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Effective communication in product development organizations has been identified as a
key factor of product development performance. Furthermore, understanding how the
development organization manages the knowledge associated with the product architecture is
broadly recognized as a critical challenge for established firms facing architectural innovation.
This thesis presents a research method and statistical analyses intended to enhance understanding
of the coupling between the product architecture and the development organization.

The research method is summarized by three steps: 1) capture the product architecture by
documenting design interfaces, 2) capture the development organization by documenting team
interactions, and 3) couple the product architecture with the development organization by
comparing design interfaces with team interactions. Our approach is illustrated by analyzing the
development of a large commercial aircraft engine.

Several hypotheses are formulated to explain the mismatch between design interfaces and
team interactions, that is, the cases when: 1) known design interfaces are not matched by team
interactions, and 2) reported team interactions are not predicted by design interfaces. Effects due
to organizational and system boundaries, design interface strength, design interface type, design
interface redesign, indirect team interactions, and secondary design interfaces are studied. In
addition, through the analysis of the distribution of cross-boundary design interfaces, modular
and integrative systems are formally identified, and differences between designing modular
versus integrative systems are studied.

Two types of statistical analyses were performed. First, categorical data analysis
techniques were used to test the mentioned hypothesized effects. Second, a log-linear model,
built upon social network analysis methods, was developed to study the association between
design interfaces and team interactions controlling for effects of reciprocity, differential
attraction, and differential expansiveness of both components and teams. Findings in this
research are complemented with the results of another empirical study focused on the effects of
distance and communication media use in geographically distributed development organizations.

By considering the results presented in this thesis, development organizations can
improve the integration process for complex designs. The approach developed is particularly
applicable to projects where the architecture of the product is well understood and the
development team is organized around the product architecture.

Thesis committee: Prof. Steven D. Eppinger (thesis supervisor)
Prof. David R. Wallace (chairman)
Prof. Thomas J. Allen
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1. Introduction
"Hay hombres que luchan un dia

y son buenos.
Hay otros que luchan un aio

y son mejores.
Hay quienes luchan muchos anios

y son muy buenos.
Pero hay los que luchan toda la vida:

esos son los imprescindibles."
-Bertolt Bresch

(en Sueflo con Serpientes (1975), de Silvio Rodriguez)

"There are men that fight for a day
and they are good.

There are others that fight for a year
and those are better.

There are those that fight for many years
and those are very good.

But there are those that fight all their lives:
those are the indispensable."

-Bertolt Brescht
(in I Dream about Snakes (1975), by Silvio Rodriguez)

The increasing need to compete in established markets as well as to address new markets

in order to sustain corporate growth is adding more pressure onto product development

organizations to improve their development performance. This thesis introduces a method to

understand to what extent the architecture of a product determines the technical interactions

between design teams.

This work is motivated by the crucial importance of product development in today's

businesses and the need to improve our understanding of the communication process in

development organizations. Much has been written about process improvement in the product

development arena and in particular about the role of effective communication in product

development teams. Allen (1977) pioneered the stream of research dedicated to investigate how

effective internal and external communications stimulate the performance of development

organizations. Clark and Fujimoto (1991) relate successful development in the auto industry to

intensive communication between upstream and downstream activities. Wheelwright and Clark

(1992) emphasize the need to improve communication when and where it certainly improves
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project performance. Ulrich and Eppinger (1995) also emphasize the need to facilitate the

exchange of essential information in order to speed up the development process.

Under the information processing perspective introduced by Alexander (1964), a product

development process transforms a set of inputs (e.g. customer needs, product strategy,

manufacturing constraints) into a set of outputs (e.g. product design). This typically requires that

members of a product development team communicate with others, either within or outside the

development team, in order to accomplish their development activities. Thus, communication

becomes an important correlate of R&D performance (Allen (1964); Keller (1986); De Meyer

(1991); Hikanson and Nobel (1993)). As De Meyer noted, "one of the most important

productivity problems in R&D is stimulating communication among researchers" (1991: p. 49).

The objective of our study is to analyze the coupling of the architecture of the product to be

developed and the structure of its product development organization. By predicting technical

communication in this way, we aim to provide a method that improves planning of development

projects where the architecture of the product is known in advance.

From a strategy viewpoint, Henderson and Clark (1990) identified how critical it is for

established firms to recognize novel product architectures. Furthermore, improved development

of architectural knowledge provides a competitive advantage for firms facing architectural

innovation. The approach illustrated in this thesis provides important insights for managers

addressing product and organizational changes.

1.1. Complex Product Development Leads to Decomposition and Integration

This thesis addresses the problem of understanding technical communication in complex

product development. We focus on the development of complex but relatively mature products,

such as an automobile, a computer, or an aircraft engine. The general approach when developing

complex products is to decompose the product into systems, and if the systems are still too

complex, decompose these into smaller sets of components (Alexander (1964), Simon (1981),

Smith and Browne (1993), McCord and Eppinger (1993), Pimmler and Eppinger (1994),

Eppinger (1997)). Consequently, product architecture is defined as the scheme by which

decomposed elements of a product are arranged into sets of components in order to meet its

functional requirements (Ulrich and Eppinger, 1995).
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Ulrich (1995) defines several types of architectures according to how the product's

functions are mapped onto its physical components. A key feature of product architecture is the

degree to which it is modular or integral. Modular architectures exhibit direct mapping between

functions and physical elements, and have well-defined interfaces between physical components.

