc), we provide the first efficient
non-erasing protocols for adaptively secure computation of non-trivial multi-party functions
over insecure channels. No such protocols were known before, because although general
secure multi-party computation protocols are known in the adaptive erasure-free model as-
suming private channels [BGW88, CCD88], it is not known how to efficiently implement
private channels in this model. Unlike in the static adversary setting, where private chan-
nels can be implemented with the conventional semantically secure encryption [GM84],
implementing private channels in the adaptive-adversary model is a difficult task which,
in general, seems to require the players to use a non-committing encryption [CFGN96]. In
the previous chapter we relied on the efficient implementation of such encryption provided
by [BH92], which works in the erasure-enabled computational model. Polynomial-time
implementations of the non-committing encryption in the erasure-free model were given
in [CFGN96, Bea97, DNOO], but these implementations carry a vary large communication
and computation overhead, from quadratic to linear in the security parameter.

In this chapter we show that the adaptively secure protocols of Chapter 5 can be proven
secure in the erasure-free model if the private channels are implemented with a new encryp-

'See the "Assumption of Reliable Data Erasure" paragraph on page 27 in Section 2.2 for a discussion of
this issue.

155

III

156 CHAPTER 6. ERASURE-FREE ADAPTIVE THRESHOLD CRYPTOSYSTEMS

tion primitive which we call a simultaneously secure encryption.2 A simultaneously secure

encryption is a stronger notion than the semantically secure encryption. It is weaker, how-

ever, than the non-committing encryption defined by [CFGN96]. It has a property that a

simulator which simulates a transmission of an encrypted message between two uncorrupted

players can create a quasi-.ciphertext message that looks like a ciphertext but is statistically

independent from a plaintext. Furthermore, if the adversary corrupts the receiver of this

quasi-ciphertext, the simulator can open it as a valid encryption of some message. The

simultaneously secure encryption is weaker than the non-committing encryption in two as-

pects: (1) Upon the corruption of a receiver, the simulator can open such quasi-ciphertexts

in only one way; and (2) All bets are off if the adversary corrupts the sender. Our imple-

mentation of this novel encryption primitive has an efficiency comparable to the ElGamal

encryption [ElG85b] from which our construction is derived. Its security is based on the

DDH intractability assumption. In the next chapter we discuss these issues in more detail.

6.1 Private Channels in the Adaptive Erasure-Free Model

6.1.1 General Multi-Party Protocols and Non-committing Encryption

If servers can reliably erase their local data, then we can assume secret communication

between players in any adaptively-secure distributed protocol because it can be implemented

in that model with an inexpensive technique due to Beaver and Haber [BH92].3 However, if

erasures are not allowed, implementing private channels for any multi-party protocol that is

provably secure in the adaptive-adversary and secure-channels model is more complicated.

Here we sketch an argument why implementing private channels in the adaptive erasure-

free model seems to require a "non-committing" property of encryption, and therefore

cannot be realized with a conventional encryption. Suppose some multi-party protocol was

proven secure against an adaptive adversary assuming that the communication between

players was implemented with physically secure, and hence private, channels.4 In the current

absence of other techniques for proving security of multi-party protocols, this means that

this protocol has an efficient simulator SIM which simulates the protocol in the secure-

channels model. 5 If the private channels were implemented with conventional encryption,

and if we attempted to use the above simulator SIM to construct a simulator for the resulting

protocol in the insecure-channels model, then such simulation would fail. Suppose that the

protocol calls for a transmission of some secret value between a pair of players, and suppose

that the adaptive adversary does not corrupt these players before this transmission, but does

corrupt either of them afterwards. In this case, at the time of this transmission the simulator

has no knowledge of the transferred secret, but must give to the adversary a ciphertext that

corresponds to this transmission. Subsequently, when the adversary corrupts either of

the participating players, the simulator learns the transferred secret from the underlying

2
1t is an interesting open question whether this new encryption primitive can implement private channels

for some general secure multi-party computation protocol.
3 See page 134 in Chapter 5 for a description of this implementation.
4 [BGW88, CCD88] provide just such protocols for efficient computation of any multi-party function which

can be realized with a polynomial-depth circuit. See also Appendix D.
5 See the discussion of the simulation technique in Section 2.4.

in--- - -

6.1. PRIVATE CHANNELS IN THE ADAPTIVE ERASURE-FREE MODEL

simulator SI M. However, since in general this secret can be an arbitrary value, the simulator
is faced with a task of "opening" the ciphertext it provided as a valid encryption of any
given plaintext, namely a plaintext chosen by the algorithm SIM. This is, however, an
impossible task if a regular encryption is used to encrypt the data. Indeed, in conventional
implementations of encryption, a ciphertext can serve as a commitment to the plaintext,
and hence can be opened in only one way.

Canetti at al. [CFGN96] solve this problem by implementing a new type of encryption
scheme called non-committing encryption, which has the property that the simulator can
produce ciphertexts that, upon a corruption of either a sender or a receiver, can be opened by
the simulator as corresponding to any given cleartext. However, the existing non-committing
encryption constructions of [CFGN96, Bea97, DNOO] are quite inefficient, because they
require an overhead of either 0(k 2) or 0(k) ciphertext bits for each securely transferred
plaintext bit, where k is a security parameter. 6

Note that if the adversary is non-adaptive, then the above difficulty in the simulation
vanishes. Indeed, any multi-party protocol which is non-adaptively secure in the secure-
channels model can be efficiently implemented, based on some hardness assumptions, in
the more realistic insecure-channels model using conventional encryption. Given that the
best adaptively-secure and non-adaptively-secure multi-party protocols have comparable
efficiency in the secure-channels model, the current best-known techniques of [DNOO] imply
that in the more realistic insecure-channels model, resistance to adaptive adversary incurs
either 0(k) penalty in efficiency, which makes such resistance too burdensome, or, by the
techniques of [BH92], it requires an assumption of reliable local erasure, which is non-trivial

to satisfy in practice as well.

6.1.2 Our Threshold Protocols and Simultaneously Secure Encryption

Our efficient implementation of private channels in the adaptive erasure-free model for
our threshold protocols, i.e. the adaptively-secure threshold protocols of Chapter 5, relies
on two observations: (1) Our simulators "know" all the secret information of all but one
"inconsistent" uncorrupted player; and (2) The only messages that need to be secretly
transmitted between players are shares generated by secret-sharing protocols. We elaborate
on these two observations below.

Observation (1): In the simulation of our adaptive protocols over private channels,
there is only one inconsistent player, i.e. only one player for whom the simulator cannot
present an internal state that would be consistent with the adversary's view.7 When any of
the remaining "consistent" players is corrupted, the simulator can open all the information
generated by such player, including the messages sent, and this information is consistent
with what the adversary expects to see. Namely, this information, together with the other
information the adversary has seen in the simulation, has the same probability distribution

6 Namely, the solution of [CFGN96] assumes one-way trapdoor permutations and carries a 0(k2) over-
head, [Bea97] gives a solution that makes a stronger assumption of decisional Diffie-Helman and reduces
the overhead to 0(k) bits, and the construction of [DNOO] weakens the assumption to one-way trapdoor
permutations again and maintains the 0(k) overhead.

TSee the introduction to Chapter 5 for an explanation of the single inconsistent player simulation method.

157

III

158 CHAPTER 6. ERASURE-FREE ADAPTIVE THRESHOLD CRYPTOSYSTEMS

as the corresponding information the adversary gains in an interaction with an actual run

of a protocol.

In this chapter we will show a stronger property of the simulation of these protocols.

Namely, that there is no difference between the adversary's view of the simulation and of

the protocol, even if this view is extended by all the messages sent by the "consistent"

players in the clear. In particular, to satisfy this property, the simulator must prepare the

messages of all the "consistent" simulated players at the time these messages should be

sent. Intuitively, the reason why the simulators of the adaptively-secure protocols of the

previous chapter have this property is that on behalf of all but one of the simulated players

our simulators follow the actual prescribed protocol of these players. More formally, the

actions of all but one of the simulated players have the same probability distribution as the

actions of these players in the actual random execution of the prescribed protocol.

A crucial consequence of this property of the simulation of our adaptively-secure thresh-

old protocols is that regardless of the encryption we use, the secure-channels adversarial

view extended by the encrypted messages sent by all the "consistent" players has the same

distribution in the simulation and in the protocol. This observation is reflected in the re-

quirements (2) and (3) in the Definition 25, page 163, which specifies the class of multi-party

protocols for which we are able to efficiently implement private channels in the adaptive

erasure-free model.

Observation (2): For the secret information generated by the single inconsistent player

we need a separate argument. Here we make two observations: (2a) First note that the sim-

ulator never has to worry about the case when the adversary corrupts that player, because,

as we argue in the introduction to Chapter 5 (see esp. Definition 22, page 137), it is fine if

the whole simulation fails in that case.8 (2b) Secondly, note that the general problem de-

scribed in Section 6.1.1 above, of simulating a multi-party protocol for adaptive adversary in

the insecure-channels model, does not appear in the simulation of most threshold protocols,

because it is unusual for a threshold protocol to prescribe that some two players transmit

a true secret between each other, i.e. a quantity whose value is unknown by the simulator

unless the adversary corrupts either the sender or the receiver. Instead, in most threshold

protocols, including the ones we propose, all the data that is sent privately between players

are random shares corresponding to secret-sharing protocols performed by the senders.9

Therefore the task of our simulator is easier than the general case described in Sec-

tion 6.1.1 on two counts. The simulator does have to simulate in an adaptive setting an

8 Note, however, that the general problem of simulating adaptive erasure-free protocols over insecure-

channels described in Section 6.1.1 above, remains if the adversary is constrained to corrupting only the

receiver of the ciphertext. However, the subsequent observation (2b) helps us solve the case of the receiver
corruptions as well.

91n the general secure multi-party computation in the adaptive model, the simulator algorithm has access

to the private inputs of the corrupted players at the moment these players become corrupted. (See for example
the MPC formalizations of [MR91, CanOG].) By a true secret we refer to a variable whose distribution is

unknown to the simulator before a corruption. The distribution is unknown to the simulator in the sense

that the simulator cannot produce a value with this distribution. For example in our adaptive threshold
exponentiation protocol Ad-Exp (Figure 5-3, page 152), the true secret is the secret key x = log, y because

the simulator, on input y, cannot produce a value with this distribution. On the other hand, any t shares sent

by any of the players controlled by the simulator are not true secrets, because these shares are distributed
as independent random values in Z., and hence the simulator can produce such values.

* r~q .. '*** m*.,~

6.1. PRIVATE CHANNELS IN THE ADAPTIVE ERASURE-FREE MODEL 159

adversarial view of the transmission of messages over insecure channels sent by a player
whose internal state is unknown (i.e. the inconsistent player), but: (2a) The adversary can
corrupt only some subset of the receivers of these messages, not its sender; and (2b) The
ciphertexts are not encryptions of arbitrary (and unknown) secrets but of shares generated
in a random t-threshold secret-sharing of an arbitrary (and unknown) secret. In particular,
if the simulator secret-shares a random secret instead, any subset of t of the shares it gen-
erates will be distributed as in the actual protocol, and hence at the time of creating each
ciphertext the simulator knows the plaintext to which it can later safely decommit when
the receiver of this ciphertext gets corrupted.

Defining Simultaneous Security of Encryption

Therefore, to simulate the actions of the inconsistent player, we need an encryption scheme
with the property that if the adversary sees the ciphertexts of some n plaintexts and chooses
any t of them to be opened, the adversary learns nothing about the remaining plaintexts.
We generalize this property as simultaneous security of an encryption scheme. In Figure 6-1
and Definition 24 below we formalize it in terms of indistinguishability of the ciphertexts
that remain unopened by the adversary. The interaction between the adversary A and the
encryption oracle S described in Figure 6-1 is similar to the corresponding interaction in
the standard definition of indistinguishability of encryption, where S picks a single key pair
(e, d), sends the public key e to A, who then chooses two probability distributions M, and
M2over single k-bit plaintext strings and sends them to S. Then the oracle S picks a random
bit b, picks a single string m according to the distribution Mb, and sends an encryption of
m to A, who outputs a guess b' as to whether m was picked in M 1 or M 2. The interaction
between A and S in Figure 6-1 differs from this on two counts: (1) The interaction operates
on n encryption instances and messages in parallel, and (2) The adversary can ask for
opening of any legal subset of the ciphertexts, in the sense that corresponds to corrupting
the receivers of these messages, i.e. the adversary obtains their secret keys. See also the
notes 1-4 below for some explanatory comments to our definition of simultaneous security.10

Definition 24 (Simultaneous Security of Encryption Scheme)
E = (KeyGen, Enc, Dec) is a simultaneously secure encryption scheme if, for any set L
of legal subsets of indices {1, ..., n} and for any probabilistic poly-time algorithm A that
interacts with an algorithm S as in Figure 6-1, the probability that b' = b is negligibly
different from 1/2.
In other words, A cannot distinguish between encryptions of random elements in Do and
random elements in D1.

Note 1: The simultaneous security notion for encryption can be contrasted with the
recent definition of selective security for commitment schemes of Dwork et al. [DNRS99].
Our notion of simultaneous security of encryption is dictated by its application to the multi-
party protocols, but a [DNRS99]-like notion of selective security can also be considered for
encryption schemes. A crucial difference between the two notions is that here each of the

1 0 0ne can propose other notions of simultaneous security, based on semantic security or non-malleability
([GM84, DDN91]). Also other variants of the indistinguishability definition we give are possible.

III

160 CHAPTER 6. ERASURE-FREE ADAPTIVE THRESHOLD CRYPTOSYSTEMS

An interaction between the adversary A and the oracle S,

which implements a simultaneously secure encryption scheme E.

k is a security parameter and n < poly(k)

E =(KeyGen, Enc, Dec) is a public-key encryption scheme, i.e.:

randomized aig. KeyGen outputs a public key e and a secret key d on input 1k,

randomized alg. Enc outputs a ciphertext c on input (MI, e)

algorithm Dec outputs a cleartext in on input (c, d)

L is any subset of the set of all subsets of indices {1, ... , n}.

(L defines the set of legal subsets of indices in {1, ..., n}.)

S: Compute n independent key pairs (el, di) <- KeyGens(1k),

for i = 1,...,n

S->A: Send ei, ... , en

A: Pick two probability distributions Do, D over n blocks of

k-bit long plaintext strings, subject to the constraint that for

all legal sets of indices I = {ii, ..., in,} in L, the probability

distribution of 7nl'= (Min, ... , i7M,) is the same for

m = (mi, ..., mn) picked in Do and in Di
S <- A: Send (an efficient description of) Do, D 1

S: Pick a random bit b and pick n blocks of plaintext

ml, .. .,n, at random according to distribution Db.

Encrypt the plaintext blocks c <- Encs (ni, e) for i = 1, ..., n
S -A: Send ci,..., cn

A : Pick a legal subset of indices I C {1, ..., n} i.e. some I in L

S<-A: SendI

S -- A: Send the decryption key di for each i E I

A: Compute a single bit final output b'

Figure 6-1: Scenario for the Simultaneous Security of an Encryption Scheme

n ciphertexts is created under a separate instance of the encryption scheme. Similarly,

by "opening" of some of the encryptions, we mean learning the corresponding secret key,

and not the randomness used in the encryption. In other words, we open the data that

corresponds to the selected receiver of the ciphertexts, instead of the data known to the

sender. The relation between the two notions is not known.

Note 2: Note that the probability distributions Do and D 1 are constrained so that A

can distinguish encryptions of their random elements only on the basis of the ciphertexts

that remain unopened, because for any legal subset of indices I that A gets to open, the

distribution of the opened plaintexts {Ii;i cE Do} and {A; 'ri c D1 } are equal.

Note 3: Note furthermore that the oracle S in Figure 6-1 operates on behalf of

both the sender and the n receivers P1 ..., Pa. S runs the key generation algorithm on

behalf of each of the receivers, hands the public keys to the adversary, which corresponds

to the transmission of these keys from the receiver to the sender on the insecure channels,

encrypts the messages and makes them public on behalf of the sender, and then lets the

adversary pick any subset I C L of the receivers whose private keys the adversary will

. TI ,

6.1. PRIVATE CHANNELS IN THE ADAPTIVE ERASURE-FREE MODEL

learn. If Do is the probability distribution of plaintexts sent by the single inconsistent
player during the simulation, while D 1 is a distribution of plaintexts send by the same
player during the execution of a protocol, and if the set of legal subsets L consists of all t-
element subsets of {1, ..., n} (i.e. every element of L is the set of indices of players which can
be together corrupted by a t-threshold adversary), then the above interaction between A
and S corresponds to an interaction between the adaptive threshold adversary who attacks
either the real or the simulated network. We formalize this point in Theorem 9 below.

Note 4: We could relax the restriction that distributions {mi; m E Do} and {m; m E
D1 } are the same for every I E L, and require instead that they are computationally
indistinguishable. With such relaxation in the definition of simultaneous security, Theorem 9
would hold even if restriction (3) in Definition 25 was relaxed to admit computationally
indistinguishable simulations. In other words, such encryption would implement private
channels for a multi-party protocol whose simulator in the private-channels model produced
an adversarial view that is computationally indistinguishable, rather than identical, to the
adversarial view of the protocol. Furthermore, our encryption scheme E of Figure 6-1
satisfies such stronger notion of simultaneous security.

Implementing a Simultaneously Secure Encryption Scheme

Surprisingly, conventional encryption schemes are not known to be simultaneously secure.
Indeed, we do not know how to argue why the adversary should not learn anything from
the ciphertexts that he does not get to open. This difficulty arises from our inability to
reduce an adversary that does learn something from such view to solving some presumably
hard computational problem. To prove such reduction we would have to embed an instance
of such hard problem into the ciphertexts that make up the crucial part of the adversary's
view, which in our case are the unopened ciphertexts {ci}i. However, we do not know
beforehand which of the n ciphertexts the adversary wants to leave unopened. We could
embed the instance of the hard problem in all the ciphertexts, but then we would be in
trouble trying to open them as regular encryptions if the adversary asks for the secret keys
that correspond to these instances. Therefore, proving simultaneous security of encryption
seems to require that we are able to embed an instance of a hard problem and that the
resulting ciphertext looks valid if the adversary learns a secret key. This seems hard to do
for conventional encryption schemes. However, below we present a slight modification of the
ElGamal encryption scheme [ElG85b], which allows us to do this, and which is consequently
provably simultaneously secure.

We present an efficient implementation of a simultaneously secure encryption in Figure 6-
2. Its security is based on the DDH assumption. Our encryption is a simple modification
of ElGamal encryption [EIG85b]. We require two generators g, h of a prime-order subgroup
Gq of Z* , we replace a single private key x C Z with a pair x, y E Zq, the corresponding
public key is then P = gXhY instead of P = g, and the ciphertext is a triple (gr, h, Prm)
instead of a pair (g', P'm). The idea to extend ElGamal in this way is similar to the use
of the DDH assumption in the work of Cramer and Shoup [CS98].

Theorem 8 Under the Decisional Diffie-Hellman assumption, encryption E is simultane-
ously secure.

17. 104

161

III

162 CHAPTER 6. ERASURE-FREE ADAPTIVE THRESHOLD CRYPTOSYSTEMS

Common parameters: primes p, q, s.t. jq = k, the security parameter, element g c

G, random h E G, efficient encoding of k-bit strings m as elements of Gq.

Alice's input: Message m E Gq she wants to transmit to Bob.

Bob: Picks random x, y E Zq, sends P = g'h9 mod p to Alice

Alice: Picks random r E Zq, sends A = g', B = h', C = P'm (all mod p) to Bob

Bob: Decrypts m = C/(AXBY) mod p

Figure 6-2: Simultaneously Secure Encryption Scheme E

Proof: Take any PPT algorithm A which interacts with S as in Figure 6-1. The cornerstone

of the proof is a construction of a "cheating encryption" algorithm E* for which we will

exhibit the following crucial properties: i) The views AS(E*,0) and AS(E*,1) of A interacting

with S that uses E* instead of E and fixes the value of bit b as, respectively, 0 or 1, are

exactly the same; and ii) Under the DDH assumption, views AS(E,0) and AS(E*,o), as well

as AS(E,1) and AS(E*,1), are indistinguishable. It will consequently follow that, under DDH,

views AS(Eo) and AS(E,1) are indistinguishable, and hence the probability that b = b' when

A interacts with S that implements E can be only negligibly different from 1/2.

As we noticed, S of Figure 6-1 performs on behalf of both the receiver and the sender,

and hence the "cheating encryption" E* can be an algorithm where the sender and the

receiver are controlled by the same party. It proceeds as follows. The keys (x, y) and P

are picked as in E, but the ciphertext (A, B, C) is formed by picking two random values

r1# r2 in Zq, and computing A = g, B = g 2 , C = AXBYm (all mod p). If the adversary

gets the secret key (X, y), it can decrypt m = C/(AXBY) mod p.

First note that A's view of the interaction with S which uses E* instead of E does not

depend on the bit b, because for every index i, data (el, ci) = (P, A, B, C) that A observes

is independent from the value of mi. All messages are as likely, because for every m c Gq

there exists a unique pair x, y s.t. P = gxhY mod p and C = AXBYm mod p, as these two

equations imply two independent linear equations on x and y modulo q. Therefore, the

subset of indices I picked by A is independent from m'. Furthermore, since for every I

in L value of 'II has the same distribution for nt picked in D0 and for m' picked in D 1,

the distribution of the total A's view (e, d, n7il) is also independent of whether p is picked

according to D 0 or D1 . It follows that AS(E*,0) - AS(E*,1)

We now show that under the DDH assumption, for both b = 0 and b = 1, views

AS(E,b) and AS(E*,b) are indistinguishable. Fix b. Assume that the difference Prob[b <-

AS(Eb)] - Prob[b <- AS(E*,b)] is higher than negligible for random g, h C C%. We can

construct an algorithm A' which breaks the DDH assumption as follows. On a DDH instance

(g, U, v, w), A' sets h = u and interacts with A as S would, except that instead of encryption

E it follows another encryption-like procedure E**. Keys x, y and P are computed as in E

and E*, but to encrypt plaintext m, A' picks at random a, E GZq and outputs A =vg 7

B = wahO and C = AXBYm (all mod p). Note that if (u, v, w) is distributed as (u, g', u') for

uniform u C Cq, r E Zq then the (A, B) parts of every ciphertext seen by A are distributed

as if S used E, and if (u, v, w) are distributed as (U, 9g1, U2) for uniform u e 0 q, n-i,r2 E Zq,

then values (A, B), again in every ciphertext seen by A, are distributed as if S used E*.

