
A Scalable Byzantine Fault Tolerant Secure Domain Name System

by

Sarah Ahmed

Submitted to the Department of Electrical Engineering and Computer Science
In partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 22, 2001

@ Massachusetts Institute of Technology 2001. All rights reserved.

A uthor

Department of Electrical Engineering and Computer Science
January 22, 2001

Certified by
Barbara Liskov

Ford Professor of Engineering
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

BARKER

MASSACHUSE[TSIN 11trfit
OF TECHNOLOGY

JUL 1 1 2001

LIBRARIES

A Scalable Byzantine Fault Tolerant Secure Domain Name System

hy

Sarah Ahmed
Massachusettes Institute of Technology

Submitted to the
Department of Electrical Engineering and Computer Science

On January 22, 2001

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Computer Science and Engineering

Abstract

The domain name system is the standard mechanism on the Internet to advertise and access important
information about hosts. At its inception, DNS was not designed to be a secure protocol. The biggest
security hole in DNS is the lack of support for data integrity authentication, source authentication, and
authorization. To make DNS more robust, a security extension of the domain name system (DNSSEC)
was proposed by the Internet Engineering task force (IETF) in late 1997. The basic idea of the DNS
security extension is to provide data integrity and origin authentication by means of cryptographic
digital signatures. However, the proposed extension suffers from some security flaws.

In this thesis, we discuss the security problems of DNS and its security extension. As a solution, we
present the design and implementation of a Byzantine-fault-tolerant domain name system. The system
consists of 3f+l tightly coupled name servers and guarantees safety and liveness properties assuming
no more than f replicas are faulty within a small window of vulnerability. To authenticate
communication between a client and a server to provide per-query data authentication, we propose to
use symmetric key cryptography. To address scalability concerns, we propose a hierarchical
organization of name servers with a hybrid of iterative and recursive query resolution approaches. The
issue of cache inconsistency is addressed by designing a hierarchical cache with an invalidation
protocol using leases. Because of the use of hierarchical state partitioning and caching to achieve
scalability in DNS, we develop an efficient protocol that allows replicas in a group to request
operations from another group using very few messages. We show that the scalable Byzantine-fault-
tolerant domain name system, while providing a much higher degree of security and reliability,
performs as well or even better than an implementation of the DNS security extension.

Thesis Supervisor: Barbara H. Liskov
Title: Ford Professor of Engineering

Acknowledgements

I would like to thank my advisor, Barbara Liskov, for her constant support, encouragement, and advice
to accomplish this work. Her careful and critical comments significantly improved the content and
presentation of this thesis. She taught me what it means to be dedicated to research. She is, and will
always be a source of inspiration to me to pursue the frontiers of computer science.

Many thanks to Miguel Castro whose work on a practical Byzantine fault tolerance inspired this thesis.
His insight, guidance, and help were much valuable. I am especially thankful because he patiently
answered my questions and provided me with deep insights even when he was busy trying to finish his
own thesis.

I would also like to thank Zheng Yang who originated the work on a Byzantine-fault-tolerant DNS.
His code was the basis of my implementation, which saved a lot of time. And special thanks to
ChonChon and Chandra who provided me with much help while expanding my horizon with their
diverse level of interests.

I would like to thank all my lab partners who made it a great pleasure to be a graduate student in the
Programming Methodology group. This includes Sameer Ajmani, Chandrasekhar Boyapoti, Miguel
Castro, Kincade Dunn, Kyle Jamieson, Rodrigo Rodrigues, Ziqiang Tang, and Yan Zhang.

This list would be incomplete without mentioning the contribution of my wonderful friends Inran and
Bobby, who have tolerated my eccentricities with much patience and met all my demands, no matter
how unreasonable. I am lucky to have friends like them.

I do not know how to thank my parents and siblings enough for their constant level of support and
inspiration. Their support is what keeps me going to pursue my goals in life. Thanks mom and dad for
being there for me.

And finally, I would like to thank my husband, Zahid Hasan, without whose love, understanding and
support it may not have been possible to achieve what I have today. Life without him for the last five
years was painful. We spent thousands of hours on the phone while he was at Stanford and me at MIT.
But the simple feeling that he was there for me when I needed him filled my heart with great
constancy, and inspired me to keep going. Thanks Zahid for being the wonderful person you are. I
can't wait to see you soon.

Contents

1. Introduction 9

1.1 O ur C ontribution .. 10

1.1 'What the System Offers ... 11

1.2 Thesis O utline .. 12

2. DNS Infrastructure 13

2.1 N am e Space .. 13

2.2 A dm inistration ... 14

2.3 Name Servers and Resolvers ... 15

2.4 Q uery R esolution ... 17

2.5 Resource Records .. 18

3. DNS Security Issues 23

3.1 Problems with current DNS ... 23

3.1.1 Lack of Authentication 23

3.1.2 Lack of Consistency Control 24

3.1.3 Vulnerability to Server Failure 25

3.2 Proposed DNS Security Extension (DNSSEC) 25

3.3 Problems with DNSSEC ... 29
3.3.1 Zone Private Key Storage 30

3.3.2 Freshness Attack due to Pre-generated SIG RR 31

3.3.3 Lack of Consistency Control and Single Point of Failure 31

3.4 Why Need Something More Secure than DNSSEC 32

4. A Practical Byzantine-fault-tolerant Algorithm 33

4.1 The CLBFT Algorithm 33
4.2 The System Model and Assumptions of the CLBFT.......................... 33

4.3 How the CLBFT Algorithm Works..34
4.3.1 View Changes ... 35
4.3.2 Proactive Recovery ... 36

4.4 The Properties of the CLBFT Algorithm 37

5. A Byzantine-fault-tolerant DNS with Session Key 39

5.1 D esign C riteria .. 39

5.2 The SBFTDNS System Architecture... 41

5.3 Key Management 42

5.3.1 A Hybrid Resolution with Intermediate Level Hierarchy ... 48

5.3.2 Replicated Clients .. 49

5.4 Caching Mechanism......... .. 51

5.4.1 Security and Cache Consistency 51

5

5.4.2 A Hierarchical Invalidation Protocol using leases 53
5.4.3 Summary of Caching........................ 56

5.5 Running Operations..57

6. Implementation 59
6.1 The CLBFT Replication Library ... 59
6.2 TIS/D N SSEC .. 6 0
6.3 SBFTDNS with Session Key Mechanism..................................61
6.4 Modifications to Provide System Scalability 63

6.4.1 Replicated Clients ... 63

6.4.2 RR Caching .. 63
6.4.3 Lease Mechanism .. 65
6.4.4 Invalidation ... 66
6.4.5 Dynamic Update ... 67

6.4.6 Reducing Number of Messages across Levels of Hierarchy.. 67
6.5 R elated W ork ... 69

7. Performance Evaluation 71
7.1 Experimental Setup ... 71
7.2 Experim ents ... 71

7.3 R esults 73
7.3.1 Read-only Operations 73
7.3.2 Read-write Operations 75

7.3.3 System Performance Comparison 77
7.4 Performance Issues .. 78

7.4.1 Session Key Management 78
7.4.2 Replicated Clients and RR Caching 79
7.4.3 Reducing the Number of Messages Across Levels 79

7.5 D iscussion ... 81

8. Conclusions 83
8.1 Sum m ary ... 8 3
8.2 Future W ork .. 85

8.2.1 Improving the Implementation 85
8.2.2 Use of a Standard DNSSEC Package 85
8.2.3 Backward Compatibility 86
8.2.4 Realistic Performance Evaluation 86

A. An Analysis of DNS Traffic Patterns and Performance 89

A .lIM otivation .. 8 9
A .2 D N S traces .. 9 0
A .3 A nalysis .. 90

6

A.3.1 General Characteristics 90
A.3.2 Request latency .. 91
A.3.3 Number of Referrals .. 92
A.3.4 Query Type. 92
A.3.5 Response Error .. 92
A.3.6 Root Server Characteristics. 92
A.3.7 Caching NS Records 95
A.3.8 Effect of Aggregation on Cache Hit Rate 95

A .4 D iscussion ... 96

R eferen ces 98

7

List of Figures

2-1 DNS Name Space Hierarchy ... 14
2-2 Distinction between a domain and a zone .. 15
2-3 A Typical DNS Query Resolution ... 18
3-1 DNS attack by breaking into a router .. 23
3-2 Man-in-the-middle attack of DNS by network packet spoofing 24
3-3 DNS attack by issuing fraudulent update request ... 24
3-4 DNS attack by a Single Name Server Break In .. 25
3-5 A Sample DNS Query Resolution in DNSSEC .. 28
4-1 Normal case operation in CLBFT. Replica 0 is the primary, replica 3 is faulty 35
4-2 V iew Change Protocol .. 36
5-1 A Fully Iterative Resolution Scheme .. 44
5-2 A Hybrid of Iterative and Recursive Resolution Schemes 45

5-3 A Fully Recursive Resolution Scheme .. 46
5-4 A Fully Recursive Resolution Scheme with Intermediate Hops 47
5-5 A Hybrid Resolution Scheme with n=2 Intermediate Levels of Hierarchy 48
5-6 Increase in the Number of Messages Across Levels of Hierarchy 50
5-7 A Scheme to Support Replicated Clients with Reduced Number of Messages 50
5-8 TTL and Object Staleness ... 52
5-9 A Hybrid of Client-driven and Server-driven Invalidation schemes with Leases 55
5-10 Advantage of Hierarchical Caching .. 56
5-11 Hierarchical Organization of Name Servers .. 57
6-1 The CLBFT Replication Library API .. 59
6-2 Architecture of TIS/DNSSEC .. 61
6-3 Architecture of SBFTDNS .. 62
6-4 Hierarchical Organization of Name Servers ... 63
6-5 A Scheme to Support Replicated Clients with Reduced Number of Messages 67
7-1 Response Latency for A Record ... 77
7-2 Response Latency for NS Record .. 77
7-3 Total number of Messages Traversing through the Network 80
7-4 Total number of Reply Bytes Traversing through the Network 80
A-1 PDF of DNS request latency .. 91
A-2 CDF of DNS request latency .. 91
A-3 CDF of the number of referrals .. 92
A-4 Latency distribution vs. number of referrals .. 92
A-5 Latency distribution across query types .. 93
A-6 Latency distribution across roots .. 94
A-7 Latency when root servers return answers vs. referrals .. 94
A -8 C ache H it and M iss ... 95
A-9 Effect of Aggregation on Cache hit Rate .. 96

8

Chapter 1

Introduction

The Domain Name System (DNS) [25] is a distributed database coordinated by the DNS protocol to
provide information crucial to the operation of the Internet. DNS is the standard mechanism on the
Internet to advertise and access important information about hosts. Virtually all internetworking
services, including the World Wide Web, electronic mail, remote terminal access, and the file transfer

protocol use DNS.

Because of its critical role in the Internet infrastructure, it is important that DNS tolerate failures and
attacks both at the servers and during data communication over the Internet. These failures can either
be due to benign faults, e.g., a server crash, or due to malicious attacks by hackers. However, DNS
originally was not designed to be a secure protocol. The biggest security hole in DNS is the lack of
data authentication. A resolver has no way to verify the authenticity and integrity of the data returned
by the name servers. This means an attacker can easily fake the IP address of the sender included in
DNS response packet, and the client has no choice but to trust the fake address as the origin of the

reply data.

Also, DNS uses a simple primary-secondary scheme to ensure service availability and server load

distribution. However, there is no consistency mechanism between the primary and the secondary
name servers of DNS. During updates, data only gets updated in the database of the primary name
server and the change is later propagated to the secondary name server during zone transfer. This
means the secondary name servers in a highly dynamic zone almost always contain some stale data,
which is inconsistent with the data provided by the primary name server. This causes consistency and
reliability problems since clients may get stale data from some servers without an intentional attack.
Moreover, some newly updated data may be lost from the system forever if the primary name server
crashes before the data is transferred to the other servers. DNS thus does not tolerate even benign

server faults.

Moreover, DNS makes extensive use of resource record caching. However, caching raises concerns
about cache inconsistency and staleness of data. The original design of the domain name system

sacrificed consistency in favor of reduced access time. For a secure domain name system, stale
information may no longer be considered harmless, since it may involve some security critical
information, e.g., a compromised private key. However, the current DNS protocol does not support
any means to propagate data updates or invalidations to DNS servers in a fast and secure way.

Furthermore, only one name server is contacted at a time to provide name service in current DNS.
This means one compromised server is enough to fool a client with wrong information, or corrupt the

9

database by issuing fraudulent update requests, and there is no mechanism in DNS to overcome this

vulnerability to server failure due to both benign faults and malicious attacks.

To solve the security problems of current DNS, a security extension [14] has been proposed by the

Internet Engineering Task Force (IETF). The main idea of the extension (DNSSEC) is to provide data

integrity and authentication using pre-generated digital signatures for each data item stored in the

database. The name servers return the response along with its digital signature so that the client can

verify the authenticity and integrity of the reply data.

While the DNS security extension provides data integrity and source authentication, it has some

security holes too. DNSSEC ensures secure communication of DNS data by providing a means to

check whether the data have been corrupted during communication over the Internet. While this

detects the corruption of messages during communication, DNSSEC assumes that the zone private

keys are not stolen and the servers that are responsible for providing authenticated name service are

not corrupted themselves. Given the popularity of malicious attacks on DNS name servers, this is not a

reasonable assumption to make.

The biggest dilemma in DNSSEC is where to store the zone private key, which is used to generate

digital signatures. To prevent hackers from getting access to the zone private key, DNSSEC

recommends to keep the key in a non-network connected, off-line, physically secure machine. But this

creates a problem with providing support for dynamic updates in the domain name system because the

off-line zone private key cannot be used to generate signatures (SIG RR) in real-time to authenticate

dynamically updated data. This means dynamically updated data in DNSSEC are either not available

or not protected before the next zone signing (using the zone private key) takes place.

There are other security problems with the DNS security extension. For example, expensive public key

cryptography is used in DNSSEC to provide data integrity and source authentication. Therefore, to

keep the cost down, signatures (SIG RR) in the DNS security extension are often generated with a

long TTL (time-to-live). This opens a broad window for a freshness attack in which stale data whose

corresponding signature has not expired is replayed to fool the client.

In addition, like non-secure DNS, DNSSEC cannot tolerate malicious or benign server failures. For

example, newly updated data may be lost from the system if the primary name server of a zone fails

before propagating the new information to the other name servers.

1.2 Our Contributions

To address the security issues of DNS, this thesis proposes a scalable Byzantine-fault-tolerant domain

name system (SBFTDNS). A Byzantine-fault-tolerant system makes no assumption about the behavior

of the faulty nodes [6]. The system provides high integrity, robustness, and availability of service in

the presence of arbitrary failures, including failures due to malicious attacks. The proposed system

10

consists of 3f+l tightly coupled replicas per name server and guarantees safety and liveness properties
of the system assuming no more than f replicas are faulty within a small window of vulnerability [9].

To authenticate communication between a client and a server, we propose the use of symmetric key
cryptography. A session key, which is much shorter and less costly than a public key, is used to
provide per-query data authentication and fresh data. The cost of establishing session keys using
expensive public key operations is reduced by incorporating an efficient session key caching
mechanism.

Symmetric cryptography requires that every communication pair share a session key, which could lead
to servers needing to remember a huge number of keys unless care is taken care of. To address the
scalability issues, we propose a hierarchical organization of name servers with a hybrid of the iterative
and recursive query resolution approaches. This minimizes the number of keys to remember as well as
reducing the load on the root name servers.

For performance and scalability, the system supports caching of session keys and resource records.
However, caching in a security critical system raises concerns about cache consistency and staleness
of data. We address this issue by designing a hierarchical cache with an invalidation mechanism using
leases. Because of the use of hierarchical state partitioning and caching to achieve scalability in DNS,
we can define an efficient protocol that allows replicas in a group to request operations from another

group using very few messages.

1.3 What the System Offers

The newly proposed system significantly improves the security of the domain name system. The

benefits come from two major sources.

" By using a Byzantine-fault-tolerant algorithm, the system tolerates server failures due to both
benign faults and malicious attacks on servers. Unlike the DNS security extension, the system
does not need to assume that the server private keys are not stolen, or the servers are not

faulty.

" By using cryptographic operations, the system guarantees a secure communication mechanism

by providing a way to detect whether DNS data has been corrupted during communication

over the Internet.

By incorporating the Byzantine-fault-tolerant algorithm in our solution, we not only make the system
hacker-tolerant, but also ensure correct name service even when a fraction of the replicas fail. Unlike
the current insecure DNS and its security extension, our system tolerates server failures due to benign
faults and malicious attacks. The system is reliable, i.e., the state of the system is not lost or corrupted
when some node fails, and it is available, i.e., it continues to function normally even in the presence of
failure. The system ensures consistency among data received from non-faulty name servers.

11

Moreover, with this scheme, real-time dynamic update is possible. Unlike the DNS security extension,

the proposed system can store the server private keys online, since a hacker needs to compromise at

least f+1 servers before compromising the system. This significantly improves the security of the

dynamic update mechanism and makes dynamically updated data available in real-time. Furthermore,

this offloads the administrators by getting them out of the loop.

By incorporating the session key mechanism, on the other hand, we provide per-query data

authentication. Therefore, information provided by the servers is up-to-date and there is no stale data.

Since we do not use pre-generated signatures, there is no possibility of freshness attacks until the

signature expiration time, which is a problem in the DNS security extension.

We implemented the proposed system and compared its performance with non-secure DNS, and with

TIS/DNSSEC, an implementation of the domain name security extension protocol. While our system

performs worse than the insecure DNS due to extra cryptographic operations to support security, it

performs as well or better than TIS/DNSSEC in almost every case, not to mention that we guarantee

much higher level of security, robustness, and availability of the domain name system than

TIS/DNSSEC. We observed a 4.2% gain in response latency for a typical A record query, and a 136%

gain for an NS record query while using the proposed system instead of TIS/DNSSEC. The

performance gain increases with the number of cryptographic operations, due to the elimination of

expensive public-key cryptography and use of session-key based message authentication codes (MAC)

in our system.

The newly proposed BFTDNS provides highly secure service, yet it is practical. It can not only

provide secure name service for the Internet, but can also become a robust infrastructure for storing

authenticated public keys. Other internetworking protocols that require authentication can leverage the

open and widely available DNS security infrastructure, which adds to the attraction of a secure and

scalable domain name system.

1.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 presents an overview of the domain name

system infrastructure, i.e., the organization and the management of DNS. Chapter 3 discusses the

security problems of current DNS and its security extension (DNSSEC). It also provides the

motivation behind why a domain name system more secure than DNSSEC is needed. Chapter 4

describes the Byzantine-fault-tolerant algorithm we used in our system to implement a Byzantine-

fault-tolerant domain name system. Chapter 5 describes the proposed design of a scalable Byzantine-

fault-tolerant DNS (SBFTDNS) with a session key mechanism. Chapter 6 describes how we

implemented SBFTDNS based on an existing DNSSEC package and a Byzantine-fault-tolerant

replication library. Chapter 7 presents the experimental setup and the performance evaluation of

SBFTDNS. Chapter 8 concludes the thesis and suggests future research directions.

12

Chapter 2

DNS Infrastructure

The abstract model of the domain name system [3] is a distributed database that maps between human
readable hostnames, e.g., veena.lcs.mit.edu and machine-readable IP addresses, e.g., 18.26.0.72. DNS
also provides other important information about the domain or host, e.g., email routing information,
canonical name, etc. Different segments of the distributed database are locally administered, yet data
in each segment is available across the network through a client-server scheme. Availability and
performance of DNS are enhanced through a replication and caching mechanism. This chapter
describes the basic layout and the organization of the domain name system.

2.1 Name Space

DNS name space is organized hierarchically. Like the UNIX filesystem, the whole DNS database can
be viewed as an inverted tree, with the root node at the top. The root of the name space is a special
node with a null label. All the other nodes are associated with a label of up to 63 characters. The
domain name of a node in the tree is the list of labels starting from that node up to the root, using a
period to separate each label, e.g., sarod.lcs.mit.edu. Every node in DNS tree must have a unique
domain name since domain names are used as indexes into DNS database. The depth of the tree is
limited to 127 levels.

A domain is simply a subtree of the domain name space with a name the same as the domain name of
the node at the very top of the subtree. The top-level domains are divided into three areas:

1. generic top level domains (gTLDs), e.g .com, .edu, .gov, mil, .net, .org, and .int. To
accommodate the rapid expansion of the Internet, a few other gTLDs have been proposed,

e.g., .web,. firm, .shop, nom etc.
2. 2 character domains based on country codes found in ISO 3166, e.g., .uk is the top level

domain for United Kingdom.
3. arpa is a special domain for the address to name mappings. For example, translating the

address arpa.in-addr.40.0.26.18 (IP address 18.26.0.40) to the hostname chord.lcs.mit.edu

Figure 2-1 shows the hierarchical organization of DNS name space.

13

Mroo

edu domain

mit.edu domain

Ics.mit.edu domain

Figure 2-1: DNS Name Space Hierarchy

2.2 Administration

The domain name system is a distributed database. No single host on the Internet knows all DNS

information. Similarly, administration of DNS is also hierarchical. This decentralized administration is

achieved through delegation. No single entity manages every label in the tree. Instead, one entity

maintains a portion of the tree, called a zone and delegates the responsibility to other entities for

specific subzones.

A zone is a subtree of DNS tree that is administered separately. An organization gets the control of a

zone by persuading the parent organization to delegate a sub-zone consisting of a single node. The

parent organization does this by inserting a resource record in its database that marks the zone

delegation. Every zone needs to provide a primary and a secondary name server, which contain the

same information for the zone. A primary name server reads data for the zone from a file on its host. A

secondary name server, on the other hand, gets zone data from an authoritative master server, which

usually is the primary name server for the zone.

