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Abstract

Using recent progress on moment problems, and their connections with semidefinite
optimization, we present in this thesis a new methodology based on semidefinite
optimization, to obtain a hierarchy of upper and lower bounds on both linear and
nonlinear functionals defined on solutions of linear partial differential equations. We
apply the proposed methods to examples of PDEs in one and two dimensions with very
encouraging results. We also provide computational evidence that the semidefinite
constraints are critically important in improving the quality of the bounds, that is
without them the bounds are weak.
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Chapter 1

Introduction

In many real-world applications of phenomena that are described by partial differen-

tial equations (PDEs) we are primarily interested in a functional of the solution of

the PDE, as opposed to the solution itself. For example, we might be primarily inter-

ested in the average temperature rather than the entire distribution of temperature

in a mechanical device; or we might be interested in the lift and drag of an aircraft

wing, which is computed by surface integrals over the wing; or finally we might be

interested in the average inventory and its variability in a stochastic network.

Given that analytical solutions of PDEs are very scarce, there is a large body of

literature on numerical methods for solving PDEs. Such methods typically involve

some discretization of the domain of the solution, and thus obtain an approximate

solution by solving the resulting equations, and matching boundary values and initial

conditions. Such approaches scale exponentially with the dimension, i.e., if we use

0(1/E) points in each dimension, the size of systems we need to solve is of the order

of (1/)d for d-dimensional PDEs and results in accuracy E.

Natural questions arise:

(i) Can we obtain upper and lower bounds within E of each other on functionals of

the solution to a PDE in time that grows like (log )d, thus decreasing the curse

of dimensionality?

(ii) Can such methods be practical?

11



Contributions

In this thesis, we make some progress in answering these questions for a specific class

of PDEs. We consider solving for linear functionals, as well as the supremum and

infimum functionals, of linear PDEs with coefficients that are polynomials of the

variables. We make a connection with moment problems and use semidefinite opti-

mization to achieve these objectives. To the best of our knowledge, this is the first

connection of solving PDEs and semidefinite optimization. The proposed method

finds upper and lower bounds within E of each other on functionals of the solution to

a PDE in this class by solving a semidefinite optimization problem. The numerical

results we obtain indicate fast convergence. Moreover, we provide a result that indi-

cates the power of a "moment-driven convergence," and suggests that under certain

regularity conditions, this can be exponential. While the practicality and numerical

stability of the proposed method depends on the numerical stability of semidefinite op-

timization codes, which are currently under intensive research, we hope that progress

in semidefinite optimization codes will lead to improved performance for obtaining

bounds on PDEs using the methods of the present thesis.

Moment Problems and Semidefinite Optimization

Problems involving moments of random variables arise naturally in many areas of

mathematics, economics, and operations research. Recently, semidefinite optimiza-

tion methods have been applied to several problems arising in probability theory,

finance and stochastic optimization. Bertsimas [3] applies semidefinite optimization

methods to find bounds for stochastic optimization problems arising in queueing net-

works. Bertsimas and Popescu [4] apply semidefinite optimization methods to find

best possible bounds on the probability that a multidimensional random variable be-

longs in a set given a collection of its moments. In [5], they use these methods to

find best possible bounds for pricing financial derivatives without assuming particular

price dynamics. For a survey of this line of work, including several historical remarks

on the origin of moment problems in the 20th century, see Bertsimas, Popescu and

12



Sethuraman [6].

Semidefinite optimization is currently in the center of much research activity in

the area of mathematical programming both from the point of view of new application

areas (see for example the survey paper of Vandenberghe and Boyd [25]) as well as

algorithmic development.

Literature on Bounds for PDEs

Current state of the art methods for solving partial differential equations, whether

they seek to solve for the actual solution of the differential equation, or just some

functional of the solution, all depend on the basic idea of discretization. While there

are quite a wide array of methods, each with its own focus and specialization, the

majority (that we are familiar with) rest upon the idea of discretization of the domain

of the equation, and then a subsequent variational formulation of the problem. Ex-

cellent references can be found in, e.g. [18], [23], [7], but we give the basic idea here as

well. We deviate somewhat from the standard notation as we seek only to convey the

fundamental ideas. The idea then is to find a nested sequence of finite dimensional

spaces that lie inside the function space in which our solution lies. Then by solving

linear systems, we essentially search in each of these finite dimensional spaces for a

solution that "best" approximates the solution function, for some appropriate notion

of "best."

The finite dimensional spaces, called finite element spaces, typically come from

choosing a basis of functions, each supported over an element of the discretization

of the domain of the PDE (called a triangulation). There are other methods based

on hierarchical bases, but we do not describe these here (but see, e.g. [16]). A very

common choice of basis is that given by choosing a linear polynomial over each of the

domains.

The finite element space then depends on the triangulation used. Let a trian-

gulation be indexed by the diameter of its largest element, 6 > 0. In a rectangular

domain in Rd with uniform triangulation of size 6, we would have (nJ)d elements in

our triangulation. Solving for the optimal solution in this finite dimensional space is

13



equivalent to solving a linear system of size (n,5)d. Variants of this method are known

as Galerkin methous (see, e.g. [18]).

