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Abstract

Nonlinearly parameterized (NLP) systems are ubiquitous in nature and many fields of sci-
ence and engineering. Despite the wide and diverse range of applications, there exist rela-

tively few results in control systems literature which exploit the structure of the nonlinear

parameterization. A vast majority of presently applicable global control design approaches

to systems with NLP, make use of either feedback-linearization, or assume linear parame-

terization, and ignore the specific structure of the nonlinear parameterization. While this

type of approach may guarantee stability, it introduced three major drawbacks. First, they

produce no additional information about the nonlinear parameters. Second, they may re-

quire large control authority and actuator bandwidth, which makes them unsuitable for
some applications. Third, they may simply result in unacceptably poor performance. All of

these inadequacies are amplified further when parametric uncertainties are present. What

is necessary is a systematic adaptive approach to identification and control of such systems

that explicitly accommodates the presence of nonlinear parameters that may not be known

precisely.
This thesis presents results in both adaptive identification and control of NLP systems.

An adaptive controller is presented for NLP systems with a triangular structure. The pres-

ence of the triangular structure together with nonlinear parameterization makes standard

methods such as back-stepping, and variable structure control inapplicable. A concept of

bounding functions is combined with min-max adaptation strategies and recursive error

formulation to result in a globally stabilizing controller. A large class of nonlinear systems

including cascaded LNL (linear-nonlinear-linear) systems are shown to be controllable using

this approach.
In the context of parameter identification, results are derived for two classes of NLP

systems. The first concerns systems with convex/concave parameterization, where min-max

algorithms are essential for global stability. Stronger conditions of persistent excitation are

shown to be necessary to overcome the presence of multiple equilibrium points which are

introduced due to the stabilization aspects of the min-max algorithms. These conditions
imply that the min-max estimator must periodically employ the local gradient information

in order to guarantee parameter convergence.
The second class of NLP systems considered in this concerns monotonically parameter-

ized systems, of which neural networks are a specific example. It is shown that a simple
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algorithm based on local gradient information suffices for parameter identification. Condi-

tions on the external input under which the parameter estimates converge to the desired set

starting from arbitrary values are derived. The proof makes direct use of the monotonic-

ity in the parameters, which in turn allows local gradients to be self-similar and therefore

introduces a desirable invariance property. By suitably exploiting this invariance property

and defining a sequence of distance metrics, global convergence is proved. Such a proof

of global convergence is in contrast to most other existing results in the area of nonlinear

parameterization, in general, and neural networks in particular.

Thesis Supervisor: Anuradha M. Annaswamy

Title: Principal Research Scientist
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Chapter 1

Introduction

Since the earliest times, man has ben fascinated by his environment. To help explain

the observed phenomena, abstract models were constructed. With the advancement of

general science, especially mathematics, the models used grew increasingly complex.

It is interesting to note that this relationship between the mathematical models and

mathematics as a science has had a sizeable degree of feedback throughout history.

Particular examples range from Newton's development of calculus and the derived

laws of motion in Principia in 1687, Fourier theory used in his Theory of Heat in

1807, to the modern times when research in higher-dimensional physics theories drives

advances in differential geometry and topology (for example, see [19]).

The growth in complexity in the models used is, in part, due to the fact that often

satisfactory models based on existing data were used to gain further understanding

and design new experiments. The possible discrepancies between the newly obtained

data and a-priori predictions resulted in the revision of original models. When con-

fronted with systems whose behavior is not fully understood, obtaining good purely

mathematical models is a very important first step in gaining further insight. It has

been said that

"A mathematical model is neither a hypothesis nor a theory. Unlike scientific

hypotheses, a model is not verifiable directly by an experiment. For all models are

both true and false.... The validation of a model is not that it is "true" but that it

generates good testable hypotheses relevant to important problems. " ([33])
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1.1 Motivation

From a control systems perspective, interest in modeling can be two-fold. First, by

carefully modeling the system of interest, further insight can be gained that influences

the later control design. For example, the type and placement of actuators and sensors

can determine the type of mathematical model and the required controller. Secondly,

it is crucial that the model used accurately reflect the modes of system behavior that

are of particular concern. Out of the two aspects of the modeling issue in control

design, in this thesis we do not concern ourselves with the former. We assume that

the model for the system of interest is given. We also assume that the given model

description may contain unknown, but constant, parameters.

The parameterization of the model can be either linear or nonlinear. This thesis

is centered on examining identification and control issues related to nonlinearly pa-

rameterized (NLP) models. There are two main reasons for this. One is the fact that

results for linearly parameterized models are well-established for a large variety of

systems (for example, see [38, 45, 17, 31]. However, the results for NLP systems are

scarce ([14, 41]). The other, and more important, reason for studying NLP systems

is that in many branches of science nonlinear parameterization is required in order to

accurately model systems of interest. Particular examples of NLP systems include:

" mechanical systems: friction dynamics [5], magnetic bearings [54],

" electrical/electronic systems: DC converters [25], CMOS modeling [16],

" aerospace systems: jet aircraft [25], spacecraft robotics [53],

* chemical processes: pH regulation [13], bioreactors [11, 12], fermentation pro-

cess [10, 55],

* biological systems: see [30, 7],

" "neural networks": these structures are inherently nonlinearly parameterized,

see [21, 20, 44],
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It can be seen that NLP models are applicable, and in fact required, in diverse

and wide types of systems. Hence, further study is warrantied.

1.2 Thesis Goals

The scope of the thesis consists of two goals. The first is to develop control method-

ologies so that the output of the NLP systems behaves in a prescribed fashion, and

the values of the unknown parameters are estimated in a stable manner. Once this

is achieved, the second goal is identification of unknown parameters by investigating

conditions under which the parameter estimates converge to their true values. The

first goal is presented for NLP systems with a triangular structure. The second goal

is presented in two types of NLP systems. One contains convex/concave parameteri-

zation, and parameter convergence conditions are derived for the min-max estimator

of [2]. The other type of NLP system is monotonic in its parameterization. Here,

parameter convergence conditions are derived for the standard gradient algorithm.

There exist a number of results in nonlinear system control. For example, see

[52, 26, 49, 23, 40, 31]. The way these results can handle nonlinear parametric un-

certainties is by preforming some type of feedback linearization (see [48, 35]). Feed-

back linearization requires a-priori knowledge on the bounds of the magnitudes of

uncertainties. On-line, it does not acquire new information about the parametric un-

certainties by observing system behavior and estimating the values of the unknown

parameters. Since only a-priori information is used, and no on-line adaptation is

carried out, this procedure may result in unnecessarily large control effort. Due to

this, feedback linearization as a stand-alone technique may require large variations in

control magnitude in short periods of time. Actuator bandwidth/energy issues, espe-

cially in extreme environments ([53]) then may constrain further the applicability of

this approach.

There are relatively few results available for the adaptive control of NLP systems.

These include the theoretical developments in [14, 41, 2, 34, 47, 12, 55]. A novel

development was the introduction of the min-max estimator in [2, 34, 47]. The min-
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max estimator differs from traditional approaches in the sense that it does not use

all the time the local gradient information for adjusting the parameter estimates.

Instead, it uses both local and global gradient information, and switches between

the two in a prescribed manner. The results in [12, 55, 39, 13] deal with control

of biochemical processes. In [12, 55], an approach based on modifying the standard

adaptive algorithms based on the plant model and choosing a suitable Lyapunov

function. The result in [13] is a direct application of the min-max estimator, while

[39] develops a methodology for convexifying the nonlinear parameterization so that

the min-max estimator is applicable. Other theoretical results, [41, 14] are inadequate

for tracking or general parameterization.

In this thesis, we propose an approach to solving the problem of adaptive con-

trol of NLP systems with a triangular structure. Our approach consists of coupling

the feedback-linearization procedure described above with a suitable parameter es-

timation algorithm. We employ the min-max algorithm developed in [2]). A direct

application of the min-max estimator is not possible, since the system in triangular

form does not satisfy the so-called "matching conditions". By using the feedback-

linearization procedure in a similar fashion to [48], we transform the system to a

suitable form, and apply the min-max estimation technique. It is shown that cou-

pling the two methods results in global stability of the overall system.

For the second goal of parameter identification, we propose two results. The re-

sults involve different types of parameterizations, and different estimation algorithms.

Virtually no global results exist when dealing with the identification of NLP param-

eters for general types of nonlinearities. Since parameter identification is equivalent

to solving a set of nonlinear equations, the lack of results is hardly surprising. Con-

sidering that

" We make an extreme, but wholly defensible, statement: There are good, general

methods for solving systems of more than one nonlinear equation. Furthermore, it

is not hard to see why (very likely) there never will be any good, general methods....(

[43], section 9.6)

we can, at best, hope to derive parameter convergence results on a case-by-case
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basis. In fact, the linear parameterization for which well-known results exists is a

subset of the general NLP. The thesis presents two additional case studies in NLP

identification. One deals with convex/concave parameterization, and employs the

min-max algorithm of [2]. It should be noted that in this case results are obtained for

the case when there are dynamics between the parametric uncertainty and the output

("error model 3" of [38]). The second deals with monotonic parameterization, employs

the gradient-algorithm, and does not involve dynamics between the nonlinearity and

the output ("error model 1") In both cases, we derive the necessary conditions on

system signals and the nonlinearities involved to guarantee global convergence of

parameter estimates.

The monotonic parameterization case can be of special interest to the neural

network applications. First, many neural networks are realized using monotonic non-

linearities, usually of the sigmoid type. Second, a neural network must be trained for

the task at hand, and neural network training is essentially a parameter identification

process. By using a novel set of tools, we show that under relatively mild conditions

on the input, the gradient method can be globally convergent for a single layer neural

net.

Since neural network architectures have been applied to numerous diverse tasks,

the problem of neural network training has gathered a lot of attention. For a survey

of the topic, a good recent reference is [44]. To the best of our knowledge, the issues

of neural network training have not been adequately addressed. Some of the existing

approaches [18, 9, 8] impose strict conditions on network structure, which is limited in

to applicability binary classifier tasks. Although it is well known that neural-network

structures are controllable (see [50, 26]) when their parameters are fixed a-priori,

some approaches (see [42, 27]) claim "semi-global" stability results when adjusting the

parameters on-line, in a closed-loop setting. The stability result in these approaches,

however, stems from the fact that they either overcome the nonlinearity in parameters

by essentially employing linearization, or by just adjusting the linear parameters. In

either case, the comments in [41] are applicable. Further, since linearization is used,

it is questionable whether the use of the term "global" is justified.
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By using novel stability analysis tools, we are able to show the conditions un-

der which the gradient algorithm is globally convergent. Our results presented here

pertain to the error model 1 case. Preliminary investigations suggest that by reinter-

preting the standard quadratic Lyapunov arguments, it might be possible to construct

new Lyapunov functions and demonstrate stability for the error model 3 case as well.

1.3 Organization of the Thesis

The thesis is organized in the following manner. We first present the convergence c

conditions for the min-max estimator in Chapter 2. Convergence conditions are pre-

sented for both the continuous and discrete time versions of the min-max algorithm.

A case study of parameter convergence conditions on an example system is carried

out. In Chapter 3 we present the design of an adaptive controller for NLP systems

in triangular form. It is shown how such a controller has the desired tracking and

robustness properties. A numerical example is presented, as well. Comments on the

design are given and future work is suggested. In Chapter 4 presents our discussions

on the parameter convergence conditions for monotonically parameterized systems.

Finally, concluding remarks are given in Chapter 5.
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Chapter 2

Parameter Convergence in systems

with Convex/Concave

Parameterizat ion

2.1 Introduction

Based on observation and physical laws, for many systems of interest the general form

of the function which can adequately represent observed behavior is known. However,

for a specific case, the known general function can depend on one or several constant

parameters, whose exact values cannot be determined precisely. The question then

arises how such classes of systems can be controlled to behave in a desired fashion,

and whether in doing so, it is possible to gain an accurate estimate of the values of

the underlying unknown parameters. The field of adaptive control and estimation has

addressed these issues. Currently, many powerful techniques have been developed for

the aforementioned problems (for example, see [17, 38, 45, 31]). In all of these results,

the common feature is a fundamental assumption that the unknown parameters in

the system occur linearly. Furthermore, this assumption is required to hold for both

linear and nonlinear systems (see [31, 38, 49]).

The requirement for linear parameterization constrains the applicability of adap-
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tive control, since many of the dynamical systems in nature exhibit such behavior

which can only be accurately captured and represented by nonlinearly parameterized

models. These nonlinear models can, perhaps, be converted to linearly parameterized

ones by a suitable transformation. However, deriving such a transformation can be

a nontrivial task, and may introduce further inaccuracies into the model. Hence, in

order to accurately model complex systems, nonlinear parameterization seems un-

avoidable.

Recently, a stability framework built around the "min-max" algorithm has been

established for studying identification and control of nonlinearly parameterized (NLP)

systems [2, 4, 29, 34, 39, 47]. In all these papers various NLP systems were con-

sidered and the conditions for global stability, regulation and tracking were derived.

Both continuous-time [2, 34] and discrete time [47] versions of the results have been

developed. In this chapter we address the issue of parameter convergence in such sys-

tems. We derive conditions under which parameter estimates converge to their true

values once a stable estimator has been established. These conditions are related to

persistent excitation relevant for convergence in linearly parameterized systems, and

are shown to be stronger, with the additional complexity being a function of the un-

derlying nonlinearity. The derived results are presented for both the continuous-time

and discrete-time versions of the min-max estimators.

This chapter is divided in two parts. The continuous time case is considered in

Sections 2.2-2.4. Statement of the problem is given in Section 2.2. Next, conver-

gence conditions are derived in 2.3. This section presents the sufficient conditions

for accurate parameter estimation, similar to the persistent excitation conditions for

linearly parameterized systems. A discussion of the obtained results on a case study

is carried on in Section 2.4. In the second part of the chapter, Section 2.5 presents

the analogous results for the discrete-time min-max estimator.
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2.2 Statement of the Problem

Our goal is to study parameter convergence in a class of systems where the unknown

parameter occurs nonlinearly. This class is of the form

#= ay + f (M(t),O) (2.1)

where y is the measurable system output, 0 C IR is an unknown parameter, q is a

scalar function of time and f is a scalar function that is nonlinear both in # and 0.

In [2], a globally stable adaptive controller was developed for systems of the form of

(2.1), and was shown to result in asymptotic stability and tracking. In this paper we

derive an estimator for (2.1) and show that the parameter estimates converge to 0

under appropriate conditions (of persistent excitation) on b and f.
Further developments are based on the following assumptions about the above

system:

(Al) 0 E E, where E = [0rnin, Omax] is a known compact set defined by its lower (Omin)

and upper (Omax) bounds.

(A2) 0(t) is a measurable and bounded function of time.

(A3) For any #(t), only one of the following is true

(i) f is concave for all 0 c E

(ii) f is convex for all 0 E S

(AS) f is a known smooth and bounded function of its arguments.

(A6) The plant in (2.1) has globally bounded solutions for bounded #.

The goal of the estimator is to closely track the output of the system and, in doing

so, provide estimates of the value of the unknown parameter 0. To accomplish that

17



task, the following estimator has been proposed:

-k&+ f(0,) asat fl+&y (2.2)

= -y (2.3)

0 (2.4)

J(w, 0) = [f ((t),J) - f (q(t),0) -w(0]- 0) (2.5)

a = min max sign(g)J(w, 0) (2.6)
weIR oe

w = arg min max sign(§)J(w, 0) (2.7)
weJR Ge®

I/c = i-cEsat(2  (2.8)

where g is the tracking error defined as g = g- y, c is an arbitrary positive constant

and 0 represents an estimate of 0. The stability feature of this estimator is stated in

the following theorem.

Theorem 2.1 For the system in eq. (2.1), under the assumptions (Al)- (A4), the

estimator given in eqs. (2.2)- (2.7), assures that the estimator outputs 5, 0, and &

are bounded and that 15(t) I-+ eas t -+ oo, provided that 0(t) cOE fort > to.

Proof Using the results of [2], it can be shown that if V = +/ ± (0- O)T(- ),

then V along the system trajectories is given by

V< -2k #6. (2.9)

Hence, V(t) < V(to) for all t > to. Therefore, Barbalat's Lemma can be used to show

that V -0 as t -+ oo, and hence 15(t) I- E.

18



2.3 Continuous-time Parameter Convergence

We now study the parameter convergence of the estimator in (2.2)- (2.7). For ease

of exposition, we assume that a is known, and set a = a, and &= 0 in (2.3). In this

case, the error dynamics of the estimator can be written as:

Y -k&, - asat -
(2.10)

0

where J= f ((t), 0) - f(q(t), 0), 0=-0, and the quantities #,, a, W were defined

in eqs. (2.6)- (2.8). By inspecting the above system, we note that adaptation stops

if jjT = 0. In fact, it can be seen that all the system equilibrium points are contained

within the region where j/ = 0. The system dynamics in this region are:

= -a-+f (2.11)

Since a can be a nonzero quantity, it follows that under certain conditions adaptation

can stop even when f is large, implying unsatisfactory convergence of parameter

estimates. Therefore, in order to enable parameter convergence, the probing signal q

must ensure that once the system enters the adaptation dead-zone with a large f, it

leaves the dead-zone in a finite amount of time.

2.3.1 Preliminaries

In facilitating the study of parameter convergence for the system in eq. (2.10), we

introduce a new quantity (t) and establish a useful property of the system signals.

The value of p(t) quantifies the convexity/concavity of the function f and is defined

as follows:

{1, f(q(t), 0) is convex
10(t) = (2.12)

-1, f (#(t),06) is concave
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The following Lemma states a property of the min-max algorithm signals.

Lemma 2.1 For a(t) defined as in eq. (2.6), and 3(t) as in eq. (2.12), under the

assumptions (A1)-(A5), the following holds:

a(t) #(t) sign ((t)) ; 0 (2.13)

Proof The solutions of the min-max problem in (2.6), as given in [2], are such that

a # 0 only when /sign() < 0. It was shown in [29] that a(t) > 0 Vt. Combining

these two elements establishes the Lemma.

2.3.2 A Condition for Parameter Convergence

In what follows let:

f(x, y) = f (#(x),O(y)) - f (#(x),9) , and 7(x) = f(x, x) (2.14)

Let x denote the state vector, x = [g,j]T.

The sufficient conditions for parameter convergence are stated in the following

theorem.

Theorem 2.2 The origin of the state space given by [EVE, ]T is uniformly asymptoti-

cally stable if, for every t 1 > to, there exist positive constants c, 6, T and a subinterval

[t2 , t2 + 6] E [t 1, t1 + T] such that

t2 
+6

02] f (T, 2 )dr > 2e+ cO (t2)H1 (2.15)
t2

with

03(t) = 02 = const Vt E [t2, t2 +6] (2.16)

If we compare the differential equations that arise in the nonlinearly-parameterized

adaptive system in eq. (2.10) with those of the linearly-parameterized systems studied
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extensively in [37], we see that their structures exhibit a large degree of similarity.