It is important to understand the difference between a zone and a domain. A zone contains domain

names that the domain with the same domain name contains, except for domains named in delegated

subdomains. For example, the toplevel domain edu contain the subdomains mit.edu, cmu.edu, usc.edu

etc. Authority for each of these subdomains is delegated to the name servers of MIT, CMU and USC

respectively. As shown in figure 2-2, while the domain edu contains all the data in edu plus all the

14

data in mit.edu, cmu.edu, and usc.edu, the zone edu contains only the data in edu, which mostly
comprises of pointers to the delegated subdomains.

.edu domain

.edu zone.edu

cmu.edu mit.edu usc.edu

cmu.edu zone

|lecs.mit.edu zone

Figure 2-2: Distinction between a domain and a zone

2.3 Name Servers and Resolvers

The two major active components of DNS are name servers and resolvers. Name servers constitute the
server half of DNS. Resolvers, on the other hand, are interfaces to end user programs.

2.3.1 Name Servers

The name servers are repositories of information and they answer queries using information stored in
the database. They generally have complete information about a zone. The name server is then said to
have authority for that zone. One name server can be authoritative for multiple zones too. Name
servers listen to UDP and TCP port 53 for DNS queries. Every zone needs to provide a primary and a
secondary name server, which contain the same information for the zone. Therefore, if one server is
down, resolvers can use the other server. DNS incorporates this simple replication scheme to enhance:

0

0

0

Redundancy

Load Balancing

Faster access to remote locations

15

Name Server Types

Primary servers get all the data for the zone from a locally stored file. All changes to a zone data must

take place at the database of the primary server. Usually there is one primary server per zone.

Secondary servers get mirror copy of the zone data from another name server that is authoritative for

the zone known as its master server. A secondary server periodically queries the master server and if

there is any change in the database, the secondary server obtains the data and updates its own database.

This transaction is known as the "zone transfer". There can be multiple secondary servers per zone.

Master Servers provide zone information to a requesting secondary server. This server can be a

primary or another secondary server.

Caching only servers is not authoritative for any zone, as it does not have any local zone file; rather it

relies on other name servers for authoritative answers. A caching only server merely accepts and

processes requests, and stores the results in a cache for future resolutions.

Forwarders are name servers that are configured to accept requests for name resolution from other

name servers, which fail to resolve a query locally. This is typically used within an intranet for name

resolution that needs to go outside of the zone.

Root Name Servers

The root name servers know the names and addresses of the name servers for each of the top-level

domains. In the absence of any other information, DNS query resolution has to start at the root name

servers, which makes the root name servers the hotspot of DNS operation. To offload the root name

servers, DNS uses caching extensively. However, the fact that any locally unresolved query is directed

to the root name server keeps the roots extremely busy. Even with thirteen globally dispersed root

name servers, the traffic to each root server is very high.

2.3.2 Resolvers

The resolvers are programs that interface user programs to the name servers. Resolvers perform the

following functions

* Embody the algorithms required to resolve a query, i.e., find a name server that has

the relevant information,

* Query the name server according to the end user request

" Interpret the responses from the name servers which may be the answer or an error

message

* Return the answer back to the end user program

16

In most implementations, the resolver is a just a set of library routines with no cache of information. It

places most of the burden of finding an answer on the name servers. This type of resolver is known as

the stub resolver in DNS spec.

2.4 DNS Query Resolution

Resolution occurs when a client queries a name server for some host information, e.g., to get its IP

address. If the name server in the local domain cannot resolve the client's request, it queries other

servers to locate the server that can.

There are two types of DNS query resolution: recursive and iterative.

Recursive Query

In recursive resolution scheme, the burden of resolving a query is placed on a single name server.

Once a name server receives a recursive query from a client, it is obliged to provide the client with the

answer to the query, or an error if the answer could not be found. The name server, in recursive case,
cannot refer the client to a different name server.

Iterative Query

In iterative resolution, a name server replies with the best answer it can give to the client, which may

be another name server or a resolver with support for iterative query. The queried name server consults

its own database for the queried data. If it cannot find the answer, it typically gives the IP address of

the closest name server that might know the result of the query. The closest name servers are those

authoritative name servers for a zone closest to the domain being looked up. Then the client repeats

the request, this time sending it to the server it just learned about. By default, queries to root name

servers are iterative.

A Typical DNS Resolution

Figure 2-3 desribes a typical DNS resolution for the IP Address of www.foo.edu.ca. In this case, a

stub resolver sends a recursive query to a name server on the local host for the IP address of

www.foo.ac.ca. The local name server searches its own database and cache. If it finds no entry for

www.foo.ac.ca, it searches for the closest domain name foo.ac.ca, then ac.ca, and then for the entry for

ca. Suppose the local name server does not find an entry for any of the previous domain names in its

local cache.

At this point the local name server knows that the query cannot be resolved locally and it has to find

the answer from other servers. Since it is not possible for one name server to know how to contact

every other name servers, every name server is configured with a root cache file, which contains root

domain name server names and addresses. There are thirteen such root name servers distributed all

17

over the world. For example, the primary root name server A.ROOT-SERVERS.NET with IP address

198.41.0.4 is maintained by the Network Solutions Inc. and is located at Herudon, VA, USA.

As shown in figure 2-3, the local name server then iteratively queries a root name server for the IP

address of www.foo.ac.ca and is referred to the ca name servers. The local name server then asks a ca

name server for the desired address, which may refer it to the ac.ca name servers. The ac.ca server

refers the local name server to the foo.ac.ca servers, which gives the IP address of www.foo.ac.ca. The
local name server then returns the result to the stub resolver that issued the query.

If however, the local name server finds in its local cache an entry for any of the intermediate name

servers, e.g., the IP address of the name server for the ac.ca zone, it can bypass contacting the root

name server and can directly contact the ac.ca name server for the information it is looking for.

IP address of www.foo.ac.ca?

root name server
IP address of .ca name server

Query:
IP address of
www.foo.ac.ca

resolver

Answer:
IP address of
www.foo.ac.ca

Local
Name
Server

it-]

IP address of www.foo.ac.ca?

IP address of ac.ca
name server

IP address of www.foo.ac.ca?

IP address of foo.ac.ca
name server

IP address of www.foo.ac.ca?

IP address of www.foo.ac.ca

.ca name server

.ac.ca name server

foo.ac.ca
name server

Figure 2-3: A Typical DNS Query Resolution for the IP Address of www.foo.edu.ca

2.5 Resource Records

The data associated with domain names are contained in resource records (RR). Each resource record
carries a time-to-live (TTL), a type, and a class field followed by the data. All resource records with

the same name, type and class but different values comprise a resource record set (RR Set).

RR Format

Each resource record has the following format

Name TTL I Class Type RDLength RData

18

1 14%

The first field of an RR is the domain name. This is often called the owner of the RR.

The second field is a 32 bit unsigned integer that specifies the TTL (Time To Live), which is the
length of the time the information in the RR is considered to be valid. This is the amount of time any
name server can cache the data.

The third field indicates the RR class, which pertains to a type of network or software. RRs in today's
DNS database mostly belong to the IN (Internet) class, although there are other classes like Chaosnet,
or Hesiod.

The fourth field corresponds to the type of the RR as described in RFC 1035 [26]. There are about 40
different types of RR. The most commonly used types are as follow:

Type Description

SOA Start of authority
A (IP) Address record
NS Name Server record
CNAME Canonical name (alias)
PTR Pointer record
MX Mail exchanger record

The Rdlength field specifies the length of the Rdata field.

Finally, the Rdata is a variable length string that describes the resource according to the format
specified by the type and the class.

Standard RR Types

SOA Record

Each zone has exactly one SOA (Start Of Authority) record, which contains important information
about the zone. Following is the SOA record for the mit.edu zone. We ignore the Rdlength field.

mit.edu. 6H IN SOA BITSY.mit.edu. NETWORK-REQUEST.mit.edu. (
2020 ;serial
1H ; refresh
15M ;retry
5w6d16h ; expire
6H) ; minimum

This SOA record indicates that for the mit.edu zone

19

0 BITSY.mit.edu is the primary name server

0 NETWORK-REQUEST@mit.edu is the contact email address for this zone

0 2020 is the serial number indicating the version number of DNS database

0 1 hour is the refresh period that indicates how often the secondary name server polls the

master name server for updated information

0 15 minutes is the retry value that should elapse before a failed refresh should be retried

0 5 weeks 6 days 16 hours is the upper limit on the time interval that can elapse before the zone

is no longer authoritative

0 6 Hours is the minimum TTL value for this zone.

NS Records

An NS (Name Server) record specifies a host that is authoritative for the specified domain and class.

There are at least two NS records associated with a domain name. These are the delegation points of

the parent-zone and the child-zones. For example:

mit.edu. 6H IN NS STRAWB.mit.edu.

mit.edu. 6H IN NS W20NS.mit.edu.

Usually, when an NS record is returned, the corresponding A record containing the IP address of the

name server is also returned to avoid a second query for the IP address.

A Records

The most common RR is the address (A) record, which contains the name-to-address mappings. An A

record associates an IP address to the domain name found in the first field of the record. For example:

veena.lcs.mit.edu 30M IN A 18.26.0.72

It is possible for a domain name to be associated with multiple IP addresses. This feature can be used

to distribute and balance load between multiple servers. Conversely, different domain names can be

associated with a single IP address. This makes it possible to use a single machine to act as virtual

hosts to multiple services.

PTR Records

The PTR (Pointer) records encompass the address-to-name mappings, i.e., the reverse of the A

records. They map an IP address to a human readable domain name. The IP addresses in PTR records

are represented as a domain name in the in-addr.arpa domain. For example

72.0.26.18.in-addr.arpa 30M IN PTR veena.lcs.mit.edu

20

MX Record

MX (Mail Exchange) records specify hosts that will accept mail for the specified domain. For
example:

mit.edu. 6H IN MX 100 FORT-POINT-STATION.mit.edu.
mit.edu. 6H IN MX 100 PACIFIC-CARRIER-ANNEX.mit.edu.
mit.edu. 6H IN MX 100 SOUTH-STATION-ANNEX.mit.edu.

The number before the address is the preference of the mail exchange system. The lowest preference
value is tried first and equally weighted entries are tried randomly.

CName Record

A CNAME (Canonical Name) RR defines an alias for the host showed in the data field. For example:

ftp.musenet.org 30M IN CNAME cyberion.musenet.org

This example defines "ftp.musenet.org" as an alias for "cyberion.musenet.org".

21

[3 [3

Chapter 3

DNS Security Issue

3.1 Problems with current DNS

The original designers of DNS did not realize that DNS would evolve so fast to become the basis of

the Internet. They did not design an adequately secure DNS protocol. As a consequence, the domain

name system, as it stands today, suffers from some intrinsic security problems. The major security

holes in current DNS infrastructure include lack of authentication, lack of a consistency control

mechanism, and vulnerability to server failures due to both benign faults (e.g., a server crash) and

malicious attacks on servers.

3.1.1 Lack Of Authentication

The biggest security hole in the current domain name system is the lack of data integrity

authentication, source authentication, and authorization. DNS servers never authenticate the data they

send to the clients. Clients can only judge the origin of the reply data from the IP address of the sender

included in the reply data, which is very easy to fake. Therefore, nothing prevents a hacked name

server from sending incorrect data, spoofing network data, stealing or redirecting valuable data, and

nothing prevents the resolvers from trusting false information. In addition, there is no guarantee that

the servers and the clients performing the transactions are the entities they claim to be.

For example, a possible way to attack DNS by taking advantage of the lack of data integrity and

source authentication would be to take control over a router and then spoof network data packets

containing the answer to a DNS query that pass through the router. Figure 3-1 illustrates this scenario.

Hacked router

query query

Unhacked

ResolvermdName Server

Incorrect answer Correct answer

Figure 3-1: DNS attack by breaking into a router

Another way a malicious user can attack without controlling a router is to sit in the way a query packet

passes, sniff the packet, and then generate a wrong answer fast enough so that the fake answer reaches

23

the resolver before the correct answer from the originally intended name server. The source IP address

and source port fields should be set properly so that the resolver thinks the packet is from the name

server it originally sent the request to. This is known as the 'man-in-the-middle- attack. Figure 3-2

illustrates such an attack.

Olnerv

Resolver Unhacked Name Server

Incorrect answer Correct
answer

Analyze
and

Network Sniffer

Figure 3-2: Man-in-the-middle attack of DNS by network packet spoofing

Also, without any authentication and authorization scheme, it is possible to issue a fraudulent update

request to the zone administrator to change some resource records, and thus corrupt DNS database, as

illustrated in figure 3-3. Because of the decentralized administration of DNS, achieved through zone

delegation, the root user of the host veena.lcs.mit.edu may change the IP address of the host and notify

the administrator of the Ics.mit.edu zone of the update. As it stands now, there is no way to

authenticate the update request from the message itself in current DNS. For a local case, the

administration can ensure the authenticity of the update request by some manual means, e.g., a phone

call. This, however, defeats the purpose of the decentralized administration of the domain name

system and proves impractical for a huge entity like the Internet.

Fraudulent update
Update Correct Database Corrupt database
Request

Figure 3-3: DNS attack by issuing fraudulent update request

3.1.2 Lack of Consistency Control

DNS uses a simple primary-secondary scheme to ensure service availability and load distribution

among the servers. The secondary name server splits the load with the primary server or handles the

whole load if the primary is down; clients contact only one server at a time. While the primary server

gets its data from a file, the secondary server loads its data over the network from a master name

server during a zone transfer, the period of which is determined by the zone administrator. During

24

updates, the data only gets updated to the primary files. Therefore, the states of the primary name
server differ from that of the secondary after an update and before the next zone transfer. Especially in
highly dynamic zones, the secondary name server almost always contains some stale data and there is
inconsistency in the results served by the primary and the secondary name server. This causes
consistency and reliability problems even without an intentional attack since clients may get stale data
from some servers. Moreover, some newly updated data may be lost from the system forever if the
primary name server crashes before the data is transferred to the other servers. DNS therefore does not
tolerate benign faults at the servers.

3.1.3 Vulnerability to Server Failures

In current DNS infrastructure, only one name server gets contacted at a time to provide the name
service. Therefore, one compromised server is enough to block information, steal or redirect valuable
information, or fool the resolvers with incorrect information. Figure 3-4 describes a scenario where an
intruder breaks into a name server and fools any subsequent client that contacts this compromised

server with incorrect answers to DNS queries.

Query Ori" 1
V tabas j

Resolver Hacked
Name

Incorrect answer to query Hacked Server
Database

Figure 3-4: DNS attack by a Single Name Server Break In

In the worst case, an intruder breaks into the primary name server of a zone and corrupts the database.
The secondary name server contacts the primary periodically (according to the refresh value in the
zone SOA RR) and downloads any new data. As there is no way for the secondary name server to
authenticate the validity of the data provided by the primary name server, it trusts every byte it gets

from the primary and therefore, both the databases get corrupted.

3.2 Proposed DNS Security Extension (DNSSEC)

In late 1997, a security extension of DNS (DNSSEC) was proposed [14][17] by the Internet
Engineering Task Force (IETF) to make DNS infrastructure more secure and robust. This extension

was partially implemented by Trusted Information Systems, Inc. and an experimental version of it has
recently been incorporated into BIND version 9.0 [20]. The basic idea behind DNSSEC is to provide
data authentication to security aware resolvers and applications through the use of cryptographic

digital signatures. DNSSEC provides three distinct services [11]

25

* key distribution

* data integrity and origin authentication

* transaction and request authentication.

To provide authentication, DNSSEC introduced some new RR types in DNS.

3.2.1 New RR Types

KEY Resource Record

The KEY RR is used to store the public key that is associated with a domain name. This can be the

public key of the zone, host, user or some other entity. Usually, there is a single private key per zone,

but there might be multiple keys for different algorithms, signers, etc. To construct a trusted

authentication chain, a secure zone must contain a KEY RR for every delegated subzone that is signed

by the private key of the superzone.

A resolver could learn the public key of a zone either by having it be statically configured within it, or

by making a DNS query. To reliably learn a public key by querying DNS, the key itself must be

signed with a key the resolver can authenticate.

Once a security aware resolver reliably learns the public key of the zone, it can authenticate whether

signed data read from that zone is properly authorized or not. For utmost security, DNSSEC

recommends storing the zone private key offline and using it to re-sign all the records in the zone

periodically. However, there are cases, for example dynamic updates [13], where the zone private key

needs to be kept online.

SIG Resource Records

The signature resource record (SIG RR) is the primary tool to ensure data integrity and authentication

in DNSSEC. A SIG RR unforgeably authenticates an RRset (a set of resource records with the same

name, type and class) by binding it to the signer's domain name and a validity interval. This is done

using cryptographic techniques and the signer's private key. In most cases, the signer is the owner of

the zone from which the RR originated.

Every name in a secure zone is associated with at least one SIG RR for each resource record type

under that name except for glue address records and delegation point NS RRs [14]. A security aware

name server returns, with the RRs retrieved, the corresponding SIG RR, which is used by a security

aware client to authenticate the returned RRset.

26

NXT Resource Records

The next (NXT) RR is used to securely indicate that RRs with an owner name in a certain name
interval do not exist in a zone and to indicate the RR types present under an existing name. This is
important because in DNSSEC, a SIG RR can only be used to sign existing RRsets in a zone.
However, this is insufficient to prevent the authenticated denial of DNS entries. Only with the NXT
RR, it is possible to provide "data origin" authentication for the non-existence of a domain name in a
zone or the non-existence of a type for an existing name. For example, the NXT RR with the value

fix.foo.bar 500 IN NXT frodo.foo.bar NS SIG KEY NXT

indicates that there is no domain name that existing lexicographically between fix.foo.bar and
frodo.foo.bar. Also, fix.foo.bar has NS RR, SIG RR, KEY RR, and NXT RR under its name.

3.2.2 The Chain of Authentication

When a security aware resolver gets a response from a security aware name server, it verifies the
signature for each RRset in the response. From the resolver's point of view, a verified signature
establishes the integrity of data. However, the resolver must know whether it should trust the KEY
used to sign the data and whether that KEY was permitted to sign that message. A security aware
resolver, therefore, needs to establish a cryptographically verified path from a known trusted point to

the point represented by the name in the response. Since the SIG RR associated with the KEY set is
signed by the parent zone's key, the resolver will request security information of the parent. This
process will continue further up the tree until the resolver finds a trusted key. In the worst case, this
will end with the root server key, which is statically configured in all DNSSEC aware entities

[14][17]. In this way, a security aware resolver establishes the authenticity of the source by "walking

DNS chain of trust".

Figure 3-5 describes a sample resolution for the IP address of veena.lcs.mit.edu in DNSSEC. The
notation (X)K indicates that contents of the message X is digitally signed by the key K. For this
example, we assume that the resolver is capable of making a recursive query. The key of the local
name server Kiocal is statically configured at the resolver. When the resolver asks the local name server
for the IP address of veena.lcs.mit.edu, the local name server, being unable to resolve the query using
its local database and cache, gives the IP address and the key of the root name server (Kroot) to the

resolver. To prove authenticity of the answer, the local name server signs the data it sends to the
resolver using the key Kiocal. Upon verification, the resolver directs the query for the IP address of
veena.lcs.mit.edu to the root name server. The root name server gives the resolver the IP address of the

name server of the mit.edu zone and its key Kat. When the resolver verifies that the result it got from
the root name server is signed by the trusted key Kroot, it trusts the authenticity of the response, and
sends the query for veena.lcs.mit.edu to the name server of the mit.edu zone. The name server of the
mit.edu zone provides the resolver with the IP address of the Ics.mit.edu zone and its key Kic.s. Upon
successful verification of the signed response using the key Knt, the resolver directs the query for the

27

IP address of veena.lcs.mit.edu to the name server of lcs.mit.edu zone. The name server of the

lcs.mit.edu zone finally provides the resolver with the IP address of veena.lcs.mit.edu. To prove

authenticity, the answer is signed using the key KIcs.m1 1t. Upon successful verification, the resolver trusts

the final answer it receives from the name server of the Ics.mit.edu zone. Figure 3-5 illustrates the

resolution scheme described above.

K&OCa (statically configured)

Kmot verifiedby Kjoc4l

4-9

Km, verifird by K *
--

Kiosmit verified by kmit

answer verified by Kc4rs.mt

4A

Kocal
(public
key for
local
name
server)

Resolver

IP of veena.lcs.mit.edu ?

(IP of root name server) Kiocal

IP of veena.lcs.mit.edu ?

(IP of mit.edu name server) Kroot

IP of veena.lcs.mit.edu ?

(IP of lcs.mit.edu name server) Kmit

IP of veena.lcs.mit.edu ?

(IP of veena.lcs.mit.edu) KI0s5 mit

Signed by
"loca

*Kmit
Signed by

I Kroot

Kis.m it
Signed by

Kmit

IP of veena
Signed by

KIS.mit

Figure 3-5: A Sample DNS Query Resolution in DNSSEC

3.2.3 Dynamic Update

To support dynamic update of data, the secure DNS extension has defined a new DNS opcode, new

DNS request and response structure, and new error codes [13]. All the data in a secure zone is signed

either by a zone key or by a dynamic update key tracing its authority to a zone key. An update is

defined to be any combination of deletion and insertion of resource records with one or more owner

names; however, all the changes for any particular DNS update are restricted to a single zone. Updates

occur only at the primary server of a zone. A dynamic secure zone is any secure zone that can interpret

an update request, verify the authentication and authorization of the request, and update the RR

database in realtime.

RFC 2137 [13]describes two basic modes of dynamic secure updates, mode A and mode B. A

summary of comparison table is given below.

