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Abstract

In many studies of market microstructure, theoretical analysis quickly becomes in-
tractable for all but the simplest stylized models. This thesis considers two alternative
approaches, namely, the use of experiments with human subjects and simulations with
intelligent agents, to address some of the limitations of theoretical modeling.

The thesis aims to study the design, development and characterization of artificial
markets as well as the behaviors and strategies of intelligent trading and market-
making agents. Simulations and experiments are conducted to study information
aggregation and dissemination in a market. A number of features of the market
dynamics are examined: the price efficiency of the market, the speed at which prices
converge to the rational expectations equilibrium price, and the learning dynamics
of traders who possess diverse information or preferences. By constructing simple
intelligent agents, not only am I able to replicate several findings of human-based
experiments, but I also find intriguing differences between agent-based and human-
based experiments.

The importance of liquidity in securities markets motivates considerable inter-
ests in studying the behaviors of market-makers. A rule-based market-maker, built
in with multiple objectives, including maintaining a fair and orderly market, maxi-
mizing profit and minimizing inventory risk, is constructed and tested on historical
transaction data. Following the same design, an adaptive market-maker is modeled
in the framework of reinforcement learning. The agent is shown to be able to adapt
its strategies to different noisy market environments.

Thesis Supervisor: Tomaso Poggio
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Thesis Supervisor: Andrew W. Lo
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Chapter 1

Introduction

One of the most powerful ideas of modern economics is Adam Smith's (1776) Invisible

Hand, the fact that agents acting in their own self-interest can reach an optimal alloca-

tion of scarce resources. This remarkable feature of perfectly competitive economies

is due, of course, to the presence of markets, exchanges where buyers and sellers

trade with each other and, in doing so, establish prices and quantities that equate

supply and demand. Although these ideas were developed over two centuries ago, it

is only within the past two or three decades that economists have begun to explore

the specific mechanisms, i.e., the market microstructure, by which markets aggregate

and disseminate information dynamically in a world of uncertainty and asymmetric

information.

1.1 Motivations

In many of these investigations, the theoretical analysis quickly becomes intractable

for all but the simplest stylized models, and even the existence of an equilibrium

cannot be guaranteed in many cases. 1 An alternative to this theoretical approach is

an experimental one in which individuals are placed in a controlled market setting,

'See Cohen, Maier, Schwartz & Whitcomb (1986), Schwartz (1993), O'Hara (1995), and Camp-
bell, Lo & MacKinlay (1996, Chapter 3) for overviews of the theoretical and empirical market
microstructure literature.

14



given certain endowments of securities or cash or both, and allowed to trade with

each other.2 By varying the market structure, the design of the securities that can

be traded, and the individuals' endowments, rewards, and information set, we can

learn a great deal about the actual behavior of economic agents in a simple com-

petitive environment and how markets perform their resource-allocation function so

efficiently. Documenting and studying the interactions of optimizing individuals in an

experimental setting is an important first step towards understanding their behavior

in real markets.

However, the experimental-markets approach has its own limitations. In particu-

lar, although the market structure and economic environment are controlled by the

experimenter, the motives and information-processing abilities of the economic agents

are not. Therefore, it is often difficult to assess the impact of risk aversion, learning

abilities, and the degree of individual rationality on prices and quantities in experi-

mental markets. Moreover, there is no simple means to determine how agents process

information and derive their trading rules in any given experiment, hence no assur-

ance that any single experimental result is not an artifact of the particular subjects

in the experiment.

Lastly, a third approach-the use of artificially intelligent agents-can be adopted

to address some of the limitations of the theoretical and experimental alternatives.

Al-agents are computer programs that contain certain heuristics and computational

learning algorithms, with the intention of capturing particular aspects of human be-

havior. Although AI-agents are figments of our (and the computer's) imagination,

their preferences and learning algorithms are transparent and, unlike experimental

subjects, can be carefully controlled and modified. Using AI-agents, we can con-

duct a far broader set of experiments involving more complexities than with human

agents. Moreover, the outcomes of such experiments are often more readily compared

to theoretical models because we have eliminated the human "wildcard."

This approach, now commonly known as "agent-based models,"3 allows us to

2Davis & Holt (1993) and Kagel & Roth (1995) are excellent surveys of this fast-growing literature.
3Another term that has been proposed is "agent-based computational economics" or ACE. See
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explore new areas of economic theory, especially in dynamic markets with asymmet-

ric information, learning, and uncertainty-a combination that poses many insur-

mountable technical challenges from a theoretical perspective. However, agent-based

models also bring with them new and untested algorithms, parameters that must

be calibrated, and other ad hoc assumptions that are likely to be controversial. To

address these concerns, we propose using data from human experimental markets to

validate and calibrate our agent-based models. In particular, we have designed our

market structure along the same lines as those in the experimental-markets literature

and show that simple Al-agents-agents endowed with only rudimentary computa-

tional learning abilities-can replicate several features of human-based experimental

markets.

1.2 Background

The work presented in this thesis draws on at least three distinct literatures: the mar-

ket microstructure literature, the experimental markets literature, and the simulated

markets literature.

1.2.1 Market Microstructure

The literature of market microstructure provides important background and context

for the experiments and simulations studied in this thesis. Many of the questions

and issues that we focus on are those that the market microstructure literature has

considered theoretically and empirically. Although our approach takes a decidedly

different tack from the recent market microstructure literature, nevertheless, there

are several important papers that provide motivation and inspiration for the agent-

based models. For example, Garman (1976) developed one of the earliest models of

dealership and auction markets and went so far as to deduce the statistical prop-

erties of prices by simulating the order-arrival process. Cohen, Maier, Schwartz &

http://www.econ.iastate.edu/tesfatsi/ace.htm for further discussion.
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Whitcomb (1991) and Hakansson, Beja & Kale (1985) propose more complex simu-

lation models of market-making activities. And a number of papers develop optimal

market-making behavior in certain theoretical contexts, e.g., Amihud & Mendelson

(1980), Ho & Stoll (1981), and Kyle (1985). Cohen et al. (1986), Schwartz (1993),

O'Hara (1995), and Campbell et al. (1996, Chapter 3) provide excellent overviews of

the market microstructure literature.

1.2.2 Experimental Markets

Another alternative to the theoretical approach is an experimental one in which in-

dividuals are placed in a controlled market setting, given certain endowments of

securities and cash, and allowed to trade with each other. Davis & Holt (1993) and

Kagel & Roth (1995) provide excellent coverage of the recent literature in experimen-

tal markets. In much of this literature, the rational expectations (RE) model has

been the main benchmark, and has had mixed success in various studies. Studies of

the informational efficiency of experimental markets relative to the RE benchmark

generally fall into two categories: information dissemination between fully informed

agents ("insiders") and uninformed agents, and information aggregation among many

partially informed agents. The former experiments investigate the common intuition

that market prices reflect insider information, hence uninformed traders should be

able to infer the true price from the market. The latter experiments explore the

aggregation of diverse information by partially informed agents, a more challenging

objective because none of the agents possesses full information (traders identify the

state of nature with certainty only by pooling their private information through the

process of trading).

1.2.3 Simulated Markets

Computer simulations of markets populated by software agents extend the experimen-

tal approach by allowing the experimenter to test various theories of learning behavior

and market microstructure in a controlled environment. Unlike human-based experi-
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ments, in which the dynamics of the subjects' behavior over many trading periods are

almost never modeled explicitly, agent-based models can easily accommodate com-

plex learning behavior, asymmetric information, heterogeneous preferences, and ad

hoc heuristics.

Garman (1976), Cohen et al. (1991), and Hakansson et al. (1985) were early

pioneers of agent-based models of financial markets. More recently, Gode & Sunder

(1993) uses this framework to demonstrate a remarkable property of competitive

markets: even in the absence of any form of learning or intelligence, markets with

agents trading randomly eventually converge to the REE as long as budget constraints

were continually satisfied.

Additional examples of trading algorithms for the simple double auction can be

found in the report on the Santa Fe Institute Double Auction Tournament by Rust,

Miller & Palmer (1992). This tournament focuses on the relative performance of

various strategies played against each other. One of its key findings is that a very

simple "parasite" strategy that feeds off the others performs best.

Finally, more complex computer-simulated asset markets that emphasize the evo-

lution of trading behavior over time have also been created. LeBaron (forthcoming

1999) surveys many of these computational markets.4 These simulations attempt to

capture long-range market phenomena as well as short-range trading dynamics, and

share our emphasis of building behavioral theories starting at the individual level.

1.3 Major Contributions

This section summarizes the unique aspects and important contributions of this the-

sis. First, an agent-based approach is combined with an experimental approach to

study markets and market participants. This provides a bridge between ad hoc

learning models and experiments with human subjects. Data collected from two

approaches are compared and contrasted. Specifically simulations are conducted to

4Examples include Routledge (1994, 1999), Arifovic (1996), Arthur, Holland, LeBaron, Palmer
& Tayler (1997), Lettau (1997), Youssefmir & Huberman (1997).
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replicate or verify the results from experiments. Second, a novel application of mar-

ket mechanisms-the use of markets to collect consumer preferences-is proposed and

studied in connection with experimental markets. Third, the feasibility of automated

market-making is studied through the use of heuristic rules and an adaptive learning

model. Historical data is used to calibrate and parameterize computer simulations,

whose results can be compared with evidence from real-world markets. The adaptive

model, developed in the reinforcement learning framework, is an original contribu-

tion. The model is able to generate strategies that work under different noisy market

environments.

1.4 Outline

The thesis aims to study (1) the design, development and characterization of artificial

financial markets, (2) the behaviors and strategies of artificially trading and market-

making agents through computer simulations and market experiments. Simulations

and experiments are conducted to study information aggregation and dissemination

in a market. A number of features of the market dynamics are examined: the price ef-

ficiency of the market, the speed at which prices converge to the rational expectations

equilibrium price, and the learning dynamics of traders who possess diverse informa-

tion or preferences. By constructing simple intelligent agents, not only am I able

to replicate several findings of human-based experiments, but I also find intriguing

differences between agent-based and human-based experiments.

The importance of liquidity in securities markets motivates considerable inter-

est in studying the behaviors of market-makers. A rule-based market-maker, built

in with multiple objectives, including maintaining a fair and orderly market, maxi-

mizing profit and minimizing inventory risk, is constructed and tested on historical

transaction data. Following the same design, an adaptive market-maker is modeled

in the framework of reinforcement learning. The agent is shown to be able to adapt

its strategies to different noisy market environments.

The rest of the thesis is organized as follows. Chapter 2 studies a series of com-
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puter simulations designed to match those in experimental-market setting with human

subjects. Chapter 3 discusses a novel application of the market mechanism to col-

lect consumer preferences and presents the results from three market experiments.

Chapter 4 proposes a rule-based market-maker with which simulations are conducted

using historical data. Chapter 5 presents a reinforcement learning model for market-

making. Finally Chapter 6 summarizes results of this thesis and discusses some ideas

for future work in this area.
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Chapter 2

Markets with Empiricial Bayesian

Traders

2.1 Introduction

Experimental asset markets have yielded many results on the properties of financial

markets, and their abilities to disseminate and aggregate information. This under-

standing of the behavior of partially informed agents in experimental settings is a

critical step toward understanding behavior in real markets. Various studies in ex-

perimental markets have shown that individuals are able to learn, and transmit infor-

mation through prices in many different market situations. However, these studies are

less specific about the actual mechanism that traders use to process information and

learn from experience. This kind of generalization requires a deeper understanding of

traders' trading strategies and the specification of the underlying learning processes.

We begin to address this question through the use of computational learning

agents. These agents take the place of the experimental subjects and trade with each

other in a simulated asset market. Unlike experimental subjects, the characteristics

of the computer agents can be carefully controlled and modified to study the overall

market behaviors with regard to different properties of the trader population. In the

design of our trader agents, we strive to keep them as simple as possible in order to

give us an idea of the lower bound of intelligence needed to replicate various market
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phenomenon. This simplicity also makes the agents more open to detailed analysis

on how they are processing market information.

Computational models allow us to explore new areas of economic theory, especially

in dynamic market situations with learning. However, computational models bring

with them new untested algorithms, and parameters. Questions about where theory

ends, and how simple ad hoc mechanisms begin are quite valid. We believe that

experimental data provides one useful route for validation. For this reason we design

our markets to follow those as used in the experimental literature.

Specifically, we construct a double-auction market for a single stock that pays one

liquidating state-contingent dividend at the end of each trading period, and we allow

several types of Al-agents-each endowed with its own preferences, information, and

learning algorithm-to trade with each other during repeated trading periods. In the

course of six different experimental designs, we investigate a number of features of

our agent-based model: the price efficiency of the market (how close market prices

are to the rational expectations equilibrum (REE) prices), the speed at which prices

converge to the REE, the dynamics of the distribution of wealth among the different

types of Al-agents, trading volume, bid/ask spreads, and other aspects of market dy-

namics. In these experiments, we are able to replicate several findings of human-based

experimental markets, e.g., the dissemination of information from informed to uni-

formed traders, the aggregation of information from traders with private information,

and convergence to the REE price after a number of trading sessions.

However, we also find significant differences between agent-based and human-

based experiments. For example, in one of our experiments in which agents have

heterogeneous preferences and heterogeneous information, prices never converge to

the REE; the opposite result was reported by Plott and Sunder (1982) in an exper-

imental market with human subjects. Such differences may point to key features of

human learning and inference that we have not captured in the design of our AI-

agents, and are just as important as for developing a better understanding of how

human markets operate as the features that we are able to replicate.

In Section 2.2, we provide a brief review of both the experimental and computa-
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tional literatures. We describe our market environment in Section 2.3 and provide the

details of the particular experiments we conduct. The results of those experiments

are summarized in Section 2.5, and we conclude in Section 2.6.

2.2 Review of the Literature

2.2.1 Experimental Markets

The rational expectations (RE) model has received a considerable amount of atten-

tion in research on experimental markets. The RE model has had mixed success in

various studies, depending on the complexity and structure of a market. The study

of informational efficiency in the context of RE models can be categorized into two

major areas. The first studies information dissemination from a group of insiders who

have perfect information to a group of uninformed traders. The idea is that market

prices reflect insider information so that uninformed traders can infer the true price

from the market. The second examines information aggregation of diverse informa-

tion in a market by a population of partially informed traders. Aggregation of diverse

information is in general more difficult because no single agent possesses full infor-

mation. Traders can identify the state of nature with certainty only by sharing their

individual information in the process of trading.

Plott & Sunder (1982) and Forsythe, Palfrey & Plot (1982) investigate markets

with insiders and uninformed traders. They show that equilibrium prices do reveal

insider information after several trials of the experiments and conclude that the mar-

kets disseminate information efficiently. Furthermore, Plott & Sunder (1982) show

that even in markets in which traders are paid different dividends (the same security

pays one trader a dividend of 3 in state A but pays another trader a dividend of 5 in

the same state, proxying for differences in preferences between the two traders), prices

still converge to the REE. They attribute the success of the RE model to the fact

that traders learn about the equilibrium price and the state of nature simultaneously

from market conditions.
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On the other hand, results by Plott & Sunder (1988) and Forsythe & Lundholm

(1990) show that a market aggregates diverse information efficiently only under cer-

tain conditions: identical preferences, common knowledge of the dividend structure,

and complete contingent claims. These studies provide examples of the failure of the

RE model and suggest that information aggregation is a more complicated situation.

In a related study, O'Brien & Srivastava (1991) find that market efficiency-defined

as full information aggregation-depends on "complexity" of the market, as measured

by market parameters such as the number of stocks and the number of trading periods

in the market.

2.2.2 Simulated Markets

Experiments use simple economic theories to test convergence properties, but the

dynamics of the subjects' behavior through the rounds is usually not modeled. The

computer simulations performed here provide one possible method for testing the

dynamics of learning in experimental settings, and developing theories in the form of

agent algorithms which can be used to test further hypothesis on market designs and

behavior.

Our agent design is based on the zero intelligence (ZI) traders used in Gode

& Sunder (1993), where the generation of bids and offers contains a large random

component. Gode & Sunder (1993) emphasizes the impact of budget constraints

alone on observed prices and market efficiency. Several other authors have added

varying degrees of intelligence to Gode and Sunder's "zero-intelligence" (ZI) traders

by restricting the range of bids and asks that they generate. Usually these restrictions

involve some function of recently observed trades or quotes. Two examples are Jamal

& Sunder (1996) and Cliff & Bruten (1997); both implement simple heuristics to try

to limit and improve on simple random bidding.
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2.3 Experimental Design

Our experimental design consists of four components: the overall market structure

and economic environment, the trading mechanism, the types of traders, and the

learning algorithms that each type of trader employs. We describe each of these

components in Sections 2.3.1-2.3.4, respectively.

2.3.1 Market Structure and Economic Environment

The general structure of our simulations is a double-auction market in which AI-

agents trade a single security that pays a single liquidating state-contingent dividend

at the end of a trading period by submitting orders for the security during the trading

period. Each trading period consists of 40 trading intervals, and although the security

pays no dividends until the last interval, trading occurs and information is revealed

through prices and order flow in each interval. An epoch is defined to be a sequence

of 75 consecutive trading periods, where an independently and identically distributed

(ID) draw of the state of nature and private information is realized in each period.

The state of nature is IID across periods and all the traders' endowments are reset

at the start of each period, but the traders become more "experienced" as they learn

from one period to the next.1 Each of the six experiments we conduct (see Section

2.4) consists of 100 trials of an epoch, where each epoch begins with the same initial

conditions (types of traders, wealth distribution, etc.). This experimental design is

summarized in Figure 2-1.

At the start of a period, three quantities are initialized (but not necesarily re-

vealed): (1) the state of nature; (2) the agents' endowments of cash and stock, which

is identical across all agents throughout our experiments; and (3) the private infor-

mation of each agent. At the end of a period, the predetermined state of nature is

revealed and dividends are distributed to the shareholders.

The state of nature is random and exogenously determined, and the underlying

'This, of course, applies only to those agents endowed with learning heuristics, e.g., empirical
Bayesian and nearest-neighbor traders. See Section 2.3.4 for details.
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A Run of the Simulation

2nd Round

Beginning of a Period\

Si - -
End of a Period

A Typical Trading Round

a market/limit
Generate an order
Order - AUCTIONEER

a trader is randomly
drawn without
replacement market

information

ALL TRADERS

Figure 2-1: The experimental design of the Artificial Markets simulations. An epoch

consists of 75 trading periods, and each period contains 40 trading intervals.

distribution of the state is common knowledge. For simplicity, we assume it is discrete

and uniform. For example, in an economy with three states, each state has probability

1/3 of occurring. We denote by D = (0, 1, 2) a stock that pays a dividend of 0 in

state 1, 1 in state 2, and 2 in state 3.

To model traders with homogeneous preferences, we assume that a security pays

the same D regardless of who holds it. In contrast, to model traders with heteroge-

neous preferences, we assume that a security pays a different vector of dividends to

different holders of the security. For example, in a market with two types of agents

A and B, suppose the same security pays A a dividend of D' = (0,1, 2), but pays

B a dividend of Db = (2,0, 1). This is a convenient device for capturing the fact

that A may value a payoff in a particular state of nature more highly than B (in this

example, A values a payoff in state 3 twice as highly as B). In economic terms, these

agent-dependent payoffs may be viewed as marginal-utility-weighted payoffs (agents

with different preferences will value identical dollar-payoffs differently). Heteroge-
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neous preferences (payoffs) will be one motivation for trade in our market.

Differences in information about the likely state of nature is the other motive for

trade. Information that is available to all market participants is public information,

whereas information only known to some individuals is considered private information.

The support of the distribution of dividends and their unconditional probabilities are

public information, but some traders receive private information about the state of

the nature. Specifically, traders are categorized into three groups according to their

information: insiders know exactly which state will occur (for example, state 2 will

occur, hence D = (-, 1, -)), partially informed traders who have imperfect informa-

tion about the state (for example, state 3 will not occur, hence D = (0, 1, -)), and

uninformed traders who have only public information (that is, D = (0, 1, 2)). Insiders

and partially informed traders receive their private information at the beginning of

each period. The distribution of private information is not common knowledge.

2.3.2 Trading Mechanism

The trading mechanism is a simplified double-auction market. Agents can either

submit a bid or ask, or accept a posted bid or ask. If there is an existing bid for

the stock, any subsequent bid must be higher than the current bid to be posted.

Similarly, a subsequent ask following an existing ask must be lower than the current

ask to be posted. A transaction occurs when an existing bid or ask is accepted (a

market order matches with a limit order), or when the bid and ask cross (in which

case the transaction price is set at the middle of the bid and ask).

For each trade, we restrict the quantity traded to be one share. There are two

reasons for such a substantial simplification. First, allowing variable quantities com-

plicates the analysis considerably, creating another strategic choice for which heuris-

tics must be developed and then analyzed. Second, because one of the goals of this

chapter is to determine the minimal level of intelligence required to replicate certain

features of more sophisticated human markets, we wish to keep our model as simple as

possible while retaining the most essential features of a securities market, e.g., prices

as a medium of information dissemination and aggregation. However, we recognize
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the importance of quantity as a choice variable-it is intimately associated with risk

aversion, for example-and we hope to extend our analysis to incorporate variable

shares traded in the near future.

No borrowing or short selling is permitted, and agents must satisfy their budget

constraint at all times. Recall that each trading period consists of 40 trading intervals.

At the beginning of each interval, a specific ordering of all the agents is drawn at

random (uniformly). Following this randomly selected ordering, each agent submits

one limit or market order. We fix the number of agents to be 20 for most of the

experiments, 2 hence a maximum of 20 x 40 = 800 transactions can occur in any given

period in such cases.

2.3.3 Agents

In designing our agents, we follow the spirit Gode and Sunder's (1993) "zero-intelligence"

(ZI) traders by using the simplest heuristics to give us a sense of the lower bound of in-

telligence needed to replicate various human-market phenomena. This simplicity also

allows us to analyze more easily the interactions among agents and how information

is disseminated and aggregated.

Specifically, all traders are assumed to be risk neutral, and they maximize their

end-of-period expected wealth by choosing between cash and stock. Agents maximize

the end-of-period expected value of their portfolios by forecasting the liquidating

dividend, and then buying when market prices are low relative to their forecast and

selling when market prices are high. Although we do not explicitly model the utility

functions of the agents, we do allow for some basic differences in preferences by

allowing the dividend payments to differ across agents (see Section 2.3.1). All agents

submit orders according to the procedure described in Table 2.1 but they differ in how

they determine the expected value of the stock p*, which we call the base price.3 For

21n Experiment 2.4.6 we hold fixed the number of traders of one type while increasing the number
of traders of another type.

3This procedure is inspired by the budget constrained ZI traders of Gode & Sunder (1993). It
is also closely related to the heuristic trader mechanisms of Jamal & Sunder (1996) and Cliff &
Bruten (1997), both of which suggest other methods for updating floor and ceiling levels which help
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Scenario Action

existing bid, existing ask

p* > a buy at market
p* < b sell at market

b < p* < a and a-p* > p* -b post an ask distributed U(p*,p*+S)
b < p* < a and a-p* p*-b post a bid distributed U(p* - S, p*)

no bid, existing ask

p* > a buy at market
P* < a post a bid distributed U(p* -S,p*)

existing bid, no ask
p* < b sell at market
p* > b post an ask distributed U(p*,p*+S)

no bid, no ask
with probability 1/2 post an ask distributed U(p*,p*+S)
with probability 1/2 post a bid distributed U(p* - S,p*)

Table 2.1: The order-submission algorithm of AI-agents in the Artificial Markets simula-
tions, where a denotes the best ask price, b the best bid price, p* the agent's base price,
S the maximum spread from the base price, and U(xI, X2) the uniform distribution on the
open interval from xi to x 2.

example, if there exists only an ask (no outstanding bid) and the agent's base price

is lower than the ask price, the agent posts a bid price that is uniformly distributed

on the interval (p* - S, p*), where p* is the base price and S is a preset maximum

spread.

Agents are of three possible types, depending on how they construct their fore-

casts: empirical Bayesian traders, momentum traders, and nearest-neighbor traders.

Empirical Bayesian traders use market information to update their beliefs about the

state of the economy.4 They form their base price using these beliefs, and attempt

to buy (sell) if the base price is higher (lower) than the market price, in which case

the stock is under-valued (over-valued) from their perspective. Empirical Bayesian

traders continuously observe market activities, update their beliefs, and adjust their

positions accordingly. They stop trading when either the market price approaches

their base price, or they run out of cash or stock.

to constrain bid and ask ranges.
4We use the term "empirical Bayesian" loosely-our traders will not actually be correctly up-

dating their priors using all available time series data since this would be too complicated. They
simplify past prices using a moving average and this is used as a proxy for the complete history of
observed data, which is then used to update their priors.
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Momentum traders are simple technical analysis traders whose forecast of tomor-

row's return is today's return. Specifically, if at time t the two most recent transaction

prices are pt and pt-I, then a momentum trader's forecast of the next transaction price

is simply Pt x (pt/pt-1). These traders reinforce and magnify the ups and downs of

price movements, introducing extra volatility and irrational valuations of the security

which make information aggregation and dissemination more difficult.

