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Abstract

Understanding the flow of polymeric fluids is important for optimizing commercial processes such

as injection molding and fiber spinning. The combination of streamwise curvature and elastic normal stresses

can lead to the onset of elastic flow instabilities, severely rate-limiting such processes. This thesis focuses

on the stability of two complex non-Newtonian flows of dilute polystyrene solutions: the viscometric flow

between a rotating cone-and-plate and the flow through an axisymmetric contraction-expansion.
Torsional shear flows of elastic fluids with closed streamlines can accumulate heat from viscous

dissipation resulting in spatial nonuniformities in the temperature profile and viscometric properties. In this

thesis, a detailed study of the effect of viscous heating on the steady shearing of elastic fluids between a

rotating cone-and-plate is performed. The relative importance of viscous heating and elasticity can be

quantified by a new dimensionless thermoelastic number. This parameter is a fluid material property which

is a function of polymer molecular weight, geometry and temperature. As the thermoelastic number is
increased, strong temperature gradients reduce the elasticity of the test fluid and delay the onset of the

instability, eventually stabilizing the flow completely.
The flow of elastic fluids into an axisymmetric abrupt contraction-expansion is a complex flow

containing regions of both shear and extension that tests the limits of current viscoelastic constitutive models.
A large extra pressure drop above that measured for a similar Newtonian fluid is documented and found to
correlate to the stress-conformation hysteresis observed in transient uniaxial extension measurements. Laser
Doppler velocimetry, particle image velocimetry and flow induced birefringence are used to investigate the

global kinematics upstream of contraction-expansions of various contraction ratios and degrees of re-entrant

corner curvature. For a contraction ratio of 8 =2 a steady elastic lip vortex is observed whereas for 4<8<8,
no lip vortex is observed and instead a corner vortex is seen. At large Deborah numbers a time-dependent
elastic flow instability is observed. Measurements of the transient extensional rheology show that the
differing vortex growth pathways in viscoelastic fluids can be systematically understood in terms of a
dimensionless ratio of the normal stress differences in shear and in extension.

Thesis Supervisor: Gareth H. McKinley
Title: Professor of Mechanical Engineering
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CHAPTER 1 Introduction

"A fluid that's macromolecular
Is really quite weird - in particular

The big normal stresses
The fluid possesses

Give rise to effects quite spectacular"
[Bird et al. 1987]

Polymeric fluids are often called viscoelastic fluids because depending on the timescale with which

one probes them, they may behave like an elastic Hookean solid or a viscous Newtonian fluid or a complex

combination of the two. The extraordinary behavior of these fluids is imparted by the physical nature of the

mobile polymer macromolecule. A macromolecule is a large molecule composed of several small chemical

structural units, typically carbon based. The macromolecule and its physical properties are strongly

influenced by the makeup of these structural units and their interconnectivity [Flory 1953]. In Table 1-1, the

structural units for several well known synthetic polymers are listed.

Macromolecules are found abundantly in nature, from natural tree rubber to polypeptide chains that

make up proteins to the DNA molecules that form the basis for life. The first man made polymer, Nylon 66,

was developed by Wallace Carothers at Dupont in 1935 [Flory 1953]. Since that time the polymer industry

has flourished, playing an ever increasing role in modem society. Polymers are light, durable and their

material properties can be tailored to meet almost any need. They are an essential part of many major

industries including aerospace, automotive, medicine and construction. According to the Committee on

Polymer Science and Engineering (1994), in the United States alone, over 70 million pounds of polymers

and plastics are produced, accounting for over $100 billion in annual revenues.

Polymers come in all shapes and sizes. Synthetic polymers, unlike polymers found in nature, are

typically built up from a single structural repeat unit. The resulting polymers are referred to as

homopolymers. The macromolecules can be linear (every internal structural unit is connected to precisely

two other structural units) or the polymers can be branched (structural units are connected to three or more

other structural units). The molecular weight of these macromolecules is variable, but typical values will

span the range between 10' < M, < 10' g/mol. At these very large molecular weights, the macromolecule

can grow large enough to be observed with an optical microscope [Perkins et al. 1994]. If the molecular

weight distribution of a sample of polymer is very narrow, then the polymer is called monodisperse.
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Alternatively, if there is a broad range of molecular weights in polymeric sample, then the polymer is

classified as polydisperse. Through the course of the research presented in this thesis linear, high molecular

weight, monodisperse, uncharged homopolymers will be used.

Polystyrene -CH 2-CH(CH 5)-

Polyisobutylene -CH 2-C(CH 3)2-

Polyethylene -CH2-

Polyacrylamide -CH 2-CH(CONH 2)-

Polydimethylsiloxane -Si(CH3)2-0-

Polyisoprene (Natural Rubber) -CH 2-C(CH 3)=CH-CH 2-

Polyhexamethylene adipamide (Nylon 66) -NH-(CH 2)6-NH-C(O)-(CH 2)4 -C(O)-
Table 1-1 Examples of the chemical structure of some common synthetic polymers [Bird et al. 1987].

Over the last half of the 20' century, our understanding of polymer science and polymer chemistry

has progressed by leaps and bounds, although, it is interesting that one of the definitive references, Flory's

Principles of Polymer Chemistry [Flory 1953], is nearly 50 years old. Even with all these advances, there

still is a considerable amount of research to be done. In particular, the physical mechanisms governing the

behavior of polymer chains under large straining motions in the molten state is still not well understood. For

many polymer applications, the polymer must be first melted or dissolved into solution and then processed

in the liquid state. To accurately predict the final physical characteristics and structural properties of an

extrudate, mold or fiber one must first understand the response of these elastic fluids to different flow

conditions.

The history of the study of fluid dynamics can be traced back to the beginning of human civilization.

The modem study of fluid dynamics began with Sir Isaac Newton, who in 1687 proposed his law of viscosity

which expressed in modem form can be written

av
T = av (1-1)

i.e the shear stress, z-, , is the proportional to the velocity gradient, avjay, in a shear flow. The coefficient

of proportionality is the viscosity, p. Newton's law is an example of a constitutive equation which relates
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Figure 1-1 An example of rod climbing. The elastic hoop stresses generated by a rotating rod immersed
in a viscoelastic fluid will cause the fluid to climb up the rod. Reproduced with permission
from [Boger 1993] Copyright 1993 Elsevier.

the state of stress to the instantaneous deformation history of a fluid element. When used in conjunction with

the equations for the conservation of mass, momentum and energy, Newton's law of viscosity describes quite

well the flow of simple liquids and gasses with molecular weights less than M,, I OOOg/mol [Bird et al.

1987]. The addition of high molecular weight macromolecules to a fluid can significantly alter the response

of a Newtonian fluid resulting in some very interesting and puzzling flow phenomenon. There are several

excellent references on this topic including Rheological Phenomenon in Focus [Boger and Walters 1993]

and The Dynamics ofPolymeric Liquids, volumes 1 and 2 [Bird et al. 1987; Bird et al. 1987].

As a flexible polymer coil stretches within a flow field, it is deformed out of its equilibrium random

walk configuration. An elastic restoring force results, driving the polymer coil back towards its entropically

favorable equilibrium state [Flory 1953]. High molecular weight polymers can thus impart an entropic

elasticity which allows a fluid to carry stress along the flow streamlines and can lead to the build up of

normal stresses in simple shear flows. Examples of some interesting flow phenomenon resulting from these

elastic stresses are rod climbing and the tubeless syphon, Figures 1-1 and 1-2 respectively. For these
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time

J

Figure 1-2 An example of the open syphon or Weissenberg effect. A viscoelastic fluid can be drawn

out of the beaker without requiring a syphon to be in contact with the fluid. Reproduced

with permission from [Boger 1993] Copyright 1993 Elsevier.

polymeric fluids, Newton's law of viscosity no longer holds. These fluids are therefore often described as

non-Newtonian. One of the biggest challenges in this field is the derivation of constitutive models which

can accurately describe the state of stress of the fluid. This is an ongoing, rich research area.

These non-Newtonian fluids have both the characteristics of an elastic Hookean solid for which the

stress is proportional to the amount of strain

= Ge11, (1-2)

where G is an elastic modulus and a viscous Newtonian fluid for which the stress components C, is

proportional to the strain rate, f,, see Equation 1-1. The combination of viscosity and elasticity leads to a

characteristic fluid timescale known as the relaxation time which describes the time required for the polymer

coil to relax from a deformed state back to its equilibrium configuration

G
(1-3)

Thus the residence time of a fluid in a flow must also be considered to understand the response of a

polymeric fluid. The relative importance of elasticity in a flow is often described by the Deborah number

which is the ratio of the relaxation time of the fluid to a characteristic deformation timescale, tl,,, in the flow
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LP?- (1-4)

If the deformation timescale is large in comparison to the relaxation time of the fluid, De << 1, then the

polymer coils have ample time to relax back to equilibrium and the fluid will behave like a Newtonian fluid.

If the relaxation time is much longer than the deformation timescale in the flow, De >> 1, then the fluid will

react like an elastic Hookean solid. The behavior of the fluid between these two extremes is quite rich. For

these fluids there is, therefore, the additional added complexity that the material properties of the polymeric

fluids are not constant, but functions of the deformation rate.

To fully characterize a Newtonian fluid one only needs to measure its viscosity, the study of which

is historically know as viscometry. The non-Newtonian analog of viscometry is known as rheometry and it

involves the experimental measurement of one or more components of the stress tensor in several well

defined flows, be it shear or extension. These experimental measurements are then used in theoretical studies

to validate or motivate constitutive models. The simplest constitutive model for the state of stress in a non-

Newtonian fluid must be a function of strain, strain rate and time

1 = f(gfj). (1-5)

A great deal of research has focused on the development of constitutive models from kinetic theory. Two

excellent references are Dynamics ofPolymeric Liquids [Bird et al. 1987; Bird et al. 1987] and Constitutive

Equationsfor Polymer Melts and Solutions [Larson 1988]. More recent developments can be found in Bird

and Weist [1995]. In this thesis, three constitutive models are used in particular. A Rouse-Zimm model is

used to help us understand the response of the fluid to small amplitude deformations over a spectrum of

different timescales [Bird et al. 1987; Zimm 1956]. The Rouse-Zimm model architecture describes the

polymer chain as a series of beads and springs with a variable degree of hydrodynamic interaction. The

beads account for all the mass and the viscous drag while the springs impart elasticity to the fluid. Although,

the Zimm model is very successful for describing the linear viscoelasticity of a fluid, it does not do a good

job describing the behavior of these fluids in large amplitude straining motions. To understand the behavior

of these polymer solutions in more realistic flows with larger deformations, the FENE-P and Bird-DeAguiar

models will be used [Bird et al. 1987; Bird and DeAguiar 1983]. In these models, the polymer coil is

described by two beads connected by a single spring. In the FENE-P model, the spring is given a finite

extensibility, while in the Bird-DeAguiar model an anisotropy in the Brownian forces and the hydrodynamic

interaction is also included. These models will be discussed in greater detail in Chapters 2 and 3.
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The importance of non-Newtonian fluid dynamics research can be demonstrated by considering the

following industrial-relevant polymer processing operations: injection molding, fiber spinning, coating flows,

adhesion, and flow through porous media. Injection molding is one of the cornerstones of the plastics and

elastomer industry. Many geometrically complicated parts are fabricated through this technique. Injection

molding and extrusion processes in general are not limited to the polymer industry. Many foods, such as

dough are processed in much the same way. Fiber spinning is again employed industrially to produce

polymeric fibers such as Nylon or Kevlar, but is also common in nature. The spinerettes of silk worms and

spiders operate under similar principles. Many fibers once formed require protective or reflective coatings

made from polymeric fluids. Coating flows such as these are often dominated by the non-Newtonian

response of the coating fluid. The study of adhesion and de-adhesion is also extremely important to

manufacturers of all forms of tapes and epoxies. Lastly, in oil recovery, polymeric fluids as well as

surfactant solutions and associative polymers are often used to drive oil out of reservoirs which are complex

porous media.

These examples from industry are just a short list of important applications of elastic fluids. They

were chosen because they all have two things in common; each of these polymer fluid applications is rate

limited by the onset of elastic instabilities and each is dominated to some extent by a strong extensional

component to the flow. In Research Trends in Fluid Dynamics, Mort Denn highlighted some of the key

research needs in the fields of non-Newtonian fluid mechanics and rheology as

"Identification of mechanisms for flow instabilities at low Reynolds numbers in rotational,

converging and interfacial flows [and] reliable experimental techniques for the measurement of

extensional stresses in mobile liquids, like polymer solutions." [Denn 1993]

In this thesis, I will address both of these important topics through a detailed experimental

investigation into the stability of two prototypical flows of viscoelastic fluids. The first is a set of

viscometric, simple shear flows between a rotating cone-and-plate and plate-and-plate geometry. The

complexity is derived from the coupled interplay between flow geometry, fluid elasticity and viscous

dissipation. The second is a prototypical complex flow containing regions of both strong shear and

extension; the axisymmetric abrupt contraction-expansion. The combination of streamwise curvature and

elastic normal stresses can lead to flow destabilization [McKinley et al. 1996]. These elastic flow transitions

have been demonstrated by both experimental measurements and linear stability analyses of many curvilinear

flows of viscoelastic fluids [Larson 1992; Shaqfeh 1996]. Each of these flows described above exhibits
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streamline curvature and each is therefore prone to flow instabilities as the flow rate is increased and the

elastic normal stresses grow.

Torsional shear flows of highly elastic fluids with closed streamlines have the added complexity that

they accumulate heat from viscous dissipation. The thermal conductivity of the these polymer solutions is

very poor; even if the temperature boundary conditions are isothermal, a nonuniformity in the temperature

profile within the flow and nonlinearity in the viscometric properties of the fluid can result from internal

viscous heating. It has recently been shown by Al-Mubaiyedh et al. [Al-Mubaiyedh et al. 1999] that the

inclusion of energetic considerations in the linear stability analysis of viscoelastic Taylor-Couette flow can

change the dominant mode of the purely elastic instability from a nonaxisymmetric and time-dependent

secondary flow to an axisymmetric stationary Taylor-type toroidal vortex that more closely agrees with the

stability characteristics observed experimentally. Elastic effects in the flow are characterized by the Deborah

Number, De, while the magnitude of the viscous heating is characterized by the Nahme-Griffiths number,

Na. In Chapter 2, the relative importance of these two competing effects is quantified by a new

dimensionless thermoelastic parameter, 0 = Na"2/De, which is a material property of a given viscoelastic

fluid independent of the rate of deformation. The thermoelastic number is a function of the molecular weight

of the polymer, the flow geometry and the temperature of the test fluid. By systematically varying any of

these parameters, the thermoelastic number can be adjusted over a wide range. In the research presented in

Chapter 2, the effect of viscous heating on the torsional steady shearing of several dilute polymer solutions

between a rotating cone-and-plate and between two rotating coaxial parallel-plates is investigated

experimentally. A better understanding of the effect of nonisothermal temperature fields on the flow and

stability of polymeric fluids is critically important to the polymer processing industry.

The dynamical response ofpolymeric fluids in extension, especially mobile dilute polymer solutions,

is quite different than in simple shear. As Denn writes, extensional rheology is a topic of great interest and

importance to the polymer community as a whole [Denn 1993; McKinley and Sridhar 2002]. The flow of

a viscoelastic fluid through an axisymmetric contraction-expansion is a prototypical complex flow containing

regions of strong shearing near the walls, nonhomogeneous uniaxial extension along the centerline upstream

of the contraction plane and nonhomogeneous biaxial expansion downstream of the expansion. The

contraction flow is a long-standing numerical benchmark for computation of non-Newtonian fluids [Caswell

1996; Hassager 1988] and is the subject of several excellent review articles [Boger 1987; White et al. 1987].

To generate physically consistent constitutive models capable of predicting the behavior of these elastic

liquids in complex flows, one must first understand the behavior of these elastic fluids in pure extension.

With the emergence of the filament stretching rheometer, accurate, repeatable measurements of a fluid's
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response to an imposed homogeneous uniaxial extensional flow field are now possible [Anna et al. 2001].

The work presented in Chapters 3-6, is intended to constitute a comprehensive set of quantitative

experimental measurements to which theory and numerical simulations can be rigorously compared. To meet

this goal, an ideal monodisperse, dilute polystyrene Boger fluid is first thoroughly characterized in both shear

and extension. This ideal elastic fluid is then used to investigate the kinematics of the flow through several

axisymmetric contraction-expansions of different contraction ratios and varying lip curvatures over a wide

range of Deborah numbers. The experimental measurements include global pressure drop and local velocity

measurements, streak images, and flow induced birefringence measurements of the elastically-enhanced

upstream vortex structures.

Previous pressure drop measurements across a 16.4:1:16.4 contraction-expansion using a HPAM

solution, show a large extra pressure drop that increases monotonically with Deborah number above the value

observed for a similar Newtonian fluid at the same flow rate [Cartalos and Piau 1992]. This enhancement

in the pressure drop is not predicted by existing steady-state or transient numerical computations with simple

dumbbell models [Szabo 1997]. This extra pressure drop may be the result of an additional dissipative

contribution to the polymeric stress arising from a stress-conformation hysteresis in the strong non-

homogeneous extensional flow near the contraction plane. Such a hysteresis has been independently

measured and computed in recent studies of homogeneous transient uniaxial stretching of PS/PS Boger fluids

[Doyle et al. 1998], however, it is not quantitatively predicted by any current constitutive model. One

question this thesis will address is whether quantitative agreement between experimental measurements of

both local and global flow field variables and numerical simulations in complex viscoelastic flows can be

achieved using an existing bead-spring model. If current constitutive models cannot adequately describe

complex viscoelastic flow behavior, then new classes of constitutive equations retaining more detailed

microscopic information may be required.

In Chapter 3, the flow of both a Newtonian oligomeric polystyrene and the polystyrene Boger fluid

through a 4:1:4 contraction-expansion is experimentally investigated. The kinematics of the flow field are

measured through laser Doppler velocimetry, particle image velocimetry and streak images. The stability

and flow transitions are characterized using these techniques in conjunction with pressure drop measurements

across the different contraction-expansions. In Chapter 4, the effect of contraction ratio on the extra pressure

drop and the vortex growth dynamics is investigated. The elastic normal stresses generated in pure shear and

transient extensional rheology are employed to rationalize the dependence of the growth of elastic 'lip' and

corner vortices on contraction ratio and test fluid. In Chapter 5, the effects of systematic changes in

curvature of the re-entrant corner are investigated. Understanding the role of lip curvature is extremely
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important because the singular stress fields near a sharp re-entrant corner are a major difficulty for numerical

simulations of the flow of a viscoelastic fluid through a contraction-expansion [Caswell 1996]. A simple

geometric argument is used to collapse the data from several lip curvatures onto a single master curve. The

axisymmetric flow induced birefringence upstream and downstream ofthe contraction-expansion is presented

in Chapter 6. These measurements provide detailed information about the local orientation and deformation

of the polymer coil in situ. In Chapter 7 non-homogenous transient uniaxial measurements are presented for

the polystyrene Boger fluid. The strain rate profile of these measurements performed in the filament

stretching rheometer is designed to mimic the strain rate history experienced by a fluid element traveling

along the centerline of the axisymmetric contraction-expansion. Stress and birefringence measurements are

coupled to investigate the hysteresis generated over a range of Deborah numbers and contraction ratios. This

hysteresis, which corresponds to an internal energy dissipation of the polymer coils, is correlated to the extra

pressure drop measurements experimentally observed in the flow of viscoelastic fluids through axisymmetric

contraction-expansions.

Finally, in Chapter 8 the contributions of this thesis to the understanding of the physical mechanisms

governing the flows of elastic liquids are summarized and comments are made on potential future research

directions.
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CHAPTER 2 Non-Isothermal Modification of Purely Elastic Flow Instabilities
in Torsional Flows of Polymeric Fluids

2.1 Introduction

The torsional motion of a fluid between a rotating cone-and-plate and between two rotating coaxial

parallel-plates is used extensively in rheometry to measure the material properties that characterize non-

Newtonian fluids. For highly elastic fluids, the combination of streamline curvature and large normal

stresses in a torsional shear flow results in a streamwise tension which can destabilize the flow [Larson et

al. 1990; McKinley et al. 1996]. Beyond a critical rotation rate, experimental observations and linear

stability analyses show that the steady, two-dimensional, torsional shearing motion becomes unstable to a

three-dimensional, time-dependent flow of spiral plan-form [Avagliano and Phan-Thien 1996; McKinley et

al. 1991; Olagunju 1994; Olagunju 1995]. The occurrence of instabilities in the processing of polymer melts

and solutions has been understood for many years and has been well documented in reviews by Petrie and

Denn [Petrie and Denn 1976] and Larson [Larson 1992] while a detailed review of purely elastic flow

instabilities in viscometric flows can be found in Shaqfeh [Shaqfeh 1996]. The present study will focus on

the latter class of viscometric motion with closed streamlines in which inertial effects are vanishingly small

and the purely elastic instability is strictly a result of the interaction between the viscoelasticity of the fluid

and the curvature of the flow streamlines.

In any shear flow with closed streamlines, the test fluid can be exposed to high shear rates over an

extended period of time. As a result of the poor thermal conductivity of typical polymeric materials, the

accumulating heat from viscous dissipation can have a significant effect on the temperature profile and,

hence, on the measured viscometric properties of the fluid. For a fluid undergoing a steady shearing

deformation the Nahme number quantifies the relative importance of viscous heating [Bird et al. 1987] and

is given by

Na = , (2-1)
kT

where qo is the viscosity in the limit of zero shear rate, H = U is the characteristic velocity, k is the thermal

conductivity, T is the absolute temperature and/p is the thermal sensitivity of the fluid viscosity defined as
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18 - - (2-2)
q0 d T T

Recognizing the onset of viscous heating is important in the study of polymer solutions and melts

because the thermal sensitivity of the fluid tends to increase monotonically as the molecular weight and the

viscosity of the fluid are increased [Winter 1977]. Polymer melts are typically very viscous and in highly

elastic dilute polymer solutions, the solvent is often chosen to have a very large viscosity (denoted qe) in

order to increase the relaxation time of the polymer and reduce inertial effects [Boger 1977/78] Therefore,

it is to be expected that viscous heating in polymeric fluids may significantly affect the stability of

viscoelastic flows. In fact, some of these effects have already been observed. Non-permanent reductions

in the measured first normal stress difference after long periods of continuous shearing between a rotating

cone-and-plate and parallel-plate under unstable conditions were reported by both MacDonald and Muller

[MacDonald and Muller 1997] and Magda and Larson [Magda and Larson 1988]. This long time

stabilization of the flow is indicative of the accumulation of energy as a direct result of viscous dissipation,

despite careful control of the thermal boundary conditions. Non-isothermal effects on the stability conditions

of more complex viscoelastic flows have also been investigated [Yesilata et al. 2000] and the possibility of

using thermal modulation for optimal control of viscoelastic flow has recently been considered [Kunisch and

Marduel 2000]

A number of theoretical studies have investigated the effect of viscous heating on the stability of

shear flows. In the linear stability analyses of Newtonian planar Couette flow, viscous stratification induced

by temperature gradients resulting from viscous heating was found to destabilize the flow at finite values of

the Reynolds number [Ho et al. 1977; Yueh and Weng 1996]. However, at zero Reynolds number, the

Newtonian plane shear flow was shown to be stable [Yueh and Weng 1996]. The addition of viscoelasticity

does not destabilize the inertialess flow because of the poor coupling between the (stable) energy modes and

the (stable) eigenmodes of the viscoelastic isothermal shear flow [Becker and McKinley 2000]. Isothermal

viscoelastic Taylor-Couette flow, however, is unstable [Larson et al. 1990] even at zero Reynolds number

because of the addition of streamline curvature. Detailed experimental investigations using a highly viscous

polymer solutions have reported the appearance of steady axisymmetric toroidal vortices following the loss

of flow stability [Baumert and Muller 1997]. These observations directly contradict the nonaxisymmetric

and time-dependent form of the secondary flow predicted by isothermal linear stability analysis [Larson el
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Figure 2-1 Schematic diagram of the cone-and-plate and the parallel-plate geometries.

al. 1990; Shaqfeh 1996]. Furthermore, the critical conditions for the onset of instability can differ by more

than an order ofmagnitude from those observed experimentally [MacDonald and Muller 1997]. Recent work

by Al-Mubaiyedh et al. has demonstrated that the form of the secondary flow observed experimentally can

be predicted theoretically through inclusion of viscous heating terms in the linear stability analysis of the

viscoelastic Taylor-Couette flow [Al-Mubaiyedh et al. 1999]. The resulting critical conditions are also much

closer to the experimental observations. The effect of viscous heating on the stability boundaries of other

torsional shear flows such as the flow between a rotating cone-and-plate and rotating coaxial parallel-plates

remain to be investigated. The current work addresses these issues.

Schematic diagrams of the cone-and-plate and parallel-plate geometries are shown in Figure 2-1.

In these devices it is possible to alter the flow geometry by varying the radius, RO, cone angle, 00, and gap

height separating the test fixtures, h. The corresponding dimensionless parameter characterizing the flow

geometry can be written as aP = h/IRO for the parallel-plate and as aP = 00 for the cone-and-plate

configuration. For small a << 1, the base flow for each geometry is steady, two-dimensional and leads to

measured values of torque, T, and normal thrust, N, which in turn can be used to compute the deformation-

rate dependent viscosity, ij( ), and the first normal stress coefficient, ,1(y). As the differential angular

velocity, Q, between the upper and lower plates is increased, experiments have shown that the flow can

become unstable. The critical flow conditions for the onset of this instability are typically reported in terms

of a critical Deborah number

Deet = A cut (2-3)
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where , is the characteristic relaxation time of the fluid and the characteristic residence time in the flow is

equal to the inverse of the angular velocity, . Alternatively, the critical conditions can be reported in terms

of a critical Weissenberg number

Will = rjt , (2-4)

where jccri is the critical deformation rate at which the flow becomes unstable. For both test geometries, p

=/a.

The stability of inertialess viscoelastic flows in cone-and-plate and parallel-plate geometries was first

investigated analytically by Phan-Thien [Phan-Thien 1983; Phan-Thien 1985]. Using the von Karmon

similarity form for long wavelength disturbances in an Oldroyd-B fluid, Phan-Thien was able to calculate

critical Deborah numbers that were, for both cases, dependent only on the ratio of solvent to total viscosity,

S= q /q, although the precise form of the dependence on S for the cone-and-plate geometry was later

corrected by Olagunju [Olagunju and Cook 1993]. Soon after, Magda and Larson [Magda and Larson 1988]

made the first quantitative experimental investigation of an elastic torsional flow instability. They observed

the onset of a time-dependent increase in viscosity and first normal stress difference in tests run in both a

cone-and-plate and a parallel-plate rheometer when the shear rate was increased above a critical value.

Visual observations of the induced secondary flow by McKinley et al. [McKinley et al. 1991] indicated that

the flow transition was nonaxisymmetric, over-stable in time and subcritical in shear rate. These

observations contradicted the theoretical analysis of Phan-Thien. This discrepancy was later resolved by

Olagunju [Olagunju 1995; Olagunju 1997] who showed that the most unstable disturbance is not the long

wavelength solution of Phan-Thien, but a short wavelength mode of dimensionless wave number O(a). He

went on to show that the critical Deborah number is not simply a function of S, but scales with a'/ 2 . A

weakly nonlinear stability analysis for the small cone-angle limit of the viscoelastic flow between a cone-and-

plate was also performed by Olagunju [Olagunju 1997]. The rheology of the test fluid was found to have

a strong influence on the temporal form of the instability. For S> 0.02, the flow transition was found to be

a subcritical Hopf bifurcation in shear rate whereas in the small solvent viscosity limit, S < 0.02, the flow

transition was found to be supercritical. The results of these analyses are in good agreement with the work

of McKinley et al. [McKinley et al. 1991; McKinley et al. 1995] for the cone-and-plate geometry, but do not

agree with the radially localized flow structure experimentally observed in the parallel plate geometry

because the analysis fails to include the influence of the free surface and the effect of shear thinning in the
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non-homogeneous shearing flow [Byars et al. 1994]. The presence of a free surface at the edge of the

parallel-plate geometry and the weak secondary flow that it induces were later included by Avagliano and

Phan-Thien [Avagliano and Phan-Thien 1996]. The analysis of Avagliano and Phan-Thien improved

agreement between theory and experiment and showed that when edge effects were considered the critical

Deborah number scaled linearly with the geometric parameter a"'. Using an analytical model equation

developed by Olagunju [Olagunju 1997] that is valid in the limit of small gaps, Renardy and Renardy

[Renardy and Renardy 1998] were able to closely approximate the two-dimensional numerical results of

Avagliano and Phan-Thien [Olagunju 1997; Renardy and Renardy 1998]. The effect of a free surface on the

instability in cone-and-plate flow has yet to be investigated. A summary of the predicted forms of the critical

conditions given by the theoretical and numerical isothermal linear stability analyses discussed above can

be found in Table 2-1.

Contributor Description of work Parallel-Plate Cone-and-Plate
Result Result

Phan-Thien - Oldroyd-B/ UCM
(1983; 85) Deet = De 7E 2

Similarity solution V(1 -S)(I -2S) ct (1 -S)(l -2S)

Olagunju - Oldroyd-B/ UCM 1/2
(1994; 95) De = 4.604 f(S)a 4.604 f(S)

solution f (S) ~ -1/2 for S-I f(S) - -1/2 for S-I

Avagliano & - Oldroyd-B/ UCM
Phan-Thien De =K + aK
(1996) - Short wavelength cnt 1 2

solution K ~ 0-2
Renardy & K 5-10
Renardy - Finite edge effects
(1998)

Table 2-1 Summary of analytical and numerical solutions to the isothermal cone-and-plate and
parallel-plate linear stability problem. Note that Wi = De / a with " = h / RO and a" 00.

The primary objective of the present experimental work will be to systematically characterize the

effect of viscous heating and the resulting non-isothermal fluid temperature profiles on the onset conditions

of purely elastic torsional flow instabilities. We have chosen the cone-and-plate and parallel-plate

geometries because they allow for precise temperature control ofthe boundary, sensitive shear stress and first

normal stress difference measurements and the flexibility to easily make significant changes in the
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dimensionless geometric parameter a.

The isothermal stability analyses presented in Table 2-1 suggest that the stability boundary can be

represented on a two-dimensional plot of the Deborah number against the dimensionless geometric

parameter. Such diagrams have been presented in previous publications [McKinley et al. 1991; McKinley

et al. 1995; McKinley et al. 1996; Shaqfeh 1996]. Incorporating the effects of viscous heating leads to the

study of the stability boundary off of this plane. However, the proper dimensionless group to represent this

third dimension is unclear. We explore possible three-dimensional representations of the stability diagram

in Section 2.2.1 and introduce a dimensionless thermoelastic parameter, 0, characterizing viscous heating

in a polymeric fluid. In Section 2.2.2 we briefly summarize the rheological characteristics of our test fluids

and the actual values of the thermoelastic parameter for the dilute polystyrene solutions used in these

experiments. In Section 2.3 we first compare our experimental results for flow within a cone-and-plate and

parallel-plate rheometer to isothermal linear stability analyses. The effect of viscous heating on the purely

elastic flow instability is then demonstrated through experiments performed over a wide range of

temperatures. Finally, in Section 2.4 we present our conclusions.

2.2 Experimental

2.2.1 Stability Diagrams for Non-Isothermal Viscoelastic Flows

By non-dimensionalizing the governing partial differential equations for momentum and energy, one

can identify the timescales that characterize non-isothermal polymeric flows. These values are tabulated in

Table 2-2 and include the timescales for thermal and viscous diffusion, the polymeric timescale for stress

relaxation and the timescale for viscous heating. These timescales can be used to construct two types of

dimensionless groups; (i) dynamical ratios which use the convective time as the characteristic scale and thus

have values that depend on the shear rate and (ii) intrinsic or material ratios which are independent of

kinematics. This table suggests that a self consistent set of dimensionless groups to use when considering

the stability ofviscoelastic flows are the Weissenberg number, which is a direct measure of the flow strength,

in conjunction with the elasticity number, E, and thermoelastic number, 0, which measure the intrinsic

importance of the additional non-linearities arising from inertia and/or viscous heating. Baumert and Muller

[Baumert and Muller 1997] have reported extensively on the effect of varying the elasticity number on the

stability boundaries of viscoelastic Taylor-Couette flow by preparing a set of fluids with differing solvent

viscosities. Al-Mubaiyedh et al [Al-Mubaiyedh et al. 1999] report their results in terms of a P6clet number

(which will always be very large since Pr >> 1 for all polymer melts and organic solutions) and a Brinkman
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number Br = Na/ (which is always very small because >> 1). To our knowledge no one has yet

experimentally investigated the importance of the thermoelastic number, which may be of 0(1) for elastic

fluids undergoing a rapid shearing deformation. Systematic investigation of thermoelastic effects can be

performed by preparing a set of viscoelastic fluids of different viscosities and/or relaxation times (by varying

the molecular weight of the polymer or the viscosity of the solvent) and then conducting tests while varying

the flow geometry and ambient temperature.

Timescale Dimensionless Group Typical Value

(Scaled witht = y (Melts /Boger Fluids)

© t thermal pC H2  Peclet number P = Hk 2 1
k k

) t diffu H 2  Reynolds number e <<

t polymer Weissenberg Wi -0(1)
number

4 t =ea H 2  Nahme number Na = )70H 2 8 2  - 0(1)
heat k T

Natural Ratios
(Material functions independent of kinematics)

tthermal _ Prandtl number, Pr =>o CI
tdiffusion k

- tpolymer = elasticity number, E A 710 >>
tdiffusion P H 2

t t H 0heat thermoelastic number, e -H of - 0(1)
t a 2a kT

Table 2-2 Governing timescales ofnon-isothermal polymeric flows. Note that the characteristic length

scale H = h for parallel-plate geometries and H = 00 R for cone-and-plate geometries. The

timescale for viscoelastic stress relaxation is indicated generically by 2; however in reality

a polymeric fluid is characterized by a spectrum of time scales. A number of different

average measures may therefore be used (see text and Equations 2-11 to 2-16 for details).
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The combined effect of these variations on the thermoelastic number on the stability boundary for

a typical elastic flow instability is shown graphically in Figure 2-2. Here we select the Deborah number as

a measure of the elastic effects and the Nahme number as a measure of the importance of viscous heating.

When flow stability experiments are performed with a given fluid in a fixed flow geometry by slowly

incrementing the deformation rate, y, the slope of the trajectory in this three-dimensional space is given by

the thermoelastic parameter

S= Na
De

RM

A (T, MW)

(T,M,)p (T)

kT
(2-5)

For very low values of the thermoelastic parameter, 0 << 1, (corresponding ideally to fluids of low viscosity

and high relaxation time) the stability boundary is expected to collapse to the form given in Table 2-1.

Na = D RO

A
A

,biied by
by

~scU Heating

7/

<>/

Abasticity

De = f2

Stable Unstable

a =- H 1/2

RO

Figure 2-2 Three-dimensional schematic stability diagram for a typical viscoelastic fluid.
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However, quite generally, we expect that when the two timescales are of comparable magnitude, viscous

heating will affect the critical conditions for onset of the elastic instability.

For dilute polymer solutions, the Rouse-Zimm kinetic theory model predicts that the viscosity and

the relaxation time are differing functions of the molecular weight [Bird et al. 1987; Gupta et al. 2000]. For

example, in the non-free draining limit the Zimm model predicts that the polymeric contribution to the

viscosity scales as q - crM, /kBT and A -M, where c is the concentration, Mv is the molecular weight of

the chain and kB is Boltzmann's constant. Thus, decreasing the molecular weight of the polymer will

increase the relative importance of viscous heating. The geometry can also be adjusted to alter the extent

of viscous heating at a given Deborah number, but the flexibility for geometric variation is quite limited for

standard test fixtures because the analytical form of the base flow assumes a << 1.

Another alternative, and the avenue down which we have proceeded, is to vary the experimental test

temperature, T. As the temperature is increased, the thermoelastic number increases and the critical Deborah

number for the onset of the purely elastic instability occurs at progressively larger Nahme numbers. At these

large Nahme numbers viscous heating will delay or even completely suppress the onset of the instability.

This is indicated schematically in Figure 2-2, but it may not be clear from a cursory inspection of Equation

2-5. For amorphous viscoelastic materials, Time-Temperature Superposition (TTS) can be used to

characterize the temperature dependence of the material properties of the fluid [Bird et al. 1987; Ferry 1980].

The viscosity and relaxation time can be explicitly determined at a temperature, T, in terms of a time-

temperature shift factor and the known material properties at a reference temperature, TO, by

___T) - 2T)T
aT (TTO) = = T (2-6)

q 0 (TO) A(To)T,

A common functional form for the shift factor is given by the Arrhenius relationship

aT exp -- - - - (2-7)
R T To

where AH is known as the "activation energy for flow" [Bird et al. 1987], R is the universal gas constant

and To is the reference temperature. For this form, the thermal sensitivityfp of the material given in Equation

2-2 is given by
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- (2-8)
RT

Substituting back into Equation 2-5, the thermoelastic number becomes

0 _RO AH 1 (2-9)

A(To)To \ kR a \ aT

Since the shift factor aT < 1 for temperatures T > To, there is a monotonic increase in the thermoelastic

number with increasing temperature. This can be seen clearly by taking the ratio of the value of the

thermoelastic numbers for a given fluid and test geometry at any two temperatures:

0 (Tt,) _ aTo AH ( 1 1 (2-10)

0(TO) a1  2R To T .1
As the test temperature is decreased from the reference temperature, the thermoelastic number will decrease

and the relative importance of viscous heating compared to elastic effects in the fluid will diminish.

2.2.2 Fluid Rheology

Two different test fluids are used in these experiments in order to investigate the effects of fluid

rheology and thermophysical properties on the elastic flow instability. These viscoelastic fluids consist of

a 0.05 wt% solution of monodisperse polystyrene (PS) (Scientific Polymer Products, Inc.) with a

polydispersities of 1.03 and 1.2 and mass-average molecular weights of 6.5x 106 g/mol (SM2) and 2.0x10'

g/mol (SM3) respectively. In each case, the polystyrene is dissolved in oligomeric styrene (Hercules

Piccolastic) with a molecular weight ofM, - 500g/mol. The resulting solutions fall into a class of fluids first

described in detail by Boger and coworkers [Boger 1977/78] which are highly elastic with an almost constant

viscosity. The large viscosities and long relaxation times of these fluids eliminate inertial effects and permit

the study of viscoelastic flows at high Deborah numbers.

These two test fluids were initially prepared by Professor Susan J. Muller as part of an

interlaboratory comparison of filament stretching rheometers. Detailed analysis of the steady and transient
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shear and extensional rheology is presented elsewhere [Anna et al. 2001]. The rheological properties of

importance to the present study of elastic flow instabilities will be briefly summarized here and are tabulated

in Table 2-3.

