
ERNI-3D: A Technology-Generic Tool for

Interconnect Reliability Projections in 3D

Integrated Circuits
by

Syed Mohiul Alam
B.S., Electrical Engineering

The University of Texas at Austin, 1999

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2001 MASSACHUSETTSANCTTOTEE

2001 Massachusetts Institute of Technology acm
All Rights Reserved IU I 2/H.91

BARKER
A u th o r ,.........................

Department of Electrical Engineering and Computer Science
May 15, 2001

C ertified by
Donald E.' Troxel

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

C ertified by
Carl V. Thompson

Stavros Salapatas-rofessor of Eectronic Materials
T PfesisAFpervisor

Accepted by...
Arthur C. Smith

Chairman, Department Committee on Graduate Students

ERNI-3D: A Technology-Generic Tool for Interconnect

Reliability Projections in 3D Integrated Circuits

by

Syed Mohiul Alam

Submitted to the Department of Electrical Engineering and Computer Science
on May 15, 2001, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Recent developments in semiconductor processing technology has enabled the fab-
rication of a single integrated circuit (IC) with multiple device-interconnect layers
or wafers stacked on each other. This approach is commonly referred to as the 3D
integration of ICs. Although there has been significant research on the impact of 3D
integration on chip size, interconnect delay, and overall system performance, the re-
liability issues in the 3D interconnect arrays are largely unknown. In this research, a
novel Reliability Computer Aided Design (RCAD) tool ERNI-3D has been developed
for reliability analysis of interconnects in a 3D IC. Using this tool, circuit designers
can get interactive feedback on the reliability of their circuits associated with electro-
migration, 3D bonding, and joule heating. Based on a joint probability distribution,
a full-chip reliability model combines all reliability figures from different components
to give a useful number for the designers' reference. This initial version of ERNI-3D
treats 3D circuits with two wafers or device-interconnect layers in the stack. How-
ever, the data-structures and algorithms in the tool are generic enough to make it
compatible with 3D circuits with more than two device-interconnect layers, and to
allow incorporation of more sophisticated reliability models in the future. Since 3D
integration technology is not yet widespread, and no CAD tool supports IC layouts
for such a technology, a novel layout methodology has been implemented in 3DMagic
by extending MAGIC, a widely used layout editor in academia. Apart from the CAD
tool work, this research has also led to the development of, and interesting experi-
ments with, some 3D circuits for testing ERNI-3D. The test circuits investigated are
a 3D 8-bit adder and an FPGA.

Thesis Supervisor: Donald E. Troxel
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Carl V. Thompson
Title: Stavros Salapatas Professor of Electronic Materials

3

Acknowledgments

I would like to thank Prof. Donald E. Troxel and Prof. Carl V. Thompson for

their guidance and support throughout the project. There were numerous discussion

sessions leading to this productive research. I am grateful to Prof. Rafael Reif,

Prof. Anantha Chandrakasan, Arifur Rahman, and Andy Fan for discussion sessions

on 3D integration technology. I also acknowledge the support of Yonald Chery for

providing feedback on software development during various phases of this project.

The software infra-structure of ERNI-3D is based on Yonald's earlier work on MAJIC

with ERNI. I am thankful to Stefan Riege for helping me understand the reliability

issues in integrated circuits associated with electromigration. Stefan developed the

electromigration reliability models used in ERNI and ERNI-3D during his Ph.D.

dissertation. I would also like to thank Nisha Checka and Charlotte Lau for using

3DMagic to design the 3D FPGA in their course project.

There are several people who helped me with the writing of this thesis. Shamik

Das, Raiyan T. Zaman, and Syed Masudul Alam reviewed some of the chapters and

gave useful feedback. Syed Masudul Alam also assisted me in drawing some of the

figures.

I am indebted to support and encouragement I have received over the years from

my parents. They inspired me to choose graduate school after my undergraduate

education.

This research is funded by MARCO Focused Research Center for Interconnects

under contract number B12-D00-S1. The project is carried out at Microsystems

Technology Laboratories.

4

Contents

1 Introduction 13

1.1 Three Dimensional Integrated Circuit (3D IC) 13

1.2 Interconnect Reliability Concepts . 14

1.3 R elated W ork . 16

1.3.1 3D Integration using Wafer Bonding 16

1.3.2 Electromigration Reliability in Networked Interconnects (ERNI) 17

1.4 Thesis Statement . 19

1.5 Organization of Thesis . 20

2 Layout Methodology for 3D ICs 21

2.1 O verview . 21

2.2 3D Trees and Inter-wafer Vias . 21

2.2.1 Connected-to-top Vias . 23

2.2.2 Connected-to-bottom Vias . 23

2.2.3 Through-wafer Vias . 23

2.3 Implementation in MAGIC (3DMagic) 24

2.3.1 Graphical User Interface . 24

2.3.2 Abstract Layers . 26

2.3.3 Strategy for Layout Management 29

2.3.4 Circuit Extraction and Verification 30

2.4 Using 3DMagic in Athena . 31

5

3 3D Test Circuits

3.1 O verview .

3.2 3D A dder .

3.2.1 Architecture and Implementation

3.2.2 3D Layout .

3.2.3 Functional Verification

3.3 3D FPG A

3.3.1 Triptych: 2D FPGA Architecture

3.3.2 Rothko: 3D FPGA Architecture

3.3.3 8-bit Encryption Processor in 2D and 3D FPGAs

3.3.4 System-level Modeling for FPGAs

3.3.5 Performance Comparison of 2D and 3D FPGAs

3.3.6 Conclusion from the Performance Comparison

4 Software Development for ERNI-3D

4.1 O verview .

4.2 Layout Parsing and Displaying with MAJIC

4.3 Extraction of Interconnect Trees

4.4 Client Extension: ERNI-3D.

4.5 Reliability Algorithms Inherited from ERNI

4.5.1 Filter Steps .

4.5.2 Default Electromigration Reliability Model

4.6 Methods for New Models

4.7 Full-Chip and 3D-Chip Reliability Models

5 Simulation with Test Circuits

5.1 O verview .

5.2 Debugging with 3D Adder

5.3 Reliability Analysis with 3D Adder

5.4 Reliability Analysis with 3D FPGA

5.5 Summary of Results .

6

33

33

. 33

. 34

. 35

. 38

. 39

. 40

. 42

. 43

. 43

. 45

. 46

49

. 49

. 50

. 51

. 54

. 56

. 56

. 58

. 59

. 61

65

65

65

66

68

70

6 Future Work 71

6.1 Overview 71

6.2 Incorporation of Sophisticated Reliability Models 71

6.3 Layout Editing in ERNI-3D . 72

6.4 Reliability Analysis based on Local Temperature 73

7 Conclusion 75

7.1 O verview . 75

7.2 3DMagic and Layout Methodology for 3D ICs 75

7.3 RCAD Tool: ERNI-3D . 76

7.4 Simulation and Experiment with 3D Circuits 77

A Excerpt from the Technology File 79

B Tutorial on Using 3DMagic in Athena 89

B.1 Mounting 3DMagic . 89

B.2 Working with Multiple Windows . 90

B.3 Painting Inter-wafer Vias . 91

B.4 3D Layout Alignment . 91

C Layout Design Rules for 3D ICs 93

D MAJIC Source Code Overview 97

D.1 Main Application Classes . 97

D.1.1 MAJICapp.java . 98

D .1.2 G lobals.java . 98

D.1.3 HashMap2D.java . 98

D.2 Graphical Interface Classes . 98

D.2.1 MAJICframe.java . 99

D.2.2 MAJICcomponent.java . 99

D.3 File Parser Classes . 99

D.3.1 TechDB.java . 99

7

. 10 0

D.3.3 CachedSection.java

D.3.4 CachedStmt.java

D.3.5 CachedRect.java

D.3.6 CachedRlabel.java

D.3.7 CachedUse.java

D.3.8 CachedCell.java

D.4 Corner-stitched Data-structure Classes

D.4.1 Tile.java

D.4.2 TileType.java

D.4.3 Plane.java

D.4.4 PlaneType.java

D.5 Layout and Tree Representation Classes

D.5.1 Layout.java

D.5.2 ITree.java

D.5.3 ISegment.java

D.5.4 ISurface.java

D.5.5 Path.java

D.6 Reliability Computation Classes

D.6.1 ERNI.java

D.6.2 ERNIw3D.java

D.7 Circuit Simulator Classes

. 100

100

101

101

101

101

101

102

102

102

102

102

103

103

103

103

103

104

104

104

104

8

D.3.2 ParseMAGFile.java

.

.

.

.

.

.

List of Figures

1-1

1-2

1-3

Cross-section of a 3D IC formed with Cu-Cu wafer bonding technology

Flow diagram of hierarchical circuit-level reliability analysis in ERNI

A screen-shot of MAJIC with a view of menu items for reliability anal-

yses in E R N I .

2-1 Cross-section of a 3D IC with the 3D trees and inter-wafer vias .

2-2 Different types of vias/contacts for 3D ICs

2-3 Graphical User Interface support for 3D IC layout in 3DMagic .

2-4 Connected-to-top type vias in 3DMagic

2-5 Connected-to-bottom and Through-wafer vias in 3DMagic

2-6 Layout-file structure for a 3D adder

2-7 Layout-file structures for a 3D adder with different bonding

3-1 Schematic of a 28-transistor fully static CMOS adder . . .

3-2 Architecture of the 3D 8-bit adder

3-3 Layout of a 1-bit adder in MAGIC

3-4 Part of the layout of the 3D 8-bit adder

3-5 IRSIM simulation of the 3D adder

3-6 Conventional FPGA architecture

3-7 Routing structure in the Triptych architecture

3-8 Block diagram of an RLB

3-9 Routing structure in the Rothko architecture

3-10 Layouts of 2D and 3D FPGAs

3-11 Critical path delay of 2D and 3D FPGAs

. 28

. 29

orientations 30

. 35

. 35

. 36

. 37

. 38

. 39

. 41

. 41

. 42

. 43

45

9

17

18

19

22

22

25

27

4-1 Corner-stitched representation of a single plane with multiple tiles in

a M AG IC layout . 51

4-2 Extraction of an interconnect tree from corner-stitched representation

of tiles . 52

4-3 Formation of a 3D tree with two interconnect trees from different layouts 53

4-4 Graphical User Interface of MAJIC with ERNI-3D 56

4-5 Flow diagram of reliability analysis in ERNI-3D 58

4-6 Approach to reliability analysis in a 3D tree 60

4-7 Plot of a probability function indicating the reliability of a unit versus

operating tim e . 62

10

List of Tables

2.1 Alignment of 3D layouts using the MAGIC feature "feedback" . .

3.1 Performance parameters for 2D and 3D FPGAs

4.1 A sample .mag layout file .

4.2 Menu options at the "ERNI-3D" menu for reliability analysis with 3D

circu its .

5.1 Number of interconnect trees in the 3D adder

5.2 Reliability analysis with the 3D adder

5.3 Reliability analysis with the 2D version of 3D adder

5.4 Reliability analysis with the 3D FPGA

5.5 Reliability analysis with the 3D FPGA (continued)

6.1 Comparison of features available in MAGIC, 3DMagic, and MAJIC .

B.1 Painting inter-wafer vias for 3D circuit layout in 3DMagic

C.1 Preliminary design rules for the layout of 3D ICs using 3DMagic . . .

C.2 Preliminary design rules for the layout of 3D ICs using 3DMagic (con-

tin u ed) .

11

26

45

50

55

65

66

67

69

70

72

91

94

95

12

Chapter 1

Introduction

A novel Reliability Computer Aided Design (RCAD) tool ERNI-3D for the reliabil-

ity analysis of interconnects in a three-dimensional integrated circuit (3D IC) has

been developed in this research. Using this tool, circuit designers can get interactive

feedback on the reliability of their circuits, as it is affected by electromigration, 3D

bonding, and joule heating. Since 3D integration technology is not yet widespread,

and no CAD tool supports IC layouts for such a technology, a novel layout method-

ology has been implemented in 3DMagic by extending MAGIC, a widely used layout

editor in academia.

This chapter provides a brief introduction to 3D integration technology and re-

liability issues in ICs, along with previous work in these areas. It also presents the

organization of the thesis.

1.1 Three Dimensional Integrated Circuit (3D IC)

The main idea behind 3D integration is to have multiple device layers, such as transis-

tors, along the third axis (z axis) and lower the interconnect lengths by connecting the

layers vertically. This has been accomplished by bonding multiple wafers fabricated

with different or similar technologies [1] as well as by fabricating multiple device, such

as CMOS, layers on the same wafer [2, 3].

Although the concept of 3D integration emerged as early as 1979 [4], significant

13

research work was done only after early 90's. Technology scaling posed limitations

on overall system performance by degrading the interconnect delay and increasing

the number of longer global and semi-global interconnects in a chip. The need for

a long-term solution to enhance performance in successive technology generations

became apparent. 3D integration is an attractive solution to this problem as it can

significantly reduce the number of long wires by mapping a 2D circuit into different

layers [5]. Moreover, the total number of repeaters for long and intermediate wires

will also decrease, resulting in higher density and lower interconnect-limited chip area.

Because of these reasons, high-performance microprocessors and programmable logic

devices are attractive applications for 3D integration.

Another promising advantage of 3D integration is its ability to integrate com-

pletely different technologies in a single 3D chip. Future system-on-chip (SOC) appli-

cations will consist of digital, analog, and RF/optical networking units on the same

die [6]. Using 3D integration, each unit can be fabricated on separate wafers with its

optimized process technology, and then integrated vertically to form a 3D SOC [1].

1.2 Interconnect Reliability Concepts

The conventional approach to meet reliability goals in an integrated circuit has been

to design the circuit using simple and conservative design rules based on current

density in a wire segment. However, this simplicity and conservatism lead to limited

performance in newer technology generations [7]. There is a phenomenal increase in

total number of wire segments due to higher wiring requirements for increased number

of transistors per chip. Moreover, reliability concerns have grown significantly as

narrower interconnects are stressed with high currents, and joule heating from power

dissipation has increased in high frequency circuits. The particular reliability aspects

that ERNI-3D focuses on are electromigration, the effect of increased joule heating,

and bond reliability in bonded 3D ICs.

Electromigration is the transport of the atoms of a conducting material due to

momentum transfer from flowing electrons. The rate of electromigration is directly

14

related to the current density in a segment of an interconnect tree in an integrated

circuit. An interconnect tree consists of continuously connected high-conductivity

metal within one layer of metallization. Trees usually have multiple branches con-

nected to other interconnect trees in a different metallization layer through vias or

contacts. Therefore, the reliability of a segment of an interconnect tree also depends

on the current densities in the linked segments [7].

As the processing technology for ICs allows fabrication at smaller length scale,

a large number of narrower interconnects now contain ever higher current densities.

Thus, the electromigration effects are severe. The compressive stress at the anode

side can cause the conducting metal to extrude. The extrusion can create a short

circuit with nearby interconnects. Moreover, the compressive stress in Copper (Cu)

interconnects causes the liner materials to crack, and the Cu can diffuse throughout

the inter-layer dielectric material. Tensile stress at the cathode end can also lead to

formation of a void or a gap. A large void increases the resistance of a conducting

line, and can cause the line to fail at some critical resistance. Such failure can occur

in both Aluminum and Copper interconnects.

Another important reliability concern in integrated circuits is the effect of in-

creased joule heating from power dissipation. For reliable operation of interconnects,

the junction temperature is required to be less than 100'C [8]. However, today's high

performance microprocessors already run at temperatures close to 100 0C [9]. Such a

high temperature causes the electromigration effects to be severe as the median time

to failure due to electromigration lowers with increasing temperature [10]. Moreover,

the interconnect geometries in the circuit can deform in a very high temperature, caus-

ing functional failure through short-circuits. The task of dissipating heat has already

become a challenge in conventional 2D circuits, and it surely will be a concern in 3D

ICs. Several solutions, such as low-power circuit design, use of materials with higher

thermal conductivity, innovative cooling techniques with heat-sinks or forced-air, and

thermally-efficient packaging, are under active investigation [8, 11, 12, 13].