Ai-I

6.1 PRIVATE CHANNELS IN THE ADAPTIVE ERASURE-FREE MODEL

Consequently, if A' outputs the final output bit b' of A, then A' distinguishes between these

two distributions and thus breaks the DDH assumption. E

In the threshold protocols we propose, generator h is not guaranteed to be uniformly

distributed in Gq. Therefore, to prove simulatability of our threshold protocols which use

encryption E (i.e. Theorem 9 below) we need a version of the above theorem which proves

simultaneous security of E for a specific distribution of h c Gq that is output by the

h-generation protocol used by our threshold schemes, namely the protocol in Figure 7-3,

page 174.

Lemma 30 Under the Decisional Diffie-Hellman assumption, E is a simultaneously secure

encryption scheme if h is output by the h-generation protocol of Figure 7-3.

Proof: We proceed as in the proof of the theorem above, except that in the reduction to

DDH, the algorithm A', on instance (, G, 0) of DDH (distributed either as j, g, j' for

uniform E GGq,,r E Zq or as j, g' ,j12 for uniform j E Gq, ri, r2 E Zq), picks b E Zq and
follows option ii) in the simulation of the h-generation protocol of Figure 7-3 (see Chapter

7) so that h = gagjb and A' knows a and b. Then A' assigns v = G, w = GOh, and proceeds

as in the proof of the theorem above. Then the value of h is distributed as in a real protocol,

and the output of E** looks again as either E or E*, depending on which distribution the

triple , G, G comes from. E

Note that the above proof works also if values in the DDH instances are not uniform

in Gq, because regardless of the distribution of j, value h= gajb remains distributed as the

output of the h-picking protocol if the algorithm A' in the proof above picks b at random

in Zq.

Implementing Private Channels with Simultaneously Secure Encryption

Finally we are ready to state the requirements on the multi-party protocols for which a

simultaneously secure encryption scheme can implement private channels:

Definition 25 (Insecure-Channels-Enabled Protocol)

We call a multi-party protocol Insecure-Channels-Enabled if it is secure against the adaptive

adversary in the secure-channels erasure-free model, and if its simulator algorithm SIM
satisfies the following additional requirements:

(1) At the beginning of the simulation SIM randomly selects among the simulated players

a constant number of players which will be called inconsistent." If the adversary corrupts

some inconsistent player then the simulation can be restarted (i.e. any single pass of the

simulation is allowed to fail in the case that some inconsistent player is corrupted).

(2) All messages sent by the simulated (both consistent and inconsistent) players are

prepared by SIM at the time of sending.

(3) The adversarial view extended by all secret messages sent by the consistent players, is

"All our protocols can be simulated with at most one inconsistent player. Here we present a more general
notion where the number of such inconsistent players is any constant.

163

III

164 CHAPTER 6. ERASURE-FREE ADAPTIVE THRESHOLD CRYPTOSYSTEMS

perfect (i.e. the view of the simulation and of the protocol are identically distributed), until
the moment the adversary corrupts some inconsistent player.

Note 1: Requirement (3) can be stated more formally as follows. Consider a data en-

semble (viewmsgs) produced by an algorithm which picks an inconsistent player at random

and interacts with an adaptive adversary, where view is the adversarial view of the inter-
action, and msgs are all the (remaining) messages produced by the "consistent" players.

We require that for all adaptive adversaries, ensemble (view,msgs) is identically distributed
when the algorithm follows the simulator SIM, and when the algorithm follows the actual

protocol for all simulated players.
Note 2: In some of our protocols, namely in the threshold multiplication protocol

I.C.E.-Mult of Figure 6-3, there are exactly 2t + 1 participating players, and the simulator

must pick the one inconsistent player among the simulated players that belong to that
group. To claim that this protocol is Secure-Channels-Enabled we have to slightly modify

requirement (1) as follows. In the set-up stage, simulator SIM participates in a selection of
a group of 2t + 1 players (which will be the only participants in some later protocol Mu It),
and then selects at random one inconsistent player among the simulated players that belong
to this group.

Theorem 9 If a multi-party protocol is Insecure-Channels-Enabled, and if every private

message transmission between two players in this protocol is implemented with an application
of a fresh instance of a simultaneously secure encryption scheme to every message, then the
resulting protocol is a secure multi-party protocol in the insecure-channels erasure-free model.

Note: By "an application of a fresh instance of an encryption scheme to every message"

we mean the following use of the encryption scheme. In every communication round when
some messages need to be sent secretly between some players, we need an extra round in

which each receiver picks a fresh and one-time instance of the encryption scheme per each
k-bit long message that is to be secretly transmitted to it, and sends each public key to

the appropriate sender. Then each sender encrypts each k-bit long secret message using an
appropriate public key and sends the ciphertext to the receiver.

Proof: The simulator in the insecure-channels model simply follows the algorithm of the
simulator SIM, except that it implements every private message transmission with a fresh
instance of the simultaneously secure encryption, as described in note above. We argue

that for any adaptive adversary in the insecure-channels model, the following two views are
indistinguishable. His view viewsim of a run of the simulation up to the moment he corrupts

one of the inconsistent players; and his view viewpot of a run of the actual protocol, up to
the moment he corrupts the same player. Once the above indistinguishability of two views
is established, it is easy to see that the protocol is efficiently simulatable in the insecure-

channels model. Since by property (1) the constant number of the inconsistent players
are chosen at random, and since the adversary cannot distinguish a real from a simulated
run of the protocol until he corrupts one of these players, the probability that he corrupts
them in the simulated protocol run can differ only negligibly from constant. Hence the

expected time before a random pass of the simulation succeeds (i.e. the adversary does not

6.1. PRIVATE CHANNELS IN THE ADAPTIVE ERASURE-FREE MODEL

corrupt any inconsistent players throughout the simulation) is only negligibly different from
a constant. Since every pass of the simulation is efficient, so is the whole process.

Now we argue that views viewsim and viewprot are indistinguishable. Since by property
(3), the view of the secure-channels adversary and the messages sent by the consistent
players are identically distributed in the simulation and in the actual protocol (up to the
moment the adversary corrupts some inconsistent player), the insecure-channels adversary's
view of the actions of the consistent players is the same as what the adversary expects to
see in the protocol, regardless if the adversary corrupts these players or not, and regardless
of what encryption is used to implement secure channels.

As for the inconsistent players, by property (2), SIM creates their messages at the time of
sending, and hence can use the encryption procedure to encrypt them and hand them to the
adversary. We will argue that for every communication round, the distribution of messages
associated with secret message transmissions from the inconsistent players is indistinguish-
able between the protocol and the simulation. Let Do be the distribution, specified by SIM
and the adversary, of n' k-bit long secret messages sent out in some communication round of
the simulation by all the inconsistent players (e.g. if the protocol specifies that every pair of
players exchanges two k-bit secret messages in this round, and there are three inconsistent
players, then n' = 6(n - 1)). Let D 1 be the corresponding distribution of messages of these
players during a regular protocol. Let L, the set of legal subsets of {1,...,n'}, be the set
of all subsets of these messages whose cleartexts can be eventually seen by a t-threshold
adaptive adversary who does not corrupt any of the inconsistent players. It follows from
property (3) that for every I E L, distributions {m; m E Do} and {m; m E D} are
the same. From the definition of simultaneous security it follows that the computationally
restricted adversary who adaptively corrupts t of the n receivers of messages sent out by
the inconsistent players, cannot distinguish between the protocol and the simulation. He
could possibly distinguish the two if he corrupted one of the inconsistent players, i.e. one
of the senders, but by property (1) of the simulation, we do not have to worry about this
case. E

Efficiency Considerations. The use of the encryption procedure required by Theorem 9
is non-standard because we need a fresh instance of a public-key encryption per each trans-
mitted message. In other words, in every communication round in which parties send to
one another some secret messages, each receiver must first send to each sender as many
fresh public keys as there will be transmitted messages. This does not necessarily have
to double the number of communication rounds in the multi-party protocol, because these
public keys can be piggy-backed on the messages exchanged in the preceding communica-
tion round. Secondly, if our encryption E is used, and if we compare it with the standard
use of ElGamal encryption (i.e. a single public key used for all data sent to a given player),
the total amount of work per player per Iql-bit message involves 7 exponentiations with E
(4 by the receiver, including the creation of a public-key, and 3 by the sender), while the
standard use of ElGamal takes 3 exponentiations (2 to encrypt and 1 to decrypt). As for
the communication overhead, our use of E generates 4jpl bits of communication per one
qj-bit message sent, which is twice more than the standard use of ElGamal.

165

III

166 CHAPTER 6. ERASURE-FREE ADAPTIVE THRESHOLD CRYPTOSYSTEMS

6.2 Adaptive Erasure-Free Threshold Protocols

Most of the adaptively-secure protocols of Chapter 5 are insecure-channels-enabled with-

out any modifications. We argue this point in Section 6.2.1 below. The only protocol

that requires modification is the threshold multiplication protocol Mult-opt of Figure 4-21,

page 118. We modify this protocol to make it insecure-channels-enabled, and we present

this modified version, denoted I.C.E.-Mult, in Section 6.2.2.

6.2.1 Insecure-Channels-Enabled Protocols based on RVSS and Ad-Exp

The security properties of our threshold protocols are implied by the properties of our main

building block, the parallel execution of the Pedersen VSS, i.e. protocol RVSS (Figure 4-6,

page 65). Below we argue that this protocol is insecure-channels-enabled:

Lemma 31 The RVSS protocol is Insecure-Channels-Enabled.

Proof: The simulator that exhibits this property is the simulator described in the Lemma

that states the static security of RVSS, i.e. Lemma 6, page 68. As we discuss in Section 5.1.1,

in the adaptive setting this simulator works as follows:

" SIM executes RVSS-> RVSS-data[x]

" SIM replaces the private data of the currently uncorrupted players by applying pro-

cedure TRvss(RVSS-data[x], a, Fixed) (see Figure 4-8 and the discussion of the modi-

fications needed in the adaptive setting in Section 5.1.1), where a = logg h and Fixed

is any set of at most t players which includes the set of currently corrupted players

Note that, as we explain in Section 5.1.1, this simulation implies the secrecy of the RVSS

protocol in the adaptive secure-channels model. Secondly, this protocol is also erasure-free.

Designate the uncorrupted players used by SIM in procedure Tvss as the "inconsistent"

player Ps. (Here this name is misleading because in the private-channels model SIM can

reveal a consistent state for all the players it controls.) Then the property (1) of Definition 25

is trivially satisfied. Note that the distribution of the messages produced by all the remaining

players is the same in the simulation as it is in a random execution of the RVSS protocol

which produces the same outputs. Therefore requirements (2) and (3) of Definition 25 are

satisfied.

By the same argument as in the above lemma, it easily follows that the two other adap-

tively secure protocols based on RVSS, the "zero-sharing" protocol ZVSS, and the simulta-

neous proof protocol (we argue their adaptive security in Sections 5.1.1 and 5.1.2) are also

insecure-channels-enabled. We argue separately that the same property is maintained by

the adaptively secure threshold exponentiation protocol Ad-Exp presented in Section 5.2.1.

Lemma 32 The Ad-Exp protocol is Insecure-Channels-Enabled.

Proof: The simulator SIMadp that exhibits secrecy of this protocol in the adaptive secure-

channels model is contained in Figure 5-3, page 152 (see also Lemma 29). Note that the

%EflC

6.2. ADAPTIVE ERASURE-FREE THRESHOLD PROTOCOLS 167

Ad-Exp protocol does not need erasures. Property (1) of Definition 25 is satisfied too. As in
the proof of adaptive secrecy of Ad-Exp in Lemma 29 and as in the proof Lemma 31 above,
the distribution of the messages produced by all the consistent players in the RVSS that
precedes Ad-Exp is the same in the simulation on input A* as it is in a random execution
of RVSS which creates RVSS-data[a*] where a* = logg A*. Therefore requirements (2)
and (3) of Definition 25 are satisfied with regards to the RVSS protocol that precedes
Ad-Exp. Therefore the adversary's view of values A of the consistent players revealed in
Step 1 is distributed as in the actual protocol too. Value AS is distributed correctly because
A*S HPiEQual\{Ps} Ai = A*. The view produced in Step 2 is correct as well because the
simultaneous proof protocol is insecure-channels-enabled. Finally, Steps 3 and 4 produce
no new information to the adversary. Therefore the distribution of the extended adversarial
view of the Ad-Exp protocol is identical to the distribution of the extended view of its
simulation.

By the same argument as in the above Lemma 32, it easily follows that two adaptively-
secure threshold protocols based on Ad-Exp, namely DKG, the Distributed Key Generation
protocol for discrete logarithm-based schemes (see Section 4.2.5, page 71), and CS-DKG,
the Threshold Cramer-Shoup Key Generation protocol (Figure A-1, page 193), are also
insecure-channels-enabled.

6.2.2 Insecure-Channels-Enabled Threshold Multiplication

The only adaptively-secure protocol of Chapter 5 that needs to be modified to be insecure-
channels-enabled is the threshold multiplication protocol Mult-opt, presented in Figure 4-21,
page 118 (see also the discussion of its adaptive security in Section 5.1.3). We modify this
protocol to make it insecure-channels-enabled and we present this modification, denoted
I.C.E.-Mult, in Figure 6-3 below.

As in the Mult-opt protocol, the players in group Part12 already hold additive shares
vi of v = ab. The problem faced already in the static adversary model is that these
shares are not independently distributed, and thus protocol Mult-opt re-randomizes this
sharing before v is reconstructed. In the static and adaptive erasure-enabled model this
re-randomization is performed with the Pedersen's VSS. (See the RVSS protocol executed
in Step 2 of Mult-opt.) Such execution of RVSS would not be insecure-channels-enabled
because the simulator could not produce a view of all the messages produced by all except
of one of the simulated players. This is because the messages sent by each uncorrupted
player determine the secret-sharing polynomial this player shares, and hence determine the
value vi shared by this player. Since these values differ for at least t + I simulated players
in the execution of the Mult-opt and in its simulation (see the proof of adaptive secrecy of
this protocol in Lemma 27), the extended view of the simulation differs from the extended
view of the protocol execution.

Therefore, in the I.C.E.-Mult protocol, each player shares its contribution vi to v = ab
in an additive manner, instead of sharing it polynomially with PedVSS. Namely, each

1
2 For simplicity of presentation we assume that n = 2t + 1. If n> 2t + 1 then the threshold multiplication

protocol can be carried out by some arbitrarily chosen group Part of 2t + 1 players.

p -

[11

168 CHAPTER 6. ERASURE-FREE ADAPTIVE THRESHOLD CRYPTOSYSTEMS

Threshold Multiplication I.C.E.-Mult : RVSS-data[a], RVSS-data[b] -- ADD-data[ab]

Input: Sharings RVSS-data[a], RVSS-data[b], elements g, h E G

Output: Additive sharing ADD-data[c] of c = ab = ' Aa/3 mod q, which consists

of set of players Part, secret shares ci, &4 held by each Pi G Part, and public verification

values Ci = gqih i.

1. Let Part be an arbitrary set of 2t + 1 players that participate in this protocol.

Each player Pi computes its additive share vi = Aaix3 of c, picks random fi,

broadcasts Vi = g 1Y, and proves that vi committed in Vi is the product of ac

and A3 in Fa(i) and (F 5(i))i. This is done with a simultaneous proof protocol

using a ZKPK system of [CD98] (Figure F-3, Appendix F). If some Ph fails

this proof, it is removed from Part, his input values ak, /3
k are reconstructed

from RVSS-data[a, b] (via the reconstruction protocol Recon of Figure 4-22), his

vk is publicly computed, and all players remaining in Part recompute their secret

shares vi and the public verification values Vi so that ZP EPat Vi =C.

2. The players re-randomize the resulting additive sharing of c. Every Pi picks

random values vij, bij s.t. Zpcp,,,,vi = vi and ZPjcPart, P = fi, broadcasts

all values Vi = gi h Vii, and sends vj, Igij to every other player P in Part.

Each P2 tentatively computes its new additive shares cj Zpcpart Vi and &i =

PjC Parti vi of c, and the public verification values are tentatively defined as

Ci =1pjpti for all P2 E Part.

3. Receivers verify that Vi = gii h ii. If P feels cheated it broadcasts a complaint

and Pi replies by broadcasting correct vj, '&i. If some P responds incorrectly
or if Vj $ P VhJ, then P is removed from Part, his input values a,k

are reconstructed as in Step 1, and secret shares c, & and the public verification

values Ci are recomputed so that ZPCPt ci = c, and g4hai = C.

4. Reconstruction: Each Pi broadcasts c, i s.t. gcih i = C. If verification fails

for some Ph, a procedure from Step 3 above is used to recompute shares ci, &,

which are then resubmitted. When all faults are eliminated, c is computed as

ZPi EPart Ci'

Simulation: (on inputs secret-sharings RVSS-data[a) and RVSS-data[b], and on the

additional SI M's input a trapdoor oa = logg h, a "target" value c* in Z,, and an identity

of the "inconsistent" player Ps)

1-3. SIM follows the I.C.E.-Mult protocol on behalf of all uncorrupted players.

4. SIM interpolates a and b. SIM broadcasts cr = c* - (ab- cs) and &* s.t. cs+a-s =

c + a on behalf of player Ps. For all other players P, SIM broadcasts the

correct values c, aj. If some reconstruction and share-recomputation procedure

(Steps 1,3 or 4) is triggered (note that only the shares of the corrupted players

are subject to reconstruction), SIM performs the Recon protocol on behalf of the

uncorrupted players. Note that unless the adversary cheats, the public output is

equal to c*.

Figure 6-3: I.C.E.-Mult: Insecure-Channels-Enabled Threshold Multiplication

in

6.2. ADAPTIVE ERASURE-FREE THRESHOLD PROTOCOLS

player Pi in Part simply sends random values vp in Zq, subject to the constraint that

= >jp Pat v, to each other player Pj E Part. Then the new additive shares of v

(which we denote also by c = v) are ci = EpGI1 v. 3 For robustness which preserves
perfect secrecy, similarly as in the Pedersen's VSS protocol, these shares are accompanied
by associated random values bij, and player Pi broadcasts verification values Vij = gU hVii,
for all Pj. The resulting shares ci are then also accompanied by associated random values

i = Eppar ' ji and the verification values Ci = Hp ar .
We denote the resulting "additive secret-sharing" data structure made of ci's, & 's and

Ci's as ADD-data[c]. Such "additive sharing" of c = ab can be robustly used only together
with the joint secret-sharings RVSS-data[a, b]. Essentially, the polynomial secret-sharings
of a and b serve as backups in case any player P in Part fails in the construction of
ADD-data[c] or misuses or withholds its c when ADD-data[c] is used in some later proto-

col (for example the insecure-channels-enabled DSS signatures I.C.E.-DSS -TSig or Cramer-
Shoup decryption I.C.E.-CS-TDec, see Section 6.23). In case of such failure of some player

A, its shares Ak and /k are reconstructed via protocol Recon in Figure 4-22. As in the
Mult-opt protocol, two parallel instances of Recon reconstruct ak and 3 k, and Vk is publicly
computed as Akakbk for the appropriate Lagrange coefficient Ak.

When the value vi of a cheating player is recomputed, values vi (in Step 1) or ci
(Steps 3 and 4) of all the remaining players must also be adjusted so that EpiePart\{Pk} v =

ZPiEPart\{Pk} c = c. For example in Step 1 of I.C.E.-Mult such recomputation can work as

follows. Each Pi C Part can add vk/Part to its vi, and each Vi is multiplied by gvk/P1'rt.
In Steps 3 and 4 of 1.C.E.-MuIt it is the ci, 6 and C values that need to be recomputed, for
example by each Pi E Part adding Vik ± Vk/PartI to its ci and 0 ik to its dj, and each C
being multiplied by gvk 1 PaTtIVik

Lemma 33 The multiplication protocol I.C.E.-Mult is Insecure-Channels-Enabled.

Proof: The one inconsistent player in the simulation is player Ps. It is easily seen that
all the messages of the simulated players are formed by SIM at the time of their sending.
It remains to argue that the secure-channels adversarial view and the messages of the
consistent players produced by SIM are distributed as in the random run of the protocol.
We fix a random element c* E Zq and argue that the following two data ensembles D are
identically distributed: D 1 made of the secure-channels adversary's view and the messages
sent by the consistent players during the simulation of the protocol I.C.E.-Mult as described
in Figure 6-3 with value c* input in Step 4, and D2 made of the corresponding data produced
in a random run of the protocol I.C.E.-Mult that outputs c*.

By Lemma 31, the adversarial view and the messages of the inconsistent players during
the creation of RVSS[a] and RVSS[b} in D1 are distributed identically to a random run
of these protocols in D2 , where a and b are picked in a different distribution (namely in
D2 values a, b are random numbers s.t. a * b = c*). The two views of the simultaneous
proof protocol in Step 1 are also identical by the witness-hiding property of this protocol.

13 Such re-randomization of an additive secret-sharing structure was also used by Frankel et al. in a
"2sum-to-2sum" protocol [FMY99a-b]. The slight difference is that here all 2t + 1 players participate in this
protocol.

169

III

170 CHAPTER 6. ERASURE-FREE ADAPTIVE THRESHOLD CRYPTOSYSTEMS

(Note that this protocol uses secret channels only to perform a coin-flip, and this coin-flip
is performed in the same way in the execution and the simulation of l.C.E.-Mult.) Note also
that in the case of any failures, only the data that is already known to the adversary is
published during the reconstruction protocol(s) Recon.