Figure 2-3 shows a master curve of the rheological properties for fluid SM2 at To = 25 C, measured

with a controlled stress device (TA Instruments, Model AR1000N). A similar master curve can be generated

Notation Description Parameter Value

SM2 SM3

Known: c Concentration of High Molecular Weight 0.05% 0.05%
Polystyrene

MW /Ml Polydispersity 1.03 1.2

AV Molecular Weight [g/mol] 6.5x 106 2.0x10'

b = 2 Extensibility Parameter 25000 76700

TO Reference Temperature [K] 298 298

Fitted: r70 Zero Shear Rate Viscosity [Pa-s] 46.1 55.5

r/, Solvent Viscosity [Pa-s] 34.0 34.0

A,, Solvent Relaxation Time [s] 2.7x 104 2.7x 10-

h* Hydrodynamic Interaction Parameter 0.15 0.18

0-BD Extent of Anisotropy in Stokes' Law 0.59 0.79

BD Extent of Anisotropy in Brownian 1.0 1.0
Motion Forces

Calculated: AZ Zimm (Longest) Relaxation Time [s] 32.1 ___ 155

Oldroyd Relaxation Time [s] 17.7 81.7

Vil First Normal Stress Coefficient [Pa-s2 ] 428 3510

Table 2-3 Parameters characterizing the viscometric properties of the dilute polystyrene solutions

denoted SM2 and SM3.

for fluid SM3. The viscoelastic properties of the fluid are characterized in small amplitude oscillatory shear

flow by the dynamic viscosity iq'(co) and the dynamic rigidity 2q"(c)/w = 2G'(w)/C 2 which are both

functions of the frequency of oscillation. The linear viscoelastic properties are well described by the Rouse-

Zimm bead-spring kinetic theory for dilute solutions [Zimm 1956] as indicated by the solid lines in Figure

2-3. Over an intermediate range of frequencies, 1/)<< co << l/ 2 ,, the slope of the dynamic rigidity allows

an approximate determination of the hydrodynamic interaction parameter [Larson 1988], h*, which plays a

large role in determining the spectrum of relaxation times [Bird et al. 1987] given by
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Figure 2-3 Rheological material functions of the SM2 fluid. The data includes: '0', steady shear
viscosity q(v) [Pa-s]; '0', dynamic viscosity q'(w) [Pa-s]; 'E', dynamic rigidity 2q"(w)/w

[Pa-s 2 ]; 'E', first normal stress coefficient q'(v) [Pa-s 2 ]; and the corresponding Bird-

Deaguiar, FENE-P and Rouse-Zimm model fits plotted as dotted lines --- -', dashed lines
'- -' and solid lines '-' respectively.

S= A z j -(2+a) (2-11)

where o ~ -1.40 ( h* ).78 The linear viscoelastic modulii can then be conveniently expressed in the

following compact form

, cRT Nm z 2 s PS 2

G N
M, -j 2(2+u)+(Z02 AP A ) 2

,, cRT Nm 2+ j 2  +s
_ E + _ _M = 2(2 ) (AZO) 2 + ( )2

(2-12)

where Nm is the number of modes used to fit the linear viscoelastic data. In the limit h* = 0, the free-draining

Rouse model incorporates no hydrodynamic interaction and 2q"/w - a)-/ 2, whereas in the Zimm (non-free-
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draining) limit h* ~ 0.25 and 2q"/co - o)4. At low frequencies (co 0.01 rad/s), the fluid is essentially

Newtonian with a constant viscosity =0  j- (2 +a)c R TA /M + 1,. However, at high frequencies (co

1000 rad/s), the predictions of the Zimm model deviate from the experimental measurements due to the

small but finite elasticity of the oligomeric solvent. This additional elasticity can be modeled by an extra

Maxwell element for the solvent (the final term in Equations 12 and 13) with a relaxation time A ~ 2.7x 10-4

s which is in good agreement with the range of values reported by Mackay and Boger [Mackay and Boger

1987]. Table 2-3 lists the parameters used to compute the material properties for both fluids.

In steady shear flow, the viscometric properties of the fluids are characterized by the first normal

stress coefficient Vf( 2 )= (rI()-r(2 2())/2 and viscosity q( ), each of which are functions of the shear rate.

As shown in Figure 2-3, the viscosity of the solution is approximately constant over several decades of shear

rate. The fluid is strongly elastic and the first normal stress coefficient shear-thins monotonically throughout

the entire range over which data can be obtained. By contrast, the Rouse-Zimm bead-spring model predicts

a constant value of the first normal stress coefficient as a consequence of the pre-averaging of hydrodynamic

interactions [Ottinger 1987]. The dashed lines in Figure 2-3 represent the predictions of a single-mode

FENE-P model for the steady shear data. The value of the extensibility parameter, L 2, is derived from

molecular quantities for both fluids and can be found in Table 2-3. This value is consistent with

measurements of the transient extensional viscosity [Anna et al. 2001], but clearly leads to an overprediction

of the steady shear properties. An improved description requires a more detailed treatment ofhydrodynamic

interactions between segments of a polymer chain undergoing a steady shearing deformation. One such

model that accounts for the anisotropy in the hydrodynamic drag forces in approximate form is the

encapsulated dumbbell model of Bird and DeAguiar [Bird and DeAguiar 1983]. The dotted lines in Figure

2-3 represent the predictions of a single mode Bird-DeAguiar model fit and are in good agreement with both

the viscosity and first normal stress difference measurements of the SM2 fluid. The Bird-DeAguiar model

contains two parameters, UBD and BD, which specify the extent of anisotropy in the viscous drag on the beads

and in the velocity distribution arising from anisotropic Brownian motion, respectively. When aBD /JBD

1, the FENE-P model is recovered. Our exploratory calculations suggest that to quantitatively describe the

viscometric properties of dilute polymer solutions in viscous solvents, the anisotropy in the viscous drag is

the primary effect of importance. The Brownian motion of the beads can thus be assumed to be isotropic

with /= 1. To determine the proper values of -BD, the Bird-DeAguiar model was fit to the viscometric

properties of the two fluids by minimizes the mean square error between the predicted and computed values

of both q(>) and [,(y). The results of these fits can be found in Table 2-3.

37



When defining a Deborah number for reporting the experimental measurements of the critical

rotation rate for the onset of the purely elastic instability, a representative measure of the spectrum of

relaxation times of the fluid must be chosen. The simplest choice for this fluid time scale is the longest or

Zimm relaxation time, 2, determined from the linear viscoelastic measurements and tabulated in Table 2-3.

An alternative measure commonly used is the 'average' or Oldroyd relaxation time which is a viscosity

weighted average of the relaxation spectrum

Nm

10 j=1(2-14)

29Nm

j=1

For the Rouse-Zimm spectrum in which the time constant and viscosity of each relaxation mode is related

to the longest mode by a simple recursion relation this becomes

N

- -2(2+c7)

_ =N (2-15)

1:j-(2+a-)

J= I

Theoretical stability analyses [Al-Mubaiyedh et al. 2000; Larson et al. 1994] and scaling arguments show

that both the longest and the average value of the relaxation spectrum are important in determining the

critical conditions for flow stability

Even though the shear viscosities of these dilute solutions do not have a strong rate dependence,

Figure 2-3 demonstrates that, at the shear rates investigated in this research, the first normal stress coefficient

shear thins quite heavily. This initial onset of shear thinning is primarily the result of hydrodynamic

interaction while more drastic shear thinning at higher shear rates can be attributed to, amongst other effects,

the finite extensibility of the polymer chain. The true relaxation time of the fluid, which can be calculated

from the viscometric properties of the fluid previously determined, is thus a strong function of shear rate

[McKinley et al. 1991]

AM TI)(2-16)

It has been found in a number of studies of viscoelastic flow instabilities that to achieve quantitative
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Figure 2-4 Steady shear viscosity r(v) as a function of fluid temperature. The data includes: '0', SM3

test fluid; 'E', SM2 test fluid; and the corresponding WLF and Arrhenius model fits plotted
as dashed lines '---' and solid lines '-' respectively.

agreement with theoretical predictions it is necessary to use this shear-rate-dependent relaxation time when

calculating the effective value of the critical Deborah number for the onset of elastic instabilities [Avagliano

and Phan-Thien 1996; Larson et al. 1994; McKinley et al. 1996; Oztekin and Brown 1993]. The

disadvantage of this approach is that the precise functional form of Equation 2-16 becomes model-dependent.

Therefore, for convenience and clarity the average relaxation time evaluated in the limit of zero shear rate,

A, will be used for reporting critical Deborah numbers unless explicitly indicated otherwise.

The viscoelastic properties of the test fluids will also change as the temperature of the experiments

is varied. In order to compare tests performed at different temperatures, it is necessary to adjust the

relaxation time, normal stress difference and viscosity to their values at a reference temperature of T =25 C.

This is accomplished by employing time-temperature superposition with a shift factor aT(T, TO) defined in

Equation 2-6. In this paper we will use the Williams-Landel-Ferry (WLF) equation to specify the functional

form of aT(T, TO) as it has been found to accurately describe the thermorheological behavior of a wide variety

of polymer solutions and melts [Ferry 1980]. However, we will also present results for the Arrhenius
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formulation of aT(T, T) because of its simplicity and widespread use in previous analyses of flow stability

[Al-Mubaiyedh, 1999 #143; Yueh, 1996 #154; Becker, 2000 #155]. The WLF equation has the form [Bird
et al. 1987]

log a T -c(T - T ) (2-17)c2 + ( T - TO)

where c, and c2 are constants to be determined. Figure 2-4 demonstrates how the viscosity of the SM2 and
SM3 test fluids changes as the temperature is raised from 15'C to 40'C. Over the span of 25'C the zero
shear rate viscosity decreases by a factor of one hundred. Superimposed on these data are fits of the
Arrhenius and WLF models for each fluid. The values of the constants used to fit the temperature

dependence of the fluid viscosity of both SM2 and SM3 can be found in Table 2-4. When represented on
a semilogarithmic scales of viscosity as a function of 1/T, the Arrhenius equation (Equation 2-7) predicts

a linear relationship that accurately describes the experimental measurements close to the reference
temperature To. However, the data in Figure 2-4 show clear nonlinear trends for large values of IT- Tl which
are better described by the WLF model. For temperatures close to To, linearizing the WLF equation

(Equation 2-17) suggestsfp(TO) = AH/ R T z c, T/c 2. Both the WLF and Arrhenius models predict a thermal

sensitivity ofp z 68 for both SM2 and SM3. By contrast, the thermal sensitivity is/ i 20 for a typical PIB
Boger fluid [Arigo 1999].

Notation Description of Parameter Value of Parameter

SM2 SM3
C, WLF Constant 20.1 36.9
C2 WLF Constant [K] 90.4 160

AH/ Arrhenius Constant [K] 20200 19900
Table 2-4 Parameters used to describe temperature dependence of SM2 and SM3 polystyrene solutions

with a reference temperature To = 298K.

The density, thermal conductivity and heat capacity of fluid SM2 and SM3 can be found in Table
2-5 and are assumed to be identical to the thermophysical properties of the oligomeric solvent. Additionally,
the properties of both fluids are assumed to be constant over the range of temperatures at which they are

tested in this study.
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Notation Description of Parameter Value of Parameter

SM2 SM3

p Density [kg/M3] 997 997
k Thermal Conductivity [W/m-K] 0.11 0.11
C Heat Capacity [J/kg-K] 2.04x103 2.04x10

a Thermal Diffusivity [m 2 /s] 5.4x10-8 5.4x10-8
Table 2-5 Thermophysical properties of SM2 and SM3 polystyrene solutions.

2.3 Experimental Results

Our goal is to construct an experimental stability diagram such as the one shown in Figure 2-2. We

first investigate the horizontal (a, De) plane by using the SM3 fluid to perform essentially isothermal

experiments all of which have a thermoelastic number smaller than 0 10-2

2.3.1 Comparison with Isothermal Theory

The experiments were performed using a controlled stress rheometer (TA Instruments, ARI OON)

capable of torque and normal force measurement as well as precise temperature control of the bottom plate

using a Peltier device. Each measurement was performed using a fresh sample of Boger fluid. After

carefully loading the rheometer, the fluid was allowed to reach thermal and structural equilibrium at a test

temperature T before the testing commenced. A constant torque, T, was then applied to the upper fixture.

The shear stress acting on the fluid is given by {'P = 3T/2xR' for the homogeneous shear flow in the cone-

and-plate geometry. For the non-homogeneous torsional flow in the parallel-plate geometry we report results

in terms of the rim shear rate lp(r = RO) = (R 0 /h and the shear stress at the rim -rT(r = R) = T/nR. The

resulting experimentally measured shear rate was averaged over the course of one relaxation time, AZ, and

then compared with subsequent averages until the values were within a + 1 percent tolerance for two

consecutive averages. The fluid was allowed to equilibrate over a maximum period of ten relaxation times

at which point the applied torque was incremented and the fluid was again allowed to reach equilibrium.

This protocol was established to insure that at each test point the fluid microstructure had reached

equilibrium. By using a controlled stress device, it is possible to follow the complete flow curve

corresponding to the steady two-dimensional base flow and the three-dimensional, time-dependent flow

which bifurcates subcritically in the shear rate [Magda and Larson 1988; McKinley et al. 1991; Olagunju

1995]. The shear rate is a single valued function of stress and with careful experimentation it is possible to

accurately determine the linear neutral stability condition by identifying the shear rate at which the slope,
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Figure 2-5 Transient first normal stress difference and shear rate measurements of the flow between a
rotating {2cm, 2 }cone-and-plate geometry with the SM2 fluid at 25 C taken at constant
applied shear stresses of 250Pa and 500Pa.

d/dr, changes sign.

The time dependent nature of the purely elastic flow instability is demonstrated in Figure 2-5. A

constant shear stress is applied to the SM2 test fluid between a rotating cone-and-plate with

{R 0, 0} = {2cm, 2'} at a temperature of T= 25'C and the resulting shear rate, y, and first normal stress
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Figure 2-6 Effect of aspect ratio on the critical Deborah number for the onset of the purely elastic flow
instability between a rotating parallel-plate for the SM3 test fluid at 25 'C.

difference, NI, are observed over time. At a shear stress of r = 250 Pa (t < 100s), the flow is stable,

exhibiting an initial overshoot and then becoming steady in time. After 100 seconds, the shear stress is

increased to a value of r = 500 Pa. Subsequent measurements of normal stress and shear rate deviate sharply

from the expected equilibrium values and do not reach a steady state, but instead demonstrate the time-

dependent behavior and apparent antithixotropy seen in previous studies [Magda and Larson 1988; McKinley

et al. 1991]. The duration of this experiment was chosen to be much larger than both the polymer relaxation

time (AZ 32s) and the timescale for thermal diffusion is (th.ai 9s) to insure that kinematic and thermal

equilibrium were achieved. A more detailed discussion of the importance of test protocol can be found in

Section 2.3.3.

In Figure 2-6, the experimental results for the SM3 Boger fluids at very low Nahme number, Na

10-3, are compared with the multimode isothermal linear stability analysis of Avagliano and Phan-Thien

[Avagliano and Phan-Thien 1999]. The experimentally observed critical Deborah number is presented both

as the product of the angular frequency and the average relaxation time, A , evaluated in the limit of zero

shear rate and as the product of the angular rotation rate and the shear-rate-dependent relaxation time, A(p).
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As noted in Table 2-1, when the free surface effects in the parallel-plate geometry are considered at small

aspect ratios, the linear stability theory predicts that the critical Deborah number for the onset of the elastic

instability should have a linear dependence on aspect ratio [Avagliano and Phan-Thien 1996; Avagliano and

Phan-Thien 1999]. Through very careful experimental techniques, McKinley et al. [McKinley et al. 1991]

were able to very closely approach the linear neutral stability condition and minimize the amplitude of the

disturbance, which for a subcritical Hopf bifurcation must be finite. In fact, both Oztekin et al. [Oztekin et

al. 1994] and Avagliano and Phan-Thien [Avagliano and Phan-Thien 1999] were able to quantitatively

match their linear stability analysis predictions to the experimental neutral stability data of McKinley et al.

[McKinley et al. 1991]. The solid line in Figure 2-6 is the linear stability analysis provided by Dr. Avagliano

for the multimode Rouse-Zimm spectrum of fluid SM3. Although, neither value of the critical Deborah

number quantitatively matches the theory over the entire range of aspect ratios tested, both measures

demonstrate the predicted linear dependence on aspect ratio. The stability locus for the multimode model

was calculated using the approximation proposed by McKinley et al. [McKinley et al. 1996]

n~ .Ur 1/2

E I 1ij

Demultimode j= RC O,

Desingle mode crit s U

where Uis the local velocity along a streamline of curvature radius Rc. The tensile stress along the streamline

for each mode is r, 1 and the local shear rate is . Calculations show that this equation allows one to estimate

the results for the analysis of any multimode spectrum from the results of a single mode analysis to within

ten percent of the true value [Avagliano and Phan-Thien 1999]. For torsional flows in the parallel plate

geometry, Equation 2-18 can be simplified by substituting U= rQ, R, = r, r = 2cR T /12 / M, and p

= 2a to yield

Demultimode rms 
(2-19)

Desingle mode crit A

where
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Nm 1/2

,Zrms = m (2-20)
N.

jl

The predictions of the isothermal linear stability analysis for flow in a rotating cone-and-plate have

also been compared against experimentally-determined critical conditions for both the SM2 and SM3 fluids

in other geometries with {R 0 , 0} = {3cm, 1 }, {2cm, 2'}and {lcm, 4'}. These tests were performed at low

temperatures and vanishingly small Nahme numbers, Na 10-'. The results of these tests can be found in

Figure 2-7. The experimental and theoretical critical Deborah numbers are presented as the product of the

critical angular frequency and the average or Oldroyd relaxation time evaluated in the limit of zero shear rate.,

De = 2 . The predictions of the FENE-PM and the Bird-DeAguiar models, computed using the scaling

approach discussed by McKinley et al., [McKinley et al. 1996]. are presented along with the Rouse-Zimm

multimode analysis. Recalling the results of the linear stability theory of Olagunju [Olagunju 1997]

presented in Table 2-1, one expects the critical Deborah number for the onset of the elastic instability to scale

with the square root of the cone angle and to appear as a straight line in Figure 2-7. As one quickly observes,

this is only true for the shear-rate-independent Rouse-Zimm model. The modifications to the multimode

FENE-PM curve, the Bird-DeAguiar curve and the experimental data at small cone angles are the result of

the shear-rate-dependence of the viscometric properties caused by the polymer's finite extensibility

[McKinley et al. 1991] and hydrodynamic interactions [Bird and DeAguiar 1983]. For very small cone

angles, the shear rate at the onset of instability is very high and the true relaxation time of the fluid is much

smaller than the Oldroyd relaxation time used in formulation of the Deborah number. For example, choosing

a moderately large cone angle of 00'2 = 0.5 (~140), which for the SM2 fluid and the Rouse-Zimm model

corresponds to a critical Deborah number of Decrit = 2.08, results in critical shear rate of

fcrit = Dert / (002SM2)= 0.47 s-1. It is clear from Figure 2-3 that an appreciable decrease in the fluid

elasticity has already occurred at this shear rate. A quantitative agreement can only be achieved when

evaluating the critical Deborah number with the (constant) average relaxation time, A, provided the

constitutive model accurately represents the viscometric properties of the fluid. This requirement can be
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Figure 2-7 Effect of cone angle on the critical Deborah number for the onset of the purely elastic flow
instability between a rotating cone-and-plate for the a) SM2 and b) SM3 test fluids.

clearly seen in Figure 2-7 by examining the two broken lines which represent the stability boundaries for the

FENE-PM and Bird-DeAguiar models. The FENE-PM model qualitatively captures the onset of shear-

thinning in J,( ) at very high shear rates (low cone angles) but seriously overpredicts the fluid elasticity at

intermediate shear rates as shown in Figure 2-3. By contrast, the Bird-DeAguiar model captures, at least
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semi-quantitatively, the decrease in T, (>) arising from hydrodynamic interactions and much more accurately

predicts the observed stability boundaries.

Although it cannot be seen in Figure 2-7, at low enough shear rates (high enough cone angles), the

Bird-DeAguiar model does asymptotically approach the Rouse-Zinim stability curve. Without continuing

the abscissa of Figure 2-7 to large cone angles, we can easily validate this statement by inspecting the

viscometric data presented in Figure 2-3. The Bird-DeAguiar model satisfies simple fluid theory and so, in

the limit of low shear rates, the rate-dependent relaxation time of the model will become constant and equal

to the rate-independent relaxation time of the Rouse-Zimm model. However, at these rates (p 10-2S-) the

cone angles required (O0 170 rad) would be completely unphysical.

If the shear-rate-dependent relaxation time is used in the formulation of the critical Deborah number,

De AQ') , instead of the Oldroyd relaxation time, all three models will follow the same square root

dependence on cone angle as the shear-rate-independent Rouse-Zimm model in Figure 2-7. If the

experimental measurements of the critical rotation rate are also reported as a critical value of the shear-rate-

dependent Deborah number (using Equation 2-16 to compute the relaxation time), quantitative agreement

with all three of the models can be obtained. This lends additional credence to the use of the shear-rate-

dependent relaxation time when comparing experiments with linear stability theory [Avagliano and Phan-

Thien 1996; McKinley et al. 1996; Oztekin and Brown 1993] and is the only way to accurately fit the neutral

stability data if the viscometric data of the viscoelastic test fluid cannot be accurately modeled by the chosen

constitutive equation.

2.3.2 Non-isothermal Modifications to Stability of Elastic Torsional Flow

If Equation 2-9 is evaluated for fluid SM2 in the {2cm, 2 } cone-and-plate geometry, the

thermoelastic number becomes

1 R0  r/o(T)/P(T) 0.011
OsM2 = --- -=-(2-21)

aT (TO) kTo aT

For temperatures greater than the reference temperature T> To, the shift factor is smaller than one and the

thermoelastic number 0 will increase. We show below that when the thermoelastic number is equal to 0

= 0.061 (T - 43 C), viscous heating results in significant modifications to the flow stability curves. For

temperatures less than the reference temperature T< To, the shift factor a1 > 1 and the thermoelastic number

decreases, lowering the slope of the trajectory followed by experiments in the three-dimensional space shown
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Figure 2-8 Onset of an elastic flow instability as observed in shear stress sweeps of the SM2 test fluid
at various temperatures using the {2cm, 2 } cone-and-plate geometry.

in Figure 2-2.

Similar calculations of the thermoelastic number for fluids SM3 and SM I described by Anna et al.

[Anna et al. 2001] show that 0 sM3= 0.0024 aT-" and OsMI= 0.092 a-. Viscous heating is therefore not

important until temperatures of T ~ 70'C for fluid SM3 while it is important for all temperatures greater than

T 10'C for fluid SMI. Indeed, experiments with fluid SMI showed no elastic instability for any

temperatures or shear rates studied. Fluid SM2 was thus chosen for the non-isothermal tests described below

because its thermophysical properties allow for excellent control of the purely elastic instability at reasonable

temperatures and cone angles.

Using the same testing protocol outlined in the previous section, the effect of viscous heating was

systematically examined by performing torque sweeps on the SM2 fluid in the cone-and-plate geometry over

a wide range of temperatures 15'C T 50'C. In Figure 2-8, we show the form of the flow transition for

fluid SM2 using a cone-and-plate geometry with {Ro, O0} = {2cm, 2 }. As observed by Magda and Larson

[Magda and Larson 1988] and by McKinley et al., [McKinley et al. 1991] the instability is subcritical in

shear rate. At a temperature of 43 'C, a strong deviation in the shear stress from a linear dependence on shear
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Figure 2-9 Normalized shear stress as a function of the linear stability control parameter DeC-
0

rate indicates the onset of viscous heating in the sample. Simultaneous measurement of the first normal

stress difference shows that there is an even more dramatic loss of elasticity, as is shown in Figure 2-11. The

result is a drastic reduction in the shear-rate-dependent relaxation time and, consequently, a failure to reach

the critical conditions for the onset of the elastic instability.

In the isothermal linear stability theory, the critical Deborah number for the onset of the purely

elastic flow instability is determined to be a constant, independent of temperature (see Table 2-1). When

represented in terms of dimensional parameters, time-temperature superposition of the material properties

leads to a linear dependence of the critical flow conditions on the test temperature. If the stability theory is

expressed in terms of a critical shear stress one obtains

T - )7 A Cuit ( -2
rcrit - 17 crit -- . (2-22

A 0 0 ,

Substituting Equation 2-6 into Equation 2-22 one finds that the critical shear stress varies linearly with

temperature
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rit (T) = rT,(T 0 ) (2-23)

where Tcrit(TO) is the critical stress for the onset of instability at the reference temperature, T. The dotted line

in Figure 2-8 represents the prediction of Equation 2-23 for the critical shear stress. This decoupled

isothermal approximation correctly predicts the weak modulation in the critical conditions for onset of

instability at low thermoelastic numbers, but does not take into account the strong coupling that arises at

large thermoelastic numbers.

The data in Figure 2-8 can be collapsed by plotting the measured shear stress non-dimensionalized

by the shear stress expected for the steady base flow, qj, against the control parameter expected from the

linear stability theory, De / 00,. [Olagunju 1997]. In Figure 2-9 we plot the stability data for both the {1cm,

4} and the {2cm, 2O} cone-and-plate geometries for the SM2 fluid over a wide range of temperatures.

Although the data from the two cone angles do not superimpose exactly, the general agreement is very good.

If the shear-rate-dependent relaxation time is used in the formulation of the Deborah number, the results for

different cone angles would very nearly superimpose. The data show that increasing the temperature of the

test fluid, and thus the Nahme number, delays the onset of the purely elastic flow instability, but has little

effect on the amplitude of the fully developed time-dependent non-linear state until the thermoelastic number

approaches its critical value. At that point, the instability is completely suppressed by viscous heating. This

transition happens over a very small range of temperatures ( 37 0 C T s 43 C ) and we now proceed to study

this region in more detail.

To highlight the effect of viscous heating on the base flow, in Figure 2-10 we show the progressive

variation in the dimensionless timescale for viscous heating, th,,t = Na "j, against the dimensionless

viscoelastic timescale, De, for fluid SM2 in the {2cm, 2 } cone-and-plate rheometer as the deformation rate

is increased. The filled symbols in Figure 2-10 represent steady two-dimensional flow while hollow symbols

represent the unstable regime. A dashed line denoting the neutral stability curve has been superimposed on

the data. At very low Nahme numbers, viscous heating is not significant and the resulting delay in the onset

of the elastic instability, although clearly evident, is quite small and in agreement with Equation 2-23. At

a temperature of 40'C, viscous heating begins to strongly stabilize the flow, shifting the onset of the

instability upwards to a Deborah number that is 15% above the value obtained at low Nahme number. When
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Figure 2-10 Stability diagram for the flow between a rotating {2cm, 20} cone-and-plate geometry. As
the Deborah number is increased, the flow goes from stable flow conditions represented by
filled symbols '*' to unstable flow conditions represented by hollow symbols '0'. The
dashed line '--' is a fit of the neutral stability curve of the form Nac,, = K(Der,,, - Decri,O).

the temperature is increased still further to 43 C, the flow becomes stable at all shear rates. At this

temperature, the critical thermoelastic number is 0. = 0.061 corresponding to a 0.45 and Decri =7.3.

In order to obtain quantitative agreement with the results of linear stability analyses it is necessary to report

values of critical conditions in terms of the shear-rate-dependent relaxation time, 2(p), rather than the average

relaxation time, A. If the fluid properties (in particular the fluid relaxation time) are allowed to vary with

shear rate, the critical thermoelastic number increases by more than an order of magnitude to a value very

close to one Ocr(G) = 0.92.

In Figure 2-11, the critical Nahme number is plotted against the critical Deborah number for the onset

of the elastic instability. When the data are plotted in this way, the critical Deborah number appears to vary

as

Nacri, = K (Decri, - Decri,o ). (2-24)
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Figure 2-11 Neutral stability points 'N' for the flow between a rotating {2cm, 20} cone-and-plate
geometry. The dashed line '--' is a fit of the form Nacrit = K(Decrit - DecritO).

where Decri,,o is the isothermal critical Deborah number and K = 0.063 is a constant. A neutral stability curve

of this form has also been superimposed over the data in Figure 2-10 and fits quite well.

The Nahme number and the Deborah number cannot be varied independently, but are related by the

thermoelastic number, 0= Na12/De, which is a constant for each experiment, independent of shear rate. A

better way to express Equation 2-24 is thus in terms of the critical Deborah number and the thermoelastic

number

K 4De 2
Dei, = 2 I- - 1 - e_' . (2-25)

In the limit of small thermoelastic number, 0 << 1, Equation 2-25 reduces to the isothermal critical

condition. However, if the thermoelastic number of the experiment is greater than 0 > 1/2 K / Decrio, the

critical Deborah number defined by Equation 2-25 is undefined. In this limit, an experimental shear rate
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Figure 2-12 Viscometric properties for flow of SM2 fluid between a rotating {2cm, 20} cone-and-plate
geometry at three temperatures showing the effect of viscous heating on the purely elastic
flow instability.

ramp, which traverses a line of constant thermoelastic number, will not intersect the neutral stability curve

and the flow is found to be stabilized by viscous dissipation.. By fitting the neutral stability data to Equation

2-24, the critical thermoelastic number is predicted to be c, = 0.057 which corresponds to a wall

temperature of T,, = 42.2'C.

The coupling of viscous heating effects and onset of flow instability is also manifested in a profound

way in the normal stress data. We show in Figure 2-12 the shear stress and first normal stress difference as

a function of shear rate for torque sweeps performed with the {2cm, 2 } cone-and-plate rheometer on the

SM2 fluid for temperatures of 40 'C, 42'C and 43 C. As the temperature is increased from 40'C to 43 C,

the magnitude and duration of the elastic instability is diminished while the onset is delayed to a larger

critical Deborah number by viscous heating. The onset of viscous heating is characterized by a sharp

decrease in the first normal stress difference and is differentiable from simple shear-thinning by the non-

monotonic nature of the curves. This can be seen most clearly in measurements of the shear stress and first

normal stress difference taken at 43 C. At low shear rates y 60 s-' (Na ~ 0.008), the viscometric data is

consistent with the predictions of the Rouse-Zimm and Bird-DeAguiar models. A maximum in the shear
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stress corresponding to a "thermal blow-up" is reached at a shear rate of = 2700 s-' (Na = 12). In a

controlled stress experiment, no steady values of shear rate above this maximum shear stress are attainable

[Arigo 1999]. The first normal stress difference also goes through a local maximum, but at a much lower

shear rate y z 320 s- (Na z 0.17). This degradation of fluid elasticity results in the complete suppression

of the elastic flow instability. In the experiments at 40'C and 42'C, the flow becomes unstable before

viscous heating can begin to significantly degrade the elasticity. However, the instability is quickly

suppressed after a critical value of Nahme number Nacrit Z 0.23 is reached. The shear stress does begin to

show noticeable nonlinear effects at these moderate shear rates, but the normal stress is clearly a much better

indicator of viscous heating. These viscous heating trends are in excellent agreement with recent

measurements of similar polystyrene and polyisobutylene-based Boger fluids performed by Arigo [Arigo

1999]

2.3.3 Effect of Test Protocol on Stability Observations

Since there are a number of important timescales characterizing different physical processes in the

fluid (see Table 1), the choice of experimental test protocol and the associated observation window can have

10000 Cone-Plate

{2crn, 2"}
SM2

T= 430 C

1000 -

__ 0
0

100 -

0 T continuous ramp 0 r stepped ramp
0 N, continuous ramp 0 N, stepped ramp

---- Zimm Model
10 I I . I I I

10 100 1000

Y Isl

Figure 2-13 Viscometric properties for flow of SM2 fluid between a rotating {2cm, 2 } cone-and-plate
geometry at T= 40'C showing the effect of test protocol. The predictions of the Rouse-
Zimm bead spring model are plotted as dashed lines '- -' for low shear rates.
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a significant impact on the observed results of the experiments. Theoretical stability analysis [Al-Mubaiyedh

et al. 1999; Becker and McKinley 2000] of non-isothermal viscoelastic flows assume that the base flow on

to which perturbations are imposed is steady and fully developed. For the cone-and-plate geometries the

timescale for thermal diffusion is 5s 1 t 0 l0s (depending on cone geometry) and the timescale for the

stress to reach steady state is A2(TO) 31.1 seconds. If the experiment ramps in torque are imposed too

quickly, then the fluid may not be able to reach thermal or structural equilibrium, resulting in the observation

of a pseudo-steady-state which is in fact dependent on the speed at which one probes the material. The issue

of structural equilibrium is most pertinent at low temperatures where the relaxation time is much longer than

the timescale for thermal diffusion. Ramping the torque too quickly at low temperatures will result in

observation of a critical Deborah number much higher than expected because the fluid stresses will not be

fully developed. At higher temperatures, the relaxation time, A(T) = 2 (T)/aT, decreases rapidly and it is the

thermal diffusion time which becomes important.

When both scales are important, very complex dynamics may ensue. In Figure 2-13, we show

measurements of the SM2 fluid in a cone-and-plate geometry with {R 0 , 60} = {2cm, 201 at a test temperature

of T= 43'C. On the basis of the steady state experiments described in Section 3.2, using step changes in the

applied shear stress and a ten relaxation time observation window, viscous heating is found to completely

stabilize the flow. The corresponding data for the shear stress and normal stress are shown as open symbols.

As the shear rate increases, viscous heating results in an apparent shear thinning in the shear stress and a

dramatic decrease in the normal force exerted on the cone. However, if a continuous stress ramp with rate

of increase of dr/dt = 5Pa/s is imposed, the data corresponding to the filled symbols is obtained and the flow

appears to exhibit an elastic instability. When the underlying steady one-dimensional shear flow is stable

(' 110 s-'), the two curves closely parallel each other and the shear stress predictions of the Rouse-Zimm

bead spring model. The departure in the first normal stress data from the predictions of the quasi-linear

Rouse-Zimm model is the result of shear thinning caused by hydrodynamic interactions and can be captured

by the Bird-DeAguiar model. At higher shear rates, a transient subcritical instability is observed. As the

stress is increased, the shear rate initially decreases and the normal stress increases dramatically as previously

observed in Figure 2-11 for lower test temperatures. However, as the thermal profile in the fluid begins to

develop through the rapid azimuthal, and slower radial, diffusion of thermal energy, the effective elasticity

of the fluid decreases. Eventually, the instability is effectively eliminated and the shear rate returns to a

steady, stable value monotonically increasing with the imposed stress.
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2.4 Discussion

In this study, we have systematically demonstrated the importance of non-isothermal flow effects

on the stability of torsional flows of highly elastic polymer solutions. Two monodisperse polystyrene test

fluids of different molecular weight have been used to investigate the role of the fluid rheology. The

agreement with isothermal linear stability analyses for the Rouse-Zimm and Bird-DeAguiar constitutive

models in both cone-and-plate and parallel-plate geometries was found to be good, especially if shear

thinning in the fluid relaxation time is accounted for. It was then shown that the proper dimensionless groups

to consider when investigating purely elastic instabilities in viscoelastic flows are the Deborah number and

the thermoelastic number 0 = Na/De which measures the importance of coupling between the fluid

elasticity and the nonlinearities arising from viscous heating. The thermoelastic number can be influenced

by changes in geometry, molecular weight and temperature. By varying the ambient temperature of the test

fluid through a fairly narrow range, it was possible to progressively delay the onset of the purely elastic flow

instability through a decrease in elasticity caused by temperature gradients across the gap. At thermoelastic

numbers greater than 0 > 0, = 0.062, the flow instability can be eliminated entirely by the same

mechanism.

When the effects of energetics on the linear stability of the viscoelastic flow within a Taylor-Couette

device were investigated by Al-Mubaiyedh et al., [Al-Mubaiyedh et al. 1999] a new mode of different spatio-

temporal character to the mode arising from isothermal linear stability analysis was predicted to be the most

unstable. The critical conditions for onset of this new stationary mode of instability are much lower than

those required for the isothermal mode and are also in better agreement with the experimental observations.

By contrast, in earlier investigations of the viscoelastic torsional flow between a rotating cone-and-plate or

between two coaxial parallel-plates, the critical conditions for onset of spiral secondary flows were observed

to be consistent with the predictions of isothermal linear stability analysis [McKinley et al. 1991; McKinley

et al. 1995; Olagunju 1995]. This has been confirmed by our present experiments when the thermoelastic

number is small. No new mode of instability is observed and viscous heating effects (corresponding to

increasing thermoelastic number) are found to progressively stabilize the subcritical bifurcation. These two

studies thus do not appear to be consistent. However, very recently, Al-Mubaiyedh et al. [Al-Mubaiyedh et

al. 2000] extended their linear stability analysis of non-isothermal viscoelastic flows to the case of pressure-

driven Taylor-Dean flow. In this geometry they found that, as in the torsional flow experiments, the

dominant mode of the instability does not change with the addition of viscous heating, but is instead

dramatically stabilized. The thermal mode is still present, but is not the dominant mode until Pe >> 1.

The differences observed between the stability characteristics of viscoelastic flow in the Taylor-
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Couette, Taylor-Dean and torsional geometries must be the result of differences in the symmetries of the base

velocity, temperature and stress fields. When the temperature at both walls is the same and the fluid is heated

through viscous dissipation, the local fluid temperature achieves a maximum at the center of the gap. It is

easy to physically understand how viscous heating can stabilize any of these flows. As discussed in

McKinley et al. [McKinley et al. 1996], purely elastic instabilities arise from an interplay between streamline

curvature and elastic normal stresses. When a critical Deborah number is reached, the following

dimensionless parameter is exceeded

Rc'o71/2__> __ - cnt' (2-26)(RC q0 Y)

and the flow becomes unstable. The temperature increase caused by viscous heating leads to a decrease of

both the viscosity and the elasticity of the test fluid and thus results in a decrease in the elastic hoop stress.

The critical condition expressed in Equation 2-24 is no longer exceeded along local streamlines even though

the critical conditions would have been reached globally for an isothermal flow at the same rate. This

thermoelastic mechanism has been found to stabilize the isothermal elastic modes of all the flows examined,

including the Taylor-Couette geometry for Pe < 104 [Al-Mubaiyedh et al. 1999].

In the base flow of the Taylor-Couette geometry the shear stress is uniform across the gap. Viscous

heating breaks the base flow symmetry in the gradient direction. A new temporal mode of instability is

caused by radial convection of thermal gradients across streamlines. It appears that the symmetry of the base

stress field in Taylor-Couette flow may shift the onset of this new thermoelastic instability to much smaller

Peclet numbers (Pe ; 104), than is found in the case of Taylor-Dean flow (Pe 10'), in which the base-state

stress field is already asymmetric [Al-Mubaiyedh et al. 1999; Al-Mubaiyedh et al. 2000].

If one applies this same reasoning to the two torsional flow geometries, then one would expect that

because of the homogeneity of the stress field in the base-state of the cone-and-plate geometry, the effect of

viscous heating should lead to a new mode of instability as observed in the linear stability calculations for

the Taylor-Couette geometry. By contrast, one would reason that the parallel-plate geometry, in which the

stress field is already radially inhomogeneous, would more closely resemble the Taylor-Dean flow geometry.

However, these symmetry arguments do not agree with our experimental observation. Viscometric flow in

the cone-and-plate geometry does not appear to exhibit a new mode of instability when viscous heating is

included, but rather only a stabilization of the isothermal elastic spiral instability. The magnitude of viscous

heating in a flow scales with the Nahme number, which for the cone-and-plate geometry can be written as
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Na =/r 2 22/kT. . Thus, even though the shear rate, ' = Q/0 0, is constant in the cone-and-plate geometry, the

velocity, and the resulting viscous dissipation, increases radially. Therefore, unlike the Taylor-Couette

geometry, viscous heating results in non-homogeneous temperature variations in both the gradient and the

neutral direction for the cone-and-plate geometry. In the parallel-plate geometry the gap between the plates

is constant, but both the temperature field and shear rate (or in dimensionless terms, the Nahme-Griffiths

number and the Weissenberg number respectively) will exhibit radial variations. The two torsional flows

thus seem to have more in comminon with the Taylor-Dean geometry. Such base flow symmetry arguments

may help to rationalize these differences in thermoelastic effects, however, what is ultimately required is a

detailed comparison of the linearized disturbance equations for viscoelastic flow in the Taylor-Couette, Dean

and torsional flow geometries.

The subcritical bifurcation in shear rate observed in the present experiments is different from the

turning point in the shear stress - shear rate curve corresponding to the "thermal blow-up" seen in similar

Boger fluids and highly viscous Newtonian fluids [Arigo 1999] at large Nahme numbers. This instability,

which can be seen in both the shear stress and the normal stress data presented in Figure 2-12 at T= 43 'C,

corresponds to the point at which viscous heating reduces the viscosity so significantly that increases in

applied shear rate result in a decrease of the measured shear stress necessary to drive the flow [Yueh and

Weng 1996].