Finally, the reliability concept that is unique to 3D ICs is the reliability of bonds

in a wafer bonding technology. Apart from the issue of proper alignment of different

15

wafers in the fabrication process, the reliability also depends on bond strength and

quality [1, 14]. Moreover, the conducting points at the bonding surface, shortening the

interconnects at the adjacent layers, will be under high electrical and thermal stress

during the operation of a circuit. Under such conditions, overall system failure can

be affected by interface fracture. Therefore, it is important to quantify bond strength

and quality given a particular wafer bonding technology, and also to investigate the

reliability models for the inter-wafer vias at the bonding surface [15].

1.3 Related Work

1.3.1 3D Integration using Wafer Bonding

Wafer bonding technology using copper, developed at MIT, has shown promise for

a successful 3D integration with two or more device layers [1]. In this technology,

each device-interconnect layer is fabricated separately on different wafers with the

same or different processing technologies, and then the wafers are bonded with each

other at low temperature (< 450'C) with a bonding layer of Cu. For example, in a

3D IC with back-to-front bonding, the top wafer is attached to a handle wafer and

thinned down from the back side (the Si substrate side). Then the back side of the top

wafer is bonded to the front side of the bottom wafer. The handle wafer is released

after the bonding process. Using a similar technique, the wafers can be bonded in

other orientations, such as front-to-front or back-to-back. The inter-wafer vias can

be etched before or after the bonding process. Figure 1-1 shows a cross-section of a

3D IC formed by Cu-Cu front-to-front wafer bonding.

Some variations of wafer bonding technique exist because of the different materials

that can be used for bonding. At the Rensselaer Polytechnic Institute, it has been

demonstrated that bonds can be facilitated by using a polymeric "glue" layer [16].

Then the wafer sandwich is thinned from the sides to permit etching of inter-wafer

vias of reasonable size. Irrespective of the bonding technique, the main advantage of

wafer bonding technology is that it allows nearly conventional fabrication steps for

16

DL 1
Wafer 1

Bonding """"""" MLs 1
Layer

MLs 2

W afer 2 L 2 ..

DL2

Figure 1-1: Cross-section of a 3D IC with Cu-Cu front-to-front wafer bonding. Here
DL and MLs correspond to device and metal layers, respectively.

processing each wafer. The individual wafers are aligned using an infra-red (IR) pro-

cess or tools such as the Electronics Vision model EV640 during bonding. However,

there are some limitations in wafer bonding because of the lack of precision in the

alignment of wafers and ability to etch deep inter-wafer vias.

1.3.2 Electromigration Reliability in Networked Interconnects

(ERNI)

There has been significant research on electromigration reliability models [10, 17].

Several efficient techniques have been developed for conducting reliability analysis on

integrated circuits during design-time [18, 19]. Conservative electromigration models

for straight lines have existed for many years. Recently, an interconnect tree has

been identified as the basic reliability unit, and more efficient electromigration models

have been developed [7]. Moreover, a hierarchical approach to circuit-level reliability

analyses has enabled the incorporation of these newly-developed models in the RCAD

tools [19, 20].

The RCAD tool ERNI (Electromigration Reliability in Networked Interconnects),

recently developed at MIT [21], allows process-sensitive and layout-specific reliability

assessments of a fully or partially laid-out integrated circuit. Figure 1-2 shows the

flow diagram of ERNI's operations. First, the interconnect trees are extracted from a

17

Extract Apply Filters to Apply Simple, Calculate

Reliability Units Eliminate Conservative Reliability
from Layout "Immortal" Units Default Models Budget, Rank Redo Layout?

for Reliability Unreliable
Units

End

Simulation of Simulate

Circuit Model Library Lea Reliable
Operation UnstRisl

Units

Figure 1-2: Flow diagram of hierarchical circuit-level reliability analysis in ERNL

circuit layout and categorized into mortal and immortal (highly reliable) trees based

on the current density-length product (jLmax). Further computation goes on with

only the mortal trees, and a reliability figure for each tree, in terms of median time to

failure, is obtained after applying the default electromigration model [7]. ERNI is also

expected to interact with MIT/ErnSim. MIT/EmSim evaluates the electromigration-

induced stress on interconnect trees from ERNI and predicts more accurate reliability

figures based on the Korhonen Model [22, 7].

The code for ERNI is written in Java 2 (JDK 1.2). It is a client extension to MA-

JIC, a layout parser and viewer also written entirely in Java. Lots of data-structures

and algorithms in MAJIC are based on MAGIC, an IC layout editor developed at UC

Berkeley and widely used in academia [23]. Using MAJIC, users can view a circuit

layout, and apply reliability analyses by choosing different filter algorithms from the

"ERNI" menu. Figure 1-3 shows a screen-shot of MAJIC with the display of avail-

able options at the "ERNI" menu. Currently, ERNI operates on 2D IC layouts with

multiple metallization layers created using MAGIC.

18

-I mA I E3Addr MW X

File View ERNI Help

Apply JmaxL filter

Apply Random Boundary Conditions

Apply Circuit Extraction

Apply Simulation Engine

Apply JL filter

Apply Default
Reliability

Model

Apply Full-Chip Model

Figure 1-3: A screen-shot of MAJIC with a view of menu items for reliability analyses

in ERNI.

1.4 Thesis Statement

Although there has been significant research on the impact of 3D integration on

chip size, interconnect delay, and overall system performance, the reliability issues

in 3D interconnect arrays are fairly unknown. In this research, we have developed a

framework for reliability analysis in 3D circuits by extending ERNI to ERNI-3D. For

completeness, we have also developed a novel layout methodology for designing 3D

ICs, and implemented this methodology in MAGIC. ERNI-3D treats 3D circuits laid

out in 3DMagic, the version of MAGIC capable of 3D IC layout and extraction, and

applies reliability models for assessing electromigration and bond reliability, and the

effects of increased joule heating. A full-chip reliability model then combines all the

reliability figures of different components to give a useful number for the designers'

reference. This initial version of ERNI-3D works with 3D circuits with two wafers or

device-interconnect layers in the stack. However, the data-structures and algorithms

in the tool are generic enough to make it compatible with 3D circuits with more than

two device-interconnect layers in the future.

19

1.5 Organization of Thesis

This chapter has established the concept of 3D integration and associated reliability

issues. Chapter 2 presents a novel 3D circuit layout methodology for CAD tools.

It also discusses the implementation of such methodology in MAGIC. Chapter 3

describes the architecture and design of two 3D test circuits, an 8-bit adder and an

FPGA, developed during this research. Chapter 3 also includes interesting results

from the performance comparison of 2D and 3D FPGAs.

The design and architecture of the RCAD tool ERNI-3D is detailed in chapter 4.

There are several sections on 3D layout parsing, interconnect tree extraction, and

methods or functions for reliability analyses. Chapter 5 presents the procedures for,

as well as results of, reliability analyses on the 8-bit adder and FPGA using ERNI-3D.

After that, possible extensions of this research and other suggestions on future work

are discussed in chapter 6. Finally, chapter 7 summarizes the research and discusses

its implications.

For reference as well as better understanding of 3D circuits and design methodol-

ogy, the thesis also includes four appendices. Appendix A includes an excerpt from

the technology file which is at the heart of enabling 3D circuit design in MAGIC.

A comprehensive tutorial for using 3DMagic, the version of MAGIC with 3D design

capabilities, on Athenal can be found in Appendix B. Appendix C has a list of pre-

liminary design rules for the layout of 3D circuits in 3DMagic. Finally, Appendix D

includes an overview of the Java source code of MAJIC, the parent application of

ERNI-3D.

'Athena is MIT's UNIX-based campus-wide academic computing facility.

20

Chapter 2

Layout Methodology for 3D ICs

2.1 Overview

As discussed in the previous chapter, there has not been any significant develop-

ment on standardizing CAD methodologies for 3D ICs. However, the need for such

standardization is critical as the topic of 3D integration is receiving more and more

attention in both academia and industry. More importantly, the final product of

this research, ERNI-3D, is a layout-specific RCAD tool. Therefore, we need to have

comprehensive CAD methodologies for 3D ICs to layout our test circuits as well as

define the input method for ERNI-3D.

This chapter proposes a novel CAD methodology for the layout of 3D ICs [24].

The proposed methodology enables the layout of individual device-interconnect layer

keeping in mind the position and orientation of vertical/3D contacts. Moreover, the

layout methodology can be easily incorporated into existing IC layout tools.

2.2 3D Trees and Inter-wafer Vias

In wafer bonding technology, each device-interconnect layer is fabricated separately

on different wafers with the same or different technologies, and then the wafers are

bonded with each other with a bonding layer of copper or polymeric adhesives. When

the bonding is complete, 3D ICs have vertical interconnects of significantly higher

21

7 - -' - - - -~

length than vias or contacts in the 2D integration of ICs (a single device layer and

multiple metal layers on a single chip). Moreover, the 3D circuits have two different

types of vertical interconnects as shown in figure 2-1. The inter-wafer vias connect

Wafer 1 DL 1 3D Tree

MLs 1
Bonding Layer

MLs 2
Wafer 2 Inter-

DL 2 wafer via

Figure 2-1: Cross-section of a 3D IC with the 3D trees and inter-wafer vias. Here

DL and MLs correspond to device and metal layers, respectively.

multiple interconnect trees in different wafers. At the bonding surface, the adjacent

metallization layers of two wafers can be connected with vertical Cu lines. The vertical

Cu lines create a new type of tree, referred to as "3D tree", which expands between

two different wafers in a 3D circuit.

To facilitate the layout of 3D ICs, all types of inter-wafer vias or contacts are gen-

eralized into three major categories. Figure 2-2 shows the three categories of contacts

along with their connectivity in a wafer. Since in wafer bonding technology, different

A 3D contact point
Through-Wafer Via

Connected-to-top Via

Bottom

_,Connected-to-bottom Via

Figure 2-2: Different types of vias/contacts for 3D ICs.

wafers are fabricated separately before bonding, layout for each wafer can be done

22

op

separately with inter-wafer contact information embedded in the layout. Moreover,

three categories of vias are sufficient for defining almost all types of interconnection

between wafers in 3D ICs. A detailed description of each category is as follows.

2.2.1 Connected-to-top Vias

This type of via connects a metal layer to a 3D contact point at the top' of a wafer.

In figure 2-2, the via is connected with Metal2, the topmost metallization layer of this

particular wafer. A connected-to-top via can also connect other metal layers, such

as Metall or Metal3 to a 3D contact point at the top. When two wafers are bonded

on front-to-front, as shown in figure 2-1, a 3D tree is formed if connected-to-top type

vias of the topmost metal layers from the two wafers share the same 3D contact point

at the bonding surface.

2.2.2 Connected-to-bottom Vias

The connected-to-bottom type via extends between a metal layer and a 3D contact

point at the bottom2 of a wafer. In figure 2-2, a connected-to-bottom via connects

Metall to a 3D contact point. When two wafers are bonded back-to-front, a 3D tree

is formed if a connected-to-bottom via from the top wafer and a connected-to-top via

of the topmost metal layer from the bottom wafer share the same 3D contact point.

Similarly, two connected-to-bottom type vias of different wafers with the same 3D

contact point can also create a 3D tree when they are bonded back-to-back.

2.2.3 Through-wafer Vias

Through-wafer vias extend through the whole wafer without being electrically con-

nected to any interconnect or active layer of the wafer. This type of via is particularly

useful when more than two wafers are bonded to create a 3D IC. For example, in a

three-wafer 3D circuit, an interconnect layer of the top wafer can be connected with

'Both "top" and "front" refer to metal side (opposite of the Si substrate side) of the wafer.
2 Both "bottom" and "back" refer to the Si substrate side of the wafer.

23

that of the bottom wafer through a through-wafer via of the middle wafer. Moreover,

Cu filled through-wafer vias can be designed as heat conductors to overcome the effect

of increased Joule heating in a 3D IC. However, such application of through-wafer

vias is still an area of experimental research [15]. To represent a through-wafer via

that is also electrically connected to an interconnect layer in a wafer, a designer can

add both connected-to-top and connected-to-bottom type vias at the same position

on that interconnect layer.

2.3 Implementation in MAGIC (3DMagic)

MAGIC is an interactive VLSI circuit layout editor developed at UC Berkeley [23, 25].

It is widely used within the academic community. Moreover, its well-documented

source code and wide variety of features make it an excellent vehicle with which to

conduct VLSI and CAD research. To implement the 3D IC layout methodology in

MAGIC, we have developed a new technology file (scmos3D.tech26) to support all

the new layers and inter-wafer vias. The technology file also contains preliminary

design rules and a model for electrical connectivity. Appendix A includes an excerpt

from the 3D technology file with the additions emphasized in italics.

Several entries for display styles are also added in the MAGIC style files, mos.7bit.dstyle5

and mos.24bit.dstyle5. These entries define the new color maps and styles for the mask

layers representing metal, poly, ndiffusion, and so on. Since MAGIC is a technology

independent layout editing tool, a 3D circuit can be designed on any MAGIC (version

6.4 or higher) with the display style file installed in the proper path and technology

file specified with the -T techfile flag at the command line [26]. More discussion on

the implementation and usage of the layout methodology is as follows.

2.3.1 Graphical User Interface

MAGIC consists primarily of an internal data-structure representation of a 2D layout

with a graphical user interface (GUI) to manipulate and view a circuit design [27].

However, MAGIC also supports viewing multiple layouts on different windows and

24

editing a layout on the edit window [28]. Using this feature, the layout of different

wafers in a 3D circuit can be done on different windows with new abstract layers

(discussed in the next section) used to specify the inter-wafer vias. The major issue

with this approach is in managing the alignment of different layouts and inter-wafer

vias with shared 3D contact points.

The alignment issue in 3D layouts has been resolved by introducing two area

markers: mainboundary or mbnd for specifying wafer size, and 3Dcontactpoint or

3Dconp for specifying the position of an inter-wafer via. Figure 2-3 shows the usage

Dis 1l Window 1,An Inter-wafer Via

Desired layout are Dis A Window 2 A3Dconp for
for another wafer aligning Inter-
in 3D circuit. - ----- --- wafer via

mbnd mark for
layout area

(Zoom scales on the
two displays are not
same.) ..---- ...- .

Figure 2-3: GUI support for 3D circuit layout in 3DMagic.

of the area markers in MAGIC. In Display Window 1, one layer of a 3D circuit

has been designed with the abstract layers indicating the inter-wafer vias. Then

Display Window 2 is opened to layout the other wafer using MAGIC commands

such as ":openwindow", ":select", and ":edit" [28]. The positions of inter-wafer vias

and desired layout area for the second wafer are marked in Display Window 1 with

the box tool to retrieve their grid coordinates (":box"). Now the 3Dcontactpoints

and mainboundary are painted in Display Window 2 at the corresponding positions

(":paint 3Dconp", ":paint mbnd"). Further layout can be done on Display Window 2

with respect to the area markers to design the second wafer of the 3D circuit.

To automate the detection and placement of the area markers, a MAGIC feature,

called "feedback", can be used very efficiently. Table 2.1 shows the commands and

25

Table 2.1: Alignment of 3D layouts using the MAGIC feature "feedback".
Command Description

Display Window 1
feedback add mbnd outline Adds the main boundary

mark for 3D layouts
feedback add iwvial Adds the inter-wafer via,

named iwvial, mark. Any
name can be used instead
of iwvial to suit designer's
need

feedback add iwvia2 Adds the inter-wafer via
mark for iwvia2

. Adds more inter-wafer via
marks

feedback save afile Saves all the area markers in
file "afile"

Display Window 2
source afile Paints all the area mark-

ers from file "afile". Cor-
responding name and style,
such as outline, right-cross,
etc., of the area markers are
also reserved.

corresponding descriptions for making 3D layouts using the "feedback" feature. A

3D circuit laid out in such a way will have multiple files. A strategy for layout-file

management that also incorporates orientation3 of each wafer in the bonding process

is discussed at section 2.3.3.

2.3.2 Abstract Layers

Abstract layers are the boxes in color that are drawn on the edit window to represent

a particular mask layer, such as metall, metal2, poly, ndiffusion, and so on. Abstract

layers are defined in the technology file in the section "types." Moreover, an abstract

layer that represents a contact or a via also has further definition at the section

"contact." The "types" section introduces an abstract layer to its plane, such as

31n the fabrication process of a 3D circuit, a wafer can go at the top or bottom of the stack and
can also be flipped during the bonding process.

26

oxide, well, metall, metal2 etc., and then the "contact" section lists a series of other

abstract layers that an abstract layer of type contact connects. These sections are

shown in Appendix A.