Nearest-neighbor traders attempt to exploit any patterns in historical prices to

predict market prices by using a nearest-neighbor learning heuristic (see Section

2.3.4). If the empirical Bayesian traders are the "fundamental investors" of the mar-

ket, the nearest-neighbor traders can be viewed as sophisticated "technicians". Like

the momentum traders, nearest-neighbor traders ignore any information regarding

dividends and their associated probabilities. But instead of following a fixed strategy,

they learn and adapt to changing market conditions.

2.3.4 Learning Mechanism

Empirical Bayesian traders condition their beliefs on market information. Specifically,

the agents want to compute the expected dividend E[D po, pi, .... , pt]. For simplicity,

we only consider transaction prices and ignore other market variables such as bid/ask

prices and spreads and volume. We also assume that most of the relevant information

is embedded in the transaction prices of the last k trades, hence a k-period moving

average of prices mt is used to summarize market information at time t,

mTt= PT . (2.1)
r=t-k+1

We set k - 10 in our simulations. Given the series of moving-average prices ink, mk+1, ... ,mt

and the realized dividend Di, the conditional distribution P(mjDj) can be estimated

empirically, and using Bayes Theorem, P(Dilm) can be determined:

P(Dilm) = P(mD)P(D) (2.2)
EN P(mIDj) P (Dj)
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where P(Dj) is the prior probability of dividend state i given by a trader's private

information set, and N is the number of possible states. Consequently, for D =

(Do, D 1,... , D,,) and given a moving-average price m, the conditional expectation of

the dividend is

N

E[Djm] = Z P(Djm)Di (2.3)
i=1

This conditional expectation is taken as the base price p* for the empirical Bayesian

traders. The order submission procedure, described in Table 2.1, is then followed.

In the actual implementation, the empirical Bayesian traders estimate the con-

ditional density functions by constructing histograms with series of moving-average

prices. Each histogram corresponds to a dividend state. A series is appended and the

corresponding histogram is updated with the new moving-average prices after each

period of an experiment. By participating in more periods, the empirical Bayesian

traders attain more accurate estimates of the conditional probability. Intuitively, the

empirical Bayesian traders learn the state by associating relevant market conditions

with the realized state. They memorize these associations in form of histograms.

These histograms give a picture of how well the agents discern different states given

market data.

As for the nearest-neighbor traders, instead of observing the k-period moving-

average prices, in each period i they form a sequence of n-tuples from the price series:

x%, x+1 ,... ,x' where:

xt = (Pt-n+1,Pt-n+2, ... , pt) , t = kk+1, ... ,T , (2.4)

pt is the market at time t, and T is the number of transactions in the period. Simi-

lar to the empirical Bayesians, the nearest-neighbor traders believe that all relevant

information is embedded in the prices of the last n transactions. We set n = 5

in our experiments. Each of the n-tuples, x', is associated with the end-of-period

REE price, or dividend D., depending on the state of the economy. The pairs
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(xi, D), (x+ 1, Di),... , (x , Q) xj 1,Di+i), ... and so on represent the "memory"

of a nearest-neighbor trader. The nearest-neighbor traders predict the dividend by

first observing the most recent n-tuple in the current market, xt, then finding its

r nearest neighbors in terms of Euclidean distance from memory. The forecast is

defined to be the mean of the associated dividends of the r nearest neighbors.

The parameter r controls the robustness of the prediction by governing the trade-

off between bias and variance of the estimate. If r is too large, the bias becomes

large and the estimate is inaccurate. If r is too small, the variance is high and the

estimate is noisy and sensitive to individual data points. Through simple trial-and-

error, we settled on r = 10 as the best compromise between mean-squared-error and

computational speed, but no formal optimization was performed.

2.4 Six Experiments

We conduct six distinct experiments, each consisting of 100 trials of an epoch (re-

call that an epoch is comprised of 75 consecutive trading periods). The market and

information structures are identical across the six experiments, but we vary the coin-

position of traders and the diversity of preferences. These differences are described in

Sections 2.4.1-2.4.6 and summarized in Table 2.2. In all six experiments, we assume

that there are three states of nature that occur with equal probability (uncondition-

ally), and unless indicated otherwise, all agents begin each period with 10 units of

cash and 5 shares of stock.

2.4.1 Information Aggregation and Identical Preferences

This experiment contains 20 agents with identical preferences (hence the dividend

payoff D is the same for each agent) and all agents are partially informed that one of

the three states is impossible. For example, if state 1 is the state that will be realized

at the end of the period, at the beginning of the period one trader is informed that

state 0 will not occur, and another trader is informed that state 2 will not occur.

Although none of the traders knows in advance which state will occur, collectively,
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Experiment Information Preferences Dividend Endowment Number of Traders
Cash Stock E.B. Mom. N.N.

1 Aggregation Homogeneous (0,1,2) 10 5 20 0 0
2 Dissemination Homogeneous (0,1,2) 10 5 20 0 0

3a Aggregation Heterogeneous (0, 1, 3)' 10 5 10 0 0
( 2 , 0, 1)b 10 0 0

3b Aggregation Heterogeneous (0,1, 3)a 40 5 10 0 0
( 2 ,0, 1)b 10

4a Dissemination Heterogeneous (0, 1, 3)' 10 5 10 0 0
( 2 ,0, I)b 10

4b Dissemination Heterogeneous (0, 1, 3)a 40 5 10 0 0
(2 ,0, I)b 10

5 Aggregation Homogeneous (0, 1, 2) 10 5 20 0, ... , 150 0
6 Aggregation Homogeneous (0,1, 2) 10 5 15 0 5

Table 2.2: Summary of the six experiments conducted in the Artificial Markets simulations.
'E.B.', 'Mom.', and 'N.N.' denote the number of Empirical Bayesian, momentum, and
nearest-neighbor traders in each experiment. Each experiment consists of 100 statistically
independent repetitions of 75 trading periods.

the market has perfect information about which state will occur. The REE price

is simply the value of D in the realized state of nature, and the dividend payoff is

D = (0, 1, 2).

2.4.2 Information Dissemination and Identical Preferences

This experiment contains 20 agents with identical preferences, but there are 10 insid-

ers who know what the state of nature is, and 10 uninformed traders who have only

public information, i.e., the distribution of D. The REE price is D in the realized

state, and the dividend payoff is D = (0, 1, 3).

2.4.3 Information Aggregation and Heterogenous Preferences

This experiment contains 20 agents divided into two groups of 10 according to their

preferences. In the three possible states of nature, Group A receives a dividend D' =

(0,1, 3) and Group B receives Db = (2,0,1). All traders have private information

which rules out one of the two states that will not occur. Given the state of nature,

the REE price is the higher of D' and Db in that particular state. For example, given
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that state 2 will occur, the REE price is 3.

We run this experiment twice. In the first run, we set agents' endowments at the

usual levels: 10 units of cash and 5 shares of stock. In the second run, we increase

each agent's cash endowment to 40 units, relaxing budget constraints considerably.

2.4.4 Information Dissemination and Heterogenous Prefer-

ences

There are two groups of traders with diverse preferences. Group A receives dividend

D' = (0, 1, 3) and group B receives Db = (2, 0, 1). There are 5 insiders and 5 unin-

formed traders in groups A and B, respectively. The REE price is the higher of D'

and Db given the state.

As in Experiment 2.4.3, we run this experiment twice. In the first run, we set

agents' endowments at the usual levels: 10 units of cash and 5 shares of stock. In the

second run, we increase each agent's cash endowment to 40 units, relaxing budget

constraints considerably.

2.4.5 Empirical Bayesian and Momentum Traders

In this experiment we test the robustness of our market's price-discovery mechanism

by varying the proportion of empirical Bayesian and momentum traders in the pop-

ulation. The empirical Bayesian traders provide the market with information and,

by their trading activities, move market prices towards the REE. The momentum

traders, on the other hand, introduce a substantial amount of noise and volatility into

market prices. How much noise can the market "tolerate" before the price-discovery

mechanism breaks down, i.e., prices no longer converge to the REE?

To answer this question, we fix the number of empirical Bayesian traders at 20 and

perform a sequence of 14 experiments in which the number of momentum traders is

increased incrementally from 0 in the first run to 150 in the 14th run. 5 By maintaining

5 Specifically, the 14 runs correspond to experiments with 0, 5, 10, 15, 20, 25, 30, 40, 50, 60, 75,
100, 125, and 150 momentum traders, respectively.
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the same number of empirical Bayesian traders across these 14 runs, we keep constant

the amount information in the market while successively increasing the amount of

noise induced by momentum traders.

2.4.6 Empirical Bayesian and Nearest-Neighbor Traders

In this experiment we have 15 empirical Bayesian traders and 5 nearest-neighbor

traders. The nearest-neighbor traders are designed to exploit any predictability in

prices, hence their trading performance is a measure of the market's weak-form ef-

ficiency. If the market is weak-form efficient, then the empirical Bayesian traders

should perform at least as well as the nearest-neighbor traders (because there is

nothing for the "technicians" to pick up). On the other hand, if prices contain pre-

dictable components, the nearest-neighbor traders should outperform the empirical

Bayesians.

2.5 Results and Discussion

In all six experiments, we focus on the informational efficiency of the market, i.e., do

"prices fully reflect all available information"? Specifically, we compare market prices

to their REE counterpart by measuring their average absolute price-deviation:

1T
AP = T pt - DI (2.5)

t=1

where pt is the transaction price and D is the REE price, and by considering the rate

of convergence of pt to D over the epoch.

In addition, we investigate bid-ask spreads, trading volume, and the wealth dis-

tribution across the different types of traders. Narrowing bid-ask spreads show that

prices are converging, implying that buyers and sellers are reaching a common price.

Diminishing volume, on the other hand, suggests that the market is approaching its

equilibrium. This is either because all traders come to the same expected price and

therefore have no incentives to trade, or they simply run out of cash or stock to trans-
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act further. And the difference in wealth between two types of traders provides an

indication of the economic impact of the differences among the traders. For example,

in the case of insiders versus uninformed traders (Experiment 2.4.2), the differences in

wealth between the two groups provide a measure of the value of insider information.

We measure this difference as A,,(i, j) where

A(ij) = x 100 (2.6)
Wi

and W and Wj are the total wealth levels of the two types of traders.

We also investigate the expectations formed by the agents by examining their em-

pirical conditional density functions of the moving-average price given the states. This

collection of conditional density functions represents the agents' beliefs formed with

their prior information and updated continuously with market prices. The agents use

these density functions to distinguish one state from another, hence these functions

are central to understanding how the agents learn.

In experiments that have a diverse dividend structure, we define allocative effi-

ciency, following Smith (1962), as the ratio between total dividends earned by all

traders and the total maximum dividends that can possibly be extracted from the

market. For example, 100% allocative efficiency implies that all shares are held by

traders in the group that receives the highest dividend in the realized state. The REE

predicts 100% allocative efficiency in that all shares will be allocated to the traders

valuing them most highly.

Recall that each experiment consists of 100 trials of an epoch consisting of 75 con-

secutive trading periods, and a trading period contains 40 trading intervals. Because

of the enormous quantity of data generated from these simulations, it is difficult to

provide numerical summaries of the results. Therefore, we summarize our findings in

a series of graphs (Figures 2-2a-2-7b) and discuss them in Sections 2.5.1-2.5.4.
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Figure 2-2a: Prices, bid-ask spreads, and volume in the early periods of a typical realization

of Artificial Markets Experiment 2.4.1 (information aggregation with identical preferences).
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Figure 2-2b: Prices, bid-ask spreads, and volume in the later periods of a typical realization

of Artificial Markets Experiment 2.4.1 (information aggregation with identical preferences).
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Price Deviation over 100 Experiments
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Figure 2-2c: Absolute price-deviations of market prices from the
equilibrium price, averaged over 100 repetitions of Artificial Markets
formation aggregation with identical preferences).
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2.5.1 Homogeneous Preferences

With identical preferences, the results from our simulation are similar to those in the

human-based experimental markets literature, and are captured in Figures 2-2a and

2-2b which plot the transaction, bid, and ask prices and volume in selected periods

of a typical epoch of Experiment 2.4.1.

In this experiment the convergence to the REE is apparent. Figure 2-2a shows

market activities in the earlier periods of the market in a typical trial of the experi-

ment. In this stage, agents are actively learning and observing, with little evidence of

convergence. However, in the later periods (see Figure 2-2b), after agents have accu-

mulated sufficient knowledge regarding how states and prices are related, convergence

becomes more apparent.

Figure 2-2c plots the average price-deviations Ap (see (2.5)) for each of the 75 pe-

riods of the epoch, averaged over the 100 trials of the experiment. Market efficiency

clearly improves substantially over the epoch. Figure 2-2d plots the conditional dis-

tribution of the moving-average price (see (2.1)) for each of the three states, obtained

by summing up the frequency counts for mt across the 100 trials and for each state.

These histograms show that the three states are clearly distinguishable by the agents.

In Experiment 2.4.2, the evidence of convergence is even more compelling (see

Figures 2-3a and 2-3b). In contrast to Experiment 2.4.1, prices converge faster in this

experiment and are closer to the REE price (Figure 2-3c), and bid-ask spreads are

smaller. There are two reasons for such a difference in the two experiments, despite

the fact that both markets have approximately the same amount of information. First,

in Experiment 2.4.1 traders must trade with each other to "pool" their information

to determine the correct price, whereas in Experiment 2.4.2 the insiders know the

correct price. Second, in the former case the distribution of information to the traders

is random. For example, there may be many more traders given the information

D = (0, 1, -) than those given D (-, 1, 3), biasing the consensus in one direction

or another.

Figure 2-3e plots the cross-sectional distribution of percentage wealth differences
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A,, (see (2.6)) between the informed and uninformed traders for the 75 trading peri-

ods. For each period, we compute the average wealth within the two groups, take the

percentage difference, and plot the deciles of these differences over the 100 trials. Not

surprisingly, insiders have a substantially higher wealth than the uninformed. The

difference in their wealth represents the value of the insider information and may be

an estimate of the price traders would be willing to pay if information signals were

sold. Observe that the value of insider information is diminishing over the epoch as

uninformed traders learn. This is consistent with results from human-based exper-

imental markets such as Sunder (1992) in which information is sold in a sealed bid

auction. In such experimental markets, traders lower their bids for information once

they learn to infer the states after a few periods of experience.

2.5.2 Heterogeneous Preferences

In contrast to the identical-preference cases, the prices in experiments involving di-

verse preferences do not seem to converge to the REE price. This can be explained

by the fact that our agents attempt to recover the state of nature from market in-

formation alone, and not from the preferences of other agents (which is not common

knowledge), despite the fact that heterogeneity is an important feature of their world.

In fact, they are not even "aware" of the possibility of differences in dividend payoffs

across traders.

Figures 2-5a-2-4e summarize the results from Experiments 2.4.3 and 2.4.4. Be-

cause our agents must infer the state of nature from market prices alone, we expect

the REE model to fail in both experiments. The intuition for this conjecture comes

from the fact that market prices are less useful for discriminating among states of

nature in the presence of heterogeneity. For example, Figure 2-4e plots the condi-

tional distribution of the moving-average price in Experiment 2.4.4; the probability

of such a realization is almost identical in states 1 and 2, making the two virtually in-

distinguishable. Even if agents were told which state will occur, they would still have

trouble reaching a unanimous price because of the heterogeneity in their preferences.
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Figure 2-3a: Prices, bid-ask spreads, and volume in the early periods of a typical real-

ization of Artificial Markets Experiment 2.4.2 (information dissemination with identical

preferences).
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Figure 2-3b: Prices, bid-ask spreads, and volume in the later periods of a typical real-

ization of Artificial Markets Experiment 2.4.2 (information dissemination with identical

preferences).
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Price Deviation over 100 Experiments
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Figure 2-3c: Absolute price-deviations of market prices from the
equilibrium price, averaged over 100 repetitions of Artificial Markets
formation dissemination with identical preferences).
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Figure 2-3d: Empirical distribution of moving-average prices, conditioned on the state of
nature S, in Artificial Markets Experiment 2.4.2 (information dissemination with identical
preferences).
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Wealth Difference between Insider and Uninformed Traders
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Figure 2-3e: Deciles of percentage wealth differences between insiders and uninformed
traders in 100 repetitions of Artificial Markets Experiment 2.4.2 (information dissemination
with identical preferences). Medians are indicated by the symbol '+'.

However, the degree of market efficiency-as measured by the average absolute

price-deviation and allocative efficiency-is influenced by the traders' initial cash

endowments. The outcomes of two experiments, a low-cash (10 units) and a high-

cash (40 units) experiment, are summarized in Figures 2-5c and 2-5d. These figures

plot average absolute price-deviations and allocative efficiency, respectively, for the

two experiments over the 75 periods of an epoch and averaged over 100 trials. Figure

2-5c shows that the standard cash endowment of 10 units does not lead to convergence;

average absolute price-deviations and allocative efficiencies do not improve much over

the 75 periods. However, an initial cash endowment of 40 units does yield some

convergence in Experiments 2.4.3 and 2.4.4.

A concrete example will help to illustrate how the market reaches equilibrium in

the high-cash case. In Experiment 2.4.3, type A and type B insiders will receive 3

and 1, respectively, for one share of the stock in state 3. These are their reservation

prices. Agents will not buy above or sell below these prices. Between the two groups
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Figure 2-4a: Prices, bid-ask spreads, and volume in the early periods of typical realiza-
tion of Artificial Markets Experiment 2.4.4 (information dissemination with heterogeneous
preferences).
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Figure 2-4b: Prices, bid-ask spreads, and volume in the later periods of a typical realiza-
tion of Artificial Markets Experiment 2.4.4 (information dissemination with heterogeneous
preferences).
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Price Deviation over 100 Experiments
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Figure 2-4c: Absolute price-deviations of market prices from the rational expectations
equilibrium price, averaged over 100 repetitions of each of two runs of Artificial Markets
Experiment 2.4.4 (information dissemination with heterogeneous preferences), the 'low-cash'
and 'high-cash' experiments.
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Figure 2-4d: Allocative efficiency, averaged over 100 repetitions of each of two runs of
Artificial Markets Experiment 2.4.4 (information dissemination with heterogeneous prefer-
ences), the 'low-cash' and 'high-cash' experiments.
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Figure 2-4e: Empirical distribution of moving-average prices, conditioned on the state of
nature S, in Artificial Markets Experiment 2.4.4 (information dissemination with heteroge-
neous preferences).
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Figure 2-5a: Prices, bid-ask spreads, and volume in the early periods of a typical real-

ization of Artificial Markets Experiment 2.4.3 (information aggregation with heterogeneous
preferences).
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Figure 2-5b: Prices, bid-ask spreads, and volume in the later periods of a typical real-

ization of Artificial Markets Experiment 2.4.3 (information aggregation with heterogeneous

preferences).
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Price Deviation over 100 Experiments
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Figure 2-5c: Absolute price-deviations of market
equilibrium price, averaged over 100 repetitions of

prices from the rational expectations
each of two runs of Artificial Markets

Experiment 2.4.3 (information aggregation with heterogeneous preferences), the 'low-cash'
and 'high-cash' experiments.
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Figure 2-5d: Allocative efficiency, averaged over 100 repetitions of each of two runs of Arti-

ficial Markets Experiment 2.4.3 (information aggregation with heterogeneous preferences),
the 'low-cash' and 'high-cash' experiments.
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Figure 2-5e: Empirical distribution of moving-average prices, conditioned on the state of

nature S, in Artificial Markets Experiment 2.4.3 (information aggregation with heteroge-
neous preferences).

49

1

I I I

- -

high cash

low cash

- -\

I



of insiders, it is only possible for type B to buy from type A. The uninformed agents,

without any private information, will have a reservation price approximately equal to

1 regardless of their dividend profile.6 Hence, we can conjecture that the transaction

prices will range from 1 to 3. Note that type B insiders will bid the highest price-

close to 3-and they will never sell the shares. The rest will attempt to buy or sell at

roughly 1 but type B insiders will be responsible for most of the buying. Consequently

supply diminishes and the price converges gradually to 2.

Not surprisingly, we also observe close to 100% allocative efficiency in the high-

cash experiment as Figure 2-5d shows. However, the large bid-ask spreads displayed

in Figure 2-5b imply that many traders are still interested in trading at prices far

from the REE price, and there is little improvement in this spread across the periods.

Information dissemination in a market with diverse dividends (Experiment 2.4.4)

is unsuccessful by our learning agents. This contrasts sharply with the human-based

experimental markets studied by Plott and Sunder (1982), where after a few trials,

insiders begin to realize that the equilibrium price can be different from what their div-

idend profiles imply, and they adjust their trading strategy accordingly. Uninformed

human traders are also able infer the equilibrium price from market conditions. The

key distinctions between these experimental markets and our simulations are human

traders' knowledge of the existence of heterogeneous preferences (diverse dividend

payoffs), and their ability to learn the relation between the equilibrium price and the

state of nature.

In the market of diverse information and heterogeneous preferences (Experiment

2.4.3), the end-of-period price does not come close to the REE price. We recognize

that a market with diverse information is a more difficult scenario than one with

insider information. In similar experiments with human subjects, Plott and Sunder

(1988) show that information aggregation was unsuccessful in a market with hetero-

geneous preferences, and they attributed the failure to the complexity involved to

inferring the state from market information. In two other sets of experiments, they

6This is approximate because their beliefs, conditioned on the market prices, can affect their
estimates of the price.
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found that the market aggregates information efficiently by having identical dividends

across all traders (as in Experiment 2.4.1), or by replacing the single three-state se-

curity with three state-contingent claims. In a separate study, Forsythe & Lundholm

(1990) confirmed similar results and added that information aggregation can be suc-

cessful if the information about the heterogeneity in dividend payoffs is made available

to all traders. Nevertheless, here our empirical Bayesian traders fail to aggregate in-

formation for the same reasons as they fail to disseminate information in Experiment

2.4.4.

2.5.3 Momentum Traders

In Experiment 2.4.5, we add momentum traders to the market to introduce extra noise

and volatility to the "signal" perceived by the partially informed empirical Bayesian

traders. To quantify the effect that momentum traders have on the market, we plot

in Figure 2-6a the average absolute price-deviations in periods 30, 40, 50, and 75,

each averaged over 100 trials for each of 14 different runs of this experiment, each

run corresponding to a different number of momentum traders, from 0 in run 1 to

150 in run 14 (the number of empirical Bayesian traders is fixed at 20 for all runs).7

As expected, the absolute price-deviation curve is highest for the period-30 plot and

lowest for the period-75 plot-the market becomes more efficient over time as agents

learn.

Figure 2-6a also shows that in all four periods, the absolute price-deviations de-

crease initially as momentum traders are introduced, but generally increase after the

number of momentum traders exceeds 5. Momentum traders add not only noise but

also liquidity to the market, and with a small population of these irrational agents

in the market, the empirical Bayesians manage to take advantage of the additional

liquidity in making the market more efficient. However, when the number of mo-

mentum traders reaches 25 or more, the average price-deviation exceeds that of the

benchmark case where no momentum traders are present.

'See footnote 5.
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Figure 2-6a: Absolute price-deviations of market prices from the rational expectations
equilibrium price in periods 30, 40, 50 and 75, averaged over 100 repetitions, as a func-
tion of the number of momentum traders present in Artificial Markets Experiment 2.4.5
(information aggregation with empirical Bayesian and momentum traders).
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Figure 2-6b: Absolute price-deviations of market prices from the rational expectations
equilibrium price, averaged over 100 repetitions, over the epoch for 0, 25, and 50 momen-
tum traders in Artificial Markets Experiment 2.4.5 (information aggregation with empirical
Bayesian and momentum traders).

53



distribution of moving av
100000

C
1500001U) I

erage price given dividend state P(mjS)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

30000

20000-

10000-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

60000

40000 -

20000-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 2-6c: Empirical distribution of moving-average prices, conditioned on the state of
nature S, in Artificial Markets Experiment 2.4.5 (information aggregation with 20 empirical
Bayesian and 20 momentum traders).