The effects of viscous heating will always be present to some extent in the shear flow of highly

elastic fluids. These effects will be especially important in shear flows with closed streamlines in which the

heat from viscous dissipation can be accumulated in the device over long periods of times. In this work, we

have shown that the effect of viscous heating can be minimized by considering the functional dependence

of the thermoelastic parameter in Equation 2-5 and by decreasing the ambient temperature of the test or by

utilizing small devices. Such an approach has been used to minimize thermal noise in detailed studies of

other hydrodynamic flow instabilities [Heslot et al. 1987].
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CHAPTER 3 The Flow of Elastic Liquids Through an Abrupt 4:1:4

Axisymmetric Contraction-Expansion

3.1 Introduction

Recent experimental and numerical investigations have shown that the dynamical evolution of the

microstructure in dilute polymer solutions undergoing a strong extensional flow is far more complex than

the qualitative picture of a single dumbbell undergoing uniaxial stretching. Fluorescence imaging of

individual DNA molecules by Chu and coworkers has shown that a number of distinct conformational

trajectories are possible in an extensional flow. Some molecules do indeed resemble dumbbells undergoing

elongation, however, many other conformations such as 'half-dumbbells', 'kinked chains' and 'folded'

molecules are also observed [Perkins et al. 1997]. Macroscopic quantities such as polymeric stress and

birefringence depend on differently-weighted ensemble averages of these possible microscopic

configurations. One may expect the stress-strain characteristics of a dilute polymer solution undergoing

transient uniaxial elongation to be more complex than predicted by a simple dumbbell model which only

captures a single measure of the end-to-end chain length.

Doyle et al. have recently shown through combined birefringence, tensile stress measurements and

Brownian dynamics calculations that a dilute monodisperse PS solution undergoing uniaxial extension in a

filament stretching device exhibits a pronounced stress-conformation hysteresis [Doyle et al.]. That is, the

stress and the end-to-end conformation (as measured by phase-modulated birefringence) evolve along one

path during the transient unraveling process and a distinct second path during the relaxation back to

equilibrium. The difference in these curves represents an additional energy loss associated with a

hydrodynamic coupling between the externally imposed flow and the internal conformational chain dynamics

which appears to only be significant when the fluid is subjected to a strong flow and large Hencky strains.

Similar hysteretic effects have been observed in Brownian dynamics calculations of ensembles of bead-rod

chains [Doyle et al. 1998; Rallison 1997] and FENE dumbbells [Lielens et al. 1998] and can be captured,

at least qualitatively, in simple closed-form constitutive models such as the ones recently proposed by Hinch

[Hinch 1994] and Rallison [Rallison 1997]. The first qualitative discussion of such ideas together with

scaling estimates of the magnitudes of the resulting stress was given by Ryskin [Ryskin 1987] in his analysis

of the pressure drop measurements of King and James for sink flows of dilute polymer solutions at high

Reynolds numbers. This hysteresis gives rise to an additional contribution to the polymer stress which may

be modeled as purely viscous (i.e. it disappears instantaneously upon the cessation of stretching) [Remmelgas
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Figure 3-1 Schematic diagram of contraction geometry and definitions of important length scales.

et al. 1997] or as viscoelastic in origin with a very short characteristic relaxation time [Doyle et al. 1998].

Regardless of these distinctions we refer to this phenomenon as arising from an additional polymeric

dissipative stress which removes energy from the flow. In a complex flow containing regions of extension

and shear, the effects of this dissipative stress will be reflected in macroscopic observations of dynamic

quantities such as pressure drops or drag coefficients.

In the present work we investigate the enhancement in the pressure drop arising from the strong

converging-diverging flow of a dilute polymer solution at low Reynolds number through a 4:1:4

axisymmetric contraction-expansion. The basic orifice plate geometry for flow through an axisymmetric

contraction-expansion can be seen in Figure 3-1. A fully-developed flow through a tube of radius R, is

accelerated through an abrupt contraction of radius R2 and is then rapidly re-expanded into a second tube

of the upstream radius R,. In the process a secondary recirculating flow may develop in the corners directly

upstream and/or downstream of contraction. The elasticity of the fluid plays an important role in the flow

structure and vortex formation and growth. The relative importance of the fluid elasticity is again

characterized by the Deborah number De - / / where k is a characteristic relaxation time of the fluid and

.jis the characteristic timescale of the flow (eg. residence time in the contraction region). The flow through

a contraction is a complex flow with shearing deformation near the walls and a strong nonhomogeneous
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extensional flow present along the centerline and within close proximity of the contraction plane. For highly

viscoelastic fluids, the recirculation region in the corners upstream of the contraction can be very strong and

readily observable [Boger and Walters 1993]. For this reason and because of the geometric simplicity of the

problem, viscoelastic flow through a contraction has become a standard numerical benchmark for non-

Newtonian fluid dynamics calculations [Caswell 1996; Hassager 1988].

There is a great deal of literature, both experimental and numerical, dealing with flow through a

contraction over a wide range of Deborah numbers and contraction ratios using a large variety of fluids and

constitutive models. The experimental work has been reviewed in detail by both Boger [Boger 1987] and

White, Gotsis & Baird [White et al. 1987] and hence we will only briefly describe some of the global

characteristics observed in highly elastic polymer solutions. At low Deborah numbers, the streamlines near

the contraction plane are identical to those observed in creeping flow of a Newtonian fluid with a weak

'Moffatt eddy' present in the outer stagnant corner of the upstream and downstream tube. As the Deborah

number is increased, two distinctly different sequences of flow patterns can be observed for a particular

contraction ratio. For some elastic fluids (eg. PAA/CS Boger fluids in a 4:1 contraction [Boger 1987; Boger

and Binnington 1994]) the upstream corner vortex increases in strength and grows radially inward toward

the re-entrant corner while the reattachment point grows steadily upstream. This flow regime is steady in

time and substantial upstream vortex growth is observed as the Deborah number is further increased. In this

case, numerical computations are able to quantitatively capture the kinematic characteristics of the flow

[Coates et al. 1992; Purnode and Crochet 1996]. However, for other fluids (eg. PIP/PB Boger fluids in a 4:1

contraction) the corner vortex decreases in size as the Deborah number is increased and a separate, distinct

'lip' vortex [Boger 1987] forms near the re-entrant comer. The subsequent upstream vortex growth observed

at higher Deborah numbers originates from outward radial growth of the lip vortex. Experimental

measurements [Boger and Binnington 1990; McKinley et al. 1991] show that these flows are unsteady in

time and three dimensional in nature. Successful simulations of a time-dependent lip vortex in an

axisymmetric contraction have yet to be performed, although similar transient phenomena have been recently

computed in three dimensional planar contraction geometries [Mompean and Deville 1997].

At very high Deborah numbers, the large upstream vortex observed for either of the fluid

formulations described above becomes unstable to a global dynamical mode that is a sensitive function of

the contraction ratio [Boger and Binnington 1990; McKinley et al. 1991] and is reminiscent of the melt flow

instabilities observed in polymer melts [White et al. 1987]. These global flow instabilities have serious

repercussions for industrial applications such as extrusion and injection molding where the quality of the

extrudate and the flow rate are important design criteria. One of the goals of this research is to investigate
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which vortex evolution pathway is followed by a dilute and monodisperse polystyrene Boger fluid which has

been well characterized in both shear and extension. Polystyrene Boger fluids are purely organic in

formulation like PIB/PB fluids with none of the hydrogen-bonding and polyelectrolyte issues that affect

aqueous PAA solutions, but the local chain architecture is more rigid than P113 as a result of the styrene side

groups. This leads to longer Kuhn statistical segment lengths in dilute solution and higher values of

molecular weight between entanglements in concentrated solutions and melts of polystyrene [Ferry 1980].

It is therefore not clear a priori which vortex evolution pathway to expect for a PS/PS Boger fluid.

The difference in the sequence of flow transitions for two different fluids that are ostensibly identical

in shear must arise from differences in the extensional rheology. It is conjectured that these differences arise

from the molecular characteristics of the equilibrium conformations of the PAA and P1B chains [Boger and

Binnington 1994]. Such conformational differences will also have a large effect on the evolution of non-

equilibrium properties such as the transient extensional stress growth in the fluid as a function of both strain

and strain-rate. In particular, the interplay between (entropic) elastic energy storage and energy dissipation

during chain unraveling and the associated stress-orientation hysteresis will impact the macroscopic entrance

pressure drop and the stability of the global motion as the Deborah number is increased.

Of course, observation of the fluid kinematics through flow visualization is insufficient for deducing

the dynamical response of the polymeric stresses. In planar contraction flows, additional information can

be obtained using pointwise birefringence and Laser Doppler Velocimetry (LDV), and these measurements

can be combined to rigorously test the performance of various constitutive models [Quinzani et al. 1995].

The much lower Hencky strain attained in the planar geometry typically results in much less pronounced

viscoelastic effects than observed in axisymmetric contractions [Ryskin 1987]; however, application of line-

of-sight techniques such as birefringence in axisymmetric geometeries is not straightforward. Recently Byars

et al. [Byars et al. 1997] have combined experimental measurements of the centerline velocity gradient of

a PIB/PB fluid flowing through a axisymmetric 4:1 contraction with independent measurements of the

extensional rheology performed using a filament stretching device [Ooi and Sridhar 1994] to show that even

with a multimode nonlinear model it is not possible to fit both the shear rheology and the extensional

rheology of a fluid with a single set of constitutive parameters. One possible cause for this discrepancy is

the existence of an additional contribution to the stress in strong extensional flows which is not captured by

existing dumbbell-like constitutive models.

An alternate experimental technique which can provide some limited insight into the polymeric

stresses that develop during flow through a contraction is measurement of the additional or extra pressure

drop resulting from the converging/diverging flow. Pressure drop measurements for axisymmetric
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contraction flow of polymer solutions are not as common in the literature as visualization of flow patterns

and yet they can be an effective tool for comparison of constitutive rheological predictions and for

quantifying the accuracy of a numerical simulation. The majority of entrance pressure drop data have been

taken as a means of estimating the extensional viscosity of a fluid [Binding and Walters 1988; Boger and

Binnington 1990; Cogswell 1972; James and Chandler 1990] or to augment the information available from

streak images and reattachment length measurements [Cartalos and Piau 1992; Eisenbrand and Goddard

1982], while other measurements have been taken at Reynolds numbers well beyond the creeping flow limit

studied here [James and Saringer 1980]. A common observation amongst these studies is that there exists

an extra pressure drop associated with the flow of a viscoelastic non-Newtonian fluid across an abrupt

contraction that does not exist for a Newtonian fluid; i.e. the dimensionless pressure drop across an abrupt

contraction, defined as I(De) = APnon-Newtonian(De, Q) / APewtonian(De = 0, Q), increases monotonically with

Deborah number.

In general, the total pressure drop across the contraction arises from the fully-developed viscous flow

through the pipe plus entrance and exit effects due to the contraction. In the present experiments, an orifice

plate geometry has been chosen over other types of abrupt contractions because the extended polymer chains

are allowed to relax quite quickly after exiting the contraction. The measured pressure drop is then primarily

a function of the dissipative stresses that remove energy from the flow across the contraction and not due to

stored elastic energy in the entropic springs that gradually relaxes in the narrow downstream tube. Such a

contraction-expansion geometry may be useful in probing the dissipative contributions to the polymeric stress

in a prototypical complex flow where significant differences in the extra pressure drop may be observed at

the same Deborah number in PAA/CS, PIB/PB and PS/PS Boger fluids with identical shear rheology. We

begin with a PS/PS fluid in the present work because the existence of a stress-conformation hysteresis has

already been demonstrated experimentally and numerically [Doyle et al. 1998]. Furthermore, the fluid is

a dilute solution of a monodisperse polymer and the results of these experiments may provide a better

benchmark for theoretical comparisons than results using a similar polydisperse polymeric component.

Cartalos and Piau investigated the flow of a partially hydrolyzed polyacrylamide (HPAM) in glycerin

solution through a similar orifice plate contraction-expansion [Cartalos and Piau 1992]. In these

experiments, the authors found that the dimensionless pressure drop increased monotonically with

deformation rate and then began to plateau at large values between Y =8 and =18 depending on the

concentration of HPAM and the presence or absence of salt.

In the numerical literature, good agreement with experiment has been obtained for both the evolution

of vortex structure [Purnode and Crochet 1996] and the upstream birefringence patterns [Beraudo et al.
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1998]. For some fluids (eg. a molten polybutadiene rubber), the enhancement in the dimensionless pressure

drop Y(De) across a contraction is well described by the computations; however, for other materials (eg.

polystyrene), the measured pressure drop is severely under predicted even though the shear rheology is well

described by a multimode Leonov model [Gupta et al. 1997]. In fact, for dumbbell-like models (eg. the

FENE-P and Oldroyd-B models) which describe the flow of dilute polymer solutions, a decrease in the

dimensionless pressure drop gADe) is predicted in most cases as the Deborah number is increased [Coates

et al. 1992]. Only in the limit of high Deborah numbers and fully extended polymer molecules is a small

extra pressure drop predicted numerically [Keiller 1993; Szabo 1997]. This enhancement in the

dimensionless pressure drop when the molecules approach full extension is consistent with observation of

entrance pressure drops for rigid rod systems [Mongruel and Cloitre 1995] in which the additional non-

Newtonian contribution to the extensional viscosity is explicitly dissipative because the rods cannot elongate

and store energy entropically.

The systematic discrepancies between experimentally-observed entrance pressure drops and

numerically-computed values arising from dissipative contributions to the total stress may play a role in other

complex flows. For example, similar deviations in other integrated quantities such as the drag coefficient

on spheres [Solomon and Muller 1996] and cylinders [Khomami and Moreno 1997; Liu 1997] have been

observed for a variety of polymeric solutions. The work of Solomon & Muller showed that the enhancement

in the viscoelastic drag coefficient CD(De) for the flow of a polystyrene Boger fluid past a sphere was larger

(by up to an order of magnitude) than the results of similar experiments using different polymer solutions

such as PIB Boger fluids [Solomon and Muller 1996]. Since we use a very similar PS/PS fluid in the present

work, we may expect to observe dramatic increases in pressure drop similar to those observed in the drag

measurements past spheres and cylinders.

The experimental apparatus and techniques are described in Section 3-2. The shear rheology of the

fluid is shown to be well described by the classical bead-spring model of Rouse and Zimm. In Section 3-3,

the pressure drop measurements through a 4:1:4 orifice for a Newtonian solvent are documented followed

by the enhancement arising from the addition of the polymer. Flow visualization and DPFV are then

combined with measurements of fluctuations in the pressure drop to document the onset of an elastic

instability that leads to global oscillations in the flow as the Deborah number is increased.

3.2 Experimental

3.2.1 Flow Geometry and Experimental Setup
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Figure 3-1 shows a schematic diagram of the contraction geometry and defines several useful length

scales which we refer to extensively below. The upstream and downstream radii are denoted by the subscript

1 and 2 respectively. The length scales indicative of the vortex size and growth are described by the distance

to the separation point upstream (L,) and by the coordinates of the center of the recirculation denoted by the

distance upstream of the contraction plane (Zv) and the distance from the centerline (Rv). These distances are

nondimensionalized with the diameter of the upstream tube to determine the dimensionless reattachment

length x = Lv/2R, and the dimensionless coordinates of the vortex center Zv /2R, and R, /2R,. The

contraction ratio is defined as g E R1/R2-

The experimental setup has been designed to provide a versatile mechanism for systematically

studying steady and time-dependent flows of elastic liquids through abrupt contractions. A schematic

diagram of the apparatus is shown in Figure 3-2. A linear stepper motor (Servo Systems Co., Model IOOGS)

and microstepper controller (Intelligent Motion Systems, Inc., Model Panther LI) are utilized to drive fluid

through the system at a constant displacement rate and hence a constant volumetric flow rate Q. The fluid

flows through a plexiglass tube of radius R, = 1.4 cm, past three possible pressure transducer locations and

through an interchangeable orifice plate. After passing beyond the contraction plane, the fluid again passes

through a short section of 1.4 cm radius tubing, past the last pressure transducer location and into a collection

uid Rpservoir_ x
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Figure 3-2 Schematic diagram of the experimental apparatus.
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reservoir. When the experiment is completed the piston is retracted and the fluid is drawn in reverse back

through the contraction to its original location.

The orifice plates were designed so that they could easily be replaced with a variety of different

inserts containing sharp or smooth corners of various contraction ratios. In the following two chapters, this

functionality will be utilized and the results reported. All experiments presented in this paper are for an

orifice plate with sharp corners and a contraction ratio of p 4 because this configuration has been

established as a benchmark for numerical simulations.

During each experiment a single high-resolution pressure transducer (Endevco, Model 85 1 OB-5) was

flush mounted in one of the three upstream pressure locations and another was placed in the downstream

location to measure the total pressure drop associated with flow through the contraction. The remaining

upstream pressure transducer locations were sealed with screws. Table 3-1 shows the axial distance of each

pressure transducer from the contraction plane. For clarity, it is useful to define several differential pressures

by the location of the pressure transducers used. For instance, the pressure drop across the contraction

between pressure transducers 2 and 4 is denoted as AP 2 4 = (P2 - P4 ). Several different pressure transducers

locations were created sufficiently far upstream of contraction plane to ensure that the pressure transducers

were not affected by the presence of the elastically-driven growth of the upstream and downstream vortices.

Pressure Transducer Distance From Contraction Plane
i zi [cm]

Upstream: P, -22.86

P2 -7.62

P3  -2.54

Downstream: P4  +8.26

Table 3-1 Location of the flush mounted pressure transducers with respect to the contraction plane
located at z = 0.

As the flow rate is increased, the pressure transducers measure a combination of the pressure drop

arising from fully-developed rectilinear flow in the straight pipe and the extra pressure drop caused by the

presence of the orifice plate AP(Q) = APstraight pipe+ APext. We are only interested, however, in the extra

pressure drop which we denote as AP' 24 where the prime indicates that the contribution to the total pressure

drop resulting from the Poiseuille flow in the pipe connecting the pressure transducers has been removed in
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order to isolate the extra pressure drop across the contraction-expansion. In other words,

A I 8QL(3
AP24 = AP24 - 4 , 4(3-1)

R2

where L Z4 - (z 2 + L,) is the length of straight tubing between the pressure transducers and the contraction,

Q is the volume flow rate of the fluid and q is the fluid viscosity. Lastly, we define a dimensionless pressure

drop

AP'(Q, De)
Y (De)=- A, (3-2)

AP' (Q,De = 0)'

where AP' 2 4(Q, De = 0) is the pressure drop across the orifice of the Newtonian oligomeric polystyrene oil

at a given flow rate and AP' 24 (Q, De) is the pressure drop across the contraction-expansion of the viscoelastic

0.025wt% PS/PS polymer solution at the same flow rate. This dimensionless pressure drop differs from the

Couette correction often used to present contraction flow pressure drop data by a constant factor and is

discussed further in Section 3.3.1.

3.2.2 Digital Particle Image Velocimetry (DPV)

Digital particle image velocimetry (DPIV) is a non-invasive technique for acquiring measurements

of velocity vector fields over an entire flow domain. DPIV measures local velocities by determining the

average displacements of particles Ax, Ay in a small correlation region over a known time At. Two

images of laser illuminated particles in a flow field are taken and broken down into correlation windows.

Within each correlation window the two frames are compared and an average displacement is calculated.

This displacement is then converted into a velocity through the known time difference between images.

In these experiments a DPIV algorithm is used to measure the axial and radial velocity components

of the flow upstream of the axisymmetric contraction-expansion. A single beam from a 300mW Ar-ion laser

(Ion Laser Technologies, Model 5500A-00) is passed through a non-Gausian optical element to obtain a 1mm

thick laser light sheet of uniform intensity. The use of a single-mode optical fiber (Oz Optics Inc.) allows

the light sheet to be easily directed normal to the surface of the tube to illuminate the fluid which is seeded

with 50 pm diameter silvered hollow glass spheres (Potters Industries Inc) at a volume fraction of 2.1 x 10'.

This concentration of particles corresponds to the number of particles required to achieve a minimum of 20-

25 particles per 16x 16 pixel correlation window [Pakdel and McKinley 1997]. Using Einstein's correction
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to the viscosity of a suspension [Batchelor 1985] we may estimate the increase in the zero-shear-rate

viscosity of the fluid as

1suspension /qsolvent = 1 + 2.5 p (3-3)

where / is the shear viscosity and p is the volume fraction of particles. From Equation 3-1 we can estimate

that the shear viscosity of the suspension will be approximately 0.53% greater than the shear viscosity of the

solvent. Subsequent measurements of the viscometric properties of the suspension showed no discernable

effect of the particle addition within the accuracy of the rheological measurements.

The illuminated fluid motion is videotaped using a digital video camera (Sony DCR-VX1000)

aligned orthogonal to the laser light sheet. The video recorder contains 3 CCD chips and digitally records

480x720 pixel images to tape every 30th of a second using a lossless compression algorithm. Images are then

captured digitally onto the hard drive of a PC where the DPIV analysis is performed. A more detailed

discussion of the utility of the DPIV technique for velocity and other kinematic measurements in non-

Newtonian fluids is given by Pakdel and McKinley [Pakdel and McKinley 1997].

3.2.3 Laser Doppler Velocimetry (LDV)

Laser Doppler velocimetry (LDV) measurements are used to supplement the global velocity vector

field measurements obtained with DPIV. Primarily, we utilize LDV to take pointwise measurements of

velocities near and within the throat of the contraction-expansion where DPIV measurements are not possible

due to the loss of cross-correlation between sequential images in subregions where the velocity or velocity

gradient of the particles become too large. To facilitate these measurements, an acrylic 4:1:4 orifice plate

was created to form the contraction-expansion. LDV can generate time-resolved point velocity

measurements which can be used to search for the onset of elastic flow instabilities near the contraction plane

[Lawler 1986]. The test fluid is seeded with the same 50prm diameter silvered hollow glass spheres (Potters

Industry) used for DPIV and flow visualization purposes. Utilizing a fast Fourier transform technique, a

spectrum analyzer (Dantec Burst Spectrum Analyzer) is used to compute the velocity from the Doppler

shifted frequency signal collected from a single-colored, fiber optic LDV system (Dantec Electronics Inc.)

coupled with a 300mW argon-ion laser (Ion Laser Technologies). A detailed description of the LDV system

used in this research is presented by Arigo et al. [Arigo et al. 1995]. The spectrum analyzer is an excellent

tool for extracting average velocities from ensembles of Doppler bursts for slow flows, even in the presence
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of noise, but because of the discrete nature and random arrival times of the Doppler bursts, spectral analysis

cannot always be used to effectively resolve slow time-varying velocity profiles such as those that develop

beyond the onset of flow instabilities. A Doppler frequency tracker (DISA, Model 55 N 21) is therefore used

to lock into and measure the frequency and amplitude of velocity fluctuations resulting from elastic flow

instabilities. These local velocity measurements are a very sensitive indicator of the critical conditions for

the onset of the elastic flow instability.

3.2.4 Flow Visualization

The same optical configuration used for the DPIV analysis was also utilized for direct flow

visualization. Digital video of the laser illuminated flow field was recorded and used to artificially generate

long time exposures or 'streak' images from multiple single frames. These 'streak' images were used to

record the streamlines in the flow field and were created by first thresholding many frames to remove all

background light and then averaging all the images together. The resulting image is similar to the classic

streak images created by exposing photographic film over a long period of time. This flow visualization

technique has been used extensively for contraction flows and other complex flows throughout the field of

non-Newtonian fluid dynamics [Boger and Walters 1993].

3.2.5 Fluid Shear Rheology

The viscoelastic fluid consists of an 0.025 wt% solution ofmonodisperse polystyrene (PS) (Scientific

Polymer Products, Inc.) with a molecular weight of2.25 x 106 g/mol and polydispersity ofM,/M= 1.03. The

polystyrene is dissolved in oligomeric styrene (Hercules) to yield a dilute solution with c/c* = 0.24. The

resulting solution falls into a class of fluids first described in detail by Boger [Boger 1977/78] which are

highly elastic with an almost constant viscosity. The absence of shear thinning in the viscosity allows one

to investigate elastic effects of the fluid alone, while the large viscosities and long relaxation times eliminate

inertial effects while permitting flows to be studied at high Deborah numbers. The use of a monodisperse

polymeric constituent in the PS/PS fluid permits the rheology to be more easily compared with molecular

theories for dilute solutions.

Figure 3-3 shows a master curve of the rheological properties for the 0.025wt% PS/PS solution at

To= 25'C, measured with a controlled stress device (TA Instruments, Model AROOON). The viscoelastic

properties of the fluid are characterized in small amplitude oscillatory shear flow by the dynamic viscosity
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Figure 3-3 Rheological material functions of the 0.025wt% monodisperse polystyrene in oligomeric
polystyrene solution. The data include: m, steady shear viscosity, r/() [Pa-s]; w, dynamic
viscosity, q'(w) [Pa-s]; 0, dynamic rigidity, 2r"(w)/co [Pa-s2 ]; 0, first normal stress
coefficient, -, (f) [Pa-s2]; and the corresponding fits of the FENE-P, - -, Bird-DeAguiar,
-, and Zimm model, - -, respectively.

r/'(co) and the dynamic rigidity 2q"(co)/o which are both functions of the frequency of oscillation. In steady

shear flow the fluid is characterized by the first normal stress coefficient [,() = ( - T22 ()) /2 and

viscosity rj( ), each of which are functions of the shear rate. Figure 3-3 shows that the viscosity of the

solution is approximately constant over several decades of shear rate. The fluid is strongly elastic and its

first normal stress coefficient shear thins monotonically throughout the entire range over which data can be

obtained.

The linear viscoelastic properties are well described by the Rouse-Zimm bead-spring model [Zirnm

1956] with a longest relaxation time of AZ = 3.24 s. The Rouse-Zimm model also predicts a zero-shear-rate

viscosity of /O = 22.8 Pa-s, nearly all of which is contributed by the oligomeric PS solvent (q, = 21.0 Pa-s),

and a first normal stress coefficient of VIO = 6.66 Pa-s2 in the limit of zero shear rate. Table 3-2 lists the

parameters used to compute the material properties.

The Rouse-Zimm model accurately predicts the frequency response of the measured dynamic rigidity
2 q"(co)/co. At medium frequencies, 1/2, << co <«< / 1 , the slope of this data allows an approximate

70



determination of the hydrodynamic interaction parameter h* [Larson 1988]. In the limit h* 0, the free-

draining Rouse model incorporates no hydrodynamic interaction and 2q" / w w-, whereas in the Zimm

(non-free-draining) limit h* ~ 0.25 and 21" / o - w '3 . For the present data 2t" / o ~ -'4 suggesting from

the approximate solution of Thurston that h* ~ 0.1 [Bird et al. 1987]. At low frequencies (co < 0.01 rad/s)

the fluid is essentially Newtonian and the phase angle 3 - 900 so that significant experimental error is

expected in the measurements. However, at high frequencies (co 1000 rad/s) the Zimm model predictions

deviate from the experimental measurements due to the small but finite elasticity of the oligomeric solvent.

This additional elasticity can be modeled by an extra Maxwell element for the solvent with a relaxation time

A, ~ 2.5 x 10'4 s which is in good agreement with the range of values reported by Mackay and Boger

[Mackay and Boger 1987] and Quinzani et al. [Quinzani et al. 1995].

Notation Description Parameter

Known: c Concentration of High Molecular Weight Polystyrene 0.025%

M,/M Polydispersity _1.03

M. Molecular Weight [g/mol] 2.Ox 106

b = L2 Extensibility Parameter 7744

TO Reference Temperature [K] 298

Fitted: 1/0 Zero Shear Rate Viscosity [Pa-s] 22.75

sII Solvent Viscosity [Pa-s] 21

s Solvent Relaxation Time [s] 2.5x 10-4

h* Hydrodynamic Interaction Parameter 0.1

- Extent of Anisotropy in Stokes' Law 0.63

I Extent of Anisotropy in Brownian Motion Forces 1

Calculated: Al Zimm (Longest) Relaxation Time [s] 3.24

Oldroyd Relaxation Time [s] 0.146

T, First Normal Stress Coefficient [Pa-s2] 6.66

Parameters characterizing the viscometric properties of the 0.025wt% PS/PS solution.

The solid line in Figure 3-3 represents the predictions of a single FENE-P model for the steady shear

data. If the finite extensibility is computed from the molecular weight and radius of gyration of the chain

we obtain L = 93. The FENE-P model contains no adjustable parameters, however, it is clear that a simple

dumbbell model does not capture all of the physics observed at high deformation rates. The asymptotic slope
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of the expression for J,(y) at high shear rates cannot be changed; however, a better fit, meaning that the

model crosses through the experimental data and not above it, can be obtained if the extensibility parameter

L is reduced to a value of L = 15. The much earlier onset of shear-thinning in q'(y) observed experimentally

is most likely due to hydrodynamic interactions between the beads of the deformed chain which is not

captured in the Zimm (pre-averaged) model [Magda et al. 1988]. An improved description requires a more

detailed treatment of hydrodynamic interactions between segments of a polymer chain undergoing a steady

shearing deformation. One such model that accounts for the anisotropy in the hydrodynamic drag forces in

approximate form is the encapsulated dumbbell model of Bird and DeAguiar [Bird and DeAguiar 1983]. The

evolution equations of the Bird-DeAguiar model can be re-written as

AA() =[f (trA) A - 1] + 3 (1- tr)A ( 8-o)I, (3-4)
rrA

= -nkBT[f(trA)A -I1 + 2nkT(1-P) [ 3A - (3-5)
_ trA

I
where f(trA)= 

(trA '(3-6)

where kB is the Boltzman constant, n is the number of springs, A is the relaxation time of the fluid, L is the

finite extensibility of the polymer chain and the polymer conformation is given by the dimensionless second

moment tensor A =<RR>, where R is the end-to-end vector of the polymer chain scaled with the root mean

square end-to-end length of the chain. The extent of anisotropy in the viscous drag on the beads is given by

a and the anisotropy in the velocity distribution of the beads arising from Brownian motion is given by #.
When a =,8= 1, the FENE-P model is recovered. Our exploratory calculations suggest that to quantitatively

describe the viscometric properties of dilute polymer solutions in viscous solvents, the anisotropy in the

viscous drag the primary effect of importance. The Brownian motion of the beads can thus be assumed to

be isotropic with / = 1. In this limit, Equation 3-4 reduces to the familiar expression for the stress in an

ensemble of FENE-P dumbells while the evolution equation reduces to

2A() =-{f (trA) - 3( }A - ol, (3-7)
trA

The solid lines in Figure 4-3 represent the predictions of the Bird-DeAguiar model fit and are in good

agreement with both the viscosity and first normal stress difference measurements.
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Variations in the viscoelastic properties of the test fluid can occur due to thermal fluctuations in the

laboratory test environment. To correct for these effects we employ time-temperature superposition with a

shift factor

"( ) To p0aT = T P (3-8)
qo(T,,) T p

to adjust the strain rate, normal stress difference and viscosity to a reference temperature of To = 25 'C [Bird

et al. 1987]. For the temperature ranges experienced in the laboratory, we use the WLF equation to

determine a which has been found to be valid for a wide variety of polymer solutions and melts and has the

form

-a(T - TO)

b + (T - T0)

where a and b are constants to be determined [Bird et al. 1987]. Table 3-3 shows the values of the constants

used to fit the temperature dependence of the 0.025wt% PS/PS solution to the WLF equation.

Notation Parameter Value

TO 298 K

a 16.4

b 80.5 K
Table 3-3 WLF equation parameters used to fit the temperature dependence of the 0.025wt% PS/PS

solution

3.2.6 Fluid Extensional Rheology

To understand the kinematics of the complex flow through axisymmetric contraction-expansions,

it is important to characterize the behavior of the test fluid in both shear and extension. The filament

stretching rheometer and techniques developed by Anna et al. [Anna et al. 1999] were used to measure the

transient extensional viscosity of the PS/PS solution. The theory and experimental technique of extensional

rheology will be discussed in detail in Chapter 7. In Figure 3-4, the Trouton ratio, Tr = -' / 770, where -' is
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Figure 3-4 Measurements of the dimensionless transient uniaxial extension, 77 /, as a function of

Hencky strain, c = t. The data include: 0, experimental measurements of the 0.025wt%

PS/PS solution taken at a strain rate of C = 9. Is'; and - -, FENE-P model fit. The

maximum strain achieved along the centerline of the three contraction ratios tested is also
shown.

the transient extensional viscosity is plotted against the Hencky strain, E = 't, for a strain rate of C = 9. 1s-'.

One important point to note is that at high Deborah numbers, De = A, = 29.5, the Trouton ratio is

relatively insensitive to changes in extension rate. At low Hencky strains, the extensional viscosity behaves

in a Newtonian-like manner and the Trouton ratio is approximately equal to Tr ~ 3/,/r/o. As the Hencky strain

increases, the PS/PS solution strain-hardens, reaching an equilibrium at a Trouton ratio of Tr ~1000. The

FENE-P and Bird-DeAguiar model fits are plotted with the experimental data. Neither of these models fit

the experimental data well, overpredicting the critical Hencky strain for the onset of strain-hardening and

overpredicting the equilibrium value of the extensional viscosity. It is interesting to note that the anisotropy

introduced by the Bird-DeAguiar model has very limited effect in uniaxial extension even though it has a

profound effect on the prediction of the first normal stress differences in shear.
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3.2.7 Dimensionless Parameters

The relative importance of inertial to viscous effects in the flow is characterized by the Reynolds

number. In the present work we define the characteristic Reynolds number based on the flow conditions at

the contraction plane as

Re=PKZ)22 2pQ (3-10)

where (v,) 2 Q / 7tR' is the average axial velocity through the contraction, Q is the volume flow rate and p

1.026 g/cm 3 is the density of the fluid. For all experiments performed the Reynolds number Re < l x 10-2,

making it possible to neglect inertial effects and placing these experiments well within the creeping flow

regime.

The Deborah number characterizes the relative importance of elastic effects to viscous effects in the

flow. To determine the Deborah number we need to select both a characteristic timescale for the flow and

a representative measure of the spectrum of relaxation times of the fluid. A characteristic strain rate based

on the local flow conditions near the plane of the contraction is defined by (Vy2)2 / R2 . A characteristic

convective time of the flow can then be taken to be 9 = R 2 / KVy) 2 = f. The simplest choice for the fluid time

scale is of course the longest or Zimm relaxation time 2 determined from the linear viscoelastic

measurements. Even though the viscosity does not have a strong rate dependence, the first normal stress

coefficient does. It is therefore important to note that the relaxation time, which can be calculated from the

viscometric properties of the fluid previously determined, is a function of shear rate [Bird et al. 1987]. In

polymer melts it is customary to use a shear-rate-dependent relaxation time of the form

)(U) (3-11)

The dimensionless product A(f) is thus equivalent to half the stress ratio [Petrie and Denn 1976].

Discrepancies between different estimates of the relaxation time have been discussed at length by

Keiller et al. [Keiller et al. 1992]. For scaling purposes, in the present work the characteristic relaxation time

of the 0.025wt% PS/PS solution will be given by the relaxation time evaluated in the limit of zero shear rate.

After substituting for the asymptotic value of T,, obtained from the Rouse-Zimm model the characteristic

relaxation time becomes
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AO -- O = 0.29 Az P-= 0.146 s (3-12)

The zero-shear-rate Deborah number expressed with this choice of constant characteristic relaxation

time becomes De = AO j. For convenience, we will report the Deborah number in the latter representation for

all experiments in this paper. The shear-rate-dependent Deborah number of flow through a 4:1:4

axisymmetric contraction is expressed as

De(y) =A2(y) y = ) (3-13)
2rq(y) R 2

100 .

Experimental Ran#e-l

10 iS
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0.1
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Figure 3-5 Various estimates of the stress ratio SR = r./ r,, of the 0.025wt% PS/PS solution in steady
shear. The data includes: 'e', the experimental stress ratio from steady shear data
SR, = N, / r, = ,J /r/; 'I', experimental stress ratio from dynamic data SRd = G' / G"

/" / q'; '- -', the stress ratio predicted using the longest relaxation time of the Zimm model
SR- = 22zJ; '- -', the stress ratio predicted using the zero-shear-rate relaxation time

SRO = 2AOf; '-', the stress ratio SRF predicted by the FENE-P model
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and may also be thought of as a Weissenberg number [Gupta et al. 1997] or recoverable shear because it is

a direct estimate of the ratio of the normal stress difference to the total shear stress in the fluid at a given

deformation rate y. We refer to this generically as a stress ratio SR which was used in early publications to

report the magnitude of viscoelastic effects in flow through a contraction [Petrie and Denn 1976]. Figure

3-5 shows a plot of the stress ratio, SR = Nl(y) / r(2), as a function of strain rate to demonstrate the rate

dependence of the elastic stress difference in the fluid. The filled circles represent the steady shear

viscometric data and the short dashed line represents the linear approximation to the stress ratio if the

constant relaxation time is used; SRO = 2 XO 2. The non-monotonicity in the dynamic data is a consequence

of the additional elasticity contributed from the polymeric solvent at high deformation rates. The long

dashed line represents the same approximation if the longest "Zimm" relaxation time were used SRz = 2 Az 2

and it clearly over predicts the magnitude of elastic effects in the actual test fluid. The solid line represents

the stress ratio, SRF, predicted by the shear thinning FENE-P model. As expected, the experimental values

of SR increase with strain rate and begin to approach a maximum around one. At low shear rates, the

experimental values of SR approach the linear function SR., but throughout the range of deformation rates

attained in the experiments, they remain up to an order of magnitude smaller. Even though SRO is clearly a

better approximation than SR, it is by no means an ideal description of the actual magnitude of the elasticity

in the flow of the 0.025wt% PS/PS solution and shear-thinning effects must be incorporated to achieve a

quantitative description of the data. However, even with a shear-thinning first normal stress coefficient, the

FENE-P model does not accurately predict the magnitude of the stress ratio.

3.3 Results

3.3.1 Evolution of Newtonian Pressure Drop with Flow Rate

The pressure drop of the Newtonian oligomeric polystyrene oil through the 4:1:4 axisymmetric

contraction was measured to serve as a baseline for comparison of the non-Newtonian results and to evaluate

the performance of the experimental system. Figure 3-6 shows the experimentally measured transient

evolution in the pressure drop (AP 24 ) across the 4:1:4 orifice plate for the Newtonian polystyrene oil as the

characteristic strain rate 2 is stepped from 1.7 s' to 3.2 s' in 3 equal increments of 0.5 s' and is then reduced

to 0 s-. All values of pressure have been shifted to the value corresponding to a fluid with viscosity rO at the

reference temperature of TO = 25'C using the shift factor a discussed in section 2.4. At a specified flow

rate, the pressure drop of a Newtonian fluid in creeping flow is proportional to its viscosity, so the pressure

drop should scale with ambient temperature just as its viscosity does. For a non-Newtonian fluid, it would
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Figure 3-6 Pressure drop across the contraction APl2  for the Newtonian oligomeric PS oil
demonstrating the transient response of the system as the characteristic strain rate is stepped
from 1.7 s' to 3.2 s' in 3 equal increments of 0.5 s' and is then dropped to 0 s'.

be important to also shift the time axis according to the technique of time-temperature superposition.