Assume without loss of generality that Part ={1, ... , 2t + 1} and that the set of players
that are eventually corrupted, denoted Bad, is the set {1, ... , t}. Consider values vi, vip, cj,
1 < i, j < 2t + 1 generated by Steps 2-4 (the argument about the corresponding values
i), , ty is identical). Note that vii and vi, for i = t + 1, ... , n, are the only related values

that are excluded from ensemble D. We argue that the remaining values, when sampled
from D1 or D2 , have the same distribution given all the information in D seen so far. Note
that given that the adversary sees t shares a 1 ,1, .., at, 4t, and that the pair of secrets a, b
has a different distribution in D1 and D 2 , the vector of values vt+i, ... ,vn also has a different
distribution in D1 and D2 . If you think of the process of generating data in Mult as picking
independent random values vij for i $ j and then determining values vi from them and
from vi's, then values vij, for i $ j, have the same distributions (uniform and independent)
in both D's. Values vii, and hence ci, for i = 1, .. , t, have the same distribution in D1
and D2 because values v,, .., Vt have the same distribution in D, and D 2 . Values cj, for
j = t +1,...,n - 1, are each determined as vj +Zjoj (vij - Vji), but since each v.., j : nis
an independent random value which is not included in D, these ci's are also distributed as
independent random values. Finally, value cn is in both D1 and D2 distributed identically,
as V - Ejo cj. Thus D1 and D2 are identically distributed.

6.2.3 Remaining Insecure-Channels-Enabled Protocols

The remaining adaptively-secure threshold protocols we discuss in Chapter 5, as well as
the additional protocols of a threshold Cramer-Shoup cryptosystem protocol (Appendix A)
become insecure-channels-enabled once the Mult-opt building block is replaced with the
insecure-channels-enabled I.C.E.-Mult protocol of Figure 6-3. Thus, by modifying in this
way the threshold inverse computation protocol Reciprocal-opt (Figure 4-24, page 127), we
obtain its insecure-channels-enabled version I.C.E.-Reciprocal. Similarly, by substituting
I.C.E.-Mult for Mult-opt in the adaptively-secure threshold DSS signature generation proto-
col Ad-DSS-TSig (Figure 4-25, page 131), or in the adaptively-secure threshold Cramer-
Shoup decryption protocol CS-TDec (Figure A-2, page 194), we obtain their insecure-
channels-enabled versions I.C.E.-DSS-TSig and I.C.E.-CS-TDec.

I-M ,.

Chapter 7

Distributed Generation of a
Pedersen Commitment Instance

Our threshold protocols rely heavily on a discrete-log based trapdoor commitment scheme
due to Pedersen [Ped9la] which we described in Section 3.1. All the discrete-log based
threshold schemes we discuss start by executing a threshold protocol for generating an
instance of the Pedersen trapdoor commitment scheme. This protocol, denoted Ped-IG and
presented it in Figure 7-1, starts by invoking protocol DL-IG, Figure 7-2, which on input a
security parameter picks an instance (p, q, g) of the discrete-log problem. Secondly, protocol
Ped-IG invokes protocol h-IG, Figure 7-3, which allows the players to jointly generate the
fourth element h needed to establish the Pedersen's commitment instance. We note that
these protocols need to be executed only once, during the set-up of any threshold scheme
designed using the tools provided in this thesis. In particular, the speed of these set-up
protocols is not a primary concern in practice.

This chapter is based on material previously published in [JLOO].

Protocol Ped-IG, (2t + 1 < n)

Public Input: security parameter k, encoded in unary
Public Output: values (p, q, g, h) where (p, q, g) is a DLog instance and h E Z

1. Players generate DLog instance (p, q, g) by running DL-IG (Figure 7-2) on 1k

2. Players generate an element h E Gq by running h-IC (Figure 7-3) on (p, q, g)

Figure 7-1: Ped-IG: Distributed Generation of Pedersen Commitment Instance

Distributed Generation of Discrete-Log Instance (p, q, g)

As discussed in the introduction, the distributed DLog instance generation protocol DL-IG
relies on a verifiable discrete-log instance generator IG = (G, V) (see Definition 6). On

171

.1 1 m m REP! 11. llq!w .o

III

172 CHAPTER 7. GENERATION OF A PEDERSEN COMMITMENT

input a security parameter k, some arbitrarily chosen participating player broadcasts values
(p, q, g, proof) = G(1k), and each other player verifies this value using procedure V(p, q, g,
proof). (Alternatively, the player who picks the DLog instance can broadcast also the
randomness he used in its execution of G, which allows all other players to verify the
output by re-running G.) If the verification does not work, some other player is asked to
generate a DLog instance, until the verification passes. Note that all honest players have
the same view of the DLog instance which is output by this protocol.

Protocol D L-IG, (2t + 1 < n)

Assume IG = (G, V) is a verifiable discrete-log instance generator (see Definition 6)

Public Input: security parameter k, encoded in unary
Public Output: DLog instance (p, q, g)

1. An arbitrarily chosen player executes algorithm G on input 1k and broadcasts its
output (p, q, g, proof)

2. Each player locally verifies if V(p, q, g, proof). If the verification fails, then it
broadcasts a complaint. If more than t players broadcast a complaint, another
player is chosen and Step 1 is run again. The first (p, q, g) instance that is agreed
upon by a majority of players defines the public output of the protocol.

Figure 7-2: DL-IG: Distributed Generation of the Discrete-Log Instance

Distributed Generation of Pedersen Commitment value h

For the proofs of security of the threshold schemes we propose in this thesis, we need the
protocol h-IG which given the DLog instance (p, q, g) generates an additional element h in
Gq to have the following properties:

1. It can be simulated so that the simulator can learn the trapdoor logg h of the chosen
commitment

2. It can also be simulated so that the simulator can embed another instance of the
discrete logarithm problem into the generated commitment.

3. It does not assume secret channels between the players

Note that we do not require (and indeed do not achieve) that the generated h is uniformly
distributed in Gq.

In Figure 7-3 we present such protocol h-IG and we include the two simulation proce-
dures. The h-IG protocol is straightforward. Every player Pi picks xi at random, broadcasts
y = gXi, proves to all others that it knows xi = logg(yi) via an appropriate ZKPK proof
system, and h = HPiEQuaIy , where Qual is a set of players which pass the ZKPK proof.
The ZKPK proof system employed by this protocol must preserve the zero-knowledge and

*q.-m .W~%fl~

173

the proof-of-knowledge properties under parallel composition. We present such proof system
in Appendix G.

Simulator SIM' which shows property 1 above is used for proving secrecy of the

DLog-based threshold protocols we present in this thesis. All such protocols take the gen-
erated Pedersen's commitment instance (p, q, g, h) as a public input. The knowledge of the

trapdoor o = logg h of the jointly generated commitment instance allows the simulator of

the subsequent threshold protocols to open the commitments of the players it controls in

the way it chooses, which leads to efficient simulation of these protocols.

Similarly, simulator SIMf 1 which shows property 2 above is used to prove robustness

of the subsequent threshold protocols. It is an invariant in the threshold protocols we

propose in this thesis that there exists an efficient extractor which can play the part of

the uncorrupted players of a given protocol, and if an adversary manages to cheat, the
extractor can translate such cheating into computing logg h. If that extractor has previously

followed SIM(2 I to simulate the initial h-IG protocol, then it can embedded an instance of

the discrete logarithm problem (p, q, g, 9) into the generated h, by causing the (simulated)
protocol to output h = 9ga for known values a, b. If the adversary cheats in the subsequent

protocols, the extractor can extract logg h, and thus compute logg 9 = (log9 h - a)/b.

Alternative Approaches to Distributed Generation of Pedersen Commitment

In the static model and the adaptive but secure-channels model (i.e. the models we consider

in Chapters 4 and 5), a random element h E Gq can be efficiently obtained via collective

coin flipping protocols of general multi-party computation [BGW88, CDD+99]. Namely,

each player verifiably shares a random secret, the random coin r is the sum of all the shared
secrets which is publicly reconstructed, and h is set as r(m-1)/q (assuming that q2 does
not divide p - 1). Such method was used in statically secure DKG protocol of [GJKR99]
and in the adaptive threshold protocols of [CGJ+99], which assumed erasure (and hence
could implement secure channels efficiently as in [BH92], see page 134). However, since

each VSS protocol requires secret channels, such protocol will not work well in the adaptive
erasure-free model of Chapter 6, where secure channels would need to be implemented
with computationally intensive general non-committing encryption [CFGN96, Bea97] and

incur at least O(k) communication blow-up. (We explain the problem of implementing

secure channels in the adaptive erasure-free model in Section 6.1.2). Therefore the protocol
h-IG we chose implements h-generation directly, i.e. without using secret channels, with a

parallelizable zero-knowledge proof of knowledge of discrete logarithm ZKPK-DL described
in Appendix G. Similar protocol for generating h was also proposed by Frankel et al.
[FMY99b, FMY99a], but they use general witness-hiding ZKPK protocols, while the known

ZKPK we use has a modest advantage of taking only 5 rounds.

Lemma 34 (Robustness of DL-IG, h-IG, and hence Ped-G) For every 2t+1 > n, in the
presence of any t-threshold (static or adaptive) adversary, protocol DL-IG outputs a DLog

instance (p, q, g) of security k in some discrete-log instance family DL, while protocol h-IG
executed on input a DLog instance (p, q, g) outputs an element h e Gq.

Proof: DL-IG outputs (p, q, g) only if it is verified as a DLog instance by at least one

honest player. h-IG outputs h E G because for each Pi C Qual, all honest players verify

CHAPTER 7. GENERATION OF A PEDERSEN COMMITMENT

Protocol h-IG, (2t + 1 In)

Public Input: DLog instance (p, q, g)
Public Output: value h CGq

1. Each Pi generates random x E Z and broadcasts y = gi. Each player Pi s.t.

yq $ 1 mod p is disqualified from the rest of the protocol, i.e. removed from the
set Qual={Pi,...,P,}.

2. For each (Ps, P3) C Qual, Pi proves to P2 the knowledge of log(yi) via protocol
ZKPK-DL (Fig. G-1). These proofs proceed in parallel, as shown in Fig. 7-4.

3. Players broadcast their judgments about which other players pass the ZK proof.

Each player accused of not passing the ZK proof by more than t other players is

removed from Qual. Each player then sets a public output as h =H1 yEQualg.

Simulation (option i): SIM'IG interacting with A

Public Input: DLog instance (p, q, g)
A's Input: any auxiliary information z of length polynomial in jqj

SIM(')G's Private Output: o- = log9 h, where h is output by (simulated) h-IG, or null

SIM('G follows the protocol on behalf of the uncorrupted players. When SIM)IG
reaches the end, it takes a group G = Bad n Qual of corrupted players which are not

disqualified. SIM('I then runs another copy of the algorithm A (on the same random

input) on the side, and attempts to extract the values x 2 = log(y) for all Pi E G. (The

details of this extraction are in the proof of Lemma 35.) If it succeeds then SIM'IG

outputs a- ==log9 hr x ± +d, otherwise S M)IG outputs null.
Z PicG - i PECooc i SMI upt ul

Simulation (option ii): SIM 2 IG interacting with A

Public Input: DLog instance (p, q, g)
(2) ,

SIMh 1 Q's Private Input: element j QG
A's Input: any auxiliary information z of length polynomial in jq

SIM(IG0 s Private Output: elements (a, b) in Z, s.t. h = gapb, where h is output by
(simulated) run of h-IG, or null

SIM(2 I follows h-IG on behalf of the uncorrupted players in Steps 1-2, except that for

one "inconsistent" player Ps, it broadcasts ys = # for a random b E Zq,. S MIG then
simulates the ZKPK-DL proofs between Ps and each Pi E Bad. (See Lemma 36.) If this

simulation fails, SI M? rG fails. Otherwise it proceeds to Step 3 and performs it on behalf

of the uncorrupted players. Finally, it attempts to extract the values xi= log,(y) for

all players Pi in G = Bad n Qual. (This extraction process is identical as in SIM(IG

If the extraction is successful, SIM(2) outputs the representation (ZPjEQuaI\{P5 } xj, b)

of the generated h in bases g, . Otherwise SIM(h2 IGoutputs null.

Figure 7-3: h-IG: Dist. Generation of value h in the Pedersen Commitment

-Hr

174

175

The following is a ZKPK-DL proof of Figure G-1 performed in parallel by each pair
(Pi, P) of servers in Qual, where Pi plays the role of the prover and P§ the role of

the verifier. The protocol is performed over authenticated point-to-point links, with no

recourse to broadcast, and no need for secrecy on the links.

Public Inputs: discrete-logarithm instance (p, q, g), values y, ..., y, E G%
Pi's Private Input: xi E Zq such that y -=gi mod p.

1. Each Pi picks a trapdoor value ai E Zq and sends hi = g ij to P, for every Pj

2. Each P3 chooses random coins Ri, Nij in Z and sends a commitment Ci =

g9hi ht to Pi, for every Pi

3. Each Pi chooses a random rij in Z and sends Mi= gri to P, for every P

4. Each Pj opens its commitments Cpj by sending (Rij, i) to Pi, for every Pi

5. Each Pi verifies that gRi h., = Cij, for every Pg. If so, then it sends mi =

rij + xi Rip and at to P.

6. Pj accepts the proof of Pi if gaii = hij and g"'i = yjMij. Otherwise we say
that "Pj believes that Pi does not pass the ZK proof."

Figure 7-4: Step 2 of h-IG: Parallel Execution of n x n ZKPK-DL proofs

that yi E Gq by checking if y7 = 1 mod p. E

Lemma 35 (Simulation of h-IG, Option i) For every polynomial p(k) there exists a

(PPT TM) simulator SIM 1 IG (Figure 7-3), such that for every n/2-threshold (static or

adaptive) adversary A, the following two properties hold:

1. For any DLog instance (p, q, g), the following two variables are identically distributed:

(a) VieWh-IG,A(p,q,g), an adversarial view of a random execution of the h-IG pro-

tocol on public input (p, q, g)

(b) ViewsIM()IAG' , q, g), an adversarial view of a simulation, i.e. a computation of

SIM(IG and A on public input (p, q, g)

2. There exists ko s.t. for all k > ko, for every discrete-log instance (p, q, g) of security

parameter k, simulator SIM(IG interacting with A on public input (pq, g), with

probability at least 1- p1 produces a private output o = log9 h, where h is the public

output of this interaction (i.e. the simulation of h-IG).

Proof: Property (1) is easy to see. SIM(')_follows the protocol on behalf of the uncor-

rupted players till the end of h-IG. The fact that SIM _runs a copy of A on the side does

not matter.

CHAPTER 7. GENERATION OF A PEDERSEN COMMITMENT

As for property (2), we first explain in more detail how SIM')_extracts values xi
logg(yi) from all the bad players that passed the ZKPK-DL proof with some good player.

This process of extraction is similar to the construction used to show the proof-of-knowledge

property of the ZKPK-DL proof system, i.e. Lemma 43 of Appendix G. The difference is

that there the extractor needed to extract a witness from one prover, while here SIM ()
needs to extract witnesses from many provers at the same time.

SIMdG performs the h-IG protocol on behalf of the uncorrupted players, and thus

knows all values xi = log, yj for Pi c Good. At the end of the protocol, G = Bad n Qual

is the set of corrupted players which are not disqualified. For each Pi E G, let Gi be the
group of players in Good such that for each Pj C G, Pi passed in the ZKPK-DL proof with

P as a verifier. If Pi is in set G at the end of the protocol then it must be that Pi passed

the ZKPK-DL proof with at least one uncorrupted player controlled by SIM 1) Therefore

SIM 1)_ knows ai= log9 hij for each P2 C G and Pj C Gi.

Let pQ be any polynomial. For all large enough k's, SIM') can learn xi for each Pi in

G, with probability at least 1 - 1 by the following procedure. Let p'(k) = 6np"(k)p(k),
where p"(k) is some small polynomial such that p"(k) > ln(2p(k)) for all large enough k's.

SIM 1) repeats the following loop for p'(k) times. SIM(1) runs the h-IG protocol again,
interacting with a copy of A on the same adversarial input and the same random tape. In

this re-run, SIM 1 _sends the exact same messages on behalf of the uncorrupted players

in Step 1 and then in Step 2 (i.e. in the parallel ZKPK-DL protocol of Figure 7-4), it sends

still the same messages on behalf of the uncorrupted players in Rounds 1-3. However, in

Round 4, SIM2O_ uses fresh random coins (R8 ,Ri), for each P c G and Pf C G s.t.

R8 $ R and R + h = ± huR8, where (Ri 1 ,RNjj) are the coins used by SIM(1)

in the original interaction with A. For all other (P, Pi) pairs s.t. Pj E Good, SIM
simply follows the protocol. If for some Pj E G, P2 responds correctly in Round 5 then

SIM(') learns logg y, as in the proof of the proof-of-knowledge property of the ZKPK-DL

protocol (Lemma 43). Namely, SIM')J computes xi = logg(y) = (mj - m8g)/(Rij - k4).

SIM(') repeats this interaction with a copy of A for p'(k) times. If at the end there is

Pi E G which never responds correctly in Round 5 to any P E G, then SIM'),, outputs

null. Otherwise, SIM(1 __learns xi = logg y for each Pi E Qual and hence can output
a = logg h = EPcQ i.Xi

We argue that the above process is successful except for probability at most 1 This

argument is very similar to the one in the proof of Lemma 43 in Appendix G, except that
here we need to adapt it to the case where the simulator extracts the witnesses from many
provers at the same time. Let Xi be the event that Pi is in set G, i.e. that Pi passes the

ZKPK-DL proof with at least one uncorrupted player, and that SIO never extracts xi,

i.e. that in all the p'(k) repetitions of the parallel ZKPK-DL protocol, player P fails the

proof with the same uncorrupted players. We want to upper-bound the probability that

SIM(,) outputs null, i.e. the probability FAIL = Pr [UPEBad X, taken over the random

choices of A and SIMd1 . Clearly, FAIL ZPicBadPr[Xi] nPr[Xma], where i = max
is an index for which Pr[Xj] is the largest.

176

177

Denote by IJ some subset of pairs (Pt, P) C Bad x Good. Denote by Cj any set of

values Ci E G. for (i, J) E IJ. Denote by "Pmaxc passes on Ci" the event that Pmax passes

the ZKPK-DL proof with some Pj E Good s.t. (max,J) C IJ, and that the messages Cj

for each (i, 9J C IJ sent by the uncorrupted players in Round 2 of Step 2 are equal to the

values specified in C. This event is well-defined only for the set of pairs of indices IJ s.t.

(max, j) E IJ for some P. Fix the random coins of the adversary and consider a probability

threshold T = 2n1(k), and let's define a set of "good" sets (IJ, dij) as follows:

We call (IJ, Cj) "good" iff Pr[Pmax passes on Cj] > T

where the probability is taken over those coins of the uncorrupted players s.t. for every

(i, j) C IJ, values (Rij, Ri) sent by the uncorrupted players P1 are subject to the constraint

that gRiih ii = Cj, for every Cij in djj.

Denote by "Pmax passes again on 0 ui" the event that in an interaction of SIMmr 1 with

a copy of A, in at least one of the p'(k) repetitions of this interaction, Pmax passes the

ZKPK-DL proof with some Pj c Good s.t. (max,A) E IJ, and that the messages Cij for each

(i, j) e IJ sent by the uncorrupted players in Round 2 of Step 2 are equal to the values

specified in C. Let pa denote the following probability:

pe,, = Pr[Pmax passes again on 0i-j Cu is good]

It is easy to see that if polynomial p'(k) is sufficiently larger than 1/T (i.e. sufficiently

larger than np(k)), then probability pga11 = 1 - pj,j is negligible. In particular, we make

6p"(k) = p'(k)/(np(k)) sufficiently large so that the probability pcm is smaller than 2n(k)-
This argument is elementary and it is identical to the one given in the proof of Lemma 43

in Appendix G. Furthermore, by the similar logic as in the proof of Lemma 43, Pr[Xmax]

can be upper-bounded by T +

Pr[Xma,] < Pr[Pmax passes on OCu I 6 u good] *

* Pr[Pmax does not pass again on <u 1 r good] +

+ Pr[Pmax passes on ij I Cug bad] *

* Pr[Pmax does not pass again on Crj 0 u bad]

111
< 1*p- I+T*1 <+<< 1 p- 2np(k)±2np(k)) np(k)

Therefore, FAIL <;nPr[Xmax] < 1 -

Lemma 36 (Simulation of h-IG, Option ii) Under the discrete-log intractability as-

sumption, for every polynomial p(k) there exists a (PPT TM) simulator SM 2 _G (Figure

7-3), such that for every n/2-threshold (static or adaptive) adversary A, for any discrete-log

instance family DL, for (p, q, g) a DLog instance of security parameter k in DL, and for

every j E G, the following two properties hold:

1. The statistical difference between the following variables is a negligible function of k:

Am Op p , , 11POPIRI M, 1 0

III

178 CHAPTER 7. GENERATION OF A PEDERSEN COMMITMENT

(a) Viewh-IGA(p,q, g), an adversarial view of a random execution of the h-IG pro-
tocol on public input (p, q, g)

(b) ViewSIM(2) A(p, q, g); j), an adversarial view of a simulation, i.e. a computation

of SIM(2 1I and A on public input (p, q, g) and SIM(2 I's input j, given that the
adversary does not corrupt the inconsistent player Ps (see remark below).

2. There exists ko s.t. for all k > ko, simulator SIMh I interacting with A on public

input (p, q, g) and SIM()G's input j, with probability at least 1 - outputs a repre-

sentation (a, b) of h in bases g, j (i.e. a pair s. t. gajb = h), where h is a public output
of this interaction (i.e. the simulation of h-IG).

Remark. Note that in the static adversary model property 1 means that the adversarial
view of the simulation is statistically indistinguishable from the view of the protocol, because

any Ps chosen among the uncorrupted players Good by SIMIG is never corrupted by the
adversary.

Proof: First we explain how SIMf I simulates the ZKPK-DL proofs between Ps and

each Pi C Bad (see the description of SIM 2 G in Figure 7-3). We use the notation of Figure
7-4 for Step 2 of the h-IG protocol.

