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Abstract

It is estimated that 70 to 85 percent of a naval ship's life-cycle cost is determined
during the concept exploration phase which places an importance in the methodology
used by the designer to select the concept design. But trade-off studies are guided
primarily by past experience, rules-of-thumb, and designer preference. This approach is
ad hoc, not efficient and may not lead to an optimum concept design. Even worse, once
the designer has a "good" concept design, he has no process or methodology to determine
whether a better concept design is possible or not.

A methodology is required to search the design space for an optimal solution based
on the specified preferences from the customer. But the difficultly is the design space,
which is non-linear, discontinuous, and bounded by a variety of constraints, goals, and
thresholds. Then the design process itself is difficult to optimize because of the coupling
among decomposed engineering disciplines and sub-system interactions. These attributes
prevent application of mature optimization techniques including Lagrange multipliers,
steepest ascent methods, linear programming, non-linear programming, and dynamic
programming.

To further improve submarine concept exploration, this thesis examines a statistical
technique called Response Surface Methods (RSM). The purpose of RSM is to lead to an
understanding of the relationship between the input (factors) and output (response)
variables, often to further the optimization of the underlying process. The RSM approach
allows the designers to find a local optimal and examine how the design factors affect the
response in the region around the generated optimal point. RSM can be applied to
submarine concept exploration and provide a methodology to: determine the optimal
concept design based on customer preference, efficiently perform trade-off studies,
determine the feasible design space, and the ability to determine in advance if a specified
concept design is feasible and meets all the customer thresholds and constraints.

Thesis Supervisor: Clifford Whitcomb
Associate Professor of Ocean Engineering

Thesis Reader: Kevin Otto
Associate Professor of Mechanical Engineering
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Chapter 1: Introduction

A submarine concept design is a difficult and iterative task due to the number of

physical constraints, engineering design considerations, and customer requirements that

must be satisfied. Because the number of mathematical equations required for a basic

concept design is vast, any attempt to optimize the concept design process poses its own

set of problems. The underlying equations to model a basic concept design are both

linear and non-linear with continuous and discrete variables. The design process is

difficult to optimize because of the coupling among decomposed engineering disciplines

and sub-system interactions. These attributes prevent application of mature gradient-

based optimization techniques including Lagrange multiplier, steepest ascent methods,

linear programming, non-linear programming and dynamic programming. Genetic

algorithms have been investigated [1], but have not proven to be a successful application

tool.
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1.1 Concept Design Studies

First, a designer will be challenged with a set of customer requirements and will

attempt to produce a feasible and balanced submarine design. The process starts with

estimates of the of the multiple requirements as the designer proceeds around the "design

spiral" (see Figure 1) where each spoke represents one of the many disciplines and

engineering requirements that needs to be considered. For instance, the spokes could

represent the following: customer requirements, volume requirements, initial sizing,

weight estimates, weight/buoyancy balancing, longitudinal balance, vertical balance,

equilibrium polygon, propulsion, structures, maneuvering and cost. This philosophy is

extensively discussed in the open literature, for example Brown [2]. For the first

iteration, all calculations are entirely estimates. As the spiral of design progresses,

refinements are made in each of the calculations as the design approaches a balanced

condition. Once complete, the designer will have produced one balanced concept design.

WVORK TOWAP-I)
*ALANCED DESiGt

Figure 1: Design Spiral
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Using the one balanced concept design, the designer can begin to perform trade-

off studies. This is accomplished using one or both of two methods: the one-factor-at-a-

time design approach or the Pareto plot.

1.1.1 One-Factor-At-A-Time Design Approach

To evaluate the current concept design, the designer will compare his' design to

the customer requirements. But if the design does not produce the required results, the

designer will make changes to the baseline concept design. By selectively changing the

design parameters or factors, the designer is using his experience to select the correct

factor to improve the performance of the concept design. Each time the designer makes

changes to the design, he must then proceed around the design spiral to attain a balanced

concept design, if possible. If a feasible solution is achievable, there is no guarantee the

new concept design will be an improvement over the last concept design.

With this one-factor-at-a-time design approach, there is no systematic or specific

methodology being applied. The designer is developing point designs in an educated

manner, but he is not using a specific methodology. Instead, the designer is relying on

his past experience and understanding of submarine concepts to identify the correct

design factors to change and making the appropriate changes. Yet this approach is ad

hoc, and the resulting process is highly inefficient, not systematic, and may not lead to an

'In the interest of brevity, the personal pronoun will be "he," even though "he or she" is

understood by the author and reader.
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optimum (defined as meeting the customer requirements at the least cost) design solution.

Furthermore, once the designer has a "good" concept design, he has no process or

methodology to determine whether a better concept design is possible or not.

1.1.2 Pareto Plot

This method uses the Overall Measure of Effectiveness (OMOE) as a means to

determine the optimal solution. An excellent reference on the Pareto plot is by

Whitcomb [3]. To generate the Pareto plot, the designer develops numerous concept

designs and determines the OMOE and cost for each. By plotting each point design on

the Pareto plot (see Figure 2), the designer can examine his various designs and have a

graphical comparison. If a cost constraint is imposed, the designer can determine from

this graph the best concept design (the highest OMOE under the cost constraint).

Max Pareto Frontier

OMOE *

Min

Min Cost Max

Figure 2: Pareto Plot

The Pareto plot can be a very useful tool, but it also has its limitations. One

limitation is the determination of the Pareto frontier. In theory, the designer would

produce an infinite number of concept designs and plot each on the Pareto plot to

16



determine the Pareto frontier. But this task is close to impossible. The designer would

only produce enough point designs until some form of the Pareto frontier is visible. But

the difficulty lies in the fact that the designer cannot say with 100 percent certainty that

he has determined the frontier. At a specific cost, the designer will have a design with

the highest OMOE, but he is not certain if there is another design at the same cost with an

even higher OMOE.

Another limitation of the Pareto plot is the inability to examine other point

designs. To examine another point design, the designer will have to selectively change

the design factors and rebalance the design by using the design spiral. Or if the designer

would like to examine a point design of a specific cost and OMOE, the designer would

have to estimate the correct design parameters to produce a concept design at the required

cost and OMOE. The first attempt would miss its mark, so the designer will have to

iterate until he attains the correct cost and OMOE.

The one-factor-at-a-time design approach and the Pareto plot are limited. These

limitations are further amplified when considering the concept exploration phase of the

acquisition cycle.

1.2 Concept Exploration Phase of the Acquisition Cycle

The U. S. Navy estimates that 70 to 85 percent of the life cycle cost of major

acquisition programs is determined upon the completion of the concept exploration phase

[4]. It is therefore critical that the selected concept design not only satisfy the physical

constraints, engineering design considerations and customer requirements, but at the

lowest life cycle cost. But how is this achieved? The designer can use the one-factor-at-

17



a-time approach or the Pareto plot discussed in the previous section, but the designer

cannot guarantee that the selected design is optimal, based on customer requirements, at

the lowest cost.

Even if the designer can produce an optimal concept design, the designer has no

method to examine the impact of changing one design factor and its impact on the

balanced design. Neither of the two methods previously discussed provide a means of

easily evaluating changes in the design factors. For instance, if the designer decides to

add an additional 40 feet to the parallel mid-body to accommodate a larger modular

payload section, he has no other method available other than to produce another point

design via the design spiral. Or if it is determined that the current design is one knot

below the Top Level Requirement (TLR) for speed, the designer has no methodology for

a course of action other than make point changes and re-balancing the design.

In summary, a methodology is needed to allow the designer to systematically

optimize the concept design, efficiently perform trade-off studies, and examine the

impact on the design when a design factor is changed. A statistical tool called Response

Surface Methods can accomplish (and even surpass) this challenge.

1.3 Response Surface Methods

Response Surface Methods (RSM) has been successfully used since the 1950s on

a wide variety of problems in chemical engineering, agriculture, chemistry and

mechanical engineering [5][6]. But with faster computer processor speed, computer

simulation of physical processes has become a standard tool of many design and

manufacturing engineers. Powerful computer-aided design tools, finite element analysis

18



programs, and high-level deterministic and stochastic simulation packages make possible

computations and detailed analysis of engineering programs not dreamed of years ago.

With the development of large-scale mathematical models of engineering designs, RSM

can now be applied to the model to optimize the design [7]. For instance, the Aerospace

Systems Design Laboratory (ASDL) at Georgia Institute of Technology is using RSM to

optimize the complex design of aircraft.

Using RSM methodology, the designer will produce an n-dimensional surface

using a group of techniques in the empirical study of relationships between one or more

measured responses (the output variables) and a number of factors (the input variables).

This surface represents all feasible and balanced designs. To create this surface, the

designer will be required to produce a finite number of point designs. The selected point

designs are very specific and are determined by the type of response surface design

model selected not the designer. Most importantly, once the response surface is created,

the designer can examine any other point design by moving along the surface. The

designer is not required to start at the beginning using the design spiral. Along this

surface the designer can find the optimal solution and effectively perform trade-off

studies.

In general, RSM is used to answer the following questions:

1. How do the design factors affect the specific response?

2. What values, if any, of the factors will produce a response simultaneously
satisfying specified constraints, thresholds, and goals?

3. What values of the factors will produce an optimal design, and what is the
response surface like close to this optimal solution?
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1.4 Response Surface Methods Applied to Submarine Design

This chapter illustrates the need for an improvement in current submarine concept

design practices. With the combination of a submarine mathematical model and a

powerful statistical software package, RSM can be applied to submarine concept design

and can yield great insight. Once the response surface is created, the designer can move

along the surface to examine the impact of changing design factors on the response,

perform trade-off studies, and determine the optimal solution (based on customer

requirements). For instance, if RSM is applied to the Pareto plot, a response surface can

be generated for both the cost and OMOE. Once the response surface is created, the

designer can move along the surface and easily determine the optimal OMOE for a

specified cost.

The application of RSM to submarine concept exploration is the purpose of this

thesis. This study is structured in the following format: Chapter Two will provide a basic

understanding of RSM and application of this technique. Readers will be provided two

references if they desire further information. To generate the concept designs needed to

create the response surface, a mathematical model must be used. Chapter Three will

discuss the mathematical model used to generate the data for this thesis. Chapter Four

will show the results from applying RSM to a submarine concept design, and will also

discuss lessons learned from this research and the limitations of applying RSM. Chapter

Five will then summarize the application of RSM to submarine concept design and

provide direction for further work.

20



Chapter 2: Response Surface Methods

This chapter will review the basic fundamentals of RSM. If the reader needs a

more detailed explanation, there are two excellent reference books. "Understanding

Industrial Designed Experiments," by Schmidt and Launsby [8] focuses on the

application of RSM to current design problems, but only reviews the basics of the

statistical techniques used in RSM. For a more detailed explanation of the statistics,

"Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model

Building," by Box and Hunter [9] provides an excellent statistical foundation.

2.1 Terminology

The following terminology is used in RSM:

" Factors: The input variables or design parameters. Represented by
capital letters (A, B, C) or xi.

" Levels: The different settings for each factor. For a two-level factor,
the low level is represented by (-1) and the high level as (+1). For a
three level factor, the intermediate level is represented by (0).

* Response: The output of interest, represented by the letter y.
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* Interaction(s): Refer to dependencies between a factor's effect on the
response and levels of another factor. The interaction of A and B is
represented as AB.

2.2 Overview of RSM

As stated in Chapter One, RSM will produce an n-dimensional surface using a

group of techniques in the empirical study of relationships between one or more

measured responses and a number of factors. Two such methods, the Box-Behnken and

the Central Composite design, perform a quadratic fit between k design factors and the

response using the following second-degree polynomial approximation:

k k k k

y = bo + bix+ b,,x 2 + I b8xx+. (1)
i=1 i=1 i=1 j=i+

The coefficients, bo, bi, bii, and bij, are easily obtained from a multivariate regression

software package. The error term c represents pure error and lack of fit. If the quadratic

surface does not accurately fit the data, as indicated by the lack of fit error term, either

the design space is too large or the incorrect factors were selected. If the designer

determines the poor fit is caused by a large design space, he can improve the fit by

reducing the design space; this is achieved by reducing the range for each factor. For

instance, if initially factor A had the low level (-1) set at 100 and the high level (+1) set at

200, then setting (-1) at 30 and (+1) at 70 will improve the accuracy of the quadratic fit.