Figure 3-6 demonstrates that the pressure differences over increments of Ay = 0.5 s' or smaller are

easily discernible from the noise of the system which for the chosen pressure transducers was consistently

around ±0.1kPa (±0.OI5psi). For each strain rate shown, the fluid motion approached a steady state flow

after a short system lag of about 10 seconds. Similar results were observed for the Newtonian PS oil at all

strain rates tested (0.5 s' _ < 10 s') and no flow instabilities were observed under any condition.

in 1891, R. A. Sampson first solved the pressure-driven flow of a Newtonian fluid at low Reynolds

number through an infinitesimally thin circular hole in an infinite rigid wall using oblate spheroidal

coordinates [Sampson 1891]. Of particular interest are Sampson's results for the centerline velocity profile

v,(z) and the pressure drop across the orifice which may be simply expressed in cylindrical coordinates as
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V Zs 2 + (/R)2 (3-14)

APs = 7 (3-15)
R2

where Q is the volume flow rate of the fluid and z is the axial distance from the orifice plane. For large

contraction ratios , = R, / R2 >> 1, Sampson's solution should approximate the flow near the plane of the

contraction reasonably well. However, because our orifice plate is not infinitely thin, and has finite aspect

ratio (L, / R2 t 0) there is an additional contribution to the pressure drop. This has been considered

analytically by Dagan et. al [Dagan et al. 1982]. Their numerical calculations can be accurately

approximated by linearly combining the pressure drop associated with Sampson flow and the pressure drop

of the assumed Poiseuille flow through the orifice itself to give:

APD -Q + 8L (3-16)
R2 tR2)

where LC = 0.635 cm is the thickness of the orifice plate.

In the present experiments, Lc / R2 = 2 and the additional pressure drop arising from the latter term

in Equation 3-16 is not negligible. To eliminate any possible relaxation of the polymer chains in the orifice

section, one ideally requires L, / R2 - 0; however such a geometry is difficult to experimentally realize and

furthermore, from a numerical perspective, the resulting corner singularities would severely compromise

viscoelastic flow calculations at high Deborah number. Conversely, in the conventional benchmark of entry

flow into a simple contraction (Lc/ R2 - oo ) all of the stored elastic energy is slowly returned to the flow as

the stretched molecules advect and relax in the downstream pipe flow and resolution of this slow downstream

stress relaxation appreciably increases the domain size and computational expense of simulations.

By selecting a contraction-expansion with a finite value of Lc / R2 the physical domain of interest is

limited to a few radii upstream and downstream of the orifice and it also becomes possible to investigate the

effects of varying the local radius of curvature of the re-entrant corner. We shall report on this in later

publications. The value L,/ R2 = 2 is in the same range as previous experimental [Cartalos and Piau 1992]
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Figure 3-7 Extra pressure drop AP'21 for the Newtonian oligomeric polystyrene oil through a 4:1:4
axisym-metric contraction/expansion. The data includes: '0', experimental points taken

during forward displacement through the contraction; '1', experimental points taken during
backward displacement through the contraction; '--', an approximation to the numerical
results of Dagan et. al [48]; '-- -', the analytical result of Sampson [47].

and numerical [Szabo 19971 studies of viscoelastic flows through contraction-expansions.

Figure 3-7 is a comparison of the experimentally measured pressure drop AP'21(Q) of the Newtonian

PS oil through the 4:1:4 contraction with the predictions of Sampson and Dagan. Once again the pressure

data has been shifted to the reference temperature of To = 25'C. For creeping flows of a Newtonian fluid,

the velocity field is symmetric in the converging and diverging flows near the contraction plane. Pressure

measurements were performed for both forward and backward flows through the contraction to rule out any

hysteresis effects. As expected, the pressure drop is linearly proportional to the volumetric flow rate. The

Sampson flow prediction is systematically low, but the prediction of Dagan et. al is remarkably good and

provides almost an exact fit to the data. Even though the experimentally manufactured orifice plate is only

0.635 cm thick, the additional viscous pressure drop, 8 Q L, rq /7r R' , is as large as the contribution from the

Sampson converging flow.

An alternative approach commonly used in presenting contraction flow results is to report a Couette
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correction [Boger et al. 1978] in which the extra pressure drop arising from the orifice is scaled with the wall

shear stress in the downstream tube

AP' AP'nR'
C =- = 2A , (3-17)

2r 9  8qQ

where r = 4is(v2)/R 2 = 4q,Q/lR 2. Forfi - co, the Couette correction for a Newtonian fluid entering an abrupt

contraction the Sampson solution thus predicts

C= - Sampson - = 0.589, (3-18)
2 2r 16

which is in good agreement with simulations and measurements [Mackay et al. 1988].

3.3.2 Evolution of the Non-Newtonian Pressure Drop with Flow Rate

The pressure drop of the non-Newtonian 0.025wt% PS/PS solution through the 4:1:4 axisymmetric

contraction (AP'24) was measured for Deborah numbers in the range 0.06 De 7.5. Figure 3-8 shows the

results of these experiments. The evolution in the Couette correction with increasing Deborah number is

commonly reported in numerical calculations [Bernstein et al. 1994; Coates et al. 1992]. However, in the

present work we chose to report values in terms of the dimensionless pressure drop .J(De)= AP'24 (Q, De)/

AP'24 (Q, De=O), where AP'24 (Q, De=O) is the best fit to the Newtonian pressure drop data described in

§3.1.1. In the limit De - 0 we therefore expect Y - 1.0. The scatter in the data is due for the most part to a

±0.1 C uncertainty in the temperature measurements which leads, through a propagation of error analysis,

to a 2% uncertainty in both the dimensionless pressure drop and the Deborah number at each point. At low

Deborah numbers, when the elasticity of the fluid is negligible, one would expect the fluid to be Newtonian

with a dimensionless pressure drop close to one, as confirmed in Figure 3-8. As the Deborah number is

increased, the experiments show a marked increase in the dimensionless pressure drop beginning at a critical

Deborah number of Deal = 0.4. This value is quite close to a Deborah number of De = 0.5, at which coil-

stretch transition occurs in a homogeneous extensional flow. Beyond this critical point the dimensionless

pressure drop becomes a monotonically increasing function of the Deborah number of the form Y= 1 + 0.2

( De - Decri) for De 5.0. As the Deborah number is increased still further, the dimensionless pressure drop

appears to saturate, plateauing at a value of Y z 2.1.

The increase in the pressure drop above the Newtonian result for flows above the critical Deborah
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Figure 3-8 Dimensionless pressure drop (De) = AP',,(De, Q) / AP'24 (De = 0, Q) of the 0.025wt%
PS/PS solution across the 4:1:4 axisymmetric contraction as a function of Deborah number
De = AoL. The figure includes: '*', experimental data; '-', linear regression of the form

Y = 1 + 0.2 ( De - Dea)

number Dea is consistent with previous experimental studies for flow of polyacrylamide-based flows across

a 4:1:4 orifice [Cartalos and Piau 1992] which also showed a large increase and ultimate saturation in the

dimensionless pressure drop 9(De). Large additional pressure drops have also been observed in entry flows

ofpolymer solutions in 4:1 contractions [Binding and Walters 1988; Boger and Binnington 1990; Eisenbrand

and Goddard 1982; James and Saringer 1980]. By contrast, numerical studies for both the 4:1 contraction

[Coates et al. 1992; Keiller 1993] and the 4:1:4 orifice [Szabo 1997] show that for creeping flows of simple

viscoelastic models such as the FENE-P and Oldroyd-B equations the dimensionless pressure decreases at

moderate De ~0(1). In the case of FENE-P dumbbell calculations, small increases in the dimensionless

pressure drop are observed as the molecules approach maximum elongation, but Szabo et al. report a

maximum increase of approximately 10% at a Deborah number of De = 9.5 for a finite extensibility of L

5. Simulations of viscoelastic flows into 4:1 contractions with multimode nonlinear models do show

increases in the Couette correction with Deborah number [Bernstein et al. 1994; Gupta et al. 1997], however,
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Figure 3-9 Pressure drop (AP24) across the contraction plane as a function of time for the 0.025wt%
PS/PS solution at various Deborah numbers. The oscillations in the pressure show the onset
of a flow instability at a critical Deborah number of De,= 2.6 ± 0.1.

this is associated primarily with shear-thinning effects in the viscosity arising from the decrease in the scaled

wall shear stress in the downstream tube at high shear rates. Such effects are not possible in the present work

due to the replacement of the capillary tube downstream of the contraction plane with a diverging flow and
the constant viscosity of the PS solvent. The experimentally observed increase in the pressure drop must thus

arise from viscoelastic effects associated with the rapid converging and diverging flow.

While visualizing the flow of the 0.025wt% PS/PS solution, a slow non-symmetric pulsating of the

enlarged comer vortices was observed at large Deborah numbers. This periodic growth and decay of the

comer vortex is associated with the onset of a supercritical Hopf bifurcation. Figure 3-9 shows the temporal

variation in pressure drop AP 2,(t) as the flow rate and the Deborah number are increased from De = 0.6 to

De = 4.5. Oscillations in the pressure drop data become visually apparent for Deborah numbers larger than

De > 2.8 and the magnitude of these fluctuations increase dramatically with increased Deborah number.

Similar pressure drop fluctuations arising from elastic instabilities in strong converging/diverging flows such

as flow through banks of cylinders have been previously observed [Khomami and Moreno 1997].
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Figure 3-10 Power spectral density plots of pressure drop APR2 for 0.025wt% PS/PS
solution at three different Deborah numbers a) De = 0.6, b) De = 2.6 and c)
De = 4.5 showing the onset of a supercritical elastic flow instability.
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A fast Fourier transform (FFT) was performed on the pressure drop data to determine the frequency

of the vortex oscillations and to determine the critical Deborah number for the onset of this elastic flow

instability. Figure 3-10 shows the power spectral density of the signal as the Deborah number is increased.

Figure 3-1Oa shows the Fourier spectrum for De = 0.6; the pressure drop data is clearly stable in time, with

no peaks discernable above the background noise. Figure 3-10b indicates the first signs of the onset of a

local flow instability at a critical Deborah number for vortex oscillation of Decrt= 2.6 ± 0.1. A single small

peak at a the fundamental oscillation frequencyf = 0.20Hz can be discerned above the noise floor. At this

critical Deborah number the oscillations observed in the pressure drop are not observable in the global flow

patterns or in the vortex structure. However, at a second critical Deborah number De,,= 2.8 ± 0.1, onset of

a global elastic instability is characterized by unsteady flow patterns and an asymmetric precessing of the

corner vortices. As the Deborah number is further increased, the intensity of the pressure drop fluctuations

grows in amplitude, the frequency of oscillations slowly increases and higher harmonics of the fundamental

frequency begin to appear. At a Deborah number ofDe = 4.5, the FFT in Figure 3-10c contains two strong

harmonics of the fundamental frequency (f,= 0.23Hz) atf2= 2f, = 0.45Hz andf 3 = 3f, = 0.68Hz.

Similar supercritical Hopf bifurcation were first observed by Muller while studying the flow a

PIB/PB/K Boger fluid through a 4:1 contraction [Lawler 1986]. However, in contrast to our present

observations and the detailed studies of McKinley et al. using a PIB/PB/C14 Boger fluid [McKinley et al.

1991], Lawler et al. found the flow returned to a steady two-dimensional motion as the Deborah number was

increased further. The flow of the 0.025wt% PS/PS solution used in the present study remains time-

dependent for all Deborah numbers tested above Decr. The nature of this flow instability will be discussed

in more detail in conjunction with the LDV measurements in Section 4.3.3.

3.3.3 Flow Visualization

Flow visualization was used to observe vortex growth and development in the upstream tube with

increasing Deborah number. Figure 3-11 shows streak images created using the technique discussed in §2.2.

The first image shows the particle streamlines for a low Deborah number, De = 0.05. At such low flow rates,

the 0.025wt% PS/PS solution is essentially Newtonian and small weak recirculation zones or 'Moffatt

vortices' (with characteristic concave dividing streamlines) can be seen in the stagnant corners just upstream

of the contraction plane. As the Deborah number is increased, the corner vortices increase in size and

strength. The presence or the absence of a lip vortex has been noted in many different studies and depends

on the both the fluid used and the contraction ratio through which it is forced [Boger 1987]. In contrast to
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Figure 3-11 Streak images of flow upstream of the contraction for Deborah numbers of a) De = 0.05, b)
De = 2.6 and c) De = 5.5 showing streamline patterns and upstream vortex growth.

the results of other contraction flow experiments with PEI/PB fluids [Boger 1987; McKinley et al. 1991],

for the PS/PS fluid in the 4:1:4 contraction-expansion we do not observe the formation of a separate and

distinct time-dependent lip vortex. Instead the corner vortex 'fingers' out towards the contraction entrance,

the dividing streamline becomes convex and then proceeds to grow upstream. Figure 3-1 lb shows the streak

lines for a Deborah number of De = 2.6. This flow demonstrates the large, convex vortices indicative of

highly elastic converging flow and it also corresponds to the critical value of Deborah number for the onset

of the local instability. Even though the instability is present in the pressure measurements by this point,

there is no noticeable effect on the streak line images, at least for this time exposure of At = 1.3 seconds

which is somewhat smaller than the characteristic period of the pressure oscillations. This is not the case

for the streak lines in Figure 3-11 c which indicate the presence of a global instability in the flow at a Deborah

number of De = 5.5 and clearly show the non-symmetric corner vortex. Visual observations of this vortex

show that the vortex boundary precesses in the azimuthal direction so that fluid elements follow a helical

path into the orifice.

The precessing of the upstream vortex is demonstrated more clearly in Figure 3-12 which shows

three streak images taken at a Deborah number of De = 4.7 at various times throughout one period of the

vortex oscillation cycle. Figure 3-12a shows a symmetric flow field at time t = to. As seen in Figure 3-12b,

after an additional one quarter of the fundamental period of vortex oscillation, t = to + 1 /(4 f ),the

symmetry is broken by a marked increase in the size of the right hand vortex and a substantial decrease in

the size of the left hand vortex. If the time is increased by an additional half period to t = to + 3 / (4f, ), the

anti-symmetric vortex structure mirrors itself about the centerline of the upstream tube. The precession of

the large vortex to the left of the upstream tube and the corresponding shift of the small vortex to the right
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Figure 3-12 Streak images of the flow upstream of the contraction plane demonstrating the precession
of the upstream corner vortex for a Deborah number of De = 4.7 at times corresponding to
fractions of the fundamental period of oscillation, 1 If, = 5.1s, a) t = to, b) t = to + 1 / (4f,)
and c) t = to + 3 /(4fj).

hand side can be readily distinguished in Figure 3-12c.

Quantitative measurements of the vortex size were extracted digitally from the streak images of each

experiment. Figure 3-13 shows the evolution in the dimensionless reattachment lengthX Lv/2R, and the

dimensionless coordinates of the vortex center ( Z, /2R, and R, /2R, as a function of Deborah number.

Unfortunately, due to the weakness of the corner vortex, it is not possible to accurately locate the exact

center of the corner vortex for flows at De < 1.2. At low Deborah numbers the dimensionless reattachment

length is constant with the expected value for creeping Newtonian flow, XMoffat ~ 0.17. As the flow rate is

increased the reattachment length and the axial location of the vortex center begin to increase monotonically

with Deborah number. The radial location of the vortex center moves outward from the center of the tube

to a radial position R, = 0.56R, where it saturates and remains constant as the vortex grows upstream with

increasing Deborah number. Once the critical Deborah number for the onset of the global elastic instability

is reached, the reattachment length decreases slightly and begins to oscillate in size. At this point it becomes

very difficult to determine the location of the vortex center using the streak images as a result of the global

unsteadiness of the vortex structure. Consequently no values above a Deborah number of De = 2.8 are

reported for the coordinates of the vortex center.

The trends of this data match quite well previous experimental results for contraction flows of other

polymer solutions that do not lead to formation of lip vortices [Boger 1987; Boger and Binnington 1990;

Byars et al. 1997; McKinley et al. 1991]. Although, to our knowledge, this is the first time that the location
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Figure 3-13 Characteristics of the upstream vortex enhancement as a function of Deborah number: 'e'
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'El', the upstream location of the vortex center, (= Zv / 2RI.

of the corner vortex center has been reported experimentally, it has been reported for numerical work in the

past [Szabo 1997]. In the work of Szabo et al. the upstream vortex started as a small Newtonian vortex,

began to grow outwards toward the re-entrant corner and then proceeded to grow upstream as the Deborah

number is increased. Except for the 'fingering' of the corner vortex towards the re-entrant cormer at the onset

of vortex enhancement, the vortex behavior reported by Szabo et al. is qualitatively similar to the vortex

growth behavior observed in the present experiments.

Figure 3-14a shows the transient dimensionless extra pressure drop A(t) following a step increase in

the driving piston velocity from initial start-up until the onset of the elastic flow instability for a flow at a

Deborah number of De = 4.7. Seven points have been labeled on the dimensionless pressure drop curve and

the corresponding vortex center and reattachment points have been plotted in Figure 3-14b. Mirrored by

the development of the corner vortex, the dimensionless pressure drop evolves in four distinct regions: a

sharp jump in dimensionless pressure drop attributable to the start-up of the experimental system for times

I < A, a region of fast growth in the dimensionless pressure drop and vortex size for times A < t < C, a region
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Figure 3-14 Transient dimensionless pressure drop (a) and vortex size (b) data for the flow of the
0.025wt% PS/PS solution through an axisymmetric contraction at a Deborah number of De
= 4.7 from start-up to the onset of an elastic flow instability.

of slower changes in dimensionless pressure drop and vortex growth that approaches a local steady-state
value of pressure drop and vortex size for times C < t < F and, finally, the onset and growth of the small
amplitude oscillations in dimensionless pressure drop and vortex size associated with the elastic flow
instability for t > F. This evolution of the dimensionless pressure drop and the corner vortex is in good
qualitative agreement with the numerical simulations of Szabo et al. [Szabo 1997].

3.3.4 Digital Particle Image Velocimetry Measurements

We have also used the digital images of the particle motions near the contraction plane to compute
instantaneous DPIV vector fields. It should be noted that there are several difficulties encountered in the
implementation of DPIV technique which need to be addressed in future work. The principal difficulty arises

from the limited dynamic range of digital particle image velocimetry. For particle displacements on the order

of the correlation window size there is a progressive loss of information as seed particles are swept out of
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contraction at Deborah numbers of a) De = 0.5 and b) De = 2.0.
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the correlation region. Conversely, increasing the window size leads to a decrease in the spatial resolution

that can be attained. This 'uncertainty principle' is of particular importance near the contraction plane, and

the loss of particles into the throat results in uncorrelated regions as the Deborah number gets larger. Since

our primary focus in the present work is on the global characteristics of the upstream vortex rather than the

quantitative features of the converging flow very near the throat we have selected a field of view that can

resolve the entire width of the upstream tube.

Figure 3-15 shows the results of DPIV for four Deborah numbers, De = 0.5, 2.0, 2.5 and 3.5. The

vectors are scaled such that an arrow of length Az /2R,= 0.1 corresponds to a velocity of v / <v,> 2 0.2 for

Figure 3-15a,b and vZ / <v,> 2 = 0.1 for Figure 3-15c,d.

At low Deborah numbers the corner vortex is so weak that it cannot be resolved readily by the DPIV

algorithm, but as the Deborah number is increased, the vortex grows in strength and its structure is easily

captured. Similar DPIV images have been generated for all Deborah numbers at which flow visualizations

discussed in Section 3.3.2 were reported. It is hoped that these vector fields will be useful in detailed

comparison between experimental and numerical work in the future.

3.3.5 Laser Doppler Velocimetry Measurements

Axial velocity measurements taken along the centerline of the 4:1:4 axisymmetric abrupt contraction-

expansion are shown in Figure 3-16. The dimensionless velocity measurements, v/<v,>2, are plotted from

locations far upstream of the contraction plane, z/R2 > - 10, to positions inside the throat, z/R 2 = 0.25. In a

Poiseuille flow, the velocity on the centerline is equal to twice the average velocity in the tube v7(r = 0) =

2<v,>. Therefore, one would expect that for a constant viscosity fluid, the dimensionless centerline velocity

well upstream of the contraction plane would be equal to v1<v,>2 = 21/2 = 0.125, while the dimensionless

velocity within the throat would be equal to vJ<vz>2 = 2. This is confirmed far upstream, where the shear

rate is quite low and where there are no extensional effects influencing the velocity profile. As the fluid

approaches the contraction, the velocity increases to conserve mass as the radius of the tube abruptly

contracts. At low Deborah numbers, this increase is observed to occur smoothly, beginning at an axial

position of z/R2 z-2.5. With the initial increase in Deborah number, the velocity increase shifts slightly

downstream towards the contraction plane; however, as the flow rate is increased further, the velocity

gradient along the centerline is reduced and the influence of the contraction is felt by the flow further and

further upstream. This latter effect takes place in conjunction with the elastic vortex growth observed in

Section 3.3.3. As the fluid enters the throat, there is a sharp elastic overshoot in the velocity at all Deborah

92



3.5 1
.. 3.5

3.0 -- ~T =250C -
3.0 0

-2.5 2.5

2.
~2.0

1.5

7i 1.5
0.

1.0 -0.50 -0.25 0.00 0.25

0.5

0.0 I

-10 -5 0
Dimensionless Distance Upstream

Figure 3-16 Laser Doppler Velocimetry (LDV) measurements showing the dimensionless axial velocity
along the centerline, vJ<v,> 2, as a function of dimensionless axial position, z/R 2 , for the flow
through a 4:1:4 axisymmetric contraction-expansion. The figure includes: 0, Deborah
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numbers, including a small jump in the low Deborah number case, De = 0.5. The magnitude of this

overshoot increases with Deborah number, but the location of the maximum does not change. Further

downstream, the centerline velocity reduces to a value consistent with Poiseuille flow, for all but the highest

Deborah numbers in which the velocity remains slightly high than v/<v,> 2 =2 for the range of axial positions

that can be measured with the present apparatus. Additional LDV measurements show that, the non-

monotonic trend in the evolution of the centerline velocity profile is independent of contraction ratio and

re-entrant corner curvature. This will be discussed in more detail in Chapters 4 and 5.

3.4 Discussion

In this work, we have measured the additional pressure drop associated with strong extensional flow

of a monodisperse polymer solution through a 4:1:4 axisymmetric contraction-expansion. This large

additional pressure drop is not predicted by existing numerical computations with simple dumbbell models.
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Possible reasons for these discrepancies may lie in the way different models treat polymer chains. In

quasilinear dumbbell models, such as the Oldroyd-B model, the entropic elasticity of the Hookean spring can

store considerable amounts of energy as a polymer molecule is extended. In a Lagrangian unsteady flow such

as flow through an orifice, a dumbbell is accelerated and undergoes a transient uniaxial elongation, absorbing

energy as the polymer chain unravels. The stored energy is then released downstream of the contraction as

the polymer chain rapidly relaxes under biaxial expansion. The result is a decrease in the global pressure

drop because a portion of the energy lost in the case of a Newtonian fluid is returned to the flow. If finite

extensibility is added to the dumbbell model, similar behavior is observed until the chains approach full

extension; beyond this point, the polymer chains behave more like rigid rods and the additional viscous drag

on the polymers increases the computed pressure drop across the contraction. However, simulations with

the FENE-CR model indicate that this effect is insufficient to account for the huge increases in pressure drop

across the contraction seen in this work and in the earlier work of Cartalos & Piau [Cartalos and Piau 1992].

These discrepancies between the numerical and the experimental work in a prototype complex flow

support the observations made in uniaxial transient elongation by Doyle et al. of an additional dissipative

contribution to the polymeric stress manifested in the form of a stress-conformation hysteresis [Doyle et al.

1998]. This hysteresis would result in an additional dissipative stress term present during the rapid extension

of the polymer molecules. The first theoretical considerations of such phenomena were made by Ryskin

[Ryskin 1987] who analyzed the pressure drop measurements of King and James [King and James 1983] for

dilute polymer solutions flowing in a conical entrance region at high Reynolds number. In the resulting 'yo-

yo' model the chains are envisaged to unravel in a similar manner to a yo-yo with the coiled regions near the

end connected by a central rigid rod. Viscous drag on the elongating rod results in a dissipative polymeric

contribution that increases linearly with the deformation rate e. No general constitutive equation was

formulated by Ryskin, however, on the basis of Brownian dynamic simulations, Rallison [Rallison 1997]

recently proposed one form for the additional dissipative stress

T 1 C< (3-19)
2 trA

where A = (QQ)/ Q is the ensemble average of the mean end-to-end contour length of the molecule and

q2 is the additional contribution to the viscosity.

In recent work Yang and Khomami [Yang and Khomami] have computed viscoelastic flow past a

sphere - another benchmark flow involving rapid stretching and relaxation - using the full FENE model and
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'distributional hysteresis'. To capture such effects it may thus be necessary to resolve the internal dynamical

structure of the chains as observed by Perkins et al. [Perkins et al. 1997] by performing simulations with

bead-rod chain models that can capture such 'configurational hysteresis'.

Although it is not possible in a complex nonhomogeneous flow such as creeping flow through a

contraction-expansion to readily estimate the additional pressure drop arising from contributions to the

polymeric stress tensor of the form in Equation 3-10, it is worth noting that the additional pressure drop 9

(i.e. the pressure increase beyond that associated with the linear, Newtonian change in AP'24 (Q) with

increasing flow rate, Q ) does increase linearly with the Deborah number. The combined pressure drop,

vortex size and DPIV measurements for a well characterized dilute monodisperse polymer solution should

make the data presented in this paper suitable for a quantative comparison with future numerical simulations

using such models.

It is also possible to use the pressure drop data presented above to estimate an approximate

extensional viscosity using the technique developed by Cogswell [Cogswell 1972] which assumes the fluid

viscosity to follow a power-law profile in shear (n = I in our case). The resulting equations are of the form

- 9n R 3A-P
q - 2 exR A(P ext (3-20)

64 Q 2r, }

E _ f - (3-21)
2 ext

Cogswell's extensional viscosity determined using the above expression can be approximated as a linear

combination of the extensional viscosity of the solvent q, and the extensional viscosity resulting from the

dissipative contribution to the polymeric stress I d, i= 3q, + W d(e). For a rapid contraction-expansion we

know that the additional pressure drop arising from the FENE-like elastic stretching is essentially zero [Szabo

1997]. We can now calculate an approximate dissipative stress from the dissipative extensional viscosity

and the extension rate Ard = fd. Figure 3-17 shows a plot of the approximate dissipative stress Ard as a

function of the extension rate e. As expected, the dissipative stress starts at zero and Coggswell's analysis

correctly predicts T = 3 17, for low extension rates where the fluid is Newtonian. As the extension rate is

increased, the dissipative stress begins to increase slowly until an extension rate of = 14 s' after which it

grows linearly with extension rate through the onset of the elastic flow instability (at 6 = 17.8 s') at and
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through the plateau of the dimensionless pressure drop. This approximate dissipative stress can be compared

with the values given by Orr and Sridhar who experimentally determined the dissipative stress of PIB at

various extension rates and Hencky strains from transient uniaxial extension measurements. The total

Hencky strain experienced by a fluid element moving along the centerline of the 4:1 axisymmetric

contraction region from far upstream to the middle of the throat is given by

fe dt
0

v,(z = 1/2L)
dv 2

f= ln(p 2 ) = 2.77
vz(--) z

(3-22)

if we assume a fully developed Poiseuille flow in the throat. Thus the dissipative stress calculated here

should be compared with experiments of Orr and Sridhar conducted at Hencky strains of C = 2.77.

Unfortunately, at such a low Hencky strain, the experimental strain rates used by Orr and Sridhar were not

large enough (i < 5s') to demonstrate any substantial dissipative stresses in either our experiments (Figure
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3-17) or theirs. However, the dissipative stress is expected to be a function of both the extension rate and

the Hencky strain, and we can therefore qualitatively compare the two sets of experimental results; each of

which tend to increase with extension rate and show maximum dissipative stresses within the experimental

range on the order of O(10' Pa) [Remmelgas et al. 1997]. The dissipative stress will be investigated in

greater detail in Chapter 7.

It is important to note that the enhanced pressure drops measured experimentally are not directly

connected with the onset of any elastic instabilities. The dimensionless pressure drop begins to increase

monotonically with Deborah number at De = 0.4 while the onset of local elastic instability does not occur

until a Deborah number of De,= 2.6. Thus, regardless of whether a numerical simulation can successfully

predict the onset of an elastic instability, the chosen constitutive model should still be able to predict the

large extra pressure drops associated with the steady motion ofnon-Newtonian behavior of a dilute polymeric

solution before any flow instabilities occur. In fact, we note that in our experiments at controlled

displacement rates, the onset of elastic instability in the converging flow of a PS/PS Boger fluid is associated

with a lowering in the rate of increase in pressure driving force required. In fluids such as dilute polymer

solutions with large contributions to the dissipative stress, the elastic instabilities observed in contraction

flows may thus be directly connected to this additional coupling between the conformation (A), the local

deformation rate (i) and the resulting stress (r). Certainly the magnitude of this additional polymeric stress

may be expected to modify the local kinematics in the entry flow region and may help to explain why

different Boger fluid formulations (eg. PAA/CS/water, PS/PS and PIB/PB systems) exhibit such different

patterns of vortex growth in a 4:1 contraction. This may also account for dynamic differences in the flow

observed with such fluids in other complex flow geometries; for example the large variations in the evolution

of drag coefficient CD (De) of a sphere sedimenting in a PAA, PS or P113 Boger fluid [Chmielewski et al.

1990; Solomon and Muller 1996]. To investigate such effects further it is necessary to measure the

dimensionless pressure drops (De) in different contraction ratios and for different fluids. We hope to report

on such observations in the future. The pressure drop measurements and DPIV measurements coupled with

the use of a monodisperse, well-characterized fluid should also make this set of experiments amenable to

comparison with numerical work in this benchmark geometry.
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CHAPTER 4 The Effect of Contraction Ratio on the Flow through an Abrupt
Axisynmetric Contraction-Expansion

4.1 Introduction

The flow of a viscoelastic fluid through an axisymmetric contraction-expansion is a complex flow

containing regions of strong shearing near the walls, nonhomogeneous uniaxial extension along the centerline

upstream of the contraction plane and nonhomogeneous biaxial expansion downstream of the expansion.

In this chapter, the same 0.025wt% PS/PS Boger fluid used in the experiments presented in Chapter 3 is used

to investigate the kinematics of the flow through several axisymmetric contraction-expansions of different

contraction ratios over a wide range of Deborah numbers. The experimental measurements include global

pressure drop and local velocity measurements as well as streak images of the elastically-enhanced upstream

vortex structures.

Experimental measurements of the pressure drop for polymer solutions flowing through abrupt

axisymmetric contraction-expansions have shown a substantial extra pressure drop well above the value

observed for a Newtonian fluid with equal viscosity at the same flow rates by Cartalos and Piau [Cartalos

and Piau 1992] and again in the previous chapter. In neither case was the observed viscoelastic enhancement

of the pressure drop associated with the onset of an elastic or an inertial flow instability; however, it is not

even qualitatively predicted by existing steady-state or transient numerical computations with simple

dumbbell models [Coates et al. 1992; Keiller 1993; Szabo 1997]. In fact, these models predict a significant

viscoelastic decrease in the pressure drop with addition of polymer to a Newtonian solvent. The failure of

these constitutive models to predict the correct evolution in the properties of complex flows with Deborah

number may be due to an inadequate description of the internal molecular conformations of the polymer

chains that arise during rapid stretching. This is evident in measurements of transient uniaxial extension

where the existence of a stress-conformation-hysteresis has been experimentally observed [Doyle et al. 1998;

Sridhar et al. 2000] and computed in bead-rod and bead-spring computations [Doyle et al. 1998; Li et al.

2000] but has yet to be quantitatively predicted by any simple closed-form differential constitutive model.

A complete discussion of previous experimental and numerical studies involving pressure drop measurements

in contraction flows is presented in Chapter 3.1. One of the major goals of the research presented in this

chapter and the next is to determine what effects systematic changes in the contraction ratio and the curvature

of the re-entrant corner will have on the magnitude and the onset of this enhanced pressure drop.

Investigation of the role of lip curvature is especially important because a major computational impediment
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to simulations of the viscoelastic flow through a contraction-expansion is the development of singular stress

fields near a sharp re-entrant corner. The effect of changes in re-entrant corner curvature will be investigated

in Chapter 5.

Measurements of the evolution in the pressure drop generate information about the global state of

viscoelastic stress in the flow and are an excellent comparative tool when utilized in conjunction with

measurements of the flow kinematics such as streak images and velocity measurements. There have been

a great number of experimental investigations dealing with the kinematics of the flow through a contraction

over a wide range of Deborah numbers, contraction ratios and re-entrant corner curvatures using a large

variety of different viscoelastic fluids [Boger 1987; Boger and Binnington 1994; White et al. 1987]. In

experiments with elastic polymer solutions two distinct pathways for evolution of the vortex growth with

Deborah number have been observed, which lead to flow structures typically described in the literature as

corner and lip vortices. These experimentally observed vortex growth developments are described in Chapter

3.

The sequence of flow patterns chosen by the viscoelastic fluid is a complex function of the

contraction ratio and the re-entrant lip curvature. Results prior to 1987 are summarized in Boger [Boger

1987] and Table 4-1 summarizes more recent observations for several different Boger fluid formulations.

In general, as the contraction ratio is increased, the flow moves from the lip vortex to the corner vortex flow

regime, but the critical contraction ratio for this crossover in vortex evolution pathway is strongly dependent

on the properties of the test fluid and impossible to predict a priori. So, why do two elastic fluids such as

PEB/PB and PAA/CS Boger fluids, which have very similar viscoelastic properties, act so differently in this

and other complex flows? Many researchers have postulated that the answer must arise from differences in

the transient extensional rheology [Boger and Binnington 1994; Chmielewski et al. 1990; McKinley et al.

1991]. Until quite recently, reliable measurements of the extensional stress of dilute polymer solutions

undergoing ideal uniaxial extension were not possible, but with the advent of the filament stretching

rheometer, transient uniaxial extensional rheology measurements are now attainable [Anna et al. 2001;

McKinley and Sridhar 2002], making it possible to test the validity of such assertions.

In addition to investigating the evolution of the pressure drop, another goal of the present study is

to determine which vortex evolution path is followed by a dilute and monodisperse polystyrene Boger fluid

that has been well characterized in both extension and in steady and transient shear flows. In the previous

chapter, we have reported measurements for flow through a 4:1:4 contraction-expansion, but a detailed

analysis of the effect of contraction ratio will generate additional insight into the trends observed in the

published data on PIB/PB and PAA/CS Boger fluids listed in Table 4-1 when analyzed in conjunction with
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measurements of the transient extensional rheology.

In Section 4-3, we first present observation of the enhanced pressure drop through several different

contraction-expansions. Flow visualization, digital particle image velocimetry (DPIV) and laser Doppler

velocimetry (LDV) are then combined to characterize the evolution in the kinematics of the fluid motion with

increasing Deborah number. LDV measurements of fluctuations in the fluid velocity are then used to

document the onset of an elastic instability that eventually leads to global oscillations in the flow and the

development of an interesting jetting instability as the Deborah number is increased. Finally, in Section 4-4

we discuss the implications of our findings for simulation and modeling of elastic flows through contractions.

Sharp Re-Entrant Corner

Boger Fluid Corner Vortex Lip Vortex

PIB/PB [Boger and Binnington 1994; g 8 2 6.8
McKinley et al. 1991]

PAA/CS [Boger 1987; Boger and 81 4 2
Binnington 1994; Nguyen and Boger
1979]

PS/Ps p = 4

Table 4-1 Vortex growth dynamics for several Boger fluids at various contraction ratios (= R/R2,
where R, is the upstream radius and R2 is the radius of the contraction).

4.2 Experimental

4.2.1 Flow geometry

The same axisymmetric contraction-expansion used in Chapter 3 is employed in these studies. A

schematic diagram of the flow cell and the important length scales associated with it can be found in Figure

3-1. The radii of the cylindrical tubes upstream and downstream of the contraction-expansion are equal and

remain constant at R1 (=1.27cm) while the radius within the throat of the contraction is given by R2. Several

different orifice plate configurations yielding various contraction ratios (fi R, / R2) and contraction lengths

(L,) are listed in dimensionless form in Table 4-2.
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Description Contraction Ratio Contraction Length

(# J R, / R2) (L/ R2)

2:1:2 2 0.5

4:1:4 4 1

8:1:8 8 2

Table 4-2 Description of orifice plate geometries used in this study. In each case the value of the
upstream radius is R, = 1.3cm.

As described in the previous chapter, the fluid is forced at a constant volume flow rate, Q, past two

flush mounted pressure transduces, here denoted Pu and pd, located at positions zu= -7.62cm far upstream

and zd = 8.26cm far downstream of the contraction plane (located at z= 0). Again, the extra pressure drop

across the contraction-expansion is isolated by removing the pressure drop resulting from the Poiseuille flow

in the upstream and downstream tubing as well as the Poiseuille flow within the throat of the contraction-

expansion are removed

AP' = Al'd 807 L +L (4-1)
7E R, R4

I 2,

where L= ( zu - Zd)- L, is the total length of straight pipe of radius R, between the pressure transducers and

q is the viscosity of the fluid. The dimensionless pressure drop becomes

/(De, R,/f) = A ( (4-2)
AJP' (Q, De = 0,# = 4)

where the pressure drop resulting from the flow of a Newtonian fluid across a 4:1:4 sharp axisymmetric

contraction-expansion at a given flow rate, AP',,d(Q, De = 0, 8= 0), is used in the denominator to non-

dimensionalize the pressure drop resulting from the flow of the non-Newtonian test fluid across each of the

contraction-expansions at the same flow rate, regardless of aspect ratio.

4.2.2 Measurement Techniques

The flow field upstream ofthe axisymmetric abrupt contraction is investigated using several different

techniques: digital particle image velocimetry (DPIV); laser Doppler velocimetry (LDV); and flow

visualization through computer-generated streak images. A complete discussion of the DPIV and flow

visualization techniques used in this paper can be found in the previous chapter.

4.2.3 Fluid Rheology
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The viscoelastic test fluid used in these experiments is the same 0.025wt% PS/PS solution used in

the experiments described in the previous chapter. A complete discussion of the fluid shear and extensional

rheology can be found in Section 3.2.3. The same conventions for the definition of relaxation time, Deborah

number and Reynolds number will be followed.

4.3 Results

4.3.1 Pressure Drop Measurements

The evolution in the total pressure drop (APud) of the 0.025% PS/PS solution flowing through the

three contraction-expansion geometries described in Section 4.2.1 was measured for Deborah numbers De

10.5. In the previous chapter, it was shown that the Stokes flow solution provided by Sampson for the

pressure drop through an infinitesimally thin circular hole in an unbounded rigid wall [Happel and Brenner

1965] was in good agreement with the pressure drop measurements for the flow of the Newtonian oligomeric

0 0 0
- C r) 0 0

stable

0 ~ 0

0 000 Ilunstable

AAA

AA

LI A'~l A A T= 25-C

10
Deborah Number

Figure 4-1 Dimensionless pressure drop measurements, (De, /, R) = AP',d(De, /, R) / AP',,d(Q, De
=0, R =0,,/= 0), of the 0.025wt% PS/PS solution across several axisymmetric contraction-
expansions as a function of Deborah number, De = A f. The figure includes: 0, i = 8; w,

fi = 4; and A, 3 = 2. The hollow symbols represent stable flow conditions while the filled
symbols represent unstable flow conditions.
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polystyrene into a 4:1:4 contraction-expansion (corrected using Equation 4-1)

APF' (Q, De = 0, R = 0,# = 4) ~ Asampson - 3 Q (4-3)
2

and this value was thus used to generate the dimensionless pressure drop defined in Equation 4-2.