Two abstract layers representing contact types have been defined in the technology

file as the connected-to-top vias. The two contacts connect either metal2 or metal3 to

a 3D contact point at the top of the wafer. A connected-to-top via from metall is not

defined, since in a scalable CMOS process with at least three levels of metal, circuits

with only one metal layer is very uncommon. Figure 2-4 shows the two connected-

Metal3_topcontact or m3topc
(connects metal3 with a 3D
contact point at the top)

Meta2_top contact or m2topc
(connects metal2 with a 3D
contact point at the top)

Figure 2-4: Connected-to-top type vias in 3DMagic.

to-top type vias: Metal2top-contact or m2topc, connecting metal2 and a 3D contact

point, and Metal3top-contact or m3topc, connecting metal3 and its corresponding

3D contact point.

Similarly for the connected-to-bottom category of vias, the two new abstract

layers are Poly-bottom-contact or pbcon and MetallIbottom-contact or m1bcon.

Poly-bottom-contact directly connects polyl with a 3D contact point at the bot-

tom of the wafer. However, in order to connect Metall with a 3D contact point at

the bottom, it is necessary to paint Poly-bottom-contact and MetallIbottom-contact

on top of each other in any order. This is because the scheme in the current tech-

nology files only allows contacts for connecting at most three layers, and the metall

27

and 3D contact point at the bottom layer are two layers apart. Figure 2-5 shows a

Through-wafer Via or twv
(extends through the whole wafer)

etall to bottom contact (created
by painting both mlbcon and

pbcon)

Poly bottomcontact or pbcon
(connects Poly1 with 3D contact
point at the bottom)

Figure 2-5 Connected-to-bottom and Through-wafer vias in 3DMagic.

Poly-bottom-contact and a stacked contact between Metall and a 3D contact point

at the bottom created by painting both pbcon and m1bcon.

It is not necessary to paint separate layers for 3D contact points. Drawing a

contact on the MAGIC edit window will create the internal image of the corresponding

3D contact point at either the topmost or bottommost layer of the layout. Proper

connectivity information is also added in the "connect" section of the technology file

to enable the built-in hierarchical circuit extractor successfully extract each layout

of a 3D circuit. In the "drc" (Design Rule Checker) section of the technology file,

some preliminary design rules are defined in terms of A' (the "drc" section is shown

in Appendix A). Tables C.2 and C.1 in Appendix C also show a list of 3D layout rules

with relevant descriptions. However, these rules may vary depending on the bonding

process, and a designer may need to observe absolute micron rules for the contacts.

Finally, an abstract layer named through-wafer via or twv has been defined to indicate

an extension through the whole wafer (figure 2-5). The connectivity information and

design rules ensure that the twv is electrically isolated from all other layers.

' is the smallest grid spacing in MAGIC.

28

2.3.3 Strategy for Layout Management

A completely laid out 3D circuit in 3DMagic will consist of multiple files: two or

more layout files of format .mag for different wafers, and one or more text file5 con-

taining the area markers. These files can be easily managed using a simple directory

scheme. For example, all the files for a 3D adder laid out in two wafers can be stored

as shown in figure 2-6. The directory is named adder8, under which two layout files,

directory (adder8)
--- wafer1 (adder8_top.mag)

wafer2 (adder8_bot.mag)

3dcons (intercon)

Figure 2-6: Layout-file structure for a 3D adder.

adder8_top.mag and adder8-bot.mag, and one text file for the 3D area markers, inter-

con, are stored. It is also important to note that layout files have suffix, such as _top

or _bot, where _top indicates that the corresponding layout is for the top wafer in the

3D stack, and similarly .bot indicates a layout for the bottom wafer. In this layout

methodology, by default the wafers are not flipped during the bonding process. There-

fore, to indicate that a particular layout is for the wafer that is also flipped in the 3D

stack, another suffix -flp is required. This way a designer can incorporate necessary

information on the orientation of wafers for the wafer bonding process, and also add

inter-wafer vias accordingly. Figure 2-7 shows the different 3D bonding orientations

with corresponding layout-file structures of the 3D adder. The layout management

scheme can be easily extended for 3D circuits with more than two wafers by indicat-

ing the middle wafers with different suffixes, such as _mdl, _md2, etc. starting from

the top. For example, in case of a 3D FGPA with three wafers in the stack, there

will be three .mag files under the directory, 3dfpga. The .mag files can be named

5These text files are created with "feedback save afile" command.

29

adder8 adder8 adder8
- adder8 top.mag -- adder8 top_fip.mag -adder8 top.mag

L_ adder8-bot.mag __ adder8_bot.mag _ adder8_bot_flp.mag

- intercon - intercon intercon

Bonding Orientation Bonding Orientation Bonding Orientation
front-to-back front-to-front back-to-back

Figure 2-7: Layout-file structures for a 3D adder with different bonding orientations.

3dfpga-top.mag, 3dfpga-md1.mag, and 3dfpga-bot.mag. The bonding orientation for

all the wafers is front-to-back.

2.3.4 Circuit Extraction and Verification

Circuit extraction and verification are integral parts of CAD tools. MAGIC can

extract circuits from layouts with the extraction parameters retrieved from the tech-

nology file. In the initial version of 3DMagic, circuit extraction is supported in a

primitive way. All the layouts for a 3D circuit are dumped into a single layout cell

(using the command ":dump cellname") and extracted with the command ":extract

all". The 3D connections between layouts are automatically done if the same label

is used (using ":label") for inter-wafer vias of different layouts that requires to be

connected.

Currently there is no experimental data on extraction parameters for the inter-

wafer and through-wafer vias. Both the extraction process and accuracy will be

improved in the future when more extraction parameters become available. The

extraction process creates a file with an extension, .ext, from the layouts. A spice

netlist can be derived from the .ext file with the command "ext2spice" [29]. Finally,

the spice netlist can be simulated with HSpice or Spice with a proper input vector

for functional verification of the circuit.

30

2.4 Using 3DMagic in Athena

3DMagic is available for the users of MIT's academic computing facility, Athena.

3DMagic can be used for course6 projects as well as for designing 3D test circuits

for research purposes. Appendix B includes a tutorial on using 3DMagic in Athena.

During the fall semester of 2000, several students taking the course, Analysis and

Design of Digital Integrated Circuits (6.374), used 3DMagic for a research project

investigating the advantages of 3D integration. The 3D FPGA discussed in the next

chapter is an outcome of that project. Moreover, the availability of a CAD tool for

3D layouts has set a research direction where design and verification of actual circuits

are integral parts of system-level modeling and analysis.

66.374-Analysis and Design of Digital Integrated Circuits, and 6.371-Introduction to VLSI
Systems.

31

32

Chapter 3

3D Test Circuits

3.1 Overview

The main purposes of 3D test circuits are to provide a debugging tool for ERNI-3D

and to enable a preliminary simulation of the RCAD tool with actual circuits. Both

3D adder and FPGA heavily exploit the principle of hierarchy in IC design. The

topmost level is divided into several modules of regular structure. Moreover, the

modules are simple enough for manually keeping track of the number of interconnect

trees and transistors. As a result, the 3D test circuits are both simple enough for

serving the main purposes, and large enough to simulate a reasonable computational

load for an RCAD tool. This chapter describes the architecture and design of the test

circuits in detail. Moreover, some interesting results from performance comparison of

the 3D FPGA with its 2D counterpart are also presented at the end.

3.2 3D Adder

An adder is one of the basic datapath operators for every processor ranging from con-

ventional microprocessor to digital signal processors and network processors. More-

over, this type of circuit takes advantage of structured design. Since n-bit data is

being processed, n identical circuits can be combined to form the operator. A similar

technique is exploited in the design of a 3D 8-bit adder that consists of two wafers in

33

the 3D wafer stack. A detailed description of the design follows.

3.2.1 Architecture and Implementation

There is a large variety of adder implementations to meet the density and timing

constraints for different applications [30]. For the first test circuit, we chose to im-

plement a ripple carry adder where n blocks are cascaded with each other to form an

n-bit adder. Each block is a 1-bit adder that generates sum and carry outputs from

the two input bits and previous carry input. The carry signal propagates through the

whole adder, and the result is ready only when the final block produces its output.

Given that A and B are the adder inputs, C is the carry input, SUM is the sum

output, and CARRY is the carry output, a 1-bit adder implements the following

equations.

CARRY = AB+C(A+B) (3.1)

SUM = ABC+(A+B+C)CARRY

The equations are derived from a truth table of an adder [30], and simplified by reusing

CARRY for generating SUM. Instead of realizing the equations with logic gates, we

followed a fully static CMOS transistor-level design approach and implemented the

1-bit adder with 28 transistors. The transistor schematic for this implementation is

shown in figure 3-1.

According to conventional or 2D implementation, eight 1-bit adder cells would be

cascaded to form an 8-bit ripple carry adder. For the 3D 8-bit adder, we used an

architectural technique referred to as "datapath folding". "Datapath folding" means

that the operation in the whole datapath is sliced and distributed among different

wafers or layers in a serial fashion. For the 3D 8-bit adder with two wafers in a stack,

the bottom wafer adds the least significant nibble1 , and then the top wafer calculates

the most significant nibble. The CARRY signal from the bottom wafer propagates to

'Nibble stands for a 4-bit binary number.

34

BA F-c

AH

A [-B B

C- A- B-

F-A

F-B

SUM
C

A- B C4 A

B

-C> - CARRY

Figure 3-1: Schematic of a 28-transistor fully static CMOS adder.

the top wafer through an inter-wafer via. There are other inter-wafer vias connecting

Vdd and GND lines. Figure 3-2 shows the architecture of the 3D 8-bit adder.

3D Contact for Carry 3D Contacts for Vdd line 3D Contacts for GND line

Figure 3-2: Architecture of the 3D 8-bit adder.

3.2.2 3D Layout

First, a 1-bit adder was laid out in MAGIC. Apart from the active and poly layers,

two levels of metallization layer, metall and metal2, are used for routing. The input

signals A, B, and C are routed with polysilicon wires, and the GND and Vdd signals

35

are routed with metall. Each transistor has a W/L ratio2 of 3/2. The layout is

very compact with an area of (167 x 48)A 2 . Figure 3-3 shows the layout of the 1-bit

adder. Now, using 3DMagic, the layout is replicated according to the structure shown

Figure 3-3: Layout of a 1-bit adder in MAGIC.

on figure 3-2. The layout for the bottom wafer, named adder8-bot.mag, has several

2W/L refers to width/length ratio of a transistor.

36

connected-to-top type vias for connecting GND and Vdd lines with those of the top

wafer and CARRY signal of bit3 with C signal of bit4 on the top wafer. Similarly, the

layout for the top wafer, named adder8top.mag, has connected-to-bottom types vias

at those positions. The area markers for the inter-wafer vias are stored in a text file,

intercon. Figure 3-4 shows part of the layout files with the inter-wafer vias marked

Bottom Wafer Top Wafer

t F

Figure 3-4: Part of the layout of the 3D 8-bit adder.

in circles. According to the file management strategy described in section 2.3.3, the

37

3D 8-bit adder has a bonding orientation of front-to-back, and none of the wafers are

flipped in the 3D stack.

3.2.3 Functional Verification

The 3D adder is extracted using the technique discussed in section 2.3.4. Then a .sim

file, named adder8.sim, is generated from the .ext file with the MAGIC command

"ext2sim". The adder8.sim file is simulated with IRSIM, a switch-level simulator,

for verifying the correct operation of the circuit [31]. A detailed procedure for using

IRSIM can be found in reference [32]. Figure 3-5 shows the two 8-bit input signals,

Ain and Bin, carry signal Ci, and corresponding SUM with carry output Co. It can

be verified from the figure that the 3D adder is functioning properly.

Figure 3-5: IRSIM simulation of the 3D adder.

38

3.3 3D FPGA

FPGA (field-programmable gate array) based integrated circuit design has become

very common because of its shorter design time and cost. In an FPGA based design,

designers first derive logic equations from behavioral-level description of a circuit or

system. Then the logic equations are optimized and mapped into a programmable

logic architecture. The programmable logic architecture usually consists of an array of

configurable logic blocks connected with both vertical and horizontal programmable

interconnects. Figure 3-6 shows an FPGA architecture. The mapping of a logic

equation into an FPGA involves configuring the logic blocks and routing the inter-

connects. This mapping can be permanent in anti-fuse based technology as well as

reconfigurable in SRAM based technology where the values stored in memory cells

set the states of pass-transistors [33].

I/O Buffers

Vertical Routing Channels

Array of Configurable Logic Blocks 0

*-Horizontal Routing Channels-o

I/O Buffers

Figure 3-6: Conventional FPGA architecture.

It is apparent from the FPGA architecture that the total area is heavily wiring-

limited. In fact, studies show that interconnects and configurable memory account

39

for more than 90% of the chip area, and interconnects account for 40% to 80% of

the overall delay [34, 35, 36]. As discussed in section 1.1, 3D integration technology

has the potential for shortening interconnect length by mapping active devices or

transistors in different wafers and connecting them vertically. Therefore, FPGAs

are very attractive applications for such a technology. There has been significant

research on system-level modeling of 3D FPGAs for predicting the improvements

in performance, density, and power dissipation [14]. Because of the availability of

CAD methodologies for 3D circuits derived in this research, several students 3 have

taken the research to next step and done simulation on actual circuit layouts. It is

important to understand the architecture and layout of a 2D FPGA for making a fair

comparison with its 3D counterpart. Therefore, following sections describe the design

and architecture of both 2D and 3D FPGAs.

3.3.1 Triptych: 2D FPGA Architecture

The 2D FPGA architecture investigated in this research is known as the Triptych

architecture [37, 38]. Triptych is a sea-of-gates type structure constructed with an

array of Routing and Logic Blocks (RLBs) instead of conventional configurable logic

blocks. Figure 3-7 shows the routing structure in the Triptych architecture. The

RLBs can be configured to implement a logic function as well as to act as a signal

router. As a result, resource utilization in Triptych architecture is much higher than

that of conventional FPGAs. In addition, an RLB configured as a router can provide

short and direct connection between its neighbors. Each RLB receives inputs from

the four neighboring RLBs (N, NW, S, SW), and routing channel (see figure 3-7).

The functional block inside the RLB (figure 3-8) selects one input from N, or NW,

one input from S, or SW, and another from the routing channel. Then the functional

block implements a function of these inputs according to the control-bits used for

mapping. The result is sent to the routing channel and four other RLBs in latched or

unlatched form. The original RLB design, developed by [37, 38], is shown in figure 3-8.

3Nisha Checka and Charlotte Lau, from 6.374-Analysis and Design of Digital Integrated Circuits,
Fall 2000.

40

Segment d

J RLB

RLB

RLB

Figure 3-7: Routing structure in the Triptych architecture.

NW N

From
Segmented
Routing
Channel

i~r __

N

.. -C$x- T
SI
Ri
C

Figure 3-8: Block diagram of an RLB.

41

RLB*

RLB 0

RLBI

Routing Channels

RLB

RLBR

RLB

NE

0
egmented
outing
hannel

F(A,BC D

I

SW S
SE

S

3.3.2 Rothko: 3D FPGA Architecture

The 3D FPGA architecture investigated, known as Rothko, is based on Triptych

and was proposed at Northeastern University [39, 40]. In Rothko, the sea-of-gates

structure is extended to multiple layers or wafers. The functional block inside each

RLB now selects the first input from N, NW, Above, or Below4, second input from

S, SW, Above, or Below, and third input from the routing channel. Similarly, the

output from an RLB feeds into two other RLBs (Above, Below) from top and bottom

layers in addition to the routing channel and four RLBs (N, NW, S, SW) in the same

layer. Figure 3-9 shows the routing structure of a layer in Rothko.

Pg

Pin

RLB

RLB

RLB

RLB

RLB

RLB

~JTn

*AIM

0*

a Connection to layer above

* Connection to layer below

Figure 3-9: Routing structure in the Rothko architecture [40].

'Above and Below stands for inputs from the RLBs in top and bottom layers respectively.

42

RLB

RLB

Pin Pin

3.3.3 8-bit Encryption Processor in 2D and 3D FPGAs

An 8-bit encryption processor was implemented in both 2D and 3D FPGAs by laying

out the circuits using MAGIC and 3DMagic. The 2D FPGA has 96 (16 x 6) blocks

of RLBs in a single layout, and the 3D version has slightly higher number of RLBs

(112) to facilitate the routing in two layouts. The functional unit in an RLB consists

of pass-transistor based logic circuitry, and eight control bits are fed from the values

stored in a register. Figure 3-10 shows the layouts of 2D and 3D FPGAs.