This degree of similarity is reinforced by examining and comparing the conditions

for uniform asymptotic stability of state-space origin for the two types of systems.

Taking into account the specific properties of the min-max algorithm , it can be seen

that the condition stated in eqs. (2.15)- (2.16) is more restrictive than the persistent

excitation conditions given in [37] for linearly parameterized systems. However, we

shall use the same general path for establishing Theorem 2.2 as the one employed

in [37]. In particular, three Lemmas, as in [37], are used in the proof of Theorem

2.2. All of the Lemmas stated below assume that the conditions (2.15) and (2.16)

of Theorem 2.2 hold. The Lemmas are followed by their respective proofs.

Lemma 2.2 Let r > 0 and c1 > 0 be given. Then there exist positive numbers C2

and To such that if ||x(ti)I| < e1 and if ||U(t)|| > ry, for t C [t 1, t1 + To], then there is

a t3 C [t1 ,t 1 + TO] such that |l 6 (t3  >62.

Proof of Lemma 2.2:

The solution of the differential equation

Y = -k&E- asat ) +7 (2.17)

for all t> t1 is given by

p(t + 6) = (t) + j -k,(r) - a(r)sat ( +1(T) ) d (2.18)

Multiplying both sides by O(t 2 ) = /2, for some t2 E [t 1, t 1 + T +6] and separating the

terms we have

025(t +6) =625(t) - k/ 2 f E(T)dI - 2/ a(r)sat dT +02 f (T) d

(2.19)

We now assume that there is an C2 < q1 such that Ig(t) I< C2 for all t c [t 1 ,7t1 +
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T + 6]. This assumption implies that g(t) > -E - 62 and that 10 2 fjE(t) < E2. Hence,

--k0 2 fJ&(T) dT > -k6 2 6 (2.20)

For a t2 for which the Theorem hypothesis hold, and from Lemma 2.1, it follows that

-02 a(r)sat dfr =- j(a(T) () sat )dTKf)J E/3Q) at( ) d
> 0 (2.21)

The third integral on the right-hand side of eq. (2.19) can be expressed as

/-~ + ~t 
6

02 f (-F)dT = 02 f(r,At2) d±r + [2fI) - fIA t2)dT (2.22)

Using the condition in (2.15) which states that 2 / ff(T,t 2 )dT > 2e + cO(t2 )HI,

the second integral on the right-hand side of (2.22) can be expressed as:

/t+J ~ ~ 
t2+j -

02/ f (T) - f (T,t 2 ) dT = t2 f (T) - f (T) - (f(Tt 2 ) - f(T)) d

t2+

= 02 f (T) - f(T7,t 2 )dT

> -6MO sup I (t 2) - 0(T)|,
( e[t2,t2+6]

where Mo = max Vf (q(r), O(T)). From eq. (2.4), the properties of the min-
Oee,re[t 2 ,t2 +6]

max algorithm, and the assumed bound on &, it follows that

/ 2 f[f(T) - f(Tt 2)] ]dT > -6M, sup( t+ (t2) - ()/

> -62MO2 ( E [2,t2+61

> -62 Mf 2 . (2.23)

Substituting (2.23) into eq. (2.19), we obtain:

02(t 2 + 6) > -6 - 62 - kE26 + 26 + c77 - 62 M0 2

E+ 107 -62 (I+ k6+62M2)
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For all 62 such that 0 > 62 > Cr we have that
2 + k6 +62 + M2

0 2 (t2 + 6) > 6 + 62 (2.24)

implying that iIE(t 2 + 6)1 E2. This establishes the Lemma.

Lemma 2.3 Let E, > 62 > 0. Then there is an n = n(Eq, E2), such that if ||x(ti)|

61, and S ={t [t1 ,cx)||E(t)I > 62}, then u(S) < n, where M denotes Lebesgue

measure.

Proof of Lemma 2.3:

The proof directly follows by setting n(Ei, 62) =C2 /2ky, and using eq. (2.9). e

Lemma 2.4 Let Ei and ry be given positive numbers. Then there is a To = To(ci, y)

such that if Jx(ti)|| 6E1, then there exists some t3 E [t 1 + To] such that O(t3)|j m

Proof of Lemma 2.4:

The proof of this Lemma is obtained by combining Lemmas 2.3 and 2.2. For a

given E, and 7q, assume that there exists a To such that 0(t)[ > r for all t E [t 1 , t 1+To].

From Lemma 2.2, this implies that there exists a E2 > 0 and a t3 E [ti, t1 +To] such that

1#,(t 3 )1 > 62. For this value of E2, use Lemma 2.3 to obtain n(ci, 62. Set t = t1 + n,

and set To = n+T, where T is obtained from the theorem hypothesis fort1t = t. Now,

we examine the value of U(t) over the interval [ti, t 1 + To]. Over this interval, by the

choice of To, eq. (2.15) holds. We have assumed that 0(t)> > r for allt E [t, ti+ TO].

Invoking Lemma 2.2 once again, we obtain that there must be a t' E [t , ti + To]

such that li(t'3)| > 62. But, Lemma 2.3 states that §iE(t)l < 62 for all t > t. Hence,

our assumption is contradicted, and the lemma established.

Proof of Theorem 2.2: Having established the Lemmas, the proof of theorem goes

along similar lines to the proof of its counterpart in [37]. Assume that for given

61 > 62 > 0, M > 0:

62 <V(t) = + TUO c1 for t C[t1 ,t 1 + M]
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From Theorem 2.1 we have that V(t) is nonincreasing. Therefore, to demonstrate

uniform asymptotic stability, it suffices to show that there exist such an M, 0 < -Y < 1,

and a time instant t3 E [ti, ti + M] such that V(t3 ) <- 7V(ti). From Lemma 2.4 we

have that for every c, > 0, ij> 0, and every t1 , there is a To and a t 2 c [ti, t1 +To] such

that O10(t2)[ < <j. Let 7 = r /-2 c-, for some positive number c1 such that 1 - c1 > 0.

Then

I 6(t2)12  >V(t2) - q2  V(t 2 )(1 - ci).

From eq. (2.24) we have that #25(t 2) ( E + 62 > 0, implying that a(t2 ) = 0 . Using

this property and integrating the first equation in (2.10) over we have that

2 &e(t) = 0 2ge(t 2) + 2 j -kP(w) + f(T) dw > > 2 gE&(t 2 ) - kIX (t2)[[ - / (w) dl

where 02 = 0(t 2 ). Since f is a bounded function, over an interval [t 2 , t2 + c2 ], where

C2 is a positive number, there exists a BO > 0 such that [f(T) BoI|O()Hl for all

F E [t 2 ,t 2 +c 2 ]. Set
1 /1 - c

62= 2 k + BO (2.25)

Then, for all t E [t 2 , t22+ c2],

/2&6(t) #2g6(t2) - C2(k + Bo)IIx(t2)H

> V1 - cI V(t 2) - c2(k + BO) X (t2)fl

> V(t 2) (v 1 --C1 - c2(k + B,)) (2.26)

Let t3 = t2 + C2. Hence,

V(t 2) -V(h 3) = j5 -())d

t3
2k1f 2g()| 2d

> 2kc2V(t 2) (v/1 - cI - c2(k + B 0 )).

Let y = 2kC2 (V/1 - C - c2(k + Bo)). Clearly, -y is positive. But, we want < < 1
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as well. Thus, by solving this inequality in terms of c1, we obtain that c1 must be

chosen such that the following relation is satisfied

ci>I-y 2kc2 +(k + Bo)c 2 ) (2.27)

However, not all values of c1 that satisfy (2.27) fall in the allowed interval (0, 1). The

right hand side of (2.27) is certainly strictly less than one, but it also might be less

than zero as well. To exclude this possibility, we choose c1 as:

ciE (max(0,1- 2t2 +(k+ Bo)c 2 ) , ,

This guarantees that c1 E (0, 1), and -y c (0, 1). Using eq. (2.25), it can be seen that

the above relation is an implicit inequality in c1, since c2 depends on c1. However,

for given system characteristics k and BO, this inequality has an infinite number of

solutions. Therefore, V(t3 ) -YV(t 2 ) < 'yV(t 1), establishes the theorem. 0

We shall call the requirements stated in eq. (2.15) as nonlinearly-parameterized

persistent excitation (NLP-PE) conditions, in contrast to its linear counterpart(LP-

PE) as defined in [37]. When comparing NLP-PE and LP-PE two main differences

can be observed. Both NLP-PE and LP-PE impose certain conditions on the values

of the integrals of certain system signals. These conditions are required so that the

only possible equilibrium points for the system are those where the parameter error

is zero. The differences between the two cases concern the different requirements on

the sign and magnitude of certain system integrals.

The linear condition, in terms of f, can be stated as

t2+6 ~

f (T)dT > c||O(t2)|| (2.28)

Comparing (2.28) and (2.15), it can be seen that, in the case f is linear in parameters,

NLP-PE directly implies LP-PE. The converse claim is not true.

From eq. (2.28) it follows that the sign of the integral in the linear case is irrelevant.
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However, in the case of the NLP-PE, the sign of the integral is crucial. The sign does

not solely depend on the sign of 7, but on the convexity/concavity of f as well. This

coupling is introduced through the the value of # which can take on either positive

or negative value. The coupling arises from the features of the min-max adaptive

algorithm and is required in order to enable the algorithm to escape the adaptation

dead-zone specified by the region of the state-space where 1gj < c. Also, the coupling

between the sign of the integral and 0 is necessary, but not sufficient for the algorithm

to leave the dead-zone. Therefore, a second difference between NLP-PE and LP-PE

is introduced. Since the dead-zone has a finite size, the persistent excitation integral

must have a large enough value to overcome the dead-zone. Because the dead-zone

is finite, this value must be finite and bounded away from zero. That is the reason

why there is a term containing c, the size of the dead-zone, on the right hand side of

(2.15). Even though the dead-zone exists in the linear case, it has a measure of zero,

and therefore, bounding away the integral from zero is not necessary as in NLP-PE

case.

Simply relying on the norm of the parameter error, 11O11, for the magnitude of the

integral may not be sufficient in the cases when 0 becomes small. Therefore, a finite

lower bound was introduced. However, some classes of nonlinearly parameterized

functions, may behave in a linear fashion when |Ofl becomes small. To satisfy NLP-

PE in this case would mean that 6, the length of persistent-excitation interval would

have to increase as IJUJ| becomes smaller. This may not be realizable in practical

terms. What this implies is that parameter convergence for these types of functions

can be guaranteed only to within a certain precision. This precision is of the order of E,

which is a feature of the min-max adaptive algorithm that is user specified depending.

In practical terms, the size of e depends on the available actuator bandwidth for

a particular system. The higher the bandwidth, a more precise estimation of the

parameters can be guaranteed.
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2.4 A case study of persistent excitation

The NLP-PE condition in Theorem 2.2 specifies certain requirements on f in order

to achieve parameter convergence. Since f depends on the time-varying signal q,

the persistent excitation conditions ultimately are translated to requirements on q.

For a given f, theorem 2.2 does not state how 0 should behave in order to satisfy

the requirements, or even whether such a / is possible. In this section, we first state

some observations about how q should behave in order to satisfy NLP-PE for a generic

function f that satisfies assumptions (A1)-(A6). Next, we apply these observations

to a specific case of f, and give an example of q that enables parameter convergence.

When examining NLP-PE as given in eq. (2.15), it can be considered that it

consists of two separate components. By taking the absolute value on both sides of

(2.15), we have thatj f(r, t 2 ) dr ;> 2e + cHO(t 2 )fl. This we will view as the first

component of NLP-PE. Also, from (2.15), it follows that $2 j f(, t2) d7 > 0.ft2 2)d 0
This we will call the second component of NLP-PE.

The first component of NLP-PE states that for a large parameter error, there

must be a large error in f. It is straightforward to demonstrate that this condition

is equivalent to LP-PE. This is essentially an identifiability condition, since it is not

possible to estimate the parameter values exactly if there does not exist a 0 such that,

for a large parameter error, it produces a noticeable error in the system output. That

is, parameter values for which all possible values of b produce an equivalent output

are, for all practical purposes, equivalent and indistinguishable from each other.

The second component of NLP-PE states what the sign of 7 should be in relation

to the convexity/concavity of f. In case that f is convex, f should be positive,

and conversely, in case f is concave, f should be negative. This implies that the

system should periodically move to the region of the phase-plane where the gradient

information is used for updating the parameter estimates. Hence, the min-max feature

of the algorithm is necessary to ensure stability, but is not sufficient to guarantee

parameter convergence. Parameter convergence is ensured by repeatedly turning on

the gradient component of the min-max algorithm.
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The coupling of convexity/concavity and the sign of the integral of f has the

following practical implications. Suppose that 0 is such that f is always identifiable,

and that for a certain value of 9, the integral in (2.15) is negative. To ensure

parameter convergence, 9 must be such that one of the following occurs:

(a) For the given U, 9 must change in such a way that the sign of 7 is reversed,

while keeping the convexity/concavity of f the same, or

(b) For the given 0, 9 must reverse the convexity/concavity of f, while preserving

the sign of f

For 9 to be persistently exciting, it must be able to achieve either (a) or (b) for any

combination of 0 E 0 and 0 c S.

We illustrate the above comments with a discussion of persistent excitation for

the following specific example of f:

f = e-OT  (2.29)

where : JR - IR", 6 E C E R". It can be checked that f given in (2.29) is always

convex with respect to 0 for all 9. Therefore, option (b) is not possible. Hence, 9

must be such that f can switch sign for any 0 as required by option (a). The following

definition states the desired property of the probing signal 9.

Definition 2.1 Let w C it" be any unit vector. A bounded function 9 : JR --+ R is

said to belong to class K" if for any t1 there exist positive constants oJ 6 and T, and

a subinterval [t2, t2 + 6] C [t 1 , t1 + T] such that

9$T(T) W > E VT C [t 2 , t2 + 6] (2.30)

Definition 2.1 states that, periodically, the vector # should have a positive compo-

nent along every w in R". This is more restrictive than the linear case requirements

in [37], since the latter requires 9 to merely have a nonzero component periodically
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along every vector in IR". An example of a function that belongs to class K 2 is

q = [sinut, coswt]T, W > 0 (2.31)

Since such a q represents a rotating vector in R2 with a constant velocity, it follows

that it aligns itself with every w in 1R2 periodically.

Lemma 2.5 Let h(e) be a constant on the order of c. For f defined as in eq. (2.29),

and for 0 > h(c), 0 G K" implies that q is NLP-persistently exciting.

Proof of Lemma 2.5 From eq. (2.29) it can be seen that f is convex in 0 for all q,

i.e. /(t) =1 Vt. This reduces eq. (2.15) to the form

i2 f (r,t 2 )d'r 2E +c11O(t2)H1 (2.32)

The integrand can be expressed as:

f(T t2) = f (0(T),0(t2)), -f ( (T), 0) = e-0()
T (t2) - e-O(r

t= f-((T)(t 2  -e-)()r(-t))

0 - -(t2)

Let W2 = - t . From Definition 2.1, it follows that there exists an c4 and
||0 - 0(t 2)||

a time interval [t 2, t 2 + 6] such that 0(7r)Tw 2  
64 for all T £ [t2, t2 + 6]. Thus,

e-o(rF(0-(t)) < 1 over this interval, and, hence, f(T, t2 ) can be expressed as

f(, t2) > Me-e.er||0 - 0(t 2)||

> Cf le(t2)j| (2.33)

maxfl0 jjsup jq(t)|
where r = max 110 - 011, M - e 1E9 . Therefore,

2 f (Tt 2 ) dT 665||0(t2)|. (2.34)
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2E
and as long as 0(t) > -, there exists a c > 0 such that

it2+~
f(r,t2 ) dr ;> 26+c||0(t2)|1.

Lemma 2.5 states that, using an appropriate k(t), it is possible to estimate the

parameters up to a desired precision on the order of c. However, the magnitude of

precision can be modified and reduced by a proper choice of q. One way to reduce

the uncertainty in the parameter estimates is to increase 6, the interval of persistent

excitation. For a particular choice of q as in (2.31), this would mean choosing a low

value of w, corresponding to slowing the rotational velocity of the vector in phase-

plane. This, in turn, might suggest that there is a possible tradeoff in the convergence

rate and the guaranteed precision of parameter estimates.

2.5 Discrete-time Parameter Convergence

In this section, we present the parameter convergence results for the discrete-time

min-max estimator developed in [47]. The results presented here are analogous to the

ones presented in Section 2.3.

In [47], it was shown that for discrete-time nonlinearly parameterized (NLP) sys-

tems of the form

Yt = f(qt- 1, 0) + p[i a, (2.35)

an adaptive estimator with a min-max algorithm leads to global stability. Specifically,

for a Lyapunov function candidate of the form

=OT'FyOt±&F; -at (2.36)

the min-max estimator ensures that AV = V - i_ < 0. Thus, the desired stability

property is ensured. However, since AVt is not strictly less than zero, parameter
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convergence is not assured.

In this section, we investigate this problem of parameter convergence for the min-

max adaptive algorithm. Since it is a requirement for the min-max estimator, we

assume that the bounds on possible parameter values are known a priori. Although

the min-max estimator in [47] can be applied for a general nonlinearity, we restrict

our discussions to the systems where the nonlinear parameterization is concave or

convex. We also assume that only the nonlinear parameters are present in the system,

implying t = 0. In Section 2.5.1, we present sufficient conditions on the input q and

the nonlinearity f under which parameter convergence results. In section 2.5.2, a

specific example of f and q that satisfy these conditions is presented.

2.5.1 Parameter convergence in the presence of concave/convex

nonlinear parameterization

The discrete min-max estimator presented in [47] results in an adaptive system of the

form:

Yt = f (qt_1,6)

it = f(At_1,t_1)

t = t_1 - Foktptt I =To>0

-1ktA=w A>0

Pt = max {0, at} (2.37)

2
at = 2-- Jo

Wt = arg min max sgn(gt)J(w, 0)
wEIRn Gee

J(w, 0) = ft_10-wTt_ 1 -).

Jo = min max sgn( t)J(w,0)

where q : N - IR. For any q and all 0 E e C ) 'R, where 0 is a compact set in

R"n, f is assumed to be either concave or convex. In this case, as derived in [2], the
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resulting min-max solution for JO is of the form

fnmafn(in( - 6?) if/3f is concave
J 0 1=- max - min A-1-(2.38)

0 
if /f is convex

fmax - fmin if Of is concave

CO - max -
0 min

Vfw if Of is convex

where 0/= sgn(gj), fmax = f (ot-1, Omax) and fmin = f(6-1i, min). The problem is to

find conditions on qt under which Ot converges to 0 asymptotically.