The effect of contraction ratio on the dimensionless extra pressure drop is shown in Figure 4-1. In

the absence of elasticity, the pressure drop across the various contraction-expansions should be equal to that

of a Newtonian fluid. In other words, in the limit De - 0 we expect Y - ( / 4 )3. This is true for both the

4:1:4 and 8:1:8 contraction-expansion, however, for a contraction ratio of 8 = 2, the Sampson flow

assumption of upstream and downstream fluid reservoirs with infinite lateral extent is no longer a good

approximation. The presence of the upstream and downstream walls result in a dimensionless pressure drop

considerably smaller than expected, Y(De << 1, $= 2) zO.08. As the Deborah number is increased, the

measurements for each of the contraction ratios examined show a monotonic increase in the dimensionless

pressure drop beginning at a critical Deborah number. The value of the critical Deborah number increases

slightly with contraction ratio, 0.3 De,t 0.8, but is consistently close to the Deborah number at which

the coil-stretch transition occurs in a homogeneous extensional flow, De = 0.5. As the Deborah number is

increased still further the rate of increase in the dimensionless pressure drop is greatly reduced. These trends

in the evolution of the entrance pressure drop have been observed previously in experimental studies of

polyacrylamide-based fluids [Cartalos and Piau 1992] flowing through a 16:1:16 axisymmetric contraction-

expansion as well as a polystyrene-based fluids flowing (Chapter 3) through 4:1:4 axisymmetric contraction-

expansions, the latter being reproduced in Figure 4-1. As stated previously, these large additional pressure

drops associated with the addition of very small amounts of high molecular weight polymers to Newtonian

solvents have yet to be even qualitatively simulated numerically [Coates et al. 1992; Keiller 1993; Szabo

1997].

The onset of an elastic flow instability is also indicated in the pressure drop data in Figure 4-1. A

complete discussion of the nature of this elastic flow instability is presented in Section 4.3.4. A hypothetical

sketch of the line of neutral stability motivated by previous studies of PIB/PB fluids [McKinley et al. 1991]

is superimposed over the 2:1:2, 4:1:4 and 8:1:8 data. Limitations in the hardware and the sensitivity of our

measurement techniques made it impossible to reach Deborah numbers large enough to observe an elastic

instability in the 2:1:2 contraction-expansion, however, through flow induced birefringence measurements

it was possible to observe the onset of an elastic instability. It is important to note that, in each case, the

enhanced pressure drops measured experimentally are not directly connected with the onset of any elastic
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instabilities. Thus, regardless of whether a numerical simulation can predict the onset of an elastic

instability, the constitutive model should still be able to predict the large enhanced pressure drops associated

with steady viscoelastic entrance flow before any flow instabilities occur

4.3.2 Vortex Growth Dynamics

Flow visualization was used to observe the vortex growth dynamics upstream of the contraction for

the four geometries describe in Section 4.2.2 for Deborah numbers De 11. A detailed description of the

vortex growth and development in the 4:1:4 contraction-expansion with increasing Deborah number has been

presented in Chapter 3 and here we focus on changes resulting from varying the contraction ratio.
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Figure 4-2 Characteristics of the upstream vortex growth dynamics as a function of Deborah number
for the 8:1:8 axisymmetric contraction-expansion: 0, vortex reattachment length,X= L, / R2 ;
A, radial location of the vortex center, d=RV / R2; and E, the upstream location of the vortex
center, C= Z, / R 2 .
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c)

b) d)

Figure 4-3 Streak images of flow upstream of a 2:1:2 axisymmetric contraction-expansion for Deborah
numbers of (a) De = 0.6, (b) De = 0.9, (c) De = 1.1 and (d) De = 1.5 showing the
development and growth of the lip vortex.

In Figure 4-2, the dimensionless reattachment length and coordinates of the vortex center are shown

for the 8:1:8 contraction-expansion. The vortex growth dynamics for the 8:1:8 contraction expansion are

similar to those described above; dominated by the presence and upstream growth of an elastic corner vortex.

The principal difference arises from the onset conditions for the transitions into different vortex growth

regimes. For both the 4:1:4 and the 8:1:8 contraction-expansions the critical Deborah number for the onset

of observable corner vortex growth is approximately 20% larger than that for the onset of enhanced pressure

drop growth. The kinematics of these two effects appear to be quite strongly correlated.

In Figure 4-3, pseudo streak images upstream of the 2:1:2 contraction-expansion are shown for

Deborah numbers of De = 0.6, 0.9, 1.1 and 1.5. As observed for both the 4:1:4 and the 8:1:8 contraction-

expansions, at low Deborah numbers a Moffatt vortex is present in the upstream stagnant corner as shown

in Figure 4-3(a). However, in contrast to the results presented for the previous contraction ratios, as the

Deborah number approaches unity, the corner vortex decreases in size and a separate and distinct 'lip' vortex

forms near the re-entrant corner, Figure 4-3(b). The lip vortex then proceeds to grow outward, Figure 4-3(c),
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Figure 4-4 Particle Image Velocimetry (PIV) measurements of the vector fields for the recirculating
flow upstream of a 2:1:2 axisymmetric contraction-expansion at Deborah numbers of(a) De

0.9 and (b) De = 1.5.

until it reaches the stagnant corner at which point it grows upstream in a manner consistent with the corner

vortex growth dynamics described above for larger contraction ratios.

Digital particle image velocimetry (DPIV) measurements for Deborah numbers of De = 0.9 and 1.5

are shown in Figure 4-4. These velocity vector field measurements correspond to the streak images shown

in Figures 4-4(b) and 4-4(c). The vectors are scaled such that an arrow of length / /R 2 = 0.25 corresponds

to a velocity magnitude of v / <vy> 2 = 1. The DPIV measurements in Figure 4-4(a) demonstrate the complete

suppression of the corner vortex with the presence of the lip vortex. In fact, the fluid flows into the stagnant
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Figure 4-5 Characteristics of the upstream vortex growth dynamics as a function of Deborah number
for the 2:1:2 axisymmetric contraction-expansion: *, vortex reattachment length,X= L /,R 2 ;
A, radial location of the vortex center, =R / R2; and D, the upstream location of the vortex
center, C= Z, / R2

corner and then reverses direction in order to flow back upstream, around the lip vortex and into the

contraction. The vector field in Figure 4-4(b) is very similar to the vector field measurements of elastic

corner vortices upstream of a 4:1:4 sharp contraction-expansion presented in the previous chapter. This

reinforces our previous observations which indicate that once the lip vortex has reached the stagnant corner,

the dynamics of the subsequent elastic vortex growth are identical to those observed in contraction ratios that

do not demonstrate formation of a distinct lip vortex.

The dimensionless reattachment length and coordinates of the vortex center are shown in Figure 4-5.

These measurements quantify the spatial characteristics observed in the pseudo streak images. At low

Deborah numbers, the dimensionless reattachment length is again constant with the expected value for the

Newtonian Moffatt vortex. As the Deborah number is increased, the reattachment length decreases

drastically as the lip vortex begins to develop. At this point, the coordinates reported in Figure 4-5 shift from

the disappearing Moffatt vortex to the center of the now-dominant and topologically-distinct lip vortex. As

the lip vortex grows outward, the reattachment length remains quite small and the axial position of the lip

vortex center remains relatively constant. Once the lip vortex has reached the stagnant corner, the radial
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Figure 4-6 Laser Doppler Velocimetry (LDV) measurements showing the dimensionless axial velocity
along the centerline, vJ<v,> 2 , as a function of dimensionless axial position, z/R 2, for the flow
through an 8:1:8 axisymmetric contraction-expansion. The figure includes Deborah number
from De = 1 to De = 12 increasing by a constant increment of De = I from right to left.

location of the vortex center saturates at - 1.5 and the large elastic corner vortex begins to grow upstream.

Previous experimental measurements [Boger and Binnington 1990; McKinley et al. 1991] indicate that the

lip vortices are unsteady in time and three dimensional in nature, but within the sensitivity of our velocity

and pressure measurement techniques, the lip vortex resulting from the flow of a PS/PS solution through a

2:1:2 contraction-expansion is found to be steady in time. The difference may be a consequence of the

difference in operating procedure; earler studies imposed a constant pressure difference APud across the

contraction geometry and determined an average flow rate or velocity, whereas in the present experiments

we use a fixed displacement rate and measure the ensuing pressure drop.

4.3.3 Laser Doppler Velocimetry Measurements

Axial velocity measurements taken along the centerline of the 2:1:2 and the 8:1:8 axisymmetric

abrupt contraction-expansion to complement the data in Chapter 3. The results are shown in Figures 4-6 and

108



2.0

1.5/

0 .

V)V

E

-3 -2 -I 0

Dimensionless Distance Upstream [z/R2]

Figure 4-7 Laser Doppler Velocimetry (LDV) measurements showing the dimensionless axial velocity
along the centerline, v/<v> 2, as a function of dimensionless axial position, z/R2 , for the flow
through an 8:1:8 axisymmetric contraction-expansion. The figure includes: o, Deborah
number of De = 0.5;o, De = 0.9; v, De = 2.0; A, De = 3.0; and 0, De = 3.5;.

4-7. The dimensionless velocity measurements, v!<v,> 2 , are plotted from locations far upstream of the

contraction plane, z/R 2 > - 10, to positions at the contraction plane, z/R 2 =0. Unlike for the 4:1:4 contraction-

expansion, the contraction inserts for both these contraction ratios is made of aluminum and so no optical

measurements are possible within the throat. In a Poiseuille flow, the velocity on the centerline is equal to

twice the average velocity in the tube v,(r =0) = 2<v,>. The dimensionless centerline velocity well upstream

of the contraction plane should be equal to vj<v >2 = 2/2fl, while the dimensionless velocity within the throat

would be equal to vJ<V2> 2 = 2. In both cases, this is confirmed far upstream. In Figure 4-6, the centerline

velocity profile into an abrupt 8:1:8 contraction-expansion is shown. For this large contraction ratio, the

fluid must accelerate to a velocity in the throat that is 64 times larger than the velocity well upstream of the

contraction plane. At low Deborah numbers, the acceleration is observed to occur smoothly, beginning at

an axial position of z/R 2 ~ -5.0 upstream. As the Deborah number is increased, the effect of the contraction

is felt progressively further upstream as the corner vortex grows towards the re-entrant corner and then

upstream.
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The presence of the lip vortex in the 2:1:2 contraction expansion has a significant impact on the

velocity profile development as the Deborah number is increased. The velocity profiles along the centerline

upstream of the abrupt 2:1:2 contraction-expansion can be seen in Figure 4-7. At low Deborah numbers, the

velocity increases smoothly into the throat to a maximum velocity of v/<v,>2 = 1.5. The growth of the elastic

lip vortex at a Deborah number of De = 0.9 forces the test fluid to travel closer to the contraction plane

before accelerating into the throat. Unlike the observations made in the 4:1:4 and 8:1:8 contraction-

expansions, the velocity profile is not observed to increase monotonically upstream with elastic vortex

growth. At a Deborah number of De = 2.0, the onset of fluid acceleration is moved even closer to the

contraction plane while the maximum velocity achieved along the centerline increases to vv/<v,>, = 2.0. The

velocity profile eventually does shift monotonically further upstream beyond this Deborah number, as the

elastic comer vortex grows in size and strength.

Velocity measurements using LDV were also taken at several locations moving across the

contraction radially for a large range of Deborah numbers and positions. However, very little additional

information is provided from these measurements that cannot be ascertained by inspecting the velocity vector

fields presented in Section 4.3.2. The readers are referred to these measurements.

4.3.4 Flow Stability

While studying the flow of the PS solution into both the 4:1:4 and the 8:1:8 contraction-expansions,

a slow non-symmetric precession of the enlarged corner vortex was visually observed at large Deborah

numbers. The analysis of the oscillations in the pressure drop measurements across the 4:1:4 contraction-

expansion have been presented in Chapter 3.3.2.

The onset of an elastic instability is first indicated by small amplitude oscillations in the global

pressure drop and local velocity measurements which are observed to grow in magnitude with increasing

Deborah number. In Figure 4-8(a), two samples of the temporal variation of the radial, v,(t), and axial, v,(t),

velocity for the flow of the PS/PS Boger fluid into the 4:1:4 sharp contraction-expansion are shown at

Deborah numbers of De = 3.5 and 7.0. These two measurements were taken at a position, (r/R2 , z/R2)= (0.63,

-1.26), just above the re-entrant corner. A fast Fourier transform (FFT) of the velocity data allows a

quantitative determination of the frequency and amplitude of the velocity fluctuations. In Figure 4-8(b) we

show the power spectral density (PSD) at De = 3.5. The Fourier spectrum indicates that the elastic flow

instability has a strong fundamental oscillation frequency,f, = 0.15Hz, and the existence of a small peak at

the first harmonic. As the Deborah number is further increased, the intensity of the velocity fluctuations
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Figure 4-8 The onset of a supercritical elastic instability seen in (a) Laser Doppler Velocimetry (LDV)
measurements of the flow upstream of a 4:1:4 axisymmetric contraction-expansion and
power spectral density plots of (b) radial velocity measurements, v,., at a Deborah number
of De = 3.5 and (c) axial velocity measurements, v, at a Deborah number of De = 7.0.

grows in amplitude, the fundamental frequency of oscillation slowly increases and the higher harmonics of

the fundamental frequency begin to appear. At a Deborah number of De = 7.0, the PSD plot in Figure 4-8(c)
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Figure 4-9 Amplitude of velocity fluctuations in the unstable upstream flow into a 4:1:4 axisymmetric
contraction-expansion as a function of Deborah number. The data include: u, experimental
measurements, and -, the theoretical prediction for a supercritical Hopft bifurcation, lvi

~(De - Dec,.i,)2

contains four detectable harmonics of the fundamental frequency.

The variation in the amplitude and frequency of oscillation determined from the Fourier spectrum,

such as those shown in Figure 4-8(a) and (b) can be used to determine the critical Deborah number for the

onset of this supercritical Hopf bifurcation, are shown in Figures 4-9 and 4-10 respectively. The critical

Deborah number for the onset of the periodic flow is accurately determined by fitting the these results to the

asymptoticresults for a supercritical Hopf bifurcation [Iooss and Joseph 1980]

v(r, 0, z, t)l oc (De - Decri, )1/2, (4-4)

f = C + c 2 (De - Decri), (4-5)

where c, and c2 are constants. These expressions are valid only in the linear limit, such that (De - Derit) <<

1. Theoretically, in this limit only the fundamental frequency will exist in the Fourier spectrum, however,

a small first harmonic peak is present in the experiments at all but the very lowest unstable flow rate. To
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contraction-expansion;o, Ap for the 4:1:4 rounded contraction-expansion; and -, the
theoretical prediction for a supercritical Hopf bifurcationf -(De - Decr).

circumvent this difficulty, a cutoff for linearity is defined such that only data taken at Deborah numbers for

which the amplitude of velocity fluctuations of the fundamental frequency are an order of magnitude greater

than those of the first harmonic, Iv(r,0,z,t)f > 101v(r,0,z,t)2 f , are used to determine Derjt from

Equations 4-4 and 4-5. The results of these fits are superimposed on the data in Figures 4-9 and 4-10 and

the critical Deborah numbers are tabulated in Table 4-4.

Critical Deborah Number for the Onset of the Elastic
Flow Instability

4:1:4 Sharp Contraction-Expansion 2.4 ± 0.1

8:1:8 Contraction-Expansion 4.2 ± 0.2

Critical conditions for the onset of the supercritical Hopf bifurcation.
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Figure 4-11 Nonlinear dynamics ofjetting flow observed in (a) LDV measurements of the radial velocity
at a position r/R2 = 1.57 and z/R 2 = -0.16 upstream of the 4:1:4 axisymmetric contraction-
expansion and the corresponding (b) power spectral density plot at a Deborah number of De
= 4.5.

The initial deviation from axisymmetric stable flow conditions is well describe by linear

stabilityanalysis. However, when De >> Decrit nonlinear dynamics begin to dominate the flow kinematics.

These nonlinear effects are first observed in the Fourier spectrum as higher harmonics of the fundamental

frequency and the transition from a periodic to a period-doubling instability [McKinley et al. 1991]. Another

manifestation of these nonlinear dynamics observed in the present experiments is the development of a high

speed 'jetting' instability near the lip of the contraction in the 4:1:4 contraction-expansion, which has not

been reported previously. After the onset of the elastic flow instability, the upstream vortex breaks symmetry

and begins to precess in the azimuthal direction. The extent of this symmetry breaking in the vortex height

increases with Deborah number. In conjunction with the break in symmetry, a strong jet of high speed fluid
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Figure 4-12 Streak images of the jetting instability upstream of a 4:1:4 axisymmetric contraction-
expansion for Deborah numbers of De = 3.5 showing the (a) full view of the unstable
upstream vortex and (b) a closeup ofthejetting instability along with (c) PIV velocity vector
field generated from the closeup images.

appears, originating from the base of the upstream vortex and flowing directly into the throat just upstream
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of the contraction plane. By focusing the LDV probe at a position (r/R2, z/R2 ) = (1.57, -0.16) within the

vortex and just upstream of the contraction plane, it is possible to quantify this jetting flow instability.

Measurements of the time-varying radial velocity are shown in Figure 4-11 (a). The flow is initially steady

with a velocity Vr 3.5 mm/s (V,<Vr> 2 z 0.063) directed radially outward, indicating that the probe is focused

within the recirculating region of the corner vortex. As the flow develops, the jetting flow appears as large

amplitude periodic spikes in the velocity measurements. These spikes are larger in magnitude, Vr 10 mm/s

(V,/<V,> 2 Z 0.18), than the stable recirculating flow velocity and directed inward toward the contraction

entrance. The Fourier spectrum presented in Figure 4-1 1(b) contains several higher harmonics of the

fundamental frequency including a first harmonic signal, the amplitude of which is nearly equivalent to that

of the fundamental frequency. The fundamental frequency of the jetting instability is identical to the

frequency of the upstream vortex precession. We therefore postulate that this instability is in fact a helical

jet of fluid running the entire axial length of the upstream vortex.

Two streak images and a DPIV vector field showing this instability can be found in Figure 4-12. The

global structure of the unstable vortex is seen in Figure 12(a) and a box is sketched around the location of

the jetting instability which appears at the base of the precessing asymmetric upstream vortex at the point

of its greatest upstream extent. This box also indicates the field of view blown up in the streak image of

Figure 4-12(b) and the vector field in Figure 4-12(c). Although these close-up images were taken at the same

Deborah number as the full field of view, the images were not collected simultaneously and a slight

difference in the temporal development of the jetting instability was unavoidable. The vectors in Figure 4-

12(c) are scaled such that an arrow of length l/R2 = 0.5 corresponds to a velocity of v/<v2 >2 1 and clearly

demonstrate the strong localized nature of this instability. For a brief video clip of this instability we

encourage the reader to either visit our website or to contact the authors directly.

4.4 Discussion

4.4.1 The Role of Transient Extensional Viscosity

With variations in the contraction ratio, the flow field upstream of the contraction-expansion was

found to evolve along two distinct vortex growth pathways. For a contraction ratio of 8 = 2 a steady elastic

lip vortex was observed, while for contraction ratios of 4 8 8 a corner vortex was seen. The presence

or the absence of a lip vortex has been noted in many different studies and depends not only on the

contraction ratio through which the fluid is forced, but also on the formulation of the fluid used. These

observations are summarized in Table 4-2 which, when completed with the vortex growth data for the PS/PS
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Boger fluid from this study, shows a marked similarity between the behavior of the PS/PS and PAA/CS test

fluids. It has been conjectured that the differences in flow transitions for fluids with ostensibly identical

shear properties question must arise from differences in extensional rheology [Boger et al. 1986; McKinley

et al. 1991]. This hypothesis suggests that the differences observed in contraction flows and other complex

flows arise from changes in the molecular characteristics of the equilibrium conformations of the polymer

chains resulting from solvent quality or stiffness of the polymer backbone [Boger and Binnington 1994;

Chmielewski et al. 1990; Solomon and Muller 1996]. It follows that these initial equilibrium conformational

differences will also have a large effect on the evolution of non-equilibrium properties such as the transient

extensional stress growth in the fluid. With the advent of the filament stretching rheometer and the advances

in simulation techniques for bead-rod and bead-spring models, it is now possible to probe such hypotheses

both experimentally and numerically [Li and Larson 2000].

A fluid filament experiencing a constant uniaxial extension rate in a filament stretching rheometer

should, at least qualitatively, describe the uniaxial elongation of the fluid element flowing along the

centerline into the contraction-expansion even if the extension rate in this case is not constant. If one

assumes a fully developed Poiseuille flow in the throat of the axisymmetric contraction-expansion, then one

can calculate the total Hencky strain experienced by a fluid element moving along the centerline from far

upstream into the middle of the throat as

tj v.(z=0.5LC) v
= dt= =2 In 8. (4-6)

0 V (z=-00) Z

Dotted lines representing the total accumulated strain of a fluid element traveling along the centerline into

each of the geometries tested are superimposed over the extensional rheology data in Figure 4-13. These

measurements seem to reinforce our previous conjecture. The PS/PS solution flowing into the 2:1:2

contraction-expansion demonstrates no significant strain-hardening while the extensional viscosity of the

PS/PS solution flowing into the 4:1:4 and especially the 8:1:8 contraction-expansions is greatly enhanced.

Thus, in the case of a PS/PS test fluid, a simple doubling of the extensional viscosity along the centerline is

enough to eliminate the lip vortex. If this result could be generalized to other polymeric fluids, real physical

insight might be achieved. Unfortunately, in similar extensional rheology tests of the same PIB/PB Boger

fluid used by McKinley et al. [McKinley et al. 1991] which are also shown in Figure 4-13, the lip vortex is

present at all contraction ratios,$ < 8, corresponding to Trouton ratios up to Tr = 150; well past the Trouton
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Figure 4-13 Uniaxial extensional measurements of Transient Trouton ratio, _ / 0, as a function of

Hencky strain, c = t, for the 0.3 lwt% PIB/PB solution, 0, and the 0.025wt% PS/PS

solution, 0, taken at a Deborah number of Az, = 27, where Az is the Zimm relaxation time.

The maximum strain achieved along the centerline of the 2:1:2, 4:1:4 and 8:1:8 contractions-
expansions are indicated by the dashed lines.

ratio at which the flow of the PS/PS Boger fluid begins to demonstrate elastic corner vortex growth.

Although these two fluids demonstrate similar behaviors in extension, it is still important to point

out their differences. The Trouton ratio of the monodisperse, dilute PS/PS solution grows more quickly and

can be up to 50% larger than the Trouton ratio of polydisperse, semidilute PIB/PB at moderate Hencky

strains. Li and Larson [Li and Larson 2000] used a bead-spring simulation to show that for a dilute high

molecular weight polymer dissolved in a good solvent, both the stress and the birefringence rise much more

rapidly with strain than for the same polymer dissolved in a theta solvent. Differences in solvent quality

between these two Boger fluid formulations, the PS being dissolved in a slightly better solvent than the PIB,

may still hold the key to differences in the kinematics and the dynamics of the flow. The effect of solvent

quality has been systematically investigated in several model complex flows, for example viscoelastic flow

past falling spheres. In a series of experiments performed by Solomon and Muller [Solomon and Muller
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1996] using high molecular weight PS fluids, the increase in the drag coefficient above that expected for a

Newtonian fluid was found to increase with increasing solvent quality. Unfortunately, this argument is not

entirely consistent throughout the literature. Chmielewski et al. [Chmielewski et al. 1990] compared the drag

past a falling sphere for two different Boger fluids. They found that the drag increased over the Newtonian

value for the PIB solution in a close to theta solvent (polybutene), but the drag decreased below Newtonian

for a PAA solution in a good solvent (corn syrup/water). These results are not consistent with our argument

which would hold that because the PAA is dissolved in a better solvent than the PIB and it should

demonstrate a more rapidly strain hardening extensional viscosity and a larger drag coefficient. The

difference in this case may be the result of the shear thinning in the solution viscosity of the PAA/CS/H 2 0

fluid which is of the same order of magnitude (25%) as the reduction in drag.

In our experiments, the enhanced pressure drop measurements across the contraction-expansions

were found to be qualitatively independent of both the contraction ratio and the radii of curvature of the re-

entrant corner. However, even with rounded re-entrant corners, these large additional pressure drops have

not been predicted by any existing numerical simulations using simple dumbbell models [Coates et al. 1992;

Keiller 1993; Szabo 1997]. The evidence suggests that these discrepancies arise because of the inability of

current bead-spring constitutive models to properly describe the extensional rheology of the polymer

solutions. Most notable is the failure of these constitutive models to qualitatively predict the stress-

conformation hysteresis first observed by Doyle et al. in measurements of uniaxial transient elongation

[Doyle et al. 1998; Sridhar et al. 2000]. To capture such effects it may be necessary to resolve the non-

equilibrium internal dynamical structure of the polymer chains recently observed by Perkins et al. [Perkins

et al. 1997] by performing simulations with bead-rod chain models that can capture such 'configurational

hysteresis'. However, an excellent description of the extensional viscosity alone might not be adequate to

accurately model the flow into an axisymmetric contraction-expansion. Observations of the polystyrene

Boger fluid in transient uniaxial extensional demonstrate no sign of strain hardening or of the dissipative

stress suggested by stress-conformation hysteresis at the small strains achieved by a fluid element traveling

along the centerline of the 2:1:2 axisymmetric contraction-expansion (c = 1.386) and yet the pressure drop

measurements still show a dramatic enhancement. Presumably, this results from the much larger

deformations experienced by fluid elements passing near the re-entrant corner singularity but this cannot be

confirmed until simulation are performed using a suitable constitutive model.
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4.4.2 The Normal Stress Ratio

A combined knowledge of the shear and extensional properties of these polymeric fluids should

ideally provide a means of predicting the vortex growth dynamics a priori. As the contraction ratio is

increased at a fixed Deborah number, the shear rate at the tube walls upstream of the contraction decreases

as f, oc -, while at the same time, the accumulated strain along the centerline increases as - Infl. Thus,

there are two competing effects which contribute to the fluid's choice of vortex growth evolution; namely,

extensional stresses and shear induced normal stresses. It is clear from these simple estimates of the strain

and deformation that a lip vortex is present for elastic test fluids for contraction ratios which generate very

little extension of the polymer chain along the centerline; they may therefore be considered to be elastically

shear-dominated. For a given contraction ratio, the extensional stresses increase dramatically as the Deborah

number is increased; whereas, for most Boger fluids, the first normal stress difference tends to saturate due

to shear thinning arising from finite extensibility effects. A large elastic vortex then supplants the lip vortex.

Similarly, as the contraction ratio is increased, the extensional stresses developed within the contraction flow

dominate the normal stress difference arising from shear and, once again, a corner vortex replaces the lip

vortex.

We have argued that the flow kinematics associated with the transition from lip to corner vortex

appear to be driven by a change in the dynamics from a shear dominated to an extension dominated flow.

A possible means of quantifying this transition is to compare the normal stresses generated by the shear flow

along the walls to the extensional stresses resulting from the elongational flow along the centerline. We thus

consider a dimensionless normal stress ratio defined as

N,/ 770 SR( )(47

(r,-7,,. 0 TR (e)

where TR(c) is the Trouton ratio evaluated at the total Hencky strain accumulated along the centerline of the

contraction-expansion and SR() is the shear-rate-dependent stress ratio. Although, we differentiate explicitly

between the extension rate and the shear rate ', in a nonhomogeneous flow, such as the one considered here,

it is sufficient to approximate both as y = <v2>2 /(R 2 + Re). Arigo and McKinley [Arigo and McKinley

1998] used this dimensionless group to help rationalize the differences in the wake developing downstream
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Figure 4-14 The normal stress ratio, X = SR/TR, as a function of contraction ratio evaluated at the

deformation rate corresponding to the onset conditions for upstream vortex growth. The

data includes: m, the 0.025wt% PS/PS solution (<v,>2/R2 = 5.1s-'); -, the 0.3 1wt% PIB/PB

solution (<v,>2/R 2 = 9.2s-') from [McKinley et al. 1991]; and two PAA/CS solutions A, Fluid

C (<vZ> 2/R 2 = 0.14s-') and v, Fluid E (<v,>2/R 2 = 2.5s-') from [Stokes 1998].

of spheres sedimenting in dilute and concentrated viscoelastic fluids, however, to our knowledge it has not

been used to compare differences between different ideal elastic Boger fluids. In Figure 4-14, the normal

stress ratio (N) is plotted as a function of contraction ratio for the PS/PS, PIB/PB and PAA/CS Boger fluids

used in contraction flow publications and this research [Boger and Binnington 1994; McKinley et al. 1991;

Nguyen and Boger 1979]. Of course, this normal stress ratio is also a function of deformation rate and

should be represented as a two-dimensional surface, N(, De). Here we have chosen to evaluate the normal

stress number at the deformation rate (<v2>2/R 2 ) corresponding to the onset of the first significant elastic

vortex growth. The shear and extensional rheological data used to calculate the normal stress number for

the PIB/PB and PS/PS Boger fluids can be found in Figures 3-3, 3-4 and 4-13 and in McKinley et al.

[McKinley et al. 1991], while analogous shear and extensional rheology data for PAA/CS Boger fluids can

be found in Stokes [Stokes 1998]. The PAA/CS Boger fluids characterized by Stokes [Stokes 1998] are

similar, but not identical, to the test fluids used by Nguyen and Boger [Nguyen and Boger 1979], so two
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representative solutions denoted Fluid C (qo= 1.5Pa-s) and Fluid E (q,= 23Pa-s) by the author have been

chosen for comparison. Note that the extensional rheology of PAA/CS solutions is extremely difficult to

measure in a filament stretching rheometer because of the tendency of the corn syrup solvent to crystallize

at the surface of the fluid filament. At low Hencky strains, the resulting 'skin' on the PAA/CS filament

results in an overprediction of the Trouton ratio and a large uncertainty in the normal stress ratio for the 2:1

contraction. At moderate to large Hencky strains (e >3), however, the skin does not affect the extensional

data.

It can be seen from Figure 4-14, that there is a marked difference between the normal stress ratio

calculated for the PS/PS and the PAA/CS solutions and for the PIB/PB solution. The normal stress ratio

decreases monotonically with contraction ratio. For an ideal elastic liquid, which can be modeled at the most

elementary level by the Oldroyd-B model, N can be expressed analytically for De > 0.5 by the following

expression

2q,_ j 2 2(q, q/, )De

3_ + 7. exp 2c 1 - (2/1i )-' 3+ exp 2e(1 - (2De)] (4-8)
2/ y - I 2De -1

where y = <v2> 2/(R 2 + R,) and e 21np6. The magnitude of this ratio thus depends on the ratio ),/q,

(which depends on solvent quality and polymer concentration), the Deborah number and the contraction

ratio.

Over the entire range of contraction ratios examined, the normal stress ratio of the PS/PS and

PAA/CS solutions are significantly smaller than the normal stress ratio of the PIB/PB solution. A line can

be drawn through the data at a normal stress ratio of X =0.055 ± 0.005 which divides the data into regimes

of elastic corner vortex growth ( t s 0.05 5) and lip vortex growth ( N 0.05 5). As the Deborah number, and

subsequently the tensile normal stress difference in extension, increase, we expect the normal stress ratio to

decrease monotonically and the lip vortex regime to eventually give way to elastic corner vortex growth. This

is the first quantitative evidence to suggest that the kinematics of the flow can be systematically rationalized

on the basis ofrheological information. It would be interesting to compare these observations with Brownian

dynamics computations of the ratio of elastic stress differences in shear to first normal stress differences in

extension as the solvent quality or excluded volume is systematically modified.
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The principal remaining difference between different experimental observations of the lip vortex is

now the time-dependent characteristic observed in different elastic fluids. Possible explanations here may

include the method of observation used (e.g. time-averaged streak photography or time-resolved LDV and

DPIV measurements) and, perhaps more importantly, the driving mechanism used. In the present work, we

use a constant volumetric displacement rate, whereas the majority of previous studies have imposed a

constant global pressure drop across the test geometry. This important difference in experimental control

parameters leads to different dynamics in many other bifurcating systems (e.g. spurt and stick slip in melt

extrusion) and may prove to be a useful avenue for future research studies.
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CHAPTER 5 The Effect of Lip Curvature on the Flow through an Abrupt
Axisynmetric Contraction-Expansion

5.1 Introduction

In this chapter, the 0.025wt% PS/PS Boger fluid is used to investigate the kinematics of the flow

through several axisymmetric contraction-expansions of varying lip curvatures over a wide range of Deborah

numbers. The experimental techniques utilized in the previous two chapters will again be used to determine

what effects systematic changes in curvature of the re-entrant corner will have on the magnitude and the

onset conditions of the enhanced pressure drop, vortex growth dynamics and flow stability. Investigation

of the role of lip curvature is especially important because a major computational impediment to simulations

of the viscoelastic flow through a contraction-expansion is the development of singular stress fields near a

sharp re-entrant corner [Caswell 1996].

Sharp Re-Entrant Corner Rounded Re-Entrant Corner

Boger Fluid Corner Vortex Lip Vortex Corner Vortex Lip Vortex

PIB/PB [Boger and 6 / 8 2 8 p 6.8 8 3 8 2 6 p6.8
Binnington 1994;
McKinley et al. 1991]

PAA/CS [Boger 1987; 6 / 4 2 p6> 4 6 4
Boger and Binnington
1994; Nguyen and
Boger 1979]

PS/PS /3 4 8=2

Table 5-1 Vortex growth dynamics for several Boger fluids at various contraction ratios and re-entrant
corner radii of curvature.

As observed in Chapters 3 and 4, the sequence of flow patterns chosen by the viscoelastic fluid is

a complex function of the contraction ratio as well as the re-entrant lip curvature. The effect of lip curvature

on the vortex growth dynamics is summarized in Table 5-1. Boger and Binnington [Boger and Binnington

1994] presented a systematic photographic study using PIB/PB and PAA/CS Boger fluids while the vortex

growth dynamics observed using a similar PIB/PB Boger fluid were discussed by McKinley et al. [McKinley

et al. 1991]. These previous studies show that, for the PIB/PB Boger fluid at the contraction ratios examined,

rounding the re-entrant corner leads to increases in the critical Deborah numbers for flow transitions, but
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does not qualitatively change the kinematics of the flow field. However, rounding the re-entrant corner of

the 4:1 contraction with a radius of curvature equal to 36% of the contraction radius (R,= 0.36R 2) results in

a dramatic change in the vortex evolution for the PAA/CS solution [Boger and Binnington 1994]. Streak

images recorded upstream of the sharp re-entrant corner, clearly demonstrate the growth dynamics of a corner

vortex. However, the nature of the contraction flow was completely changed by rounding the re-entrant

corner. The formation of the expected corner vortex is suppressed and supplanted by a lip vortex [Boger and

Binnington 1994]. Boger and Binnington thus argue that the evidence suggests that rounding the re-entrant

corner is equivalent to decreasing the contraction ratio.

In Section 5-3, we first present observation of the enhanced pressure drop for several different re-

entrant lip curvatures. Flow visualization, and digital particle image velocimetry (DPIV) are then used to

characterize the evolution in the kinematics of the fluid motion with increasing Deborah number. Finally,

in Section 4-4 we discuss our finding.

5.2 Experimental

5.2.1 Flow Geometry

A schematic diagram of the axisymmetric contraction-expansion and the important length scales

associated with can be found in Chapter 3, Figure 3-1. Several different orifice plate configurations with

various re-entrant corner radii of curvature (R,) are used in this study and are listed in dimensionless form

in Table 5-2. The configurations investigated in the previous two chapters are included for completeness.

Description Contraction Ratio Re-entrant Lip Curvature Contraction Length
(Q=R, I R2) (Rr / R2 (L, / R2

2:1:2 2 < 0.01 0.5

4:1:4 4 < 0.01 1

4:1:4 Rounded 4 0.5 upstream only 1

8:1:8 8 < 0.01 2

8:1:8 Rounded 8 0.18 upstream and downstream 2

Table 5-2 Description of orifice plate geometries used in this study. In each case the value of the

upstream radius is R, = 1.3cm.

In this chapter, we define a dimensionless pressure drop that similar to the definition presented in

Chapter 4
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(5-1)Y D(QDO)RC (Q, De, Re, )
APJ', (Q, De = 0, RC = 0, p4= 4)

where the pressure drop resulting from the flow of a Newtonian fluid across a 4:1:4 sharp (R, = 0)

axisymmetric contraction-expansion at a given flow rate, AP' ud(Q, De = 0, RC = 0, /= 0), is used in the

denominator to non-dimensionalize the pressure drop resulting from the flow of the non-Newtonian test fluid

across each of the contraction-expansions at the same flow rate, regardless of re-entrant lip curvature.

5.3 Results

5.3.1 Pressure Drop Measurements

The effect of re-entrant corner curvature on the dimensionless pressure drop is shown in Figurse 5-1

for the 4:1:4 contraction-expansion with sharp (Rc < 0. 01R 2) and rounded (Rc = 0.5R2 ) re-entrant corners and
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Figure 5-1 Dimensionless pressure drop measurements, (De, , R,), of the 0.025wt% PS/PS solution
across two 4:1:4 axisymmetric contraction-expansions with different entrance lip curvature
as a function of Deborah number, De = A 11. The figure includes: o, p= 4 and RC = 0; and
0, 8= 4 and RC = 0.5 R2. The hollow symbols represent stable flow conditions while the
filled symbols represent unstable flow conditions.
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Figure 5-2 Dimensionless pressure drop measurements, §(De, , R), of the 0.025wt% PS/PS solution

across two 8:1:8 axisymmetric contraction-expansions with different entrance lip curvature

as a function of Deborah number. The figure includes: o, f= 8 and Re= 0; and 0, P= 8 and

Re = 0.18 R 2. The hollow symbols represent stable flow conditions while the filled symbols

represent unstable flow conditions.

Figure 5-2 for the 8:1:8 contraction-expansion with sharp (Re < 0.0 1R 2) and rounded (Re = 0.1 8R 2) re-entrant

corners. The resulting plots are very similar to Figure 4-1, showing all the same qualitative features. At low

Deborah numbers, the dimensionless pressure drop is Newtonian-like for all re-entrant corner curvatures and

contraction ratios. The limiting value of the dimensionless pressure drop at low Deborah number for the

rounded re-entrant corner is small, 9 - 0.35 for/p = 4 and Y~ 3.4 for P = 8, because the presence of the re-

entrant corner curvature has essentially been ignored in Equation 5-1. Recall that for a sharp contraction-

expansion the dimensionless pressure drop at low Deborah numbers will be equal to .(De <<1)= fi/64. The

regions of strong enhanced pressure drop and the onset of the elastic instability are still present even when

the re-entrant corner has been rounded. In fact, the only noticeable effect is a shift of onset conditions for

different flow regimes to higher Deborah numbers with increasing re-entrant comer curvature. This is

consistent with an overprediction of the characteristic deformation rate near the throat, which is at present

taken to be the deformation rate within the contraction throat, = Kv) 2 / R 2, independent of re-entrant corner

curvature. We return to discuss this shift in onset conditions in Section 5.4.
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Figure 5-3 Schematic diagram of flow into (a) an axisymmetric contraction-expansion with a curved
re-entrant corner and (b) a conical section.

These experiments show that the existence of enhanced pressure drop measurements above and

beyond the Newtonian pressure drop (P > 1) do not depend qualitatively on re-entrant corner curvature nor

on the onset of elastic instabilities. Thus, numerical simulations should be able to remove the singularity

associated with the sharp re-entrant corner and without hindering the ability of the constitutive model to

predict the large enhanced pressure drop seen in experiments.
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A systematic numerical study of the effect of lip curvature on the pressure drop across a contraction-

expansion has yet to be performed for either a Newtonian or a non-Newtonian fluid. The pressure drop

across the curved re-entrant corner can be estimated for a Newtonian fluid by adding the pressure drop

contribution from a series of short conical sections approximating the shape of the curved lip. This idea is

illustrated by the schematic diagram in Figure 5.3. As the number of conical sections, n, is increased, this

approach should converge to a value approximately equal to the pressure drop across the rounded re-entrant

corner.