SI M7IC simulates the proofs performed by Ps as follows. In Round 4 of Step 2, SI M(2)

collects all coins Rsj that the corrupted players P open correctly. SIM(2) rewinds the
adversary A to the beginning of Round 3 (i.e. restarts algorithm A and runs it until the
beginning of Round 3, on the same random input of A, and sending the same messages
on behalf of the uncorrupted players), and uses the Rsj values above to prepare messages
m*, and Ms*> which make Ps pass the ZKPK-DL proof against each P that uses Rsj
in Round 3 again. Namely, by the construction used in the proof of the ZK property of

ZKPK-DL in Lemma 44 in Appendix G, SIMfJQ picks rn uniformly in Zq, and computes

Ms*j = gmsiyRsi. For each player Pj C Bad who opens its commitment as Rsj again,

SIM 2)_ sends backm*, and aid. For players Pj E Bad who do not open their commitments

correctly at all, SIM 2)G sends nothing. If any player Pj e Bad opens its commitment

correctly, but as a different coin R 7 Rsj, then SIMhIG fails. For all other players in

Good, SIMfG just follows their protocol. If SI ___ does not fail in simulating Step 2,
it proceeds to Step 3 of h-IG and just follows the protocol on behalf of the uncorrupted
players. We call this second run of Steps 1-2 (and followed by Step 3) a "re-run' of the h-IG
protocol.

In the same way as in the proof of Lemma 44, we can show that if the probability that

any player P controlled by the adversary A opens its commitment Csj as one coin Rsj in
the first run and then another coin R* in the re-run (where for any DLog instance (p, q, g)
the probability is taken over random coins of the players and the adversary A), is not
negligible (i.e. higher than 1 for some polynomial pQ, for all ko, and for some k > ko),
then we can construct an efficient algorithm E which, interacting with A, can compute

. ' l" : " ' ? ".. A I i it , ~ l I 2 3 . I

179

(with the same probability -9ty) discrete logarithm log9 h of a random input value h in G.
Namely, E, similarly to SIM(') in the proof of Lemma 44 embeds h into each instance of
the Pedersen Commitment hs,3 it sends to player P, (for example hs, = h~sa for a random
3s,j in Zq). C runs the protocol to Round 4 once and then re-runs it once again. If any Pi
controlled by A opens its commitment Csj correctly but differently in the two instances
then S gets two representations of Csj in bases g, hs,j, and hence can compute logg hs,j,
and hence can compute logg h.

Therefore, under the discrete-log assumption, this probability can only be negligible
in the security parameter, and consequently SIM72) passes the re-run of the interaction
with A except for negligible probability. Until Round 5, the distribution of the messages
seen by A in this re-run is the same as in the protocol, because all the players except of
Ps follow the protocol, messages M*- sent by Ps in Round 3 are chosen uniformly and
independently in Gq. In Round 5 the adversary A sees (for all Pj E Bad) either messages
M* and mi 1 for Pi E Good \{Ps} which satisfy the relation imposed by the protocol, or
A sees no good messages from player Ps. However, as we argued above, the latter happens
only with a negligible probability. Consequently, the statistical difference between A's view
of an interaction with SIMf') and A's view of a random execution of h-IG is negligible
which proves property (1).

The above discussion implies that under the discrete-log assumption, for any p(k) there
exists ko s.t. for all k > ko simulator SIM 2

)_ passes to the end of h-IC except for at

most 1 probability. In this case SIM(2) follows the protocol of SIM(') to extract2pc) lity. S1MI 2

values xi for Pi E (Bad n Qual). Namely, as argued in Lemma 35, there exists polynomial

p'(k) s.t. SIM(2) runs a copy of A on the side p'(k) times and attempts to extract all
the above values. (Note that since SIM(2) interacts with a copy of A, the adversarial
view of the simulation does not change.) By the same argument which was used to show
property (2) of Lemma 35, there is k' s.t. for all k> k6, SIM7,) learns all the values xi for
P E (Bad a Qual) except for probability 2p(k) In the case it is successful, since S1M(2

)

knows also value b = logy ys and values xi = log9 yj for all other uncorrupted players,
SIMC2) knows logg yj or logy yj for all values yj for Pi E Qual, and hence can output a
representation a, b of the public output h in bases g, j. Since the probability that SIM(2 G
fails to output this representation is the probability that it fails to simulate the ZKPK-DL
proofs of Ps plus the probability that it fails to extract the needed xi values from the
corrupted players, it follows that for k > max(ko, k$), SIM 2 1J outputs this representation
except for probability at most 10E

III

180 CHAPTER 7. GENERATION OF A PEDERSEN COMMITMENT

[H--

Bibliography

[Bac85] Eric Bach. Analytic Methods in the Analysis and Design of Number- Theoretic
Algorithms. ACM Distiguished Dissertation (1984). MIT Press, Cambridge,
MA, 1985.

[BB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a
constant number of rounds. In Proc. 8th ACM Symp. on Principles of Dis-
tributed Computation, pages 201-209, 1989.

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the
design and analysis of authentication and key exchange protocols (extended
abstract). In Proc. 30th A CM Symp. on Theory of Computing, pages 419-428,
Dallas, 1998. ACM.

[Bea87] Donald Beaver. Oblivious secret computation. Technical Report TR-12-87,
Harvard University, December 1987.

[Bea9l] Donald Beaver. Foundations of secure interactive computing. In Proc.
CRYPTO 91, pages 377-391. Springer-Verlag, 1991.

[Bea97] Donald Beaver. Plug and play encryption. In Proc. CRYPTO 97, pages 75-89.
Springer-Verlag, 1997.

[BF97] Dan Boneh and Matthew Franklin. Efficient generation of shared RSA keys.
In Proc. CRYPTO 97, pages 425-439, 1997.

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Proc.
CRYPTO 92, pages 390-420. Springer-Verlag, 1992.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-
rems for fault-tolerant distributed computing. In Proc. 20th ACM Symp. on
Theory of Computing, pages 1-10, Chicago, 1988. ACM.

[BH92] Donald Beaver and Stuart Haber. Cryptographic protocols provably secure
against dynamic adversaries. In Proc. EUROCRYPT 92, pages 307-323,
Berlin, 1992. Springer-Verlag. Lecture Notes in Computer Science No. 658.

[Blu82] Manuel Blum. Coin flipping by telephone: a protocol for solving impossible
problems. In Proc. 24th IEEE Computer Conference, pages 133-137, 1982.

181

III

182 BIBLIOGRAPHY

[BMR90] Donald Beaver, Silvio Micali, and Phil Rogaway. The round complexity of

secure protocols. In Proc. 22nd ACM Symp. on Theory of Computing, pages

503-513, 1990.

[BOCG91] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure

computation (extended abstract). In Proc. 25th ACM Symp. on Theory of

Computing, pages 52-61, San Diego, 1991. ACM.

(Boy89] Colin Boyd. Digital multisignatures. In H. Baker and F. Piper, editors, Cryp-

tography and Coding, pages 241-246, Kingston, Ontario, Canada, May 1989.

Claredon Press.

[Bra99] Stefan Brands. Rethinking public-key infrastructures and digital certificates-

building in privacy. Ph.D. dissertation, Technical University of Eindhoven,

1999.

[BW] E. Berlekamp and L. Welch. Error correction of algebraic block codes. US

Patent 4,633,470.

[CA89] David Chaum and Hans Van Antwerpen. Undeniable signatures. In Proc.

CRYPTO 89, pages 212-217. Springer-Verlag, 1989. Lecture Notes in Com-

puter Science No. 435.

[Cam98] Jan Camenisch. Group signature schemes and payment systems based on the

discrete logarithm problem. ETH Series in Information Security and Cryptog-

raphy, vol.2, 1998.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols.

J. Cryptology, 13(1):143-202, 2000.

[CCD88] D. Chaum, C..Crepeau, and I. Damgard. Multi-party unconditionally secure

protocols. In Proc. 20th A CM Symp. on Theory of Computing, Chicago, 1988.
ACM.

[CD98] Ronald Cramer and Ivan Damghrd. Zero-knowledge proof for finite field arith-

metics, or: Can zero-knowledge be for free. In Proc. CRYPTO 98, pages

424-441. Springer-Verlag, 1998.

[CDD+99] Ronald Cramer, Ivan Damgard, Stefan Dziembowski, Martin Hirt, and Tal

Rabin. Efficient muliparty computations secure against an adaptive adversary.

In Proc. EUROCRYPT 99, pages 311-326. Springer-Verlag, 1999. Lecture

Notes in Computer Science No. 1592.

[CDNO99] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafi Ostrovsky. Deniable en-

cryption. In Proc. CRYPTO 97, pages 90-104. Springer-Verlag, 1999. Lecture

Notes in Computer Science No. 1294.

[CF85] J. D. Cohen and M. J. Fischer. A robust and verifiable cryptographically
secure election scheme. In Proc. 26th IEEE Symp. on Foundations of Comp.

Science, pages 372-382, Portland, 1985. IEEE.

-- ITI -- -------- --

BIBLIOGRAPHY

[CFGN96] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively secure
multi-party computation. In Proc. 28th A CM Symp. on Theory of Computing,

Philadelphia, 1996. ACM. Fuller version in MIT-LCS-TR # 682, February
1996.

[CG99] Ran Canetti and Shafi Goldwasser. An efficient threshold public key cryptosys-

tem secure aginast adaptive chosen ciphertext attack. In Proc. EUROCRYPT

99, pages 90-106. Springer-Verlag, 1999. Lecture Notes in Computer Science

No. 1592.

[CGJ+99] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal

Rabin. Adaptive security for threshold cryptosystems. In Proc. CRYPTO

99, pages 98-115. Springer-Verlag, 1999. Lecture Notes in Computer Sci-

ence No. 1666. Fuller version available at http://theory.lcs.mit.edu/~cis/cis-

threshold.html.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable
secret sharing and achieving simultaneity in the presence of faults (extended

abstract). In Proc. 26th IEEE Symp. on Foundations of Comp. Science, pages

383-395, Portland, 1985. IEEE.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and

optimally efficient multi-authority election scheme. European Transactions on

Telecommunications, 8(5), September 1997. Also prelminary version in Proc.

of EUROCRYPT'97. Springer-Verlag. LNCS No. 1233, pp.1 0 3 -1 1 8 .

[CH89] R.A. Croft and S.P. Harris. Public-key cryptography and re-usable shared

secrets. In H. Baker and F. Piper, editors, Cryptography and Coding, pages

189-201, Kingston, Ontario, Canada, May 1989. Claredon Press.

[CH941 Rand Canetti and Amir Herzberg. Maintaining security in the presence of

transient faults. In Proc. CRYPTO 94, pages 425-438, 1994.

[Cha90] David Chaum. Zero-knowledge undeniable signatures. In Proc. EUROCRYPT
90, pages 458-464. Springer-Verlag, 1990.

[CHH97] Ran Canetti, Shai Halevi, and Amir Herberg. Maintaining authenticated com-

munication in the presence of break-ins. In Proc. 16th A CM Symp. on Prin-

ciples of Distributed Computation. ACM, 1997.

[CM193] M. Cerecedo, T. Matsumoto, and H. Imai. Efficient and secure multiparty

generation of digital signatures based on discrete logarithms. IEICE Trans.

Fundamentals, E76-A(4):532-545, April 1993.

[CS98] Ronald Cramer and Victor Shoup. A practical public-key cryptosystem prov-

ably secure against adaptive chosen ciphertext attack. In Proc. CRYPTO 98.
Springer-Verlag, 1998.

183

III

184 BIBLIOGRAPHY

[DDFY94] Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to share

a function securely. In Proc. 26th ACM Symp. on Theory of Computing, pages
522-533, Montreal, Canada, 1994. ACM.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography

(preliminary version). In Proc. 23rd ACM Symp. on Theory of Computing,

1991.

[Des88] Yvo Desmedt. Society and group oriented cryptography: A new concept. In

Carl Pomerance, editor, Proc. CRYPTO 87, pages 120-127. Springer-Verlag,
1988. Lecture Notes in Computer Science No. 293.

[Des94] Yvo Desmedt. Threshold cryptography. European Transactions on Telecom-

munications, 5(4):449-457, July 1994.

[DF89] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In G. Brassard,

editor, Proc. CRYPTO 89, pages 307-315. Springer-Verlag, 1989. Lecture
Notes in Computer Science No. 435.

[DF91] Yvo Desmedt and Yair Frankel. Shared generation of authenticators and signa-

tures. In J. Feigenbaum, editor, Proc. CRYPTO 91, pages 457-469. Springer,
1991. Lecture Notes in Computer Science No. 576.

[DJ99] Yvo Desmedt and Sushil Jajodia. Redistributing secret shares to new access

structures and its applications, 1999. Available at

http:///www.cs.fsu.edu/~desmedt/topics-threshold.html.

[DNOO] Ivan Damgard and Jesper Buus Nielsen. Improved non-committing encryption
schemes based on a general complexity assumption. to be published, 2000.

[DNRS99] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry Stockmeyer. Magic

functions. In Proc. 40th IEEE Symp. on Foundations of Comp. Science, 1999.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine

agreement. SIAM J. Computing, 12(4), 1983.

[ElG85a] T. ElGamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. In IEEE Trans. Info. Theory, volume 31, 1985.

[ElG85b] Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In IEEE Trans. Inform. Theory, volume 31, pages

469-472, 1985.

[FD92] Yair Frankel and Yvo Desmedt. Parallel reliable threshold multisignature.

Technical Report TR-92-04-02, Dept. of EE and CS, U. of Winsconsin, April
1992.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing.

In Proc. 28th IEEE Symp. on Foundations of Comp. Science, pages 427-437,
1987.

[FGMY97a]

[FGMY97b]

185

Yair Frankel, Peter Gemmell, Phil Mackenzie, and Moti Yung. Optimal re-
silience proactive public-key cryptosystems. In Proc. 38th IEEE Symp. on
Foundations of Comp. Science, pages 384-393. IEEE, 1997.

Yair Frankel, Peter Gemmell, Phil Mackenzie, and Moti Yung. Proactive RSA.
In Proc. CRYPTO 97, pages 440-454. Springer, 1997. Lecture Notes in Com-
puter Science No. 1294.

[FGY96] Yair Frankel, Peter Gemmell, and Moti Yung. Witness-based cryptographic
program checking and robust function sharing. In Proc. 28th A CM Symp. on
Theory of Computing, pages 499-508, Philadelphia, 1996. ACM.

[FMY99a] Yair Frankel, Philip MacKenzie, and Moti Yung. Adaptively-secure distributed
threshold public key systems. In Proceedings of ESA 99, 1999.

[FMY99b] Yair Frankel, Philip MacKenzie, and Moti Yung. Adaptively-secure optimal-
resilience proactive RSA. In Proc. ASIA CRYPT 99. Springer-Verlag, 1999.

[FMY99c] Yair Frankel, Philip MacKenzie, and Moti Yung. Robust efficient distributed
RSA-key generation. In Proc. 30th A CM Symp. on Theory of Computing,
pages 663-672. ACM, 1999.

[Fra89] Yair Frankel. A practical protocol for large group oriented networks. In Proc.
EUROCRYPT 89, pages 56-61. Springer, 1989. Lecture Notes in Computer
Science No. 434.

[GGJR97] Juan Garay, Rosario Gennaro, C. Jutla, and Tal Rabin. Secure distributed
storage and retrieval. In International Workshop on Distributed Algorithms
(WDAG '97), pages 275-289. Springer-Verlag, 1997. Lecture Notes in Com-
puter Science No. 1320.

[Gil99] Niv Gilboa. Two party rsa key generation. In Proc. CRYPTO 99, pages
116-129, 1999.

[GJKR96a] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust
and efficient sharing of RSA functions. In Proc. CRYPTO 96, pages 157-172.
Springer-Verlag, 1996. Lecture Notes in Computer Science No. 1109. Extended
version available at http://theory.lcs.mit.edu/r~cis/cis-threshold.html.

[GJKR96b] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust
threshold DSS signature (preliminary abstract). In Proc. EUROCRYPT 96,
pages 354-371. Springer-Verlag, 1996. Lecture Notes in Computer Science No.
1070, to be published in Journal of Information and Computation, available
at http://theory.lcs.mit.edu/~--,cis/cis-threshold.html.

[GJKR99] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. In Jacques
Stern, editor, Proc. EUROCRYPT 99, pages 295-310. Springer-Verlag, 1999.
Lecture Notes in Computer Science No. 1592. Extended version available at
http://theory.lcs.mit.edu/r~,cis/cis-threshold.html.

BIBLIOGRAPHY

...

BIBLIOGRAPHY

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge

proof systems. SIAM J. Computing, 25(1), 1996.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play
mental poker hiding all partial information. In Proc. 14th ACM Symp. on

Theory of Computing, pages 365-377, San Francisco, 1982.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. JCSS, 28(2):270-
299, April 1984.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charlie Rackoff. The knowledge complex-
ity of interactive proof systems. In STOC85, pages 291-304, Providence, May

1985.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM J. Comput-

ing, 17(2):281-308, April 1988.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charlie Rackoff. The knowledge complex-
ity of interactive proof-systems. SIAM J. Computing, 18(1):186-208, February

1989.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental

game - A completeness theorem for protocols with honest majority. In ACM,
editor, Proc. 19th ACM Symp. on Theory of Computing, pages 218-229, New
York, NY 10036, USA, 1987. ACM Press. (See also [Gol98]).

[Gol95] Oded Goldreich. Foundations of cryptography (fragments of a book). On-line

manuscript, February 1995. http://www.wisdom.weizmann.ac.il/~oded.

[Gol98] Oded Goldreich. Secure multi-party computation. On-line manuscript, June

1998. http://www.wisdom.weizmann.ac.il/-oded.

[GRR98] Rosario Gennaro, Michael Rabin, and Tal Rabin. Simplified VSS and fast-
track multiparty computations with applications to threshold cryptography.

In Proc. 17th ACM Symp. on Principles of Distributed Computation. ACM,

1998.

[Hal00] Shai Halevi, February 2000. Personal communication with the author.

[Har94] Lee Harn. Group oriented (t, n) digital signature scheme. IEE Proceedings.

Computers and Digital Techniques, 141(5), September 1994.

[HJJ+ 97] Amir Herzberg, Markus Jakobson, Stanislaw Jarecki, Hugo Krawczyk, and

Moti Yung. Proactive public-key and signature systems. In Proceedings of

the 4th ACM Conference on Computer and Communication Security, pages

100-110. ACM, 1997.

..ITir

186

BIBLIOGRAPHY

[HJKY95] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive
secret sharing, or: How to cope with perpetual leakage. In D. Coppersmith,
editor, Proc. CRYPTO 95, pages 339-352. Springer-Verlag, 1995. Lecture
Notes in Computer Science No. 963.

[HSSD84] Joseph Halpern, Barbara Simons, Raymond Strong, and Danny Dolev. Fault-
tolerant clock synchronization. In Proc. 3th ACM Symp. on Principles of
Distributed Computation, pages 89-102, 1984.

[IS93] T. Itoh and K. Sakurai. On the complexity of constant round zkip of pos-
session of knowledge. JEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E76-A(1), January 1993.

[JL00] Stanislaw Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryp-
tosystems without erasures. Available at theory of cryptography library or at
http://theory.lcs.mit.edu/~cis/cis-threshold.html, July 2000.

[Kob94] Neal Koblitz. A Course in Number Theory and Cryptography. Springer-Verlag,
2nd edition, 1994.

[Lan95] Susan Langford. Threshold DSS signatures without a trusted party. In D. Cop-
persmith, editor, Proc. CRYPTO 95, pages 397-409. Springer-Verlag, 1995.
Lecture Notes in Computer Science No. 963.

[LHL94] C.-H. Li, T. Hwang, and N.-Y. Lee. (t, n)-threshold signature schemes based
on discrete logarithm. In Proc. EUROCRYPT 94, pages 191-200. Springer-
Verlag, 1994. Lecture Notes in Computer Science No. 950.

[LMS85] Leslie Lamport and P. Michael Melliar-Smith. Synchronizing clocks in the
presence of faults. Journal of the ACM, 32(1):52-78, 1985.

[Lys99] Anna Lysyanskaya. Efficient threshold and proactive cryptography secure
against the adaptive adversary. Available at
http://theory.lcs.mit.edu/~,cis/cis-threshold.html, October 1999.

[Mic92] Silvio Micali. Fair public-key cryptosystems. In Ernest F. Brickell, editor,
Proc. CRYPTO 92, pages 113-138. Springer-Verlag, 1992. Lecture Notes in
Computer Science No. 740.

[Mic99] Silvio Micali. Optimistic exchange of secrets. Manuscript, 1999.

[MR91] Silvio Micali and Phil Rogaway. Secure computation (chapters 1-3). Technical
report, Laboratory for Computer Science, MIT, Cambridge, MA 02139, USA,
1991. Preliminary version in Proc. CRYPTO 91, LNCS 576, Springer-Verlag,
Berlin 1992, pages 392-404.

[MSNW99] Keith Martin, Rei Safavi-Naini, and Huaxiong Wang. Bounds and techniques
for efficient redistribution of secret shares to new access structures. The Com-
puter J., 42(8):638-649, 1999. ISSN 1460 2067.

q

187

III

188 BIBLIOGRAPHY

[NIS91] Digital signature standard (DSS). Technical Report 169. National Institute for

Standards and Technology, August 30, 1991.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryp-

tographic applications. In Proc. 21st ACM Symp. on Theory of Computing,

pages 33-43, Seattle, 1989. ACM.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against

chosen ciphertext attacks. In Proc. 22nd A CM Symp. on Theory of Computing,

pages 427-437, 1990.

[OY91] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks.

In Proc. 10th ACM Symp. on Principles of Distributed Computation, pages

51-61, 1991.

[Ped9la] Torben Pedersen. Non-interactive and information-theoretic secure verifiable

secret sharing. In Proc. CRYPTO 91, pages 129-140. Springer-Verlag, 1991.

[Ped9lb] Torben Pedersen. A threshold cryptosystem without a trusted party. In

D. Davies, editor, Proc. EUROCRYPT 91, pages 522-526. Springer-Verlag,

1991. Lecture Notes in Computer Science No. 547.

[PK96] C. Park and K. Kurosawa. New ElGamal-type threshold digital signature

scheme. IEICE Trans. Fundamentals, E79-A(1):86-93, January 1996.