It is assumed that the function f at any time instant can be either concave or

convex with respect to the parameter 0. This property of f shall be called as the

curvature of f. It should be noted that the case when f is linear in 0 represents

the transition between concavity and convexity or vice versa, and in such a case, the

curvature can be labeled as either being convex or concave.

In LP systems, the term "persistently exciting" was used to characterize a signal

which was rich enough in content to enable the convergence of parameter estimates

to their true values by using the standard linear gradient-update algorithms (see

[17, 38]). In order to distinguish it from its counterpart for LP systems, we will use

the term "NLP persistent excitation" to specify a signal which allows convergence

of parameter estimates to their true values in an NLP system, using the min-max

algorithm. The required conditions for a signal to be NLP persistently exciting are

stated in Definition 2.2. For the sake of completeness and comparison purposes, we

also define LP persistent excitation in Definition 2.3.

Definition 2.2 A function q : N - IR is NLP-persistently exciting with respect to

f (q, 0), where f :IR" x ( -kIR, if at any time instant ta, given any 01, 02 c () there

exist positive constants T and cf and a time instant t, c [ta + 1, ta + T], such that

(NLP-) f (#1,2) - f (Otp,01) > f 1102 - 01

and at t = tP, either
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(NLP-IIa) sign (f (0t,, 02) - f(#t,, 01)) # sign (f (/ta, 02) - f (#t, 01)) while the cur-

vature of f at ta and curvature of f at t, are the same or

(NLP-IIb) sign (f (0t,, 02)-- f (Ot,, 01)) =sign (f (qta, 02) - f (qt., 01)), while the cur-

vature of f at ta and curvature of f at t, are different.

Definition 2.3 A function 0b N -> IR" is LP-persistently exciting if for all t there

exist positive constants 1 and a such that [1]

t+ IiaI(2.39)
i=1

where I is an n x n identity matrix.

The requirements for NLP-persistent excitation consist of two components. The

first component is condition (NLP-I) and, when f is linear, it is equivalent to the LP

persistent excitation, as shown below. Condition (NLP-II) is a second component of

NLP-persistent excitation and is needed to overcome the presence of the dead-zone

which in turn was required in the min-max algorithm to ensure stability. Condition

(NLP-II) essentially states that, periodically, the probing input # should be such

that f is appropriately dithered resulting in a change of either its curvature or its

magnitude.

We now show that Definition 2.3 and condition (NLP-I) are equivalent when f

is linear. Suppose q is LP-persistently exciting. Then, the inequality in (2.39) is

rewritten as

wT zti< +W wTa I w> a wTIw >a (2.40)
i=1

where w is any unit vector in IR". Since 1 is finite, Eq. (2.40) implies that there exist

at* E [t+ i,t+l] and e>0 such that

W #1#*.W > E (2.41)

02 -01
For 01,02 E IR", let w = 2-1. Noting that for LP systems f(q,0) = TO0 and

||02 - 01||
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using Eq. (2.41) we have that

[f (Ot*, 02) - f1(10,01)]2 =|2 - 11||2  02t-47w (2.42)

This satisfies condition (NLP-I).

That condition (NLP-I) implies LP-persistent excitation can be established as

follows. Condition (NLP-I) for LP systems can be expressed as

q$[ (02 - 01) = #'jw 1(02 - 01)f 1 >Ef 11(02 - 01)H (2.43)

where w (2 - 02 is a unit vector in lR". The inequality above implies that
||(02 - 01)||

JOTw > Ef for an arbitrary w. Hence, ]la = c such that

SW12 = w>ot,#T W > a.

If 1 > T, since tP E [t + 1, t + 1], it follows that

a _< wq$T$[w < wT ot+iq$[i W

and, hence, # is LP-persistently exciting.

The LP-persistent excitation states that parameter convergence follows if the sig-

nal input to the system is such that for a large error in the parameter, it produces an

observable difference in the output between the plant and the estimator. Essentially,

this is an identifiability condition, since parameter updates are not possible if no error

in the output is observed. As such, it is needed for NLP persistent excitation as well.

In order to establish parameter convergence in Eq. (2.37), we note first that I|O11

is non-increasing, which follows from the fact that AVt 0, as established in [47]. As

can be seen in the adaptive system equations in (2.37), it is possible for adaptation to

stop. This occurs whenever pt is small. To accommodate this behavior, the following
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notation is introduced. Let the set QD denote the set of all time such that

Dpt0 _Pt < ep}, where E, is a constant c (0, 2). (2.44)

If cE is sufficiently close to zero, then QD represents the time the system spends in

the "dead-zone" where parameter adaptation is turned off. The complement of QD is

defined as D= {t Pt }. The question therefore is whether qt can be chosen so

that the trajectories lie in QC sufficiently often, which is answered in the affirmative

below. As a first step, an important lemma which states a necessary condition for

the system to be in the "dead-zone" is given. This is followed by Theorem 2.3 which

presents the main result in parameter convergence.

Lemma 2.6 For the adaptive system given by Eq. (2.37), if t E D then either

(Dl) ft-1 is concave in 0, and fi > 0 or

(D2) ft_1 is convexZ in 0, and k < 0.

Proof: It follows from Eq. (2.37) that pt < e, if and only if Jo # 0. From Eq. (2.38),

it follows that a necessary condition for Jo 54 0 is that sign(gt)ft_1 is concave, which

proves Lemma 2.6. 0

Theorem 2.3 For the system given by Eq. (2.37), if q is NLP-persistently exciting

and Ot E E Vt, then 0t -+ 0 as t - oo.

Proof: From the fact that the min-max estimator is a stable (see [47]), we have

that AVt 0, and it follows that Vt to, |0t| | 0tlh. Let ti be an arbitrary

time instant such that t, to. From condition (NLP-I), it follows that there exists a

tP1 E [ti, t1 + T] such that

Ita I _ e9tM H1 (2.45)

We establish parameter convergence by showing that 011 decreases by a finite amount

over [ti,t 1 + 2T]. From the system equations it follows that the value of O at time t,
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determines the values of the adaptation signals p, w, and g at time instant tp, + 1.

Defining t 2 = tp, +1, we consider two mutually exclusive and collectively exhaustive

cases, (a) t2 G Q%, and (b) t2 ECD

Case (a) t2 E Q . In this case we have that Pt2 > ep,. Since ktwffowt 1 - Akt,

and t = FyF-1 Ot, we have that at t= t2,

AV 2  2-Akt2pY2 kt2 pt 2 [-2 (c4t 2 -1 -- ft2-1) + (Pt2 -- 2) tj . (2.46)

1
Also, we have that Vt, k > + ,x where Wmax > f ofJ t. Using these facts and

-A+ comax'

Eq. (2.45), and defining

(A + Wmax) 2 Ymax

where Thmax is the maximum eigenvalue of F- 1, Eq. (2.46) implies that

Vt2 < (1 - C)Vtl.

Since V is non-increasing at any t, it follows that

Vt2 (1 - c) Vt. (2.47)

Case (b) t2 E D. From Lemma 2.6, it follows that either

(A) ft, is concave and t2 > 0, or

(B) ft, is convex and §t'2 <0.

We provide the proof for case (A) in detail below. From condition (NLP-I) it follows

that there exists a tP2 E [t 2 , t 2 + T] such that

fIJ > ;EfHOt|2 f, (2.48)

since condition (NLP-I) is valid for some tp c[ta, ta + T] for every ta. From require-

ment (NLP-II) and since ft, is concave in case (A), it follows that either of the two

following cases must hold:
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(A-i) [f (0tt 2 ) - f(Ot, 7,O)] [f(oti 1,Otk) -- f(tp,,O) < 0 and ft 2 is concave

(A-i) [f (0%,OtP ) - f (Ot 2,O,) ] ([ff(#tOt ) - f (tA,O0) > 0 and ft, is convex

Let t3 = t, 2 + 1. Case (A-i) implies that < < 0.

Lemma 2.6 implies (DI) and (D2) are necessary conditions for t to lie in QD-

However, since ft, is concave in case (A-i), then neither (Dl) nor (D2) are satisfied.

Hence, it follows that in case (A-i) t3 C Q . Similarly, in case (A-ui) we have that

5t, > 0 and ft2, is convex. Once again, neither (Dl) nor (D2) in Lemma 2.6 are

satisfied, and we have that t3 E Q%. A similar argument can be given for case (B) as

well to conclude that if t2 E D, then t3 E Q . This implies that pt, > es. Therefore,

similar to case (a), it follows that

Vt3 < (1 - C) t2.(2.49)

Combining cases (a) and (b), and since Definition 2.2 implies that there is a finite T

such that T = max{t3 - t 2 , t2 - t1}, for any t1, we have that

Vt1+ 2 T (1- c) Vt. (2.50)

Since t1 is arbitrary in all of the above arguments, Eq. (2.50) implies uniform asymp-

totic stability of J= 0.U

Parameter convergence is established in Theorem 2.3 essentially by showing that

Vt decreases by a finite amount over each interval 2T. Twice the period of persistent

excitation, i.e 2T, is required for this decrease to occur due to the possibility of

adaptation to be stopped. The proof of Theorem 2.3 shows that a fraction of 2T

is required for the parameter estimate to leave the deadzone while the remaining

fraction is required for the parameter to decrease by a finite amount. In particular,

case (b) shows that for any t1 , it is possible for pt < c, Vt E [t 1, t 2 ], and pt >EP

at t = tP2 + 1, where tP2 C [t1 + 1, t1 + 2T - 1], which results in AVt to decrease

at time t
P2 + 1. Conditions (NLP-II) and (NLP-I) are needed to establish that pt

becomes greater than or equal to e, at tP2 +1, and that V decreases at t 2 , respectively.
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Since both properties are required at the same time instant, conditions (NLP-I) and

(NLP-II) have to be satisfied by f(#t, 0) at the same time instant t,. As mentioned

before, parameter convergence in LP systems does not encounter the presence of a

deadzone. As a result, case (b) is not relevant and therefore the period over which

V decreases coincides with T, the period of persistent excitation [38]. We also note

that, by choosing a projection algorithm as in [6] instead of the parameter update for

Ot in (2.37), we can relax the requirement that Ot belong to ® Vt to the requirement

that Oto be in &

The above discussion illustrates that for parameter convergence to occur, peri-

odically pt must become sufficiently large, which also implies that periodically, the

gradient solution for wt is invoked. While such a gradient feature is necessary for

parameter convergence, it should however be emphasized that the gradient algorithm

alone cannot guarantee stability of the estimation process. The min-max component

is essential to guarantee stability. The discussions in this section merely illustrate that

the gradient component of the min-max algorithm has to be activated periodically

for parameter convergence to occur.

2.5.2 An example of NLP-persistent excitation

By comparing the results derived for the continuous-time estimation algorithm in

Section 2.3 with the discrete time version in Section 2.5.1, we see that they are

analogous to each other. The results for both cases state that the NLP-PE conditions

consist of two parts. The first is similar to persistent excitation conditions for linearly

parameterized systems, while the second one imposes an additional requirement on

the sign of the estimation error and the curvature of f.

In this section, we illustrate the similarity between the discrete and continuous

time versions of the algorithm. We show that in a discrete systems with the same

type of nonlinearity as studied in Section 2.4, the same type of input will be NLP-

persistently exciting. The example system is given by:

f g=-ST (2.51)
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where q$: N -± R", 0 E 8 c JR". The following definition states the desired property

of the probing signal q.

Definition 2.4 Let w c l" be any unit vector. A bounded function qS: N -+ k" is

said to belong class K" if for any ta > to, there exist positive constants 60 and T, and

a time instant t, C [t + 1, ta + T] such that

Definition 2.4 states that, periodically, the vector # should have a positive compo-

nent along every w in IR". This is more restrictive than the linear case requirements

in Definition 2.3, since the latter requires q to merely have a nonzero component

periodically along every vector in 1R". An example of a function that belongs to class

K 2 is

= [sin vt , cos Vt ]T(2.52)

Since such a 0 represents a rotating vector JR 2 with a constant angular velocity, it

follows that it aligns itself with every w in JR2 periodically.

Lemma 2.7 For f defined as in Eq. (2.51), 5 E K" implies that # is NLP-persistently

exciting.

Proof: For any 02,01, and ti, Definition 2.4 implies that ]t. > t1 such that

(02 - 01) > 0. Then, there there exists a unit vector u E R"

U =-02- 01 sign 2t(02 -01)). (2.53)|02 -01|

From Definition 2.4, it follows that, given rta, ]tp > ta such that [u> e. From

the choice of a in (2.53), this implies that

|f (t,,02) - f (t1,,0 1)| = e- 2 e1 - (0

> e-Me-j 60162 - 01
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SEf 102-- 01 11

where M max110 sup 1#t j, r = max 1102 -0111 sup Hq0tH, and Ef -Mr
OE)t02,O1eOt

Therefore, q satisfies (NLP-I).

Since f in Eq. (2.51) is always convex for any q and 0, we only need to show that

q c K' implies that # satisfies (NLP-IIa). From the choice of u and Definition 2.4,

it follows that

sign (#7 (02 - 01)) = - sign (K (02 - 01))

and hence,

sign (f (st,, 02) - f (tq,, )1 = sign (1 - e >(2--1) -sign ( - ea(02-1)

for any ta, establishing that q satisfies (NLP-II).

2.6 Concluding Remarks and Future Work

The parameter convergence of the min-max estimator was enabled by studying an er-

ror model of the form of (2.10) and imposing conditions of NLP-persistent excitation

on f. The NLP-persistent excitation conditions were presented for both the continu-

ous and discrete time versions of the min-max estimator. The derived conditions are

analogous in the two cases, and each contain two components. The first component is

analogous to the persistent excitation conditions for linearly parameterized systems.

It requires that the estimation error f/= f - f be periodically large if the parameter

error is large. The second component of the NLP conditions couples the sign of the

estimation error f and the curvature of f. In essence, the second component states

that the estimation error and the curvature of f must be such that the gradient part

of the min-max estimator is periodically activated.

It should be noted that the same error model and therefore the same conditions

under which parameter convergence results is applicable for a fairly large class of

problems of estimation and control. For example consider a plant and controller
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given by

X =Ax+b(u+f((,O))

u = --f(, )+r+aT x-asat((x X-Xm)) (2.54)

where 0 is unknown, is the estimate of 0, Xm is the desired state for x with r as a

reference input, and (A + b aT) is asymptotically stable. The same condition as in

Theorem 2.2 enables the convergence of 0 to 0.

Several extensions of the above approach remain to be carried out.

1. Extensions to the case when f is general will most likely have to exploit similar

features in the min-max algorithm such as those used in the proof of Theo-

rems 2.2, 2.3. q may have to behave such that the regions in the parameter

estimate-space where the gradient features are invoked are visited more often

than others so that the parameter errors continue to decrease to zero.

2. The class of q's that are NLP-persistently exciting for a general f is yet another

question that remains to be addressed. Such a characterization may be difficult

to obtain and may be obtainable perhaps on a problem-by-problem basis.

3. Since the results derived in this section for concave/convex parameterizations

assume that 0 is a vector, the results are valid when both linear and nonlinear

parameters are present in the system by treating the linear component as an-

other concave (or convex) parameter. However, if any of the parameters occur

linearly, by making use of the linearity, it may be possible to relax the persistent

excitation requirements of the underlying 0.

41



Chapter 3

Adaptive Control of Nonlinearly

Parameterized Systems with a

Triangular Structure

3.1 Introduction

One of the most common assumptions made in the context of adaptive control is

that the unknown parameters occur linearly, and appear in linear [38] and nonlinear

systems [24, 32, 45, 46]. Recently, a new approach has been developed [2, 34, 29, 3]

to address nonlinearly parameterized (NLP) systems and their adaptive control. The

main problem that is introduced due to nonlinearity in the parameterization is the

failure of the gradient approach. Whether viewed from an optimization or a stabiliza-

tion view-point, the gradient scheme is a powerful and simple procedure for adapting

the adjustable parameters to cope with parametric uncertainty. When parameters oc-

cur linearly, the gradient scheme is sufficient to minimize the underlying cost function

related to the parameter error; the gradient scheme guarantees a quadratic Lyapunov

function leading to global stability. These properties are not sufficient when parame-

ters occur nonlinearly. The approach in [2, 34, 29, 3] outlines the construction of an

alternative strategy for generating adaptation laws that guarantee stability. In [2], it
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is assumed that the underlying parameterization is convex/concave which is made use

of in constructing a quadratic Lyapunov function. In [34], the results are extended to

include general parameterizations. In both cases, it is assumed that state variables

are accessible and that the underlying class of nonlinear systems are of the form

X, =AXp +b(f (#(t),)+ u) (3.1)

where f is a scalar nonlinearity in the unknown parameter 0, can be globally sta-

bilized. In [29], the class in (3.1) is extended further to include a special class of

systems where matching conditions [51] are not satisfied. These systems are second-

order, have a triangular structure, and are of the form

n

±i (t) = X2 (t) + ZAf (Xi(t), Oi)
(3.2)

x2 (t) = fo(x, O.) + u(t)

where x = [XI, X 2 ]T, XI, X 2, and u are scalar functions of time, a-i, Oi, and Ojo are scalar

parameters which are unknown, and fo: R 2 x a - IR, f: R x R- -+ R, i =1, ..., n.

Global stabilization and tracking to within a desired precision is established in [29].

In this Chapter, we seek to generalize these results to systems with a triangular

structure and are of arbitrary order. These systems can be described as

1i 71 (X2) + fli(X 1,01)

X2 = 7 2 (X3)+ f 2 (xi,X2 ,02 ) (3.3)

Xn = u+ifn(x1 ,c 2 , ... ,xl,On)

where x = [x, X 2 ,. . .,xn]T E R', Oi c R", and Oi are unknown parameters. The

goals are (i) to stabilize the system at the origin, (ii) for x, to track a desired trajectory

Xd1, and (iii) establish robustness with respect to bounded disturbances di. In all

cases, it is assumed that the states are accessible, and that the unknown parameters
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belong to a compact set ®m) in IR"

Since the "matching conditions" are not met, a static output-feedback lineariza-

tion controller (see [40, 23, 49]) is not applicable. Hence, some form of dynamic

output-feedback linearization is required to control the system in (3.3). In addressing

this problem, there exist a number of results relevant to certain forms of the general

class of systems described in (3.3). In the case that the functions fi, i =-1, . . . , n are

linearly parameterized, [46, 32, 31] present techniques for designing a stable adaptive

controller. However, since the presented results depend on the fact that the param-

eterization in the system is linear, they are not directly applicable to the nonlinear

parameterization we consider here. Set point regulation is considered for nonlinearly

parameterized systems in [36]. Since [36] considers only the output as measurable, it is

assumed that the parametric nonlinearities depend on the output only. A self-tuning

controller is developed for the case when the bounds on the unknown parameter are

known, but parameter estimation is not carried out. Dynamic input-output feedback

linearizaton controller is developed in [48]. By using a dynamics sliding surface ap-

proach, this controller is robust with respect to bounded parametric uncertainties,

and guarantees output trajectory tracking to within a set precision. However, it does

not employ parameter estimation techniques. In [22], only local results are achieved

for nonlinearly parameterized systems.

