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Abstract

We study the reliable communication of delay-sensitive bit streams through noisy channels.
To bring the issues into sharp focus, we will focus on the specific problem of communicating
the values of an unstable real-valued discrete-time Markov random process through a finite-
capacity noisy channel so as to have finite average squared error from end-to-end. On
the source side, we give a coding theorem for such unstable processes that shows that we
can achieve the rate-distortion bound even in the infinite horizon case if we are willing
to tolerate bounded delays in encoding and decoding. On the channel side, we define a
new parametric notion of capacity called anytime capacity that corresponds to a sense
of reliable transmission that is stronger than the traditional Shannon capacity sense but
is less demanding than the sense underlying zero-error capacity. We show that anytime
capacity exists for memoryless channels without feedback and is connected to standard
random coding error exponents. The main result of the thesis is a new source/channel
separation theorem that encompasses unstable processes and establishes that the stronger
notion of anytime capacity is required to be able to deal with delay-sensitive bit streams.
This theorem is then applied in the control systems context to show that anytime capacity
is also required to evaluate channels if we intend to use them as part of a feedback link from
sensing to actuation. Finally, the theorem is used to shed light on the concept of "quality
of service requirements" by examining a toy mathematical example for which we prove the
absolute necessity of differentiated service without appealing to human preferences.

Thesis Supervisor: Sanjoy K. Mitter
Title: Professor
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Chapter 1

Introduction

"A bit is a bit is a bit" seems to have become the motto of this digital age. Though we
often take it for granted, the existence of such a common currency for information is far
from obvious. While in practice it has been justified by the rapid advancement of digital
electronics and the rise of a communications infrastructure to match, its meaningfulness
rests upon the fundamental theorems of information theory - the philosophical foundation
that helps us gain insight into problems of communication.

Broadly speaking, there are two sides to information theory. The better known side deals
with the transmission of bits over channels. The noisy channel coding theorems establish the
fundamental limitations for reliable transmission of bits over noisy channels. But there is
another side to information theory. It relates to the encoding of sources with respect to some
criterion of fidelity. The rate distortion theorems establish fundamental tradeoffs between
fidelity and the length of the encoding in bits. These two sides of information theory
are joined together by the information transmission theorems relating to source/channel
separation. Philosophically speaking, these theorems establish that the notion of "reliable
transmission" used for discussing channels is compatible with the notion of "bits" used for
encoding sources.

Of course, information theory has come a long way since Shannon's seminal papers.[60,
62] On the channel side, there has been much work over the years in extending this theory
to cover broader classes of channels[67], by now covering very useful approximations to
unreliable media that are encountered in practice, including many situations with memory.
Though less dramatic, the source side has also advanced considerably and now covers many
general classes of sources with memory.[37, 7] The limiting factor on source coding has tra-
ditionally been a matter of finding good theoretical approximations to real world situations.
The information transmission theorems have also been extended along the way[6, 66], even
partially into contexts of networked collaborative computing.[58, 52]

However, there are still many issues in modern communication systems for which in-
formation theoretic understanding eludes us. Networking in particular has a whole host
of them, leading Ephremides and Hajek to entitle their recent survey article "Information
Theory and Communication Networks: An Unconsummated Union!" [15]. They comment:

The interaction of source coding with network-induced delay cuts across the classical
network layers and has to be better understood. The interplay between the distortion of
the source output and the delay distortion induced on the queue that this source output
feeds into may hold the secret of a deeper connection between information theory. Again,
feedback and delay considerations are important.
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These issues center around "information streams" where the data source continues to

generate information forever rather than being a single isolated message. In these contexts,

people have noticed that streams emerging from different real-world sources seem to behave

differently. What is appropriate for a classic file transfer may not be suitable for real-time

multimedia signals.

Simultaneously, an important class of mathematical sources has eluded complete un-

derstanding in an information theoretic sense: unstable sources. By these, we are referring

to certain non-stationary processes which often arise in control and other system-theoretic

modeling contexts. Although they have proven themselves to be valuable parts of the sys-

tem modeler's toolbox, the fundamental difficulty with unstable processes is that they tend

to grow with time and they have asymptotically infinite variance. Because of this, their

"streaming" character through time cannot be ignored. We believe that extending informa-

tion theory to address unstable sources might be the conceptual key to understanding the

deeper issue of "streaming" in general.

In control contexts, the objective is to keep the modeled system stable. To do this,

communicating the values of the underlying unstable process from one place to another is

an important issue[69, 70, 54] since the physical location for applying actions is generally

somewhat removed from the location where observations are being made. In practice,

people are already using quantizers and digital implementations to control unstable physical

systems and there has been some isolated theoretical work on trying to extend source

coding theory to unstable processes. Most recently, the work of Sekhar Tatikonda [63]
has taken us significantly forward in understanding the information theoretic limitations of

control systems. Even so, a major gap remains. Till now, there have been no information

transmission theorems to tie the source coding of unstable processes to communication over

noisy channels.

This question has remained open for quite some time. To make matters concrete, we

start with a very simple example of a random walk on the infinite line with known initial

condition. We then show how even with a noiseless channel, a block source code cannot

be used to track this unstable process. All block source codes have asymptotically infinite

distortion, regardless of the rate or how large a block length is chosen. For our particular

example however, there is an obvious causal source encoder with memory which tracks the

source perfectly over a noiseless link. To illustrate the issues that arise with noisy links

without feedback, we show how traditional "linear" approaches to estimation fail because

the effective signal-to-noise ratio goes to zero with time. The point of this section is to show
that even in this simple case, the problem is far from trivial.

After these introductory comments, we introduce the general problem of tracking unsta-

ble scalar Markov processes over noisy channels, ask the relevant questions, and informally

state the major thrusts and results of this thesis.

In the second chapter of this thesis, we review definitions of sources, channels, codes,

etc. After reviewing channel coding in a streaming context, we illustrate how any attempt

to cascade our simple source encoder with a conventional channel encoder is doomed to

failure because the Shannon sense of reliable transmission is not sufficient for our task.

This will show that in the context of unstable processes, a "bit" is not necessarily a "bit"

and we will make this idea much more precise in the next chapter by introducing a delay-

dependent notion of intrinsic meaning for streams of bits that shows how bit-streams can

be fundamentally different from each other even if they have the same bit-rate.

Next, we introduce a new parametric notion of reliable transmission and its associated

channel capacity that we call anytime capacity and suggest how anytime decoders can be

12



used to avoid the problem for our simple random walk. Unlike classical decoders, an anytime
decoder will eventually correctly recover the values for all the bits originally sent. We then

use a random coding argument to show that the anytime capacity of a binary erasure

channel and the power-constrained AWGN channel is non-zero even without any feedback

but implicitly assuming access to common randomness shared by the encoder and decoder.
After that motivation, we quickly establish the connection between anytime capacity and
general block random coding error exponents. We also show the existence of deterministic

codes with the required properties.

Finally, we show that the random walk can be tracked using an anytime channel code

to transport the bit-stream and give the main result of this thesis: the relevant information
transmission theorem for unstable scalar Markov processes. This information transmission
theorem establishes that the unstable processes are fundamentally different from memoryless

or stationary processes. The traditional source-channel separation theorems imply that the

bit-streams used to encode all memoryless or stationary processes are qualitatively alike as
long as we are willing to tolerate delays. All they need is a channel with sufficient capacity.

But even if we are willing to live with delay, unstable processes require more from a channel

than merely Shannon capacity.

This understanding is extended to simple control problems and then used to establish

the anytime capacities of the erasure channel with feedback and the AWGN channel with
feedback. In the erasure case, we are able to get a parametric closed-form expression for the

true anytime capacity. For the AWGN case, we are able to recover a result reminiscent of
Kailath and Schalkwijk[59] which gives a doubly-exponential in delay convergence of errors
to zero. The difference is that our scheme requires no blocking of the bits and works for all

delays at once! The same technique lets us get a lower bound on the zero-error capacity of
power-constrained additive noise channels where the channel noise has bounded support.

In a sense, the parameter in our definition of anytime capacity can be interpreted as an

additional Quality of Service requirement. We illustrate that in the penultimate chapter by
giving a simple example where the need for differentiated service can be established mathe-

matically. To our knowledge, this is the first time where a simple class of random processes

have been exhibited which intrinsically require different Qualities of Service apart from just
bit-rate. This requirement is not posited a-priori or by appeal to human preferences, but

emerges from the nature of the source and distortion measure.

1.1 "Streaming" and Why We Study Unstable Processes

At one level, unstable processes are interesting in their own right since they emerge nat-
urally in the course of system modeling. Addressing them from an information theoretic

perspective is useful to other fields like control which might have communication problems

embedded in their contexts. But at a deeper level, we are interested in them because they
represent a conceptually simple and yet extreme case. For unstable processes, the issues

of streaming, delays, and "real-time" are absolutely essential to the problem of end-to-end
communication. For us, the non-stationarity of unstable processes is a way of forcing at-

tention on their streaming aspects since we show that the standard tricks of dividing the

source stream into a sequence of independent message blocks cannot work.

In the literature, there are other information theoretic approaches that shed some light
on the general issue of "streaming." Here we will briefly mention two of them: Tse's
approach of adjusting the rate of source coding in response to buffer states and Shulman's
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approach to interactive computation over noisy channels.

1.1.1 Adjustable Length Source Codes: Tse

Tse's dissertation [65] shows how adjusting the coding of streaming sources in response to

the state of the communication system that they are feeding into can give much improved

performance. There are fewer buffer overflows while we still maintain good end-to-end

distortion. Since the delays in the model are due to buffering, this strategy also reduces the
end-to-end delays, even when the buffer sizes are infinite.

From our perspective, Tse's approach represents an important step towards understand-

ing "streaming" when the acceptable end-to-end delay is thought of as being smaller than

the end-to-end delay that would be introduced by a fixed-rate source coding system con-

nected to the same communication system. If we restrict ourselves to the narrow classical

information-theoretic perspective that we do not care about end-to-end delay as long as it

is finite, Tse's approach does not buy us anything in terms of either average rate or distor-

tion. But by introducing a loose coupling between the source and channel coding, it does

give us a much better tradeoff between delay and performance than the classical completely

separated approach.

1.1.2 Interactive Computation: Schulman

Schulman's work [58] addresses the problem of how to interactively compute using dis-

tributed processors if the communication links connecting the processors are noisy channels.

The issue of "streaming" is central here since the messages to be sent from one processor

to the other depend on the messages already received from the other processor. Grouping

the messages into blocks for traditional block channel-encoding is out of the question since

there is no way to know what messages we will want to send in the future without already

sending and receiving messages now. He shows that for any sufficiently large problem size,

there exist good coding strategies that allow the computation to proceed with an arbitrarily

low probability of error.

As such, the essential "streaming" aspect is understood to emerge from the interaction

between the two streams of messages. The results are conceived in terms of a single finite-

sized problem instance rather than infinite duration streams. This line of work has effectively

given new information transmission theorems that cover the case of interactive computation

and have been extended by others [52]. In the spirit of computer science, one of the goals

has been to make sure that the complexity does not grow by more than a polynomial factor.

In contrast, our work on unstable processes in this thesis covers a problem with a single

information stream in a standard one-way communication problem. However, it still shares

a lot with Schulman's approach in spirit and technique.

1.2 The Simplest Case: Tracking a Simple Random Walk

Random walks are among the simplest examples of unstable processes. To make matters

concrete, let us consider the following extremely simple discrete time real valued source Xt

which is generated as follows: Xo= 0 and Xt+1 = Xt+Wt where the {Wt} are i.i.d. fair coin

tosses with P(Wt = -1) = P(W = 1) = -. It should be clear that {X} is not stationary

and can wander over all the integers (a countable set) in its random walk. In fact, it turns

out that while E[Xt] = 0 for all t, E[X?] = t and thus tends to infinity by construction.
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To talk about tracking this random walk, we need to have a per-letter distortion measure.

We will use the usual squared-error distortion p(X, X) =(X -X)2- The following definition

specifies what we mean by "tracking."

Definition 1.2.1 A random process {t} is said to p-track another process {XJ if 3D <

oo such that supto E[p(Xt, Xt)] = D < oo.

We are interested in the problem of tracking this random walk through a "finite capacity"

link. We will first consider noiseless finite rate binary channels and then consider a noisy

real valued channel to show some of the different issues that can arise.

1.2.1 Block-codes are not enough

A great deal of attention in coding and information theory has been dedicated to block-

codes and analyzing their properties.[23] In order to show their shortcomings, we need to
know what we mean by a "block-code" for sources.

Definition 1.2.2 A block source-code with block-length n and rate R (where both n and

nR are assumed to be non-negative finite integers) is a pair of functions (F, G) such that

Fn maps a vector (XinXin+1 ,..., Xin+n-) (representing n consecutive symbols from the

source sequence) into a binary string s of length nR (thought of as a non-negative integer

less than 2 nR) and G, maps binary strings s of length nR into a reconstruction vector

(X in, in+1, -.- - ,7Xin+n- 1). We call F, the block source-encoder and Gn the block source-

decoder.

This is slightly different from some standard definitions of a block source-code which

do not explicitly include the decoder and instead use a single function going directly from

a block of source samples to a block of reconstructions. We use our definition because it

makes it easier to see what it means to interconnect a source-code with a channel-code since

both explicitly use the common currency of binary bits.

Now, we are ready to state and prove the initial negative result.

Proposition 1.2.1 No block source-code can track the random walk {Xt}, regardless of the

block-length n or the rate R.

Proof: Let (FR, G) be a block-code of rate R and block-length n. Let the maximum size

element of the reconstruction vector given input s be denoted by M(s) =max1 <n ||G'(s)j 11
Since by definition the domain of GfR is the finite set {O, 1, ... , 2nR - 1} we know that there

exists a finite integer M such that M(s) < M. This means that for all t, liXti < M.
But the random walk Xt will eventually spend arbitrarily large amounts of time outside

any bound. Since Xt is the sum of t i.i.d. random variables with zero mean and unit

variance, by a simple application of the central limit theorem we know VT > 0 there exists

NT > 0 such that Vt > NT, we have P(lXtI > vQ > T)> k. So, lim sup. E[p(Xt,X±t)] >
-(T M)2 . But T was arbitrary and so we have limsup,. E[p(Xt, Xt)] = oc for all

block-codes, thereby proving the theorem. 1
Notice that the proof only relied upon the fact that the source decoder was a deterministic

function on a finite set and hence had a finite range. Thus, we can immediately extend this

result to the case of block joint-source-channel-codes in those cases where the channel has

a finite output alphabet giving us the following Corollary, which reduces to the previous

theorem in the case of a noiseless channel.
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Corollary 1.2.1 If the communication channel has a finite output alphabet, no block joint-

source-channel-code can track the random walk {X}, regardless of the block-length n.

This rejection of block codes when dealing with unstable processes tells us that the ar-

guments of Krich [40, 41] on sources with delay-dependent fidelity criteria are not applicable

directly since he restricts his attention to block-codes throughout. We discuss this more in

Section 2.2.4.

1.2.2 A Source Code with Memory

The negative results for block codes are interesting because we intuitively know that this

source should be able to be perfectly tracked with a rate 1 causal encoder that simply

encodes Wt = Xt+1 - Xt with a single bit corresponding to its sign. Mathematically, we

have:

St = Ft(Xf) =(X - X + 1) (1.1)
2

As we can see, the encoder only needs access to the current and previous value of the source,

not the entire history.

All the decoder has to do is to add up the Wt values up till now. So:

t

kt = G(S) = Z (2Si - 1) (1.2)
jz=1

which can also be done in a a simple recursive manner using an internal integer variable to

track X_ 1 . In this example, the reconstruction clearly tracks the original perfectly, since

Xt = Gt(FIt(Xf)) = E' (2 (Xi t±1) - 1) = z 1 (Xi - X_) = Xt. Of course, this is

all assuming that the input to the decoder is exactly the output of the encoder.

1.2.3 Tracking across Noisy Channels

The simple random walk example is clearly a well behaved linear system on the real line.

Our experience with filtering for linear systems[36] might suggest that it is easy to track

given linear observations with additive noise. If we want to use a linear encoder with

Gaussian noise, our observation equation will be of the form: Y = ctXt + V where ctXt is

our linear encoding of the signal and {V} is a white Gaussian process with zero mean and

unit variance.

But things are not so simple since real communication channels have constraints on their

inputs. The additive white Gaussian noise channel (defined formally in section A.4.1) is

traditionally considered with a power constraint P on the average power in the channel input

signal. It turns out that if our encoder has access to noiseless feedback then the problem

is not that difficult. Our analysis in [55] can be used to show that a simple simulated

control system can be used to track the random walk process while still meeting the power

constraint. In that case, we do not transmit ctXt but rather ciut where {ut} is the simulated

control signal used to keep the simulated plant stable. This particular scheme is discussed

further in Section 7.2.2.

The case without access to feedback is far more tricky. Without feedback, there is

no straightforward way to have a simulated control system and so we have to transmit

functions of Xt itself. Since E[X2 ] = t, it is clear that no constant c will meet the finite

power constraint. We have to use a time-varying encoder with ct <; in order to meet it.-VIt

16



We can then generate estimates using the corresponding time-varying Kalman filter. [36]
Since we know that the estimates can only get better if cj is larger, it suffices to look at the
case where ct is equal to its upper bound. If we explicitly write out the recursive expression
for the Kalman filter error covariance, we get:

2

t+ = at+l)+

1
P 1

t+1 ±Crt+1

with an initial condition of a- 0 since we know exactly where the random walk starts.
If we evaluate this recursion numerically on a computer, we see that the variance grows as
O(Vt) with time t.

We can also see this more rigorously. As a function of t, the estimation variance K
can either get arbitrarily large or stay bounded. To show that this variance has no finite

upper bound, we first show that a- increases with time as long as at < -1 + : + by
noticing that:

2

1< Ut+1Orti

1
1 < cAP+ c-2

t+1 o- 2+1

oP 1
t+1 c7±1

(o- 2 P~oP-t-1 < 0

2 1 t+1 1
2 P 4

are equivalent statements if we know that a-7 must be positive. If we assume that c-2 stays
bounded, we know that for large t it must be strictly increasing up to a some threshold M.

To now see that it must exceed all thresholds M, we just consider a time t > 2(M ±
)P- 1 and consider what happens if it is within 'of the threshold M at time t. Then:

2 at+1
a t+i = __ o + 1

1 (c4f+1)P
> (M -- ±+1)(1_ +

4 (oQ±1)P ± 1t+1

3 _

> (M±+-)(1-
4 (o2+1)+

t+1
3(M + 14)P

> (M+ 2-)(1- (M 4)
4 t +i+

3 (M + 1)2 P
=M +-- 4

4 t+ 1
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3>(M + 1)2 p
> M+---4

4 (2(M + 3) 2p _ 1) + 1

1
=M + -

4

showing that it crosses the threshold M. But M was arbitrary and so we can take an
increasing sequence starting at 0 and going up by k each to show that all thresholds are

eventually crossed regardless of the power constraint P. This proves the following theorem:

Theorem 1.2.1 For all power constraints P > 0, no time-varying linear memoryless en-

coder can be used to track our simple random walk across an additive white Gaussian noise
channel with power constraint P without access to feedback.

Other methods based on encoding the innovation signal directly suffer the problem
of having to keep the encoder and decoder perfectly "in sync." We will show this more

precisely in Section 2.4.2. This difficulty has long been recognized. In his definitive book

on rate-distortion theory, Toby Berger writes:([6] pg 247)

It is worth stressing that we have proved only a source coding theorem for the Wiener
process, not an information transmission theorem. If uncorrected channel errors were
to occur, even in extremely rare instances, the user would eventually lose track of the
Wiener process completely. It appears (although it has never been proved [emphasis
mine]) that, even if a noisy [emphasis in original] feedback link were provided, it still
would not be possible to achieve a finite MSE per letter as t -+ oo.

One of the goals of this thesis is to disprove this longstanding conjecture.

1.3 General Problem Statement

The above discussion of the simple random walk was just intended to motivate the general

issues and to show that they are far from trivial. In general, we are interested in the problem

of communicating a Markov process across a noisy channel:

Given a scalar discrete-time Markov source {X 1} with parameter a and driven by noise

{Wt}:
Xt+1 = AXt + Wt

and a discrete-time (0, T, A, B) noisy channel with 0 delay and sampling time p, that maps
inputs from A randomly into outputs in B, is it possible to design encoders and decoders

within a specified finite end-to-end delay constraint so that the output of the decoder {X1}
achieves a desired mean-squared performance supt>0 E[(XZ1 - X)2] = D?

As illustrated in Figure 1-1, this problem has a few important features. The first is that
the source sequence {Xt} 1 is not realized all at once, but is observed in "real time" as
time progresses. In the same way, the channel is also only available to be used once every T
units of time. As a result, it only makes sense that the reconstructed estimates {Xt}I 1 are
also generated one at a time in a somewhat "real time" fashion. By finite end-to-end delay

constraint d, we mean that the estimate kt for Xt must be ready at the decoder within d
time units - that is, it must be ready before time t + d. In other words, all the blocks

in the above diagram can and should be viewed as being causal in the appropriate sense.
Their outputs are not allowed to depend on random variables that have not occurred yet.

The following questions arise naturally and are answered in this Thesis:
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" For a finite end-to-end delay constraint, can we ever get D finite if the process is

unstable (ie A > 1)?

" Is it possible to accomplish this task using encoders which have access to noiseless

feedback of the channel outputs?

" Is it possible to accomplish this task using encoders which do not have access to any

feedback?

" Is there a necessary and sufficient condition on the channel that must hold for finite

D to exist even if we impose no restrictions on the joint source/channel encoding and

decoding systems?

" Can we express this condition in terms of reliably communicating "bits" in some

sense?

" Is it possible to somehow factor solutions through "bits" - giving the joint encoder

and decoder systems in terms of separate source and channel codes?

" What do the encoder and decoder need? Do they have to be random and have access

to common randomness?

" Can we bound the performance and the optimal D if we allow ourselves to consider

the limit of increasing end-to-end delays as we do in existing rate-distortion theory?

" Is this bound achievable over a wide class of suitable noisy channels?

" Can we extend these results to performance measures other than the expected second

moment of the error?

" What are the implications for Control, "Quality of Service," and more general prob-

lems?

1.4 Main Results

After introductory and review material, the thesis has four main theoretical thrusts. Here

we informally state the main result of each. While the source coding and channel coding

discussions are intelligible even in isolation, the main contribution of the thesis is to give a
unified picture that lets us look at the whole problem and to see how the pieces fit together
in the spirit of Shannon's original program for understanding communication. The idea is

to look at extremely simple situations and use them to develop insights that shed light on

certain core problems of communication.

In the final chapters of this thesis, we use the seemingly simple unstable scalar Markov

sources and the results described below to illuminate issues of "real-time," "streaming

sources," "control over communication links," and "differentiated quality of service." With-

out looking at the whole picture, it is impossible to understand the real issues and inter-

connections underlying such problems.

20



1.4.1 Source Coding

Lossy source coding is about translating the original source process into an approximate

version of that process by first going through an intermediate process expressed in the

language of bits. The intermediate process consists of a stream of bits generated based on

the realization of the original source. It is subsequently mapped into the reconstruction
alphabet to get the approximate version. We can naturally speak of the bit-rate for the
intermediate stream, while distortion is measured between the original process and the

final approximating version. In Chapter 4, a source coding theorem is proved for unstable

Markov processes. The theorem works for the infinite-horizon average distortion case and
thereby resolves a problem left open since [29].

Result 1.4.1 For the unstable scalar Markov source, there exist variable rate source codes,
all with finite end-to-end delay, which can approach the fundamental rate-distortion bounds

in both rate and distortion.

The important feature of this result is that we are dealing with a streaming context.

Unlike the standard setup [30], we cannot assume that the source realization is known in

advance at time 0. It is only observed as time goes on. Furthermore our approach works

even though the source is severely non-stationary and exhibits strong dependencies that

never fade away between any two blocks of time.

1.4.2 Delay Sensitivity

In Chapter 3, a formal definition is given for the delay and error dependent "complexity"

of source codes and thus also of the bit-streams that emerge from them. This definition

focuses on the sensitivity of a code to the propagation of errors. It results in a sense of

intrinsic complexity for a pair consisting of a random source together with the distortion

measure. In some ways, this parallels the way that the theory of computational complexity

is able to use a complexity measure for algorithms to determine the intrinsic complexity

for problems. This error-propagation complexity is explored for the Markov sources and is

used to establish:

Result 1.4.2 For the unstable scalar Markov source, all source codes which track the pro-

cess in the mean-squared sense are sensitive to bit-errors. If any of the bits for the last d

time units have been altered, the resulting additional distortion can grow exponentially as

A2d.

This sort of fundamental sensitivity to errors tells us that standard approaches to cas-

cading source and channel codes can never be successful because even a single uncorrected

error, no matter how rare, can eventually cause unboundedly large distortions. We call

bitstreams "weak" if they result from codes that have this cascading-error property. In
contrast, bitstreams coming from traditional codes where errors cannot cascade catastroph-

ically are called "strong."

1.4.3 Anytime Channel Coding

Channel coding is about reliable transporting a stream of bits across a noisy channel.

Recognizing that traditional conceptions of reliable transmission are inadequate for "weak"

bitstreams, a definition is given for a new stronger sense of reliable transmission and its
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associated capacity measure that we call anytime capacity. Rather than thinking of "reliable
transmission" as being able to achieve a specified low probability of error, we think of

the probability of error as being determined only when the user of the information has

committed to a particular delay or wait. The notion of reliability can be parametrized by

a function which tends to zero with increasing delay. Even if the probability never actually
reaches 0 for a finite wait, if it goes down fast enough we can show that eventually every

bit will be decoded correctly. This sense is in some ways the natural generalization of the

sense in which TCP/IP achieves reliable transport of bit streams across a noisy Internet.

Result 1.4.3 For discrete memoryless channels without feedback, encoders exist for which

the decoder has the freedom to choose the delay of decoding and so that the probability of

error for any bit position tends to zero exponentially with increasing delay.

We study this anytime capacity for particular channels using random coding arguments

and show it to be non-zero. In the general case, we relate it to standard block random

coding error exponents and show how this sense of reliable transmission can be interpreted

as a "universal" error exponent, where the universality of the encoder is over the delay that

is acceptable to the decoder. This is related to work showing that the random coding error

exponents govern the rate at which the probability of error for finite state convolutional

codes goes down if we force decoding to occur with a fixed delay rather than letting Viterbi

decoding take its course.[19]

1.4.4 Separation Theorem

In chapter 6, a new information transmission theorem is developed that uses the notions

developed so far and ties them together to give the relevant source/channel separation for

unstable Markov processes.

Result 1.4.4 For the unstable scalar Markov source with parameter A > I to be tracked

in the finite mean-squared error sense across a noisy channel by some encoding/decoding

system, it is necessary for the channel to be able to carry at least log2 A bits per unit time

with a probability of error that tends to zero exponentially as 2-(2 10g2 A)d with delay d > 0

chosen at the decoder. Furthermore, this condition is also sufficient and tracking can be

accomplished with a system that is divided into a source code (which outputs bits) and a

channel code which focuses on getting the bits across the channel.

This establishes that the sense of reliable transmission that we have defined is funda-

mental for this problem. The key to this result is the proof of the converse theorem. While

for traditional Shannon capacity and rate-distortion theory the converse is a simple con-

sequence of the properties of mutual information, in our case the converse is much more

difficult to prove since we do not have a mutual-information characterization of anytime ca-

pacity. We give a constructive proof of the converse that is able to relate the two operational

notions to each other without having to go through another characterization.

By rigorously giving us something other than just the bit-rate to match between source

code and channel code, this theorem is a significant step. It brings us several steps closer

towards a rigorous understanding of prior ideas, motivated by intuition, of loosely coupled

joint source/channel coding like those in [32].
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Chapter 2

Background

2.1 Sources, Channels, and Codes

Here we quickly review some basic concepts (covered more precisely in Appendix A) for those
unfamiliar with the basic information theoretic formulation of communication problems.

2.1.1 Sources

For our purposes, a source is a random process {Xt} evolving in discrete time (t E {O, 1, 2,... -)

over some alphabet X. Such sources are used as approximations to the real world data gen-
erating processes that we are interested in. Our main focus is on scalar valued linear Markov

processes.

Definition 2.1.1 Given a real number A, and real valued i.i.d. random variables {WJ the
scalar discrete-time Markov source with parameter A and noise W is defined by:

X 0 = 0

Xt = AXt-1 + W

This can be expressed without recursion as:

Xt= AtiWt

i=1l

There are four distinct regions of the parameter A. If A = 0, then the source is white.
If 0 < JAl < 1, then the source is stable since even as t - o, the random variables Xt stay
well behaved. In particular, if Wt has zero-mean and variance o2 , then Xt asymptotically
has zero-mean and variance 22 K <0.

The other two cases are not so well behaved. If IA! = 1, then {X} is a random walk and
is unstable since the uncertainty grows unboundedly in time. It should be clear how our

simple random walk falls into this category. Finally if IA! > 1, the process is exponentially

unstable.

2.1.2 Source Codes

The idea of a source code is to translate a source process into a process taking values in the
alphabet of binary strings. It is expressed in two parts: the encoder and the decoder. The
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encoder maps from the source alphabet X to the space of binary strings, while the decoder

maps from binary strings back into a reconstruction alphabet X.

The rate of a source code is the average length of the binary strings generated by the

encoder. Because in general it is impossible to have perfect translation at a finite rate, the

performance of a source code is evaluated relative to some per-letter distortion function p

by looking at

sup E[p(Xt, kt)]
t>

or

lim E[kp(Xfxfti
N ->oo N

This is referred to as the distortion of the code. The distortion measure p is usually chosen

for tractability and as a way to approximate the sense of fidelity we are interested in for the

real world situation. Popular distortion measures that we will be interested in are squared

error p(X, k) = |X - ki 2 and general moments p(X, =) =|X - kj' where rj> 0.

2.1.3 Noisy Channels

Noisy channels are used to approximate real world communication media that are unreliable

or introduce noise. We focus on memoryless channels in this thesis.

Definition 2.1.2 A memoryless noisy channel is a stochastic kernel P(alb) from an input

a e A to an output b G B

Erasure Channel

A popular discrete-time channel is the erasure channel. It is often used to model channels

in which the receiver can detect when an error has occurred.

Definition 2.1.3 The binary erasure channel with erasure probability e is a memoryless

noisy channel with A = {0, 1}, B ={0, 1, 0} and P(a = b) = (1 - e) and P(b = 0) = e.

AWGN Channel

Another important channel is the Additive White Gaussian Noise (AWGN) channel.

Definition 2.1.4 A scalar AWGN channel with variance Kv and power constraint P is

a memoryless noisy channel with A = B = R and P(B = a + Via) distributed like a zero

mean Gaussian random variable V with variance Kv. There is an additional constraint on

the input: E[A 2 ] <p

The power constraint is needed to prevent degenerate solutions. Without it, solutions

might end up using arbitrarily large signals that would completely dominate the effect of
the additive noise.

2.1.4 Channel Codes

A channel code is an encoder/decoder pair (C,'D) that can be wrapped around a noisy

channel. The encoder maps strings of bits {St} into channel inputs from the set A, while

the decoder maps channel outputs from the set B back into strings of bits {St}. The
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correspondence between input bitstream {St} and the output bitstream {St} is specified by
the reconstruction profile r' .

The rate of the channel code is the number of bits the encoder takes in per unit time,
which is the same as the number of bits the decoder outputs per unit time. While the goal is
to reproduce the input bits perfectly at the output (generally with some delay determined
by r'), this is not always possible. To measure the effectiveness, we need to define the
probability of error.

Definition 2.1.5 The probability of error Perror(E, D, rr) is the supremum over i > 0 of
the probability of error in the i-th bit:

Perror(S, D,rr,i) = P(S $ Si)

Block Codes

An important class of channel codes that are traditionally studied are block codes.

Definition 2.1.6 For non-negative integers Rin and Ros , a (Rin, R 0 st) block channel en-
coder is a function E from {0, 1}R into A ot. Similarly, a ( R0ut) block channel
decoder is a function D from BRo- Rinto {0, iIR. The block code has rate RiP bits perRout
channel use. The range of the encoder is called the set of codewords for the code.

The maximum end-to-end delay of a block code is approximately the sum of the amount

of time it takes to get Rin bits plus the amount of time it takes to send out R0 st channel

symbols. This is because the entire block of input bits needs to be ready before we can

compute the codeword to be transmitted. Once the codeword has been computed, we must
wait another block of time for it to be transmitted to the receiver who can then decode it

instantly (ignoring any computational limitations).

2.2 Reliable Communication of Bits

One of the basic motivations behind information theory is to communicate bits reliably
through noisy or constrained channels.

2.2.1 "Streaming" and Delay

Before we review existing senses of reliable communication, we need to discuss the role of

delay to interpret situations in a "streaming" perspective. In our discrete-time streaming
view, time starts at 0 and then goes on forever. Of course, time does not really go on

forever for any foreseeable system that we encounter. Even our solar system is expected to
come to an end at some point! Still, the infinite horizon view is an important modeling tool
that enables us to deal with situations where the time horizon for the ongoing process is
far longer than any particular duration or delay that we are interested in. Yet introducing
a potential infinity within our model is not without some peril. This infinite domain for
time can allow for paradoxical interpretations if we do not require that our codes have some

sense of bounded end-to-end delay.

25



The Hotel Infinity

In [26], Gardner introduces a hypothetical "Hotel Infinity" with rooms labeled by the posi-
tive integers. He illustrates the seemingly paradoxical properties of infinite sets by showing
how when the hotel has no vacancies, it is still possible to make room for any finite number

of incoming guests by just shifting people to larger room numbers. The more fascinating

fact is that it is possible to accommodate even an infinite number of guests by asking exist-

ing guests to move to a room with double the room number and then accommodating the

infinite number of new guests in the odd numbered rooms that become vacant.

The Code Infinity

We can use a similar argument1 to construct a code for the binary erasure channel which

"reliably" transmits at any rate regardless of the probability of erasure for the channel and

without any feedback. Suppose bits are coming in at a rate R per unit time. Consider an

infinite sequence of buffers {BJ} all initially empty. At time 1:

1. Place the R bits that just arrived into every buffer

2. Let j = 1+ 18] and then k = ) - - ± 11 2 2

3. Transmit the oldest bit still waiting in buffer Bk and remove that bit from Bk. If no

bit is waiting, just sent a 0 and ignore it on the receiver.

The receiver knows exactly which bits are still awaiting transmission in each buffer and

so can interpret every symbol that it receives. With this strategy, every buffer is visited an

infinite number of times since this is just the explicit formula for visiting the buffers in the
order [1, 2, 1, 3, 2, 1, 4, 3, 2,1, 5, 4,. .. ] forever. Each positive integer appears in an infinite

number of spots in the list.

Since every buffer is visited an infinite number of times, every incoming bit is sent

exactly once across the channel for each buffer. This means that every bit is sent an infinite

number of times since there are an infinite number of buffers. Thus the receiver receives

an infinite number of samples of every source bit and so with probability 1 can eventually

decode every bit correctly! 3

Is it reasonable to interpret this code as achieving reliable transmission no matter how

high the erasure probability? That seems like a silly interpretation since at any finite time,

only a small fraction of the bits have even had a single opportunity for transmission. In

fact, the minimum delay in this scheme increases with the bit position being considered.
We consider the delay of a code to be the supremum over the end-to-end delays for each

bit position. It should be clear that to avoid situations like "The Code Infinity" we must

require that the delay be bounded in some sense for every bit position in the infinite stream.

While we will wish to look at limits as this end-to-end delay goes to infinity, actually infinite
delay can make discussions of rate meaningless.

'Actually, our argument corresponds to a situation where we accomodate an infinite number of infinite

families at the Hotel Infinity giving every family member her own room.
2 This construction is related to Bertrand Russel's Paradox of Tristram Shandy as discussed in [10].

Tristram Shandy was a hypothetical immortal historian who would take one year to transcribe the events

of a single day. Although he would fall further and further behind as time went on, paradoxically he would
still eventually write a history for all time!