Figure 2-6b provides a more detailed look at the impact of momentum traders

on market prices through plots of the average absolute price-deviation over three

different runs of Experiment 2.4.5: runs with 0, 25, and 50 momentum traders (each

plot is the average over 100 trials). Not surprisingly, the average absolute price-

deviations increase with the number of momentum traders. The irrational trading

of the momentum traders adversely affects the price convergence at early stage of

the markets (roughly from periods 1 to 40). However, as the empirical Bayesian

traders learn from and adapt to the strategies of the momentum traders, they are

eventually able to overcome the noise from the irrational trading. From periods 65

to 75, the three markets are about equally efficient as measured by price deviation.

Both the learning of the empirical Bayesian traders and the liquidity provided by the

momentum traders contribute to efficiency of the markets.

Figure 2-6c plots the empirical conditional distributions of the moving-average

prices in an experiment with 20 empirical Bayesians and 20 momentum traders. De-
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Figure 2-6d: Deciles of percentage wealth differences between empirical Bayesian and

momentum traders in 100 repetitions of Artificial Markets Experiment 2.4.5 (information
aggregation with 20 empirical Bayesian and 20 momentum traders). Medians are indicated
by the symbol '+'.
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spite the fact that these distributions have high dispersion, the three states are still

distinguishable. In such circumstances, we expect the empirical Bayesians to exploit

the irrational momentum traders and end up with a much higher level of end-of-period

wealth. After all, the farther the price deviates from the RE price, the higher is the

gain of the empirical Bayesians. However, Figure 2-6d shows that this intuition is

not complete. Although median wealth differences between empirical Bayesian and

momentum traders increase initially (from periods 1 to 5), they generally decline af-

terwards. The initial increase can be attributed to the empirical Bayesians' learning

about the influence of momentum traders. But after some point, the market becomes

more efficient, i.e., prices become more informative and closer to the REE. This is

consistent with the patterns documented in Figure 2-6b-the initial advantages of

the empirical Bayesians diminish through time as profit opportunities are bid away.

2.5.4 Nearest-Neighbor Traders

In the previous experiments, we have shown that the empirical Bayesian traders are

successful in disseminating and aggregating information in homogeneous-preferences

cases. However, we have not investigated the weak-form efficiency of these markets,

i.e., how predictable are price changes? In Experiment 2.4.6, the empirical Bayesian

traders are combined with nearest-neighbor traders, traders that attempt to uncover

and exploit predictabilities in past prices. Our hypothesis is that if market prices are

informationally efficient and do fully reveal all available information, then nearest-

neighbor traders will perform poorly against empirical Bayesians.

Figure 2-7a shows the price convergence of this market. The price deviations reach

the same levels as those in Experiment 2.4.1, converging rapidly after 50 periods.8

Unlike momentum traders, nearest-neighbor traders do not appear to hinder the

process of information aggregation.

With respect to the relative performance of the two types of traders, Figure 2-

7b shows that in terms of median percentage wealth differences, nearest-neighbor

8For this experiment, we extend the epoch to include 100 periods to ensure that prices were
converging to the REE instead of cycling.
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Figure 2-7a: Absolute price-deviations of market prices from the rational expectations

equilibrium price, averaged over 100 repetitions, in Artificial Markets Experiment 2.4.6

(information aggregation with 15 empirical Bayesian and 5 nearest-neighbor traders).

traders outperform empirical Bayesian traders in all but the first 4 periods, implying

that market prices do have some predictability to be exploited. In fact, the nearest-

neighbor traders significantly outperform the empirical Bayesians roughly from period

5 to 40, after which the median wealth difference between the two groups becomes

less significant.

This suggests that the predictability in prices is temporary (but more than just

a few periods), and that nearest-neighbor traders learn faster than the empirical

Bayesians. The first implication is consistent with our observation of the decreasing

price deviations (in Figure 2-7a), or equivalently increasing price efficiency, from

periods 1 to 40. Nearest-neighbor traders help make the market more efficient.

With respect to the second implication, the two types of traders start learning at

the same time and compete with each other to discover the REE price. Evidently,

the nearest-neighbor traders are able to exploit predictabilities more quickly hence

they outperform empirical Bayesians initially. Eventually, empirical Bayesians are
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Figure 2-7b: Deciles of percentage wealth differences between empirical Bayesian and
nearest-neighbor traders in 100 repetitions of Artificial Markets Experiment 2.4.6 (infor-
mation aggregation with 15 empirical Bayesian and 5 momentum traders). Medians are
indicated by the symbol '+'.
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able to adapt to the strategy of the nearest-neighbor traders and more accurately

infer the state of nature from market data. Consequently, as price becomes more

efficient, the advantage enjoyed by the nearest-neighbor traders diminishes. However,

the distribution of wealth differences (Figure 2-7b) show that even in the later periods,

there are some realizations in which nearest-neighbor traders exhibit small gains over

empirical Bayesians. These gains are not caused by price inefficiency, but are due to

the fact that empirical Bayesians trade on rather inaccurate unconditional expected

dividend at the beginning of each period.'

2.6 Conclusions

The rich implications of our agent-based model of financial markets underscore the

potential for this new approach to shed light on challenging financial issues that cur-

rently cannot be addressed in any other way. Our simulation results accord well with

human-based experimental market studies in many cases. Our simple Al-agents can

accurately infer and aggregate diverse pieces of information in many circumstances,

and they have difficulties in cases where human traders are also unable to determine

the rational expectations equilibrium.

In a small number of cases our markets behave differently from human-based

experimental markets. In our view, these discrepancies are just as significant as the

concordances. For example, the sharp contradiction between Plott and Sunder (1982)

and our experimental results in the case of information dissemination under heteroge-

neous preferences points to several important issues that warrant further investigation

(more sophisticated learning algorithms for our agents, non-price learning and com-

munication by human subjects, the dynamics created by heterogeneous preferences,

etc.).

The use of AI-agents with simple heuristic trading rules and learning algorithms

allows us to perform many new experiments that are well beyond the capabilities

9 Recall from Section 2.3.4, empirical Bayesian traders compute their expected dividend condition
on a k-period moving average price mt. At the beginning of each period, before k prices are available,
they simply trade on unconditional expected dividend.
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of experimental markets with human subjects. For example, we show that adding

momentum traders to a population of empirical Bayesians has an adverse impact on

market performance and the momentum traders do poorly overall. However, this

effect diminishes over time as the market becomes more efficient. But in our final

experiments in which nearest-neighbor traders-traders that simply trade on patterns

in past prices-are added to a population of empirical Bayesians, they are relatively

successful free riders, not only matching the performance of empirical Bayesians in

the long run, but outperforming the Bayesians in the short run. We conjecture that

this advantage comes from the nearest-neighbor traders' ability to exploit short-term

predictabilities more efficiently (that is what they are designed to do), and such

predictabilities are more readily available in the early periods of trading.10 These

findings raise interesting possibilities when viewed from an evolutionary point of view.

In the early periods, selective pressures favor the nearest-neighbor traders, not the

empirical Bayesian. If enough free riders enter the market, then prices might fail to

converge to the rational expectations price because the market will contain too many

free riders hoping to learn from price patterns alone.

10These results are closely related to parasite strategies documented in Rust et al. (1992).
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Chapter 3

Experimental Markets for Product

Concepts

Markets are well-known as an efficient tool to collect and aggregate diverse infor-

mation regarding the value of commodities and assets. They have been particularly

successful in the domain of financial assets. The previous chapter demonstrates how

information aggregation and dissemination in financial markets can be modeled in

an agent-based framework. This section continues the study of markets through

both simulations with artificial agents and experiments with human subjects. Specif-

ically, we explore an alternative application of the market mechanism to marketing

research-using markets to collect consumer preferences on virtual product concepts.

This application of markets is motivated by the desire to seek alternative reliable

and accurate means to collect consumer preferences, and the belief that markets are

efficient in aggregating information.

This chapter presents the results of three market experiments in which participants

express their preferences on some new product concepts by trading virtual securities.

The preferences collected are compared and studied together with results derived from

a separate study of the same problem using a survey method. We find that results

across different market experiments are consistent with each other, and in addition,

highly correlated with those from the independent survey method. To gain a better

understanding how markets work in this particular application, we relate our market
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experiments with some classic examples from the experimental economics literature.

Lastly we propose some conjectures on issues including how equilibrium prices are

related to individual participants' preferences, how participants gather and process

information, and what possible trading strategies are.

3.1 Introduction

The essence of the markets for product concepts centers around the establishment of

virtual stock markets that trade virtual securities, each associated with an underly-

ing product or service. These products or services could be a concept or prototype

under evaluation or an existing product that anchors the market to the real world.

Upon entering a concept market, each participant receives an initial portfolio of cash

(virtual or real) and virtual stocks. Participants are also provided with detailed infor-

mation on the products (stocks) that includes specifications, images, and multimedia

illustrations. The objective of the market game is to maximize the value of the port-

folio, evaluated at the market closing price. If participants play with real money, they

will have the opportunity to profit from trading and bear the risk of losing money.

The financial stakes in the game provide incentives to reveal true preferences, process

information and conduct research. If fictitious money is used, prizes can be awarded

according to individuals' performance. One can also reward all participants just for

their service.

As in financial markets, the prices of the stocks are determined by the demand

and supply in the market, which depend on the participants' evaluation of their own

and others' preferences of the underlying products. Thus at the market equilibrium,

prices should reflect all participants' aggregate preference of the products. Traders

make trading decisions just as they would in a financial stock market: they assess

the values of the stocks, sell the overvalued and buy the undervalued. Traders buy

and sell virtual stocks, essentially voting on the worth of the products. In this way,

a stock's price becomes a convenient index of a product's consumer value.

Surveys, polls, and focus groups are the traditional methods to collect such infor-
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mation. Concept markets can serve as an alternative means to the same tasks or as a

compliment to other methods. There are multiple reasons why the market mechanism

can add value to the collection of diverse consumer preferences:

" Accuracy: Market participants have more incentives to trade according to the

best of their knowledge because of their financial stakes in the market. The

market can also capture, continuously, the ever changing "consumer impulse"

for all participants who can express their opinions multiple times during the

course of the market. Furthermore markets allow for dynamic movement of a

virtual product's worth or price along a slide scale, rather than attempting to

collect yes/no survey answers when consumer's real sentiment lies somewhere

in between.

" Learning and Interaction: A concept market participant is not only evaluating

on behalf of himself or herself, but also considering the opinion of the public

at large. Furthermore, participants can observe others' valuations of the vir-

tual products and adjust their own dynamically in the market environment.

Learning is an important element in these markets.

" Scalability: Unlike surveys, markets are intrinsically highly scalable. In fact, the

efficiency of the market, and therefore the quality of data collected, improves

with the number of participants.

* Ambiguous and Intangible Attributes: The market method is particularly useful

over survey methods when a product cannot be naturally described or repre-

sented by a set of attributes (for example, a movie script). Market participants

would evaluate the concepts directly and market prices would effectively reflect

the overall viability of the concepts.

However, we also recognize limitations of the market method. Unlike typical mar-

keting research techniques, in which information is collected from individuals and

aggregated in subsequent analysis, the market method focuses on aggregate beliefs
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and preferences and neglects those of individuals'. Virtual concepts markets are vul-

nerable to price manipulations and speculative bubbles because the values of virtual

securities hinge on the aggregate beliefs, which are endogenously determined within

the same market. Traders may form false beliefs that could cause prices to deviate

from their fundamentals. For these reasons, the market method must be applied with

cautions and consistency of the results must be checked.

The rest of the chapter is organized as follows. Section 3.2 provides the background

for survey markets, which includes an overview of similar opinion-collecting markets

on the web, a description of a concept testing project that this study is based on,

and relevant research in experimental economics. Section 3.3 presents the designs of

the securities and markets. 3.4 through 3.6 provide conjectures on how the survey

markets work by considering an equilibrium model and simulations with artificial

agents. Lastly, section 3.7 presents results from three market experiments.

3.2 Background

3.2.1 Opinion-collecting Electronic Markets

The application of the market mechanism is not restricted to the pricing of assets in

financial markets. Different non-financial markets have been established for opinion

polling, forecasts and predictions. The Iowa Electronic Markets (IEM)1 from the

University of Iowa is one of the pioneers of non-financial markets in the polling of

opinions (Forsythe, Nelson, Neumann & Wright (1993)). The IEM was founded for

research and educational purposes. Trading profits from the market provide incen-

tives for traders to collect and process information of relevant future events. The

IEM features real-money futures markets in which contract payoffs depend on the

outcome of future political and economic events. Examples of these markets are the

U.S. Presidential Election Market and the Computer Industry Returns Markets. In

the U.S. Presidential Election Vote Share Market, for example, the contract Rep VS

'The Iowa Electronic Markets http://www.biz.uiowa.edu/iem/
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would pay $1.00 times the vote share (percentage of popular vote) received by the

Republican Party nominee, George W. Bush, in the November 2000 election. Traders

at IEM invest their own funds, buy and sell listed contracts according their own judg-

ment of the likelihood of the underlying events, which is equivalent to the values of

the corresponding contracts. On the election day, the contract Rep VS (Bush) was

liquidated at $0.497 while the contract DemVS (the Democratic Party nominee, Al

Gore) was liquidated at $0.499, indicating that the overall market "thought" that

Bush and Gore would receive 49.7% and 49.9% of the popular votes respectively. 2

IEM predicted the voting results, in terms of popular votes, of the past two Presiden-

tial elections within two-tenths of a percentage point, outperforming most national

polls. 3 The Gallup Poll's predictions, for example, deviated from election results by

1.9% and 5.7% for the Democratic candidates in years 1992 and 1996 respectively.4

With a similar idea, the Hollywood Stock Exchange or HSX 5 establishes virtual

markets trading movie stocks and star bonds. Each share of a movie stock pays a

percentage of a particular movie's U.S. box office total; a star bond is priced based

on a movie star's performance at the box office of his or her recently released movies.

Prices of these stocks and bonds are determined by the demand and supply in the

market, which in turn depend on players' consensus. Players trade with fictitious

money called "Hollywood dollar." Market prices serve as predictions on earnings of

movies and consensus of movie stars' popularity. Box office forecast is an invaluable

service to film makers and Hollywood marketers. But traditional marketing research

techniques have been found notoriously inaccurate and unreliable.' HSX markets

provide an alternative means of obtaining such forecasts in an arbitrarily large scale

inexpensively.

2Bush and Gore received 47.87% and 48.38% of the popular vote respectively.
3Business Week, 11/11/96.
4http://www.gallup. com/Election2000/historicalsummary.htm
5The Hollywood Stock Exchange http://www.hsx.com
6 Wall Street Journal July 21, 2000. Box Office Muddle: How Will Films Fare From Week to

Week.
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3.2.2 Virtual Concept Testing

Our virtual markets are set up to collect consumer preferences to facilitate product

concept testing, a critical step in new product development. Concept testing is a pro-

cedure to narrow down multiple design concepts to the "optimal" design according to

the responses collected from potential users of the product or service being studied.

Dahan & Srinivansan (2000) presents a methodology that conducts product concept

testing over the Internet using virtual prototypes in place of real, physical ones. The

authors consider the World Wide Web as an attractive environment for conducting

marketing research because of its interactive nature, instantaneous access to respon-

dents, and availability of new technologies to deliver rich multimedia contents. The

authors claim that the use of virtual product reduces costs in new product develop-

ment so that a larger number of concepts can be explored. In their Internet-based

approach, virtual prototypes are presented in the form of visual static illustrations

and animations, plus a virtual shopping experience. Through an interactive Web

page, respondents are able to rank different products by specifying the prices they

are willing pay for individual products. After data are collected from respondents,

conjoint analysis is conducted to obtain market share predictions of the concept prod-

ucts. Conjoint analysis is a technique used to decompose respondents' preference on

individual attributes of a product based on their overall preferences. Green & Wind

(1981) provides a tutorial of the technique. The goal of the study is to choose the

best design of a bicycle bump among nine concept products and two commercially

available products. The authors find that the virtual prototype tests produce market

share predictions that closely resemble to those given by tests in which real physical

prototypes are used.

Following this successful use of virtual prototypes, we adopt the virtual illustra-

tions and animations from Dahan & Srinivansan (2000) to study the same problem.

But instead of conducting surveys, virtual markets are set up.
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3.2.3 Rational Expectation Models and Experimental Mar-

kets

Our trading experiments are closely related to the literatures in rational expecta-

tions model and experimental markets. A typical rational expectations (RE) model

(Grossman & Stiglitz (1980)) studies a market of agents with diverse information.

Under certain conditions, the competitive equilibrium prices will reveal all relevant

information. The most important criterion for convergence is that agents condi-

tion their beliefs on market information. In particular, agents make inferences from

market information about other agents' private information. The RE model has re-

ceived considerable attention in the study of experimental markets. Studies of the

informational efficiency of a market relative to the RE benchmark fall into two cate-

gories: information dissemination between fully informed agents ("insiders") and un-

informed agents, and information aggregation among many partially informed agents.

Plott & Sunder (1982), Plott & Sunder (1988), Forsythe et al. (1982) and O'Brien

& Srivastava (1991) show that both information aggregation and dissemination oc-

cur successfully-markets attain the rational expectations equilibrium-in various

experimental markets with human subjects.

Our trading experiments share some common characteristics with experimental

markets. Both information aggregation and dissemination can offer explanations on

the underlying activities in our virtual markets. One possible scenario is that there

may be traders who possess superior information about the products or have high

confidence on their beliefs. These can be considered as "insiders." On the other

hand, traders who have little knowledge or opinion of the products can be regarded

as the "uninformed." The interaction between the insider and uninformed constitutes

a scenario of information dissemination. What is intriguing about this scenario is that

even with the presence of traders, who may ignore the underlying product information

and only focus on market information, the market could still converge to efficient

prices that reflect all the relevant information or beliefs. Another possibility is that

individual traders form their own beliefs about the products, and realize that market
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prices would depend on the aggregate beliefs. This is similar to the information

aggregation scenario where traders are partially informed.

However, there are also significant differences between our product concept mar-

kets and those in the experimental markets literature. In a typical experimental

market, subjects' preferences and their information set are fixed and assigned by the

researchers. Therefore, even before trading begins, theoretical equilibrium prices can

be calculated. In contrast, in concept market experiments, neither subjects' prefer-

ences nor their information sets are known. In fact, these are what experiments aim

to discover.

3.3 Design of Markets and Securities

The market method is applied to the same product concept testing problem pre-

sented in Dahan & Srinivansan (2000). Three trading experiments were conducted

to predict the market share of nine concept bike pumps. A market is set up with

eleven securities-nine concept products and two commercially available products-

corresponding to the eleven bike pumps in Dahan & Srinivansan (2000). Each of the

securities is the stock of the virtual company that manufactures and sells a particular

pump as its only product. These pump-manufacturing companies will go public, and

their initial public offering (IPO) prices are to be determined in our virtual market.

All companies will offer the same number of shares of common stock to the public.

The objective of the game is to maximize the value of one's portfolio at market close.

The value of a portfolio is calculated as the sum of the cash and total worth of the

stocks, which are valued at the market closing prices. Participants should strive to

maximize their profits by trading the stocks using their personal valuation of the

companies, as well as any information they can observe from the trading dynam-

ics. Fictitious money was used in the markets, but we rewarded top players with

prizes. This provides the participants an incentive to perform in the experiments. It

is assumed that all the eleven companies have identical production cost structures,

manufacturing capacity, distribution channels, financial structures, management ex-

68



pertise and all other factors that may affect their profitability. In other words, all

factors other than the quality and desirability of the pumps can be ignored in valuing

the stocks.

The eleven bike pump companies are Cyclone, AirStik, Soliboc, Gearhead, Silver

Bullet, TRS, Gecko, Epic, Skitzo, RimGripper and 2wister. To anchor the value of

the fictitious currency, one of the eleven securities-Cyclone-has its price fixed at

$10 and is not traded. Cyclone is served as a reference price or numeraire security.

For example, if a trader thinks that the company TRS is worth twice as much as

Cyclone, he or she would pay up to $20 for one share of TRS. The stocks of the ten

freely traded companies may be priced at any level, depending on the demand and

supply in the market.

A typical trading experiments is conducted in the following way. Detailed product

information for the bike pumps are given in the form of static illustrations and ani-

mations (see Figure 3-1), as in Dahan & Srinivansan (2000). These visual depictions

show participants the appearance of the pumps as well as how they work. In addition,

each bike pump is rated in terms of four attributes: the speed with which a pump

inflates a tire, compactness, the ease of operation and durability. The participants

are presented with a single Web page with the visual depictions and profiles of the

bike pumps, trading instructions, and the objective of the trading game. They have

ten minutes to study the material before trading begins.

All participants are provided with an identical portfolio that consists of $10, 000

of cash and 100 shares for each of the securities. No borrowing or short-selling is

allowed in the market. At the end of the experiments, we reward the top three players

with highest portfolio values with Amazon.com gift certificates of $50, $30 and $20

respectively. Participants first log in with self-chosen user-names and passwords (see

Figure 3-2a), then trade the securities through a graphical user interface (see Figure

3-2b). Market information available to the traders includes the last transaction price

and size, current bid/ask prices and sizes, and a historical price and volume chart for

each security. A trader can submit either a limit or market order to trade, or cancel

an outstanding order that has not been executed. The markets are typical double
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Figure 3-1: The profiles of the eleven bike pumps.
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auction markets with no market-makers. A transaction occurs when a market or limit

order matches with a limit order on the opposite side of the market. All prices are

specified in one-sixteenth of a dollar.

3.4 A Theoretical Market Equilibrium

In this section, we attempt to provide an example of an equilibrium for a market

that aggregates diverse beliefs of a group of agents. Consider a portfolio selection

problem faced by an agent in a two-period economy with one risk-free and one risky

security. The risk-free security yields no return. It serves as a numeraire security

with price equal to 1. The payoff of the risky security depends on the state of the

economy in period two. Let us consider the risk-free security as cash and the risky

security as a stock. There are two possible states of the economy, a bad state and

a good state. The stock pays 1 and 0 in the good state and bad state respectively.

The futures contracts traded in the Iowa Electronic Market are examples of such a

security.7 All agents in the economy have identical preferences and are provided with

identical initial endowment. This is a typical portfolio selection problem in which

agents choose the optimal allocation of cash and stock in period one in order to

maximize their expected utility in period two. The essence of the problem is that

they may have different beliefs about what will happen in period two.

Specifically, there are N agents in the economy, all possess an initial endowment

of w unit of cash in period 1. Agent i believes that the probability of the good state

is Oi and that of the bad state is 1 - 02. It must choose xi, the number of shares

of the risky asset to own. The stock is traded in the market with a price p. The

agent's budget constraint implies that it holds (w - pxj) unit of cash. Consequently

its period-two wealth is Cib = (w - pxi) + Pix, where P is the period-two price for the

risky security, which equals to 1 in the good state and 0 in the bad state. The agent

7For example, the Republican President contract will pay $1 if the Republican nominee is elected
president.

71



(a)

Ulg n

User ID password

MbMTrader "

User ID password

MbMTrader

(b)

password again

f-

Figure 3-2: Login and trading interface.
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maximizes its expected period-two utility subject to xi, according to their beliefs:

max E[U(di)] -
Xi

max OiU((w - pXi) + xi) + (1 - Oi)U(w - pXi)
Xi

Now assume that all agents have a log utility function: U(w) - log(w). The demand

of agent i can be derived from the first order condition of its optimization problem:

w; ± -( - + (1 - Oi) = 0,W + xi(l - P) W -xiP

w(OZ - p)

S -p(-p)

Agents may hold a long or short position in the risky security, i.e. xi may be positive

or negative. At equilibrium, the total demand in the market must be equal to zero.

The market price in period one is derived by imposing this market clearing condition:

N

S xj 0 <-
i=0

Np= +1oi

With this particular set-up of the problem, the market price is the average of indi-

viduals' beliefs. Note that other equilibria may result under different assumptions.

Pennock & Wellman (1997) studies a similar problem with agents that have a negative

exponential utility function, U(w) = -e-c', where c is the risk aversion coefficient.

In its one-security case, the equilibrium price is found to be

N 0

whriO + fc i( - oi)ce

where c' is a function of an agent's risk aversion coefficient.
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3.5 Possible Trading Strategies

Our market experiments serve to aggregate diverse preferences or beliefs from all

participants. One's belief may consist of three independent elements:

" Product information - This is what a participant knows about the underlying

products. All participants are provided with the same facts and specifications

of the products, but they may have obtained extra product information from

their personal experience outside the experiments.

" A participant's personal preference - This is what surveys and polls try to

collect. Although the aggregate preferences of the whole market is the object of

interest, one's personal view should contribute to his or her trading decisions.

" A participant's assessment of others' preferences - A participant would form

an assessment of what others think so as to make profitable trading decisions.