Both nonadaptive and adaptive controllers are proposed to accomplish the stabi-

lization. In the nonadaptive case, global boundedness is established by making use of

bounding functions that are independent of the unknown parameters. The bounding

function approach in this case is similar to the techniques used in [48, 31]. In the

adaptive case, the controller proposed provides a stability framework for estimating

the unknown parameters. For this purpose, in addition to a bounding function, func-

tions generated using a min-max optimization problem are introduced in the adaptive

controller, as in [2].

The Chapter is organized as follows. In section 3.2, we present the adaptive

controller for systems in chain-form which is a special case of (3.4). The structure of

the controller as well as various properties of the closed-loop system including global
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stability, tracking, and robustness to bounded disturbances are established in Sections

3.2.3 - 3.2.5. We also present in section 3.2.6, extensions of systems in chain-form to

LNL systems [30} and n coupled second-order systems are discussed. A simulation

example is included to illustrate the controller performance in Section 3.2.8. Finally,

in Section 3.3, we present the stabilizing controller for systems in general triangular

form. Concluding remarks and future work is presented in Section 3.4.

3.2 The Adaptive Controller for Systems in Chain

Form

We first address systems that are of the form

Z1= z2 + fi(zi,O0)

2 =Z 3  (3.4)

Zn =U

where 0 is unknown, and z's and 0 are scalars.

A few preliminary definitions and lemmas are stated in section 3.2.1. A controller

structure is proposed and its rationale is discussed in section 3.2.2. In section 3.2.3,

the complete controller is presented and its stability property is stated and proved.

3.2.1 Preliminaries

Definition 3.1 A function g(0) J:R - JR is said to be (i) convex on a compact set

e in JR if VOI,0 2  & it satisfies the inequality

g(A0 1 + (1 - A)0 2 ) <; Ag(0 1) + (1 - A)g(02) (3.5)
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and (ii) concave if V01, 02 E E it satisfies the inequality

g(A01 + (1 - A)02) > Ag(0 1) + (1 - A)g(02) (3.6)

where 0 < A < 1.

A useful property of these functions is their relation to the gradient. When f(O)

is convex and differentiable on 8, then it can be shown that

f (0) - f (0o) VfOO(0 - 00 ) VO,0o E e (3.7)

and when f(0) is concave on 0, then

f (0) - f(0) VfOO(0 - 00) VO,0 0 E Ea(3.8)

where Vfo, 1 = 0

The following lemmas are useful in the development of the adaptive controllers.

Lemma 3.1 Let 0 be a compact set in R specified byE [= 0]. For a given

0 E , let

J(w,O0) = 0 [f (0,90) - f (0,/j) + W(O-O0)] (3.9)

ao = mi nmax J(w,O0) (3.10)

to = arg min max J(w,0) (3.11)
wEIR OGee

where 0 and q are known quantities independent of 0. Then, given $ and /, and

defining g(0) = sign(#)f (b, 0),

0 [frn~1 -1r+ "" -min( 0)],
- 0

ao = if g(0) is convex on 8 (3.12)

0 if g(0) is concave on 0
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ffmax - fmin if g(0) is convex on 0
WO = # - -(3.13)

Vf? if g(O) is concave onO

where f= f(, ), fmax = f (#, #), and fmin = f ($,$6).

Proof: See [2, 34].

Lemma 3.2 Let a, e be arbitrary positive quantities, and let >max > a. For a given

0 E c JR, let ao and wo be chosen as in eqs. (3.10)- (3.11) with / = amaxsign(z),

z E JR. If |zj c, the following is then true Vq and VO £ 0, whether f(q, 0) is

concave or convex on 0:

z {a [f (q, 0) - f (q, 0) + (0 - 0)wo - ao sat (z) < 0 (3.14)

where the function sat(.) denotes the saturation function.

Proof: See [29].

In what follows, the notation x = [x] c R is used to represent a vector in R"

whose components are xi, i = 1,...,n. Also, the function o(x) :IR -- + R'" is used

to denote the unit vector acting in the direction x, and is defined as

,x 114 > 0

oH(X)=(3.15)

0,)|114|= 0

We now state the definition of a Bounding Function and its key property in Lemma

3.3.

Definition 3.2 Let x, z E JR, and f :JR x JR -+ JR. Then, F(x, z) is said to be a

Bounding Function of f (x, 0) with respect to z with a buffer Jf if

F(x,z) = -(z)(max f(x,0)|+6f) (3.16)

OF
It should be noted that this definition implies that = 0 when z J 0.

az
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Lemma 3.3 If F(x, z) is a bounding function of f (x,0) with respect to z with a buffer

6f > c, then for any y, all 0 C e, a compact set in IR, and all jz| > 0 the following

holds:

o(z) [f (z, 0) - F(z) + esat(y)] < - (f - c) < 0 (3.17)

Proof: Substituting (3.16) into (3.17) it follows:

o-(z) [f (z, 0) - F(z) + csat(y)] cr(z)o(f (z, 0)) If (z, 0)1 - maxf (z, 0)1 - 67 +ccor(z)sat(y)

If (z,) -maxIf (z,) - 6f + < 0

due to the choice of Sf > c.

We now define a Bounding Function F(x, z) when x and z are vectors in lR'.

Definition 3.3 Let x, z C Rn, and f(x, 0) : R x R" -± R. Define f : 1R" x 1 -

R, the components of R: x R -± R", as

f7(x;mz) =c-(z ) (maxfi (x,0)+ 3f) i= 1,...n (3.18)

The values f,, i = 1,...,n are the components of the vector f c tR. Then the

bounding function F(x, z) of f(x, 0) with respect to z with a buffer 3 =[67] c CRY,

is defined as

F(x, z)= uzuf7 (3.19)

where uz = o(z).

Similar to Lemma 3.3, the key property of the vector bounding function is stated

in Lemma 3.4.

Lemma 3.4 Let x, y, z E R, uz = a(z), c = [i] E GR'. If F(x, z) is a bounding

function of f(x, 0) with respect to z with a buffer cf = [s] such that ef, > Ec, then

for any y and all 0 £ 0, a compact set in R"', the following holds:

uf [f(z, 0) - F(z) + eT sat(y)] 0 (3.20)
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where sat(x) = x for all |x| K 1, and sat(x) = sign(x) for all jx| > 1.

Proof: From (3.19), it follows that ujF = =Ui uf 747. Thus, by using eq. (3.18),

(3.20) can be expressed as

Uf [(f (z,o) - F(z)) + ETVI fUz fi - ou(z )max fi(x,O0)1 + c sat(yi) - o-(zi)cf)

= Uzu (o(zi)f (z,o0) - maxIf (z,0) - (cf - c-(zi)sat(yi) ci)

E)uztI Iff(zo) -yx~f(z, O)1 - (ep -)E) <0

due to the choice of c.

In order to ensure the continuity of the proposed adaptive controller, a smooth

bounding function is required. The following definitions and Lemma 3.5 serve this

purpose.

Definition 3.4 A smoothing function S(z, E) :1R0 x JR _ _IR, is an (n-1) times

differentiable odd function which satisfies the following:

o(S(z,c )) =a(z)

S(z,E) = (z) Vz ;> E>0 (3.21)

IS(z,) I 1

One example of S(z) is a sat(z) function with smooth corners.

Definition 3.5 F(x, z, c) : JR x JR x JR - JR is said to be a smooth bounding function

of f(x,0) with respect to z and a buffer cf if

F(x,z,E) = S(z,c) (maxlf(x,0)+6f) (3.22)

Analogous to Lemma 3.3, we state Lemma 3.5 for smooth bounding functions. A

corresponding Lemma can be stated for smooth vector bounding functions as well.
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Lemma 3.5 If F(x, z, 6o) is a bounding function of f(x,0) with respect to z with a

buffer 6f > 6, then for any y, all 0 C 0, a compact set in ]R', and for all jz| > co,

the following holds:

a(z) [(f (x, 0) - F(x, z, co)) + JS(y, co)] < - (6f - 6) < 0 (3.23)

Proof: The proof follows straightforwardly from the definition of F(x, z, Eo) and is

similar to the proof of Lemma 3.3.

3.2.2 The controller structure

This section outlines the basic ideas behind our approach to designing a controller

for the system in (3.4). In [29], we have derived a stabilizing controller for (3.4)

when n = 2. The question therefore pertains to the complexities introduced by a

higher order system. This section discusses these complexities, and how they can be

addressed, with the starting point being the approach taken in [29]. The specifics of

the controller realization are then presented in section 3.2.3.

Briefly, the results in [29] are as follows. The system under consideration is of the

form

Z1 = z2 + fi(zi, 0)

Z2 = u (3.24)

and the goal is global stabilization using u when 0 is unknown. The main obstacle

here is that the dynamics of z, are not under our direct control. Rather, the control

input is passed through the integrator, which introduces an inherent time lag and can

potentially destabilize z1. We overcome this by choosing errors eo and e such that

when el - 0 it assures that eo - 0. The task that remains then is to choose a u such

that el tends to zero. In particular, a choice of

eo = Z1, ei= z 2 +g 1 (zi, eo) (3.25)
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leads to error equations

CO = ei+fi(ziO)-gI(zi, eo)

ei = a+f 2(z 2,o) (3.26)

where

Og Og
f2 = (z2 + fl) + (ei + fi - gi)

Ozi aeo

By making gi a bounding function of fi with respect to eo, we essentially stabilize eo

in the absence of el. To choose u such that el -+ 0, especially due to uncertainties in

a nonlinear parameterization, the min-max algorithm as in [2] is used.

A direct extension of this approach to higher dimensions requires appropriate

characterizations of n errors, ej, j 0,1,..., n - 1. The basic idea is to define these

errors in such a way that if ej -+ 0, it guarantees that all errors ej, j = 0,..., i - 1,

tend to zero. Let us assume that the errors are of the form, as in (3.25),

eo = ziI ej = zj+1+ gj(zi,..., zi, ei-_), j = 1, ... , n - 1 (3.27)

Suppose that these errors satisfy the relationship, as in (3.26),

og = ej+1 - ej-1 + fj+1(Zi. .. , Zj, ) j+1 (Zi .... , e) j = 0,.... (3-28)

en-1 = U-+ fn(zI,...,ziO) (3.29)

where e- 1 = 0, for suitably defined f3 and gj. The advantage of the structure in

(3.28)-(3.29) is apparent if gi is a bounding function of fi with respect to ei- 1 , since

the latter leads to the property

(fi+1 - gi+1)o-(ei) ; 0
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This follows since

n-1

V = E e (3.30)

yields a time derivative of the form

n-I

V= S [e, (e±i - ei-1) + ci (fi+1 - g-+1)] + en_(u + f) < enl(en-2 + U + fn)
i=0

which suggests that V is a Control Lyapunov Function for (3.28)-(3.29), leading to

global stabilization.

The question that arises is if indeed errors ej an be constructed as in (3.27) so that

they satisfy (3.28)-(3.29). This is answered by the following recursive relationships:

eo -zl

el z2 + 9 1 (z 1 ,eo)

e2 = -0 + z3±+g 2(, z2,e1 ) (3.31)

ew = ei-2 + Zi+1 + 9(ZiI... , zi, ei_1) n -

where z,,+, = u,

g% (zi,.., zi, ei_1)

ko(zi)

ki(zi)

= ki_..1 (z1, . . . , zi) + hi_1 (z1 , . . ., zii, es_1) j = 1, . . . , ri --(1.32)

= 0

= z2

(3.33)

27 = 2 ...,n --ki (98k%-_1 j -1 hi_1j~= k+Zj+i++,
j=1 j=1 0 zJ

=0; ho (ziO ) = f(zi,O);

( ki_ 1 9hi_1= hi-2 + + fi(zIO)
0z1 &zi

i=1,...,n-1 (3.34)
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with hi(z 1,... , zi, ei) as bounding functions of h with respect to e, so that

(hi -hio)u(e) < 0 i= 0, ..I , n - 2. (3.35)

Og -
Suppose we assume that O = 0 for all e _1 and zi. It can then be shown that

(9ei-1

the errors ej satisfy (3.28) and (3.29) using the method of induction: Suppose (3.28)

holds for j i - 2, so that

e-2 = z + fi-i (3.36)

where

fi(zi . , z, 9) i k (zi,z... , z,) + hi(z 1 , ... ., zi 1 , 6). (3.37)

From (3.31) and (3.36), we have that

ei =zi+ 2 +zi + ki- 2 + hi-2 + (+Ok zk+
k=1 OZk k Zk

Oki-,1 9ki_1 Oh _ oi
+ z+1I + + fi(Z1i, ) + e_1

+_z(i 9z1  z /O ei_1

= zi+2+ ki + h- (3.38)

which establishes (3.28) for j =i. Defining z,+1 = u, we therefore have that (3.28)-

(3.29) hold for j = 0..., n - 1. This implies in turn that V in (3.30) is a Control

Lyapunov function.

The arguments can be extended to the case when 0 is unknown, by modifying V

in (3.30) to

n-1

V = l(Z 0+2) (3.39)

where j is an estimate of 0 and 0= 0- 0. As a result, we obtain that

V = en 1 (en-2+u+fn)+00.
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This suggests the following control strategy for u:

U = -fE(zi, z2 ,.. . ', Z,0) - 7en - e-2 - a*r(eni), 7 > 0 (3.40)

An = k _1 (Z1, . z) + hn_1(Zi, . . . ,Zn, 0) (3.41)(341

0 = -enW* Yn > 0 (3.42)

where a* and w* are solutions of the following min-max problem:

(a*,w*) = min max [fn-fn+(9-0)w] (3.43)

This leads to the relation

-n-2-

V = -meX 1 + e(fi+ -- gi + e_(fn -f n-0 w - at sign(en_1)J3.44)
.i=0

<;0

from Lemmas 1 and 3, from the fact that gi is a bounding function of fi, and the

choices of a* and w*. Therefore e, i = 1, . .. , n - 1, and 0 are bounded. The recursive

relationship between e's and zi's in (3.31) implies that all zi's are bounded. Barbalat's

lemma then implies that e's and therefore z's tend to zero as t -* oc.

Obviously, the above controller is predicated on the assumption that 2 = 0

for all e_1 and zi. Such an assumption cannot be guaranteed since the bounding

function gi includes a signum function of eo, and each gi is recursively defined, for

i = 1, .. . , n - 1, using g, and its higher-order derivatives. In the following section,

we show that this difficulty can be avoided by using a smooth bounding function and

that stability and asymptotic stability to within a desired precision c follows.

3.2.3 A continuous controller

The controller in (3.40)-(3.41) is not defined, since it contains the derivatives of the

u-(-) function. We now demonstrate how, by replacing the o-(-) function by the smooth

S(-, c) function (in Definition 3.5 a continuous controller can be derived that guaran-
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tees all solutions converge to within a desired precision C.

In order to develop the continuous controller we modify the definition of the

recursive functions k. and hi in (3.33) and (3.34) as follows:

ko(zi, eo)

ki (ZIz 2 , eo)

ki(zi, . , z+1, eo, e,-,)

(Yho:)ho
Oz, + ieo Z

2 Ok>1  i-2 O
= kz- 2 + Z + Oi, zj+1 + Oi,(Zj+2 + kj)

=~~ 3=az ±i±Z02l(±k
3= j= 3

Zj (z++1+ ),

z =2,..-., n -(3.45)

h = 0; ho(zi,6) = fi(zi0);
= h 2 -~( k>_1 Oh>_11, 0)-2 + (11z, + O1 , )0) +

Z OZi/
i-2 (Oki-,+ OF>1Ihj + h _1,
j=O 0e 09ej 9e

z = ,. . n -1 (3.46)

In (3.45) and (3.46), hi(zi,.. . , z , e- , ) i) are chosen as smooth bounding functions of

hi, with respect to ej, with buffers 6f such that 6jf >E, and 6h > 6 i-1 + E+ for

i = 2,... , n - 2, and

e = ei - E sat(e /ei), S> , i=0,...,n-1

The continuous controller is given by

U = f (ZiZ2, .... ,ZOe0....,C)Oen)l) -4en_1 -- 'a2 -- *S(en-1, 6), 7 M318)

A = k- 1 W(Z . . % Z L>0e (3.49n-2) + h)1(zi, ... , zn_1, e,)... , en_1)

0 -e-e _ * 7n> 0 (3.49)
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where a* and w* are chosen as in (3.43). The stabilizing property of the controller in

(3.45)-(3.49) is given in the following theorem.

Theorem 3.1 The controller defined by (3.31), (3.32), (3.43), (3.45)-(3.49) results

in global stabilization of the system in (3.4) at the origin, and each |z(t)| tends to

ci ci as t -+ oc for some constants ci, i =1,...,n.

Proof: With the functions in (3.45) and (3.46), by proceeding in the same manner as

in section 3.2.2 that the errors e defined in (3.31) can once again be shown to satisfy

the equations (3.37) and (3.38) for i = 1,..*. , n - 1, where zn+ 1 a= . Choosing

= n-1

V 5= ( e'2 &+2) (3.50)

d(2
and using Eqs. (3.31), (3.38), and (3.49), and the fact that (e2 =2e' et, we

obtain a time derivative

V = e'(ei +fi -gi) + e (ei+i - e- + fi+1 - gi+i) +e'(u+f) -Oeil)

Substituting the control law from (3.48) into (3.51), we have

V = e'(e 1 + fi - gi) + e'(e'+i - e'-, + ei+ 1 sat(yi+1) - ei-isat(yi1) ± f+ -9+

en- 2 en - nle-1 n-I + e'_1 (fn - n- *- S(n_1,C))

where yj ei/Eq. Therefore,

V < -ye'2_ + e' (ei + fi - gi + cisat(yi)]
n-2-

+ [e' (fj+i - g+ 1 + e+Isat(y,+1) - ei-isat(yi1))]

Since 6f, ;> ei and f, > Ei-1 + E+j and fi and h are bounding functions of g and

hi, with buffers 6fo and 6f, respectively, it follows that the second and third terms

are nonpositive. Hence, V< 0. Since e' are bounded and gi are bounded functions of
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their arguments, zi are bounded, which, by Barbalat's lemma implies that all e' tend

to zero. This means that all leiI tend to ci, which in turn, sets the bounds on all zi. e

3.2.4 Tracking

We now discuss the tracking problem related to (3.4). Supppose the goal is to find

u in (3.4) such that the state z, tracks a desired trajectory zd(t) asymptotically. We

assume that zd is sufficiently smooth, so that Zd, z(2), .. ,I' ) are bounded.