28

Local
Name
Server

r *1

Root
Name
Server

mit.edu
Name
Server

lcs.mit..edu
Name
Server

I i

Criteria Mode A Mode B
Definition Zone key offline Zone key online

Server Workload Medium High

Dynamic Data Temporality Transient Permanent

Mode A

In mode A, the zone owner private key and the static zone master file are kept offline for maximum
security of the static zone contents. Their authorizing dynamic key signs any dynamically added or
updated data and they are backed up, along with the SIG RR, in a separate online dynamic master file.
This mode reduces server computation as the server only needs to check the signatures on the update
request and data, which have already been signed by the updater (generally checking signature is a
much faster operation than signing the data), and update the relevant NXT RR if needed. Since the
dynamic data is only stored in an online dynamic master file and is only authenticated by the dynamic
update keys that may expire, updates in mode A are transient in nature.

Mode B

In mode B, the zone owner private key and the master file are kept online at the zone primary server.
After a successful, authenticated update, the SIG RRs under the zone key for the resulting data are
generated and these SIG and possible SOA/NXT changes are entered into the zone and the unified
online master file. This mode, therefore, requires more effort on the server's part as it needs to
compute zone data signatures in addition to verifying the signatures on the request. Since signing
generally takes more time than verification, the server needs to do more computational work than it
would do to verify the data signatures required in mode A. For mode B, the incorporation of the
updates into the primary master file and their authentication by the zone private key make them

permanent in nature.

3.3 Problems with DNSSEC

While the DNS security extension provides data integrity and source authentication, it still suffers
from some security flaws. DNSSEC ensures a secure communication of DNS data by providing a

means to check whether data has been corrupted during communication over the Internet. While this
detects the corruption of messages during communication, DNSSEC does not tolerate server failures
due to benign faults or malicious attacks. DNSSEC assumes that the zone private keys are not stolen
and the servers that are responsible to provide authenticated name service are not corrupted
themselves. Given the popularity of malicious attacks on the name servers, this is not a reasonable

assumption to make.

The biggest dilemma in DNSSEC is where to store the zone private key. The other problems include
DNSSEC's vulnerability to server failure, freshness attack, and the lack of a consistency control

mechanism.

29

3.3.1 Zone Private Key Storage

Online Storage

The biggest advantage of storing the zone private key online, as in mode B, is that new SIG RRs can

be calculated immediately after an authenticated update succeeds. This ensures a real-time dynamic

update. However, if the zone private key is stored online, then a security breach of the server that

stores the zone private key gives an intruder full access to the zone, i.e., he can sign whatever he

wants, issue fraudulent update requests, and corrupt the database. This mode therefore cannot survive

the security breach of a single server.

Storing an encrypted private key in the server and decrypting it before use also doesn't work, because

the intruder may dump and analyze the memory to retrieve the private key once he gets hold of the

server that stores the zone private key. For a system like this, the zone private key should never be in

the server memory even for the shortest period to ensure full security.

One might consider the use of special hardware like a smartcard that is easy to attach or detach from a

computer to store the zone private key. This needs special hardware support. Moreover, the moment

someone attaches the smartcard to a compromised server, it is possible to use the password stolen

from the system to get the smartcard to sign fraudulent update requests or sign bad RRs, even though

the intruder may not know the zone private key. Furthermore, it is not absolutely impossible to steal

the private key stored in a smartcard.

The zone private key can also be stored in a secure coprocessor attached to the server. This ensures

that the zone key cannot be stolen from the secure coprocessor. However, a compromised server can

get any data signed by the zone private key without a need to expose or steal the zone key from the

coprocessor.

Offline Storage

When dynamic update keys are stored online, as in mode A, the dynamic data stored only in an online

dynamic master file renders updates to be transient in nature, which is not desirable. Moreover, the

solution of keeping the zone private key offline while keeping the dynamic update keys online is no

different from keeping the zone key online, because by breaking into a server that holds the dynamic

update keys, an intruder may get hold of the keys and issue fraudulent update requests that will corrupt

the database.

For utmost security, DNSSEC recommends that zone private key should be stored in a offline, non-

network connected, physically secure machine, and a portable media, such as a diskette, should be

used to transfer the update request and the signed new data between the signer and the primary name

server. This, however, defeats the purpose of real-time, dynamic update because it is not possible to

get a dynamically added or changed resource record signed right away if the zone private key is stored

30

offline. Such data is either not available or not protected by the zone private key before the next
signing takes place, which occurs infrequently. This may not be harmless as update requests are often
time critical. For example, if some user notices that her private key is compromised, she would
immediately want to revoke the corresponding KEY and SIG RRs. If, however, the zone private key is
kept offline, she may have to wait until the next signing point. In the mean time, the intruder is free to
abuse the compromised key.

3.3.2 Freshness Attack due to Pre-generated SIG RR

Another serious problem with DNSSEC is its vulnerability to freshness attacks. A freshness or replay
attack occurs when a message or a message component for a previous run of a protocol is recorded by
an intruder and replayed in a later run of the protocol.

DNSSEC provides an unforgeable authentication of an RRset of a particular type, class, and name by
associating it with a signature resource record that binds DNS data to a time interval and the signer's
domain name. However, since signature generation is expensive, SIG RRs are not generated on a per-
query basis; rather they are computed occasionally, and are valid from a pre-set signature inception
time to a signature expiration time, and this interval tends to be long. The original TTL (time-to-live)
value of the RR is also included and protected by the signature. The corresponding RR is valid until
the signature expiration time or the TTL expiration time, whichever comes first. This opens a big
window for freshness attacks. Even if some RR is updated, the actual update remains ineffective until
the signature expiration time. In the mean time, a malicious user can replay the stale data to fool a
client.

3.3.3 Lack of Consistency Control and Vulnerability to a Single Server Failure

the DNS security extension attempts to patch the biggest security hole in DNS infrastructure by
providing data integrity and origin authentication. However, it still suffers from the lack of consistency
control and vulnerability to a single server failure due to both benign faults (e.g., a server crash) and

malicious attacks.

DNSSEC uses a simple primary-secondary replica scheme to provide server availability and load
distribution, as in the non-secure version of DNS. Only one of the primary or the secondary name
server takes part in a particular query. Data update takes place only at the primary server and the
secondary server knows nothing about the update until after the next zone transfer. Thus, there may be
inconsistencies between the states of the primary and the secondary server, and a client query may
result in completely different answers depending on which server served the query. This causes
consistency and reliability problems even without an intentional attack. Moreover, if the primary
server crashes and loses state before the secondary server loads the updated data from primary, the
newly added or updated data is lost forever. DNSSEC, therefore, does not tolerate benign server faults.

Also, like the non-secure DNS, only one name server gets contacted at a time to provide the name
service in DNSSEC. Therefore, one compromised server is enough to block information, steal

31

valuable information, redirect information, issue fraudulent update requests, or fool the client with

wrong information in DNSSEC.

3.4 Why We Need Something More Secure than DNSSEC

From the above discussion, it is apparent that the IETF proposed secure extension of the domain name

system (DNSSEC) is not secure enough, especially in a highly dynamic environment. With its

exponential growth in size and popularity, the Internet today is more dynamic than ever. Thousands of

hosts are joining the Internet everyday. According to a domain survey done by the Internet Software

Consortium available at http://www.isc.org/ds/WWW-200007/index.html [19], the number of hosts

advertised on DNS was 56,218,000 in July 1999. By January 2000, the host count went up to

72,398,092. According to the latest survey in July 2000, the host count in DNS was 93,047,785. In

addition, server load distribution schemes and mobile computing, which tend to use highly dynamic

DNS data [35], are getting very popular. This trend, together with the prospects of DNS serving as a

highly reliable public key infrastructure for a variety of internetworking protocols and applications,

calls for a secure and robust domain name system.

The IETF proposed DNS security extension (DNSSEC) uses end-to-end cryptographic techniques to

ensure a secure communication of DNS data. While end-to-end [32] cryptographic techniques detect

the corruption of messages during communication, cryptography alone cannot make a system tolerant

against server failures, both due to benign faults and malicious attacks. DNSSEC assumes that the

zone private keys are not stolen and the name servers are not corrupted themselves. However, given

the popularity of malicious attacks on the name servers, it is not reasonable to make such assumptions.

Moreover, as discussed in section 3.3, DNSSEC cannot tolerate some benign server failures. To ensure

high integrity, robustness, and availability of the system in the presence of arbitrary failures in an

asynchronous environment like the Internet, we need Byzantine fault tolerance [22], i.e., resistance of

the system to arbitrary misbehavior of faulty components [6]. Cryptography and Byzantine fault

tolerance together can solve the security problems of the domain name system. This is the approach

we take in designing a secure and robust DNS.

32

Chapter 4

A Practical Byzantine Fault Tolerant Algorithm

A Byzantine-fault-tolerant system makes no assumption about the behavior of the faulty nodes [6]. In

a highly asynchronous system like the Internet in the presence of malicious attacks, it is important that

a system is Byzantine fault tolerant, i.e., the system provides high integrity, robustness, and

availability of service in the presence of arbitrary failures. In this chapter, we describe a Byzantine

fault tolerant algorithm that we consider to be practical and suitable for a system like ours. The

algorithm is developed by Miguel Castro and Barbara Liskov of the programming methodology group

of MIT Laboratory of Computer Science [6][7][8][9]. The system consists of 3f+1 tightly coupled

replicas per name server and guarantees safety and liveness properties of the system assuming no more

than f replicas are faulty within a small window of vulnerability [9].

4.1 The CLBFT Algorithm

M. Castro and B. Liskov's practical Byzantine fault tolerant algorithm (CLBFT) provides

asynchronous state-machine replication that offers both integrity and high availability in the presence

of Byzantine faults. The approach is interesting for two reasons: (1) it improves security by recovering

replicas proactively, and (2) it is based on symmetric key rather than expensive public key

cryptography, which allows it to perform well so that it can be used in practice to implement real

services.

Together with its recovery mechanism, the algorithm allows a system to tolerate any number of faults

over the lifetime of the system, provided fewer than 1/3 of the replicas are faulty within a window of

vulnerability that is small under normal conditions. The window may increase under a denial of

service attack, but the algorithms can detect and respond to such attacks, thereby maintaining the

integrity of the system.

4.2 The System Model and Assumptions of the CLBFT

The CLBFT assumes an asynchronous distributed system where nodes are connected by a network.

The network may fail to deliver messages, duplicate them, or deliver them out of order.

The CLBFT uses a Byzantine failure model, i.e., faulty nodes may behave arbitrarily, subject only to

the following restrictions:

33

" Node failures are independent, i.e., one node failure does not necessarily cause other node

failures.

" The adversary and the nodes it controls have bounded computational power such that it is
unable to subvert the cryptographic techniques used in the system.

* The adversary cannot delay correct nodes indefinitely.

Cryptographic techniques are used to prevent spoofing and replays and to detect corrupt messages.
The CLBFT makes use of public-key cryptography [30], message authentication codes [29], and

message digests produced by collision resistant hash functions.

4.3 How the CLBFT Algorithm Works

The CLBFT algorithm is a form of state machine replication. The service is implemented by a set of
replicas R and each replica is identified using an integer in {0,..., IRI-1}. Each replica maintains a copy
of the service state and implements the service operation. The algorithm assumes IRI= 3f + 1 where f
is the maximum number of replicas that may be faulty. Service nodes are non-faulty if they follow the

algorithm and no attacker can impersonate them (e.g., by forging their MACs).

To tolerate Byzantine faults, every step taken by a node is based on obtaining a certificate, which is a

set of messages certifying some statement is correct and coming from different replicas. The size of
the set of messages in a certificate is either f+1 or 2f+1, depending on the type of statement and step

being taken. A certificate of size f+1 is sufficient to prove that the statement is correct because it
contains at least one message from a non-faulty replica. A certificate of size 2f+1 ensures that it will
also be possible to convince other replicas of the validity of the statement even when f replicas are

faulty.

To guarantee safety, all non-faulty replicas need to agree on a total order for the execution of requests
despite failures. The system ensures this behavior by using a primary-backup mechanism where
replicas move through a succession of configurations called views. In a view, one replica is designated
as the primary and the others are backups. The algorithm chooses the primary p of a view v such that p
= v mod IRI where views are numbered consecutively. View changes are carried out to provide

liveness by allowing the system to make progress when the current primary fails.

The algorithm works roughly as follows:

1. A client sends a request to invoke a service operation to the primary.
2. The primary multicasts the request to the backups.

3. The replicas execute the request and send a reply to the client.

4. The client waits for f+1 replies from different replicas with the same result; this is the result of

the operation.

34

When the primary receives a request, it uses a three-phase protocol to atomically multicast the request
to the backups. The three phases are pre-prepare, prepare and commit. The pre-prepare and prepare
phases are used to totally order requests sent in the same view even when the primary, which proposes
the ordering of requests, is faulty. The prepare and commit phases are used to ensure that requests that
commit are totally ordered across views. All the messages between the replicas in this three-phase
protocol are authenticated using MACs. Figure 4-1 shows the operation of the algorithm in the normal
case of no primary faults.

Each replica stores the service state, a log containing information about requests, and an integer
denoting the replica's current view. The log is kept for recovery purpose.

request pre-prepare prepare commit reply

Cliet

Replica 0

Replica 1

Replica 2

Replica 3
AC-

unknown pre-prepared prepared commited

Figure 4-1: Normal case operation in CLBFT. Replica 0 is the primary, replica 3 is faulty

Replicas can discard entries from the log once the corresponding requests have been executed by at
least f+1 non-faulty replicas, a condition required to ensure that request will be known after a view
change. The algorithm reduces the cost by determining the condition only when a request with a
sequence number divisible by some constant K (e.g., K = 128) is executed. The state produced by the
execution of such requests is termed as checkpoints. When a replica produces a checkpoint, it
multicasts the checkpoint message to other replicas and waits until it has a certificate with 2f+1 valid
checkpoint messages for sequence number n of the last request whose execution is reflected in the
state with the same state digest d sent by different replicas. At this point the checkpoint is known to be
stable and the replica garbage collects all entries in its log with sequence numbers less than or equal to
n; it also discards earlier checkpoints.

4.3.1 View Changes

The CLBFT algorithm uses a view change protocol to ensure liveness by allowing the system to make
progress when the current primary fails [9]. The protocol also preserves safety: it ensures that non-
faulty replicas agree on the sequence numbers of committed requests across views.

35

View changes are triggered by timeouts that prevent backups from waiting indefinitely for requests to

execute. A backup is waiting for a request if it received a valid request and has not executed it. A
backup starts a timer when it receives a request and the timer is not already running. It stops the timer

when it is no longer waiting to execute the request, but restarts it if at that point it is waiting to execute

some other request.

If the timer of backup i expires in view v, the backup starts a view change to move the system to view

v + 1. It stops accepting messages (other than checkpoint, view-change, and new-view messages) and

multicasts a view-change message to all replicas.

The new primary p for view v + 1 collects a quorum certificate with 2f+1 valid view-change messages

for view v + 1 signed by different replicas. After obtaining the new-view certificate and making

necessary updates to its log, p multicasts a new-view message to all other replicas, and enters view v +
1: at this point it is able to accept messages for view v +1. A backup accepts a new-view message for v

+ 1 if it is properly signed, if it contains a valid new-view certificate, and if the message sequence

number assignments do not conflict with requests that committed in previous views. The backup then

enters the view v + 1, and becomes ready to accept messages for this new view.

Figure 4-2 illustrates an instance of the view-change protocol. The detail of the protocol can be found

at [9].

view-change new-view

Replica 0 = primary of view v

Replica 1 = primary of view v + 1

Replica 2

Replica 3

Figure 4-2: View Change Protocol

4.3.2 Proactive Recovery

The recovery protocol makes faulty replicas behave correctly again to allow the system to tolerate

more than f faults over its lifetime. To achieve this, the CLBFT protocol ensures that after a replica

recovers, it is running correct code, it cannot be impersonated by an attacker, and it has correct, up-to-

date state.

Since a Byzantine-faulty replica may appear to behave properly even when broken, the recovery

mechanism is proactive to prevent an attacker from compromising the service by corrupting 1/3 of the

replicas without being detected. The algorithm recovers replicas periodically independent of any

failure detection mechanism. A recovery monitor saves the replica's state to disk, reboots the system

with correct code and restarts the replica from the saved state. The correctness of the operating system

36

and service code is ensured by storing them in a read-only medium. At this point, the replica's code is
correct and it did not lose its state. The replica must retain its state and use it to process requests even
while it is recovering. This is vital to ensure both safety and liveness in the common case when the
recovering replica is non-faulty; otherwise recovery could cause the f+ 1 t fault.

When a node have been attacked, the attacker is not able to steal the node's private key because this is
stored in a secure coprocessor; the details are discussed in [9]. However, the attacker is able to steal all
the secret keys known to that node, and furthermore, it can cause the coprocessor to sign lots of
erroneous messages. Therefore, if the recovering replica r was faulty, the state may be corrupt and the
attacker may forge messages because it knows the MAC keys used to authenticate both incoming and
outgoing messages. To overcome these problems, the recovering replica r discards the keys it shares
with clients and it multicasts a new-key message to change the keys it uses to authenticate messages
sent by the other replicas. This is important if r was faulty because otherwise the attacker could
prevent a successful recovery by impersonating any client or replica. The algorithm allows the replica
to continue participating in the request processing protocol while it is recovering, since this is
sometimes required for it to complete the recovery. The detail of the recovery protocol can be found
in [9].

4.4 The Properties of the CLBFT Algorithm

The service provided by the CLBFT algorithm is modeled as a state machine that is replicated across
different nodes in a distributed system. The algorithm can be used to implement any replicated service
with a state and some operations. The clients issue requests to the replicas and block waiting for the
reply. Like all state machine replication techniques, the CLBFT imposes two restrictions on the
replicas: they must start in the same state, and they must be deterministic. The system can allow some
common forms of non-determinism [6].

The CLBFT ensures safety for an execution assuming no more than f replicas out of a total of 3f+1
replicas are faulty within a window of vulnerability. Safety means that replicated service satisfies
linearizability [6] i.e., service behaves like a centralized implementation that executes operations
atomically one at a time. The system provides safety irrespective of the number of faulty clients using
the system, even if they collude with faulty replicas. In DNS, a faulty client can issue an unauthorized
update request. This is checked by the authentication mechanism provided by the CLBFT, which
ensures that the replicas will authenticate the client and can deny an unauthorized request issued by
faulty client.

The algorithm also guarantees liveness [6] i.e., non-faulty clients eventually receive the service,
provided (1) at most f replicas are faulty within the windows of vulnerability, and (2) denial-of-service
attacks do not last forever, i.e., there is some unknown point in the execution after which all messages
are delivered within some constant time d. This is a rather weak synchrony assumption that is likely to
hold true in any real system provided faults are eventually repaired.

37

Another advantage of the CLBFT algorithm is that it improves the security of the system by
recovering replicas proactively. Moreover, it replaces expensive public key cryptographic operations
with message authentication codes (MACs), which makes the algorithm an order of magnitude faster,
and thus more practical. The CLBFT replication library has been used to implement the first
Byzantine-fault-tolerant NFS file system, BFS [9]. The performance results show that BFS performs
2% faster to 24% slower than production implementations of the NFS protocol that are not replicated.
These results indicate that the CLBFT replication library can be used to build practical systems that
tolerate Byzantine faults.

Given these properties, we consider the CLBFT to be a practical and suitable choice for implementing
a Byzantine-fault-tolerant domain name system.

38

Chapter 5

A Byzantine-fault-tolerant DNS with Session Key

5.1 Design Criteria

In section 3, we identified the major security problems associated with current DNS infrastructure and
its security extension (DNSSEC) proposed by the Internet Engineering Task Force (IETF). As a
solution to these problems, we now propose a secure and scalable Byzantine-fault-tolerant domain
name system. First, we describe the design criteria the proposed system should meet. The motivations
are to overcome problems associated with current DNS and its security extension on one hand, and to
provide a scalable, robust infrastructure that ensures availability without assuming any specific nature
of malicious attacks on the other.

The two major design criteria for the proposed system are:

" Safety, and

" Performance

We want to implement a secure domain name system, which tolerates failures and attacks both at the
servers and during data communication. The system should provide a secure communication
mechanism to detect whether data have been corrupted during communication over the Internet. Also,
the system should tolerate server failures due to both benign faults (e.g., a server crash) and malicious
attacks by hackers. Furthermore, the proposed system should support a secure dynamic update
mechanism, which includes a user authentication and authorization scheme, and a mechanism to make
recording of new information secure and immediately available.

Moreover, the performance of the proposed domain name system should be comparable, if not better,
to what is available right now. The system should not trade performance for security and robustness to
the extent that there is noticeable performance degradation.

We now discuss the design criteria for the proposed Byzantine-fault-tolerant domain name system in

detail.

5.1.1 Safety

Data Integrity and Secure Communication

The proposed system should provide means for data integrity authentication, source authentication,
and authorization. Using cryptographic techniques, servers should authenticate the data they send to
clients, and clients should be able to verify the integrity of the data they receive.

39

Byzantine Fault Tolerance

Unlike the DNS security extension, the proposed system should not assume that the server private

keys are not stolen, or the servers are not corrupted themselves. The system should tolerate server

failures due to both benign faults, and malicious attacks. In fact, most fault tolerant algorithms assume

fail-stop behavior of faulty nodes, i.e., a node stops functioning in case of a failure [34]. These

algorithms are usually designed to handle unpredictable processor crashes. However, with malicious

attacks on the Internet getting increasingly common, it is no longer reasonable to design a system that

makes assumptions about specific behavior exhibited by faulty nodes. To ensure robustness, the

system should be Byzantine fault tolerant [22], i.e., resistant to arbitrary misbehavior of faulty

components [6]. However, the system should be realistic and practically realizable for an environment

like the Internet.

Consistency

The system needs to ensure consistency among all the non-faulty name servers of a zone. No data

update should be visible to the resolver until all the non-faulty name servers of a zone commit to that

update. For a valid and authenticated update request, all the non-faulty name servers should execute

the same update operations in the same order; otherwise they all should reject the request. No

inconsistency in a faulty name server should be visible to the client, i.e., a client should not be

confused by different versions of authenticated data at any time.