On the other hand, integral architectures spread functions across physical components, resulting

in more complex interfaces between them (Ulrich and Eppinger, 1995). In very complex

products, we apply these definitions at the level of the many systems (and subsystems) which

comprise the product. We will refer to modular systems as those exhibiting modular architecture

characteristics while integrative systems are those revealing integral architecture features.

From an organizational standpoint, teams are commonly organized around the architecture of

the product. In most technical products we can observe a clear mapping between the product

architecture and the development organization which designs it (McCord and Eppinger (1993),

Pimmler and Eppinger (1994)). Complex development projects usually involve the efforts of

hundreds or even thousands of team members. A single team does not design the entire product

at once (too complex). Rather, many teams develop the components, or systems, and work to

integrate all of these components to create the final product (von Hippel (1990)).

Design teams face two important levels of integration during the development of complex

products. Function-level integration takes place within each cross-functional design team when

they have to coordinate efforts in order to design their respective components. System-level

integration takes place across design teams in order to integrate the components (designed by

each team) to assure the product works as an integrated whole. Furthermore, we distinguish two

types of system-level integration efforts. Within-group system-level integration effort, which

takes place between teams that design components of the same system. Across-group system-

level integration effort, which takes place between teams that design components that belong to

different systems.

Figure 1.1 illustrates the various levels of integration faced by the development organization.

This thesis focuses on system-level integration efforts. We aim to better understand how the

coupling of product architecture and organizational structure drives system-level coordination

efforts across design teams.
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Figure 1-1. Levels of Integration Effort in a Development Organization

1.2. Technical Communication in Development Organizations

Previous research (Allen (1997), Morelli et al (1995)) has identified three types of technical

communication in development organizations.

* Coordination-type. Team members communicate to coordinate their tasks. Technical

information transfer about task related issues. This type of communication is critical in

project-based organizations as the one we are studying on this paper. In this type of

organization better project performance is achieved by accomplishing effective

communication across disciplines (Allen and Hauptman (1990)).

* Knowledge-type. Team members communicate with their peers to keep up to date with the

latest developments in their disciplines. Consultation, instruction and skill development.

This type of communication is particularly important to maintain technology currency within

specific disciplines, which is the underline goal of functional organizations (Allen and

Hauptman (1990)).

* Inspiration-type. Team members communicate for creativity, inspiration, and managerial

affirmation. Motivation of team members.
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For the purpose of this thesis, we are concerned with coordination-type communications,

which are directly related to the system-level integration effort across design teams we want to

understand. Several researchers have focused their efforts on predicting and understanding

communication patterns in development organizations. Allen (1977, 1997) has proposed models

based on distance separation between team members in R&D organizations to estimate the

probability they engage in technical communication. Griffin and Hauser (1992) showed that

using Quality Function Deployment (QFD) practices enhances technical communication within

the boundaries of the development teams, but reduces the communication levels across teams'

boundaries. Morelli et al. (1995) showed that coordination-type communications could be

predicted by analyzing the task structure of development projects. Van den Bulte and Moenaert

(1998) studied the effects of R&D collocation on cross-functional communication. Finally, we

present in chapter seven an empirical study in the telecommunications industry about how

distributed development organizations use various communication media (Sosa et al. (2000)).

1.3. Research Questions

Complex products are decomposed into systems, and these systems are further decomposed

into components. The arrangement of these physical sets of components defines the architecture

of the product. Similarly, development organizations are usually split into design teams that

develop each of the components that comprise the product. Figure 1.2 illustrates the main

research question we want to investigate: How does the architecture of a product drive the

technical communications between the teams which design it?

Product Decomposition Development Organization

into Physical Systems into Design Teams

ow does product architecture
drive design team interactions ?

Figure 1-2. Main Research Question
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Within this context, we are particularly interested in answering the following questions:

* How accurately can we predict coordination-type communication by analyzing the coupling

of product architecture and the structure of the development organization?

* Why do some design interfaces between components not correspond to technical interactions

between the teams that design them?

* Why do design teams that develop independent components still engage in technical

interaction?

* Is there any difference in the communication patterns of design teams that develop modular

systems versus design teams that develop integrative systems?

* How can managers mitigate the negative effects of geographically distributed development

teams?

1.4. Thesis Outline

Chapter 2 describes our research method in the context of the development of a large

commercial aircraft engine. In chapter 3, we formulate the hypotheses that explain the mismatch

between the product architecture and the design team interactions. Chapter 4 contains the results

of the analysis of categorical data completed to test the hypotheses posed in chapter 3. A log-

linear model that addresses the limitations of the categorical data analysis is presented in chapter

5. An empirical study conducted in the telecommunications industry to address the effects of

media use on geographically distributed development organizations is presented in chapter 6.

Finally, the conclusions of the thesis and future research directions are outlined in chapter 7.
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2. The Development of a Large
Commercial Aircraft Engine

"Y cuando salto de cubierta
y me abandono a la corriente

Nuevasformas crecen
son tan atractivas

quiero descansar de todo ayer

Y voyflotando por el rio
voy envuelto en la corriente.

Hombre al agua"
(Gustavo Cerati/Zeta Bosio, 1990)

In this chapter we describe the research method we used to study the coupling of the

architecture of a product and the development organization that designs it. We illustrate our

approach in the context of the development of a large commercial engine. After describing how

to capture the architecture of the engine, we define the concepts of modular systems and

integrative systems. We also describe how we capture the structure of the development

organization, and its team interactions. Finally, we illustrate how to map the product architecture

and the development organization into a single matrix.

2.1. Research Method

This section describes our method of comparing the architecture of a product with the

structure of its development organization. Our approach involves three steps:

1) Capture the product architecture. By interviewing design experts', we document how the

product is decomposed into systems, and these systems into components. Then, we ask them

to identify the interfaces required for functionality between the components that comprise the

product. We represent such design interfaces in a design interface matrix.