The requisite controller that accomplishes tracking while ensuring globally bounded

signals in the closed-loop system is very similar to Eqs. (3.48)-(3.49). The following

equations specify the adaptive controller in this case:

e0 Z- - Zd

l Z2 +g1 (ZeOZd (3.52)

ei =ei- 2 + zi++gi(zi,...,ziei ) -z , -

where

9i(zI) I --- Zi, ei-1)

k0 (z1)

ki(zi)

ki(zi,...zi+, t)

= ki-1(z1, .. -- ,Zi, e0, .. - - 6i-2)t + )i- (Z1, --- ,Zi-1, ei-),

t= 2, ...,n - 1I

0-o
= z2

Ski- 2 +(zi-z )+1 ) + O +k1  + z Oh z1
j=1 Oz j=1 Oz

i-2 + + (j±1))
-1 (+2 ±+2 - Zj+ S h

j=0 L%13 j=0 Oe

Ohi-
_ ezj++2

j=i1Oz j) d
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h-, = 0; ho(zi, 0) = f,(zi, 0);

hj(zi,. .. , z, O)= hi-2 + (k + ah fi(zi, 0)+Bz1 i z,)

hE (ih+ + h, ,
j=0 Oj1

(3.53)

where h,(.) are smooth bounding functions of hi with buffers 6f, such that 6f, > 60,

and 6f, > E + 6i+j for i = 2,... , n - 2, and the control input is given by

U E (ziz2,...,z,)-en1 - e' 2 -a*S(e,6) + z (), > 0

fn = kn_1(zi, .. ,Zn, t) + hn_1(zi, . .. , Zn_1, 0)

0 = 1 7n > 0

and a* and w* are defined as in (3.43).

The proof of stability with the above controller can be established in a manner

identical to that of Theorem 1. It can be shown that the errors e- satisfy the equations

=z' ±+2 + fi+1 - Z (+

and that V as in (3.50) is a Lyapunov function. Barbalat's lemma and the definitions

of the errors can be used to show that eo(t) tends to zero as t -+ cc.
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3.2.5 Robustness

All of the above results can be extended to the case when bounded disturbances are

present. For example, if (3.4) is modified to

I = z2+fi(z,70)+d

2 Z3+ d2 (3.54)

n = u+dn

where 0 E a compact set in R. Global boundedness can be established under the

following assumptions. (1) di, i = 1, n - 1, are bounded and an upper bound dimax is

known, and (2) dn is bounded.

Robustness for a second order system

We first consider the system in (3.54) when n = 2. The requisite controller is chosen

to be of the form

eo = Zi (3.55)

el = z2 +91(zi,eo)

where g, is such that

(fi - g, + di)cr(eo) < -cf < 0

and

U - -(9Dz+, z 2 - S(e,e) Dz + edi
Dz, + f,- e- ziS(eo

(9l+ a f - ee - eo - a*S(el, c)
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where [d1I dmax and

o = -oo- e'w* (3.58)

and (a*, w*) are mim-max solutions from (3.43) for f O +&e ,9qI

That the controller specified by eqs. (3.55)-(3.58) leads to global boundedness can

be shown by noting that

eo = e 1 +fi-g 1 +di

ei = u+d 2 +(> + )(z 2 +f+d 1)

and that for V = -(e'2 + e +20), V< 0 in D' where D is a compact set in the
2

(e', eI, 0) space. The details are deferred to the nth order case discussed below.

Robustness for an nth order system

We now state the controller that ensures robustness for the nth order system in (3.54).

Theorem 3.2 With the errors defined as in (3.31), gi, ki, and hi as in Eq. (3.32)

with Ti as a bounding function for hi +hd, with respect to e1 and a buffer dim,. +a6,+

ei_1 +ei+1, i=0,...,n-1, where

ki_1 - 2 &ki1 i-i (Ohi_ _ah_hd = di1E+ &z + ed+1+ d + d+1 (3.59)
j=1 y _oj=O Ie _j=1 Izy 0ei

and 6-i = E, = 0, choosing the control input u as

U = -- fn (ZiZ2, . . . , Z,0)-ye'_ -- e'_ 2 , Y > 0 (3.60)

when 0 is known, or

U = -fn(zI, z2,.. . ,z, 0) - ye' 1 - e'n- 2 - a*S(en-1, c), 7> 0 (3.61)

n= e' * - (3.62)
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when 0 is unknown assures that e -0Oas t - cofor all i=,..., n - 1.

Proof Using the method of induction, and the proof of the above theorem for

n = 2, it can be shown that if ei-2 satisfies the differential equation

i-2 =Zi +f- 1 + dz_ 1, for i =2,...,n--1,

then,

ei=Zi+2 + fi+1 + di+, z = 2,".. n - 1

where z+, = u.
In-1

Case (i) 0 known: Here, for V = 2Ee2
i=O

V = e'(e'+f+ - gi + cosat(y))+e 1(u+f+d)

n-2 n-2

+ I ei di+ 1 ±> +(e±1 - eiy + e-+1sty+ 1) - 1 ay1i) -- 9z+ +i
i=O

n-2

=-S e' (fi - gi+ + di+1 + ci+ 1sat(yi+ 1) -- i-sat(yi-1 ))
i=o

+n-n2'-1 + e's_1 (-'ye'j - e'- 2 + da) (3.63)

where y e/Ec. From the choices of gi and hi, it follows that

(hi - hi + h + ci+ 1sat(yi+1) - ci-isat(y&_1) a(ei) < 0 i = 0,.n. . , -(3.64)

Therefore, we have that

n-2

e5(fi+1 - gji + ci+ 1sat(yi+1) - ci-lsat(yp_1) + di+ 1) -6f leIl.
i=0
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Hence, Eq. (3.63) can be written as

n-2

Z=0

K 0 V4(e,....,e'_1) E Dc (3.65)

where D is a compact set in the (e8 ... , e'-1) space.
n-1

Case (ii) 0 unknown: For V = (e' + J2), using (3.61) and (3.62) and proceeding
i=0

as in case (i), we have

n-2

V -z 6e+ - ±'- + le'_idnm + e'X_ (fi - P + *- a*S(en_1 , c)) - o6
i=O

< 0 V (eo,' ... ,e's 1,O)cEGDe (3.66)

where D is a compact set in the (es,.. . . , e' 1 , ) space containing the origin.

Therefore, in both cases (i) and (ii), global boundedness follows.

We note that the choice of g 1 in (3.56) differs from the choice of the bounding

function as in (3.35). However (3.56) can be satisfied using a similar procedure by

choosing the buffer to be dimax + Jf.

In the above discussions, we have used a a-modification scheme to update #.

Similar adaptive laws such as a dead-zone, and e-modification schemes [38] can also

be employed to result in global boundedness.

3.2.6 Control of L-N-L systems

A special class of chain-form systems has three systems in cascade, which include

Linear dynamics, followed by static Nonlinearities, and Linear dynamics, and referred

to as LNL systems [ref.?]. One such form is given by

"(m) = f(z,0)

Z () = U(3.67)
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where the unknown parameter 0 lies in a compact set in IRP and the goal is to stabilize

this system and enable x to track a desired trajectory. Eq. (3.67) can be considered

to be an extension of (3.4) with zi in (3.4) replaced by an mth order system with

an output x. In what follows, we present a stabilizing controller for the case when

m is arbitrary n = 1. The approach presented can be extended in a straightforward

manner to include the systems where n > 2. Define

e0O D(s) x()dT

e = D1(s)[x]+g(z,eo) (3.68)

where D(s) = s' + as"'-1 + ... + am is a Hurwitz polynomial, D1(s) = D(s) - s"

and g(z, eo) is a bounding function with a buffer 6f + co of f(z, 0) with respect to eo.

Then,

O = ei + f (z,0 ) - g(z, eo)

=i = U + (a, + )f(z, 0) + D 2(s)[x] + D1(s)[x] (3.69)
az 0e o  0eo

with D 2 (s) s(Di(s) - ais"-). The adaptive controller is designed as

U = -e' - - e' - D2 (S) [X] D1 (s) [x] - (a, + )f (Z, U)-a*S(ei, c) , Y > 0
_ z D Deo

= e'w* (3.70)

with a* and w* adjusted according to the min-max algorithm. This leads to a time

derivative of V = j(e' 2 + e' ) being nonpositive,

E< -le'1f - 7 e1,

indicating global stability of the system. From the definition of eo, if |eol -+ 6 implies

that the state x and all its time derivatives x(), i = 1,... , rn are bounded as well.

It should be noted that in order to be able to compute the control input u as in
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eq. (3.70), it is required that the inverse of always exist. Since g is a constructed
az

feature of the controller, and not of the physical system, it can be designed in such a

way that always exists.

3.2.7 n second-order systems in chain form

We consider in this section, yet another class of systems in chain form. This includes a

set of coupled nonlinear systems, each of which is a second-order system, and includes

nonlinear parameterizations. Such a class of nonlinear systems can be described as

21=x 2 ±f1 (xi,O)

Y2 - 3(3.71)

= U

where u, Xi E R, i = 1,... , n, 0 E a compact set 0 in 1W. The assumptions are that

(Al) xi, xi are measurable for i = 1 to n, (A2) fi(xi, 0) is bounded for all bounded

x1 and 0 c 0, and (A3) that xi = 0, Z = 1, . . . , n is an equilibrium point. The goal is

to choose a so that both stabilization and tracking can be accomplished globally.

We begin with the case when n = 2 in Eq. (3.71). The following controller can

be shown to lead to global stability, when 0 is known.

eo = x 1 +2Axi A > 0 (3.72)

el = X2 + 2A X",+g 1 (XIeo) (3.73)

C2 = eo+ c2 +ki(Xi, c2 , 1, eo) + 1(xi, eo, ei) (3.74)

k, = 2Ax 2 + 0  cc +± 0 (x 2 +2A Xi)

hi= 2A +7)fi
aeo)
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aki (9h . aki. aki
k2 = + jx 1 + x 2 + .X 2

\axi 0xIj Ox2  0,1

( 0ki Oh1 N aT
+YI+o + Oo) (X2+ 2A i) + Oei(X2+ k1)

h2 = . + + +1f,+ hi
9X O1 0eo 0e0  0e

-e' - F e'2-k 2 -h_2  (3.75)

where A and F are diagonal, positive-definite matrices in IRPXP and gi, T1, h 2 are

bounding functions of fi, h, and h2 with respect to eo, ei, and e2 with buffers 60, 61

and 62, respectively.

Theorem 3.3 The system in (3.71) for n = 2 can be globally stabilized by the con-

troller in Eqs. (3.73)-(3.75) and |xj\ tend to as t - oo for i 1,2, where
2Aj

A= Ai

Proof: From the choice of eo, it follows that

eO= x2 + fi + 2At 1

which can be rewritten, using the definition of e as

eo = e 1 + fi - g1 .

Noting that

ei = 2+ki+h,

a Lyapunov function candidate

1= 1(e'Te + e'Te')
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yields

V 1  =eo(f - I) + 'T(O+ r2 +k1 + hi).

The choice of gi and h1 as bounding functions of fi and h guarantees that

(Ui - 91) Te' < 60' l 3.6(I0 -g T g Oe~jj (3.76)

(h 1 -u) T e' 61e'H (3.77)

(h2 - T 2 )e' 6e2' (3.78)

From Eqs. (3.76) and (3.74), it follows that

1  e(e' + hi - K1) < eiTe' (3.79)

Equation (3.79) suggests that V1 needs to be updated as

V2  = 1+ 2 e2-2

Noting that

2= u+k2+h2

and using Eq. (3.75), it follows that

2  1 2 + e2 (-'1 -114)

< -6 e'2p2 <0 from Eq. (3.78)

which implies that |e tend to Ec, i= 0, 1, 2. This in turn establishes the theorem. *

As an alternative to choosing h3 as dictated by the bounding function, one can

estimate h3 and still ensure global boundedness. This is shown below:

Theorem 3.4 The adaptive controller given by eqs. (3.73)-(3.75) with g and 92
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chosen as bounding functions for fi and f2, and

h3 = h 2 (xI, Xi, x2 ,eo,ei,) - a*

Ci = -e27 *

where Ci GR' is the argument of f1, the ith element of fi, the ith element of a*

is aS(e 2 ,e), e2 , is the ith element of e2 , and a7 c JR and w< c R' are chosen as

min-max solutions of (3.43) for fn = f3, leads to global boundedness of the closed-loop

adaptive system.

Proof: Proceeding in the same manner as above, we can show that for a scalar

function

V = y'0o e'0 1 e'1 + e'2±2+ Z

where Oi = 6k - Cj, the time-derivative is of the form

P

V < -e'2 Fe2 + e'2 (h3 -- h3 - a*) -ZO i e 2 'i
i=1

-erT ±ZeS2(' (,C))-e 2 Fe'2 + h3 - h3 + 3- S(e2 , < 0
i=1

from Lemma 2. The definitions of eo, el, e2, and u imply that all signals are bounded.

A similar extension of the controller in (3.73)-(3.75) can be carried out for the sys-

tem in (3.71) for an arbitrary n using recursive formulations of errors e and bounding

functions gi.

3.2.8 Numerical example

Using the methodology discussed in the previous sections, we present here an adaptive

controller for a particular class of low-velocity friction compensation systems. Friction

compensation plays a important part in control of high-precision positioning systems.
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As with any controller design, accurate models of the underlying physical system are

required in order to improve performance. The model which we'll use incorporates two

features: compliance among the elements of the system and an accurate low-velocity

model of the friction force. The first feature allows for non-ideal transmission elements

by assuming small strains, and thus modelling them as linear springs. The friction

force model is based on evidence([5]) that, at low velocities, the friction force exhibits

such behavior which can be best characterized by a nonlinearly-parameterized model.

For this example, we employ the following simplified version of the model suggested

in [5]

F=Ksgn(±)e (") (3.80)

where ± represents the relative velocities of the bodies in contact, v, is the Stribeck

parameter, and K is the friction coefficient. Thus, we are interested in the control of

the following system

i1 = kxl (X2 - xi) - Kisgn(±i)e ( )2

22= u + k,1(X1 - X 2) (3.81)

For the sake of simplicity, we take the linear coefficients kx 1 and K 1 as unity. Fur-

thermore, the exact value of the Stribeck parameter v, is unknown, but it is assumed

to lie in the range of [vsmin vsm.]. The goal was to develop an adaptive controller

that can track a trajectory specified by xl, = 10 sin(t) in the face of pronounced

nonlinear effects.

First, we put the above system into the following form:

zI = Z2

Z2 = Z3 - Z1 - sgn(2)e<O X

Z3 = Z4

Z4 = u + (zI - z 3) (3.82)
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Then, using the strategies presented in sections 3.2.7 and 3.2.3 the following

errors are defined

e0 = 1 - X1d

el = eO0+FZ2- Xld (3.83)

e2 = el + z3 - z1 -ld + g(z2,)eI)

( 0) li 091
C3 = e2 + z4 - (- g1 (z2, )- Xi + Ogl (z3 - z1) + 0eg'(e2 - eO-- 91) + g2(z2, e1, e2)- l -9 (27el Xd 1Z2 Oei

The bounding functions gi and g2 are constructed as

9i = S(e1 , ei) (e-"minl ± 6j) 92 = S(e 2 , 62) (e-_minz 2 + ±+f2) (3.84)

where S(.) is an odd-powered fifth-order polynomial that satisfies the smoothing

function conditions given in Definition3.4, and b =1+ ± 9g

The values of all the dead-zone coefficients E, i = 0, 3 are set to unity, 6 f= =

2, and it is assumed that v, C [0, 200]. The adaptive controller is then chosen as

a = -e 2 - e 3 - z4 - (Z4 - Z2) - yJ f+ - a*S(e3, 63)

+s (4)=+-x'(3) + (38+Xd + ld 1++2 Xld± i

VS -e3 to1 (3-85)
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where

091

0ei

a2y(e2-i)91)-+ 0g(z3 -z)+0(V)g2 + 09))Bel aei OZ2 Oel Oei
y =

091 a92

Oei Oe2

091 091 091 0291 92 092
(e2-eo-9+-1)± + + 0 (z - z)± 0 +0z

(ei9ei(9Z2 z( ei(9Z2 .

-z2

K = 62- CO -91

e3 - C1 - 92

( 0

1 
f = a(z2) + yT

(3.86)

and a*, w, are obtained through the min-max algorithm. The above controller and

system was numerically simulated and the resulting positions are shown in Figure 3-1,

indicating satisfactory convergence of the system to the desired trajectory.

3.3 Adaptive Control of Systems in Triangular Form

In the previous section, we considered systems in chain form, given by Eq. (3.4). In

order to extend the controller presented in section 3.2.3 to the triangular system in

Eq. (3.3), one has to ensure that the presence of the nonlinearities -yi and the presence

of multiple unknown parameters O do not introduce any insurmountable difficulties.

This is indeed the case. A stabilizing controller with a few additional terms in the

functions ki, hi, and f7 can be constructed, and is shown below:
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Figure 3-1: Time behavior of the position of two system elements, z1 and z3. The E
bounds of guaranteed convergence to the desired trajectory are given by dotted lines.
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As before, the idea is to construct errors ej, i= 0, ... , n - 1, which are such that

if ej tends to zero, it guarantees that e1, j =0, . . , i - 1 tend to zero. These errors

are constructed as follows:

(3.87)eo = I

e ei- 2 + FI-1 (X2, . . . , xZ)7y(xz+ 1) + gj(x1 , . . . ,

where

gi= k_ 1 + h_ 1

io
k k 0 '-2f+ x+. x, (j) + Pf)+ix..-27- .+i, -47i

j= I j2 3

hi(xi, ,xi+1,,01, . 0.-. , +) = hi-2 + kE i+ f(zi . . Ok)

z -2 +I: fi XI x-

ig j-fj (XI, .. ., , )7i + Fifi+1(xi, . .. , i+1 , 02+().88)
=2

for i=2,...,-1,

Li = i-ia ,
?,2+1

with

ko = 0;

h_ = 0;

1o = 1,

ki =
Ox1

ho= fi( i,0);

e-1= 0,

and hi(xi, ... , xi+,) as bounding functions of hi with respect to e-, so that

(h -- h)o-h(e-) 0 i=0,...,n-1.
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The errors in (3.88) can be shown to satisfy the differential equations

e+= ei -- e-1 + f+ 1 - + (3.90)

where 7a = u, and

fi = k>_1 + hi_1, 12.

This suggests that the function V in (3.30) has a time-derivative

n-2 n-2

V = > ei(ei+1 - ei- 1) + Z e(f7, 1 - gj+1) + en- 1(Fu + fj) (3.91)
i=O i=0

From the definition of e_ 1, the choice of hi, and a choice of u as

U n-1 (-en-2 -ken_1 - gn) k > 0 (3.92)

it follows that V is a Lyapunov function.

An adaptive version of the controller is simply given by

(a?