Once a "good" quadratic fit is attained, this quadratic surface represents all feasible

concept designs.
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To apply RSM, one would proceed through the following three steps:

1. Engineering Model: Build a mathematical model of the design, and
identify the potential factors for each response of interest.

2. Screening Experiment: Determine which factors are critical, i.e. those
factors that have a statistical impact on the response.

3. Response Surface Modeling: Within the design space, create a quadratic
surface for the response as a function of the critical factors.

2.3 Engineering Model

The engineering model is a critical aspect of RSM. The engineering model must

contain enough fidelity to provide useful results. Once the level of detail is in the model,

the designer must then select the response(s) he is interested in investigating and

optimizing. There can be one or more responses. When there are multiple responses, the

steps outlined in this chapter must be applied to each response. Chapter Four will

examine five responses related to submarine concept design.

Once the responses are identified, the designer will need to determine all possible

sources of variation for each response. The sources of variation can be grouped into three

categories:

1. Controllable: the designer can control this source of variation. For
example, if the response of interest is submerged displacement for a
submarine design, then the designer should ensure that all the designs are
weight limiting or volume limiting. By controlling this source of variation,
the response accuracy will improve.

2. Noise: the designer cannot control this source of variation.

3. Factors: the sources of variation that the designer wants to investigate.
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If other sources of variation exist (unknown to the designer), the accuracy of predicting

other point designs by moving along the surface will be degraded. The loss of accuracy

is dependent on the magnitude of the unaccounted variation source, and will be indicated

by the quadratic curve fit statistical results.

Many industrial experiments have failed because all sources of variation were not

identified prior to the start of conducting RSM. A good design will identify the factors

and all controllable and noise variations ahead of time. Using the statistical techniques of

randomization, repetition, and blocking, the designer has the ability to reduce or

eliminate unwanted sources of variation. Yet this must be arranged before applying

RSM. If the designer does not fully understand all the statistical tools available and does

not use them to conduct well-designed experiments, then he may be misled by the results.

2.4 Screening Experiment

The purpose of the screening experiment is to determine which factors identified

in Section 2.3 are critical (factors that statistically effect the response). The most

efficient way to identify these factors is to use an experimental design process called

Design of Experiments (DOE). By applying the methodology of DOE, the designer

systematically develops numerous design variants to observe the corresponding changes

in the response. By collecting the data and analyzing the results, the designer uses

statistical analysis to estimate the effect of each factor and their interactions on the

response. Using the statistical tools ensures accuracy and validity. Overall, the DOE
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methodology is a scientific approach applied to a concept design by the designer to

determine how the factors effect the response.

For the screening experiment, only two levels per factor are used to estimate the

effect of each factor on the response (three or five levels per factor are used when

developing the quadratic surface for RSM). It is critical that the levels for each factor are

within the design space of interest. The importance of this will be demonstrated in

Chapter Four.

To determine the critical factors, DOE consists of the following steps to be

discussed in more detail:

1. Experiment Setup: Depending on the number of factors and required
resolution (to be discussed), the number of variants n, or experiment runs,
to be developed is determined. More important, the factor levels for each
variant are predetermined using orthogonal arrays.

2. Execution: The designer produces n variants.

3. Analysis: Since orthogonal arrays were used to develop the variants,
statistical analysis can be used to estimate the effect of each factor and
their interactions on the response.

2.4.1 Experiment Setup

One option to determine the required number of experiment runs, or design

variants, is the full factorial design matrix. The full factorial design matrix requires the

designer to produce a variant for each possible combination of the factors. The number

of variants, n, for a two-level screening experiment as a function of k factors is

n = 2k. (2)
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Table 1 is an example of a full factorial design matrix (k = 3) and includes every

possible combination of the factors. As shown in Table 1, (-1) is the coded value for the

low level and (+1) is the coded value for the high level. The reasoning for the selection

of (-1) and (+1) for the low and high levels is to verify that the design matrix is

orthogonal and to generate the factor interaction columns (both to be explained shortly).

The factors A, B, and C could, for example, correspond to temperature, pressure, and

time.

Run A B C

1 -1 -1 -1
2 -1 -1 +1
3 -1 +1 -1
4 -1 +1 +1
5 +1 -1 -1
6 +1 -1 +1
7 +1 +1 -1
8 +1 +1 +1

Table 1: Full Factorial (k=3) Design Matrix

The advantage of the full factorial design matrix is the ability to estimate the

effect of all factor and factor interactions on the response. To further expand upon the

example in Table 1, the three-factor full factorial design matrix can estimate the effects of

the following:

" Three linear or main effects (A, B, C),

" Three two-way interactions (AB, AC, BC),
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0 One three-way interaction (ABC).

Depending on the engineering model, the factor interactions' (two-way, three-way, etc.)

effects may be statistically significant, and their impact on the response can be

determined with the full factorial design matrix.

As mentioned earlier, full factorial design matrices use orthogonal arrays to

estimate the effects of each factor and their interactions independently of others.

Mathematically, the requirements of an orthogonal array are:

1. Sum of each column is zero.

2. The dot product of any two columns is zero.

Another way to visualize orthogonal arrays is shown with Table 1. When A is at (-1), the

remaining columns have a balanced number of (+1) and (-1) values. This also applies for

all other columns evaluated at their (+1) and (-1) levels. This balancing property results

in an orthogonal design, which allows the designer to estimate the effects of each factor

and factor interactions independently of the others.

With the orthogonal design matrix, the statistical estimation of the factor effect on

the response is simple to compute (for a more detailed explanation, see reference [7]).

For the specific column associated with the factor of interest, the designer should

determine the average of the responses associated with the (-1) values and average for the

(+1) values. The difference in the average for the (-1) and the (+1) is a measure of the

27



effect of that factor on the response. The designer can use either the t-test or the F-test to

determine if the difference is statistically significant.

Table 1 has a column for each factor, which allows the designer to examine the

effect of each factor on the response using the method described in the previous

paragraph. To estimate the effect of the factor interactions, one must produce similar

columns for each factor interaction. With the (+1) and (-1) notation, the factor interaction

AB column is simply the product of columns A and B, row by row. Table 2 shows all the

possible factor interactions of the example in Table 1. By visual inspection of Table 2,

the factor interaction columns are orthogonal and allow the designer to estimate the effect

of the factor interactions on the response.

Run A B C AB AC BC ABC

1 -1 -1 -1 +1 +1 +1 -1
2 -1 -1 +1 +1 -1 -1 +1
3 -1 +1 -1 -1 +1 -1 +1
4 -1 +1 +1 -1 -1 +1 -1
5 +1 -1 -1 -1 -1 +1 +1
6 +1 -1 +1 -1 +1 -1 -1
7 +1 +1 -1 +1 -1 -1 -1
8 +1 +1 +1 +1 +1 +1 +1

Table 2: Full Factorial Design Matrix with Factor Interactions

The most serious disadvantage of the full factorial design is that the number of

variants can become quite large as the number of factors increases. In most experiments,

interactions beyond two ways are not significant. Therefore it is possible to use a

fractional factorial design matrix to reduce the number of variants required to estimate
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the effect of the factors on the response. But since one would be performing a subset of

the full factorial design, only a portion of the factor interaction effects can be estimated.

The fractional factorial design matrix allows the designer to estimate all linear

effects and desired factor interactions while requiring fewer runs than the full factorial.

The number of runs for a fractional factorial is

n = 2 ~-q (3)

where q = 1 indicates a half fraction, q = 2 a quarter fraction, etc. The advantage of the

fractional factorial is the number of runs required to estimate all linear effects and

specified interactions is smaller. Like the full factorial, the fractional factorial design

matrices are orthogonal and therefore allow accurate estimation of the factor and

specified factor interaction effects on the response.

Since the fractional factorial does not require all possible factor combinations,

some of the higher order factor interaction effects become non-estimable. An effect is

non-estimable when it its confounded, or aliased, with another effect. For example,

consider a 24 1 fractional factorial. To perform a full factorial would require 16

experiment runs, but by performing a half fraction, only eight experiment runs are

required. To generate the design matrix for the fractional factorial, one should first

generate the design matrix for a 23 showing columns for each factor and factor

interactions (Table 2). To generate the coded settings for the fourth factor D, one could

use the factor interaction column ABC as shown in Table 3. Therefore, when the

experiment is conducted, the factor interaction column ABC is used to determine the
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setting for factor D. By doing so, one has confounded factor D with the factor interaction

ABC (represented by D=ABC).

Run A B C AB AC BC D=ABC

1 -1 -1 -1 +1 +1 +1 -1
2 -1 -1 +1 +1 -1 -1 +1
3 -1 +1 -1 -1 +1 -1 +1
4 -1 +1 +1 -1 -1 +1 -1
5 +1 -1 -1 -1 -1 +1 +1
6 +1 -1 +1 -1 +1 -1 -1
7 +1 +1 -1 +1 -1 -1 -1
8 +1 +1 +1 +1 +1 +1 +1

Table 3: 24- Fractional Factorial Design Matrix

In the example of Table 3, the main factor D is confounded with the factor

interaction ABC, or D = ABC. (Using the equal sign does not imply that the D and ABC

effects are the same, but that the same column is used to represent D and ABC.) By

assigning D = ABC, the evaluation of the D and ABC column effects cannot be

separated. When the experiment is complete and if the column effect is determined to be

statistically significant, it is either caused by factor D, factor interaction ABC, or some

combination of the two. If the designer assumes the ABC interaction is unlikely to be

important, then the column measures the effect of factor D. If the designer believes this

assumption is not true, the designer should select another design matrix.

By using the factor interaction column ABC to generate the factor D levels in

Table 3, the designer has created additional confounded interactions other than ABC = D.

The determination of the remaining confounded factor interactions is easily determined.
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If any column is multiplied by itself, the resulting column contains all (+1) values, called

the identity column, I. Using this relation, the "defining relation" for the example in

Table 3 is attained as follows:

1. Start with D = ABC
2. Multiply each side by D and use DD = D =
3. DD=I=ABCD
4. The defining relation is I = ABCD

With the defining relation defined for the example in Table 3, other confounded effects

are determined by multiplying each factor and their interactions by the defining relation.

Using the relation AA = BB = CC = DD = I, the simplified equation is the confounded

relationship. Table 4 shows the alias pattern for the example in Table 3.

Effect Math Alias
A AI=AABCD=BCD A=BCD
B BI=BABCD=ABBCD=ACD B=ACD
C CI = CABCD = ABCCD = ABD C = ABD
D DI=DABCD=ABCDD=ABC D=ABC

AB ABI = ABABCD = AABBCD = CD AB = CD
AC ACI = ACABCD = AABCCD = BD AC = BD
AD ADI=ADABCD=AABCDD=BC AD=BC
BC BCI=BCABCD=ABBCCD=AD BC=AD
BD BDI=BDABCD=ABBCDD=AC BD=AC
CD CDI=CDABCD=ABCCDD=AB CD=AB

ABC ABCI=ABCABCD=AABBCCD=D ABC=D
ABD ABDI=ABDABCD=AABBCDD=C ABD=C
ACD ACDI=ACDABCD=AABCCDD=B ACD=B
BCD BCDI=BCDABCD=ABBCCDD=A BCD=A

ABCD ABCDI =ABCDABCD =AABBCCDD I ABCD= I

Table 4: Alias Pattern For The Example In Table 3

Upon examination of Table 4, all factor effects are confounded with three-way

interactions, and all two-way interactions are confounded with other two-way
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interactions. Since in most designs three-way interactions are not statistically significant,

the alias of the factor effects with the three-way interactions should not pose a problem.

Yet on the other hand, the alias of the two-way interactions with other two-way

interactions needs to be evaluated for the specific design being investigated. The key to

using fractional factorial design matrices is to purposely plan which interaction effects

are confounded.

To describe the alias of factor and factor interactions, the term resolution is used

for fractional factorial designs. The definitions are as follows:

" Resolution III:
- Main effects are not confounded with one another.
- Main effects confounded with two-way interactions.

" Resolution IV:
- Main effects are not confounded with one another.
- Main effects are not confounded with two-way interactions.
- Main effects confounded with three-way interactions.
- Two-way interactions confounded with other two-way interactions.