These people have a deep understanding of the product architecture. They are not necessarily the people who

design the product.
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2) Capture the development organization. We first identify the design teams responsible to

develop the product's components. Then, by surveying key members of the design teams we

capture the intensity (i.e. criticality and communication frequency) of the interactions

between them. We represent such team interactions in a team interaction matrix.

3) Compare the product architecture and the development organization. Finally, we

compare the design interface matrix with the team interaction matrix to answer the research

questions posed in chapter one.

2.2. Research Site

We apply this approach to the design of a large commercial aircraft engine. The engine

studied was a derivative engine. That is, it was the third generation in a family of engines, the

112-inch-fan engine, which is an ultra-high-thrust model. It covers the 74,000 to 98,000-pound-

thrust class to meet the current requirements for the Boeing 777 twinjet. It was the launch engine

for the 777, entering service in 1995. The model studied is the most powerful commercial engine

in the world, and its diameter is nearly as wide as the fuselage of a Boeing 737. Figure 2.1

exhibits a cross-section diagram of the engine studied.

Several factors justified the selection of the project to study. First, the project chosen was a

complex design that exhibited explicit decomposition of the engine into systems, and these into

components. Furthermore, the engine was comprised of both modular and integrative systems.

Second, the way the development team was organized around the architecture of the product

facilitated the implementation of our approach. Third, the model studied was the most recent

engine program to complete design and development, and almost all team members involved in

the initial development phase were still accessible. Finally, the engine studied was part of a

family of large commercial engines with two new derivatives planned whose development

programs had the potential to gain directly from this analysis. For more details about the general

organizational structure of the firm and the data collection process refer to Rowles (1999).

As stated before, the engine studied was the third generation in a family of engines. Indeed,

its components were (in average) 60% redesigned with respect to the second generation. On the

organizational side, about 80% of the organization that developed the engine studied was also

involved with the development of the second generation of this engine.
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2.3. Capturing the Product Architecture

The engine analyzed was decomposed into eight systems (see Figure 2.1). Each of these

systems was further decomposed into five to seven components each (see Table 2.1). Six out of

the eight systems (the fan, the low-pressure compressor, the high-pressure compressor, the

burner/diffuser, the high-pressure turbine, and the low-pressure turbine) exhibited a modular

architecture in which the interfaces between their components were clearly defined among

adjacent components (modular systems). On the other hand, the components of the other two

systems (the mechanical components, and the externals and controls) were physically distributed

throughout the engine exhibiting an integrative architecture. Components, such as the main shaft

and the external tubes are examples of these types of distributed components within the

integrative systems. In total, the engine was decomposed into 54 components grouped into eight

systems, of which six were modular systems and three were integrative systems. (In the next

section we discuss in detail the basis of this categorization.)

Mechanical Components

Externals and Controls

Figure 2-1. Systems of a Large Commercial Aircraft Engine
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Table 2-1. Systems and Components of the Engine Studied

System Number of
Components

Fan 7
Low-Pressure Compressor (LPC) 7
High-Pressure Compressor (HPC) 7

Burner and Diffuser (B/D) 5
High-Pressure Turbine (HPT) 5
Low-Pressure Turbine (LPT) 6

Mechanical Components (MC) 7
Externals and Controls (EC) 10

2.3.1. Types of Design Interfaces

After documenting the general decomposition of the product, we proceeded to identify the

interfaces between the 54 components of the engine. Researchers in Engineering Design (Suh

(1990), Pahl and Beitz (1991)) have modeled functional requirements of product design in terms

of exchanges of energy, materials, and signals between elements. Based on a method proposed

by Pinmler and Eppinger (1994) we distinguished five types of design dependencies to capture

the design interfaces between the physical components:

* Spatial dependency indicates a requirement related to physical adjacency for alignment,

orientation, servicability, assembly, or weight.

* Structural dependency indicates a requirement related to transferring loads, or containment.

* Energy dependency indicates a requirement related to transferring heat energy, vibration

energy, electric energy, or noise.

* Material dependency indicates a requirement related to transferring airflow, oil, fuel, or

water.

* Information dependency indicates a requirement related to transferring signals or controls.
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2.3.2. Criticality of the Design Interface

After design interfaces were identified, we captured the level of criticality for each

dependency in the overall functionality of the component in question2 . Using the five-point scale

used by Pimmler and Eppinger (1994) we capture the level of criticality as:

Required (+2): Interface is necessary for functionality.

Desired (+1): Interface is beneficial, but not absolutely necessary for functionality.

Indifferent (0): Interface does not affect functionality.

Undesired (-I): Interface causes negative effects, but does not prevent functionality.

Detrimental (-2): Interface must be prevented to achieve functionality.

2.3.3. Design Interface Matrix

We mapped the design-interface data into a square (54x54) design interface matrix 3. The

identically labeled rows and columns name the 54 components of the engine, and their

sequencing follows the physical arrangement of the systems within the engine. Indeed, the

systems were sequenced following the airflow through the engine. Each off-diagonal cell of the

matrix contains a vector of five values representing the degree of criticality of the five types of

design dependency for a single design interface. Hence,

2 This does not force design interfaces between components to be reciprocal.

3 The design interface matrix can be described as a special form of design structure matrix (DSM). For a formal

introduction to DSM refer to Steward (1981) or Eppinger et al (1994).
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A5454= Design Interface Matrix

mad

a= <7'
c,"unhal

where, (2.1)
C= criticality of the interface of type" d" between components"i" and "j" ,for funcionaity of component" i"
C =[-2,-1,0,+1,+2J

C?. is undefined for i = j

A5, =Design Interface Matrix(binary)

aq= Iif aI>0

a,-.j= 0 if la I= 0

For graphical simplicity, Figure 2.2 shows a binary version of the design interface matrix.