Small Window of Freshness Attack

One major problem with the DNS security extension (DNSSEC) is that the system depends on a pre-

computed authentication of the data, which is usually associated with a long time to live (TTL) value

to reduce the cost of signature generation. This makes the system vulnerable to the freshness attack,

which occurs when an authenticated message of a previous run is recorded by an attacker and replayed

as the reply to a later run. To alleviate the problem, the newly proposed system should provide per-

query authentication of the data. This will significantly reduce the window of vulnerability.

Reliability and Availability

The proposed system should be highly reliable, i.e., it should ensure that the system state is not lost or

corrupted when some node fails. Reliability also ensures that the effect of an operation on some data is

visible to all who access the data once the operation completes, regardless of any failure that might

have taken place. In addition to reliability, the system should provide availability, i.e., the service

should be available even in the presence of some failure.

40

5.1.2 Performance

Scalability

For an exponentially growing environment like the Internet, it is of utmost importance that the

proposed system be scalable. If the system does not scale well, it is unlikely that it will be adopted to

provide a ubiquitous service like the domain name system, which is used by virtually all

internetworking services. Especially, the system should take advantage of a smart caching scheme

since caching substantially improves the performance of the domain name system.

Offload the Root Name Servers

The data in appendix A indicate that the current load on the thirteen globally distributed root name

servers is too high, which significantly affects the performance of DNS. It is of utmost importance to

design a system that realistically offloads the root name servers, thus ensuring better scaling and

performance of the domain name system.

5.2 SBFTDNS System Architecture

We now describe the system architecture of the proposed scalable Byzantine-fault-tolerant domain

name system (SBFTDNS). This system maintains the current DNS name space structure and

administration. However, to provide Byzantine fault tolerance, there are 3f+1 tightly coupled replicas

per name server in each zone. In this way, the system provides correct domain name service in the

presence of up to f faulty replicas. Typically, f=l to tolerate one faulty replica.

Servers

3f+1 tightly coupled replicas compose the name-server side of SBFTDNS. Each replica maintains a

copy of the RR database with identical initial state. Unlike current DNS, in which there is a single key

shared by an entire zone to authenticate data, each replica in SBFTDNS has its own public-private key

pair. While the public key is stored and authenticated in its parent zone, or statically configured in a

resolver, the private key is stored in a secure coprocessor attached to the replica and cannot be stolen.

This permits real-time dynamic update without allowing a security breach, as the intruder needs to

compromise more than f replicas before being able to corrupt the data.

Clients

Each client is statically configured with 3f+1 public keys that belong to the 3f+1 replicas for the name

server of one trusted zone, e.g., the root zone. Clients can also learn the public keys of the replicas of a

name server by constructing an authentication chain, analogous to the scheme used by the DNS

security extension as described in section 3.2.2. A client obtains name service from a SBFTDNS

server using the CLBFT protocol described in chapter 4.

41

Table 4-1 lists some of the differences between the DNS security extension (DNSSEC) and

SBFTDNS.

Feature DNSSEC SBFTDNS
Number of faults tolerated 0 f

Number of zone replicas/name server > 2 3f+1

Number of zone authentication keys 1 3f+1

Number of replicas involved in a request 1 3f+1

Real time dynamic update Insecure Secure

Table 4-1: Comparison of DNSSEC and SBFTDNS features

However, the SBFTDNS system architecture raises concerns about two issues. The first concerns key
management, and the second concerns data caching. We now discuss these issues in detail.

5.3 Key Management

For a client to securely communicate with a server, first it needs the public key of the server. This can
be easily obtained, e.g., by statically configuring each client with the public keys of the root servers,

and then constructing an authentication chain to get the public key of the desired server.

However, for the client to actually communicate with the server using the CLBFT protocol, there must
also be a session key established between the client and the server. This allows the use of symmetric
key cryptography, which is good for a number of reasons. For example:

" Session keys are much shorter than public keys, and therefore, symmetric key digital

signatures are much faster to generate and verify than public key digital signatures.

" With the session key mechanism, there is no need to generate and verify long and expensive
SIG RRs that are used in DNSSEC to provide data authentication. Therefore, the reply
packets are significantly smaller than those in DNSSEC and the verification cost is lower.

* In DNSSEC, some queries (e.g., the NS RR query) require a large number of SIG RRs per
reply. For example, in a zone with 2 name servers (every zone has a minimum of two name

servers associated with it), a security aware resolver needs to verify at least 4 SIG RR for an
NS (name server) RR query where the reply includes one SIG RR for the NS RRs, one SIG
RR for the zone KEY, and one SIG RR for each name server's A (address) RR (2 in total).
The verification of such a large number of SIG RRs increases the elapsed time or latency of
the query resolution process. The latency, however, does not increase significantly in a
session key based DNS, because a resolver only needs to verify one MAC for each reply,

regardless of how many RRs are included.

42

" Additionally, with the session key mechanism, the need to cache KEY RRs and perform the
expensive KEY-SIG chain verification process is avoided.

* There is also the additional advantage of using one secret key rather than different public keys
as suggested by RFC 2137 [13] for authenticating the dynamic update requests and the results

of a query.

* Since the session key mechanism can significantly improve the performance of secure DNS,
it enables BFTDNS to provide per-query data authentication, thereby ensuring more up-to-
date data, and providing a secure, robust, and efficient domain name system.

A session key can be established between a client and a replica once the public key is obtained. Each
communicating pair of client and replica shares a secret session key; this key is used for
communication in both directions. The client refreshes the key periodically, using the new-key
message. If a client neglects to do this within some system-defined period, a replica discards its
current key for that client, which forces the client to refresh the key.

However, to avoid the exchange of messages to obtain the public keys, and the expensive public-key
cryptographic operations to establish session keys, it is desirable to cache both public and session
keys. But this raises concerns about system scalability since every client-server pair needs to share a
session key to protect the communication between them from spoofing attacks. Key management may
get unwieldy as the number of shared secret keys increases quadratically with the number of nodes in
the system. According to a recent Internet domain survey done by the Network Wizard and published
by the Internet Software Consortium [19], the total number of hosts in the Internet in July 2000 was
93,047,785 and this number was expected to cross lOOM by November 2000. If we assume that every
100 hosts share a proxy name server, there are about a million proxy name servers in the Internet.
Without some hierarchical organization, any of these IM proxy name servers can theoretically
communicate with any other proxy name server and therefore needs to establish a million session
keys. If each session key consumes 16 bytes of memory, then a proxy name server needs 16 Mbytes of
memory to cache all the session keys at the same time. If all the proxy name servers are Byzantine
fault tolerant and therefore consist of 3f+1 tightly coupled replicas, resource consumption will go even
higher, which may not be affordable for many small or medium size zones. In addition, to guarantee
security, we refresh session keys very often in BFT. Even if we assume the average TTL of a session
key is 10 days, then on average one out of a million session keys expires every second1

(86400*10/1000000 = 0.864 sec). This incurs a significant workload on the name server as the process
of establishing a session key between two entities involves expensive PPK operations. The problem of
scalability, therefore, is an important one.

Assume Poisson arrival of session key expiration times with arrival rate X = 1/10days
With N=1000000, the aggregate rate = NX = 100000/day.
The average inter-arrival time = 1/N = 1/100000 day = 86400/100000 sec = 0.864 sec

43

To keep the problem of scalability in a Byzantine-fault-tolerant DNS under control, we want a system

organization that minimizes the number of session keys. However, the number of session keys that

need to be maintained between different DNS entities is tightly coupled with DNS query resolution

scheme because the query resolution scheme dictates who gets to contact whom, and therefore who

needs to establish a session key with whom. We now introduce various query resolution approaches,

discuss their advantages and disadvantages, especially with regard to its potential to minimize the

number of session keys.

Approach 1: Fully Iterative

In this approach, the resolver takes full responsibility on resolving a query. First, it iteratively queries

the local name server. If the answer is not found in the local name server database or cache, the local

name server directs the resolver to the root name server. The rest of the resolution process is done in a

similar iterative fashion, as demonstrated in figure 5-1.

Local NS

Root NS

Resoler.m

Netscape.

Figure 5-1: A Fully Iterative Resolution Scheme

Pros

" Being fully iterative, this scheme reduces the load on the intermediate name servers, each of

which simply directs the client to the closest source of information without using its own

server time querying the other name servers.

" The burden of the resolution process is placed on the resolver that issues the query, which

should be fine for an efficient, caching resolver.

" In this scheme, the resolver may cache not only the final answer, but also the answers of the

intermediate queries. For example, a full iterative query for the IP address of www.foo.edu.ca

results in the caching of the IP addresses of www.foo.edu.ca, foo.edu.ca, edu.ca and .ca

servers. Therefore, the next time the same resolver queries for the IP address of

www.bar.edu.ca, it does not have to go through the full resolution path; rather, it can make a

short cut and start the resolution process by directly asking the edu.ca servers. This off-loads

the root name servers.

* This scheme requires a smart, possibly caching resolver, which may be useful. The results of

the analysis in appendix A indicate that caching (with support for negative caching) in

resolvers may suppress a lot of network traffic due to repetitive queries.

44

Cons

" The major problem with this design is that a name server may be contacted by any resolver on

the Internet, and therefore needs to establish session keys with each of them. According to

[19] there are about 100 million hosts on the Internet right now. Assuming each of them is

capable of issuing a DNS query, this renders a huge number of possible session keys for each

name server even though not all of these session keys need to be cached at the same time.

" Furthermore, this scheme calls for an efficient, caching resolver, which is uncommon in DNS

today. Common DNS implementations include simple stub resolvers that do not have any

caches. Such resolvers typically make recursive queries to a caching proxy name server

(usually the local name server), which eventually returns the final answer or an error to the

resolver.

" Also, the caching of the RRs in the resolver does not achieve much, because both the final and

the intermediate results are cached in the resolver that issues the query, not in the intermediate

name servers. Only related queries later issued from the same resolver can take advantage of

the caching. Queries from other resolvers will have to go through the entire resolution

mechanism.

Approach 2: Hybrid Scheme

In this approach, the local name server acts as a proxy server. A resolver makes a recursive query to

the local name server, which, in turn, makes an iterative query to the root name server. The rest of the

resolution process is carried out in a similar iterative fashion, as depicted in the figure. Once the result

of the query is obtained, the local name server returns the result to the resolver. This is the most

common resolution scheme in the Internet today.

iterative
Root N

www.netscape.com? proxy

Resolver ILocal N com

recursive

Netscafelcom

Figure 5-2: A Hybrid of Iterative and Recursive Resolution Schemes

Pros

" Session keys between the resolvers and their query proxies are easy to cache, because the

number of resolvers served by the local name server is relatively small.

" This scheme fits the most common DNS resolution approach today. It allows for a not-so-

intelligent stub resolver and provides an intermediary proxy server that may ensure security,

administrative control, and caching service.

45

* As intermediate results of the query can be cached in the proxy server, all the hosts that share
the same proxy name server may benefit from the caching of the final and the intermediate

answers of a query.

Cons

* The major problem of this most commonly adopted approach is that all the queries that cannot

be resolved by the local name server using its own database and cache are directed to the root

name servers. This puts a huge load on the thirteen globally distributed root name servers. As
we discuss in appendix A, 1/3 of the wide-area DNS traffic that traversed the NSFnet in 1992
was destined to the seven root name servers [11], while we observed almost 19% of DNS
queries going out of MIT's Laboratory for Computer Science (LCS) in January 2000
contacted a root name server with a significant impact on the performance. Given the
exponential growth of the Internet, this is inefficient and non-scalable, as the root name

servers become the bottleneck of the system.

Approach 3: Fully Recursive

In this approach, queries are handled fully recursively. A resolver makes a recursive query to the local
name server. If the query cannot be resolved locally, the local name server makes a recursive query to

the root name server. From then on the process continues in a similar recursive fashion until the final

result is found.

www.netscape.com ?

Resolver Local NS Root NS .com Netscape.comn

Figure 5-3: A Fully Recursive Resolution Scheme

Pros

* In this scheme, a name server only needs to cache the session keys for its superzone and
subzone. Thus, small zones only need to cache a few session keys, since the number of their
superzones is small and they generally have no or just a few subzones.

Cons

" The biggest disadvantage of this scheme is that the workload on the top-level name servers,
especially the root servers, increases significantly. Every query that cannot be resolved locally

reaches the root name servers. Furthermore, root servers can no longer simply refer the querier

to some other name server. Rather, they are now obliged to resolve the query, which makes
this scheme quite impractical.

" Any local name server may contact the root name server. Therefore, the possible number of

session keys at the root level is large. The number is also large in the top-level zones, for
example, the .com zone has nearly two million subzones. Without some load distribution

46

scheme, this approach may end up requiring huge number of session keys to be maintained at

the top level, even though the number is a lot lower than what is required for the fully iterative

scheme.

Also, in this scheme, the local name servers cache only the final results, not the intermediate

results. To take full advantage of caching, intermediate results could be passed back to the

local name server, but that would increase DNS traffic in the Internet substantially.

Approach 4: Fully Recursive with Intermediate Hops

In this approach, the resolution mechanism is recursive all the way with additional intermediate hops

from the local name server to the root name server. For example, let us suppose a resolver in the

lcs.mit.edu domain issues a query for the IP address of www.netscape.com. The query first reaches the

local lcs.mit.edu name server. If it cannot be resolved locally, then the Ics.mit.edu server contacts an

mit.edu server. If not resolved, mit.edu server contacts .edu, which, in turn, contacts the root name

server and the rest of the query is resolved in a fashion similar to the one described in approach 3. It

should be noted that both the .com and the .edu zones are maintained by the root name servers. The

figure is drawn in a way to represent the hierarchy of resolution.

www.netscape.com?

Resolver les.mit.=0 mit.edu - .-edu -10 Root - .,com 4 N0etscape.com

Figure 5-4: A Fully Recursive Resolution Scheme with Intermediate Hops

Pros

" This approach reduces the load on the root name servers. All queries that belong to the same

top-level domain as the querier are resolved without contacting the root name servers. This

may off-load root name servers substantially.

" As in approach 3, a name server only needs to cache the session keys for its superzone and

subzone. It has the additional advantage that a root name server is not contacted by just any

local name server, but only the name servers of its subzones. This reduces the number of

session keys to be maintained by the root name servers.

Cons

" This scheme increases the number of hops between the local name server and the root name

servers.

* Root name servers are still subject to recursive queries, which increase the amount of load on

the root name servers.

* Current DNS does not support full recursion, at least not at the root name servers.

* Most of all, the advantages of the scheme may not be that significant as the current

organization of DNS name space is mostly flat with 2 to 3 levels of hierarchy. The cost of

recursion may very well outweigh the gain achieved by the small number of intermediate

hops.

47

5.3.1 Design of Choice: A Hybrid Resolution Approach with Intermediate Level
Hierarchy

Based on the analysis of the advantages and the disadvantages of various resolution schemes, we

propose a resolution approach that combines both the iterative and the recursive resolution techniques,

thereby capturing the best of both worlds. To minimize the number of session keys and take full

advantage of caching, the system is enhanced with intermediate levels of hierarchy.

In this approach, a resolver (which may be a stub resolver with no caching) places a recursive query to

the local name server. To offload the root name servers, we propose multilevel recursive hops from the

local name server to a level right below the root name server. From the level right below the root name
server and on, the query is resolved in an iterative fashion. Figure 5-5 describes a generalized version

of the scheme with n=2 intermediate levels between the local name server and the root name servers,
where n is arbitrary and can be chosen appropriately.

Note also that an nth level server can handle the load from the (n-l)t level servers that communicate
with the rest of DNS through it because we do data caching at each level (see section 5.4). Therefore

an (n-1)" level server communicates with an nth level server only occasionally.

iterative

-V Root NS
recursive

www.netscape.com?

Resolver Level 1 NS Level 2NS .c11m

3f+1 replicas per
name server set Netscape.coiJ

Figure 5-5: A Hybrid Resolution Scheme with n=2 Intermediate Levels of Hierarchy

As we discussed before, more than 90% of current DNS name space is flat with only 2 to 3 levels of

depth. One might find a 4 to 5 level deep organization of DNS name space only in an academic or a
research organization. Therefore, the intermediate levels we propose may or may not be strictly related
to the domain name space hierarchy. One might argue that arranging the hosts and name servers

strictly according to the name space hierarchy has the advantage that all queries whose answers belong
to the same top level domain as the resolver can be resolved without contacting the root name servers.
This might yield a significant gain in terms of load reduction on root servers, because a substantial

portion of DNS queries is confined within the same top-level domain. However, offloading the root is
possible with any intermediate level hierarchy even when the intermediate levels are not dictated by
DNS name space hierarchy. Moreover, for huge zones like the .com, which has 32 million hosts, one
needs to deploy some load distribution scheme anyway. For example, queries from specific servers

48

may need to be configured to contact some specific set of .com servers to distribute the load on the

zone. With the exponential growth of the Internet, we believe, such schemes need to be exploited

anyway to ensure the scalability of the domain name system. Therefore, how to aggregate the hosts

and the name servers into intermediate levels to create an efficient hierarchical structure may entirely

be an administrative decision. The point we want to emphasize is that an efficient domain name

system should make extensive use of sharing caches among clients, since sharing caches, as indicated

by the data in appendix A, significantly increases DNS cache hit rates.

The recursive part of the proposed resolution scheme, together with the intermediate levels of

hierarchy, significantly reduces the number of session keys a name server needs to maintain. The

iterative part, on the other hand, substantially offloads the root name servers, which is of utmost

importance for the scalability and performance of DNS. The scheme makes full use of caching the

intermediate results and using them to short-cut future related queries, which is an advantage of the

iterative over the recursive resolution scheme.

In addition, the scheme can easily be employed in current DNS by taking advantage of the existing

forwarder directive provided by the domain name system software like BIND. The addition of a

forwarder statement in the name daemon boot file makes a local name server recursively direct any

locally unresolved query to the forwarder name server. Because of the rich cache of information built

at the forwarder, there is a high probability that the forwarder can answer a given query in a remote

domain from its cache. In addition to offloading the root name server, the scheme holds the potential

for limiting off-site DNS traffic to the bare minimum, which might prove useful when the network

connection is pay-per-packet or the network connection is a slow link with a high delay.

The proposed resolution scheme thus combines the advantages of both the iterative and the recursive

approach. Even though it increases the number of hops from the local name server to the root name

servers, the associated cost is low. The advantage of off-loading the root servers by making full use of

the intermediate level hierarchy substantially outweighs the disadvantages of the scheme. Moreover,

the hierarchical organization keeps the number of session keys low, thereby ensuring a scalable and

secure domain name system.

5.3.2 Replicated Clients

This preferred organization ends up with a Byzantine-fault-tolerant server, consisting of 3f+1 replicas,

acting as a client to another name server, i.e., a group of replicas acting as a client. And this could

easily lead to very large number of messages, e.g., if each replica in the client communicated with

each replica in the server. Let us consider a system with two levels of Byzantine tolerant replicated

servers as illustrated in figure 5-6. Each server consists of four (3f+1 = 4) replicas to tolerate up to one

failure. Suppose, a BFT client wants to resolve the IP address of some host. It sends out four query

messages to the four replicated servers in level 1. Suppose the query could not be resolved by the

level-l replicas. Now each of the replicas can act as a Byzantine-fault-tolerant client and therefore

independently send four requests to each of the 2 d level replicas. In this way, the number of messages

49

increases geometrically with the number of replicas per set as the level of hierarchy increases. Even in

the case that the query can be resolved by the 2 d level replicas, it would require 40 (4*2 + 42*2)

messages, which incurs a huge amount of network overhead.

client

Level 1 Replica1 Replica1 , Replica1 3 Replica

Level 2 Replica,.1 Replica,, Replica, 3 Replica, d

Figure 5-6: Increase in the Number of Messages Across Levels of Hierarchy

We propose a scalable solution to this problem by having the primary of the client-group perform the

query on behalf of the other replicas in its group, as illustrated in figure 5-7. After resolving the query,

primary sends the reply to the backups. After verification, the replicas send the reply back to the

original client as usual. Of course, the primary may be faulty. Therefore, the replies sent by the 2 d

level of replicas are constructed in a special way so that the replicas in level 1 can verify the integrity

and authenticity of the reply independent of whoever performed the query on their behalf. The

mechanism is described in detail in section 6.4.6.

Cliento

Level 1 Replica 1 Replica, Replica, Replica4

Level 2 Repicas Replica6 RIca ReplicaR

Figure 5-7: A Scheme to Support Replicated Clients with Reduced Number of Messages

Using this scheme, we limit the number of message that each replica of one set receives from the

replicas of another set to 1, which substantially reduces the load on the servers. The maximum number

of messages that one set of replica sends to another set, therefore, is limited to n rather than n"',

where n is the number of replicas per set and level indicates the level of hierarchy. Even though the

scheme increases the size of the specially constructed reply, it significantly reduces the network traffic

and overhead (in terms of headers) that would otherwise be needed for replicated clients. In section

50

7.4.3, we present the performance evaluation of the proposed scalable Byzantine-fault-tolerant domain
name system with and without the support for reducing the number of messages across levels. The
results show that even with a two-level hierarchy, the reduction scheme almost halves the number of
messages resulting from a read-only request, and yields a 67% reduction in the total number of reply
bytes traversing the network.

5.4 Caching Mechanism

For the system to perform well, we also need an efficient data caching system. Caching is tightly
coupled with the performance and security of a system. The domain name system, being a very large-
scale distributed system, makes extensive use of resource record caching features. Most of the
operations in DNS are read-only, i.e., they do not modify the state of the system. Moreover, data
changes are very infrequent in DNS. Stale information therefore occurs infrequently in the domain
name system. This makes caching a good technique to improve performance in DNS. In fact, caching
has been an integral part of DNS since its description in RFCs 1034 and 1035 [25][26].