How are beliefs or preferences aggregated in these markets with virtual securi-

ties? Not only should the traders form their own assessment of the stocks, but they

should also infer the stocks' potential market value from the market. In a typical

market in experimental economics, both the preferences of the traders and the state

of nature (for example, probability distribution of a security payoff) are known to

the researchers (Plott & Sunder (1982); Plott & Sunder (1988); Forsythe & Lund-

holm (1990); O'Brien & Srivastava (1991)). Traders are assigned with preferences

that specify securities payoffs in various possible states. The theoretical equilibrium

(rational expectations equilibrium) prices can be derived given full information of the

markets. The main focus of these experiments is whether and under what conditions

rational expectations equilibria can be attained in double auction markets. Some

attempts have been made to understand the convergence of prices and how learning

occurs in the market as a whole (see Chapter 2). But it is unclear how individual hu-

man traders learn and react to the market. Attempts to model the trading strategies

of individual traders from the market data may be overly ambitious. Here we try to

shed some light on some possible strategies.
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The objective of the trading game is to predict the final prices of the securities.

A trader may form an assessment of the fair values of the securities before trading

starts. This opinion may take into account her own preference on the underlying

products, and perhaps more importantly what she perceives as the preferences of

the whole group. The trader may then make trading decisions based on her belief:

she buys undervalued stocks and sells over-valued ones. During the course of the

market, the trader may either maintain her valuations or update her beliefs in real

time conditioning on her observation of the market dynamics. Learning is taking place

if the latter approach is taken. But learning is a rather complex process because one's

expectations of prices affect prices, prices are used to infer others' assessments, and

the inference of others' assessments in turn affects both prices and expectations of

prices.

Some traders may take a dramatically different approach by largely ignoring all

fundamental information about the underlying products but focusing on market in-

formation only. These traders play the roles of speculators or market-makers who try

to gain from the market by taking advantage of price volatility, providing liquidity

or looking for arbitrage opportunities. Their presence may introduce mixed effects to

the market. While they could enhance liquidity on one hand, they may also introduce

speculative bubbles and excess volatility into the market.

3.6 Simulations with Artificial Agents

The equilibrium model presented in Section 3.4 exemplifies how a market equilibrium

can be derived from individual beliefs. However, questions about how such equilibria

are attained remain unanswered. Characterizations of the learning dynamics in an

experimental market are typically very challenging. To gain some insights on the price

dynamics and agent trading strategies, we turn to computer simulations. Similar to

the presentation of the equilibrium model in Section 3.4, we aim to demonstrate one

possibility of how a market can successfully aggregate diverse beliefs, but not to offer

an explanation for the observations from our market experiments.
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One way to specify an agent's behavior is to directly model its demand given the

market price. Suppose the belief of agent i can be characterized by a "fair" price, ri.

For example, in the two-security economy in Section 3.4, for a risk-neutral agent',

the expected price given its belief can be considered as a fair price to the agent:

ri = E[P IOi] = O(1) + (1 - 0j)(0) = Oi .

Given the fair price and market price, p, one can construct a linear demand function,

xi(p) = #i(ri - p),

where /3# is the price elasticity controlling the sensitivity of demand to price deviation

from the fair value. With this linear demand function, an agent would buy or sell

/3j shares of the security for each unit of the price difference, (ri - p). Assuming all

agents follow this linear demand function, imposing the market clearing condition,

the equilibrium price is the average of all fair prices:

N

Swi =0

j=1

N

P N ri . (3.1)
i=1

Depending on the form of the demand function, some other equilibria may exist.

Figure 3-3a shows an example of a piece-wise linear demand function that describes

the short term demand of a agent. The upward-sloping portions of the curve seem to

defy the law of demand. The rationale behind such a demand function is that when

the market price is within a certain range from the agent's fair price (r- I p < r+1),

it buys if the market price is lower than its fair price and sells otherwise; when the

market price deviates too much from its fair price, the agent may lose faith in its

belief and begin to close its position: selling on decreasing price (r - 2 < p < r - 1)

8A risk-neutral agent has a utility function U(w) = w.
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and buying on increasing price (r + 1 < p < r + 2). Given such a piece-wise demand

function, multiple equilibrium prices may result. Consider the total demand from

two agents with fair prices r1 and r2 . As shown in Figure 3-3b, the market clears in

multiple price ranges: p < r, - 2, p = ri, r1 + 2 < p < r 2 - 2, p = r2, and p > r 2 + 2.

Consider a simulated market in which there is one single security in the market.

Each artificial agent forms a belief about the fair price (ri) of the security at the

beginning of a market, then follows a linear demand xz(p) = #i(rj - p). Following

from Equation 3.1, we consider the equilibrium price p* = j1 ri as the benchmark

price for a market with N artificial agents with fair prices ri's.

We further impose that an agent trades only one share in one transaction. From

its demand function, one can derive that the agent would buy one share when p <

ri - 1/# 2 and sell one share when p > ri + 1/#3 . Equivalently, one can consider the

prices bi = ri - 1/ 3 and a. = ri + 1/ 3 as the agent's bid and ask prices respectively.

All agents submit orders according to the procedure described in Table 3.1, given

their bid and ask prices. All agents are provided with an equal amount of cash. No

borrowing is permitted so the total demand for the stock is bounded. The trading

mechanism is a simplified double-auction market. Agents can submit a bid and/or

an ask, or accept a posted bid or ask. If there is an existing bid for the stock, any

subsequent bid must be higher than the current bid. Similarly, on the sell side, a

subsequent ask must be lower than the current ask. A transaction occurs when an

existing bid or ask is accepted (a market order matches with a limit order).

The computer simulations feature two types of agents. One firmly believes in their

beliefs and maintains them throughout the course of the market. Let us call these

static agents. The other (adaptive agents) attempts to update their beliefs by making

observations of the market. We consider a simple heuristic with which the adaptive

agents "learn" from the consensus of the population. In particular, it updates its fair

price using the observed market price p:

ri +- rz + aY(p -r) ,
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Figure 3-3a: An example of a non-linear demand function.

0

rl-2 ri rl +2 r2-2
Price
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Figure 3-3b: The total demand in the market with two agents with fair prices r1 and r 2.
the market clears in multiple price ranges: p < r1 - 2, p r1 , r 1 + 2 < p < r 2 - 2, p = r2,
and p > r 2 + 2.
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Scenario Action

existing bid, existing ask
bi > a buy at market
ai < b sell at market
bi > b post a bid bi
ai< a post an ask a2

no bid, existing ask

bi > a buy at market
ai > a post a bid bi

otherwise post a bid bi and an ask a2

existing bid, no ask
ai < b sell at market
bi< b post an ask ai

otherwise post a bid bi and an ask bi

no bid, no ask
all cases post a bid bi and an ask ai

Table 3.1: The order submission algorithm of the trading agents, where ai = ri + 1/Oi
denotes the ask price by agent i, b = ri - 1/0i the bid price by agent i, a the best ask price

and b the best bid price in the market.
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where ac is the learning rate of the agent, dictating how rapidly belief updates take

place. The rationale behind this updating rule is that if a large number of transactions

occur at price p, ri will converge to the market price p. If p is the population average

price, this update rule will eventually make all fair prices converge to the population

mean.

Do prices fully reflect all available information-individuals' diverse beliefs on the

values of the securities? In all simulations, we focus on the efficiency of the market in

terms of whether or how close the price converges to the benchmark equilibrium as

described in Equation 3.1. The role and impact of learning are the other issues that

we are interested in.

To quantify the performance of the markets, we focus on three statistics of the

price: the mean price, median price and closing price. Given a price statistic sp for

trial t, we compute its average price deviation from the benchmark equilibrium price

in T trials of a market:

t=1

In addition, we study the standard deviation of agents' beliefs or fair prices at the end

of the market session. This variable measures how much disagreement exists among

all agents.

We conduct two computer simulations, each consisting of a series of markets.

Each market is characterized by parameters such as the composition of the agents

(static versus adaptive) and the learning rate of the agent population. We run each

market 1000 times or epochs to get average measures of the market performance. A

typical epoch of a simulated market consists of 2000 trading intervals. At each trading

interval, an agent is chosen randomly from the population to submit an order. Before

the beginning of a market, all agents are provided with 5 units of cash and 10 shares

of stock. Agents' beliefs are assigned in the form of a fair price ri. The fair prices ri's

are drawn randomly from a uniform [0, 1] distribution. The following describes the

details of the simulations.
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* Simulation 1: In this simulation, we study the effect of the learning rate on

the performance of a market. There are 20 adaptive learning agents, each with

an identical learning rate, in all markets. Each market differs by the learning

rate of the agent population.

* Simulation 2: Markets in this simulation are characterized by the composition

of the agent population. There are 20 static agents and 0 adaptive agent in mar-

ket 1, 19 static agents and 1 adaptive agent in market 2 and so on. Eventually in

market 21, there are 0 static agent and 20 adaptive agents. All adaptive agents

have a learning rate of 0.01. By varying the composition of agents, we inves-

tigate the performance of the market with populations that have heterogenous

learning capabilities.

Figure 3-4a shows typical realizations of four markets in Simulation 1, with the

learning rate a equal to 0.00, 0.01, 0.05 and 0.10 respectively. One can observe that

market price converges to the neighborhood of the equilibrium price for small learning

rates. If the agents learn too fast, the market may converge to an arbitrary price,

as in the case when a = 0.1. As expected, the speed of convergence is proportional

to the learning rate. Figure 3-4b shows the price deviations from the equilibrium

price for the mean, median and closing price in markets with different a's. Measured

by the mean price, markets with low a values ([0.005, 0.015]) converge close to the

equilibrium price. At higher learning rates, the median and close prices give relatively

smaller price deviations. When there is no learning or when learning is slow, the mean

price is a more robust measure for the consensus of the market. As a keeps increasing,

convergence in the markets deteriorates on all three measures, implying that if the

agents adapt to market consensus too rapidly, the overall market would diverge from

the equilibrium. Another evidence of learning in the markets is shown in Figure 3-

4c. The standard deviation of the agents' beliefs decreases with the learning rate,

indicating that the difference in agents' beliefs diminishes as they approach a market

consensus.

Results from Simulation 2 show that the market efficiency improves with an in-
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Figure 3-4b: Deviations of mean, median and closing prices from the equilibrium price for
markets with agents with different learning rates in Simulation 1.
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Figure 3-5a: Deviations of mean, median and close prices from the equilibrium price for
markets with different numbers of adaptive learning agents in Simulation 2.

creasing number of adaptive agents, given an appropriate learning rate (a = 0.01 in

this case). Furthermore, the mean price is much more robust in measuring market

consensus than the median and closing prices for markets with a heterogeneous agent

population (see Figures 3-5a and 3-5b).

The study of agent simulations provides some insights into how a market aggre-

gates diverse beliefs. The implications of these simulations are as follows: (1) learning

in a market facilitates its convergence to the market consensus; (2) when learning oc-

curs too rapidly, market price may diverge from the market consensus; (3) mean

price is a more robust measure of the market consensus and the closing price does

not always converge to an equilibrium price. However, one has to be cautious about

the limitation of such studies. Significant assumptions have to be made about the

form of beliefs, the functional form of demand functions, the trading strategies, and

the updating of beliefs. For example, a demand function may not necessarily be in

a simple linear form, and there may exist multiple equilibria in a single market; or

agents may not always update their beliefs using a constant learning rate.
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3.7 Experimental Results and Comparison with

Survey Study

Three trading experiments were conducted from September 1999 to April 2000. Sub-

jects in the trading experiments are MBA students from MIT Sloan School of Man-

agement.9 Experiments 1 and 2 were conducted at a centralized location, the Sloan

school trading laboratory. These two experiments were not timed-we closed the

market when trading activities died down. They lasted 10 and 18 minutes. Exper-

iment 3, on the other hand, was conducted over the Internet-participants joined

the market remotely from arbitrary locations. The market was open for trading for

one hour, during which participants might enter or leave the market as they wished.

The longer trading time was aimed to offer more flexibility to the participants and

investigate whether time constraints affect the trading activities of a market. There

9 Three groups of students were recruited from Prof. Ely Dahan's class 15.828 New Product De-
velopment in fall 1999 and Prof. Andrew W. Lo's class 15.433 Investment in Spring 2000.
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Experiment Number of Duration Volume Volume
Number Participants (Minutes) (Shares) (Trades)

1 27 18 10,013 167
2 26 10 6,150 79
3 18 60 13,128 233

Venue

Trading Lab
Trading Lab

Internet

Table 3.2: Details of the three trading experiments.

are 18 to 27 participants in each of the experiments. Table 3.2 describes the details of

the experiments. Experiment 3 has the highest volume (in share and trade) despite

a small number of participants. This seems to suggest that a longer duration does

generate more trading interest. Figure 3-6 presents the sample price and volume his-

tory of a virtual stock-AirStik-in Experiments 1 to 3. The prices close around $25

in the three experiments.

For each of the market experiments, trade and quote data is collected. For our

analysis, we focus on the trade data, which consists of time series of transaction prices

and quantities:

(pli , qi,Z), (P22,, 7 2,0), ...-, (pri,i, 7 ri,i),

where i is the index for the i-th product and T is the number of trades for the i-th

product. Our hypothesis is that prices reveal market consensus of the profitability

of the bike pumps. To provide an analogous study to that by Dahan & Srinivansan

(2000), we focused on the potential market share of the products. In particular,

we propose that a product's market share can be predicted by its relative market

capitalization. The market capitalization of a company, or the total value of its

stocks, equals to the product of market price and the number of outstanding shares.

The relative market capitalization is defined as the ratio of a company's market

capitalization to the capitalization of the entire market (all the companies). Since all

the companies have the same number of outstanding shares, market capitalization is

proportional to the market prices. The market closing price is a natural candidate for

the valuation of the companies. However, it is observed that the closing price is not
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a particular robust measure for stock valuation. Because the traders' portfolios are

valued at the closing prices, prices tend to become more volatile towards market close.

This is especially true for the low-volume stocks. Hence, in addition to the closing

price, we consider other price statistics that take into account all transactions during

the session: the mean, median and volume weighted average price. The mean and

median prices are calculated from the time series of trade prices (P1,i,P2,i, ... ,PTi,i);

the volume-weighted average price (VWAP) is computed as follows:

VWAP:T' z 1 Pt,iqt,iVW AP = SA

The mean price is sensitive to outliers-a small number of transactions that occur

at extreme prices. Both mean and median prices ignore the volume in a transaction

and treat all transactions equally. Volume can be regarded as a measure of the

amount of information in a transaction. A trade with higher volume is generally

more informative than one with lower volume. In our concept markets, volume is

also related to how confident the traders are at the corresponding transaction price.

VWAP effectively summarizes the prices by considering the amount of information

and confidence behind the trades. In practice, VWAP has been a widely accepted

benchmark price in financial markets. It is a commonly used metric for the evaluation

of trade executions.

Now given a price statistic sp, which can be the closing, mean, median or volume

weighted average prices, we can compute predicted market share as the relative market

capitalization.

MS= Zsn Si
Nis n Ni '

where N is the number of securities in the market and n is the total number of shares

for a security. Among the four price statistics, we expect the median price and VWAP

to be particularly robust against potential price volatility. To relate these metrics to

those in the computer simulations, it is important to point out that the mean price

in Section 3.6 is equivalent to the VWAP because all transactions are restricted one
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Skitzo Silver Epic Gecko Cyclone Rim Gear- TRS 2wister
Bullet Gripper head

Survey 32.1% 25.6% 10.3% 6.4% 3.8% 3.8% 2.6% 2.6% 1.3%
Exp 1 10.4% 13.3% 10.1% 7.5% 6.7% 5.3% 10.0% 7.0% 4.8%
Exp 2 12.2% 14.6% 10.5% 10.2% 5.7% 4.8% 6.4% 6.2% 5.5%
Exp 3 11.0% 11.5% 10.1% 7.5% 6.8% 7.6% 8.2% 7.5% 7.9%

Table 3.3: Market share predictions for nine products concepts by the survey method and
Experiments 1 to 3. Market share predictions from experiments are calculated based on
VWAP.

share.

To verify the validity of the market method, we ask two questions: (1) whether the

results from the market method are consistent across different experiments, and (2)

how close the results from the markets are to those from the independent survey study.

We focus on the market share predictions derived from the four types of price statistics

and those from the survey. Table 3.3 presents the predicted market share based on

VWAP for the three experiments. We find that the top three products (Skitzo, Silver

Bullet and Epic), in terms of predicted market share, are the same in the three

experiments, as well as from the survey study. Furthermore, the rankings among the

three are exactly the same across different experiments. In a typical concept testing

process, it is more important to be able to identify the best designs because they are

more likely to be materialized. Figure 3-7 presents the predicted market share based

on all four price statistics for the three experiments. The mean price, median price

and VWAP measures are reasonably close, while the closing price measure could be

substantially different from the rest in certain stocks (Epic in Experiment 1, Gecko

in Experiment 2 and Rim Gripper in Experiment 3).

For consistency across experiments, we calculate the pair-wise sample correlation

between market share predictions based on each price statistic from individual ex-

periments. For example, the association between experiments a and b is quantified

by the sample correlation between (MSa, MSg, ..., MSa ) and (MSb, MSb, ... , MS,).

For comparison with the survey method, we calculate the sample correlation between

the market share predicted by the survey study and those derived from individual
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Closing Price
Survey Exp 1 Exp 2 Exp 3

Survey 1.00 0.22 0.34 0.72
Exp 3 1.00 -0.02 0.11
Exp 4 1.00 0.05
Exp 5 1.00

Mean Price
Survey Exp 1 Exp 2 Exp 3

Survey 1.00 0.68 0.87 0.89
Exp 1 1.00 0.83 0.82
Exp 2 1.00 0.84
Exp 3 1.00

Median Price
Survey Exp 1 Exp 2 Exp 3

Survey 1.00 0.87 0.83 0.88
Exp 1 1.00 0.89 0.92
Exp 2 1.00 0.89
Exp 3 1.00

Volume Weighted Average Price
Survey Exp 1 Exp 2 Exp 3

Survey 1.00 0.74 0.86 0.89
Exp 1 1.00 0.85 0.82
Exp 2 1.00 0.86
Exp 3 1.00

Table 3.4: Price correlation coefficients between outcomes from the survey study, and
Experiments 1, 2 and 3.

experiments. These correlation coefficients are presented in Table 3.4. The results

from the three experiments show significant correlation. All correlation coefficients

are above 80% for the mean price, median price and VWAP. The results from these

three experiments are also highly correlated with the survey data: the correlation

coefficients for median price and VWAP measures range from 74% to 89%. As we

expected, the closing price is too noisy to give any conclusive results.

To ensure robustness of the results, we present another measure of association

between different market share prediction results: Spearman's rank correlation. We
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Closing Price
Survey Exp 1 Exp 2 Exp 3

Survey 1.00 0.66 0.63 0.58
Exp 1 1.00 0.42 0.68
Exp 2 1.00 0.34
Exp 3 1.00

Mean Price
Survey Exp 1 Exp 2 Exp 3

Survey 1.00 0.73 0.82 0.60
Exp 1 1.00 0.90 0.62
Exp 2 1.00 0.55
Exp 3 1.00

Median Price
Survey Exp 1 Exp 2 Exp 3

Survey 1.00 0.75 0.71 0.55
Exp 1 1.00 0.78 0.78
Exp 2 1.00 0.73
Exp 3 1.00

Volume Weighted Average Price
Survey Exp 1 Exp 2 Exp 3

Survey 1.00 0.78 0.78 0.58
Exp 1 1.00 0.97 0.72
Exp 2 1.00 0.68
Exp 3 1.00

Table 3.5: Rank correlation coefficients between outcomes from the survey study and

Experiments 1, 2 and 3.

transform all the market share data into ranks, Ri = rank(MSi), and calculate the

sample correlation (see Table 3.5). A similar conclusion is reached: the results from

all the three experiments are significantly correlated among themselves and with

the survey data. Numerically, rank correlation coefficients are lower than the price

correlation coefficients.

It is also interesting to quantify the association between experiments and the

survey by noting their average absolute difference in the predicted market share. The
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Exp I Exp 2 Exp 3
Survey 6.1% 5.5% 6.8%
Exp 2 1.3% 1.4%
Exp 3 1.8%

Table 3.6: Average absolute difference in predicted market share between an experiment
and the survey, and between two experiments.

difference between experiments a and b is computed as follows:

AMS = MSMS- MS|

The average absolute differences of predicted market share based on VWAP are pre-

sented in Table 3.6. The differences between individual experiments are smaller than

those between an experiment and the survey study.

The results from our experiments show a remarkable agreement with those from

the survey study despite many fundamental differences between the two methods.

These differences include the differences in the data collection mechanism (a virtual

security market versus a virtual shopping experience), the modeling of the predicted

market share (the use of relative market capitalization of the virtual securities ver-

sus conjoint analysis), the questions asked (what you prefer versus what the group

prefers), and lastly the subject population (MIT students versus Stanford students).

3.8 Conclusions

In this chapter we study a novel application of the market mechanism: the use of

market to aggregate diverse consumer preferences. The idea is tested on a product

concept testing study that aims to predict potential market share for some product

prototypes. The results from three market experiments show high consistency among

themselves and significant correlation with an independent survey study. Further-

more, an equilibrium model and two computer simulations are presented to provide
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some insights into how such a virtual market may successfully aggregate the desired

information.

Keynes (1958) wrote about the similarities between stock selection and a beauty

contest:

"... professional investment may be likened to those newspaper competi-

tions in which the competitors have to pick out the six prettiest faces from

a hundred photographs, the prize being awarded to the competitor whose

choice most nearly corresponds to the average preferences of the competitor

as a whole ... "

The analogy is perhaps more accurate for describing what happens in the stock market

in the short run. After all, stock prices depend not only on investors' subjective

beliefs or expectations, but also on other objective information such as companies

earning potential and valuations of assets. On the other hand, the trading experiments

presented in this chapter are precisely "beauty contests," since values of the virtual

securities are derived endogenously from the expectations of the market participants,

which are largely subjective. To improve the reliability of these virtual markets,

one may need to anchor the values of the securities to some objective fundamental

variables of the corresponding products. To predict future market shares, for example,

one could link security values with the realized market shares of the corresponding

products.
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Chapter 4

A Rule-based Electronic

Market-maker

In designing an efficient market, its institutional structure is the central issue (see

Amihud, Ho & Schwartz (1985), Schwartz (1993), Madhavan (1992), O'Hara (1995)

and Madhavan (2000) ). Intense interest in market microstructure are driven by

the rapid structural, technological and regulatory changes. In the U.S. equity mar-

kets, a substantial increase in trading volume and competition among exchanges and

Electronic Communications Networks (ECNs) result in more rapid technological in-

novations. A large part of the trading process has been automated, and markets

are becoming more "electronic," particularly in the areas such as order processing

and communications among market participants. However, market-making remains

largely a human-intensive activity.

On the theoretical side, the trading behavior of market-makers has been one of

the focal points in the literature of market microstructure. Various studies investigate

specific aspects of the specialist's operation under theoretical settings, for example,

market-maker's strategy under asymmetric information (Glosten & Milgrom (1985))

and the role of inventory control in market-making (Garman (1976) and Amihud &

Mendelson (1980)).

The increasing availability of detailed market data motivates more empirical stud-

ies of the security markets at a level of details never possible before. This chapter aims
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to study some heuristic market-making rules through computer simulations using a

set of historical transaction data. The market-making rules, based on insights from

the microstructure literature, address three primary objectives of a market-maker:

(1) maximizing market quality, (2) maximizing profits, and (3) minimizing inventory

risk. Two types of simulations, characterized by their order flow generation mech-

anisms, are conducted. First, historical order data is used directly in the study of

the rule-based market-maker. We find that the application of the rules successfully

improves the liquidity and maintains market quality that is comparable to that of

the real-world markets. However, since the static order flow is not responding to the

quotes, market-maker's inventory cannot be effectively controlled. The abnormally

high inventory levels in turn lead to unusually high variance in the market-maker's

profits. Second, a simulated order flow mechanism is modeled and estimated by com-

bining the trade, quote and order data. In this case, inventory control is found to

be more effective, while the objectives pertaining to profits and market quality are

also accomplished. Unlike other simulation studies that are confined to simulated

market environments, this chapter applies the model to historical data and relates

the findings to empirical evidence. Both types of simulations are able to replicate

several findings from theoretical models and empirical studies in the literature.

The chapter is organized as follows. Section 4.1 provides an overview of markets

and market-making operations. Section 4.2 presents some prior studies of rule-based

automated market-makers. The design of the rule-based market-maker is discussed

in Section 4.3. The details of the static and modeled order flow simulations and the

corresponding results are discussed in Sections 4.4 and 4.5.