3 Notice that this argument is not tied to the erasure channel and could work for any channel which is
suitably ergodic.
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2.2.2 Classical Notions Of Capacity

Noisy channels are traditionally characterized by different measures of capacity: "upto what
rate can we transmit data reliably through the channel." The difference between notions of

capacity is in terms of what is meant by "reliably." There are two main classical notions of

this. Although these are traditionally discussed in terms of block-codes, we will implicitly
use Lemma A.5.1 and give the definitions in our terms.

Definition 2.2.1 Let R be a reliable transmission property which is a Boolean function
and either true or false for a given system consisting of a channel encoder E, channel decoder

D (along with a reconstruction profile rn), and a noisy channel. If it is true, we say that

(E,D) achieve R for that channel.

The R-capacity C 2 of a channel is the supremal rate R at which there exist (,D)

achieving R for that channel.

CR = sup{RIE(E, D, r') Rate(S, D) = R, R(E, D, r) = 1}

This is an operational definition and is given in terms of the existence of encoders and

decoders satisfying the desired property. It tells us what capacity means in terms of getting

bits across a channel, not how to calculate its value for any specific channel.

Zero Error Capacity

The first notion of reliable transmission is a very strong one. In words, it says that after some

delay T, we know the exact value for the transmitted bit without error. Mathematically:

o (ED,rr) = if]3T, Delay(R, rf ) T, Perror (E, D, r) = 0

{ O0otherwise

The resulting Ro-capacity corresponds to:

Definition 2.2.2 [61J The Shannon zero-error capacity Co of a channel is the least upper

bound of the rates at which the channel can be used to transmit data with a zero probability

of error.

Co = sup{R |3(T, S, D, rr) Perror(E, D, rr) 0,Rate(SjD) = R, Delay(R,r') < T}

Calculating zero-error capacity for even simple channels is in general an open problem

usually studied in combinatorics and graph theory. [38]

Shannon Capacity

A weaker notion of reliable transmission allows for some probability of error:

f 1 if]3T, Delay(R,r ) T, Perror(, D,rr) <E

Re (6, Drr) 0 otherwise

For every E > 0, we have a new notion of Rf-capacity C. If we want the probability of
error to be arbitrarily small, it is natural to look at:

C = lim C,
6--40
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Shannon's genius was to realize that this need not be the same as the zero error capacity.
In fact, as the examples in Section 2.2.3 show, it can be much larger.

Definition 2.2.3 [23] The Shannon classical capacity C of a channel is the least upper
bound of the rates at which the channel can be used to transmit data with an arbitrarily

small probability of error.

C sup{RIJV > 0 ](T,, D, rr) Perror(E, D,r' ) <cRate(E,T) R,Delay(R,r ) T}

The definition we have given is an operational one. In this definition, just like the one

for zero-error capacity, the channel encoder/decoder pair E, D is used with a reconstruction

profile rr that has end-to-end delay less than or equal to T. The delay is shown as a

function of only the reconstruction profile and the input rate since the channel's sampling

time and offsets are considered to be given. The purpose of the delay is to have time to

exploit laws-of-large-numbers. By inspection, we know Co < C.

One of the wonderful things about the Shannon classical capacity C is that it is possible

to calculate it as the solution to a particular optimization problem depending only on the

properties of the channel. For a memoryless channel, this is the famous maximum mutual

information characterization. [23]

C = sup I(A; B) (2.1)
P(A)

where the random variables A c A and B E B are linked by the transition probability

defining the channel. There has been a lot of work in getting similar characterizations to
help us calculate capacity in general cases. [67]

The fact that Shannon classical capacity is computable by (2.1) and other explicit for-

mulae also lets us prove many results about it. For example, it is well-known that the

Shannon classical capacity of a memoryless channel is the same regardless of whether the

codes are allowed access to feedback.[23]

2.2.3 Example Capacities

Equation (2.1) lets us calculate the capacities for various channels in closed form.

Binary Erasure

For the binary erasure channel with inter-sample time r, it can be shown that the Shannon

classical capacity of this channel is 1- bits per unit time (or 1 - e bits per channel use)
regardless of whether the encoder has feedback or not.[23] Furthermore, because a long
string of erasures is always possible, the Shannon zero-error capacity of this channel is 0 as
long as e > 0.

If noiseless feedback is available, the erasure channel has a particularly intuitive encoder

which achieves capacity. The encoder maintains a first-in-first-out (FIFO) buffer and re-
transmits any bit that does not get through. As long as the input rate is sufficiently low,
the input buffer will stay finite and every bit will make it through eventually. Formally,

EiJ( = sfb'1 (2.2)1SL(s1 Ibl')'-'
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Figure 2-1: Coding for the erasure channel with noiseless feedback

where j is the current buffer size. We can define j recursively as follows: If []j 0, then
3 = 0. Beyond that:

iR (i - 1)Rmax(O,j.i(b'- 2 ) ± [- - [ J - 1 ± 6(bi,0)) (2.3)
T T

where 6 is the usual Kronecker delta function.

So the buffer shrinks by 1 if something useful was received last time and it grows
according to the rate at which bits come in. Furthermore, since the buffer size depends only
on the time and the received symbols b, the decoder can track it as well. Therefore, the
decoder knows which transmission corresponds to which input bit and can give meaningful
outputs. As long as the buffer size does not go to infinity, every bit is eventually successfully
transmitted and received, even though we cannot predict in advance how much delay will
be encountered by any given bit.

Additive White Gaussian Noise Channel

For the scalar AWGN channel with sampling time T, variance Kv, and power constraint P,
it can be shown that the Shannon classical capacity is 2 log2 (1 ± ) bits per unit time
regardless of whether the encoder has feedback or not.[23] Traditionally, zero-error capacity
has not been evaluated for continuous channels. ([4] is apparently the only exception!) But
the same logic applies as before and a string of rare events is always possible, so the Shannon
zero-error capacity of this channel is 0 as long as Ky > 0.
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2.2.4 Trading off Delay and Errors

Our discussion in Section 2.2.1 already tells us that a sense of bounded delay is important

for the notion of reliable transmission to be meaningful in the streaming context. In both
the zero-error and Shannon capacities, this is satisfied since the codes are required to have

a hard bound on delay for every bit position. While in zero-error capacity, the probability

of error is required to be exactly 0, the sense of reliable transmission for Shannon capacity

allows us to talk about a tradeoff between the required delay and the probability of error.

Error Exponents

Since Shannon capacity C is considered the limit of C, as e -+ 0, it is natural to wonder

how C, - C. Traditionally, we are interested in more than the tradeoff between rate R

and probability of error e. It is clear that to achieve smaller probability of error, we have to

tolerate longer delays if we hold the rate constant. This happens whenever the zero error

capacity does not equal the Shannon classical capacity. We could just as well define another

function d(e, R) of the rate R and probability of error e that expresses the minimum delay

required to achieve that particular (e, R) performance pair.

The traditional tool to characterize this tradeoff between delay and probability of error

is the reliability function which gives an "error-exponent" for a given rate. The reliability

function is generally defined in terms of block codes.[23]

Definition 2.2.4 A reliability function E(R) for a particular channel is a function which
relates the probability of error to the block length as follows: ISo, Do, Rin, Rout such that

Perror < 2 Et Rout

Traditionally, this has been considered a measure of code complexity rather than of

delay per se. Block codes with larger block lengths were considered more complex than

ones with short block-lengths. As a result, similar definitions have also been given in terms

of the constraint length of convolutional codes.

While reliability functions are certainly very useful in characterizing the tradeoff between

delay and probability of error, their tight connection to measures-of encoder complexity like

block length (R 0 ut) is problematic if what we are really interested in is end-to-end delay.

Recall that the end-to-end delay for a block channel code is at least w(2R 0ot - 1 - Rout)

units of time. This means that in terms of delay, the exponent should be considered half

of E(R). Also, the fact that both Ri and Rout must be integers means that delay cannot

even be defined for irrational rates and is in fact very discontinuous as a function of rate.

For example, assume T = 1. R = - = 0.5 and R = = 0.498929 ... are very close to

each other as real numbers, but since 467 is prime, any block code for the second rate must

have a block length that is an integral multiple of 467 and a delay of at least 932 units!

For evaluating performance at moderate values of delay, it matters little that the two error

exponents might differ very slightly.
The error exponents given in terms of the constraint length or number of states of a con-

volutional code are even less illuminating when it comes to evaluating the tradeoff between

delay and probability of error. This comes from the fact that a short constraint length

or a small number of states can still introduce long-range dependencies in the codewords.

As a result, optimum Viterbi decoding of convolutional codes can introduce long delays,

even with infinite speed computations. The same is true for sequential decoding. However,

Forney has studied the tradeoff of probability of error with respect to delay if we force the
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decoder to make a decision after a certain delay d. By introducing a way of getting block
codes from convolutional ones, he was able to show that the block coding error exponents
govern the tradeoff with delay, even though the error exponents relative to the constraint
length can be much bigger. [19, 20] Bounds of a similar spirit extending to nonblock codes
are also available in [50].

Other Ideas

The main other work relating to trading off delays and errors is that of Krich [42]. This,
along with his dissertation [40], discusses weighting the probability of error on every bit
by a function f(d) which depends on the delay experienced by that bit. Although he is
motivated by the stochastic control problem as we are, he restricts attention throughout
his work to block codes. He shows that unlike the unweighted average probability of error
case where the best codes have very long block lengths, with many weighting functions the
optimal block-lengths are finite to balance the cost of increasing delay for every bit with
the benefits of higher accuracy.

Although Krich introduces a weighting function, he never uses it to come up with a
new sense of reliable transmission. Instead, he uses it to help guide the choice of block-
codes designed to achieve Shannon's sense of reliable transmission. As section 2.4.2 will
demonstrate, for unstable processes the Shannon sense of reliable transmission is not good
enough and hence Krich's approach of using block-codes will not suffice for us.

2.3 Communicating Sources over Channels

Now, we will attempt to put together the traditional results on communication over noisy
channels with the problem of tracking sources. First, we will recall the results for stable
Markov sources with ||AI < 1.

For convenience, we will assume that Wt is zero mean. Notice that by our definition, the
stable source is tracked by even the trivial zero-rate process Xt:- 0 since X has asymptotic

2
variance equal to _A- < oc. But if we are allowed more rate in encoding, we can usually
do even better.

2.3.1 Source Coding

Definition 2.3.1 For a random source {Xt }, define the operational rate-distortion function

ROPer(D) by:

1 (c ((!i+)n)fli 1,inf RVe> 0,](n,FRGR), limE p(X+,G( <D + e

where (F ,GR) is a block source-encoder and source-decoder pair with Rate(F ,,GR) - R
and block-length n.

Notice that the operational rate-distortion function above is defined in terms of block-
codes. For memoryless processes, Shannon showed that the rate-distortion function can
also be computed as the solution to a mutual information optimization problem.[62]

R(D) = inf I(X;X) (2.4)
P(X|X):E[p(X,k)]<D
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For processes which are not i.i.d., we can consider them as the limit of larger and larger
blocks and thereby get an asymptotic expression for the rate-distortion function as:

I
R(D) = lim - inf f(XN;XN) (2.5)

N-+oo N p(X X$ ):E[pN (XN kNf<ND

For stationary ergodic processes and a general class of distortion measures [6], Roper(D) =

R(D). The basic idea is that such processes have fading memories. Thus, disjoint long
blocks have roughly the same distribution to each other and the dependencies between the
long blocks are very slight. This flavor of result can be extended to some more ill-behaved
processes as well [30], though the interpretation in such cases is a little subtle.

2.3.2 The Separation Theorem

The keystone result of Shannon's program is that the restriction to binary for source coding
is justified since any rate/distortion performance that can be achieved with nonbinary codes

can also be achieved with binary ones. This is called the separation theorem or information
transmission theorem:

Theorem 2.3.1 For a channel, independent stable source {Xt}, and per-letter distortion

measure p(X, X), the performance of any pair of joint source-channel encoder/decoder pairs

ED is bounded as follows: E(p(X,)) > R<(C) where R11(C) is the distortion-rate

function (the inverse of the rate-distortion function) evaluated at the Shannon capacity C
of the channel. Moreover, we can get arbitrarily close to R<(C) by using a good source

coder followed by a good channel code.

The traditional proofs rely on the fact that we have characterizations of both Shannon
capacity C and rate-distortion function R(D) in terms of mutual information optimization
problems. The most sophisticated existing theorems in this regard are those found in [66],
but their interpretationis subtle in nonstationary cases, They do not apply within a truly
streaming view where the source is realized over time rather than all at once.

2.4 Trying Classical Ideas with Unstable Sources

The stable case in Theorem 2.3.1 seems to contrast sharply with Proposition 1.2.1 and

Corollary 1.2.1 which assert the nonexistence of any block codes capable of tracking our
simple random walk. However, the existence of the source encoder (1.1) and decoder (1.2)
pair which does track our unstable source might give us some hope. Let us see what happens
if we try to combine these with codes satisfying the traditional notions of channel capacity
and reliable transmission.

2.4.1 Zero-Error Capacity

It is easy to see that if the zero-error capacity Co > 1, then we can find a delay T and
(rz, Dz) such that we can transmit 1 bit without error every time step. Then, by using
the source encoder Ft from equation (1.1) to generate the bits {St}, by time t we have

5-T = ST available at the output of the channel decoder. By combining this with
the the source decoder G from equation (1.2) we can get t-T == Xt-T. Even if we use
this value as our estimate kt for time t itself, we know by the nature of the source that

(Xt - XIYT) 2 < T 2 . So we can track the source over the channel.
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2.4.2 Shannon Classical Capacity

The question is more interesting if CO = 0 as it is for many well-known channels like the
binary symmetric channel, the binary erasure channel, or the power-constrained AWGN
channel. Consider a case where C > 1. Then, we know by the definition of Shannon
classical capacity that we have a delay T and C, D such that we can transmit 1 bit every
time step. If we once again use the source encoder Ft from (1.1) to generate the bits {St},
by time t we have S-. We can use the source decoder G from (1.2) to get XtT =

E$(2s - 1). But we also have a probability of error c and so it makes sense to look at
the error: (XtT - Xt-T) = EM 2(SZ - S3.

From the existing theorems about channel capacity, all we know about this process is
that S, - SZ = 0 with probability at least 1 - E. To see that this is not enough for {Xj to
track {Xt}, consider the possibility that Si- Si = I with probability f each and that they
are i.i.d. In that case, E[p(Xt, Vt)] =ZE I4E[(S- - S) 2 ] = 4t. Clearly, this has no finite
bound and grows to infinity, no matter how small we make E as long as it is not exactly
zero.

The problem is that as time goes on, the number of errors made in the past can only
grow. Unlike the stable case where the past gradually gets less and less important, for
unstable processes the past continues to strongly influence the present. Since the past
errors corrupt current estimates, this means that we slowly lose track of where we should
be. Figure 2-2 shows what happens in the case where A > 1. As soon as a single uncorrected
bit error occurs, the estimates diverge exponentially from the true process. The issue here
is not that the capacity is too small, but that the very sense of reliable transmission itself
is not adequate. Philosophically speaking, this means that the kinds of "bits" that we are
using in our source encoders for the simple random walk are somehow incompatible with
the Shannon classical capacity.

2.4.3 Binary Erasure Channel With Feedback

If we are using a binary erasure channel with the encoder allowed access to noiseless feed-
back, then we can use encoder (2.2) to get every bit through eventually. We know that the
delay experienced by any given bit is the time it has to wait in the encoder's queue. If r is
the time between channel uses, as long as the incoming rate is less than T, the encoder's
queue stays stable and its length is random and can be bounded by an exponential distri-
bution. Since the squared-error distortion for our simple random walk is at most T2 with a
delay of T, we know that its expectation will stay finite for all time if the queue is stable.
This is true even though the binary erasure channel with feedback has no strict zero error
capacity! So zero-error capacity is not necessary, even though it is sufficient.
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Chapter 3

Sensitivity Of Source Coding

In this chapter, we formalize the notion of sensitivity in source codes. By introducing a

worst-case formulation for the accumulated effect of bit errors in distortion, we distinguish

between strong and weak codes. After showing that all standard block codes are strong, we

prove that any source code for an unstable Markov process must be weak.

3.1 The Meaning of "Bits"

We can be more precise with the "meaning of a bit" when the bit in question results from
encoding a source. The root notion of meaning in such contexts is represented by the per-

letter distortion measure p on the source and reconstruction alphabets. To understand what

any particular bit "means," we need to pull p through the encoder/decoder pair down to

the level of bits. We want to know the effect on the distortion of getting any particular bit
wrong. Even though p itself is assumed to be per-letter and hence "local," the memory in

the source encoders and decoders can result in the induced meaning of a bit varying with

time.

In general, the reconstruction ±t can depend on the bits sr in some complicated way.

Because of this, we will abuse notation slightly and use ft(sj) to refer to the decoding

function evaluated for the reconstruction of the source at time t on the stream sr. ct will

therefore be used to refer to both values for the random variable Xt and for the decoding
rule itself. Consider the bit at position j. We can consider two different ±t based on whether

sj is zero or one. Let:

A(j, t, sT, xt) = IP(rt, it(sP)) - P(xt, t(1, .. . ,sj-1, (1 -- s), s71))I

Aj, t, s10, xt) is implicitly a function of the distortion measure and source decoder. It

measures the sensitivity of the reconstruction ±t to a particular bit given all the others. By
taking an expectation over the source statistics, we can define:

A(j, t) = Exr [A(j, t,s '= F(X'), X)]

A(j, t) is therefore implicitly a function of the source distribution, distortion measure, source

encoder, and source decoder. It measures the expected sensitivity of the reconstructions at

time t to the value of bit j. However, it only deals with the propagated effect of a single

bit error and does not consider the possible interactions of accumulated errors.

At this point, there are two possibilities on how to proceed. The initial thought might
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be to consider the effect of accumulated errors if only a small fraction of bits get changed.
The hope would then be to design codes that could tolerate a small number of bits being

changed. There are two possibilities for how we could formulate the problem of only a

fraction of bits changing. We could go for a "worst-case" formulation in which an adversary
could flip a fraction of bits at will and then take the maximum over the resulting distor-

tions. Alternatively, we could take an "average-case" formulation in which a fraction of

the bits are flipped at random and then look at the expected change in distortion. Both

these formulations require us to introduce a new parameter for the fraction of bit flips.
Furthermore, the average case formulation is equivalent to asking the question of whether

the code could be successfully communicated over a binary symmetric channel with spec-

ified crossover probability. This suggests that looking at the problem of sensitivity to a

fraction of changes mixes the issue of transmission over a noisy channel with the issue of

sensitivity to errors in the past. So to focus on the issue of sensitivity to errors in the past,

we concentrate on getting upper bounds to sensitivity.

3.2 Error Accumulation

To upper bound the effect of an accumulation of errors, we will define two new implicit

functions of source codes:

A+(j, t) - Exr sup p(Xt, ht ((F(X ))j -S7)) - p(Xt,±Jt(F(X74)))
ST

A-, t) = Exr sup p(Xt, it (S, (F(Xf' ))7+1 )) - p(Xt, it (F(X )))

A+(], t) measures the sensitivity of Xt on all the bits from positionJ on while A-(j, t) is

for all the bits up to j. We can express this sensitivity purely in terms of delay for a rate

R source code with:

A+(d) = sup A+ ([R(t - d)], t)
t>o

A- (d) = supA- ([R(t - d)], t)
t>o

By inspection, any source code with a finite upper bound dmax on the delay of recon-

struction has the property that A+(-d) = 0 whenever d > dmax. This is because changing

the bits far in the future has no effect on the reconstruction now.

Now, we can also bound these sensitivity measures for block source codes:

Lemma 3.2.1 Let (F, G) be any rate R = Rn block source code. Then A+(j,t) =

A-(k,t) = 0 for all/k < [1] Rot andj > [51R 0]t. Thus limdl±,, A-(d) = 0 as

well as the usual limAoo A+(d) = 0.

If supt>o Ex, [maxRout E{O iRout p(Xt, (G(SIo mod))mo ) < K < oo then further-

more A+(j,t) < K as well as A-(J,t) < K. Thus, A+(d) < K as well as A--(d) < K.

Proof: The first part is obvious since it is a block code and hence the decoded Xt only
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depends on the appropriate block of Rt0 ,, bits. So:

A+(j, t)

= Ex-supp(Xt,it((F(X k)) ,S)) - P(Xt,t(F(Xr)))

Excc +K ) i +
= Ex-o sup p (Xt, i t ((F (X"O)) - 7) (Xt, G (F (X - 1)) ),

L Rin )t mod Ri,

But the block-code's limited dependencies mean that the first term in the expectation equals
the second one regardless of the S values and hence the sensitivity is zero. And analogously

for A--(k, t). The second part is also clear since:

A+(j, t) Ex sup p(Xt, i((F(X))j', S)) -- p(Xt, it (F(Xfl)))
So

K Ex-c sup p(Xt,it( )) p(Xt, it (F(X )))
SCO

" Exoo sup P(Xt, it(S1
So

= Ex, sup p(Xt, i(g))
sCo

= Ex, sup o(Xt, (G tmo5R,tsRout mod

< K

and similarly for A--(j, t).
The results for A--(d) and A+ (d) follow immediately.El

This suggests a more general definition covering the properties established by Lemma

3.2.1 for block source codes.

Definition 3.2.1 If a rate R source code (F, G) with maximum delay dmax has A-(d) finite

for all d and limdo A--(d) = 0, we say that the source code is strong. The resulting bits
in the encoding S' are also called strong bits.

As we can see, Lemma 3.2.1 tells us that all block source codes are strong. With this
definition, we can see that being strong is a sufficient condition for being able to cascade a
particular source code with a standard Shannon channel encoder:

Theorem 3.2.1 If a rate R source code (F, G) is strong, then Vc > 0 and noisy channels

with Shannon classical capacity C > R, there exists a delay d' such that the source code

can be cascaded with an appropriate channel encoder/decoder to achieve expected per-letter

distortion within e with end-to-end delay bounded by d'.
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Proof: Given c, we can pick a d, such that A-(d) <t j since the source code is strong.
C2

Now, let e' = 2(d+dmaz)A-(-dmax) and choose a rate R channel code which has a per-bit
probability of error of e'. Set d' = dmax + T where T is the delay introduced by the channel
code. To see that cascading the source code with this channel code achieves the desired
performance, let kt denote the final reconstruction of the cascaded system:

E [p(XXt)J E[p(Xt,Xk)] + A-(d) + P(S[R(+d")j > Rt+d)(Admax)

< E [pXt, kt] + + E'(dmax ± d+c) Aidmax)
2

< E[pXt,Xt]+E

The end-to-end delay of the cascaded system is just the sum of the source code delay dmax
and the channel code delay T. E

Theorem 3.2.1 covers the case of strong source codes. From the definition of strong
codes, we can see that this can cover most standard codes for fading-memory processes.
However, to deal with other sorts of processes we will need:

Definition 3.2.2 If a rate R source code (F, G) with maximum delay dma 1 has A- (d)
infinite for any d, we say that the source code is weak. The bits in the resulting encoding

S' are also called weak bits.

We have a simple lemma which connects A+(d) to our definition of weakness.

Lemma 3.2.2 If a rate R source code (F, G) with maximum delay dmax has limd A,±A+(d)
X0, the source code is weak.

Proof: Pick an arbitrarily large T. By the definition of limits, there exists a dT such
that A+(dT) > T. Thus, there exists a tT such that A+([RtT] - dT,tT) T. But then
A-([RtTJ + dmax, t) T as well since it is a supremum over a strictly larger set. So
A-(dmax) > T. But since T was arbitrarily high, this means that A-(dma 1 ) = cc and the
source code is weak.1:

Unlike strong bits, which Theorem 3.2.1 tells us are in some sense all alike, weak bits can
be differentiated from each other by the rate at which A+(d) goes to infinity as d increases.
This is roughly analogous to the situation in computational complexity. The worst-case
computational requirements for most interesting algorithms go to infinity as the problem
size increases. But algorithms differ in the rate at which they do so.

As an example, we know from computational complexity theory that although the
straightforward recursive algorithm for computing Fibonacci numbers takes exponential
time as N gets larger, there is a simple iterative algorithm which works in linear time by
building a table. Furthermore, if we assume the ability to do real number computations in
unit time, it is possible to calculate the N-th Fibonacci number in constant time using the
properties of the golden mean.

3.3 Scalar Markov Processes

For the stable case |Al < 1, we already know that strong codes exist. In the following two
sections, we will illustrate the properties of weak codes by looking at the simple random
walk and then the general case of exponentially unstable processes.
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3.3.1 Simple Random Walk

For a contrast from the block-coding case as demonstrated by Lemma 3.2.1, let us take a
look at the code from equation (1.1) and its corresponding decoder.

Proposition 3.3.1 For the rate 1 code given by equations (1.1) and (1.2), A-(d) = oo for
all d while (d + 1)2 A+(d) < 4((d + 1))2 if d > 0 and zero otherwise.

Proof: A straightforward calculation:

A+(d) = sup A+(t - d,t)
t>o

sup Exr [sup p(Xt, it((F(Xr)Wd- S5d)) - p(Xt, ±t(F(Xfl)))
t>O Lzdi

~ t2

sup Esosup (j( 2 Si - 1) - (2S 1 -)
t>0 - ( -

\t-2

sup Esr [sup 2 Y(Si-S)
t>0 5Soo-L8 t-d t issl
sup 4(d +1)2
t>o

(2(d + 1))2

and for the lower bound:

= sup Esx [sup
t>O So

= supEsoo sup
t>O [Soo

t

-t-d
(2s -1)

t

I 1(2S -1|
t--d

(2Sf - 1))

- 1))
t-d

t
> sup sup Z(2s1

t>O 0 atd \t-d

=(d±+1)
2

Since the source code is causal, the A±(d) is
calculation for A- is similar:

zero for bit errors restricted to the future. The

A-(d) = supA-(t-d,t)
t>O

= sup Exc [sup p(Xttt(S-d, (F(Xr))rd+l)) -
t>O g-d

= sup Exr [(2(t - d)) 2 - o
t>o

= 00
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which shows the "weakness" that we have formalized above. 0

Proposition 3.3.1 shows us that some very natural source codes are not strong. It is

therefore natural to wonder whether the weakness of the source code (1.1) is just an artifact

of their particular construction or whether it is something intrinsic to our source itself.

The following natural generalization of Proposition 1.2.1 answers the question:

Theorem 3.3.1 All rate R < oo source codes with maximum delay dmax < oz that track

the random walk process are weak regardless of the values of R and dmax. Furthermore,

A+(d) grows at least linearly with delay d under squared error distortion.

Proof: Pick a delay d.

A-(d) sup A-~(R(t - d)j, t)
t>0

sup Fxrupup p(Xtj, t(LR(t-d)] (F(X))h(-d)J+1)) -- p(Xt, it(F(Xr)))
t>0 LR(t - d)][3-~~

= sup Ex sup p(Xt, it (S}R(--d)J, (F(X10)) -J
t>O tR(t-_d)J

- sup Exr [p(Xt, ±(F(X)))]
t>0

> sup Ex, F sup inf p(XtSI) R(t-d)i) - K
t>0 7 [R(i--d)J SLR(t-d)J +1

sup Exr Fsup inf p(Xt, t(5R(t-d) SLR(t+dmax)))] K
1>0 I sR( t -di s3~~da~FR(t-d)sR(t+da~l)-R(+dmax )i K

>sup if Ex. sup inf p(X, t(St1l)J, SR(l-d)j]+;J-1
LR(t-d) i -1

> sup infExs F inf )XJ\-21't(9_+ -K
t>0 t sLR(t+dmax)[

LR(t-d)J+1 J

= 10 if (i (tid'it )) K
= sup inf Ex- [ 2

f --2 K
t>0[V' I SLR(t+dmax)J t i/l

R(t-d)]+1

The key is to notice that tends to a zero-mean unit variance Gaussian as t gets large.

Therefore, we can view -L as a R(d + dmaz) + 1 bit optimal quantizer for that Gaus-

sian. By standard rate-distortion theory [6] we know that the best mean-squared error is

2 -2(1+R(d+dmax)) so we can write:

FLRdmxj Eax)] 2-

A-~(d) > supinf ExO inf t (x 1  t±(Xt7 K
t>0 LSR(t+d7TaT)J

t 5 L~R(t--d)]+l 1 r

> sup t 2 -2(1+R(d+dmax)) - K
t>0

= cx

40



To see that the A+(d) must grow at least linearly, we can go through a similar argument:

A+(d) = sup A+([R(t - d)], t)
t>0

- sup .Exo Fsup pQXt, ±d(F(Xi )I R(t-d)i-- 1 ~--} - p(X1 , ±1 (F(XfC)))
1>0 I

= sup Ex.c sup p(Xt,±t((F(Xfl J [R(t-d)-l SR(-d)j

- 1sup Exfc [p(Xt, tF(Xft))]
t>0

> sup Exj F sup (Xt - it((F(Xfl[R(t-d)-100 - K

t>O So -S[RRtd)J))

> supExy [(X1 - Xt-d2) - K
t>0

[dJ--K

> d-1-K

In the above, the fifth line is because the best mean-squared estimate for Xt is its conditional
expectation given what we know. But Xt, as a random walk, is a martingale and so the
best we can possibly do is use the true value for Xtjdj .

Theorem 3.3.1 tells us that the weakness of (1.1) is not an artifact and is fundamental
to the source itself.

3.3.2 General A> 1

In this section, we extend Theorem 3.3.1 to establish a similar result for the exponentially

unstable sources.

Theorem 3.3.2 If the W are independent of each other for our scalar Markov source with
parameter A, all finite expected distortion source codes have A+(d) growing exponentially
at least as fast as A2 d -- 2(2 log 2 A)d when viewed under the squared-error distortion measure
and more generally, as Ard under the q-distortion measure py(X,X) = IX - k|' where

'q > 0.

Proof: Without loss of generality assume that Wt is zero mean. Now regardless of the rate
R, we can pick a delay d and repeat the basic argument from the proof of Theorem 3.3.1:

A +(d)

= sup Ex Fsup p(Xt,it((F(Xr))jR(td)J - LR(-d)J)) - p(X 1 ,
t>0 [SoJ

= sup E. sup p(Xt,it((F(Xr)) [R(t-d)Ji -SR(1-d))
t>0 [
- sup Exr [p(Xt, it (F(Xr)))]

t>0
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> sup Ex F sup -AI - -KK

[SLR(1d)J)SLR(td)J)n

t>0 S=o

" sup Ex [X-ALdJXt_-LdJ -K
t>o

sup Exr - IZEAZVWt_ -' K

> sup E [A [d Wt-Ldj n K

> MA17[d - K

The steps are exactly the same as in the proof of Theorem 3.3.1, except for the last

three steps. The best estimate for Xt given only information from d time steps ago is no

better than the best prediction AdXt-d if d is a positive integer, and in particular, we can

never do better in prediction than the expected effect of the first driving noise term that

we have no observations of. This gives rise to the positive M as above. D

In the next chapter, we will give a causal code which achieves the above bound on

sensitivity. The immediate consequence of both Theorem 3.3.1 and 3.3.2 is that the same

inherent weakness exists if we look at a downsampled version of the original source. If we

are interested only in every l-th sample, the resulting process is defined by:

1-1

Xit = A'Xit-_1) +E A'-- Wt(1_1 4j
J=0

= A'XI(tl_)+TVt

From Theorem 3.3.2, we know that the sensitivity grows as Aild if we assume the source

evolves with one sample per unit time. By scaling time down by a factor of I while updating

A to A', we get a sensitivity that grows as (Al)'f - And as well. The same argument also

shows that the minimum rate per unit time required for tracking does not change if we

downsample the source.

3.4 Discussion

In this section, we have established that there is a fundamental difference between strong

and weak source codes. The strong codes eventually discount the past when trying to

reconstruct the present while the effect of the past persists for the weak codes. Bitstreams

emerging from weak codes can vary in the rate that the effect of errors can compound, and

more importantly, for many sources and distortion measures there is a certain irreducible

weakness that all codes must exhibit. The unstable scalar Markov sources exhibit just such

a fundamental weakness.

The initial investigations in this chapter are just the beginning. Many questions remain

to be answered. For encodings of vector sources, it seems clear that there might be sub-

streams which have different inherent sensitivities and many encodings might be able to

be split between an inherently weak core and a strong supplementary portion. A detailed

study of the finer structure of the sensitivities within the encodings of complex sources

should be undertaken. In addition, the ideas of sensitivity need to be extended into the
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context of lossless coding where there is no explicit distortion measure. I suspect that there
is a purely "entropy based" formulation which will also capture the inherent sensitivity of
certain random sources.

Furthermore, there is no reason to think that fundamental sensitivity is only interesting
for signals modeled by linear Markov sources. We suspect that many real-world multimedia
signals will also exhibit such phenomena, possibly in an approximate form when moderate
delays are considered. It might also be a fundamental property of most variable rate or
universal codes. In variable rate codes which generate self punctuating bitstreams, an early
error might change the parsing of the whole stream, thereby having a lasting effect. In a
universal code early errors might change the implicitly or explicitly estimated parameters
for the source being encoded thereby altering the interpretations of all future bits. This is
already being seen in practice [21] and needs to be better understood theoretically.
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Chapter 4

Source Codes for Unstable

Processes

As the previous chapter reviewed, source codes are a pair of mappings from the source

alphabet to binary strings and then back again to a reconstruction alphabet. A source code

is therefore a way of expressing "information" to some fidelity in the common language of

binary strings. In this chapter, we will focus on the source from Definition 2.1.1, an unstable

scalar Markov source {Xt} driven by external noise {W}. Recall that this is:

X0 = 0

Xt = AXt-1+Wt

where the scalar A> 1 to make things nonstationary. The reconstruction alphabet is also

the reals and the distortion measure p we use throughout is either the standard squared error
distortion p(X, k) = X -ZX1 or the more general r-distortion measure P(X, X) = X -kv7
with ri}> 0.

Before we can give theorems regarding information transmission over noisy channels in

later chapters, we first need some understanding of how to encode unstable Markov sources

into bits in the first place.

4.1 Causal Source Codes

The first encoders are in the spirit of (1.1) and we will assume that the W have bounded

support: - g< Wt < . It turns out that we do not require any other requirement on the

driving noise process {W} such as independence, ergodicity, or even stationarity.

Theorem 4.1.1 For all E > 0, every scalar discrete-time unstable linear Markov process

with parameter a > 1 driven by bounded noise - - K Wt < !, can be tracked by an encoder

FR and decoder GR with rate R log2 A +e. Moreover, there exists a constant V depending

only on (A, Q, R) such that !IXt - Xt1 v for all t.

Proof: We follow the spirit of [63] and encode the predictive error signal Xt+ 1 - AXt.

Formally, we pick a v> 2. The idea is to keep the absolute value of the error always

inside the of [-v, v]. Let [-Mt, Mt] represent the best possible "box" in which the source

decoder can currently bound the error signal. The predicted error signal Xt+ 1 - AXt is
therefore known to be inside a new box [-AMt - 1, AMt + 1] even without any additional
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At

Q

AMt + Q

0
Which part contains Xt+1

Mt+1

Window around X known to contain Xt

grows by a factor of A > 1 because of the dynamics and

also by constant from driving noise IWl <

giving a larger potential window regarding Xt+1

send i bits and cut decoder's window by a factor of 2-7

giving a new window around the updated estimate Xt+1

Figure 4-1: Causal predictive source code for unstable Markov process

information by simply predicting Xt+1 by multiplying the existing Zt by A. If AMt + > v,
we need to send new bits of information to reduce the magnitude of the error. Since every
bit we send can be used to cut the interval in half, we end up with the following recurrence
relation:

AMt + 
Mt+1 =2

24t+1

AMt +~where it+ =max{0,2g 2  }. The recurrence relation does not depend on the

realization of the random process {Xt} and so the Mt can be precomputed. They only
depend on the initial value for MO, the "box" size v, the noise bound Q, and the Markov
parameter A. Even if the initial condition is exactly known, we will use the initial condition
Mo = v for convenience.