In general, DNS caching exploits the idea of temporal locality since it is often the case that an item
referenced recently is likely to be referenced again in the near future. Without caching, all non-local
DNS query would have to contact the root name servers and go through the full resolution path.
Caching the results of a query, e.g., an A RR, in the local name server allows the server to provide the
answer to a later reference of the same query immediately from its local cache without having to go
through the full resolution process. Even caching NS (name server) RRs has important benefits, as
indicated by the results we describe in appendix A. When a name server finds the NS record for the
target zone of a query in its cache, it can bypass the root name server and contact the name server of
the target zone via a "short path." Caching thus offloads the root name servers and reduces
unnecessary network traffic. On the client side, caching reduces the long latencies due to multiple
network round-trips before getting an answer to a query. Caching thus benefits both servers and clients

of the domain name system.

However, caching raises concerns about consistency and staleness of data. We discuss this problem in
detail in the following section.

5.4.1 Security and Cache Consistency

The original design of DNS sacrificed consistency in favor of reduced access time. For a secure
domain name system, however, stale information may no longer be harmless since it may involve
some security-critical information, e.g., a compromised private key. Stale information opens a window
for a freshness or replay attack, and thereby poses a security threat to the system. The issue of cache
consistency, therefore, becomes critical for a security aware DNS.

DNS typically uses TTLs (Time To Live) to control cache consistency [25]. Resource record TTLs are
typically assigned by the administrator of the zone the RR belongs to. When an object in the cache hits

51

zero TTL, it is evicted from the cache. The DNS security extension (DNSSEC) [17] proposes the use

of two TTL values: original TTL and current TTL. The original TTL value of the RR is protected by a

digital signature while the current TTL field is not. Under this scheme, unscrupulous servers may

manipulate the current TTL, but a security aware resolver will bound the remaining time-to-live value

of the object at the original TTL value if some discrepancy is found. Also, a security aware server in

DNSSEC must not consider SIG RRs to authenticate anything before the signature inception time or

after the signature expiration time. Therefore, when a secure server caches authenticated data, if the

TTL would expire at a time further in the future than the signature expiration time, the server should

trim the TTL in the cache entry not to extend beyond the signature expiration time. Within these

constraints, servers continue to follow DNS TTL aging. In general, the TTL on an RR in DNSSEC is:

TTL = Min(SigExpTime, max (zoneMinTTL, min (originalTTL, currentTTL)))

DNSSEC proposes to set the signature expiration times far enough in the future so that it is quite

certain that new signatures can be generated before the old ones expire [17]. However, setting the

expiration time too far into the future could mean a long time to flush bad data, thereby increasing the

window of replay attack.

TTL: time the object is in the cache

Stale Data in the cache

Object Lifetime I Window of Freshness Attack)

Object Modification 1 Object Modification 2 Time

Object Retrieval
Time

Figure 5-8: TTL and Object Staleness

Figure 5-8 illustrates the TTLs, object staleness, and the window of freshness attack for an object

cached in a client. The TTL indicates the time the object is cached in the client. As shown in figure

5-8, the object is modified in the server after it was retrieved and cached by the client. The time

between the second modification and the end of the TTL is the window of freshness attack for this

object since the client has a stale copy of the object in its cache during this period.

In a Byzantine-fault-tolerant DNS with 3f+1 tightly coupled replicas per server, manipulating the TTL

in one replica does not cause any major problem, as consensus among non-faulty replicas ensures the

correct TTL value. In SBFTDNS with a session key, cached RRs, when sent to the clients, are

authenticated in the same way as the normal RRs in the database, i.e., using message authentication

codes generated using session keys of the communicating nodes. Since SBFTDNS does not use SIG

RRs, staleness due to signature expiration time does not arise.

52

It should be noted that it is not possible to entirely replace the TTL mechanism. The TTL is primarily

a database consistency mechanism and non-security aware servers that depend on the TTL must still

be supported. The TTL, however, is a very poor heuristic to provide cache consistency. Often times,

TTLs are determined by the cache owners rather than the owner of the object, which is a problem

since the cache administrator hardly knows the details of any individual object in the cache. Especially

for security critical systems, where stale data can be dangerous, administrators will be inclined to use

very short TTLs so that changes take effect rapidly. However, in reality, changes might be very rare

and may not need timeliness. A short TTL in such cases may unnecessarily place significant load on

the network links and servers. On the other hand, a long TTL increases the window of freshness

attack. If some critical change has been done to data with a long TTL, there isn't much that can be

done to stop the distribution of the stale data. To solve both the problems, we propose invalidation as a

consistency mechanism on top of a hierarchical caching system.

5.4.2 Proposition: A Hierarchical Invalidation Protocol using Leases

Traditionally, designers of large distributed systems have been willing to live with some degree of

cache inconsistency to reduce server hot spots, network traffic, and data retrieval latency. However, as

the Internet rapidly evolves to provide more and more mission critical services, the issue of cache

consistency becomes critical. To minimize the window of freshness attack, data updates should

propagate quickly from the source to the sink. For a large-scale system like DNS, it is important that

the mechanism for cache consistency be scalable as well. Since updates are rare, it makes sense to use

the intrinsic hierarchy of the domain name space and build a hierarchical cache with an invalidation

mechanism to ensure data coherence.

The first step is to determine who initiates the invalidation process - the client or the server.

" A Client-driven invalidation mechanism is a reactive process. Every time a cached data item

is referred to, the client checks with the server to determine whether the cached copy is valid.

The advantage is that this is a stateless protocol, i.e., the servers do not need to maintain any

state information about the clients who have cached copies of the data. When the cost of

validation is significantly lower than fetching the data, a client-driven process reduces the

server load and improves the client performance. However, the problem with this scheme is

that the client does not know when data change at the server, and therefore it must make many

unnecessary checks, which can degrade system performance. A client-driven process

essentially defeats the purpose of caching, and may prove impractical for a large-scale system

because of the large amount of traffic it generates and the load it places on the server. The

amount of overhead traffic here is proportional to the client hit rate.

* A Server-driven invalidation mechanism, on the other hand, is a proactive process. When a

data item changes, the server notifies clients that have cached copies. For a large-scale system

like DNS, where data updates are very rare, a server-driven invalidation mechanism may

perform better than a client-driven invalidation scheme. The problem, however, is that the

53

server now needs to maintain state for the cached objects. The performance of the system
degrades if the server's callback state becomes excessively large. Also, in case of a client
failure, the server may have to wait for an unbounded time for the client's acknowledgement

of the invalidation message. Furthermore, a server-driven scheme cannot guarantee complete
consistency because of the delay in invalidations arriving at clients.

Leases

We propose a hybrid of the server-driven and the client-driven invalidation schemes using leases [18].
To limit the polling for data invalidations, the servers give an invalidation contract or lease to the
caching clients, as in the Andrew File System (AFS) [21]. The lease is for a certain amount of time
within which the server guarantees to notify the caching client of the data updates, as illustrated in
figure 5-9. Once the lease is obtained, the system turns into a reactive or a client-driven system. It is
now the responsibility of the client to keep extending the lease if it still needs it. The lease period is
short to limit the time during which delay in arrival of invalidation messages can cause an

inconsistency at the client cache.

TTL: time the object is in the cache

Lease period 1 Lease period 2

getLease extendLease
by client by client

Responsibility of the server to
notify invalidation messages

Figure 5-9: A Hybrid of Client-driven and Server-driven Invalidation schemes with Leases

We propose a lease-per-client scheme. With this scheme, the amount of state that the server must store
per client is minimal. This scheme has the additional advantage that a lease covers all the data a client
has cached from a server. Therefore, when the client requests a new lease, e.g., because of a query
affecting some object in its cache, it gets an extension on all other objects belonging to that server that
are in its cache. Since the server does not track the objects stored at the client, it may send unnecessary

invalidations. We believe this is not a problem, however, because updates in DNS are very rare.

54

Mechanism to Obtain a Lease

We now describe how a client can obtain and extend a lease from a server.

There are two requests for getting leases. The first is getLease. This can only be called when a client is

currently caching no objects from the server, e.g., at the first reference to an object from this server.

The second request is extendLease. This is called when a client already has a lease; it asks for the lease

to be extended. If the server still holds the lease for the client, it will extend the lease; otherwise it

refuses the request. The client extends its lease periodically, e.g., if a lease is good for five minutes, a

client might refresh after three minutes. The goal is to not do this very often, but to do it far enough in

advance so that the extendLease request is never refused. Since leases are only refreshed occasionally,

these requests add negligible overhead.

If the server decides to extend the lease requested by the client, it sends a list of pending invalidations

(i.e., ones for which this client hasn't replied to the invalidation yet) in the response to the extendLease

request. This list of pending invalidations is needed since the reply to the extendLease message implies

that all objects that arrived in the client cache prior to the extendLease request and that are not

explicitly listed in the reply are valid.

If the sever refuses the extendLease request (e.g. the server does not hold a lease for the client), the

client must discard all cached objects that belong to that server. It is necessary to discard all objects

because there can be missing invalidations that the client was not notified of since the server thought it

had no lease for this client.

Lease requests are modifications and therefore they will be totally ordered with respect to all other

modifications at the server. We also propose that lease requests from a client be ordered with respect

to queries from that client. This isn't strictly necessary but it will guarantee that there are no spurious

discards from the client cache, e.g., where the client receives an invalidation for object X in a response

to a lease request, but in fact it has already discarded the invalid version of X and refetched it. To

order lease requests relative to queries, clients cannot have outstanding reads for that server when it

makes a lease request.

Finally, to speed things up, we can combine the lease requests with queries. In this case a getLease

request takes a query as an argument; in return the client gets the result and the lease. ExtendLease is

similar if it succeeds; if it fails, the client gets nothing.

Hierarchical Object Caching

For a lease-per-client scheme, the amount of state that the server must store per client is minimal. To

further reduce the size of the server state and the load on the servers, we take advantage of the

hierarchical topology of the proposed scalable BFTDNS to implement a hierarchical object-caching

55

mechanism. The hierarchical organization of the proxy name servers limits the amount of state to be
maintained in one server and reduces the load on a particular server while performing invalidations.

We can demonstrate this advantage using the following scenario illustrated in figure 5-10. If we
assume that a server takes lOms to send one invalidation notice, and invalidations are sent from left to
right with no invalidation messages being lost, then it takes 120 ms for server S to complete its
invalidation in scenario 1 with flat topology. With 1-level hierarchy in scenario 2, it takes 40 ms,
whereas in scenario 3 with 2-level hierarchy, it takes 20 ms for S to complete sending the invalidation
messages. The invalidation message reaches node 12 at the 120th ms in scenario 1, while it takes 60 ms
in scenario 2 and 50 ms in scenario 3.

One might argue that for a hierarchical caching system, there is a trade off between the client response
time and the server load because a request reaches the server that owns the data only after all the
intermediate caches have been searched. This disadvantage, however, is amortized by the high
probability that the answer is present in some intermediate cache, because of the rich cache of
information built at the intermediate name servers due to the recursive resolution scheme.

000000000000

1 2 3 4 5 6 7 8 9 10 11 12

0000 0

ooooooooO (:D

5 6 7 8 9 10 11 12$ %

0000

0000

7 8 9 10 1112

Scenario 1 (flat topology) Scenario 2 Scenario 3

Figure 5-10: Advantage of Hierarchical Caching

5.4.3 Summary of Caching

With the exponential growth of the Internet, system performance and scalability are two major issues

to be concerned about. To enhance the performance of the domain name system, we allow caching of

session keys and resource records. For a security aware system, however, cache incoherence is no

longer harmless. To ensure cache consistency while reducing the load on the servers due to short

TTLs, we provide an invalidation mechanism with leases. To address the system scalability issue, we

56

propose organizing the proxy name servers into intermediate levels of hierarchy creating a hierarchical

organization of caches. The scheme naturally fits DNS hierarchy and provides system scalability

together with reduced network bandwidth consumption, reduced access latency, and improved

resiliency.

5.5 Running Operations

Now that we have the system organization in place, we can describe how operations execute in the

proposed scalable Byzantine-fault-tolerant DNS with a hierarchical caching scheme.

Client places a request to the first level server using the CLBFT protocol described in section 4.3. The

first level server immediately sends a reply back to the client if the answer is found in the server's

local database or in its cache. However, if the request cannot be served locally, the first level server

sends the request to the next level and the process continues. This is illustrated in figure 5-11. A client

C queries a group of level-i replicas for an answer that can be resolved locally by the replicas, the

level-i replicas act as servers for the original client C.

However, if the answer for the query cannot be resolved locally by the level-l replicas, they need to

act as clients for the level-2 replica set to proceed with the query resolution process. Once the results

are obtained from the 2 "d level replicas, the level-I replicas authenticate the answer and send it to the

original clients. Since groups can take on various roles, the system needs to be concerned about

synchronization between their activities in the various roles.

client

Level Replica, 1 Replica, Replica 1, Replica1 4

Level2 Replica, Replica Replicai Rev~ca74

Figure 5-11: Replicated Clients in SBFTDNS

For read requests, a server at a higher level is contacted by a lower level server only if there is no

cache-hit in the lower level server. Caching thus reduces both the load on the name servers and

unnecessary network traffic. For update requests, however, caching does not help much. An update

request is passed through until it arrives at the server (consisting of 3f+1 replicas) of a zone that owns

the data being modified. The server will then send invalidations to all other servers that have active

leases. Therefore, updates lead to considerable communication in the Byzantine-fault-tolerant DNS.

But this is not a serious issue since updates in DNS are likely to be extremely rare.

57

00

Chapter 6

Implementation

In this chapter, we give an overview of the implementation of the proposed scalable Byzantine-fault-

tolerant DNS (SBFTDNS) with session key caching mechanism. The system integrates the Castro-

Liskov Byzantine-fault-tolerant replication library (CLBFT) [6] with TIS/DNSSEC [17], a beta
version of the secure domain name system developed by Trusted Information Systems that partially
incorporates the DNS security extensions proposed by the IETF. We first give a brief description of
the implementation of the CLBFT replication library and TIS/DNSSEC. We then discuss the
architecture of SBFTDNS together with the enhancement and modifications needed to support the
session-key based security mechanism and the scalability of the system.

6.1 The CLBFT Replication Library

The CLBFT replication library is implemented with a very simple interface (figure 6-1), which can be
used to provide Byzantine fault tolerance in any replicated service. Some components of the library

run on the clients and others at the replicas.

Client:

int Byz initclient (char *conf);

int Byz invoke (Byz req *req, Byz rep *rep, bool read-only)

Server:

int Byz init replica (char *cnf, char *mem, int size, UC exec);

void Byz modify (char *mod, int size);

Server Upcall:

int execute (Byz req *req, Byzrep *rep, int client);

Figure 6-1: The CLBFT Replication Library API

On the client side, the library provides a procedure Byzjnitcclient to initialize the client using a
configuration file, which contains the public keys and IP addresses of the replicas. The library also
provides a procedure, Byzjinvoke, that is called to cause an operation to be executed. This procedure

carries out the client side of the protocol and returns the result when enough replicas have responded.

On the server side, the system provides an initialization procedure Byzinitcreplica, that takes as
arguments a configuration file with the public keys and the IP addresses of the replicas and clients, the

59

region of memory where the application state is stored, and a procedure to execute requests. When the

system needs to execute an operation, it makes an upcall to the execute procedure. This procedure

carries out the operation as specified for the application, using the application state. As the application

performs the operation, each time it is about to modify the application state, it calls the Byz mod

procedure to notify the location about to be modified. This call allows efficient maintenance of

checkpoints and digest computation.

6.2 TIS/DNSSEC

TIS/DNSSEC we used is the beta version 1.4 of a secure domain name system developed by the

Trusted Information Systems. The reason we chose to develop SBFTDNS on top of TIS/DNSSEC,

rather than writing it from scratch is that TIS/DNSSEC partially implements the DNS security

extensions (DNSSEC) proposed by the IETF. At the time of this implementation, this was the only

implementation of DNSSEC available, although BIND 9.0 has recently incorporated the features

implemented by TIS/DNSSEC [20] and thereby declared TIS/DNSSEC to be obsolete. Also,

TIS/DNSSEC provides vast compatibility as it is based on the Berkeley Internet Name Domain (BIND

version 4.9.4-pl), which is estimated to be DNS software used by over 90% of the hosts in the Internet.

TIS/DNSSEC consists of a name server program called named (name daemon) and a resolver library,

and several utility programs. The overall architecture of TIS/DNSSEC is shown in figure 6-2.

Following are some of the major modifications that TIS/DNSSEC made to BIND to support security

as proposed by the IETF:

" A signature generator module has been added to the name servers. This generator reads the

RRs from the zone database and generates the corresponding SIG RRs and NXT RRs using

the zone private key, then adds these RRs to the database. It uses RSA PPK algorithm for the

signing process.

" In addition to returning the requested RRs, the database query module also returns the

corresponding SIG RRs or NXT RRs where applicable.

" The overall system is modified to properly handle newly added RR types, e.g., SIG RRs, NXT

RRs etc. as proposed by the IETF to support security in DNS.

TIS/DNSSEC is a partial implementation of the DNS security extension proposed by the IETF. The

beta version 1.4 of TIS/DNSSEC, which was used in our implementation, does not support dynamic

update of zone RRs. Moreover, it does not provide any signature verifier at the client side, which is

odd because there is no point degrading the system performance by signing the data at the server side

if the authenticity of the results of a query is not verified.

60

resolver name server
i ~zone

transfer

private key signature database
file generator file

utility

program
database

query edrisne query loader
generator sender listener analyzer

library calls network database
e.g. gethostbynameo query dat ase

reply reply /
intepreter receiver sender ~constructor

--

Figure 6-2: The Architecture of TIS/DNSSEC

6.3 SBFTDNS with Session Key Mechanism

The proposed scalable Byzantine-fault-tolerant DNS is built by combining TIS/DNSSEC with the

CLBFT replication library with appropriate enhancement and modifications to provide the features

described in section 5.1. Figure 6-3 describes the overall architecture of the scalable BFTDNS with

session key caching mechanism (SBFTDNS). A detail description of the underlying architecture of

BFTDNS can be found at [40]. In this section, we discuss the major modifications and enhancements

that were necessary to provide the scalability of the system.

In short, the sender and receiver modules in the client side of TIS/DNSSEC have been replaced by the

CLBFT replication library calls. An incoming request triggers the execute procedure in the server,

thereby executing a read or invalidation request, depending upon the request type. The request is

authenticated only for the case when the corresponding operation changes the state of the system, for

example an invalidation or an update request. Since the design philosophy of DNS dictates that DNS

data should be accessible by anybody, BFTDNS servers do not verify the authenticity of read-only

requests. This modification in the CLBFT replication library to disable authentication check of read

requests enhances system performance. Although an authentication of read requests may be useful to

provide a check against flooding attacks, we, like the original DNS, are not too concerned about it.

61

update/Invalidation utility pro

nvalidation/ name server
update request CLBFT

user generator replication private key database
interface library file

reply
ntepreter ssi ky

essney update/invalidation database
] mnaerrequest database

CDkauthorize update/invalidate lad/store

-- manager

CLBFT - reply database database
0 .______ network replication constructor query

resolver 'librar
queries checkpoint +

eyanalyzer manager state
generator CLBFT

|dgsqueriests replication
mnagr repiala+

i e~g. gethostbynameo lbr-yr -- - -- - -- - -- --ca-- - - - -- - -

1replica 2
reply L - -------- ------------------------------- --- -

----- replica3
intepreter L- - - - - - - - - - - -- - - - - - - - - - - -

session key

managerepa

6.4 Modifications to Provide System Scalability

In this section we discuss the major components added or modified to specifically address the

scalability issues.

6.4.1 Replicated Clients

In the original CLBFT replication library, a node can function either as a Byzantine-fault-tolerant

client or as a replica, but not as both. However, to support the hierarchy of name servers, replicas often
need to function as clients, as discussed in section 5.5. In figure 64, replicas of level 1 act as servers

for client C, but as clients for the level-2 replicas when the replicas of level 1 cannot serve some
request using their own cache or database. To support replicated-clients, the CLBFT replication library

was modified as necessary so that a node can change its role from being a client to a replica and vice-
versa. The original session key mechanism between clients and replicas was extended to authenticate

communication between replicas.

Client, C

Level 1 Replica Replica 1, Replica 1 3, Replica 1 4

Level2 Replica, , Replica,, Rjplica j Replica 4

Figure 64: Hierarchical Organization of Name Servers

6.4.2 RR Caching

The support of caching is crucial for system performance and scalability. However, for a replicated

system like the Byzantine-fault-tolerant DNS, the support of RR caching with TTL (time-to-live)
involves some complications in establishing consistency among replica states. Let us consider the

example where a Byzantine-fault-tolerant client makes a query for the IP address of netscape.com to a
replicated server set comprised of 3f+1 tightly coupled Byzantine-fault-tolerant replicas. Suppose the
request cannot be resolved locally and the replicas need to query the root name server or another set of

replicated name servers for the answer. When the answer finally reaches replica set 1, the result is
cached in the replicas. Now depending on when the query from the original client reached the replica,
when the answer arrived at the replica, and when the answer was finally returned to the client, it is

possible that answers from the cache of different replicas in the same replica set will have different
TTL values, even if all the nodes are non-faulty. It therefore becomes a concern how to establish a
certificate [8] of 2f+1 matching answers even though some of the answers may have different TTL

values.

63

We can think of two different schemes to solve the problem: a server scheme and a client scheme.

Server Scheme

In this scheme, after receiving a query from the client, the designated primary of a view proposes a

current time together with the query to all the other replicas. The proposed time is used as the origin

time for the specific query. Once the replicas accept the origin time proposed by the primary, using the

three-phase protocol described in section 4.3, they resolve the query as usual and retrieve the answer.

Now the time to evict the resource record in concern from the cache will be calculated using the origin

time proposed by the primary and established at every replica. Since a single origin time is used to

calculate the remaining time-to-live (TTL) in all replicas, the answers from different replicas will now

have the same TTL value. If the primary is faulty, it will be detected and a different replica will be

selected as the new primary using the view-change mechanism described in section 4.3.1.