" Resolution V:
- Main effects are not confounded with one another.
- Main effects are not confounded with two-way interactions.
- Main effects are not confounded with three-way interactions.
- Two-way interactions are not confounded with one another.

Using this terminology, the example in Table 3 is a fractional factorial design with

resolution IV.

In summary, the experimental setup of the screening experiment is an important

step. The goal is to determine the critical factors, and this can be accomplished by using

a full factorial or a fractional factorial. If the fractional factorial deign matrix is selected,
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the designer must carefully select which interactions are confounded, and this is

determined by the engineering design under consideration.

2.4.2 Execution

Now that the experiment setup is complete, the designer can execute the plan.

The designer will develop each variant with the factor levels specified by the design

matrix selected. As the designer goes around the design spiral for each variant, he should

be checking the design characteristics for any unusual results or unaccounted variance.

For each balanced design, the selected response is recorded for the analysis phase.

2.4.3 Analysis

With the variants complete, the designer now examines the results using a

statistical package. For this research, the statistical package JMP® by SAS institute is

selected to analyze the data. Guided by the results and graphical displays of the statistical

package, the designer selects those factors and factor interactions that are statistically

significant (to be illustrated in Chapter Four). These critical factors will then be selected

to develop the response surface.

2.5 Response Surface Modeling

The designer now develops a curved surface (quadratic) as a function of the

critical factors. To create this surface, the designer has two options: the Central

Composite and Box-Behnken design. This surface represents all feasible designs within

the design space defined by the range of the critical factors. Once the surface is created,
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the designer can easily examine other point designs by moving along the surface and does

not need to revert back to the design spiral.

The Box-Behnken design is a three-level, nearly orthogonal, resolution V design

used for modeling factors with three-levels. The slight non-orthogonal design matrix is

not a concern if the analysis is conducted using least squares regression. As shown in

Figure 3 for three factors, the Box-Behnken design does not include any corner points of

the design space. Therefore if the corner points are infeasible, the Box-Behnken design

should be used to generate the quadratic curved surface. Yet the disadvantage is that the

Box-Behnken design will produce a higher uncertainty of prediction near the corner

points.

Figure 3: Three Factor Box-Behnken Design
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The Central Composite design is a three- or five-level design used to create the

quadratic curved surface by including the center, corner, and axial points of the design

space (see figure 3 for a three-factor Central Composite design). The axial points are at a

specified distance from the center, which means that (+ 1) or (-1) no longer represent the

factor maximum or minimum. Since the Central Composite design uses the corner points

of the design space, the generated curved surface will be more accurate (as compared to

the Box-Behnken design) at these points, but this might strain the engineering model.

Figure 4: Three Factor Central Composite Design
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Once the designer has created the quadratic surface using the Box-Behnken or

Central Composite design, the statistical packages will provide the statistical results and

graphical displays to determine the accuracy of the surface fit. This will be illustrated in

Chapter Four.

2.6 Response Surface Methods Summary

This chapter has briefly explained RSM methodology. By applying the DOE

screening experiment, the designer has a tool to systematically determine the critical

factors within the design space of interest. With the critical factors identified, the

designer can focus his attention on the critical factors and not on the other factors that

have no impact on the response. Using the critical factors, the designer can create the

response surface and efficiently perform trade-off studies. Using a statistical software

package, the designer can use the response surface to examine an infinite number of

design variants.
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Chapter 3: Submarine Model

The first step to apply RSM to submarine concept designs is to develop a

mathematical model. The MIT Ocean Engineering 13A curriculum has been using a

MathCAD Submarine Design Model for developing concept designs. Versions of the

MathCAD Submarine Design Model have been used for numerous conversion and

yearlong design projects as part of the curriculum. One such design project, "The Next

Generation Nuclear Submarine (NGSSN): A Study in Modularity," by Hanson and Hunt

[10], modified the MathCAD Submarine Design Model for a modular submarine. The

modular submarine model by Hanson and Hunt is used for this thesis to examine the

application of RSM.

3.1 Modular Submarine Model

The main design objective of the modular submarine model, as defined in the

NGSSN mission need statement, was to enable a rapidly re-configurable submarine

platform which could incorporate new technologies and developments as they evolved.

To achieve these objectives, a module payload section (64 ft in length) consisting of three
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ear -

20 ft by 20 ft module bays was inserted in the center section of a modern submarine hull

form, as shown in figure 5. The specifications of the resulting submarine are given in

Table 5.

Figure 5: Baseline Ship Profile View

Parameter Baseline Design
Displacement (surfaced) 8499 itons
Displacement (submerged) 9562 itons
Length 372.4 feet
Diameter 40 feet
SSTG's (combined) 7200 kW
Payload Section Length 64 feet
Installed Shaft Horse Power 28,100 shp
Speed (submerged) 28.08 knots
Endurance Range 90 days
Compliment 100

Table 5: Baseline Design Summary
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Hanson and Hunt used an Overall Measure of Effectiveness (OMOE) as a

framework for the evaluation of individual submarine designs in the preliminary trade-off

design stage. The selected OMOE was a function of three design parameters: test depth,

submerged speed, and payload length. By including the length of the modular payload

length as one of the OMOE parameters, Hanson and Hunt addressed the concerns of

platform mission modularity. Chapter Four selects this OMOE as one of the responses to

be investigated.

If the reader needs more information on the project by Hanson and Hunt, see

reference [10]. Appendix B of this reference includes the modified MathCAD Submarine

Design Model used for the modular submarine. The same MathCAD model is used for

this thesis to generate design variants.

3.2 MathCAD Submarine Design Model

The MathCAD Submarine Design Model uses the software program MathCAD

by MathSoft. Using this software package, the designer directly inputs the mathematical

equations, similar to Figure 6, into the document. This ease of use and the ability to

quickly change the mathematical equations are advantages of using MathCAD. If the

designer wants to evaluate a radically different design concept, the designer can easily

modify the MathCAD Submarine Design Model.

W pb-LCG LEAD - W pbm-LCG pb
LCG LEADs : b~Gp

W pbs

Figure 6: MathCAD Example
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The most significant disadvantage of the MathCAD Submarine Design Model is

the manual iterations required by the designer to obtain a balanced design. For example,

one section of the model determines the volume requirements based on specified design

parameters. Then in another section, the designer "spins a hull" and determines the

volume available with the specified hull. If the volume requirements and the hull volume

do not match, the designer must iterate specified design parameters until a balance is

achieved. Taking into account the other balancing requirements in the MathCAD

Submarine Design Model, the designer will expend about four hours per variant, on

average, manually manipulating the design parameters to attain a balanced submarine

concept design.

3.3 Submersible Design Program

The author used the equations from the MathCAD Submarine Design Model to

develop a computer program called the "Submersible Design Program." Since the

underlying equations are identical in the Submersible Design Program and the MathCAD

Submarine Design Model, both design tools will generate identical concept designs. The

difference, though, is the synthesis algorithm built into the Submersible Design Program.

This synthesis algorithm performs all the manual iterations performed by the designer in

the MathCAD Submarine Design Model. Using the Submersible Design Program, the

designer inputs the design parameters and presses the "synthesis" button to activate the

algorithm. With the guidance of the synthesis algorithm, the designer can produce a
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balanced design in about five minutes compared to the four hours using the MathCAD

Submarine Design Model.

The Submersible Design Program is programmed in JAVA, which is an object-

oriented language with a vast library for graphical user interfaces (GUI). The advantages

of the program include the following to be discussed in more detail: graphical user

interface, object-oriented modularity, and the synthesis algorithm.

3.3.1 User Interface

The JAVA language has a vast library for graphical user interfaces. Taking

advantage of GUI library, the Submersible Design Program has a user-friendly interface.

Via the interface, the designer can easily manipulate the design parameters for the

concept design. With the data entered, the designer presses the "synthesis" button to

attain a balanced design. Once a balanced concept design is attained, the program

provides two graphs to aide the designer in the evaluation of the design:

1. Profile View: A profile view of the concept design, showing the location
of compartments, bulkheads, decks, and variable ballast tanks.

2. Equilibrium Polygon: Plots the equilibrium polygon with the specified
loading conditions.

3.3.2 Object-Oriented Modularity

All calculations in the Submersible Design Program are grouped into classes by

functionality as illustrated in Figure 7. The general description of each class is as

follows:
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" Volume: Calculates the volume requirements (operations compartment,
engine room, pressure hull, main ballast tanks, submerged, etc.) based on
design parameters.

" Hull: Generates a submarine hull.

* Propulsion: Calculates the submerged and surface speed based on the
installed propulsion system and generated submarine hull.

* Layout: Specifies location of bulkheads, decking, and variable ballast
tanks.

" Weights: Calculates the surfaced and submerged displacement. Locates
lead to attain an even submerged trim.

* Polygon: Calculates the loading conditions for the equilibrium polygon
and generates the equilibrium polygon plot.

* Surface: Calculates the surfaced draft, GM, and trim.

* Cost: Calculates the lead ship acquisition cost using a weight-based
model.

Module

Volume Hull Propulsion Layout Weights Polygon Surface Cost

Figure 7: Submersible Design Program Abstract Class Architecture

Using the architecture shown in Figure 7, the Submersible Design Program takes

advantage of the JAVA object-oriented language to produce a modular program. Figure

8 illustrates the modular architecture of the program. The abstract superclass is Module,

which defines the methods needed to interact with the user interface. By defining

Module as an "abstract" class, any class that inherits Module must implement the

methods defined in Module to interact with user interface. Therefore, when Hull class
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inherits Module (indicated by the connecting line), the Hull class will have the required

methods to interact with the graphical user interface. Similarly, any other class that

inherits Module also has the ability to interact with the user via the graphical user

interface.

Module
Abstract Class

Volume Hull Weig ht
Abstract Class Abstract Class Abstract Class

BasicHull NewHull
Class Class

Figure 8: Submersible Design Program Modularity

The Hull class is used to generate the submarine hull including any appendages

and the sail. Yet the key to the modularity is that the Hull class does not provide any of

the mathematical modeling. By defining Hull as an abstract class, this class defines the

required methods needed to interact with the synthesis algorithm. Therefore, any module

that inherits Hull must implement the defined methods needed to interact with the

synthesis algorithm. In Figure 8, BasicHull class contains the mathematical modeling to

generate a submarine hull, and since it inherits the abstract class Hull, BasicHull can

interact with the synthesis algorithm. And, just as important, since Hull inherits Module,

so does BasicHull. In summary, BasicHull performs the mathematical modeling needed

to generate a submarine hull and by using inheritance, BasicHull has the required
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functions needed to interact with the synthesis algorithm and the user interface. If the

reader desires more information on the object-oriented JAVA language, see reference

[11].

With the architecture described in the preceding paragraph, the modularity works

as follows: If the designer would like to examine a different hull form, he needs to

simply develop the mathematical model to represent the new hull form. With the

equations defined, the designer translates the equations into the JAVA language and calls

the new class NewHull. Through inheritance, as shown in Figure 8, the NewHull class

can be inserted into the Submersible Design Program and interact with the synthesis

algorithm and the user interface.

The modularity of the Submersible Design Program allows the designer to add

more detailed calculations or different attributes to the program and therefore analyze for

different concept designs. In order to do this, the designer must know the JAVA

programming language. On the other hand, if the design under consideration is radically

different, the modularity might not work. In this case, the architecture of the program

itself may need minor changes. If the work to modify the source code is significant, the

designer may want to use the MathCAD model because it is very easy to modify.

3.3.3 Synthesis Algorithm

The synthesis algorithm in the Submersible Design Program aides the designer in

quickly attaining a balanced concept design. The algorithm executes each of the classes

in the program and depending on the out-of-balance conditions, will change the design

parameters to produce a balanced concept design. If the algorithm cannot produce a

44



balance design, the algorithm will terminate and inform the designer why. For example,

if the designer selects a submarine diameter of 40 ft, but attempts to install five decks

with a deck height of 12 ft, the synthesis algorithm will terminate and inform the

designer. He can then adjust the number of decks, deck height, or diameter and rerun the

synthesis algorithm.

With no errors, the synthesis algorithm takes about one minute to execute. If

errors do develop, the designer, with the aide of the synthesis algorithm, can modify the

design parameters until a balanced design is achieved. From start to finish, the designer

can produce one balanced concept design in about five minutes with the aide of the

synthesis algorithm.