We drive the error to zero in these approximations by increasingly refining our

approximation space, that is, by letting 6, the coarseness of the discretization, go to

zero. Simultaneously, however, we drive the size of the system we need to solve to

infinity, exponentially in the dimension of the problem. Indeed, especially in higher

dimensions, the number of elements in the triangulation and also the size of the linear

system we must solve, (n,5)d, quickly becomes intractible. For example, for E = 0.001,

an c-discretization of the cube [-1, 1]' ; R3, involves 8 x 10' elements. A good deal

of work has been done to get the best of both worlds: the computational efficiency

of a coarse triangulation (also called a mesh) and the computational accuracy of a

fine mesh. For instance, in [13] and [14], Patera et al. describe a Lagrange multiplier

method that relies on quadratic programming duality, to use coarse-mesh-multipliers

to obtain sub-optimal fine-mesh-multipliers, and hence approximate the solution

implied by the usual stationarity conditions. This method is extended to actually

provide guidance for adaptive refinement of the mesh, in [15]. There are a number of

other duality based methods as described in [7]. Regardless of the particular method's

details, however, the common denominator is the search for an approximate solution

in the sequence of finite dimensional subspaces.

Finally, we note that these methods, by their nature, have an inherently local

quality. Indeed the error is locally minimized, and not necessarily optimized for the

calculation of some integral quantity. The method we propose is, on the other hand,

inherently global in nature, and thus may be better suited for computation of certain

linear functionals.

Structure of the Thesis

The thesis is structured as follows. We present in Chapter 2 the proposed approach.

In Section 2.2 we provide an encouraging moment driven convergence result, under

certain regularity assumptions. Then we discuss the implications of this result. In

Chapter 3 we present three examples that show how the method works and how it

14



performs numerically. Finally, in Chapter 4 we discuss our perceived advantages and

limitations of the proposed method.
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Chapter 2

The Proposed Method

In this chapter we first provide an outline of the proposed method, and discuss each

aspect in depth. In the second section, we provide a convergence result that indicates

the general power of moment-driven convergence.

2.1 The Method

Suppose we are given the partial differential operators L and G operating on some

distribution space A:

L,G : A -+ A,

and we are interested in finding

IGu(x),

where u E A (note also that f E A) satisfies the PDE,

Lu(x) = f(x), (2.1)

including the appropriate boundary conditions on OQ,

Eq. (2.1) is understood in the sense that both sides of the equation act in the

17
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same way on a given class of functions D, i.e.,

Lu = f <-> (Lu) =J ff, Vq E D,

where D is taken to be some sufficiently nice class of test functions-typically a subset

of the smooth functions C'.

We will assume that the operators L and G are linear operators with coefficients

that are polynomials of the variables. In Section 2.1.5 we discuss extensions for a

nonlinear operator G. In particular,

Lu(x) L (x) a(X) Gu(x) ZGa (x) U(X)

where a = (ii, . . . , id) is a multi-index,

a n(x) _ OEkikU(X)

9Xa ax *1 ... ax

and La (x) and Ga (x) are multivariate polynomials (we discuss extensions in Section

2.1.6). We will restrict ourselves to the case where D is separable, that is, it has a

countable dense subset. This restriction is not as limiting as it might first appear. In

particular, if the solution u has compact support, then we may also assume without

loss of generality that every element of D has compact support as well, and thus by

the Stone-Weierstrass theorem, D is separable. The condition that u have compact

support may also be replaced by the (slightly) weaker condition that u have expo-

nentially decaying tails.

Let F = {1, 0 2 , .. .} generate (in the basis sense) a dense subset of D. Then, by

the linearity of integration we have

Lu =f <-> (Lu) =J ff, V D,

- (Lu)Oi = f i, Voi E F.

18



We discuss different choices for the subset F in Section 2.1.6. One separable sub-

space around which this thesis focuses is the subspace spanned by the monomials

' = ... xd . Polynomials have the property that they are closed under action by

polynomial coefficient differential operators.

The Adjoint Operator

The adjoint operator, L*, is defined by the equation:

(Lu) = u(L*q), V0 E D.

Therefore, if we have both L and L*, then equality in the original PDE becomes:

Lu=f f--> (Lu)#=J f0,

4--f (Lu)#i =J f0i,

f-- u (L*#0j) = f f ,

Vq E D,

Vqi C F7,

Voi E F.

To illustrate the computation of the adjoint operator, we consider the one di-

mensional case. The general term of this operator is, up to a constant multiple:

a 19b_

aXb

Using the notation 0 = Xao, this term's contribution to the adjoint operator is as

follows.

jnx abU)o = j(bU) (Xa 0)dx = (O9u) bdx

= u(b-1) + ... + ()k+1(b-k) (k-1) I a ..

+ (-1)b+1 u(b-1) + ()b jn Ub dx.

Thus, while perhaps notationally tedious in higher dimensions, computing the adjoint

19
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of a linear partial differential operator with polynomial coefficients is essentially only

as difficult as performing the chain rule for differentiation on polynomials, and in

particular, it may be easily automated.

2.1.1 Linear Constraints

Let us define variables in an optimization sense

Ma, - j u(x) - jx:.. Xdidu(x),

together with variables related to the boundary &Q:

za = a xu(x) = x1 - -... XddU(X).

The specific form of these variables depends on the nature of the boundary conditions

we are given (see Chapter 3 for specific examples). We refer to the quantities Ma

and za as moments, even though u(-) is not a probability distribution. We select

as qi's the family of monomials x0. Since, for the case we are considering, L, and

thus L*, are linear operators with coefficients that are polynomials in x, then Eqs.

(2.2) can be written as linear equations in terms of the variables M = (Ma) and

z = (za).