3D

2D

Figure 3-10: Layouts of 2D and 3D FPGAs.

3.3.4 System-level Modeling for FPGAs

Researchers at MIT[14] and University of Virginia[41] have estimated key advantages

of 3D integration in FPGAs with theoretical analysis. Using stochastic wire-length

distribution models, it is demonstrated that 3D FPGAs can shorten the average

interconnect length by 13.8% [41]. This is partly because, long planar interconnections

between configurable logic blocks are replaced with shorter vertical interconnects.

Shorter wire means lower capacitance naturally leading to lower power dissipation

and interconnect delay. Studies show that improvements in interconnect delay can be

as much as 45% for short interconnects and 60% for long interconnects [14]. Moreover,

43

cc=

by 3D integration with 2 - 4 layers and the same clock frequency as a 2D FPGA, the

reduction in power dissipation in a 3D FPGA is 35% - 55%.

Several key parameters, such as number of interconnects, interconnect length,

and improvement in interconnect delay, are also estimated for the 8-bit encryption

processor using theoretical analysis. The number of interconnects can be modelled

as,
w

i = (3.2)

where i is the number of interconnect channels required between two columns, w is

the average number of connections through the interconnects between two columns,

and fout is the average fan-out 5. Therefore, the total number of interconnects, Itotal,

required for an entire system with N number of blocks in a square array is,

Itotal - (3.3)
fout

Applying above equation to the 2D design where w is approximately 8,

11D - 8(V/N - 1)l2D 2D '4

Similarly, for the 3D design where w is 3, and there are N/2 blocks in each layer,

3(N/2 - 1)
I13D = 3D' (3.5)

Assuming the area of an FPGA is dominated by interconnects, area improvement

in the 3D FPGA can be estimated using equations 3.4 and 3.5. Since the average

fan-outs in 2D and 3D FPGAs depend on particular design and vary from block to

block, a conservative estimate of the area reduction is 50%. Theoretical analysis also

shows that average interconnect length grows as O(ni1/ 2) and Q(nl/ 3) in an n-block 2D

and 3D FPGA respectively [40]. Therefore, assuming the delay is also predominantly

determined by interconnects and proportional to interconnect length, for the 8-bit

5Fan-out of a logic gate is the total number of gate inputs that are driven by a gate output.

44

encryption processor implementation with n around 100,

% improvement in delay = 1001/2 -1001/3 53%

3.3.5 Performance Comparison of 2D and 3D FPGAs

SPICE netlists were extracted from the layout of 2D and 3D FPGAs and simulated

using PowerMill6 . Both circuits were simulated with parameters for .30/.25pm tech-

nology with a power supply of 3V. Performance parameters such as critical path

propagation delay, percentage of used RLBs, and power dissipation were measured

and compared. Table 3.1 shows some results from the comparison. Figure 3-11 shows

the critical path delay of the 2D and 3D FPGAs.

Table 3.1: Performance parameters for 2D and 3D FPGAs.
Critical Path Delay % of RLBs used Total Power

2D 62ns 70.8% 2.59mW
3D 53ns 85.7% 2.77mW

2D 3D

Figure 3-11: Critical path delay of 2D and 3D FPGAs from PowerMill simulation.

The first waveform shows the input signal's transition at 100ns, while next eight

signals are the outputs of the encryption processor. The output waveforms of 3D and

2D settle to their final values at 153ns and 162ns respectively.

It is apparent from table 3.1 that there are some advantages in 3D FPGA, even

though the improvements do not match the expectation from theoretical analysis.

6PowerMill is a high speed circuit simulator available from Synopsis.

45

The improvement in interconnect delay is only 15% contrary to 53% calculated in

the previous section. The modeling analysis does not consider actual circuit being

implemented, rather it assumes a standard FPGA architecture and straightforward

extension of switch boxes to 3D technology. Therefore, the actual improvement may

vary from the ideal case based on circuit design and implementation details in the

architecture. The percentage of used RLBs for the 3D FPGA is higher than that of

2D within the area of the smallest rectangle enclosing the system. This shows that

the 3D design has better resource utilization than its 2D counterpart.

The third parameter, total power dissipation, is in fact higher in 3D FPGA in

terms of absolute value. The percentage of RLBs used in the 3D design is higher, and

more importantly, the implementation of the functional block in an RLB has nMOS

pass-transistor based logic where outputs from pass-transistors feed into inverters.

This particular implementation increased static power consumption (30% of the total

power in the 3D design). Therefore, a direct comparison of the total power consump-

tion would be inappropriate in this case. A more useful metric is the difference in

power dissipation due to interconnects. Experiments show that the interconnects for

3D consumes 5% less power than 2D largely because the number of routing channel

tracks has been reduced.

3.3.6 Conclusion from the Performance Comparison

From the performance comparison of 2D and 3D FPGAs, it is found that the 3D

design does not demonstrate an improvement at the same scale as expected from

system-level modeling. System-level modeling and analysis is important for estimat-

ing the impact of integrating new technologies. Over the last several years, this type

of modeling framework has been used successfully to assess the impact of technology

scaling, introduction of Cu and low-k, and modification of system architecture on

overall system performance. However, the actual performance of a circuit/system de-

pends on the details in implementation. Designers need to pay special attention and

exploit clever techniques to achieve the ideal improvement in system performance. It

is apparent that the 3D FPGA design can be further improved (by using a circuit with

46

no static power dissipation instead of pass-transistor based logic in an RLB, or using

completely different 3D architecture) to decrease power dissipation, and interconnect

delay. Therefore, research and experiment with actual circuit implementations are

equally important to fully harness the advantages of a new technology. The exper-

iment with 2D and 3D FPGAs done by the students introduced such approach in

the investigation of 3D integration technology [42]. Thus the CAD methodology and

tools, such as 3DMagic and ERNI-3D, will aid in the development of successful 3D

integration technology.

47

48

Chapter 4

Software Development for

ERNI-3D

4.1 Overview

ERNI-3D is a client extension of MAJIC, a layout viewer written in Java 2. The

initial version of MAJIC (0.5, Alpha) was developed by Yonald Chery using graphics

implementation ideas by Manuel Perez [21, 43]. The initial version contains ERNI

as the default reliability analysis tool. MAJIC is extended to version 1.0 (Beta)

supporting both ERNI and ERNI-3D as its client application. The current version

selects an appropriate reliability analysis tool during run-time. When MAJIC is

invoked with a directory for a 3D circuit, ERNI-3D appears as its default client.

Moreover, ERNI-3D automatically recognizes the bonding orientation of a 3D circuit

from the layout files, and can apply reliability models accordingly.

The software design approach that ensures such flexibility in MAJIC and ERNI-3D

is detailed in this chapter. The earlier sections present general algorithms and data-

structures for layout parsing and extraction of interconnect trees. Then the graphical

user interface and reliability analysis algorithms specific to ERNI-3D are discussed.

Appendix D includes an overview of the source code for MAJIC and provides a list

of Java files (Java source code) with corresponding functional descriptions. This

chapter also contains references to source files whenever appropriate.

49

4.2 Layout Parsing and Displaying with MAJIC

MAJIC reads layout files, referred to as .mag files, created with MAGIC and 3DMagic.

A .mag file provides an ASCII file representation of a circuit layout with coordinates of

rectangular tiles representing mask layers [23]. A set of coordinates have a header tag

<< layer >>, where "layer" defines the mask type of following rectangles. Table 4.1

shows a sample .mag file. While parsing such a file, MAJIC decomposes rectangular

elements into mask layers and their positions (source code: ParseMA GFile.java). The

Table 4.1: A sample .mag layout file.
magic
tech scmos
timestamp 962374816
<< polysilicon >>
rect -21 -4 -12 -1
rect -8 -4 10 -1
<< metall >>
rect -27 35 -21 36
rect 8 35 20 50
<< polycontact >>
rect -12 -4 -8 0
<< labels >>
rlabel polysilicon -1 -3 -1 -3 1 opa
rlabel metall -10 2 -10 2 1 m1th
<< end >>

mask information is stored in a data-structure known as corner-stitching, introduced

in MAGIC [27]. According to the corner-stitching data-structure, multiple planes,

such as active, oxide, poly, and metall, are superimposed on each other to represent

a layout. Each plane contains different types of non-overlapping rectangular tiles

with stitches at the four corners. Figure 4-1 illustrates a representation of three

corner-stitched solid tiles in a single plane.

The Java source files defining the corner-stitching data-structure in MAJIC are

Plane.java, PlaneType.java, Tile.java, and TileType.java. Layout.Java implements

the class that puts together multiple Tile and Plane objects to provide an internal

representation of a layout. While plotting the layout on an application window, the

50

Figure 4-1: Corner-stitched representation of a single plane with multiple tiles in a

MAGIC layout. The gray areas are solid tiles that are corner-stitched to neighboring

space tiles.

Planes are accessed in a serial fashion, and the corner-stitched Tiles on each Plane are

painted on the screen in an appropriate color (source code: MAJICcomponent.java).

A .mag file only provides the coordinates of mask layers in a layout. Therefore,

further information on the connectivity and type of mask layers is retrieved from the

technology file, scmos3D.tech26 (Appendix A). While parsing a .mag file, the tiles

that also represent contacts and inter-wafer vias, such as, pcontact, m2c, and m2topc,

are specially tagged. A contact tile has multiple representations, one at every plane

that it connects. For example, m2contact connects metal interconnects from metall

and metal2 planes, and has one tile representation at the metall plane and another

at the metal2 plane. The Java source file, TechDB.java, parses the technology file

to retrieve such crucial connectivity information for contacts. It also identifies the

inter-wafer vias specific to 3D integration technology from their representation with

abstract layers (section 2.3.2).

4.3 Extraction of Interconnect Trees

The corner-stitching data-structure in MAJIC enables several key operations of a

CAD layout tool in a very efficient manner. Two critical operations are finding all

51

the tiles in a given area and searching for neighboring tiles in a plane. Both oper-

ations are at the heart of extracting interconnect geometries from a layout. Given

a particular tile, all the adjacent tiles are retrieved from the corner-stitches imple-

mented as an ArrayList1 . The adjacent tiles are then stored in a Vector 2 (source

code: ITree.java) [44]. Using a depth-first search algorithm, the top left-most tile is

identified, and the whole tree is built via a depth-first walk on adjacent tiles [45]. Fig-

ure 4-2 illustrates an interconnect tree extraction from corner-stitched representation

of tiles.

Path for ITree

construction

Top left most tile

Figure 4-2: Extraction of an interconnect tree from corner-stitched representation of

tiles. Tiles marked with a cross are contact tiles and are the starting and terminating

points for this particular tree.

Setting the top left-most tile as a starting point facilitates the computation of

several useful interconnect parameters along the possible paths in an interconnect

tree. The current version of MAJIC calculates the length of all possible paths from

the coordinates of rectangular tiles. Moreover, the parameters are calculated at the

same time when a tree is being built with the depth-first walk algorithm. An ITree

object, the internal representation of an interconnect tree, stores the parameters in

a path-table for future uses. For the interconnect tree shown in figure 4-2, the path-

table contains data for two possible paths, starting at the top left-most contact tile

'The ArrayList class in Java implements a fixed size array.
2The Vector class in Java implements a growable array of objects. Like an array, it contains

components that can be accessed using an integer index.

52

and ending at the two terminating contact tiles.

In order to construct a 3D tree, the ITree objects from different layouts that

have connected-totop or connected-to-bottom type vias at the same positions are

first identified. Two ITree objects of such category forms a 3D tree with an inter-

wafer via connecting them vertically. The height of the inter-wafer via is retrieved

from the bonding orientation and particular type of inter-wafer via in use. In every

ITree object, a list of sub-path is computed starting from the inter-wafer via tile and

ending at other terminating contact or regular tiles. To compute the longest length

of a 3D path, that extends through both ITree objects, the height of the inter-wafer

via is added to the longest lengths from the sub-paths. If this length is greater than

the longest path lengths from individual ITree objects, it is considered the longest

path for the 3D tree. Figure 4-3 shows a 3D interconnect tree representation from

interconnect trees of two different planes and the path with the longest length.

Plane from top layout

Connected to bottom via

Plane from

bottom layout

,,, connected_to_to
via

1 Longest 3D Path

Figure 4-3: Formation of a 3D tree with two interconnect trees from different layouts.
The longest electrical path in this tree would be along the direction of the arrow.

53

4.4 Client Extension: ERNI-3D

As mentioned in the overview, MAJIC automatically establishes ERNI-3D as its client

extension for reliability analysis whenever a directory name for a 3D circuit layout

is specified at the command prompt with a -3d or -3D flag. The major difference

between MAJIC with ERNI and with ERNI-3D is the ability to handle multiple

layout files in the latter one. The MAJICapp class implements the functionality

for retrieving the layout files from a 3D circuit layout directory and interpreting the

bonding orientation from file names (source code: MAJICapp.java). Then an instance

of MAJICframe class is created for each layout file. The MAJICframe is responsi-

ble for managing the window display for a layout. It functions independently with

its own data-structures and classes, such as MAJICcomponent, TechDB, LayoutDB,

and ITree. While multiple instances of the MAJICframe class manage the different

layouts in a 3D circuit, the ERNIw3D class maintains the interaction between the

layouts (source code: ERNIw3D.java). The ERNIw3D class has access to the MA-

JICapp's class-variable 3 "waferframes" of type Vector. "Waferframes" contains the

list of current MAJICframe objects. ERNIw3D applies its computational methods to

every layout of a 3D circuit, and updates the layouts by traversing the "waferframes"

Vector.

Figure 4-4 shows the graphical user interface of MAJIC with ERNI-3D invoked

with the 3D adder. The layout windows display the two layouts for top and bottom

wafers of the 3D adder, and the other console window reports intermediate and final

results from reliability analysis. The menu options available in the "ERNI-3D" menu

are listed in table 4.2 with a brief note on their functionalities. Algorithms for the

reliability models in ERNI-3D are detailed in the following sections.

3A class-variable is a static variable in a class. It is only associated with a class not with multiple
instances or objects.

54

Table 4.2: Menu options available at the "ERNI-3D" menu.

Menu Option Description
1 Apply JmaxL filter Applies design rule current (jmax)

to all interconnect trees and fil-
ters out the first group of immortal
trees.

2 Apply Random Boundary Assigns marginal voltages to the
Conditions contact points in the interconnect

trees that failed the JmaxL filter.
3 Apply Circuit Extraction Extracts the circuit from the inter-

connect trees that failed the JmaxL
filter

4 Apply Simulation Engine Simulates the circuits extracted
from the interconnect trees with as-
signed marginal voltages.

5 Apply JL filter Applies the current density filtering
algorithm on mortal trees with their
calculated current density.

6 Apply Default Reliability Applies the default reliability model
Model on mortal trees for electromigration

reliability analysis.
7 Identify 3D Trees Identifies the interconnect trees

from different layouts that are limbs
of 3D trees.

8 Apply 3D Bond Reliability Applies the bond reliability model
Model associated with Cu-wafer bonding.

9 Apply Full-Chip Model Applies the full-chip model to com-
bine different reliability figures in
one layout.

10 Apply 3D-Chip Model Applies the 3D-chip model to com-
bine the reliability figures from dif-
ferent layouts to get a single num-
ber for a 3D circuit.

11 Reset Analysis Resets all reliability computation
and allows a user to start over.

55

Figure 4-4: Graphical User Interface of MAJIC with ERNI-3D. In this example,
MA JIC is invoked with the 2-wafer 3D adder circuit.

4.5 Reliability Algorithms Inherited from ERNI

ERNI-3D inherits the concept of Hierarchical Reliability Analysis from ERNI. This

concept allows a computationally manageable approach for doing a layout-level relia-

bility analysis, and was proposed by Stefan Riege, and Carl Thompson [19]. The main

idea is to isolate the interconnect trees that are more prone to failure using different

levels of filters. After the filtering steps, the number of such interconnect trees re-

maining are usually small. Then computationally heavy as well as stringent reliability

models are applied to the remaining trees for accurate reliability figures. A complete

description of the concept and related algorithms can be found in reference [7]. The

following two sections briefly discusses the filtering algorithms and default reliability

model in the Hierarchical Reliability Analysis and how it is incorporated in ERNI-3D.