3.4 Data for Thesis

The modular submarine model by Hanson and Hunt is used for the application of

RSM. As stated earlier, the MathCAD Submarine Design Model and the Submersible

Design Program will produce the same concept design. With the ability to quickly

develop concept designs, this thesis used the Submersible Design Program for the

generation of the design variants. To validate the Submersible Design Program, the

MathCAD Submarine Design Model was used to verify the results.
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Chapter 4: Analysis

Using the modular submarine model from Chapter Three, this thesis examines the

following responses: cost, submerged displacement, length, submerged speed and

OMOE. The first four responses were selected since they are the main characteristics of

a submarine design. The fifth response, OMOE, is used to examine the application of

RSM to the Pareto plot (OMOE versus cost) and allow the designer to optimize the

design based on customer preference. For each of the selected responses, the payload

length is selected as one of the factors. The methodology in Chapter Two will determine

if the payload length is a critical factor, and if so, to what extent it impacts the design.

Once the response curve is generated, the designer can perform trade-off studies to

examine the impact of changing the payload length on the selected responses of cost,

submerged displacement, length, submerged speed, and the OMOE. Prior to performing

this analysis, this chapter will first review the methodology used by Hanson and Hunt to

select their final concept design.
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4.1 Hanson and Hunt

When performing their concept exploration to select their final concept design,

the design team was not aware of RSM. They selected their final concept design as

follows: The sponsor of the project directed the design team to perform their trade-off

analysis by varying the following four factors: submerged speed, test depth, diameter,

and payload length. These parameters were selected to capture major design drivers

(submerged speed and test depth), geometry (diameter), and the main useful

characteristic for a modular design (payload length). Starting with a baseline design, 18

variants were used to accurately populate a design space. The variants were developed

by deviating from the baseline design in each of the four factors.

The design team had originally planned on using the 18 variants to create a Pareto

plot to help select the final concept design. It was at this time the design team learned of

the capability of RSM and the statistical software JMP*. With the knowledge of RSM

and the JMP* software, the design team wanted to recreate their variants using either the

Box-Behnken or the Central Composite design (the factors were specified by the

sponsor). Yet time constraints forced them to use the original 18 variants. On the other

hand, the design team was able to use the JMP* software to their advantage. Each

variant (factor levels and responses of interest) was entered in the JMP* program and,

using standard least squares model fitting, the design team created a quadratic response

surface as a function of the four factors. The design team then used the response surface

to help select the final concept design.

In summary, the following observations are provided regarding the methodology

used by the design team to select their final concept design:
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" The factors were selected first, based on designer experience. The design
team did not first pick the response of interest and then use the DOE
methodology to determine the critical factors.

* With the selected factors, the design team did not use the Box-Behnken or
the Central Composite design to develop the variants. Instead, they
systematically varied the factors and used the statistical software package
to create a curve fit (quadratic) as a function of the four factors.

The purpose of this section is to recreate the response surface using the Box-

Behnken design. The analysis proceeded as follows:

* Use the same four factors: submerged speed, test depth, diameter, and
payload length.

* The selected factor levels are shown in Table 6 (same as Hanson and
Hunt).

2
* Use the Box-Behnken design to develop each design variant. With four

factors, the Box-Behnken design requires 27 variants to model the design
space. Appendix A contains the design matrix and the responses.

" Select shaft horsepower, cost, and the transverse metacentric height (GMt)
as the responses (this is a subset of the 19 responses selected by Hanson
and Hunt).

* Using the Box-Behnken design, a response surface is created by modeling
the surface with Equation (1) as a function of the four factors.

This analysis is only applying a portion of the methodology outlined in Chapter Two,

specifically the application of the Box-Behnken design to create the response surface.

But the factors selected were identified by designer experience, not by using the

screening experiment to identify the critical factors. The results of the shaft horsepower,

2 The author initially attempted to use the Central Composite design, but the corner points were

outside the limits of the parametric equations used in the modular submarine model.
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cost and GMt response surface model will be analyzed. Then in the following section,

the complete methodology outlined in Chapter Two will be applied to the cost response

surface, resulting in an improved model than shown here.

Factor -1 0 1
Submerged speed (knots) 24 28 32
Test depth (ft) 500 800 1100
Diameter (ft) 38 40 42
Payload length (ft) 43 65.5 88

Table 6: Cost Model Factor Levels

4.1.1 Shaft Horsepower Response Model

A shaft horsepower response model is created as a function of the following

factors: submerged speed, test depth, diameter, and payload length. The analysis of the

fitted model is shown in Table 7 and 8 and Figure 9.

The Analysis of Variance, Table 7, summarizes the quality of the model fit to the

actual shaft horsepower responses. The Total sum of squares (SS) is the sum of squared

distances of each shaft horsepower response from the shaft horsepower sample mean.

The Error SS is the sum of squared differences between the predicted model values and

the actual values. This SS corresponds to the unexplained residual Error after fitting the

regression model. The Model SS is then the Total SS minus the Error SS. If the selected

factors accurately model the shaft horsepower response, then the Model SS will be much

larger than the Error SS and is reflected in the F Ratio. The larger the F Ratio, the better

the model fit.
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Analysis of Variance
Source DF Sumof Squares Mean Square F Ratio

Model 14 3166359451 226168532 101.9121
Error 12 26631012.4 2219251 Prob > F
C. Total 26 3192990464 <.0001

Table 7: Shaft Horsepower Response Model Analysis of Variance
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Figure 9: Shaft Horse Power Response Model Leverage Plot

Scaled Estimates
Term

Intercept

Diameter(38,42)&RS
Depth(500, 1100)& RS
Speed(24,32)&RS
Payload(43,88)& RS
Diameter(38,42)*Depth(500,1 100)
Diameter(38,42)*Speed(24,32)
Depth(500,1 100)*Speed(24,32)
Diameter(38,42)* Payload(43,88)
Depth(500, 1100)*Payload(43,88)
Speed(24,32)* Payload(43,88)
Diameter(38,42)*Diameter(38,42)
Depth(500, 1100)*Depth(500, 1100)
Speed(24,32)*Speed(24,32)
Payload(43,88)* Payload(43,88)

Scaled Estimate

28931.1
866.68333
3205.0192
14821.028

4911.1755

281.625
665.075

1043.2825
284.15

1441.75
2652.2265
639.81517
204.94392
3269.6822
106.32842

Table 8: Shaft Horse Power Response Model Coefficients
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Std Error

860.0874
430.0437
430.0437
430.0437
430.0437
744.8575
744.8575
744.8575

744.8575

744.8575
744.8575
645.0656
645.0656
645.0656
645.0656

t Ratio
33.64
2.02
7.45

34.46

11.42
0.38
0.89
1.40
0.38
1.94
3.56
0.99
0.32
5.07
0.16

Prob>It

<.0001
0.0668
<.0001
<.0001
<.0001
0.7120
0.3895
0.1866
0.7095
0.0768
0.0039
0.3408
0.7562
0.0003
0.8718
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The F Ratio is a statistical tool to test the hypothesis that all coefficients in

Equation (1) are zero. If the hypothesis is not true, i.e. at least one coefficient is non-

zero, then the F Ratio will be large. The "Prob > F" in Table 7 is the probability of

obtaining a greater F Ratio by chance alone if the specified model fits no better than the

overall response mean. Significance probabilities of 0.05 or less are often considered

evidence that there is at least one significant regression factor in the model. Since Table

7 has "Prob > F" as less than 0.001, the model is an excellent predictor of the required

shaft horsepower.

Another method to examine the quality of the model fit is the leverage plot,

Figure 9. By examining the graph, the designer can decide if the model predicted values

(middle solid line) is a better fit than the shaft horsepower sample mean (dashed

horizontal line). The dashed lines on each side of the model predicted values are the 95

percent confidence curves. These indicate whether the F Test is significant at the 5

percent level by showing a confidence region for the model predicted values. If the 95

percent confidence curves cross the shaft horsepower sample mean, then the model is

significant; if the curves do not cross, then it is not significant at the 5 percent level.

Examination of Figure 9 illustrates that the model is significant.

The RSq in Figure 9 estimates the proportion of the variation in the shaft

horsepower response around the mean that can be attributed to terms in the model rather

than to random error. An RSq of 1 occurs with there is a perfect fit (all errors are zero).

An RSq of 0 means that the model fit predicts the response no better than the overall

mean response. For the shaft horsepower response, Figure 9 displays an RSq of 0.99,

therefore the shaft horsepower response model is an excellent fit.
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The RMSE (Root Mean Square Error) in Figure 9 estimates the standard deviation

of the random error. It is the square root of the mean square for error in the

corresponding Analysis of Variance table.

Table 8 shows the sample estimates of the coefficients for Equation (1). The

standard error is an estimate of the standard deviation for each coefficient. The t Ratio

and "Prob > tI," similar to the F Ratio, test for the hypothesis that each coefficient is

zero. A very large t Ratio is an indicator that the true coefficient might not be zero.

Therefore, the "Prob > jt" is the probability of generating an even greater t statistic, given

that the coefficient is zero. Probabilities less than 0.05 are often considered as significant

evidence that the coefficient is not zero. Reviewing Table 8, the submarine diameter has

a "Prob > Iti" of 0.0668, indicating that the diameter is not statistically significant, i.e. it

has very little impact on the shaft horsepower response. On the other hand, test depth,

submerged speed and the payload length are statistically significant and do impact the

shaft horsepower response. Also note that the interaction between submerged speed and

payload length is statistically significant.

The analysis of the results in Table 7 and 8 and Figure 9 is summarized as

follows: The quadratic model, with the coefficients defined in Table 8, is statistically

significant. The model can accurately predict the required shaft horsepower as a function

of the four factors, with an estimated standard deviation of 1489.7 shaft horsepower.

Examining Table 8, the graphical display shows that the submerged speed is a large

driver for the shaft horsepower requirement followed by payload length and test depth.
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On the other hand, the standard deviation of 1489.7 shaft horsepower is quite

large. But upon analysis of the modular submarine model, there are three uncontrolled

variances that effect the accuracy of the model fit. They are as follows:

" Propulsive coefficient: this value was not held constant and is modeled as
a function of the size and shape of the hull.

" Appendage area: The model increases the appendage area as the size of
the submarine increases.

" Weight-limiting versus volume-limiting design: Some designs are weight
limiting; others are volume limiting.

4.1.2 Cost Response Model

A cost response model is created as a function of the following factors:

submerged speed, test depth, diameter, and payload length. The analysis of the fitted

model is shown in Table 9 and 10 and Figure 10. As shown in Table 9, the "Prob > F" is

less than 0.001, indicating the model is statistically significant and is an excellent

predictor of cost (assuming the cost model is correct) with a standard deviation of

$65.804 million (the units in Figure 10 is million of dollars). Examining the coefficients

in Table 10, the big cost driver is the payload length, followed by the submerged speed

and test depth.

This chapter will redo this analysis using the complete methodology outlined in

Chapter Two. The analysis will produce a better model with a smaller standard

deviation.
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Analysis of Variance
Source DF Sum of Squares Mean Square F Rato

Model 14 3169393.6 226385 52.2803
Error 12 51962.6 4330 Prob > F
C. Total 26 3221356.2 <.0001

Table 9: Cost Response Model Analysis of Variance

Actual by Predicted Plot

2500-

2250-

-2000- -

<1750-

0 -
01500-

1250 -

1000-
1000 1250 1500 1750 2000 2250 2500

Cost Predicted P<.0001 RSq=0.98
RMS E=65.804

Figure 10: Cost Response Model Leverage Plot

Term

Intercept
Diameter(38,42)&RS
Depth(500,1100)&RS
Speed(24,32)&RS
Payload(43,88)&RS
Diameter(38,42)*Depth(500,1100)
Diameter(38,42)*Speed(24,32)
Depth(500,11 00)*Speed(24,32)
Diameter(38,42)*Payload(43,88)
Depth(500,11 00)*Payload(43,88)
Speed(24,32)*Payload(43,88)
Diameter(38,42)*Diameter(38,42)
Depth(500,1 100)*Depth(500,1100)
Speed(24,32)*Speed(24,32)
Payload(43,88)*Payload(43,88)

Scaled Estimate

1540.32
89.265

243.495
261.03417
337.69417

22.1225
32.095
60.915

30.0625
87.7075

108.3925
18.374167
29.346667
113.80792
13.257917

Table 10: Cost Response Model Coefficients

55

I

I

Scaled Estimates
Std Error

37.99219
18.99609
18.99609
18.99609
18.99609
32.9022
32.9022
32.9022
32.9022
32.9022
32.9022

28.49414
28.49414
28.49414
28.49414

t Ratio
40.54
4.70

12.82
13.74

17.78

0.67
0.98
1.85
0.91
2.67
3.29
0.64
1.03
3.99
0.47

Prob>It

<.0001
0.0005
<.0001
<.0001
<.0001
0.5141
0.3486
0.0889
0.3789
0.0206
0.0064
0.5312
0.3234
0.0018
0.6501



4.1.3 GMt Response Model

A GMt response model is created as a function of the following factors:

submerged speed, test depth, diameter, and payload length. The analysis of the model is

shown in Table 11 and Figure 11. The Analysis of Variance has "Prob > F" at 0.0496,

indicating that the fitted model is marginal as a predictor. Figure 11 also indicates a poor

fit. Therefore, there are uncontrolled variances that have not been accounted for, which

should be either held constant or modeled in Equation (1). To improve upon the model

fit, the designer would need to examine all possible factors that could effect GMt, and

then perform the screening experiment to determine the critical factors.