The advantage of this scheme is that the client does not have to do anything special to establish an

agreement among answers with different TTL values. Moreover, the states across the replicas will be

the same. The disadvantage, however, is that for every query, the primary needs to propose an origin

time and there needs to be an agreement across replicas about the establishment of this origin time.

This scheme increases the size of a query because of the inclusion of time in the request packet. For a

read-write request, the primary could piggy-back the current time in the pre-prepare message it sends

to the replicas. However, for a read-only request, which is of most concern to DNS, the client

normally multicasts the request to all the replicas and the replicas independently execute the request

and send the replies back to the client. In this case the server scheme described above requires an extra

phase of communication between the primary and the other replicas to establish the origin time for the

query. This adds to the latency of the query resolution process, and increases the overall network

traffic because of the additional exchange of messages.

Client Scheme

In the second solution, which we prefer, the replicas resolve the query as usual. While authenticating

the replies, they take the TTL field out of the digest and send the final answer to the client. The client

collects 2f+1 answers with the same digest, sorts the answers according to the TTL values, and accept

the answer with the median TTL value as the final answer.

Since the TTL field is no longer inside the digest, differences in TTL values are not reflected as a

difference in answers. On the other hand, the advantage of accepting the answer with the median TTL

value as the final answer is twofold:

" the system does not need to make any clock time synchrony assumption across replicas,

although the use of leases requires clock rate synchrony assumption.

" in the worst case, the TTL value is > some good answers AND <= some good answers, as

explained below.

64

Let the following be the list of the 2f+l answers collected by the client after sorting them according to
their TTL values:

ansI, ans2 ,ans3,ansf,anSaccepted, ansf+2, anSf+3,anS2 f+J

Since there can be at most f faulty answers at one time, there must be at least f+1 good answers out of
the 2f+1 answers collected by the client. Under this assumption, we can consider three possible cases:

* Case I : The first f answers are faulty. In this case, ansaccepted is non-faulty and therefore, the
final result is correct.

* Case II: The last f answers are faulty. For this case also, ansaccepted is non-faulty and
therefore, the final result is correct.

* Case III : Even in the case where ansaccepted is faulty, there are at least f+1 good answers. For
this case, TTL value in ansacceped> TTL values in some good answers and <= TTL values in
some other good answers, which happens to be a good value for us.

In addition to simplicity, this scheme avoids unnecessary increase in response latency and network
traffic because of the additional exchange of messages to establish the origin time across replicas, as
required by the server scheme.

However, for the associated checkpoint mechanism to work, this scheme needs a logical definition of
system state instead of a physical one so that differences in TTL values across replicas does not get
reflected as a difference in states across replicas. In the CLBFT replication library, system state is
defined to be a snapshot of the physical memory used by the application. This physical definition of
system state has the disadvantage of forcing the exact same contents for a memory subset in every
replica, which may be difficult to achieve in the presence non-determinism, even if this non-
determinism does not change the state logically. Also, this precludes exploiting design diversity across
replicas, since different designs would lead to different physical representations of the state. This
makes the replicated system vulnerable to deterministic software errors, which are the most common
types of errors in modem systems. A logical notion of state is therefore needed to support any kind of
non-determinism in a replicated system. An extended version of the CLBFT algorithm has been
implemented by R. Rodrigues [31] of the Laboratory for Computer Science to allow replicas in a
Byzantine-fault-tolerant distributed object-oriented database define their state logically to tolerate non-
determinism that arises due to certain scheduling of threads. A similar solution can be incorporated to
support non-determinism in the Byzantine-fault-tolerant domain name system.

6.4.3 Lease Mechanism

To minimize the window of freshness attack, the system supports a lease-based invalidation scheme,
as described in section 5.4.2, to propagate data update notices fast from the source to the sink. The
lease is for a certain amount of time, within which the server guarantees to notify the caching client of
the data invalidations.

65

We maintain leases per client. The client uses a getLease request to obtain a new lease from the server.

The getLease request is called when a client has no objects cached from this server, e.g., at the first

reference to an object from this server. When a client already has a lease; it uses the extendLease

request to ask for the lease to be extended.

Both the getLease and the extendLease requests are write requests. Since we need an agreement about

what the lease is, the getLease and the extendLease requests from the client are sent to the server-

primary, which chooses the lease period and forwards it to the replicas. Using the three-phase protocol

described in section 4.3, the replicas establish an agreement on the lease period. The agreed-upon lease

period is then sent to the client. In this way, both the client and server group agree on the lease period.

Care is needed to ensure that the lease is interpreted properly at both the server and the client. Replicas

at the server track the lease period using their local clocks; they record their local clock value when the

request first arrives, and the lease period expires at a replica when that much time has elapsed at that

replica, according to its local clock.

Also replicas at the client note their local time when they make the getLease or extendLease request.

When a client replica receives the response, it computes its own version of the lease period by

subtracting the elapsed time since it sent the request from the lease period it receives in the response.

A replica at the client knows that the lease has expired when the rest of the lease period is gone

according to its local clock.

This way of computing leases only requires that clock rates are synchronized. Under this assumption

a lease will expire at a client sooner than it expires at the server because the event of requesting the

lease happens earlier than the event of the request arriving at the server.

6.4.4 Invalidation Request

In SBFTDNS, an invalidation request is handled as a typical read-write request in the CLBFT

algorithm that uses the three-phase protocol, as described in section 4.3, to atomically multicast the

invalidation request to the replicas.

When an authorized server executes an update for some data item it controls, it sends invalidation

requests to all replica sets that have active leases. In making the request, the roles are reversed: the

authorized server becomes the client and the replica set with the lease is the server.

The authorized server makes an invalidation request by sending a message to the primary of the client

holding the lease. A timestamp is used to ensure exactly-once semantics for the execution of the

invalidation request. The primary atomically multicasts the invalidation request to all the backups and

triggers the three-phase protocol. After executing the invalidation operation, replicas send an

acknowledgement of the invalidation to the requester.

66

After processing an invalidation for some resource record in its cache, the replica group propagates the
invalidation to other replica groups that hold leases with it. This cascade of invalidations ensures that

notice of updates of security critical data is propagated from the source to the sink as fast as possible

to minimize the window of vulnerability.

6.4.5 Dynamic Updates

Data updates are very rare in DNS. The crucial difference between a read request and an update

request is that replicas must check the authenticity and the authority of the incoming update request.

We use the following authorization policy:

" An update request signed by the private key belonging to a domain name has the authority to

update any RRs owned by this domain name.

* An update request signed by a special zone master key has the authority to update any RRs in

that zone.

In SBFTDNS, dynamic updates are performed using a scheme similar to the lease mechanism

described in section 6.4.3. Like lease requests, an update request is handled as a typical read-write

request in the CLBFT algorithm.

6.4.6 Reducing the Number of Messages Across Levels of Hierarchy

A potential problem with hierarchically organizing Byzantine-fault-tolerant name servers is the

geometric increase in the number of messages with levels of hierarchy as discussed in section 5.3.1.

We modified the original CLBFT algorithm to provide a scalable solution to this problem by
minimizing the number of messages across levels of hierarchy. The crux of the solution is that when

replicas in some replica set need to act as clients to another set of replicas, instead of all the replicas

performing the query the primary performs the query on their behalf. This is illustrated in figure 6-5.
Depending on the type of request, we have implemented a read-only and a read-write scheme, where

the difference originates from the need of authentication.

Level 1 Replica 1 Replica, Replica1 Replica 4

Level 2 Replicas Replicar, Replica7 Replicas

Figure 6-5: A Scheme to Support Replicated Clients with Reduced Number of Messages

67

While describing the method of authentication, we use the following convention:

Ki, : The session key for incoming messages from this replica

Kot: The session key for outgoing messages to this replica

MACni : Message authentication code generated by using Ki as the key

MACOUt : Message authentication code generated by using Kou as the key

Read-Only Request

A read-only request does not modify the state of the system. Therefore, it is not necessary to verify

that a read-only request came from at least f+1 replicas acting as clients. When the original client

sends out a read-only request to the It level of servers and the request cannot be served at this level,

the primary in level 1 authenticates the request with a special flag notifying the replicas in a level 2

server that this is a request on behalf of a set of replicas. The primary then sends the request out to the

2nd level of servers. Replicas in the 2 d level verifly the request using the key of the primary. In the

ordinary case, after resolving the request, each replica authenticates the reply using the key of a single

client. However, in this special case, where the client (the primary of level 1) is acting on behalf of all

the replicas in level 1, the replicas in level 2 authenticates the reply using the keys for each of the

replica in level 1. For example, an authenticated reply from replica5 , as illustrated in figure 6-5, will

look like:

Reply MACout, 5 MACout2 ,5 MACout3,5 MACout4,s

The primary for level 1 collects 2f+1 correct replies from the 2nd level. It then generates a reply by

appending the MACouts collected from the 2f+1 replies and sends this specially constructed reply to

the backups. The backup replicas can verify the authenticity of the reply using the MACs relevant to

it. In this way, the system guarantees correctness of behavior to check against a malicious primary.

After verifying the reply, the replicas in level 1 send the reply back to the original client. The case of

primary being faulty is taken care of by the view change mechanism using the same technique

described in section 4.3.1

Read-Write Request

When the replicated clients issue a read-write request to modify the state of the system, it is important

to verify that the request came from at least f+1 replicas. Suppose an authorized client in figure 6-6

originates a read-write request to the I" level of servers. If the replicas in level 1 need to send the

request to the 2nd level, we use the designated primary method as described before. However, in the

read-only case, the primary needs no explicit designation from other replicas, since level 2 replicas do

not care whether the read-only request originated from f+1 " level replicas or not. In the read-write

case, this is crucial. Therefore, after receiving a read-write request, the backup replicas in level 1

explicitly designate the primary by sending it their MACins corresponding to the servers of level 2.

68

Using a similar method to that described above, the primary constructs a special request by appending

the MACims for f+1 replicated clients in level 1 and sends the request to the 2nd level replicas. After

receiving the special request, replicas in 2nd level verify that the request came from f+1 level 1

replicated clients and then execute the request. The rest of the operation is similar to the read-only

operation described before.

6.5 Related Work

Our system is based on a similar work done by Zheng Yang [40] at the Laboratory of Computer

Science at MIT. To provide Byzantine fault tolerance, Zheng's system comprised of 3f+1 tightly

coupled replicas per name server in each zone. The system provides correct domain name service in

the presence of up to f faulty replicas.

Our implementation substantially extends Zheng's system. First, we implement a hierarchical

organization of name server proxies, rather than a flat organization, to take advantage of a hybrid of

iterative and recursive resolution schemes that minimizes the number of session keys. With this

scheme, we reduce the cost of expensive operations to establish session keys between the client and

the replicas, which would otherwise be too expensive for most practical systems, as discussed in

section 5.3.

Second, our system supports the caching of resource records to enhance the performance of DNS.
Also, we provide support for replicated clients, an invalidation protocol, and a scheme to reduce the

number of messages across hierarchy, which are new additions to the system.

In addition, unlike the old version of the CLBFT library used in Zheng's system, the new version we

used in our implementation supports proactive recovery of replicas and the view change algorithm,

which affects the liveness property of the system [9]. The new version of the replication library also

supports packet retransmission mechanism, which lets a client time out and re-send the request in case

it cannot collect enough authenticated replies. Since communication in DNS is typically carried by
UDP packets for which packet delivery is not guaranteed, some request or reply packets may get lost.

In that case, the client may not be able to collect sufficient matching replies to finish a query and need

to retransmit the request.

69

-Q C

Chapter 7

Performance Evaluation

In this chapter, we provide a performance evaluation of the scalable Byzantine-fault-tolerant domain
name system (SBFTDNS). The implemented system supports resource record caching, invalidations,
and updates. It also provides support for replicated clients with a scheme to reduce the number of
messages across levels of hierarchy, as described in section 6.4.6. The lease mechanism described in
section 5.4.2 has not yet been implemented; instead the system uses leases equal to the TTL.

To evaluate the performance of SBFTDNS, we first describe the nature of the experiments and the
experimental setup we used to measure the performance of the system. For features that are common,
we compare the performance of SBFTDNS with TIS/DNS, and TIS/DNSSEC. We also evaluate the
performance of SBFTDNS for additional features it supports, e.g., resource record caching,
invalidation and update operations. We measure the performance of the system with and without the
support for reducing the number of messages across levels and the session key caching mechanism.
Finally, we discuss additional sources of performance optimizations that are likely to be achieved in
real systems but are not covered by the experiments we perform.

7.1 Experimental Setup

We evaluated the performance of SBFTDNS under normal case behavior without checkpoint
management, view changes, key refreshments, or recovery, because this indicates the most commonly
observed behavior of the system.

The experiments ran on nine Dell Precision 410 workstations with a single Pentium III processor, and
512 MB of memory. All machines ran Linux 2.2.16-3. The processor clock speed was 600MHz in
seven machines ad 700 MHz in the other two. The machines were connected by a 100 Mb/s switched
Ethernet and had 3Com 3C905B interface cards.

We use the Rabin-Williams public-key cryptosystem with a 1024 bit modulus to establish 128-bit
session keys. All messages are then authenticated using message authentication codes (MAC)
computed using these keys and UMAC32 [4]. Message digests are computed using MD5
cryptographic hash function [29].

7.2 Experiments

Throughout the experiments, we compared the performance of SBFTDNS with TIS/DNSSEC, an
implementation of the DNS security extension proposed by the IETF and implemented by the Trusted
Information System. TIS/DNSSEC is based on the BIND version 4.9.4-pl, the most popular DNS

71

package. We added the reply verification module to TIS/DNSSEC as the original implementation

lacked the crucial support of verifying the authenticity of the reply by the client. To compare the

performance of our system with the non-secure DNS, we compiled TIS/DNSSEC with the security

mode off, and call it "TIS/DNS". The test systems are denoted as follows:

System Means of Authentication

TIS/DNS No authentication

TIS/DNSSEC Pre-generated SIG RRs signed by the zone public key

SBFTDNS MACs generated by session key that is established by using the server private-

public key pair, with additional support for key refreshment, replicated client, RR

caching, and invalidation

In the absence of a standard benchmark to measure the performance of the domain name system, we

devised our own experiments. For all the experiments, the zone databases were loaded into memory

and we used hash tables to store the database records. Therefore, the core database lookup procedure

took very little times regardless of the size of the database. The experimental zone database contained

about 120 resource records in it.

Our experiments comprised of two major types of operations:

7.2.1 Read Only Operations

Read only operations that do not modify the state of the system are the most commonly requested

operations in the domain name system. We measure the performance of the two most common types

of read-only requests, queries for A records and NS records.

A (Address) Record Query

We request the IP address of hostlfoo.bar from the name servers of the zone foo.bar. Depending on

the system, an A record and an optional SIG RR are returned to the client. This is the simplest possible

query in DNS, and is also the most common type of request. As indicated by the data in appendix A,

almost 60.16% of DNS queries going out of MIT's Laboratory for Computer Science in January, 2000

were A record queries.

NS (Name Server) Record Query

We request NS records for the name servers of the zone foo.bar to the servers of the zone bar. In

TIS/DNSSEC, there are two name servers for each zone, whereas in SBFTDNS, there are four name

servers per zone. Generally, this type of query returns a lot of resource records, including NS RRs, A

RRs corresponding to the name servers, related KEY RRs, and optional SIG RRs. Although quite

complicated, this type of query is also quite common since the resolvers need to know the name

servers of a zone to query the zone.

72

7.2.2 Read-Write Requests

Although quite infrequent in current DNS, read-write operations like dynamic updates are getting

popular due to the use of DNS to support server load distribution and host mobility. We perform two

types of read-write requests: resource record invalidation and update operations. We perform the

simplest update operation of changing the IP address of a host in the zone foo.bar. For invalidation, we

performed a single level and a multilevel invalidation of a cached resource record. Since TIS/DNS and

TIS/DNSSEC do not support RR update or invalidation schemes, we only measure the performance of

SBFTDNS for these two types of operations.

7.3 Results

In this section, we describe the results we obtained from running 10000 invocations of each operation.

For these experiments, we assume that the session keys between the client and the replicas in

SBFTDNS are established in the very first invocation, and they are cached for the rest of 9999

operations. This amortizes the cost of session key establishment and the obtained results indicate the

performance of the system when the session key is cached. Later in section 7.4.1 we discuss the

performance of SBFTDNS when the session key is not cached.

7.3.1 Read-only Operations

Query for an A Record

Table 7-1 summarizes the performance of the test systems for a query for the IP address of

hosttl.foo.bar. The #RR signifies the total number of resource records included in the reply. #SIG

indicates the number of SIG RR (included in #RR) included in the response packet to authenticate the

reply. The elapsed time is the response latency observed by the client from the time the client starts to

generate a request to the time it accepts a reply and successfully interprets it. The server time is

measured from the time the server receives a request to the time the reply packet is ready to be sent

out, i.e., it does not include the time it takes to receive a request or send a reply.

System #RR / #SIG Reply Size Elapsed Time Server Time

(bytes) (ms) (Ms)

TIS/DNS 1/0 47 0.146 0.029
TIS/DNSSEC 2/1 150 0.359 0.035
SBFTDNS 1/0 112 0.253 0.036

Table 7-1: Performance for the Query for an A Record

In the non-secure TIS/DNS, the response for an A record includes only one A RR and no SIG RR to

prove the authenticity of the reply. The answer in TIS/DNSSEC includes one A RR and its

corresponding SIG RR. SBFTDNS, on the other hand, authenticates a reply using message

73

authentication codes (MAC) instead of SIG RR. The response therefore includes only one A RR and

no SIG RR.

The results show that response latency for TIS/DNS is lower than TIS/DNSSEC. The difference arises

mostly from the cost of verifying a SIG RR at the client. We measured that each SIG RR verification

operation (dnssecverify) in TIS/DNSSEC costs 0.018 ins. Also, the reply size has almost tripled from

TIS/DNS (47 bytes) to TIS/DNSSEC (150 bytes). Processing a larger response packet increases

latency both at the client and the server.

As expected, the client elapsed time and the server processing time in SBFTDNS are larger than those

of TIS/DNS. The extra cost is introduced by the cryptographic operations to verify the authenticity of

the reply and the overhead of the replication library that involves extra computation and the processing

of larger request/reply packets. However, the A record reply verification cost at the BFT client is

found to be 0.007 ms (including 0.003 ms of generating digest and 0.004ms for verifying MAC),

which is significantly lower than 0.018 ms of the SIG RR verification cost in TIS/DNSSEC. The reply

size is also smaller, i.e., 112 bytes compare to 150 bytes. This results in a smaller elapsed time (0.25

ms vs 0.35ms) in SBFTDNS compared to that in TIS/DNSSEC.

Query for NS Record

Table 7-2 summarizes the performance of a query for the name servers of the zonefoo. bar.

System #RR / #SIG Reply Size Elapsed Time Server Time

(bytes) (ms) (ms)

TIS/DNS 4/0 98 0.19 0.043

TIS/DNSSEC 9/4 592 1.04 0.072
SBFTDNS 12/0 552 0.44 0.087

Table 7-2: Performance for the Query for an NS Record

For both TIS/DNS and TIS/DNSSEC, we assume two names servers per zone. Therefore, the response

from TIS/DNS includes two NS RRs and two A RRs corresponding to the IP addresses of the name

servers. Because of a bigger answer set, the latencies are larger than what we found for A record

queries.

In case of TIS/DNSSEC, the response includes two NS RRs, one SIG RR for the NS RRs, two A RRs,

two SIG RRs for the A RRs, one KEY RR for the zone and one SIG KEY RR. Because of the larger

answer set with four SIG RRs, which involves costly verification operations, the client elapsed time

has substantially increased from 0.36 ms to 1.04ms.

74

In case of SBFTDNS, we assume four replicas acting as the server set for a zone. The response
includes four NS RRs, four A RRs, and four KEY RRs corresponding to each replica. The number of

RRs is larger than an A record reply. However, the response latency has not increased substantially
(0.44ms compared to 0.25ms). The difference between the performance of TIS/DNSSEC and

SBFTDNS is quite noticeable in this case. This is due to the fact that TIS/DNSSEC needs to verify
four SIG RRs using expensive public-key cryptography. With each additional RR, the cost increases

substantially. The client in SBFTDNS, on the other hand, needs to verify only one MAC for each

reply, regardless of the number of RRs in the reply message. The MACs are computed using session

keys and UMAC32, the cost of which is significantly less than that of a public key cryptographic

operation. Given the popularity of NS record queries, our system can provide a service with

significantly higher performance, availability, and security than TIS/DNSSEC or similar DNS security
extension implementation using public key cryptography.

7.3.2 Read-Write Operations

Resource Record Update

Table 7-3 shows the performance of SBFTDNS for an RR update operation. Since TIS/DNS or
TIS/DNSSEC do not support update transactions, we only tested the performance of SBFTDNS.

Table 7-3: Performance for Updating the IP address of a Host

For this experiment, we assumed that the session key for dynamic update had been cached. Later in

section 7.4.1 we discuss the performance of an update operation when the dynamic update key has not
been cached.

The results show an increase in both the client elapsed time and the server processing time, compared

to the read-only operations. However, as we discussed in section 5.4, data updates are very rare in

DNS. The crucial difference between a read request and an update request is that replicas must check
the authenticity and the authority of the incoming update request. Notice the distinction between the
performance of the primary of a view and the non-primary replicas of SBFTDNS system. A read-write
operation like RR update is performed as a typical transaction in the CLBFT algorithm. When the

primary receives a request, it uses a three-phase protocol (pre-prepare, prepare and commit) to
atomically multicast the request to the backups, as described in section 4.3. Because of the request
authentication, the extra message roundtrip and extra cryptographic operations performed by the
replication library, the server time increases substantially in both the primary and the non-primary

75

System Elapsed Time Primary Server Non-primary
(ms) Time (ms) Server Time(ms)

SBFTDNS 0.5168 0.299 0.133

replicas. The overall response latency observed by the client, however, is not too high when the
session key is in cache.