4.5.1 Filter Steps

Both ERNI and ERNI-3D have several filtering steps to identify "immortal" trees

(trees that will never fail). The concept of immortality in an interconnect tree is

extended from straight, stud-to-stud interconnects and based on a critical current-

56

nt, speciFied in Font.properties not found E--Z4p(dingb tl

cnt specified in Font.propertLes not found [-zapf dingb

...- 6-0-taoe- nckec... lo

nzng 'file:/h es/saSe osY3D.t*c26
eos (Version 8.2.6) t9 planes. 61 tpe

Technologs file loaded fron file:/homes/salan/scosY3D.te
oading 'file: /ad/gopowder/home1 /salam/JASMNIE/ERNIcode

_BASE = file:/and/g powder/ho.el/salam/JASMINE/ER!nco
ae, = add8test_bot

670 tiles added.... done
ile: *ddtest-tc~a
Jning 'ie/oe/aa/co3Dtc2'.

sCMOs (version 8.2.6) 19 planes, 61l tgpesO
T ectymlogW file loaded from file: /homes/salan/semosY3Dte

ARSE = file;./ad/gnpotider/ehcel/salam/JASMINE/ERR~ca
ae = adicftest-top-

MM - -- - - - - Ift! -- - - - ----q

density length product, (jL)crit, necessary for void nucleation. The maximum stress

difference in an interconnect tree is given by the path that has the highest sum of the

jL products summing over the limbs in the path [7],

Z*ep
ZAS.max = e (jL)eff (4.1)

with,

(iL~eff all junctions i,j (kk 42(jL~eff_ mak Lk (4.2)
\ k/

where zAo-max is the difference in maximum stress, Z* is the effective atomic charge

number, e is the fundamental charge, p is the electrical resistivity, and Q is the atomic

volume used in calculating chemical potential. The sum in equation 4.2 is taken over

all limbs connecting junctions i and j.

Using equation 4.1, an upper limit for electromigration-induced stress increase in

an interconnect tree can be calculated. When the effective current-density length

product, (jL)eff, is less than the critical product necessary for void nucleation,

(jL)crit, the tree will be immortal. The term, (jL)cit, is adopted from experimental

values for different interconnect technologies. For example, the (jL)crit for Aluminum

interconnects is 4 x 103A/cm [46].

The filtering methods in ERNI and ERNI-3D estimate (jL)ef in a number of

ways (source code: ERNIw3D.java). The tasks of identifying all possible paths in

an interconnect tree and computing lengths along the paths are already discussed in

section 4.3. The first filtering algorithm invoked by Menu Option 1, "Apply JmaxL

filter" (table 4.2) assumes Jmax set by design practice while computing (jL)eff. Then

Menu Options 2 - 5 estimate (jL)ef by computing current-density, j, from the as-

signed boundary voltages at the contact points of a tree. The filtering process with

(jL)eff estimated using the latter approach is less conservative than filtering with

(JmaxL)eff. The immortal trees are identified with these two filtering steps and sepa-

rated from the list of trees that furthers into rigorous reliability analysis. Figure 4-5

illustrates the steps of reliability analysis with block diagrams.

57

Extract Apply Filters to Apply Default Identify 3D Calculate
Interconnect Eliminate Model for Trees and Reliablity Redo Layout?

Trees Immortal" Electromigration -, Apply Bond Budget
Trees Reliability Models

End

Simulation of Model Library
Circuit with (Electromigration, 3D Bonding,
Boundary and Joule Heating)
Condition

Figure 4-5: Flow diagram of reliability analysis in ERNI-3D.

4.5.2 Default Electromigration Reliability Model

After the filtering process, lifetimes of the mortal trees are estimated with a con-

servative default electromigration reliability model. Failure in an interconnect tree

can occur due to the resistance increase from voiding in the event of tensile stress,

or due to cracks in the passivation or liner materials, and metallic extrusions in the

event of large compressive stress. A void forms and starts to grow when the tensile

stress exceeds the critical stress necessary for void nucleation, -nuci , at time trinc.

Eventually, an increased size in the void causes an unacceptable resistance increase

at time tgrowth. Both tnucl and t rowth are estimated, and the longer time is taken

as the time to failure due to voiding, tvoid. Similarly, the time for extrusion due to

critical compressive stress, textrusion, is estimated, and and the overall time to failure,

tfail, is taken to be the minimum of tvoid and textrusion. Moreover, the median time to

failure of an interconnect tree is the same as tfail. The equations for computing tnucl,

tgrowth, textrusion are discussed in details in reference [7].

The statistical distribution of electromigration test failures has been found in many

studies to approximate a lognormal distribution [7, 10]. When a random variable X

is normally distributed with finite mean p and positive variance a', then a random

58

variable T with

T = eX (4.3)

is said to have a lognormal distribution. Median time to failure, 150, of T is

t50= el (4.4)

Therefore, mean time to failure (MTTF) of an interconnect tree can be calculated

with

MTTF = Int 5o (4.5)

Thus both mean and median times to failure can be calculated using the default relia-

bility model. The model was implemented in the first version of MAJIC (source code:

ERNI.java), and the current version inherits the model for reliability computation

associated with electromigration in 3D circuits.

4.6 Methods for New Models

MAJIC with ERNI-3D has several methods4 defined in ERNIw3D.java that aid the

reliability analysis of 3D interconnect trees. As mentioned in table 4.2, the new menu

options are "Identify 3D Trees", "Apply 3D Bond Reliability Model", "Apply 3D-Chip

Model", and "Reset Analysis". While parsing interconnect trees from layouts, the

ITree objects that form a 3D tree are marked. The "Identify 3D Trees" option invokes

the method to highlight the marked interconnect trees with white borders. Then the

"Apply 3D Bond Reliability Model" invokes the method for reliability analysis with

those 3D trees.

The approach to reliability analysis in a 3D tree is fundamentally different from

that in 2D trees. Although the inter-wafer vias are limbs of a 3D tree connecting mul-

tiple 2D trees from different wafers, they need to be specially treated for accounting

the reliability associated with bonding. A preliminary approach to reliability analysis

4Methods are functions or subroutines in a Java class.

59

in a 3D tree is described here. Figure 4-6 shows a simple 3D tree. The MTTFs of

two 2D trees at the top and bottom can be calculated using the Default Reliability

Model discussed in the previous section. The MTTF of an inter-wafer via has to be

calculated using sophisticated models for reliability issues associated with 3D bonding

and increased joule heating [15].

Inter-wafer via

2D trees

Figure 4-6: Approach to reliability analysis in a 3D tree.

Therefore, in general, a 3D tree will have multiple MTTFs from its limbs: 2D

trees from different wafers and one or more inter-wafer vias. Multiple MTTFs from

the components can be combined using the same procedure as used in 3D-chip and

full-chip models. The method for 3D-chip model incorporates multiple reliability

figures from different layouts to estimate the reliability of the whole circuit. Both

the 3D-chip model and full-chip model, originally used in ERNI, are based on the

same principal, interpolation of multiple MTTFs using a probability distribution,

and discussed in the following section in details. Finally, the method for "Reset

Analysis" does not contribute directly in computing any reliability figure. However,

it aids the flow of analysis by allowing a user to reset all computations and start over

without restarting MAJIC with the same circuit.

60

4.7 Full-Chip and 3D-Chip Reliability Models

The goal of both full-chip and 3D-chip models is to combine multiple reliability figures.

The full-chip reliability model combines the MTTFs of multiple interconnect trees

from the same layout and provides one MTTF for a chip on a single wafer. The

3D-chip model again combines the different MTTFs of multiple wafers/layouts in

a 3D circuit to report a single MTTF. Therefore, the same algorithm based on a

probability density function, applies to both models.

Let T be the time to failure of a reliability unit, and fT(t) is the probability density

function (PDF) of the continuous random variable T. fT(t) can be modelled as a PDF

of an exponential random variable with A as its positive exponent factor [47], i.e.

Ae--At if t > 0
fr (t) = -(4.6)

0 otherwise

It is important to note that fT(t) is not the probability function, rather fT(t)

needs to be integrated over proper interval to get the probability of T falling within

that interval. P(T > x), probability that T exceeds a certain value x, would report

the probability that an unit is reliable or functional within time x.

P(T > x) = Ae-Adt

= -e-At

=.eAx (4.7)

Writing P(T > x) as the probability function R(t),

R(t) = P(T > t) = e-At (4.8)

R(t) is a proper probability function plotted against time as in figure 4-7. R(t) is

the measure of probability that at time t the reliability unit is still operating, and A

defines how fast that probability changes.

61

R(t) R(t)L

11
X small X large

t t

Figure 4-7: Plot of a probability function indicating the reliability of a unit versus
operating time.

At time t = 0, an interconnect tree will definitely be reliable, and hence R(t = 0) = 1.

The probability decreases afterwards in an exponential manner indicating that as the

time increases, an interconnect tree prone to failure will be less reliable (lower R(t))

or will have a higher chance of failing. This phenomenon coincides with the actual

experiments of failure, such as void formation and extrusion, in interconnect trees.

Therefore, fT(t) in equation 4.6 and related probability density laws can be correctly

used for modeling the reliability figures in a circuit layout.

The MTTF of an interconnect tree is equivalent to the expected value of T and

can be calculated from equation 4.6.

MTTF = E[T]

= jtAe-Adt
- (-te-At) 00 + j 0e-Atdt

- 0+ e-Atdt0l

0
- jR(t) dt

e-At 0

A
0

1 -(4.9)

Therefore, only the MTTF of an interconnect tree is sufficient to define the PDF,

62

fT(t), associated with it. To combine multiple MTTFs, a joint PDF fji0 t(t) or equiv-

alently a joint R 0 int (t) needs to be defined. Time to failures of different interconnect

trees are independent random variables. The current flow in one interconnect tree

drives the electric behavior of adjacent trees. However, the filtering algorithms and

reliability models described in the previous sections resolve any dependency by treat-

ing an interconnect tree as a separate reliability unit and assigning proper boundary

conditions while evaluating the models. Therefore, Rj0 int(t) can be calculated using

the multiplication rule for independent random variables.

Rjoint (t) = e~iointt

= R 1 (t) R 2 t) - R 3 (t) ... Rn(t)

C e A1t CeA2t e A3t e-Ant

Se-(A+A2+A3+--+An)t (4.10)

which suggests,

Aoint= A, + A2 + A3 + -+ An (4.11)

equivalently,

1 1 1 1 1
+ + + + (4.12)

MTTFoint MTTF1 MTTF2 MTTF3 MTT Fn

Equation 4.12 shows the parallel resistor averaging property for calculation of a

single MTTF from multiple MTTFs. This produces the same formula for combining

MTTFs as used in ERNI and proposed by Donald Troxel [20]. For simplicity, the

above analysis is done with random variables with exponential distributions. However,

such an analysis also applies to normal distributions. Finally, a joint median time to

failure can be calculated from MTTFjoint using equation 4.4. Both the full-chip and

3D-chip models use the parallel resistor averaging property of MTTFs. The methods

for these two models are defined in the ERNIw3D class.

63

64

Chapter 5

Simulation with Test Circuits

5.1 Overview

A rigorous simulation of ERNI-3D was carried out with the 3D adder and FPGA. The

purpose was to verify the functionality of ERNI-3D as well as to achieve some prelim-

inary reliability results with the test circuits. This chapter illustrates the simulation

work and discusses some of the results.

5.2 Debugging with 3D Adder

As discussed in section 3.2, the 3D adder has a hierarchical structure with simple

1-bit adder modules. The repetitive pattern allowed a manual count of interconnect

geometries. Table 5.1 shows the number of interconnect trees in the 3D adder.

Table 5.1: Number of interconnect trees in the 3D adder.

Top wafer: adder8_top.mag
of interconnect trees in metall 43
of interconnect trees in metal2 12
Bottom wafer: adder8_bot.mag
of interconnect trees in metall 42
of interconnect trees in metal2 21

3D Structure
of 3D trees 3

65

While debugging ERNI-3D with the 3D adder, the internal data-structures respon-

sible for storing the interconnect geometries, such as Layout and ITree, were manually

traced. Such manual trace verified the accurate bookkeeping of interconnect trees in

ERNI-3D.

Table 5.2: Reliability analysis with the 3D adder.
Top wafer: adder8_top.mag

Plane: metall

of immortal trees 37
of mortal trees for 6 MTTF = 1.74year
computing MTTF

Plane: metal2
of immortal trees 8
of mortal trees for 4 MTTF = 2.22years
computing MTTF

Bottom wafer: adder8_bot.mag
Plane: metall

of immortal trees 35
of mortal trees for 7 MTTF = 1.33year
computing MTTF

Plane: metal2

of immortal trees 17
of mortal trees for 4 MTTF = 2.22years
computing MTTF I

3D Chip Analysis

of 3D trees 3
Reliability of top MTTF = 0.975year
wafer
Reliability of bottom MTTF = 0.84year
wafer
Reliability of 3D chip --

5.3 Reliability Analysis with 3D Adder

The results of reliability analysis with the 3D adder are summarized in table 5.2. The

operating voltage of the adder was set to 5V. The analysis is done in steps according

to the menu options from the "ERNI-3D" menu. The combined MTTF from multiple

interconnect trees is derived using the parallel resistor averaging algorithm described

66

in section 4.7. The reliability figures of the top and bottom wafers are also computed

in a similar fashion. For accuracy, a reliability budget for the 3D chip is not computed

in the table. Although an MTTF can be computed from the two MTTFs of the

top and bottom wafers, the result would not reflect actual reliability as the bond

reliabilities are not yet considered.

For completeness, the reliability figures from 2D counterpart of the 3D adder are

shown in table 5.3. There is an interesting observation from tables 5.2 and 5.3. The

goal of 3D integration is to lower the interconnect length by mapping the interconnects

into different wafers. The total number of interconnect trees in the 3D adder is slightly

higher, 118 in 3D versus 106 in 2D. However, it is apparent from the layouts that the

3D version contains a higher number of trees with shorter length. Since trees with

shorter length (smaller jL) usually have improved electromigration reliability, the

MTTFs from the 3D version of a circuit should be lower. The results from tables 5.2

Table 5.3: Reliability analysis with the 2D version of 3D adder.
Layout file: add8.mag

Plane: metall

of trees 82

of immortal trees 72
of mortal trees for 10 MTTF = 0.89year
computing MTTF

Plane: metal2

of trees 24
of immortal trees 16
of mortal trees for 8 MTTF 1.12year
computing MTTF

Full Chip Analysis
Reliability of full chip MTTF = 0.49year

and 5.3 match our intuition. The MTTFs from metall and metal2 plane of the 2D

circuit are lower than those of the 3D circuit, 0.89 year versus 1.74 year or 1.33 year

for metall plane, and 1.12 year versus 2.22 years for metal2 plane. The full-chip

MTTF of the 2D counterpart is also lower than the MTTF of top or bottom wafer

in the 3D circuit. Therefore, the 3D version is more reliable considering only the

electromigration effects.

67

5.4 Reliability Analysis with 3D FPGA

As discussed in section 3.3, the 8-bit encryption processor is mapped into Rothko

FPGA architecture with two wafers in the stack. The layout for top wafer, 3df-

pga-top.mag, has a driver block and 56 Routing and Logic Blocks (RLBs). Similarly,

the layout for bottom wafer, 3dfpgabot.mag, has 56 RLBs. There are approximately

43 inter-wafer vias for 3D connections. Both layouts are fairly large, and the reliabil-

ity analysis is done in a modular fashion. First, the interconnect geometries in a single

driver block and RLB are tallied, and MTTFs are calculated. Other MTTFs are

calculated from the interconnect geometries dedicated to the vertical routing channels

in each layout. The vertical routing channel is not necessarily a combination of long

wires, rather it is a network connecting different RLBs in the array structure in each

layout. In the top layout, it also feeds inputs from the driver block to selected RLBs.

Moreover, all the 3D trees exist in vertical routing channels of the two layouts as the

inter-wafer vias are only placed at the channels.

If MTTFRLB denotes the mean time to failure of a single RLB, according to the

parallel resistor averaging algorithm, the mean time to failure of an array structure,

MTTFarray with 56 RLBs will be TTFRLB. For the top layout, three MTTFs are56

computed from the array structure, driver, and vertical routing channel, and combined

to get a single reliability budget. The reliability budget for the bottom layout has

contributions from the array structure and vertical routing channel. Tables 5.4 and 5.5

illustrate the reliability analysis with the 3D FPGA.