The process is illustrated in Figure 4-1. it+1 bits S 1, S2 ,... , Si- 1 are emitted at time
t + 1 and are chosen by the encoder so that

it+- t+1-1
(Xi-A$t) c [(AMt+-)(-1+2-+l1 9Sj23), (AMt+±)(-1+2- t +l(1+ S Sj2j))]

2 j=O 2 J=0

The estimates are generated as follows:

Q 1 iti---
Xt+1 = AXt + (AMt + -)(-1 + 2--+'( + S2))

2 2 -0
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This encoder and decoder tracks the original random process since by construction
Mt < v for all t. All that remains is to calculate the rate at which bits emerge. By taking
logs, it is easy to see that:

AMt+F9
log2 (Mt+l) = log2 2 t+i

= log2 (AMt + ) -
2t+1

2

Slog2(Mt + 2 ) + log 2 (A) - it+i2A

= log2 (Mt) + log2 (1 + 2 ) + log2 (A) - it+42AMt

By construction, we know that Mt is always between v and . Thus1log2 V_>log2 M >
log2 v - 1 as well. Because this stays bounded, the rate at which bits flow out of the system
f limt,_, } Z>I_1 ij must equal the rate that information flows in: limt, } >> log 2 (A)+

log2 (1 + 2AM). We can bound this as follows:

t = him - log 2 (A) + log2 (1 + )j= 2AM3

1 t I
- 0og2 (A)±+ lim - log2 (1 2+)t-+00 t =2AiM

< log 2 (A) +log 2 (1 + )
Av

by using the lower bound ' for Mt. Similarly, by using the upper bound v for Mt we get:

log2 (A)+1log 2 (1+ ) > R ;>log 2 (A)+log2 (1 +2A)
Av - -2Av

Since lim,, log2 (1 + ) 0, the rate can be made arbitrarily close to log2 (A). 0
It is easy to see that as long as A > 1, these source encoders are weak since they

continuously build upon the prior estimates. The following theorem shows that the degree
of weakness depends on A and achieves the fundamental sensitivity bound given in Theorem
3.3.2.

Theorem 4.1.2 The source code given in Theorem 4.1.1 has A+(d) growing exponentially
as A2d _ 2(210g 2 A)d when viewed under the squared-error distortion measure and more
generally, as A' ,I under the q-distortion.

Proof: This is relatively easy to see.

A+(d) - supA+([R(t-d)],t)
t>o

SsupEx sup p(Xt, ±t((F(Xr)) R(t-d) -- S )j)) - p(Xt, it (F(Xr ))
t>O M Rs-d_)

The encoder always keeps the reconstruction within a v box of the original signal as long
as the bits are faithfully recovered. So we can think of starting at zero at time t - d and
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trying to maximize the error in the next d time units. At the end, we will only be off by ±v
at the most. But it is clear that maximizing the squared error between the reconstruction
and the original starting at zero over d time units will give us (with appropriate constant

M'):

d Ad+1 _?
M' A -v) = M'v( A-

i=O

M'OA' d 1 7

(A - 1) 7 ( A

M'v'?A 7  (I 1 )77A7d

(A - 1)q) Ad+1

Since for sufficiently large d, we know that <; (1 -- ) 7'< 1, the basic result holds.

Shifting by ±n will not change this exponential rate of Arid.

Notice that Theorem 3.3.2 gives a lower bound to the sensitivity of all finite expected

distortion source codes for the scalar Markov source, not just for causal ones. But using

"non-causal" codes (ie. tolerating more end-to-end delay) can help us improve performance.

4.2 Performance in the limit of large delays

We now examine the question of optimal performance and focus on the squared error case

for simplicity. The sequential rate-distortion theorems [63] bound the expected performance

if we do not allow any delay. The natural extension would be to look at the scalar source as

a vector source over blocks of inputs and then take a limit of the sequential rate-distortion as

this block-length increases. This gives a bound, but it is not clear that it is achievable over

even noiseless channels. After all, in general the sequential performance is not achievable

without delay over a non-matched channel[63]. Alternatively, we could think of the infinite
horizon problem as being the limit of a sequence of finite horizon problems as follows:

Definition 4.2.1 Given a scalar Markov source from Definition 2.1.1, the N finite horizon

version of that source is defined to be the random variables XN = (X 1 ... , XN).

For each N, we can calculate a standard information-theoretic rate-distortion function for

the finite horizon problem as follows:

1
RA(D) = inf -I(X ; X[) (4.1)

P IN A E p(XiQ<D N
1 1

In equation 4.1, we infimize the average mutual information between X and X over joint

measures where the marginal for X7 is fixed and the average distortion p(Xi, Xi) = (Xi -
k,) 2 is constrained to be below D. We can think of the block Xj as a single vector-

valued random variable Y. Then, the R (D) defined by equation 4.1 is very simply related

to Rf"(D) by R (D) = JLRj(ND) with the distortion measure on Y given by p(Y, Y) =

Y- Yj. Thus, for the finite horizon problem sitting by itself, the standard data processing

inequality shows us that RY$(D) provides a lower bound on the average rate required by
any source encoder/decoder system that achieves average distortion D or better.
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It is easy to see that the infinite horizon average rate operationally required for a specified
average distortion is lower bounded by the limit of the finite horizon case as follows:

RoPer (D) > RX (D) - lim inf R (D) (4.2)
DO -0N-ic

The question is whether this bound can be approached arbitrarily closely if we tolerate
large end-to-end delays. For the finite horizon problem, the rate-distortion lower bound on

average rate can be approached with a deterministic encoder if instead of one sample of Y,

we encode a block Y1 M of M independent samples as M gets large. Mathematically, the
classical rate-distortion source coding theorems[23) tell us that for every R > R/ (d), there
exists an M > 0 and a block source-code (encoder FAI and decoder GM) such that:

E[ ElZYi-Y12 < ND
M =1 .

A/1M
where Y1 = Gm(Fm(ji)) and length(FK (f )< MNR.

We want to be able to somehow apply this well known result to show that the lower

bound given by (4.2) is achievable in the limit of large end delays. The idea is to have the
encoder use the delay available to it to process the source stream X' into something which

looks like an i.i.d. stream of Yci. This stream could then be encoded through a suitable

large block encoder and then the decoder side could put the pieces Y 1 back together again
to give a suitable reconstruction process X'i.

4.3 False Starts: Why traditional approaches will not work

Before we give a technique which does work, it is worthwhile to consider a few ideas which

do not work for the unstable case being considered. This will motivate the discussion in the

next part as well as point out the connections to prior work.

4.3.1 "Whitening" Is Not Enough

The first observation which might occur to someone is that (Xt+ - AXt) has the same

distribution as X. Furthermore, (Xt+ - AXt) and (Xt'+n - AXti) are independent as
long as it - t' > >n. So, the following mapping generates Y with the appropriate properties:

(i) .= XiN+j - A'XiN (4-3)

where j goes from 1 to N and indexes the elements of the vector Yi. Within a given vector
Y, the elements are related recursively as:

(Yi)+ = A (Yt) 3 + W

this recurrence holds all the way down to j = 0 an implicit element ()= 0. Since the

underlying driving noise process Wk is i.i.d., the {Yi} process is as well.

Notice also that the transformation is recursively invertible. Xo = 0 by assumption and
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we can compute the rest by :

Xk= Y, + A XiN (4.4)

where 1 1<J N and k =iN+j.
One might presume that since the original transformation is invertible, we should be

able to apply the inverse transformation to the compressed {YJ} process to get a reasonable
reconstruction process {Xk} for the original process. There is one obvious problem with
approach. The inverse transformation given by (4.4) requires us to know XiN exactly. Since
this quantity is not available at the source decoder, we must modify (4.4) in some way. The
natural thought is to use:

(4K) $ + AiZNi (4-5)

The problem with this approach is that the recursive inverse transformation specified by
(4.5) is very sensitive and magnifies the errors:

Xk -Xk Xkj- Yi )iA3X-N2

X Xk A-J

= ) Y + Xk -YX - AAXNi

= (Y - (47) + Ai(XN, - kNi

Thus, even if E[fi - YJ(J< ND for all i > 0, the resulting {Xk} process will enjoy no
such property. Rather, the errors will roughly get multiplied by AN with every new block
and hence the expected squared error will go to infinity. The problem is that the errors for
different Y blocks will tend to be independent of each other and hence will not cancel out.

4.3.2 Predictive Error: Chicken and Egg Problem

Another choice would be to code a block version of the predictive error signals as is done
in the proof of Theorem 4.1.1. Assume that we have access to the {Xk} process. Then we
can generate the Yi as follows:

Y = XiN+j - A'iN (4-6)

where j goes from I to N and indexes the elements of the vector Yi just as it did in (4.3).
As before, within a given vector Yi, the elements are related recursively as:

(Y)j± =A (t)j + W

but this time, the recurrence is clearly valid only for j > 1. For j = 0, we have:

Yz -= XiN+I - AkiN

= AXiN+WiN - AXiN

= A(XiN --XiN) +WiM

50



We can think of this as meaning that there is an implicit element (Yi)0 = XiN - XiN. This

makes the recurrence valid for all j ; 0, but introduces a non-zero initial condition. Fur-

thermore, since this initial condition depends on XiN (which also appears in the definition
of the previous vector Yi-i) introduces a potential dependence between the successive 1i.

It is doubtful even whether the {ti} process is stationary. Putting this difficulty aside for
the moment, assume that we have some way of compressing a block of the {Y} and getting

corresponding {fYi which are close in the sense of having E[p(i - Y)] < ND for all i > 0.

The real motivation of this approach is visible when we attempt to invert the transfor-

mation on the {Yi} process to get the {Ak}. We take the appropriate analogue of (4.4) to
get:

Xk= (Y) + A'XiN

where 1 < < N and k= iN+ j. Now, we can evaluate the error terms to see:

Xk--k = Xk- i -jA]iN

Xk - (Yi) + ( (Y . - i ) - AikiN

=(yj. - (4)) ±Xk -(lk -AX )-kS7N

Unlike the previous case, this time the errors do not propagate from block to block and
under any difference distortion measure, our performance will be as good as that achieved by

the {YZ}. But this entire discussion overlooks one major problem: In order to generate the

{Yi} process, we must have access to {XiN}. However, the {Xk} are functions of {Y} which
are themselves the compressed versions of {Yi}! Because in general, the rate-distortion limit

cannot be approached by purely causal encodings even of memoryless random variables[48,

9], at least some form of limited noncausality (like block encodings) is usually necessary.

This leaves us with a "chicken and egg" problem: to get {Yi}, we need the {Xk} for which

we need those very same {Yi}.

4.3.3 Berger's Technique

Toby Berger gave one way around this "chicken and egg" problem in his paper on "In-

formation Rates of Wiener Processes" [5] and subsequently in his book on rate-distortion

theory[6]. The system is described in Figure 4-2. The key observation is that to apply
(4.5), we only need the prior X at the end of the last block of M samples. So, suppose
that instead of using XiN, we used a XiN which was guaranteed to always be close to XiN

Then, we would have:

Xk= (Yi)+ A 3 XiN (4.7)
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Berger's Source Encoder
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Figure 4-2: Berger's strategy achieving R(D) for Wiener processes.

while the Yi are generated by (4.3). It is easy to see it Xh this scheme:

Xk -- k] fi . C + A(XiN - iN)

In order to get a iN, the idea is to causally encode in parallel the N-downsampled
process consisting of: (XO, XN, X2N, - . . , XiN, . . .) so that ZI N - XiN I <; c. The hope

is that the average added rate required to encode this parallel stream to fidelity E can be

made negligible relative to the rate required to encode the main stream of the f I} to within

expected distortion D, at least in the limit of large N.

The first question is what fidelity c is required on the X in order to be within a factor

of (1 + c') of D on E[(Xk -- Ak )2] for all k. Clearly, this can be done if:

max I Ai I <
1: j<N 2

For the cases that Berger considered where JA|I< 1, the maximum is achieved at I 1and

thus the choice of E <§ has no overt dependence on N. But for the cases we are interested
2

in, where JAIl> 1, the maximum is achieved atj= N and hence we need c < 2AN,
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The more important issue regards the (Xo, XN, X2N,... , XNi, ... .) process:

XN(i+l) =ANXiN + i (4.8)

where the Wi and are defined by:

N- 1

Wi =ZAN-1jWiN+j
=0

If the original Wi were i.i.d. so are the Wi by inspection. Similarly, if the original Wi had
finite support, then for any finite N, so do the W.

In the cases that Berger considers, with JA < 1, the fixed rate required to causally
encode XiN to a fidelity c grows only sublinearly in N. For JAl < 1 this is obvious since
with increasing N the {iN} approach an i.i.d. sequence. For JAl = 1, Berger proves that
the rate required is O(log N) and hence sublinear. For JA| > 1, we know from the work
on sequential rate distortion[63], that encoding the ZN to any finite fidelity will require at
least log2 (AN) - N log2 A bits for every sample XiN. This is linear in N even before we
take into account our need for increasing accuracy as N gets larger! Thus Berger's approach
strictly applied does not work for proving a source coding theorem for the exponentially
unstable processes. This difficulty was implicitly recognized by Gray in his 1970 paper on
"Information Rates of Autoregressive Processes"[29] where he comments:

It should be emphasized that when the source is non-stationary, the above theorem
is not as powerful as one would like. Specifically, it does not show that one can code a
long sequence by breaking it up into smaller blocks of length n and use the same code
to encode each block. The theorem is strictly a "one-shot" theorem unless the source is
stationary, simply because the blocks [(k - 1)n,mkn] do not have the same distribution
for unequal k when the source is not stationary.

Berger has proved the stronger form of the positive coding theorem for the Wiener
process by using a specific coding scheme (delta modulation) to track the starting point
of each block.

Gray and other subsequent researchers were not able to generalize Berger's technique
to the general unstable case because as our sequential rate-distortion based insight shows,
the purely parallel streams argument cannot work for the exponentially unstable case.

4.4 Variable Rate Technique

In this section, we show how it is possible to use a combination of ideas to give a variable
length source code which allows us to approach the bound in (4.2) arbitrarily closely as we let
the end-to-end delay get large. Our basic approach will be to assume that both the encoder
and decoder have access to common randomness, and then to use that randomness to make
a modified version of Berger's technique work with an appropriately dithered version of the
predictive error based transform.

A variable length source code is where the encoder is allowed at each time step to
produce symbols from {0,I1}* = U? 1{0,I1}' which we can identify with all the positive
integers rather than just a finite subset of them.

Figure 4-3 summarizes how the encoders and decoders will work. Here is a summary of
the encoding procedure:
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Source Encoder

r MN MN-1 -- e
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superblock removing offsets superblock

Calculate M ,ILosslessly encode offsets
Ioffsets"N±N--1 with variable lengths(k MN+i'N + Zi i=0

Random
"dither" encoded bits

Decode offsets

(XkMN+iN + tis'

(mM+ N-1 Add offsets back Decode the
to reconstruct transformed superblock +-

Ssuper block p M-
YkM+i iI=D

Source Decoder

Figure 4-3: The two-part superblock source encoding strategy for Markov sources and how
it is decoded.
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1. The incoming source will be buffered into blocks of length MN. These will be thought
of as superblocks consisting of M blocks each containing N consecutive source samples.

2. We will quantize the endpoint of the i-th component block to a uniform grid with
spacing 0 between representative points. This grid will be shifted for each i by an i.i.d.
uniform random dither signal of width 0. Furthermore, an additional i.i.d. random
variable ci is added to the representative points. All this randomness is assumed to be
common randomness accessible to the decoder as well. (This is a slight simplification
of what goes on. In section 4.4.2 we will give the whole story which includes some
added technical manipulations.)

3. The superblock from step 1 is transformed by appropriately translating each compo-
nent block down using the offsets calculated in step 2. (Depicted in Figure 4-4) This
is analogous to the way in which the predictions are subtracted off in equation (4.6).

4. The order of the constituent blocks is shuffled (randomly permuted) in the transformed
superblock from step 3 using common randomness. (Not depicted in Figure 4-3 or
4-4, but used for technical purposes in the proof.)

5. The shuffled transformed superblock from step 4 is treated as a block of M samples

from an i.i.d. source and is quantized using a good vector quantizer.

6. Key Step: The positions of the quantized endpoints from step 2 (used to do the
transformations in step 3) are losslessly encoded using a recursive variable-rate code
relative to the Xi induced by the vector quantization done in step 5. Lossless encoding
is possible because conditioned on the common random "dither" signals, the quantized
endpoints must lie on a countable set. Doing this step resolves the "chicken and egg"

dilemma.

7. The fixed-rate bits coming from step 5 and the variable-rate ones from step 6 are sent

across to the decoder.

The operation of the decoder in Figure 4-3 has access to all the common randomness
and the encoded bitstream. It reverses the procedure as follows:

1. The bits are buffered up until we have enough to decode the vector quantized trans-

formed superblock from the encoder's Step 5.

2. Using the common randomness used in the encoder's Step 4, the order of the con-

stituent blocks is deshuffled (using the inverse permutation). (This technical step is
not depicted in Figure 4-3)

3. Key Step: The bits from the variable length codes are recursively combined with
past information and the constituent blocks emerging from the decoder's Step 2 to
reconstruct the quantized endpoints of encoder Step 2.

4. The recovered endpoints from the decoder's Step 3 are combined with the recovered
quantized constituent blocks from decoder's Step 2 to give us estimates {XjI for the
original process.

Now, we will analyze the performance of the coding strategy given in Figure 4-3 in order
to see that it works asymptotically.
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XtMN XkMN+iN+j§= AXkMN+iN+(j-1) + WkMN+iN+(j-1)
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Source Superblock

Transform and "dither"
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YkM fkM+1 YkM+(M-2) YkA+(M-1)

YkM,O XkMN - XkMN + kM YGkM+iJ XkMN+iN+j - A'(XkMN+iN + CkM+)
= AYkA+i,(-1) + WkMN+i N+(j-1)

Figure 4-4: The "block of blocks" approach with a long superblock consisting of M inner
blocks of N source samples each. The transformed inner blocks YkM+i all look identically
distributed and independent of each other so that they are suitable for lossy compression
via vector quantization.

4.4.1 The key transformation

The key transformation is the one given by the Encoder's Step 3 and is depicted in Figure
4-4. It generates the vector YkM+i from the i component block of the k-th superblock and
the value for XkMN+iN + CkM+i generated by the encoder's Step 2 as follows (for j > 1:

YkM+i,j = XkMN+iN+j - AJ(XkkMN+iN + CkM+i) (49)
= AYkM+i,(-_) ± WkM N+i-N+(j-1)

where the first term (j = 0) is given by:

YkM+i,O = XkMN+iN - XkMNiN ± +kM+i

If we add an implicit zero initial condition at position -1 in this vector, we notice that
the distribution of the N vector YkM+i is almost identical to that of the N finite horizon
version of the original source. The only difference is that rather than having something
which looks like WkMN+iN-1 at the first position, it has (XkMN+iN -- XkMNiN) + GkM+i-
In section 4.4.2, we will show how under appropriate conditions, we can actually make
this term be independent of all the other {Wjj} and share the same distribution as them.
(Captured as Property 4.4.1) Once that is true, the YkM+i are all i.i.d. and share the same
distribution as the N finite horizon version of the original source.

In this memoryless setup, we know by classical information theory[23] that given an M
large enough, we can construct a vector encoder so for a given distortion D, we are within

ci of the rate-distortion function. Once we have done the technical random shuffling of
Encoder Step 4, we have the following Lemma:
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Lemma 4.4.1 Assume we have an i.i.d. sequence of random variables Y1M with information-

theoretic rate distortion function Rf(D) under additive distortion measure p. Then for

every 6 > 0, there exists an M > 0 and shuffling block source code of size M which achieves

S[p(YiY) < D for every i with total rate less than or equal to M(R}'(D)+c).

Proof: This is only a minor variation of the standard result in information theory. The
standard result tells us that for every e > 0, there exists an M > 0 and deterministic block

source code of size M which achieves E LY' 1 p(Yi, )] <D with total rate less than

or equal to M(Rf(D) + E).
The shuffling permutation, since it happens after the choice of the encoder, tells us

that the expected behavior of every position must be the same. So since E [ mY Y =

E [p(4y yj)j, we can conclude that:

D ;>

M-

E[p(Y,Y'I)

= E p(Yj),Yj)]

For every position j.
For now, assume that we somehow know the sequence of XkMN+iN + kM+i exactly

at the decoder. (This will be treated in greater detail in Section 4.4.3) Then, we can put
together an estimate of the original {Xj} process by the following procedure:

XkMN+iN+j = =kM+i,j + A (XkMN+iN ± kM+i) (4.10)

We can easily evaluate the performance under any difference distortion measure (such
as squared error or 7-error) by noticing that:

XkM+IN+j - XkM+iN+j (YkM+i,j + A 3 (XkMN+iN -- M+i))

-(YkM+i,j ± A3 (XkMN+iN+ &+M+i))

YkM+i,j - YMI,

There is no deadly compounding of errors in this decoding system as long as we know the
XkMN+iN +& M+i exactly.

So, by the construction of the vector quantizer and Lemma 4.4.1 we know that for every
block XkMN+iN+(N-1), we have:

1N-1
E [N Z (XkMN+iN+j - XkMN+iN+j)r < D

j=0

And hence the same thing holds for the limiting average distortion.

Now, assume that we do not know XkMN+iN+GkM+i exactly and instead only know them
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to some fidelity 0'. So at the decoder, we only have access to XkMN+iN + kM+i ± QkM+i
where IQkM+ 0<0' but has zero mean. Then it is immediate that we will be forced to use:

XkM+iN+j = YkM+i,j + A'(XkMN+iN + kM+i + QkM+i) (4.11)

and will get mean-squared error performance:

N-1

E N 7 (XkMN+iN+J - XkMN+iN+J)]

N-1

= E (YkM+i,j -- kM+ij - AjQkM+i)2

N-1

= E[+ (YkMi,J -- kM+i,9 2 + A 2 (QkM+) 2 + 2 (YkM+i,j -kM+iJ)QkM+i

IN-1 j,

< D+kZ A202

- D+ A 2 N ,i 2

N(A 2 -1)

4.4.2 The full story of the "dithering"

In the past section, we had to assume one major property for kMN+iN + CkM+Z:

Property 4.4.1 (XkMN+iN - XkMNN ±&+kM+i) has the same distribution as Wj and is
independent of all the Wj in the original system as well as (Xk/MNi'N -Xk'MNN+-kM+i' )
for (k',i') # (k,i)

Before we establish that this property holds, let us first recall how it is that we are going
to generate the %i in the encoder's Step 2.

1. A common random i.i.d. process of uniform random variables {T} is sampled at j.

2. We quantize Xt + to an appropriate point Mt0 on the uniform grid of spacing 0.
In particular, we generate the integer Mt by:

Mt = [Xt+TJt(4.12)

3. Let 1% = Mto - Tt

Lemma C.2.2 tells us immediately that 4 t = (X - %t) =Xt - MtO 4 is an i.i.d.
uniform random variable. Once we have this property, we know that by appropriate choice
of common random i.i.d. process {t} we can make (XkMN+iN - XkMNiN + kM+i) have

Property 4.4.1 as long as the distribution for the Wj is additively constructible out of
uniform random variables of appropriate width 0. (See Appendix C for a discussion of this
and other notions of constructibility.) If Wj is not additively constructible out of uniform

random variables, then all we can hope to get by this procedure is a close approximation to

W. and hence our Y will have a distribution which is only an approximation to X{N rather

than having the exact same distribution.

58



Although it is possible to continue with this proof and to deal with the resulting ap-
proximation error explicitly (see Section 4.5.3), at the moment we will follow a different
strategy and augment our procedure slightly:

1. Flip a common random biased i.i.d. coin Bt with P(1) =62

2. If Bt = 0, stop.

3. Otherwise, sample another common random i.i.d. random variable Zt

4. Discard the old value for At and set It + t = Xt + Zt instead.

Under this procedure, by setting 62 and picking the distribution for Z appropriately,
we can satisfy Property 4.4.1 as long as Wt has a distribution which is 62-approximately
additively constructible out of uniform random variables of appropriate width 0. So, we

have proved the following:

Proposition 4.4.1 If the probability distribution for Wt is 62-approximately additively con-
structible out of uniform random variables with appropriate width 0, then we can choose

(0, t, Zt) so that using our procedure satisfies Property 4.4.L

4.4.3 Encoding the offsets

The important insight which distinguishes this approach from a straightforward application
of Berger's technique is in the way that the offset stream XkMN+iN + kM+i is encoded. As

Figure 4-3 shows, rather than encoding the offset stream into bits independently, we will

use the {fY} to reduce the number of bits required for this purpose. The important thing

that we need to do is to make sure that the encoding can be decoded by the decoder with

access only to information known at the decoder. {Y} can be assumed to be available at

the decoder since decoding the source code for Y in Lemma 4.4.1 only needs access to the
common randomness of the shuffling and the encoded bits themselves.

The random variables (Bt, 4t, Zt, 'i) are all also presumed to be "common randomness"

and known to the decoder. First, let us assume that Bt = 0. In this case, Alt + 64
MtO - 't + 4t is what we want to encode, and the only part of that which is presumed
not to be known to the decoder is the M0 part. The encoding will proceed by induction.

Since the initial condition for the original {Xt} process is fixed at 0, the base case is not
an issue. Assume that we know XkMN+(i-1) + kM+i--. Given that we know YkM+i,N-1,

using (4.11), we can compute IkMN+(i-1)N+N-1 = XkMN+iN-1. We can now calculate the
following analog of Equation (4.12):

AkkMN+iN-1+ '+kMN+iN-1
MkMN+iN -1 413)

As Figure 4-5 shows, the idea is to encode the integer MkMN+iN by losslessly encoding
(MkMN+iN - MkMN+iN) using some self-punctuating variable length code on the integers.
Such codes (eg. the code which uses one bit for the sign and then encodes the magnitude

using the standard binary representation but with a '1' inserted after every bit except the

least significant bit which is followed by a '0') assign longer codewords to integers with
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Figure 4-5: How the dithered quantization feeds into the variable length lossless code
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larger magnitudes in a logarithmic fashion. So we need to understand the probability that
the magnitude is large by looking at:

Xt + Apt Akt_1 + q1
Mt -Mf i [[ 0

Xt + Ttl -[-kt- WI_1+ t

0 0

< 1Xt + Tt Zt - W_1 + qt

-1(Xt - kt) +W1|W I
0

+ (Xt - X)I ±+IWt-I
O 0

By getting a bound on the probability of each of those terms, we are fine. For the first

term, we have:

P(I(Xt-t)I 0) =P(I(Xt--tI 00)
0

< min(, E[(Xt - Xt)2]
(00)2 )

ND 0-2
< min(1,)

Q2

where the first inequality follows from appropriate version of Chebychev's inequality and
the second comes from the fact that the expected distortion on the N-th component of the
block can not exceed the expected total distortion on the entire block.

As long as Wt has a finite variance, Chebychev's inequality will give us an analogous

bound:
lWt_1l E [W?1

P( 0 > 0) < min(1, (00)2

Putting it all together, have:

| (Xt - Xt)I Wi 0
PCiMt - M =0) P(± + 0 -

| (I(Kt Xt)I + Iti-1\ 1)
0 0 -x)

max(P(Xt - kt)| >0-1 P(Wt_Il O>)-1
0 - 2 0 - 2

K max(P(l(Xt -l) >0-1 P(lWtII >0-1
0 - 2 0 - 2

-min(, max(NtD E [Wifl)

- min(1, 4 max(ND, E [W2)((o 1)0)-2)

Now, we can evaluate the tail probability for the length Lt of our lossless encoding of
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any particular Mt. We are interested in large lengths A or bigger and so will assume that

jMt - MtI > 2 throughout. In that case, the length of the lossless code for integer (M -- M)
can be upper bounded by 2 + (1 + 2logj2(M - MI - 1)) since an initial 2 bits are enough
to specify whether we want to move up by 1, down by 1, or stay at the same place.

P(Lt A) P(3 + 2[logM2(Mt - 't I-- 1)11 A)
K P(2log2 (Mt - Al - 1) > A - 3)

< P(Mt-MItl22+1)

K min(1, 4 max(ND 2 , E [Wj)((2 Y2 + 1 - 1))-2)

- min(1, 4 max(ND2 , E [W71 )0 -22 -A+3)

- 32 max(ND 2 ,E[W])-_)

Finally, we can calculate the expected length of this variable code:

E[Lt] jP(L >A)dA
oo

32 max(ND2 , E[W])
< f0min(I ' [2 t 2-A)dA

l 12og2 ( )+max(log2 (ND 2),o102(E[W7])) . 32 max(ND 2 , F [W7])

+/fcoJ 32 max(ND2 , E [W?]) 2A)dA
f5+c021m2in(1,1 2 ()d 0

5+210g 2 (+max(log 2 N(ND2),102(E[W ,2)) m (, W 2

= 5 +2 log 2 (-- ± max(log 2 N + 2 log2 D), log2 (E [WV)) + j2--AdA

S + 5 + 2 og2  + max(log2 N + 210og 2 D, log2 (E[W))

So we have proved the following proposition:

Proposition 4.4.2 Consider Wt with finite variance and approximately additively con-

structible out of uniform random variables of width 0. If Bt = 0 the length Lt of the
encoding for XIt +t under our variable length encoding procedure has

E[Lt] n +5+ 21og2 y + max(log2 N + 2 log2 D, log2 (E [W]))

and a probability for large deviations that drops at least exponentially:

32 max(ND2, E [W2])_
P(Lt A) min(1, 32 N 2 , F 2)

The important fact is that this length grows only logarithmically in N and

It remains now to consider the case where Bt = 1 which occurs with a probability 62.
In this case, we need to encode an approximation to XkMN+iN +CkM+i that gets us within

an appropriately chosen L' of its true value. IkMN+iN + &M+i = XkMN+iN + ZkMN+iN

and ZkMN+iN is presumably known because it is common randomness, all we have to do

is encode XkMN+iN to within an accuracy 0'. It is clear that this can be done using some
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more common randomness by a procedure exactly analogous to what we used in the case
of Bt = 0 except using 0' instead of 9. Basically, we quantize XkMN+iN to accuracy 0'
and then losslessly encode the differential to it from the existing XkMN+iN-1. The only
question which remains is how to choose 0'.

We know that the reconstruction will have:

I N- 1 A2N -_0/
E N (XkMN+iN+j - XkMN+iN+j2 D + N( A 2 - 1_ I2

To guarantee that we get within 63 of D we need to choose 0' so that: 0' < ("At)63.
It is easy to see that

0' = N(A 2 
- 1) 63 AN

satisfies the inequality and gives the desired performance. Using this 0' in Proposition 4.4.2
gives us:

E[Lt] < + 5 + max([12 N + 2w2 D, 1g2(EW )) + 2 log2

+ 5+ max(log2 N + 2log2 D,log2 (E[W)) + 21092 ((N(A2 _ 1)E3 Nln 2()

1
= ln 2 + 5 + max(log2 N + 2 log2 D, log 2 (E [W]))

-log 2 N - log2 (A2 - 1) - log2 F3 + N1log 2 A

In this case, the expected length of the encoding has a linear term in the inner block
length N. However, it is easy to see that the probability of large deviations in encoding
length still drops exponentially at least as fast as 0(2-A):

P(Lt A) min(1, 32 max(ND2 , E [We]) 2 -A)

32 max(ND2 ,E [W?]) _Amin(1, N(A 2 - 1)E3 A-2N

= min(1, 32 max(ND2 , E [W?]) A 2 N-A)
N(A 2 -1)6 3

Combining these results with those from Proposition 4.4.2 gives us:

Proposition 4.4.3 Consider Wt with finite variance and approximately additively con-
structible out of uniform random variables of width 0 with 62 probability left over. Then,
the length Lt of the encoding for t +t under our variable length encoding procedure has

E[Lt] < +5+log 2 (E 'Wo N)+1o2 N+212 D+210g2 +A2 1g2 + N1092 A
In 2 0I I-

and furthermore, the probability for large deviations depends on B, and drops as follows:

P(Lt ;> A) P(Lt > A)
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where:

Lt= 5+21og2 ( +)+log 2 N+210g2 D+log2 (E[Wt])

+ (log2  )+ N log2 A B

+Lt

and Lt has exponential distribution: P(Lt > A) 2-A

Proof: As far as expected length goes:

E[L,] = (1 -- E2)E[Lt|Be =0] + e2 E[jLt|Bt = 1]

(1 - 62) + 5 + max(log2 N + 2 log2 D,1log 2 (E [Wt2%)) + 2log2

+62 + 5 + max(log2 N +2 log2 D, log2(E [Wj)) + N log2 A)

-E2 (log2 N + log2 (A2 -1) + log2 63)

In + 10+g2(E [W] ) +1log2 N + 21log 2 D + 21og2

+62 log2 ( + N log2 A

To see the result for the probability of large deviations, we notice that in the case that

Bt = 0, the inequality P(Lt > A) min(1, 32max(ND2 ,E Vi' )2 -x) can also be interpreted as

saying that Lt can be bounded above by a simpler random variable Lt = 5+ 2log2 (f) +
log2 N + 2log2 D + log2 (E [Wjf]) + L where Lt is a positive random variable with an
exponential distribution P(Lt > A) = 2 -A. For the case Bt = 1, the same argument tells us

that Lt = 5 + 2 log2 () ± log2 N +2 log 2 D + log2 (E [Wf) + (log2 (-L) + N log2 A) + ,t.
Combining them, we can bound L from above by:

Lit = 5 +2og2 + log2 N + 2log2 D + log2 (E [WJ) + (log 2  + N log2 A) Bt + Lt

which proves the desired result.

4.4.4 Putting the pieces together

We are now ready to prove the main source-coding theorem of this section:

Theorem 4.4.1 If {X4} is a scalar Markov process with A > 1 driven by i.i.d. {WJ where
the distribution for Wt is Riemann-Integrable on a bounded set and is continuous outside
that set, then the information theoretic infinite horizon rate-distortion function R (D) can
be approached operationally by variable length codes with access to common randomness.
That is, for every e > 0, there exists a commonly randomized variable length source code

with finite end-to-end delay for which:

lim E -[Length(kf)] R (D) +,E
t->o t 0
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while achieving:

lim E K (Xk--X)2 < D +e

Proof: All the pieces are in place. All we need to do is to show that it is possible to choose
(N, M, 0, E3) in order to achieve the desired performance. The fixed-rate part of the code is
classical and any difficulty would arise from the variable-rate part. Recall that our variable
rate procedure needs to encode At +t only every N samples. Its contribution to the overall
average rate, by Proposition 4.4.3, is:

E[Lt]
N

- +5 + log 2 (E [W7]) + log2 N +2 log2 D + 21og2 ( +62 (log2 (-) + N log 2 A)

N

= 4 + 5+ lOg2 (E [WtB)±+2log2 D)

+(logN

NNA>
(2log2 ()+62 log2

+62 log2 A

The first two terms in the sum can obviously be made arbitrarily small by choosing N large
enough. The third term can also be made arbitrarily small as long as the choice of 0, 62, and

63 does not depend on N. This is true since 0 and 62 are only related to the distribution for
Wt and 63 was free for us to choose. The final term involves making E2 (the probability that
Bt = 1) arbitrarily small, which is possible since Wt is arbitrarily additively constructible
out of uniform random variables of width 0 by Theorem C.2.1.

Making things explicit, given an e, consider E' = '. Since the distribution for Wt
is assumed to be arbitrarily additively constructible out of uniform random variables of
appropriate width 0, it is (E2 = log2 A)-approximately additively constructible by definition.
Then, by Proposition 4.4.1, we know that we can choose 0 so that regardless of the N we
choose, our procedure satisfies Property 4.4.1. Furthermore, this particular choice for E2
also means that the last term the sum bounding the average variable rate is bounded above
by c'.