= F-(-en-2 -ken_, - fn - a*a(eni1)) k

Ar = k_+a 1x,.,a5,.,n

fn = Z h n77(x,. O)n
j=1

hn-1 E hn (X,7 j)

j=1

a* =ZEa
j=1

,w) = min max [hn(x, QO) - hj(x, 9j) + (Oj - Oj)wj]

> 0 (3.93)

(3.94)

(3.95)

As mentioned earlier, the closed-form solutions to (3.95) can be found along the

lines outlined in [2, 34], with the solutions being considerably simpler when htt, is

convex/concave with respect to Oj. In addition, as outlined in Section 3.2.3, a smooth
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version of the controller in (3.93) can be obtained as

-(-en -- ke_ - - a*S(e c)) k > 0

by appropriately modifying the functions k and hi in (3.88).

3.4 Concluding Remarks and Future Work

The stabilizing controller proposed here requires the availability of two functions a*

and w*. These in turn imply that closed-form solutions of (3.43) are needed. These

can be constructed in a simple manner, as outlined in [2], when f, is a convex/concave

function of 0. Convexity/concavity of the underlying nonlinearity has also been ex-

ploited in [14, 41]. The computational burden increases when f, is a general function,

and is discussed in [34]. Special classes of functions fi which can be reparameterized

so as to result in concavity (or convexity) are described in [39]. For all such functions,

the controller proposed above results in global boundedness.

The proof of theorem 3.1 and the preceding discussions also demonstrate that

stabilization of systems in chain form can be accomplished without adapting to the

parameter 0, as was also demonstrated in [48]. Instead of estimating ft, as A, one

could simply construct yet another bounding function and stabilize (3.4). However,

the advantage of using 1, is that it enables the unknown parameter to be estimated

in addition to stabilization. Once such a stable framework is generated for parameter

estimation, conditions related to persistent excitation can be invoked to obtain pa-

rameter convergence. In Chapter 2, it has been shown that for a class of error models

of the form

e = -e+ f (,0) - f (,) - a*S(e,6 ) (3.96)

0 e'W* (3.97)

conditions of persistent excitation of q with respect to f for nonlinearly parameterized

systems can be derived so as to result in the convergence of the parameter 0 to 0 to
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within a desired precision c. It is worth noting that the error e, satisfies a differential

equation that is quite similar in form to that of (3.96). Hence, an extension of the

derived nonlinear persistent excitation results to the case of parameter convergence

using the controller presented should be quite feasible.

The stability result in Theorem 3.1 can be viewed as an extension of the parametric-

strict-feedback systems considered in [24] to the case when the unknown parame-

ters occur nonlinearly. Examples of such systems abound in several applications

[2, 3, 39, 12]. In contrast to the back-stepping approach suggested in [24], we use a

Bounding Function to generate the errors e in the system. We note that in contrast

to linear adaptive control where parameter adaptation is proposed at each of the ith

level of back-stepping [24, 46], we determine the adaptive laws at the final step so as

to generate a Lyapunov function. This enables us to achieve a stabilizing adaptive

controller without using over-parameterization of the controller.

We now present some possible avenues for further research. As was the case in

deriving the general triangular structure results, we present the preliminary ideas on

a much simplified second-order system of the form

X1 = x 2 +f(x 1 ,O)

X2 = U (3.98)

The hope is that the ideas presented for this case can be extended to the general nY

order system. Since for the results presented above, this extension was not a trivial

task, we anticipate that there will be a number of issues to be resolved.

The first topic is to attempt to extend the results above to the case when only

the output x 1 is available for measurement. Since the min-max algorithm of [2]

requires that the time-varying part of the nonlinear function f be measurable, the

time-varying part of the nonlinearity f must depend only on the output, just as in

the system considered in [36]. Let

e='X (Xi) (3.99)
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where F(xi) is the bounding function, and i2 is our estimate of x2 . Then, the system

dynamics can be written as

1 e - F + f
d F-

e = +F (X - i2 + f) (3.100)
d x,

Letting

d F
U = X1-e-dx2+Uf

dxz1
d F

X2= U+ X1 + e (3.101)
d x,

where Uf comes from the min-max algorithm ensures that V = 2 + e2 + y2 is a

Lyapunov function, and hence the stability and boundedness of the system. The main

reason this output-feedback was possible is because the dynamics of the unknown

state, X2 are entirely driven by u, and thus known. It is questionable whether this

simplistic approach can work in higher-order systems when the dynamics driving the

unobservable states depend on other unobservable states, and thus are not completely

known.

The second topic deals with the issue of the magnitude of the control effort re-

quired. From the analysis of the proposed controller and simulation experience, it can

be observed that the magnitude of the control effort is related to the magnitude of

the bounding function. The magnitude of the bounding function F depends on how

much information is available about the parametric uncertainty f. In the current con-

troller design procedure, the bounding function F does not depend on the estimated

parameter value 0. Hence, the magnitude of the bounding function F is determined

a-priori during the design phase, and does not incorporate the on-line information

gathered during the adaptation process. It should be noted that the magnitude of

a does benefit from the adaptation process, as can be seen in the fact that u does

depend on the on-line estimates of the parametric uncertainties. However, F does

not depend on these on-line estimates, and indirectly, some control effort might be
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needlessly exerted.

We propose that

e =X 2 + (3.102)

Using (3.102) to substitute for x2 in (3.98), and differentiating (3.102) we obtain that

S= e - F + f

=U+ t a2 + f)+- 0 (3.103)
Ox, Ox 1

Let

U = Uf-Xl-e 0- x2
Ox1  ax 1

O = -xiw1 - ew2  (3.104)

with uf obtained from the min-max algorithm, and w1 , w2 are to be specified. We

OF
note that the first term in the product f2 (xi, 0,0) Ox1 f depends only on mea-

surable time-varying quantities and not in 0. Thus, the function f2 inherits the

convexity/concavity property from f.

Taking V = x2 + e2 ± +2, the derivative is obtained as

atV= -e 2 + e(uf - f -0 w 2) +vx1(f -F-w) (3.105)
Oxi

If w2 is chosen according to the min-max algorithm, the second term in (3.105) is

non-positive. To make the last term in (3.105) non-negative, we adopt the following

strategy. First, from the min-max algorithm we observe that, based on the values

of other signals, w, can have the value of the local or the global gradient of t with

respect to 0. In the case w, has the value of the local gradient, the third term in

(3.105) is non-positive. Otherwise, we set w = 0, and let P be specified as the

standard bounding function described in Section 3.2.1. That suffices to make the

third term of (3.105) non-positive. Thus, V< -e 2 and stability is assured.

We note that in this design t is chosen as either the bounding function or the
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estimated value of the unknown function. In either case, stability is ensured, and the

use of F as the estimate does not destroy the convexity/concavity property of f. In
aF

the dynamics of e it introduces an additional term, 0. However, this is a known

term. Hence, this approach could possibly be extended to the full n-dimensional

system. The approach does not require over-parameterization, and since P is only

partially a bounding function, fully exploits the properties of the min-max estimator.
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Chapter 4

Convergence conditions for

parameter identification with the

gradient algorithm in nonlinearly

parameterized systems

4.1 Introduction

In general, stability analysis of parameter identification in nonlinearly parameterized

systems is currently a difficult task. A higher degree of difficulty stems from the fact

that if the well-known techniques for linear systems [38, 45] are applied, only local

results can be achieved. Thus, new methods and techniques are needed. Presently,

very few results [2, 34] exist which offer new techniques and deal with the problem of

parameter identification. The results in [2, 34] give global stability of the identification

process by employing a modified version of the widely-used gradient algorithm. For

such a modified algorithm, parameter convergence conditions were derived in [28].

Other available results [3, 12, 14, 22, 32, 29, 39, 41] primarily deal with the task of

control of nonlinearly parameterized systems, and not with the problems of identifying

the values of the nonlinear parameters. However, identifying the parameter values
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can also be a valuable resource in system analysis, control and monitoring, and in

expanding the applicability of adaptive control to new types of systems. For example,

NLP systems are abundant in biological models ( see [7, 30]). Another important

type of NLP systems are the various types of neural network architectures, which

are inherently nonlinear. Clearly, to accomplish the task of accurately identifying

parameters in these various types of NLP systems, new techniques for the study of

the identification algorithms are needed.

In this Chapter, we examine the gradient algorithm in more detail. We develop

new techniques and requirements for parameter convergence for showing global sta-

bility and convergence. It is shown, using the developed techniques, what conditions

need to be satisfied so that the gradient algorithm can lead to convergence in a wide

class of nonlinearly parameterized systems. Such conditions are placed on the input,

and the exact type of conditions depends on the type of nonlinear parameterization

present in the system. Current work is focused on showing that the parameter identi-

fication conditions are generally satisfied in a class of neural-network systems, which

inherently are nonlinearly parameterized systems. The main results of the Chapter

are presented in Section 4.2. Concluding remarks and future work directions are

presented in 4.3.

4.2 Main results

We consider the following system

N

y(uO0*) = g(u,O0*) = h(u, 9*) (4.1)
i=1

where u, y : R1 -+R, QW ER.

Assumption 4.1 We assume that the function h(u, 0) is differentiable and the mag-

nitudes of the first derivatives Veh(u, 0) are bounded.
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Due to the structure of the system, it follows that without loss of generality we

can assume that 0* c Q0, where

Qo = {0 O010= [01,..., ON, 01 < 0 2 <O03 <...ON} (4.2)

The goal is to derive and algorithm and establish conditions under which it is

possible to identify 0* = [*, ... , 0*]. To achieve that result, we examine the gradient-

based algorithm given by:

N

f(u, 0) = g(u,0i) = h(u,0) e(u,0) = (u,) -y,*

i=1

0 = -e Voh(u, 0) (4.3)

where 0= [d, ... , 0 Nj is our estimate of 0*. Since for a given problem 0* is fixed, e

is thus considered only a function of u and 0.

Let v(0) be vector which is orthogonal to some hyper-plane 0i = Qj, i $ j, where

Oi are the components of 0. From (4.3), it follows that 0 (u, 0)v(0) = 0 for any u.

From (4.2) and the definition of v we have that v is orthogonal to the boundary of

the set Qo, and thus if d(ta) E Qo, for some t, it follows that J(t) E Qo for all t > ta.

Thus, we can, without loss of generality, restrict our analysis to the case when 9 E Qo,

and assume that 9*, 9 E Qo.

In what follows, we use the notation A(u, 0) to denote the gradient of h with

respect to 0, i.e.

A (u, 0) = Voh(u, 0). (4.4)

We restrict our treatment of the problem to the case when h(u, 0) is monotonically

parameterized in 0. Specifically, we require that the following assumption holds.

Assumption 4.2 We assume that A(u 1, 0)A(u 2 , 0) > 0 for any u 1,u 2 and 0.

The 6-neighborhood of a set A is denoted as N&(0a). That is,

N( A) ={f0|1]aE3A, |10-Oa||<J6 } (4.5)
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Definition 4.1 A basis B for a vector space A is a set of linearly independent vectors

such that each vector v G A can be uniquely expressed as a linear combination of

vectors in B. This relation between A and B is expressed by the operator £(.) as

B = I{A}

Definition 4.2 Let A be a set whose elements are vectors in RN, and let

M{A}={b bTa=0, acA}. (4.6)

If B = Af{A}, then B is orthogonal to A.

In what follows, we utilize the standard concepts of a manifold and a curve in

RN (for example, see [23]). It is assumed that a curve Q in IRN permits a scalar

parameterization so that Q :R - RN.

Definition 4.3 Let L be a manifold in RN, and let 0 £ L. Let Q be a curve on

and let q(0) be the tangent vector to Q at 0. Let Z(0) be the set of tangent vectors

q(0) for any curve Q which contains the point 0. Then, the tangent plane I(L, 0) is

defined as

I(L, 0) = span {E(0)}.

If v(0) is a gradient vector to L at the point 0, then

vT(0)r7(0) = 0, qj(0) E F1(L, 0). (4.7)

Definition 4.4 Let T > 0, and let A(u, 0) = Voh(u, 0), with h(u, 0) : 1R x IRN -+]R.
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Let

Qt = [toto + Tu], T > 0

IF = {tjCE Qt, z= 1,.., M I |tig - ti I > E0},M EU:48

A(T,6) ={A(x(tk),O) 1tk C 'I}

A function u(t) :JRI -+ JR is said to belong to the class UHE on the interval t C

[to, to + T,] if it satisfies the two properties defined as follows:

(P1) linear independence is invariant: If the set A(Pa, Oa) is linearly independent

for some set Pa £ t and Ga cQo, then A(4a, 0) is linearly independent for all

0 e £O.

(P2) sufficient degree of excitation exists: There exists a set Tb c C4 consisting of

N elements such that A(1P,4a) is linearly independent.

Definition 4.4 implies Lemmas 4.1,4.2 and Corollaries 4.1 -4.3. For ease of expo-

sition, we denote A(u(ti), 0) as Ai(0).

Lemma 4.1 Let u(t) E UKE over some Qt. Suppose that there exists a point Ga,

a set 'a e t, defined as in (4.8), and a time instant t6 c CQ, such that Ab(Oa) $

span{A(Pa, a)}. Then, A6(O) V span{A('a, 0)} for all 0.

Proof.Let

'at = { tjl Aj(a) E L{A(Pa,G a) }

Wa(0) = spanJ{A(Ta,0)}, Wat (0) =span {A(Fal,G0)} (4.9)

We note that 'a is distinct from 'at if any of the A's in A('a, Ga) are linearly depen-

dent. First, we will show that by property (P1) we have that

Wa(0) = Wat (0) (4.10)
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Clearly, (4.9) and Definition 4.1 imply that (4.10) holds for 0 = a. Let ta E Pa \ 'Fa.

Thus, Aa(G) E Wa(0) for all 0. Since (4.10) holds for 0 = a, we also have that

Aa(Oa) E Wat(Ga). Suppose that there exists a 0b such that A(Gb) V Wal(Ob), implying

that Wal(Ob) # Wa(Ob). Letting 'b = 'Fat U ta, this implies that A(Fb, Gb) is linearly

independent. But, we have already shown that A(b, a) is linearly dependent. This

contradicts (P1), and hence (4.10) holds for all 0. To establish Lemma 4.1, it now

suffices to show that if Ab(0a) V Wat(0a), then Ab(G) V Wat(0) for all 0. By letting F0c =

Fat U tb, the supposition in Lemma 4.1 implies that A(t, Ga) is linearly independent.

If there existed a G, such that A6 (Gc) E Wai(Gc), it would imply that A(F 0,c) is

linearly dependent. This contradicts (P1), and hence such a 0, does not exist. This

establishes the Lemma.

The following corollaries can be derived using Lemma 4.1. The first corollary is

the converse of Lemma 4.1, while the rest are direct consequences of that Lemma.

Corollary 4.1 Let u(t) E UHE over some Qt. Suppose there exists a point Oa, a

set 'a EQ, defined as in (4.8), and a time instant t6 £ £4, such that Ab(a) C

span{A(Fa , a)}. Then, A6(G) C span{A('F, G)} for all 0.

Proof.Let 0b be such that Ab(Gb) V span{A(F, b)}. Then, Lemma 4.1 implies that

G, as in the Corollary statement cannot exist. Hence, this is a contradiction, and 0b

in our initial assumption cannot exist. This establishes Corollary 4.1. 0

Throughout the rest of the paper, we use dim{A} to denote the number of elements

of a set A.

Corollary 4.2 Let V(G) = span{A(F, G)} for any G and for some 'F such that

dim{L{V(G)}} = i, i < N. Let W(G) = A{V(G)}. If u E U7E, and if there

exist a time instant ta, point Ga, and constant Ea > 0 such that

4(Ga)W(Ga)() Ea, W(Ga) E W(Ga), (4.11)

then for any 0, there exist an E1 > 0 and a w(G) C W(G) such that

A (0) zw(G)l 81 (4.12)

84



Proof.For any 0, V(O) is an i-dimensional subspace, and i < N. Hence it follows

that W(O) is nonempty. Since (4.11) holds, and since W is orthogonal to V, it follows

that

Aa(Oa) span{A(4, O)} (4.13)

By Lemma 4.1, we have that (4.13) holds for all 0. Suppose that at some point b,

there does not exist an ,i such that (4.12) holds. This implies that AIT(9 6) w(O) = 0,

w(9) c W(O). Since W(O) is the collection of all vectors which are orthogonal to

V(O), this implies that at b4

Aa(Ob) C span{A(I,Ob)} (4.14)

This contradicts Lemma 4.1, and hence such a point Ob does not exist.

Corollary 4.3 If there exists an E and a point Oa such that

AT(ui, Oa)A(u2 ,Oa) a (4.15)

for some u1 , u2 , then there exists an E1 such that

A T (ui,O0)A(u 2 ,6) Ci (4.16)

for all 0.

Proof Let L = { C| e(ui, a) = c1 }, for some value of c1. Suppose that for some T,

FJ(L, Oa) = span{A (IF, Oa)}, (4.17)

where FJ(L, Oa) is the tangent plane as defined in Definition 4.3. In the rest of the

proof, we will use 11(0) to denote FJ(L, 0).
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Since A(ui, 0) is the gradient L at 0, by definition it is orthogonal to any vector

in P1(0). Hence,

A(ui, 0) EA/{H(0)} (4.18)

Since L is an N -I dimensional manifold, it follows that P1(0) is an N -I dimensional

manifold. Thus,

AT(ui,0O)w() = A(ui, 0)1 w(0)1, w(0) c .A{FJ(0)} (4.19)

implying that A(ui, 0) and any w(0) E .A/{UF(0)} are collinear. Since (4.15) and (4.18)

hold, Corollary 4.2 implies that there exists an sb and a w(0) c eA{I(0)} such that

A T (u2 ,0)w (0) Eb(4.20)

Since A(ui,0) and w(0) are collinear, (4.20) establishes the Corollary.

Corollary 4.3 states that if A(u 2 , 0a) is not in the tangent plane of the surface

e(ui, 0) = c1 at the point 0 a, for some constant c1 , then it is not in the tangent plane

of e(ui, 0) = c2 for any 0 and c2 .

Lemma 4.2 If u(t) £ UpE over some Qt, then there exist an E1 > 0 and a t 1 £ E4

such that for any unit vector w E IRN and any 0 c G, the following holds

A(u(ti), 0) w >Eo (4.21)

Proof.Any set of N linearly independent vectors spans an N-dimensional space (see

[15]). Property (P2) implies that there exists a set A consisting of N linearly inde-

pendent vectors. Thus, span{A} = RN, and hence, for every unit vector w E RN

there exists a t1 £ £4 for which (4.21) holds.

Definition 4.5 Let q(a) = I(a) ®f{n1(a),n12(a),..]. ,,,(a)} denote the orthogonal pro-

jection of a vector I at a point a onto the surface whose tangent plane at a is defined
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by normals {m1(a),...,qji(a)}. The orthogonal projection is defined as

q(a) =1(a) -S w, where
j1|I

k=r/ (a) - j1jk 2 1 k, j E {1,. .. ,n} (4.22)
k=1 || k

Some properties of Definition 4.5 are summarized in the following Lemma.