The flow of a Newtonian fluid into a conical section at low Reynolds number was solved exactly by

Hamel in 1917 [Happel and Brenner 1965]. The fluid velocity and pressure gradients are given by

Ur = - I [sin' a -sin2

P =2K cos0sin0, (5-2)
c90 r'
aoP K2 - 2 cos2 0-sin 2  

3ar r4

where a is the cone angle at the wall and

, 3Q7

2n cos3a+-3sin2 a - 1(5-3)
1 2_

The pressure drop along the wall (0=a) thus becomes

AP = K [2 cos
2 a-sin 2 a] .1- - 1-. (5-4)

3 r r

The curved re-entrant corner can be mapped to an arbitrary number of conical sections. In Figure 5-4, the

dimensionless pressure drop across the curved lip which is defined as

cone flow - cone flow

APs.P~ 3Q '(5-5)
Sampson (5

R 32

is plotted as a function of the number of conical sections for a 4:1:4 axisymmetric contraction-expansion with
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Figure 5-4 Dimensionless pressure drop across the curved re-entrant lip calculated as a function of the
number of conical sections used to approximate form of lip for a 4:1:4 contraction-
expansion with an upstream re-entrant corner curvature of RJ/R2 = 0.5.

a lip radius of curvature of Rc = 0.5R 2. The analytical model quickly converges using less than 300 conical

sections. By calculating the pressure drop, AP,,flO, for each contraction geometry, the total dimensionless

Newtonian pressure drop across the axisyrnmetric contraction-expansion can thus be estimated for an

arbitrary re-entrant corner curvature

curved contraction _ Sampson (R2 cR + Alone flow - sulle (Rc

A-Psampson ApSampson ( 2 5

__R_ + AP" 8 Re (5-6)
+ 3

(R2 +Rc)3 3r7Q 37ER2
R 3

where the extra pressure drop resulting from the curved contraction, AP,'v,, cont,,cton , is defined by Equation

4-1. In Figure 5-5, we show that using this simple analysis, the experimentally measured dimensionless
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Figure 5-5 Dimensionless pressure drop as a function of degree of dimensionless lip curvature. The
data include: 'N', 4:1:4 axisymmetric contraction-expansion with R= 0 upstream and
downstream; 'e',/8 = 4, R, = 0.1 upstream and downstream; 'A', 8 = 4, R, = 0.5 upstream
only; 'L', p = 8, RC = 0 upstream and downstream; 'e', 8 = 8, Rc = 0.18 upstream and
downstream; and the analytical predictions from Equation 5-6.

pressure drop in the limit of small Deborah numbers De << 1 is predicted quite well for both the 4:1:4 and

the 8:1:8 axisymmetric contraction-expansions with various degrees of lip curvature. Data from several other

lip curvatures are needed to demonstrate the robustness of this analytical model, however, one can conclude

from Figure 5-5 that the dimensionless pressure drop is extremely sensitive to the small changes in re-entrant

lip curvature. This is evident both from the experimental data and the analytical model predictions. This

analysis will be used again in Section 5.4.1 when the data are rescaled to remove the effects of re-entrant lip

curvature and generate a series of master curves.

5.3.2 Vortex Growth Dynamics

Flow visualization was used to observe the vortex growth dynamics upstream of the contraction for

the geometries describe in Section 5.2.1 for Deborah numbers De s 7. The pseudo-streak images on the left-
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hand side of Figure 5-6 show the vortex growth and development of the vortex upstream of the sharp 4:1:4

contraction-expansion at Deborah numbers of De = 1.6, 2.6 and 3.6 while the images on the right-hand side

show the vortex development upstream of the 4:1:4 rounded contraction-expansion at the same Deborah

numbers. These images demonstrate the dramatic delay in corner vortex development that results from the

introduction of curvature to the re-entrant corner. At low Deborah numbers the 0.025wt% PS/PS solution

is essentially Newtonian and Moffatt vortices are present in the stagnant corners just upstream of the

contraction plane. An example of the flow patterns observed before the vortex growth and the increase in

the pressure drop is shown in Figure 5-6(d). As the Deborah number is increased, the corner vortices

increase in size and strength, Figure 5-6(a) and 6(e). The corner vortex 'fingers' out towards the contraction

4:1:4 Contraction-Expansion
Sharp Entrance Lip

4:1:4 Contraction-Expansion
Rounded Re-entrant Corner

d)

De= 1.6 ->

e)

SDe = 2.6

f)

De = 3.6 ->

Figure 5-6 Streak images comparing the flow upstream of a 4:1:4 axisymmetric contraction-expansion
with (a)-(c) a sharp entrance lip, R, = 0, and (d)-(f) a rounded entrance lip, R, = 0.5 R 2, taken
at identical Deborah numbers of (a),(d) De = 1.6, (b),(e) De = 2.6, and (c),(f) De = 3.6.
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Figure 5-7 Characteristics of the upstream vortex growth dynamics as a function of Deborah number
for the 4:1:4 axisymmetric contraction-expansion with rounded entrance lip, R= 0.5 R 2,:
*, vortex reattachment length, X= Lv / R 2 ; &, radial location of the vortex center, 4= RV / R 2 ;
El, the upstream location of the vortex center, C= Zv / R2; and +, vortex reattachment length
for the 4:1:4 contraction-expansion with sharp entrance lip, R, = 0.

entrance and the dividing streamline becomes convex. As the Deborah number is increased still further, a

pronounced increase in the dimensionless pressure drop is observed and the corner vortex begins to grow

upstream, Figure 5-6(b) and 6(f). In Figure 5-6(c), the presence of a global instability in the flow is evident

from the non-symmetric corner vortex. Visual observations and LDV measurements of this vortex show that

the vortex boundary precesses in the azimuthal direction so that fluid elements in fact follow a helical path

into the orifice.

The vortex growth dynamics of the 4:1:4 rounded contraction-expansion are quantified in Figure 5-7

through measurements of the dimensionless reattachment length and coordinates of the vortex center as a

function of Deborah number. To motivate the discussion of re-entrant corner curvature effects, the

reattachment length of the 4:1:4 sharp contraction-expansion has been superimposed over the complete set

of 4:1:4 rounded contraction-expansion data presented in Chapter 3. At low Deborah numbers, the

dimensionless reattachment length is constant with the expected value for creeping Newtonian flow. As the
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flow rate is increased, the reattachment length and the axial location of the vortex center begin to increase

monotonically with Deborah number. The radial location of the vortex center moves inward from the

stagnant corner to a position ~ 2 which then remains constant as the vortex grows upstream with increasing

Deborah number. Upon the onset of the elastic flow instability, all of the measured lengths begin to oscillate

with the unsteady motion of the vortex. These data show the same general functional dependence on

Deborah number as our earlier measurements for the sharp 4:1:4 contraction-expansion presented in Chapter

3. The principal result of rounding of the re-entrant corner is to cause a delay of the vortex growth dynamics

to higher Deborah number.

5.3.3 Flow Stability

As has been described in detail in both Chapter 3 and 4, the 0.025wt% PS/PS solution becomes

unstable to a slow non-symmetric precession of the enlarged corner vortex at large Deborah numbers. Laser

T = 25'C 

0.3 -E -

00

0.2

0.1

0.0
0 2 4 6 8

Deborah Number

Figure 5-8 Fundamental frequency of velocity and pressure drop fluctuations in the unstable upstream
flow into the axisymmetric contraction-expansions as a function of Deborah number. The
data include: Ei, v, and v2 for the 4:1:4 sharp contraction-expansion; 0, Ap for the 4:1:4
rounded contraction-expansion; and -, the theoretical prediction for a supercritical Hopf

bifurcation,f -(De - De,).
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Doppler velocimetry measurements are coupled with pressure drop measurements across the rounded 4:1:4

contraction-expansion to characterize the elastic flow instability. In Figure 5-8, the fundamental frequency

of the elastic instability is plotted as a function of the Deborah number. The fit to linear stability theory,

Equation 4-3, is superimposed over the data. The experimental data agrees well with the linear stability

theory for a supercritical Hopf bifurcation for (De - De,,) < 1, but as explained in Section 4.3.4, the data

deviates from the linear stability theory predictions as the Deborah number is increased. The critical

conditions for the onset of the subcritical Hopf bifurcation for all the contraction ratios and radii of curvature

are presented in Table 5-2. The data from Chapters 3 and 4 are included for compleleness. Rounding the

re-entrant corner delays the onset of the elastic instability but does not change its mQde. As the magnitude

of the instability and its frequency grow, it is interesting to note that the data from the sharp and the rounded

4:1:4 contraction-expansion superimpose. Thus, even though the effect of re-entrant lip curvature strongly

affects the linear onset conditions of the elastic instability, it appears to be much less important to the

nonlinear dynamics that govern the upstream kinematics at much larger Deborah numbers.

Critical Deborah Number for the Onset of the Elastic
Flow Instability

4:1:4 Sharp Contraction-Expansion 2.4 0.1

4:1:4 Rounded Contraction-Expansion 3.1 0.2

8:1:8 Sharp Contraction-Expansion 4.2 0.2

8:1:8 Rounded Contraction-Expansion 4.8 0.2

Table 5-3 Critical conditions for the onset of the supercritical Hopf bifurcation.

5.4 Discussion

In the research presented in Chapters 3, 4 and 5, we have presented a comprehensive set of

experimental measurements of the complex flow of a dilute monodisperse polystyrene solution into

axisymmetric contraction-expansions of various contraction ratios and re-entrant corner curvatures. The

rheological properties of the test fluid have been well characterized in both shear and extension, making these

experiments a demanding comparative tool for constitutive models and numerical simulations.

An enhanced pressure drop associated with the extensional flow of the viscoelastic fluid across an

axisymmetric contraction-expansion but not directly connected with the onset of an clastic instability was

observed for all geometries tested. Measurements of the flow kinematics for each geometry were also made
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with streak images, LDV and DPIV. The general evolution of the pressure drop measurements and the flow

kinematics were found to be independent of the radius of curvature of the re-entrant corner, although the

critical conditions for the transitions in pressure drop and vortex growth are a function of both the lip

curvature and the contraction ratio. LDV and pressure drop measurements were used to characterize a

supercritical Hopf bifurcation at large Deborah numbers which resulted in a global elastic instability,

breaking the symmetry of the large enhanced upstream vortex and precessing in the azimuthal direction. This

instability was observed for the 4:1:4 and 8:1:8 contraction-expansions irrespective of lip curvature.

5.4.1 Scaling of the Effects of Lip Curvature

The experiments with curved re-entrant corners support earlier observations in PIB/PB [Boger and

Binnington 1994; McKinley et al. 1991] and PAA/CS elastic fluids [Boger 1987; Boger and Binnington

1994; Nguyen and Boger 1979] and suggest that numerical simulations should be able to remove the

singularity associated with the sharp re-entrant corner without affecting the ability of the constitutive model

to predict the large enhanced viscoelastic pressure drop seen in experiments. The qualitative similarity seen

in Figures 5-1, 5-1 and 5-7 between the evolution in the vortex dimensions (C, 4 and X) and the extra pressure

drop (Y) with increasing Deborah number in the 4:1:4 contraction-expansions with sharp and rounded re-

entrant corners suggest that it should be possible to collapse the data into a single generic response for a

given contraction ratio. The principal effect of smoothing the re-entrant corner is to increase the radius of

curvature and decrease the rate of deformation along the streamlines entering the contraction by removing

the re-entrant corner singularity. For a low Reynolds number flow, an appropriate estimate of the residence

time for a fluid element in the vicinity of the curved throat region is given by T ~ (R2 +RI)/<V,>2. The

Deborah number then becomes De = <v,>2/(R2+R,). This simple scaling of the abscissa does a remarkable

job of collapsing the vortex growth data for the 4:1:4 sharp and rounded re-entrant corners onto a single

curve, as shown in Figure 5-9a, even matching the transition to time-dependent flow.

Changing the local curvature of the lip entrance also affects the value of the entrance pressure drop

for the creeping flow of a Newtonian fluid that is used to scale the ordinate axis in Figure 5-9b. As defined

in Equation 5-1, the dimensionless pressure drop tends to be underpredicted (Y < 1) for geometries with

curved re-entrant lips. Comparison of the dimensionless pressure drop data after appropriately shifting the

Deborah number in the manner described above supports the expectation that the extra pressure drop at high

Deborah numbers following upstream vortex growth is independent of the specific details of the local lip

curvature. The principal effect of the lip is experienced at low Deborah number when the converging flow
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Figure 5-9 Master curves of (a) reattachment length and (b) dimensionless pressure drop measurements,
£(De, 8, R,), for the flow of the 0.025wt% PS/PS solution across two 4:1:4 axisymmetric

contraction-expansions with different entrance lip curvature as a function of Deborah
number shifted to account for re-entrant corner curvature (see text for details). The figures
include: ,f = 4 and R = 0; O, =4 and R, = 0.5 R2 ; A, 8 and R, = 0; and o,P = 8 and
RC= 0.5 R 2 -
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near the contraction plane is of the Sampson type. The dimensionless pressure drop (which we always scale

with the Sampson flow solution for entrance in a sharp orifice APs = 317Q/R) can thus be adjusted through

the addition of a Couette-like, creeping flow correction, C,(#, R)= 'hap(De = 0) - cuer,,d(De = 0), to take into

account the pressure drop corresponding to the Newtonian flow through the curved entrance region. In

Figure 5-9b, the results of this scaling of the dimensionless pressure drop yshifted =cured + sp, Re) is shown

for two cases: the 4:1:4 sharp and rounded contraction-expansions where the Couette-like correction was

found from experiments to be C,(R/R 2 =0.5,/ #= 4)= 0.35 and the sharp and rounded 8:1:8 contraction-

expansions where C,(R,/R 2 =0.18, = 8)= 4.6. The latter data are presented to demonstrate the robustness

of this scaling over several contraction ratios and radii of curvature. It is dangerous to generalize based on

experimental data with only two values of radius of curvature (R, = 0.1 8R 2 and 0.5R 2), but this rescaling of

the Deborah number also collapses quite well the trends of vortex reattachment length reported in the

literature for PIB/PB Boger fluids [McKinley et al. 1991]. It would be very interesting to see if this simple

incorporation of curvature effects on vortex size and pressure drop is supported by numerical calculations

in which the radius of curvature of the re-entrant corner is systematically varied over a broad range.

The pressure drop measurements, LDV and DPIV measurements, and the streak images coupled with

the use of a monodisperse dilute polymer solution, well characterized in shear and extension, make this set

of experiments presented in Chapters 3,4 and 5 a useful tool for forming comparisons with theoretical and

numerical work.
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CHAPTER 6 Flow Induced Bireftingence Measurements of the Flow through
an Axisymmetric Contraction-Expansion

6.1 Introduction

Flow induced birefringence has typically been used only in two-dimensional flows of polymer melts

and solutions such as planar contractions and planar extension because it is a line of sight technique. In these

two-dimensional flows, where the conformation does not vary along the path of the light, Figure 6-1 shows

that flow induced birefringence can generate a pointwise measure of the anisotropic conformation field. If

the stress-optic rule is determined to be valid, then these measurements of polymer coil deformation can be

converted directly to polymer stress. Direct comparison of these experimental measurements is possible with

numerical simulations using any desired constitutive model [Beraudo et al. 1998]. The early measurements

of flow induced birefringence were obtained by taking full field photographs of light having passed through

crossed polarizers placed on either side of a flow cell [Boger and Walters 1993; Janeschitz-Kriegl 1983].

Quantitative stress field measurements are then calculated from these images by counting fringes [Beraudo

et al. 1998; Fuller 1995; Mackay and Boger 1988; White et al. 1987]. The resolution of this technique is

coarse as it is constrained by both the temporal and spatial resolution of the imaging camera and is only

applicable for highly birefringent materials such as polymer melts. More advanced point-wise high

resolution flow induced birefringence measurement techniques using polarized laser light have been

developed over the past 20 years [Frattini and Fuller 1984; Fuller 1995]. Quinzani et al. [Quinzani et al.

1994; Quinzani et al. 1995] used laser Doppler velocimetry (LDV) and a two color birefringence technique

developed by Chow and Fuller [Chow and Fuller 1984] to probe the flow of a 5% PIB/tetradecane solution

through an abrupt 4:1 planar contraction. The measured centerline velocities were converted to strain rates

by differentiation and used to calculate the fluid stress predicted by various constitutive models [Quinzani

et al. 1995]. The predictions of the constitutive models were able to qualitatively reproduce the flow induced

birefringence measurements of the stress for this nonhomogeneous planar elongational flow, however, these

experiments were limited by the low range of Deborah numbers (De < 0.8 ), the influence of inertia and the

small Hencky strains achieved. Two-dimensional flow induced birefringence measurements have also been

used very successfully in homogenous transient uniaxial elongation experiments [Doyle et al. 1998]. A

detailed account of these experiments will be presented in Chapter 7.

In an axisymmetric or three-dimensional geometry the molecular conformation does vary along the

line of sight. This nonhomogeneous flow results in an integrated measure of the flow induced birefringence
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Figure 6-1 Flow chart outlining the means of quantitative comparison between numerical simulation
and experimentally obtained optical and mechanical measurements of homogeneous and
inhomogeneous polymeric flows.

and subsequently the anisotropic conformation. The pioneering work in this area was performed by Li and

Burghardt [Li and Burghardt 1995] who investigated the axisymmetric stagnation flow of a polystyrene

Boger fluid past a cylindrical obstruction with a hemispherical cap. Li and Burghardt demonstrated that even

though a pointwise measure of the conformation field could not be achieved, axisymmetric flow induced

birefringence (AFIB) is an excellent tool for comparison between the results of numerical simulations and

experiments [Li and Burghardt 1995; Li et al. 1998; Li et al. 2000]. As shown in Figure 6-1, to perform such

a comparison in nonhomogeneous flows, the conformations and stresses in the flow field upstream and

downstream of a contraction-expansion can be numerically computed using a chosen constitutive model.

The results of these numerical simulations can be integrated along the path of the laser beam and

systematically compared to the experimentally measured conformation fields. Some recent research by Yu
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et al. [Yu et al. 1998] used axisymmetric flow induced birefringence to investigate the extensional flow into

capillary nozzle submerged in a fluid reservoir. Poor agreement was found upon comparison with numerical

simulations. As in two-dimensional flows, these flow induced birefringence measurements can thus be

instrumental in determining the validity and gauging the performance of various constitutive models in

complex flows.

In this chapter, the experimental technique of axisymmetric flow induced birefringence

measurements is introduced. Measurements of axisymmetric flow birefringence are presented for the

0.025wt% PS/PS Boger fluid upstream and downstream of a 2:1:2 and a 4:1:4 contraction-expansion over

a large range of Deborah numbers. The results demonstrate a region of strong polymer alignment and

upstream extension for both contraction ratios with a weak region of biaxial compression downstream of the

expansion. The region of extension is found to grow in magnitude and move upstream as the Deborah

number is increased while the region of biaxial compression is found to be insensitive to changes in Deborah

number. The flow induced birefringence measurements are then used to explore the different vortex growth

mechanisms observed at different contraction ratios. Lastly, axisymmetric flow induced birefringence is

demonstrated to be a very sensitive means of detecting elastic flow instabilities.

6.2 Theory of Flow Induced Birefringence (FIB)

The molecular polarizability and hence the macroscopic refractive index of a typical linear homo-

polymer chain is different in the direction parallel to and normal to the chain backbone [Fuller 1995]. Flow-

induced birefringence utilizes this refractive index mismatch to probe the microscopic deformation of

polymer chains. Optical birefringence measurements are noninvasive and extremely sensitive to small

changes in the local orientation and deformation of the polymer chain. For this reason, flow-induced

birefringence measurements have been used quite extensively to examine steady and transient flows of

polymeric fluids [Fuller 1995]. By passing light of a known polarization state and frequency through the

polymeric fluid sample and measuring the resulting change in polarization state, flow-induced birefringence

can be used to determine the local anisotropy in the conformation of the polymer chains [Fuller 1995]. The

resulting expression for the birefringence is

An'k A
c= nkBTAA, (6-1)
C

where An' is the measured birefingence, C is the stress-optical coefficient, nkB T is the elastic modulus of
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Figure 6-2 Schematic diagram of axisymmetric flow induced birefringence optical train.

the fluid, and AA = Al1 - A2 is a measure of the anisotropy in the average conformation of the polymer chain.

The polymer conformation is characterized by the dimensionless second moment tensor, A = <QQ>/Qq2 ,

where Q is the end-to-end vector of the polymer chain. The theoretical value of the stress optic coefficient

is given by [Fuller 1995]

271(n'2 +2~
C = (a - a 2 ), (6-2)

45nk B T

where isotropic index of refraction is n' = 1.5468 and the difference in polarizability is (a, - a2)

- 1.45 x 10-23 cm 3 resulting in a value of C = -6.4x 10- Pa-' for the 0.025wt% PS/PS solution [Brandrup and

Immergut 1989]. However, to be consistent with the values in the literature of polystyrene in an aromatic

solvent, a stress-optic coefficient value of C= -5.Ox 10 9 Pa' will be used in all of our FIB calculations

[Doyle et al. 1998].

The optical path for the polarization modulated flow birefringence system employed in this research

is shown in Figure 6-2 and is similar in design to the optical train first introduced by Frattini and Fuller

[Frattini and Fuller 1984]. The polarized laser light is generated by a 20 milliwatt, 632nm Helium-Neon laser

(Uniphase 1135P). The light passes through a linear polarizer (Karl Lambrecht Corp. MGT3E8-90) oriented

at 00 from the vertical axis of the flow cell. The polarized light then passes through a photo-elastic

modulator (Hinds Instruments 0385-0) oscillating at 44kHz and oriented at 45'. The light is sent through

the flow cell and then a second linear polarized (Karl Lambrecht Corp. MGT3E8-90) oriented at -45.

Finally, the light passes through a collecting lens before striking on the photodetector (New Focus 1601).

The output from the photodetector is split and fed through a low pass filter (EG&G 5113) to

determine the DC intensity and a pair of lock-in amplifiers (EG&G 7260) to measure the amplitude of the

142



signal in phase with the fundamental frequency and out of phase with first harmonic of the dual-crystal

modulator. These measurements are recorded on a PC through a data acquisition card interfaced with

Labview. The intensity the light entering the photodetector is given by:

I(t) = Idc+ I, sin cot + I cos 2wt,

I, = 2J, (Ac )IdcM 34 = 2Ji (Ac )Id csind cos 2X, (6-3)

2, = 2J 2 (Ac )IdcM 32 = 2J 2 (A) 1c [1 - cos85]sin 2x cos 2x,

where M3 and M12 are the components of the Mueller matrix corresponding to the optical train

shown in Figure 6-2a and A, is the amplitude of the electro-optical modulation calibrated such that the

Bessel function of the first kind of order zero is equal to JO(A) = 0 [Frattini and Fuller 1984]. The advantage

of using a modulation technique is that it is possible to simultaneously measure the

retardation, S = (27T An d) / Alih,, and the extinction angle, X, where d is the pathlength of the laser and 2 hlgh,

is the wavelength of the laser light. Solving Equations 6-3 for the retardation and extinction angle, one finds

_m2 +1IM: 4 3M2
8=cos'Cs1 32- 34 32 )

M2 +M2
(6-4)

1 1 3_\ My
%=-cos .

2 1 sin S

In the flow through an axisymmetric geometry such as the contraction-expansion, the molecular

conformation of the polymer coil varies along the path of the light resulting in an integrated measure of the

flow-induced birefringence. If the retardation is small, << 1, then the integrated version of Equation 6-3

becomes

M3 S cos2 = f cos2X dl

- 0 (6-5)

M2=- sin22cos2x = A 2 cos 2X sin 2X d I

where / is the path of the light through the birefringent material and 5 and X are spatially averaged effective
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values of the retardation and extinction angle and M 32 and M3 are the spatially averaged Mueller matrices

[Li and Burghardt 1995]. Equation 6-4 still holds for the effective values of retardation and extinction angle,

however, deconvoluting Equation 6-5 to calculate local measures of 6(r, z) andX(r, z) is an ill-posed problem,

although it has been attempted in the past [Yu et al. 1998]. Numerical simulations must be used to compare

measured and computed values of M 3 2 and MW directly [Li et al. 2000].

6.3 Flow cell design and calibration

The flow cell used for the FIB measurements is shown in Figure 6-3 and was created by boring a

circular hole through a block of low birefringence glass (Schott BK7). Several easily interchangeable

aluminum contraction-expansions inserts were designed to fit tightly within the glass flow cell. The

contraction ratio and aspect ratio of the inserts were chosen to be consistent with those used in Chapters 3

and 4 to measure macroscopic flow parameters such as pressure drop and fluid velocities. The results of

AFB for a 4:1:4 and 2:1:2 sharp contraction-expansion are presented in this chapter. To establish a seal

between the flow cell and upstream and downstream tubing, the glass is mounted within an aluminum
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Figure 6-3 Schematic diagram of flow cell used for flow induced birefringence measurements of the
axisymmetric contraction-expansion. The flow cell is comprised of: A) a block of low
birefringence glass; B) a removable aluminum contraction-expansion; and C) an aluminum
superstructure.
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superstructure and held under constant compression. The same linear displacement stepper motor and fluid

reservoir setup used in Chapters 3 through 5 is again used to drive the 0.025wt% PS/PS Boger fluid through

the contraction-expansion. The birefringence optical train is rigidly mounted to an optical rail (Klinger).

In order to probe the birefringence within the entire flow field, the flow cell, fluid reservoir and motor

assembly are mounted on a three axis computerized stage (Compumotor 4000 and Parker 102793Q) with a

±2pm position accuracy and 10cm of travel in all directions. The flow cell was carefully aligned with the

optical train along all three axes.

One of the major difficulties in this technique is quantifying and subsequently removing any parasitic

birefringence in the system. The chief source of parasitic birefringence is the glass used to construct the flow

cell. The glass contains unknown residual stresses from the fabrication process. The birefringence

associated with these residual stresses can be neglected in the final analysis of the optical path if one chooses

a low birefringence optical glass such as Schott BK7. The flow cell is exposed to both a constant

compressive stress exerted by the aluminum superstructure as well as an internal pressure field dependent

on flow conditions. The effect of these stresses can be minimized by using a glass with an extremely small

stress-optic coefficient, however, in these experiments they can not be ignored.

The two components of the Mueller matrices M3 2 and M 3 4 are dependent not only on the flow-

induced birefringence, but also on the parasitic birefringence of the glass. To calculate the retardation and

extinction angle of the fluid, it is necessary to first determine the compression-induced and pressure-induced

retardation and extinction angle, (5, X, and ,, X, respectively, so they may be systematically removed from

the measured flow signals. If the retardation of any of three birefringence signals is large, this process can

be a very difficult exercise in Mueller calculus [Azzam 1978; Fuller 1995]. However, if the retardation is

assumed to be small, << 1, then the contribution to the total birefringence signals of each component (flow,

pressure and compression) become additive

E3= 1 cos 2X, + cos 2X FIB cos 2
XFIB* (6-6)

Again, the overbars indicate quantities that have been integrated along the path of the incident beam. Li and

Burghardt [Li and Burghardt 1995] examined the practical limits for the small angle assumption when used

in the removal of the parasitic birefringence. They found an error of 5-10% in the flow induced birefringence

calculated from Equation 6-6 for parasitic birefringence values on the order of (5 = 0.1-0.2 radians. To avoid

incurring such errors in our measurements, the full Mueller matrix was solved to determine the flow induced

birefringence at each point.
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Figure 6-4 Axisymmetric flow induced birefringence measurements of the 0.025wt% PS/PS Boger fluid
along the centerline upstream of a contraction-expansion at a Deborah number of De = 4.0.
The data include: '0', contribution of compressive stress; 'A', pressure; 'v', flow-induced
birefringence; and 'o' the total measured retardation.

Due to a strong mismatch in the indices of refraction between the flow cell glass (n' = 1.5151) and

the polystyrene Boger fluid (n'= 1.5468), curvature effects make it possible to take FIB measurements only

along or very near to the centerline of the flow cell. To make measurements off of the centerline, the test

fluid must be closely index-matched to the flow cell glass. The only way to reduce the index of refraction

of the 0.025wt% Boger fluid is to add an additional solvent component with a much lower index of

refraction. Unfortunately, this would significantly alter the rheological properties to the test fluid. The

decision was made not to index match because the chief goal in this research was to take centerline

measurements of polymer chain deformation and orientation to compliment the macroscopic flow

measurements reported in Chapters 3 through 5. Since axisymmetric flow induced birefringence

measurements integrate the conformations of the molecules across the entire flow field, these centerline

measurements actually succeed in sampling the entire flow field in one single integrated measure of effective

retardation. As a consequence of the limitation to centerline birefringence measurements, the orientation of
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the projection of the polymer coils on the r-z plane is always aligned with the z axis. In other words, the

extinction angle is equal to X= 00. If the system is aligned properly, then M will be vanishingly small

compared with M,. For this reason, it is therefore unnecessary to include an expression for M3 in Equation

6-6. If, however, measurements were possible across the entire radius of the flow cell, then the birefringence

optical train shown in Figure 6-3 would need to be altered by adding quarter-wave plates after the photo-

elastic modulator and before the analyzer. These changes would reproduce the system used by Li and

Burghardt [Li and Burghardt 1995], making the expression for M 3 2 linear, rather than quadratic, in

retardation. The disadvantage of adding quarter wave plates to a birefringence optical train is that they can

introduce a additional error into a measurement that is already very difficult to make.

In Figure 6-4, the procedure for systematically removing the pressure and compressive contributions

to the total retardation signal is illustrated for the axisymmetric flow-induced birefringence measurements

taken along the centerline upstream of the contraction plane (z < 0) at a Deborah number of De = 4.0. The

magnitude of the compression induced birefringence in the glass is of the same order as the flow induced

birefringence in the fluid while the retardation caused by the fluid pressure is relatively small. Both of the

parasitic birefringence sources in the glass are strongly dependent on axial position and must be calibrated

at each measurement point upstream. The compression-induced birefringence is isolated by performing

measurements of the flow cell in the absence of flow and at zero hydrostatic pressure. This calibration is

independent of flow conditions, but does depend on the exact loading of the glass in the aluminum

superstructure and could change over time if the flow cell experiences a change in temperature or a slight

shift in position. To minimize systematic errors, a calibration is performed before every experiment.

The determination of the proper calibration for the pressure induced birefringence in the flow cell

is a little more difficult. Pressure transducers are mounted upstream and downstream of the contraction-

expansion. A valve is closed downstream of the flow cell and the linear stepper motor is used to compress

the fluid and increase the pressure within the flow cell. This static pressure increase should result in no

appreciable change in the compressive parasitic birefringence, nor will it cause the fluid to flow resulting

in microstructural deformation. The change in birefringence is measured as a function of fluid pressure and

is shown in Figure 6-5. The retardation is found to increase linearly with a slope of 4.8x10 - rad/kPa while

the extinction angle remains constant at a value of 830. Ideally, the extinction angle should be at 900,

however, these extinction angle measurements are extremely sensitive to very small fluctuations in the 2w

signal. Using the slope of the retardation as a function of static pressure, the stress-optic coefficient of the
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Figure 6-5 The retardation and extinction angle for the pressure induced parasitic birefringence in the
flow cell glass at a position r/R2 =0 and z/R 2  10 upstream of the contraction plane. The
data include: 'E', retardation; '0', extinction angle; and '- -' the linear fit for each set of
data.

glass is calculated to be 1.9x10- Pa 1, well within the range quoted by the manufacturer. During a given

experiment, the axial pressure profile is calculated from a single pressure measurement far upstream and the

assumption of the Poiseuille pressure drop in the straight tube leading to the contraction plane. The stress-

optic coefficient of the glass is then used to determine the appropriate value of the pressure induced

retardation at each measurement location upstream of the contraction plane.

6.4 Results and Discussion

6.4.1 4:1:4 Contraction-Expansion

The procedure described in the previous section is used to remove the parasitic birefringence and

isolate the effective retardation from all the data presented in this and the following section. The

measurements are left in the form of an effective retardation, 8, but one could just as easily convert the

measurements into an effective birefringence, An', or an effective conformation, AA. The extinction angle,
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Figure 6-6 Schematic diagram depicting polymer coil orientation and elongation as it passes along the
centerline of an axisymmetric contraction-expansion.

as expected, is found to be very close to 0 for all experiments performed.

A schematic diagram of the polymer chain deformation in the flow upstream and downstream of the

contraction-expansion is presented in Figure 6-6 to assist with the interpretation of the effective retardation

data. Figure 6-6, is intended to help emphasize that these nonhomogenous birefringence measurements are

in fact integrals of the polymer coil conformation along the entire path of the interrogating laser beam. Far

upstream and downstream, the polymer coils orient and elongate in the flow direction due to the shear flow

along the tube walls and close to the contraction the extensional flow along the centerline. However, very

near the contraction and expansion planes, the polymer coils away from the centerline are compressed with

respect to the direction of the flow because of the strong shear in the recirculating vortex upstream of the

contraction wall. A laser passing through the fluid near the contraction plane will therefore first encounter

a region of axial chain compression followed by a zone of axial chain extension near the centerline and

finally another region of compression. The result is a complicated effective retardation signal dependent not

only on the relative magnitude of the polymer coil compression and extension, but on the size of each region

of influence as well.

In Figure 6-7, the retardation measured along the centerline upstream of the 4:1:4 contraction-

expansion is shown at several Deborah numbers for the 0.025wt% PS/PS Boger fluid. The retardation of the

low Deborah number experiments in Figure 6-7 is extremely small, almost indistinguishable from the

background noise. As the Deborah number is increased, the shear deformation caused by radial outflow
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Figure 6-7 Equivalent retardation measurements of the 0.025wt% PS/PS Boger fluid along the
centerline upstream of a 4:1:4 axisymmetric contraction-expansion. The data include: 'o',
a Deborah number of De = 0.5; '0', De = 1.0; 'A', De = 1.5; 'v', De = 2.0; '', De =2.5;
'0', De = 3.0; ',L', De =3.5; and '"', De =4.0.

along the plane of the contraction, z/R 2 z 0, results in a weak axial compression of the polymer chain, 3 > 0.

As the Deborah number is increased, an extension of the polymer chains, 5 < 0 , is observed. This extension

is the result of the strong extensional flow along the centerline upstream of the contraction plane. The

influence of the shear flow along the contraction plane is still observable, although the flow near the

contraction wall has reversed and the compression is due to a radial outflow near the contraction plane, z/R2

= 0. The magnitude and upstream influence of the chain elongation increases concurrently with the growth

and development of the corner vortex described in Chapter 3.

The effective retardation measurement far upstream is an opportunity to compare the experimental

results to the predictions of theory. Assuming the stress optic law is valid for these small shearing

deformations we can write [Fuller 1995]

An'sin 2 = 2Cr12 ,

An'cos2 =2C(r -r2 ), (6-7)
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Figure 6-8 Equivalent retardation measurements of the 0.025wt% PS/PS Boger fluid along the
centerline downstream of a 4:1:4 axisymrnetric contraction-expansion. The data include:
'o', a Deborah number of De = 0.5; '0', De = 1.0; 'A',De = 1.5; 'v', De = 2.0; '', De=
2.5; ' A', De = 3.5; and 'v', De = 4.0.

where the subscript 1 represents the flow direction, z, and the subscript 2 represents the shear direction, r.

Solving for the birefringence and extinction angle variation along the centerline we find

An'(r)= C(4 r (r)+(rrr (r)-r, (r)),

- -r~ (6-8)

X(r) = tan' (r-. (r)j
2 Lr,. (r)r - i. (r)

If it were possible to take measurements off of the centerline, then the direction of light propagation would

not be coincident with the chord of the circular cross section of the flow cell. For off centerline

measurements, the laser light path is more easily expressed in terms of Cartesian coordinates. The full

analysis for a general axisymmetric flow has been presented previously by Li and Burghardt [Li and

Burghardt 1995] and will not be reproduced here.
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If the fluid motion is assumed to be a Poiseuille flow far upstream of the contraction and the fluid

is assumed to be a Oldroyd-B fluid, constant viscosity and first normal stress coefficient, the shear stress and

first normal stress difference can be easily calculated as a function of the radius

4Q,( r r

N ={ - f..V =2 4Q)' r 2r'De( r 2(6-9)

N2 =0,

where rW is the shear stress at the wall, Q is the volume flow rate and the Deborah number, De, and the

contraction ratio, /, are defined as in Chapter 3. Substituting Equations 6-9 and 6-8 into Equation 6-5 the

integral expressions for the shear flow in a tube become

- = 27C ,1 27C R1 De r 2

05 =2 N, (r) dr = 2 2-r, dr,
SA )3 R (6-10)

S=0.

Integrating Equation 6-10 we find that for the 0.025wt% PS/PS Boger fluid

- 32c CrqR, De2  De2

8 = -= 0.091 .(6-11)
3 ight i f

The polymer deformation that should result from the shear flow along the tube walls tube far

upstream of the 4:1:4 contraction-expansion is not significant enough to be observed at these low flow rates

as Equation 6-10 predicts a value for the Mueller matrix to be less than This value is well below the

resolution of our AFIB system and therefore all of the retardation measurements approach zero far from the

contraction upstream. However, as the contraction ratio is decreased, the birefringence signal upstream will

increase as (R2,4 :4/R 22 ,2 )6 for a fixed Deborah number. For the 2:1:2 contraction-expansion it is possible

to quantify the shear induced orientation and stretching of the polymer chains upstream. The results of these

experiments will be presented in Section 6.4.2.

To investigate the flow downstream of the contraction-expansion, the direction of the stepper motor

is reversed and the test fluid is drawn through the contraction-expansion into the flow cell. The retardation

152



along the centerline downstream of the axisymmetric contraction-expansion is shown in Figure 6-8 for the

Deborah numbers presented in Figure 6-7. For small Deborah numbers, the effective fluid retardation is

again found to be essentially zero. As the Deborah number is increased, a region of compression is observed

to form roughly one contraction radius downstream of the re-expansion, z/R2 ~ 3. Note that the throat is of

length L, = 2R 2 and thus the expansion plane is located at a position, z/R 2 = 2. This region of compression

results from the biaxial expansion of the test fluid suddenly decelerating as it passes out of the throat

[Townsend and Walters 1994]. This effect is similar to the die swell phenomenon observed at the exit of a

narrow capillary. The extent of the biaxial expansion is limited by the presence of the downstream walls.

The magnitude and position of this compression region appear to be independent of Deborah number. At

still larger Deborah numbers, the extensional flow upstream of the contraction and the strong shear flow

within the contraction couple to produce a region of residual molecular extension just downstream of the re-

expansion plane. This region of extension begins with a effective retardation comparable in magnitude to

the maximum extension observed upstream and decays very quickly entering the region of biaxial

compression. In fact, we can estimate the effective retardation of the fluid exiting the throat from the

effective retardation measurements upstream of the contraction. The resonance time of a fluid element

traveling along the centerline to pass through the contraction is equal to

Atresonance = 2 (6-12)
A (Vz )2

The conformation of the polymer coils and therefore the birefringence signal will decay on the fluid

relaxation timescale. The birefringence signal at the expansion plane can thus be estimated as

(z = 2R 2 ) J(z = O)e =5 (Z = 0 )e( LC X . (6-13)

For the 4:1:4 contraction-expansion Equation 6-13 simplifies to

OY(z = 2R 2 )= 5(z = )e(6-14)

For the Deborah number De = 4.0 test Equation 6-14 predicts that the effective retardation should be 78%

of the upstreamretardation, J (z = 2R 2 )= 0.78 Y (z = 0). Although the experimental measurements suggest

a value closer to 90%, this quick estimate does remarkably well considering that it neglects the deformation

caused by the shear flow along the walls within the throat.
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6.4.2 2:1:2 Contraction-Expansion

In Figure 6-10, the retardation measured along the centerline upstream and downstream of the 2:1:2

contraction-expansion is shown for a wide range of Deborah numbers. The throat is of length Lc = 0.5R 2 and

the expansion plane is located at a position, z/R 2 = 0.5. The results of the axisymmetric flow induced

birefringence measurements are qualitatively similar to the 4:1:4 contraction-expansion. At low Deborah

numbers, very little polymer chain deformation is observed until the coil has reached the immediate vicinity

of the contraction plane. As the Deborah number is increased, a region of strong extension appears upstream

of the contraction, increasing in strength and extent as the vortex grows. The effect of shearing along the

contraction plane, so prominent in the case of the 4:1:4 contraction-expansion, is almost nonexistent. The

effective retardation is not considerably affected near the contraction plane. This may be a reflection on the
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Figure 6-9 Equivalent retardation measurements of the 0.025wt% PS/PS Boger fluid along the
centerline upstream and downstream of a 2:1:2 axisymmetric contraction-expansion. The
data include: 'o', a Deborah number of De = 0.25; 'o', De = 0.5; ',7', De = 0.75; 'o',De
= 1.0; 'A', De = 1.5; 'De = 2.0; '', De = 2.5; '&', De = 3.0; 'v', De = 3.5; and De
= 4.0.
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Figure 6-10 Equivalent retardation as a function Deborah number squared for the flow induced
birefringence measurements of the 0.025wt% PS/PS Boger fluid far upstream of the

contraction plane. Data include: 'N', experimental data; and '- -', theoretical fit assuming
a Poiseuille velocity profile and a Oldroyd-B fluid.

comparable strength of the recirculating vortices, but more likely, it is a byproduct of this spatial averaging

birefringence technique. By reducing the contraction ratio from f 4 to / = 2, the lateral extent of the

region of compression has been reduced by a factor of two while the radial extent of the region of extension

has been doubled. This simple geometrical argument suggests that the effect of shearing along the

contraction plane will be reduced by a factor of about four while the maximum effective retardation should

be roughly twice as large. This is indeed the case. Downstream of the re-expansion, the region of

compression found in the 4:1:4 contraction-expansion is observed, but is found to be extremely weak. The

change in pipe diameter is not large enough to result in any significant biaxial compression of the polymer

coils.