[Rab98} Tal Rabin. A simplified approach to threshold and proactive RSA. In Proc.

CRYPTO 98, pages 89-104. Springer-Verlag, 1998. Lecture Notes in Computer

Science No. 1462.

[RB89] Tal Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols

with honest majority. In Proc. 21st ACM Symp. on Theory of Computing,

pages 73-85, Seattle, 1989. ACM.

[RSA78] Ronald Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining

digital signatures and public-key cryptosystems. Communications of the A CM,

21(2):120-126, February 1978.

[Sch9l] C. P. Schnorr. Efficient signature generation by smart cards. J. Cryptology,

4:161-174, 1991.

[SG98] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against

chosen ciphertext attack. In Proc. EUROCRYPT 98, pages 1-16. Springer-

Verlag, 1998. Lecture Notes in Computer Science No. 1403.

[Sha79] Adi Shamir. How to share a secret. Communications of the A CM, 22:612-613,

November 1979.

[Sho99] Victor Shoup. Why chosen ciphertext security matters. IBM Research Report

RZ3076, 1999.

-Trr- -

BIBLIOGRAPHY 189

[ShoOO] Victor Shoup. Practical threshold signatures. In Proc. EUROCRYPT 00,
pages 207-220. Springer-Verlag, 2000.

[VeOO] Personal Communication with a Research Staff at Verisign, April 2000.

[Yao82] Anrew Chi-Chih Yao. Protocols for secure computations. In Proc. 23rd IEEE
Symp. on Foundations of Comp. Science, pages 160-164, Chicago, 1982. IEEE.

C
C)z

Appendix A

Adaptive Threshold Cramer-Shoup
Cryptosystem

To further exemplify the power of our build-block threshold protocols we show how to
use them to construct an adaptive erasure-free threshold Cramer-Shoup cryptosystem. We
present a threshold key generation protocol and a threshold ciphertext decryption protocol.
This construction appeared in [JLOO] for the adaptive and erasure-free model. It is based
on a previous construction of [CG99] of a threshold Cramer-Shoup protocol secure in the
static model.1

A.1 The Cramer-Shoup Cryptosystem

Recall the Cramer-Shoup cryptosystem [CS98]. The setting is as follows. We are given
a group Gq in which the decisional Diffie-Hellman problem is assumed to be hard, and a
universal one-way hash function family (UOWHF) [NY89] H: {0, 1}* -> Z,. The secret
key consists of five values, a, b, c, d, e, selected from Zq uniformly at random. The public
key consists of two random bases, gi, g2 E Gq, such that the discrete logarithm that relates
them is unknown, and the group elements A = gagb C - g gg and E = 9. To encrypt
a message m from a message space M (M is assumed to have an efficiently computable
and invertible mapping into Gq, and so we write m c Gq), Alice chooses r C Zq uniformly
at random, computes x = gj, y = g, W = Erm, a- = -(X,y,z), and v = ArCr. The

ciphertext is the 4-tuple (X, y, W, v).
To decrypt, we use the Canetti-Goldwasser method [CG99]. Bob selects uniformly at

random s E Zq and outputs w/(xe(v/v')s), where v' = a+ccyb+d,. Note that if v = v',
as it should be if the ciphertext is formed via the legal encryption procedure above, then
w/(xe(v/v')s) = w/e = m, just like in ElGamal decryption. Recall that assuming that
the decisional Diffie-Hellman problem is hard, the Cramer-Shoup cryptosystem is secure

'In fact, the two protocols are composed of building blocks for the same arithmetic operations, and the
crucial difference between the two constructions is the use of statically-secure building-block protocols for
these arithmetic operations in [CG99], and the substitution of these protocols by their adaptively-secure
counterparts in [JLOG].

191

192 APPENDIX A. ADAPTIVE THRESHOLD CRAMER-SHOUP CRYPTOSYSTEM

against adaptive chosen ciphertext attack, which is the strongest notion of security known

for public-key cryptosystems [CS98] (see also [Sho99]).

A.2 Threshold Cramer-Shoup Key Generation

We present the Cramer-Shoup distributed key generation protocol CS-DKG in Figure A-1.
We assume that in addition to the Pedersen commitment instance p, q, g, h, a universal

one-way hash function N has been randomly chosen. In known UOWHF constructions,

picking a random instance 'H of a UOWHF family is equivalent to picking a random long-

enough string (e.g. see the recent result of [ShoOO] and the references therein), which in our

threshold setting can be achieved via the distributed coin-flipping protocol RVSS.

In the CS-DKG protocol we first generate the two random public bases 91, 92 E Gq.
Since they are random, we generate them by generating two random coins r and r2 in Zq
with two (parallel) runs of a distributed coin-flip protocol RVSS followed by two (parallel)
runs of the exponentiation protocol Ad-Exp on public input g and the generated sharings

RVSS-data[ri] and RVSS-data[r 2] to obtain two random elements in Gq: gi = g and

92 = gr2. This part of the protocol is secure because RVSS followed by Ad-Exp are secure
under parallel composition. The adversary cannot skew this process unless he knows how
to compute a discrete logarithm, and by the simulatability of (two parallel instances of)
Ad-Exp (Lemma 29), this part of the protocol can be simulated with a single inconsistent

player to output any values g and 92.
Since the private keys a, b, c, d, e are all random in Zq, we generate them with five

(parallel) runs of the coin-flip protocol RVSS. Generation of values A, C, and E, is a
variant of the adaptive exponentiation protocol Ad-Exp. To generate E =g we use the

Ad-Exp protocol itself, on inputs RVSS-data[e] and gi. To generate A gg we follow

a protocol very similar to Ad-Exp. Each player uses its additive shares aj and b and
publishes Ai = gj gg6. To check that this value is generated correctly, the players can

use the verification values Fa, (0) = ga' hi and F, (0) = gbhit from RVSS-data[a] and
RVSS-data[b]. Each player Pi should prove that it knows values a, ti, b, b which satisfy the

above three constraints. This can be formulated as knowledge of an equal representation

of values A, F(0), and Fb,(0) in appropriate bases made of elements g, 92, g, and h (see

Step 3a in Figure A-1), and thus to prove it the players run a simultaneous proof protocol

using the ZKPK for equal representations which we include in Figure F-2, page 219. Value
C0= gjgfis generated in the same way. In fact, all three values A, C, and E can be

generated in parallel. As in the exponentiation protocol Ad-Exp, the simultaneous proof
can be adaptively simulated with a single inconsistent player.

It follows that CS-DKG protocol is single-inconsistent-player-simulatable. It is also ro-
bust in the presence of an n/2-threshold adaptive adversary who cannot compute logg h. As

we have argued above, Steps 1-2 of CS-DKG are two executions of Ad-Exp, and the algorithm

of Steps 3-4 is a close variant of a parallel execution of three instances of Ad-Exp. Therefore

the proof of robustness of CS-DKG is an easy extension of the robustness argument for

Ad-Exp we give in Section 5.2.1.

-l

A.2. THRESHOLD CRAMER-SHOUP KEY GENERATION

Adaptively Secure Cramer-Shoup Key Generation CS-DKG

Inputs: Pedersen commitment instance p, q, g, h, universal hash function 'H
Outputs: Sharing of private key elements RVSS-data[a, b, c, d, e]

and the corresponding public key elements (91,92, A, C, E)

1. Run in parallel two RVSS instances to obtain RVSS-data[rj, r 2} and two instances
of Ad-Exp to compute g, = gi and 92 = g12

2. Run RVSS five times in parallel to obtain RVSS-data[a, b, c, d, e].

3. Each Pi publishes Ai = gai 2 C - 2, and Ei = g",and all players perform a
simultaneous proof protocol using ZKPK of equality of representations (Figure F-
2, Appendix F) to prove that

(a) Values Aj, Faj(0), and Fb(0) have equal reps. in bases (91, 92,1,1),
(g, 1, h, 1), and (1,g,1,h)

(b) Values Ci, Fc (0), and Fd, (0) have equal reps. in bases (91, 92, 1, 1),
(g, 1, h, 1), (1, g, 1, h)

(c) Values E and F,,(0) have equal reps. in bases (91,92,1) and (g,1, h).

4. If any player Pi E Qual fails, their secret values aj, bi, ci, di, and e- are publicly
reconstructed using verification information Fi, Fbi, Fc, Fdj and Fe, and values
Aj, Ci, Ej are publicly computed.

Finally, A =HPiEQWI A, C = l Ci, and E = FIPEEQUaI Ej.

Simulation: (on SIM's additional inputs o = logg h, random elements g*, g, A*, C*,E*
in Gq, and an identity Ps of an inconsistent player in Good)

1. SIM follows the RVSS protocols of Step 1, and simulates the exponentiation pro-
tocols to output gj* and gS.

2. SIM follows Step 2 of the protocol.

3. SIM acts similarly to the simulator of the exponentiation protocol in Figure 5-3:
It interpolates the secret-sharing polynomials to find the values ai, bi, ct, di, e held
by the corrupted players, computes their values Aj, Ci, E, and then broadcasts
correct values A1 , Ci, E for all uncorrupted players P, except for Ps, for whom
SIM broadcasts As = A*/HPjEQ B I\{Ps}Aj, and similarly computed Cs and Es*.
SIM then simulates the simultaneous proof protocol without knowing the correct
witnesses for only one player Ps.

4. SIM follows the protocol of Step 4. Unless the adversary can compute discrete-

logarithms the output public key is g*, g*, A*, C*, E*.

Figure A-i: CS-DKG: Threshold Cramer-Shoup Key Generation

I ; q !IP, IM oll , :%. , I I -- .

193

III

194 APPENDIX A. ADAPTIVE THRESHOLD CRAMER-SHOUP CRYPTOSYSTEM

A.3 Threshold Cramer-Shoup Decryption

Adaptively Secure Cramer-Shoup Decryption CS-TDec

Input: Sharings RVSS-data[a,b,c,d,e], key (gi, 9g, A, C, E), ciphertext (x, y, w, IV, -)

Output: Cleartext M= wv-Sxs(a+co)-eys(b+da)

1. Players perform RVSS protocol to obtain RVSS-data[s].

2. Each player locally obtains its part of RVSS-data[a + c] and RVSS-data[b + da]

from RVSS-data[a, b, c, d, s] and o-.

3. Let r = s(a + cc) and z = s(b + da). Players perform two parallel Mult-opt

instances to get RVSS-data[r] from RVSS-data[s, a + cc] and RVSS-data[z] from

RVSS-data[s, b + da]

4. Each Pi in Part broadcasts mi = wv-sxri-eyzi. The players perform

a simultaneous proof using a ZKPK proof of Figure F-2, page 219, to let

each Pi prove the knowledge of equal representation of values m/w, F,,(0),

Fr(0)/Fe,(0),andFI(0))inbases(v,x,y,1,1,1),(g,1,1,h,1,1), (1, g, 1, 1, h, 1),

and (1, 1, g, 1, 1, h).

5. Value rr = n mi, is publicly computed. If any player fails, its secret values

are reconstructed and the protocol proceeds.

Simulation: (on SIM's additional inputs a = log, h, an identity Ps of an inconsistent

player in Good, and cleartext m* provided by the oracle that implements an underlying

instance of the Cramer-Shoup cryptosystem. See the discussion of the distribution of

m* in this section.)

1-3. SIM follows Steps 1-3 of the protocol.

4. The simulation is similar to that of the exponentiation protocol (Figure 5-3).

SIM interpolates the secret-sharing polynomials to find the values si, r, e, zi held

by the corrupted players, computes their values mi, and then broadcasts correct

values mi for all uncorrupted players Ps, except for Ps, for whom it broadcasts

Ms = m*/ Hp, eQual\{Ps} m . SIM then simulates the simultaneous proof protocol

without knowing the correct witnesses for only one player Ps.

5. Unless the adversary can compute discrete logarithms, the output cleartext is m*.

Figure A-2: CS-TDec: Threshold Cramer-Shoup Decryption Protocol

As we mentioned before, our threshold Cramer-Shoup decryption protocol CS-TDec

uses the Canetti-Goldwasser method [CG99], which was originally presented in the static

adversary model. In the threshold key generation protocol CS-DKG, the players created

secret-sharing data-structure RVSS-data for secret keys a, b, c, d, e. To decrypt ciphertext

(x, y, iW, v), the players perform a distributed coin-flip protocol to select a random secret

~nr

A.3. THRESHOLD CRAMER-SHOUP DECRYPTION

S E Zq. Now the players need to generate a public output m = w/(e(v/v')"), where
V = a+c0Yb+doI i.e. they need to extract value m = wv-Sxs(a+co)-eyS(b+do) from the
sharings of a, b, c, d, e, and s. This extraction is done via the shared multiplication protocol
and a variant of the shared exponentiation protocol.

As in the sharing of a refresh polynomial (see Section 4.3.2), from the secret-sharing
structures RVSS-data[a] and RVSS-data[b], each player can locally obtain a secret-sharing
structure RVSS-data[kia + k2b] for any constants k1, k 2 E Zq (compare also Figure 4-15).
The players need to multiply their secret information in RVSS-data[a] by ki and the secret
information in RVSS-data[c] by k 2, and add them. The corresponding operations on the
public information are an exponentiation to ki or k 2 and then a multiplication. In CS-TDec
each players does that in Step 2 to get a sharing of a + ca and b + dr from the sharings
of a, c, b, d. Next the players employ two parallel instances of the multiplication protocol
to get the sharing of r = s(a + ccx) and z = s(b + d-) from the existing sharings of the
factors s, (a + cox), and (b + do). Now the players hold the sharings of -s, r = s(a + cc-),
e, and z = s(b + dc), and they need to compute m = wlv-sxrxefy. This can be done
by another variant of the exponentiation protocol, just as values A = gg were computed
from the sharings of a and b in the Cramer-Shoup distributed key generation protocol
CS-DKG. This time each player uses its additive shares si, r, e, z and publishes its part
mi = wiv-'i'xzxiyzi of m. The proof that each Pi publishes the correct value is again
accomplished via a simultaneous proof protocol using the ZKPK proof system of equal
representation, because shares si, ri, ei, zi all have corresponding public verification values
Fs,(O), Frj(O), Fe(0), and F,,(O) (created via RVSS for s's and es's and via Mult-opt for
ri's and z's).

The simulation algorithm which shows that this protocol is single-inconsistent-player-
simulatable follows the protocol during the secret-sharing of s and during the multiplication
step which creates the sharing of r = s(a+cc) and z = s(b+do). The "extraction" step when
the players generate M = wv-8 r-eyZ is simulated in a way very similar to the simulation
of the exponentiation protocol Ad-Exp. Note that in the proof of security of the resulting
threshold Cramer-Shoup cryptosystem, the simulator first simulates the threshold Cramer-
Shoup key generation algorithm CS-DKG on input (91, g2, A, C, E), a random Cramer-Shoup
public key given by a decryption oracle that implements an instance of the underlying
Cramer-Shoup cryptosystem. These keys are then passed as an input to the simulation of
the threshold Cramer-Shoup decryption protocol CS-TDec, together with input ciphertext

(x, y, w, v, a) given by the adversary, and the decryption m* received from the decryption
oracle. This m* is distributed as a random number in Gq if V -V xay+"b+dc, or if
V = V' then m* = w/W* where e* = log giE (we denote log, E as e* rather than e because
it is unknown to the simulator).

The public Cramer-Shoup key correspond to some random secret key (a*, b*, c*, d*, e*)
unknown to the simulator, and the decryption m* corresponds to a random value s* in Zq.
By the adaptive secrecy property of RVSS, the sharing of RVSS-data[s] in the simulation
agrees with this value s*. Similarly by the secrecy property of the multiplication protocol,
values s*(a* + c*cx) and s*(b* + d*a) agree with Step 3 of the simulation. Finally, as in the
proof of secrecy of Ad-Exp, we argue that the last step of the simulation produces the same
view as the last step of the protocol. Even though the sets of additive shares {ri}PiEGood\{Ps}
and {Si}PiEGood\{Ps} are not distributed in the same way in the simulation and in the protocol

195

III

196 APPENDIX A. ADAPTIVE THRESHOLD CRAMER-SHOUP CRYPTOSYSTEM

(e.g. values ri in the random execution of the protocol should be products of values f,*(i) and
fg*(i) + fj(i)a, while in the simulation they are products of values f,(i) and fb(i) + fd(i)o),

because values {Si}PiEGood\{Ps} are uniformly distributed, values {mIpiEGod\{P5 } produced

in Step 3 of the simulation have the same distribution as in a random execution of the

protocol that outputs m*. It follows that value ms is distributed correctly as well, and that

the view of the simultaneous proof in Step 3 is as in the protocol too.

.A. .

Appendix B

Proactive Security: Extensions to
Stronger Adversarial Models

In this appendix we describe an extension of threshold cryptosystems to proactive cryp-
tosystems, where the resilience of threshold solutions is enhanced by several self-healing
protocols that counteract the potential advantage which the adversary might gain by cor-
rupting servers. When a threshold cryptosystem employs such proactive protocols then
the attacker can break the system only if he breaks into more than a tolerated threshold
of locations in either a short period of time or in such a way that his break-ins remain
undetected.

To explain the level of protection offered by proactive cryptosystems, we consider two
models of adversarial behavior, both of which extend the capabilities of the threshold adver-
sary, the mobile and the creeping adversarial models.The threshold adversary we consider
in Chapters 4-6 can corrupt no more than t servers throughout the system operation. Both
the mobile and the creeping adversaries model strictly stronger attacks against a group of
servers. Formally, in the mobile model time is divided into time-periods of any duration, e.g.
an hour, a day, or a week. The adversary can then choose a different subset of t corrupted
servers in every time period. In the creeping model, the adversary can corrupt all players
except of two, but we assume that each adversarial corruption is detected by the remaining
uncorrupted players, and that the time between corruptions is long enough to allow these
players to complete certain proactive "self-healing" protocols.1 In the creeping adversarial
model we also assume that the human operators can add a new participating server, for
example because the adversary has been purged from a corrupted server, or simply because
a corrupted server has been replaced with a new server. The adversary should then be able
to corrupt such server as well, and the threshold scheme must remain secure as long as there
are any two non-corrupted servers in operation. We assume that when the human operators
add a new server, they also establish authenticated communication channels between this
new server and the rest. Note that we assume a similar establishment of authenticated

'As stated above, the creeping model is not strictly stronger than a threshold model, because in the latter
we make no conditions on the detectability of corruptions or the length of a delay between one corruption
and the next. We can say formally that in a creeping model the adversary makes either t corruptions with
no conditions attached, or he makes more corruptions but they have to obey the above conditions.

197

1 0 - .Mm I 1 .1 % I - - % , I- 11 FIR. RPRINIFNI in q 'I

ill

198 APPENDIX B. PROACTIVE SECURITY

channels during the initialization of a threshold scheme.

We call schemes that are secure in either of these two adversarial models "proactive"2

Such schemes provide better security especially for long-lived systems, where the adversary

might have enough time to eventually corrupt almost all participating players. However, as

long as these attacks are detectable and/or do not happen all at once - which is modeled,

albeit differently, by both the mobile and the creeping adversarial model - the currently

uncorrupted players can "proactively" perform various self-healing protocols that neutralize

the adversary's potential advantage gained from corruptions staged so far. In fact, the

proactive defenses used in the mobile and the creeping models should be implemented and

used together, so that the resulting scheme is secure against combinations of mobile and

creeping adversarial behaviors.

The mobile adversary model was introduced in the work of [OY91] (see also [CH94]).

Subsequently, [HJKY95] showed how to share a secret in this model, and [HJJ+97] showed

how to perform in this model threshold operations in the discrete-log based setting. We

sketch these protocols in Section B.1 below. The main technique which upgrades a threshold

cryptosystem and makes it resistant to a mobile attacker is a periodical execution of a

protocol that re-randomizes the secret-sharing of the secret key maintained by the threshold

cryptosystem, and erases the shares associated with the previous secret-sharing.

The creeping model has not been, to our knowledge, formally addressed before, but the

protective measure that we employ to fight such adversary is a threshold-decrease protocol

which was independently considered in [DJ99] and [MSNW99]. Such protocol should be

executed by the uncorrupted players whenever they detect that some other player has been

corrupted. Similarly, when a new server is added to the distributed cryptosystem, once the

proper means of authentication are established between this new server and the remaining

ones, the players should run a protocol that increases the threshold of the underlying secret-

sharing and gives this new server its valid share. We sketch both protocols in Section B.2

below.

We stress that a distributed cryptosystem should have the capability to use all the above

proactive self-healing protocols, to achieve security in the presence of attacks that combine

the adversarial patterns modeled formally by the mobile and the creeping adversaries.

We remark that the essential part of all proactive protocols is that the participating

servers erase all their local secret data except of the new shares of the secret key. To

neutralize the knowledge the adversary gains at time T by corrupting a group of servers

BadT c {P1 , ..., P}, in a subsequent execution of any proactive self-healing protocol, each

uncorrupted server must erase the local state it had at time T. Otherwise, assuming that

jBadTj = t, the adversary who corrupts such server afterwards will learn at least as much as

he would by corrupting more than t servers in a regular threshold scheme, and the scheme

would be broken. We can therefore offer resistance against mobile and creeping adversaries

only in the erasure-enabled model of computation.

2As we mentioned in the introduction, when proactive systems were introduced in [OY91, CH94,

HJKY95], this term was used to designate resistance solely to the mobile adversary, and this is also how we

use this term in the research review in Section 1.4.

~.I-.

B.1. MEASURES AGAINST THE MOBILE ADVERSARY

B.1 Measures against the Mobile Adversary

To upgrade resistance from threshold to mobile adversary, the time is divided into time
periods of an arbitrary length, and the participating servers invoke a secret-sharing re-
randomization protocol Update at the beginning of every such time period. This protocol
guarantees security against a mobile adversary given that all corruptions are passive, i.e.
the adversary only looks at the memory of a corrupted player, but does not change its
algorithm. To extend the resistance also to the malicious faults, the players must also run a
protocol that detects a loss or a corruption of local shares, and a reconstruction protocol that
reestablishes their proper shares. Each player can detect that its share has been corrupted,
by verifying it against the public information. (Recall that in the Pedersen secret-sharing,
each local share cti, &i can be verified against the public verification information Fa(i). See
Figure 4-7, page 67.) Share recovery can be performed with protocol Recon of Figure 4-22,
page 119.