Lemma 4.3 The orthogonal projection operation in Definition 4.5 has the following

properties.

(A) v V=0ifi j; vI 3=0 ifi>,

(B) For some vector r, and for all i= 1,...,n , rTrp = 0 if and only if rTv, = 0.

(C) qivi = 0, qTiO = 0 for i= 1,.. . , n.

T
Proof.(A) From (4.22) we have that -22i = r1- 1V112 = 0. Assuming vv =

T

0, it follows that v+1vi = 9+1- bi-lTvi1 = 0. Hence vTv 1 = 0 holds for any

i > 1. Similar analysis can then be carried on to conclude that v7v 2 = 0 for any

i > 2, and likewise obtain that viv, = 0for any i > j. Since vTv- = vTv1, it follows

that vivj = 0 for any iJ j.

For the second part of (A) we note that vfrm1 = r1- T 1 = 0. Observing

that v]Qj= # y7vg, and carrying out a similar procedure as above, we conclude that

vTr73 = 0 for i > j. (B) From (4.22) we have that

i = -+ i Ik 2 vk, j E {1,. ., n} (4.23)

Eq. (4.23) implies that if rTvj = 0 for all j, then rTrp, = 0 for any k = 1, ... , n. In

the converse, we start with rTr = 0 for any j. We note that rTvi = rTni = 0. Using

the induction principle, we assume that rTvj = 0 for some j. From (4.22) it then

follows that rT v i = rTui+1 = 0. Hence, rTvy = 0 for any j.
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(C) Since v'v[ = 0 from part (A), we have that qTI = - i iv = f

any i E {1,... , n}. Using part (B), it follows that qT 7qi = 0 as well.

In what follows, we will use the notation e(O) = e(ui, 6), and Ai(O) = A(u(ti), 0),

where ti C Qt.

Definition 4.6 Let

H(O) = {wuiI e(i,0) =0}

HA(0) = {A(u,O0) |1uczEH(O)}

1(0) = dim {LJ{H()}} (4.24)

Ki = {9 -I() > i}

Definition 4.6 specifies the construction of several new sets which are crucial in es-

tablishing our convergence analysis. These sets are important because they indirectly

allow and lead into the design of a sequence of distance metrics for convergence. The

global closed form analytical expressions for these distance metrics is not derived.

This is in contrast to the vast majority of present literature on nonlinear systems,

where a single positive-definite Lyapunov function of state and possibly time of the

form V(x, t) is considered. The positive-definite function V(x, t) is explicitly defined

and stated, and the system is said to be stable if the the value of the function de-

creases with time. This is the place where we break from the traditional view of

stability analysis. Our approach is to analyze the state-space points per se, irrelevant

of the type of system motion in it. By analyzing the points of state-space, we wish to

associate certain characteristics with each point. Then, based on those characteristics

of each point, we group points with similar characteristics into larger sets, and on each

one of these sets design an appropriate distance metric. The construction of distance

metrics is specified locally, and it is shown that it is not necessary to derive the global

closed-form solution for these metrics. Hence, the design of a stability-analysis tools

is such that the dependence on the state-space is implicit.
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We now provide a few qualitative comments about the sets in Definition 4.6. First,

the set H(0) associates with each point 0 a set of input values u such that, at the

point 0, the observed output error is zero. Since the underlying function h in the

system is nonlinear and depends on both 9 and u, different points in the 0-space

might have different sizes of the corresponding set H(0). It is this difference in sizes

of the corresponding H(0) for different points in the 6-space that can be exploited

to form a qualitative measure of how distant a particular point 0 is from the point

9*. At 0*, by definition, any value of a produces a zero output error e. Hence, the

smaller the size of H(0), the farther away is the point 0 from 9*.

Specifically, a quantitative tool for measuring of the size of H(0) can be determined

by using the sets Hx(0) and 1(0). First, the set H%(9) specifies the gradient vectors at

the point 0 for the values of u in H(9). Next, the set 1(0) counts how many linearly

independent gradient vectors there are in each HA (0). This discrete number which

1(0) associates with each point will be the measure of the size of H(O), and plays

a central role in categorizing and grouping the points in state-space into different

regions. This grouping is done through the sets Ki, which collect all points in 9-

space whose index 1(0) is greater than i. The definition of H(0) implies that we

group together all points for which there exist a certain number of inputs such that

(i) the zero output error surface for those inputs passes through that point and (ii)

the gradients to those surfaces are linearly independent. The fact that we require

the gradients to be linearly independent is important. First of all, we note that the

the direction of system motion is specified by the gradient. Thus, the larger number

of linearly independent gradients there are, the more of the state-space is explored,

which in turn is a pre-requisite for accurate parameter identification.

We will establish the proof of convergence by showing that 9 begins in KO, pro-

gresses through K 1 , K 2 , ... , KN-1, and converges to KN, which is coincidental with

0*. Before we state the main result we use the above definitions to derive key state-

space properties. Those properties are summarized in Lemmas 4.4 and 4.5.

Lemma 4.4 If u C UpNE over some interval Qt, then KN = 0*-
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Proof.First, we will show that the set KN consists of isolated points. Then, we will

show that only 0* E KN- Suppose that there exist a curve Lo c KN, with a tangent

vector denoted by 10. From Definition 4.6, KN is the intersection of N manifolds

whose normals are A, i = 1, -. , N. Since Lo E KN, and 10 is a tangent vector to Lo,

it follows that

AT()1 = 0, i=1,...,N, 0ELo (4.25)

From Definition 4.6, it follows that A are linearly independent. Hence, (4.25) allows

only the trivial solution to = 0, and thus a curve Lo E KN does not exist. Therefore,

KN consists only of isolated points. It also follows that KN Njs(0*) 0=*.

In order to show that KN =9, by applying Definition 4.6, it now suffices to show

that

max I() =N-1 (4.26)
OVNs(* )

Let

T =f tj CE Qt, i = I,-..., N - I I Itisl - til > Et, dim{L{jA(xF, *)}} = N 4.27)

with A(P, 0) = {A(9) I t EC4. Our assumption that u C UNE and property (P2)

in Definition 4.4 guarantee that ' as in (4.27) exists. Next, let

L = {01 e(u(t),) = 0, tE4T'} (4.28)

Let 1(0) denote a tangent vector of L. Since A(4, 0) is the set of gradients to the

manifolds e(u(tj), 0), t E 'E, it follows that

IT (0)Ai(0) = 0, Ai(0) c A(xF, 0) (4.29)

Eq. (4.27) implies that A(Q, 9*) is linearly independent, and that it spans a N - 1

dimensional subspace. Therefore, I is uniquely specified, and hence L represents a
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curve that maps IR to IRN. Since L is a curve, and since by inspection, 0* c L, we will

reparameterize L in terms of a scalar s chosen such that 0(s) E L, and 0(s = 0) = 0*.

In the following exposition, we will use the parameter s to denote all points O(s) on

L. Since (4.29) holds, it follows that

I(s) =Kj{A(%, s)}. (4.30)

We will show that (4.26) holds by contradiction. Since (4.26) considers points

O(s) N6 (0*), we only examine the points for which Is E, > 0. Specifically, to

prove (4.26) we will examine what the implications are of supposing that there exists

an si, is, c- > 0, such that I(s1) = N. Then, we will show that these implications

cannot be satisfied on L, and therefore it must be that I(s) < N.

From (4.28), it follows that I(s) > N - 1. Suppose that there exists an s1,

s e, > 0 such that I(si) = N. Since dim{4} = N - 1, I(si) = N implies that

there exists a t , 4T such that

(a) Aa(si) V span {A(t, si)} and (b) e(u(ta), si) = 0 (4.31)

Eq (4.31)(a) stems from the fact that I(si) is the number of linearly independent A's

at s1 . Since A(, si) has only N -I vectors, whereas I(si) = N, eq (4.31)(a) follows.

Eq (4.31)(b) follows from the fact that the number of linearly independent A's at s

are evaluated only for values of ui for which e(u., s1) = 0.

Since (4.30) and (4.31)(a) hold, it follows that there exists an Co > 0 such that

Aj(si)l(si) >EO (4.32)

Since (4.30) and (4.32) hold, Corollary 4.2 implies that there exists an E such that

A' (s)l(s) Ci Vs on L. (4.33)
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Denoting ea(s) e(u(ta), s), we will now show that ea(si) # 0. Since Aa(s) is the

gradient of ea(s), it follows that the rate of change of ea(s), denoted by dea, along

the curve L is specified by dea(s) = <T(s)l(s). Since ea(0) = 0, we have that

S1 Asi)T (s) 1(s) ds (4 .34)

Since (4.33) holds, it follows that lea(si)j I e, where 6 e ,=Ei si. However, this con-

tradicts (4.31)(b). Since for a given IF, t in (4.31) is arbitrarily chosen, it follows that

the contradiction result is valid for any ta which satisfies (4.31). Thus, for any given

', we have that a point si as in (4.31) does not exist. Therefore, max I(si) = N - 1

for all Is, >E. Hence, (4.26) holds, and thus the Lemma is established. 0

Lemma 4.5 Let Oa N6 (O*). If u E UJUE over some interval Qt, then there exist at

least one t 1 £ EQ and an e > 0 such that

e(u(t1),Oa)I Ce. (4.35)

Proof.To establish Lemma 4.5, we start with an arbitrary 0, and time instants t'

such that e(u(t'), Oa) is small. We then show that if utG£ 7 E, then there must be a

time instant ti such that e(u(ti), Oa) becomes large. This is established in two steps.

We first prove Lemma 4.5 starting from t' where e(u(t'),0a)-= 0. Next, we examine

the case when e(u(t'), Oa) is small and show that Lemma 4.5 is still valid.

Let

T = { t e(u(t),Oa)I <Ca }, Ca > 0; (4.36)

and IF is a set such that

(i)P c T, and (ii)A(, 0*) = L {A(T, *)}; (4.37)
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and a set L is defined as

L = {O e(u(t),) =0, t E4}T . (4.38)

We will show that the definitions of T and L, and the fact that u £ UPUE, imply

that 0a must lie in a neighborhood of L. The proof of Lemma 4.5 then proceeds by

considering the steps: (i) Oa c L, and (ii)Oa E N6 (L).

For ease of notation, we will denote A(u(t), 0) as A() when the value of either t

or u(t) is obvious. Definition (4.37) implies that

A(0*) E span{A(T,0)} for all A(0*) E A(T, 0*) (4.39)

Corollary 4.1 then implies that (4.39) holds for any 0. Hence, we have that

spanI{AQ(J, 0)} = span{A(T, 0)}, (4.40)

Since A(Q, 0) is the set of gradients to L, it follows that

.IV (A(7, 0)) ll(L,0), and by using (4.40) that

MA(A(T, 0)) = 1-(L,0). (4.41)

We first note that we are interested in examining the largest possible set T such

that T c G t. For, if there is a single time instant V* E E 4 such that t* T, it

implies that there exists an sa such that Ie(u(t*),Oa) >E, and the proof of Lemma

4.5 is done. We will use the size of span,{A(T, 0)} as a tool to measure how large the

set T is. We note that a larger set T would imply a larger possible span{A(T, 0)}.

Since we are considering the largest possible set 7, this implies that we need to

consider the largest possible span{A(T, 0)}. By (4.40), this directly translates to

examining dim{t}. Suppose that dim{4} = i, i < N. Let w V span{A(J,0)}.

Since U c UN, from Lemma 4.2, it follows that there exists a ta and 6 such that

AT(U(ta), 0) w E. This implies that A,( 0 ) V span{A(t, 0)}. If t, VT, Lemma
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4.5 is established. Hence, suppose that ta E T. Consequently, we then have that

dim{4'} =i + 1, and this process can be repeated. However, since Lemma 4.5

postulates that 6 , N6(O*), Lemma 4.4 specifies an upper bound on dim{Xf}. That

is max 1(0) = N - 1. Therefore, throughout the rest of the proof, we assume that
006N(0*)

dim{4} = N -1.

We now note that if 9 E L, we have that e(u(t), 9) = 0 for all t £ T. This can be

easily shown by considering the following two facts. First, e(u(t), 9*) = 0 for any t.

Second, from (4.41) we have that

qTA() = 0 for any qcEfl(L, 9), A(O)EA(T, 9). (4.42)

Since q(9)T A(u(t), 9) specifies the rate of change of e(u(t), 9) along q(9), it follows

that the rate of change of e(u(t), 0) along any q in L is zero for any t c T. Hence,

e(u(t), 9) = 0 for all 9 E L and t E T.

We now proceed to show that if 0a is such that je(u(t), 0.)1 < Ea for all t E T,

then 6 c N6 (L). We have established that in L, e(u(t), 0) = 0 for all t £ T. Next,

we will show that in any direction orthogonal to L, there exists a t E Tsuch that

e(u(t), 0)1 becomes large.

Let 1(0) be a tangent unit vector to L, that is 1(9) E E71(L,0), 1l()H = 1. From

(4.41) we have that lT(9)A (9) = 0 for all A () E A(P, 9). Since we have that dim{P} =

N - 1, (4.41) implies that dim {{FJ(L, 9)}} = 1. It follows that 1() is uniquely

specified. Let L be parameterized by a scalar r such that L(r = 0) = 9*. On L, we

now pick an arbitrary point L(ra). Starting from L(ra), we construct a curve C(s),

parameterized by a scalar parameter s. In further text when possible, we will use

the index s to denote the point C(s). The curve C(s) is constructed such that the

following properties are satisfied:

(CI) C(0) = L(ra),

(C2) the mapping C(s) : JR _ _+ 1RN is one-to-one, C(s) is smooth.

(C3) (a) Let c(s) £ fl(C, s). Then, c(s) E span{A(, s)} for all s; and
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(b) the sign of cT(s)Ai(s) is invariant for all s, Ai(s) E A(, s).

Property (C3)-(a) implies that the curve C(s) is orthogonal to L at their intersection.

Property (C3)-(b) implies that C(s) can be thought of as a monotonic curve in the

coordinate systems specified by the set A(Q, s). The properties (C1)-(C3) are not

restrictive, in that for any point G, , L, we can choose an arbitrary ra, such that

L(ra) = C(O), and 0 a = C(se) for some sa. Using the curve C, we show that for any

0a such that (4.36) holds, Ga EN6(L).

For some t c T, we have that the rate of change of es(s) = e(u(tc), s) is given by

de, = cT(s)A(u(tc), s). Since ec(u(t), 0) = 0 for t E T from (4.36) and (Cl), we have

that

saC T (S)A (U(t), s) ds <Ca, for any t e 7. (4.43)

Our goal is now to show that if (4.43) is to hold, the upper limit of integration, s,

must be bounded. We note that since c(s) c span{A(4, s)}, this implies that c(s)

can be expressed as a linear combination of elements of A(T, s), with at least one

of the coefficients being non-zero. It follows then that for every s, there there exists

an Ec(s) and at least one i E [1,...,N - 1] such that IcT(s)A(s)l > Ec(s). Since

CT(s) c(s) = 1 and ||Aj(s)jj, i =,1...,N - 1, are bounded for all s, it follows that

Ec(s) must have a lower bound. Thus, there exists an Eco such that for every si there

is an i C[1,...,N-1] such that

|C T(si) Ai (si)| > Ec.. (4.44)

Since C(s) is smooth, and since cT(s)Ai(s) does not change sign, this implies that for

each si such that (4.44) holds, there exists a 6, > 0 such that

,' si+6
fJ cT(s)Ai(s) ds > Eco Js (4.45)

Si

Since (4.44) and (4.45) hold for an arbitrary si, and since the space is finite-dimensional,

it follows that, in the worst case, there exists an i* such that jcT(s)Aj.(s)| gets peri-
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odically large. Since by (C3), cT(s)Ai. (s) is a monotonic function in s for any ti., it

follows that, for a given E, there exist an sa, M 1 and an i* E [1,. .. , N - 1] such that

e(u(ti*), Sa)= = jsa cT(s)Ai. (s) ds Ca, sa = MiEa (4.46)

For , = C(sa), (4.46) implies that if ti. C T, then

sa < MiE (4.47)

for an arbitrary E. Thus, we have established that O E GN 6 (L).

We now consider two cases, case (i) 0 a E L, and case (ii) 6, C N3 (L). In both

cases we show that starting with t C T, there exists a t1 such that je(u(t1 ), Oa) must

become large.

Case (i) Oa E L: From Lemma 4.2, there exists a t1 E Qt such that A1(r)

A(u(t 1 ), L(r)) has a non-zero projection along I(r) for any r. Therefore,

Af(r)l(r) 2 Vr E [0,ri] (4.48)

where r1 is such that 6 = L(r1 ). Let e1 (r) = e(u(ti), L(r)). Noting that e1(O) = 0

and that jjl denotes the change in ei along L, we have that

ei(ri) A = (r) I(r) dr > c2 r1 . (4.49)

This proves case (i).

Case (ii) 6 c Ns(L): Let ei(sa) = e(u(ti),C(sa)), for with sa as given in (4.47).

It follows that

ei(sa)l >ei(ri)j - ei(ri) - ei(sa)l (4.50)
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Integrating the change of el along the curve C, the second term in (4.43) can be

expressed as

/ C (s ) 
fs a

ei(ri) - ei(sa)| <_ ] del < ] cT(s)A(u(t 1), s) ds s. M2 , (4.51)
< L (r)

where cTAi IM 2 , and L(ri) = C(0). From (4.47), (4.49) and (4.51) we have that

ei(sa)l > E2 r1 - M2 Misa = Ie. (4.52)

Since 6E is arbitrary, e is guaranteed to be positive. This proves case (ii).

Theorem 4.1 Let Assumptions 4.1 and 4.2 hold. For the system in (4.1)-(4.3), if

for every t > 0 there exist a t1 > t and T> 0 such that u(t) E U7NE over the interval

[t 1 , t1 i+ T], then lim 0(t) = *.

Proof.We will prove the theorem by showing that the index I() is monotonically

increasing along system trajectories. In order to establish this, we need to show that

the system exhibits the following properties.

(1.) If 0(ta) C Ki, then there exists a t > ta such that 0(t 6 ) c CKi+, for i =

0,1,2,...,N-2,and

(2.) If J(tb) c CKi+, then 0(t) c Ki+1 for all t > t6 , and i = 0,1,2,..., N - 2.

(3.) If 0(t) E KN-1, then lim(t) E KN-

Step 1. The goal in Step 1 is to show that starting from an arbitrary point in

Ki, 0 will be in the set Ki+1 after a finite time. To show this, in Step 1.1 we will

examine a specific manifold M which can lie both in Ki and Ki+1. In Step 1.2, we

will construct a metric J on M that represents the distance of our starting point in

Ki to the set Ki+1, and show that J converges to zero. Then, in Step 1.3, we will

show that J converges to zero in finite time.