4.1 Markets and Market-making

Markets provide trading mechanisms with which traders meet and transact. A trad-

ing mechanism is a set of rules governing how trading orders are submitted, how

information is disseminated, and how and when specific traders transact. Trading

activities may take place at centralized physical locations such as an exchange or
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over computer networks and telephone lines. The New York Stock Exchange (NYSE)

and the NASDAQ market are typical examples of these markets. The study of mar-

ket microstructure is related to strategies of traders and market-makers, the trading

mechanisms and their effects on price formation, and statistical modeling of different

market variables.

In an abstract level, the essence of the trading process can be captured by the

representation of a Walrasian auction market. A Walrasian auction largely ignores

the details of the trading mechanism. A Walrasian auctioneer aggregates all traders'

demands and supplies to determine a single market-clearing price, but does not partic-

ipate as a trading principal in the process. In real-world auction markets, auctioneers

are not likely to have the complete knowledge of traders' demand and supply infor-

mation that is essential to the frictionless operation of Walrasian auctions.

Most securities markets are variations of a double auction market. In its simplest

form, a double auction market is one in which traders can submit a bid (an order

to buy at a specific price or lower) an ask (an order to sell at a specific price or

higher), and market buy and sell orders (orders that transact at the corresponding

quotation prices at the opposite side of the market). A transaction occurs when there

is a match between the buy and sell sides: (1) when the bid price exceeds the offer

price or (2) when there are market buy (sell) orders matching existing limit sell (buy)

orders. When the auctioneer receives the orders, he either places them in a limit

order book (a record of all limit orders), or executes them with the matched orders

in the book. He is also responsible in disseminating quote information (best bid and

offer prices and sizes) and trade information (the price and size of executions) to

the public. The auctioneer maintains a passive role in the sense that he does not

trade for his own account. GLOBEX of the Chicago Mercantile Exchange and all

Electronic Communication Networks (such as Instinet and Island) are examples of a

double auction market. The exact trading rules may vary from one type of market to

another. In this thesis, we loosely apply the term double auction to markets without

any market-maker's intervention.

Trading in double auctions is limited by the availability of trading interests on the
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opposite side of the market. For example, a particular stock may have a much larger

number of buy orders than sell orders (or visa versa). This kind of disparity in demand

and supply is known as an order imbalance. In a market with an order imbalance,

a market-maker may supply immediacy and liquidity by specifying a bid or an ask

price to ensure the presence of a market. He may also improve the depth (quantity

of shares to trade given a certain price) of the market by supplying additional bids

and asks. Price discovery is another major responsibility of a market-maker. It is

a process used to determine the efficient prices of securities, based on demand and

supply in the market and other relevant market information. The market-maker is in a

privileged position to have access to the information from the order flow that reflects

the ever-changing forces of demand and supply. In providing these services, the

market-maker must actively participate in the market-trading on his own account

and establishing positions. As a result, he may bear the risk of holding unwanted

inventory. Lastly market-makers are usually regulated for the quality of market they

provide. Measures of market quality include transaction-to-transaction price change,

stabilization of the price (price range in a sequence of transactions), the size of the

bid-ask spread (difference between bid and ask prices), the depth of the market, etc.

Agency auction markets are auction markets with monopolistic market-makers,

that is, one market-maker for one stock. The NYSE and the AMEX are typical agency

auction markets. Designated market-makers at these markets are called specialists.

The following is how an agency auction market works. Orders arrive in the specialists'

posts on the trading floor either electronically or through a floor broker. The orders

are then entered into the electronic Display Books which are computer workstations

that keep track of all limit and market orders. Specialists manage the auction by

interacting with the floor brokers and working with the limit order book (a collection

of all the public limit orders). In real time, quote and trade information is reported

via electronic networks to all market participants, inside and outside the exchange.

The market-making operation is subject to a set of rules and regulations which ensure

the quality of the market. At the NYSE, these rules and regulations are referred to as

the specialists' affirmative and negative obligations. From the Official Floor Manual
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of the NYSE, the affirmative obligation of the specialists can be summarized as

"the maintenance of a fair and orderly market in the stocks in which

he is registered, which implies the maintenance of price continuity with

reasonable depth and minimizing of temporary disparities between demand

and supply ... "

In fulfilling his affirmative obligations, a specialist needs to trade for his own account.

But trades that are not necessary for the maintenance of a fair and orderly market

are discouraged or even restricted. These criteria constitute the negative obligations.

Example of trades that are not to be effected include the purchase at a plus tick

or zero plus tick' , or the purchase of a substantial number of shares offered in the

limit order book. The Stock Exchange monitors closely the trading activities of the

specialist. Rule violations can result in fines; evaluations of the execution quality are

considered in allocating new listings to the specialists.

Agency auction markets ensure efficiency and quality of a market by regulating

monopolistic market-makers. Alternatively, competition can be introduced to a mar-

ket as a driving force for market quality. In a multiple dealer market, there are more

than one market-maker or dealer for a single security. Competition among the dealers

brings about the efficiency of the market. The NASDAQ market is a typical mul-

tiple dealer market. There have been constant debates about which type of market

structure is more efficient. The discussions have been focused on the pros and cons

of consolidated versus fragmented markets, and the effectiveness of regulation versus

competition.

This chapter focuses on the agency auction market, in particular the NYSE. We

attempt to model a rule-based electronic market-maker which resembles the specialist

at the NYSE. Transaction data from the NYSE is used to verify the market-making

rules. A model of the order flow generation mechanism is estimated using the same

set of data.

'A plus tick is resulted when a trade is executed at a price higher than the last sale price. A
transaction that follows a plus tick and has the same sale price constitutes a zero-plus tick. Minus
and zero-minus ticks are defined in the same way.
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4.2 Background

4.2.1 Simulation Models with Market-making Rules

Optimal market-making strategies have been studied by the researchers to capture

the dynamics of exchange trading in theoretical environments. In reality, exchange

specialists or dealers actually use relatively simple price-adjustment or inventory man-

agement rules. There are a few attempts to model specific functions of a market-maker

in the rule-based domain. These studies share a common approach that usually con-

sists of three components. First there is a specified market structure that dictates

the trading mechanism: the types of orders permitted in the market, whether it is

a batch market or continuous market, etc. Second there is a group of traders or in-

vestors, who generate orders by simulating their underlying demand functions, which

are contingent upon the market-maker's quotes and other market variables. Lastly, a

market-maker (or multiple market-makers) will play a central role in these analyses.

Upon receiving the orders, it executes or matches them according to its strategies.

Hakansson et al. (1985) studies the feasibility of automated market-making using a

set of of rules. The functions of the automated market-maker are limited to "demand

smoothing," which is the balancing of excess demand or supply due to discontinuities

of investors' demand functions. A specialist accomplishes demand smoothing, one

of hiss affirmative obligations, by absorbing any excess demand or supply into his

own account. Trading orders are generated from individual traders' stochastic de-

mand functions. The market-maker's decision is programmed to follow a collection of

rules. In particular, this market-maker considers a downward sloping excess demand

function specified by n price and quantity pairs:

(P I, q1), ...,7 (P k, q k 7 ( k+1, 7qk+1)J..7( n, qn

such that qk < 0 < qk+l. The majority of the rules are concerned with inventory

control and execution quality aspects of market-making. Two examples of the rules

examined in the paper are as follows:
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R2 mink ,1 k+11 qt

R4 minpk,pk+1} |Pk - Pt-i + |pk+1 -Pt_ I
where qt is market-maker's stock holding time t. Rules R2 chooses a price so as to

minimize the inventory holding while Rule R4 attempts to smooth transaction-to-

transaction prices. It is shown that R4 will result in the market-maker's holding or

short selling of all the shares. This result agrees with what Garman (1976) finds:

market-makers must determine their prices by considering their inventory to avoid

failure. In general, it is found that rules that minimize inventory performed well, in

terms of lower stock holdings and dealer's participation.

Cohen, Maier, Schwartz & Whitcomb (1983) presents another simulation study of

market-making and stock exchange trading. The main focus of the study is the effects

of stabilization and speculation on the performance of the market and the profitability

of the market-maker. The simulation model describes a continuous market where the

market-maker acts as a "pure stabilizer" or "speculating stabilizer." A pure stabilizer

is an automated market-maker whose sole objective is to stabilize transaction prices;

a speculating stabilizer attempts to earn trading profits while maintaining price sta-

bility. Orders arrive at the market following a Poisson process. The size of an order

is randomly drawn from a gamma distribution; the price of an order is sampled from

a distribution that conditions on the market-maker's bid and ask quotations. The

policy of the pure stabilizer is constrained by two parameters: a maximum allowable

transaction-to-transaction price change, and an inventory limit. If an order would

result in a price change that exceeds the allowable limit, the stabilizer will enter a

limit order inside the public quote to reduce the price change. But the agent will

cease to stabilize price if its inventory reaches the limit. The speculating stabilizer

is subject to the same price-change and inventory constraints as the pure stabilizer,

but it also attempts to make a profit using order imbalance information in the limit

order book.

Simulation results show that the stabilizing rule is effective in improving price

continuity. For small maximum allowable price changes, the stabilizing rule is not

profitable, which implies that this affirmative obligation is provided at the expense
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of the market-maker. The percentage spread is improved with increased inventory

limit, which gives the market-maker more freedom in its operation. The standard

deviation of the profit, however, goes up with the inventory limit. It is because

with a higher inventory limit, the inventory valuation becomes more volatile. The

speculating stabilizer, as expected, runs a more profitable operation than the pure

stabilizer. It is interesting to note that the speculating policy further reduces the

percentage spread compared with that of the pure stabilizing policy. This implies

that both the investors and the market-maker are better off under the speculating

policy.

4.2.2 Empirical Studies

Most of the academic studies of the trading behavior of dealers have focused on the

theoretical aspect due to the difficulty in obtaining detailed relevant data, in partic-

ular, dealer positions and trading profits. Many empirical questions regarding dealer

behavior in real markets remain unanswered. With data provided by exchanges, a few

studies conduct transaction level investigations of dealer trading. Hasbrouck & Sofi-

anos (1993) examines inventory adjustment and profitability of the NYSE specialists

from the exchange's specialist data files 2. The paper focuses on the speed of inventory

adjustment (adjustment of inventory to desirable levels) across different stocks, and

the decomposition of specialist trading profits by trading horizon. Sofianos (1995)

provides detailed statistics on NYSE specialists' trading profits for 2,511 stocks in

May 1995. Madhavan & Sofianos (1998) studies the size, direction and timing of

the specialists' trades, and suggests that dealers control their inventory by actively

buying and selling rather than by adjusting the quotes.

2 The specialist equity trade (SPET) file that contains specialist transaction data from November
1990 to January 1991, and the specialist equity trade summary (SPETS) file contains daily summary
data covering from November 1988 to August 1990.
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4.3 Design of the Market-maker

This chapter is devoted to the study of the behavior of an automated monopolistic

market-maker such as the specialists at the New York Stock Exchange and Ameri-

can Stock Exchange. An automated market-maker can be modeled, optimized and

calibrated for different types of markets (e.g., stock or commodity markets), different

types of securities (e.g., General Electric or Amazon.com), various market conditions

(e.g., low versus high volatility), and different objectives (e.g., profit maximization

versus market quality maximization). Automation in market-making can add value

to financial and non-financial markets in many ways. Improvement in operational ef-

ficiency and increased reliability are two obvious benefits. Fairness and transparency

in a market can also be enhanced because the logic, parameters and objectives of a

market-making program can be publicly disclosed, examined and validated. Market

globalization and trading hour extension have been two most recent developments in

securities markets. Automated market-making technologies will also play an impor-

tant role in accomplishing global and 24-hour trading.

There are two views of the market-making operation. First, from the point of

view of a market-maker, he would be interested in maximizing his profits while min-

imizing his risks, especially the inventory-carrying risk. From the investors' point of

view, the primary considerations are liquidity of the market, cost of execution, price

continuity and other market quality measures. It is important to point out that these

two views are conflicting with each other. The upholding of a market-maker's affir-

mative obligations could affect his profitability. For example, to maintain an orderly

market, a market-maker needs to commit his capital to buy or sell against the market

trend, and consequently could incur losses and take on unwanted inventory positions.

Narrowing bid-ask spread directly reduces a market-maker's trading revenue.

These concerns from both views are addressed by three independent modules

of the rule-based market-maker, namely, the market quality, inventory control and

speculative motive modules. Each of the modules evaluates the desirability of a quote

with respect to the corresponding objective. An arbitration mechanism is used to
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combine and conciliate the outputs from the three modules, according to their relative

importance specified by some weight parameters. By specifying these weights, one

can tune the agent to satisfy any specific objectives of a market or a market-maker.

For example, one can build a market maker that maximizes profits subject to some

minimum market quality requirements (such as the NYSE specialist), or one that

makes a fixed amount of profits while providing the highest possible market quality.

The following describes the quote adjustment mechanism of the electronic market-

maker. A quote posted by the market-maker consists of a bid price, bid size, ask price

and ask size:

q = (Vb, bPa s sa).

The electronic market-maker focuses on the quote prices but always fixes the quote

sizes Sb and sa at 1,000 shares3 . The minimum price variation for the quote prices is

1/8. The maximum bid-ask spread is limited to 1/4.

At the beginning of a trading day, the electronic market-maker opens the market

around the opening price of the stock, po, given in the historical data. In particular,

it sets pb = Po - 1/8 and pa = po + 1/8. Then public orders arrive at the market.

Limit orders are added to the limit order book or crossed with the quote on the other

side of the market. A quote revision follows the execution of an order or the addition

of a limit order into the limit order book. To revise the quote, the market-maker

considers possible quotes in the neighborhood of the last transaction price and inside

all the public limit orders. That is, the market-maker always quotes its bid and ask

prices better or equal to the best public limit prices. Consider the following example.

Example: The stock XYZ is quoted 20 bid and offered at 20 1/8. A limit sell order

(denoted as order A) of 1,800 shares at 20 will cross with the bid and result in a trade

of 1,000 shares at 20. The market-maker revises the quote by considering all limit

orders which include the remaining of order A-an order to sell 800 shares at 20, and

3Quotes that represent public limit orders could exceed this size.
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an existing order to buy 400 shares at 19 3/4. Possible quotes in terms of (pb Ipa) are

(19 3/4, 19 7/8), (19 3/4, 20) and (19 7/8, 20). Eventually XYZ is quoted 19 7/8 to

20, 1,000 shares by 1,000 shares, with 400 shares by 800 shares originated from the

public limit orders.

Market orders are executed against the current quote and subsequent revised quotes

until they are fully executed. Consider the following examples.

Example: The stock XYZ is quoted 20 bid and offered at 20 1/8. A market sell

order of 1,500 shares will be executed at 20 for the first 1,000 shares. The quote is

revised to 19 7/8 to 20 1/8. 1,000 shares by 1,000 shares. The remaining 500 shares

are executed at 19 7/8. Another quote revision follows.

The process of quote revision involves the evaluations of all possible quotes by the

three independent modules, namely, market quality, inventory control and speculative

motive.

4.3.1 Market Quality (MQ)

Some market makers such as the NYSE specialists are regulated by specific rules of

the exchange to maintain a minimum execution quality. One of the major motivation

in automating the market making process is to ensure a fair and high quality market.

To ensure an efficient market, this module focuses on the following measures:

" Price continuity: the transaction-to-transaction price change (PC)

* Price stability: the high-low price difference in a sequence of trades with total

volumes of 50, 100 and 250 100-share lots (PR50 , PRioo and PR25 0 )

" Bid-ask spread: the difference between the bid and ask prices (SP);
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The value of an action is computed as

VMQ(q) aIPC(q) + a2PR5 o(q) + a 3PRioo(q) + a4PR250(q) +

a5SP(q),

where ai's are the weights specifying relative importance of the market quality mea-

sures. The price continuity function is defined as the average price change for trades

occurring at the buy and sell side:

PC(q) = 2 {|lp b | +|Pt -- pa

where pt is the last transaction price. The function PR,(q) calculates the price ranges

of the shortest sequence of trades that involves a total volume of 100n shares. Suppose

a trade occurs at the bid price, the shortest sequence of trades with a total volume

equal or larger than 100n shares is executed at the prices

n = (Pt-tb i, ... , ptp

where tb is the number of the trades that are sufficient to accumulate the specified

volume. A price series P' is defined in a similar way for the trade that occurs at the

ask price:

p = (Ptta, ... , Pt, Pa).

The price range PRn(q) is computed as the average price range on both sides of the

market:

1
PRn(q) = 2{(max(Po,) - min(Pb)) + (max(P') - min(Pa))}

The spread of a quote is simply defined as the difference between the bid and ask

prices:

SP(q) = (pa _ b)
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4.3.2 Inventory Control (IC)

Theoretical models such as those by Amihud & Mendelson (1980) and Ho & Stoll

(1981) show that market-makers who are risk-adverse adjust their quotes as a func-

tion of their inventory holdings. The inventory control module aims at keeping an

optimum level of inventory. In the process of providing liquidity and maintaining

market quality, the market-maker may have purchased or sold shares of the security

and resulted in an undesirable position. If his position is higher than what he wants,

he would want to reduce it by lowering the offer price and raising the bid price so as

to encourage buying and discourage selling from the public.

The solution to this problem comes down to the setting of the bid and offer

prices that would satisfy some optimum inventory condition, which is represented

by a target inventory, INV*. We denote INV as the current inventory, AINV as

the "expected" change of market-maker's inventory after a trade occurs at the bid,

and AINV' as the "expected" change of inventory after a trade occurs at the ask.

The "expected" changes of inventory, depending on the quote prices and sizes, are

heuristically determined but not defined on any probability space. Consider the case

when the market-maker is holding a long position: INV > 0. The lower the bid price,

the less likely the bid will be hit. Specifically, we define the minimum and maximum

bid prices among all the n quotes under consideration: MINpb = min(pt b ... ,b

and MAXpb = max(pb, pb, ..., pb). The "expected" change of inventory is

AINV = - (I + M b MINpb)
2 M AXpb - MINpb

such that AINVb - sb for the highest bid price, and AINVb = sb/ 2 for the lowest

bid price. The variable AINV' is defined in the same way for the sell side of the

market.

The value of a quote depends on the absolute difference between the resulting
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inventories and and the target inventory:

VIC(q) = (INVt + AINVb) - INV*| for INV < 0

(INV - AINVa) - INV*| for INV > 0

4.3.3 Speculative Motive (SM)

This module focuses on the unique role of the market-maker who overlooks the or-

der flow and possess privileged access to the limit order book. It aims to exploit

the order imbalance information embedded in the limit order book to earn trading

profits. Specifically it considers the public limit orders whose prices are within the

neighborhood of the last transaction price. If there are more buy orders than sell

orders, for example, the market-maker would predict that the price is likely to go

up, and therefore try to post higher quotation prices. However, at the same time,

the market-maker also attempts to gain from the bid-ask spread by placing the bid

at its lowest possible price, which is constrained by the maximum allowable spread

and the highest public bid. We consider the buy and sell sides of public orders sepa-

rately. First consider the set of n public bids that are in the neighborhood of the last

transaction price pt:

{(p, s), (p, s2), ..., (p, s)}, such that

pt - TH < p' < pt + TH, for I < i < n,

where TH is the threshold that specifies the set of limit orders of interest, and n is

the number of the corresponding bids. We want to focus on limit orders whose prices

are close to the current market price because orders that are far off may not be very

informative. The volume weighted average price (VWAP) and total size (TS) are
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defined as functions of this sets of bids:

VWAPb

TSb

= 1 Pisi
Ii=1 st

n

=Zs

Similarly, variables VWAPF and TS" are defined on a set of public asks. Finally, the

value of a quote based on the order flow information is defined as

Vs(q) = I{(Pb - VW Ap)Tb + -± b - VWApa)T Sal
2

The volume weighted average prices measure the distance between a quote and cor-

responding public limit orders, while the total sizes capture the order imbalance

information and serve to control the trade-off between the bid and ask distances.

Suppose there are more public asks than bids, TSa > TSb, the module would prefer

quotes with asks closer to the public asks.

4.3.4 The Arbitration Mechanism

The three modules are combined linearly representing the overall strategy of the

market-maker:

V(q) - wMQVMQ(q) + wICVIC(q) + woIVOI(q),

where the weight parameters wQM, wIC and woI control the trade-off among the three

objectives.
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4.4 Simulations with Historical Data

4.4.1 The Data Set

The analysis of the model is based on the TORQ data set from the New York Stock

Exchange. The TORQ data set contains transaction, quote, order and audit trail data

for a sample of 144 NYSE stocks during the three months period from November 1990

through January 1991. This chapter primarily focuses on the transaction, quote and

order files of the database.

There are several important limitations and deficiencies of the data set. The

transaction and quote data contain all trades and quote revisions from all trading

venues (the NYSE and all the regional exchanges). The order data, however, covers

only the orders that enter the market through the Exchange's electronic order routing

system (SuperDot system). Other orders, which are usually larger and more difficult

to execute, are assisted by floor brokers. These floor orders, representing a significant

portion of the order flow, are not available from the data set. Hasbrouck, Sofianos

& Sosebee (1993) reports that 75 percent of orders entered the market via SuperDot

but only accounted for 28 percent of the executed share volume in 1992.

In studying the data set, one may attempt to relate individual files with each

other for a complete picture of the trading activity. However, the time-stamps of the

records in the database may pose a problem. First, the time-stamps may not reflect

the time of interest. For example, the time associated with a trade is the time at

which the trade is recorded but not when it occurs. Second, different time-stamps

from different files are recorded by different systems that may not be synchronized

to the same clock. For instance, trade records are time-stamped by the Consolidated

Trade System (CTS) and quote revisions are time-stamped by the Consolidated Quote

System (CQS).

For simplicity, some observations are ignored and some assumptions are made. In

the analysis, we only consider limit and market orders, and ignore other order types
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that include stop orders 4 , stop limit orders, market-on-close orders5 , etc. All good-

till-canceled limit orders6 are assumed to be day-orders7 , which are canceled when

the market closes each day. Among 144 stocks in the database, 81 stocks that have

an average number of daily transactions of more than twenty are selected. This is to

ensure that there are enough observations for the estimation of an order flow model.

4.4.2 Generation of the Order Flow

Two approaches are considered in generating an order flow for the trading simulations.

First we consider using orders directly from the database, that is, submitting orders

to the market-maker according to their time-stamps. The main advantage of this

approach is its simplicity. But the order flow in this case is static and not reacting

to any market variables, including the market-maker's quotes. This limitation of the

static order flow could result in severe distortion in a simulation. For example, a

market-maker cannot effectively reduce its inventory by lowering its quote prices in

facing a static order flow. This is because the orders were submitted in response

to the instantaneous quotes in the market when the data was recorded; the quotes

posted by the electronic market-maker are irrelevant.

To establish the dependence of the order flow on the market-maker's quotes, we

attempt to model an order flow generation process. One approach is to create a

purely simulated environment in which the information structure, investor objectives

and trading strategies can be completely specified. This approach is studied in next

chapter. In this chapter we attempt to estimate the dependence of the order flow on

the market quotes from the historical data. We focus on the following attributes of

an order:

1. side: buy or sell

4A stop order is an order that turns into a market order when the last trade price hits the "Stop"
price.

5A market-on-close is a market order which is to be executed at the closing price.
6A limit order that can be filled any time before the market closes.
7A limit order that can be filled any time prior to cancellation.
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2. type: market or limit orders

3. price: limit price (limit orders only)

4. size: number of shares

Specifically, an order is represented by a vector (BUY, LPR, SZE), where BUY is

an indicator variable for buy orders,

BUY= 1 for a buy order

0 for a sell order,

LPR denotes an order's price,

0 for a market order
LPR =

limit price for a limit order,

and SZE denotes an order's size. A simulated order is generated by sampling from the

empirical distributions of these variables, conditioned on the market-maker's quotes

and other relevant variables.

An order is generated by determining the four attributes in a specific sequence.

Imagine a trader enters the market and observes the quotes. He may first decide

whether to buy or sell, based on his gathered information regarding the fair value

of the stock. Trading decisions may also be motivated by other economic objectives

such as liquidity needs. Then he needs to decide whether to submit a limit or market

order, and at what price if a limit order is to be placed. Again his order placement

strategy would depend on the current quote. Finally he needs to specify the size of

the order.