The Update protocol itself consists of joint sharing of a random refresh polynomial,
i.e. the "zero-sharing" protocol ZVSS (see Section 4.3.2). If the secret key a of a threshold

cryptosystem is kept with data structure RVSS-data[a], an execution of ZVSS creates a
data structure ZVSS-data[b], and each server can then compute its part of the new data-
structure RVSS-data'[a] which shares the same key a with a new random secret-sharing
polynomial. (This update is described in Section 4.3.2.) As we argued in Section 4.3.2 and
5.1.1, such update protocol ZVSS is robust and secret in both the static and the adaptive
adversarial models. Indeed, if a threshold signature scheme is upgraded by running such
Update protocol at the beginning of every time period, then the simulator of ZVSS can be
built into the simulation argument that proves the unforgeability of this threshold scheme
(as in Theorem 3, page 106), to prove that the resulting scheme remains unforgeable in the
mobile adversary model. Similarly, the knowledge extractor of ZVSS can be built into the
extraction argument that proves the robustness of a threshold scheme, to show that the
scheme remains robust in the presence of a mobile adversary.3

Note that from the robustness properties of ZVSS (Lemma 9) it follows that under the
discrete logarithm assumption, the outputs of protocol Refresh on input RVSS-data[a] form
a correct data-structure RVSS-data'[a] (i.e. data which satisfies the correctness properties
of Figure 4-7) except for probability negligible in the security parameter.

B.2 Measures against the Creeping Adversary

To defend the system against a creeping adversary, the uncorrupted players can proactively
trigger protocols Reduce and Increase which re-randomize and change the threshold of the
underlying secret-sharing. Both protocols can be thought of as variants of the Update
protocol discussed above. The Reduce protocol should be employed by the uncorrupted
servers when they detect that some other server is corrupted. By re-randomizing the secret-
sharing and reducing the degree of the secret-sharing polynomial, the remaining players
maintain an optimal resilience to the adversary. Similarly, when the new server is added
to the system, instead of just giving it a new valid share, the fault-tolerance is maximized

3 For an elaboration of this argument we refer the reader to [HJJ+97].

am, . . --.

199

200

III

APPENDIX B. PROACTIVE SECURITY

Protocol to Refresh a Secret-Sharing RVSS-data[a]

Inputs: secret-sharing data-structure RVSS-data[a]

Output: secret-sharing data-structure RVSS-data'[a]

1. Players perform ZVSS on inputs an instance (p, q, g, h) in RVSS-data[a] and obtain

an ensemble of outputs ZVSS-data[b]

2. Each player Pi computes its new shares of a by adding secret shares in

RVSS-data[a] to the corresponding secret shares in ZVSS-data[b], i.e.:

* P computes a' = ai + 0, & = &j + Ai (but a = a and a'z = &i). Further-

more, it computes a> = aji + i4 and = &ji + for each Pj E Quala.
(For each P in Quala but not in Qualb, we take the default constant poly-

nomials fb,3 (z) = fg, (z) = 0.)

* Note that this defines f&(z) = fa(z) + fb(z) and fj(z) = fa(z) + fs(z),
and for each Pi E Quala it defines fa, (z) = fa,(z) + fb, (z) and f,(z) =
fa(z) + ft(z).

* The new verification functions are F(z) Fa(z) * Fb(z), and F,(z) =

Fa, (z) * Fb, (z) for each Pi C Quala (where the default for Pi in Quala but
not in Qualb is Fu, (z) 1). The set Qual' is set as Qual0 .

Figure B-1: Refresh: Distributed Refreshment of a Secret-Sharing

if the degree of the secret-sharing polynomial is increased. However, both the Reduce and

the Increase protocols should be executed only when the new total number of participating

players is odd, so that the resilience threshold t is a maximal integer such that 2t + 1 is less

or equal to n, the current total number of players.

There are many ways to change the degree of the secret-sharing polynomial (compare

[DJ99, MSNW99]), but it seems that the simplest solution is to modify the Update protocol

discussed in Section B.1 above, by running the following variants of the ZVSS protocol. (We

use the notation of Section 4.3.2 and of Figure 4-6, page 65.)

Assume that in the current secret-sharing data structure RVSS-datat [a] (which shares the

secret key a with a polynomial of degree t), player Pi knows its secret-sharing polynomials

fa(Z) Z=kO kzk and fa, = Ek=o..t 4k (see also Figure 4-7, page 67). Let Qual be
the set of players that participated in creation of RVSS-datat[a], let P E Qual be a newly

corrupted player and let Qual' = Qual \ {P,4. In the Reduce protocol, the players perform

ZVSS modified so that each player picks its secret-sharing polynomials fb1 (z) =Zk-..t dkzk

and fA k=-1.td zk such that dt = -ct and di= -&t. This can be publicly checked by

verifying that B t) = (A t)-1, where Alt) = gct h t and Bt) = gdthdt are a part of the

verification information F,, and F6 , in RVSS-datat[a] and ZVSS-datat[b]. The players must

then also locally update their shares (and the public verification information) by subtracting

out their shares of the polynomials fa, fan which had been secret-shared by the corrupted

player P. The players in Qual' will then hold their appropriate parts of RVSS-data't-i[a],

-m-

B.2. MEASURES AGAINST THE CREEPING ADVERSARY 201

a random secret-sharing of the same secret a, but with a polynomial of degree t - 1. This
protocol is as robust as ZVSS, and it can be simulated in the same manner.

The Increase protocol is even simpler. The players run a modified ZVSS in which they
share random secret-sharing polynomials of degree t + 1 (with their free coefficient equal to
zero). The resulting secret-sharing polynomial is a random t + 1 polynomial that shares the
original secret. Again, the robustness of secrecy arguments are the same as for the ZVSS
protocol.

III

202 APPENDIX B. PROACTIVE SECURITY

Appendix C

Adaptive Erasure-Free Threshold
RSA

The adaptive threshold techniques of Chapter 5 and the adaptive erasure-free improvements
of Chapter 6 can be applied to threshold schemes in other settings than the discrete-log
setting of schemes like Cramer-Shoup or DSS. In particular, the single-inconsistent-player
simulation technique can be applied to modify the statically secure Threshold RSA solution
of [Rab98] to yield adaptive threshold RSA protocols. This application of adaptively-secure
threshold techniques appeared in [CGJ+99] and was improved in [JLOO]. The resulting
protocol is also insecure-channels-enabled, and therefore, using the simultaneously secure
encryption of Chapter 6, it can be efficiently executed in the adaptive erasure-free model.
This application of the simultaneously secure encryption appeared in [JLOO]. We sketch
this protocol below.

In the RSA signature scheme and cryptosystem [RSA78], the public key is a pair (N, e),
where N = pq, p and q are two large random primes, e is a number s.t. gcd(e, O(N)) = 1,
and O(N) = (p - 1)(q - 1). The secret key is a number d s.t. de = 1 mod O(N). The RSA
signature on message m in [1, ..., N - 1] is a value S, = md mod N. 1

A threshold signature scheme consists of two protocols: Threshold Key Generation and
Threshold Signature Generation. In [Rab98] solution, the first protocol requires a trusted
dealer (see Section 2.4 and the discussion of threshold RSA schemes in Section 1.4). The
[Rab98] solution requires a public element go of high order in Z*, a constant L = n!, and an

element g = g4 2 mod N. In the threshold key generation protocol, the dealer picks a public
key (N, e) and a secret key d, and shares d additively among all the participating players by
giving to each Pi its share di, a random number in [-nN2 ..rnN 2], and broadcasts a public
value dpublic =d- En1 di. For robustness, each di is also polynomially secret-shared among
all the players with Feldman Verifiable Secret Sharing (see Figure 4-1, page 52) modified
to share an integer in the [-nN2 .. nN 2] range (instead of an element of a prime group Zq),
with the verification values gCi computed modulo N. (We use the notation of Figure 4-1,
page 52. See also the full description of the "Feldman-Z,-VSS" protocol in [Rab98].)

In this subsection the operations are no longer implicitly carried out modulo p and q. The operations
are in the integers unless otherwise indicated.

203

III

204 APPENDIX C. ADAPTIVE ERASURE-FREE THRESHOLD RSA

Note that this threshold RSA protocol employs an "additive sharing" of the secret key
d, and thus a threshold RSA signature protocol of [Rab98] is very similar to the "additive
exponentiation" protocol Ad-Exp of Section 5.2.1. To sign message m, each player broad-
casts oa = mdi mod N, and the signature is computed as a = apublic flp rO mod N, where

tpublic = mdpublic mod N. To achieve robustness in the signature generation, the dealer pub-
lishes in the key generation stage a token partial signature -i = 9dg mod N for each player
Pi on message g. In the signature protocol each player Pi proves that logm cr' = logg wi
with a ZK proof of [FGY96, GJKR96a].

To make this protocol adaptively secure, we first replace Feldman VSS with a perfectly-
secure Pedersen VSS. The extension of Pedersen VSS to sharing over integers is the same

as the [Rab98] extension of Feldman VSS. Every secret variable a has its associated shadow
variable & chosen from the same probability distribution, we require another publicly known
element h - hL2 mod n where ho is an element of high order, and the verification informa-
tion is computed as gaha mod N instead of g mod N.

Replacing Feldman's VSS with Pedersen's VSS implies that the publicly available veri-

fication information is of a form Di = gdihdi mod N instead of wi = gdi mod N. Therefore,
the ZK proof used by the players to prove that their partial signatures ai = mdi are correct
must be modified. The new proof is the proof of knowledge of (equal) representation of
Di in bases (g, h) and of oj in bases (m, 1), where all the exponentiation operations are
carried out modulo N. The ZKPK system in Figure F-2, page 219, for proving equal-
ity of representation, can be adapted to the RSA setting, similarly to the way the ZK
proof of equality of discrete logarithms of [CA89, Cha90 was adapted to the RSA setting
by [GJKR96a]. The argument that the resulting protocol is insecure-channels-enabled is
similar to the corresponding argument for the Ad-Exp protocol (see Lemma 32, page 166).2

2 We note that the adaptively-secure threshold RSA proposed in [CGJ+99] was more cumbersome than
the one outlined above. In particular, it required a refreshment of the sharing of the secret key after
each execution of a threshold signature protocol. The adaptive erasure-free techniques of [JL00] eliminated
the need of such refreshment by improving the single-inconsistent-player simulation technique. For further
explanation see footnote 7, page 137.

Appendix D

Threshold Cryptosystems vs.
General MPC Protocols

As we discussed in Section 1.1, threshold schemes are implied by general secure multi-party
computation (MPC) results. In this section we explain how a (t, n)-threshold scheme can be
implemented with a general (t, n)-threshold MPC protocol. We also lower-bound the costs
of the resulting protocols for threshold DSS, Cramer-Shoup, and RSA cryptosystems.

A (t, n)-threshold secure multi-party computation protocol is a distributed protocol that
allows n players P1 , ...Pn to securely evaluate any randomized function. Such function can
be encoded as a Boolean or arithmetic circuit, which takes private inputs xi of each player
P, public input X, and a random string r, and outputs (yi, ... ,y, n; Y) = f(Xi, ..., xn; X; r),
where yj is a private output of player Pi and Y is a public output. By secure computation
we mean that as long as no more than t of the participating players are corrupted, the
protocol maintains the following two properties: (1. Secrecy): The dishonest parties do
not learn anything about the private inputs of the honest parties apart of what is revealed
to them by the output of the circuit; and (2. Robustness): The dishonest parties cannot
disable the honest ones from evaluating circuit f on their inputs xi, the public input X,
and a true random bit string r. The most that the corrupt players can do is to arbitrarily
choose their own inputs xi. Such secure computation protocols were introduced in the work
of [Yao82, GMW87].

It is easy to see that any threshold signature scheme, as well as any threshold cryp-
tosystem, can be implemented using secure computation protocols. First we must recall
the notion of secret sharing. Let S be a function mapping k-bit strings to an ensemble
of private and public data of n players. We say that for every x and every s C S(x),
s = (Xi, ... , ,; X) is a secret-sharing of x if the following two properties are met: (1)
(Secrecy) Any t dishonest players learn nothing from their shares xi and the public info X
about x; and (2) (Robustness) x is uniquely reconstructible from s. More formally, there
exists a polynomial-size circuit f such that for any x and any s = (vi, ..., X; X) in S(x),
if no more than t dishonest players substitute their inputs xi with arbitrarily chosen values
x(, then f evaluated on public input X and private inputs xi for each honest player P and
X' for each dishonest P, outputs x. Both these properties can be formalized relative to

205

III

206 APPENDIX D. GENERAL MPC PROTOCOLS

either an all-powerful or a computationally bounded adversary.' For example, in Shamir's

secret sharing scheme [Sha79] which we use in this thesis, some k-bit prime q is fixed, and

then ShL mi(x) is a set of strings (f(1), ... , f (n); 0) where f (z) is any t-degree polynomial

modulo some q s.t. f(0) = x. Secrecy is satisfied if secrets x are uniformly distributed

numbers modulo q. If t < n/3 then robustness can be guaranteed with any error-correcting

codes, for example using Berlekamp-Welch decoder [BW]2

To see how a threshold scheme can be implemented with general secure computation pro-

tocols and any secret-sharing scheme, take for example any signature scheme Gen, Sig, Ver,

where Gen is a key-generation algorithm, Sig is a signing algorithm, and Ver is a verifica-

tion algorithm. Since these must be probabilistic polynomial-time algorithms, each can be

computed by a poly-size randomized circuit of the kind we discussed above. The thresh-

old version of this signature scheme would be composed of n-party protocols TGen and

TSig and the same verification algorithm Ver. Protocol TGen, which allows the n players

to generate a key for a threshold scheme, is a secure computation protocol for function

fi(0, ...,0; 0; ri) = (i,, ,nx; (X, y)) where (x,y) is a random private/public key pair

generated by Gen on randomness r1, and (Xi 1, ..., Xn; X) is any element in S(x). Protocol

TSig, which allows n players to sign any message m, is a secure computation protocol for

function f 2 (XI, ...xn; (X, y, m); r2) = (0, ..., 0; u), where u is a signature on m generated

by Sig on randomness r2, on public key y, and on a private key x which is secret-shared

via (xi, ..., x,; X). The robustness and secrecy properties of secure computation guarantee

that the proper public keys and proper signatures are always output, and that the adversary

does not learn to forge signatures because he does not learn anything from the multi-party

protocol apart of the final signatures &) on messages m& submitted for signing, of the

public key y, and of the public information X and the I shares xi of x, from which he learns

nothing about x by the secrecy property of the secret-sharing scheme.

General MPC protocols for n players appeared, among other works, in [GMW87, BGW88

CCD88, RB89, BMR90, MR91, Bea9l, BH92, BOCG91, CFGN96, CDD+99, CanOO]. These

solutions were increasingly more efficient, and provably secure in increasingly stronger com-

putational, communicational and adversarial models. All the above works are based on

protocols that compute a single arithmetic or Boolean gate in a threshold setting. Such pro-

tocols can be composed to form a protocol that securely computes any arithmetic or binary

circuit. However, the generality of these results implies certain inefficiencies when such pro-

'Note that the robustness property implies that as long as t is below certain threshold then there exists

a secure computation protocol that reconstructs x on public input X and the private inputs x of honest

parties, given that (xi, ..., X"; X) e S(x). For example, using protocols of [GMW87], such protocols exist for

t < n/2 in a similar computational, communicational, and adversarial model as we describe in Section 2.1.

We skim the exact model of [GMW87] here, so that to concentrate on the main idea of secure computation

protocols.
2In Section 4.2.3 we further discuss Shamir's secret-sharing. We also introduce there Feldman's verifiable

secret sharing [VSS]. To clarify the notation we use here, we can describe Feldman's VSS as follows. Let p and

q be two primes s.t. q divides p-1 and jq =t. Let g be a generator of a q-order subgroup Gq = {g0
, ... 9 -} of

the multiplicative group Z*. Elements s in Sg) (x) look like s = (xi,..., x,; (p, q, g, gao,...,gat)), where

each xi = f(i) mod q for some t-degree polynomial f(z) = E0 az 3 mod q such that f(0) = ao = x mod q,

and all the exponentiations go, ... , g" are modulo p. Robustness is guaranteed as long as t < n/2, and

secrecy is preserved in the sense that t dishonest players learn nothing about x beyond what is revealed by
gao = g' mod p.

ii

207

tocols are used to implement threshold cryptosystems for schemes like DSS, Cramer-Shoup,
or RSA, which all have complex circuit representations.

In particular, all the above results except of [BMR90] yield protocols with the number of
communication rounds lower-bounded by the depth of an arithmetic circuit that implements
the computed function, while the [BMR90] protocol requires every player to perform a
cryptographic operation per each gate of a binary circuit that implements the computed
function. Public-key cryptosystems like DSS, RSA, an Cramer-Shoup, all involve a modular
exponentiation operation, which to the best of our knowledge requires an arithmetic circuit
of Q(k) depth, or a binary circuit of Q(k 2) depth, where k is the security parameter. Thus
using the above general MPC protocols to compute such operations in a threshold setting
requires either Q(k) communication rounds or Q(k 2) cryptographic operations per player.
Such costs are prohibitive for the applications of threshold cryptosystems that we consider.
In contrast, the threshold cryptosystems we present in Chapters 4-6 all have small constant
number of rounds, and each player performs at most cn(k + n min(n log n, k)) modular
multiplications, where n is the number of participating players, and c is a small constant.

.=pow w I I, milm. ps"m I I millpip".1 or i; i 4

APPENDIX D. GENERAL MPC PROTOCOLS208

Appendix E

Insecure Variants of the
Joint-Feldman Protocol

In Section 4.2.3 we described the basic Joint-Feldman protocol and explained that it does
not make a secure DKG protocol. In fact, many variants of this protocol have appeared in
literature with the claim that they form a secure DKG protocol. Here we describe several
such variants, which extended the basic Joint-Feldman protocol by: Signatures on shares;
Commitments to y; Committing encryption on the broadcast channel; Committing encryp-
tion with reconstruction; "Stop, kill and rewind" methodology. We show that all of them
fail to achieve the correctness property (C3) and the secrecy (or simulatability) requirement
of the definition of a secure DKG scheme (see Section 4.2.2).

Signatures in Share Distribution. In the original protocol proposed in [Ped9lb] each
player (acting as dealer) signs the shares he distributes in Step a. This was supposed to
aid the honest parties in disqualifying dishonest dealers, because a party which receives an
incorrect share (i.e. not satisfying the verification equation) could prove that the dealer is
dishonest by broadcasting this share with the dealer's signature. Indeed, the original proto-
col from [Ped9lb] uses this simplified procedure in Step c for disqualifying dishonest dealers:
a player is disqualified if one valid complaint (i.e. incorrect share with valid signature) is
broadcast against him.

We note first of all that with this modification even a single execution of Feldman's
protocol fails to be a VSS. Indeed if a dealer gives neither a correct share nor a signature
to some player, the player cannot prove the dealer wrong by the above method.

Thus the joint execution of n such protocols may fail to produce a correct sharing at
all. Also notice that the basic idea of the attack in Section 4.2.3 still works (P1 can give
to P2 two signed shares, a correct one and an incorrect one and all other players consistent
shares with valid signatures, and then using only P2 decide if he wants to be disqualified or
not).

Initial Commitment Stage. Another difference between the original protocol presented
in [Ped9lb] and Joint-Feldman of Figure 4-2 is the use of an initial commitment stage
in [Ped9lb], so that the modified protocol looks as follows:

1. Each Pi chooses xi C Zq uniformly at random, computes yi = gi mod p, chooses a
random string ri, and broadcasts a commitment Ci = C(yi, ri) to all members.

209

PROM . - -- - , 1 11mm.1 MMM"!l I . . .miq INNW""

APPENDIX E. OTHER Joint-Feldman VARIANTS

2. Each Pi opens the commitment Ci by broadcasting proper y and ri. A player who

fails to do so is disqualified.

3. The players now follow the Joint-Feldman protocol of Figure 4-2 among the non-

disqualified players, using the above picked xi as inputs to be shared.

This initial commitment stage is supposed to force the players to choose their random

secrets xi independently from one another in order to ensure the uniform distribution of

the final sum x, but it fails to do that. Indeed the attack in Section 4.2.3 is not based

on how dishonest players choose their contribution, but rather on their ability to pull such

contribution out of the lot after seeing the honest players' contributions. Thus the dishonest

players can follow the protocol, including the extra commitment stages, and still nothing

stops them from carrying out the attack described in Section 4.2.3. If Pi decides to do so,

he can get his value disqualified and the remaining players will not add y to the public key

y even if it matches the initial commitment C.

Committing Encryption on a Broadcast Channel. The attack described in Section

4.2.3 seems to rely on the assumption that each pair of players is connected by a private

channel which allows P1 and P2 to "lie" to the other players about the share P1 sent to

P2 . This is possible in several implementations of private channels, for example physically
untappable ones (e.g. lead pipes) or private channels built out of one-time pad encryption.

It would seem that using some form of encryption to implement private channels may

help in thwarting the attack, since a complaining player may be required to "open" the

encrypted message he received to prove that the incorrect share really came from the dealer.

This strategy was followed in a modification of Joint-Feldman used for proactive secret

sharing (HJKY95, HJJ+97]). However we prove now that this is not the case. The attack

can still be carried out even if players exchange messages using encryption.

Let's assume that the players communicate simply via the broadcast channels. Private

communication is achieved via a public key "committing" encryption scheme, i.e. an en-

cryption scheme that not only ensures the confidentiality of a message but also commits the

sender to the message being sent1 . In other words, to send a message M secretly to recipient

R, the sender picks a random vector r and broadcasts a ciphertext E = ENC(m). We

assume that the recipient using the secret key of ENCR can recover both M and r, and so

he is able to prove that E = ENCE(m) to all other players by revealing m, r.2

The Joint-Feldman variant using such committing encryption introduces the following

modifications to the protocol of Figure 4-2: Players send the shares aij in Step a by broad-

casting their committing encryptions Eij = ENCP (aij). Then in Step b a valid complaint

has to consist of a pair (aj, rij) such that sj is an incorrect share and Ej = ENCi (aij).
In Step c we disqualify a player if there is a single valid complaint against him.