Although a reliability budget for the 2D FPGA implementation of the 8-bit en-

cryption processor was not computed, the interconnect geometries from the layouts

showed a similar observation as in the 2D and 3D adder layouts. The same RLB and

driver blocks are used in the 2D version. However, the vertical routing channel in 2D

has significantly longer interconnect trees as the array structure consists of 96 (16 x 6)

RLBs. Therefore, we would expect lower MTTFs in the 2D version.

68

Table 5.4: Reliability analysis with the 3D FPGA.

RLB Layout: rlb.mag
Plane: metall

Total # of trees 132

of immortal trees 100

of mortal trees for computing 32 MTTF = 3.49years
MTTF

Plane: metal2

Total # of trees 26

of immortal trees 14

of mortal trees for computing 12 MTTF = 7.53years
MTTF

Driver Layout: driver.mag
Plane: metall

Total # of trees 32

of immortal trees 28

of mortal trees for computing 4 MTTF = 2.57years
MTTF

Plane: metal2

Total # of trees 14

of immortal trees 14

of mortal trees for computing 0 MTTF = N/A
MTTF

Top wafer: 3dfpga-top.mag
Vertical Routing Channel

Plane: metall

Total # of trees 180

of immortal trees 85

of mortal trees for computing 95 MTTF 2.80years

MTTF
Plane: metal2

Total # of trees 570

of immortal trees 570

of mortal trees for computing 0 MTTF = N/A
MTTF
Reliability of RLB-array MTTF = 0.042year

Reliability of driver block MTTF = 2.57years
Reliability of rout. chan. MTTF = 2.80years

69

Table 5.5: Reliability analysis with the 3D FPGA (continued).
Bottom wafer: 3dfpga-bot.mag

Vertical Routing Channel
Plane: metall

Total # of trees 258

of immortal trees 116

of mortal trees for computing 142 MTTF 1.39year
MTTF

Plane: metal2
Total # of trees 628
of immortal trees 628
of mortal trees for computing 0 MTTF = N/A
MTTF
Reliability of RLB-array MTTF = 0.042year
Reliability of rout. chan. MTTF = 1.39year

3D Chip Analysis

of 3D trees 43
Reliability of top wafer MTTF = 0.041year
Reliability of bottom wafer MTTF = 0.0407year

5.5 Summary of Results

The reliability analyses with the 3D adder and FPGA demonstrate proper function-

ality of ERNI-3D. Some observations are also made based on the reliability budgets

from the test circuits. The mean time to failures of overall systems may seem to be

low (less than a year). In fact, these figures reflect the continuous operating time of

the circuit and does not consider any effects of idle mode. It is also observed that

electromigration reliability is improved in bonded 3D circuits as 3D mapping shortens

the wire length in interconnect trees. However, no conclusion on overall reliability

can be reached as this initial analyses do not fully account for bond reliability and

effect of joule heating.

70

Chapter 6

Future Work

6.1 Overview

This chapter provides some future directions for research and development in the

area of Reliability CAD (RCAD) tools. The concept of reliability computation at the

circuit-layout level has been evolving for last several years. With emerging semicon-

ductor processing technology, such as 3D integration, reliability has become a critical

issue. Moreover, the availability of Reliability CAD tools will allow designers compare

reliability of their circuits with different design topologies and process technologies.

Therefore, there are enough opportunities for enhancement of ERNI-3D to fully meet

such goals.

6.2 Incorporation of Sophisticated Reliability Models

As the processing technology for 3D integration will advance, sophisticated reliability

models will be developed. Such models have to be incorporated into ERNI-3D to

keep the tool up-to-date. Moreover, the current version of ERNI-3D lacks bonding

models for a Cu-Cu wafer bonding process in 3D integration. The bonding models

are under development [15] and will be included in the next release of ERNI-3D.

The object-oriented software architecture in ERNI-3D will enable incorporation of

any new models with a minimal effort. After the inclusion of new models, reliability

71

analyses similar to the one described in the previous chapter have to be done.

6.3 Layout Editing in ERNI-3D

MAJIC, the parent application of ERNI-3D, is a layout viewer and does not allow any

editing in the circuit layout. However, after running initial reliability simulations, a

designer may want to change the geometries of mortal interconnect trees and rerun

ERNI-3D for new reliability figures. Consequently, layout editing in MAJIC with

ERNI-3D is a very useful feature. It will eliminate manual bookkeeping with inter-

connect trees when a layout is ported to any other layout editor, such as MAGIC, for

updates and changes. However, adding such a feature in MAJIC is a nontrivial task.

Significant upgrade in graphical user interface will be required for handling user input

from the layout display. Moreover, the internal data-structures will require real-time

update while the layout is being changed. Advanced software algorithms such as

multi-threaded programming, pipelining, and semaphores, have to be employed to

efficiently manage the computational load.

Table 6.1: Comparison of features available in MAGIC, 3DMagic, and MA JIC.
Feature MAGIC 3DMagic MAJIC
3D layout no yes yes
Jsim no no yes
Boundary condition no no yes
Layout viewer yes yes yes
Layout editor yes yes no
DRC yes yes no
Tech file parsing yes yes yes
File saving yes yes no
Language C C Java
Reliability no no ERNI

ERNI-3D

Table 6.1 summarizes the available features of MAJIC, and provides a comparison

with MAGIC and 3DMagic. Another feature that comes naturally with layout editing

in CAD tools is a design rule checker. A design rule checker (DRC) verifies whether

interconnect geometries meet the rules specified by a fabrication process. If designers

72

are allowed to edit the layout in MAJIC before rerunning ERNI-3D, MAJIC has to

check for any design rule violations in the new interconnect geometries.

6.4 Reliability Analysis based on Local Temperature

While computing the median time to failure of an interconnect tree in a large cir-

cuit, the models usually assume a fixed operating temperature. This approach is

more applicable for conventional or 2D integration technology. However, the effect

of increased joule heating in a 3D circuit is more severe as the heat dissipation from

wafer-stack poses a challenge. Therefore, the reliability models for 3D integration

technology should include local temperaturel as one of the input parameters to cal-

culate more accurate median time to failures.

The task of calculating the actual operating temperature in a layout is not trivial.

Currently, no CAD tool supports such operation. Operating temperature is directly

proportional to power dissipation in a circuit. Power dissipation is calculated by sim-

ulating circuit netlists extracted from a layout. After the extraction phase, there is

no direct mapping between the extracted netlist and area of the layout from which it

is extracted. This fundamental approach to circuit extraction has to be extended in

order to compute power dissipation by layout area, and thus estimate local tempera-

ture.

RCAD tools with the ability to compute local temperature can also facilitate

the usage of innovative heat dissipation techniques in a 3D circuit. In response to

managing heat dissipation, researchers are already investigating possible solutions by

using through-wafer vias filled with higher thermal conductivity materials, and in-

novative cooling techniques with heat-pipes and forced-air. The through-wafer vias,

heat-pipes, or forced-air will be more effective when they are placed in higher tem-

perature zone in a layout. Such placement will require RCAD tools to calculate local

temperature.

1Local temperature would indicate the operating temperature at the vicinity of an interconnect.

73

74

Chapter 7

Conclusion

7.1 Overview

In this research, a novel RCAD tool ERNI-3D has been developed for reliability

analysis with bonded 3D integrated circuits. Both the concepts of CAD tools for 3D

circuits and layout-level reliability assessment are very recent. There has not been

any significant research in these areas before. Therefore, in addition to RCAD tool

work, this research has made significant contribution to design methodology for 3D

circuits. The following sections outline the achievements of this thesis work.

7.2 3DMagic and Layout Methodology for 3D ICs

One of the major outcomes of this research is the layout methodology for bonded

3D integrated circuits [24]. In bonded 3D integration technology, parts of a circuit

are fabricated on different wafers, and then the wafers are bonded with copper or

polymer-based glue layer to form a single chip. The circuit on each wafer can be laid

out separately with inter-wafer via information embedded in a layout. The inter-wafer

via information is generalized into three categories, connected-to-top, connected-to-

bottom, and through-wafer vias. The three categories of vias are sufficient for defining

almost all types of interconnection between wafers in a 3D stack. A strategy for

layout-file management that also incorporates the orientation of each wafer in 3D

75

bonding process is proposed. The layout methodology is implemented in 3DMagic,

an extension of MAGIC originally developed at UC Berkeley and widely used in

academia. A new technology file has been developed for supporting the abstract layers

and preliminary design rules for the inter-wafer vias. Proper connectivity information

is also added in the technology file to enable the built-in hierarchical circuit extractor

successfully extract a 3D circuit layout. The alignment of multiple layouts and inter-

wafer vias can be managed very efficiently with the MAGIC feature "feedback". Using

3DMagic, a 3D 8-bit adder and an 8-bit encryption processor mapped into a 3D FPGA

are designed as test circuits for ERNI-3D. The 3D layout methodology is powerful

enough for designing a 3D circuit of any complexity, and yet it can be incorporated

into existing CAD tools with minimal changes.

7.3 RCAD Tool: ERNI-3D

The final product of this thesis, ERNI-3D, is a tool for reliability analysis associ-

ated with electromigration, 3D bonding, and increased joule heating in 3D circuits.

ERNI-3D is client extension of MAJIC, a layout viewer written in Java 2 [21]. When

MAJIC is invoked with a directory for a 3D circuit laid out in 3DMagic, ERNI-3D au-

tomatically recognizes the orientation in bonding process using the proposed layout-

file management scheme. Then it parses the layout files and extracts both con-

ventional and 3D interconnect trees. ERNI-3D employs the Hierarchical Reliability

Analysis approach, and filters out a group of immortal trees (trees that will never

fail) using their current-density length products (jL) [7]. After the filtering process,

the stringent reliability models are applied to the remaining interconnect trees for

computing their median and mean times to failure. Finally, the mean time to fail-

ures (MTTFs) are combined using a joint probability distribution to provide a single

MTTF for the whole chip.

This initial version of ERNI-3D works with 3D circuits with two wafers or device-

interconnect layers in the stack. However, the data-structures and algorithms are

generic enough to make it compatible with 3D circuits with more than two wafers,

76

and to allow incorporation of more sophisticated reliability models in the future.

7.4 Simulation and Experiment with 3D Circuits

An indirect contribution of this thesis work is the introduction of simulation and ex-

periments with actual implementation of 3D circuits. Over the past years, the investi-

gation of performance improvement in 3D integration has been limited to system-level

modeling with theoretical analysis. Availability of 3DMagic led to an experiment with

2D and 3D FPGAs [42]. Researchers implemented an 8-bit encryption processor in

both 2D and 3D versions using MAGIC and 3DMagic. Spice netlists were extracted

from the layouts and simulated with PowerMill for measuring critical path delay, re-

source utilization, and total power. The 3D FPGA demonstrated some improvement,

however, not at the same scale as expected from system-level modeling. The mod-

eling analysis does not consider actual circuit being implemented, rather it assumes

a standard FPGA architecture and straightforward extension of switch boxes to 3D

technology. The experiment with 2D and 3D FPGA layouts clearly demonstrated

the importance of research with actual circuit implementations to fully harness the

advantages of 3D integration technology. Availability of the CAD methodology for

3D integration technology and tools, such as 3DMagic and ERNI-3D, can set such re-

search direction. In fact, researchers at MIT have adopted the 3D CAD methodology

developed in this research and set a new focus on developing actual 3D circuits [48].

77

78

Appendix A

Excerpt from the Technology File

MAGIC is a technology independent layout editor. The technology file contains all

necessary technology-specific information such as mask layers, design and extraction

rules, and connectivity information. There is a different technology file for each

technology - optical, MEMS, BiCMOS, etc - supported by MAGIC. A new technology

file, scmos3D.tech36, has been developed to support 3D integration technology.

A technology file is divided into seventeen sections, and each section has the

following format.

section name

content

end

The seventeen sections in a technology file are tech, planes, types, styles, contact,

compose, connect, connect, cifoutput, cifinput, mzrouter, drc, extract, wiring, router,

plowing, and plot. A detailed description on the format of technology files can be

found in reference [26]. Following is the excerpt from the 3D technology file. Specific

additions and changes are emphasized in the sections where entire section content is

shown. Elsewhere only the additions are included.

79

Excerpt from file: scmos3D.tech26

tech

scmos

end

version

version 8.2.6

description "MOSIS Scalable CMOS Technology for 3D IC design to

be used for ERNI-3D"

end

planes

well,w

implant,i

active,a

metall,ml

metal2,m2

metal3,m3

oxide,ox

end

types

well pwell,pw

well nwell,nw

well capwell,cwell,cw

well highvoltnwell,hvnwell,hnwell,hnw

well highvoltpwell,hvpwell,hpwell,hpw

active polysilicon,red,poly,p

active electrode,poly2,el,p2

active capacitor,polycap,pcap,cap

active wellcapacitor,wellcap,wcap

80

Excerpt from file: scmos3D.tech26

active ndiffusion,ndiff,green

active pdiffusion,pdiff,brown

active highvoltndiffusion,hvndiff,hndiff

active highvoltpdiffusion,hvpdiff,hpdiff

metall metall,ml,blue

metal2 metal2,m2,purple

metal3 metal3,m3,cyan

active ntransistor,nfet

active ptransistor,pfet

active entransistor,enfet

active eptransistor,epfet

active doublentransistor,nfloating-gate,nfloatg,nfg,nffet

active doubleptransistor,pfloating-gate,pfloatg,pfg,pffet

active highvoltntransistor,hvnfet,hnfet

active highvoltptransistor,hvpfet,hpfet

active collector,coll,col,co,cl

active emitter,emit,em

active pbase,pb

implant bccdiffusion,bd

active nbccdiffusion,nbd

active polycontact ,pcontact,polycut ,pc

active ndcontactndiffcut,ndc

active pdcontact,pdiffcut,pdc

active highvoltndcontact,hndiffcut,hndc

active highvoltpdcontact,hpdiffcut,hpdc

active capcontact,ccontact,capc,cc

active electrodecontact,econtact ,ec,poly2contact,p2c

active collectorcontact,colcontact,colc,coc,clc

81

Excerpt from file: semos3D.tech26

active emittercontact,emitcontact,emc

active pbasecontact,pbcontact,pbc

active nbccdiffcontact,nbdc

metall m2contact,m2cut,m2c,via,v

metal2 m3contact,m3cut,m3c,via2,v2

metal3 m2- Top Contact, m2topc

metal3 m3- Top_ Contact, m3topc

active psubstratepcontact,pwcontact,pwc,psc

active nsubstratencontact,nwcontact,nwc,nsc

active psubstratepdiff,pohmic,ppd,psd

active nsubstratendiff,nohmic,nnd,nsd

active highvoltpsubcontact,hpwcontact,hpsc

active highvoltnsubcontact,hnwcontact,hnsc

active highvoltpsubdiff,hpohmic,hpsd

active highvoltnsubdiff,hnohmic,hnsd

active nplusdopping,ndoping,ndop

active pplusdopping,pdoping,pdop

oxide throughwafervia, twv, twvia, greenwaffle

well 3Dcontactbottom,3Dconb

implant polybottomcontact,pbcon

active mlbottomcontact,mlbcon

metal3 pad

oxide glass

end

contact

ec poly2 metall

cc cap metall

pc poly metall

ndc ndiff metall

82

Excerpt from file: scmos3D.tech26

end

83

pdc

nsc

psc

clc

eme

pbc

nbdc

m2c

m3c

pad

m2topc

m3topc

pbconr

m1bconr

pdiff

nsd

psd

col

emit

pbase

nbd

metall

metal2

metal2

metal2

metal3

3Dconb

bd

metall

metall

metall

metall

metall

metall

metall

metal2

metal3

metal3

metalS

twv

bd

poly

glass

twv

poly

mI

end

styles

styletype

twv

twv

m3topc

m3topc

m2topc

m2topc

pbconr

pbconr

m1bconr

m1bcon

mos

4

47

22

47

21

47

1

49

8

48

Excerpt from file: scmos3D.tech26

compose

paint

paint

pbcon

m1bconr

ml bcon

pbcon

pbcon

m1bcon

end

connect

ml,m1bcon/mi

m2, m2c/m2,m3c/m2,

m2topc/m2,pad

m3, m3c/m3, m3topc/m3

poly,pc/a,pbcon/a, ml bcon/a

m3topc

m3topc

m2topc

m2topc

pbcon

pbcon

mlbcon

mlbcon

ml,m1bcon/mi

m2, m2c/m2, m3c/m2,

m2topc/m2,pad

m3, m3c/m3, m3topc/m3

poly,pc/a,pbcon/a, ml bcon/a

m3, m3c/m3, m3topc/m3

twv

m2, m2c/m2, m3c/m2,pad, m2topc/m2

twv

poly,pc/a, nfet,pfet, wcap,pbcon/a, ml bcon/a

3Dconb

poly,pc/a, nfet,pfet, wcap,pbcon/a, ml bcon/a

ml,mlbcon/mi

end

cifoutput

end

cifinput

end

mzrouter

... no change in section content ...