Next, we can set 63 = E' and calculate an N3 such that if

21og2 (1) + E'Alog2
N > N 10= A(4.14)

we have:
2log2 ( ) +E2 log2  ,

N
Similarly, we can calculate N1 for the first term and see that if

I +5±+log 2 (E [W ])+2log2 D
N > N= 1 (4.15)
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we have
S+ 5 + 1og2 (E [Wt]) + 2 log2 D

N

The case for the second term is even easier since log2 N < vN and so:

N > N2 = 1(4.16)

implies that
log2 N,

N

We can combine (4.15), (4.16), and (4.14) and know that as long as N> max(N1, N2 , N3 ),
the average rate of the variable rate portion will not exceed 4c' = 64. Furthermore, since6
63 = C, we know that the average distortion on the X is going to be below (D + c').

Since RX (D) - lim infNzw+RX(D), we know that we can find N > max(N, N 2 , N3 )
so that RX(D) < R(D) + c'. Property 4.4.1 tells us that for this N, the transformed

{ft} look like i.i.d. samples of the finite horizon problem with horizon N. So, the classical
rate-distortion theorems tell us that we can find an M large enough so that we can encode
the superblock Yk/M+M-1 with rate less than (R%(D) + f') < (RJ(D) + 2e') per sample of
X to a fidelity D + E'. For the distortion this means that since:

M

we know that:
NM

E[ N (XkMN+' ~ XkMN+i) < D + 26'

for every k > 0.
Putting everything together, we then have average rate less than (R (D) +2c'+ 4')

(RX (D) +e) and average distortion to within D + 2' < D + E. The procedure has finite
end-to-end delay by inspection and so the theorem is proved.

4.5 From Variable Rate To Fixed Rate

The use of variable rate codes in Theorem 4.4.1 may be a bit troubling since we are mainly
interested in fixed-rate codes which encode regularly sampled random processes into a reg-

ular stream of bits.

However, one can easily notice that since the blocks 9kM+M-1 are independent of eachYkM
other by construction (a simple consequence of Property 4.4.1) and our dithering process
is designed to make the offsets look independent as well, that the sum of the length of the
variable length encoded offsets is i.i.d. from superblock to superblock. This memorylessness
at the superblock level, and the fact that the variable length segments are self-punctuating,
suggests that this variable rate stream can be buffered (and possibly padded) in order to
generate a fixed-rate stream. With sufficient delay added at the decoder, this fixed-rate
stream can be used to recover the original variable rate stream well in time for successful

decoding.
The only difficulty with this straightforward fixed-rate framing of a variable rate stream
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is in evaluating what happens in those rare cases where the fixed-rate stream lags too far
behind the variable rate one. In such cases, we will not have enough information available
at the decoder at the time when we are asked to output kt. Instead, the decoder will be
forced to emit the best extrapolation based on what we have received so far. Although the
resulting distortion may be very large, it is hoped that it will be compensated for by its
rarity and so will not effect the average distortion by much.

4.5.1 Buffering and fixed-rate framing at the encoder

Let us be explicit about how the self-punctuated variable rate stream is buffered and trans-

formed into a fixed-rate stream:

1. Incoming self-punctuating variable rate messages Sk of length Lk encoding the su-
perblocks ZkkMN+MN are buffered.

2. If the buffer length is less than MNR (presumed to be a positive integer for our
convenience), then enough '0's are added (called 'padding') to the buffer to make it

that length.

3. The oldest MNR bits are sent as part of the fixed-rate stream and are removed from

the buffer. The process goes back to step 1 and repeats.

At the decoder, this buffering is undone assuming that the variable length stream was

self-punctuating and that this punctuation was not disrupted by inserting a string of '0's
between symbols. We also introduce a tolerable delay parameter T which tells how far in

the past we want to reconstruct now.

1. Buffer incoming bits from the fixed-rate stream

2. If the k-T message Sk-T is complete and available in the buffer, decode k(k-T)MN+MN

and continue from step 1

3. If the Sk-T message is not completely in the buffer already, use everything we have

received so far to compute our best estimate for the relevant (kT)N+MN and

continue from step 1

The choice of fixed rate R must be at least slightly higher than the average rate of
the variable rate code in order to be able to absorb the effect of the rate variations in the
original code. In fact, we would like the fixed rate code to have the following property:

Property 4.5.1 The fixed rate code is such that:

" ("Rare Overflows") The probability that the message Sk-T is not completely in the

decoding buffer at arbitrary k goes to zero as T tends to infinity.

" ("Light Tails") There exists some e > 0 so that for every H, the probability that the
message Sk-(T+H+1) is not completely in the decoding buffer at arbitrary k is less than

((A ± E) 2 )-MN times the probability that the message Sk-(T+H) is not completely in
the decoding buffer at k.
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The first part of the property tells us that "overflows" can be made arbitrarily rare by
increasing end-to-end delay. The second part of the property tells us that larger overflows
are much rarer than smaller ones. This lets us guarantee that the occasional overflows do
not end up dominating the expected squared error distortion in the sum as shown by the

following lemma.

Lemma 4.5.1 If the fixed rate R code corresponding to a variable rate code of Theorem
4.4.1 with expected average distortion D satisfies Property 4.5.1, then for all 6 > 0 we can

choose a T so that the expected distortion is less than D(1 + 6).

Proof: For notational clarity, we will use X to refer to the reconstructions from the fixed-rate
code and k to refer to those from the original variable rate code: The expected distortion

on a block is:

N-1

E S (XkMN+iN+J - XkMN+iN+ji)
3=0

I N-1
- P(no overflow)E 5 (XkMN+N+j -XkMN+iN+j) 2 no overflow

N-1

+ P(overflow = l)E [+ (XkMN+iN+j - XkMN+iN+j) overflow I
==10

< DP(no overflow) + EP(overflow = l)(D + K)A 2 MNI

where we define

K =5A- 2 E [W2]
l=0

E [W 2 ]

1 - A-2

to help bound the additional predicted squared error introduced by the driving noise that
we have not accounted for at all in the extrapolations. Continuing, we get:

N-1

E [N (XkMN+iN+j -XkMN+iN+j]

K DP(no overflow) + (d + K) 5 ((A + 6 )-2MN P(overflow = 1 superblocks)A 2 MNI
1=0

K DP(no overflow) + P(overflow)(D + K) 5 (AA)2M N
1=0

" DP(no overflow)+ P(overflow) D±K
A -(( )2MN1-((A+E )

S D1
" D 1 + A D_ P(overflow)

1 A(g)c
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Property 4.5.1 assures us that we can choose a T large enough so that P(overflow)) is small

enough to assure that n'2 MN)P(overflow) < 6. El

The problem then reduces to seeing whether Property 4.5.1 can be achieved by a fixed
rate code.

4.5.2 The difficulty with the original code: too much variation

We now examine the variable rate source code of Theorem 4.4.1. Recall from its proof and
Proposition 4.4.3 that the variable rate portion has:

E[LtI N 2gD + 5 + 10g2()E (W2])+ 2109g D
N (N±

Slog2 N

+ 2log2 ( + ±62 lOg2t)
N

-[+62 log2 A

In this expectation, the -I comes from the exponentially distributed Lit and the terms
multiplied by 62 represent the contribution to the expected length coming from the constant-
sized random variable (a multiple of Bt) which is present with probability 62. The Lt are
independent from superblock to superblock, while the Bt are all independent.

The 62 log2 A portion coming from the Bt term is of particular concern to us since it is
of the same order as the fixed-rate R itself while the other terms all die away with larger N.
For the moment, concentrate only on this part. Suppose that the rate we allocate in the
fixed rate code is C62 log2 A with C> 0 and C2 still small relative to 1. Since the variable
rate part occurs only every N time steps, this gives us a total rate of CNE2 10g 2 A for each
sample which takes 0 bits with probability (1 - 62) and takes N log2 A with probability 2.
Using Chernoff's bound, we can calculate the probability that the sum of j independent
such random variables will overflow by:

P(overflow) = P(Z N log2 ABt > jCNE2 log2 A)
t=1

= P(Z Bt >C62)
t=1

< inf ((1 - 62) + 62e')4 e-siC2
s>0

= inf(1 - 62)e-sc2 + 62e -s(c 2 -1)
s>O

We can calculate the minimum by taking the derivative with respect to s and setting it to
zero giving us:

-CE2(1 - 62)e-cE2 + -(C62 - 1)62 (Ce2-1) = 0

which has a unique solution:

S = ln C(1-C2)

(1 - CC2
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which also minimizes the expression and results in an overflow probability Ki that tends to
0 exponentially with increasing j.

However, our interest is also in the relative probabilities of different sizes of the over-
flows. Focusing only on the (N log2 A)Bt term, we notice that in order for the sum of j
such variables to overflow more than H superblocks, the sum must overflow by more than
HMNR. Putting it together and using the argument above, we get:

P(overflow more than H superblocks)

i

P( N log2 ABt jCNE2 log2 A + HMNR)
t=1

= P(Bt JCE2 + HM g )
t=1 10g2 A

< inf ((1 - 62) + 620)J Cs(JC12+HMIA)
s>0

-C 3
6 SHMRinf (((1-cE2) + E2e)e-SC6 2  e- 102 A

s>0

We can plug in the s value from the previous minimization and thereby get a slightly loose

bound1 :

P(overflow more than H superblocks)

HMR
_< sic log 22A

H MR
- (>I - C2 l 02A

C ( 1 -- ) 2)

j ( 62 MR)H

C(1- 2) 1 - 62102 A

This also clearly drops exponentially in the amount of the overflow, but the question is
whether it drops fast enough to satisfy the "Light Tails" part of Property 4.5.1. For that,
we need to be able to get some E > 0 so that:

1 62 MR, -MN
( ) lo 2A < ((A+ )

C(1-62) 1 - 62

The M in the exponents cancel out, but even then, we are left with:

( 1 - 2) < (A + R)43)-

C(1-62) 1 - 62 -- A)

Since we expect both C62 and E2 to be small, this means that we roughly need C to be

of the same order as ((A ± R)2 ^ N which means that 62 must be much smaller than

A )2Ig2 A -N

((A ± )2 ) .N In order to make Q2 that small, 9 needs to be small too. But even if

we assume that the density for Wt is Lipshitz, Theorem C.2.2 only lets us establish a linear

'See Section 7.2.1 for a tight one since this is effectively an embedded erasure channel with feedback.
Using the tight bound does not change the essential flaw of this code.
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relationship between 0 and 62. So, an exponentially small 62 would necessitate a substantial

log2 - and prevent us from approaching the rate-distortion limits in expected rate.

Although the value for s we used was conservative, it turns out that even the optimal
value for s is only different by a small constant factor. This problem is fundamental. The
variation in rate introduced by the Bt terms is too much to be safely tamed by a fixed-rate

code.

4.5.3 A "less variable" variable rate code

Fortunately, there is a way of adjusting our variable rate code and its analysis to elimi-
nate the variation caused by the Bt. Recall that the purpose of the B is to allow us to

perfectly simulate the Wt. In Figure 4-3, this allowed us to use a vector quantizer tailored
to superblocks consisting of M independent samples of the finite N horizon version of the
original source.

Without the Bt, the superblocks would still consist of the M independent samples, but
they would be samples of something which had only approximately the same distribution
as the finite N horizon version of the original source. Lemma C.2.4 lets us establish that
we have the following relation between the rate-distortion performance of the two:

Lemma 4.5.2 Let {XJ be the original finite N horizon source driven by {W} and let {X'}
be the same, but driven by {Wf} where W' = Wt except for W. Let W1 = (1- BE)W+BCZ
in the sense of distribution where B, is an independent Bernoulli random variable. Then:

R'( ) <;IR(d)
N 6IV

Proof: Let Y be the vector representing X and Y' be the vector representing X' Then,

by Lemma C.2.3, we know that we can define an appropriate Z so that

Y=(I - Be)Y' + BfZ

Now, recall that:

R ( )± inf I(Y'; Y) (4.17)1 -e Ny<N

and:
Rf (D)=inf I(f; Y) (4.18)

N p :Ep(Y2 Y)] <ND

Let p be a transition measure which satisfies the expected distortion conditions and gets

within some 6 of the infimum in (4.18). We can use this transition rule for the f' and
Lemma C.2.4 tells us that:

E [p(Y',Y)] < 1E Ep(FY)

ND
1 - E
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and so it is a valid transition rule for (4.17). It need not be the infimizer and so we get:

R X( D I(Y'Y)

< -I(Y; Y)
1 - E N
1-e

< I (R(D)+ 6)
1 - C

Since 6 was arbitrary, the lemma is proved.
This means that we can choose 62 small enough so that the fixed rate part of the variable

rate code of Figure 4-3 is within 1_1E2 of the average rate required for the code with the Bt
terms in it. A quick application of Proposition 4.4.2 gives us the following:

Proposition 4.5.1 Consider Wt with finite variance and approximately additively con-
structible out of uniform random variables of width 0 with 62 probability left over. Then, the
fixed rate part of the code in Figure 4-3 has average rate which can be made to be arbitrarily
close to lR(D) as long as we are willing to accept average distortion D per letter.

Moreover, the length Lt of the variable rate encoding for Xt + Ct under our new variable
length encoding procedure has

1 (1 D2E[Lt] I < +5+2log 2 y- +log 2 N+2og2  +log 2 (E[Wj)
In 2 01-62

and furthermore, the probability for large deviations drops as follows:

P(Lt A) < P(Lt A)

where:

Lt = 7 + 210g2 ( +log 2 N + 2log2 D + log2 (E [W2j) + Lt

and Lit has exponential distribution: P(Lt A) = 2-A

Proof: Everything follows directly from the arguments above and Proposition 4.4.2. The
only distinction is that we use D in place of D in some places and bound the logarithm1-62
of this by 1+ log2 D since C2 can be assumed to be small. El

4.5.4 Dealing with the remaining variability

The only question now is whether the sums of the Lt are such that they satisfy Property
4.5.1. We know that the Lt from different superblocks are independent from each other by
construction. Within a superblock, the situation can get trickier, but let us ignore that for
a moment and just assume that everything is independent.

Assume that we allocate an extra C4 N bits for each Lt. Then:

P(overflow) = P(Z t jNE4 )
t=1

< inf e-sNE4
-s>O( (In 2 -- s) In 2
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Taking derivatives and minimizing gives us a unique solution:

s = ln2 - (4.19)
NF4

which we can plug back in to get:

P(overflow) <;( (NE4 )2-NC4

This clearly tends to 0 with increasing j as long as NE4 is large enough.

However, our interest is also in the relative probabilities of different sizes of the overflows.

As before, we get:

P(overflow more than H superblocks)

= P(C L > jNc4 ± HMNR)
t=1

< inf 1 e -sNE4 e-sHMNR

< s>O (In2 -s)Iln2)

We can plug in the s value from the previous minimization and get:

P(overflow more than H superblocks)

< (2(N 4 )2-N) (ln2- 1)HMNR
- In2

( (NE4)2-NE4) Rn2--)-MN H

This also drops exponentially in the amount of the overflow. However, to satisfy Property

4.5.1, we must have some c so that:

Rln2- Nq+A )2

We can choose NE4 large enough and E small enough to do this whenever we have:

R > 2 log2 A (4.20)

Given that R > log2 A is a necessary condition for finite distortion, condition (4.20)

is not that demanding. In fact, this condition (4.20) can be tightened up by using a less

wasteful universal code for the positive integers. Above, we use 21log 2 ( bits to store an

integer of size (. This can be brought down to log( where log represents the sum of

iterated logarithms.[11] log* is less than any constant K > 1 times the logarithm and

therefore results in a Lt with distribution having P(Lt ;> i) 2)2K even if all we had

was a Chebychev inequality bound for the probability of large distortions. This would serve

to move the In 2 over to be closer to 2 In 2 in equation (4.19) for the minimizing s and

thereby reduce the condition (4.20) to give:

R > log 2 A
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This is tight since all codes must use least that much rate.

The only issue which remains is the question of the effective independence of the Lt
within a superblock.

4.6 Discussion

In this chapter, we have given a simple causal code that achieves the fundamental sensitivity
bound for unstable scalar processes driven by bounded noise. We have also resolved a long-
standing open problem by giving a variable rate code which approaches the rate-distortion
performance limit for the infinite-horizon average squared-error distortion problem on ex-
ponentially unstable scalar Markov processes. Furthermore, we suggest that our initial
variable rate code is fundamentally "too variable" to be reinterpreted as a fixed rate code

and have argued that other codes exist which are far less variable. Even so, many open

questions remain and we intend to resolve them in the future.

4.6.1 More General Sources and Distortions

It should be clear that the proof of Theorem 4.4.1 does not rely crucially on the fact that
{XtJ is scalar or that we are using the squared error distortion. The core of the argument
is that the distortion measure penalizes larger differences more than smaller ones in a

polynomial way. Via the logarithms involved in universally encoding integers, this gives us
a nice exponential distribution for the variable length part of the code. It therefore seems

clear that everything still works in the r-distortion case as long as r > 0. In vector cases,
as long as the distortion measure has "full rank" in some sense, things should continue to

work.

If X was a finite i-dimensional vector, then we could apply a vector version of the 0-
dithering to each of its components and do the reconstructions in an analogous way. The
only difference would be a factor of I increase in the average contribution of the variable
rate component of the code. But since this component of the overall rate can be made
arbitrarily small, this constant factor increase does not change the flavor of the result. In
the same way, if the process {Xt} was not Markov and was instead auto-regressive to some
finite order, then we could apply the same sort of argument on a state-augmented version
of X which was Markov. So, the theorem, though strictly proved above for only the scalar
Markov case, holds more generally of vector valued finitely autoregressive processes.

Furthermore, we suspect that a minimal canonical state-space realization argument
would extend this to any signal model within the autoregressive moving average (ARMA)
class, as long as it can be finitely parametrized. Infinite order unstable models are likely
going to be much more problematic. Time-varying linear and nonlinear models might also
be somewhat difficult without a good way of bounding the extent of the time variation.

Of course, we would also like to see these ideas applied to real world sources rather
than just theoretical models. We suspect that the arguments given here can be used in
video-coding to remove the need for regular synchronization frames as a way to prevent
coding artifacts from accumulating. This might give a major savings in the bitrate required
for slowly varying scenes. In addition to multimedia signals, it will be interesting to apply
these ideas to the encoding of other nonstationary stochastic signals where delays are a

matter of concern.
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4.6.2 Sensitivity of Near Optimal Codes

A natural question is how sensitive the codes in the above sections are to bit errors in the
past. Theorem 3.3.2 already tells us that A+(d) must be growing exponentially at least as
fast as A =2d= 22 log2 A when viewed under the squared-error distortion measure. The only
question is whether it is very much faster than that.

Since the Xt are used to make the sub-blocks of size N look independent of each other
in Figure 4-4, we know that any long range propagation of errors will happen through the
Xt stream which is recursively encoded unlike the Y. The tricky part is the lossless code for
the integers. That code encodes possibly exponentially large quantities in a linear number
of bits and is hence very sensitive to bit errors. If we are not careful, the sensitivity of the
whole code could be very large.

It seems likely that if we assume that the Wt have bounded support, then the decoder
can detect when an error is placing us completely out of bounds and can thereby limit this
exponential problem. With those limits in place, the code should have a A+(d) which is
close to the fundamental bound given by Theorem 3.3.2, only with much larger constants.

In general, removing the bounded noise assumption should be a goal and we suspect
that it is possible with proper assumptions on the tails of the driving noise distributions.
After all, Nair [45] is able to track a system driven by unbounded noise in the estimation
setting and we suspect those arguments would work here as well.

4.6.3 The Fixed Rate Case

We strongly suspect that there is a way around the currently unjustified assumption that
the errors on the encodings of sub-blocks within the same superblock are independent. A
naive bound will not suffice since we currently have no limit on how large M can be as
a function of N and D. If the size of M can be kept small, even the simple bounds will
work. This will probably require a closer look at the properties of the vector quantizer we
are using on the superblocks. If M cannot be made small, we might be able to limit the
probability that the reconstructions are very bad on many sub-blocks at once. As long as
we can avoid such cases, we should be fine.
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Chapter 5

Reliable Communication of "Weak
Bits"

We have seen that the main problem we encounter in attempting to track an unstable
process across a noisy channel is the steady accumulation of errors. This accumulation
is unacceptable for bit-streams resulting from weak source codes. To allow ourselves to
reliably transport weak bit-streams, we have to generalize our concept of a decoder. Having
done that, we introduce a new stronger sense of reliable transmission and an operational
notion of capacity, which we call anytime capacity, that goes with it.

5.1 Anytime Decoding

Definition 5.1.1 Let T be the sampling time of the channel and 0 the relative offset of the
bit-stream that entered the encoder. For a positive real number R, a rate R bits per unit
time anytime channel decoder is a sequence Da of functions Di from B into {0, 1}L(9+i)Rri.

Rather than producing a single output stream, these anytime channel decoders give
updated estimates for all previous input bits with each received symbol from the channel.
This eliminates the question of which output bit corresponds to which input bit and in
principle it allows the system at the output of the channel decoder to decide (possibly
adaptively) how much it is willing to wait for a given bit.

Definition 5.1.2 An output bit delay selector is a sequence dj of non-negative real num-
bers that combines with an anytime decoder to generate an output bit sequence as follows:
si = (Dff(b ))j where = -[ ) ± + 1. If di = d for all i then we call it a fixed delay

selector of delay d and use the shorthand notation do7 = d.

The d. is used to select the delay (in units of time) experienced before reconstructing
bit i. The definition that we have used for delay might seem a little odd but it is motivated
by the idea that zero delay should correspond to the earliest possible time that the decoder
could have received any signal causally dependent on the bit in question.

With a specification of delay, we can evaluate the performance in terms of probability
of error at any time naturally as follows:

Perror (E, D', di,i) = Es [L8 1 [ ASi)

{s 1 I R- , ,,
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and can also consider the probability of error independent of time:

Perror (Z, D', d' ) = sup Perror (S, Da, di,Zi)
i>O

Here, the probability measure used for the expectation is over the binary strings S$ and
is assumed to be uniform (i.e. each bit is equally likely to be a zero or a one and they are all
independent of each other). The probability of erroneous decoding is calculated based on
all the remaining randomness in the system. If the encoders and decoders are deterministic,
this means the randomness is introduced by the channel. If we allow common randomness
at the encoder and decoder (by means of a common dependence on an additional random
variable), that is used in computing the probability of error as well.

To see that anytime decoders and delay selectors are truly a generalization of our other

definition of a channel decoder, consider the following proposition.

Proposition 5.1.1 For any 0 offset, rate R channel decoder D with reconstruction profile

rj , there exists a rate R anytime channel decoder D' and output bit delay selector dt that
generates the same set of output bits at the same times.

Proof: We just construct the anytime decoder and delay selector as follows:

L ~~i) L 6
ri) J T

0 H otherwise

=20 +r - i
R

It is easy to see that this construction gives the desired result.

5.2 Anytime Capacity

Proposition 5.1.1 above does not give us anything new since the resulting anytime decoder
never repairs any errors made at previous time steps. To explicitly consider that possibility,
we introduce a new decoder:

Definition 5.2.1 The maximum likelihood anytime decoder D' based on encoder E is
defined as follows:

Da?(b )= arg max P(Bg = bM A _ S(s(O+i)RTJ
i t(O+ ) R ' er ,}]* i) rS1i

Estimating bits on the basis of maximum likelihood (completely in the spirit of sequential
decoding [71]) is clearly the best that any decoder could do given no further information
about S'. This allows initially incorrect estimates to subsequently be corrected and lets
us to define a new notion of reliable transmission that explicitly considers the rate at which
past errors get corrected.

Let f (d) > 0 be any decreasing function of delay d. We say that an anytime encoder and
decoder pair (8, D) achieves Ranytime(f) iff there exists a finite constant K > 0 so that

the probability of error for every bit position decays with delay at least as fast as Kf (d).
This notion of reliable transmission naturally induces a kind of capacity:
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Definition 5.2.2 The f-anytime capacity Canytime(f) of a channel is the least upper
bound of the rates at which the channel can be used to transmit data with an arbitrarily

small probability of error that decays with delay at least as fast as the function f does.

Can ytime(f) =sup{Rl(K > 0, Rate(, D) = R) Vd > 0 Perror(E, D, d =d)<;Kf (d)}

The idea is that f is a function of delay d which decays to zero as d - 00. We want

more reliability for older bits than for the more recent ones While this may superficially
remind us of the prior work on unequal error-protection codes[47], it is quite different since

in our formulation every bit in the stream starts out recent but eventually becomes old. In

this sense, all bits are fundamentally equal even though at any given time, they are treated

differently. Our work here is closest in motivation to the work of Krich [40, 41, 42] that we

mentioned earlier.

For most of this chapter, we use an exponential rate of decay because it is convenient

for our purposes. Instead of parametrizing the anytime capacity with a general function

f (d), we use a scalar a which tells us how fast the exponential decays with d.

Definition 5.2.3 The a-anytime capacity Canytime(a) of a channel is the least upper

bound of the rates at which the channel can be used to transmit data with an arbitrarily

small probability of error that decays with delay at least exponentially at a rate a.

Canytime(a) = Canytime(t-ad)

The definition parametrized by the scalar a should be reminiscent of definition 2.2.4
for the reliability function. In our definition of anytime capacity, however, we hold the

encoder and anytime decoder constant depending on the rate R, while allowing ourselves

to adjust the probability of error purely by the choice of delay selector. Moreover, we want
our probability of error to be less than K2-ad for every delay d and for every bit rather

than just for a single d or a subset of bits. Thus, our encoders need to be "delay universal"

in this sense.

We also do not restrict ourselves to any particular structure (like block or convolutional)

on the encoder a priori. Finally, this definition of anytime capacity is an operational one.
It tells what we mean but does not give us a way of calculating its value. The interesting

aspect of the definition is the new and stronger sense of "reliable transmission" that the

function f introduces. The shift is conceptual. Rather than viewing the rate at which

the probability of error goes to zero as a proxy for complexity or as a way of evaluating

a family of codes, we are demanding that the probability of error goes to zero for every

bit in a given code! This is certainly related to the work on the bounded-time decoding of
convolutional codes in [19, 20]. The difference is that we require the probability of error to
go to zero as delay tends to infinity while in the case of bounded-time decoding, it tended
to the probability of error of the underlying finite constraint-length convolutional code.

An interesting property which illustrates the power of our new sense of reliable trans-

mission is the following:

Lemma 5.2.1 If Zd f(d) < oc, almost every bit is eventually decoded correctly. Let S =

Sj when using the fixed delay selector d. For any f (d) that is summable, if R < Canytime f)

then ](E, D) such that for allJ > 0 the sequence [S, 5),...] eventually converges to the
correct value Si and stays there with probability one.
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Proof: We will use the encoder and anytime decoder from the definition of f-anytime
capacity. To show that it is eventually correct, we only need to show that with probability
one, it is wrong only a finite number of times. Let W be the random variable that represents
the number of entries in the sequence (Si,58],...) that are wrong. So W = Z?2o0(1 -

6(SI, Si)) where 6 is the usual Kronecker delta function. Then, taking expectations:

E[W] = E[Z(1-Si(5lS)]

E [(1 - 6(sSj))]
d=O
00

E [P(sd S)]
d=O

cc

ZPerror (,D', d' =-d)
d=O

< ZEKf(d)
d=O

< 0c

Since W. has a finite expectation and is a positive random variable by construction, it has
a zero probability of being infinite. Hence, with probability one, for any j our estimates
will be wrong only a finite number of times [Ti, T2,...,TN(,)](w). This finite set always has

a largest element TN(w)(w), and hence all 5(w) = S as long as d > N(). l
It should be clear that Lemma 5.2.1 applies in all the exponential cases of anytime

capacity as long as a > 0. With this, we can relate our new notion of reliable transmission to
the traditional ones. Clearly, Co Canytime(f) C for all f(d) which have limd& 0 f(d) =
0. The main difference between zero-error capacity and anytime capacity is that zero-error
capacity requires us to know in advance exactly when the bit is going to be received correctly.
Anytime capacity is not as stringent and lets the time of final correct arrival be somewhat
random and to vary based on what the channel actually does (and possibly the input
sequence itself). In particular, we can easily see how for a binary erasure channel with
noiseless feedback our simple buffering encoder described in Figure 2-1 and given by (2.2)
and (2.3) can be used to get non-zero anytime capacity at an exponential rate of decay.

This sort of relaxation of Shannon's notion of zero-error capacity is also often justified in
real applications. For example, it is standard for "error-free" reliable transmission protocols
on the Internet to not guarantee a time of arrival for the transmitted bits.[51] In a sense,
our definition of anytime capacity is the natural generalization of the way in which TCP/IP
gives us reliable transmission.

5.3 Lower-Bounding Anytime Capacity without Feedback

Having a definition of anytime capacity is only interesting if it is non-zero in some interesting
cases. The erasure case with noiseless feedback seems a little special. But in this section,
we will show how it is possible to have a non-zero anytime capacity even for channels
without any feedback at all! We will use a random coding argument using our definition
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Figure 5-2: A general channel encoder viewed as a tree.

of encoders.1 After illustrating how they work for the binary erasure and AWGN channel,

we will use random encoders to prove Theorem 5.3.3 in which we show that for memoryless

channels, the block random coding error exponent can be used to give a lower bound to the

a-anytime capacity.

Definition 5.3.1 A random rate R offset 0 encoder S drawn with probability P(a) is

an encoder for which every possible channel input ai = (j(+i)RT) is drawn from the

channel input alphabet A according to the distribution P(a). Furthermore, gi(x iO+i)RT) is

independent of j (+j)R) whenever either i jj or x(6O+i)RTJ [(9O+j)RTJ

As Figure 5-2 illustrates, this can be thought of as a labeled tree with an independent

random variable drawn according to P(a) sitting at every intersection of the tree with

vertical lines drawn at [r, 2T ... .]. The input bits s' are used to select a path through this

tree, and the encoder emits the realizations of the random variables it sees along the path.

Our analysis of random encoders will tell us the expected behavior. There are two

ways of interpreting this: either as the behavior of an encoder/decoder system with access

to common randomness (ie. both the encoder and decoder are dependent on a common

random input V), or as the expectation taken relative to a particular probability measure

over the set of deterministic encoders.

5.3.1 Binary Erasure Channel

We will start with the binary erasure channel because it gives insight into how a random

encoder combined with a maximum likelihood anytime decoder can actually work. The first

'Here one sees the connection of our encoders with the tree encoders of [71] and more recently in the

Computer Science community: [58] and [52]; though they did not consider them as being actually infinite

as we do. However, these are not related to Berger's tree codes in [6] which are not causally encoded.
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thing we notice is the following.

Proposition 5.3.1 For a binary erasure channel, and any b E {0, 1, 0},

P(BI-MF=a 0 if]j<ia Ab $0
B =b A 1 =a) = ek(i - e)ik otherwise

where k is the number of erasures in b.

Proof: This is a simple application of the definition of a memoryless binary erasure channel.
The only errors possible are erasures and the probability of an observed sequence only
depends on the number of erasures.

This means that given an observed sequence b', all we can really do is rule out certain

input sequences.

Definition 5.3.2 If P(Bi = bi A &= (s(e+i)RTj) = 0, we call the sequence s (+i)R n-

compatible with b'4. If all possible extensions (9±i)R of a subsequence s (j < (0 + i)RTJ)
are incompatible with b1, we call the subsequence s] incompatible with b as well.

The nice thing is that once a certain input sequence is ruled out, so are all extensions
of it.

Proposition 5.3.2 For all encoders E, if s is incompatible with b, it is also incompatible

with all extensions bl'.

Proof: This is a consequence of the binary erasure channel's memorylessness.

r - 1+' Aj - g(L(O+i+)RTJ))
P ( B'j+' = b'+' A'+ = C( s,(~~

= P (B = b Al = (s(6+i+1)R p(J=)+) P B1 = b% A+l £9(s0+i+l)RTJ

P (B= bl A = Es((i)RJ)) PB = bt Al - (s((O+i+1)RT))

=0

Thus it is incompatible with the extension as well. E
We can now construct the following nested sets. Let C (b) be the set of possible si E

{0, 1}- that are not incompatible with 14. By construction, every element s +k E C+k(bl)

is an extension of some si E C (1). Conversely, every truncation s of s +k E Ck(b) is an

element of C (b). It is also clear from Proposition 5.3.2 that C+t(bl+') C3C (b). Further-
more, C (b) can never be empty since the true input sequence is always compatible with the
observed output if the observed output is truly the output of a binary erasure channel. So,

11C (bk)jj, the cardinality of the set CJ(bl), is bounded below by 1 while being monotonically
decreasing. Thus, for any possible given realization of b' we know limij, 11C(b)11 exists
and therefore so does the limiting set C7 (bo).

In particular, if the set C (bj) is a singleton, C(b) will have become a singleton at
some finite time i. At that point, we know from the nesting properties that for all k < j,
1C(b)II = 1 as well. Finally, for convenience whenever j < 0, we set CJ = {0} so it is a
singleton consisting only of the empty set.
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Proposition 5.3.3 For 0 < [(0 + j)RTJ < i we have:

P(11C(B4)II > 1) >:P (C_,,I(B')I > 1 QCk(BD)1 i=)
k=1

Proof:

P(JIC3(B-)A > 1)

= P1C3(B')|| > 1 I1C_1(Bt)II 1) P (IIC> 1(B)I =1)

+P (IIC(BDj> > IIICkH(B=)1) > 1) P (IC_Q(B)II > 1)

< P5 F ( Cj)>(III> C_1(B ) =1)CP(IkC(BDI (BI) 1) + P(1CC3kB(B')I > 1)

< P (HCy-k+1B) > 1 C k(B)| = 1) P(C (B')l=1)
k=1

P |C)--k+1 (B') 11 > 1 C B")II

k

(1C k+1(B')|| 1 1C l- (B')I| = 1)

where the first inequality comes from the fact that probabilities are bounded above by 1. 0

We need to be able to say something about P ( C>k+(BI)II > 1 ICj(BI)1I = 1) in

order to use this proposition. This is the probability that the first remaining ambiguity in

the stream is seen at bit j - k +1, given that it is unambiguous before that point. To bound

it, we will consider a random encoder S with P(0) = P(1) ='

Proposition 5.3.4 Assuming the input stream S' is generated by i.i.d. fair coins inde-

pendent of the rate R random encoder S, for the binary erasure channel we have

P(CJ--k+1(BI1) > 1 IIQCk(Bj)H =1) 2 (2ltR;)

where the probability is taken over both the channel and the random ensemble of encoders.

Proof: For the event {|C -k+1(B)I > 1 |C)k(BI)1 = 1} to happen, there must be at least

one sequence of bits (--k+2, . .. S,8[(O+i)RJTJ) such that the complete sequence (s1,.1.. , si, 1-

Sj-k+1, j-k+2,-- , [(jO+i)RTJ) is not incompatible with Bl. The first spot in the channel

input where this would possibly be visible is [-i+1-0, the index of the first channel input

which depends on the erroneous bit (1 -- sj-k+1)-
Let A' = (A -k+1- , . . . , Ai) be a candidate transmitted string that, due to channel

SRr

errors, ends up indistinguishable from the true transmitted string A' -(A -k+1- ... , Ai),

where 1, the length of this sequence, is:

= i-[ k +1 - + 1 (5.1)

Because of the erroneous bit (1 - sj-k+1), we know by the definition of a random encoder

that the A' is independent of the true A'.
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The probability that a randomly generated A' would be indistinguishable from a partic-

ular A' is: ~'o " _l where I - m represents the number of channel errors that

occur during the transmission of this sequence, 2 is the probability of matching a random

binary string of length m, and the other terms represent the probability of seeing I - m
errors in a sequence of length I where the error probability is e and errors are i.i.d. This

probability sum can be simplified to (L')' and represents the probability that a particular

candidate A' string is not inconsistent.

To bound the probability that there exists at least one such candidate, we sum over

all possible candidates. Regardless of offset 0, a sequence of 1 channel uses spans at most

FlRT1 < 1 ± l+R input bits and there are only at most 2 1+lr possible bit sequences. So,

P (ICj-k+1(Bi)II > 1 |Cj _iB) = ) 2+ _+l_ 21-r giving us the desired
result when we substitute in the definition for I given in (5.1).

The approximations used in Proposition 5.3.4 above are conservative, since there are

not really 2 [IRT1 independent possibilities for A'. There are that many choices for the final
letter of the string, while there are at most two possibilities for the first letter.