Unfortunately, the protocol modified in such a way is still insecure. P1 sends to P 2 a bad

share al 2 via the committing encryption in Step b. At the same time however it chooses

'Contrast this with the deniable encryption [CDNO99] where the sender or the receiver may lie about

the content of encrypted messages.
2 Not all encryption schemes allow the receiver to recover both the message m and the random vector r.

However what we are arguing here is that even if the committing encryption provided the random vector

recovery, this Joint-Feldman variant still cannot be made secure.

'19

210

211

the sharing polynomial so that the correct share a1 2 is some fixed value on which P1 and
P2 agreed earlier (or in other words think of P1 and P2 as the same entity, the adversary).
If the adversary wants Pi's contribution to be "in", P2 will not complain in Step c, but will
use a 12 in all further computation. If the adversary wants P1 disqualified, P2 broadcasts
(a12 , ri).
Committing Encryption with Reconstruction. In the Joint-Feldman with committing
encryption variant described above, we are following the policy of disqualifying a player Pi
as soon as a single valid complaint is filed. Yet, it seems that as the values Aik, 0 < k < t
are broadcast by player Pi in Step a of Joint-Feldman and there is a fixed polynomial and
a fixed secret, if we have enough shares to reconstruct it we would not need to disqualify
the dealer based on a single complaint. We could follow this alternative policy instead: If
a valid complaint is filed against Pi, all other players open the encrypted shares Pi sent
them: If more than t +1 of them match the verification equation then publicly reconstruct
xi, otherwise disqualify P.

But even for this policy we show a strategy for the adversary to decide if (say) P1 is
disqualified or not, at a stage where he can influence the distributions. Assume n = 2t + 1,
P1 sends correct encrypted shares to all the players (honest and dishonest) except for one
honest player. This player will complain and everybody is required to open their encrypted
shares. The honest players have only t matching shares, thus an additional one is required
in order to incorporate PI's value into the computation. Thus, the decision of whether the
secret will be considered is again left in the hands of the adversary.

"Stop, Kill and Rewind" Procedure. Notice that in some of the above attacks
against Joint-Feldman and its variants, the adversarial strategy involves a behavior on the
part of some of the players which can be publicly identified as faulty. We could modify
the Joint-Feldman protocol so that whenever some party is clearly faulty, the protocol stops,
that party is excluded from the set of players, and the protocol is started from scratch in
the smaller group of players. Note that this can happen at most t times.

However, the adversary can still skew the distribution of the outputs. He just follows
the same strategy as in Section 4.2.3. The event that the protocol is repeated is conditioned
on the fact that the adversary made a dishonest player visibly faulty. Thus the distribution
of the final output is not necessarily uniform, even if the second repetition has a uniformly
distributed output.

For the example in Section 4.2.3, the final output y ends with 0 if either

* a ended with 0 and P1 was not disqualified (prob. 1/2).

* P1 was disqualified (i.e. a ended with 1, which happens with prob. 1/2) and the
output of the second run ends with 0 (prob. 1/2).

Thus the probability that in the presence of such an adversary the protocol outputs a value
y which ends with 0 remains 1/2 + 1/2 * 1/2 = 3/4.

The "stop, kill and rewind" procedure was employed in other variants of Joint-Feldman.
For example, it was used in [HJKY95, HJJ+97] in the committing encryption variant. In
each case a similar argument shows that the adversary can force the distribution of the
resulting y not to be uniform.

APPENDIX E. OTHER Joint-Feldman VARIANTS212

ml ----

Appendix F

3-Round Honest-verifier
Public-coin Zero-knowledge Proofs
of Knowledge

For completeness, we provide three known Three-round Honest-verifier Public-coin Zero-
knowledge Proof of knowledge systems (THPZP's) used in our protocols. Each THPZP
proof system is a two-party protocol which allows one party to prove to the other a knowl-
edge of some special element. In this section we first define the THPZP proof system
formally, and then present three THPZP systems used in the threshold protocols discussed
in this thesis (see Section 4.4.1), namely the [Sch9l] proof system for proving knowledge of
discrete logarithm, a proof system for proving knowledge of representations and of equality
of representations1 (see the work of Brands [Bra99] or Camenisch [Cam98] and the refer-
ences therein), and a [CD98] proof system for proving knowledge of committed values which
are in a multiplicative relation.

Consider a polynomial-time computable relation R, i.e. a set of pairs (y, w), where the
length of w is bounded by a fixed polynomial in the length of y, for every (y, W) C 7.
Furthermore, there exists a polynomial-time algorithm which given a pair (y, w) decides
if it belongs to R. If (y, w) E R then we call the element y a "public value", and w a
"witness" of y in R. A proof of knowledge for relation R is a protocol between two parties,
a prover and a verifier, in which on the common input some public value y, the verifier
decides if the prover knows the appropriate witness w for the value y in R. If the prover
has a noticeable probability of convincing the verifier to accept the proof then the witness
w can be efficiently extracted from an interaction with such prover. (We provide a formal
definition of a proof of knowledge in Definitions 27-28 below.) For example, in a proof of
knowledge of discrete-logarithm, the relation R consists of pairs ((p, g, g' mod p), x) where
p is a prime, g is a generator of a multiplicative group Z*, and x is an element in Z,.
Proofs of knowledge are related to proofs of language membership. If R is a polynomial-
time computable relation then language LIZ = {y |Iw s.t. (y, w) E R} is in NP. An element
W s.t. (y, w) E R is a witness of the membership of y in LIZ. In fact, every (zero-knowledge)

213

'Representation is defined in Section 3.2.

- I-. 111. IN ORRIMPPIP'"9

APPENDIX F. 3-ROUND HONEST-VERIFIER PUBLIC-COIN ZKPK's

proof of knowledge for relation R is also a (zero-knowledge) proof of membership in LR.

A three-round honest-verifier public-coin zero-knowledge proof of knowledge system

(THPZP)2 for a polynomial-time computable relation R is specified by a triple of algo-

rithms P(), p(2), V and a function D : {0, 1}* -> {0, 1}*, which given a public value y E L 2

describes a distribution according to which the public coin is chosen by an honest verifier.

It must be possible to sample the distribution D(y) in time polynomial in jy. The prover,

on public input a public value y, and on his private input a witness w s.t. (y, w) c R, picks

some random bits r, and sends to the verifier a "commitment" message M = P')(y, w,, r).
The verifier then sends to the prover a random string R, which we call a "challenge", chosen

uniformly in distribution D(y). The prover then sends back to the verifier its second message

n = P(2) (y, w, r, M, R), called "response". Finally, the verifier applies a test V(y, M, R, m)

to determine whether to accept the proof.

All the THPZP proof systems we consider meet also the following further restriction:

Definition 26 (Discrete-Log Based THPZP) We call a THPZP proof system (P('),
p(2), V,DE)) for polynomial-time computable relation R discrete-log based, if every y C L

includes a description of a pair of primes p, q s.t. q divides p - 1 and the length of p is

bounded by a fixed polynomial in the length of \q|, and if the probability distribution D(y)
from which the public coin is chosen is a uniform distribution over Z., where q is included

in y.

We define the proof of knowledge proof system (Definitions 27-28) and the honest-verifier

public-coin zero-knowledge property of a proof system (Definition 30). A THPZP is a proof

system which satisfies both definitions. We then proceed to give three examples of THPZP's.

Intuitively, Definition 27 below, taken from [BG92, Gol95], says that first of all the

proof system must be correct, i.e. the verifier V always accepts a proof if the prover follows

the protocol and its private input is a correct witness w for the public value y. Secondly,

if any algorithm P*, called the prover, can with some probability p convince the verifier

V to accept a proof on common input y, and if this probability p is higher than certain

"knowledge error" value IC, then we require that the machine P* "knows" the witness w

s.t. (y, w) E R, and we formalize the notion of a Turing Machine knowing some value, by

requiring that there exists an efficient algorithm S, called "extractor", which can compute

w, in expected time polynomially related to 1/(p - K), if E is given an oracle access to

P*. The role of the knowledge error IC is to account for the fact that in some proof of

knowledge systems the prover P* might guess the appropriate answers in an interaction

with the verifier V even without "knowing" the witness w. In particular, if P's probability

of passing the proof is smaller or equal to C then there might be no extractor S that runs in

expected time which is polynomially related to 1/p. (See Lemma 37 for a simple example

of a proof of knowledge system with the non-zero knowledge error.) Since P* is a TM

machine, apart of the public input (i, y) it has some private input x and random input r.

By an oracle access to P* we mean an oracle access to P for some fixed values x and r.

Note also that the definition of a proof of knowledge does not restrict the cheating prover

P* algorithm to execute in a (probabilistic) polynomial-time.

2 See [BG92] for a history of research on proof of knowledge systems.

214

215

Definition 27 (Proof of Knowledge proof system) A pair of interactive PPT algo-
rithms (P,V) specifies a proof of knowledge proof system (with error k3(.)) for a polynomial-

time computable relation K if:

1. For every (y, w) C K, the verifier V always accepts in an interaction (P,V) on common

input y and on P's private input the witness w.

2. There exists a probabilistic algorithm S, called "extractor", and a polynomial q(z),
such that for every y s.t. (y,w) R for some w, for every interactive algorithm

P* and every private input x E {0, 1}* and random input r E {0, 1}* of P* if the

probability that verifier V accepts in an interaction (P*,V) on common input y and

P *s inputs (x, r) is equal to p(y, x, r) and p(y, x, r) > K(|yI), where the probability

is taken over the random coins of V, then S on input y, having an oracle access to
P* ,~i.e. to P * running on fixed inputs (y, x, r), outputs a witness w s.t. (y, w) E R,
with the expected number of steps at most

q(y)
p(y, x, r) - KC(y)

The above definition defines the complexity of the extractor in terms of expected number

of steps. However, all the arguments for robustness of the threshold protocols we present

in this thesis are in terms of probabilistic polynomial-time (PPT) algorithms. Therefore,

it is technically easier for us if the complexity of the extractor in the proof of knowledge

systems presented in this appendix is specified in terms of algorithms which have strictly

upper bounded running time but are allowed to err with a negligible probability. Namely,

we find the following definition useful:3

Definition 28 (Proof of Knowledge proof system (stronger formulation)) A pair

of interactive PPT algorithms (P,V) specifies a (strong) proof of knowledge proof system

(with error K()) for a polynomial-time computable relation R if it satisfies the following

variation of the Definition 27 above: The extractor E, on input y, having an oracle access

to P , outputs a correct witness w s.t. (y,w) E R with probability at least 1 - 2-M, and

its running time is upper bounded by

q(y)
p(y, x, r) - PC(y)

Clearly, a proof system which is a proof of knowledge in the sense of Definition 28 is

also a proof of knowledge in the sense of Definition 27. Throughout this thesis we adopt

the stronger formulation of a proof of knowledge, i.e. Definition 28.

The THPZP proof of knowledge systems, i.e. proofs of knowledge that have additional

properties of being three-round honest-verifier public-coin zero-knowledge, play an impor-

tant role in the threshold protocols we present in this thesis. Namely, in threshold protocols

3 The proof-of-knowledge property of THPZP proof systems is used to argue the proof-of-knowledge
property of the simultaneous proof protocol (Lemma 20, page 114).

III

216 APPENDIX F. 3-ROUND HONEST-VERIFIER PUBLIC-COIN ZKPK's

conducted by a group of n servers, each server might need to prove some statement to each

other server in the group. In Section 4.4.1 we argue that such n2 instances of the THPZP

proof system can be securely executed in parallel, using a single public coin picked by all

the servers via a distributed coin-flip protocol, i.e. the joint secret-sharing and reconstruc-

tion protocols RVSS and RVSS-REC of Section 4.2.4. We call such parallel execution of

the THPZP proof systems a "simultaneous proof protocol". However, to prove that the

THPZP proof systems retain their proof-of-knowledge property when executed in parallel

in this fashion, we seem to require the following additional property of the extractor that

exhibits the proof-of-knowledge property of a (single execution) of a THPZP proof system.

Namely, on input a public value y, the extractor can query the prover oracle Px)by

sending to it only true random coins, picked according to distribution D(y) specified by
the THPZP proof system. In Definition 29 below we define such extraction as oblivious

extraction. We note that all the THPZP proof systems we present in this appendix have

oblivious extractors.

Definition 29 (Oblivious Extraction) Let a triple of algorithms (PO),V, P(2)) and a

function Df{0, 1}* -> {0, 1}* specify a THPZP proof system for relation 7Z. Let £ be an

extractor algorithm which exhibits the proof-of-knowledge property of this proof system. (See
Definition 28.) We call this extractor oblivious if on input y it interacts with the oracle

P* by repeating the following procedure: The oracle sends its first message M, extractor(y,x,r)

E responds by choosing a random coin R according to distribution D(y), and the oracle

responds with message m. The extractor collects transcripts (y, M, R(',in(0) for each such

interaction, and based on his collection of such transcripts, the extractor either creates

another transcript or outputs a witness w for y in 7Z.

Definition 30 below is a straightforward restriction of the zero-knowledge property to

proof systems in which the verifier is honest and is only allowed to pick random coins and

publish them.

Definition 30 (Honest-Verifier Public-Coin Zero-Knowledge proof system)

A pair of interactive PPT algorithms (P,V) and a function D : 1{0, 1}* -> {0, 1}*, where

D(y) is a probability distribution samplable in time polynomial in |y|, specify a (perfect)

honest-verifier public-coin zero-knowledge proof system for a polynomial-time computable

relation 7Z if:

* The verifier algorithm V on public input y, proceeds as follows. In every round in

which it is the verifier's turn to speak, the verifier picks a fresh coin (i.e. a random

string) according to distribution D(y) and sends it to the prover. When the prover

sends its last message to the verifier, the verifier decides based on the transcript of the

interaction, whether to accept or to reject it.

* There exists an efficient (PPT TM) algorithm SIM, called "simulator", such that for

every (y, w) in 7Z, the following two variables are distributed identically:

- a transcript of an interaction (P,V) on public input y and on P's private input

w, where the probability is taken over the random coins of P and V.

I

217

- a transcript produced by the algorithm SIM on input y alone, where the probability
is taken over the random coins of SIM.

In all the proof systems we consider below, the honest-verifier public-coin zero-knowledge
property is exhibited by a simulator which creates a transcript of a proof on public input
y by first choosing the random coin R uniformly in D(y) and then computing the rest of
the transcript (M*, m*) = SIM(y, R). In Section 4.4.1 we rely on this additional property
of the THPZP proof systems presented in Figures F-1, F-2, and F-3, to argue the security
of parallel execution of such proof systems, called a "simultaneous proof", in which every
player Pi proves in parallel to all other players the knowledge of a witness to its public value
yi, and where the single public coin R used by all these proofs is picked via a distributed
coin-flip protocol RVSS. We formalize this property of a simulation of an honest-verifier
public-coin zero-knowledge proof system as follows:

Definition 31 (Coin-first Simulatable proof system) We call a three-round honest-
verifier public-coin zero-knowledge proof system (P,V) coin-first simulatable if it is three
round and if the simulator SIM that exhibits the honest-verifier public-coin zero-knowledge
property of this proof system (see Definition 30 above) proceeds on input y by first picking a
coin R according to the distribution D(y), and then computing a pair (M*, m*) = S1M(y, R),
and outputting the triple of messages (M*, R, m*) as a simulated transcript of a proof. (Le.
M* represents the prover's message of Round 1, R the public coin chosen by the verifier in
Round 2, and m* the prover's message of Round 3.)

We proceed to present three examples of a THPZP proof system, all three used in thresh-
old protocols discussed in this thesis (see Section 4.4.1). In Figure F-1 we show the [Sch9l]
proof system THPZP-DL for proving knowledge of discrete logarithm. In Figure F-2 we
show a proof system THPZP-Rep for proving knowledge of representations and of equal-
ity of representations (see [Bra99] and [Cam98] for references). Finally, in Figure F-3 we
present the [CD98] proof system THPZP-MULT for proving knowledge of committed values
which are in a multiplicative relation.

Lemma 37 (THPZP-DL is a proof of knowledge of discrete logarithm)
Protocol THPZP-DL of Figure F-1 is a Proof of Knowledge for relation

l = {((p, q,g, y), x) I xC GZq, g e G, Y = g' mod p p, q are primes s.t. q divides p- 1}

with knowledge error 1/q. Furthermore, an extractor that exhibits this property is oblivious.

Proof: Note that the verifier V always accepts an interaction with an honest prover whose
private input is a correct witness x for the public input (p, q, g, y), i.e. an element x =
logg y mod p. Assume that some prover P* on inputs (p, q, g, y, x, r) has probability Pr of
getting V to accept. Let k be the length of the public input, and let T = 1/(Pr - 1). The
extractor E interacts with P* on the common input (p, q, g, y) as follows. It repeats the
following interaction with Pp xfor 2(k + 1)T times. It receives the first message M

from P*, sends back R C Zq chosen at random, and receives a response m from P*. Note that
since P* acts on fixed inputs, it always sends the same commitment value M. If E receives

III

218 APPENDIX F. 3-ROUND HONEST-VERIFIER PUBLIC-COIN ZKPK's

THPZP-DL proof system

Three-round Honest-verifier Public-coin Zero-knowledge Proof of knowledge proof sys-
tem for relation Z = {((p, q,9, y), x) c x Zq7,g 0E GqY = g mod p, where p, q are
primes s.t. q divides p - 1}

Common inputs: discrete-log instance (p, q, g), public value y E Gq

Prover's private input: witness x C 7Z such that y = gX mod p

Round 1: P -V: Pick r at random in Z; send M=g
Round 2: P <- V: Send a random coin R chosen uniformly in Zq
Round 3: P -V: Sendm=r+xR
Acceptance: V : Verify that gm = yRM

Figure F-1: THPZP-DL: proof of knowledge of discrete logarithm

any two accepting transcripts, i.e. values R, m and I'm' s.t. g'n =yRM, g'M YR'M, and
R z R', then it can extract a witness x = logg y = (mi - mn)/(R - RE) for (p, q, g, y) in R.

We consider as successful only those runs of . in which it gets some valid transcript
M, R, m in the first (k+1)T trials, and some other valid transcript in the remaining (k+ 1)T
trials. Note that if V, interacting with Pp , accepts with probability Pr, then for

any R the probability that V accepts a transcripts containing a different random coin R' is
at least (Pr --1) = 1/T. Because the probability Pr that V accepts any transcript can also
be lower-bounded by 1/T, we get that the probability that S fails in any of the two series
of (k + 1)T trials is at most (1 - 1/T)(k+1)T < e-(k+1) < 2-(k+1). Therefore the probability
that E fails in both of them is at most 2 -k, which proves the lemma. E

Lemma 38 Proof system THPZP-DL of Figure F-1 is (perfect) Honest-verifier Public-coin
Zero-knowledge and it is Coin-first Simulatable.

Proof: The simulator SIM on input (p, q, g, y) works as follows. It picks random R Zq

and random m* C Zq, computes M* = gm* /IR, and outputs (M*, R, n*). The distribution
of such transcript is identical to the distribution of a transcript (M = gr, R, m = r + xR)
of (P,V) on common input (p, q, g, y) and P's input x = logg y, because when we consider
m picked by P in Round 3 as a random variable defined as a function of r picked by P in
Round 1 and R picked by V in Round 2 (this function is indexed by x and q), then (1)
the distribution of m induced by uniform and independent choice of r and R in Zq, is itself
uniform in Zq, and (2) m is independent from R. E

Lemma 39 (THPZP-Rep is a proof of knowledge of (equal) representations.)

Protocol THPZP-Rep of Figure F-2 is a Proof of Knowledge for relation

ft {((p, q, {y U),g) ..19, 1 b=1,. n,(cit 1, U))I Vr1= I y(J) - (gWCfC1 . .)/lk}

219

THPZP-Rep proof system

Three-round Honest-verifier Public-coin Zero-knowledge Proof-of-knowledge for relation

R = {(p, q, {y(0),gf), ... ,gj})j=1,,n), (a>, ., ak) } (for some n E N), where p, q are

primes s.t. q divides p - 1, values a1 ,. . , a are elements of Zq, values ,, for

each j are elements of Gq C Z,and where y(J) = (g))i...-(g7))k for all J 1, ., .

Common inputs: primes (p, q) s.t. q divides p - 1,

public values y(O), 9 ,., g1' E G for j = 1, ..., n
Prover's private input: witness string (ai, ., a,) E (2q)k

such that V, y(i) = (g) -U.)k

[Note: Without index j, this is a proof of knowledge of a representation of y in bases

91, ... , 9k. If there are more y's and their bases, indexed by j = 1, ..., n, this is a proof of
knowledge of equal representation of all these y's in the respective bases.]

Round1: P -V: Pick random rl, ... , rk(E=Zq;

V , send MI) = (9)r . . (g)

Round 2: P <- V: Send a random coin R chosen uniformly in Zq

Round 3: P -V: Send mi = r2 + aiR fori=1,..., k

Acceptance: V: V, verify that (g))1 . . (g)" = (yo))RAJO)

Figure F-2: THPZP-Rep: proof of knowledge of (equal) representation

(also p, q are primes s.t. q divides p - 1, values a1 ,..ak are elements of Zq, values

0 k ... , for each j= 1,.., n are elements of G C z* and n is some integer), with
knowledge error 1/q. Furthermore, the extractor that exhibits this property is oblivious.