2.1.2 Objective Function Value

Given that the operator G is also a linear operator with coefficients that are poly-

nomials of the variables, then the functional f Gu can also be expressed as a linear

function of the variables M and z. So if we minimize or maximize this particular

linear function, we obtain upper and lower bounds on the value of the functional.

2.1.3 Semidefinite Constraints

Let us assume that the solution we are looking for is bounded from below, that is

u(x) > uo. The constant uo is in fact unknown. In certain cases, uo is naturally

20



known; for example if u(x) is a probability distribution, then u(x) > 0, i.e., uo = 0;

or if u(x) represents temperature, then again u(x) > 0. Most current methods do

not explicitly use this constraint.

We consider the vector F(x) = [x] and the semidefinite matrix F(x)F(x)'.

Then the matrices

j (u(x) - uo)F(x)F(x)', (u(x) - uo)F(x)F(x)'

are also positive semidefinite. This leads to semidefinte constraints involving the

variables (M, uo) and (z, uo).

Note that this is an extension to multiple dimensions of the classical moment

problem (see Akhiezer [2]). The problem is to determine, given some sequence of

numbers, whether it is a valid moment sequence, that is to say, whether the numbers

given are indeed the moments of a nonnegative function or distribution. In one

dimension, if u(x) > 0, and we define mi f_ x u(x)dx, then the sequence of

moments {mi} is valid if any only if the matrix

n1
M2n =

... mn

M2n

is positive semidefinite for every n. In the case where

need to add the additional constraint, that the matrix

M2n+=

u(x) has support [0, oo), we

... mn+1

... 2n+2

Tnfl

also be positive semidefinite.

In multiple dimensions, it is generally unknown which are the exact necessary

21
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and sufficient conditions for Ma and za to be a valid moment sequence, when we are

working over a general domain. rur a wide class of domains, huwever, Ochmiiiuugei [22J

finds such conditions. We review his work briefly, and use it to derive the necessary

and sufficient conditions for Ma and za to be a moment sequence.

An Operator Approach

Given a closed subset Q of Rd, a sequence of numbers Ma defines a valid moment

sequence if there exists a measure y such that

Ma= jxady.

We define the linear operator

H f = f (x)dy.

It is obviously necessary that Hf > 0, whenever f > 0 on Q. A classical theorem

says that it is also sufficient:

Theorem 1 (Haviland [11]) If Q ; R" is closed, then Ma defines a valid moment

sequence if and only if the linear operator H is nonnegative on all polynomials that

are nonnegative on Q.

Theorem 1 implies that the problem of finding necessary and sufficient conditions for

Ma and za to be a moment sequence, reduces to checking the nonnegativity of the

image of a polynomial that is nonnegative on Q. In one dimension, we know that

any polynomial that is nonnegative may be written as the sum of squares. Since the

square of a polynomial may be written as a quadratic form, the nonnegativity of the

operator reduces to matrix semidefiniteness conditions. The Motzkin polynomial in

R3,I

P(x, y, z) = x4y2 + x2y4 + z6 - 3x 2y2z2 ,

is an example that shows that in higher dimensions, the sum of squares decomposition

of a nonnegative polynomial is not in general possible (see Reznick [19] for details).
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However, Schmiidgen [22] gives a representation of all polynomials that are nonnega-

tive over a compact finitely generated semialgebraic set Q, as defined in the theorem

below. This leads to necessary and sufficient conditions for a moment sequence to be

valid on Q.

Theorem 2 (Schmiidgen [22]) Suppose Q := {x E 1V : fi(x) > 0, 1 < i < r} is

closed and bounded, where fi(x) are polynomials. Then a polynomial g(x) > 0 on Q

if and only if it is expressible as a sum of terms of the form

hj(x) IIfk(x),
lvEI

for I C {1, ... , r}, and hI some polynomial.

Theorems 1 and 2 lead to the following result.

Theorem 3 Given M = [Ma], there exists a distribution u(x) such that

Ma = (u(x) - uo)xa,

for a closed and bounded domain Q of the form

Q={xE Rd: fl(x) 0,..., fr(x) 0},

if and only if for all subsets I C {1, ... , r} the following matrices are positive semidef-

inite:

j(u(x) - uo)F(x)F(x)' ]7 fi(x), (2.3)
iEI

where I C{1, ... , r}.

Examples of domains for which the above result applies include the unit ball in

Rd, which can be written as

B={x E Rd 1 -

23



and the unit hypercube,

C = { W Rd : >: 0, 1 - xi > 0, 1 < i < d}.

We next make the connection to semidefinite constraints explicit. While all the

results can be easily generalized to d-dimensions, for notational simplicity we consider

d = 2, assume that u0 = 0 and use Q as the unit hypercube C in two dimensions.

Note that in this case there are four functions,

f(X 1 , X2) = X1, f 2 (X1 , X2 ) = - X1 , f3(X1 , X2) = X2 , f 4 (X1 , X2 ) - 2,

defining the set Q. Thus, there are 24 = 16 possible subsets I of {1, 2, 3, 4}. Each of

these subsets gives rise to a particular semidefinite constraint as follows. Denoting

the moment sequence as {mij }, for I = 0, we have that

rn0,0

rn1,0

n0,1

7n1,1

rn1,0

M2 ,0

M2,1

rn2,1

rn0,1

rn1,1

rn0,1

rn1,2

r 1,1

M2,1

rn1,2

M2,2

For I = {2}, we obtain

n0,0

n1,0

n0,1

rn1,1

- rn1,0

- M2,0

- n1,1

- M 2 , 1

n1,0

M2,0

n1,1

M 2 ,1

M2 ,0

M3 ,0

M2 ,1

M3 ,1

rn0,1

rn1,1

rn0,1

rn1,2

Min, 1

M2 ,1

Mr1,1

rn2,2

rnl,1

r 2 ,1

rn1,2

M2 ,2

- M2 ,1

- M3 ,1

- r 2 ,2

- M3 ,2

Proceeding in this way, we obtain 16 semidefinite constraints. If

d dimensions, we have exactly two semidefinite constraints.