Far upstream of the contraction plane, a weak extension in the polymer chains is observed and found

to increase monotonically with Deborah number. In Figure 6-12, the value of the 5 measured far upstream

(z - 5R 2) is plotted as a function of Deborah number squared. As predicted by Equation 6-11, the effective
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retardation of the shear flow in a pipe is found to increase quadratically with Deborah number. It is possible

to calculate the stress-optic coefficient of the test fluid from the slope. Using the average single mode

Oldroyd-B relaxation time, 2, defined in Section 3.2.5 to determine the Deborah number, the stress optic

coefficient is calculated to be C= - .Ox 10-' Pa'. This value is quite a bit smaller then the range of values

often quoted in the literature for polystyrene in an aromatic solvent, -6.Ox 10-9 Pa < C < -3.Ox 10-9 Pa-

[Rajagopalan et al. 1992; Wales and Janeschitz-Kriegel 1968]. Unfortunately, the value of the stress optic

coefficient determined from this procedure is dependent on the choice of relaxation time. To calculate the

average relaxation time we have used the first normal stress coefficient in the limit of zero shear rate, PJ0.

For the Maxwell model, a more appropriate first normal stress coefficient may be the value at the knee

observed in the steady shear rheological data and reproduced by the Bird-DeAguiar model in Section 3.2.5.

After re-evaluating the relaxation time using this value of V,, ..... we find A = 0.035s. Refitting the data, the

stress optic coefficient becomes C = -4.lx0- 9 Pa', a much more realistic value. To obtain a truly

independent measure of the stress optic coefficient, an experimental technique independent of Deborah

number must be employed. Li and Burghardt [Li and Burghardt 1995] demonstrated just such a technique

for shear flow in a pipe by using birefringence measurements taken off of the centerline. Unfortunately,

because the present test fluid is not index-matched to the refractive index of the optical glass, we were unable

to unambiguously calculate the stress optic coefficient of the 0.025wt% PS/PS Boger fluid.

6.4.3 Effect of Vortex Growth Mechanism on Flow Induced Birefringence Measurements

The vortex growth mechanisms for a 2:1:2 and a 4:1:4 contraction-expansion are quite different. As

described in detail in Chapter 4, in the case of the 2:1:2 contraction-expansion a 'lip' vortex is observed to

form near the re-entrant corner, grow towards the salient corner and then move upstream with increasing

Deborah number. This 'lip' vortex is not observed for a 4:1:4 or an 8:1:8 contraction-expansion. Instead,

the Moffatt corner vortex is observed to grow out of the salient corner towards the re-entrant corner before

expanding upstream at high Deborah numbers. By measuring the evolution in the flow induced birefringence

upstream of several different contraction-expansions over a large range of Deborah numbers, we hope to find

qualitatively different birefringence growth patterns from which we can garner further physical insight into

the configuration of the polymer chains in these complex flows.

In Figure 6-11, a close up of the flow induced birefringence measurement upstream and downstream

of the 2:1:2 contraction-expansion is presented for the data previously shown in Figure 6-9. The Deborah

numbers are chosen to emphasize the flow transition which occurs upon the formation of the elastic 'lip'
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Equivalent retardation measurements of the 0.025wt% PS/PS Boger fluid along the

centerline upstream and downstream of a 2:1:2 axisymmetric contraction-expansion for

Deborah numbers near the onset condition of the elastic 'lip' vortex. The data include: 'o',

a Deborah number of De = 0.5; '0', De = 1.0; and 'A', De = 1.5.

vortex. At a Deborah number of De = 0.5, the fluid traveling from far upstream experiences a modest

extension beginning at a position of z/R 2 -1.5. The elastic 'lip' vortex has yet to develop at the re-entrant

corner, instead a Newtonian Moffatt vortex is present in the salient corner. The Moffatt vortex extends

upstream a distance of z/R 2 = -0.68. Birefringence measurements taken just below the upper extent of the

Moffatt vortex demonstrate a small positive shift in the effective retardation measurement corresponding to

the contribution of the weakly sheared polymer coils recirculating within the Newtonian vortex. The

influence of the contraction is felt just upstream of the contraction plane where the fluid is quickly stretched

over the final z/R 2 z -0.25. The flow is quasi-Newtonian and fore-aft symmetric at these low Deborah

numbers and Reynolds numbers. The upstream flow induced birefringence pattern is mirrored almost

perfectly downstream of the re-expansion. Streak images and velocity measurements demonstrate the

existence of the elastic 'lip' vortex at a Deborah number of De = 1.0. The influence of the lip vortex on the

effective retardation measurement is quite pronounced. The polymer coil begins to feel the effect of the

contraction a distance z/R 2 -1.0 upstream. Halfway to the contraction plane, the polymer coils have
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accumulated an effective retardation of 5 3 -0.015 rad. At this Deborah number, the 'lip' vortex extends

a distance z/R 2 = -0.3 upstream of the contraction plane. The axial compression of the polymer coils

recirculating within the 'lip' vortex is nearly large enough to negate the effective retardation signal. This

result cannot be explained away through geometric arguments. The distance that the laser traverses through

the regions of compression upstream of the contraction wall is equal to the distance the laser travels across

the extensional flow upstream throat. The influence of these two effects should therefore be weighted

equally in the effective retardation measurement. This implies that a polymer coil flowing over the lip vortex

is compressed in the axial direction (or extended in the radial direction) as strongly as a polymer coil

accelerating into the throat. As the polymer chain passes over the elastic 'lip' vortex, it rotates 900 as it is

drawn and strongly extended into the throat. Downstream of the re-expansion, the flow induced

birefringence measurements are similar to the results for a Deborah number of De = 0.5. The effect of the

upstream lip vortex is not felt downstream of the re-expansion. By a Deborah number of De = 1.5, the elastic

'lip' vortex has reached the outer corner of the contraction geometry and begun to grow upstream in the form

of an elastic corner vortex. A polymer coil traveling from far upstream of the contraction plane is slightly

extended by the upstream shear flow. If one looks very closely, the influence of a very weak compression

can be inferred just below the top of the corner vortex, z/R2= -0.8, but the dramatic effect of the 'lip' vortex

is not reproduced by the corner vortex. The polymer chains are extended over the entire height of the corner

vortex as the fluid is accelerated into the contraction. Downstream of the re-expansion, the polymer

extension is carried much further downstream. A region of modest compression is observed at a position z/R 2

-2.0 downstream.

Unlike the 2:1:2 contraction-expansion, the 4:1:4 contraction-expansion in Figures 6-8 and 6-9 does

not reveal any new or interesting behavior even upon closer inspection. At a Deborah number, De = 0.5, the

effective retardation is nearly zero both upstream and downstream of the contraction-expansion. The

effective retardation measurements above a Deborah number of De > 0.5 demonstrate the formation of a

strong extensional flow that increases monotonically in strength and upstream extent as the Deborah number

is increased. The growth of this region of polymer coil extension is similar to the development of the

birefringence signal for the 2:1:2 contraction-expansion after the 'lip' vortex has disappeared and the corner

vortex has dominated the flow.

From the plot of effective retardation for the 2:1:2 contraction-expansion, it is possible to make an

approximate lower bound estimate of the deformation of the polymer coils flowing around the elastic 'lip'

vortex. Assuming that all of the polymer chains in the compressive region upstream of the contraction plane
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Figure 6-12 Streak image (a) and schematic diagram (b) of elastic 'lip' vortex upstream of a 2:1:2
contraction-expansion at a Deborah number of De = 0.9.

are extended equally, the anisotropic conformation and the retardation are related by

AA -'ligh' -4.2 x 10'9. (6-15)
4itR2 Cnk BT

Thus, a retardation of S = -0.015 radians corresponds to an anisotropic conformation of AA = 65 or about

0.75% of the maximum extension of the polymer coil. Although, the polymer coils are not greatly extended,
they can still exert a considerable amount of elastic stress, AA -+ A r.

The total accumulated Hencky strain and hence the tensile stress of a fluid element moving along

the centerline increases with the contraction ratio, however, at a fixed Deborah number the deformation due

to shearing along both the contraction plane and the upstream walls will decrease with contraction ratio.

Unfortunately, it is not possible to unambiguously identify the origin of the molecular deformation close to

the elastic lip vortex from the nonhomogeneous AFIB measurements presented in this thesis. However,
several possibilities exist. In Figure 6-12, a streak image and a schematic diagram of the elastic 'lip' vortex

upstream of a 2:1:2 axisymmetric contraction-expansion for a Deborah number of De = 0.9 are presented to

help the reader visualize the possible sources of the axial compression observed in the AFIB measurements.

The polymer coils flowing over the 'lip' vortex may be deformed by the shear flow near the upstream walls

of the contraction plane. These polymer coils may then rotate with the streamlines entering the comer and

pass over the lip vortex resulting in an extension in the radial direction. However, even if we assume that

the only the most highly deformed polymer chains from the upstream wall pass over the lip vortex the most

generous estimates of the polymer deformation lead to an effective retardation of only
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approximately 3 ~ 0.002 radians. Another alternative is that the polymer coils are deformed by the shear

flow along the contraction plane. This effective retardation associated with this shear flow is more difficult

to estimate. However, to achieve a change in the effective retardation of 5 0.015 radians, the shear rate

along the contraction plane would have to be stronger than in the contraction itself. This is highly unlikely.

If this was the primary cause of the axial compression, one would also expect to observe a more obvious

impact on the flow induced birefringence measurements directly above the contraction plane. The most

probable source of the axial compression of the polymer coils observed near the elastic 'lip' vortex is the

strong extensional flow upstream of the contraction. In the absence of a large elastic corner vortex, the

contraction can be thought of as a sink, drawing fluid from all points upstream and accelerating it into the

throat. As seen in Figure 6-12, the presence of an elastic 'lip' vortex results in a stagnation point just

upstream of the salient corner and a separating streamline dividing the upstream converging flow from the

recirculating vortex. The fluid located along this separating streamline is elongated radially inward as it is

accelerated towards and then around the re-entrant corner. It is certainly plausible that the extend of this

deformation is comparable to the amount of extension measured along the centerline. This hypothesis is

supported by spatially resolved flow induced birefringence measurements taken upstream of a abrupt 4:1

planar contraction [Quinzani et al. 1994].

6.4.4 The Normal Stress Ratio

In Chapter 4,we argued that the flow kinematics associated with the transition from an elastic 'lip'

to an elastic corner vortex are driven by the change in the dynamics from a shear dominated to an extension-

dominated flow. This flow transition was quantified by the normal stress ratio

Ni - R (6-16)
(T -Tr )/ /0s TR(e)

which compares the normal stresses generated by the shear flow along the upstream walls to the extensional

stresses resulting from the elongational flow along the centerline. The normal stress ratio was evaluated for

several different Boger fluids using values of the stress ratio and the Trouton ratio obtained from steady shear

and homogeneous transient uniaxial extension measurements. The Poiseuille flow far upstream of the

contraction plane is indeed a steady shear flow, however, the flow along the centerline is not a homogeneous

extensional flow. The strain rate imposed upon a fluid element traveling along the centerline increases
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Figure 6-13 Schematic diagram of flow into an axisymmetric contraction-expansion illustrating the plug
flow assumption used to calculate the normal stress ratio from AFIB measurments.

monotonically as it flows towards the contraction. A better method for evaluating the normal stress ratio may

be to use the flow induced birefringence measurements obtained in this chapter to calculate an average

measure of the elastic stress exerted by a polymer coil in situ for both the 2:1:2 and 4:1:4 contraction

expansion. The normal stress ratio becomes

- Nl1wall (6-17)
-z T rr )m ax

where N wl,,, is the first normal stress difference at the wall measured far upstream of the contraction plane

and (r,2 -rr)m. is the maximum tensile stress achieved within the flow. To calculate these stresses from the
effective retardation measurements presented in Figures 6-7 and 6-9, certain assumptions must be made.

First, the stress optic law is assumed to be valid, An'! C = A r. This is a dangerous assumption especially

for the extensional flow along the centerline where strong deformations can result in the failure of the stress

optic law at moderate stresses [Doyle et aL. 1998]. If the stress optic law is determined to be invalid, then
without a loss in applicability, the normal stress ratio can be rederived as a polymer chain deformation ratio
comparing the change in the anisotropic conformation resulting from the shear flow along the upstream walls
to the conformation change induced by the elongational flow along the centerline. To make the analysis

simpler, the viscosity and relaxation time of the fluid are assumed to be constant across the diameter of the

161



pipe. The first normal stress difference generated by the Poiseuille flow far upstream can be calculated from

Equation 6-10

-(4tCR 1  De
t5 =2 Z.. . (6-18)

Recalling from Equation 6-9 that

N N. r R De
NIwa = N(r=R,)= 2r De, (6-19)

the first normal stress difference at the wall far upstream is found to be

N,,(Zl = 3
1 ight , (6-20)

471CR, ustream

Near the contraction plane, the contribution to the effective retardation signal is assumed to be localized to

a region of radius R 2 directly upstream of the throat. This assumption is illustrated by Figure 6-13. The

average stress in this region can be calculated directly from the effective retardation measurements and

Equation 6-1

4it C R
9contraction - algh 2 (r ZZ -rr )centerline (6-21)

Alight

The normal stress ratio thus becomes

32 -

N1,all 41TCR, ""s"'" 3 (5upstream(
N == =- (6-22)

(rzz - rrI )centerline A 6 i3 8
contracion

4 T 2 contraction

In Figure 6-14, the normal stress ratio evaluated from flow induced birefringence measurements

upstream of a 2:1:2 and a 4:1:4 contraction-expansion is plotted as a function of Deborah number. The

normal stress ratios for both contraction-expansions demonstrate the same qualitative trends. The normal

stress ratio grows from zero at low Deborah numbers, increases quickly with the initial formation of the
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Figure 6-14 Normal stress ratio evaluated using the flow induced birefringence measurements of the
0.025wt% PS/PS Boger fluid upstream of the 2:1:2, '*', and 4:1:4, 'N', contraction-
expansions.

elastic vortex structure and plateaus as the vortex grows further upstream. The difference in the magnitude

of the normal stress ratio for these two contraction ratios is considerable. At the onset of elastic vortex

growth, the normal stress calculated from the birefringence measurements upstream of the 2:1:2 contraction-

expansion remains roughly constant at a value of N 2 ~2 0.06 while the value of the normal stress ratio for

the 4:1:4 contraction-expansion is over an order of magnitude smaller, 4:4 ~ 0.002. Recalling that in

Chapter 4 an elastic 'lip' vortex was observed for all fluids, independent of geometry, when the normal stress

ratio was greater than these results are consistent with our previous findings.

To extend and complete this research, axisymmetric flow induced birefringence measurements are

required for both the PIB/PB and the PAA/CS Boger fluids used in the contraction flow literature [Boger and

Binnington 1994; McKinley et al. 1991; Nguyen and Boger 1979]. Such experiments could yield additional

support that the concept of a normal stress ratio developed in this thesis is the proper dimensionless group
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Power spectral density of flow induced birefringence measurements of the 0.025wt% PS/PS
Boger fluid upstream of a 4:1:4 contraction-expansion at a Deborah number of De = 4.0.
The data include experimental measurement at positions : a) z/R 2 = -0.16; b) z/R2 --0.32;
c) z/R 2 =-0.48; d) z/R2 = -0.8; e) zIR2 =-4.0; and f) z/R 2 =-9.6 upstream.

to characterize a priori the vortex growth mechanisms upstream of a sudden contraction.

6.4.5 Characterization of Elastic Instability

Flow induced birefingence measurements have been used in the past to observe flow instabilities.

Wheeler et al. [Wheeler et al. 1998] used flow induced birefringence to detect the loss of stability of steady

shear flows of an wormlike micelle solution of CPyC1 and NaSal. They observed a shear induced ring

structure that oscillated both spatially and temporally. The flow induced birefringence measurements proved

to be a valuable, sensitive tool for characterizing the onset of elastic flow instabilities.
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Boger fluid downstream of a 4:1:4 contraction-expansion at a Deborah number of De = 4.0.
The data include experimental measurement at positions : a) z/R 2 = 2.16; b) z/R 2 = 2.32; c)
z/R 2 = 2.8; d) z/R2 = 3.6; e) z/R 2 = 8.4; and f) z/R2 = 11.6 downstream.

In Figure 6-16 the power spectral density of the flow induced birefringence signal is plotted as a

function of frequency for several locations upstream of the 4:1:4 contraction-expansion at a Deborah number

of De = 4.0. The fundamental frequency of the elastic instability is observed to be f, = 0.23 Hz. This

fundamental frequency is in agreement with the observations made in Chapter 3 using laser Doppler

velocimetry and pressure drop measurements. A strong peak is observed at the first harmonic, 2f, = 0.46Hz,

for measurements taken close to the contraction plane. Moving further upstream, the intensity of the higher

harmonics decays and the fundamental frequency becomes dominant. At a position just above the top of the

elastic corner vortex, Figure 6-16e, the instability is still apparent, but the intensity of the small amplitude

oscillations in the flow induced birefringence signal has decayed greatly. Much further upstream, Figure

6-16e, the instability has disappeared completely.
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Figure 6-17 Power spectral density of flow induced birefringence measurements of the 0.025wt% PS/PS
Boger fluid upstream of a 2:1:2 contraction-expansion at a Deborah number of De = 4.0.
The data include experimental measurement at positions : a) z/R 2 = 0.0; b) z/R 2 = -0.16; c)
z/R 2 =-0.24; d) z/R2 = -0.64; e) z/R 2 = -3.2; and f) z/R 2 -6.4 upstream.

The power spectral density of the flow induced birefringence downstream of the 4:1:4 contraction-

expansion is shown in Figure 6-18. For the same Deborah number, De = 4.0, the intensity of the observed

instability downstream of the re-expansion is greater than it is upstream of the contraction by almost one

order of magnitude. The strength and number of higher harmonics has also increased. The signature of this

power spectral density distribution is similar to the nonlinear jetting instability reported in Chapter 3. The

instability is observed far downstream of the re-expansion. At positions up to z/R 2 = 11.6 downstream,

Figure 6-18f, the influence of the upstream instability remains clearly present, although its intensity has

significantly decayed. This is in contrast to the flow upstream of the contraction, where the instability is

observed to be confined to the region within the elastic corner vortex.

Streak images, laser Doppler velocimetry measurements and pressure drop measurements were all
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Figure 6-18 PSD of flow induced birefringence measurements of the 0.025wt% PS/PS Boger fluid
upstream of a 2:1:2 contraction-expansion at a Deborah number of De = 1.0. The data
include experimental measurement at positions: a) z/R 2 =-0.16 and b) z/R 2 = -0.32.

used in previous chapters to investigate the stability of the 2:1:2 contraction-expansion. None of these

measurement techniques proved sensitive enough to observe an elastic instability at the Deborah numbers

tested. In Figure 6-19, the power spectral density is plotted as a function of frequency for the flow induced

birefringence measurements taken at several positions upstream of a 2:1:2 contraction-expansion at a

Deborah number of De = 4.0. These flow induced birefringence measurements clearly demonstrate the

presence of an elastic flow instability with a fundamental frequencyfl = 0.27 Hz. The critical Deborah

number for the onset of this supercritical Hopf bifurcation is found to be Dec = 2.3±0.3. In terms of vortex

growth, this Deborah number corresponds to strong elastic corner vortex which extends to a position z/R 2

= -1.5 upstream of the contraction plane. The elastic 'lip' vortex is once again found to be completely

stable. To emphasize this point, two power spectral density plots for the flow upstream of a 2:1:2

contraction-expansion at a Deborah number ofDe = 1.0 are plotted in Figure 6-19. At this Deborah number,

the lip vortex has been observed using both streak images and DPIV. The two upstream positions for which

AFIB measurements are presented in Figure 6-19 correspond to locations within the elastic 'lip' vortex. At

these points and all other locations upstream and downstream investigated, the flow is found to be stable.

Flow induced birefringence measurements are only possible downstream of the re-expansion for

Deborah numbers less than or equal to De < 2.0, all of which were found to be stable. Flow induced
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birefringence measurements have thus proven to be a very sensitive measurement technique for investigating

flow stability of polymeric fluids.
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CHAPTER 7 Non-homogeneous Transient Uniaxial Extensional Rheometry

7.1 Introduction

A great deal of recent research has focused on understanding the extensional behavior of polymeric

fluids [McKinley and Sridhar 2002]. The dynamical response of polymeric fluids in extension, especially

mobile dilute polymer solutions, is quite different than in simple shear. For this reason, extensional rheology

is a topic of great interest and importance to the polymer community. It is widely recognized that to generate

physically consistent constitutive models capable of predicting the behavior of these elastic liquids in

complex flows such as the flow into an axisymmetric contraction-expansion, it is absolutely essential to first

understand the behavior of these elastic fluids in homogenous uniaxial extension [Ghosh et al. 2001].

Numerous devices including the four roll mill, the spin-line rheometer, the opposed jet device and

the capillary rheometer have been used in the past to investigate the extensional behavior of polymeric

solutions. Unfortunately, each device is plagued by an unknown prestrain history and some degree of

shearing in the flow field. The filament stretching rheometer has emerged as an accurate device for

reproducibly measuring the response of a fluid to an imposed homogeneous uniaxial extensional flow field

[Anna et al. 2001].

In this chapter the concepts of extensional rheology and the filament stretching rheometer (FiSER)

are introduced. The technique of flow induced birefringence measurements in extensional flows is presented

and discussed. The results of homogenous uniaxial elongation are first presented to validate the experimental

setup and measurement techniques. The results of nonhomogeneous uniaxial elongation in which the

elongational strain rates experienced by a fluid element entering a 4:1:4 axisymmetric contraction-expansion

is reproduced by the filament stretching rheometer are then presented. Simultaneous measurements of stress

and conformation demonstrate the presence of a stress-conformation hysteresis as seen in homogeneous

uniaxial elongational experiments. The magnitude of the additional energy dissipation is quantified for the

strain rate profiles observed in the 4:1:4 axisymmetric contraction at various Deborah numbers. The

dissipation is found to monotonically increase with Deborah number.

7.2 The Filament Stretching Rheometer (FiSER)

The filament stretching rheometer was originally introduced by Matta and Tytus [Matta and Tytus

1990] as a "falling plate device." By placing a small amount of fluid between two cylindrical plates and

allowing the bottom cylinder to fall under gravity they were able to impose a nearly pure extensional flow
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Figure 7-1 Schematic diagram of the filament stretching device (FISER III).

field. Sridhar and coworkers [Sridhar and Gupta 1991; Sridhar et al. 1991; Tirtaatmadja and Sridhar 1993]

extended the work of Matta and Tytus by creating a filament stretching device that, by controlling the

velocity of the bottom plate, could impose a nearly homogeneous uniaxial extension on the fluid filament

while simultaneously measuring the force on the top endplate. This allowed Sridhar and coworkers to

measure the evolution in the transient extensional viscosity of the fluid filament from equilibrium to steady

state extension. Many other research groups around the world have since developed filament stretching

rheometers of various designs and operating spaces [Anna et al. 2001]. A recent paper by Anna et al. [2001]

reported the results of an interlaboratory comparison of filament stretching rheometers in which several

different instruments were used to study three dilute polystyrene-based elastic fluids. The results validated

the technique by demonstrating that even though extensional rheology has proven to be difficult measurement

to make, quantitative agreement can be achieved by instruments of different design.

The filament stretching device used to make all the measurements presented in this chapter, FiSER
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III, is shown in Figure 7-1. FiSER III was originally designed and built by Spiegelberg and Tripathi to

measurement the extensional rheology of polymer melts and is the third generation of filament stretching

rheometers in Professor McKinley's lab, following very closely the successful design of Anna [2000]. In

this device, an initially cylindrical filament of fluid is stretched between two circular endplates. The linear

stage consists of two brushless linear DC motors which are used to impose a known velocity profile on the

two platens to which the top endplate and the measurement equipment is mounted. The upper motor controls

the velocity profile of the top endplate while the lower motor, traveling at half the velocity of the upper

motor, ensures that an array of measurement devices is kept at the midpoint of the stretching fluid filament.

The motion control system is manufactured entirely by Compumotor (model 6250). The system has a

resolution of 200pm in its vertical positioning, a maximum travel of 100cm, a maximum velocity of 100cm/s

and a maximum acceleration of 6000cm/s 2 . The imposed velocity profiles and the data acquisition are

controlled entirely through Labview. A load cell (Futek Model L2338) is mechanically isolated from the

linear stage and mounted to the lower endplate. The force transducer has a maximum measurable load of

b))

A) z =L/2

a)

LoL t) -Rmt) z =0

z = -L/2

Figure 7-2 Sketch of a fluid filament being stretched by a filament stretching rheometer. The initial
conditions are shown in (a), while a filament in mid stretch is shown in (b).
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lOg with a resolution of ±5mg. The dynamic response time of this load cell was reported to be

approximately 78ms by Anna et al. [2001]. The midpoint diameter is measured with a laser micrometer

(Omron Z4LA) mounted on the lower platen. The resolution of the laser micrometer is ±20pm. A flow

induced birefringence (FIB) measurement optical train is also mounted to the lower platen. The FIB system

is discussed in more detail in section 7.3. Accurate knowledge of the fluid temperature is required to ensure

accurate knowledge of the rheological properties of the fluids. Before each experiment, a thermocouple is

placed within the fluid sample and the experimental temperature of the fluid is recorded. Due to the short

duration of these experiments, the temperature is assumed to remain constant throughout the course of the

experiment even though the ambient temperature can vary by several degrees over the course of an hour.

In Figure 7-2, a sketch of a typical fluid filament within the filament stretching rheometer is shown.

In this figure, L(t) is the time evolving length of the filament, Rid(t) is the midpoint radius of the filament,

F(t) is the force exerted by the filament on the endplate, L(t) is the velocity of the endplate, and L, and R,

are the initial length and radius of the fluid filament. The goal of extensional rheometry is to impose a

motion with a constant stretch history. In other words, an initially cylindrical filament must remain

cylindrical, thinning uniformly in the radial direction as it is elongated axially. As indicated schematically

in Figure 7-2, the imposed flow field is not quite uniform. The initial fluid loading is not a perfect cylinder,

Figure 7-2a, because the fluid sags under gravity. Gravity affects not only the initial filament shape, but may

also affect the filament shape over the course of the entire stretch, causing an asymmetry in the fluid filament

by draining some of the fluid from the top endplate. The result is a low extension rate limit below which the

effect of gravity cannot be neglected [Anna et al. 2001]. The no-slip condition at the endplates results in a

second nonuniformity. As shown in Figure 7-2b, as the filament is stretched, a thin film of fluid remains

attached to the rigid endplates. The resulting filament shape deviates from the desired ideal cylinder, more

closely resembling a classic wineglass shape. At short times and small initial aspect ratios, LO/RO, the no-slip

condition at the endplate surface results in a shear dominated flow and eventually can lead to elastic endplate

instabilities at large strain rates [Spiegelberg and McKinley 1996]. The operating space for a generic

filament stretching rheometer is described in detail by Anna et al. [2001].

In an ideal homogeneous uniaxial extensional flow the ends of the cylinder separate exponentially

in time [Bird et al. 1987],

L (t) = L, ef, (7-1)

where E is the imposed, constant stretch rate. However, as described above, the non-slip condition at the
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endplates does no allow the fluid filament to assume the shape of an ideal cylinder. The small volume of

fluid that remains at the endplates does not deform appreciably and the central fluid filament sees a time-

dependent effective stretch rate based on the fluid radius, Ceff (t), that is larger than the stretch rate imposed

on the endplates,

2 dRmid (
Wg() (7-2)

Rmid (t) dt

In fact, a lubrication approximation can be used to demonstrate that the effective deformation rate is precisely

equal to ff = 3 /2E at small strains [Anna et al. 1999].

The total deformation of the system can be described in terms of a Hencky strain. For the case of

the ideal filament, the Hencky strain can be expressed as

CL = In = L Et. (7-3)

However, for the nonideal filament, the total Hencky strain becomes an integral of the effective strain rate

over all time,

Ceff = ED =e ff (t') dt' = -2 In Rid /Ro). (7-4)

If a constant stretch rate is applied to the endplates, this test is classified as a Type II experiment

[Kolte et al. 1997]. If the test is designed in such a way that the effective strain rate is constant =f o,

than the test is classified as a Type III experiment. To accurately determine the desired material properties

of the elastic fluid, Type III experiments must be performed. An effective technique for generating Type IfI

tests from Type H master curves will be discussed in detail in Section 1.4.3.

The strength of the extensional flow is characterized by the Deborah number which is the ratio of

the longest characteristic relaxation time of the fluid, Az, to the characteristic timescale of the kinematics,

' -,

De = Az O. (7-5)
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Filament stretching rheometers have historically been used to measure the transient extensional viscosity of

polymeric fluids in homogenous uniaxial extension

-+ (rZZ Trr)
+7 =(7-6)

CO

where (r. - Tr,) is the principal elastic tensile stress difference generated within the filament. In a detailed

force balance of the filament stretching rheometer, Szabo [Szabo 1997] showed that the principal elastic

tensile stress difference generated within the filament could be calculated from the total force measured by

the load cell, F2 , if the weight of the fluid, the surface tension and the inertia of the fluid are taken into

account

F 1 p g(nLOR) O' 1 p( nL0R')
Z-~ Trr +tR 2 iR 2  Rd+ 20tR (7-7)

" rR', 2 nR ,a R, 2 7cR'imd mid mid mid

where a is the surface tension of the fluid, p is the density of the fluid and L is the acceleration of the

endplate. The last term of equation 7-7 is due to the fluid inertia and is, in practice, negligibly small. In

homogenous uniaxial extension a dimensionless extensional viscosity, the Trouton ratio, is often formed

Tr = " . = (7-8)

However, if the extension rate is not constant, then the Trouton ratio may not be the best dimensionless form

of the primary tensile stress. If we look at the form of the polymeric stress for the ith mode of a Hookean

dumbbell model,

Ti = -n kB T (A, - I), (7-9)

then a self consistent choice to nondimensionalize the stress is the elastic modulus, nk T, where n is the

number density of polymer chains in the solution and kB is the Boltzmann constant. This choice will become

even more intuitive when flow induced birefringence measurements are discussed in Section 7-3.

The elastic modulus can be derived directly from physical arguments for a Hookean dumbbell model

like the Rouse-Zimm model. For the 0.025wt% polystyrene solution, the elastic modulus becomes, nkBT=

0.28 Pa. However, to compare our experimental measurements to theory, we will use a single relaxation time
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constitutive model such as the Oldroyd-B or FENE-P model. As described in Section 3.2.7, to convert from

a multimode model to a singlemode model one must first determine the appropriate relaxation time to use.

The simplest choice for the fluid relaxation time scale is the longest relaxation time, ,, however using the

Zimm timescale does not accurately describe the entire relaxation spectrum for a single mode model.

Alternatively, a viscosity weighted average or of the relaxation spectrum can be used

i0 '~ (7-10)
2 0 'O

This average relaxation time is known as the Oldroyd relaxation time of the fluid. For the Rouse-Zimm

spectrum in which the time constant and viscosity of each relaxation mode is related to the longest or Zimm

mode by a simple recursion relation [Bird et al. 1987] this becomes

Nm

I .- 2(2+a)

21= ,&. (7-11)
If(2+cr)

j=
1

where a-z -1.40 ( h* )"78 and h* is the hydrodynamic interaction parameter [Bird et al. 1987]. However, for

rheologically simple fluids, the predictions of the Rouse-Zimm model and the Oldroyd-B model must agree

in the limit of zero shear rate

O = n kB +) )B T (7-12)
I Oldroyd

210 kT 2 2 .-
2

(
2

+or) =2 (n B, 7-1 23

Oldroyd

To satisfy these two equations, the value of the elastic modulus must be modified slightly from the value

obtained through physical arguments. This is achieved through a slight modification to the number density

of polymer chains, n. The new value of the elastic modulus, denoted (nkB)OIdroyd, is give by

2

(n kB T)Oldroyd =nk B T .(2+a) = n k B T -2(2 (7-14)

A I
Oldrod .- (2+a
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For the 0.025wt% polystyrene solution at T= 25'C,

(n kB Oldroyd 3.26 n kB T = 0.98 Pa. (7-15)

This method for calculating the elastic modulus has been followed by several groups in the past [Doyle et

al. 1998; Spiegelberg and McKinley 1996] and will be used throughout this manuscript.

7.3 Flow Induced Birefringence (FIB)

Much of the theory behind flow induced birefringence has been presented previously in Chapter 6.

The reader is referred to Section 6.1 for many of the introductory details which will not be repeated in this

chapter. Some of the earliest birefringence measurements in extensional flows of polymer solutions were

performed by Keller and coworkers [Muller et al. 1988; Pope and Keller 1977; Pope and Keller 1978]. Flow

induced birefringence measurements were performed in the four-roll mill, the opposed jet device and the

cross-slot device and used to determine the degree of chain orientation in extensional flows. This work

represents the first experimental documentation of the existence of a coil-stretch transition, observed at a

Deborah number of De = 1. Talbott and Goddard [Talbott 1978; Talbott and Goddard 1979] developed a

technique for measuring birefringence in slender fluid filaments drawn by a fiber spinner. By measuring the

birefringence along the spinline and coupling it directly to simultaneous measurements of the tension within

the fiber, Talbott and Goddard were able to demonstrate the breakdown of the stress-optic law for semi-dilute

separan solutions at very low stresses, A z 2kPa.

The first flow induced birefringence measurements of dilute and semi-dilute polymer solutions

undergoing transient uniaxial elongation in a filament stretching device were reported by Doyle et al. [Doyle

et al. 1998]. Experimental measurements and Brownian dynamic simulations revealed the existence of a

'stress-conformation' hysteresis [Doyle et al. 1998]. Doyle et al. found that in a strong stretching flow, the

average configuration and resulting stress in a polymer chain evolve along different paths during stretching

and relaxation. This hysteresis was shown to arise from non-equilibrium coupling between the macroscopic

flow field and the internal degrees of freedom of the fluid microstructure. These experiments, for all their

success, were not without their limitations. To avoid scattering and spreading of the polarized laser light,

the initial diameter of the filament was increased and the initial aspect ratio greatly reduced. This resulted

in a shear dominated flow at small strains. To minimize the effect of gravity, the filament was immersed

within a Plateau tank containing a low viscosity, neutrally buoyant fluid. The experiments were further

limited in the amount of total strain, emax = 3.5, that could be applied to the filament and were thus unable
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Figure 7-3 Schematic diagram or a) the flow induced birefringence optical train and b) the masking
technique.

to reach the steady-state extension of the test fluid. Recently, Sridhar and coworkers [Sridhar et al. 2000]

have developed an in-air flow induced birefringence system for their filament stretching rheometer which

does not require immersion in a Plateau tank. Sridhar and coworkers were able to reach large

strains, e ~ 5.5, for both steady and unsteady uniaxial extension flows.

The optical path for the polarization modulated flow birefringence system employed in this research

is shown in Figure 7-3a and is similar in design to the system pioneered by Frattini and Fuller [Frattini and
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Fuller 1984]. The kernel of the current birefringence system was developed at NASA's Glenn Research

center for use in filament stretching experiments in microgravity. The rigors of unmanned sounding rocket

experimentation require that the system be robust, compact and sensitive. These requirements prove

advantageous in earth's gravity as well. The system is light, insensitive to mechanical vibration and can be

successfully mounted to the lower platen of the filament stretching rheometer. The operation and calibration

of this system with its unconventional dual-crystal electro-optical modulator have been presented previously

by Mackey and coworkers [Mackey et al. 1999]. The polarized laser light is generated by a 4.5 mW, 635nm

laser diode (Thorlabs CPS43APO5ME). The light is first passed through a linear polarizer (New Focus 5524)

oriented at 0' from the vertical axis of the filament stretching rheometer. The polarized light is then sent

through a dual-crystal electro-optical modulator oscillating at 44kHz and oriented at 45'. After passing

through the filament, the light reaches a second linear polarized (Newfocus 5524), known as the analyzer,

which is oriented at -45'. Finally, the light passes through a biconvex collecting lens (Newport KBX39)

and a mask before impinging on a photodetector (Thorlabs PDA55).

There are several major difficulties associated with successfully taking optical measurements of a

thinning fluid in a filament stretching rheometer. The radial curvature of the filament acts like a cylindrical

lens, fanning the laser light and dramatically reducing the intensity of the light reaching the photodetector.

As the filament shrinks, the magnitude of the light spreading will increase. Depending on the axial strain

imposed, the filament may become smaller than the cross section of the incoming laser beam and allow laser

light which has passed around the filament to reach the photodetector. To correct both of these problems,

a lens and a mask were arranged as shown in Figure 7-3b. A similar idea was presented and analyzed by

Talbott [Talbott 1978]. The lens is placed such that the diverging light exiting the filament (which acts as

a cylindrical lens) is refocused onto the photodetector. The light that passes around the filament is not spread

and is blocked by the mask which is composed of a black cylindrical rod of diameter, d,,,,= 2.0mm. By

mounting the mask vertically, directly behind the collecting lens, the minimum amount of light which has

passed through the filament is blocked. Alternatively, the mask can be reduced in size and placed at the focal

point of the lens [Talbott 1978]. A simple ray tracing analysis by Talbott [Talbott 1978] showed that the

error associated with assuming that the path length of the laser light through the fluid is equal to the filament

diameter is negligible. At the onset of stretching the filament, the no slip condition at the endplates and the

sagging due to gravity result in a strong axial curvature. The degree of off-axis vertical deflection of the laser

beam is a complicated function of the stretch rate, fluid properties and the initial loading of the sample. For

a strain hardening fluid, the filament will approach an ideal cylinder at moderate strains. The effects of axial

curvature are thus only present at early times. However, as the filament thins and elongates, the lateral
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position of the filament can shift due to air currents, slight misalignment of the rheometer or mechanical

vibration. To lessen the impact of both these problems a large area photodetector (3mm x 3mm) was used.

The advantage of this large area photodetector is a reduced sensitivity to filament location and axial

curvature. The disadvantage is an enhanced sensitivity to ambient light which must then be minimized. Even

with this large area photodetector, short-time birefringence measurements were rendered impossible by the

axial curvature of the filament. Fortunately, at small strains, the polymer coils have not been extended far

enough to generate an appreciable birefringent signal and the interesting physics is easily observable at larger

strains.