Proof: The extractor construction is very similar to the one in Lemma 37. Similarly as in

the proof of Lemma 37, E repeats the verifier's protocol and interacts with the prover P* on

the fixed public inputs an instance (p, q) and values y(J), e), ... , g for j = 1, .., n, and fixed

private and random inputs of P*. As in the proof of Lemma 37, £ repeats this interaction

for 2(k + 1)T steps where k is the length of the public input and T = 1/(Pr - 1). If £

gets two accepting transcripts on two different coins then it holds P*'s commitment message

{MEj)j=1.., two random coins R $fR', and two valid responses fA = (ml, ... , mj) and ?7'" =

(mi, ... , m) s.t. (y())RMJ - (g))m... - (g$)mk and (y k)R' - m' .

for all j = 1..n. Therefore in such case E can output a valid witness, i.e. a representation

((in -m')/(R-R'), ... , (Mk - m)/(R - R')) of each y(J) in its bases (g ,..,g). As in

the proof of Lemma 37, if P*'s probability of passing the proof Pr is bigger than 1/q, then

the probability that F fails is at most 2 k.

Lemma 40 Proof system THPZP-Rep of Figure F-2 is (perfect) Honest-verifier Public-coin

Zero-knowledge and it is Coin-first Simulatable.

III

220 APPENDIX F. 3-ROUND HONEST-VERIFIER PUBLIC-COIN ZKPK's

Proof: Similarly to the construction in the proof of Lemma 38, the simulator SIM picks
random Re E-Z and random vector of elements (m*, ... , m*) in (Z)k, computes Mi)* =

(g)m.)m)-R for each j .n, and outputs ({M()*}i =1.., R, (m*, ... , m*)) as

the transcript of the proof. The distribution of such transcript is identical to the distribution
of a transcript of an actual proof, because as in the proof of Lemma 38, when we consider the
vector i41 = (Mi1 , ... , mk) produced by P in Round 3 of a proof as a random variable defined
as a function of f= (ri, ..., rj chosen by P in Round 1 and R chosen by V in Round 2 (this
function is indexed by vector (ai, ... , cak) and by prime q), then (1) the distribution of M-
induced by uniform and independent choice of f in (Zq)k and R in Z, is itself uniform in
(Zq)k, and (2) M' is independent from R.

THPZP-MULT proof system

Three-round Honest-verifier Public-coin Zero-knowledge Proof-of-knowledge for relation

R = {((p, q, g, h, A, B, C), (a, d, b, b, Ca)) I c = ab, A = ga 0, B = sbh6, C = gf/c } where
p, q are primes s.t. q divides p - 1, a, &, b, b, c, a are all elements of Z, g, h, A, B, C are
all elements of Gq, relation c = ab holds modulo q and all exponentiations are computed

modulo p.

Common inputs: Pedersen Commitment instance (p, q, g, h), i.e.
primes q, p s.t. q divides p - 1, values g, h E CG s.t. g $ h
values A, B, C E Gq

Prover's private input: a, , b, 6, c, a, s.t. c = ab and A = gaha, B= gbhi, C = gOh

Round1: P -V: Pick random d, x,s,si,S2 EZq;

Send M - gdhs,
M1= gxhs,

M2=Bxh2
Round 2: P <- V: Send a random coin R chosen uniformly in Z
Round 3: P-)V: Sendy=d+bR,

z = x + aR,

w =s+ bR,
wi = si + R,

W2 = 82 + (- ab)R
Acceptance: V : Verify that gYh BRM,

gzhi1 ARM 1 ,

Bzhw2 = CRM2

Figure F-3: THPZP-MULT: proof of knowledge of committed a, b, c s.t. ab c

Lemma 41
(THPZP-MULT is a proof of knowledge of "committed product relationship")
Protocol THPZP-MULT of Figure F-3 is a Proof of Knowledge for relation

7 = {((p, q, g, h, A, B, C), (a, a, b, f, c, 6)) 1 c-= ab, A = gha,B = gb/), C = gOie }

rip

221

(also p, q are primes s.t. q divides p - 1, values a, &, b,b,c,t are elements of Zq, and values
g, h, A, B, C are elements of Gq C ZP*), with the knowledge error 1/q. Furthermore, the

extractor that exhibits this property is oblivious.

Proof: The extractor construction is very similar to the extractors for the previous two
THPZP's (Lemmas 37 and 39). Similarly to those constructions, the extractor E interacts
with P* by following V's algorithm (on fixed public inputs and fixed P*'s private and random
inputs), for 2(k+1)T steps where k is the length of the public input and T = 1/(Pr - 1). If E
gets two valid transcripts (M, R, i) and (M, R', f') where R fR', M is P*'s commitment
message M = (M, M 1 , M 2), and Hi= (yz,w,wi,W2) and H' = (y',z',W',w',vW4) are two
correct responses of P* to R and R', respectively, then the following relations are satisfied:

gyhw - BRM, gzhl"l = ARM 1 , Bzhw2 = CRM2

as well as
gY'hW' - BR'M, gZ'h i - AR'M1 , Bz'h - CR'M2

Therefore extractor E can compute the following representations

(a, &), where a = (z - z')/(R - R') and = (wi - w')/(fR - R') of A in bases (g, h)

(b, b), where b = (y - y')/(R - R') and t = (w - w')/(fR - R') of B in bases (g, h)

(a, ±), where i = (w2 -- u)/(R - R') of C in bases (B, h)

Since B = gbhb, extractor E can also compute representation

(ct), where c = ab and t= 2+ ab of C in bases (g, h)

Therefore E can output a witness (a, &, b, b, c, d) of (A, B, C) in 7Z(p,q,g,h)-
Again, just like in the proofs of Lemmas 37 and 39, if P*'s probability of passing the

proof Pr is bigger than 1/q, then running the interaction with P* for 2(k + 1)T = 2(k +
1)/(Pr - 1/q) times guarantees that the probability that E fails to get such two different
transcripts is at most 2 k, which implies the lemma. S

Lemma 42 Proof system THPZP-MULT of Figure F-3 is (perfect) Honest-verifier Public-
coin Zero-knowledge and it is Coin-first Simulatable.

Proof: The simulator SIM, similarly to the simulators that exhibit Lemmas 38 and 40,
first picks random R E Zq and random vector of elements (y*, z*, w* wI, w) in (Zq) 5 ,
computes M* = B--Y*hw*, M1* = A-gZ*hw1, and M2* CRBZ*hw*, and outputs

((M*, M*, M2*), R, (y* z*, w*, W*, wf)) as the transcript of the proof. The distribution of
such transcript is identical to the distribution of a transcript of an actual proof, because as
in the proofs of Lemma 38 or Lemma 40, when we consider the vector i= (y, z, w,W1, W2)

produced by an honest P in Round 3 of a proof, as a random variable defined as a function
of F = (d, X, s, s1 , s2) chosen in Round 1 by an honest P and R chosen in Round 2 by V (this
function is indexed by vector (a, a, b, b, t) and by prime q), then (1) the distribution of Hi
induced by uniform and independent choice of F in (Zq) 5 and R in Z, is itself uniform in
(Zq)5, and (2) i is independent from R. 1

.-W R Rw

III

222 APPENDIX F. 3-ROUND HONEST-VERIFIER PUBLIC-COIN ZKPK's

Appendix G

Parallelizable Zero-knowledge
Proof of Knowledge of Discrete Log

In Figure G-1 we include a known zero-knowledge proof-of-knowledge (ZKPK) proof system
ZKPK-DL for proving the knowledge of discrete logarithm [Ha00]. The ZKPK-DL proof
system, presented in Figure G-1, maintains its important properties even when performed
in parallel with polynomially-many untrusted parties.

ZKPK-DL proof system

Zero-Knowledge Proof of Knowledge system for relation

R= {((p, q, g, y), x) I x EZq, gCEGqg, Y= g mod p}

Common inputs: discrete-log instance (p, q, g), public value y E Gq
Prover's private input: witness x £ EZ such that y = g' mod p

Round 1: P - V : Choose a trapdoor value a EZ; Send h = g'.
Round 2: P<-V: Choose a random coin R£E Zq;

Commit to R by picking random E Zq and sending C = gRhR.
Round 3: P-V : Choose r E Zq;Send M= g'.
Round 4: P <- V: Open commitment C by sending R and R.
Round 5: P - V : Verify that gRhR = C. If so, send m = r + xR and a.
Acceptance: V: Verify that ga = h and g' = yRM.

Figure G-1: Parallelizable ZKPK proof of knowledge of discrete logarithm

The ZKPK-DL proof system is (statistical) zero-knowledge, which is a stronger property
than the honest-verifier public-coin zero-knowledge defined in Definition 30 of Appendix F.
We formulate the statistical zero-knowledge property of ZKPK-DL in Lemma 44 below.
Furthermore, it remains zero-knowledge when it is executed in parallel by each pair of n

223

qw-1111-1 WN', ,, . . - . , .

224 APPENDIX G. PARALLELIZABLE ZKPK FOR DLOG

parties. Such parallel execution of ZKPK-DL is a crucial part of a distributed protocol h-IG,

presented in Figure 7-3 in Chapter 7. The h-IG protocol itself establishes an instance of

the Pedersen commitment scheme which is needed by all threshold protocols proposed in

this thesis. The proof of the zero-knowledge property of the parallel execution of ZKPK-DL

within h-IG is in Lemma 36 in Chapter 7, and the simulation reasoning used there is a

straightforward extension of the proof given below for the zero-knowledge property (of a

single execution) of ZKPK-DL.

The ZKPK-DL proof system is also a proof of knowledge (see Definition 27, page 215).
However, the running time of the extractor process given by that definition is specified

in terms of expected time of execution. This is an inconvenient notion for us to work

with when we argue the security of distributed protocols which use ZKPK-DL (namely,

protocol h-IG in Figure 7-3), because all notions of distributed protocol security we use are

specified in terms of probabilistic machines with fixed time-bounds. On the other hand,

the ZKPK-DL does not seem to meet the strong proof-of-knowledge property formulated in

Definition 28, page 215. That definition requires that the bound on the running time of the

extractor is equal to q(k)/p* where q(k) is some polynomial in the security parameter k, and

P* = (p(y, x, r) -C*) where p(y, x, r) is the probability that verifier accepts a proof executed

with a (possibly dishonest) prover P* on its given inputs (x, y, r) (whose length is polynomial

in k), and AC is an knowledge-error (refer to Appendix F for the explanation of these terms

and the notation). Unfortunately, what we can show for ZKPK-DL is an extractor with a

running time bounded by q(k)/(p*)2, which seems incompatible with Definition 28.

Therefore, in Lemma 43 below we show that the proof system ZKPK-DL attains a weaker

"proof-of-knowledge-like" property than the standard definition, but whose formalization is

very similar to the one we need for the proof-of-knowledge-like property of the h-IG protocol

expressed in Lemma 35 in Chapter 7. As we mentioned above, the essential part of the h-IG

protocol is a parallel execution of ZKPK-DL proofs by each pair of players. In Lemma 35

we show that if a corrupted player passes such proof with at least one honest player then an

efficient procedure can extract a valid witness from such corrupted player. The extraction

argument used to prove Lemma 35 is a straightforward extension of the extraction argument

used in the proof of Lemma 43 below.

Lemma 43 (ZKPK-DL is a (weak) proof of knowledge of discrete-log)

Protocol ZKPK-DL of Figure G-1 is a (weak) proof of knowledge for relation R =

{(p,q, g,y,x) |x c Zq,9g E Gq,Y = gX mod p} where p,q are primes s.t. q divides p - 1.
Namely,

1. For every discrete-log instance (p, q, g), and every x C 7Z and y = gx mod p, the

verifier V always accepts in an interaction with an honest prover P on common input

(p, q, g, y) and on P's private input the witness x.

2. For every polynomial p(-), there exists an efficient (probabilistic polynomial-time) algo-

rithm E, called "extractor", such that for every large enough k, for (p, q, g) a discrete-

log instance of security k, for every x C Z and y = gx, for every interactive prob-

abilistic algorithm P * with any private input ah £ {O, 1}*, the following properties

hold:

"I

III

225

(a) S interacts with P * on fixed common inputs (p, q, g, y), on P's private input ah,
and on P*'s random input r chosen uniformly at random. S first performs the
algorithm of V until the end of the ZKPK-DL protocol and then, if P* passes the
proof (i.e. if the V algorithm accepts), then £ interacts with a copy of P * on the
same P*'s inputs (p,q, g,y,ah,r). In particular, it follows that P*'s view of an
interaction with V is distributed identically to P*s view of an interaction with S.

(b) With probability at least 1- 4),if P* passes the proof then E outputs x = log, y.

Proof: As for part (1), note that V always accepts an interaction with an honest prover
whose private input is a correct witness x = log, y for the public input (p, q, g, y) in K.

Fix inputs (p, q, g, y, ah, r) of P*. We describe the interaction of £ and P* on the common
input (p, q, g, y). 9 first follows the algorithm of V till the end of the ZKPK-DL protocol. Let
h, C, M, (R, R), (m, a) be the transcript of this protocol. If P* passes the proof, i.e. when

g' = h and g' = yRM, then E repeats the following interaction with a copy of P* (running
on the same fixed inputs p, q, g, y, ah, r), for p'(k) times, where p'(k) = 6p"(k)p(k) and p"(k)
is some small polynomial s.t. p"(k) > ln(2p(k)) for all k large enough. In each loop of
an interaction with a copy of P*, E uses the same randomness in Round 2, and hence in
Rounds 1-3 the same messages h, C, M are exchanged. However, in Round 4 the extractor
9 sends a random R' s.t. R' $ R and R' s.t. R' + al' = R + aR, i.e. s.t. gR'hk = C. If
P* responds with m' s.t. g" = yR'M (i.e. if "the copy of P* passes the proof"), then E can
output a witness x = log9 y = (m m- in)/(Rj - R) of y in Z(p,q,g). Otherwise, S loops back,
i.e. runs this interaction with a copy of P* again, using fresh random value R' in Round 4.
If the copy of P* does not pass the proof in all of the p'(k) loops then S outputs null.

Note that requirement (2a) is satisfied by algorithm E described above. It remains to
argue point (2b), i.e. that the probability of S outputting is at most . Namely, let's call

the event that P* passes the proof in an interaction with E as "P* passes", and the event
that in at least one of the p'(k) loops the copy of P* passes the proof as "Copy-P* passes".
Let's denote by "P* fails" and "Copy-P* fails" the complements of these events. Then we
need to argue that the probability FAIL of S outputting E, i.e.

FAIL = Pr[(P* passes) A (Copy-P* fails)]

is at most (, where the probability is taken over the coins of S.
Denote by "P* passes on C" the event that P* passes and that the message sent to P*

in Round 2 by E is equal to C. Consider a probability threshold T=1 , and let's define
a set of "good" values C as follows:

We call C E G "good" iff Pr[P* passes on C] ; T

where the probability is taken over those coins R, R of E (or V) s.t. gRhR = C. Let pc
denote the following probability:

pc = Pr[Copy-P* passes on C I C is good]

It is easy to see that if polynomial p'(k) is sufficiently larger than 1/T (i.e. sufficiently
larger than p(k)) then probability P-c = 1 - pc is negligible. Furthermore, FAIL can be

III

226 APPENDIX G. PARALLELIZABLE ZKPK FOR DLOG

upper-bounded as P55+ T, and therefore FAIL < T + 6 < 2T = which implies the

lemma.

We first show that p-5 is negligible. Let T'= T - 1. It is easy to see that for any

C, if the probability that P* passes on C is at least T, then the probability that a copy

of P* passes in a single loop of an interaction with S on that C is at least T', because

when E interacts with a copy of P*, it chooses its coin R' at uniform in a space of q - 1

coins in Zq \ {R}, where R was the coin picked by S in an interaction with the "original"

P*. Therefore, PC- 1 - Pc < (1 - T')P'(k) = (I - (2Ptk) p'(k)<(I 6p(k)(k), if

1 > 1 k1 - p
3p(k) ; , which, since jqj = k, and hence q > 2 --1, is assured for k s.t. 2 k- 3p(k). Since

p'(k) = 6p"(k)p(k), probability p- is therefore smaller or equal to ()P"(k). Therefore, for

k large enough so that p"(k) > ln(2p(k)), we have that Fi < 1,i.e. is a negligible

function in k.

Finally, we show that FAIL can be upper-bounded as pc+ T:

FAIL = Pr[(P* passes) A (Copy-P* fails)]

= Pr[C good] * Pr[P* passes I C good] * Pr[Copy-P* fails C good]

+ Pr[C bad] * Pr[P* passes | C bad] * Pr[Copy-P* failsl C bad]

< 1t1t*p+Tt1

< 2p(k) 2p(k)
1

p(k)

Lemma 44 (ZKPK-DL is (statistical) zero-knowledge)
Under the discrete-log intractability assumption, the protocol ZKPK-DL is statistical zero-

knowledge. Namely, under the discrete-log intractability assumption, there exists a (PPT

TM) algorithm SIM, called "simulator", such that for any cheating verifier (non-uniform

family of PPT TMs) V*, and any DLog instance family DL, for (p, q, g) a DLog instance

of security parameter k in DL, and for any y G Gq, the statistical difference between the

following two variables is a negligible function of k:

* V* 's view of an interaction with the prover P on public input (pq, g, y) and on P's

private input x = logg y, where the probability is taken over the random coins of P

and V*

" V* 's view of an interaction with SIM on public input (p, q, g, y), where the probability

is taken over the random coins of SIM and V*.

Proof: Consider a following interaction of V* and a simulator SMM0). On common input

(p, q, g,y), and on V*'s random input rv*, SIM(0) sends a message h like P (i.e. chosen

uniformly in Gq) in Round 1, receives V*'s message C in Round 2, sends message M like

P (i.e. chosen uniformly in Gq) in Round 3, receives V*'s message (R, A) in Round 4, and

then rewinds V* to the beginning of Round 3 (i.e. re-runs V* on the same input and the

227

same randomness rv*, and giving it the same message h in Round 1), sends in Round 3 a
fresh random value M' chosen uniformly in Gq, and receives a response (R', ') from V*
in Round 4. (Note that since V* is a non-uniform family of PPT TMs, its power does not

increase if it is given some private input.) Consider the following probability:

pr(p,q,,,y) = Pr[V*, in interaction with SIM(0), opens C in two different but correct ways]

where the probability is taken over the randomness rV* and the randomness used by SIM(0)
(in picking messages h, M,M').

Let us build two simulators, SIM(') and SIM('), that interact with V* on public input
(p, q, g, y) in a way that is similar to SIM(0) described above. We show that (1) If for some
discrete-log instance family DL, for (p, q, g) a discrete-log instance of parameter k in DL,
and for some y E Gq, the above probability pr(p,q,gy) is not a negligible function of k, then

SIM(') breaks the discrete-log assumption; and (2) If pr(p,q,g,y) is a negligible function of k,
than SI M (2), on input (p, q, g, y), produces to V* a view which has a negligible statistical
difference from V*'s view of a random run of an interaction with the prover P whose private
input is x = logg y. In other words, SIM(2) is the simulator SIM required by the statement

of the lemma. It will follow that under the discrete-logarithm assumption the ZKPK-DL
protocol is statistical zero-knowledge.

Assume that there exists a discrete-log instance family DL, a non-uniform PPT TM
family of algorithms V* = (Vi, V, ...), and a polynomial pQ, such that for all ko there
exists k >ko, such that for (p, q, g) a discrete-log instance of parameter k in DL, for some
element yCE Gq, probability pr(p,q,g,,y) . We will show a non-uniform PPT TM family

SIM) = (SIM(j, SIM(, ...) which breaks the discrete-log assumption. Namely, for any

k, on input (p, q, g) a discrete-log instance of parameter k in DL, machine SIMf has a

hard-wired element y in Gq for which the above probability pr(pqgy) g, and SIM

on input (p, q, g) and a random h E Gq interacts with V* on common input (p, q, g, y) as

follows. SIM(' sends h to V*, waits to receive C, and sends back a random M in Gq. If it

receives some (R, R) s.t. gRhR = C, then it rewinds V* to the beginning of Round 3, sends

another random M' in Gq, and waits to receive another pair (R', A'). If g7hR' = C and

R'$ f R then SIM computes and outputs log9 h from the two representations of C in bases

(g, h). Note that messages h, M, M' that SIM(') sends in this interaction are distributed
just in V*'s interaction with SIM(), and hence V* opens its commitment C in two different
ways with probability pr(pq,gy) y) -. Therefore SI M (1) outputs logg h with probability

greater or equal to p, and hence breaks the discrete-log assumption.

Simulator SIM2), interacts with V* on common input a discrete-log instance (p, q, g)
and some y C Gq, as follows. SIM(2) chooses a uniformly in Gq, sends h = g' to V*, waits

to receive C, and sends back a message M which is a random element in Gq. If V* replies
with correct R and A, the simulator rewinds V* to Round 3, picks a random m' E Zq, and

sends to V* a new message M'=g 'y-R, prepared so that sending m in Round 5 will be
a correct response to challenge R. If V* opens C in a different way, i.e. with some (R', A')
which are correct but s.t. R $ R' then SIM(2) fails. If on the other hand V* opens C as
(R, A) again, then SIM(2) answers with (m', a). (The last possibility is that V* does not

APPENDIX G. PARALLELIZABLE ZKPK FOR DLOG

open C this time correctly at all, in which case SIM(2) should act like P would, i.e. stop the
conversation.)

Notice that the messages h, M, M' that SIM(2) sends to V* are distributed uniformly
and independently in Gq, and hence the probability that V* opens its C in a different way
after rewinding is equal to pr(p,q,gy). On the other hand, if V* opens C as the same R or

does not open it correctly at all, then the view the verifier V* sees, composed of messages
(h, C, M', (R, R), (m', a)) or messages (h, C, M', null, null), is distributed as in a random
interaction with the actual prover P acting on private input x = logg y. This is because
in the above transcript M' is distributed uniformly in Gq, while m' is a proper response
to the message of V*, i.e. either a value s.t. gi=n yRM or null, as in the interaction with
the actual prover. Putting the two facts together, it follows that the statistical difference
between V*'s view of an interaction with SIM(2) and V*'s view of an interaction with P

(running on its private input x = logg y), is equal to pr(p,q,g,y).
Therefore, if for all discrete-log instance families DL, for all V*'s, for all polynomials

pQ, there exists ko such that for all k > 0ko, for (p, q, g) a discrete-log instance of security
parameter k in DL, for all y E Gq, probability pr(pqgy) < 9 , (note that the other case is

taken care of a construction SIM(') above), then the statistical difference between the two
views is negligible in k, and the lemma follows. E

228