... no change in section content ...

... no change in section content ...

end

84

Excerpt from file: scmos3D.tech26

drc

width twv 6 \

"Through-wafer-via width must be at least 6 (3D IC rule #1.1)"

spacing twv ~(twv),pad 2 touchingillegal \

"Through-wafer-via spacing from any other material must be 2 (3D IC rule

#1.2) Through-wafer-via must not overlap with any material (3D IC rule

#1.3)"

width m2topc 4 \
"Metal2top-contact width must be at least 4 (3D IC rule #2.1)"

spacing m2topc m3topc,pdc 2 touching-illegal \

" Metal2-top-contact spacing from pdiffusion contact and Metal3-top-contact

must be 2 (3D IC rule #2.2)"

spacing m2topc m3 2 touching-illegal \

"Metal2_top-contact spacing from metal3 must be 2 (3D IC rule #2.3)"

edge4way m2topc/m2 ~m2topc/m2 1 ~m2topc/m2 (~m2topc,m2topc)/m2 1 \

"Metal2 contacts must be rectangular (Magic rules)"

width m3topc 6 \

"Metal3_top-contact width must be at least 6 (3D IC rule #3.1)"

spacing m3topc m2topc 2 touching-illegal \

"Metal3_op-contact spacing from any other metal3 and 3D contact must be

2 (3D IC rule #3.2)"

edge4way m3topc/m3 ~m3topc/m3 1 ~m3topc/m3 (~m3topcm3topc)/m3 1 \

"Metal3 contacts must be rectangular (Magic rules)"

width pbcon 4 \

"Poly-bottom-contact width must be at least 4 (3D IC rule #4.1)"

spacing pbcon/w pc 2 touching-illegal \

"Poly-bottom-contact spacing from Polycontact must be 2 (3D IC rule #4.2)"

edge4way pbcon/i ~pbcon/i 1 ~pbcon/i (~pbcon,pbcon)/i 1 \

"Poly contacts must be rectangular (Magic rules)"

85

Excerpt from file: scmos3D.tech26

spacing pbcon/w nwell,nsc,nsd,pwell,psc,psd 2 touching-illegal \

"Poly-bottom -contact spacing from any well or well contacts must be 2 (3D

IC rule #4.3)"

spacing pbcon/w poly2,ec/a,cap,capc/a,wcap 2 touching-illegal \
"Poly-bottom-contact spacing from poly2, poly2 contact or any capacitor must

be 2 (3D IC rule #4.4)"

spacing pbcon/w nfet,pfet,enfet,epfet,hnfet,hpfet 2 touching-illegal \
"Poly_bottom-contact spacing from any fet must be 2 (3D IC rule #4.5)"

spacing pbcon/w co,em,pb 2 touching-illegal \

"Poly-bottom-contact spacing from any NPN transistor layer must be 2 (3D

IC rule #4.6)"

spacing pbcon/s ndiff,pdiff,hndiff,hpdiff 2 touching-illegal \
"Poly-bottom-contact spacing from any diffusion must be 2 (3D IC rule #4.7)"

width m1bcon 4 \

"MetallI_bottom-contact width must be at least 4 (3D IC rule #5.1)"

edge4way m1bcon/a ~mlbcon/a 1 ~mlbcon/a (~m1bconm1bcon)/a 1 \
"Metall contacts must be rectangular (Magic rules)"

spacing m1bcon/ml poly2,ec/acap,capc/awcap 2 touching-illegal \
"MetallI-bottom-contact spacing from poly2, poly2 contact or any capacitor

must be 2 (3D IC rule #5.4)"

spacing mlbcon/ml nfet,pfet,enfet,epfet,nffet,pffet,hnfet,hpfet 2 \
"MetallI-bottom-contact spacing from any fet must be 2 (3D IC rule #5.5)"

spacing mlbcon/ml co,em,pb 2 touching-illegal \

"MetallIbottom-contact spacing from any NPN transistor layer must be 2 (3D

IC rule #5.6)"

spacing m1bcon/ml ndiff,pdiff,hndiff,hpdiff 2 touching-illegal \
"MetallIbottom-contact spacing from diffusion is 2 (3D IC rule #5.7)"

end

86

Excerpt from file: scmos3D.tech26

. . . no change in section content ...

... no change in section content ...

extract

end

wiring

end

router

end

plowing

fixed nfet, enfet, nffet,pfet, epfet,pffet,glass,pad,, twv, m2topc, m3topc,pbcon

... no change in section content ...

87

- - no change in section content ...

end

plot

end

88

Appendix B

Tutorial on Using 3DMagic in

Athena

This appendix provides a tutorial on using 3DMagic in Athena. The tutorial is

divided into sections on starting 3DMagic, working with multiple windows, and using

the area markers for aligning different layouts. There is a table with different abstract

layers for inter-wafer vias and commands for their usage. Some familiarity with the

basic usage of MAGIC (MAGIC Tutorial #1: Getting Started) and working with

multiple windows (MAGIC Tutorial #5: Multiple Windows) is required for using

this tutorial. It is recommended to read chapter 2 of this thesis to understand the

layout methodology for 3D circuits.

B.1 Mounting 3DMagic

The first thing to do is to attach the 6.374 locker for running either MAGIC or

3DMagic. Invoke the following commands at the athena prompt:

% add 6.374

% set path = (/mit/6.374/ultra-cad/bin $path)

% setenv CADHOME /mit/6.374/ultra-cad

89

Once this is done, you are ready to start 3DMagic. cd to the directory where you

want to store your magic files and type,

% magic -T /afs/athena.mit.edu/user/s/a/salam/www/scmos3D

or

% magic -T /afs/athena.mit.edu/user/s/a/salam/www/scmos3D.30

The -T option with scmos3D sets scmos3D.tech27 as the technology file. sc-

mos3D.tech27 has the extraction rules for 3D integrated circuits laid out in A = 1pmi

process.

The -T option with scmos3D.30 sets the technology file to scmos3D.30.tech27

which has the extraction rules for A = 0.3[tm process. Both technology files have

the same CMOS scalable design rules and abstract layers for inter-wafer vias in a 3D

circuit layout. These files are similar to scmos3D.tech26 (discussed in Appendix A).

However, .tech27 is required for running them with the current version of MAGIC in

Athena.

B.2 Working with Multiple Windows

The key of designing 3D circuit in 3DMagic is to layout different wafers in different

layout windows with inter-wafer vias embedded in the layout. Therefore, some fa-

miliarity with commands and schemes for working with multiple layout windows is

required. You should read MAGIC Tutorial #5 for complete reference [28]. The most

useful commands for working with multiple windows while doing 3D circuit layouts

are as follows:

" To open a new layout window or another layout file in a different window,

:openwindow [layoutfile]

" To close a layout window, position the mouse pointer on the layout window,

and type,

1A designates the smallest grid size in a MAGIC layout window.

90

or use macro '0' (capital letter '0')

* To make a particular window an edit window,

1. select any drawing on that window using the box tool, and then macro 's'

or 'a'

2. type, :edit

B.3 Painting Inter-wafer Vias

Painting inter-wafer vias are very similar to painting any other mask layers in a

layout. After marking a boxed area, the MAGIC command ":paint" with a name of

an abstract layer paints the corresponding inter-wafer via. Table B.1 illustrates the

commands for different types of inter-wafer vias. Appendix C has tables with design

rules for the inter-wafer vias.

Table B.1: Painting inter-wafer vias for 3D circuit layout in 3DMagic.
Name\Type Command

Metal3_top-contact or m3topc :paint m3topc
Metal2_op-contact or m2topc :paint m2topc

Through-wafer Via or twv :paint twv
Poly-bottom-contact or pbcon :paint pbcon

Metall to bottom contact :paint m1bcon and :paint pbcon
Metall to top contact :paint m2c and :paint m2topc

B.4 3D Layout Alignment

Following steps describe the layout alignment from multiple layout windows:

1. Use the mouse pointer to box the area from a layout of one window for its 3D

counterpart.

2. :feedback add 'anyname' outline (MAGIC command)

91

:closewindow

* 'anyname' can be mbnd to indicate main boundary for the 3D layout.

* 'outline' type will draw a white outlined box.

3. :feedback add 'inter-wafer viajname' (MAGIC command)

* This will mark the positions for inter-wafer vias with white diagonal lines.

4. Repeat step 3 to mark as many inter-wafer vias as required.

5. After all the inter-wafer vias and main boundary areas are marked,

:feedback save afilename

6. Open the second layout window (the 3D counterpart), and make it editable.

7. To port all the area marks in this layout window,

:source afilename

8. To delete all the feedback, when a chip is fully designed,

:feedback clear

9. The area marks are not saved in a layout file. Therefore, follow step 7 if you

open your design and no marks are there.

10. To view all different options of feedback,

:feedback help

The above steps describe the procedure for aligning two layouts from different

windows. While designing a 3D circuit with more than two wafers in a stack, the

layouts can still be aligned by repeating step 7 for different layout windows.

92

Appendix C

Layout Design Rules for 3D ICs

The following tables provide the lambda (A) based design rules for layout of 3D ICs

in 3DMagic. These rules are derived using the existing spacing and width rules, and

also from the layout methodology described in chapter 2. The "drc" section of the

technology file, shown in Appendix A, contains the declarations for the rules. The

design rules may differ or some absolute design rules in microns may be required

based on which processing technology is used for fabrication and bonding of 3D ICs.

93

Table C.1: Preliminary design rules for the layout of 3D ICs using 3DMagic.

Type Connectivity Rule Number Description
m3topc metal3 & 3D contact 3D IC rule#3.1 Metal3top-contact width must be

point at the top of at least 6
the wafer 3D IC rule#3.2 Metal3top.contact spacing from

any other metal3 and 3D contact
must be 2

Contact rule Metal3 contacts must be rectangu-
lar

pbcon polyl & 3D contact 3D IC rule#4.1 Poly-bottom-contact width must
point at the bottom be at least 4
of the wafer 3D IC rule#4.2 Polyibottom-contact spacing from

Polycontact must be 2
3D IC rule#4.3 Poly-bottom-contact spacing from

any well or well contacts must be
2

3D IC rule#4.4 Polyibottom-contact spacing from
poly2, poly2 contact or any capaci-
tor must be 2

3D IC rule#4.5 Polybottom-contact spacing from
any fet must be 2

3D IC rule#4.6 Poly-bottom-contact spacing from
any transistor layer must be 2

3D IC rule#4.7 Poly-bottom-contact spacing from
any diffusion must be 2

Contact rule Poly contacts must be rectangular
m1bcon metall & 3D contact 3D IC rule#5.1 MetallIbottom-contact width must

point at the bottom be at least 4
+ pbcon of the wafer 3D IC rule#5.4 MetallI-bottom-contact spacing

from poly2, poly2 contact or any
capacitor must be 2

3D IC rule#5.5 MetallIbottom-contact spacing
from any fet must be 2

3D IC rule#5.6 MetallIbottom-contact spacing
from any transistor layer must be 2

3D IC rule#5.7 Metall-bottom-contact spacing
from any diffusion must be 2

Contact rule Metall contacts must be rectangu-
I lar

94

Table C.2: Preliminary design rules for the layout of 3D ICs using 3DMagic (contin-
ued).

Type Connectivity Rule Number] Description
twv Through-wafer Via 3D IC rule#1.1 Through-wafer-via width must be

at least 6
3D IC rule#1.2 Through-wafer-via spacing from

any other material must be 2
3D IC rule#1.3 Through-wafer-via must not over-

lap with any material
m2topc metal2 & 3D contact 3D IC rule#2.1 Metal2_top-contact width must be

point at the top of at least 4
the wafer 3D IC rule#2.2 Metal2-top-contact spacing

from pdiffusion contact and
Metal3_top-contact must be 2

3D IC rule#2.3 Metal2-top-contact spacing from
metal3 must be 2

Contact rule Metal2 contacts must be rectangu-
lar

95

96

Appendix D

MAJIC Source Code Overview

This appendix contains a complete overview of the code for MAJIC version 1.0 (beta).

MAJIC version 1.0 has both ERNI and ERNI-3D as its client application. Using the

file-management scheme described in section 2.3.3, MAJIC automatically detects if

the provided circuit layout is for a 3D circuit, and then establishes ERNI-3D as the

default reliability analysis tool. The complete code of MAJIC is available from Prof.

Donald E. Troxel or Prof. Carl V. Thompson at MIT [49]. The code is written in

Java 2. This appendix gives an overview of the source code by categorizing the Java

classes into functional groups, such as main application classes, graphical interface

classes, file parser classes, and so on. The major functionalities and features of all

the classes, defined in the java file format, classname.java, are briefly described under

each category.

D.1 Main Application Classes

The main application classes are responsible for starting the MAJIC application when

it is invoked from the command line. These classes also define global variables for use

in rest of the application.

97

D.1.1 MAJICapp.java

MAJICapp is the topmost class of MAJIC. Hence the command line argument that

starts the MAJIC application is java MAJICapp [optional arguments]. The optional

argument to invoke MAJIC with ERNI-3D is -3D or -3d dir, where dir is the directory

name in a 3D circuit layout scheme. The primary function of MAJICapp is to process

the command line argument to retrieve the layout files and invoke the graphical user

interface with either ERNI or ERNI-3D.

D.1.2 Globals.java

This class contains the declaration for global constants, runtime variables, and de-

bugging flags for use in the entire MAJIC application.

D.1.3 HashMap2D.java

The HashMap2D class implements a two-dimensional HashMap' where values are

stored against two keys. The Java Development Kit (JDK) does not have a predefined

class for such a structure. HachMap2D class is useful for computing different paths

in an interconnect tree.

D.2 Graphical Interface Classes

The graphical interface classes are developed using the Abstract Window Toolkit

(AWT) which is a part of the freely distributed Java Development Kit (JDK) version

1.2 [44, 50]. AWT is defined in the package java.awt, and it supports everything

from creating menus, dialog boxes, and buttons in a Graphical User Interface (GUI)

application.

'HashMap is a data-structure for storing values with associated keys.

98

D.2.1 MAJICframe.java

The MAJICframe class extends or inherits from the AWT Frame class [44]. MA-

JICframe is a derived container class, and it is responsible for creating the window

display for MAJIC. The MAJICapp class creates the instances of MAJICframe. When

MAJIC is run with a 3D circuit, multiple instances of MAJICframe are created to

support multiple layouts for the different wafers in a 3D stack. MAJICframe adds

different menus, such as "File", "View", "ERNI" or "ERNI-3D", and "About", to

its window with proper event handlers. It has methods for invoking the parsers to

read layout and technology files. MAJICframe also creates an instance of a graphical

component class, MAJICcomponent.

D.2.2 MAJICcomponent.java

MAJICcomponent inherits from the AWT Panel class [44]. It is itself a component

class, and it adds another AWT component class ScrollPane to display a layout in

a scrollable window. MAJICcomponent has its own Graphics 2 object and a paint

method to handle all the drawing tasks for the display.

D.3 File Parser Classes

The file parser classes primarily serve two purposes, parsing the MAGIC technology

and layout files. While creating a layout window, MAJICframe instantiates the file

parser classes.

D.3.1 TechDB.java

The TechDB class implements a recursive parser for reading MAGIC's technology

file. The main constructor for the class is called with a string representation of tech-

2The Graphics class is the abstract base class of Java for all graphics contexts that allow an
application to draw onto components that are realized on various devices, as well as onto off-screen
images.