The off-diagonal elements of the matrix are marked with an "X" for each pair of components that

shares at least one design interface (any non-zero level of criticality). Reading across a row

corresponding to a particular component indicates the other components it depends on for

functionality. The diagonal elements are meaningless and are shown to separate the upper and

lower triangular portions of the matrix. The boxes around the diagonal indicate the eight system

boundaries. Marks inside the boxes represent design interfaces between components of the same

system, whereas marks outside the boxes indicate interfaces between components of different

systems. The first six systems in the matrix correspond to the six modular systems, while the last

two systems correspond to the two integrative systems. Note that the integrative systems have

design interfaces with components in every system of the engine.
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Modular
Systems

FAN system ix I I
(7 components) Ix X N X X

. I xxx

LPC system 1 X -T_

(7 components) x . lxxx

X X X X X X X X X X
X .X X X X X

B/D ystm XX X. X XX X X X X X XXX X

HPC system X

(5 components) x xi

BFF system X X . X X X X X X

(6 components) x

~X XT X X 

XX X X X X X X
(7MT co poens X X XX XX X

XXX XX X X X X X X X X X X X

Mech. Components x X X x X X X X
(7 components) I j x x X

x ~ x X1 Ixxxxx

X XX XX XXX XX X X X X X X X X X X X
X! X X X X X X X X X X

Integrative Externalsand jx I ~~ Ix x xx XX

Controls X x x X X X X X X X X X X X X
(a components) ! ) I t h

xx xxx x lx X X

Figure 2-2. Design Interface Matrix (binary)

2.4. Identifying Modular and Integrative Systems

The first six systems of the design interface matrix are those in which design interfaces

are primarily among adjacent components (modular systems). In contrast,, the mechanical

components system, and the externals and controls system exhibit design interfaces distributed

throughout the engine (integrative systems).

To determine the degree of modularity (and integrality) of each system we analyzed the

distribution of design interfaces across system boundaries. System boundaries are highlighted by

the boxes along the diagonal of the design interface matrix. Marks inside the boxes represent

design interfaces between components of the same system, whereas marks outside the boxes

indicate interfaces between components of different systems. Light boxes throughout the matrix

enclose the cross-boundary design interfaces between two systems.

Figure 2.3 shows the number of design interfaces between the externals and controls

system and the six modular systems. Similarly, Figure 2.4 shows the number of design interfaces

between the mechanical components system and the first six modular systems. To visually
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compare the difference in distribution between modular and potential integrative systems, Figure

2.5 shows the distribution of the design interfaces between the high-pressure compressor (HPC),

which is the least modular of the six systems, and the other modular systems.

Table 2.2 shows the results of the Chi-square test performed to test the alternative

hypothesis that "the distribution of design interfaces of the externals and controls system is

statistically significantly different from the distribution of the high-pressure compressor system".

The test resulted in a X2 equal to 29.880 which is greater than the critical value of 9.488 (for

c=0.05 and four degrees of freedom). The expected values shown in Table 2.2 are based on the

distribution of the design interfaces of the externals and controls system. The actual values are

the number of design interfaces of the high-pressure compressor system. Similar results were

found when comparing the distribution of cross-system design interfaces of the externals and

controls system and the other five modular systems.

Externals and Controls

40

30U)

20

FA 10
C

0
FAN LPC HPC B/D HPT LPT

Systems

Figure 2-3. Distribution of design interfaces of Externals and Controls system

Mechanical Components

14 13

10

2
0

FAN LPC HPC BID HPT LPT

Systems

Figure 2-4. Distribution of design interfaces of Mechanical Components system
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Figure 2-5. Distribution of design interfaces of HPC system

We found that the distribution of design interfaces of the externals and controls system,

and the mechanical components system are similarly distributed among the first six modular

systems. Table 2.3 shows the results of the Chi-square test performed to test the null hypothesis

that "the distribution of design interfaces of the mechanical components system, and the

distribution of design interfaces of the externals and controls system are statistically equivalent".

The test resulted in X2 equal to 6.237 which is smaller than the critical value of 11.070 (for

a=0.05 and five degrees of freedom). We cannot, therefore, reject the null hypothesis of no

difference in the distribution of design interfaces for the two systems.

Table 2-2. Chi-square test results. Comparing externals and controls system with high-
pressure compressor system

System Expected fraction of Expected number of Actual number of X2
design interfaces design interfaces of design interfaces

based on Ext/Controls HPCt of HPC

FAN 15.38% 7.692 8 0.012
LPC 27.35% 13.675 30 19.488
B/D 29.06% 14.530 5 6.251
HPT 14.53% 7.265 5 0.706
LPT 13.68% 6.838 2 3.423
Total 100.00% 50.000 50 29.880

* The fraction of design interfaces between the external and controls system and the fan system is 18 out of a total of
117 design interfaces, that is, 15.38%. Hence, the expected number of design interfaces between the HPC system
and the fan system, under the null hypothesis, is the 15.38% of a total of 50 design interfaces, that is, 7.692. The rest
of the expected values are determined in similar way.
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Table 2-3. Chi-square test results. Comparing externals and controls system with
mechanical components system

System Expected fraction of Expected number of Actual number of X2
design Interfaces design interfaces of design Interfaces

based on Ext/Controls Mech. Comps.t of Mech. Comps.