The output from the photodetector is split and fed through a low pass filter (EG&G 5113) to

determine the DC intensity and a pair of lock-in amplifiers (EG&G 7260) to measure the amplitude of the

signal in phase with the fundamental frequency and out of phase with first harmonic of the dual-crystal

modulator. These measurements are recorded on a PC through a data acquisition card interfaced with

Labview. The intensity the light entering the photodetector is again given by:

I(t) = Id,+ I,, sin cot + 2 cos 2cot,

I, = 2J, (A) IdM 3 4 = 2J, (A)Id, sin 5 cos 2X, (7-16)

2(9 = 2J 2 (A) IdcM 3 2 = 2J 2 (A )Id, [1-cosi8]sin 2X cos2%,

where M34 and M32 are the components of the Mueller matrix corresponding to the optical train shown in

Figure 7-3a and Ac is the amplitude of the electro-optical modulation calibrated such that the Bessel function

of the first kind of order zero is equal to J0 (A,) = 0 [Frattini and Fuller 1984]. The advantage of using a

modulation technique is that it is possible to calculate both the retardation, 1 = (27 An d)/ 2 ih,, and the

extinction angle, X, simultaneously,

4An'Rmid 4 3 -M 2

Cost M 2+ M 2 38= 1ght 34' 32(7-17)

1 _1 (M= COS I1 I
2 sin81

where d is the optical pathlength equal to d = 2R() andih,, is the wavelength of the laser light. The

direction of the stretch is aligned with the optics at 0' from vertical. The extinction angle, and therefore the

1, signal, should be vanishingly small. Assuming the small retardation approximation, 3 << 1, is valid and
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%= 0

M 34 =8,1 
(7-18)

M 32 =0,

and Equation 6-19 simplifies to

8I
2JI (A,)Idc ' (7-19)

=0,

where the squareroot appears in the denominator of the expression for the retardation because in practice,

Ic is an RMS voltage. The validity of these assumptions will be confirmed in Section 7.4.1.

7.4 Results and Discussion

7.4.1 Steady Stretch Rates

In order to validate our flow induced birefringence experimental setup and measurement technique,

a series of experiments were performed in the filament stretching rheometer at a constant imposed stretch

rate. The spectrum of stretch rates and final Hencky strains were chosen to facilitate comparison with the

literature [Doyle et al. 1998; Sridhar et al. 2000]. In Figure 7-4, the DC intensity, IDc, of the birefringence

system and the two ratios, R,= M34 and R2,= A 2, are plotted as a function of time for a constant stretch rate

of t = 1.0 s-' and a final Hencky strain of e = 5. An inherent advantage of this ratiometric technique is the

insensitivity of the two ratios to variations in the pathlength and the amount of scattering of the laser light,

both of which lead to dramatic changes in the DC intensity over the course of the stretch. At early times,

the signal is weak because of the axial curvature of the filament. In the present configuration, reliable

birefringence measurements are not possible until a strain of e = 1. At these small strains, the filament is

subject to a reverse-squeeze shear flow which results in a very weak, positive birefringence signal. Recall

that the retardation and thus the birefringence can be calculated directly from measurements of R, using

Equation 7-19. As time progresses and the accumulated Hencky strain increases to values greater than c >

2, the polymer coils begin to orient with the flow and unravel. The birefringence signal grows increasingly

negative until the flow is stopped. Observation of the polymer coil relaxation process is then possible until
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Figure 7-4 Flow induced birefringence measurements as a function of time for a constant stretch rate

of = L.os-' and a final Hencky strain ofe = 5. The data include: '&', IDC; 'o', R,= M34 ;

and 'E', R 2 .= M 32.

the filament fails or is deflect out of the laser's path as it drains under gravity. The results in Figure 7-3 also

demonstrate the validity of the two assumptions made in the previous section. The first assumption, that the

stretch direction is aligned with the 00 orientation of the optical train, is confirmed by the vanishingly small

values of R2 . throughout the entire stretch. The small angle approximation used to derive Equation 7-19 is

also proven to be justifiable. The magnitude of R, never grows larger than 0.05.

In Figure 7-5, the polymeric contribution to the tensile stress is plotted against the birefringence

divided by the stress optic coefficient for the experiment shown in Figure 7-4, a constant stretch rate of

4 = 1.0 s-' and a final Hencky strain of E = 5. Also included in Figure 7-5 is the theoretical prediction of

the FENE-P model. The polymer contribution to the tensile stress is calculated by subtracting the viscous

stress from Equation 7-8

A r, =(,-r,,. -3r7L. (7-20)

181

400 0.10



40000

30000

n 20000 mE /

10000 U

0
0 1000 2000 3000 4000 5000 6000

Birefringence/C [Pa]

Figure 7-5 Polymer contribution to the elastic tensile stress difference as a function of birefringence/C
for a filament stretching experiment of the 0.025wt% PS/PS solution at a constant stretch

rate of 4 = 1.0 s-' and a final Hencky strain of E = 5. The data include: 'n', experimental

data; and '- -', FENE-P model prediction.

A stress-conformation hysteresis is observed similar to that first noted by Doyle et al. [Doyle et al. 1998].

During the start-up of the stretch, the data follows the left-hand side of the loop while during relaxation the

data follow the right-hand side of the hysteresis loop. The FENE-P model cannot even qualitatively capture

the hysteresis loop because it does not contain sufficient physical information about the internal

configurations of the chains to determine the polymer stress. In the FENE-P model the stress is a single

valued function of the polymer conformation and thus the birefringence [Doyle et al. 1998] is also single

valued. As expected, the FENE-P model does agree quite well with the experimental data during the latter

stages of relaxation. If a conformation dependent FENE dumbbell model [Doyle et al. 1998] or the FENE-G

model [Ghosh et al. 2001] is used, then the hysteresis loop can be qualitatively predicted. A quantitative

prediction which properly predicts the transient behavior of this experimentally observed hysteresis loop in

extensional flow has yet to be achieved with any known constitutive model.

Similar hysteresis loops can be generated for filament stretching experiments performed at the same
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Figure 7-6 Polymeric tensile stress as a function ofbirefringence/C for a filament stretching experiment

of the 0.025wt% PS/PS solution at a constant stretch rate of tO = 1.0 s-' and a final Hencky

strains of a) e = 3 and b) e = 4. The data include: 'A', experimental data for e = 3;'.',

experimental data for e = 4; and '- -', FENE-P model predictions.

strain rate, but to different final Hencky strains. In Figure 7-6, the polymeric stress is plotted against the

birefringence/C for a constant stretch rate of ro = 1. 0s' and final Hencky strains of e = 3 (Figure 7-5a) and

e = 4 (Figure 7-5b). As before, the predictions of the FENE-P model are included in these plots. The

magnitude of the hysteresis loop decreases with final strain. At these lower strains, the FENE-P model
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Figure 7-7 Polymeric tensile stress as a function ofbirefringence/C for a filament stretching experiment

of the 0.025wt% PS/PS solution at a constant stretch rate of -= 1.0 s-' . The data include:

'A', experimental data to a final Hencky strain of c = 3; '-', experimental data to E = 4; '',
experimental data to E = 5; and '- -', FENE-P model predictions.

predictions represent the data well during the initial onset of the stretch. The experimental data does not

begins to deviate from the FENE-P model predictions until a value of approximately An'/C =250 Pa and a

stress of r, =250 Pa have been reached. These values represent the upper limit for the validity of the stress-

optic rule for this dilute polymer solution. The stress-optic rule is commonly used to convert measurements

of birefringence to stress in polymer melt experiments where it is valid up to much larger stresses, typically

A r z 10' Pa [Janeschitz-Kriegl 1983].

One way to appreciate how quickly the stress, birefringence and the magnitude of the hysteresis loop

grow with increasing total Hencky strain is to plot all three of these experiments in a single figure as shown

in Figure 7-7. At these scales, the e = 3 experiment is almost unperceivable. Figure 7-7 also demonstrates

the repeatability of these filament stretching experiments and the flow induced birefringence system in

general. All three experiments superimpose quite nicely, following the same path in stretch and then again

in the last stages of the relaxation process.

If the stretch rate is now changed, but the final Hencky strain held constant a new set of observations
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Figure 7-8 Polymeric tensile stress as a function of birefringence/C for a filament stretching experiment
of the O.025wt% PS/PS solution to a final Hencky strain of e 3. The data include: '0',

experimental data at a constant stretch rate of o =1.5s-'; 'i', experimental data at a

constant stretch rate of .o =1. 0s-'; and '--', FENE-P model predictions.

can be made. In Figure 7-8, the results of two filament stretching experiments terminated at a Hencky strain

of & 4 are shown. The first experiment, at a constant stretch rate of to = 1.0 s-', has been shown previously

in Figure 7-6. The second experiment is conducted at a stretch rate 50% larger than the first, 4o=1 .5s-'. The

birefringence in each experiment grows to a value of An '/C ~1800 Pa before the stretch is stopped. The

amount of chain orientation and unraveling, is found to be independent of rate of deformation and only

dependent on the total amount of accumulated strain. The stress, however, is linearly dependent on the strain

rate. This same observation has been made in the literature where the Trouton ratio was found to be

independent of Deborah number above a Deborah number of De =1 [Anna et al. 2001]. Both experiments,

do, however, relax along the same path suggesting that there is a universal relaxation process independent

of strain and strain rate.

It has been hypothesized in Chapters 3 and 4 that this stress-conformation hysteresis may
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significantly contribute to the enhanced pressure drop through axisymmetric-contractions and the enhanced

drag observed in other complex flows [Chmielewski et al. 1990; Solomon and Muller 1996]. However,

taking a 4:1:4 contraction-expansion for example, the total accumulated Hencky strain along the centerline

is only E = 2.77. At these low strains, a constant stretch rate experiment shows very little hysteresis as

indicated in Figure 7-6a. However, it is possible a nonhomogeneous uniaxial extension created to reproduce

the strain rate profile a fluid element experiences as it travels along the centerline upstream of an

axisymmetric contraction-expansion would demonstrate more substantial hysteresis and reveal some

interesting new piece of the physical puzzle.

7.4.2 4:J.4 Contraction-Expansion Centerline Profiles

In the previous chapter, measurements of the axisymmetric flow induced birefringence along the

centerline of the 4:1:4 contraction-expansion were reported for the flow of the 0.025wt% polystyrene Boger
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Figure 7-9 Centerline velocity profile upstream of a 4:1:4 axisymmetric contraction-expansion for a
Deborah number of De = 1.5. The data include: 'N', experimental data and '--', fit of the
form v/<vz>2 = B exp(Cz/R2).
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fluid. As expected, these birefringence measurements demonstrated significant orientation and elongation

of the polymer chain upstream of the contraction-expansion. However, to gain more physical insight into

this complex flow, it would be informative to simultaneously measure the stress and birefringence in the fluid

passing through the contraction-expansion. Unfortunately, the only available measure of stress in the

contraction-expansion is the global pressure drop which is, in fact, the quantity into which we hope to gain

some physical insight. Instead of measuring the stress and birefringence of a fluid element within the

contract-expansion flow, we can isolate that fluid element and expose it to the identical time sequence of

strain rates in the filament stretching rheometer.

The fluid element traveling along the centerline of the contraction-expansion is exposed to a transient

nonhomogeneous extensional flow. To determine the exact strain rate profile required, the velocity profiles

presented in Section 3.3.5 are analyzed. The centerline LDV measurements upstream of the 4:1:4

axisymmetric contraction-expansion at a Deborah number ofDe = 1.5 are shown in Figure 7-9. As in Section

3.3.5, the velocities are nondimensionalized by the average velocity within the contraction, v- = v- /(V ,

the distance upstream is nondimensionalized by the radius of the throat, 2 z / R2 , and the time is

nondimensionalized by the shear rate, I t (vI )2 / R2 , An Eulerian velocity profile of the form

i, (z) = A+ B ecZ (7-21)

is found to fit the data quite well for all Deborah numbers up to De = 4.5. Recall that a fluid element in the

Sampson flow theory [Happel and Brenner 1965], experiences a velocity profile given by iK - 1 / (z2 + 1).

In Equation 7-21, A, B and C are constants. The value of A corresponds to twice the average upstream

dimensionless velocity, A = 2/p. However for the purpose of converting Equation 6-23 to a Lagrangian

velocity profile analytically, we have chosen set to A to zero, A = 0, and refit the data to determine new

values of B and C. The effect of this change is to limit the distance upstream for which the exponential fit

is valid. Table 7-1 lists the values of the constants used to fit the velocity profiles at various Deborah

numbers.

To calculate the proper velocity profile of the filament stretching rheometer endplates, we must first

determine the strain rate profile of a fluid element traveling along the centerline of the contraction-expansion.

By integrating Equation 7-21, the Lagrangian position of a fluid element 2 (zO, to ) can be determined as a
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function of time

z In (BC(to - (7-22)

where to is a dimensionless time constant related to the initial dimensionless upstream position of the fluid

element, zo,

(7-23)to = eco.
BC

Throughout the course of these experiments, zo will be set such that iz (zo = 2 / 3. Equation 7-22 is then

differentiated to determine the fluid velocity as a function of time

1
i =(t)= I .

C(to-i )

Table 7-1

(7-24)

Values for the exponential fit to the centerline velocity profiles upstream of a 4:1:4
axisymmetric contraction-expansion.

The strain rate of the fluid as a function of time thus becomes

di d i di I
C =----- ~_ , 5

diz d t diz (to - )

while the total accumulated strain as a function of time is given by

6 = ed' = in tt .

(7-25)

(7-26)
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Deborah Number B C to zo

0.500 1.694 0.849 4.697 -2.250
1.000 1.587 0.922 4.470 -2.037
1.500 1.665 1.048 4.000 -1.854
2.500 1.585 0.752 5.204 -2.427
3.500 1.750 0.557 7.468 -3.562



From Equation 7-25 it is evident that the shear rate diverges, -4 00, as I -> to. This occurs well

downstream of the throat, z = 0, and therefore does not pose a problem for our analysis.

Recall that in the filament stretching rheometer, the total Hencky strain for an ideal stretch is given

by

c = In . (7-27)

Substituting into Equation 7-26 and exponentiating both sides, we can calculate the appropriate endplate

separation

L(t)=L L tJt~, (7-28)

and the velocity profile of the endplate

t = (v ) t
L2 o_ 20 - (7-29)
R?2 (t0 -Y)2

required to simulate the transient nonhomogeneous uniaxial extension experienced by a fluid element

traveling along the centerline upstream of a 4:1:4 axisymmetric contraction-expansion. The calculated

profiles corresponding to a Deborah number ofDe = 1.5 are shown in Figure 7-10 in dimensional form. Note

that the strain rate monotonically increases with time. The experiments are terminated when the Hencky

strain equals the total strain accumulated within the contraction. For the 4:1:4 contraction-

expansion, e = 2 In (8) = 2.77. Hence, the total time for the stretch, tf, can be expressed as a function of the

contraction ratio 8 and the time constant to

tf = to p2 (7-30)

Upon completion of the stretch, the platens are stopped and the relaxation of the fluid filament is

observed. Although the strain rate profile during stretch will mimic the conditions upstream of the
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Figure 7-10 Deformation profiles for a fluid filament being stretched simulating the centerline profile
into a 4:1:4 contraction-expansion at a Deborah number of De=1.5. The data in a) include:

endplate position and'-', endplate velocity. The data in b) include: strain rate and
'-,total accumulated strain.
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contraction-expansion, the relaxation process does not correspond to the region of biaxial compression

downstream of the expansion. Theoretically, the downstream compression could be imposed by the filament

stretching device, however, in practice the slender fluid filament will buckle under such a compressive

loading.

7.4.3 Imposition of Proper Flow Kinematics

To perform a successful filament stretching experiments, whether homogenous or nonhomogeneous

in time, one must first determine the correct flow kinematics. In the previous section, the desired endplate

separation, L(t), and velocity, L (t), for an ideal stretch have been derived. It must be reiterated that the

experiments in the filament stretching rheometer are not truly ideal. The profiles generated by Equations 7-

28 and 7-29 will result in a new form of Type II experiment where the strain rate profile is no longer constant

0 1 2 3 4

D

'Master curve' for the 0.025wt% PS/PS solution. The data include: 'A', experimental stretch

of the centerline strain rate profile upstream of a 4:1:4 contraction-expansion at a Deborah

number of De = 1.5; '-', the ideal cylinder prediction; and '--', the lubrication

approximation prediction.

191

AK /
A

/ 7A -/ 7

A 7
~A7

A- -,A7
A7

A

Figure 7-11



as in Section 7-1, but is time dependent. The technique developed by Anna et al. [Anna et al. 1999] and Orr

and Sridhar [Orr and Sridhar 1999] is used to convert from a Type II experiment, where the endplate

separation follows the desired strain rate profile, to a Type III experiment, where the midfilament diameter

decreases with the desired strain rate profile.

A 'master curve' is generated in Figure 7-11 which compares the Hencky strain based on plate

separation, cL, with the Hencky strain based on midfilament diameter, ED, for the Type II profile simulating

the flow into a 4:1:4 contraction-expansion at a Deborah number of De = 1.5. Also shown in Figure 7-11

are lines corresponding to an ideal stretch and the lubrication approximation. At the onset of extension, the

filament follows the lubrication approximation quite closely. The filament then begins to strain harden

eventually approaching the prediction of the ideal cylinder. The plot can be used to convert this nonideal

Type H experiment into a nearly ideal Type III experiment using an inversion process discussed in great

detail in the literature [Anna et al. 1999; Orr and Sridhar 1999]. A spline is used to fit the data and determine

a functional relationship between the endplate separation and the filament diameter, EL(ED). The proper Type

III endplate velocity and position profiles are then determined by evaluating EL at all points in the desired

strain rate profile eD. This profile is of course identical to the Type II profile but now the proper strain is

achieved in the midfilament diameter rather than the filament length. In homogeneous uniaxial elongation

tests with dilute polymer solutions, the 'master curve' has been found to be a weak function of Deborah

number and so a new 'master curve' must be generated from a Type II experiment for each successive strain

rate profile to ensure that the resulting Type III profile generated is as close to ideal as possible [Anna et al.

1999].

In Figure 7-12a, the strain based on the midfilament diameter, ED, for a Type II and Type III

experimental stretches are compared with the ideal strain profile upstream of a 4:1:4 contraction-expansion

at a Deborah number of De = 1.5. The strains achieved in the Type II experiment greatly overshoot the ideal

profile while the Type I test is nearly indistinguishable from the ideal curve. To take a closer look at the

quality of the Type III profile, the diameter error

D mid DideaI (7-3 1)
Did

is shown in Figure 7-12b as a function of time. Through the 'master curve' inversion procedure it is possible

to maintain an error of less than 5% for the duration of the experiment. Similar results have been reported

in the literature for homogeneous uniaxial extension [Anna et al. 2001].
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Figure 7-12 The a) strain based on the midfilament diameter and b) diameter error as a function of time

for the 0.025wt% PS/PS fluid. The data include: 'o', Type H and 'A', Type III experimental

stretch of the centerline strain rate profile upstream of a 4:1:4 contraction-expansion at a

Deborah number of De = 1.5; and '- -', the ideal strain profile.

7.4.4 Transient Measurement of Extensional Flow into a Axisymmetric 4:1:4 Contraction-Expansion

Using the velocity profiles generated in Section 7.4.2 and the 'master curve' inversion procedure
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liquids through energy loss argument associated stress-conformation hysteresis. Therefore, all the filament

stretching results presented in this section will compare the polymeric tensile stress with the average

conformation of the polymer chain.

In Figure 7-13, the results of the Type II and III experiments described in the previous section are

shown. The strain profile is equivalent to that observed upstream of a 4:1:4 contraction-expansion at a

Deborah number of De = 1.5. A significant hysteresis loop is observed in the Type II experiment shown in

Figure 7-13 a. The magnitude is similar to the constant uniaxial stretch rate results presented in Section

7.4.1. The chains are aligned with the flow direction and significantly extended, reaching a final

conformation of almost AA = 2200. This stretch represents about 25% of the maximum extension of the

polystyrene chain. This initial experiment is very encouraging, however, one must note that the final

midfilament Hencky strain for this Type II experiment is ED= 4.1, which is significantly larger than the

desired value of ED 2.77. A Type III experiment is thus required to insure that the proper strain rate profile

and final Hencky strain are applied to the fluid filament.

The results of the corresponding Type III experiment are shown in Figure 7-13b. The scale of the

conformation axis has purposely been set to exactly one tenth of Figure 7-13a to emphasize the dramatic

difference between the two experiments. By converting from a Type II to a Type III experiment, both the

final Hencky strain and the strain rates applied to the fluid filament have been reduce, drastically decreasing

the stresses and conformation achieved. As a result, even with signal conditioning and filtering, the Type

III measurements are considerably more noisy than the Type II measurements. Note that the maximum

conformation measured for the Type III experiment is only AA = 250, just 3% of the maximum extension of

the polymer coil. Fortuitously, a small hysteresis loop still exists. These stress vs. conformation plots are

analogous to the stress vs. strain plots often used to investigate material properties in solid mechanics. In

both cases, the area enclosed by the hysteresis loop has units of energy per unit volume. In solid mechanics,

this energy represents the amount of work required to plastically deform an elastic solid. For a viscoelastic

fluid, it represents the work done by a purely dissipative stress coupled to the non-equilibrium kinematics

of the extensional flow whose physical origins are not well understood. To quantify the energy dissipation

per unit volume, the polymeric tensile stress is numerically integrated over the entire hysteresis loop

The energy dissipation per unit volume is made dimensionless by dividing the elastic tensile stress

by the elastic modulus of the test fluid
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Figure 7-13 Polymeric tensile stress as a function polymer coil conformation for the 0.025wt% PS/PS
solution. The data include: a) '0', Type II, and b) 'o' Type III experimental stretch of the
centerline strain rate profile upstream of a 4:1:4 contraction-expansion at a Deborah number
of De = 1.5; and '--', FENE-P model predictions.

outlined in Section 7.4.3 it is now possible to directly observe the stress growth and polymer coil

conformation of a fluid element traveling along the centerline into an axisymmetric contraction-expansion.

The direct aim of this research is to explain the additional pressure drop observed in the flow of elastic
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ED = TP dAA. (7-32)
n kB T

If the experimental data does not continue to zero conformation during the relaxation process, the hysteresis

loop is closed using the FENE-P model predictions from the last data point to the origin. For the Type II

experiment, the dimensionless dissipation energy is equal to ED 1 .1 x 10' while for the Type III experiment

ED= 1.6x 10', a difference of two orders of magnitude.

The series of experiments outlined in Table 7-1 were performed for the strain rate profiles equivalent

to those observed along the centerline upstream of a 4:1:4 contraction-expansion at Deborah numbers

between 0.5 De 3.5. Representative plots of the stress-conformation hysteresis loops for each of these

Deborah numbers is presented in Figure 7-14. At a Deborah number of De = 0.5, Figure 7-14 a, very little

polymeric tensile stress or polymer stretch is generated. The dissipative energy loss associated with this

stretch profile is minimal. As the Deborah number is increased, the stress, conformation and dissipative

energy loss all increase. The initial stretch rates of the low Deborah number experiments are not large

enough to result in significant chain orientation or unraveling. For these filament stretching experiments,

the applied extension rates grow with increasing Deborah number, but the total accumulated Hencky strain

is fixed at ED = 2.77. Beyond a Deborah number of De = 1.5, a plateau of AA ~ 400 in the polymer chain

deformation is observed even as the stress continues to grow. This is analogous to the observations made

in Section 7.4.1 for constant stretch rate profiles.

In Figure 7-15, the dissipative energy loss is plotted against Deborah number for the Type III

filament stretching experiment of the centerline strain rate profile upstream of a 4:1:4 contraction-expansion.

The results for each Deborah number were repeated several times and the average value of dissipative energy

loss is plotted along with error in these measurement which is typically on the order of ±15%. This error is

the caused by noise in the birefringence and force measurements as well as the profile error associated with

the Type II to Type II 'master curve' inversion procedure. The results are quite conclusive. Recalling the

pressure drop measurements across a 4:1:4 contraction-expansion presented in Section 3.3.2, no additional

pressure drop was observed until a Deborah number of De ~ 0.5 was reached. This critical Deborah number

agrees quite well with the onset conditions for significant energy dissipation. Figure 7-15 also includes a

fit to the experimental data of the form ED = 1.58x 106 (De - 0.48)5. The fit is in excellent agreement with

the experimental data, however, it does not match the predictions of recent constitutive models. Take, for

example, the Rallison dissipative stress model [Rallison 1997]. The form of the model is similar to a FENE-

197



0.5 1.0 1.5 2.0 2.5
Deborah Number

3.0 3.5 4.0

Figure 7-15 Dimensionless energy dissipation as a function of the Deborah number of the centerline
stretch rate profile into a 4:1:4 contraction-expansion for the 0.025wt% PS/PS solution. The
data include: '-', experimental data; and '- -', a fit of the form ED= 1.58 x 106 (De - 0.48).5.

P model except the polymeric stress term now has an additional purely dissipative

immediately after secession the flow

component which relaxes

/A]) -- (f (tr A) A - I),

TP -Y(f(trA)IA - I)A+q2
A tr A (7-33)

f(trA)= I- tr A

For strong deformations, the dissipative component of the polymeric stress in Equation 7-33 and therefore

the total energy dissipation increases linearly with Deborah number. This scaling was verified for the stretch

profiles used in these filament stretching experiments through numeric integration of Equation 7-33.

The discrepancies between the experimental observations and the constitutive model predictions at

low Deborah numbers could be the result of several things. First, the Rallison dissipative model is known
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to uniformly overpredict the transient extensional viscosity, but especially at small strains. The model

predicts very little difference in the maximum conformation for any of the stretch rate profiles,

AA,,,(De=0.5)/AAma,(De=3.5) z 0.8 whereas the experiments clearly demonstrate a strong dependence on

the stretch profile for the low Deborah number experiments, AA,.(De=0.5)/AAa,(De=3.5) - 0.25. Another

possible cause of the discrepancy may be gravitational sagging in the experimental measurements. Anna et

al. [Anna et al. 2001] demonstrated that a critical Deborah number for gravitational sagging could be

determined from the ratio of the Bond number to the Capillary number

Bo - pgR(

Ca qi

which characterizes the relative importance of gravitational forces to viscous forces throughout the stretch.

When this ratio is order Bo/Ca = 1, gravitational sagging will influence the filament stretching results. From

this dimensionless group a critical strain rate for gravitational sagging to become important

isag = pgR, (7-35)
)7

when Bo/Ca = 1. Finally, a critical Deborah number can be defined

Deg =4 pgA_ - (7-36)
77

For the current filament stretching experiments and 0.025wt% PS/PS solution, Desag 3.43 at T= 25 C. In

the worst case, the strain rate profile for a Deborah number De = 0.5, only the first c = 0.5 strain units are

affected by gravitational sagging. Beyond that point, >> Ia and gravitational effects can be ignored.

Thus, it is unlikely that gravitational sagging is the cause of the discrepancy between experiments and theory

or the reason why the energy dissipation decreases so quickly as the Deborah number decreases to De = 0.5.

By tailoring the strain rate profile within the filament stretching rheometer to reproduce the

extensional flow along the centerline upstream of a 4:1:4 contraction-expansion, it is possible to

simultaneously measure the stress and conformation of a polymer coil in a prototypical complex flow. The

resulting measurements of stress-conformation hysteresis lead us to conclude that the energy loss of a
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polymeric solution in extension is directly related to the additional pressure drop and drag coefficients

observed for these same fluids in complex flows. If one hopes to accurately model a polymer solution in

complex flows, it is therefore essential that the chosen constitutive model can quantitatively reproduce the

stress and polymer conformation in transient extensional flows. With the current state of the art bead-spring

constitutive models this is not yet possible. Additional microstructural information is required to capture

the physics of a polymer coil unraveling in a strong flow. The challenge is creating such a model that is also

computationally tractable. A significant innovation has recently been put forth by Ghosh et al. [2001] who

incorporated a rate dependent finite extensibility parameter into a standard FENE model. Their results are

encouraging in transient extensional flows, but more work and further refinement of their idea remains.
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CHAPTER 8 Conclusions

The work presented in this thesis provides new insights into understanding the physical mechanisms

governing the flow of elastic liquids. Specifically, the role of the shear and the extensional rheology of dilute

polymer solutions on the stability of two complex flows has been investigated. The first set of experiments

presented consists of a series of viscometric flows between a rotating cone-and-plate and plate-and-plate

geometry. As illustrated in Figure 8-1, the complexity of this problem stems from the interaction between

the flow geometry, fluid shear rheology and the thermophysical properties of the fluid. Shear flows with

closed streamlines such as these can generate a considerable of amount of heat through viscous dissipation.

Polymeric fluid are very poor thermal conductors. Even if the wall temperature is held constant, a

nonhomogenous temperature profile can result in the fluid, strongly affecting the local fluid elasticity and

the flow stability. In these simple shear experiments, the extensional rheology of the elastic liquid is

unimportant. However, the second set of experiments presented in this thesis, the flow through an

axisymmetric abrupt contraction-expansion, is a prototypical complex flow containing regions of both strong

shear and extension. As shown in Figure 8-1, to understand the kinematics, flow transitions and state of

stress for these experiments it is essential that one first understands both the shear and extensional rheology.

The combination of large elastic normal stresses and streamwise curvature can lead to flow

destabilization. In Chapter 2 of this thesis, the importance of non-isothermal flow effects on the stability of

torsional flows of highly elastic polymer solutions was demonstrated. Three monodisperse polystyrene test

fluids of different molecular weights were used to investigate the role of the fluid shear rheology. It was

shown that the proper dimensionless groups to consider when investigating thermal modifications to purely

elastic instabilities in viscoelastic flows are the Deborah number and the thermoelastic number 0=Na /De

which measures the importance of coupling between the fluid elasticity and the nonlinearities arising from

viscous heating. The thermoelastic number is independent of shear rate and can be influenced by changes

in geometry, molecular weight and temperature. By varying the wall temperature (and thus the initial

temperature of the test fluid) through a fairly narrow range, it was possible to significantly change the

thermoelastic number. The onset conditions and scaling with changes in geometry of the subcritical Hopf

bifurcation observed at small thermoelastic numbers, 0 << 1, were shown to be in quantitative agreement

with isothermal linear stability analyses for the Rouse-Zimm and Bird-DeAguiar constitutive models for both

the cone-and-plate and the parallel-plate geometries. As the thermoelastic number was increased, the onset

of the purely elastic flow instability was progressively delayed because of a decrease in local elasticity

201



Stability Flow Chart

Flow Geometry I
1 Streamwise Curvature)

Thermophysical Extensional Rheology
Properties

(Viscous Heating)

I Shear Rheology

Viscometric flow between a Flow through an axisymmetric
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Figure 8-1 Stability flow chart illustrating the interplay between flow geometry, rheology and
thermophysical properties for the experiments performed in this thesis.

caused by the temperature gradients across the gap induced by viscous dissipation. The mode of stability

remained the same. The critical Deborah number for the onset of the elastic instability was found to increase

linearly with the Nahme number, Na = K(Deri, -Decrito). In terms of the thermoelastic number, the critical

Deborah number becomes Dec,.l = K /20 2 (l - (1 - 4Decri,&2 / K)'/2). At thermoelastic numbers greater

than 0 > Oc, z 0.062, the elastic flow instability was eliminated entirely. Thus, the thermoelastic number

is an excellent new tool for predicting a priori the importance of non-isothermal effects and may be a key

to controlling the stability of many industrial polymer processes.

Recently, Olagunju et al. [2001] performed the non-isothermal linear stability analysis for the flow

of an Oldroyd-B fluid between a rotating cone-and-plate. The results of their work agree quite well with the

experiments presented in this thesis. In their paper, they derive an expression for the equilibrium fluid

temperature within the gap. As a simple extension of this thesis work, experimental measurement of the

temperature profile between the cone-and-plate would not only be an excellent means of comparison to the

theory of Olagunju et al. [2001] it would allow for the observation of the time evolution of the fluid

temperature before and after the onset of the elastic instability. Perhaps these measurements will also aid

in explaining the different critical shear rates and Nahme numbers associated with the maximums observed
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in the shear stress and the first normal stress difference measurments during "thermal blow-up."

In the work presented in Chapters 3-6 of thesis, the flow of an ideal monodisperse, dilute polystyrene

solution through an axisymmetric abrupt contraction-expansion has been extensively investigated. Several

different contraction ratios and re-entrant lip curvatures were studied over a large range of Deborah numbers.

This thesis constitutes a comprehensive set of experimental measurements to which constitutive models and

numerical simulations can be rigorously compared. The test fluid was thoroughly characterized in both shear

and extension. Pressure drop measurements showed a large extra pressure drop that increases monotonically

with Deborah number above the value observed for a similar Newtonian fluid at the same flow rates. The

enhanced pressure drop was found to be qualitatively insensitive to changes in aspect ratio and lip curvature

and was also determined to be independent of the onset of an elastic flow instability. The stress singularity

at the re-entrant lip which is a major difficulty for numerical simulations of the flow of a viscoelastic fluid

through a contraction-expansion can thus be removed without qualitatively affecting the flow. In fact, in

Chapter 5 rounding the re-entrant corner was observed to have the same effect as reducing the Deborah

number. A simple geometric scaling argument was shown to collapse the data from several lip curvatures

onto a single master curve. This result also suggests that a numerical simulation need not be able to predict

the elastic flow instability in order to observe an enhanced pressure drop. However, even after rounding the

re-entrant lip, this enhancement in the pressure drop is not predicted by any existing steady-state or transient

numerical computations with simple dumbbell models. The lack of agreement between experiments and

numerical simulations must therefore be the result of inadequacies in the constitutive models.

In this thesis we have demonstrated that this extra pressure drop is in part the result of an additional

dissipative contribution to the polymeric stress arising from a stress-conformation hysteresis in the strong

non-homogeneous extensional flow near the contraction plane. In uniaxial elongational flows, the stress and

polymer chain configurations evolve along different pathways during stretch than during relaxation. The

result is a hysteresis loop and an energy loss for polymer solutions in these strong extensional flows. In

Chapter 7, the strain rate profile imposed by a filament stretching rheometer was designed to reproduce the

extensional flow along the centerline upstream of a 4:1:4 contraction-expansion at several Deborah numbers.

The stress and average conformation of a polymer coil were measured simultaneously. The resulting

measurements of stress-conformation hysteresis leads to the conclusion that the energy dissipated by a

polymeric solution in extension is directly related to the additional pressure drop and drag coefficients

observed for these same fluids in complex flows.

The importance of extensional rheology cannot be over emphasized. If one hopes to accurately

model a polymer solution in complex flows, our experiments have demonstrated that it is absolutely essential
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that the chosen constitutive model can quantitatively reproduce the stress and polymer conformation in

transient extensional flows. With the current bead-spring constitutive models being used in simulations, this

is not yet possible. Additional microstructural information is required to capture the non-equilibrium internal

conformations and dynamics of a polymer coil unraveling in a strong flow. A systematic comparison of our

experimental measurements with numerical simulations using constitutive models such as the Rallison

dissipative stress model [Rallison 1997] or the adaptive lengthscale model of Ghosh et al. [2001] still needs

to be performed. Each of these constitutive models can predict qualitatively, but not quantitatively, the

stress-conformation hysteresis observed in strong extensional flows. These simulations will help determine

how sensitive the pressure drop measurements are to the accuracy of the transient extensional rheology of

the constitutive model.

Some additional measurements using the filament stretching rheometer could also yield significant

physical insight into the flow of viscoelastic fluids in the axisymmetric contraction-expansion and other

complex flows. For example, filament stretching measurements of the polystyrene solution for a series of

centerline strain rate profiles upstream of the 2:1:2 and 8:1:8 axisymmetric contraction-expansion would

make the data presented in this thesis more complete. A similar series of filament stretching experiments

using the PIB/PB and the PAA/CS Boger fluids used in the contraction flow literature [Boger and Binnington

1994; McKinley et al. 1991; Nguyen and Boger 1979] would also be very interesting. To date, no one has

attempted to measure the birefringence of these polymers in the filament stretching rheometer, not even in

homogeneous transient uniaxial elongation. Measuring the energy dissipated for each of these three polymer

solutions and then comparing them to each other and to the enhanced pressure drop measurements would be

very insightful. The filament stretching rheometer can also be used to investigate the enhanced drag

coefficient measured in other complex flows of viscoelastic fluids such as the flow past spheres and arrays

of cylinders.

The kinematics of the viscoelastic flow field upstream and downstream of an axisymmetric abrupt

contraction-expansion were measured through laser Doppler velocimetry, particle image velocimetry and

streak images. The stability and flow transitions were characterized using these techniques in conjunction

with pressure drop measurements across the contraction-expansions. A supercritical Hopf bifurcation was

documented for all contraction ratios and re-entrant corner curvatures at a large critical Deborah number.

At even higher Deborah numbers a non-linear helical jetting instability is observed for the 4:1:4

axisymmetric contraction-expansion. Using flow induced birefringence measurements, the influence of these

instabilities was shown to persist very far downstream (z/R2 ~ 15). The onset of this elastic instability was

not connected in any way to the enhanced pressure drop measurements.
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In Chapter 4, the effect of contraction ratio on the vortex growth dynamics was systematically

investigated. For a given elastic fluid, as the contraction ratio is increased, the flow evolves from a lip vortex

regime to the corner vortex flow regime, but the critical contraction ratio for this crossover in vortex

evolution is strongly dependent on the properties of the test fluid. In this thesis, a new dimensionless group

was formed by taking the ratio of the elastic normal stresses generated in steady shear to the elastic normal

stresses generated in homogenous transient uniaxial elongation. The normal stress number, N, rationalizes

the dependence of the growth of elastic 'lip' and corner vortices on contraction ratio and test fluid. For a

normal stress ratio less than N < 0.055, the flow is considered to be extension dominated and an elastic

corner vortex develops. For a normal stress ratio greater than N > 0.055, the flow is shear dominated and

an elastic 'lip' vortex develops. This scaling was found to be consistent not only for the PS/PS Boger fluid

tested in this thesis, but for all the rheologically characterized test fluids used in contraction flow literature

to date.

The axisymmetric flow induced birefringence upstream and downstream of the contraction-

expansion was investigated in Chapter 6. These measurements provide detailed information about the local

orientation and deformation of the polymer coil in situ and are an excellent source of comparison for

validating numerical simulations and constitutive models. Flow induced birefringence measurements were

demonstrated to be a very sensitive measurement technique for investigating flow stability of polymeric

fluids capable of detecting instabilities not found using LDV or pressure drop measurements. The AFIB

measurements are used to calculate the normal stress number for a polymer coil in situ for both the 2:1:2 and

4:1:4 axisymmetric contraction-expansion. The results are in excellent agreement with the normal stresses

calculated from steady shear and transient extensional rheology.

To extend and complete this research, axisymmetric flow induced birefringence measurements are

required for both the PIB/PB and the PAA/CS Boger fluids used in the contraction flow literature [Boger and

Binnington 1994; McKinley et al. 1991; Nguyen and Boger 1979]. Such experiments could yield additional

support that the concept of a normal stress ratio developed in this thesis is the proper dimensionless group

to characterize a priori the vortex growth mechanisms upstream of a sudden contraction.

In the two flows of viscoelastic fluids investigated in this thesis, we have demonstrated that to

understand the flow kinematics and stability it is necessary to characterize the flow in terms of at least two

dimensionless parameters. These complex flows cannot be rationalized by the Deborah number alone. To

understand the importance of non-isothermal flow effects on the stability of torsional flows of polymer

solutions the Deborah number and the thermoelastic number were needed while to understand the flow

transitions upstream of a axisymmetric contraction-expansion the Deborah number and normal stress ratio
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were required. In both cases, the second dimensionless group is set by the material properties of the fluid

and the flow geometry, but not by the flow strength.
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