The side of an order is determined by considering the current bid and ask prices,

pl and p', and the future stock price. The future stock price, pf, is the volume

weighted average price of all transaction price in the next 10 minutes. It serves as a

reference to the quote prices. Suppose the sequence of trades from time t to t + 360

112



Total Sample GE IBM SLB W UWR
Estimate of

Pr(BUY = 1A') 0.37 0.31 0.31 0.44 0.20 0.47
(0.14)

Pr(BUY = 1A 2 ) 0.41 0.44 0.40 0.43 0.37 0.36
(0.06)

Pr(BUY = 1A 3 ) 0.54 0.53 0.48 0.56 0.52 0.67
(0.07)

Pr(BUY = IfA 4 ) 0.65 0.67 0.61 0.67 0.70 0.85
(0.09)

Pr(BUY = 1) 0.50 0.49 0.46 0.52 0.50 0.63
(0.05)

Table 4.1: Empirical distribution
81 stocks and six sample stocks.

of the indicator variable BUY for the entire sample of

is {(pi, qj), (p2, q2 ), ... , (PKt, qKt)}, the volume weighted average price is

f Ekl 1Pkqk
Pt Kt

Ek=1 qk

The idea is that more buy orders are expected if the price will go up, and more sell

orders are expected if the price will go down. Specifically, we are interested in the

conditional probability Pr(BUY 1p, ,p, pf). To further simplify the problem, we

consider the following discrete events

A' = pf < pb},

A2 = pb < pf < (Pb + pa)/2},

A' =P {p+ Pa)/2 < pf < pa},

and estimate the conditional probabilities Pr(BUY = 1|A') from the data. These

probabilities are estimated by calculating, in terms of shares volume, the proportion

of buy orders to all orders given the event A'. Table 4.1 shows the estimates of

Pr(BUY = 11A') for six stocks, and the sample mean and standard deviations for

the entire sample of 81 stocks.
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Given the side of an order, an order placement strategy can be determined depend-

ing on the spread, pa-p. In estimating the empirical distributions, P(LPRIBUY, pa-

Pb), buy orders with limit prices LPR < pb - 4 are assumed to have LPR = pb - 4;

sell orders with limit prices LPR > pa are assumed to have LPR = pa. Similarly, sell

orders with limit prices LPR > pa +4 are assumed to have LPR pa +4; sell orders

with limit prices LPR < pa are assumed to have LPR = pa. For market orders,

LPR = 0. Figure 4-1 presents the empirical distribution P(LPRIBUY, pa - pb) for

the stock IBM. Order prices are randomly sampled from these empirical distributions

conditioned on the indicator variable BUY and the bid-ask spread.

Lastly, the size of an order is determined by a random draw from the empiri-

cal unconditional distribution of the order size P(SZE). Figure 4-2 describes the

simulations with the static and modeled order flow.

4.4.3 Simulations

In studying the feasibility of the heuristic rules, we simulate trading with the static

and modeled order flow. Three settings of the rule-based market-making agent are

considered. In the first settings, denoted as "MQ," the agent only focuses on max-

imizing market quality. The second, denoted as "MQ+IC," extends from the first

to further include inventory control. The third, denoted as "SM+IC," considers the

speculative motive and inventory control.

To compare the performance the rule-based agent, two types of "benchmark"

analyses are conducted. A natural candidate for such a comparison is the execution

of the actual NYSE specialists. Unfortunately the TORQ data does not provide the

details of the specialists' trades, such as the details of the purchases or sales, and

stock positions, which are necessary for the analysis of their inventory and profits.

Nevertheless, information concerning measures of market quality including price con-

tinuity, price stability, and the spread, can be calculated from the trade and quote

data. This analysis is denoted as "NYSE."

To investigate the fulfillment of the affirmative obligations imposed on the rule-

based market-maker, we compare its performance with that of an order matching
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TORQ Execution:

Data Market-maker Quotes and
Trades

(a) Static Order Flow

TORQ Order Flow Execution:

Data Model i Market-maker Quotes and
Trades

(b) Modeled Order Flow

Figure 4-2: Two approaches of the order flow generation mechanism.

mechanism or an auctioneer. This simulates a double auction market in which the

auctioneer simply matches orders eligible for execution. Since the auctioneer does

not intervene to ensure a market presence, market orders that find no matching limit

orders on the other side of the market are canceled. This simulation is denoted as

"OM." The details of all simulations and analyses are summarized in Table 4.2.

4.5 Performance of the Rule-based Market-maker

Details of the results of the simulations with the static and modeled order flows are

presented in Tables 4.3 and 4.4. All stocks are ranked by their average daily number

of transactions and grouped into four quartiles sub-samples.

4.5.1 Static Order Flow

The static order flow is the stream of orders directly taken from the order data file.

These orders were placed given the market quotes and market conditions (such as
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Simulation Description Data

NYSE NYSE specialist execution Trade and quote data

GM Order matching mechanism Static order flow

MQ Electronic market-maker that contains Static and modeled
the market quality module order flow

MQ+IC Electronic market-maker that contains Static and modeled
the market quality and inventory control modules order flow

SM+IC Electronic market-maker that contains Static and modeled
the speculative motive and inventory control modules order flow

Table 4.2: Description of different modes of simulation.

news) at the time of submission. For this reason, these orders do not respond to

quotes posted by the rule-based market-maker. Consequently, inventory control by

adjusting the quote prices becomes ineffective because the underlying order submis-

sion dynamics are fixed.

Table 4.3 presents the results from the simulations with the static order flow and

the comparison with the NYSE specialist executions. The ineffectiveness in inventory

control results in abnormally high closing inventory for the rule-based market-maker.

The high inventory holdings are subject to the volatility in market valuations, and in

turn lead to high variance in the daily profits. This unfortunately makes the inter-

pretation of the agent's profitability inconclusive. For example, the simulation MQ

gives an average daily profit of $710 but the sample standard deviation is $577, 810.

However, the IC modules does reduce inventory holdings to some extent. Figure 4-3

shows the daily closing inventory in simulation MQ and MQ+IC for the stock IBM for

the 63-day period, and demonstrates the effect of inventory control. The simulation

SM+IC results in a lower average absolute closing inventory than that of MQ+IC,

suggesting that in maintaining high market quality, the market-maker has to take on

more unwanted inventory.

The electronic market-maker successfully provides additional liquidity to the mar-

ket. The average trading volume is substantially increased from the order matching

118



Simulation MQ
anor.

6000
I

4000

2000-

=1
-2000 -

-4000 -

-6000 -

-8000' 1
10 20 30 40 50 60

Trading Day

Simulation MQIC
4000

3000-

2000-

1000 -I-

-1000 -

-2000
10 20 30 40 50 60

Trading Day

Figure 4-3: The effect of inventory control: the closing inventory positions in simulations
MQ and MQIC for the stock IBM in the 63-day period.
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mechanism to simulation MQ across all sub-samples. In the OM simulation, market

orders that cannot be matched due to the absence of a market are discarded. The dif-

ference in trading volume between the simulations OM and MQ indicates the amount

of liquidity contributed by the electronic market-maker. The difference in volume

is more significant for less liquid stocks (lower quartile sub-samples). For instance,

the average volume is increased 84.10 percent from OM to MQ for the stocks in the

lowest quartile sub-sample. To measure how actively the market-maker involves in

the trading process, we calculate its participation rate, which is defined as the per-

centage of transactions (in share units) in which the market-maker involves as either

a buyer or seller. The participation rate averages around 50 percent, substantially

higher than what is reported in Hasbrouck & Sofianos (1993)-13 percent for a sam-

ple of 138 stocks. We notice that the participation rate is higher for the simulation

MQ, where the market-maker aggressively intervenes to improve market quality. The

participation rate is also found higher for less liquid stocks in which the dealer's role

as a liquidity provider is more eminent. This result is consistent with the empirical

evidence from Madhavan & Sofianos (1998) that the participation rate decreases with

trading frequency.

The market-maker significantly improves various measures of market quality over

the order matching mechanism. For example, the average spread of OM is 2.46 ticks

(or one-eighth) while that of MQ is 1.22 ticks; the average for PC (transaction-to-

transaction price change) of OM is 0.63 while that of MQ is 0.37 for the entire sample.

Comparing with the NYSE execution, the simulations with the electronic market-

maker yield comparable or sometimes better measures of market quality, particularly

in the case of MQ. Among the three settings of the electronic market-maker, the

one with the speculative motive gives the lowest market quality as the agent actively

pursues its self-interest. Figure 4-4 shows sample executions of NYSE, MQ and

SM+IC for IBM on November 1, 1990.
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Quartile Sub-samples by Average Number
of Daily Transactions

Total 1 2 3 4
Variable Sample (lowest) (highest)

Number of Securities
Daily profits ($1,000)

MQ

MQ+IC

SM+IC

Daily closing
MQ

MQ+IC

SM+IC

Daily volume
OM

MQ

MQ+IC

SM+IC

81

0.71
(577.81)

5.93
(977.72)

-8.16
(282.49)

inventory (100-share lots)
1,292.16

(2,216.49)
891.08

(1,884.66)
431.09

(1,586.73)

(100-share lots)
953.67

(2,325.75)
1,277.45

(3,024.28)
1,227.48

(2,986.13)
1,261.26

(3,114.67)

Difference in volume (percent)

(VMQ - VOM)/VOM

Avg. (linventoryl / volume)
MQ

MQ+IC

SM+IC

33.95

3.45
(6.33)
2.88

(5.48)
1.15

(2.38)

20

-1.33
(25.41)
-0.51

(24.51)
-0.34

(12.20)

463.54
(436.70)
452.62

(504.27)
204.62

(484.66)

85.98
(113.37)
158.29

(170.71)
140.06

(154.10)
143.37

(162.57)

84.10

5.25
(7.98)
5.47

(9.26)
2.06

(3.66)

20

-1.11
(45.09)
-0.72

(30.19)
-0.32

(14.63)

892.51
(754.94)
543.17

(481.88)
191.90

(214.07)

174.19
(161.85)
302.46

(225.75)
266.72

(203.36)
271.84

(210.49)

73.64

4.38
(8.38)
3.11

(3.93)
1.09

(1.71)

21

-1.50
(91.23)

1.80
(95.64)
-0.57

(58.19)

1,120.76
(1,197.83)

788.58
(1,102.69)

407.47
(695.07)

362.17
(381.88)
555.87

(468.18)
512.32

(455.65)
520.15

(465.95)

53.48

3.04
(4.07)
2.19

(3.06)
1.22

(2.14)

20

6.87
(1,117.78)

23.34
(1,965.30)

-31.81
(580.82)

2,700.38
(3,844.37)
1,785.09

(3,493.68)
921.57

(3,010.79)

3,221.93
(3,853.52)
4,129.27

(5,085.57)
4,026.58

(5,036.50)
4,146.73

(5,279.63)

28.13

1.18
(1.63)
0.82

(1.11)
0.22

(0.43)

Table 4.3: Trading profits, inventory and volume and market quality measures for the static
order flow. MQ, IC and SM denote the market quality, inventory control and speculative
motive modules, OM denotes the order matching mechanism, NYSE denotes the executions
by the NYSE specialists.
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Quartile Sub-samples by Average Number
of Daily Transactions

Total 1 2 3 4
Variable Sample (lowest) (highest)

Participation Rate
OM 0.00 0.00 0.00 0.00 0.00
MQ 0.57 0.68 0.64 0.60 0.38
MQ+IC 0.46 0.56 0.50 0.48 0.28
SM+IC 0.48 0.59 0.52 0.51 0.31

Market quality measures (number of 1/8)
Spread NYSE 3.21 3.25 3.33 3.23 3.03

OM 2.46 2.53 2.39 2.49 2.43
MQ 1.22 1.23 1.23 1.26 1.17
MQ+IC 1.68 1.79 1.73 1.70 1.49
SM+IC 1.69 1.80 1.74 1.72 1.51

PC NYSE 0.43 0.51 0.43 0.39 0.39
OM 0.63 0.83 0.65 0.57 0.47
MQ 0.37 0.42 0.38 0.36 0.33
MQ+IC 0.51 0.60 0.53 0.49 0.42
SM+IC 0.52 0.61 0.54 0.50 0.43

PR50 NYSE 1.17 1.50 1.26 1.00 0.39
OM 3.63 3.94 3.37 3.90 3.42
MQ 1.06 1.10 1.07 1.12 0.93
MQ+IC 1.55 1.73 1.63 1.63 1.23
SM+IC 1.57 1.75 1.66 1.66 1.24

PR250 NYSE 2.04 2.21 2.25 1.98 1.85
OM 6.26 2.61 4.58 6.62 6.67
MQ 1.74 1.64 1.77 1.91 1.60
MQ+IC 2.43 2.44 2.65 2.71 2.11
SM+IC 2.51 2.59 2.77 2.81 2.15

Table 4.3 (continued)
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4.5.2 Modeled Order Flow

In the simulation of the modeled order flow, inventory control is found to be signifi-

cantly more effective than in the case of the static order flow. The IC module reduces

the variance of profits to reasonable levels: the setting MQ, MQ+IC and SM+IC

give standard errors for daily profits of $159, 500, $41, 680 and $3, 240 respectively.

Comparing MQ+IC and SM+IC, the latter consistently makes more profits than the

former, across all sub-samples. The setting SM+IC yields an average daily profits

of $230. Sofianos (1995) reports a daily average profit of $552 with a standard error

of $40 over a sample of 2,511 stocks at the NYSE in 1995. Although our results on

profitability are statistically insignificant, it does signify the importance of inventory

control as suggested by Garman (1976). Without the IC module, the daily fluctuation

in profitability would make the market-making business inviable.

Average daily closing inventory drops substantially from 95,785 shares in MQ,

to 17,648 shares in MQ+IC, and 2,931 shares in SM+IC. Comparing MQ+IC with

SM+IC, the simulation without market quality constraints results in more effective

inventory control because in upholding its affirmative obligations, the market-maker is

more likely to accumulate unwanted inventory holdings. The ratio of absolute closing

inventory to volume is another measure of a dealer's inventory holdings. The ratio

averages 0.56 and 3.15 for MQ+IC and SM+IC respectively, compared with a value

of 0.84 found in Hasbrouck & Sofianos (1993). The average participation rate ranges

from 28 to 42 percent, lower than that found in the static order flow simulations, but

higher than the 13 percent found in Hasbrouck & Sofianos (1993). It is still true that

the market-maker participates more in less liquid stocks.

As for market quality measures, in general, we find that MQ performs better than

MQ+IC, which in turn performs better than SM+IC.

4.6 Conclusions

This chapter presents computer simulations of a rule-based market-maker in mar-

ket environments that feature static historical order flows and simulated order flows
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Quartile Sub-samples by Average Number
of Daily Transactions

Total 1 2 3 4
Variable Sample (lowest) (highest)

Number of Securities
Daily profits ($1,000)

MQ

MQ+IC

SM+IC

Daily closing
MQ

MQ+IC

SM+IC

Daily volume
MQ

MQ+IC

SM+IC

81

-0.28
(159.50)

-9.47
(41.68)

0.23
(3.24)

inventory (100-share lots)
957.85

(1,716.02)
176.48

(510.71)
29.31

(59.50)

(100-share lots)
590.41

(1,128.01)
604.40

(1,137.06)
562.38

(1,078.52)

20

-0.98
(32.06)
-0.18

(27.05)
0.08

(4.44)

498.04
(562.39)
259.39

(443.56)
55.85

(114.40)

103.41
(113.41)
104.75

(119.53)
90.03

(100.93)

20

-1.81
(55.11)
-0.89

(30.66)
0.03

(2.82)

627.45
796.66
249.79

(588.59)
25.04

(19.87)

182.32
(142.59)
180.77

(140.18)
154.37

(123.01)

21

0.38
(60.61)
-0.06

(14.50)
0.07

(2.62)

814.73
(785.53)

63.77
(176.11)

19.30
(14.75)

335.94
(291.93)
323.99

(284.69)
282.12

(249.73)

20

1.23
(301.334)

-2.54
(69.93)

0.73
(2.82)

1,846.72
(2,958.98)

135.63
(653.02)

19.20
(20.23)

1,685.22
(1,775.36)
1,744.08

(1,758.40)
1,661.76

(1,656.97)

Avg. (linventoryl / volume)
MQ

MQ+IC

SM+IC

5.61
(25.97)

3.15
(13.62)

0.56
(4.18)

12.34 5.65 3.62
(52.05) (11.53) (5.23)
10.48

(23.21)
1.60

(8.44)

2.11
(14.82)

0.40
(1.65)

0.33
(1.28)
0.20

(0.59)

Table 4.4: Trading profits, inventory and volume and market quality measures for the
modeled order flow. MQ, IC and SM denote the market quality, inventory control and
speculative motive modules, OM denotes the order matching mechanism.
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Quartile Sub-samples by Average Number
of Daily Transactions

Total 1 2 3 4
Variable Sample (lowest) (highest)

Participation Rate
MQ 0.42 0.55 0.45 0.42 0.28
MQ+IC 0.41 0.55 0.45 0.42 0.24
SM+IC 0.28 0.42 0.31 0.26 0.14

Market quality measures (number of 1/8)
Spread MQ 1.13 1.15 1.13 1.14 1.09

MQ+IC 1.17 1.17 1.17 1.20 1.15
SM+IC 1.60 1.72 1.65 1.62 1.43

PC MQ 0.53 0.54 0.54 0.53 0.51
MQ+IC 0.57 0.56 0.57 0.59 0.56
SM+IC 0.87 0.97 0.90 0.86 0.74

PR50 MQ 1.09 1.08 1.13 1.16 0.99
MQ+IC 1.34 1.25 1.37 1.54 1.18
SM+IC 2.31 2.80 2.67 2.44 1.64

PR250 MQ 1.53 1.49 1.60 1.68 1.44
MQ+IC 2.42 1.92 2.46 2.89 2.21
SM+IC 3.84 4.39 5.54 4.70 3.11

Table 4.4 (continued)
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modeled from transaction data. In the static order flow scenario, the abnormally high

inventory levels in turn lead to unusually high variance in the market-maker's profits.

Nevertheless, the affirmative obligations of the market-maker are fulfilled to a large

extent. In the simulated order flow case, inventory control is more effective while

the objectives pertaining to profits and market quality are also accomplished. Both

types of simulations are able to replicate several findings from theoretical models and

empirical studies in the literature.

The rule-based model presents a simple view of the market-making process, one

that focuses on three primary objectives. It is not the goal of this chapter to pro-

vide a comprehensive model for market-making. Rather, the focus is on whether and

how simple heuristic rules can accomplish certain functions or services provided by a

market-maker. We also study the effect of combining different objectives and interac-

tions among them. For instance, inventory control is found to be more effective with

a speculative motive than under market quality constraints. The use of historical

data, instead of pure simulated models, is another important characteristic of this

study. We are able to relate and compare our findings with those from the real-world

markets. For example, the profitability statistics and market quality measures are

compared with those of the NYSE specialists.

However, many areas of this topic are yet to be addressed. Combining multiple

objectives linearly may not be accurate in representing a dealer's overall goal. The

modeling of the order flow is over-simplified because the time series properties of

the data are largely ignored. But more importantly, a set of fixed and deterministic

rules may be inadequate in dealing with markets that typically involve the learning

of agents and evolution of trading strategies. A learning model for market-making,

the key to this question, is discussed in the next chapter.
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Chapter 5

An Adaptive Electronic

Market-maker

The heuristic-based market-maker developed in Chapter 4 establishes a basic frame-

work and identifies relevant variables for market-making models. In practice, how-

ever, such a static model is generally inadequate in a dynamical market environment.

Parameters need to be tuned for different securities, market conditions and user pref-

erences. For example, market-makers' target inventory, execution quality, and the

responsiveness to order imbalance (by making quote adjustments) may vary accord-

ing to their assessment of the current market conditions.

Many theoretical market-making models are developed in the context of stochastic

dynamic programming. Bid and ask prices are dynamically determined to maximize

some long term objectives such as expected profits or expected utility of profits.

Models in this category include those of Ho & Stoll (1981), O'Hara & Oldfiled (1986)

and Glosten & Milgrom (1985). The main limitation of these models is that specific

properties of the underlying processes (price process and order arrival process) have

to be assumed in order to obtain a closed-form characterization of strategies.

This paper presents an adaptive learning model for market-making using rein-

forcement learning under a simulated environment. Reinforcement learning can be

considered as a model-free approximation of dynamic programming. The knowledge

of the underlying processes is not assumed but learned from experience. The goal of
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the paper is to model the market-making problem in a reinforcement learning frame-

work, explicitly develop market-making strategies, and discuss their performance. In

the basic model, where the market-maker quotes a single price, we are able to de-

termine the optimum strategies analytically and show that reinforcement algorithms

successfully converge to these strategies. The major challenges of the problem are

that the environment state is only partially observable and reward signals may not

be available at each time step. The basic model is then extended to allow the market-

maker to quote bid and ask prices. While the market-maker affects only the direction

of a price in the basic model, it has to consider both the direction of the prices as

well as the size of the bid-ask spreads in the extended model. The reinforcement

algorithm converges to correct policies and effectively control the trade-off between

profit and market quality in terms of the spread.

This paper starts with an overview of several important theoretical market-making

models and an introduction of the reinforcement learning framework in Section 5.1.

Section 5.2 establishes a reinforcement learning market-making model. Section 5.3

presents a basic simulation model of a market with asymmetric information where

strategies are studied analytically and through the use of reinforcement learning.

Section 5.4 extends the basic model to incorporate additional actions, states, and

objectives for more realistic market environments.

5.1 Background

5.1.1 Market-making Models

The understanding of the price formation process in security markets has been one

of the focal points of the market microstructure literature. There are two main ap-

proaches to the market-making problem. One focuses on the uncertainties of an

order flow and the inventory holding risk of a market-maker. In a typical inventory-

based model, the market-maker sets the price to balance demand and supply in the

market while actively controlling its inventory holdings. The second approach at-
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tempts to explain the price setting dynamics employing the role of information. In

information-based models, the market-maker faces traders with superior information.

The market-maker makes inferences from the orders and sets the quotes. This infor-

mational disadvantage is reflected in the bid-ask spread.

Garman (1976) describes a model in which there is a single, monopolistic, and

risk neutral market-maker who sets prices, receives all orders, and clears trades. The

dealer's objective is to maximize expected profit per unit time. Failure of the market-

maker arises when the it runs out of either inventory or cash. Arrivals of buy and

sell orders are characterized by two independent Poisson processes whose arrival rates

depend on the market-maker's quotes. Essentially the collective activity of the traders

is modeled as a stochastic flow of orders. The solution to the problem resembles

that of the Gambler's ruin problem. Garman studied several inventory-independent

strategies that lead to either a sure failure or a possible failure. The conditions to avoid

a sure failure imply a positive bid-ask spread. Garman concluded that a market-maker

must relate its inventory to the price-setting strategy in order to avoid failure. Amihud

& Mendelson (1980) extends Garman's model by studying the role of inventory. The

problem is solved in a dynamic programming framework with inventory as the state

variable. The optimal policy is a pair of bid and ask prices, both as decreasing

functions of the inventory position. The model also implies that the spread is positive,

and the market-maker has a preferred level of inventory. Ho & Stoll (1981) studies

the optimal behavior of a single dealer who is faced with a stochastic demand and

return risk of his own portfolio. As in Garman (1976), orders are represented by price-

dependent stochastic processes. However, instead of maximizing expected profit, the

dealer maximizes the expected utility of terminal wealth which depends on trading

profit and returns to other components in its portfolio. Consequently dealer's risks

play a significant role in its price-setting strategy. One important implication of this

model is that the spread can be decomposed into two components: a risk neutral

spread that maximizes the expected profits for a set of given demand functions and a

risk premium that depends on the transaction size and return variance of the stock.

Ho & Stoll (1983) is a multiple-dealer version of Ho & Stoll (1981). The price-
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dependent stochastic order flow mechanism is common in the above studies. All

preceding studies only allow market orders traded in the market. O'Hara & Oldfiled

(1986) attempts to incorporate more realistic features of real markets into its analysis.

The paper studies a dynamic pricing policy of a risk-averse market-maker who receives

both limit and market orders and faces uncertainty in the inventory valuation. The

optimal pricing strategy takes into account the nature of the limit and market orders

as well as inventory risk.

Inventory-based models focus on the role of order flow uncertainty and inventory

risk in the determination of the bid-ask spread. The information-based approach

suggests that the bid-ask spread could be a purely informational phenomenon ir-

respective of inventory risk. Glosten & Milgrom (1985) studies the market-making

problem in a market with asymmetric information. In the Glosten-Milgrom model

some traders have superior (insider) information and others do not. Traders consider

their information and submit orders to the market sequentially. The specialist, which

does not have any information advantage, sets his prices, conditioning on all his avail-

able information such that the expected profit on any trade is zero. Specifically, the

specialist sets its prices equaled the conditional expectation of the stock value given

past transactions. Its main finding is that in the presence of insiders, a positive bid-

ask spread would exist even when the market-maker is risk-neutral and make zero

expected profit.