FAN 13.24% 6.088 9 1.393
LPC 23.53% 10.824 7 1.351
HPC 13.97% 6.426 8 0.385
B/D 25.00% 11.500 13 0.196
HPT 12.50% 5.750 2 2.446
LPT 11.76% 5.412 7 0.466

Total 100.00% 46.000 46 6.237
t I

The fraction of design interfaces between the external and controls system and the fan system is 18 out of a total of
136 design interfaces, that is, 13.24%. Hence, the expected number of design interfaces between the mechanical
components system and the fan system, under the null hypothesis, is the 13.24% of a total of 46 design interfaces,
that is, 6.088. The rest of the expected values are determined in similar way.

2.5. Capturing the Development Organization

The organization responsible for the development of the aircraft engine was divided into

sixty design teams. Fifty-four of these teams were grouped into eight system-design groups

mirroring the architecture of the engine described above. Each of those teams was responsible

for developing one of the 54 components of the engine. The remaining six design teams were

system integration teams, which had no specific hardware associated with them and whose

responsibility was to assure that the engine worked as a whole. Examples of the system

integration teams are the rotordynamics team and the secondary flow team.

We capture the system-level integration efforts (both within groups and across groups) of

the organization by measuring the intensity of the technical interaction between the design teams

involved in the development process. This method is similar to the approach used by McCord

and Eppinger (1993). We focused our efforts on capturing coordination-type interactions

between design teams. Additionally, the development organization was co-located in a single-

floor building, and every team member had access to each other via face-to-face, telephone, and

email. Also, the use of a centralized database to save and/or retrieve information was very

limited. We explicitly asked respondents not to report knowledge-type or inspiration-type

communications.
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2.5.1. Team Interaction Intensity

To measure the intensity of each team interaction, we asked at least two key members

from each design team to rate the criticality and frequency of their interactions with each of the

other teams during the detailed design phase of the engine development project. We used a five-

point scale that combines the frequency and criticality of each interaction into a single metric, as

shown in Table 2.4. The criticality metric allows asymmetry in the interaction intensity of each

pair of design teams. That is, interaction intensity is reported from the respondent's point of

view, and we surveyed both parties of each pair to obtain a bilateral view of each interaction.

Table 2-4. Team Interaction Intensity

Criticality\Frequency Very Frequently Frequently Infrequently Never

(perhaps daily) (weekly or biweekly) (monthly or less)

Critical: Information cannot be
generated by team alone, and its delay
or absence causes rework or increases 5 4 3 0
iterations.

Important: Information might be
generated by team alone with some
risk and effort. Its delay or absence 3.5 2 1 0
negatively affects team performance.
Routine: Information is important but
can be generated by team alone with
minimal risk. Its delay or absence has 2 0.5 0 0
not significant impact in team
performance.

2.5.2. Team Interaction Matrix

We organize the team-interaction data in a square (60x60) team interaction matrix. The

identically ordered labels of the rows and columns of this matrix contain the names of each of

the design teams. Each cell in the matrix contains the interaction intensity reported by each team.

Hence,

T,0= Team Interaction Matrix

ti i= team interaction intensity [0,51 reported by team" i" about its interaction with team j

t,is undefined for i = j
(2.2)

T b6. 6= Team Interaction Matrix (binary)

t5=I if t, > 0

t.=o if t.=0
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Figure 2.6 shows a binary team interaction matrix with off-diagonal cells marked "0" to

indicate each non-zero team interaction revealed. Reading across a particular row indicates with

which other teams the surveyed team interacted.

The 60 design teams are organized into groups that mirror the product architecture

structure. As shown in Figure 2.6, associated with the six modular systems are corresponding

groups of design teams. Similarly, the two integrative systems have their two corresponding

groups of design teams. Finally, there are six system integration teams that are not responsible

for designing any specific engine's component but they are in charge of integrating all the

components into a whole. The boxes around the diagonal indicate the organizational boundaries

between the eight design groups. Marks inside the boxes indicate within-boundaries team

interactions, which we associate to within-group system-level integration effort. On the other

hand, marks outside the boxes indicate cross-boundaries team interactions, which we associate to

across-group system-level integration effort.
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Figure 2-6. Team Interaction Matrix (binary)

2.6. Comparing Product Architecture and Development Organization

The one-to-one assignment of the 54 components to the 54 design teams allows the direct

comparison of the design interface matrix with the team interaction matrix. In Appendix C, we

present an algebraic model that allows us to perform this comparison for the general case when

the assignment is not one-to-one. Figure 2.7 shows how, by overlapping the design interface

matrix over the team interaction matrix, we obtain the resultant matrix. The resultant matrix is

exhibited in Figure 2.8.
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Figure 2-7. Comparing Product Architecture and Development Organization Interactions

Modular
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Figure 2-8. Resultant Matrix

Legend for Figure 2.8:

X: Design interface with no team interaction
0: Team interaction with no design interface
#: Both design interface and team interaction
(Blanks): No design interface and no team interaction
*: Diagonal elements (meaningless)
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3. Formulating the Hypotheses
"Pero yo como soy tan sencillo

Pongo en claro esia trovada
Compay, yo no dejo el trillo
Para meerme en cafiada."