Q is the unit ball in

24



2.1.4 The Overall Formulation

As we mentioned, the variables are the moments Ma = fn Xae(x), the boundary

moments za = faQ xau(x) and the bound uo, which might be naturally known.

The semidefinite optimization consists of linear equality constraints generated by the

adjoint operator for different test functions x a, and of the semidefinite constraints

that express the fact that the variables Ma and za are in fact moments. Subject to

these constraints, we maximize and minimize a linear function of the variables that

expresses the given linear functional. The overall steps of the formulation process are

then summarized as follows:

(i) Compute the adjoint operator L*.

(ii) Generate the nth equality constraint by requiring that

Ju(L*Obn) = ffOn.

(iii) Generate the desired semidefinite constraints; note that these only depend on

the domain Q and not on the operator L.

(iv) Compute upper and lower bounds on the given functional by solving a semidefi-

nite optimization problem over the intersection of the positive semidefinite cone

and the equality constraints.

2.1.5 The Maximum and Minimum Operator

Suppose that the given functional is

Gu = min u(x).
XEQ

Then, we will formulate the objective function

min uo.

25



This approach gives a lower bound on the minimum of u(x) over Q. However, if we

maximize max uo we uo oU OUtalin a rue upper bound Un tHe mnimum o uiX) uver

Q, only an approximation.

Similarly, if we are interested in

max u(x)
XEQ

we solve max vo such that u(x) < vo, which leads to semidefinite constraints involving

M, z and vo. This approach gives an upper bound on vo, while minimizing vo only

leads to an approximation.

Note that here the semidefinite constraints are absolutely crucial. This is because

the additional variable uO is introduced linearly, and because of the linearity of inte-

gration, cannot possibly be calculated by the family of linear constraints. Rather, the

linear constraints link it to the variables of the optimization, and then it is constrained

by the semidefinite constraints.

2.1.6 Using Trigonometric Moments

Instead of choosing polynomials as test functions, we could choose other classes of

test functions. Polynomials are particularly convenient as they are closed under

differentiation. While this property is not a necessary condition for the proposed

method to work, it significantly limits the proliferation of variables we introduce.

When the linear operator has coefficients that are not polynomials, other bases might

be more appropriate.

The trigonometric functions {sin(nx), cos(nx)} are also closed under differenti-

ation (again we can form products in higher dimensions, just as with monomials).

Using trigonometric functions as a basis of our test functions provides a straightfor-

ward way for us to deal with linear operators with trigonometric coefficients. This is

an important point, as Section 3.4 reveals, namely, that the choice of test function

basis ought to depend on the coefficients of the linear operator. In Section 3.4, we

present an example of the use of the method with trigonometric test functions.
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2.2 The Convergence Rate

In this section we state a result (and prove it in the Appendix) that illustrates the

power of moment driven convergence. In this thesis, we propose an algorithm which

obtains upper and lower bounds on moments of a solution to a linear PDE. The

maximization and minimization of a given moment, say the ith moment, subject to

the linear and semidefinite constraints generated at the nth stage of the algorithm,

computes the possible range of that moment, subject to the constraint that it is

part of a valid moment sequence, satisfying the particular linear constraints. We can

express this by the family of sets,

C{,N := t= Ju(x)xa ]u(x) > 0, f(Lu)/ = Jf(x)x18, #I 1 N}.

If we define the family of sets

AN {u()> 0 J (Lu(x))xf = f(x) x3xO, 1, 1 N},

then

C,N = e{= U(X)Xci : u(x) E AN}-

Note that CQ,N is a subset of R, but AN is a subset of a function space. This shows

that we are interested in the image in R of a linear functional of the set AN. Note that

both the sets Ca,N, and also AN, converge to a single point as N -+ oc. Evidently,

since our linear operator is bounded, the sets C&,N converge at least as fast as AN

(and in all likelihood, considerably faster). Finally, consider the sets

BN : {v(x) : v(x)xl = ff(x)x), 11 5 N}.

We see that L(AN) C BN. The following theorem states that a certain regular subset

of BN converges exponentially in N.

Proposition 1 Suppose the domain of our PDE, K C R, is compact. Then in the

usual topology of weak-convergence, if the sequence LN is allowed to increase no faster

27



than linearly, the diameter of the sets

BN UECoo U L(K) < LN

computed in the usual bounded Lipschitz metric, decreases exponentially in N.

The proof involves results of functional, and complex analysis, and is left for the

Appendix.
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Chapter 3

Examples

In this section, we illustrate our approach with three examples: (a) a simple homoge-

neous ordinary differential equation, (b) a more interesting ODE: Bessel's equation,

and (c) a two-dimensional partial differential equation known as Helmholtz's equa-

tion. In all three examples, we take the solution to have support on the unit interval

for the ODEs, and on the unit square for the PDE.