Combining Propositions 5.3.3 and 5.3.4 gives us the following theorem.

Theorem 5.3.1 For the binary erasure channel with erasure probability e, Canytime()
1--log (1+e) - a with the inequality satisfied by a suitable rate encoder/decoder system with

T

common randomness.

Proof: At time i we have P(SJ # Sy) P(IIC(Bt) I > 1) since there has to be some
ambiguity if there is an error. Then we can use Propositions 5.3.3 and 5.3.4 to give us:

P(1C(BI)II > 1) P (IICk+(BDII > 1 IC-k(BJII = 1)
k=1

00 + [-k-+1-0 +

<E 2 (21-R
k=1

00 + e

1 ( 2 1-R

2 { +e R

1+e

2( +e -1+-

\21-A

I+e
2 1-Rr

The geometric sums only converge if 1+ e < 2 1-RT or equivalently R < 1-log2 (1+e). In that

case, notice that the probability of ambiguity at the j-th bit at time i is an exponentially
decreasing function of the time delay iT - 2 1:q0 Taking logarithms and solving for the

information rate R as a function of the exponential decay rate a gives us R = a(+e)

proving the theorem. E

This theorem establishes a lower bound on the anytime capacity of the binary erasure
channel. It is easy to see that this lower bound does not conflict with the classical Shannon
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capacity of this channel 1Tc since R < -log 2 (1+e) < 17. However, the way we proved it

showed that for this particular channel, the anytime decoder can actually provide additional
information. It can tell us when it knows the transmitted bit for sure (when Cj is a singleton)

and when it is still uncertain. In this aspect, it is like the situation when using the system

with feedback given in (2.2) and (2.3) that implicitly requests retransmission of garbled

bits. There too the decoder can tell when it knows a bit correctly.

5.3.2 Additive White Gaussian Noise Channels

To see that the binary erasure channel is not a fluke, we examine the scalar additive white

Gaussian noise channel with a power constraint P. Without loss of generality, let us adjust

units so that the Gaussian noise on the channel has unit variance. Once again, we will

use a random rate R encoder E with channel inputs drawn i.i.d. according to a zero-mean

Gaussian with variance P. It should be clear how the encoder satisfies the power constraint

for the channel by construction.

The main difference in the AWGN case is that there is nothing analogous to Proposition

5.3.1 since it is impossible to completely eliminate any possibility. But it will be possible
to get an analog of Proposition 5.3.3.

First, let us look more closely at the maximum-likelihood anytime decoder. Because

the received value is drawn from a continuous set, we must use a density rather than a

probability.

D?(bk) = arg max p (B = 4I A = E(s(O+i)RTJ

Z[(6+i)Rr ]C{0,1) [(+i)RrJ

arg min (b -

sL(ft+i)RJE{o,}L(o+i)RrJ j

=ar g min (bj 14( 9j R
s 9+i>RrJ Cf0,13t(O+i)Rr] t

The intuition is that the true path will have an average cost near 1 since the cost will just

be the result of the channel noise. Meanwhile, false paths will eventually have average costs

near 1 + 2P. If we wait long enough, the strong law of large numbers tells us that all false

paths will reveal their falsity.

Proposition 5.3.5 For 0 < L(O + j)Rr] <; i we have:

P((D?(BI)) jA sg) < Z:P(t(D(B)_k+1 si-k+1 Da(B')k S -
k=1 j k+1 --o

Proof: This is very similar to Proposition 5.3.3 and proved by induction.

P((Da(B)) sj)

< OP((D(BI)j $sK,)
±P)j4((Bl)) -1j-1= )

P((Di(B')j :A sj Da(B S _)( Di(B) =

+ (M(B) -s
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4DS(B) s Di(B'))j = s7_') + P((D(B)j # si4-)

P(? (BD)Jkl s#k±1 (v?(B)) t st)j
k=1 00k_00

< P((D a ) s+1(Y(B i k s -k

k = 1 j - k + 1 - k + 1

The base case of the implicit induction holds because by assumption all bits must agree at

or before time zero. E

As before, in order to use this proposition, we need to be able to say something about

the probability P((DT1(B:)) A k S' 5 j-k+1 (D(B))jt = si_4). This is the probability

that our decoded stream has the first error at bit j - k + 1, given that it does not have any

errors before that point.

Proposition 5.3.6 Assuming the input stream Sf' is generated by i.i.d. fair coins inde-

pendent of the rate R random encoder E, for the additive white Gaussian noise channel we

i-- j-k+1-0 +1I

have P((D9(Bi))k+ -k+1 (Da( Bk ))j-2(=[sj& 2 2 RR- where

the probability is over both the channel and the random ensemble of encoders.

Proof: The proof of this is close to that of Proposition 5.3.4. For the event to happen,

there must be a string of bits (gj-k+2,... ),S(O+i)Rrj) such that the complete sequence of

bits (81,.. . ,j-k,j-k+1 57j-k+2, . ,iS [(9+)Rrj) has an encoding which is closer to BI than

the encoding of the true path. Clearly, the first point n where it is possible that A # An

is n = [I-k+1-O], the index of the first channel input which depends on the erroneous bit

Sj-k±1. Once again, we define 1, the length of the sequence of channel transmissions after

the erroneous bit:

1-=i -1c +f ±1 (5.2)
Rr

Then we have:

P((Dg(B)- # Sj-k+i (D(B))-t = s _

= P _(3:3+i)R. Bn - A )2 > Z(B )2 (vwB) = s i4)
n=1 n=1

P(3 §L(O+i)RT . t2(B -A )2  S (+ An)2 )

- jp( .- +2;T : 5 (Vn)An 5 (BAnA~ 2

n= F j-k-1-61 n = rk+1-18

By the construction of our random encoders, the 14, An, and An in the final sums above
are independent of each other. So we consider a random candidate A1 and calculate:

P(Z(V) 2 Z(Vn+An-n)2) =n- n-)2)
n=1 n=1 n=1
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=P( A- A)2 + 2V (A - An) 0)
n=1

= P(Z2 2PVZn - 2PZ > 0)
nrn

n=1

P(E VnZn LZ>0)
n=1 2 ~-

where Zn is an i.i.d. unit variance Gaussian like V4. To bound this probability, we will use
the Chernoff Bound:

P(Z(Vn)2  Z(Vn + An-An)2) ("Z- Pz

n=1 n=l -

MinnE [ et(Vn Zn -- dz2 )

numn j7 £ [et(Vnzic - Zij

= min(E [et(VZ-4z2)

t>O 1

min [ etz-te z 2 1 v2+z

t> n=12r

= minj} e 2 - e-2ztv_ - 2 2 + Z2

t>0 v r2_

= min
= (m 1±t(V2P -t))

The final integral only converges to that value if t2 _ tv 2 - 1 < 0 and is infinite other-

wise. That does not effect the minimization, which is achieved at t = E well within the
convergence region. Plugging this value back in gives us:

111 1

P(Z(Vn) 2 Z E(Vn+A-An)2

n=1 n=11+ P

To bound the probability that there exists at least one such candidate, we sum over all

possible candidates. Regardless of the offset 6, a sequence of I channel uses spans at most

[lIR] < 1 + lRr input bits and there are only upto 2 1+IRT possible bit sequences. So:

Da E~a j-k -

P(D(B') }sj--k+1D(BM) =s

[( -+i)RTJ (
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< 2 1+IRT(

1 l+ E2

2 R2

1+ E2

By substituting the definition for I from (5.2), we have the desired result. 0

Once again, the approximations used in Proposition 5.3.6 above are conservative for the
same reason as in Proposition 5.3.4.

Theorem 5.3.2 For the additive white Gaussian noise channel with power constraint P,

Canytime(&) ;> ± log 2 (1+ )-a with the inequality achieved by an encoder/decoder system
with common randomness.

Proof: Propositions 5.3.5 and 5.3.6 combine to give us:

P((74'(BD) . s) <; > P((D(BI)) +1 sj-k+1 (B
Sk=l _-k 1 -

_2j-k+1-)CQ 2 RT RT

<2 +2
k=1 I +P

1-02Rr R1+4

max(1, R /) 2 2
[j-k+1-0]+

1 - 1 V1+RE

_j-k+1-0]+

2 max (1, Rr) 2 Rr R-

22
1 1+ 1+

The geometric sums only converge if 2 R, < 1+ which means R < lg(1+{.In

that case, notice that the probability of error at the j-th bit at time i is an exponentially
decreasing function of the delay ir - Taking logs and solving for the information rate R

as a function of the exponential decay rate a gives us R = 2 log2 (1 +) - a proving the
theorem.1:

So, analogous to Theorem 5.3.1, this theorem establishes a lower bound on the anytime
capacity of the AWGN channel. It is easy to see that this lower bound does not conflict with
the classical Shannon capacity of this channel 1 log2 (1 + P) since R < - log 2 (1 +4) <

Tlog02(1 + P).

5.3.3 The General Case

The erasure case was clearly special and was chosen because it is intuitively the easiest

to understand. The AWGN case showed that anytime capacity was not restricted to the
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erasure case and the similarities with the erasure case also point the way to a more general

treatment. In this section, we show how the same basic argument extends to general

memoryless channels.

In the proofs for both the erasure channel and the AWGN channel, the key role was

played by Propositions 5.3.3 and 5.3.5 respectively. Both of these allowed us to bound the

probability of error on any individual bit as the infinite sum of probability of errors on longer

strings. This then allowed us to use Propositions 5.3.4 and 5.3.6 which gave us exponential

decaying upper bounds for the longer and longer strings. Because the sum of exponentials

is bounded, this allowed us to straightforwardly prove Theorems 5.3.1 and 5.3.2.

It turns out that Propositions 5.3.3 and 5.3.5 have natural generalizations to any discrete

time channel for which we can represent the maximum likelihood decoder as something

which minimizes a cost function between the received signal and a supposed transmitted

one. The property we need is just that this function should be positive and additive in the

following way:

Definition 5.3.3 A family of positive functions 6Z : A x B -- R+ U {c+ } is a decoding

cost function if Vi,j > 0 we have:

6i+j (a i+Jb i+')= 6(a, b1) +C6j(a i-, bX8) = Z1(ak, bk)
k=1

for all strings ar and b'.
The decoding cost function Z is used to determine an anytime j-decoder for an (R, T, 0)

code as follows:

D$(b) = arg mnS(0+')
s[(6+i)Rrl e {o,1}L(O~i)RTrJ

It should be easy to see that for discrete memoryless channels, maximum likelihood

decoding is the same as minimizing the decoding cost function where 6(a, b) =-- logp(bla).

- log 0 = +oo is used to represent the cost if b cannot occur if a is input to the channel. This

is because log is a monotonic function and a memoryless channel has transition probabilities

which are products and get turned into sums by the log function.

For such decoding cost functions, we can easily prove the following generalization of

Propositions 5.3.3 and 5.3.5:

Lemma 5.3.1 For 0 < [(0 + j)R7-j < i we have:

P((D (Bj)) -: sj) S 1P((D(B)k - sj-k+i (D(B ) s-)
t k=1 1 k+1 00

Proof: The proof is identical to that of Proposition 5.3.5. E

We can also establish the following Lemma which serves as the analogue of Propositions
5.3.3 and 5.3.5. It effectively relates the error exponent for independently generated random

block codes to what we need.

Lemma 5.3.2 Let P(a) be the distribution with which our random encoder has been gen-

erated. Consider a block-coding situation where we randomly generate a correct codeword of

length N using P(a) and then randomly generate 2 NR - 1 K M - 1 < 2 NR incorrect code-

words using the same distribution with each of the symbols in the incorrect codewords being
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independent of the true codeword. If under the decoding metric for all N, the probability
of error is less than K2-NK', then the anytime &-decoder for our random encoder has

P((T4NB) k+1 S 5j-k+1 (vB) t  st-<) K2-K(I-A11)

where the probability is over both the channel and the random ensemble of encoders.

Proof: The proof follows Proposition 5.3.6 closely. For the error event:

{ Da(B'))j,+ - sj-k+1 (Da(B')) =-k_- I}-
j-k+1 #---

to happen, there must be a string of bits (j-k+2, . [(O+i)Rj) such that

(si, ... , sj-k, Sj-k+l, sj-k+2,..., is [(O+i)Rr

has an encoding which is closer to BI than the encoding of the true path is under the

( decoding metric. Clearly, the first position where it is possible that A $ An is n
j-k+1-0 ,the index of the first channel input which depends on the erroneous bit tj-k+1-

Once again, we define 1, the length of the sequence of channel transmissions after the

erroneous bit:

i - k+10 1 +1 (5.3)
RT

Then we have

-aB) 7 jklD B) j-k=S -P( D( k1D(B ) = z -cc -00)

a-k+j -

= P(]§_nR : A Bn) ZE (An,Bn) (D4(Bi))j =i4)
n=1 n=1

Ri i

< K2-

The final inequality comes from the fact that all the channel inputs corresponding to the

false string are pairwise independent of the true ones under our definition of random encoder.

Their length is I and hence they can be considered as the block case above. Plugging in our
definition for I in (5.3) gives the Lemma. E

Finally, we can put Lemmas 5.3.1 and 5.3.2 together with Gallager's Er(R) standard
block random coding exponent [23] to get the following theorem:

Theorem 5.3.3 For a memoryless channel with block random coding exponent E(R),
the Canytime(Er(R) log2 e) R log2 e with the inequality satisfied by a suitable rate en-

coder/decoder system with common randomness.

Proof: Recall that there exists a distribution P(a) using which we can make a block-code

by drawing eNR 2 NRlog2 e length N codewords according to P(a) on each letter. The

expected probability of error is less than or equal to e-NEr(R) =- 2 N(Er(R)log2 e) where

E, (R) is Gallager's random coding exponent. We now generate a random code in our sense
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using the same P(a) and then apply the combination of Lemmas 5.3.1 and 5.3.2 to get:

P((D(B) s Z<(P((D(BD) k+ 7sj-k+1 (Bi-=s'-k
Sk=1 j-k+l Z1 -OO -0

> ( 2 -(Er(R) log2 e)) [rR1
k=1

c

<max(1,TR log2 e (Er (R)log2 e))

max(1, TR log2 e) (2 -(Er () log 2 e- 1 21+1

1 - 2--(Er ( )og 2 e) k 02max(1 TB e_/ [ -k±1-O]+

max(1,rR1log2 2e) 2--(Er (R) log2 efl 1g)

1 - 2-(E, (R)1og2 e) (

The geometric sums always converge if Er(R) > 0. This proves the theorem. D

In Theorem 5.3.3, the log2 e terms exist only because Gallager's block random coding

exponent is defined in terms of nats and base e while we are using bits and base 2. It should

be clear that Theorems 5.3.1 and 5.3.2 can be tightened up just by using the tighter E (R)
estimates instead of our loose ones. Because the block random coding exponent has been

shown to be positive for all rates below Shannon's classical capacity, we also know that the

0-anytime capacity (thought of as a limit where the exponent tends to zero) is equal to
Shannon's classical capacity!

5.4 From Random to Deterministic Codes

The proof of Theorem 5.3.3 establishes that with common randomness, we can have a non-

zero a-anytime capacity even without any feedback. As we know, common randomness

can be interpreted as a measure over the space of deterministic codes. The performance

for a code with common randomness is really the expected performance of deterministic

encoders with regard to that measure. It would be nice to be able to show the existence of
a deterministic code with the required property by itself.

In standard random-coding arguments for Shannon capacity and block codes, this ar-

gument is very simple to make. The probability measure is over a reasonably small set and
the notion of reliability is also finite. Hence it is easy to see that at least one member of the

set does at least as well as the expectation over the whole set. In contrast, our probability
measure is over an uncountable number of infinite encoders being evaluated on a sense of

reliability that also has an infinite dimension. The three line arguments no longer apply.

Since all of our random coding results are in terms of exponentials, we will focus only

on the exponentially decaying case in this section. First, we notice:

Lemma 5.4.1 Let {8} be the set of deterministic rate R, offset 0 encoders with some

probability measure P over them. If EE [Perror(C, pa d, i)] decays exponentially in d with

asymptotic exponent at least a, then so does the expectation over any set of encoders with

strictly positive probability. The same also applies to their supremum Perror(S, pa, dj0 = d).
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Proof: We will prove the following equivalent statement: If Q C {S} has P(Q) > 0 and

EECv [Perror (ED"7,d,>i)J 2--d

for d > 0, then EEc{E} [Perror (E,PDd,i)] > K42-' as well.

E cf{s} [Perror(E, p d, i)]

= P(Q)EEE9 rPerror(EDaIi)] + (1 --P())E1 [Perror(, Da, d,

> P(Q)EE E [Perror(, Pa d, i)

> P(Q)Kj2-a1d

So, K = P(Q)Ki > 0, establishing the statement. This means that no positive measure
subset of {E} can have a worse expected asymptotic exponent than the expectation over

the whole set for any time t and thus also for their supremum. 11
Lemma 5.4.1 only establishes that for all i, all positive measure sets of encoders (when

viewed under the probability measure induced by our random coding procedure) have ex-
pected error probabilities which decay exponentially with delay. Furthermore the rate of
decay is at least as good as the random encoder. All this tells us is that there cannot be
any large sets of "bad" encoders all of which are bad in the same places. But we can say
more about the behavior of individual deterministic encoders.

Lemma 5.4.2 Let {C} be the set of deterministic rate R, offset 0 encoders with some
probability measure P over them and suppose EE [Perror(, ,Da, d, i)] K2-ad for all d> 0.
Then for every c > 0, almost every deterministic encoder S has a constant KJ' > 0
such that Perror(, pa, d,i) KfE2-(a-)d. Furthermore, the probability (over random
encoders) P(K' > K) decays at least as fast as --.

K a-c

Proof: For all E6> 0 and K > 0, let Qd be the set of encoders E with Perror(S, Da, d, i) >(6,K,i)

K2--E)d. Since probabilities can never exceed 1, we know that Qd is empty whenever

K > 2('-e)d Hence, P(EKQ ) = 0 whenever d < o 2 K Furthermore, because we know

Es [Perror(E, Da, d, i)] K2-ad for all d > 0, we also have by Markov's inequality:

P(dK2-ad
K(cKi)) - K2+a-E)d

Now let Q(,K,i)= Ud>o QK,j represent the set of encoders whose probability of error

on bit i ever goes above K2(-E)d.
Recall that the only time delays that we need to consider are those which are integer

multiples of the channel sampling time. Therefore, we have (for K > 1):

00

P(QE,K) ZP(Q )
j=0

00

- P(fE)

93



K
00 g K

1 Kl2c[(c-l-
K 1-2-ET

(log 2 K
I1'K 2fI a- -

K 1- -2T2- K

K1 - - 2-

Ki 1

1 - 2-r Ka-T

This can be made arbitrarily small by choosing K sufficiently large. Thus for any E > 0
almost all encoders & have a Kit7E such that Perror(&, Da, d, i) < K72-(a-c)d for all d > 0.
]

Suppose that we further know (as we do from Theorem 5.3.3) that there exists a single

K such that EE [Perror(, D, d,i)] < K2-"a for all d > 0 and i > 0. Then we can apply
Lemma 5.4.2 to each i and take the intersection of a countable number of measure 1 sets

to see that for all E > 0, almost every deterministic encoder E has an infinite sequence
of constants [Kf, K5',.... K,.. .]. However, this is not enough because this sequence
might always be unbounded. To get an anytime capacity with a deterministic encoder, we
need a uniform (over i) bound on the constants K .

Theorem 5.4.1 Let {S} be the set of deterministic rate R, offset 0 encoders with the

probability measure P over them generated by a random coding procedure of definition 5.3.1.

Suppose there exists K > 0 such that Et [Perror(s, pa,d, i)] <_ K 2 -ad for all d> 0 and all

i > 0 and all offsets 0. Then, for almost every deterministic encoder S, for every e > 0,

there exists a KE such that Perror(&EDa, d,i) < KS2-+a-)d for all d > 0 and Vi > 0.

Proof: Consider a rate R encoder S. Since it is an infinite sequence of encoding functions,

we can denote by S the sequence of encoding functions beginning after bits s4 have already
been received at the encoder. This sequence can itself be viewed as another rate R encoder,

albeit one with another offset 0' = - F ±0+ -J-. To make things explicit, we can

define E(Ss(fp'0+k)RrJ =k+ -J(i (O'+k)RT)

Furthermore, because of how we have defined our random encoders, if s( # § then EI

and Ei are independent and are drawn from the same distribution as the original encoders,

except with the new offset 9'.

To be able to use Lemma 5.4.2 on these 9' offset encoders, we first pick an 0 < e < .2

Then for all i, we have a single constant p > 0 such that P(Kf > K) < -4 =K
K a-c

By Corollary B.2.1, this clearly converges fast enough to show that Ki (viewed as a random

variable depending on the random encoder E) has a finite mean K and we can also consider

averages of independent samples of Ki.

For any given encoder E, we want to consider the probability Panyerr(, D, i, d) of the
event that with a delay of d units after bit i our decoder makes an error on any of the bits
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up-to and including bit i. Mathematically, we have:

Panyerr (S, Da,Zi, d)= E sL(o+I)RrJ} [P(l <i, S1 $ (Dj(B )))]

where J - + represents the channel transmission index at which we are decoding

(d units after bit i arrives). We will now show by induction that there always exists positive

Mf such that Panyerr(E,Da,i, d) < M 2-(a-)d. For the base case, by Lemma 5.4.2, we
will just set Mf = KE and use the following to get the rest:

Panyerr(VDa,2i +6,d) Panyerr (E, ,', d + )

+EsL(9+j)Rr]} [P(EI i + 6 : S' # (Dj(Bf))1 (D(Bf))i = S)]

Pick the smallest integer J > 0 so that j > r. (e.g. if Rw < 1, then 6 = 1) Notice that
the second term (with the expectation) is upper bounded by the probability of an error
within the first 6 bits of using the encoder ESI. Applying the induction hypothesis and this
idea of subencoders gives us:

Panyerr (E, D i + 6, d) < M 2-(a-E)(d+i) + Esj Perror(ESI, D', d, l)

_ 2 ME2--(a-+ E S K 12-(a-41
.SD 1

= 2--(a M±+ E E K 2 -(a--)d

Which allows us to define the following recurrence for almost every encoder S:

(a-e)5 ~ si

M/+ =2- R Ml E g;KS

1=1-
=2-- R Mi-+ 2Z K-

=1SiC {OI} i

The idea is that since the ES are independent of each other, the average r Esi KfS1

should tend towards K. Furthermore, we can use our generalization of Chebychev's inequal-

ity (Corollary B.2.1) to see that ]B > 0 such that: P( Es KS I >k-y) < j 2j-- c.

LetTi be the set of all rate R encoders E for which z?_ 1  E 1 K 6 (K+
Take unions to get Ty = U> 1 '77. Now, consider the probability of the complement of T:

P(T) = 1 -P(T)

> i-5P( )
i=1
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> - P(- Kf >K +-y
SL

Q0 B u
> 1 -56 + 2

z ra-E
6B

= 1-2-

6B
2 -. a1-

By choosing y large enough, this can be made arbitrarily close to 1. So we define T

UY>o 77. It is clear that:

P(T) = P(UT-)

SB
> sup(i- 1+

mY>O 2a -1+ _

=-1

T7 represents all those encoders S for which E 1 F21S' K 1  never exceeds 6(K +7) and

hence Mf never exceeds (K . Therefore, almost every encoder S C T has a finite
1-2 R

ME > 0 such that Panyerr (E, D', i, d) M-(a-)d. Since by definition Perror (E, D, i, d) K

Panyerr(E, D, i, d), this means that there is a uniform bound K 8 as well. 1
We immediately get the following corollary by applying Theorem 5.4.1 to Theorem 5.3.3

Corollary 5.4.1 For a memoryless channel with block random coding exponent ET(R),

Canytime(Er (R) log2 e) > R1log2 e

Moreover, almost every deterministic code of a given rate achieves the corresponding a or

better.

5.5 Discussion

In this chapter we have introduced a new parametric sense of reliable transmission and its
associated capacity that we call anytime capacity. This capacity lies between zero-error

capacity and Shannon classical capacity. It requires that for a given encoder, the decoder
can make the error probability approach zero by waiting sufficiently long before declaring

its estimate of a bit. Eventually, every bit is estimated correctly. We then showed that this
capacity is related to error exponents and showed how a random coding argument could

also be used to show the existence of deterministic codes satisfying our requirements. The

work here raises many interesting unresolved issues.

As we have stated earlier, the definition we have given for anytime capacity is an op-

erational one. Unlike Shannon capacity for which a simple characterization in terms of

maximizing mutual information is available, we do not yet have any direct way of comput-

ing, even in principle, the anytime capacity of a general channel. Because of the connection
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to error exponents, for which optimal values are also not generally available, it is unclear
whether a direct way of calculating the exact anytime capacity exists.

5.5.1 Better Estimates

One might be wondering why we used the block random coding exponent rather than the
expurgated one [23] to get a lower bound on anytime capacity. The problem is that it is
unclear how the expurgation procedure can be generalized to our infinite encoders. It is not
possible to just throw "undesirable" branches of the tree away because asymptotically all
branches are equally good! But even an asymptotically good branch can be initially bad
and can be easily confused with another branch. Whether this is a fundamental difficulty
with anytime codes that makes the a different than the best possible block error exponent

remains an open problem.

This is particularly important in light of the tradeoff that can be made in practical
systems regarding where to put error correction in a system. We could envision deploying
anytime coding immediately after source coding and then count on the channel code to
merely deliver a low probability of error in the Shannon sense. We could interpret the chan-
nel code's "reliable bitstream" as a binary symmetric channel with low crossover probability

(or more accurately, in the spirit of concatenated coding [18]) and then expect the anytime
code to eventually correct the rare errors that do occur. Or we could insist on deploying
the anytime coding at the channel level itself. Given that expurgated and random coding
bounds are the same in the noisier channel regime, this would seem to be a better strategy if
better bounds for anytime capacity cannot be found for less noisy channels. At the moment,
in the low-noise regime the anytime error rate for our random codes is dominated by the
effect of randomness internal to the code rather than external noise.

5.5.2 Practical Codes

Because Lemma 5.2.1 tells us that we must be able to eventually get every bit correct, strict
anytime codes must be "infinite in size" for any channel where anytime capacity differs from
the classical zero-error capacity. The memory of the code must be infinite for it to be able
to eventually correct errors made even in the distant past. If the memory were finite, then
the delay could be upper bounded and we would be back to zero-error capacity.

Yet truly infinite objects do not exist in physical world. However, in real systems we
may be satisfied with the error probability not tending all the way to zero, but rather to
some extremely small number like 10-20 or so. At even a small a = this requires a
memory of approximately a thousand samples assuming a small K constant. A thousand
samples might be too long to wait in the average case for a practical situation, but anytime
decoding would presumably give very good estimates after a much shorter wait.

This issue of memory is not the only problem. The random code trees we have de-
scribed are very large objects even if we truncate them to a moderate memory in terms of
dependency on past samples. We would prefer to be able to have a compact description
of the entire code. In some cases, we may be willing to live with a slower convergence of
bit-error-probability to zero in exchange for a much more compact representation. It will
be interesting to see if there are any "anytime" analogs of the computationally efficient
new block coding and iterative decoding techniques used in Turbo Codes and Low Density
Parity Check codes. Feedback may allow for significant computational savings in general
just as it does in the binary erasure case.
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5.5.3 Incremental Updates and Interconnections

An alternative interpretation of anytime decoding is an incremental one. Rather than giving

out an estimate for the value of only those bits that had never been estimated before or

giving updated estimates for all prior bits, the decoder can give updated estimates for just

those bits which had previously been estimated incorrectly. These updates can be viewed

as short variable length messages. Anytime reliability with a sufficiently fast decay on the

probability of error implies that the expected number of bits that we will have to update is

very small even as time goes on.

This suggests that it should be possible to think about interconnecting systems and

placing some kind of intermediate transcoders between the noisy channels to recover from

errors and boost signal reliability from end to end. We would like the capacity of such a

serially interconnected system to be the capacity of the lowest-capacity component, with

end-to-end delay behaving something like the sum over the channels. Such a theorem is

needed to justify the "bit pipe" metaphor which is used for reliable transmission. We

suspect that a theorem like that should be provable for independent channels. The parallel

interconnection case is also interesting and in the longer term, we hope to be able to work

towards a "calculus of channels" that allows us to better understand interconnections in

general.

5.5.4 Splitting A Channel

If we are contemplating using many channels to transport a single bitstream from end-to-

end, it is natural to also think of "splitting" a single channel and using it to transport

many different bitstreams. With traditional Shannon or zero-error capacity there was not

much that could be done beyond simple time-sharing. But, as Chapter 8 will show, the

introduction of the reliability parameter in anytime capacity lets us pose a more interesting

problem of transporting multiple bitstreams over a single channel. In general, we could

imagine giving each of the bitstreams a different level of "error protection" in the sense of

the rate at which the probability of error goes to zero with delay. This deserves a great deal

of further study.
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Chapter 6

An Information Transmission

Theorem

In this chapter, we give a general result that covers unstable processes which tend to diverge

exponentially. While we do not yet have as powerful a result as the traditional result
separating source and channel coding given in Theorem 2.3.1, we have taken several steps

in the right direction.

First, we will use our simple random walk example to illustrate how anytime capacity

can allow us to track unstable processes across general noisy channels instead of just the

seemingly special case of the erasure channel with feedback discussed in Section 2.4.3. Then
we will state and prove a general result showing that a certain minimum anytime capacity

at a certain reliability parameter is both sufficient and necessary for tracking unstable

processes across noisy channels.

6.1 Tracking the Simple Random Walk over Noisy Channels

We will generate the bits {St} using our source encoder Ft from (1.1). Now, suppose our
channel has a-anytime-capacity larger than 1 for some a. Run our bits S' through the rate

1 encoder to generate channel inputs. Now, to get estimates Xt, we will use the anytime

decoder directly as follows:

it = G(D(B))

= (2 (D(BD) -1)
i=1

To see that this does in fact track the source properly in the mean squared sense, we

just compute:

E (,kt- Xt)2] = F [( (D (B)) - 2Si))2

; 4E ( 1 )- Si)2
- i=1 t 1 1
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- 8E [ti ((Da(B')_ -- S,)2((D (B ) - S)2
_i=1 j=1

We can denote the indicator for an error at bit i using the notation Xi = ((-(Bt))-S)2.
This is 1 whenever the two are not equal and zero otherwise. Using this notation we have:

E[(Xt-Xt)] 8ZZ E[XiXj]
i=1 j=1

8EZ1:P(Xi = 1, xj= 1)
i=1 j=1

t i

K 8 E E min(P(Xi = 1),P(Xj =1))
i=1 j=1

t i

*<8K > > min(2--(t-), 2 -a(t-j))
i=1 j=1

t i

* 8K > 2 -a(t--j
i=1j=1

= 8K2"tZZE203
i=1 j=1

= 8K2-" t 2a(z+1) - 2a

1 2c,- I

< 8K 2'
2a _1

= 8K 2-0(-1) ( 2 a(t+1) - 2a)

2"-1 2a _1

2 -a(t-1) 2 c~t±1)
< 8 K

(2a - 1)2

2&
= 8K(22a

("- 1)2

We never lose track of the simple random walk no matter how long we wait! As shown
in the next sections, this basic argument can be generalized to cover more unstable sources,
even those that are exponentially unstable as long as they do not grow too fast.

6.2 The Direct Part

We are now ready to introduce the major generalization of Theorem 3.2.1 to beyond the
case of strong bit-streams. For weak bit-streams we have:

Theorem 6.2.1 Consider a rate R stream of bits coming from a source code achieving finite
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expected distortion DR with A+(d). If there is a suitable decay function f(d) satisfying:

00

lim E f (6' + - ),A+ (_n 0
J,'-+00n=0 R R

Then the source code can be successfully transmitted across a noisy channel with finite

expected distortion as long as the channel has Canytime(f) > R. Furthermore, the end-

to-end expected distortion can be made arbitrarily close to DR if we are willing to tolerate

enough additional end-to-end delay 6'.

Proof: Let 6 be the delay of the original source code (F, G). Assume that we are willing

to tolerate upto 6' > 0 units of additional delay. Choose a rate R anytime channel code
and feed the source bit stream into it. Recall that one of properties of anytime codes is

that eventually, all the early bits are decoded correctly. So we will get our estimates of the
source Xt at time t + 6 + 6' by using

xt =:( (vt t+45+1' (Bf ±+'1)Lt6R

To bound the expected distortion, we just notice:

E[p(Xt,kt)] < DR ± OP(Sft+6)RJ _ [(t+6)R)

++ (k)PSL+6RJ # [(t+6)RJ (t+6)R -1 _L[(t+6)R -1

+A P S[L(t+6)RJ-1 (t+6)RJ-1 81+ = RJ-2)

+--- + A+ (t + 6) P(Si 1)
[(t+6)RJ

<DR+ S A+(j)P() (t+6)RJ-n # S[(t+)RJ-n)
n=O

L(t+6)RJ
K DR+ Kf(Y'±--)A+(j

n=O

K DR+K Ef(6'+-)A+(-)
n=O

By assumption on the decay function f, this is clearly finite and also tends to the source
code's DR as we let the additional delay 6' go to infinity. E

Theorem 6.2.1 is in terms of general anytime capacity parametrized by a suitable decay
function. It is clear that for A+(d) < M2ad, the function f(d) = 2 (a+0d is suitable as
long as c > 0 since:

lim f (6' + )A+(,)
0'0o n=O R R

noo

= M lim 2-( +E) ' 2 -

6'-*oo n=O
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M E

- b-2--m J'-40

=0

So by implicitly using the encoders from Theorem 4.1.1 and the growth rate property from
Theorem 3.3.2, we immediately get the following corollary.

Corollary 6.2.1 A scalar discrete-time unstable linear Markov process with parameter A
driven by bounded noise can be tracked (with finite expected a7-error distortion) across a noisy
channel if there is an e > 0 for which Canytime(r1 log2 A + E) > log2 A for the channel. In
particular, if Canytime(2 log2 A+ e) > log2 A, then we can track in the mean-squared sense.

Since this clearly also holds in the case when A = 1, we have resolved Berger's comment
about transporting the source code for the Wiener process across a noisy channel without
a noiseless feedback link. Since Theorem 5.3.3 holds even for discrete memoryless channels
without any feedback at all, we know that it is theoretically possible to get finite mean
squared error as time goes to infinity for the Wiener process across a noisy link! This is
accomplished by cascading Berger's source code with an anytime channel code for the noisy
channel and handling the updates appropriately.

6.3 The Converse Part: Simple Case

It is unclear what the tightest and most general converse to Theorem 6.2.1 is. However, we
can say quite a bit if we focus on the scalar unstable Markov processes of Corollary 6.2.1.

We begin by stating a converse of Corollary 6.2.1 for the bounded driving noise case.

Theorem 6.3.1 Given a noisy channel, if there exists a joint source/channel code (, D)
which "tracks" all scalar discrete-time unstable linear Markov processes {X} with parameter
A driven by any bounded noise signal - < E< K so that:

P(JXt - Xt| > A) < f (A)

then for all e > 0 the channel has Canytime f) > log2 A - E where 7= f (J'2 dlog2 A) for
some constant 6' > 0.

In particular, if the original process can be tracked in the expected Q-distortion sense, then
f(d) can be made to be like 2-C' log2 A)d giving us an a-anytime-capacity Canytime(rl log2 A) >
log2 A - e.

Notice that we have stated the converse in its constructive contrapositive sense rather
than as the traditional "only if" type of statement. We do this because our proof is con-
structive. We show how to take a joint source/channel encoder S and decoder D that tracks
the source over the channel and use it to construct a channel encoder S' and anytime de-
coder D that has rate log2 A - c and a probability of error that decays appropriately fast.
To do this, we describe a way of encoding a stream of random bits Sr into something that
looks like a scalar Markov process with parameter A driven by a bounded noise signal. The
real issue will be to recover all these bits reliably from noisy estimates of this simulated
Markov process. The full proof is involved and needs the use of some new representations

of the real numbers.
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Figure 6-1: Using a source simulator to constructively prove the converse of the Information
Transmission Theorem
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One interesting feature of our proof for the converse statement expressed in Theorem
6.3.1 is that it does not use a per-letter or other characterization of the anytime capacity
or the rate-distortion function for the source. This is in contrast to standard proofs of the
traditional converse to the information transmission theorems which rely crucially on the
data processing inequality and the fact that we have a mutual-information characterization
of Shannon channel capacity.[66] Ours is instead an explicit construction that relates the
two operational notions directly to each other.