(en De Camino a La Vereda (1950s), de Ibrahim Ferrer)

The resultant matrix, exhibited in Figure 2.8, provides the basis for the analysis completed to

answer our research questions. Figure 3.1 exhibits the four possible outcomes for each cell of the

resultant matrix. Two positions in the 2x2 matrix shown in Figure 3.1 represent the expected

cases in which either design interfaces are matched by team interactions ("#" cell), or absence of

team interaction corresponds to lack of design interface (blank cell). However, the two

unexpected cases ("X" and "0" cells) are far more interesting. In the "X" cell we find the cases in

which design interfaces are not matched by team interactions. In the "0" cell we find the cases in

which team interactions were not predicted by design interfaces.

NO X
Team

Interaction YES # 0

YES NO
Design

Interface

Figure 3-1. Four possible values of each cell of the resultant matrix

While we expect the majority of the cells of the resultant matrix to contain "blank" and

"#" cells, we will focus our analysis on the unexpected cases. In this section we present several

hypotheses which can explain occurrence of the two types of unexpected cases described above.

First, we hypothesize possible explanations for the cases when design interfaces are not matched

by team interactions. Then, we hypothesize possible reasons that may explain the cases when

team interactions are not predicted by design interfaces.

37



3.1. Design Interfaces That Are Not Matched by Team Interactions (The "X" Cells)

We hypothesize that whether or not the known design interfaces are matched by team

interactions (the YES column in Figure 3.1) is contingent upon the following effects:

* Effect due to organizational boundaries

* Effect due to design interface strength

* Effect due to design interface type

* Effect due changes with respect to previous generation

* Effect due to indirect team interactions

* Effect due to cross-membership of team members

* Effect due to design escape

* Measurement errors

3.1.1. Effect due to organizational boundaries

Organizational boundaries are defined by the way design teams are grouped into system

teams. These boundaries impose communication barriers that prevent design teams from

interacting (Allen (1977), Van den Bulte and Moenaert (1998), Sosa et al (1999)). Empirical

evidence from R&D organizations suggests that interactions within organizational boundaries are

more likely to occur than across organizational boundaries. People within such boundaries are

subjected to organizational bonds that promote the development of a language and an identity

inherent to the group. Indeed, in chapter seven we provide empirical evidence from the

telecommunications industry that higher communication frequency is found in pairs that share

organizational bonds. Allen (1977) found higher probability of engineers (in R&D organizations)

engaging in technical communication when they share organizational bonds. Thus, we expect the

following hypothesis to hold true:

H3. 1: Design interfaces within organizational boundaries are more likely to be

matched by team interactions than design interfaces across organizational boundaries.
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3.1.2. Effect due to design interface strength

Recent research suggests that a greater degree of design interdependence results in more

communication. Allen (1997) claims that the degree of interdependence between engineers'

work is directly related to the probability that they engage in frequent technical communication.

At the task level, Smith and Eppinger (1997) use the strength of task interdependency to identify

the set of activities that require higher effort to coordinate. Loch and Terwiesch (1998) use an

analytical approach to suggest that communication frequency increases with the level of

dependence. These results are consistent with the empirical evidence presented by Adler (1995)

and the numerical approach presented by Ha and Porteus (1995). In the empirical study

presented in chapter seven, we also show that communication frequency increases with the

degree of interdependence, independently of the communication medium used. Thus far, we

expect to find empirical support for the following hypothesis:

H3.2: Strong (i.e. critical and multi-dependency) design interfaces are more likely

to be matched by team interactions than weak (i.e. non-critical and few dependencies)

design interfaces.

3.1.3. Effect due to design interface type

According to the type of design dependency, we classify design interfaces into two major

categories:

Spatial-type design interfaces, which involve spatial dependencies only.

Transfer-type design interfaces, which involve structural and/or energy and/or material

dependencies. Information dependencies are not included because they are not present in

modular systems.

Henderson and Clark (1990) refer to communication filters as the mechanism for

screening the most crucial information. Adapting this concept to our context, we expect some

design teams to handle a larger proportion of some types of design interfaces than other ones.

Hence, we want to investigate whether there is a difference in the way modular and integrative

design teams handle these two types of design interfaces. Specifically, we would like to test the

following hypothesis:
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H3.3: Spatial-type design interfaces are more important for modular systems design

than for integrative system design, whereas transfer-type design interfaces are more

important for integrative system design than for modular system design.

3.1.4. Effect due to changes with respect to previous generation

Uncertainty, defined by Galbraith (1973) as "the difference between the amount of

information required to perform the task and the amount of information already possessed", leads

directly to information flow through the communication network. An important source of

uncertainty when designing a derivative product is due to changes with respect to the previous

generation. Changes may be attributed to two sources. First, changes in the product, and second,

changes in the organization.

Loch and Terwiesch (1998) propose an analytical approach which suggests that average

communication level increases with uncertainty and dependence. They refer to uncertainty as the

rate of modifications of the upstream task (similar to upstream evolution in Krishnan et al

(1997)), while dependence refers to the impact caused on downstream task due to changes in the

upstream activity (similar to downstream sensitivity in Krishnan et al. (1997)). We define

percentage of redesign of the interface as the portion of the interface that differs from the

previous model of the product. Following previous work (Krishnan et al. (1997), Loch and

Terwiesch (1998), Carrascosa et al. (1999)) on the categorization of information transfer

between concurrent engineering activities, the redesign of the interface (ij) can be defined in

terms of the change of the design interface caused by changes of componentj, and the impact of

those changes on component i. Hence, we expect the following hypothesis to hold true:

H3.4a: The larger the percent of interface redesign the higher the probability of

such a design interface to be matched by team interactions.

Another source of uncertainty between two teams handling a particular design interface

refers to the involvement of the teams in previous design of the product. Even if the design
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interface is not redesigned at all, teams that have not been exposed to previous designs of the

product still need to interact to solve their interfaces. Hence, we hypothesize the following:

H3.4b: The lower the involvement of design teams in previous design of the

product, the higher the probability that their team interactions would match their design

interfaces.