Resource Record Invalidation

Table 7-4 shows the performance of SBFTDNS for the invalidation of a resource record that has been
cached at the servers. We measured the performance for both a one-level and a two-level invalidation.
In the one-level case, an authorized client makes an invalidation request to replica set 1 for the ns
record of some.bar that has been cached in the replicas as a result of a previous query. However,
replica set 1 did not provide the cached answer to any other server set; therefore invalidation stops
with one level. The two-level case measures the performance of the system when replica set 1 receives
an invalidation request from an authorized client for a cached resource record. After, verifying the
authenticity of the client, replica set 1 invalidates the resource record from its own cache and sends an
authenticated invalidation request to replica set 2 which cached the RR from replica set 1 and whose
lease period has not expired in the mean time. For the two-level case, we show the performance of the
system for with and without the scheme for reducing the number of messages across levels.

Table 7-4: Performance for One-Level Invalidation Operation

Like any other read-write request, invalidation is performed as a typical transaction with a three-phase
protocol, which explains the increase in the server processing time. The results indicate that the
performance for a single level invalidation is almost identical to the update request (cost is slightly
higher for update), as both the cache and the database are loaded in memory. Manipulating resource
records stored in hash tables take a very small amount of time.

Message Client Replica Level 1 Replica Level 2
Mode Reduction Elapsed Primary Non Primary Primary Non Primary

Mode Time Server Time Server Time Server Time Server Time
(ms) (ms) (ms) (ms) (ms)

Two- Off 1.64 1.057 1.053 0.3 0.13
Level

On 1.70 1.346 1.371 0.355 0.134

Table 7-5: Performance for Two-Level Invalidation Operation

76

Mode Elapsed Time Primary Server Non-primary

(ms) Time (ms) Server Time(ms)

One-Level 0.506 0.287 0.128

The two-level case is interesting. The measured client elapsed time here indicates the amount of time it
takes for the invalidations to be committed both at replica set 1 and 2. The latencies at both the server
and the clients increase due to additional round trip time between levels and extra cryptographic
operations at the server side. The data also show that invalidation latencies increase when the message
reduction mode is on due to extra operations needed to indicate the specialty of the request, increase in
the size of the replies, and additional communication between the primary and the non-primaries to
delegate the responsibility. Later in section 7.4.3, we discuss in detail the effect of reducing the
number of messages across levels.

7.3.3 System Performance Comparison

Client Elapsed Time

The client elapsed time indicates the response latency observed by the client. This is one of the most
important metric of DNS performance evaluation. Figure 7-1 and 7-2 indicate the relative performance
of TIS/DNS, TIS/DNSSEC, and SBFTDNS in terms of response latency for an A record and an NS
record query.

Response Latency for A Record Query

OTISIDNS

0.359 *TIS/DNSSEC

/SBFTDNS

0.253

0.146

TIS/DNS TIS/DNSSEC SBFTDNS

Response Latency for NS Record

1.2

0)0.8-

0.6

0.4-

0.2

0-

O TIS/DNS

*TIS/DNSSEC

0 SBFTDNS

1.04

0.4

TIS/DNS TIS/DNSSEC SBFTDNS

Figure 7-1: Response Latency for A Record Figure 7-2: Response Latency for NS Record

For A Record query, the elapsed time in SBFTDNS is 4% higher than TIS/IDNS. However, it is 4.2%
lower than the elapsed time in TIS/DNSSEC. The gain is even higher for a sufficiently large NS
record query that involves a lot of cryptographic operations. Our test results show a 136% gain in
response latency for NS record query while using SBFTDNS instead of TIS/DNSSEC. The
performance here is only 5.7% lower than the insecure version of TIS/DNS.

77

0.4 -

0.35 -

0.3 .

0.25

0.2 -

0,15

0.1

0.05

0

7.4 Performance Issues

7.4.1 Session Key Management

We now discuss the performance of the system when the session key is not cached in the client and the

replicas. As discussed in section 5, we use the Rabin-Williams public-key cryptosystem with a 1024-

bit modulus to establish a 128-bit session key. Table 7-7 shows the amount of time it takes to encrypt,

decrypt, sign and verify a session key using the Rabin-Williams public-key cryptosystem.

Operation Time (ms)

Encrypt 0.91
Decrypt 28.4

Sign 29.3
Verify 0.12

Table 7-7: Cost of Cryptographic Operations in the CLBFT

Table 7-8 shows the performance of SBFTDNS with and without session key caching.

Operation Session Key in Cache Client Elapsed Time (ms) Server Time (ms)

A Record Query YES 0.253 0.036

A Record Query NO 32.4 28.5

A Record Update YES 0.517 0.299

A Record Update NO 62.5 29.01

Table 7-8: Performance of SBFTDNS with and without Session Key in Cache

The results indicate that the both the client elapsed time and the server time increase significantly

when the session key is not in cache. For a read-only request like an A record query, client

authentication is not important. In this case, the client performs four encryption operations and each

replica performs a decryption, which is 30 times slower than an encryption. Therefore, the server

becomes the bottleneck.

For a read-write request like an A record update, however, the authentication and authorization of the

client is important. The client needs to provide a signature to prove its authenticity and authority, in

addition to the 4 encryptions operations. Therefore, the total elapsed time is almost double the elapsed

time in the read-only operation.

In fact, the data show that performance of the system when session key is not cached is at least 95%
slower than when session key is cached. But even then, the amount of time it takes at the client and the

server to perform an invalidation/update operation is not high when we compare it to the usual cost of

network latency. Given the infrequency of update/invalidation requests, the performance is acceptable.

78

7.4.2 Replicated Clients and RR Caching

Because of DNS's use of hierarchical state partitioning and caching to achieve scalability, we had to
develop an efficient protocol that allows the replicas in a group to request resource records from
another group of replicas and cache the result for future reference. Table 7-9 shows the effect of RR
caching on the performance of SBFTDNS. In the first case, the client requested the NS record of
some.bar, which could not be provided by the replica set 1. The first level of replicas then obtained the
answer from replica set 2 (the authoritative name servers for the zone bar), cached the result and sent it
back to the original client. For 10000 invocations of the request, replica set 1 had to obtain the record
from the 2nd level only once, and it served the answer from its own cache for the rest of 9999 requests.
This essentially amortizes the cost for obtaining the result from the second level, and indicates the
performance of the system when it serves an RR from its local cache.

Table 7-9: Performance of SBFTDNS with RR caching on and off

In the second case, we turned the caching mode off. Therefore, the first level of replicas had to obtain
the answer from the second level each time. Due to the extra round trip and processing time at the T
level servers, the response latency experienced by the client increases from 0.28 ms to 0.9 ms, almost
a 221% increase. This emphasizes the need for RR caching for overall performance benefit of a
scalable domain name system.

7.4.3 Reducing the Number of Messages across Levels of Hierarchy

The results in table 7-5 indicate that the client elapsed time increased from 1.64ms to 1.7ms (a 3.6%
increase) when the scheme for reducing the number of messages across levels was turned on. The
increase can be attributed to the extra operations needed to indicate the specialty of the request,
increase in the size of the replies, and additional communication between the primary and the non-
primaries to delegate the responsibility.

The gain, however, comes from the reduction of server load, network overhead and traffic, especially
with the increase of the level of hierarchy. Table 7-10 shows the number of messages and an
approximate number of bytes traversing through the network for a read-only request for a one, two and
three level hierarchical system, with and without the reduction scheme. We assume that each server
level comprises four replicas to tolerate one failure. The RR caching mode is assumed to be off, which

79

Client Replica set 1 Replica Set 2
RR Caching Elapsed time Server Time Server Time

(ms) (ms) (ms)

ON 0.28 0.047 0.04

OFF 0.9 0.6 0.038

may be the case for a security critical data. We consider a standard network header size of 20 bytes.

The reply size, S is assumed to be 160 bytes, which is the average DNS response packet size we

observed in the LCS traffic, as described in appendix A. The MAC size is 10 bytes and the reply

representation takes 40 bytes (besides the actual reply data) in the CLBFT replication library.

Reduction # of MaximumTotal # of Total # of reply bytes
Scheme Levels Messages traversing traversing the Network

through the Network (Reply size, S=160 bytes)

1 4*2= 8 (20+S+40+10)*4= 920
ON 2 4*2 + 4*2 + 3 = 19 (20+S+40+40)*7 + (20+S+40+10)*4 = 2740

3 4*2 +4*2 +4*2 + 3*2 = 30 (20+S+40+40)*7*2 + (20+S+40+10)*4 = 4560

1 4*2= 8 (20+S+40+10)*4= 920

OFF 2 42*2 + 4*2 = 40 (20+S+40+10)*20 = 4600

3 43*2 + 42*2 + 4*2 = 168 (20+S+40+10)*84 = 19320

Table 7-10: Number of Messages and Reply bytes for a Read-only Request

Total Number of Messages

1RR

B Reduction On

O Reduction Off

40

19

25000 -

20000 -

15000-

10000-

5000 -

8 8

1 2

Levels of Hierarchy

Figure 7-3: Total number of Messages

Total Number of Reply Bytes

19320M Redcution On

O Reduction Off

4600
2740

920 920

1 2

Levelsof Hierarchy

Figure 7-4: Total number of Reply Bytes

Even with a two-level hierarchy, the reduction scheme almost halves (19 instead of 40) the number of

messages, and yields a 67% reduction in the total number of reply bytes (2740 bytes instead of 4600

bytes) traversing through the network.

For a three-level system, the gain is even higher, as the number of messages is cut by a sixth (30
instead of 168), and the total number of reply bytes has been reduced to one fourth of what it would be

without the reduction scheme (4560 bytes instead of 19320 bytes).

80

r03
00

to

En

.0

cu

180-

160-

140-

120-

100-

80-

60-

40 -

20 -

0- 1 1 VZZZZZ,! VZA -: -: -: -'-: -: -: -: -: I Im lm.m I:-: I

In addition, the scheme significantly reduces the load on the servers as we ensure that each replica in
level n receives only one request from the replicas in level n-i. This reduces the load on the 2 d level
replicas by a factor of 4 (1 request instead of 4). The load on the 3rd level replicas is cut down by a
factor of 16. We consider this to be a significant gain that improves the scalability of a replicated
system as ours.

7.5 Discussion

In this chapter, we presented a comparative performance evaluation of the scalable Byzantine-fault-
tolerant domain name system. It should be noted that the lease requests proposed in section 5.4.2 have
not been implemented in the system. However, this does not affect the performance results we
obtained. Our experiments were run with one client and two levels of servers, each level comprising
four replicas to tolerate one fault. It took less than 5 seconds to serve 10000 invocations of each query.
Even if we assume that a typical lease is for one minute, the experiments did not last long enough for
leases to be extended. For the 10000 invocations of a read request, we would have had one getLease
request and no extendLease requests. Compared to the total number of queries, the cost for a getLease

request would not make any difference.

Our test results show that SBFTDNS performs worse that the insecure DNS, but substantially better
than TIS/DNSSEC in almost every case, not to mention that SBFTDNS guarantees a much higher
level of security, robustness, and availability of the domain name system than TIS/DNSSEC. The
performance gain increases with the number of cryptographic operations, due to the elimination of
expensive public-key cryptography and the use of session-key based message authentication codes
(MAC) in our system.

We observed that the performance of the system when the session is cached is significantly better than
when the session key is not cached. However, even the performance of the system when the session
key is not cached seems not too high when we take typical network latency into account. As a further
optimization, we use the Rabin-Williams public-key cryptosystem to establish the session key, which
is at least 5 times faster than the RSA Public-key cryptosystem used in TIS/DNSSEC for
cryptographic operations [9].

In reality, we can expect our system to perform even better due to various other optimizations in the
CLBFT algorithm. For example, our experiments were designed to invoke 10000 operations from the
same client. In reality, server throughput will be much higher due to the request batching support in
the CLBFT library. With batching, the replication algorithm can process many requests in parallel.
This amortizes the protocol overhead for read-write operations over many requests. The server
throughput with batching grows with the number of clients up to a maximum that is 66% better than
the throughput with a single client [9]. The algorithm also uses optimizations to reduce protocol

overhead as the operation argument and return sizes increase.

81

0
0 w
0

Chapter 8

Conclusions

In this thesis, we presented the design, implementation, and performance evaluation of a scalable
Byzantine-fault-tolerant domain name system. In section 8.1, we summarize our work and major

contributions. Section 8.2 proposes research directions for future work.

8.1 Summary

The domain name system is the standard mechanism on the Internet to advertise and access important
information about hosts, e.g., address, mail exchanger, etc. The original DNS was not designed to be a
secure protocol. Because of its critical role in the Internet infrastructure, DNS has become a favorite
target of malicious attacks in recent times. Due to the lack of support for data integrity authentication
and source authentication in the current DNS protocol, a resolver has no alternative but to trust the
result it receives. Furthermore, current DNS does not tolerate server failures due to benign faults or

malicious attacks.

With the growing popularity of the Internet, and the reliance of various Internet protocols on DNS
data, it is important that DNS tolerate failures and attacks both at the servers and during data
communication over the Internet. In late 1997, a security extension of the domain name system
(DNSSEC) was proposed by the Internet Engineering task force (IETF). The basic idea is to provide
data integrity and origin authentication to security aware resolvers by means of cryptographic digital

signatures.

While the proposed DNS security extension (DNSSEC) ensures a secure communication of DNS data,
DNSSEC assumes that the zone private key is not stolen and the servers that are responsible for
providing authenticated name service are not corrupted themselves. We discussed the security holes in
DNSSEC infrastructure in detail in chapter 3. The biggest concern in DNSSEC is where to store the
zone private key, which is used to sign the zone data. If the zone key is stored online, a single name

server failure may subvert the entire zone. If stored offline, however, dynamically updated data is
either not available or not protected before the next signing takes place, which defeats the purpose of
dynamic update. Furthermore, the wide window of freshness attack due to the use of pre-generated

signature resource records (SIG RR), vulnerability to both benign and malicious server failures, and
the use of a simple primary-secondary replica scheme in zone transfer causing inconsistency between
primary and secondary name servers, add to the disadvantages of the proposed DNS security

extension.

83

As a solution to these problems, we propose a scalable Byzantine-fault-tolerant secure domain name

system. By using the CLBFT replication library, we provide high availability and integrity of the

domain name system in the presence of Byzantine faults, i.e., arbitrary behavior exhibited by the

nodes. Each name server in our Byzantine-fault-tolerant DNS consists of 3f+1 tightly coupled replicas

to survive up to f faults within a small window of vulnerability. In this way, we remove the

vulnerability of the system to both benign and malicious server failure, increase the reliability and

availability of the domain name service, and ensure consistency of state among non-faulty replicas.

By using a session key mechanism, we authenticate communication between a client and a server, and

provide per-query data authentication. Since no pre-generated signature is used, data provided by the

name servers is always up-to-date. In addition, SBFTDNS supports real-time dynamic data updates,

and dynamically updated data are as safe as any other data in SBFTDNS.

The major concern with any session key based system, however, is scalability. Since every client and

server needs to share a session key to protect communication between them, the number of session

keys increases quadratically with the number of nodes. The cost of establishing session keys using

expensive PPK operations can be reduced by incorporating an efficient session key caching

mechanism. Based on current patterns of DNS traffic, we propose a hierarchical organization of name

servers to take advantage of a hybrid recursive and iterative query resolution approach. The scheme

minimizes the number of session keys to remember, as well as reducing the load on the root name

servers.

On the other hand, DNS, being a very large-scale distributed system, makes extensive use of resource

record caching. Because most operations in DNS are read-only and data updates are very infrequent,

RR caching is a favorite technique to achieve scalability and performance gain. Caching, however,

raises concern about cache consistency and staleness of data since stale data may not be harmless

when security is of concern. We reduce the window of freshness attack by implementing an efficient

hierarchical caching scheme with an invalidation protocol using leases.

A Byzantine-fault-tolerant implementation of the domain name system is particularly interesting

because of DNS's use of hierarchical state partitioning and caching to achieve scalability. To

implement a Byzantine-fault-tolerant DNS, we had to develop an efficient protocol for replicated

clients that allows replicas in a group to request operations from another group of replicas. To provide

a scalable solution to the problem of increase in the number of messages across levels of replicated

clients, we developed a protocol where the primary performs the query on behalf of the group. To

remove vulnerability to a faulty primary, the protocol ensures that the reply from one set of replicas

can be verified by another set independently of who performed the query.

Finally, in chapter 7, we presented an evaluation of the performance of SBFTDNS. We compared the

performance of our system with non-secure DNS, and with TIS/DNSSEC, an implementation of the

domain name security extension protocol. While SBFTDNS performs worse than the insecure DNS

due to extra cryptographic operations to support security, the results show that SBFTDNS performs as

84

well or better than TIS/DNSSEC in almost every case, not to mention that SBFTDNS guarantees a
much higher level of security, robustness, and availability of the domain name system than

TIS/DNSSEC. We observed a 4.2% gain in response latency for a typical A record query, and a 136%
gain for an NS record query while using SBFTDNS instead of TIS/DNSSEC. The performance gain

increases with the number of cryptographic operations, due to the elimination of expensive public-key

cryptography and use of session-key based message authentication codes (MAC) in our system. As

discussed in section 7.5, we can expect our system to perform even better in reality due to various

other optimizations in the CLBFT algorithm, e.g., request batching and reduction in protocol overhead

as the operation argument and return sizes increase.

The proposed scalable Byzantine-fault-tolerant domain name system provides a highly secure service,

yet it is practical. Together with high reliability and availability, SBFTDNS has the potential to not

only provide a secure name service for the Internet, but also serve as a robust infrastructure for storing
authenticated public keys for other internetworking protocols that require authentication.

8.2 Future Work

8.2.1 Improving the Implementation

There is much scope for improvements and optimizations in the scalable Byzantine-fault-tolerant

domain name system that we implemented. For many features, like the support for replicated clients,
we provide a simple implementation to show the feasibility, and we measured the performance of the
system under such a scheme. Also, the lease mechanism described in section 5.4.2 has not yet been

implemented.

An important point to note is that in DNS, servers are generally replicated to ensure redundancy and

availability of service, and to spread the load among the replicas. For a heavily-used zone, there are

many servers and they are needed to support the load. This is an important way of increasing the
scalability of servers. However, in a Byzantine-fault-tolerant DNS, a server comprises 3f+1 replicas,
and all the replicas execute queries. Although our performance results show that our four-replica

server can compete with one DNSSEC server, an obvious concern is how SBFTDNS can handle the
load in a heavily-used zone. Further research is needed into how to improve the capabilities of the

replicas in SBFTDNS so that they can handle higher loads.

8.2.2 Use of a Standard DNSSEC Package

We based the implementation of SBFTDNS on TIS/DNSSEC beta version 1.4, because at the time of
this implementation, it was the only implementation of DNSSEC available. The Internet Software

Consortium recently released BIND version 9.0 and declared TIS/DNSSEC to be obsolete [20]. The

very latest release, BIND 9.0.1, is capable of acting as an authoritative server for DNSSEC secured
zones. This functionality is believed to be stable and complete except for lacking the support for

85

wildcard records in secure zones. When acting as a caching server, BIND 9.0.1 can be configured to

perform DNSSEC secure resolution on behalf of its clients.

Since BIND version 9.0 is a more complete implementation of the DNSSEC protocol compared to

TIS/DNSSEC, it would be interesting to implement our Byzantine-fault-tolerant domain name system

on top of BIND 9.0 and compare the performance of the two systems. Measuring performance against

BIND would give a more realistic picture. Any improvement in security and performance over BIND

can be viewed as significant since BIND is estimated to be the DNS software used by over 90% of the

hosts in the Internet.

8.2.3 Backward Compatibility

One important step in a realistic implementation of a Byzantine-fault-tolerant domain name system is

to make the system backward compatible to already existing DNS implementations. The request and

reply message formats for a CLBFT replication library are different from the formats in current DNS.

Moreover, the BFT client requires 2f+1 matching replies from different replicas to get a convincing

answer in SBFTDNS.

To make the system backward compatible, we can use a scheme similar to the one proposed by

DNSSEC. According to DNSSEC protocol, a security aware server sets the AD (authenticated data)
bit in the response header to indicate that the answer has been authenticated by a security aware server.

A security aware resolver, on the other hand, may trust its local name server, in which case it would

issue a query that looks identical to a non-security-aware resolver's query. It would, though, expect the

AD bit set in the response. Transaction security is needed in this case to prevent malicious tampering

over the local link. A security aware resolver may also issue a query with a CD (checking disabled) bit

set, which would instruct the local name server to forgo any authentication checks. The resolver would

then perform the security checks itself

In the Byzantine-fault-tolerant case, a BFT server should be able to recognize requests from old

servers correctly and must send back recognizable replies. A BFT resolver, on the other hand, must be

able to know whether the name server it wants to contact is Byzantine fault tolerant or not, and should

prepare the request message accordingly. A possible solution would be to incorporate some additional

information in the zone NS record to indicate the type of the zone.

Also, in our implementation the hierarchical organization of replicas was configured manually using

configuration files. It would be useful to provide a more generic solution to the problem of organizing

name servers in hierarchy by extending the forwarder directive provided by domain name system

software like BIND.

8.2.4 Realistic Performance Measurements

We have measured the performance of the system in the normal case. It would be interesting to see

how the system behaves when faults are injected into the system. Measuring the performance and

86

behavior of the scalable Byzantine-fault-tolerant DNS under view change, failure recovery, and packet
retransmission mode would be useful. Also, more comprehensive experiments, e.g., a multi-client set
up instead of a single client one, can better approximate the behavior of the system in reality.

87

00 00

Appendix A

An Analysis of DNS Traffic Patterns and Performance

In this section, we present an analysis [1] of the current DNS traffic patterns, performance, and

caching behavior, as observed from network traffic traces. The objective is to study the typical

distribution of DNS request latencies, identify potential bottlenecks in the name resolution schemes,

and investigate how effective DNS caching behavior is. The motivation is to understand the current

behavior of DNS to propose ways to improve the over performance of the domain name system.