3.1 Example 1: " + 3u'+ 2u = 0

We consider the linear ODE with constant coefficients

u" + 3u'+ 2u = 0 (3.1)

with the boundary conditions u'(0) = -2e 2 and u'(1) =

case, we can easily find the solution u(x) = e

method. For simplicity of the exposition we use the fact

-2, and Q = [0,1]. In this

Let us apply the proposed

that u(x) > 0.

We can compute the adjoint operator directly by integration by parts:

fr1 
1

](u" + 3u' + 2u) 0 = '0 - u05' + 3u0!1 +j (3u " - 3o'+ 2).
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We use #i(x) =xi, i = 0,..., n and let

Mi xiu(x)dx.

Together with the two unknown boundary conditions u(O) and u(1), we have n + 1

variables mi, i = 0, .. ., n for a total of n+3 variables. The linear equality constraints

generated by the adjoint equations are:

# = 1 : =- 3(u(1) - u(0)) + 2mo = u'(0) - u'(1),

O =x : 2u(1) + u(0) - 3mo + 2m, = -u'(1),

# =x : z u(1) + 2mo - 6mi + 2m 2 = -u'(1),

= X: z (3 - n)u(1) + n(n - 1)mn- 2 - 3n - m,, 1 + 2mn = -u'(1).

Since we assume that the solution has support on [0, 1], we apply Theorem 3 to derive

the two semidefinite constraints:

m 0 m 1 ... -' - m 1  m 1 -M2 ... Mn - Tn+1

MI M2  Tnn. m- ±iM - M2  M2 - M3 . Mn i - mfl2

nm2 -M n+m2n - m2n+1

Subject to these constraints, we maximize and minimize each of the mi, 0 < i < n

in order to obtain values for mi.

We applied two semidefinite optimization packages to solve the resulting SDPs:

the optimization package SDPA version 5.00 by Fujisaw, Kojima and Nakata [10]

and the Matlab based package SeDuMi version 1.03, by Sturm [24]. The semidefinite

optimizations were run on a Sparc 5.

In Table 3.1, we report the results from SDPA using monomials up to N = 14.

As SDPA exhibited some numerical instability, we replaced the equality constraints

a'x = b with -e + b < a'x < b + E with e = 0.001.
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Table 3.1: Upper and lower
total computation time was

Variable LB UB
mo 3.1939 3.1951
mi 1.0969 1.1619
M2 0.5975 0.5997
M3 0.3957 0.3961
M4 0.2916 0.3179
m5  0.2580 0.8809

bounds for the ODE (3.1) for N = 14, using SDPA. The
less than 15 seconds for all the twelve SDPs.

We observe that because of the perturbation we introduced the bounds are only

accurate up to the second decimal point. We see, as we would expect, that the

performance begins to deteriorate as we ask for higher order moments.

In Table 3.2, we report results using SeDuMi with N = 60. SeDuMi successfully

solved for the first 45 moments, such that the upper and lower bounds agreed to 5

decimal points.

In order to test the ability of our method to find the minimum of u(x), we

reversed the sign of the boundary values for this linear ODE, to obtain an ODE with

a solution that is no longer nonnegative:

u(x) = -e 2 e-2x

By implementing the method we outlined to compute the minimum of u(x) in the

previous section, and using SeDuMi, we obtain the exact value for the minimum of

the function u(x) to be uo = -7.389.

3.2 The Bessel Equation

In this section we consider Bessel's differential equation

x2Ui +xu +(x 2 _ p 2 )u = 0.
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Variable LB UB
mo 3.1945 3.1945
mi 1.0973 1.0973
M2 0.5973 0.5973
m 3  0.3959 0.3959
M4 0.2918 0.2918
M5 0.2295 0.2295
m6  0.1884 0.1884
m 7  0.1595 0.1595
m8 0.1382 0.1382
mg 0.1218 0.1218
Mi10  0.1088 0.1088

M 20  0.0524 0.0524

M3 0  0.0344 0.0344

M 40  0.0256 0.0256

Table 3.2: Upper and lower bounds for the ODE (3.1) for N = 60, using SeDuMi.
The total computation time was under five minutes.
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Figure 3-1: Bessel Function

The Bessel function and its variants appear in one form or another in a wide array

of engineering applications, and applied mathematics. Furthermore, while there are

integral and series representations, the Bessel function is not expressible in closed

form. The series representation of the Bessel function, which can be found in, e.g.

Watson [26], is:
00

J(x) := ()k(x/ 2)2k+p
k=O (k + p)!

Also, over the appropriate range, the Bessel function is neither nonnegative, nor

convex, as illustrated in Figure 3-1.

In order to avoid numerical difficulties from large constant factors, we solve a

modified version of Bessel's equation:

x2" + Xu' + (49x 2 _ p 2)u = 0. (3.2)

The solution is u(x) = Jp(7x). Assuming we are given the value of the derivatives

on the boundary, using the monomials as the test functions, we obtain the adjoint

equations:

#= 1: => -u(1) + (1 -p 2)mo + 49m 2 = U'(1),

= x : -- -2u(1) + (4 -p 2 )mi + 49m 3 = U'(1),

X2 := -3u(1) + (9 - p 2)m 2 + 49m 4 = U'(1),
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N Minimum Maximum
20 -0.3087 0.4986
24 -0.3101 0.5068
30 -0.3111 0.5081
40 -0.3142 0.5046

Table 3.3: Approximations for the maximum and the minimum of the solution of Eq.
(3.2) using SeDuMi.