6.3.1 The Encoder

We now construct the anytime encoder S' to use the input bits S' to simulate the Markov

source. For simplicity, we start with the case where A = (2 +61) = 21+2 (so log2 A= 1+ 62)
and aim for a rate 1 encoder. We use a "one bit" Wt signal that takes values ±l where J is2
chosen to satisfy the bound on the noise. The mapping from an input bit to a realization of
Wt in this case is obvious: W(St) = j(2St+i - 1). We can use this to simulate the source:

Xt+1 = AXt + W (6.1)

with initial condition X0 = 0. We then feed this simulated source into the joint source/channel
encoder & to get our channel encoder:

t'(Si) = Et(Xf) (6.2)

where it is clear from equation (6.1) and our driving noise that the simulated source X from
1 to t only depends on the first t input bits. Furthermore, we can write it out explicitly for
A = (2 + 61) as:

Xt-= E At-Wi = 2Z(2 + EI)t-i(2S - 1)
i=1 j=1

For the case of general A > 1, we want to preserve the basic form of the source simulation.

To generate the {Wt} from the input bits, we think of W as a rate R = log2 +,, A > 0
encoder: formally a (0, 0) offset (iog A, 1, {0, 1}, R) memoryless transition map as follows:

( :fg2 % AJ +

£ St[t log 2 + 1 Aj

2 t=1()-1) ,og 2 +A A+J+1

Plugging the simulated noise in to get Xt recursively gives us the following:

t

t = ZAt-Wi

- t ± (] iog92+ AJ

= J At- -(2 + ei)( g2+,1A)- L 1092+, A J E (2 + 1' )9o2+ A J-j(2Sj -- 1)

=1 i= ('--.1) 1092+, AJ+1
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At.2 E(2 + 6 )-L1O 2+,1 Aj
i=1

try Li[iog 2 +e6 Aj

AA
1 -Ij=[L(Z--1) 1092+6-1 Aj+1

L1og 2 +el A]

1: (2 + )[0g2 +, AJ--( 2 S - 1)
j=[L(i- 1) 102+,, Aj+l

2 + c1)~ 1 (2Sj - 1)

6 [tlog2+E AJ

= At~ E (2 + i1)--(2Si-1)
i=1

At 6

(E+1)LtO 2+A]2

[tig9 2+el AJ

(2 + )[t1)O 2+ AJ-i(2Si - 1)

resulting in:

xt = El)t'O0 2+,,1 A-[tO 9 2 6l 1 AJ+ 6

2

t 1og 2 +el A]

S= (2 ± EIt6 1 o 2 +, AJ--i( 2Si - 1) (6.3)

To see that this simulated driving noise signal stays bounded, we notice:

K -(2 +i)

2

K ( 2 ±+ci)

[t1og 2 +E1 A]

j= L(t- 1) 10g2+r:1A j+1

Lt1og 2+,1 A]

L(t- 1) log2+e A J+l

[1og2+r6 Al

> (2+ E1)'
51=1

(2 + 1)[t1O9 2+, A]-i(25

± - 1)[ g2+,,, A]-j

K -2 )2+[Og 2 +, Al
2

By symmetry, the same bound applies on the other side so we have:

1+Ei)2+F1Og2+l A] < W < (2,+ 6i)2+E12+, A]
2 2

which can be made to fit the bound by choosing an appropriately small 6. Therefore,
we know that the original decoder D succeeds in constructing a process {X} such that
P(IXt -X< > A) f(A). The key now is to extract reconstructions S(t) from St. To do
this, we will need to take a little digression into the world of representing real numbers as
strings and vice-versa.

6.3.2 Real Numbers As Strings: Analog to Digital Conversion

There are many different ways of looking at the real numbers.[17] Dedekind cuts (a strict
subset C of the rationals such that if x < y E C then x c C) are the traditional way of
constructing them. Implicit in this construction is the view that a real number is specified
by comparisons with the countable set of rationals. This is also a good way of looking at the
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Figure 6-2: The Cantor set of possible binary strings when viewed as real numbers on the

unit interval using el = 0.3. ei = 0 would correspond to the entire interval

binary representation of a real number. Each 1 or 0 represents the outcome of a comparison
with a known rational number.

In general, given a positive real number x with a known upper bound M, we can extract

a binary string s' by applying the following infinite procedure:

1. Start with the empty string. Let n = 1 and x' = x.

2. Compare x' with a threshold Tn. Set s = 0 if x' is strictly less than the threshold,
otherwise set s = 1.

3. Adjust c' by an offset O by setting x' = ' - snOn.

4. Increment n and Goto 2.

If we only care about the first N bits in the string, the infinite procedure can be stopped
after n = N. In addition, if we multiply x by some known constant # > 0, then simply
multiplying all the thresholds and offsets by the same 0 would give an identical sequence
of output bits. If x was instead shifted additively by some constant -Y, then simply shifting
T 1 and 01 by that same y would give an identical sequence as well. Finally, it should
be clear that the above procedure is completely determined by the choice of thresholds
T' and offsets O' For example, to get the traditional binary representation, we can set

Tn = On = 2-n21[l9^2 '. The traditional binary representation has the additional property
of being able to distinguish any two real numbers. That is, if x :A± then s # 37.

We do not need this property since we only want to distinguish between the subset
of real numbers that we care about. Let us review the real numbers generated by the

simple source simulated by our encoder for the case A = (2 + f1). At time t, we have

Xt= Z~1(2 + c1)-i(2si - 1). This is not necessarily positive, so we can shift it by
6 E1K (2 + 6 1 )t-i = 2++ - (2+ -to get 6 zL1(2 + )-)t-S which is always non-

I(2+E)-1 1li=

negative regardless of the exact values of the bits S. We can further normalize this by

multiplying by (2±?) to give us X =l 1(2 + c1 f)-iS which is always in the interval
[0, 1]. The general case of A > 1 just introduces another multiplication by a known constant
in the the interval [1, 2 + E1] as (6.3) shows.

In fact, if we look at X'0 and view it as a mapping 4'jsj") = Z_ 1 (2+ i)-si its range
is a Cantor set X. By this, we mean that X has zero Lebesgue measure and has "holes"

which are open sets containing no points of X. To see this, we will first need to review the
natural ordering on semi-infinite strings:

Definition 6.3.1 The lexicographical comparison between semi-infinite binary strings sj
and 9r is defined recursively as follows.
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" If s = si for every i > 1, then the infinite strings sr and 9 are equal.

" If s1 = 1 while 91 = 0 then s' > ' regardless of the later bits.

* If s, = §1 then sr > s0 if and only if s' > 9'.

It is clear that the lexicographical comparison defines a natural total ordering on infinite
binary strings. The following lemma shows that this ordering is compatible with the natural
ordering on the real numbers under the mapping Jr'.

Lemma 6.3.1 Assume e1 > 0. The mapping x is strictly monotonic: s' > j' if and
only if 4 ' (sr) > 4J('9') as well. Moreover, if two sequences sr and s' first differ in
position i, then

IJ'(sr) - 4c(si)J > (2 + ,E)- > 0
1+ El

Proof: Suppose that 'V(sfo) > ' (37 ). Then we can expand them out:

;'/ (s ) > 4c(NC)
00 00

Y(2 + 1-i> E(2 + E1)-si
i=1 i=1

N N
>3(2+e is > (2 +
j=1 j=1

Where the final inequality comes from dropping all the shared terms in the sum from both
sides and then choosing N < oo and arranging it so that ij < i1 + 1. Notice that this means
for all i < i 1, we must have si = si. Because comparisons are not effected by multiplying
both sides by a constant, we can multiply both sides by (2 + l)-1 to get:

E3(2 + q<-s > >3(2 + ei)~
j= ij=1

where we adjust notation so that s = sik whenever ik j and zero otherwise. (similarly

for s') Now notice that:

00 00

E(2+ Y)-'s' = (2+E 1)-sI + E(2+ 1 )-s
j=1 j=2

> (2 +ei 1 s'

and similarly for s' while simultaneously

00 cc
>(2+ei1)cs = (2 + iX-s'l ± >3(2 + <)-s

j=i j=2

< (2+c +)sl±>3(2±ci)-
j=2

(2+i)s+(2±i
1+H61
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and similarly for 9'. Now, we have:

(2 ±+ Ej)- (-c)
(2 + 1±)-'s'+ + E - >E(2 + <1) s > >3(2+ ci<)-' -> (2

j=1 j=1

By rearranging terms in the above inequality and multiplying both sides by a further
(2 + c1)4 we have:

1
s1 - 1 + >0

Because q1> 0, we know 1 <1. Since we have s' # 9', we can conclude that si - s' = 11+Ej1
while si = 9' = 0. Therefore, by our definition of lexicographical ordering, s' > s .

We can use a very similar argument to establish our bound on the differences while also
establishing the other direction. Suppose that s' and 9r first differ in position i. Without
loss of generality, assume that si = 1 while si = 0. Then

00 00

'(soo) - '( = >( 2 + c)-is -- X(2 + ei)-j
=1

= (2 + e1) + >3(2 + c,)-j(sj - sj)
j=i+i

> (2±q) - >( 2 + Ei<
j=i±I

= (2 e)i -(2±E)
I + El

= (2+c1) > 0
1+61

This proves the Lemma. F

The proof of Lemma 6.3.1 actually tells us even more than the fact that the mapping is
monotonic. It mathematically shows the Cantor set gaps we illustrate in Figure 6-2. Since
such positive measure gaps are between every pair of elements in X, we know that X can
contain no open sets. It must have Lebesgue measure zero and moreover, the mapping i'
is nowhere continuous if reinterpreted as a mapping from the unit interval (viewed under
the normal binary representation of real numbers) to itself.

These gaps are particularly useful to us in extracting the bits s' from a real number in
X. They let us choose thresholds T1 and offsets O which are not equal to each other.

Lemma 6.3.2 If x = Z 1% (2 +e 1 <)-si where E, > 0 and si E {0, 1>, then we can use the
procedure with On = (2 + c1)-" and any set of thresholds as long as (2 + 1)-->- T >
(2 + 1)-n(1 -- 1 -) for every n > 1 in order to recover the bits exactly.

Proof: We will proceed by induction. Consider the base case of s1 . If si = 1 we know that
X > (2+E1)-1 > T, and hence we will recover the first bit. If sI = 0, then we know by Lemma
6.3.1 that (2 + C,)-' - x > (2 + E1)' Q and hence x < (2 + Ei)-' - (2 + 61)-' " < T1.
Once again, we recover the first bit.

Now, assume that we recover correctly all the bits from 1 to i - 1. By the procedure,
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we know that:

i-i

' X->zSjOj
j=1

cc i-i
= :(2 + q)-Js -- J(2 + c1) 3 s

Ij=1 j=1
0C

= E(2 + 61)'s}
j=i

= (2 + ci) T (2 + ij)-sij+j
j=1

We can scale x' and the threshold Tj by (2 + 1)i- which would give us:

cc
' = E(2+ c)'sis+j-

j=1

and

(2 + ej1= (2 + E1)-~1 (2 + El)

> (2 + (2i-Ti

> (2 + e )'-1(2 + ei)-(1 - ) = (2 + E,)-'( - )
I+1+61

This is exactly like the base case of i = 1 and therefore, we can extract the bit si correctly
as well. Thus, the Lemma is proved by induction. E

We would like our thresholds to be as "robust" as possible to noise and so will choose
thresholds in the center of their acceptable range:

T = (2 +,,,)- n 1(2 + )-n (2 + .1)-n 2 +
2 1 + 2 + 2E,

On= (2 +,,1)-n

The structure of X -given in Lemma 6.3.2 tells us that that this scheme will work for
getting the bits out of X4 for any value of t. Suppose that instead of starting the procedure
with x' = X' we start it with a noisy version x' = X ± (. We know from the proof of
Lemma 6.3.2 that we are guaranteed to get the same answers for the first 1 bits as long as

( 1 <(
This shows that our mapping V40 encodes bits in such a way that they are protected

against noise. However, this protection is unequal as the earlier bits get exponentially more
protection than the later ones. This mapping's "robustness" makes it dramatically different
from the mapping representing traditional binary encodings whose continuity results in
almost no protection at all.

6.3.3 The Decoder

With that digression completed, we are ready to construct our anytime decoder D out of
the original decoder D. To extract estimates for the first Lt log2+, 1 AJ bits out of Alt, simply

109



apply the following procedure:

1. Let n = 1 and set x'I= t + (2+, '"2+( A

2. Apply the decoding procedure of Lemma 6.3.2 using the thresholds T = (2+c) k+
and offsets O = (2 + ci>)-' to get out the first [t1log 2 + 1 AJ bits.

Once again, let X'= + it ± 1 +(2 + 1 yt2+ 1 Abe the rescaled and shifted version of

the true signal from the simulated source. If x' = X'+ (, we know from the previous section
that the first i bits are guaranteed to be correct whenever 'j < + (2 + i)- i bits are

received by time [iog2 i A1 and so we have:

Perror(S', Da, d,i) P ( > 2 (2+61)-

P (I6AF10^2,+ 1 (2 +i 1 ) tJA 1
02+, A

\I+ 2+ 2

=P X ti 2±26>1(2± +c<)-(2 ± 61) 0+1A([s 1 A1+d))

P (IXt - int > 6 (2 + 61)(10o2+ 1 A)d

< (f(2+ 61)(10o2+, A)d>
-- 2 + 2c, I

f ( 66-1 d 1C)2'2 A)

= 2+ 2E, A

This establishes the main result since for all i we have the proper decay with constant

' 2 > 0. By choosing E, appropriately we have proved the first part of the theorem
as stated.

The particular case of ar-distortion is a simple consequence of Markov's inequality since:

E[Xt - Xt|]
P (lIt - Xt I; A) A

and hence

P e r r o r (V ' 'D a d , i ) E_< ( t' 2 l 2 A )
(512d'09 2A)27

SE[|It -- XtI] 2 -(710og 2 A)d

establishing the result.El

6.4 The Converse: More General Driving Noise Distribu-
tions

In proving Theorem 6.3.1, we assumed that our simple two-point support simulated noise
was an acceptable realization for W. This is fine if all the joint source/channel encoder
requires is that the noise be bounded. However, if we allow ourselves the use of common
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randomness, we can deal with more general situations as well. To do this, we use the
ideas discussed in Appendix C just as we did in showing how the rate-distortion bound is
achievable in the limit of large delays in Section 4.2.

6.4.1 "Robust" Joint Source/Channel Encoders

The joint source/channel code assumed in Theorem 6.3.1 works for any bounded input {W}
and can be thought of as a code that is very robust to the distribution. We can also consider
codes that are less robust. In particular, codes which work as long as Wt has a distribution

that is within an l ball of a nominal distribution with a well-defined continuous density.
Extending Theorem 6.3.1 to this case involves approximating the density for W with a

piecewise constant density very closely (to within the tolerance of the joint source/channel

encoder) using Theorem C.2.1. By Examples C.1.1 and C.1.2, we know that we can addi-
tively construct such a piecewise constant density out of the pairs of 6 functions used to

encode our bits in the proof of Theorem 6.3.1 together with some common randomness.
The resulting {Wt} can be fed into the linear system given in (6.1) and the result sent into
the joint source/channel encoder. By Lemma C.2.3 and common randomness, we can sub-

tractively isolate the contributions to {Xt} that come from the encoded bits. Therefore, if
the joint source/channel decoder gives us estimates to some distance from the {X} process,
we can extract from them estimates that are the sam~e distance away from the {,tj that

would have arisen in Theorem 6.3.1. Thus, we get the following corollary:

Corollary 6.4.1 Given a noisy channel, if there exists a robust joint source/channel code

(S, D) that tracks all scalar discrete-time unstable linear Markov processes with parameter

A driven by i.i.d. noise signals {Wt} whose distributions are within a Q ball in l1 from a

nominal distribution with Riemann integrable density so that:

P(jkt -Xt >A) < f (A)

then for all e > 0 the channel has Canytime(f) > log2 A -cE if common randomness is

present. Here 7= f(612 d1log2 A) for some constant 6' > 0 which in general depends on Q as

well as e.

6.4.2 No Robustness: Exact Simulation

In the case where the joint source/channel code is only guaranteed to work for the nomi-

nal distribution, we can still do the approximation procedure of the previous section, but
occasionally will have to not use the input bit and will instead just use the residual ran-
dom variable that we get from the construction of Theorem C.2.1. This rare event (which

is known to both the channel encoder and decoder) is interpreted as a simulated erasure
channel with feedback. The input bits go into a simulated queue at rate R and are then used
at rate R' > R with common randomness to generate the samples of {Wt} that are drawn
from the nominal density. The common randomness insures that the anytime encoder and
decoder stay synchronized with each other and can extract all the bits sent.

It is clear that this simulated erasure channel with feedback is going to cost us something
in the rate at which the probability of error is going to zero. Notice that an error will occur
if either there is a problem reconstructing from the system of Corollary 6.4.1, or if the bit

in question was held up in the simulated input queue. Let us focus on the queue part.

We choose (I - 1) = Ue where U is a large number and e is the probability of simulated
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erasure. We choose U and e so that Ue is still small enough so that the rates R' and R are
close in absolute terms.

P(bit from ir units ago still in queue)

= P(QueueLength i)
cc i

K P(Z BkR >jR'+i)
j=1 k=1

- P(ZBk Rj)+
j=1 k=1

We can bound this probability using the Chernoff bound like we did in section 4.5.2. Doing
that, we get:

s = In RR1e

In (1 + Ue)(- 1))

- In(- -1) ±ln(l-+- e) -ln(Ue)
e
1 1

- ln(--1) + ln( )+ln(1 + Ue)
e Ue

which can be made arbitrarily large given that Ue is still small. So we call it a large multiple

U' of the rate R and plug it back in:

P(bit from ir units ago still in queue)

j=1-

< e-

where U' is as large as we want to make it based on our choice of e and U. The probability

of the bit i not being ready dies exponentially as fast as we want it to as long as we make e
small enough. If a bit is delayed by i-r units in the queue, it is as though it was received ZT
units later. And so the probability of error from the system of Corollary 6.4.1 would be as
f (6'2-ir) log2 A). Putting it all together we have that the probability of error is bounded
above by:

00

2 -U' f (8 '2 (d-iT) log2 A)
i=O

giving us:

Corollary 6.4.2 Given a noisy channel, if there exists a joint source/channel code (E,D)

which tracks a scalar discrete-time unstable linear Markov processes with parameter A driven

by i.i.d. noise signals {W} whose distribution has a density is Riemann integrable so that:

P(Xt-XtI ; A) -f (A)
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then for all e > 0 the channel has Canytime (f ) > log2 A - e if common randomness is

allowed to be used by the encoder and decoder. Here f %= 2 U'if(/ 2 (d- i)log2 A) for all
constants U' > 0 and some constant 6' > 0 which in general depends on both U' and Q as

well as e.

If we restrict our attention in Corollary 6.4.2 to a-anytime capacity where all we want
is an exponential decay, then we know that by choosing U' large enough, the exponential
coming from a will dominate the probability of error.

6.5 Converse For Performance: Not There Yet

Our new converse information transmission theorem 6.3.1 together with the extensions given

by Corollaries 6.4.1 and 6.4.2 just relate the anytime capacity of the channel at a given a to
whether or not we can track with finite expected distortion. Unlike the standard converse
in Theorem 2.3.1, our theorems do not mention the actual performance achieved by the
code. We might initially conjecture:

Conjecture 6.5.1 For a channel, independent unstable Markov source {Xt} with param-
eter A, and q-distortion measure, the performance of any pair of joint source-channel en-
coder/decoder pairs E, D is bounded as follows: E[p(X, X)] ; fR-'(Canytirme(Q log2 A))

where R 1 (C) is the distortion-rate function (the inverse of the rate-distortion function)

which we evaluate at the appropriate anytime capacity of the channel. Moreover, we can get

arbitrarily close to R--1 (C) by using a good source coder followed by a good anytime channel

code.

Given our work on source coding in Chapter 4, it should be clear that we can achieve
the direct part of this theorem by using an appropriate source code and Theorem 6.2.1.
The converse side is unfortunately false as the following counterexample shows.

6.5.1 Counterexample

The idea of the counterexample is to consider a noisy channel that has two independent
parts operating in parallel. The first is a regular binary erasure channel with a small erasure
probability. The other is a real erasure channel.

Real-valued erasure channel

Definition 6.5.1 The real erasure channel with erasure probability e is a memoryless noisy

channel with A = R, B = RU f {0} and P(a = b) = (1 - e) and P(b = 0) = e.

Since we know that we can embed an infinite number of binary digits into a single real
number using the constructions of Section 6.3.2, it is easy to see that the regular Shannon
capacity of this channel is oo. Moreover, it is clear that regardless of the input rate, the

optimal anytime encoding strategy is to encode all the bits received so far into each channel

input. Upon reception of even a single non-erased symbol, all the past bits are known
exactly at the anytime decoder. And so we know that we can only make an error in the

case that we have a string of erasures between the time the bit was received and the current

time. Thus for every bit-rate, the probability of error decays no faster than e, giving us:
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Theorem 6.5.1 For a real erasure channel with inter-use time T and erasure probability

0 < e < 1, we have:
cc ifcx logs e

Cantm(G) -= 0 i a
anytime) 0 otherwise

Combined channel

If the erasures on the regular binary erasure sub-channel happen less frequently than the

erasures on the real-valued erasure sub-channel, then the anytime capacity looks like:

( oif a < lo 2 e

Canytime(a) f (a) < lo if - gT eb

0 otherwise

where e is the probability of erasure on the real-sub channel and e6 on the binary one.

The important thing in this combined channel is that there is a region of a for which

the anytime capacity is finite.

Performance

Now, imagine that we have an r large enough and A > 1 close enough to 1 so that:

log2 e ec.lolog2A
19 R< 7710g2 A <-102e

T T

while for the simple binary erasure channel with erasure probability eb considered in isola-

tion:

Canytime (rlog2 A) > log2 A

Then we know that there exists a coding sytem which just uses the binary part of this

channel which achieves finite expected q-distortion, even if we use a causal code. Moreover,

there is no way to achieve finite expected q-distortion if we restricted ourselves to the real

part of the channel, infinite though the rate may be!

However, by using both parts of the channel, we can easily achieve an expected 7q-

distortion that tends to 0 as we let ourselves use larger and larger delays. To do this, we use

any causal code we want that achieves a finite expected r-distortion K using only the binary

erasure part. Then, on the real-valued part, we send an infinite precision quantization of

every sample in Xf. This is done by encoding every bit of all past X values into a single

real number using the paradoxical properties of a "Code Infinity" construction analogous

to that described in Section 2.2.1. If we are willing to wait for d time units, we know:

lim E[IXt - kti']
d->oo

" lim (0P(not all erasures from d units ago) + KP(all erasures from d units ago))
d-+cz

d

" lim 0(1 - e7,) + Ke T

d-+oo ( R R

= lim Kejr
d-*oo

-0
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This happens despite the fact that the anytime capacity of the combined system at
a = rlog2 A is finite. Since the rate-distortion function is infinite for this real-valued
process at D = 0, we have disproved the conjecture.

6.5.2 What We Do Know About Performance

At the moment, the only converse we have for infinite horizon performance is the appropriate
version of the regular Shannon converse which says that we can do no better than the rate-
distortion function evaluated at the classical Shannon capacity for the channel. If we had a
joint source/channel code which violated this bound in the infinite horizon performance for
some specified end-to-end delay, it would also violate the bound if we just considered a long
finite horizon truncation of it and increased the rate by the infinitesimal factor required
to compensate for the delay at the very end of the finite horizon piece. This would then
violate the appropriate one-shot bound for this long finite-horizon segment and create a
contradiction.

Notice that in the counterexample presented above we achieve that limit since the Shan-
non capacity of the combined channel is infinite. It is unclear whether the combination of
our anytime converse and the regular Shannon converse is tight.

6.6 Discussion

In this chapter, we have presented the keystone result of this thesis. We have shown that
our new notion of anytime capacity is both necessary and sufficient in order to communicate
delay-sensitive bitstreams emerging from unstable Markov sources. In particular, we have
established that such streams require not just a channel with sufficient bit-rate, but a
high enough a parameter as well. Furthermore, the converse was given constructively and
relates operational notions directly to each other without having to pass through a formal
characterization in terms of mutual information or any other quantity. Yet once again, this
result has raised many interesting issues. A few will be elucidated in the next two chapters,
but some still need more study.

6.6.1 "Recursive" Formulations of The Direct Part

The constructions given so far for how to cascade the anytime-decoder with the source
decoder are not recursive at all even though the source decoder often is. Instead, we have
the source decoder recomputing from scratch using the most current estimates of all the bits
sent. But we know that asymptotically the estimate for most bits are not going to change
at all and Section 5.5.3 tells us that we can think of the anytime decoder as producing small
finite sized update messages.

It is clear that the direct part can interpreted in a recursive way where the source
decoder is made able to use corrections on past information to update its current estimates
rather than having to always recompute everything from scratch. This should be explored
more fully in future work.

6.6.2 A Path To A Tighter Converse

The story of the separation theorem will not be complete until we have a tight converse.
An approach which might succeed is to first conceptually "split" the channel and ask it to
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transport two bitstreams. The first should have just the required a and rate to track the.
source with finite, but possibly large, distortion. The second bitstream should be allocated
the maximal rate "leftover" after providing for the first one. Then, we should study the
"successive refinement" [16, 53] of the source process into two streams matching those rates.
By optimizing over the split and allowing for sufficient delay, it might be possible to get a
tight converse.

Also, we need to formulate converses for more general classes of delay-sensitive processes
than just the scalar Markov case. The linear vector case should be straightforward, but
more general ones need much further thought.

116



Chapter 7

Control and Feedback

In this chapter, we look at the case of channels with noiseless feedback. In the first section,
we make the connection with controlling unstable linear systems and show how that lets us
extend our information transmission theorem 6.3.1 to control situations over channels with
noiseless feedback. In some cases, the control situation has clearly optimal solutions and
so allows us to get good bounds on the anytime capacity for channels where the encoders
are allowed access to noiseless feedback. In the second half of this chapter, we evaluate the
anytime capacity for both binary erasure and AWGN channels with noiseless feedback.

7.1 Feedback as Control

The notion of feedback is central to control theory and in fact, much of the work in this
thesis is implicitly motivated by ideas from control. Here, we make the connection explicit
by illustrating the relationship between the problem of controlling an unstable linear system
over a noisy channel[63] depicted in Figure 7-1 and our standard problem of estimating an
unstable process over a noisy channel depicted in Figure 7-2. Notice that in both cases,
we allow for the encoder (or observer) side to have access to noiseless feedback from the
channel, delayed by 1 channel step of time to avoid any causality problems.

7.1.1 Control With A Communication Constraint

To talk about the control problem, we first need a slight modification of Definition 2.1.1:

Definition 7.1.1 Given a real number A, and functions Wt from [0, 1] to R, the scalar
discrete-time controlled Markov source with parameter A and noise W is defined by:

X0 =0

Xt =Akt_1I + W +Ut_1

This can be expressed without recursion as:

t

t= At-tiW +U_ 1 )
i1

The general objective is to keep Xti "suitably small" by design of the total system.
The details of what is meant by "suitably small" are discussed in Section 7.1.2. The control
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Channel Feedback
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Control Signals C

Figure 7-1: The control problem over a noisy channel

signals {Ut} are determined "in closed loop" as shown in Figure 7-1 and are thus constrained
to be a function only of the output stream of the communication channel.

Notice that there are actually three different potential feedback loops in Figure 7-1:

1. The tight loop from observer 0 through the channel and then right back to the
observer with a one step delay.

2. The medium loop from observer 0 through the channel and the controller C coming
back to the observer with a one step delay.

3. The big loop from observer ( through the channel and the controller C, continuing
on with a one step delay through the controlled system and finally coming back to
the observer.

Only the third loop is essential to the control problem. The first two are related to
the concept of "equimemory" [22] and their implications are discussed more extensively in
[63]. Notice that the feedback information from the first loop (the channel output signal)
is actually sufficient to calculate the control signals that would be received back through
the second loop since both the observer and controller are designed systems and hence
presumably known.
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The key observation is that knowledge of the system input signals and the system out-

put is sufficient to calculate the 0-input response of the system since we assume that the

controlled system is known exactly. Yet the 0-input response of the system is always a

realization of an uncontrolled Markov process and vice versa. This is reminiscent of Wit-

senhausen's discussion of the separation between control and estimation in control problems
with classical information patterns [70]. In the next section we establish the equivalence of

the control problem of Figure 7-1 to the estimation problem in Figure 7-2.

7.1.2 What Stability Means

Keeping I kt I "suitably small" when the underlying controlled system is unstable is referred
to as stabilizing the system. If the entire system (including all components we design) is

deterministic and known to the designer in advance, then it can be possible to drive the

state X all the way to zero. However, if there is any persisting excitation in the system,

achieving such a strict sense of stability is impossible. So, here is a looser definition:

Definition 7.1.2 We call the complete system boundedly stable if there exists a constant

K so that Zti < K for all possible realizations of the uncertainty.

This is often possible if all the uncertain signals are bounded, but if there is true random-

ness involved then it is hard to get these sort of rigid guarantees. In cases with randomness,

a yet looser family of definitions is often appropriate:

Definition 7.1.3 We call the complete system q-stable (7 > 0) if there exists a constant

K so that E[JXt|'J < K for all possible realizations of the nonprobabilistic uncertainty, with

the expectation taken over all the probabilistic uncertainty. The case of 7y = 2 is also called

mean square stability.

In the case when all the primitive variables are functions of a common probability

space, we can in principle evaluate q-stability using the complementary distribution function

P(IXt j > x). The larger q is, the faster the complementary distribution function needs

to go to zero as a function of x. However, we are also interested in cases where some

of the primitive variables (namely the {W}) do not necessarily come from a probability

distribution but are known to be bounded. To deal with this sort of mixed situation, where

the system driving noise is arbitrary whereas the channel noise is stochastic, we think of the

complementary distribution function for 2Z14 as being indexed by the realization of {WI.
Alternatively, we can think of the Nt E Te where Tt is a set valued random variable that

depends only on the randomness in the system. The value for kt depends on the actual

realization of the arbitrary driving noise and can be anywhere within T. As a result, we
can be conservative and let

At = sup I ±t (7.1)

be the random variable representing the upper bound on iXti. With this definition, it is

clear that having E[A7] < K < x0 implies r7-stability. As such, it is often the complementary

distribution function of At that we are interested in. In particular, we can write P(I|tI >
x) ft(x) whenever P(At > x) < ft(x) without having to specify the exact realization of

{Wi}.
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120

wt

Joint
Source .Encoder

Xt



7.1.3 Equivalence with Estimation

By equivalence, we mean that IXt - XtI in the estimation problem of Figure 7-2 can be

made to behave essentially like 1,tI in the control problem of Figure 7-1. As we have seen

in the definitions of stability, the key to evaluating the performance of a system is the

complementary distribution function P(IXtI > x) in the control case or P(IXt - X1 > X)

in estimation problems.

Theorem 7.1.1 For a given noisy channel and bounded driving noise - <Wt < , if
2 -

2

there exists an observer 0 and controller C for the controlled Markov source of Figure 7-1

that achieve P(iXtI > x) ft(x), then there exists a joint encoding system E with access

to noiseless feedback and joint decoding system 'D for the estimation problem of Figure 7-2

that achieve 
P(1X - Akl > X) ft+i(Ax - 2)

2

Similarly, if there exists a joint encoding system E with access to noiseless feedback and

joint decoding system D for the estimation problem of Figure 7-2 which achieves P(jXt -

ktI > x) f'(x), then there exists an observer 0 (with access to noiseless channel feedback)

and controller C for the controlled Markov source of Figure 7-1 which achieve

X - 2
P(X> X) <f-'_-( A)

A

Proof: We give constructions which satisfy the above bounds in Figures 7-3 and 7-4.

In order to construct a joint encoding system S from an observer 0 and controller C,

we follow Figure 7-3 and use:

£t(Xt, B-l) = 0( X+ 3 Ak--iU) , (C(B)). 0 , B7 1 ) (7.2)
i=0 jj=O

In (7.2), we use superscripts to denote the final member of a sequence measured in time,

rather than as a position in the sequence. The delay of 1 unit is considered to be of 1 sample

in the discrete time channel.
The encoder above works because the input to the observer 0, is the virtual controlled

source:

j-1

) = X+E Ai--iUi

j-1

= E Ai-- (Wi + U(i)
i=0

=AXkj_1 + W _1 + Uj _1

which behaves exactly like the original controlled source. As a result, we know that P(1XtI >

X) < ft(x).
Out joint decoding system is similarly:

k =ThD(B) = -A- EAt-Ut (7.3)
i=o
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Putting things together we see that

it Xt - Akt_1

= A(Xt- 1 - Xk_ 1 ) + Wt-I

And so:

P(IXt_1 - ikt_1 I > X) P(IA(Xti -- ti)I > Ax)

= P(IA(Xt-I - kt-1)I+ Wt_ 1 > Ax + W- 1 )

< P(IA(Xtj -1%-,) +Wt-iI > Ax -- Wt_11)

P(A(Xq - t_ 1) + W_1I > Ax - -)

=P(|Zkt > Ax - Q
2

ft(AX->A-)
2

which proves the first part of the theorem. The second part proceeds analogously using
Figure 7-4 and consists of designing the controller as an estimator followed by the certainty-
equivalent controller.

In order to construct the observer 0 from a joint encoder E and decoder V, we follow
Figure 7-4 and use:

O(1*, Bt-1) = E ((±j + AD(Bi-'))'=, Bt) (7.4)

and for the controller:
C(B t ) = -A (D(Bt) - AD(Bt-1)) (7.5)

To see that (7.4) and (7.5) indeed define an appropriate system, we first need to verify
that the input to the encoder E looks like an uncontrolled Markov Process. To see this:

X. + ADQ(Bi-) = AXj-l + Wj - A (D(Bi-1) - AD(Bi-2)) + AD(B- 1 )

Wj-+ A (4_1 + AD(Bi-2))

i1

ZAJWi

X

where we use induction to get the explicit sum from the recursive rule. To evaluate the
performance of this setup, we rearrange terms slightly to get

21 = Xj -AD(BI-1)

=A(X-_1 - k_1)+ W

and so:

P(IktI > x) = P(IA(Xt_1 -kt-1) + WtI > x)

= P(I(Xt-i+t 1 )+1I>
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P((Xti-X±ti)> A
A

K P(I(Xti1-X±t_1)I > A2

AA

which proves the theorem. E
The assumption of bounded support on W was used in Theorem 7.1.1 to make the proof

completely straightforward. However, it is easy to see that in the case where the driving
noise {W4} is an i.i.d. random process, the essential point continues to hold even without
the bounded support assumption since the additional effect of the noise can only spread
out the distribution of IZtI relative to that of |A(Xt- 1 - t- 1)I. Also, at the moment this

result is given for scalar systems only. The general equivalence does continue to hold in
vector problems, but requires some assumptions on controllability and observability which
are trivially satisfied in the scalar case.

7.1.4 Information Transmission Theorem For Control

Theorem 7.1.1 as stated relates the complementary probability distribution functions of kit|
and IXt -±t| to each other and says that they are essentially the same, except for a rescaling
by A and a possible shift by . In particular, this implies that if any finite moment of either

can be kept bounded, the same moment can be kept bounded for the other one as well.
This means that we can directly extend the direct part of our Information Transmission

Theorem embodied in Corollary 6.2.1, to the control problem as well:

Corollary 7.1.1 A controlled scalar discrete-time unstable linear Markov process with pa-

rameter a driven by bounded noise can be q-stabilized across a noisy channel with the ob-

server having access to noiseless feedback if there is an e > 0 for which Canytimeqt1 log2 a +

e) > log2 a for the channel with noiseless feedback. In particular, if Canytime(2 log2 a+6) >

log2 a, then we can stabilize it in the mean-squared sense.