3.1.5. Effect due to indirect team interactions

Two design teams may not directly communicate to implement their design interfaces

because they instead communicate indirectly about their interface through a third team. Indirect

communication may also occur when design teams use a centralized database in which

information is stored and retrieved by teams in the organization.

In our study, we define potential indirect team interactions as those that might occur

between design teams that do not interact directly with each other, but have a common

interaction with another team. For example, team B has a potential indirect interaction with team

A because both of these teams interact with team C (see Figure 3.2).

..-..-7Team B

Team A Direct interaction

. . . . . . . ........Potential indirect interaction

Team C

Figure 3-2. Potential Indirect Team Interaction between Teams A and B

It therefore follows that the number of potential indirect team interacdions for a given pair

of teams is proportional to the probability that technical information is transmitted through some

of those indirect interactions. We should expect empirical support for the following hypothesis:

H3.5: Teams that do not interact directly have a greater likelihood of sharing a

design interface if they have a greater number of potential indirect team interactions.
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3.1.6. Effect due to cross membership of team members

We define cross membership when team members participate in the dcsign of various

components simultaneously. If two design teams share the membership of one or more team

members we should expect a lower interaction intensity between those teams because part of the

information transfer would be carried out through the shared team members.

In our study, this effect was not particularly relevant since most of the team members

were assigned to only one design team.

3.1.7. Effect due to design escape

We define design escape when design interfaces were known but not addressed during

the design period. We do not have quantitative data to address what portion of the design

interfaces not matched by team interactions were actually design escapes, but it is certainly a

reason that might explain some of those cases.

3.1.8. Effect due to measurement errors

Capturing the design interfaces and the interactions between the teams was a very

difficult task where the potential of measurement errors was always present. We recognize that

not all coordination-type interactions were reported during the survey and some design interfaces

might have been mistakenly documented.

3.2. Team Interactions That Are Not Predicted by Design Interfaces (The "0" Cells)

We now turn our attention to the team interactions (the YES row in Figure 3.1) and explore

why some of these interactions are not predicted by design interfaces. We hypothesize three

contingencies to explain the unpredicted interactions:

" Effect due to system boundaries

* Effect due to secondary design interfaces

" Effect due to measurement errors
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3.2.1. Effect due to system boundaries

System boundaries are defined by the way components form systems. Such boundaries

may impose architectural knowledge barriers which inhibit explicit identification of cross-system

design interfaces by the design experts. Nevertheless, in order to develop working systems, the

teams learn of their needs to interact and do so. This results in team interactions that are not

predicted by the design interfaces. Hence, we should expect a higher percentage of unknown

design interfaces across system boundaries. We formulate the following hypothesis:

H3.6: Unknown design interfaces are more likely to occur across system

boundaries, hence team interactions across system boundaries are less likely to be

predicted by design interfaces than team interactions within system boundaries.

3.2.2. Effect due to secondary design dependencies

We define secondary design dependencies as those which occur between components that

do not depend on each other directly, but might depend on each other through other components.

For example, component A does not depend directly on component B, but it might share a

secondary design dependency with component B because component C depends on component B

and component A depends on component C (see Figure 3.3).

--.'.Component B

Component A Direct design interface

............... ..... Potential secondary

Component C design dependency

Figure 3-3. Potential Secondary Design Dependency

By considering potential secondary design dependencies we recognize that system-level

dependencies are important, and that some would be handled by the design teams. If the chances

of finding system-level dependencies (between components that do not share a direct design
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interface) are proportional to the number of secondary design dependencies, we should expect

the following hypothesis to be true:

H3.7: The higher the number of potential secondary design dependencies between

components with no direct design interface, the higher the probability that the design teams

that develop those components interact.

3.2.3. Effect due to measurement errors

Some of the unexpected cases can be attributed to errors occurred during the data collections.

Specifically, we understand that not all known design interfaces were captured and some team

interactions might have been erroneously reported.
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4. Categorical Data Analysis
"Things should be made as simple as possible, but no simpler"

Albert Einstein

Categorical data analysis takes place when data comes in the form of counts in various

categories. The data are usually displayed in cross-classified tables of counts, commonly referred

as contingency tables. Many statistics textbooks (Daniel and Terrel (1995), Rice (1995)) focus

on the analysis of such data in the special case of two-way cross-classifications. However, when

we look at several categorical variables simultaneously, we deal with multidimensional

contingency tables, with each variable corresponding to one dimension of the table (Bishop et al.

(1975), Fienberg (1980)).

In the next section we provide an overview of the types of statistical tests completed in

the context of categorical data analysis. Then, we describe the Bernoulli probability distribution

as the basis of the fundamental assumption underlined in the analysis presented in this chapter.

Finally, we present the results of the statistical analysis completed to test the hypotheses posed in

the previous chapter.

4.1. Statistical Tests

We conduct three types of tests with various samples of our data. In general, we carry out

a test of independence to test some of the hypotheses posed in chapter 3. Then, we complete a

test of homogeneity to test the moderating effects due to the modularity and integrative nature of

the systems. Finally, we test the moderating effects due to organizational and system boundaries

by using log-linear models for three-dimensional contingency tables.