Analysis of Variance
Source DF Sum of Squares MeanSquare F Ratio

Model 14 0.01138241 0.000813 2.6428
E rro r 12 0.00369167 0.000308 Prob > F

C. Total 26 0.01507407 0.0496
Table 11: GMt Response Model Analysis of Variance

Actual by Predicted Plot
1.14-

1.12-

(D 1.06--

1.04-

1.02
1.04 1.06 1.08 1.10 1.12 1.14

GMt Predicted P=0.0496 RSq=0.76
RMSE=0.0175

Figure 11: GMt Response Model Leverage Plot
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4.1.4 Design Space Analysis

Using the JMP* software, the designer can use the contour profiler (Figure 12),

which is an interactive contour profiling tool used to optimize the response surfaces

graphically. Figure 12 is used to examine dynamically how the four factors impact the

response. Two of the four factors are selected as the x-axis (test depth) and the y-axis

(submerged speed). The other two are fixed: diameter at 40 ft and the payload length at

64.0 ft. In this example, the cost response contour is set at an upper limit of $2.0 billion.

Therefore, if the designer is given a cost constraint of $2.0 billion, the shaded portion of

the graph represents a portion of the design space that exceeds the $2.0 billion limit

thereby reducing the feasible design space. The shaft horsepower contour is set at

30,000. By visually examining the graph, and by keeping the shaft horsepower constant,

the submarine will lose about 1.5 knots as the test depth increases from 500 to 1100 ft.

COJ

(D

tra Volume

500 Depth(500,1100) 1100

Figure 12: Hanson and Hunt Contour Profiler
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The extra volume response in Figure 12 represents the additional volume added to

the design when the submarine is weight limited. As shown in this figure, the extra

volume contour is set at zero and represents the transition from a volume-limited to a

weight-limited design. This indicates that the modular submarine module is, for the most

part, a weight-limited design (in the specified design space).

Once created, the contour profiler allows the designer to examine an infinite

number of designs within the design space. The ability to dynamically change the design

factors and examine the impact on the response is a powerful tool. The designer can now

perform trade-off studies instantly and determine the impact of changing a design factor.

Just as important, the designer can input the design constraints (i.e. a cost limit as in

Figure 12) and examine the potential design variants in the remaining feasible design

space, if any. The importance of using the contour profiler for trade-off studies will be

illustrated later in the chapter.

4.2 Cost Response Model

In Section 4.1.2, a cost response model is generated as a function of the factors

submerged speed, test depth, diameter, and payload length. Figure 10 illustrates the

results of the model fit: RSq of 0.98 and a standard deviation of $65.804 million. As

described earlier, the factors were specified (a screening experiment was not conducted),

and a Box-Behnken design is used to create the response surface. This section will now

perform the methodology outlined in Chapter Two, and the analysis will result in an

improved cost model.
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4.2.1 Factor Selection

Since the modular submarine model uses weight-based Cost-Estimating Ratios

(CER), the key to identification of the factors are those that drive the different weight

groups. The selected factors for the cost response are as follows:

" Group 1 (hull structure): test depth and payload length
" Group 2 (propulsion machinery): shaft horsepower requirement
* Group 3 (electric plant): shaft horsepower requirement
* Group 4 (communications and control): held constant
" Group 5 (auxiliary systems): held constant
" Group 6 (outfit and furnishings): held constant
* Group 7 (armament or payload): payload length and diameter

Therefore, the selected factors are test depth, payload length, shaft horsepower, and

diameter. These factors are identical to Section 4.1.2, except for shaft horsepower. This

section uses shaft horsepower which is directly related to the Group 2 and 3 weights. On

the other hand, Section 4.1.2 used submerged speed, which is a function of many design

parameters, including shaft horsepower. The selection of shaft horsepower rather than

submerged speed will improve the model fit.

4.2.2 Screening Experiment

A full factorial design matrix is selected to examine the main effects and factor

interactions and to determine if they are statistically significant. The full factorial with

four factors only requires 16 variants. The selected factor levels are shown in Table 12,

and Appendix B contains the full factorial design matrix annotated with the factor levels

and the cost response. When picking the factor levels, one should pick in the design
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range of interest. In this case, the levels are selected to produce a weight-limiting

concept design within the entire design space.

Factor -1 +1
Test Depth (ft) 700 1100
Payload length (ft) 65 85
Shaft horsepower 20000 50000
Diameter 38 42

Table 12: Cost Response Screening Experiment Factor Levels

The results of the screening experiment are shown in Figure 13 and Table 13.

The prediction profiler, Figure 13, is a graph of the predicted response (on the y-axis) as

one factor (on the x-axis) is changed while the others are held constant at their current

levels. Since a two-level screening experiment is conducted, a linear function is

obtained. The steepness, or slope, is a measure of the factor effect on the response. By

visual inspection of Figure 13, the shaft horsepower has the largest impact on the cost,

while the diameter has the least impact. Once again, the results will vary if the range for

the factors change, so it is critical to carefully select the proper range for each factor. The

shaft horsepower range is from 20,000 to 50,000, and this large range explains its impact

on the cost response. On the other hand, the diameter has a small range from 38 to 42 ft

and therefore has a minimal impact on the response, as compared to the other factors.

The key is to select the range for each factor to correspond to the design space of interest.
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Figure 13: Cost (Screening Experiment) Prediction Profiler

Scaled Estimates
Term Scaled Estimate Std Error t Ratio Prob>|tI
Intercept 1920.5994 0.60383 3180.70 <.0001
Depth(700,1100) 168.93563 0.60383 279.77 <.0001

Payload(65,85) 120.22312 0.60383 199.10 <.0001

SHP(20000,50000) 294.62313 0.60383 487.92 <.0001
Diameter(38,42) 86.986875 0.60383 144.06 <.0001
Depth(700,1 100)*Payload(65,85) 14.006875 0.60383 23.20 <.0001
Depth(700,1100)*SHP(20000,50000) 19.059375 0.60383 31.56 <.0001

Payload(65,85)*SHP(20000,50000) 0.066875 0.60383 0.11 0.9161
Depth(700,1100)*Diameter(38,42) 9.973125 0.60383 16.52 <.0001

Payload(65,85)*Diameter(38,42) 11.475625 0.60383 19.00 <.0001
SHP(20000,50000)*Diameter(38,42) 0.045625 0.60383 0.08 0.9427

Table 13: Cost (Screening Experiment) Results

The t Test results for the screening experiment are shown in Table 13. Examining

the "Prob > It" column, all factor and two-way interactions are statistically significant,

except for the two-way interactions (payload length * shaft horsepower) and (shaft

horsepower * diameter). All four factors will be used to develop the cost response

surface.
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4.2.3 Response Surface

A cost response surface is created using the Central Composite design. With four

factors, the selected Central Composite design requires 26 variants to accurately model

the design space. To capture the quadratic curvature, three levels per factor (see Table

14) are used. Appendix C contains the design matrix annotated with the factor levels and

the cost response. The results are shown in Table 15 and 16, and Figures 14 and 15.

Factor -1 0 +1
Test depth (ft) 700 900 1100
Payload length (ft) 65 76.5 88
Shaft horsepower 20000 35000 50000
Diameter (ft) 38 40 42

Table 14: Cost Response Curve Factor Levels

The results of the cost model fit are excellent. The Analysis of Variance, Table

15, has a "Prob > F" of less than 0.0001 and the RSq, figure 14, is 1.00. With a $3.4762

million standard deviation, the results of this section are much improved compared to the

Hanson and Hunt $65.804 million standard deviation. Table 16 and Figure 15 show the

effect of each factor and their interactions on the cost response surface model. Note that

the curvature in Figure 15 is due to using three-level factors to create the quadratic

response surface. Examination of Table 16 shows that the main effects are the drivers for

cost. Although the factor interactions are statistically significant (except for payload

length* shaft horsepower and diameter * shaft horsepower, same as the screening

experiment), they do not have the impact that the main effects have on the cost response

model.
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Analysis of Variance
Source DF Sum of Squares Mean Square F Rato

Model 14 2650424.1 189316 15667.01

E rror 11 132.9 12 Prob > F

C. Total 25 2650557.1 <.0001
Table 15: Cost Response Model Analysis of Variance

LActual by Predicted Plot
2750-

2500-

-F2250-

<2000-

01750-

1500-

1250 - i 1 i i
1250 1500 1750 2000 2250 2500 2750

Cost Predicted P<.0001 RSq=1.00

RMS E=3.4762

Figure 14: Cost Response Model Leverage Plot

Scaled Estimates
Term

Intercept

Depth(700,11 00)&RS
Payload(65,88)&RS
SHP(20000,50000)&RS
Diameter(38,42)&RS

Depth(700,1 1 00)*Payload(65,88)
Depth(700, 11 00)*SHP(20000,50000)
Payload(65,88)*SHP(20000,50000)
Depth(700,1 100)*Dameter(38,42)
Payload(65,88)*Dameter(38,42)
SHP(20000,50000)*Diameter(38,42)
Depth(700, 11 00)*De pth(700, 1100)
Payload(65,88)*Payload(65,88)
SHP(20000,50000)*SHP(20000,50000)
Diameter(38,42)*Dameter(38,42)

Scaled Estimate

1820.7287
170.26778

138.04722;

294.42889
88.587778
16.085625
19.058125:
0.063125

10.171875
13.196875
0.051875

15.916714

0.1417143
99.496714
2.3567143

Std Error

1.377996
0.81934

0.81934
0.81934
0.81934

0.869042
0.869042
0.869042
0.869042
0.869042
0.869042
2.172191
2.172191
2.172191
2.172191

Table 16: Cost Response Model Coefficients
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t Ratio
1321.29

207.81

168.49
359.35
108.12
18.51
21.93

0.07
11.70
15.19
0.06
7.33
0.07

45.80
1.08

Prob>t
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
0.9434
<.0001
<.0001
0.9535
<.0001
0.9492
<.0001
0.3012



Prediction Profiler
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Figure 15: Cost (Response Surface) Prediction Profiler

4.3 Submerged Displacement Response Model

Since the cost response model is based on weight Cost Estimating Ratios, the

factors for a submerged displacement response model are identical to the cost response

model as long as the concept designs are weight limited. Using the same Central

Composite design matrix (see Appendix C), a submerged displacement response model is

generated. The results are displayed in Tables 17 and 18, and Figure 16.

Similar to the cost response model, the submerged displacement response model

is an excellent fit. The Analysis of Variance, Table 17, has a "Prob > F" of less than

0.0001 and the RSq, Figure 16, is 1.00. The model can accurately predict the submerged

displacement with a standard deviation of 26.958 ltons. The model coefficients, Table

18, have the same relative magnitude as the coefficients for the cost response surface

model. The main effects of test depth, payload length, shaft horsepower, and diameter

are the key drivers for the submerged displacement.