Step 1.1 In this step, we first establish the tools necessary for constructing a

convergence metric. We do this by examining the properties of the set Ki and Ki+1.
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Using these properties, we shall construct a metric J, which will be a measure of the

distance of a point in Ki to the set K+1-

Suppose that for some t, (t) c Ki. From the definition of Ki, this implies

that (a) there exists a set PM = {ti, t2 , . . . ,} such that A(PM, (ta)) is linearly

independent, and (b) that O(tg) lies on the intersection of i manifolds e(O) = 0,

j=1, ... ,i. Let

M(IM) = {901 e(u(t), 0) =0, t c I'M}

W(9) = span {A(Fm,9)} (4.53)

Since every A(u(t), 9) E A(IM, 0) represents the gradient to the surface e(u(t), 0), it

follows that the set A(4M, 9) is the set of all normals to the manifold M at a point 9.

Next, we choose a time instant t1 such that for some 9,

A(u(t),90) gW(0). (4.54)

Since dim{A(PM, 9)} = i, where i < N, the fact that u E UNE guarantees that such

a time instant t1 exists. Let

e = TM U ti,

Me(Pe, 1) = { 9 9 0C M(FM), e(u(ti), 9) = e(u(ti), 01) } (4.55)

M2(u) = { 9 9 E M(TPm), e(u(t), 9) = 0, A(u, 9) 0 W(9) } (4.56)

Thus, it can be seen that the manifold Me represents the intersection of the surface

e(u(tj), 9) = ci, where ci is some constant, and the manifold M. Since M is an N - i

dimensional manifold, it follows that M, is a manifold of dimension N - i - 1. Since

Mg E M, it follows that every A(9) E A('M, 9) is linearly independent from any

vector in Mg, since it is orthogonal to any vector in Mg. Since dim{A('m, 9)} = i, it

follows that if M = Me U A('PM,9), then M spans an N - 1 dimensional subspace.
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Comparing (4.56) and (4.55), we see that the sets Mz and Me are similar in nature.

As noted, for any particular value ua, the set Me represents the intersection of sets

e(u, 0) = c1 and M, for some constant c1. On the other hand, the set Mz represents

the intersection of sets e(u1 , 9) = 0 and M. Since the constant c1 = 0 for the points

in the set M,(ue), it can be shown that if 9 c M(ui), then 9 E K + . This follows

because for any 9 C M, it follows that 9 E I-K. Since for any 9 E M(ui) implies that

9 c M, and since e(u,, 9) = 0 and A(0) 0 W(9) it follows that 9 E Ki+-

Using the properties of Mg and M we shall define a metric J. In particular, we

will choose J as a positive definite function of a variable s, where s is the arclength of

a curve Q. Q, in turn, will be specified by its tangent vector m, which will be shown

to lie in M and be orthogonal to Mg.

Let O, be an arbitrary point in Mg, and let

mU(0a) = A (u, Oa) 0 A (PM, Oa) (4.57)

For ease of notation, let m1 (Oa) = A(u(t),Oa) 0 A(1M, a). We shall now show that

(i) m1 is orthogonal to Mg, and that (ii) m, lies in the tangent plane of M at 9g.

From (4.22) we have that

i = A - f v.8

where v are defined as in (4.22). Let ig be an arbitrary vector which lies in the

tangent plane of Mg. Since A, is the gradient to e,(0) = const, it follows that Aflg = 0.

However, Mg c M, and since the elements of A(QM, 0) are orthogonal to any vector

in the tangent plane of M, it follows that Afl = 0, for any Aj(0a) E A(Im,Oa).

Applying Lemma 4.3-(B), we have that Ilv =0 forj=1,...,i. Thus

M±AAle-- VJl 0 (4.59)m7'l = Alg -j=1 K 2

Since 1, is arbitrary, we conclude that m, is orthogonal to Mg. Likewise, from Lemma

4.3(C), we obtain that mT(9a)Aj(9g) = 0 for any Aj(9g) C A(PM,9a).Hence, m, lies
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in the tangent plane of M.

As noted above, the sets M2(ui) and Me represent the intersections of manifolds

e(u,, 0) = ci with the set M. In the case of M(u 1), c1 = 0, while in the latter case

c1 is an arbitrary constant. Since c1 is an arbitrary constant, it follows that for any

0 E Mz(u1), we have that m1 (0) is orthogonal to the set Mz(u1).

Having established the properties of the normals of M and M, we now establish

an additional property of M,. Since we have shown that M (u) E Ki+ 1, let ua be

chosen such that M (u) represents a boundary of Ki+1 on the set M. The term

boundary is used to specify the following. Let 01 c M(u), and let 02 = 01 +Emm(01),

where Em is some small constant. Then, 01 is on the boundary of Ki+1 if there does

not exist a a2 such that 02 E Mz(U 2 ). We are guaranteed that such a boundary of

Ki+ 1 exists on M. Otherwise, it would imply that the entire set M belongs to Ki+1,

and the proof of this step of the theorem would be done.

We shall now construct a curve Q in M to specify the necessary convergence

metric J. Let Q be a curve parameterized by a scalar s, and let the tangent vector

to Q at Q(s) be given by q(s). In what follows, where advantageous for purposes of

clarity and brevity, we shall use just the index s to denote a point Q(s). We construct

the curve Q such that

(a) for every si such that Q(si) E Ki, q(s 1) = m(si).

(b) for every s2 such that Q(s 2) E Ki+, ,q(s 2 ) = m(s 2 ), where a is such that (i)

e(U, s2) = 0, and (ii) A(U, s2 ) 0 W(s 2 ). Since Q(s2) £ Ki+, it follows that a a

exists such that (i) and (ii) are satisfied.

Noting that Q always lies in M, we observe that Q follows along m1 in Ki, and

along mu in Ki+ 1. The specific value of u and thus m is determined by the property

(b)-(i),(ii). These properties also imply that Q(s2 ) c Mz(u) for every s2-

We now define more precisely the parameterization of Q. Without loss of gener-

ality, we assume that J(ta) c Q. That is, there exists an s such that Q(se) =-0(t).

Since m, is orthogonal to M(a,), and since M2(u) is the boundary of Ki+1 on M,

it follows that at the boundary of Ki+1 on M, Q is orthogonal to the boundary of
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Ki+1. Without loss of generality, we choose the parameterization of Q such that

Q(s = 0) E M,(ui), and the direction of increase of s be along the direction of q(s).

By Assumption 4.2, we have that A'Al > 0 for any k, 1. Hence, s monotonically

changes along Q. Let sb be such that Q(sb) C Ki+,. The initial Step 1. assumption

was that Q(sa) E Ki. Since s = 0 at the boundary of Ki+1 , and since s monotonically

changes along Q, this implies that

Sa(Sa - Sb) > 0 (4.60)

Thus, the parameter s represents the distance of a point sa in Ki to the set Ki+1 . For

an arbitrary sa, we define a metric J measured along Q as

12
J -2a (4.61)2

Step 1.2 In Step 1.1 we have constructed a distance metric J as given by (4.61).

In this step, we examine the time change of the metric along the direction of 0.

Differentiating (4.61) with respect to time, we have that

J= Sa a (4.62)

Since q(sa) is the tangent vector along which sa changes, it follows that, using (4.3),

we obtain the change of sa along the system trajectory as

sa= qT(s) 0 (t) = -e(U(t), Sa) qT(sa) A(u(t), Sa) (4.63)

Since de(u(t), s) = qT(s)A(u(t), s) ds, it follows that for any given time instant t we

obtain that

e(u(t), Sa) = mT (s)A (u, s) ds (4.64)
fsb
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where sb is such that

e(u,,Oq (Sb)) = 0. (4.65)

Then,

[Sa

J= Ssa= -] saf (sa)f (s) ds , f (s) = qT (s)A (u(t), s). (4.66)

We will now examine the function f(s) defined in (4.66) by considering two cases:

(a) There exists an Eq such that

Ta {It |I|AT(sa) A(u(t), s E, A(u(t), sa) W(sa)} (4.67)

(b) Tb = Qt\Ta.

We shall show that J< 0 in case (a) and J= 0 in case (b), concluding that J

decreases since Ta is nonempty. Since for any t, c T we have that |AT(sa)Ai(sa) ; Eq,

Corollary 4.3 implies that there exists an Ei such that

Af(s) Aq(s) > '1 Vs E [Sb, sa], ti E Ta (4.68)

Eq. (4.68) implies that

A(u(t), s) V flMe(Te), s) Vs E [sb, Sa], Vt E Ta (4.69)

Since A(u(t), sa) V W(sa), (P1) implies that

A (u(t), s) g W (s) Vs E [sb, Sa]. (4.70)

Letting v be any unit vector in M, eq (4.70) implies that

vTA (u(t), s) $ 0, Vs E [Sb, sa]. (4.71)
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By definition, we have that q(s) E M. Also, by definition, q(s) is orthogonal to Me at

any s. Since A(u(t), s) g UMe(4'e, s) for any s, it thus follows that there exists an Es,

such that IqT(s)A(u(t), s) > E, for any s and all t c Ta. Therefore, f(s) J0 for any

s. Thus, f(s)f(sa) > 0 for all s CE[s, sa]. Therefore, using the mean value theorem,

we can obtain that

'~a

J= Saf (Sa)f(s)ds = -Sa f (S.)f (Sc)(sa - sO) (4.72)

for some s, E [s, Bsa]. Applying (4.60), we obtain that

J= -Sa f (Sa)f (SC)(Sa - Sb) < 0. (4.73)

In case (b), we first note that Qt, and hence T are bounded. Since there does not

exist an Eq as in case (a), this implies that qT(sa)A(u(t), Sa) = 0. By property (P1),

this implies that qT(s)A(u(t), s) for all s. Hence J= 0.

Since u C UHE, we have that Ta is nonempty. Thus, J decreases, and hence 6

tends towards Ki+1 from Ki.

Step 1.3 In Steps 1.1 and 1.2 we have constructed a distance metric from a point

in Ki to the set Ki+1. We have shown that the distance metric decreases everywhere

in Ki. We now need to show that J converges to zero in finite time. That is, we

need to show that there exists a finite t > ta such that 0(t) c CKi+. To establish

this, it is sufficient to show that in the neighborhood of J = 0, the system velocity

0 has a lower bound. That is, we need to show that there exists an c, > 0 such
;1 T

that 110 (t) q(s)J| > Ev for all t such that 0(t) C Ki. From Lemma 4.1 we have that

JAT(u(t), s)q(s)l > 62 for all s. If 0 E N6 (0*), then the theorem is done. We suppose

that 0 N6 (0*). From Lemma 4.5 we have that there always exists an ce such that

e(u(t), 0)1 > Ce. Letting Cv = E2E, we establish that a lower bound on the velocity

exists, and hence that there exists a t > t such that 0(ta) C Ki, and 0(4) Ki+1

Hence, we are done with Step 1.

Step 2. In Step 1 we have shown that for any point outside of Ki+1, the distance

metric J to the set Ki+1 decreases with time. Hence, there does not exist a trajectory
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which, starting on the boundary surface, increases the distance to set Kai+. Since J is

measured along a curve which is normal to the boundary surface at the boundary, it

implies that the set Ki+1 is invariant. By definition, we have that KO covers all state-

space, and hence is invariant. Therefore, it holds that for all i, once the trajectory

enters a set Ki, it always remains in Ki.

Step 3. In Step 3, we would like to show that starting in KN-1, the system asymp-

totically converges to KN. In substeps 1.1 and 1.2 we have established that there

exists a decreasing distance metric from Ki to K±i. Since i is arbitrary, it holds for

i = N - 1 as well. Thus, we can construct a non-negative distance metric J from any

point in the set KN-1 to the set KN. At any point in KN-1, the distance metric J is

decreasing. Hence, 0 tends to KN from KN-1-

Thus, we have established that if the signal u(t) is sufficiently rich for the given

nonlinear parameterization, it is possible to have parameter convergence with the

gradient algorithm.

4.3 Concluding Remarks and Future Work

In the previous section, we have given a set of conditions under which the gradient

parameter identification algorithm is globally convergent. The two convergence con-

ditions involve both the input u, and the nonlinear function h. Here, we compare the

two conditions with the existing results in linear parameterization case.

What the first condition essentially requires is a form of similarity between dif-

ferent points in the parameter space. By property (P1), it is required that if a set

of gradient vectors A be linearly independent for a set of values of u at a particular

point 0, then the set of gradient vectors be for the same set of values u be linearly

independent at any other point 0. Thus, all the points in the 0 space are similar.

It can be argued that this type of similarity stems from the fact that in monotonic

functions, a neighborhood of a point is similar in terms of the slope to the neigh-

borhood of any other point. In the linear parameterization case, the gradient vector

A is a function of the external input only. Thus, for a given set of external inputs,
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we have exactly the same behavior of the set of gradient vectors everywhere in the

parameter space. Hence, linear parameterization identically satisfies property (P1).

Thus, in the linear case, this property is inherent to the parameterization, and does

not need to be specified explicitly. We can also view (P1) as a relaxation of the linear

case property that all the neighborhoods of points in parameter space be exactly the

same to the property that all neighborhoods are "similar".

Property (P2) has the same form as the standard linear persistent excitation

property (see [17, 38]). It requires the external input to be sufficiently rich so that

the vector A periodically orients itself along any given direction. Since the direction

of the parameter estimate update is given by the direction of A, (P2) is a requirement

that all of the regions of the state-space are explored. It is to be expected that such

a property is necessary in establishing parameter convergence.

The results given here represent only a first step in research into the use of the

gradient vector in nonlinearly parameterized systems. One of the tasks ahead is

to characterize more precisely which types of functions and what type of external

inputs can satisfy properties (P1) and (P2). Preliminary studies show that sigmoidal

functions of the type used most often in feed-forward neural networks satisfy (P1)

nad (P2).

The results presented here can have a direct impact on the neural network training

issues. However, most of the neural net training in practice is done in discrete steps,

and not by a time-continuous process modeled by the system in (4.1),(4.3). Thus,

it would be very useful from a practical viewpoint to examine the discrete version

of the algorithm discussed here. A preliminary result would suggest the following

modifications to the training process done in practice

Step 1. Apply the input u.

Step 2. Calculate the error e(u,0). Let el = e(u, 0)

Step 3. Let 02 = -ve 1 A(u, 0).
1Step 4. Let e2 = e(u,02). If 62e 1 > 0 proceed to Step 5. Otherwise, let v = -v.
2

Step 5. 0 = 02. Evaluate the training results. If not successful, select a u and goto

Step 1. Otherwise, stop.
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This method of controlling the step size v would ensure that the sets Ki remain

invariant. Otherwise, since the algorithm is taking finite sized discrete steps, there

exists a possibility that the Ki can be crossed and the sets be no longer invariant.

Since the results presented here can be relevant to neural networks, it is worth

examining several modifications to the system considered in (4.1). Such modifications

would bring closer the considered system in (4.1) to some of the neural net architec-

tures commonly used in practice. The primary modifications of interest would be

expanding (4.1) to consider the following two cases

N

y = W g(u,0j)

N

y = wg(u,Oj)
i=1

where W, w. would be scalar unknown parameters. It seems that the the extension

of the obtained results to include the first system in (4.74) is quite feasible. That

is because in this case 0 -eWA(u, 0), with W being our estimate of W. Letting

A' = WA(u, 0), it can be shown that if A satisfy (P1)-(P2), then A' satisfies these

properties as well. It is not clear immediately if this equivalence would hold in the

second system in (4.74). Also, symmetry of the 0 weight space is broken in this

case. These types of systems require further investigations and generalizations of the

presented results.

Finally, since the results presented can have an impact on the training process

in neural nets, it would be useful to try to extend these results to encompass the

on-line training problem. This is an open and very interesting problem. No global

results exist in this case for nonlinearly parameterized systems. For a critique of the

shortfalls of existing theoretical results, see [41]. Yet, results have been claimed in

practice. Our preliminary investigations show that it is possible to derive stability

results for on-line, dynamic training by reinterpreting the current results for Lyapunov

function design in linearly parameterized systems.

106



Chapter 5

Conclusions

In this thesis, we have constructively addressed the issue of identification and control

in nonlinearly parameterized (NLP) systems. We have attempted to bridge the gap

between the wide and diverse applicability of NLP system models, and the existing

control design methodologies. The existing methodologies have two major drawbacks.

The first is that many results are only local in nature. The other is the fact that

the majority of global results is based on feedback linearization techniques. Such

technique require the knowledge of bounds of the parametric uncertainties, and do

not obtain any additional information about the values of the unknown parameters.

In contrast to many existing techniques, our approach is based on adaptive control

and parameter estimation. All the results presented are global in nature. For certain

classes of systems, two goals were achieved: (a) design of stable adaptive control

methodologies, and (b) parameter identification in NLP systems.

The thesis presented three theoretical results. In Chapter 2, we have stated the

conditions under which accurate parameter identification is possible for a class of

convex/concave NLP systems. The derived results were presented for both the con-

tinuous and discrete versions of the min-max estimator in [2]. Chapter 3 presented

the results for adaptive control of NLP systems with a triangular structure. It was

shown how an coupling the min-max estimator with an approach based on a type

feedback linearization (similar to, for example [48]), results in global stability. Such

a coupling retains the advantage of both techniques: the approach is overall globally
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stable, and the required control authority and actuator bandwidth may be reduced.

Chapter 4 presents the results in analyzing the convergence properties of the

gradient algorithm in monotonically parameterized systems. For example, many of

the general neural network architectures are of this type. The results give relatively

mild conditions under which parameter identification is obtained using the gradient

algorithm. Obtaining the results was made possible by developing new techniques

and tools for analyzing the properties of the gradient algorithm. The tools are based

on examining the properties of the state-space in the gradient algorithm. Upon such

an examination, it was possible to construct a sequence of distance metrics. Each of

the distance metrics is defined in separate regions of state space. It was shown that

each of the distance metrics is decreasing while the system traverses the corresponding

region of state-space. Thus, it was possible to show that the corresponding regions

of state-space were invariant, and that the global sequence of traversing these regions

results in overall parameter convergence.

Suggested future research is along two main tracks. One is a closer scrutiny of

the min-max estimation algorithm in the context of other types of NLP systems than

the ones studied in the thesis. Such an examination may yield (a) new types of

nonlinearities for which parameter convergence is possible, and (b) further reduce the

required control effort and actuator bandwidth in control of NLP systems. The second

track consists of expanding the results for the gradient identifier in monotonically

parameterized systems. Of particular concern is the extension of the results to the

case when dynamics are involved between the nonlinear uncertainty and the available

measurements. Preliminary investigations suggest that by re-interpreting the meaning

of the standard Lyapunov functions used in linearly parameterized systems, it may

be possible to construct new types of Lyapunov functions for NLP systems. Such

a result would have a significant impact in applying the powerful neural network

function approximation capabilities in an on-line, closed-loop learning environment.

Further insight into learning and adaptation could also be gained.
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