Most of these studies have developed conditions for optimality but provided no

explicit price adjustment policies. For example, in Amihud & Mendelson (1980),

bid and ask prices are shown to relate to inventory but the exact dependence is

unavailable. Some analyses do provide functional forms of the bid/ask prices (such

as O'Hara & Oldfiled (1986)) but the practical applications of the results are limited

due to stringent assumptions made in the models. The reinforcement learning models

developed in this paper make few assumptions about the market environment and

yield explicit price setting strategies.
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5.1.2 Reinforcement Learning

Reinforcement learning is a computational approach in which agents learn their strate-

gies through trial-and-error in a dynamic interactive environment. It is different from

supervised learning in which examples or learning targets are provided to the learner

from an external supervisor.1 In a typical reinforcement learning problems the learner

is not told which actions to take. Rather, it has to find out which actions yield the

highest reward through experience. More interestingly, actions taken by an agent

affect not only the immediate reward to the agent but also the next state in the en-

vironment, and therefore subsequent rewards. In a nutshell, a reinforcement learner

interacts with a its environment by adaptively choosing its actions in order to achieve

some long-term objectives. Kaelbling & Moore (1996) and Sutton & Barto (1998)

provide excellent surveys of reinforcement learning. Bertsekas & Tsitsiklis (1996)

covers the subject in the context of dynamic programming.

Markov decision processes (MDPs) are the most common model for reinforcement

learning. The MDP model of the environment consists of (1) a discrete set of states S,

(2) a discrete set of actions the agent can take A, (3) a set of real-valued rewards 1Z or

reinforcement signals, (4) a starting probability distribution over S, (5) a transition

probability distribution p(s'ls, a), the probability of a state transition to s' from s

when the agent takes action a, and (6) a reward probability distribution p(rIs, a), the

probability of issuing reward r from state s when the agent takes action a.

The MDP environment proceeds in discrete time steps. The state of the world for

the first time step is drawn according to the starting probability distribution. There-

after, the agent observes the current state of the environment and selects an action.

That action and the current state of the world determine a probability distribution

over the state of the world at the next time step (the transition probability distribu-

tion). Additionally, they determine a probability distribution over the reward issued

to the agent (the reward probability distribution). The next state and a reward are

chosen according to these distributions and the process repeats for the next time step.

'Bishop (1995) gives a good introduction to supervised learning. See also Vapnik (1995),Vapnik
(1998), and Evgeniou, Pontil & Poggio (2000).
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The dynamics of the system are completely determined except for the action

selection (or policy) of the agent. The goal of the agent is to find the policy that

maximizes its long-term accumulated rewards, or return. The sequence of rewards

after time step t is denoted as rt, rt+I, rt+2, ... ; the return at the time t, Rt, can be

defined as a function of these rewards, for example,

Rt = rt + rt++ ... + rT;

or if rewards are to be discounted by a discount rate -y, 0 < -y < 1:

Rt = rt + 7rt+1 + ... + 7 T-IrT,

where T is the final time step of a naturally related sequence of the agent-environment

interaction, or an episode.2

Because the environment is Markovian with respect to the state (i.e. the proba-

bility of the next state conditioned on the current state and action is independent of

the past), the optimal policy for the agent is deterministic and a function solely of

the current state.3 For reasons of exploration (explained later), it is useful to consider

stochastic policies as well. Thus the policy is represented by wr(s, a), the probability

of picking action a when the world is in state s.

Fixing the agent's policy converts the MDP into a Markov chain. The goal of

the agent then becomes to maximize E,[Rt] with respect to -F where E, stands for

the expectation over the Markov chain induced by policy 7r. This expectation can be

broken up based on the state to aid in its maximization:

V'(s) = E,[RtIst = s],

Q1'(s, a) = E,[Rtlst = s, at = a],

2These definitions and algorithms also extend to the non-episodic, or infinite-time, problems.
However, for simplicity this paper will concentrate on the episodic case.

3For episodic tasks for which the stopping time is not fully determined by the state, the optimal
policy may also need to depend on the time index. Nevertheless, this paper will consider only
reactive policies or policies which only depend on the current state.
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These quantities are known as value functions. The first is the expected return of

following policy 7r out of state s. The second is the expected return of executing

action a out of state s and thereafter following policy 7r.

There are two primary methods for estimating these value functions. The first

is by Monte Carlo sampling. The agent executes policy wr for one or more episodes

and uses the resulting trajectories (the histories of states, actions, and rewards) to

estimate the value function for 7r. The second is by temporal difference (TD) updates

like SARSA (Sutton (1996)). TD algorithms make use of the fact that VW(s) is related

to V'(s') by the transition probabilities between the two states (from which the agent

can sample) and the expected rewards from state s (from which the agent can also

sample). These algorithms use dynamic-programming-style updates to estimate the

value function:

Q(st, at) <- Q(st, at) + a[rt+1 + yQ(st+i, at+,) - Q(st, at)] . (5.1)

a is the learning rate that dictates how rapidly the information propagates.4 Other

popular TD methods include Q-learning (Watkins (1989), Watkins & Dayan (1992))

and TD(A) (Watkins (1989), Jaakkola, Jordan & Singh (1994)). Sutton & Barto

(1998) gives a more complete description of Monte Carlo and TD methods (and their

relationship).

Once the value function for a policy is estimated, a new and improved policy

can be generated by a policy improvement step. In this step a new policy lrk+1 is

constructed from the old policy 7rk in a greedy fashion:

7rk+1(s = arg max Qlk(s, a). (5.2)
a

Due to the Markovian property of the environment, the new policy is guaranteed to

be no worse than the old policy. In particular it is guaranteed to be no worse at every

state individually: Q1k+1 (s, 7rk+1(s)) Q1Ik(s,'lrk(a)). Additionally, the sequence of

4 The smaller the a the slower the propagation, but the more accurate the values being propagated.
'See p. 95 Sutton & Barto (1998)
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policies will converge to the optimal policy provided sufficient exploration (i. e. that

the policies explore every action from every state infinitely often in the limit as the

sequence grows arbitrarily long). To insure this, it is sufficient to not exactly follow

the greedy policy of Equation 5.2 but instead choose a random action E of the time

and otherwise choose the greedy action. This E-greedy policy takes the form

7k+ a) - 1 - E if a = arg maXa' Qlrk (s, a'), (5.3)
_ otherwise.

An alternative to the greedy policy improvement algorithm is to use an actor-critic

algorithm. In this method, the value functions are estimated using a TD update as

before. However, instead of jumping immediately to the greedy policy, the algorithm

adjusts the policy towards the greedy policy by some small step size. Usually (and

in this paper), the policy is represented by a Boltzmann distribution:

_ _ _ exp (W(s,a))
7rt(s, a) = Pr[at = alst - s] = exp(wsa) (5.4)

, 'Eexp(Ws,a')

where W(s,a) is a weight parameter of -r corresponding to action a in state s. The

weights can be adjusted to produce any stochastic policy which can have some ad-

vantages (discussed in the next section).

All three approaches are considered in this paper: a Monte Carlo method, SARSA

(a temporal difference method) and an actor-critic method. Each has certain advan-

tages. The Monte Carlo technique can more easily deal with long delays between an

action and its associated reward than SARSA. However, it does not make as efficient

use of the MDP structure as SARSA does. Therefore, SARSA does better when re-

wards are presented immediately whereas Monte Carlo methods do better with long

delays.

Actor-critic has its own advantage in that it can find explicitly stochastic poli-

cies. For MDPs this may not seem to be as much an advantage. However, for most

practical applications, the world does not exactly fit the MDP model. In particular,

the MDP model assumes that the agent can observe the true state of the environ-
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ment. However in cases like market-marking that is not the case. While the agent

can observe certain aspects (or statistics) of the world, other information (such as the

information or beliefs of the other traders) is hidden. If that hidden information can

affect the state transition probabilities, the model then becomes a partially observable

Markov decision process (POMDP). In POMDPs, the ideal policy can be stochastic

(or alternatively depend on all prior observations which is prohibitively large in this

case). Jaakkola, Singh & Jordan (1995) discusses the POMDP case in greater details.

While none of these three methods are guaranteed to converge to the ideal policy

for a POMDP model (as they are for the MDP model), in practice they have been

shown to work well even in the presence of hidden information. Which method is

most applicable depends on the problem.

5.2 A Reinforcement Learning Model of Market-

making

The market-making problem can be conveniently modeled in the framework of re-

inforcement learning. In the following market-making problems, an episode can be

considered as a trading day. Note that the duration of an episode does not need to be

fixed. An episode can last an arbitrary number of time steps and conclude when the

certain task is accomplished. The market is a dynamic and interactive environment

where investors submit their orders given the bid and ask prices (or quotes) from

the market-maker. The market-maker in turn sets the quotes in response to the flow

of orders. The job of the market-maker is to observe the order flow, the change of

its portfolio, and its execution of orders and set quotes in order to maximize some

long-term rewards that depend on the its objectives (e.g. profit maximization and

inventory risk minimization).

136



5.2.1 Environment States

The environment state includes market variables that are used to characterize different

scenarios in the market. These are variables that are observed by the market-maker

from the order flow, its portfolio, the trades and quotes in the market, as well as other

market variables:

" Inventory of the market-maker - amount of inventory-holding by the market-

maker.

* Order imbalance - excess demand or supply in the market. This can be defined

as the share difference between buy and sell market or limit orders received

within a period of time.

" Market quality measures - size of the bid-ask spread, price continuity (the

amount of transaction-to-transaction price change), depth of a market (the

amount of price change given a number of shares being executed), time-to-fill

of a limit order, etc.

" Others - Other characteristics of the order flow, information on the limit order

book, origin of an order or identity of the trader, market indices, prices of stocks

in the same industry group, price volatility, trading volume, time till market

close, etc.

In this paper, we focus on three fundamental state variables: inventory, order imbal-

ance and market quality. The state vector is defined as

st = (INV, IMBt, QLTt) ,

where INV, IMBt and QLTt denote the inventory level, the order imbalance, and

market quality measures respectively. The market-maker's inventory level is its cur-

rent holding of the stock. A short position is represented by a negative value and a

long position by a positive value. Order imbalance can be defined in many ways.

One possibility is to define it as the sum of the buy order sizes minus the sum
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of the sell order sizes during a certain period of time. A negative value indicates

an excess supply and a positive value indicates an excess demand in the market.

The order imbalance measures the total order imbalance during a certain period of

time, for example, during the last five minutes or from the last change of market-

maker's quotes to the current time. Market qualities measure quantities including

the bid-ask spread and price continuity (the amount of price change in a subsequent

of trades). The values of INVt, IMBt and QLTt are mapped into discrete values:

INVt E {-Minv, ., -1, 0, 1, ... , Minv}, IMBt E {-Mimb, ... , -1, 0, 1, ... , Mimb}, and

QLT E {-MQLT, ---, 1, 0, 1, ---, MQLT}- For example, a value of -Minv corresponds

to the highest possible short position, -1 corresponds to the smallest short position

and 0 represents an even position. Order imbalance and market quality measures are

defined similarly.

5.2.2 Market-maker's actions

Given the states of the market, the market-maker reacts by adjusting the quotes,

trading with incoming public orders, etc.. Permissible actions by the market-maker

include the following:

" Change the bid price

" Change the ask price

" Set the bid size

" Set the ask size

" Others - Buy or sell, provide price improvement (provide better prices than

the current market quotes).

The models in this paper focus on the determination of the bid and ask prices and

assume fixed bid and ask sizes (e.g. one share). The action vector is defined as

at = (ABIDe, AASKt) ,
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where ABIDt = BIDt - BIDt_1 and AASKt = ASKt - ASKt_ 1 , representing

the change in bid and ask prices respectively. All values are discrete: ABIDt E

{-MABID, ... , 0, ... , MABID} and AASKt c {-MAASK, ... , 0, ... , MAASK}, where MABID

and MAASK are the maximum allowable changes for the bid and ask prices respec-

tively.

5.2.3 Reward

The reward signal is the agent's driving force to attain the optimal strategy. This

signal is determined by the agent's objectives. Possible reward signals (and their

corresponding objectives) include

" Change in profit (maximization of profit)

" Change in inventory level (minimization of inventory risk)

" Current market quality measures (maximization of market qualities)

The reward at each time step depends on the change of profit, the change of inventory,

and the market quality measures at the current time step. The reward can be defined

as some aggregate function of individual reward components. In its simplest form,

assuming risk neutrality of the market-maker, the aggregate reward can be written

as a linear combination of individual reward signals:

rt = w,,oAPROt + wi.,AINVt + wqtQLTt, (5.5)

where Wpro, Winv and wqlt are the parameters controlling the trade-off between profit,

inventory risk and market quality; APROt = PROt - PROt_1, AINV = INV -

INV_ 1 and QLTt are the change of profit, the change of inventory, and market

quality measure respectively at time t. Note that the market-maker is interested

in optimizing the end-of-day profit and inventory, but not the instantaneous profit

and inventory. However, it is the market quality measures at each time step with

which the market-maker is concerned in order to uphold the execution quality for all
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transactions. Recall that the agent intends to maximize the total amount of rewards

it receives. The total reward for an episode with T time steps is

T

RT = Z rt
t=1

T

= WproPROT + WinvINVT + wqlt E QLT.
t=1

Here the market-maker is assumed to start with zero profit and inventory: PRO0 = 0

and INV = 0.

The market-maker can observe the variables INV and QLT at each time t, but

not necessarily PROt. In most cases, the "true" value or a fair price of a stock may not

be known to the market-maker. Using the prices set by the market-maker to compute

the reward could incorrectly value the stock. Furthermore the valuation could induce

the market-maker to raise the price whenever it has a long position and lower the price

whenever it has a short position, so that the value of its position can be maximized.

Without a fair value of the stock, calculating the reward as in Equation 5.5 is not

feasible. In these cases, some proxies of the fair price can be considered. For example,

in a market with multiple market-makers, other dealers' quotes and execution prices

can reasonably reflect the fair value of the stock. Similarly, the fair price may also

be reflected in the limit prices from the incoming limit orders. Lastly, the opening

and closing prices can be used to estimate the fair price. This approach is motivated

by how the market is opened and closed at the NYSE. The NYSE specialists do not

open or close the market at prices solely based on their discretion. Instead, they

act as auctioneers to set prices that balance demand and supply at these moments.

Consequently these prices represent the most informative prices given all information

available at that particular time.

In the context of the reinforcement learning algorithm, the total reward for an

episode is calculated as the difference between the the end-of-day and the beginning-

of-day profit:

RT = PROT - PRO0 = PROT.
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Unfortunately, the profit reward at each time step is still unavailable. One remedy is

to assume zero reward at each t < T and distribute all total reward to at t = T. An

alternative approach is to assign the episodic average reward rt = RT/T to each time

step.

For this paper two approaches in setting the reward are considered. In the first

case, we assume that the reward can be calculated as a function of the true price

at each time step. However, the true price is still not observable as a state variable.

In the second case, we only reveal the true price at the end of a training episode at

which point the total return can be calculated.

5.3 The Basic Model

Having developed a framework for the market-maker, the next step is to create a

market environment in which the reinforcement learner can acquire experience. The

goal here is to develop a simple model that adequately simulates the strategy of a

trading crowd given the quotes of a market-maker. Information-based models fo-

cusing on information asymmetry provide the basis for our basic model. In a typical

information-based model, there is a group of informed traders or insiders who have su-

perior information about the true value of the stock and a group of uninformed traders

who possess only public information. The insiders buy whenever the market-maker's

prices are too low and sell whenever they are too high given their private information;

the uninformed simply trade randomly for liquidity needs. A single market-maker is

at the center of trading in the market. It posts the bid and ask prices at which all

trades transact. Due to the informational disadvantage, the market-maker always

loses to the insiders while he breaks even with the uninformed.

5.3.1 Market Structure

To further illustrate this idea of asymmetric information among different traders,

consider the following case. A single security is traded in the market. There are

three types of participants: a monopolistic market-maker, insiders, and uninformed
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traders. The market-maker sets one price, pm, at which the next arriving trader has

the option to either buy or sell one share. In other words, it is assumed that the

bid price equals the ask price. Traders trade only with market orders. All orders are

executed by the market-maker and there are no crossings of orders among traders.

After the execution of an order, the market-maker can adjust its quotes given its

knowledge of past transactions. In particular it focuses on the order imbalance in the

market in determining the new quotes. To further simplify the problem, it is assumed

that the stock position is liquidated into cash immediately after a transaction. Hence

inventory risk is not a concern for the market-maker. This is a continuous market in

which the market-maker executes the orders the moment when they arrive.

For simplicity, events in the market occur at discrete time steps. In particular,

events are modeled as independent Poisson processes. These events include the change

of the security's true price and the arrival of informed and uninformed orders.

There exists a true price p* for the security. The idea is that there is an exogenous

process that completely determines the value of the stock. The true price is to be

distinguished from the market price, which is determined by the interaction between

the market-maker and the traders. The price p* follows a Poisson jump process. In

particular, it makes discrete jumps, upward or downward with a probability Ap at

each time step. The size of the discrete jump is a constant 1. The true price, p*, is

given to the insiders but not known to the public or the market-maker.

The insider and uninformed traders arrive at the market with a probability of

Ai and 2A, respectively.6 Insiders are the only ones who observe the true price of

the security. They can be considered as investors who acquire superior information

through research and analysis. They compare the true price with market-maker's

price and will buy (sell) one share if the true price is lower (higher) than the market-

maker's price, and will submit no orders otherwise. Uninformed traders will place

orders to buy and sell a security randomly. The uninformed merely re-adjust their

portfolios to meet liquidity needs, which is not modeled in the market. Hence they

simply submit buy or sell orders of one share randomly with equal probabilities A,.

6 Buy and sell orders from the uninformed traders arrive at a probability of A, respectively.
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All independent Poisson processes are combined together to form a new Poisson

process. Furthermore, it is assumed that there is one arrival of an event at each time

step. Hence, at any particular time step, the probability of a change in the true price

is 2A,, that of an arrival of an insider is Ai, and that of an arrival of an uninformed

trader is 2A,. Since there is a guaranteed arrival of an event, all probabilities sum up

to one: 2Ap + 2A, + Ai = 1.

This market model resembles the information-based model, such as Glosten &

Milgrom (1985), in which information asymmetry plays a major role in the interac-

tion between the market-maker and the traders. The Glosten and Milgrom model

studies a market-maker that sets bid and ask prices to earn zero expected profit given

available information, while this model examines the quote-adjusting strategies of a

market-maker that maximize sample average profit over multiple episodes, given order

imbalance information. This model also shares similarities with the work of Garman

(1976) and Amihud & Mendelson (1980) where traders submit price-dependent or-

ders and the market-making problem is modeled as discrete Markov processes. But

instead of inventory, here the order imbalance is used to characterize the state.

5.3.2 Strategies and Expected Profit

For this basic model, it is possible to compute the ideal strategies. We do this first,

before presenting the reinforcement learning results for the basic model.

Closed-form characterization of an optimal market-making strategy in such a

stochastic environment can be difficult. However, if one restricts one's attention to

order imbalance in the market, it is obvious that any optimum strategy for a market-

maker must involve the raising (lowering) of price when facing positive (negative)

order imbalance, or excess demand (supply) in the market. Due to the insiders, the

order imbalance on average would be positive if the market-maker's quoted price is

lower than the true price, zero if both are equal, and negative if the quoted price is

higher than the true price.

We now must define order imbalance. We will define it as the total excess demand

since the last change of quote by the market-maker. Suppose there are x buy orders
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Figure 5-1: The Markov chain describing Strategy 1, imbalance threshold Mimb = 1, in

the basic model.

and y sell orders of one share at the current quoted price; the order imbalance is

x - y. One viable strategy is to raise or lower the quoted price by 1 whenever the

order imbalance becomes positive or negative. Let us denote this as Strategy 1. Note

that under Strategy 1, order imbalance can be -1, 0 and 1. To study the performance

of Strategy 1, one can model the problem as a discrete Markov process. 7 First we

denote Ap = pm - p* as the deviation of market-maker's price from the true price,

and 1MB as the order imbalance. A Markov chain describing the problem is shown

in Figure 5-1. Suppose Ap = 0, p* may jump to p* + 1 or p* - 1 with a probability

of A, (due to the true price process); at the same time, p may be adjusted to p + 1

or p - 1 with a probability A, (due to the arrival of uninformed traders and the

market-maker's policy). Whenever p : p* or Ap 74 0, p will move toward p* at a

faster rate than it will move away from p*. In particular, p always moves toward p*

at a rate of A,,, + A2, and moves away from p* at a rate of A,. The restoring force of

the market-maker's price to the true price is introduced by the informed trader, who

observes the true price. In fact, it is the presence of the informed trader that ensures

the existence of the steady-state equilibrium of the Markov chain.

'Lutostanski (1982) studies a similar problem.
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Let qk be the steady-state probability that the Markov chain is in the state where

Ap = k. By symmetry of the problem, we observe that

qk -q--k, for k = 1, 2, ... (5.6)

Focus on all k > 0 and consider the transition between the states Ap = k and

Ap = k + 1. One can relate the steady-state probabilities as

qk+l(Ap+Au+Ai) - qk(A-+Au) (5.7)

qk+1 qk for k = 0, 1,2,...

because a transition from Ap = k to Ap = k + 1 is equally likely as a transition from

Ap = k + 1 to Ap = k at the steady state. By expanding from Equation 5.8 and

considering Equation 5.6, the steady-state probability qk can be written as

qk -q0 K A + A k 7V k#0.

All steady-state probabilities sum up to one

00

qk = 1, (5.8)
k=-oo

00

q0o+ 2 qk = 1,

2Ap + 2Au + Ai

With the steady-state probabilities, one can calculate the expected profit of the strat-

egy. Note that at the state Ap = k, the expected profit is -AiIkI due to the informed
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traders. Hence, the expected profit can be written as

00

EP = -qkAik| (5.9)
k=-oo

00

-2E qkAik|
k=1

= -2qoAiE k( + )
k=1

_-2(Ap + Au)(Ap + Au + Ai)
(2Ap + 2Au + Ai)

The expected profit measures the average profit accrued by the market-maker per

unit time. The expected profit is negative because the market-maker breaks even in

all uninformed trades while it always loses in informed trades.

By simple differentiation of the expected profit, we find that EP goes down with

AP, the rate of price jumps, holding A, and A. constant. The expected profit also

decreases with Ai and Au respectively, holding the other A's constant. However, it is

important to point out that 2Ap + 2Au + A2  1 since there is a guaranteed arrival of

a price jump, an informed or uninformed trade at each time period. Hence changing

the value of one A while holding others constant is impossible. Let us express AP and

Au in terms of Ai: A, = apA and Au = acvAi. Now the expected profit can be written

as:

EP 2(ap + au)(a% + au + 1)
(2ap + 2ac + 1)2

Differentiating the expression gives

DEP OEP -2

Oa, - ac (2ac + 2a + 1) 3

The expected profit increases with the relative arrival rates of price jumps and unin-

formed trades.

To compensate for the losses, the market-maker can charge a fee for each transac-

tion. This would relate the expected profit to the bid-ask spread of the market-maker.

It is important to notice that the strategy of the informed would be different if a fee
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of x unit is charged. In particular, if a fee of x units is charged, the informed will

buy only if the p* - p m > x and sell only if pm - p* > x. If the market-maker charges

the same fee for buy and sell orders, the sum of the fees is the spread. Let us denote

the fee as a half of the spread, SP/2. The market-maker will gain SP/2 on each

uninformed trade, and JAp - SP/2 (given that JAp - SP/2 > 0) on each informed

trade. If the spread is constrained to be less than 2, then the informed traders' strat-

egy does not change, and we can use the same Markov chain as before. Given SP

and invoking symmetry, the expected profit can be written as

00

EP =_ ASP - 2Ai 1 (k - SP/2)qk.
k>SP/2

If the market-maker is restricted to making zero profit, one can solve the previous

Equation for the corresponding spread. Specifically, if (1 - Ai)(1 - 2Ai) < 4AU, the

zero expected profit spread is

SPEP = A< 2. (5.10)
2A, + Ai (I - Ai) -

Although inventory plays no role in the market-making strategy, the symmetry of

the problem implies a zero expected inventory position for the market-maker.

Strategy 1 reacts to the market whenever there is an order imbalance. Obviously

this strategy may be too sensitive to the uninformed trades, which are considered

noise in the market, and therefore would not perform well in high noise markets.