Furthermore, since the proofs of the converse side to the Information Transmission

Theorem also only need to use bounded driving signals to encode the information bits, our
Theorem 7.1.1 also lets us extend Theorem 6.3.1 to the control problem giving us:

Corollary 7.1.2 Given a noisy channel, if there exists an observer (possibly with ac-

cess to noiseless feedback of the channel output) and controller (0,C) which stabilizes a

scalar discrete-time controlled linear Markov processes {X} with parameter A driven by

any bounded noise signals -a K Wt K so that:

P(IXti A>A) f(A)

then for all e > 0 the channel with noiseless feedback has Canytimelf) > log2 A - e where

f f( 6J2 dlog 2 A -9Q) for some constant 6' > 0.

In particular, if the original system can be a-stabilized, then f(d) can be made to be like

2 -( 0og2 .A)d giving us an a-anytime-capacity Canytime(r log2 A) > log2 A-E for the channel
with access to noiseless feedback.
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Similar extensions are possible to Corollaries 6.4.1 and 6.4.2 making them applicable in
the control context as well. This tells us that the necessity parts of the separation theorem
also extend to control problems - anytime capacity is necessary to evaluate a channel for
closed-loop control as well as for estimation. It is this control interpretation that is much
more important since in the real world, unstable processes usually exist in an "interactive"

or "responsive" setting. Control theory is just the mathematical formalism we have for
dealing rigorously with such settings.

7.2 Specific Channels With Feedback

To illustrate the value of the conceptual equivalence between control and estimation, we

will now examine two important channels with encoders having access to noiseless feedback:
the binary erasure channel and power-constrained additive noise channels, particularly the
AWGN channel. For both of these, control strategies to stabilize the system are obvious by
inspection and so we can use Corollary 7.1.2 to get anytime capacities for these channels.

7.2.1 Erasure Channel

To avoid complication, we will assume that the channel sampling time is the same as the

source sampling time in Figure 7-1 where the noisy channel is a binary erasure channel with
erasure probability e > 0. We consider the case where the driving noise {W} is arbitrary,

but known to be bounded so that: - <WtKC 2

Now, consider a hypothetical external observer located at the controller. This observer

knows the encoder and the control law being used, but can only see the outputs of the
channel. Suppose that before seeing channel output b the observer knew that Xt e T.
Now, imagine that an erasure occurs and b = 0. The observer has received no information
and can thus only update the uncertainty to conclude Xt+1 E {Ax + w + Ut+iIx E TIc>, w E
[-', 9]}. The observer cannot distinguish between the points within this expanded set
since the uncertainty comes from the fact that Wt are arbitrary.

Optimal Control and Observation

Since the goal is to keep the maximal value for St small, we can focus on At from (7.1).
As such, the choice of control is immediately clear. The control signal U should be chosen
to minimize At+ 1. Thus the optimal -Ut is the midpoint of the smallest interval that can
contain the possible values for Xt+1 without control. The result of such a control is to make
the post-control uncertainty for Xt+1 lie within an interval centered on the origin.

The next thing to notice is that because of the noiseless feedback, the observer knows

everything the controller does. As such, its goal is to make these intervals as small as
possible by the choice of bits sent. Every bit at sent by the observer is there to tell the
controller which of two intervals contains the value for Xt. The intervals themselves must be
determinable from the previous received values and it is immediately clear that the optimal
choice for the splitting must be a partition with no overlap between the two intervals. Any
overlap would be suboptimal since it would make at least one of the intervals longer than
it has to be.

Now, let Y represent the size of the controller's uncertainty interval about the state of
the system. This is a random variable depending only on the realization of the channel
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Prob = 1 - e Prob =-e

Figure 7-5: The evolution of the uncertain interval on the erasure channel with noiseless
feedback.

noise. When there is an erasure, it grows according to the dynamics of the system:

Yt+ 1 = AY + Q

If a bit does get through, it depends on how the interval is divided into two parts. If the

division is done in a deterministic way, the driving noise could always conspire to pick the

larger interval. Hence, the optimal thing to do with deterministic observers is to divide the

interval into two equal sized pieces. 1 Thus, if there is no erasure, the best we can do is:

A Q
- Yt+1=- AY + I-

2 2

With the known initial condition of Yo = 0, {Yt} is now a well defined random process

regardless of the realization of the arbitrary driving noise, even though the actual bits trans-

mitted depend on that noise. The evolution of Yt is depicted in Figure 7-5. At every time

step, a new Q is added in while all the previous Q's get multiplied by a random factor. Write

Y out as a sum: YE= z-_QAF where the F are correlated random variables which

express how many of the last n channel transmissions have gotten through. In particular

F7, = H__n(1) k where I4 is the indicator for the event that the k-th transmission was

not erased. Individually, the probability distribution of the F, distributions is easy to see:

F,, = with probability n!(1-e'

'Even with probabilistic observers sharing common randomness with the controller, we can do no better

on average since (t2 (1- t)2 ) = (1-- 2t + 29) achieves its unique minimum at t =-}.
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Stability

It should be clear that r-stability of the system is equivalent to E[Yt'] < K for all t. For a
moment, concentrate on 7= 2 for convenience. We can study the asymptotic properties of

YP by formally considering:

E[Y~l] =E 3m2]A +nF
j=O n=O

Define Nj as the random variable for which Fj+k = FN . Then group terms:

E[Y,]= E[QZA2jFi(1+ 2 :AkNiD
=0 k=1

00 00
- Q2 >5 A2 (E[F?] + 2f Ak E[FNjJ)

j=0 k=1

F1 and Nj are independent by construction, and hence expectations distribute over

them. Moreover, by the memorylessness of the channel, it is clear that E[Nf] does not

depend on j at all, and in fact E[N'] = E[Fj]. So we get:

E[Yai
Q2

= (A2E[F) ] 1+2 EAkE[Fk]
=0 k=1

!(0)l j--

= ~A2 ft -!(1
=0 = i!( -- i)!4 7

k!(1 -el
1+2r'AkE 

'1k-1)2
k=1 -=0

00

= (1 + (A2)je i E1-e

j=1 i=Oi(J - Z)! 4e

(+2f Akek k' 1

I +2EA ek E1l! (kl- )!( 2e ))
k=1 1=0

A 2 (1 + 3e) 1+ 2A(1 + e)

4\--A2(1 + 3e) 2 - A(1+e))

More importantly, this is only valid if A < 2+ < < 2". Otherwise, the sums

diverge. Since we did not have to make any approximations, this actually tells us the
maximal A for which we can hope to mean-square stabilize the system. If we repeat the
above argument with general q7> 0, it turns out that the dominant term is:

00j!(i - e)e -i
A O -)().

(j=0(i=0 0)!(27)2
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1+z(Ani3 (2n)
j=1 i=O

(2A)"(e + 2-" - e2-)
= l +27(A1A l277(1 - A77e) - A77(1 - e)

where the final simplification is calculated using Maple and Mathematica. It only converges
if

A < 2 (7.6)
(1+ e(21- 1))i

Once again, to get the condition in (7.6), we did not have to make any approximations.
Given that the observer and control strategy used are optimal, this condition is both nec-

essary and sufficient for stability giving us the following theorem:

Theorem 7.2.1 To '-stabilize the unstable Markov controlled source with parameter A

and bounded driving noise over a binary erasure channel with erasure probability e, it is

necessary that we satisfy (7.6). This condition is also sufficient if the observer has access

to noiseless feedback.

Anytime Capacity

To calculate the a-anytime capacity for the binary erasure channel with noiseless feedback,

we just need to combine Theorem 7.2.1 with Corollary 7.1.2 which tells us that the condition
for stability is that Canytime (r,10g2 A) ;> log2 A. Plugging in the result from (7.6) gives us:

Canytime (79 log2 ( 2  )j) >log2( 2
(I + e(217 - 1)17') (1 + e(27-- 1))1,7

Simplifying and recognizing that (7.6) was both necessary and sufficient gives us:

Theorem 7.2.2 For the binary erasure channel with encoders having access to noiseless

feedback,
Cl 1Canytime (77 -- log 2(1 + e(2 - 1))) = 1 - - log2 (1 + e(2 - 1))

77

where 7 > 0

It is interesting to notice that this has the asymptotes we would expect: Canytime(0 ) = 1-e
and Canytime(0 ;> - log2 e) = 0. Also, the result is stated for a unit inter-sample time

between channel uses. If the sampling time is different, a simple scaling will translate the
result.

7.2.2 Additive Noise Channels

Once again, we assume that the channel sampling time is the same as the source sampling

time in Figure 7-1 where the noisy channel is an additive white Gaussian noise channel with

zero mean unit variance noise and a power constraint of P. We also assume that the driving
noise {Wt} is i.i.d. and has zero mean and unit variance. It turns out that for most of this

section, we will only use that fact that the additive noise is zero mean, unit variance, and
white. The Gaussianity will only come in later.
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Control and Observation

Since this is a linear system with additive noise, it can be viewed as a classical partially
observed control problem[70], except that we get to design the observer[3]. Our approach
will be to use a scalar gain # for the observer and then another gain y for the controller.
Thus:

Y -=0# t (7.7)

where Y is the channel input and Zt is the system state.

Ut = -AyB (7.8)

where Ut is the control signal and Bt = Y + Vt the noisy observation.

Satisfying the power constraint is then a matter of insuring that E[Yt2 ] < P which
automatically implies mean-squared stability of t by (7.7). Plugging in- both (7.7) and
(7.8) into the definition of the system gives us:

A (1 - -yo))Xt + (Wt+I - AyVt) (7.9)

By inspection, the driving noise for this system (Wt+l - A'yVt) is i.i.d. with zero mean and
variance 1 + A 2 2. The condition for closed loop stability is that A(l - yo) < 1 and so
y/3> 1 -- . In such a situation, the Z asymptotically behaves like:

00 Co

k1 = W+(A(l - y/))' - ZAKyV(A(l - 3)) (7.10)
j=0 j=0

Assuming that, we can calculate the asymptotic variance of X as:

FE27] - 1 + A 2 2
1 - A 2 (I-_ 7 3) 2

Now assume that the power constraint is satisfied with equality, E[Y2] = P, and set 3Y =

P inspired by the standard minimum squared error estimator. This only makes sense if
stability is maintained:

1
1 <-- 7/

A
P

P + I

1
=1-

1 + P

and so A < P + 1. Furthermore, the power constraint itself has to be met and so:

P = E[Y 2]

= /32E[X23
02 + A 2 )2

I - A2(1 _ yo32

/2 + A2 (/3P) 2

1 - A 2 (1 -)2

P+1
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72(P + 1)2 + (AP)2

(P + 1)2 - A2

cross multiplying gives us:

(p + 1)2 -- A2)P 2(p + 1)2 + (AP)2

(p + 1)2 -- A2(p + 1)) p = #02 (P + 1)2

(P + 1) - A2) ='2 (p + 1)

((P + 1) - A2) =/
2(p + 1)

P

which can be satisfied with appropriate choice of/3 = p -- , as long as (P+1)-A 2 > 0
or:

A < vP+1 (7.11)

which also implies closed-loop stability since A < "P + 1 < P + 1.
This is clearly a sufficient condition for mean-squared stability. To see that it also

suffices for general q-stability, we notice that (7.10) tells us that the system behaves as the
convergent geometric sum of two sets of i.i.d. random variables {W} and {V}. As long as
both of them have finite q-moments, so will their convergent geometric sums. If the system
driving noise is bounded to lie inside [--9,9], we know from (7.10) that its contribution to
X is guaranteed to be within [-M, M] where:

S1
M __=

2 1 -A(1- -yQ)
Q

2(1 - )

Q(P + 1)
2(P+-l - A)

< Q (VP-I)
2( P+ 1 - 1)

Thus we have:

Theorem 7.2.3 To q-stabilize the unstable Markov controlled source with parameter A and
bounded driving noise over a additive white noise channel with zero mean and unit variance
(and bounded a-moment) with power constraint P, it is sufficient that (7.11) be satisfied.

Anytime and Zero-error Capacity

To calculate a lower bound on the anytime capacity for the power constrained additive
noise channel with noiseless feedback, we will again combine Theorem 7.2.3 with Corollary
7.1.2. In this case, we notice that if the system driving noise {W} has bounded support,
then (7.10) tells us that the tail of X is determined entirely by the convergent geometric
sum E 0 A'yV(A(l -- y/)) of the channel's additive noise {Vt}. There are two cases of
particular interest.

The first is when Vt too has bounded support. In that case, there exists a constant
M > 0 depending on P and the bounds for Wt and V such that: P(IXI > M) = 0. So, we
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can construct a function

f (X) Ii= X
) otherwise

so that P(IZt > x) < f (x). An immediate application of Corollary 7.1.2 tells us that for this
channel with noiseless feedback, we get : Canytime(f) > log2 A where f- f(6 2 d'0g2 A -

for some constant 6' > 0. Plugging in (7.11) gives us: Canytime(1) > 1 1og2 (1 + P) and

there exists an M' for which f(d) = 0 if d > M' giving us the following theorem:

Theorem 7.2.4 For an additive white noise channel with bounded unit variance noise and

power constraint P, the zero error capacity with access to noiseless feedback is bounded by:

1
CO0>0 --log2 (1+ P)

2

Notice that the lower bound to zero-error capacity in Theorem 7.2.4 does not depend on
the bound Q for the noise support! It is a function only of the power constraint relative to
the average noise power. The bound on the noise only effects the delay we must be willing
to tolerate before we can be absolutely confident of our estimates.

The next case of interest is that of unit variance Gaussian noise. In that case, the fact
that the sum of i.i.d. Gaussians is Gaussian tells us that the Z _o AyV9(A(1 - '#y))' is a
zero mean Gaussian with variance:

cc
S2 = EA 2_ 2 (A 2 (l _ 7)32)J

j=0

A2 _(2

1 - A 2 (I -yp)2

A2  P(1+P) 2-A 2(1+P)

1 - A2( 1 )2
1+P

PA2 (1 +P)

((1+ P)2 - A2 )(1 + P - A2 )

which tends to infinity as we approach the limit of A = v/1 + P. Thus, for a suitably large
constant M", the tail of the distribution dies at least as fast as

f (x) = M"e 27

An immediate application of Corollary 7.1.2 tells us that for this channel with noiseless
feedback, we get: Canytime(f) > log2 A - e where f = f(YAd - 9) for some constant

6' > 0. Setting R < log2 A < } log2 (1 + P), we know that 2 Rd <Ad. This means that the
probability of error goes to zero double exponentially at least as fast as

-124 Rd

e 2 A (7.12)

where d is the delay we are willing to accept gets larger. Since a double exponential is faster
than any single exponential, we have proved the following:
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Theorem 7.2.5 For the AWGN channel with power constraint P and encoders having

access to noiseless feedback,

Canytime(ce) = log2 (1 + P)

for any a > 0

The equality holds since we know that anytime capacity cannot exceed the regular Shan-

non capacity which is also log2 (1 + P) for the AWGN channel with or without feedback.

Comparison to Schalkwijk and Kailath

This double exponential convergence is reminiscent of the result of Schalkwijk and Kailath[59].
The difference is that we do not have to assume any block-length a priori and can deliver

the performance simultaneously over all sufficiently large delays, eventually getting every

bit correct. Thus, the comparison between the rate at which the probability of error goes to

zero for the two different schemes is like comparing apples to oranges. Even so, the results
are surprising.

From [59], we have that the probability of error for the Schalkwijk and Kailath scheme
is

pe < 2e-N(CR-e 2
N(C-R)

where C is the capacity in nats per channel use, R is the rate of transmission in nats per
channel use, and N is the block-length used. Neglecting constants and other smaller effects,

the dominant term in (7.13) is a double exponential of the form K,1 2 where K = e and
K 2 = e 2(C-R). Notice that as the rate gets closer to capacity, it is the inner exponential

base that gets closer to 1 while the outer exponential base stays fixed at e.

To compare, we express the rate at which the probability of error goes to zero as K 3 4
e2

where d is the delay at which the decoder chooses to decode. (7.12) gives us K 3 = e and
K 4 = 4'R where R is the rate in bits per channel use. Since 3' varies linearly in El where

R = log2 e A, it tends to zero as the rate gets closer to capacity. Similarly, cr tends to

infinityas we get closer to capacity. Thus, as the rate of transmission approaches capacity,

for our scheme the outer exponential base gets closer to 1 while the inner exponential base

tends upwards to a constant 40 (where C is the capacity in bits per channel use). The
situation is qualitatively different.

The natural question is, if we fix the rate R < C, which scheme is asymptotically
better in the limit of large delays? The answer is immediate if we look at logarithms. The

Schalkwijk and Kailath scheme has the - log of the probability of error growing as O(K2<)

while ours has the -log of the probability of error growing as O(Kg). Near capacity, K2

is close to 1 while K4 can be substantially bigger. For large d and N, our scheme's faster
inner exponent completely dominates over whatever penalty it suffers in the constants. This

advantage is larger the closer we are to capacity.

7.3 Discussion

In this chapter, we have established the connection between the estimation problems we

have been discussing in previous chapters and their corresponding control versions where
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feedback is over a noisy link. We show that the converse theorems establishing the necessity
of sufficient anytime capacity for estimation also apply to the control problem of stabilizing a
simple scalar system. This correspondence is then used to evaluate the anytime capacity for
the binary erasure and AWGN channels when the encoder has access to noiseless feedback.
In particular, we are able to show the double-exponential convergence of errors to zero for
the AWGN case.

The simple control problems considered here are only the beginning of what is hoped will
be a long productive interaction between information theory and control. The results need
to be extended to the vector valued plant case and imperfect observations. Also, existing
results on codes for channels with feedback [34] have control implications that should be
explored. There are also intriguing possibilities of viewing a stochastically disturbed plant
itself as a communication channel between the controller and the observer [55] that need to
be fleshed out.

More speculatively, the implications of our ideas of anytime capacity need to be explored
in the context of hierarchical and distributed control systems. The "delay universality" of an
anytime encoder might be a useful property in a control system which operates at different
time scales. The same transmission could conceivably be used to provide accurate estimates
to a slower monitoring controller while still providing useful low latency information to a
real-time regulator.
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Chapter 8

"Quality of Service"

Our Information Transmission theorem (Corollary 6.2.1 and Theorem 6.3.1) showed that
transmitting unstable Markov processes needs more from a communication link than just a
given bit-rate. It requires that the a parameter at that bit rate also be high enough. This
parameter a has the appearance of a fundamental "quality of service requirement" distinct
from the rate of transmission. The use of the parameter a as a way of evaluating QoS
has the advantage that the definition is not dependent on the specific digital nature of the
channel. In principle, it should be applicable to wireless and other channels as well. It has
a firm theoretical justification since we have converse theorems showing that it is necessary
for the transmission and control of unstable Markov processes.

When we consider the issue of multiple streams sharing a single resource, simple time-
sharing is the first and most obvious approach. It is almost a tautology that bit-rate is
additive with time-sharing and so if that is the only QoS parameter, the situation is trivial
since the resource can be characterized by a single number: how much rate it delivers. It
is only when there is another QoS parameter that things can get interesting. The second

parameter lets us formalize different trade-offs that come from different ways of sharing the
resource, generally called "differentiated service."

In this chapter, we justify the QoS interpretation of the a parameter in anytime capacity
by considering a simple vector source and the problem of estimating it in a mean-squared
sense across a binary erasure channel with feedback. We introduce the basic problem
setup and show that it is impossible to reliably transmit the source over the channel in
a mean-squared sense if we insist on treating all bits alike in the reliable transmission
layer. Finally, we show that providing differentiated service (with different a parameters
for different streams) at the reliable transmission layer can allow us to achieve finite end-
to-end mean squared error. This example shows that we do not need to specify an end-to-
end delay constraint or any other user-level QoS requirement a priori. The need for QoS
requirements and differentiated service can emerge from the nature of the source and the
distortion measure.

8.1 A Simple Vector Problem

We consider a particular vector source and the problem of transmitting it with finite mean
squared error across a binary erasure channel with noiseless feedback as shown in Figure

8-1.
The specific vector source we consider has Xt E R 5 , a bound on the driving noise
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Figure 8-1: The vector estimation problem over a noisy channel with noiseless feedback and
enforced layering
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ILWtJK < A, and known initial condition Xo = 0. It is defined by the matrix of dynamics

( 1.178 0 0.04 0 0.04
1.08 1.058 0.36 0 0.36

A 0.36 0 1.178 0 0.12 (8.1)
-0.12 0 -0.04 1.058 -0.04
-0.12 0 -0.04 0 1.018

In our simple example, we use a binary erasure channel with e = 0.27.

8.1.1 Transform Coding

Looking at the source process in transformed coordinates is often of value in lossy coding. [35]

In our case, it is illuminating to consider the transformed variable Xt = TXt where

/ 3 0 1 0 1\
0 1 -2 0 3

T= 0 0 1 2 1

0 0 0 1 -1

\1 0 0 0 1

In that case, the transformed dynamics are given by a newAZ= TAT-' matrix:

/1.258 0 0 0 0 \

0 1.058 0 0 0

A= 0 0 1.058 0 0 (8.2)
0 0 0 1.058 0
0 0 0 0 1.058

The initial condition remains X0 = 0 and the new driving noise W has a larger bound
given by jVfVt[| < 36. It is also clear that having an encoder/decoder pair which achieves

a finite mean squared error between the original {Xt} and {Xt} processes is equivalent to

having a pair which achieves a finite mean squared error between the transformed {X}
process and its corresponding transformed reconstruction. Alternatively, we can think of

the transformed system as being the underlying one. In that case, it can be considered a
simple model for situations in which a single resource (the noisy link) needs to be shared
"fairly" among multiple users so that everyone can get their jobs done.

Furthermore, being able to achieve a finite mean squared error with any finite end-to-

end delay implies that we are able to achieve a finite mean squared error with no delay.
This is because we could use an estimate for Xt-d to give an estimate for Xt by simply

premultiplying it by Ad. After all,

E[\Xt - Adkt|d 112
d 1

- E [|A dXt _d + Z Ai-lWti) - A dt _d|11 2

2=1-I

d

= |Ad (Xtd - 1-4d) + > A- 1 wi 12]
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r -d d1
= ELIAd( Xt-d - Xtd_ )1 2 ± 11> A V _iI 2 + 2(Ad(Xtd - kd))'(( W A 1 let-)

j=1 2=1

d

< E [11Ad( Xtd - kd)112 + E [i AI1Wti12

d

+2E 1Ad(Xt-a - Xta|) 11(11 A'-4Wt-I1f
2z1

For any finite delay d, the three terms on the right hand side are all bounded for all t if we
can achieve finite mean squared error. Hence the sum is bounded as well.

8.1.2 Fundamental Requirements

A necessaty condition for achieving finite mean squared error for a vector valued process is
getting a finite mean squared error for all the components. In the transformed domain, the
dynamics of the components of our example are like those of five separate scalar unstable
Markov sources. One of these is fast, and the four others are not as fast. Therefore, our
Theorem 6.3.1 applies and we need the channel to satisfy both:

Cat (2 log2 (1.258)) > log2 (1.258)
Cat (210g2(1.058)) > 10g2(l.058)

Moreover, our work on sequential rate distortion[63] tells us that the total rate must be
larger than the the sum of the logs of the unstable eigenvalues, giving us the additional
condition that:

C > log2 (1.258) + 410g 2 (1.058)

Thanks to Theorem 7.2.2, it is easy to check that all these requirements are satisfied
individually by the binary erasure channel with erasure probability e = 0.27, (See Figure
8-2) However as stated, these are individually only necessary conditions, not sufficient ones.
In a sense, we need them all satisfied simultaneously.

8.2 Treating All Bits Alike

By using the technique from Theorem 4.1.1, it is easy to construct recursive source codes
for each of the five components of the transformed source. As long as we allow ourselves
R1 > log2 (1.258) bits per unit time for encoding the first component and R 2 ,3,4,5 > log2 (1.1)
bits per unit time time on each of the others, we can achieve finite mean squared error
assuming no errors in transmitting these bits.

If we follow a strictly layered strategy and then require that all these bits be treated
identically by the reliable transmission layer as shown in Figure 8-3, we come up against a
problem. For an erasure channel with e = 0.27, Theorem 7.2.2 tells us that the maximum a
for which the anytime capacity is larger than log2 (l.258)+41og2 (l.058) is only around 0.646.
This is enough for the four slow components which each require a > 210g 2 (1.058) = 0.163.
But it is less than the minimum a we require for the first component: a > 21og 2 (1.258) =
0.662. This means that as long as we insist on treating all the bits alike in the reliable trans-
mission layer, it is impossible to achieve a finite mean squared error on the first component
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Figure 8-2: Anytime capacity for the erasure channel with e = 0.27 for encoders having
access to noiseless feedback
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Figure 8-3: Forcing all the bitstreams to get the same treatment for reliable transmission
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Figure 8-4: Allowing the reliable transmission layer to discriminate between bitstreams

of the transformed source. Because this is a consequence of our fundamental separation the-
orem for such processes, it is true regardless of how much end-to-end delay we are willing
to tolerate or how we do the source encoding.

8.3 Differentiated Service

Let us consider an alternative strategy more in the spirit of "loosely coupled joint source
and channel coding." [32]

For our transformed source, we can use the scalar codes from Theorem 4.1.1 to encode
the first component at a rate -R1 = > log 2(1.258). The first stream generates a bit every

3I
third time step. The other components are all encoded at a rate R 2,3,4 ,5 = > log 2(1.058)
and gets the lower priority. These together generate a bit every three steps (4 bits every 12
time steps). The total rate is therefore R =j < 1 - e = 0.73.

As shown in Figure 8-4, we then ask the reliable transmission layer for different treatment
of the bitstreams encoding different components of the transformed source.
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Figure 8-5: The strict priority queuing strategy for discrimination between bitstreams

8.3.1 A Prioritized Channel Code

We request a higher priority for the bitstream representing the "faster" component that
requires a > 2logl2(.258). We use the strategy for reliable transmission over the erasure
channel with feedback shown in Figure 8-5:

" Store the incoming bits from the different streams into prioritized FIFO buffers -

one buffer for each distinct priority level.

" At every opportunity for channel use, transmit the oldest bit from the highest priority
input buffer that is not empty.

" If the bit was received correctly, remove it from the appropriate input buffer.

On the channel decoding side, the anytime decoders are intuitively clear. Since there is
noiseless feedback and the encoder's incoming bitstreams are deterministic in their timing,
the decoder can keep track of the encoder's buffer sizes. As a result, it knows which incoming
bit belongs to which stream and can pass the received bit on to the source decoding layer
with an appropriate label. The source decoder takes all available bits and makes the best
prediction of where it thinks the source process is.

At the receiver's side, we use all the bits we have received to make our estimates. If we
are missing some bits for a given component, we just predict by multiplying what we have
by the appropriate power of that component's eigenvalue.
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8.3.2 Analyzing This Channel Code

The first thing we notice is that for any delay d, the channel decoder makes an error

for bitstream i only if the encoder's buffer i contains more than dRj bits still awaiting

transmission. If there are fewer bits waiting, it means that the bit from d time units ago

has already made it across. As a result, to analyze how the average probability of error
varies with delay, we only need to study the steady-state distribution of the number of bits

in each buffer awaiting transmission.

The High Priority Stream

Since the highest priority stream preempts all lower priority streams, it effectively does not

have to share the channel at all. We can study its queue length using a simple Markov chain

by grouping time into three time unit blocks. Then, the number of bits awaiting transmission

at the end of a block is the Markov state and use pij to represent the probability that the
queue in state i will go next to state j.

p0,0 = 3e2(1 - e) + 3e(1 - e)2 + (1 -e)3

Pii+1 e3

P, = 3e2(l _ e)

Pii-1 3e(l - e)2 + (Iifi)3 >
3e(1 - C)2 if% > I

Pi,i-2 = (1 -)3

It is possible to calculate the steady state distribution 7r for this Markov chain. By some

algebraic manipulation we can get the following recurrence relation:

3(1 - 3e2(1 - e))7ri- 2 - 3e(l - e)2r_1 - e3r-3 if i> 2
(1 - 6)Wj Tr= (1 - 3e2(1 - c) - 3e(l - e)2 - 3e2( - e))7r-2 - 3e(1 - e) 27r 1  ifi = 2

It turns out that 7r, c (+2e3+(1-e) y+2e-3e2 as i gets large and thus:

Perror(Delay = d) < P(Buffer State > dR1)

(K2e3 3
<3 K

1 + 2e3  (1 - e) l + 2e - 3e2 - 3e2

_1 10 (1+2e
3
+(1-e), 1+2e-3e'2_3e2 )

which for e = 0.27 results in an a = 1.799 > 210g 2 (t.258) = 0.662 so it is more than fast
enough.

The Low Priority Streams

To analyze the asymptotic probability of error for the second set of streams, we notice that

regardless of the realization of channel noise, the sum of the queue lengths for the two
buffers is identical to the queue length for a hypothetical single stream at the combined
rate. It suffices to look at a single stream with rate i. Once again, we will group channel
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uses into blocks of three so that the number of bits awaiting transmission at the end of a
block is the Markov state for the system. This gives us:

po,o = 3e(1 -- e)2+ (1 - e)3

Pi,i+2 e3
pi,%+, = 3e 2 (1_ )

pii = 3e(1 - e)2

Pii- = 3(1 -

The steady state distribution 7r for the state can be calculated just as before. By some
algebraic manipulation we get the following recurrence relation:

(1 - 3e(1 - e) 2)7rr_1 - 3e2(1 - e)7ri-2 - e3 ri-3 ifi > 2
(1 -- e)3 r, = (1 - 3e(1 - e) 2 )ri - 3e2(1 - e)7i-2 if i = 2

(1 - 3e(l - )2- 3_2(1 - e))7rr_. ifi 1

ForlareiIe henhae(r~oI -32_e2

For large, i, we then have 7ri o 2e2+v'4e-3e2-3e . This rate of decay is clearly much

slower than the one for the higher priority queue and thus, for large queue lengths, it
dominates. Therefore we have for the bits in the lower priority queue:

Perror(Delay = d) < P (Combined Buffer State > d(R2 + R 3 + R 4 + R))
d

(2e2
-~ k2e2 + 2/4e - 3e2 - 3)

-K2 log2
2 e436-ed

which for e:= 0.27 results in an a = 0.285 > 210g 2 (1.058) = 0.163 so 6ur scheme is fast

enough for all the slow components as well!

Corollary 6.2.1 then shows that the cascaded source and channel codes achieve a finite

mean squared error for all components of the transformed source. Thus, the system achieves
a finite mean squared error on the original source as well.

8.4 Discussion

We have presented a simple example of a vector source and a specific channel for which it
is impossible to achieve finite end-to-end mean-squared-error without using some form of

differentiated service at the reliable transmission layer. Furthermore, in order to evaluate
the bit-pipes provided by the reliable transmission layer, we have shown that the ideas

of a-anytime-capacity are relevant and have used our previous separation results to moti-
vate a scheme which does achieve finite end-to-end performance. Similar examples could

be constructed for other channels and our a parameter would continue to be useful as a
fundamental way of measuring QoS for a bit-pipe.

This toy example over a single simple link is only a beginning, but it opens the door
towards a real Information Theory of "Quality of Service." Even though in the real world,
few processes of interest actually have asymptotically infinite variance, we conjecture that
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these ideas will be a useful approximation whenever the upper limit of the tolerable end-to-
end delay is within the range of time for which an unstable model is applicable. We suspect
that this is true for not just control problems, but many others (including multimedia ones)
as well.
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Chapter 9

Conclusion and Future Work

This thesis has studied the issues involved in communicating delay sensitive signals across
noisy channels by focusing on the unstable scalar linear Markov processes. We established
that such processes are fundamentally different from stable processes from a sensitivity
point of view. On the source side, we were able to resolve a long-standing open problem
regarding the infinite horizon source coding of such processes by using a new variable rate

construction weaving together dithering, vector quantization, and a lossless code on the

integers. On the channel side, we introduced a new sense of reliable transmission (anytime

capacity) that is more demanding than the traditional Shannon sense but is weaker than
the sense underlying zero-error capacity. Our keystone result is an information transmission

theorem tying the source and channel sides together.

This information transmission theorem 6.2.1 and its converse theorem 6.3.1 establish
that our notion of a-anytime capacity is exactly the right notion of capacity for tracking

unstable processes over noisy channel. They demonstrate in a concrete mathematical setting
that not all digital bits are alike. A bitstream coming from the encoding of an unstable

source with one A can have more demanding "quality of service requirements" for channel
transmission than one emerging from the encoding of an unstable source with a different

A' < A. The nice part about this is that the quality of service requirements are not specified
a-priori based on intuition or engineering arguments. They emerge as a mathematical
consequence from the natural notion of distortion for such sources. They are also not tied

to a specific channel.

In addition, we extended our separation theorem to control contexts by showing the

necessity of anytime capacity to stabilize a scalar system over a noisy feedback link. The

techniques used to prove the converse can also be used to construct anytime encoders
and decoders for channels with noiseless feedback and to analyze their performance. In

particular, we use them to show a double exponential convergence for anytime decoders
on an AWGN channel with a power constraint. The same technique can be used to lower

bound zero-error capacity for continuous channels with an average power constraint and
additive noise with bounded support.

While the discussions at the end of each chapter so far point to a few of the interesting
questions that this thesis directly opens up, here I will close with some more speculative
future directions.
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9.1 Source Encoders Without Memory

Our simple random walk source of Section 1.2 actually admits a code that works without

any memory at all on the encoder side. Moreover, this code is time-invariant:

X
F'(X) = [-j mod 2 (9.1)

2

Notice that since the value of X must change by 1 at each time step, that 1 L41 can either

remain constant or change by 1 depending on the direction of motion and the starting

position. Therefore, the remainder after dividing by 2 must also either change or stay the

same. Since the original position is known to be the origin, intuitively the decoder should

be able to follow X at each time step. Recursively, the decoder can be defined as follows:

G'(Sf) = G'_1 (SV-') + (-l)S (1 - 2F'(G'_1(St- 1) + 1)) (9.2)

with G' = 0 as the base case. However, this decoder is more sensitive to errors than the

previous one. Each error not only contributes 1 unit of deviation, it also reverses the sense

in which future bits are perceived, further compounding the error with time.

It turns out that the intrinsic sensitivity is the same as for the code without memory:

Proposition 9.1.1 For the rate 1 code given by equations (9.1) and (9.2), A--(d) = oo for

all d while (d + 1)2 A+(d) < 4((d + 1))2 if d > 0 and zero otherwise.

Proof: Essentially identical to Proposition 3.3.1. The only difference is in the worst case

set of bit errors. 0

Even if we use the memoryless source code F' from (9.1) with an anytime encoder for

the channel, the combined encoder as a whole will have memory. However, the existence of

F' is suggestive and we are currently looking into whether it is possible to track this simple

source using a memoryless joint-source-channel encoder. We suspect that it is possible,

though perhaps at the cost of some additional rate.

The general issue of how much memory is needed and where it should be placed in a

complete system is an interesting one that needs to be studied.

9.2 Sequential Refinement For Source Codes

Shannon himself commented on the interesting duality between the problems of source and

channel coding. Our introduction of anytime codes for reliable transmission of bits across

noisy channels prompts a speculative question: what is the analogous concept for source

coding? Imagine that our source generated i.i.d. bits equally likely to be 0 or 1. Use

standard Hamming distortion as the distortion measure. An anytime code can be viewed

as a joint source/channel code for this source and distortion measure which manages to

improve the reconstructions of the original source as time goes on while. simultaneously

allowing for estimates of recent source symbols previously unestimated at the decoder. Its

"delay universality" can also be viewed as achieving the rate-distortion bounds over the

noisy channel without having to specify a delay in advance.

It is natural to wonder whether general source codes exist which have a similar property.