Variable LB UB
m 1  0.1766 0.1766
m 2  0.0903 0.0903
m 3  0.0583 0.0583
m 4  0.0438 0.0438
m5  0.0361 0.0361

Table 3.4: Upper and lower bounds for Eq. (3.2) for N = 24 using SeDuMi.

<=xn : =: -(n + 1)u(1) + ((n + 1)2 _ p 2 )mn + 49mn+2 = u'(1).

In what follows, we choose p = 1. We used SeDuMi to compute the moments,

and also to compute the max and min. Recall from the discussion in Section 2.1.5 that

while we are able to obtain bounds for the moments, our method can only compute

approximations to the max and min of the solution. In the case of the Bessel function,

the approximations we obtain of the minimum are greater than the actual value, and

the approximations for the maximum are less than the actual value. The true values

are: min = -0.347 and max = 0.583. In Table 3.3 we report the results from using

SeDuMi.

SeDuMi reported severe numerical instabilities for the computation of the max-

imum for the cases N = 30 and N = 40.

Next, we use these results to translate the function so that it is nonnegative, and

so that we can compute the moments of the translated function. We use u(x) - uO >

0 with uo = -0.4. Again using SeDuMi, we obtain very accurate bounds to the

moments. We give the first few in Table 3.4. We would expect by linearity, and
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indeed the results show, that just having a lower bound on the function is enough to

find accurate results on the moments of the function.

3.3 The Helmholtz Equation

In this section we consider the two dimensional PDE

Au + k2 U = f (3.3)

over Q = [0, 1]2. To compute the adjoint operator we need to use Stokes's formula:

I dw
= W.

Recall that in two dimensions we have:

w=fdx+gdy4=>dw =
e a

and thus computing the adjoint operator, we have:

4 (82 192 dxd y 4n( a(19U

Ox

Jo k Ox

$dy - f
U 0O$
Ox-u

By a similar process for the ! term, we obtain

02uN
+ a +f dxdy=

+OuH-Il--on

/ (fO+
192 0 C2

+

dy- f-
cn 9Y

dxdy

-U i dx.
Oy )
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Again we consider the family of monomials,

F ={xi.- yJ}, for ij C NU {O}.

In addition to the variables

== /1 1

we also introduce the boundary moment variables:

bf=l := j
bX= 0

1 00b

b0=0:=

u(x = 1, y)y dy,

u(x = 0, y)ydy,

u(x, y = 1)x dx,

u(x, y = O)x2 dx,

d := Oxu(x = 1, y)yi dy

d X=jd := 19XU(X = 0, y)yi dy

dy=

/1
z :=

d0o

Su (x, y = 1)x' dx

ayu(x, y = O)x2 dx.

Then the adjoint relationship above yields:

$ 1: >dx=' - do + dY= - dOY " + mo,o f dxdy
~=1: ==1

p=x': -> do 1 + i(i- 1) -2,0 + d- d 0± + mi,0o=

#=y : -> dj=1 - dj=0 + d 1 + j(j - 1)moJ2 +mog =0 3TOj2 O

d= 1 + i(i - 1)m.2,j + d 1 + j(j - 1)mi,j-2 + M = f -xyi dxdy.

Note that either the {d-, dj}, or the {bI, b'}, are given as boundary values. In order

to compare with the exact solution, we selected the boundary conditions such that

f (x,y) = 3ex+y.

In order for the m, 3 to be a valid moment sequence, we need to impose 16

semidefinite matrix constraints. Similarly, we need to impose two semidefinite con-
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Table 3.5: Exact Results for the solution of the PDE (3.3).

Variable LB,N=5 UB,N=5 LB,N=10 UB,N=10 LB,N=20 UB,N=20
rn,o 0.0000 +O0 0.0000 +0o 0.0000 +00

m 1,O 0.0000 4.3142 0.0000 4.0822 0.0000 3.8694
rn1,1  0.7559 1.0881 0.8557 1.0419 0.9400 1.0120
m 2,0  0.0000 4.6790 0.0000 4.6790 0.0000 4.6790
M 2,1  0.0545 1.0563 0.1417 1.0059 0.1749 0.9753
rn 2,2  0.0000 0.9447 0.0000 0.9087 0.0000 0.9087
M 3,0  0.0000 4.8743 0.0000 4.4932 0.0000 4.4414
m 3,1  0.1692 0.6806 0.4015 0.6063 0.5025 0.5758
rn 3,2  0.0000 0.6383 0.0000 0.6105 0.0000 0.5989
rn 3,3  0.0000 0.5291 0.1684 0.3640 0.2573 0.3296

Table 3.6: Upper and lower bounds from linear optimization for N = 5, N = 10,
N = 20.

straints for all boundary variables. In order to illustrate the power of the semidefinite

constraints, we run our optimization problem in two different stages. First, we pro-

vide the results of solving the linear optimization problem generated by the adjoint

equation, using the commercial software AMPLE. Next, we enforce the semidefinite

constraints. The true results, as computed by Maple 6.0, are reported in Table 3.5.

Solving a linear optimization problem, ignoring the semidefinite constraints and only

imposing nonnegativity constraints on the variables, we obtain the bounds in Table

3.6 for N = 5, 10, 20.