64



Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio

Model 14 103892891 7420921 10211.44

Error 11 7994 727 Prob > F

C. Total 25 103900885 <.0001

Table 17:Submerged Displacement Response Model Analysis of Variance
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Subm Disp Fredicted P<.0001 RSq=1.00
RMSE=26.958

Figure 16: Submerged Displacement Response Model Leverage Plot

Term

Intercept

Depth(700,1 1 00)&RS
Payload(65,88)&RS
SHP(20000,50000)&RS
Dameter(38,42)&RS

Depth(700,1 100)*Payload(65,88)
Depth(700,1 1 00)*SHP(20000,50000)
Payload(65,88)*SHP(20000,50000)
Depth(700,1100)*Diameter(38,42)

Payload(65,88)*Dameter(38,42)
SHP(20000,50000)*Dameter(38,42)
Depth(700,1100)*Depth(700,1 100)
Payload(65,88)*Payload(65,88)
SHP(20000,50000)*SHP(20000,50000)
Dameter(38,42)*Dameter(38,42)

Scaled Estimate

11398.227

1310.7556
1024.7611

1558.5611

639.09444
124.20625

146.10625
0.25625

78.51875

94.61875
0.29375

122.91381
0.6638095
526.16381

17.26381

I I I I
I I I I
I I I
I I I I
I I II I
I I I I

I I I
I I II I I
I III I I
I III II I
I I II II I I
I I II II I I
I I II II I
I I I I I II I I
I I I I

I I I I
I I I I I
I I I I
I I I I I I I

I I I

I I I I I

I I I I
I I I I

Table 18: Submerged Displacement Response Model Coefficients
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Scaled Estimates 1[
Std Error

10.68643
6.354028

6.354028
6.354028
6.354028
6.739465
6.739465
6.739465
6.739465
6.739465
6.739465
16.84545
16.84545
16.84545
16.84545

t Ratio

1066.61
206.29
161.28
245.29
100.58

18.43

21.68
0.04

11.65

14.04
0.04
7.30
0.04

31.23
1.02

Prob>t
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
0.9704
<.0001
<.0001
0.9660
<.0001
0.9693
<.0001
0.3275
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4.4 Length Response Model

Since the modular submarine model is a weight-limiting design (in the design

space of interest), the factors for the length response model are identical to the submerged

displacement model. Using the same Central Composite design matrix (see Appendix C),

a length response model is generated. The results are displayed in Tables 19 and 20, and

Figure 17. The length response model can accurately predict the length with a standard

deviation of 1.0396 ft.

4.5 Submerged Speed Response Model

This section will develop the response surface for the submerged speed. Since

there are numerous factors that can impact speed, the application of the methodology

outlined in Chapter Two will aid the designer in determining the critical factors and

which critical factors have the greatest impact on the submerged speed. The designer can

then use the subset (which have the greatest impact on the submerged speed) of critical

factors for further study. This will be illustrated in this section.

4.5.1 Factor Selection

The first step is to determine the potential factors that may have an impact on the

submerged speed. The factors can be categorized as follows: hull form, hull size, and the

installed propulsion system.
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Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio

Model 14 88463.630 6318.83 5283.954

Error 11 13.154 1.20 Prob > F

C. Total 25 88476.785 <.0001

Table 19: Length Response Model Analysis of Variance

Actual by Predicted Plot

600-

550-
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0
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0
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RMSE=1.0936

Figure 17: Length Response Model Leverage Plot

Term

Intercept

Depth(700,1 1 00)&RS
Payload(65,88)&RS

SHP(20000,50000)&RS
Diameter(38,42)&RS

Depth(700,1 100)*Payload(65,88)
Depth(700,1 1 00)*SHP(20000,50000)
Payload(65,88)*SHP(20000,50000)
Depth(700,1 1 00)*Diameter(38,42)

Payload(65,88)*Dameter(38,42)
SHP(20000,50000)*Diameter(38,42)
Depth(700,1 100)*Depth(700,1 100)
Payload(65,88)*Payload(65,88)
SHP(20000,50000)*SHP(20000,50000)
Diameter(38,42)*Diameter(38,42)

Scaled Estimate

427.84857

38.477778

31.722222

46

-12.35556
3.6375
4.325

-0.0125
-1.5625

-0.225
-4.5875

3.6685714
0.0685714
15.468571
1.1685714,

I I I I
I I I
I I I I
I I II
I I II I
I I I I
I I I

I I II I I
I I I I I I

I II I I I
I I I II I I
I I II II I I
I I II II I I
I I I I I I I I I
I I I I j I I I
11111 I I I

II~ I I I I
I I I I I I

I II .1111
I I I I full

I I I I I I I I
I I I I I I I I I

I I I I
I I I

Std Error

0.433497

0.257752

0.257752

0.257752

0.257752

0.273388
0.273388
0.273388
0.273388
0.273388
0.273388
0.683339
0.683339
0.683339
0.683339

t Ratio

986.97
149.28

123.07

178.47
-47.94

13.31

15.82
-0.05
-5.72
-0.82

-16.78
5.37
0.10

22.64
1.71

Table 20: Length Response Model Coefficients
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Scaled Estimates

Prob>t
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
0.9644
0.0001
0.4280
<.0001
0.0002
0.9219
<.0001
0.1153



For a body of revolution, the hull form is determined by the length, diameter, and

two form factors (entrance and run form coefficient) [12]. Therefore, the selected factors

are the diameter, and the entrance and run form coefficients. Length is not selected as a

factor because it must vary (a response) to account for varying submarine sizes. In

addition, attached to the hull will be the sail and numerous appendages. This can be

modeled by representing the sail and appendages with an equivalent area. Therefore, the

additional factors are the sail and appendage areas.

The hull size is equivalent to the submerged displacement. Therefore, from

section 4.3, the factors are test depth, installed shaft horsepower, payload length and

diameter.

Finally, the propulsion system can be defined by numerous factors. Yet within

the modular submarine model, the installed shaft horsepower and the propulsive

coefficient (PC) determine the installed propulsion system.

In summary, Table 21 lists the selected factors for the screening experiment.

Factor -1 +1
Diameter 38 42
Forward form coefficient 1.75 3.5
Aft form coefficient 1.75 4.0
Shaft horsepower 45000 50000
PC 0.79 0.85
Sail area 285 575
Appendage area 2000 3500

Depth 700 1100

Payload length 65 88

Table 21: Submerged Speed Screening Experiment Factor Levels
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4.5.2 Screening Experiment

The rational for the factor levels is as follows: If the current concept design has a

PC of 0.79 and the designer is informed that a PC of 0.85 is possible, but at a specified

cost, then the range is 0.79 to 0.85, as shown in Table 21. This will allow the designer to

see if PC is a critical factor or not. If it is, then the designer can further evaluate the

possibility of increasing the PC value at the additional cost by using the response surface.

If, on the other hand, it is determined that PC is not a critical factor, then the designer can

spend his effort and money on the other factors that do have an impact. The same

rational is applied to the remaining factors, except for shaft horsepower. This is a critical

factor for submerged speed and has a dramatic impact. To examine the relative effects of

the other factors, the shaft horsepower levels are chosen to reduce the impact of this

factor on the response. Therefore, the shaft horsepower levels are from 45,000 to 50,000.

At this level, the effect of shaft horsepower is much less than going from 0 to 5,000.

To perform the screening experiment, a fractional factorial design matrix,

resolution IV, is selected. The resolution IV design will ensure the main effects are not

confounded with the two-way interactions, but the two-way interactions will be

confounded with other two-way interactions. A fractional factorial with nine factors

requires 32 variants, and Appendix D contains the design matrix annotated with the factor

levels and the submerged speed response. The results are displayed in Figure 18 and 19,

and Table 22.
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Figure 19: Submerged Speed Screening Experiment Prediction Profiler (2/2)

The prediction profilers, Figure 18 and 19, show that the main effects of test

depth, shaft horsepower, payload length, appendage area, and PC have the largest impact

on the submerged speed. Based on this visual examination, the following factors have

been selected to create the response surface: test depth, shaft horsepower, payload length,

and PC. The appendage area is not selected since the size of the control surfaces is

determined by other factors. The other factors not selected for creating the response

surface are all statically significant, as shown in Table 22, but they do not have the

impact on the submerged speed as the selected factors. This example illustrates the
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importance of the screening experiment; the designer can focus on the design parameters

that are statistically significant and have the largest impact within the design space of

interest.

Table 22 shows the results of the t Test for the main effects and all two-way

interactions (not shown are the three-way interactions, which are not statistically

significant). Even though some of the two-way interactions are statistically significant,

none have the same impact on the response as the main effects.

Scaled Estimates
Term

Intercept

Diameter(38,42)

Depth(700,1 100)
SHP(45000,50000)
PL(65,85)

Entrance(1.75,3.5)

Run(1.75,4)

Sail Area(285,575)

App Area(2000,3500)

PC(0.79,0.85)

Diameter(38,42)*Depth(700, 1100)

Diameter(38,42)*SHP(45000,50000)

Diameter(38,42)*PL(65,85)

Diarreter(38,42)*Entrance(1.75,3.5)

Diameter(38,42)*Run(1.75,4)

Diameter(38,42)*Sail Area(285,575)

Dameter(38,42)*App Area(2000,3500)

Diameter(38,42)*PC(0.79,0.85)

Depth( 700,11 00)*SHP(45000,50000)
Depth(700,1 100)*PL(65,85)

Depth(700, 11 00)*Entrance(1.75,3.5)

Depth(700,1 100)*Run(1.75,4)

Depth(700,1 100)*Sail A rea(285,575)

Depth(700,1 100)*App Area(2000,3500)
Depth(700,1100)*FC(0.79,0.85)
SHP(45000,50000)*Entrance(1.75,3.5)

SHP(45000,50000)*Run(1.75,4)
SHP(45000,50000)*Sail Area(285,575)
SHP(45000,50000)*App Area(2000,3500)
Entrance(1.75,3.5)*Sail Area(285,575)

Entrance(1.75,3.5)*App Area(2000,3500)

Scaled Estimate

30.775187
-0.085562
-0.80625
0.28725

-0.541438

0.0379375
0.06625

-0.080625
-0.349187

0.3881875
0.003
0.013

-0.020063
0.0034375
0.006125

0.00025
0.0033125
-0.000188
-0.017437

0.0015
-0.0035

-0.005062
0.0021875

0.0335
0.00725
-0.0075

-0.004437
0.0258125

0.0115
-0.005125
-0.003687

Table 22: Submerged Speed Screening Experiment Results
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Std Error

0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375
0.000375

t Ratio
82067.19

-228.17

-2150.00
766.00

-1443.83

101.17

176.67

-215.00
-931.17
1035.17

8.00
34.67

-53.50
9.17

16.33
0.67
8.83

-0.50
-46.50

4.00
-9.33

-13.50
5.83

89.33
19.33

-20.00
-11.83
68.83
30.67

-13.67
-9.83

Prob>t
<.0001
0.0028
0.0003
0.0008
0.0004
0.0063
0.0036
0.0030
0.0007
0.0006
0.0792
0.0184
0.0119
0.0692
0.0389
0.6257
0.0718
0.7048
0.0137
0.1560
0.0680
0.0471
0.1081
0.0071
0.0329
0.0318
0.0537
0.0092
0.0208
0.0465
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4.5.3 Response Surface

A submerged speed response surface is created using the Central Composite

design. With four factors, the selected Central Composite design requires 26 variants to

accurately model the design space. To capture the quadratic curvature, three levels per

factor (see Table 23) are used. Appendix E contains the design matrix annotated with the

factor levels and the cost response. The results are shown in Table 24 and 25, and Figure

20.

Factor -1 0 +1
Test depth (ft) 700 900 1100
Payload length (ft) 65 76.5 88
PC 0.79 0.82 0.85
Shaft horsepower 20000 35000 50000

Table 23: Submerged Speed Model Factor Levels

The results of the submerged speed model fit are excellent. The Analysis of

Variance, Table 24, has a "Prob > F" of less than 0.0001 and the RSq, figure 20, is 1.00.