99

nology file's Uniform Resource Locator (URL 3). This allows MAJIC to incorporate

a technology file from anywhere in a networked system. An InputStream4 object is

created from the URL for reading the ASCII representation of a technology file. Then

all the sections in a technology file (discussed in Appendix A) are parsed using the

parser methods, and information on different planes, tiles, and contacts are stored in

Hashtable' data-structures.

D.3.2 ParseMAGFile.java

The ParseMAGFile class implements the recursive parser for reading a MAGIC lay-

out or a .mag file, and works in a similar fashion as TechDB. Given an URL, it opens

a .mag file, and conditionally calls its parser methods, ParseSectionO, ParseRect(,

or ParseRLabel(), depending on what ParseLine() interprets from the current line in

the file. All parsed information is "cached" internally to reduce the amount of time

required for parsing large layouts. Following classes implement the cached represen-

tation of layout data.

D.3.3 CachedSection.java

This class implements the object representation of a "section" in a .mag file. A section

in a MAGIC file is defined to start with a "<< foo >>", where "foo" is the name

of a mask layer (e.g. polysilicon, metall, etc.) or some control sections (e.g error-s,

checkpaint, end). A CachedSection object contains all the coordinates of rectangular

tiles that follow the section header tag.

D.3.4 CachedStmt.java

The CashedStmt class implements the cached representation of any statement that is

in .mag file's sections. It is an abstract type that must be subclassed to CachedRect,

3An URL is a pointer to a "resource" on the World Wide Web. A resource can be something as
simple as a file or a directory.

4A superclass of all classes representing an input stream of bytes in Java.
5Hashtable is a Java data-storage class that maps distinct keys to stored values.

100

CachedRLabel, or CachedUse.

D.3.5 CachedRect.java

This class extends the CachedStmt class. Given the parsed coordinates from the

"rect 11 ir ul ur" statement in a "section" of a .mag file, it defines the rectangular tile

representing a mask layer.

D.3.6 CachedRlabel.java

The CachedRlabel class extends CachedStmt, and implements the object represen-

tation for an "rlabel" statement in a section. The "rlabel" statement assigns user

defined text labels to mask layers in a layout file.

D.3.7 CachedUse.java

The CachedUse class also extends CachedStmt, and implements the object represen-

tation for an "use" statement in a .mag file. The "use" statement allows users to

import instances of another .mag file into the layout.

D.3.8 CachedCell.java

Finally, the CachedCell class implements the cached representation of the entire

.mag file. A CachedCell contains multiple instances of CachedSection, CachedStmt,

CachedRect, CachedRIabel, and CachedUse to fully define a layout. In a hierarchi-

cal layout, where a .mag file imports other .mag files, the CachedCell object for the

parent layout has pointers to other CachedCell objects for the sub-layouts.

D.4 Corner-stitched Data-structure Classes

These classes define the corner-stitched data-structure for the internal representation

of a layout file. The corner-stitched data-structure is described in section 4.2.

101

D.4.1 Tile.java

The Tile class implements the basic representation of a corner-stitched "tile" object

in a layout. A "tile" is a rectangle corresponding to either some part of a mask layer

or, in case of a "space tile", absence of it. The Tile class contains "pointers" to eight

tiles adjacent to the corner-edges. The neighboring tiles are stored in an array to

facilitate faster search algorithms.

D.4.2 TileType.java

The TileType class implements different categories of tiles in a particular layout. The

different categories are defined according to the input from "types" and "contact"

sections in a technology file. For every instance of a Tile class, there is a TileType

object to represent its mask layer, such as metall, poly, and metal2.

D.4.3 Plane.java

The Plane class inherits from Tile, and represents a collection of Tile objects, includ-

ing "space", that exists in any particular plane of a layout. Initially, a plane is a large

"space tile" representing the absence of mask layers. As a layout is parsed, solid tiles

are added to this large space plane at the proper positions.

D.4.4 PlaneType.java

Similar to the TileType class, this class implements different categories of planes in

a particular layout. The planes are defined according to the input from the "planes"

section in a technology file.

D.5 Layout and Tree Representation Classes

The layout and tree representation classes implement the internal representation of

a parsed .mag file with the corner-stitched data-structures. These classes also store

the interconnect trees for future analyses.

102

D.5.1 Layout.java

The Layout class defines a layout as a stack of multiple Plane objects where an

individual Plane object has different types of Tiles to represent the mask layers.

The constructor for this class takes CachedCell and TechDB objects as its input

parameters for creating such a representation.

D.5.2 ITree.java

This class represents an interconnect routing tree built from corner-stitched layout

representation. An interconnect routing tree is a collection of adjacent tiles that

would form a continuous electrical path.

D.5.3 ISegment.java

The ISegment class implements a Tile that is a part of an ITree. The ISegment class

allows differentiation of Tile objects based on whether they form an interconnect tree

or not. An ISegment object is specially tagged if it is a contact tile in a tree.

D.5.4 ISurface.java

This class implements the surface area between adjacent ISegments in an ITree. The

ISurface class can be used for generating tree input data for MIT EMSIM [22].

D.5.5 Path.java

The Path class inherits a Vector 6 class and defines a specific path along an ITree

object. It consists of a sequence of ISurfaces between starting and ending ISegments.

An ITree object can have multiple paths as more than one ending ISegments can exist

in an interconnect tree.

6The Vector class in Java implements a growable array of objects. Like an array, it contains
components that can be accessed using an integer index.

103

D.6 Reliability Computation Classes

The reliability computation classes are responsible for defining the methods and as-

sociated algorithms for reliability analysis. Only these classes need to be extended to

add more functionalities for reliability computation.

D.6.1 ERNI.java

The ERNI class implements the methods that operate on ITree objects and apply dif-

ferent filtering algorithms to isolate mortal interconnect trees for further electromigra-

tion analysis. Different methods, such as applyJmaxLfilter), applyRandomBC), and

applyExtraction), are called when the main application invokes reliability analyses

from the "ERNI" menu. However, all the computation are handled in the method,

dispatch(int ruleINDEX, MAJI~frame frm), where different types of analyses are

indexed with "ruleINDEX" using a "switch" statement7 .

D.6.2 ERNIw3D.java

The class ERNIw3D is the extended version of ERNI with the capability of treating

multiple ITree objects as a single reliability unit when they form a 3D interconnect

tree. In addition, the dispatch(int ruleINDEX, MAJICframe frm) method has new

indices for identifying 3D trees and calculating a 3D-chip reliability model.

D.7 Circuit Simulator Classes

The circuit simulator classes in MAJIC are directly used from JSim, a Java based

switch-level circuit simulator developed by Christopher J. Terman at MIT [51]. Both

ERNI and ERNIw3D classes use the JSim classes for extracting circuit netlist from

an interconnect tree. First, an instance of the SpiceNetwork class is created with

7 A switch statement in programming languages (C, C++, and Java) has an integer expression
and a body that contains various numbered entry points. A switch statement is a replacement for
multiple if else statements.

104

an ITree object. SpiceNetwork invokes several other classes in JSim for extracting

resistance and capacitance from given interconnect geometries. More information on

the circuit simulator classes and a comprehensive guide on using JSim can be found

in reference [51].

105

106

Bibliography

[1] Andy Fan, Arifur Rahman, and Rafael Reif. Copper Wafer Bonding. In Electro-

chemical and Solid State Letters, volume 2, pages 534-536, 1999.

[2] S. J. Souri and K. C. Saraswat. Interconnect Performance Modeling for 3D

Integrated Circuits with Multiple Si Layers. In Proceedings of IITC, pages 24-

26, 1999.

[3] Gerold W. Neudeck. Three-Dimensional CMOS Integration. IEEE Circuits and

Devices Magazine, 6:32-38, 1990.

[4] K. F. Lee, J. F. Gibbons, K. C. Saraswat, and T. I. Kamins. Thin Film MOSFET

Fabricated in Laser-Annealed Polycrystalline Silicon. Journal of Applied Physics

Letters, 35:173-175, 1979.

[5] A. Rahman, A. Fan, J. Chung, and R. Reif. Wire-length Distribution of Three-

Dimensional Integrated Circuits. In Proceedings of IITC, pages 233-235, 1999.

[6] Anantha Chandrakasan. The Collaborative Node. Interconnect Focus Center

Program Review, August 15 2000.

[7] Stefan P. Hau-Riege. New Methodologies for Interconnect Reliability Assessments

of Integrated Circuits. PhD Dissertation, Massachusetts Institute of Technology,

Department of Materials Science and Engineering, April 2000.

[8] 1999 SIA Roadmap. http://public.itrs.net/files/1999-SIARoadmap/Home.htm.

Assembly and Packaging.

107

[9] Comparison of Power Specification from the Crusoe and conventional micropro-

cessor. http://www.transmeta.com/crusoe/lowpower.

[10] J. R. Black. Mass transport of Aluminum by Momentum Exchange with Con-

ducting Electrons. In Proceedings of 6th Annual International Reliability Physics

Symposium, page 148, 1967.

[11] Seri Lee. Optimum Design and Selection of Heat Sink. IEEE Transactions on

CPMT, pages 812-817, 1995.

[12] A. P. Chandrakasan and R. W. Brodersen. Minimizing Power Consumption in

Digital CMOS Circuits. In Proceedings of the IEEE, volume 83, pages 498-523,

1995.

[13] Danny Seth, Syed M. Alam, and Paul R. Herz. Low Power UART Design for

Serial Data Communication. In IEEE International Conference on Electrical and

Computer Engineering, January 2001.

[14] Arifur Rahman. System-Level Performance Evaluation of Three-Dimensional

Integrated Circuits. PhD Dissertation, Massachusetts Institute of Technology,

Department of Electrical Engineering and Computer Science, January 2001.

[15] R. Tadepalli, R. Krishnan, R. Reif, M. Spearing, and C. Thompson. Charac-

terization of Wafer Bonding in 3D Integrated Circuits. MTL Annual Report,

2000.

[16] J. F. McDonald, R. P. Kraft, J. Q. Lu, A. Kumar, T. Cale, T. M. Lu,

P. Belemjian, 0. Ergodan, and Y. Kwon. Face to Face Wafer Bonding for 3D

Chip Stack Fabrication to Shorten Wire Lengths. In 17th International VMIC

Conference, pages 90-95, 2000.

[17] C. K. Hu. Electromigration Failure Mechanisms in Bamboo-grained Al(Cu) In-

terconnections. Thin Solid Films, 260:124-134, 1995.

108

[18] J. J. Clement, S. P. Riege, R. Cvijetic, and C. V. Thompson. Methodology for

Electromigration Critical Threshold Design Rule Checking. IEEE Transactions

on CAD, 18:576, 1999.

[19] S. P. Riege, C. V. Thompson, and J. J. Clement. A Hierarchical Reliability

Analysis for Circuit Design Evaluation. IEEE Transactions on ED, 45:2254,

1998.

[20] Yonald Chery, Stefan Hau-Riege, Syed M. Alam, Donald E. Troxel, and Carl V.

Thompson. ERNI: A Tool For Technology-Generic Circuit-Level Reliability Pro-

jections. Interconnect Focus Center Annual Review, December 14-15 1999.

[21] Yonald Chery. ERNI: A Tool For Technology-Generic Circuit-Level Reliability

Projections. PhD Dissertation in progress, Massachusetts Institute of Technology,

Department of Electrical Engineering and Computer Science.

[22] MIT/EmSim: Electromigration Simulator. http://nirvana.mit.edu/emsim/.

[23] John K. Ousterhout, Gordon T. Hamachi, Rober N. Mayo, Walter S. Scott, and

George S. Taylor. The Magic VLSI Layout System. IEEE Design and Test, pages

19-30, 1985.

[24] Syed M. Alam, Donald E. Troxel, and Carl V. Thompson. A Novel Layout

Methodology for Three-dimensional Integrated Circuits. In International Con-

ference on Computer Design (ICCD), September 2001. (under review).

[25] John K. Ousterhout et al. Magic Tutorial #1: Getting Started. University of

California at Berkeley, September 1990.

[26] John K. Ousterhout, Walter S. Scott, et al. Magic Maintainer's Manual #2: The

Technology File. University of California at Berkeley, September 1990.

[27] John K. Ousterhout. Corner-Stitching: A Data Structuring Technique for VLSI

Layout Tools. UC Berkeley Technical report CSD-83-154, December 1983.

109

[28] John K. Ousterhout et al. Magic Tutorial #5: Multiple Windows. University of

California at Berkeley, September 1990.

[29] John K. Ousterhout et al. Magic Tutorial #8: Circuit Extraction. University of

California at Berkeley, September 1990.

[30] Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design,

A Systems Perspective, chapter 8.2, pages 514-536. Addison-Wesley, second

edition, 1994.

[31] Digital Integrated Circuits The IRSIM Corner.

http://bwrc.eecs.berkeley.edu/classes/icbook/irsim/. Part of the Design

Tool Corner.

[32] Using IRSIM. http://www-mtl.mit.edu/ 6.374/. 6.374: Analysis and Design of

Digital Integrated Circuits.

[33] Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design, A

Systems Perspective, chapter 6, pages 381-413. Addison-Wesley, second edition,

1994.

[34] Stephen M. Trimberger. Field-Programmable Gate Array Technology. Kluwer

Academic Publishers, 1994.

[35] Stephen D. Brown, Robert J. Francis, Jonathan Rose, and Zvonko G. Vranesic.

Field-Programmable Gate Arrays. Kluwer Academic Publishers, 1992.

[36] Andre DeHon. Reconfigurable Architectures for General-Purpose Computing.

PhD Dissertation, Massachusetts Institute of Technology, Department of Elec-

trical Engineering and Computer Science, 1996.

[37] G. Boriello, C. Ebeling, S. Hauck, and S. Burns. The Triptych FPGA Architec-

ture. IEEE Transaction on VLSI Systems, 3(4):491-501, 1991.

110

[38] S. Hauck, G. Borriello, and C. Ebeling. TRIPTYCH: An FPGA Architecture

with Integrated Logic and Routing. Brown/MIT Conference on Advanced Re-

search in VLSI and Parallel Systems, March 1992.

[39] M. Leeser, W. M. Meleis, M. M. Vai, and P. Zavracky. Rothko: A Three Di-

mensional FPGA Architecture, its Fabrication, and Design Tools. Seventh In-

ternational Workshop on Field Programmable Logic and Applications (FPL97),

September 1997.

[40] W. M. Meleis and Others. Architectural Design of a Three Dimensional FPGA.

17th Conference on Advanced Research in VLSI, September 1997.

[41] M. Alexander, J. Cohoon, J. Colfiesh, J. Karro, and G. Robins. Three-

dimensional Field-programmable Gate Arrays. Proceedings of IEEE Interna-

tional ASIC Conference, pages 253-256, September 1995.

[42] Nisha Checka and Charlotte Lau. Performance Comparison of a 2D and 3D

FPGA. Design and Analysis of Digital Integrated Circuits, Professor Anantha

Chandrakasan, Fall 2000.

[43] Manuel Perez. Java Remote Microscope for Collaborative Inspection of Integrated

Circuits. Bachelor of Science and Master of Engineering Thesis, Massachusetts

Institute of Technology, Department of Electrical Engineering and Computer

Science, May 1997.

[44] Java Platform 1.2 API Specification. http://web.mit.edu/java-v1.2ref/distrib-

/sun4x_56/docs/api/index.html. This is a web document on Java Platform core

API provided by Sun Microsystems.

[45] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction

to Algorithms, chapter 23.3, pages 477-484. MIT Press, 1997.

[46] R. Kraayeveld, A. Willemsen A. Verbruggen, and S. Radelaar. Applied Physics

Letter, 67:1226, 1995.

111

[47] Dimitri P. Berstsekas and John N. Tsitsiklis. Introduction to Probability.

6.041/6.431 Class Notes, Spring 2001, Massachusetts Institute of Technology.

[48] Anantha Chandrakasan, Rafael Reif, and Shamik Das. 3D Design Automation

with Physical Design Tools. MARCO Interconnect Focus Center.

[49] Donald E. Troxel, troxelOmtl.mit.edu and Carl V.

cthompQmtl.mit.edu. Massachusetts Institute of Technology.

Thompson,

[50] David M. Geary and Alan L. McClellan. Graphic JAVA Mastering the AWT.

The SunSoft Press, A Prentice Hall Title, 1997.

[51] Christopher J. Terman. http://6004.lcs.mit.edu/courseware/jsim/. JSim Guide

for 6.004, Massachusetts Institute of Technology.

112