We then add the semidefinite constraints and use SDPA to solve the correspond-
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Variable

mni,o

mi,1

M2,0

mn2,1

mn2,2

M3,0

T3,1

mn3,3

Value
2.9525
1.7183
1.0000
1.2342
0.7183
0.5159
0.9681

r, 0.5634
0.4047
0.3175



Variable LB,N=5 UB,N=5 LB,N=10 UB,N=10 LB,N=20 UBN=20
rn,o 2.7687 5.5689 2.9818 2.9809 2.9598 2.9609
rni,o 1.8377 2.2006 1.7271 1.7276 1.7189 1.7185
mi,1  0.9679 0.9841 0.9971 0.9968 0.9988 0.9988
M 2 ,0  1.0860 1.8173 1.2433 1.2437 1.2346 1.2353
rn 2 ,1  0.6089 0.6749 0.7146 0.7146 0.7177 0.7172
rn 2 ,2  0.3192 0.4040 0.5126 0.5126 0.5148 0.5148

rn3,0  0.9789 1.7799 0.9790 0.9779 0.9687 0.9683
rn 3,1  0.5296 0.6076 0.5605 0.5606 0.5623 0.5624

M 3,2  0.2021 0.3339 0.4009 0.4016 0.4036 0.4036

M 3,3  0.1025 1.1311 0.3139 0.3141 0.3163 0.3161

Table 3.7: Upper and lower bounds for Eq. (3.3) for N = 5, 10 using SDPA. The
computation of each bound took less than 0.5 seconds for N = 5, 3-5 seconds for
N = 10, and 1-3 minutes for N = 20. Note that because of numerical errors, some
times the lower bounds are slightly higher than the upper bounds.

ing semidefinite optimization problems. SDPA gave very tight bounds; however, as

the numerical results demonstrate, there were nevertheless some numerical instabili-

ties. In Table 3.7 we report upper and lower bounds for N = 5, 10, N = 20. Note

that when we use monomials up to degree N, there are in fact N2 such monomials.

We notice that the tightness of the bounds is nearly as dramatic as in the one

dimensional case. Moreover, the bounds using semidefinite optimization are signifi-

cantly tighter than the ones obtained using linear optimization. This observation is

significant and emphasizes the importance of the semidefinite constraints. For exam-

ple, without the semidefinite constraints, the upper bound on mr,O is +oo, whereas

we obtain very tight bounds for N = 10 using the semidefinite constraints. There are,

however, numerical difficulties with the software. For example, the lower bound is

sometimes slightly higher than the upper bound. Even more disturbingly, the interval

between the lower and upper bound does not contain the exact answer, even though

it is close. We attribute these problems to the numerical stability of the particular

software we use, and not to the method itself.
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3.4 Trigonometric Test Functions

In this section we illustrate the use of trigonometric test functions. We consider the

differential equation

u" + 2u' + sin(27rx)u = 10 sin x - 20 cos x + (10 - 10 sin x) sin(27rx). (3.4)

Note that if we attempted to use a polynomial basis we would encounter a proliferation

of variables, since the polynomials are not closed by action of the adjoint (which has

a sin(27rx) term). We use the family of functions

02n(X) := sin(27nx), 42n+1(X) := cos(27rnx).

We define the variables:

m2n := fu(x)# 2n(x) dx
Qn

m2n+1 := U(x)# 2n+l(x) dx.

The adjoint equations become:

#1 = 1 :

4 2n = sin(27rnx) :

02n+1 = cos(27rnx) :

= 2u(1) - 2u(0)+ M 2 = f dx,

1 1

-47 2 2 M2n- 47rnM2n+ = f+ 2nd

->2u(1) - 2u(O) + 1m2(n+1) 2(n-1)

- 47r 2n22n+1 - 41rnm 2n 4u

Note that for the semidefinite constraints products cos(27rnx) -sin(27rmx) appear,

which can be rewritten as follows:
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Table 3.8: Upper and lower bounds for the ODE (3.4) for N = 20 using SeDuMi.

sin(27nx) -cos(27rmx)

sin(27rnx) - sin(27rmx)

cos(27rnx) -cos(27mx)

1
= (sin(27r(n + m)x) + sgn(n - m) sin(27r1n - mlx))
2
1
= (cos(2r(n - m)x) - cos(2wr(n + m)x))
2
1
= (cos(27(n - m)x) + cos(27r(n + m)x)).
2

Using SeDuMi we report in Table 3.8 upper and lower bounds for this ODE using

trigonometric test functions. We see that the bounds are much tighter for the even

moments. While the bounds are not as tight as in the earlier cases, nevertheless they

do give an indication that the proposed method may have further applications than

polynomial moments.

3.5 Insights From The Computations

In this section we summarize the major insights from the computations we performed.

(i) In both one and two dimensions, the proposed method gave strong bounds in

reasonable times.

(ii) Perhaps the most encouraging finding is that the semidefinite constraints sig-
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Variable LB UB
mn 0.1128 3.1239
mi 0.6730 1.0954
M2 0.0000 0.0294
M3 0.4471 0.7192
M4 0.0127 0.0130
m5  0.3349 0.5390
m6  0.0072 0.0073
M7 0.2678 0.4310
M8 0.0046 0.0047
mg 0.2231 0.3591
Mi10 0.0032 0.0032



nificantly improve over the bounds from the linear constraints.

(iii) The software packages we used exhibited some numerical difficulties.

(iv) Our experiments with trigonemetric moments indicate that the proposed method

is not restrictive to PDEs with polynomial coefficients, but can accomodate

more general coefficients by appropriately changing the underlying basis.
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Chapter 4

Concluding Remarks

We have presented a method for providing bounds on functionals defined on solutions

of PDEs using semidefinite optimization methods.