This submerged speed model is an excellent predictor of speed with a standard deviation

of 0.0263 knots. As seen in Table 25, the main effects are the drivers for submerged

speed. Although some of the factor interactions are statistically significant, they do not

have the same impact on submerged speed as the main effects.
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Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio

Model 14 228.28108 16.3058 23486.4

Error 11 0.00764 0.0007 Prob > F

C. Total 25 228.28872 <.0001

Table 24: Submerged Speed Response Model Analysis of Variance

Actual by Predicted Plot
35-

32.5-

c30-

027.5 -- - - - - - - - - - - - - -

U 25-

22.5

20- - -1
20.0 22.5 25.0 27.5 30.0 32.5 35.0

Speed Predicted P<.0001 RSq=1.00

RMSE=0.0263

Figure 20: Submerged Speed Response Model Leverage Plot

Scaled Estimates
Term

Intercept

Depth(700,1 100)&RS
Payload(65,88)&RS
PC(0.79,0.85)&RS
SHP(20000,50000)&RS
Depth(700,1 100)*Payload(65,88)
Depth(700,11 00)*PC(0.79,0.85)
Payload(65,88)*PC(0.79,0.85)
Depth(700,1 1 00)*SHP(20000,5 0000)
Payload(65,88)*SHP(20000,50000)
PC(0.79,0.85)*SHP(20000,50000)
Depth(700,1100)*Depth(700, 1100)
Payload(65,88)*Payload (65,88)
PC(0.79,0.85)*PC(0.79,0.85)
SHP(20000,50000)*SHP(20000,5 0000)

Scaled Estimate

28.451786

-0.817111

-0.675
0.3468889

3.33
0.0068125
-0.010313,
-0.008563"
-0.097188
-0.005187
0.0419375
-0.028548
0.0384524
-0.004548,
-1.053548

Table 25: Submerged Speed Response Model Coefficients
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C-
Std Error

0.010445
0.00621
0.00621
0.00621
0.00621

0.006587
0.006587
0.006587
0.006587
0.006587
0.006587
0.016465
0.016465
0.016465
0.016465

t Ratio

2723.95
-131.57

-108.69
55.86

536.19
1.03

-1.57

-1.30
-14.75

-0.79
6.37
-1.73
2.34
-0.28

-63.99

Prob>t

<.0001
<.0001
<.0001
<.0001
<.0001
0.3232
0.1458
0.2202
<.0001
0.4476
<.0001
0.1108
0.0395
0.7875
<.0001U



With the submerged speed response surface created, the designer can now easily

perform trade-off studies. Using the contour profiler in JMP*, Figure 21, the designer

can dynamically examine an infinite number of feasible solutions. With the contour

profiler the designer can change the four factors (shaft horsepower, test depth, payload

length, and PC) and examine their impact on the submerged speed. For instance, if the

speed requirement is 28.0 knots, the designer, via the contour profiler, can easily

determine the shaft horsepower requirements for any combination of payload length, test

depth, and PC. In this figure, an additional 7,000 shaft horsepower is required to change

test depth from 700 to 1100 ft and maintain the submerged speed at 28.0 knots. If the

required shaft horsepower at 1100 ft is too high, then the designer can reduce the payload

length or increase PC to reduce the required shaft horsepower to the required level.

Co Payload Length 76.5 ft
o PC=0.80

C)

pe Sces 2

0 %

7C et7010) 11%0%

Fiue2:SegdSpeed Contour sePr280k ots le

0

C)

Fiue2:SegdSpeed ontour sePt280k ots le
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4.6 OMOE Response Model

One method to optimize a concept design and perform trade-off studies is via the

Pareto plot. To apply RSM, the designer will need to develop a response surface for both

the cost and OMOE. In section 4.2 a response curve is generated for cost. This section

will examine the development of an OMOE response surface.

Starting with an OMOE, the designer needs to reduce the OMOE to a function of

factors. Using the OMOE from Hanson and Hunt, we have

OMOE = fn(test depth) + fn(payload length) + fn(submerged speed). (4)

In Section 4.5, a response curve is developed for the submerged speed as a function of the

factors test depth, payload length, PC, and shaft horsepower. Therefore, Equation (4) is

reduced to the following

OMOE = fn(test depth, payload length, PC, shaft horsepower). (5)

Using Equation (5), an OMOE response surface is created using the Central Composite

design. The results are shown in Table 26 and 27, and Figure 22 and indicate an

excellent model fit. As seen in Table 27, the payload length is the driver for the OMOE,

followed by shaft horsepower and test depth.
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Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio

Model 14 1.2093301 0.086381 38817.67

Error 11 0.0000245 0.000002 Prob > F

C. Total 25 1.2093546 <.0001

Table 26: OMOE Response Model Analysis of Variance

Actual by Predicted Plot

OMOE Fredicted P<.0001 RSq=1.00

RMSE=0.001 5

Figure 22: OMOE Response Model Leverage Plot

Scaled Estimates
Term Scaled Estimate Std Error t Ratio Prob>|t

Intercept 0.5045668 0.000591 853.25 <.0001

Depth(700,1100)&RS 0.0265937 0.000352 75.63 <.0001

Payload(65,88)&RS 0.1926272 0.000352 547.85 <.0001

SHP(20000,50000)&RS 0.1685787 0.000352 479.45 <.0001

Diameter(38,42)&RS -0.007121 0.000352 -20.25 <.0001

Depth(700,1100)*Payload(65,88) 0.0003464 0.000373 0.93 0.3730

Depth(700,1 100)*SHP(20000,50000) -0.004939 0.000373 -13.24 <.0001

Payload(65,88)*SHP(20000,50000) -0.000282 0.000373 -0.76 0.4651

Depth(700,1100)*Diameter(38,42) 0.0002758 0.000373 0.74 0.4751

Payload(65,88)*Dameter(38,42) -0.000853 0.000373 -2.29 0.0430

SHP(20000,50000)*Diameter(38,42) 0.0021487 0.000373 5.76 0.0001

Depth(700,1100)*Depth(700,1100) -0.001462 0.000932 -1.57 0.1450

Payload(65,88)*Payload(65,88) 0.0019499 0.000932 2.09 0.0605

SHP(20000,50000)*SHP(20000,50000) -0.053365 0.000932 -57.25 <.0001

Diameter(38,42)*Diameter(38,42) -0.000462 0.000932 -0.50 0.6301

Table 27: OMOE Response Model Coefficients
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4.7 Design Space Trade-off Study

This chapter has generated a response surface for cost, submerged displacement,

length, submerged speed, and OMOE. Using the contour profiler, the designer can now

efficiently perform trade-off studies and examine the impact of the design factors on the

submarine design.

In Figure 23, the designer has used the test depth factor as the x-axis and the shaft

horsepower factor as the y-axis. The three other factors have been set as shown in Figure

23. If the designer has a cost constraint of $2.0 billion and a minimum speed requirement

of 28 knots, then the contour profiler can be used to set the corresponding constraints as

shown in Figure 23. The net effect of the two constraints is a reduction in the feasible

design space.

Feasible design space

Factors
PC = 0.79
Payload = 65 ft
Diameter = 38 ft

Response Constraints
Cost < $2.0 billion
Speed > 28 knots

700 Depth(700,1100) 11001

Figure 23: Trade-Off Analysis Part 1
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To examine the impact of the diameter and payload length, both factors are

increased to the maximum value as shown in Figure 24. The two combine to reduce the

feasible design space.

Factors
C PC = 0.79
C Payload = 88 ft

Diameter = 42 ft

0 Response Constraints
0 Cost< $2.0 billion
LO

C~ Speed > 28 knots

C/)

CI)

0

700 Depth(700,1100) 1100

Figure 24: Trade-Off Analysis Part 2

Using the OMOE response, the designer can now determine the optimal OMOE at

the cost constraint of $2.0 billion. Using the contour profiler, Figure 25, the designer

continues increasing the OMOE response contour until the contour just touches the $2.0

billion cost contour. As shown in Figure 25, the optimal OMOE at this point is 0.72.

Now the designer can change the other factors to determine if it is possible to increase the

OMOE even further. Since the payload length is at the max value of 88 ft, the diameter is

evaluated next.

78



Factors
0 PC = 0.79
0

Payload = 88 ft
Spe Diameter = 42 ft

0 ', Response Contours
Cost = $2.0 billion
Speed = 28 knots

0 o OMOE= 0.72
CN C

I%

C)

(N

700 Depth(700,1100) 1100

Figure 25: Trade-Off Analysis Part 3

In Figure 26, the diameter is reduced to 38 ft, resulting in an increase in the

OMOE to a value of 0.784. This is the optimal OMOE with the $2.0 billion cost

constraint. In addition, as shown in Figure 27, reducing the diameter has increased the

feasible design space. The designer has not only determined the optimal OMOE, but he

has also mapped out the feasible design space.

With the overhead of creating the response surfaces, the designer has just

determined the optimal concept design in a matter of seconds. And if the OMOE

weightings change due to new customer preferences, the designer can update the JMP*

file and, once again, determine the optimal OMOE in seconds. The ability to optimize

the concept design is the benefit of combining RSM, a submarine model, and a statistical

software package. The previous concept design methods outlined in Chapter One cannot

efficiently perform the analysis conducted in this chapter.
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Factors
0) PC = 0.79

Payload = 88 ft
Diameter = 38 ft

C> Response Constraints
C ,Cost < $2.0 billion

0 Speed > 28 knots

(N

C)
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700 Depth(700,1100) 1100

Figure 27: Trade-Off Analysis Part 5
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Figure 26: Trade-Off Analysis Part 4



Now if the designer is told to develop a concept design with the following

characteristics

" Submerged speed > 28.0 knots,
* Cost < $2.0 billion,
* Submerged Displacement < 10,000 itons,

then the designer enters in the new constraints into the program. As shown in Figure 28,

the net result of the constraints is that there are no feasible concept designs that meet all

the requirements. The only option is to reduce the payload length or increase PC. Now

the fun begins!

Factors
0 PC = 0.79
C) Payload = 88 ft

Diameter = 38 ft

C Response Constraints
0>Cost<$2.0billion

LO

Speed > 28 knots
0 Submerged Displacement

< 10,000 itons

C)

0
0

C14J

700 Depth(700,1100) 1100

Figure 28: Trade-Off Analysis Part 6
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Chapter 5: Conclusions

Present submarine concept exploration is accomplished by either the one-factor-

at-a-time design approach or the Pareto plot. Either method is guided primarily by past

experience, rules-of-thumb, and designer preference. As described in Chapter One, this

approach is ad hoc, not efficient, and may not lead to an optimum concept design.

Furthermore, once the designer has a "good" concept design, he has no process or

methodology to determine whether an improved concept design is possible or not. To

improve upon current practices, a methodology is needed to formalize the design process

and connect the customer preferences into the design process. As shown in this thesis,

RSM can accomplish (and even surpass) this challenge.

5.1 A New Concept Design Process

To optimize the concept design, this thesis applies RSM to a basic submarine

concept design. The methodology of RSM decomposes a complex design into a set of

critical factors that can be used to model the responses of interest. The designer selects

the responses he would like to model and determines the critical factors for each. Then
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by applying RSM, the designer creates a response surface, which represents all feasible

designs within the specified design space.

Using the methodology outlined in Chapter Two, a response surface was created

for submerged speed, submerged displacement, length, cost, and OMOE in Chapter Four.

With the response surfaces created, the designer is able to accomplish the following:

" Using the OMOE and cost response surface, determine the optimal OMOE
for a specified cost.

" For each of the selected responses, the designer can efficiently examine an
infinite number of combinations of the factors to determine the combined
effect on the response. The response surface can aide the designer to
determine which factors have the biggest and those that have the minimal
impact on the response. With this information, the designer can focus his
time and money on the key factors.

" By examining all the responses collectively, the designer can efficiently
perform trade-off studies. This was demonstrated in Section 4.7 which
examined the impact of the payload length on cost, submerged speed,
submerged displacement, and OMOE.

" By setting upper and lower limits for the various responses, the designer
can bracket his design space and determine the feasible design space. The
designer can then instantly determine which combination of design factors
are feasible and which are not. But more important, the designer can
determine immediately if the imposed constraints result in a reduction of
the design space to the point that there are no possible feasible designs.

5.2 Future Work

This thesis outlines a methodology to optimize a concept design given a customer

preference (via an OMOE). The Submersible Design Program is used to generate the

design variants, which are then used to create the response surfaces, which are then used

to optimize the design based on the OMOE. To further improve upon this work, future
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research involves three general categories. First, expand the Submersible Design

Program to provide more detailed concept design and capability. Second, incorporate a

mission analysis tool to determine the mission effectiveness of the concept design. The

mission analysis tool can be an integral part of the Submersible Design Program or a

separate program/simulation model. Third, determine how to apply RSM to the

combined Submersible Design Program and the mission analysis tool, as shown in Figure

29, resulting in an optimal solution based on customer preference and mission

effectiveness. Specifically, the following additional work is needed:

Figure 29: Future Submarine Concept Design Process
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5.2.1 Submersible Design Program

The program provides a basic concept design, but more work is needed.