Do there exist source encoders which map a source stream into a bitstream such that we

can get arbitrarily close to the rate-distortion limits on distortion purely by adjusting the
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delay on the source decoding? The codes constructed in Chapter 4 of this thesis do not
have this property. But it would be fascinating to find out if such codes exist or to be able
to prove that they do not.

9.3 Distributed Systems and Multiterminal Information The-
ory

The simple toy control systems of chapter 7 are only the beginning. The ultimate goal
should be getting a handle on communication within general distributed systems. In such
systems the transmission of information cannot be divorced from its use. A complete
understanding of concepts like QoS requirements in networks requires us to be able to deal
with transmission and use together in an intelligent way. We hope that the basic ideas of
splitting and combining channels will be refined and extended onto the source side as well
to cover the splitting and combining of sources into bitstreams. Such a unified theory may
be a way to get a firm grasp on the elusive concept of "meaning" in systems.
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Appendix A

Streaming Definitions

A lot of information theory is traditionally described in the "one-shot setting" where time

and the order of events is not a big concern. However, for this thesis, time and the order of

events is very important since we are concerned with "information streams" where random

variables are only realized at particular times and are not available beforehand. We are

also interested in closed-loop systems where causality is critical. Without some form of

causality, a model with feedback ceases to be intelligible. In this appendix, we give streaming

definitions of basic objects like sources, channels, encoders, decoders, etc. that emphasize

the times at which everything becomes available and the resulting causal dependencies

between variables.

A.1 Streams and Transition Maps

Definition A.1.1 Given a real number T > 0 and real number 0, a (0, T, A) stream A is a

sequence of variables A' such that A C A and Ai occurs at time 0+Zi).

r represents the time between samples and the offset 0 is normalized so that -1 shifts

samples up by one and +1 delays them by one regardless of the inter-sample time T.

Definition A.1.2 Given two positive real numbers T1, T2, two real numbers 01,02, and two

alphabets A, B, a (01, 02) offset (rj, -r2, A, B) transition-map S is a sequence of functions Si

from A L into B.

It is clear that a transition-map causally transforms one stream into another: the output

at time T2( 0 2 + j) does not depend on ai that occur after that time. Some transition maps

have even less of dependence on the past.

Definition A.1.3 A (01, 02) offset (ri,7 2 , A, B) transition-map E is memoryless with re-

spect to its input if Fi depends only on the a{f'1 2  ij)and not any of other past
(L(02+( -1)_ -, +,)

values of the input.

Sometimes, we want to allow the possibility of an external input.

Definition A.1.4 Similarly, a V dependent (01, 02) offset (ri, T2, A, B) transition-map EV
is one in which the functions Si have a further dependence on V e V. So Si maps

A n e x V into B.
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As stated above, V is generally realized all at once and is the same for the entire-
sequence of functions above. However, this need not be the case. In many interesting cases,
V = Vo x V and the VC E VI variables are realized sequentially at regular intervals in
time. Then causality matters and we have:

Definition A.1.5 A (', T',V' = VO x V ) causally dependent (61,902) offset (i,-r 2 , A,!B)

transition-map Ev is one in which the functions Ei map A-Gi x v0 x ( )-

into B.

Such a causal dependency condition could equivalently be written as a restriction that
the functions ES do not depend on the parts of V that occur in the future. An analogous
notion of memoryless dependence also exists. Furthermore, we can clearly string together
(9', r', V') causal (or memoryless) dependency clauses to have the output depend on many
different incoming streams.

A.1.1 Pairings

We would like to be able to interconnect such transition-maps. There is a natural concate-
nation operation corresponding to connecting output to input:

Definition A.1.6 A (01, 02) offset (-r,T 2 , A, B) transition mapE' and (93, 04) offset ( 3 , r4 , C, D)
transition map 8" can be combined into a single (01, 04) offset (TI, 74, A, D) transition map
S = E' o 8" if 2 = 03, r2 = 73, and B = C. The functions are given by:

L( 6+ir4 Oij L 0 2l~r L 6 2+~r ~GJ (02+L (04t0-r4 -03J )2

E r(a ) = E'(E{(a rl ),SE{(a 1 -r ), . . . ,(a-

It is similarly possible to connect a (9, T, 13) output stream from one transition map to
any transition map that is (0, r, VO x B') causally dependent. In any sort of concatenation,
we must take some care to avoid "causality loops" in which a variable at a given time ends
up depending on its own value at the same time.

There is another kind of conceptual pairing possible. In many cases, we want to think
of these maps as occurring in encoder/decoder pairs in which the input to the encoder and
the output of the decoder are in a natural one-to-one correspondence though they need not
be physically connected to each other.

Definition A.1.7 An encoder/decoder pair is a pair (F, G) of transition maps together
with a reconstruction profile rr of positive integers satisfying the following properties.

" If F is a (01,02) offset (Tri,T2 , A, B) transition-map, then G is a (03,904) offset (72, T1, C, D)
transition- map.

* The sequence r contains no repetitions.

L (04 ±ri)rl -03]
The reconstruction of input a. is dri = Gri(c 1 r.

The delay of the encoder/decoder pair is supi> 1 (ri - i + 1 -- 4)1. We only accept
reconstruction profiles rr that are non-anticipatory: the minimum delay inf>i{(ri - i +
01 - 9 4)rI} > 0
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A.1.2 Stream Constraints

We also need a notion of an acceptable constraint on a stream.

Definition A.1.8 A stream constraint on a (0, T, A) stream is a statement or sequence of
statements regarding the variables in the stream.

A sequential constraint F is a sequence of functions Fj mapping A into R together with

the statement 'Vi > 0, F (A<) 0"
A limiting constraint F is a sequence of functions Fi mapping A' into R together with

the statement "limsup, F (Al) 0"
In a completely specified probabilistic system, a stream constraint is met if the event

making the statement true has probability 1.

In general, we will try to make the underlying space of primitive random variables be
an i.i.d. collection of uniform random variables on the unit interval.

A.2 Random Sources

A source is a random process evolving in discrete time. To normalize the units of time, we
assume that the source generates one symbol Xt c X at every unit time. Furthermore, to
avoid confusion, every source we will consider will be the output of a transition map driven
by a stream of i.i.d. uniform random variables on the real interval [0, 1].

Definition A.2.1 A random source is a (0, 0) offset (1, 1,[0, 1], X) transition-map X. For
convenience, Xt is also used to denote the random variable that results after connecting the
input of the transition map to a (0, 1, [0,1]) stream Q of independent real-valued random
variables uniform on the interval [0, 1].

This definition is adopted so that our formulation will always have a simple set of
primitive random variables.

A.2.1 Markov Sources

Our main focus is on scalar valued Markov processes.

Definition A.2.2 Given a real number a, and functions Wt from [0,1] to R, the scalar

discrete-time Markov source with parameter A and noise W is defined by:

X0 = 0

Xt = AXt±+Wt (Qt)

This can be expressed without recursion as:

t

Xt (Q') A'- wdQ-)

We will usually assume that the functions Wt = W0 and that the range of Wo is bounded.

153



A.3 Source Codes

We are now ready to define source codes. Given a source alphabet X and reconstruction
alphabet X and a discrete-time source {Xt} which generates a new symbol every unit time:

Definition A.3.1 A rate R source code is an encoder/decoder pair (F, G) such that F
is a (0,0) offset (1, k, X,{0,1}) transition map and G is a (0,0) offset (A, 1,{0,1},A)
transition map.

It should be clear how ((1.1), (1.2)) and ((9.1), (9.2)) are both rate 1 source codes with
zero delay.

We defined source code in such a way as to map any source into a binary represen-
tation and back again to the reconstruction alphabet. This allows us to concatenate the
encoder/decoder pair together without having to put anything else in between.

A.4 Noisy Channels

We can consider noisy channels as transition maps. While sources were transition maps
with an i.i.d. input stream, noisy channels are transition maps causally dependent on an
i.i.d. stream.

Definition A.4.1 Let Vi be independent and identically distributed uniform random vari-
ables on the real interval [0,1] and let V = [0, 1]'. A discrete-time noisy channel is a
(02, T, V) causally dependent (01, 02) offset (r, 'r, A, B) transition-map TV. The transmis-
sion delay is (01 - 0 2)T.

A memoryless time-invariant discrete-time channel is a discrete-time noisy channel for
which there exists a function T o such that TV(ai±=J TQ (a'j+[o2oJ) for all i.

We will focus on memoryless time-invariant discrete-time channels with zero transmis-
sion delay (01 = 02 = 0) and inter-symbol time T. Sometimes, we will also couple the noisy
channel with a stream constraint on the input to the channel. Our formulation of channels
as transition maps with an explicit causal dependence on an i.i.d. stream looks superficially
different from the standard definitions[11] which tend to be given in terms of transition
probabilities or constraints. To see that it includes the standard channels we think about,
we now give definitions of them in our terms.

A.4.1 Example Channels

The simplest noisy channel is the following:

Definition A.4.2 The binary erasure channel is a memoryless time-invariant discrete-time
channel with A = {0, 1}, B = {0, 1, 0} and

rvr _ 0 ifV < C
TV (a) { T~0 (a) a otherwise

As we can see, the binary erasure channel has probability of erasure e and otherwise it
transmits the incoming bit without error. Expressed in terms of transition probabilities,
p(010) = p(11) = 1 - e while p( 0 10) = p(01) = e.
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Another important class of channels are the additive noise channels. These are routinely
used to model continuous valued channels. The Additive White Gaussian Noise (AWGN)
is the most popular:

Definition A.4.3 A scalar AWGN channel with variance Ky and power constraint P is a
memoryless time-invariant discrete-time channel with A = B =R and TV(a) = a+N-1(V)

-2

where N(x) = 2'K fJ < 2 Kv ds together with the following limiting stream constraint on

the input stream: limsupi, Z a - P < 0

The power constraint is needed to prevent degenerate solutions. We have stated it as
a limiting constraint while it is usually stated as a constraint on the expectation of the
power. If every random variable in the system were ergodic and stationary, the two kinds
of statements are practically interchangeable. But because we want to allow non-ergodic
and non-stationary processes to exist within our models, we use this limiting form to make
it clear what we mean.

A.5 Channel Codes

A channel code is an encoder/decoder pair that can be wrapped around a noisy channel.

Definition A.5.1 Assume that the noisy channel has inter-sample time r and offsets

(01,02). A 0 offset, rate R channel code is an encoder/decoder pair (, D) such that chan-
nel encoder S is a (0, 01) offset (1, -,{0, 1}, A) transition map and channel decoder D is a

(02, 0) offset (r, -, B, {0, 1}) transition map.

The rate R in the definition is given in bits per unit time. It can be multiplied by -r
to give the rate in bits per channel use. For convenience, we will denote the bits coming
into the encoder as S' and their corresponding reconstructions as S'. Bit Si is received

at time T while the reconstruction Si happens at time O+ri

The whole idea of a channel code is to reconstruct the input bits reliably at the output
of the decoder.

A.5.1 Block Channel Codes

The definitions we have used are a bit unusual. To justify them, we will show how they
include the standard notion of block-codes as a special case.

Definition A.5.2 For non-negative integers Rin and Rs , a (Ri 0, Rt) block channel
encoder is a function Eo from {0, 1}R _ into ARO,.. Similarly, a (Rin, ROt) block channel
decoder is a function Do from BR0 Ri into {, 1 }Rt_. The block code has rate R bits per

channel use or RRn bits per unit time.
TR 0ut

In the case where the original bits are generated one at a time in a regular stream, the

block encoder works as follows:

1. Buffer incoming bits until we have R, of them

2. Apply Eo to get a codeword to send over the channel.
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3. Send out the codeword one symbol at a time while doing 1 and preparing for the next

block.

And similarly, the block decoder does this:

1. Buffer channel outputs until we have R0 st of them

2. Apply Do to find out which codeword and hence which block of input bits was sent.

3. Send out the decoded bits one at a time while doing 1 and preparing for the next

block.

To calculate the delay of a block channel code, we notice that the encoder must wait

(, - 1) ou units of time in buffering before the relevant codeword can even begin to be

transmitted. Similarly, the decoder must wait another (R0 st - 1)s while the codeword is

being received. This gives us a minimum delay of at least r(2ROt - 1 - units of time.

Aside from the effect of any offsets, this is the delay experienced by the first bit in the block

even though the block decoder could potentially reconstruct the original codeword (and

hence all the R., bits that went into choosing it) as soon as the last part of it is received

across the channel. This gives us the following:

Lemrnma A.5.1 For any ( R t) block channel code (EO,1DI), there exists a rate R =

£in. channel encoder E, decoder D, and reconstruction profile r' that generates the same

sequence of s' given the same source sequence sr and channel noise. Moreover, the recon-

struction profile has delay T(2ROt - 1 - * ) units of time.

A.5.2 Codes with access to feedback

It is sometimes useful to consider situations in which the decoder has some medium to talk

back to the encoder. In our view, we can do this by allowing the channel encoder to have

an additional causal dependence on the relevant feedback stream. In general, this stream

might also be noisy or constrained in some way. However, we will restrict our attention to

the case of noiseless feedback from the output of the channel back to the encoder.

Definition A.5.3 Assume that the noisy channel has inter-sample time T and offsets

(01,02). A 0 offset, rate R channel encoder with access to noiseless feedback E is a (0,01)
offset (1 -r, {0, 1}, A) transition map (02 +6, T, Bo) causally dependent on the output stream

of the channel. 6 > 0 is chosen so that (02 +6) > 01.

The additional delay 6 is chosen to prevent problems with causality loops - ensuring

that even if the channel has no intrinsic delay, the encoder at a given time only has access

to the strictly prior channel outputs.
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Appendix B

Convergence To Means

B.1 Chebychev inequality

The standard Chebychev inequality is a well known result that bounds the probability of a
large deviation from the mean for any distribution with a finite variance.

Theorem B.1.1 Given i.i.d. random variables {Xi} with common finite mean X and finite
variance G', the empirical average _j1 X converges to X as follows:

P(I+Z(Xi - X >E)<2N

Proof: Although this is a well known result, it is illustrative to look at the simple proof to
see why it cannot easily be generalized to fractional moments.

F N]2
E NEXi - X)

1q.

N-

= 2 E[( XI X)2

N2N

N N
E$(X-)2+EZZ(XE

=(=X2]±ZZE
N2 E [i=1 it

- X)(Xi - X)

[(Xi - X)(X -

1N IN

- 0.2+Z E[(X -X)]E[(X -X)])
2=1 i=1 j$i

J2

There are two key steps in the above derivation. The first is that we are able to express
the square of the sum as a sum of products and then bring the expectation inside the sum.
The other key step is where all the cross correlation terms go to zero since the expectation
of a product of two independent random variables is the product of expectations. Then, we
can just apply Markov's inequality to get:

N1
P( EXi - I;> E) =

N

p((' JN X ) 2 > E2)
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E([(kL flXi-X)21

Cr 2

E2 N

All the above works just as well with only pairwise independence. E

If all positive integer moments exist, and the integral defining the moment generating

function fj eSdF(x) converges to finite values for some positive values of s, then the same

basic approach can also give rise to the faster exponential convergence bound known as the

Chernoff Bound.

B.2 Distributions with Heavy Tails

In some cases, the variance is infinite. The above approach does not work if all we have

is a finite fractional moment 1 < 0 < 2. This is because the fractional power of a sum

cannot easily be expressed as a sum of products. A power-series expansion could be used,

but it would only converge in a small neighborhood and thus would not let us bring the

expectation inside the sum.

However, an alternative approach[68, 8, 44] does succeed and gives us:

Theorem B.2.1 Given i.i.d. random variables {XiJ} with common finite mean X and finite

-th moment E[Xi1I] <oo for 0 G (1, 2), the empirical average k z =1 Xi converges to X_

as follows: Va E (1, 3) there exists a distribution dependent constant K such that:

1 N K
P(IkZXi - XJ;>e)< -N -

Ni=1 E

Proof: Since the result is not well known and the literature does not appear to have a single

place where the result is derived from only elementary facts, I give a complete proof below.

I follow [68, 8, 44] relatively closely. Tlhe proof works by looking at the Fourier transform

(characteristic function) of the distribution for Yi = (Xi - X). Let F(y) = P(Yi < y) and

consider:

f (s)f= esYdF(y)

for real values of s. It is clear that f(s) = 1 - T(s) (with T(0) = 0) and it turns out that

the probability of large deviations is related to the behavior of the real part of T(s) near

the point s 0. We show that Ti(s) is O(s&) near the origin. First, we take a look at the

real part:

(4r(s)) = sj R(Q(s))dv

= s lim I -i
N-ooN S

SN-oc N _ + s(2N-i)
2N 2N

1 N-1 (i(s t
)s(2N-i)

Ss hmJ+ (2N
- N8 Si s(2N-i)

i=O 2N 2N
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= 2him E SiN--o 2N _
i=O 2N

2 3!(V)) d

The inequality in the above sequence comes from the fact that R '/4x+y) K ± + * .

To see this, consider real values S1i, 2, S3, Z 1 , z 2, z3 such that (z1 + z2 + z3) = 0.

3 3 3

sj--k ) Zj Zk+ (S k -= > 3zjsk-3 fss-skk)zzzz
k=1 j>k k=lj=l

3 3 3

Z>zk) - -sj SkzjZk
k=1 j 1 k=1 1

3 3 3

EZ32 EE s j -- s kj Z k

k=1 k=1j=1

3 3

- 3 f(sj - sk) Zjzk
k=1j=1

CO 3 3

-f >3 e i(S8k)UzjzkdF(u)
-0 j=1 k=1

3 3

- J (>3 e iiz)(>3 e-iskuz)dF(u)
-0 j=1 k=1

o3

-fi: (Y3 ezsUzj) 2 dF(u)

< 0

Consider real c,y > 0 and let si =-X+1, S2 = l-y, 53 = 1 and zi= y, z2 = c, z3 = -(c+y).
It is easy to see that

0 > >3>3(t(sj - sk )zJzk + F(sk - sj)ZkZj)
k=1 j>k

- ( 4 ((x + 1)-(1--y))yx + T((1-y)-(x + 1))Xy)

+(tF(( + 1) - l)y(-(x + y)) + TI(1 - (c + 1))(-((x + y))y)

+ (T((- (1 - y))(-(x + y))cc + t((1 - y) - 1)x(-((x + y)))

- (P(x + cy)cy+F(-(c+cy))y)+ ({(cc)(-(x + y))y +T(-X)y(-(x + y)))

+({(y)H(-(c + y))c + t(-y)(-(x + y)))

which implies

T(c+cy)±+i(-(cc+y)) 'I'(c)+t(-X) t(y)+(-y)-
cc+y - c y
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which in turn gives
31(t(x ± y)) _ R(x()) ~R( (y))

x+y cy

Now, we look at (z)).

K 2z-a (T(s))ds

-z 0 f :1 osSd3
- 2z- z 0 1C- os sydF(y)ds

- 2z-a 1 - cos sy dsdF(y)

2z N jlyICosvdvdF(y)
f- 00 f -v

= 2z-a y - Cos V dvdF(y) + f zy - Cos dvdF(y))

= 2z-0(j o - y1-cosVdvdF(y)+ O Z 1 -cosVdvdF(y))

The double integrals are each over a triangular area in the (y, v) plane and these areas can
be rewritten to get:

zc ) 2z--a(0osdF(y)dv+ dF(y)d)-cv 10 j v

o-o o -j cosv -j

fo v
dF(y) ± j dF(y))dv

2 oo01Cos V VP(|Y| ;> dv
S- cos v a E1  [

< 2fl +jos max {VV, EFYI1}dv

Where the inequality is due to a simple application of Markov's inequality to Y '. Next, we
divide the integral into three parts and bound them separately. Pick a y such that yz < .

2 z 1 - cos v V

2(] vl+a z
S1- Cos ov ax ,E[IY O0]d

lyz'- V1+a z" ax, }d

+o0 10-cos vVa E[IYI|1
vl+a zamx{, }dv)

<-ya , Cosvdv+2 f21 cosvv0E[|YJd
fo V1+a I 2 V00 z E))3

,yz 2 { V2 00 1
-Yj +adV + E[IY| f](j 2a ( dv + 4J

2

7a ffzvl-adv ±E[IY t3zfl-a(f 2 V>-Odv, ±4 cJ v'dv)
JO 2

dv)
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a 1 (Z2a+EII~OO 1 1 4 1
Y 2 -(Tz) + 2 - /(22-fl - ('z)2+) + (T)

=_-_2_Z2-,8 +EA - (yz)2-> 4

=Z (2 - a- + E[jYj] 2-03 ±+020)

Since c < < 2, all the z terms above tend to zero as z gets close to 0. This shows
that !R((s)) is O(s') near the origin. Now for the imaginary part, we follow a similar
argument. In the middle of it, we will need to consider the distribution for B = -Y which
we will denote by G.

Im(T(z))
za

Im(f(z))
za

= |z-a( sin zydF(y) - 0)|

= Nz-Je ( sin zydF(y) - z ydF(y)l

= Iz-' I :(zy - sin zy)dF(y)|

= |z- 0 (zy - sin zy)dF(y) - (zb - sin zb)dG(b))|
S100  J
/ 00 zy 

00 zb

= |z~a( fof (I - cos u) dudF (y) + ofo(I - cos u) dudG (b))|

Once again, the region of integration ({(u,y)} such that y 0, a> 0,u < zy) can also be
expressed as {(U,y)} such that y > 0, u >0, y . So:

Im(T(Z)
zo =z- aI(J i - cosudF(y)du + JJcc1 - cos udG(b)du)j0 R0 f}

=z- z (1 -cosu)(f dF(y) + fdG(b))du

-' fa(1 -cos u)P(IYI -)dul

< 1 J -cosu (u E uY~d\
fo (Z)\zz

-E[IY| c]zf-uJ 1 - cos dul
fo casu

E[IYA0(Jz-"( 1-cosa d"+ J1Cos u

K E[|Yj] (zu2-du +|z J 2u-du\

- E[IYI]|z"-cI( -I1 + 2 2-1)
2(3-0)20 / 0- 1

Since a < /, the z term above tends to zero as z gets close to 0. This shows that
Im(P(s)) is 0(sa) near the origin and since the real part is also, that T(s) is O(sQ) near
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the origin.

Let SN =Z . Let G(s) be its distribution and let 4b(z) be its characteristic
function. We now use an argument exactly like the one used to prove the "truncation
inequality" in [44].

i§I >AdG(s)

1- sinI 'isI>n
(1 - sin 1)dG(s)

I sin '
1siIll(JI>(1 t- )dG(s)

A - c s!n sintd>(

A 1

1 sin aS
1 - sinifA((1 - cszA)dG(s) +

AA 11 - sini of( - cosxadCs

A C 1 sin
I -si-- A - S dG(s)

I -sin1 f,,.foo (1 -- cos zx)dzdG(s)

(1- cos zx) dG (s) dz
1 - sin 1 fo 1,,

R( tN(z))dz1 - sinn foo

Where TWN(z) is defined by the following:

<(Dz)

sin d (s-(1 - )G s))

= eizzEj=1N dF(yI)dF(y2)---dF(yN)

N-fezyidF(y1)dF(y2)---dF(yN)
j=l

N 00

= t ezzyidF(yj)
1 l -00

= (f(z))N
- (1-T(z))N

= l- WN(Z)

We are interested in large deviations A and hence in small z E (0, 1). In a neighborhood
of the origin, since F(z) is Q(s&), we know that there is a K such that as long as Izi < 6
we have R(4(z))l < Kjzj0 and lIm(P(z))I < KjzP as well. It is clear from the simple
binomial expansion that as long as Izi < 6', (TNN(z)) < 2NKlzl' as welL Focusing our
attention on A > t, we have:

P(ISNI A) itn J>TN(Ddz1 - sinl10o

<I2NKzadz
- 1 - sin 1 Jo
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2NK A1 +
(I-sinl)(a±1)(A

2NKA-"
(1- sin 1)(a + 1)

Finally, we know that:

P(1k Xt--1X\e) P(j\SN
P(NEX Ni=1 NIe

P(ISN| Ne)

2NK(Ne)-a
- (1 - sin1)(o + 1)

2K N1-a
(1 - sin 1)(a + )E

Which proves the theorem. U.
Notice that all we use in the proof of Theorem B.2.1 is that P(Xi A) < KA-0 where

3 c (1,2). It is obvious that a mean X exists since:

E[X] J P(X >x)dx

K f P(X >x)dx +J;KK-dx

00
1K

KK
< K'6 + ( KO~d K-

1

< KO + K
-

Thus we immediately have the following corollary:

Corollary B.2.1 Given i.i.d. non-negative random variables {XzJ for which there exists a
constant K so that P(X, A) < KA-3 for 0 c (1, 2), the empirical average I 1 Xi
converges to a finite X as follows: Va E (1, /3) there exists a distribution dependent constant
K' such that:

N<K'
P(IkZ-4Xi -X| I e) < aN-"

=1
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Appendix C

"Simulating" Random Variables

In this appendix, we will collect some technical results that are used in Chapters 4 and 6.
These have to do with a constructing random variable X out of other independent random
variables so that X has a given distribution F.

C.1 Definitions and Examples

Because linear systems are of particular interest to us, we are interested in being able to
make random variables by taking sums of other random variables.

Definition C.1.1 A distribution F is additively constructible out of distribution G if there
exists a distribution G' such that if Y is a random variable with distribution G, and Y' an
independent one with distribution G', then X = Y +Y' has distribution F (or differs from
F only on a zero-measure set).

Our most basic distributions for random variables are the Dirac J distribution and the
uniform distribution.

Example C.1.1 Consider real-valued random variables. Suppose that G(x) =-6 (x - 2) +
J (x+ =) with 6 being the standard Dirac distribution. Then, a distribution F with a uniform

density function f that has support on [0, 0) is additively constructible out of distribution
G. The appropriate G' is defined by its density g' as follows:

S2ifXc[030
9'( )W 0 E4, 4

0 otherwise

Example C.1.2 Consider real-valued random variables. Suppose that G is a uniform ran-

dom variable on [0, 0). Then any distribution F with a piecewise constant density function

f that is constant on domains on the form [kO, (k + 1)6) is additively constructible out of
distribution G. The appropriate G' is:

0 2=00

But often, the type of exact matches illustrated by examples C.1.1 or C.1.2 are not
possible.
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Definition C.1.2 A distribution F is E-approximately additively constructible out of dis-
tribution G if there exists distributions G' and H suchthat if (Y, Y', Z, Be) are independent
random variables with Y having distribution G, Y' with distribution G', Z with distribution
H, and B, Bernoulli distribution. with P(1) = c, then X = (1 - Be)(Y + Y') + BZ has
distribution F (or differs from F only on a zero-measure set).

The idea here is that F can be approximately constructed out of G and G', with the
residual coming from the occasional replacement by Z. Procedurally, we would generate a
sample X as follows:

" Generate an independent sample b = B,. If b =1 goto step 4

" Generate independent samples y Y and y' = Y'.

" Assign x = y + y' and return.

" Generate independent sample z Z.

" Assign x = z and return.

Clearly, by using c = 0, we are back to the case of additively constructed since we will
never reach step 4 in the above procedure.

Example C.1.3 Consider real-valued random variables. Suppose that G is a uniform ran-
dom variable on [0,0). Then a distribution F with density f (x)=lo - 42 x on the interval
[0, 20] and f(x) 0 outside of that interval is '-approximately additively constructible out
of the uniform distribution on [0, 0] by using G'(x) = 6(x) and H(x) defined by its density
as:

as-: x if x E[0, 0)
h (x)=x- x-0) if x c [0,20]

0 otherwise

Often, we will be interested in letting e get arbitrarily small by using a parametric family
of distributions for G and varying their parameter 0.

Definition C.1.3 A distribution F is arbitrarily additively constructible out of a 0-parametric
family of distributions G if there exists a sequence of {(c,0)} with limi E i = 0 such that
F is e1-approximately additively constructible out of distribution Go.

The triangular random variable from example C.1.3 fits this definition relative to the
family of uniform densities indexed by the width of support.

Example C.1.4 Consider real-valued random variables. Suppose that G is a uniform
random variable on [0,0). Then the distribution F with density f(x) = -- !_ jx on the
interval [0, 2aJ and f(x) - 0 outside of that interval is arbitrarily additively constructible
out of uniform distributions on [0, 0].

We use a sequence with (E,04 - (221,,% and at the i-th approximation, we use:

2 2i+1 _1 a .

'(x) = 2i+ 22i+1j==1
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and H(x) defined by its density as: .

h(x) = a} - (X-- (-- 1)g) ifx e [(j -i ),4) and 1 < <2+1 - 1
0 otherwise

C.2 Results

With the definitions out of the way, we can state some elementary results that we need in
the rest of the thesis. The first property allows us to build complicated distributions out of
simpler ones.

Lemma C.2.1 If distribution E is additively constructible out of distribution F, and F
is additively constructible out of distribution G, then E is additively constructible out of
distribution G as well.

Similarly, if distribution E is arbitrarily additively constructible out of the 0-parametric
family of distribution F, and each F6 is additively constructible out of distribution Go, then
E is arbitrarily additively constructible out of the 0-parametric family of distributions G as
well.

Proof' X with distribution E can be written as X = Y + Y' with the Y having distribution
F. But, Y can be written as Y = Z + Z' with Z having distribution G. Then X =
Z + (Z' + Y') and hence E is additively constructible out of distribution G.

The statement for arbitrarily constructible follows immediately.
Example C.1.1 tells us one way of generating a uniform random variable. We will also

need a way of getting i.i.d. uniform random variables by means of "dithering" other random
variables with possibly complicated dependencies and distributions.

Lemma C.2.2 Given any real valued random process {XJ, and an independent sequence
of i.i.d. uniform random variables {t} of width 0. Consider processes {(Mt,t)} that
satisfy:

Mt + t = Xt + t
with Mt taking values on the integers and q% taking values in [0, 0). Then:

1. Knowing Pt = 4, Mt = m, and 4t = q allows us to uniquely determine the value of
Xt.

2. Knowing Xt = x and '1 = 4 allows us to uniquely determine the values of (Me, 41t).

3. {1D} is an i.i.d. sequence of uniform random variables of width 0 even after condi-
tioning on all random variables in the system except any that are dependent on 9,
itself.

Proof: The first claim is obvious since P(Xt =xk = 4-, Mt = m, t = () = (x -- mO -

- 4') by definition. For the second, consider mO + + = ± = m'0 ± #'. Dividing both
sides by 0 gives us m+ -= m'+ -. But and + are both in [0, 1). Since the integral and
proper fractional parts of a real number are uniquely determined, this means that

0 0 0 0 0 _
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and thus 0 = 0' also holds.

P( X= xr -1 Xfl-= 1  -

1r A tiitI1m - -O- M0 V-1 _ -1

(Dnt 0t0xt 00K t- I tV PTo -

=P( < X j $)D

X tXt Xt Pt Apt
= P(%0+(p X0-o -- - -1X

= P( + -((X- ) + ,< -X i
= 0( +o( ) - ( 0+ 1 X x -- --1 ,- I =VQ)

To simplify the notation, let us substitute P IItandI11= ( -[ ) (with the lower
case -y and 7r being defined analogously for the non-random variables). By construction we
know that 0 <P < 1 and 0 <H- < 1.

P(M - = 4i-,tM = ,t 1= = +
P(D ms' M::--_< m7 I t+1=',P 41 =r4+)

P(±f+ '>1Hr = w -1 =4 1 -,=t 1 =+= 1P 1 -- t+) ;1 -t +1 1 1 1-+1 r) I0 - 011

-P( F< -y r± - >Or J 1 t-iI

0 0 1

Ft H P ft -I t- o D

/m(l-7r+-,l) 'd11±71(1 jax(-r,) -d1+=

0 r - -

= (i(1t-- 7r<+ -Y7, + - < ( 1 r +(max= -7r, 0 - )- ) D _o

= 7 + min <- 11,0 + ma7r O, -1 tr, 1 T0) 0

= ( 0 + - 7 P Y-+ 0> -7

This shows that P, even after conditioning on specific values for all other random variables
(except Pt and Mt) in the system, is a uniform random variable on [0,0). Since it is
uniform for all specific values for these values, it remains uniform when we integrate over
their measures and remove the conditioning. Thus, the sequence {Gi} is an i.i.d. sequence
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of uniform random variables of width 0.
The third property states the immediate fact that the operation of linear systems dis-

tribute over addition.

Lemma C.2.3 Consider an i.i.d. process {Wt} with distribution F for each Wt that is fed
into a discrete-time linear system L to give output process {Xt}. If we realize each Wt as an
c-approximately additively constructible variable out of (Y,Y'', Z, B), then we can express
Xt as a sum of two terms: one involving the linear system's response to {(1 -- Bj)Y}, and
the other involving the linear system's response to {(1 - Bt)Y/ + BtZt}.

Proof: Obvious by the definition of linear system. E
We will also want to know some information theoretic consequences of our approximation

strategy which consists of viewing one random variable as the convex combination of two
random variables.

Lemma C.2.4 Suppose X is a random variable with distribution F which can be repre-

sented X = (1 - B,)Y + BZ where BE is a Bernoulli variable with head probability C and
(Y, Z) and BE are independent. Let p(ZXX) be a transition measure and the pair (X, k)
have measure defined by F(X)p(XIX). Define the pairs (Y,XI ) and (Z,X) by the analogous
combinations of the transition measure p with the measures for Y and Z respectively. If
p(X, X) 0 is a distort measure, then:

1
E[p(Yk)] < E[p(X,2)]

-1-c

and also

I(Y;X) < 1I(X,X)

where I is the information theoretic mutual information function.

Proof: The first part is a simple consequence of the nonnegativity of p:

E[p(X, )] = (1 - E)E[p(Y, X)] + cE[p(Z, )]

(1 - e)E[p(Y,X)]

which immediately yields the desired result by dividing both sides by (1 - e).
As far as the mutual information goes, we rely on the concavity of mutual information

(Theorem 2.7.4 of [11]) to give:

I(X; X) (1- E)I(Y; ±) + EI(Z; 2)
(1-e)I(Y;X)

where the first inequality expresses concavity of I(X, 2) with respect to the measure for X
and the second inequality comes from the fact that mutual information is always positive.
From this, we can again get our desired result by dividing both sides by (1 - e). H

We also need to understand which sort of distributions can be arbitrarily additively

constructed from other distributions:

Theorem C.2.1 If probability distribution F has a bounded density f which is Riemann-
Integrable on any bounded set and is continuous outside of that bounded set, then F can
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be arbitrarily additively constructed from uniform random variables parametrized by their

widths.

Proof: Follows immediately from the definition of Riemann integrability since the lower
Riemann sums corresponding to the integral of the probability measure will approach 1.
The Riemann sums correspond to the sum of an appropriately narrow uniform random
variable to an appropriately modulated train of delta functions. Since the sums approach
1, it means that E can be made to go to0. LI

We will sometime also need to be able to bound the required relationship between ei
and 01 as we make the E. go to zero.

Theorem C.2.2 If probability distribution F has a bounded density f with bounded support
which is Lipshitz verywhere (ie. ]L such that Vx,x' we have If (x) - f (x')| Ljx - x'|),
then F -can be arbitrarily additively constructed from uniform random variables parametrized
by their widths 0. Furthermore, there exists a constant K so that we can choose (el, i) with

Ei < KL0s.

Proof: Let the support of f be within [ix 0 , Xo ± ]. Then, if we choose 0 - £ we can use
the following to approximate f.

infJ'xoLj-,+ f(x') if i E [xo + - 1), io + J] and I I J M
10 otherwise

(C.1)
It should be clear how (C.1) can be realized as the density representing the sum of a uniform
random variable with support 0 - - and a suitable sum of modulated 6 functions. The

only question is how much probability is left over.

e f (x) - g(x)dx

M XO+n

- Ej(f(x) - ilff(x')) dx
+1 o+-(j1) \'E1XO+9(j-1),zo+qj]

<M
j=1

Q L
2 M

-LO
2

The inequality comes from the fact that the function is Lipshitz and thus the area cannot
exceed that of a triangle with slope L.

These results for uniform random variables naturally generalize to the pairs of 6 functions
separated by 0 from Example C.1.1 by the application of Lemma C.2.1.
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