The algorithm proposed in this thesis uses N elements of our chosen function

family (for example polynomials), and uses O(Nd) variables. Compared to traditional

discretization methods, the proposed method provides bounds, as opposed to approx-

imate solutions by solving a semidefinite optimization problem on O(Nd) variables.

The computational results at least for one or two dimensions indicate that we obtain

relatively tight bounds even with small to moderate N, which is encouraging.

Despite a lot of progress in recent years, the current state of the art of semidefinite

optimization codes, especially with respect to stability of the numerical calculations is

not yet at the level of linear optimization codes. This is one of the major limitations of

the proposed method, as it relies on the semidefinite optimization codes. Moreover,

we use general purpose semidefinite codes even though we have a very particular

formulation with a lot of structure. The hope is that progress in the area of numerical

methods for semidefinite optimization codes will improve the ability of the proposed

method as well.
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Appendix A

Moment Driven Convergence Proof

In this section we prove the result stated previously,

Theorem 4 Suppose the domain of our PDE, K C R, is compact. Then in the usual

topology of weak-convergence, if the sequence Ln is allowed to increase no faster than

linearly, the diameter of the sets

Bn,L, :={u Bn nC': -- < L ,
11dXI L1(K)

computed in the usual bounded Lipschitz metric, decreases exponentially in n.

In the proof below, we consider only the unit interval in R1 . However this is only for

notational convenience. All the results stated have precise analogs in higher dimen-

sions, and the results proved carry over exactly as stated and proved.

PROOF. The bounded Lipschitz metric is well-known to be a metrization of weak

convergence (see [8]). It is given by

,3(f,g) := sup (f -g, G)= sup (f - g)Gdp,
GEBL1  GEBL 1 J/

where we have

BL1 := {f : foo + flL 1}
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where | is the usual supremum norm, and - IL is the Lipschitz norm given by

fL f(x) - f(y)
x:AY ix -y1

and is thus a smoothness condition, uniformly bounding the pointwise magnitude of

the first derivative. We have:

#(f,g) = sup (f - g ,G)
GEBL1

- sup(f- ,G)
GEBL1

= sup ( , +(1+j(j))
GEBL1 1 + 1

- sup Id (1 + |6J)IIL2(R)1 +{ L(R)GE BL1

= CBL1  -

The first equality is by definition. In the second, f denotes the usual Fourier transform

of f, and the equality follows by the fact that the Fourier transform is an isometry

([20]). The inequality in the fourth step is a consequence of the Cauchy-Schwartz

inequality. The final equality comes from the fact that G belongs to a family of

uniformly Lipshitz functions, and hence the transform has integrability properties as

claimed (see any reference on Sobolev spaces such as, e.g. Folland (1995), or Adams

(1975)).

We have the following facts about f, g and their transforms ([20]): by the compact

support and smoothness of f, g we know that f, y are analytic, and such that, for any

N E N,

If(z)I _YN(1 + IZI)N . eIImzI

where 7N IDNf I L1 The analyticity follows from Morera's theorem, and the

growth condition from standard Fourier transform techniques (differentiate under the

integral...). Thanks to our restrictions to Bn,L., we can choose a #71 independent of
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f E Bn,La - This is important, as we intend to take the supremum over all f, g E Bn,L,

But then, given any threshold E > 0, we can choose some K, E R+ such that

1 + IZ L2 (R) 1 + Iz L2 [-K,K]

Let h := f- y. Then by our assumption on the moments of f, g, we know that h has

a zero of order n at 0. In other words, the first n terms of the Taylor series for h are

zero. Therefore we have

h(z) = h, (z) - z", Vz E C,

where h, is the remainder term in the usual finite form of Taylor's theorem. There

is a convenient representation of this remainder in terms of a contour integral:

hn 1 (Z (C) d(

Taking R > Ke, we obtain a bound on the remainder (see Ahlfors [1] for one dimen-

sion, and H6rmander [12] for the straightforward extension to several variables):

|z|" MR - R
hn(Z)| < Rn R- -z|

Ihn(z)| < Z" MR -R
1 + z- R (R - zj) - (1±+zl)'

where MR := sUPizI<R|h(z)|. This is valid Viz| < R, and in particular, for any

x E [-K, K]. Now, again by our choice of 'y1 which recall, is independent of f, g, we

have the bound, for any f E Bn,L,:

If(z)l < ||DifI|L -(1 + z)- 1 -ejImz

<; Ln - (1 + R) - eR Vz<R
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and therefore we can take

MR:= 2L, - (1 + R)- 1 .eR.

Taking R sufficiently large, say R = 2K, we have (R - |x) > Ix1, V x E [-K, K], and

thus:

1 + |X L 2[-K,K]

_
1 + 3X L 2[-K,K]

I K 
2n

S-K 2n

< 2 - 2 I K

2n-4

2MR2K--(K ) 2n-2 i

R 2n - 3

< 2MRK- 1 - (1)2n-2 1

Since the RHS is independent of f, g E Bn,Ln, we have:

IHf - g1|L2[,1] _ sup -
f,gEBn,Ln 1 + xI L2[-K,K]

<2CBL1 - MR2K-' 
n-2

2

CBL1i +

i +-3
2n - 3

From here it is clear that we can allow Ln to increase linearly in n, while still main-

taining an exponential convergence rate. This concludes the proof. 0
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