Additional coding is required to provide more detailed calculations for the existing

modules. Then additional modules need to be added to provide more information:

structure analysis, detailed layout and space arrangements, ship controls and

maneuverability, and acoustics/signatures.

5.2.2 Mission Analysis - OMOE

To optimize the concept design, the designer needs guidance from the customer

regarding what an optimal solution is. In linear and non-linear programming, this is in

the form of an objective function. For submarine design, an OMOE is required that

captures the customer requirements. But these requirements are extensive: submerged

speed, test depth, cost, expendable payload, quieting, search rate, probability of kill,

probability of counter kill, etc. Therefore, a detailed study should be completed that

defines a generic OMOE (with the weighting specified by the designer) that can measure

the performance and mission effectiveness of the submarine. And just as important, the

characteristics of the OMOE must be an integral part of the Submersible Design Program.

5.2.3 Mission Analysis - Program/Simulation Model

Another method to determine the effectiveness of the concept design is to use a

program/simulation model already developed. The U.S. Navy has numerous programs

and simulation analysis tools for submarine designs. For example, SIM II is used by the

Naval Undersea Warfare Center, Newport, Rhode Island, to investigate submarine
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sensors, weapons, platform characteristics, communications, countermeasures, and

tactics. A study should be completed to determine if it is possible to connect the

Submersible Design Program output to one of the mission analysis simulation/programs.

5.2.4 Design of Experiments/Response Surface Methods

Another research area is the application of RSM to the overall concept design

process. This thesis applies RSM to the modular submarine model. As shown in Figure

29, RSM could be applied to the various mission analysis tools. Therefore, research is

needed to determine how to apply RSM to the combined Submersible Design Program

and the mission analysis tool, resulting in an optimal solution based on customer

preference and mission effectiveness.
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Appendix A

Hanson and Hunt

Box-Behnken Design Matrix

Pattern Diameter Depth Speed Payload Cost GMt (ft) Vo e
(ft) (ft) (knots) Length SHP ($million (ftV )

(f)(ft) n)____ __ft)_

0000 40 800 28 65.5 28,931 1,540.3 1.10 37,500.0
+00- 42 800 28 43 24,648 1,287.1 1.05 8,135.9
-00+ 38 800 28 88 32,672 1,745.9 1.12 61,828.6
0+-0 40 1100 24 65.5 19,936 1,644.8 1.10 77,949.6
+0-0 42 800 24 65.5 18,038 1,476.8 1.08 33,725.4
+-00 42 500 28 65.5 26,541 1,406.1 1.10 382.5
--00 38 500 28 65.5 25,873 1,298.3 1.13 -6,113.8
0++0 40 1100 32 65.5 49,230 2,195.7 1.12 108,333.9
00++ 40 800 32 88 55,132 2,445.0 1.10 81,272.6
+0+0 42 800 32 65.5 51,685 2,139.7 1.06 71,659.6
+00+ 42 800 28 88 34,760 1,965.4 1.12 83,976.0
-0-0 38 800 24 65.5 16,919 1,317.0 1.10 18,076.5
0-0- 40 500 28 43 23,853 1,157.9 1.04 -16,982.9
0000 40 800 28 65.5 28,931 1,540.3 1.10 37,500.0
0+0+ 40 1100 28 88 39,108 2,230.8 1.10 146,695.5
-0+0 38 800 32 65.5 47,905 1,851.5 1.07 52,888.8
-00- 38 800 28 43 23,697 1,187.8 1.09 -1,392.1
0-0+ 40 500 28 88 29,822 1,593.6 1.12 19,173.2
-+00 38 1100 28 65.5 32,318 1,728.8 1.08 84,775.9
0-+0 40 500 32 65.5 41,323 1,549.5 1.06 8,556.9
00-+ 40 800 24 88 20,424 1,689.8 1.13 58,071.4
00-- 40 800 24 43 14,658 1,109.7 1.11 -3,447.3
00+- 40 800 32 43 38,756 1,431.3 1.07 19,494.6
0--0 40 500 24 65.5 16,203 1,242.2 1.11 -7,476.0
++00 42 1100 28 65.5 34,113 1,925.1 1.09 108,475.2
0000 40 800 28 65.5 28,931 1,540.3 1.10 37,500.0
0+0- 40 1100 28 43 27,371 1,444.4 1.11 46,883.8
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Appendix B

Cost Screening Experiment -

Full Factorial Design Matrix

Pattern Depth Payload SHP Diameter Cost ($millions)
(ft) Length (ft) (ft)

-++- 700 85 50,000 38 2,046.3
700 65 20,000 42 1,436.8

+--+ 1100 65 20,000 42 1,725.7
+-++ 1100 65 50,000 42 2,353.1
-- ++ 700 65 50,000 42 1,987.8
++-- 1100 85 20,000 38 1,800.3
++-+ 1100 85 20,000 42 2,019.8
-+++ 700 85 50,000 42 2,220.7
-+-+ 700 85 20,000 42 1,669.2

700 85 20,000 38 1,495.1
+-+- 1100 65 50,000 38 2,184.8
---- 700 65 20,000 38 1,303.1
--+- 700 65 50,000 38 1,853.9

++++ 1100 85 50,000 42 2,647.3
+++- 1100 85 50,000 38 2,427.6
+--- 1100 65 20,000 38 1,557.5
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Appendix C

Cost, Submerged Displacement and LOA Response Surface -

Central Composite Design Matrix

Depth Payload Diameter Cost Submerged
Pattern Length SHP ($million) Displacement LOA (ft)

(ft) (ft) (Itons)
++++ 1100 88 50,000 42 2691.4 17,064 553.3
-++- 700 88 50,000 38 2075.2 12,421 494.8
+--+ 1100 65 20,000 42 1725.7 11,136 392.2
-- ++ 700 65 50,000 42 1987.8 11,739 408.3
OOaO 900 76.5 20,000 40 1627.3 10,376 397.9
000a 900 76.5 35,000 38 1735.4 10,784 439.9
++-- 1100 88 20,000 38 1836.7 12,001 481.2
AOOO 1100 76.5 35,000 40 2000.9 12,785 468.6
-+- 700 88 20,000 38 1524.0 9,592 403.0

OOAO 900 76.5 50,000 40 2213.1 13,472 488.7
+++- 1100 88 50,000 38 2464.0 15,412 592.0
OaOO 900 65 35,000 40 1684.5 10,387 396.5
+--- 1100 65 20,000 38 1557.5 9,912 409.9

+-++ 1100 65 50,000 42 2353.1 14,549 483.0
--- + 700 65 20,000 42 1436.8 8,912 333.1

0000 900 76.5 35,000 40 1820.7 11,398 427.9
+-+- 1100 65 50,000 38 2184.8 13,325 520.8

700 65 50,000 38 1853.9 10,779 438.1
-+++ 700 88 50,000 42 2255.7 13,710 464.1
OQA 900 76.5 35,000 42 1910.6 12,045 418.1
aOOO 700 76.5 35,000 40 1672.3 10,256 394.4
++-+ 1100 88 20,000 42 2063.8 13,652 462.6
0000 900 76.5 35,000 40 1820.7 11,398 427.9

-- 700 65 20,000 38 1303.1 7,954 346.3
-+-+ 700 88 20,000 42 1704.2 10,879 388.9
OAOO 900 88 35,000 40 1957.1 12,409 459.3
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Appendix D

Submerged Speed Screening Experiment -

Fractional Factorial (Resolution IV) Design Matrix

D PL S Appenda Submerged
Pattern TD (ft) SHP Entrance Run Area Area (ftg PC Speed

(ft (f) (t 2) Ar(ft ft) (knots)
+++-+-+- 42 1100 50,000 65 3.5 1.75 285 3,500 0.79 30.05
++-++-+- 42 1100 45,000 85 3.5 1.75 575 2,000 0.79 28.84
-+--+++++ 38 1100 45,000 65 3.5 4 575 3,500 0.85 30.36
-+-++-+- 38 1100 45,000 85 3.5 1.75 285 3,500 0.79 28.63
-- ++-+-+ 38 700 45,000 85 3.5 1.75 575 2,000 0.85 31.50
++-++-+ 42 1100 45,000 65 3.5 4 285 2,000 0.85 31.11
-++-+-+- 38 1100 50,000 65 1.75 4 285 3,500 0.79 30.20
-++-+-+- 38 1100 50,000 65 3.5 1.75 575 2,000 0.79 30.65
-++++++- 38 700 50,000 85 3.5 4 575 3,500 0.79 30.70
-- +-+--++ 38 700 50,000 65 3.5 1.75 285 3,500 0.85 32.52
+++-++-- 42 1100 50,000 65 1.75 4 575 2,000 0.79 30.61
+-+-+-++ 42 700 50,000 65 1.75 4 285 3,500 0.85 32.47
+-++++-- 42 700 50,000 85 3.5 4 285 2,000 0.79 31.41
+-++-++- 42 700 50,000 85 1.75 1.75 575 3,500 0.79 30.34
-+-++-+ 38 700 50,000 65 1.75 4 575 2,000 0.85 33.21
-+-+-++- 38 1100 45,000 85 1.75 4 575 2,000 0.79 29.12

+++++++++ 42 1100 50,000 85 3.5 4 575 3,500 0.85 29.73
++-+-+-+- 42 1100 45,000 85 1.75 4 285 3,500 0.79 28.45
+--------- 42 700 45,000 65 1.75 1.75 285 2,000 0.79 31.71

+---++++- 42 700 45,000 65 3.5 4 575 3,500 0.79 30.98
--- ++- 38 700 45,000 65 1.75 1.75 575 3,500 0.79 30.90

++----+++ 42 1100 45,000 65 1.75 1.75 575 3,500 0.85 30.02
+--+-++-+ 42 700 45,000 85 1.75 4 575 2,000 0.85 31.30
--- +-+-++ 38 700 45,000 85 1.75 4 285 3,500 0.85 30.97
-+++++--+ 38 1100 50,000 85 3.5 4 285 2,000 0.85 30.62
+--++--++ 42 700 45,000 85 3.5 1.75 285 3,500 0.85 30.68
+-+-+-+-+ 42 700 50,000 65 3.5 1.75 575 2,000 0.85 33.02
-+++--+++ 38 1100 50,000 85 1.75 1.75 575 3,500 0.85 29.75
-+-+ 38 1100 45,000 65 1.75 1.75 285 2,000 0.85 31.03

++++----+ 42 1100 50,000 85 1.75 1.75 285 2,000 0.85 30.25
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Appendix E

Submerged Speed Response Surface -

Central Composite Design Matrix

Test Payload Submerged
Pattern Depth Length PC SHP Speed

(ft) (ft) (knots)
700 88 0.85 20,000 24.42
700 65 0.79 50,000 31.91
1100 65 0.79 50,000 30.10

+-++ 1100 65 0.85 50,000 30.87
--++ 700 65 0.85 50,000 32.73
0000 900 76.5 0.82 35,000 28.45
++-- 1100 88 0.79 20,000 22.41
++-+ 1100 88 0.79 50,000 28.78
-+++ 700 88 0.85 50,000 31.35
-+-+ 700 88 0.79 50,000 30.57
OOaO 900 76.5 0.79 35,000 28.08
OOOA 900 76.5 0.82 50,000 30.73
000a 900 76.5 0.82 20,000 24.06

700 88 0.79 20,000 23.81
1100 65 0.85 20,000 24.31

aOOO 700 76.5 0.82 35,000 29.27
AOOO 1100 76.5 0.82 35,000 27.57

---- 700 65 0.79 20,000 25.14
0000 900 76.5 0.82 35,000 28.45
OaOO 900 65 0.82 35,000 29.21
--+- 700 65 0.85 20,000 25.78

++++ 1100 88 0.85 50,000 29.52
OAOO 900 88 0.82 35,000 27.76
OOAO 900 76.5 0.85 35,000 28.80
+++- 1100 88 0.85 20,000 22.98
+--- 1100 65 0.79 20,000 23.71
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