This motivates the study of alternative strategies. Instead of adjusting the price

when IMB = 1 or IMB = -1, the market-maker can wait until the absolute value of

imbalance reaches a threshold Mimb. In particular, the market-maker raises the price

by 1 unit when IMB = Mimb, or lowers the price by 1 unit when IMB = -Mimb and

resets IMB = 0 after that. The threshold equals 1 for Strategy 1. All these strategies

can be studied in the same framework of Markov models. Figure 5-2 depicts the

Markov chain that represents strategies with Mimb = 2. Each state is now specified

by two state variables Ap and IMB. For example, at the state (Ap = 1, IMB = -1),
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Figure 5-2: The Markov chain describing Strategy 2, with the imbalance threshold Mimb

2 in the basic model.

a sell order (a probability of A,,,+ Ai) would move the system to (Ap = 0, IMB = 0); a

buy order (a probability of A,) would move the system to (Ap = 1, IMB = 0); a price

jump (a probability of A,) would move the system to either (Ap = 0, IMB = -1)

or (Ap = 2, IMB = -1).

Intuitively, strategies with higher Mimb would perform better in noisier (larger A))

markets. Let us introduce two additional strategies: strategies with Mimb = 2 and

Mimb = 3 and denote them as Strategies 2 and 3 respectively. The expected profit

provides a criterion to choose among the strategies. Unfortunately analytical charac-

terization of the expected profit for Strategies 2 and 3 is mathematically challenging.

Instead of seeking explicit solutions in these cases, Monte Carlo simulations are used

to compute the expected profits for these cases. To compare among the strategies, we

set ce to a constant and vary a, and obtain the results in Figure 5-3. The expected

profit for Strategy 1 decreases with the noise level whereas the expected profit for

Strategies 2 and 3 increases with the noise level. Among the three strategies, we

observe that Strategy 1 has the highest EP for a, < 0.3, Strategy 2 has the highest

EP for 0.3 < a, < 1.1 and Strategy 3 has the highest EP for a, > 1.1.
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Figure 5-3: Expected profit for Strategies 1, 2, and 3 in the basic model.

5.3.3 Market-making with Reinforcement learning Algorithms

Our goal is to model an optimal market-making strategy in the reinforcement learning

framework presented in Section 5.2. In this particular problem, the main focus is on

whether reinforcement learning algorithms can choose the optimum strategy in terms

of expected profit given the amount of noise in the market, o,. Noise is introduced

to the market by the uninformed traders who arrive at the market with a probability

AU= aUA2 .

For the basic model, we use the Monte Carlo and SARSA algorithms. Both build

a value function Q1T(s, a) and employ an c-greedy policy with respect to this value

function. When the algorithm reaches equilibrium, -F is the E-greedy policy of its

own Q-function. The order imbalance IMB E {-3, -2, ..., 2, 3} is the only state

variable. Since market-maker quotes only one price, the set of actions is represented

by Ap' E {-1, 0, 1}. Although the learning algorithms have the ability to represent

many different policies (essentially any mapping from imbalance to price changes),

in practice they converge to one of the three strategies as described in the previous
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Figure 5-4: Examples of Q-functions for Strategies 1, 2 and
maximums for each row showing the resulting greedy policy.

3. The bold values are the
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section. Figure 5-4 shows three typical Q-functions and their implied policies after

SARSA has found an equilibrium. Take Strategy 2 as an example, it adjusts price

only when IMB reaches 2 or -2:

Yet, this seemingly simple problem has two important complications from a re-

inforcement learning point-of-view. First the environment state is only partially ob-

servable. The agent observes the order imbalance but not the true price or the price

discrepancy Ap. This leads to the violation of the Markov property. The whole

history of observed imbalance now becomes relevant in the agent's decision making.

For instance, it is more likely that the quoted price is too low when observing pos-

itive imbalance in two consecutive time steps than in just one time step. Formally,

Pr[Ap|IMBt, IMB_ 1 , ..., IMBo] : Pr[ApJIMBt]. Nevertheless the order imbal-

ance, a noisy signal of the true price, provides information about the hidden state

variable Ap. Our model simply treats IMB as the state of the environment. How-

ever, convergence of deterministic temporal difference methods are not guaranteed

for non-Markovian problems. Oscillation from one policy to another may occur. De-

terministic policies such as those produced by the Monte Carlo method and SARSA

may still yield reasonable results. Stochastic policies, which will be studied in the

extended model, may offer some improvement in partially observable environments.

Second, since the true price is unobservable, it is infeasible to give a reward to

the market-maker at each time step. As mentioned in Section 5.2.3, two possible

remedies are considered. In the first approach, it is assumed that the true price is

available for the calculation of the reward, but not as a state variable. Recall that the

market-maker's inventory is liquidated at each step. The reward at time t is therefore

the change of profit for the time step

rt = APROt Pt - pt for a buy order (5.11)
" - p* for a sell order

Alternatively, no reward is available during the episode, but only one final reward is

given to the agent at the end of the episode. In this case, we choose to apply the

Monte Carlo method and assign the end-of-episode profit per unit time, PROT/T, to
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Experiment Model Learning State(s) Actions Reward
Number Method St at rt

1 basic SARSA IMBt AP E A APROt

2 basic Monte Carlo IMBt AP E A PROTIT

3 extended actor-critic (IMBt, QLT) ABID G A wproAPROt + wqitQLT
AASKt c A

3a extended SARSA (IMBt, QLTt) ABIDt E A wpro APROt + wqitQLT
AASKt c A

4 extended actor-critic (IMBt, QLTt) ABID G A -IAPROt
AASKt c A

Table 5.1: Details of the experiments for the basic and extended models.

all actions during the episode. Specifically, the reward can be written as

(5.12)
IT

rt = APROt.
T=1

Table 5.1 shows the options used for each of the experiments in this paper. The

first two experiments are conducted using the basic model of this section, whereas the

rest are conducted using the extended model of the next section that incorporates a

bid-ask spread. Each experiment consists of 15 (10 for the extended model) separate

sub-experiments, one for each of 15 (10) different noise levels. Each sub-experiment

was repeated for 1000 different learning sessions. Each learning session ran for 2000

(1000 for the extended model) episodes each of 250 time steps.

5.3.4 Simulation Results

In the experiments, the primary focus is whether the market-making algorithm con-

verges to the optimum strategy that maximizes the expected profit. In addition, the

performance of the agent is studied in terms of profit and inventory at the end of

an episode, PROT and INVT, and average absolute price deviation for the entire
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episode, A = I 1|p - p* 1. The agent's end-of-period profit is expected to im-

prove with each training episode, though remain negative. Its inventory should be

close to zero. The average absolute price deviation measures how closely the agent

estimates the true price. Figure 5-5 shows a typical realization of Experiment 1 in

episodes 25, 100, 200 and 500. One can observe that the market-maker's price tracks

the true price more closely as time progresses. Figures 5-6a and 5-6b show the real-

ized end-of-period profit and inventory of the market-maker and their corresponding

theoretical values. The profit, inventory and price deviation results all indicate that

the algorithm converges at approximately episodes 500.

With the knowledge of the instantaneous reward as a function of the true price,

the SARSA method successfully determines the best strategy under moderate noise

level in the market. Figure 5-7 shows the overall results from Experiment 1. The

algorithm converges to Strategy 1, 2, or 3, depending on the noise level. For each value

of a, the percentages of the sub-experiments converging to strategies 1, 2 and 3 are

calculated. One important observation is that the algorithm does not always converge

to the same strategy, especially under high noise circumstances and around points

of policies transitions. The agent's policy depends on its estimates of the Q-values,

which are the expected returns of an action given a state. Noisier observations result

in estimates with higher variability, which in turn transforms into the variability in the

choice of the optimum policy. Noise naturally arising in fully observable environments

is handled well by SARSA and Monte Carlo algorithms. However, the mismatch

between fully observable modeling assumption and the partially observable world can

cause variability in the estimates which the algorithms do not handle as well. This is

responsible for the problems seen at the transition points.

The results show that the reinforcement learning algorithm is more likely to con-

verge to Strategy 1 for small values of a (a < 0.25) and Strategy 2 for higher values

of a (0.35 < a < 1.00). There are abrupt and significant points of change at a ~_ 0.30

and a ~ 1.00 where the algorithm switches from one strategy to another. These

findings are consistent with the theoretical predictions based on the comparison of

the expected profits for the strategies (Figure 5-3). When the noise level a exceeds
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Figure 5-5: Episodes 25, 100, 200 and 500 in a typical realization of Experiment 1. The
market-maker's price is shown in the solid line while the true price in dotted line. The
maker's price traces the true price more closely over time.
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Figure 5-6a: End-of-episode profit and the corresponding theoretical value of the market-
maker in Experiment 1 for a typical run with A,,,= 0.25Ai. The algorithm converges around
episode 500 when realized profit goes to its theoretical value.
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Figure 5-6b:
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End-of-episode Inventory and the corresponding theoretical value of the
in Experiment 1 for a typical run with A = 0.25 A. The algorithm con-
episode 500 when realized inventory goes to zero.
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Figure 5-6c: Average absolute price deviation of the market-maker's quotation price from
the true price in Experiment 1 for a typical run with A, = 0.25Ai. The algorithm converges
around episode 500 when the price deviation settles to its minimum.

the level of 1.0, the algorithm converges to Strategies 2 and 3 with an approximate

likelihood of 80 and 20 percent respectively. According to the theoretical prediction,

Strategy 3 would dominate the other two strategies when cvs > 1.1. Unfortunately,

the simulation fails to demonstrate this change of strategy. This is partially due to

the inaccuracy in estimating the Q-function with the increasing amount of noise in

the market. Furthermore, the convergence to Strategy 3 is intrinsically more difficult

than that to Strategies 1 and 2. In order to recommend Strategy 3, the algorithm

has to first decide to maintain the price for IMB < 2, effectively rejecting Strategies

1 and 2, and then estimate the relevant Q-values for IMB = 3; more exploration of

the state space is necessary to evaluate Strategy 3.

What if no reward is given to the agent during the course of an episode? Experi-

ment 2 is the same as Experiment 1 except for the differences in the learning method

and the way reward is calculated. Even without the knowledge of the precise reward

at each time step, the Monte Carlo algorithm still manages to shed some light on the

choice of the optimum strategy. Figure 5-8 presents the percentages of the strategies
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Figure 5-7: Percentages of SARSA simulations converges to Strategies 1, 2 and 3 in Ex-

periment 1.

chosen for different noise levels. The algorithm is more likely to choose Strategy 1 for

small values of a, (a, < 0.30), Strategy 2 for moderate values of a, (0.30 < a, < 1),

and Strategy 3 for large values of a, (a, > 1). This finding to some extent agrees

with what the theory predicts.

Information on how much each action contributes to the total return is missing,

unlike in the case of the SARSA method where the value of an action is more im-

mediately realized. This is known as the credit assignment problem, first discussed

by Minsky (1963). Even without the knowledge of the contribution of individual

actions, the Monte Carlo method still works. This is because, on average, "correct

actions" yield more reward and episodes with more "correct actions" consequently

gather higher total return. But the missing reward information on individual action

results in a higher variance in the estimation of values functions.
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Figure 5-8: Percentages of the simulations of the Monte-Carlo method converges to Strate-
gies 1, 2 and 3 in Experiment 2.

5.4 The Extended Model

The previous section demonstrates how reinforcement learning algorithms can be ap-

plied to market-making problems and successfully converge to optimum strategies

under different circumstances. Although the basic model is useful because the exper-

imental and theoretical results can be compared, one major limitation of the basic

model is the equality of the bid and ask prices. Without the bid-ask spread the

market-maker suffers a loss from the market due to the information disadvantage. A

natural extension of the basic model is to let the market-maker quote bid and ask

prices. This section studies a reinforcement learning strategy of the market-maker

that balances the conflicting objectives of maximizing profit and market quality. Com-

puter experiments demonstrate that the market-making agent successfully tracks the

true price using the its bid and ask prices, and controls its average spread in a con-

tinuous scale.

To incorporate bid and ask prices to the model, the set of actions is augmented
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to include the change of bid price and the change ask price:

(ABIDe, AASKt) E A x A,

where A {-1, 0, 1}. Altogether there are nine possible actions. Now, to character-

ize a market scenario, the set of states should also include the spread, a measure of

market quality. Specifically, the state vector becomes

st =- (IMBt , SPt),I

where IMBt E {-1, 0, 1} is the order imbalance and SPt = ASKt - BIDt E

{1, 2, 3, 4} is the spread at time t. The spread also enters the reward function for

the control of market quality maintained by a market-making algorithm. Recall that

a market-maker may have multiple objectives. In the basic model, the market-maker

only aims at maximizing profit. With spread added to the model, the market-maker

would also need to consider the quality of market it provides. To balance between

the two objectives, consider the following reward function that linearly combines the

measures of profit and spread:

rt wro(APROt) + WqUSPt,

where the reward for profit now depends on the side of the order:

P ASKt - p* for a buy order
A2PROt (5.13)

p* - BIDt for a sell order

As for the reinforcement learning technique, an actor-critic method as described

in Section 5.1.2 is used for the extended model. This algorithm allows the agent to

expressly pick stochastic policies, which is important for two reasons. First, stochastic

policies allow real-valued average spreads and profits. Essentially, this gives the agent

more control over the fine-tuning of the trade-off between profit and market quality.

For example, a policy which maintains a spread of 1 and 2 with equal probability of
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1/2 would lead to an average spread of 1.5. Since the spread is intimately related to

the profit (as shown as Section 5.3.2), the agent also indirectly controls the profit.

Second, stochastic policies are particularly efficient in problems with partially observ-

able states. This extended model pushes the partial observability of the environment

much further.

The market-making agent should aim to set its bid and ask prices such that they

enclose the observed true price: BIDt < p* < ASKt. Under this condition, the

market-maker will gain from any trades (those of the uninformed traders) submitted

to the market.

Three computer experiments are conducted for the extended model. In Exper-

iments 3 and 3a, the market-maker simultaneously maximizes profit and market-

quality. The weight wPro is fixed but wqlt is varied to demonstrate how spread can be

fine-tuned. Experiment 3 applies the actor-critic method that yields stochastic poli-

cies; Experiment 3a considers the SARSA method that yields deterministic policies.

It is interesting to compare the performance of the two approaches under partially

observable environments.

Experiment 4 studies how one can directly control the profit by incorporating a

target profit APRO* into the reward function:

r- APROt - APRO* .

The target profit APRO* is the desired average profit per unit time. Experiment 4

studies the particular case when APRO* = 0. The resulting spread is the zero profit

spread for the market-maker.

5.4.1 Simulation Results

As in the basic model, the performance of the market-maker is measured with vari-

ables including profit and average absolute price deviation. The end-of-episode profit
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PROT measures how much the market-maker makes in an episode:

T

PROT - Z APROt,
t=1

where APROt is defined in Equation 5.13. The average absolute price deviation for

an episode is calculated by considering both bid and ask prices:

T

A = E BIDt - p*|I+|ASKt - p* .

The episodic average spread for an episode is calculated as the average of the spread

over time.

SP = SPt.
t=1

Figure 5-9 presents a typical run of Experiment 4. The accuracy in tracking the

true price improves over the episodes. Figures 5-10a to 5-10d show the end-of-episode

profit and inventory, average spread, and average absolute price deviation for a run

of Experiment 3. The figures indicate that the algorithm converges approximately at

episode 500.

To demonstrate the results of an actor-critic method, Figure 5-11 graphically

depicts the details of a typical stochastic policy found in Experiment 3. The figure

shows the probability distribution of actions in all twelve possible situations specified

by the state vector (IMB, SP). For each situation, the probabilities of the nine

possible actions are shown as a grid of squares. The areas of the squares represent

the probabilities of pairs of bid/ask actions under the policy. The bid/ask actions

have been transformed into changes of the mid-quote, (AASK + ABID)/2, and the

changes of the spread, AASK - ABID, for easier interpretation of the figure.

The policy adjusts the prices for two objectives: to react to the order imbalance

and to control the spread. It behaves correctly by reducing, maintaining, and raising

bid/ask prices under negative, zero, and positive imbalance respectively, for cases

of SP = 1, 2,3. For the case when SP = 4, order imbalance is ignored (i.e. the
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Figure 5-9: Episodes 25, 100, 200 and 500 in a typical realization of Experiment 3 with

wqt = 0.1. The bid and ask prices are shown in the shaded area, and the true price in the

single solid line. The algorithm shows improvement in tracing the true price with the bid

and ask prices over time.
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Figure 5-10a:
Wqt = 0.1.

End-of-episode profit, PROT, of a typical epoch of Experiment 3 with
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Figure 5-10b:
Wqt = 0.1.

Episodic average spread, SP, of a typical epoch of Experiment 3 with
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Figure 5-10c: Episodic average absolute price deviation, AP, of a typical epoch of Experi-
ment 3 with wqlt = 0.1.
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Figure 5-10d: End-of-episode inventory of a typical epoch of Experiment 3 with wqt = 0.1.
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adjustment of the mid-quote is not biased towards any direction). On the other hand,

the policy tends to increase the spread for SP = 1, maintain or slightly increase the

spread for SP = 2, and decrease the spread for SP = 3, 4. The mean and median

spread resulting from this policy are both approximately 2.7.

By varying the spread parameter wqt, we can control the spread of the policy

learned by either SARSA or actor-critic. The spread, as shown in Figure 5-12, de-

creases with an increasing value of wqlt in Experiments 3 and 3a. For each Wqt, the

mean, median and deciles of the average episodic spread are shown. The variance of

the average spread is due to the stochastic nature of the algorithm, randomness in the

order flow and true price process, and the imperfect state information. Comparing

the results of Experiments 3 and 3a, we notice that stochastic policies yield a much

lower variance for the resulting spread than deterministic policies do. As we expect,

stochastic policies are better able to control partially observable environments.

Figure 5-13 presents the relationship between spread and profit in Experiment 3.

Profit increases with spread as is expected. The results also indicate that to make

a zero profit, the market-maker must maintain a spread approximately between 2.8

and 2.9.

In Experiment 4, the algorithm successfully enforces a zero profit in the market.

The mean, median and standard error of profit are -0.48, 2.00 and 2.00 respectively,

while the mean and median of spread are 2.83 and 2.84 respectively. This result

agrees with the results from Experiment 3. The empirical distributions of profit and

spread are shown in Figures 5-14a and 5-14b.

5.5 Conclusions

This paper presents an adaptive learning model for market-making in a reinforcement

learning framework. We develop explicit market-making strategies, achieving multiple

objectives under a simulated environment.

In the basic model, where the market-maker quotes a single price, we are able

to determine the optimum strategies analytically and show that the reinforcement

165



1MB=-1

* U

-1 -.5 0 .5 1

- -
* U

-1 -.5 0 .5 1

* U

-1 -.5 0 .5 1

-1 -.5 0 .5

-2

-1

0

1

2

-2

-1

0

1

2

C\,

CO,

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

-1 -.5 0 .5

IMB= 0

* U

- -0 .
-1 -.5 0 .5 1

- U

* U

-1 -.5 0 .5 1

* U

-1 -.5 0 .5 1

U

Figure 5-11: Conditional probability distribution of actions given imbalance and spread in
a typical epoch of Experiment 3 with Wqt = 0.1. Each probability distribution is depicted
as a grid of squares whose areas represent the actual probability of pairs of bid/ask actions.

In each panel, the change of the mid-quote and the change of the spread are shown on x-axis

and y-axis respectively. For example, the panel at the third row and first column shows

the conditional probability Pr(a = a'IIMB = -1, SP = 3). The action a' = (ABID =
-1, AASK = -1), which is equivalent to a change of mid-quote of -1 and a change of

spread of 0, has the highest probability among all actions. In general, areas that appear in
the upper (lower) portion of the panel represent a tendency to reduce (raise) the spread;
areas that appear to the left (right) of the panel represent a tendency to decrease (increase)
the mid-quote price.
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Experiment 3: Stochastic Policies
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Experiment 3a: Deterministic Policies
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Figure 5-12: Spread weight versus episodic average spread in Experiment 3 and 3a. The
deciles, median and mean of average episodic spread, SP, of all the episodes over all epochs,
are shown for different values of wqet. For both experiments, the spread decreases with the
weight parameter, but the variance of the spread is much lower for the actor-critic method
that yields stochastic policies.
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Figure 5-13: Episodic average spread versus end-of-period profit in Experiment 3. The
figure presents the average SP versus the average PROT over all episode of an epoch. The

profit goes up with the spread.
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Figure 5-14a: Empirical distribution of end-of-episode profit, PROT, in Experiment 4.

The mean, median and standard error of the profit is -0.48, 2.00 and 19.36 respectively.
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Figure 5-14b: Empirical distribution of average episodic spread, SP in Experiment 4. The
mean, median and standard error of the spread is 2.83, 2.84 and 0.07 respectively.

algorithms successfully converge to these strategies. In the SARSA experiment, for

example, given the reward at each time step, a significant percentage of the epochs

converges to the optimum strategies under moderate noise environments. It is also im-

portant to point out that the algorithm does not always converge to a single strategy,

primarily due to the partial observability of the problem.

The basic model is then extended to allow the market-maker to quote bid and ask

prices. While the market-maker only controls the direction of the price in the basic

model, it has to consider both the direction of the price and the size of the bid-ask

spread in the extended model. The actor-critic algorithm generates stochastic policies

that correctly adjust bid/ask prices with respect to order imbalance and effectively

control the trade-off between the profit and the spread. Furthermore, the stochastic

policies are shown to out-perform deterministic policies in achieving a lower variance

of the resulting spread.

Reinforcement learning assumes no knowledge of the underlying market environ-

ment. This means that it can be applied to market situations for which no explicit
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model is available. We have shown initial success in bringing learning techniques to

building market-making algorithms in a simple simulated market. We believe that it

is ideal to use the agent-based approach to address some of the challenging problems

in the study of market microstructure. Future extensions of this study may include

the setup of more realistic and complex market environments, the introduction of

additional objectives to the market-making model, and the refinement of the learning

techniques to deal with issues such as continuous state variables.
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Chapter 6

Conclusions

In this thesis, various simulated and experimental markets are constructed to study

different aspects of markets, with emphasis on market structures, trading mechanisms,

and the learning of the agents. Results from experimental and simulated markets are

compared and contrasted. The market structure and economic environments of the

simulations are carefully designed. The market setup of the simulations in Chapter

2, for instance, follows from that of the corresponding experimental markets. Some

simulations are calibrated and parameterized using historical data. Specifically, the

modeled order flow in Chapter 4 is derived from the NYSE TORQ data.

In the computational markets with empirical Bayesian traders, we are able to show

that simple learning mechanisms enable software agents to aggregate and disseminate

information through the trading process. The results are shown to be consistent

with the findings from the corresponding experimental markets. The use of artificial

agents also enables us to perform new experiments that are impossible in human-based

markets-the cases of momentum and nearest-neighbor traders.

The role of markets as an efficient information aggregator is further examined in a

series of market experiments with human subjects. Empirical evidence suggests that

these markets successfully aggregate diverse preferences of the human traders on some

virtual consumer products, and produce consistent forecast for the potential market

share. An equilibrium model and simulations with artificial agents are proposed to

offer some conjectures on the working of these markets.
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Lastly the feasibility of automated market-making is studied through the use of

heuristic rules and an adaptive learning model. The rule-based agent successfully

supplies liquidity to the market and maintains high market quality. Simple rules

regarding inventory control and speculative motive are also shown to be effective.

On the other hand, the adaptive agent is able to learn in real-time and balance dual

objectives under a simulated environment.

Agent-based models are also ideally suited to address some of the most challeng-

ing issues in market microstructure: What are the relative merits of a monopolistic

market-maker versus multiple dealers? What are the likely effects of decimalization

on the bid-ask spreads and volume? Do "circuit breakers" ameliorate or exacerbate

market volatility? How do we define "liquidity"? And what are the social-welfare

implications of the growing number of ECN's and the corresponding fragmentation

that they create? Although each of these issues has been subjected to theoretical and

empirical scrutiny, the complexities of the interactions among market participants

and institutional structure are so great that very few practical implications can be

expected from such studies. Agent-based models provide a natural alternative, and

we plan to explore these issues more fully in future research.

This thesis is a growing research program in which computer-simulated market

interactions of AL-agents are yielding many insights into complex issues such as learn-

ing dynamics, the evolution of market structure, and the nature of human intelligence

in an economic context. We hope to have provided a bridge between ad hoc learning

models and market experiments with human subjects.

Future agent-based simulations need not be restricted to AL-agents. We believe

that there are many interesting experiments to be performed with human and soft-

ware agents combined, and these "mixed" experiments may provide new methods

for exploring the nature of human cognition in economic settings. With the recent

plethora of electronic day-trading companies and corresponding technologies, we may

soon see AL-agents acting as broker/dealers for human clients, hence an agent-based

modeling approach to financial markets may have practical implications as well.
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