A.1 Motivation

Because of the critical role that the domain name system plays on the Internet, virtually every

internetworking service use DNS, and share their fate with it. It is therefore important to improve the

overall performance of DNS by minimizing the request latency and by eliminating possible

bottlenecks in typical DNS query resolution schemes.

The traditional approach to reduce request latency in DNS is caching resource records. There are

apparently contradictory claims about the expected behavior of an efficient DNS caching scheme. On

one hand, aggressive caching is considered to be beneficial, since caching reduces the load on the

name servers and decreases the latency observed by the resolvers. To make full use of this feature of

caching, the TTL values of DNS resource records should not be short compared to the rate of change

of actual binding. On the other hand, the use of DNS as a level of indirection to balance load among

several servers, or newly emerging services like host mobility calls for very short resource record

TTLs. In a recent work [33] done by Emil Sit of MIT's Lab for Computer Science (LCS), the caching

behavior of DNS has been studied. It investigates the impact of sharing caches and varying TTLs on

DNS cache hit rates. The paper suggests that sharing a DNS cache among many clients is not very

effective at increasing hit rate. Similarly, while TTLs of a less than a few seconds substantially harm

hit rates, TTLs beyond a few minutes have little impact on the hit rate. Although this seems to have a

negative implication on the effectiveness of caching, it suggests that the use of DNS in a dynamic and

non-cached mode need not greatly degrade its performance. In our analysis, we further extend some of

the questions addressed by this work [1] and focus on various per-query based statistics, e.g., request

latency and number of referrals involved in a typical query. We also study several characteristics of

DNS behavior in general, including query types, popularity and response errors. To figure out the

impact of sharing on cache hit rates, we perform a trace driven simulation.

89

In a related work in 1992, Danzig et al.[11] presented measurements of DNS traffic at a root name

server. They found that one third of the wide-area DNS traffic that traversed the NSFnet in 1992 was

destined to seven globally distributed root name servers. Moreover, they estimated that DNS

consumed approximately twenty times more wide-area network bandwidth than was absolutely

necessary. This was more than ten times the amount of excess traffic estimated from the observations

of DNS traffic in 1988 [24]. This motivates us to investigate whether root name servers are the

bottlenecks of current DNS name resolution schemes. We analyze what percentage of outgoing DNS

queries contact a root name server and how those queries are distributed among thirteen root servers.

We also investigate the effect of contacting root name servers on DNS performance.

A.2 DNS Traces

A.2.1 Data Collection

Our analysis is based on traffic traces collected on the border router of the MIT Laboratory for

Computer Science (LCS) on a sole link that connects the LCS with the rest of MIT's network. The

traces are taken from January 3rd,2000 to January 9th, 2000 and will be referred to as the week] trace

for the rest of this paper. The detailed description about data collection can be found in [33].

A.2.2 Analysis Methodology

DNS traces are analyzed to extract various statistics including the number of referrals involved in a

typical query and the distribution of request latency for various types of query resolution patterns. To

calculate the latency in resolving a query, we maintain a sliding window of 8 seconds to match a list of

queries sent out of the LCS with incoming response packets. If a response contains an answer record,

we look for a query that matches with that response and output the time difference between those two

packet arrivals. The actual end-user DNS request latency, however, is longer than this, since we see

packets in the middle of the resolvers and the name servers. If an answer record is absent from a

response, we increment the corresponding query's number of referrals by one and wait until the final

answer comes. To keep track of the name servers contacted during a query resolution, each query has

an array storing the IP addresses of name servers involved in the query resolution.

A.3 Analysis

A.3.1 General Characteristics

The basic statistics about DNS traffic is summarized in table A-1. Our analysis is based on the LCS

week-i traces. More details about the general trace attributes including query rate, average packet size

and number of queries per one outgoing TCP connection are described in [33].

90

Table A-1: Basic Statistics

As shown in table A-1, we found that almost 19% of the queries end up querying a root name server.
Moreover, 28.77% of the times a root server gets contacted, it provides the final answer to the query,
which seems unusual given that root servers are not supposed to perform recursive queries. These two
facts taken together indicate that the load on the root name servers is quite high.

A.3.2 Request Latency

Figures A-1 and A-2 show DNS request latency distribution. About 10% of the requests get their
responses in less than lOms and the median value is 75ms, which means DNS performs quite well in
most cases. When we exclude queries to the local domain, mit.edu, the peak at ims of the solid line of
figure A-1 disappears. That peak is specific to the location of the data collection machine of the week]
traces. We observed about 3% of requests that take more than 1 second. The peak around 8 second in
the figure A-1 corresponds to our window size in the analysis because we don't keep un-responded
query packets longer than 8 seconds.

0.09

0.00

0.07

0.06

0.05

0.04

0.03

0,02

0.01

0
10 100

Lle ncv (m s)
1000 10

90

0

70

60

50

40

20

10

loo 1 10 100
L ale ncy (m s)

1000 10000

Figure A-1: PDF of DNS request latency Figure A-2: CDF of DNS request latency

91

All Result :No Error Result:Error
Total Queries 1770865 1489432(84.1%) 281433(15.9%)

% of queries to mit.edu 11.5%
% of queries to root 18.99% 18.56% 21.27%
% of answers from root 28.77%
% of referrals from root 71.23%

Traffic Statistics Value
Average Total packets/sec ~~9000
Average TCP connection/sec 10.14

Average DNS packets/sec 25.94

Average DNS query size (bytes) 39.9
Average DNS response size(bytes) 160.8

Excluding queries to mItedu -

-r

u. I

- ------- - - ------- - - - --

A.3.3 Number of Referrals

Referrals happen when a server does not know the answer to a question, but does know where the

answer can be found. In that case, it sends a response packet with the information in it. DNS request

latency, therefore, highly depends on the number of referral packets since the resolver repeatedly

contacts a series of name servers to get an answer. Figure A-3 shows the distribution of referral

packets for a query. 79% of queries are resolved without any referral, which means they get an answer

directly from a server it contacts the first time. There are 0.01% of them, which take more than 5

referrals, but these cases can be considered pathological due to errors, such as DNS server or resolver

misconfigurations.

o referral 78.99%

1 referral 19.48%

2 referrals 1.40%

Table A-2: Number of referrals

o12 3 4

Num ber of relerrals

Figure A-3: CDF of the number of referrals

100

90

00

70

600

50

40

30

00

10 100

0referral-
1 referral

2 referrals -
3 referrals ..- .
4 referrals

I "A /

; 01

100

Figure A-4: Latency distribution vs # of referrals

Figure A-4 shows the latency distribution according to the number of referrals. It is obvious that

latency goes higher as the number of referrals increases. For the case of 0 referral, 73% of requests are

resolved in less than a 100ms and only 1% of requests take more than 1 second. However, more than

84% of requests take more than a 100ms if they get more than 2 referrals in resolving the query.

Therefore, reducing the number of referrals involved in the resolution of a query, can improve DNS

request latency significantly.

A.3.4 Query Type

A query type is specified in the question section of DNS packets. Table A-3 lists top four most

frequently requested query types found in the weeki traces. Most of the observed queries were seeking

the IP address corresponding to a host name (60.160% A query) or vise versa (34.16% PTR query).

92

100

g0

00

75 1000

We find that about 30% of PTR queries are made to the name servers in the mit.edu domain, which
may be the result of inverse look up of IP-addresses, which happens, for example, when ssh
connections are established from a machine in the mit.edu domain to any host inside the lcs.mit.edu
network. Figure A-5 shows the cumulative distribution of request latencies across query types.

A-
NAMC A -----

MX --

00

70

Type Frequency
A 60.16%
PTR 34.16%

40 .

CANAME 2.52%

20MX 3.11%
Other 0.05%

10

1 10 100 1000
Latency (ms)

Figure A-5: Latency distribution across query types Table A-3: Query types observed

A.3.5 Response Error

As shown in table A-1, 15.9% of the queries in the week] trace result in an error as the response.
According to [26], the response return code, RCODE is set as a part of the response indicating the
types of errors occurred at the name server while resolving a query. Table A-4 shows that most of the
errors are composed of NXDOMAIN or SERVFAIL errors. The NXDOMAIN signifies that the
domain name referenced by the query does not exist, while the SERVFAIL indicates that the name
server is unable to process the query due to a problem with the server. Inspecting the error cases
further, we find that non-negligible cases of errors are caused by inappropriate domain name
expansion (e.g: dirty.research.bell-labs.com.cs.mit.edu) and wrong inputs such as loopback, cow, or
15.0.29.18.rbl.maps.vix.com. Moreover, some error cases are highly repetitive which can be avoided
by negative caching, thereby improving the response time and offloading the name servers at the same

time.

NXDOMAIN 73.70%
SERVFAIL 25.61%

Other 0.69%

Table A-4: Response errors observed in weeki trace

93

A.3.6 Root Server Characteristics

There are 13 well-known root servers, which are contacted when a local proxy name server cannot

resolve a query using its local database or cache. Table A-5 lists the root servers and the number of

queries forwarded to them, as observed in the weekl trace.

Root Access

Server Location Count

A Herndon, VA, USA 11255 (3.35%)

B Marina Del Rey, CA, USA 16858(5.01%)

C Herdon, VA, USA 20231(6.01%)

D College Park, MD, USA 166199(49.4%)

E Mt View, CA, USA 21805(6.48%)

F Palo Alto, CA, USA 19133(5.68%)

G Vienna, VA, USA 8829(2.62%)

H Aberdeen, MD, USA 24715(7.34%)

I Stockholm, Sweden 15725(4.69%)

J Herndon, VA, USA 2219(0.65%)

K London, UK 1655(0.49%)

L Marina Del Rey, CA, USA 997(0.29%)

M Tokyo, Japan 952(0.28%)

Table A-5: Root name servers

Figure A-6 shows the latency distribution across

those 13 root name servers. It shows that each root

server has different performance characteristics

and load is not evenly distributed across those

name servers, at least for the outgoing LCS DNS

traffic.We clearly see that D.ROOT-

SERVERS.NET has the best performance, so

more than half of the requests are forwarded to

that server corresponding to the server selection

rule described in RFC 1035.

In figure A-7, we compare the latency distribution

of queries for which the root name server provides

the final answer, and queries that get referrals from

the root name servers. It takes at least 10ms to

resolve a query that ends up querying a root name

server. Performance goes even worse when referrals

from the root servers are involved. This motivates

DNS to use caching extensively to avoid contacting

.r'

4 rootooerver-
rootso ror B c-
root server C -

root oerver Hroot server G-----

10rot arvr atroots(r rver K -

rot :::::::

Figure A-6: Latency distribution across roots

60

40

20

94

at1

Anowets from a root server-
Rofottato tram o root server

1o01000aco100()0t

I qpp. nru rm s)

0,

100 1

root servers. In the next section, we examine how caching is beneficial in terms of reducing the request
latency. Figure A-7:
Latency when root servers return

answers vs. referrals

A.3.7 Caching NS Records

To understand the effect of caching, DNS queries 100
are classified as either a hit or a miss by -~
lookingup the first server contacted by the 800
resolution of the query. We assume a miss when 70

a query is directly forwarded to one of the root
00

servers. Otherwise, we assume that there is a hit F

for 40

an NS records in DNS cache, which bypasses /
querying a root name server. Figure A-8 shows

20
the latency distribution for each case. It clearly
shows that caching NS records substantially NS cache ht -

NS cache m is s -

reduces DNS request latency even though it may 10 100 1000 1000
Latency (m)

involve some referrals to complete the query

resolution. Figure A-8: Cache Hit and Miss

A.3.8 Effect of Aggregation on Cache Hit Rate

To determine the impact of sharing on cache hit rate and how much it gains over independent per-
client caching, we did a trace driven simulation of cache behavior under different aggregation
conditions. To make the simulation more realistic, we collected DNS responses from the trace to form
a database of IP addresses and associated TTL values as included in the response. Also, to handle
cases where a domain name is associated with multiple IP addresses, e.g., for load balancing purposes,
we generated a database containing the destination IP addresses of TCP connections and the domain
names they map to.

We randomly divide 962 TCP clients into groups of size s. Each group is assigned a cache containing
IP address/TTL mappings and DNS names to be shared by all members of the group. If a client c is
making a TCP connection to destination IP address i, we search if i is already present in the IP address
cache of the group of which c is a member. If i is found in the cache and the associated TTL has not
expired, then it is considered a hit. If i is found in the cache, but the TTL has expired, then it is
considered a miss. We then refresh the entry for i and its associated domain name in the cache with the
TTL of i found from the database. If i is not found in the cache, we then search the database to find the
domain name that IP address i maps to. If the name is found in the name cache with a valid TTL, we
consider it a cache hit and add i to the IP address cache with the remaining TTL of the name entry in
the name cache. This takes advantage of the fact that multiple IP addresses associated with the same
domain name are included in the same DNS response and therefore cached together. If the name is

95

found in the cache and its TTL has expired, it is a miss. We then add i to the IP cache and set the TTL

to the actual TTL value found from the database. In the end, we record the total number of cache hits,

total number of requests and classify different types of misses.

Multiple 1 2 10 100 All

IP-Name

On 64.0% 76.2% 82.9% 86.9% 91.0%

Off 60.0% 72.2% 77.8% 81.2% 84.9%

Table A-6: Effect of Aggregation on cache hit rate

For each level of aggregation, we ran four independent simulations, once considering references to

different IP addresses that map to the same domain name as hits (according to the algorithm described

above) and once considering a one-to-one mapping between IP addresses and domain names (each IP

address is considered distinct while considering cache hit/miss). Table A-6 summarizes the data

obtained from the simulation. In the absence of

any sharing, the average per-connection cache hit 0.95 fed Aggregation on Cache HI Rate
aggr-summary.Nx -

rate is 64% with multiple-P-name on, and about --

60% with multiple-IP-name off. This indicates

that a 4% gain in cache hit rate can be obtained, --

on a per-connection basis, due to references

made by the same client to different IP addresses 0.75

mapping to the same domain name. As the data

suggests, increase in client group size s

significantly increases the cache hit rate. When

all the 962 clients were simulated to share the 0.8

same cache, we observe an average hit rate of 1 0 100 1000

91% with multiple-IP-name on, and 85% with GroupSize

multiple-IP-name off. Figure A-9: Effect of aggregation on cache hit

rate

Based on these results, we conclude that sharing significantly improves cache hit rates, and thereby

DNS performance. By aggregating clients into groups to share the same cache, we can achieve better

hit rates than a single client cache. Moreover, when all the clients are aggregated into one group, we

observe that 84.9% of all the misses were TTL misses, i.e., misses for names that were previously

reached by some client in the same group, whereas the remaining 15.1% were compulsory misses

caused by a first time access to an IP address. This indicates that increasing the TTL values holds the

potential for increasing cache hit rates, thereby improving the overall DNS performance.

A.4 Discussion

96

From the collected DNS traces, we observed that the DNS request latency increases significantly with
the number of referrals. With the use of extensive caching and improved TTL values, the number of
referrals could be minimized, which would increase the overall performance of DNS. Also, the load on
the root name servers, although less than what was observed in 1992 [11], is found to be still too high
and contacting a root name server significantly increases the request latencies. While investigating
how beneficial caching is to reduce the request latencies, we found that caching NS records
significantly reduce latency, thereby improving DNS performance. The trace-driven simulation
indicated that sharing of caches among clients substantially increases DNS cache hit rates. We
observed cache hit rate to increase from 63.9% when using per-client caching to 91% when all the
clients were sharing the same cache. Together, these call for a more efficient implementation of the
domain name system, which holds the potential for offloading the root name servers by taking
advantage of an effective query resolution scheme and a smarter caching mechanism that takes
benefits from sharing among clients.

97

References

[1] S. Ahmed and J. Jung. An Analysis of DNS Traffic Patterns, Performance, and Caching

Behavior. Final Project, Computer Networks, Massachusetts Institute of Technology, 2000.

[2] R. Alonso and M. Blaze, Dynamic Hierarchical Caching for Large-scale Distributed File

Systems. The 12' Intl. Conference on Distributed Computing Systems, June 1992

[3] P. Albitz and Cricket Liu. DNS and BIND, Third Edition. O'Reilly and Associates, Inc., 1998

[4] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and Secure

Message Authentication. Advances in Cryptograpy - CRYPTO'99.

[5] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, Michael F. Schwartz, and

Duane P. Wessels. Harvest: A Scalable, Customizable Discovery and Access System.

Technical Report CU-CS-732-94,Department of Computer Science, University of Colorado,

Boulder, August 1994 (revised March 1995).

[6] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In Proceedings of the Third

Symposium on Operating Systems Design and Implementation (OSDI99), New Orleans,

USA, February 1999

[7] M. Castro and B. Liskov. Authenticated Byzantine Fault Tolerance Without Public-Key

Cryptography. Technical Memo MITJLCS/TM-589, MIT Laboratory for Computer Science,

June 1999

[8] M. Castro and B. Liskov. Proactive Recovery in a Byzantine Fault Tolerant System. In

Proceedings of the Fourth Symposium on Operating Systems Design and Implementation

(OSDI 2000), San Diego, USA, October 2000

[9] M. Castro. Practical Byzantine Fault Tolerance. PhD Thesis, Massachusetts Institute of

Technology, November 2000.

[10] M. D. Dahlin, R. Y. Wang, T. E. Anderson, D. A. Patterson. Cooperative Caching: Using

Remote Client Memory to Improve File System Performance. Proc. First Symposium on

Operating Systems Design and Implementation. pp. 267-280. November 1994. Also appeared

as University of California Technical Report CSD-94-844.

98

[11] P. Danzig, A. Chunkhunthod, K. Worell, C. Neerdaels, M. Schwartz, A Hierarchical Internet

Object Cache. Technical Report 95-611, Computer Science Department, University of

Southern California, Los Angeles, California, March 1995. Also, Technical Report CU-CS-

766-95. Department of Computer Science, University of Colorado, Boulder, Colorado.

[12] DNS Resource Directory available at http://www.dns.net/dnsrd

[13] D. Eastlake. Secure Domain Name System Dynamic Update. Technical Report DARPA-

Internet RFC 2137, Cybercash Inc., April 1997

[14] D. Eastlake. Domain Name System Security Extensions. Technical Report DARPA-Internet

RFC 2535, IBM, March 1999

[15] D. Eastlake. DSA Keys and SIGs in the Domain Name System. Technical Report DARPA-

Internet RFC 2536, IBM, March 1999

[16] D. Eastlake. RSA/MD5 Keys and SIGs in the Domain Name System. Technical Report

DARPA-Internet RFC 2535, IBM, March 1999

[17] D. Eastlake and C. Kaufman. Domain Name System Security Extensions. Technical Report

DARPA-Internet RFC 2065, Cybercash Iris. January 1997

[18] C.Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant Mechanism for Distributed File

Cache Consistency. In Proceedings of the 12th ACM Symposium on Operating System

Principles, pages 202--210, December 1989.

[19] Internet Software Consortium, available at http://www.isc.org

[20] Internet Software Consortium BIND (Berkeley Internet Name Domain) 9.0 information,

available at http://www.isc.org/products/BIND/bind9.html

[21] M.L. Kazar, Synchronization and Caching Issues in the Andrew file System. Usenix

Conference Proceedings, Dallas, Winter 1998

[22] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. In ACM

Transactions on Programming Languages and System, 4(3), 1982

[23] Managing Servers with Netscape Console: Introduction to SSL available at

http://developer.netscape.com/docs/manuals/security/sslin/contents.htm

[24] P. Mockapetris and Kevin J. Dunlap. Development of the Domain Name System. 1988

99

[25] P. Mockapetris. Domain Names - Concepts and Facilities. Technical Report DARPA -

Internet RFC 1034, ISI, Nov 1987.

[26] P. Mockapetris. Domain Names - Implementation and Specification. Technical Report

DARPA - Internet RFC 1035, ISI, Nov 1987.

[27] Network Association inc. Secure DNS Product, 1999. Available at

http://www.nai.com/products/security/tisresearch/netsec/netdns.asp

[28] Network Solutions Inc, 1999. Available at http://www.networksolutions.com

[29] R. Rivest. The MD5 Message-Digest Algorithm. Internet RFC-1312, April 1992.

[30] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems. In Communications of the ACM, V. 21, N. 2., February 1978

[31] R. Rodrigues. Private Correspondence, 2000.

[32] J. Saltzer, D. Reed, and D. Clark. End-To-End Arguments in System Design. ACM

Transactions on Computer Systems, Vol 2, No. 4, November 1984.

[33] E. Sit. A Study of Caching in the Internet Domain Name System. Master's thesis,

Massachusetts Institute of Technology, 2000.

[34] F. Sneider. Implementing Fault Tolerant Service using the State Machine Approach: a

Tutorial. In ACM Computing Surveys, 22(4), December 1990.

[35] A. Snoeren and H. Balakrishnan. An End-to-End Approach to Host Mobility. In proceedings

of the 6h ACM/EEE International Conference on Mobile Computing and Networking

(MobiComm'00), 2000.

[36] K. Thompson, G. Miller, and R. Wilder. Wide-area Internet Traffic Patterns and

Characteristics. IEEE Network, 1997.

[37] P. Vixie, S. Thompson, Y. Rekhtar, and J. Bound. Dynamic Updates in the Domain Name

System. Technical Report DARPA- Internet RFC-2136 ISC, Bellcore, Cisco, DEC, April
1997

[38] B. Wellington. An Introduction to Domain Name System Security. TISLabs at Network

Associates, January 22, 1999

100

[39] K. J. Worrell. Invalidation in Large Scale Network Object Caches. PhD thesis, University of
Colorado-Boulder, 1994.

[40] Z. Yang, Using a Byzantine Fault Tolerant Algorithm to Provide a Secure DNS. Masters
Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, June 1999

101