4.1.1. The Chi-Square Test of Independence

We perform this type of test when evaluating the null hypothesis that two criteria of

classification, when applied to a set of data points, are independent. If two criteria of

classification are not independent, there is an association between them. We will construct two-
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dimensional contingency tables containing a sample of n data points cross-classified according to

two criteria specified by the hypothesis to test. The first criterion is based on the selection of the

sample (for example, whether a design interface is matched or not by a team interaction). The

second criterion is defined by the hypothesized effect (for example, a design interface is either

within or across organizational boundaries). Hence, the data support our hypothesis when the

two criteria of classification are statistically independent of each other, and their association is in

line with the hypothesized effect.

A two-dimensional contingency table contains I rows and J columns. The observed value

corresponding to cell (ij) of the table is denoted by xij, while the expected value corresponding to

the same cell is denoted by rih,1. Hence, the Pearson's chi-square statistic can be determined as:

x 2=XX (x -iJ)2(4.1)
i=1 I ni

To determine the expected values of the contingency table under the hypothesis of

independence we use the principles of probability. It can be shown that if two criteria of

classification are independent, a joint probability is equal to the product of the two corresponding

marginal probabilities (Daniel and Terrel, 1995). That is,

X'+ = X2ZL)n (4.2)
n n

Our notation for marginal totals follows Fienberg (1980) notation so that when we add

over a variable we replace the corresponding subscripts by a "+".

(x1 Jn) = marginal probability that randomly picked data point ij is characterized by the

criterion corresponding to row i

(x,/n)= marginal probability that randomly picked data point ij is characterized by the

criterion corresponding to column j

To determine the number of degrees of freedom, we note that there are IJ- independent

cells in the table because the grand total (n) is fixed, and (1-1) + (J-1) independent parameters are

estimated from the data. Since we know that

df= number of independent cells - number of independent parameters estimated

Then,

46



df= (I-1)(J-1)

4.1.2. The Chi-Square Test of Homogeneity

This type of test is used to explore the hypothesis that several populations are

homogenous with respect to some characteristic. We used this test to explore the difference

between modular and integrative systems. By splitting the samples used in the test of

independence into two subgroups, one for modular systems and another for integrative systems,

we investigate whether there is any statistically significant difference between modular and

integrative systems with respect to the hypothesized effect.

The fundamental difference between the test of independence and the test of homogeneity

is that, in the former we use one sample, while in the latter we use two or more samples. To get

the expected frequencies in the test of homogeneity we pool the values from the sample data

(Daniel and Terrel, 1995).

4.1.3. A Loglinear Model for Three-Dimensional Contingency Tables

In order to explore the interaction effects due to organizational and system boundaries

and the other hypothesized effects we construct three-dimensional contingency tables whose

expected values are given by log-linear models that include the mentioned interaction effects.

If we assume that the three variables on the contingency tables are independent then, by

analogy with the model of independence in two dimensions we can obtain the estimates of the

expected count for the (ij,k) cell as follows:

X'++Y Xj+ XX++ )n(4.4)
n n n

Taking the natural logarithms yields to

inhij = =Inx,.. + in x + In x++k - 2- nn (4.5)

Equation (4.5) can be re-written in an ANOVA-type notation as follows:

In iik =U+U,(i)+U 2u)+US(k) (4.6)

where,

Uj(i) = u2 U =IU 3 =0 (4.7)
i=1 j=I k=1
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If the three variables are not independent, other models including the interaction effects

between the variables can be formulated. We are particularly interested in the interaction effects

of organizational and system boundaries with the hypothesized effect. Hence, ifj denotes the

hypothesized effect and k denotes the effect of organizational and system boundaries the log

linear model can be specified as follows:

In i= U + U)() + U2() + U3 (k + U23ik (4.8)

The model specified by 4.8 consider that variables 2 and 3, taken jointly, are independent

of variable I (Finberg, 1980). In our context, variable 2 captures the hypothesized effect with

respect to variable I while variable 3 captures the effect due to organizational and system

boundaries. For example, when analyzing the joint effects of design interface strength and

organizational boundaries on the probability of a design interface being matched by team

interaction, variable 1 indicates whether a design interface is matched or not by team interaction,

variable 2 indicates whether such design interface is weak or strong, and variable 3 indicates

whether such design interface is either within or across organizational boundaries.

4.2. The Bernoulli Probability Distribution

In order to carry out the statistical tests described in the previous section, we need to

assume that the cells in both the design interface matrix and the team interaction matrix are

statistically independent. In this section we provide the theoretical background that supports that

assumption (for details refer to Wasserman and Faust, 1994).

Let us define Gd a particular directed graph with g nodes, and X its adjacency matrix. The

set of all possible digraphs with g nodes will be denoted by G4(N). The digraphs that we consider

in this chapter are assumed to be random, so that X itself is a random matrix. Since we

concentrate our analysis in binary relations (i.e. the binary design interface matrix and the binary

team interaction matrix), each cell of the X is either 0 or 1. Since there are g elements, each of

whom may have ties to the g- I other elements, there are g(g-1) possible non-zero cells in X.

Hence, there must be 2 (') different labeled matrices. Clearly, the number of possible

realizations of the random matrix X is very large, even for small g (for example for g= 10, there

are 2'=1.23 x 1027 possibilities).
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The simplest distribution on G(N) is the uniform distribution, in which every realization

is equally likely. Hence, the uniform probability function is

P(X = x)=12

That is, the probability that matrix X with g elements equals a specific "configuration" of

choices (x) is 1/2g(4)* Hence, each of the elements of the sample space has an equal probability

of occurring. Under this distribution the cells of the matrix can be described as statistically

independent Bernoulli random variables with probabilities of choices all equal to 1/2:

P(Xj=l)= 1/2, if i~j

P(Xj=1)= 0, if i=j (4.10)

That is, all elements of the matrix X are independent of all other elements, and the

probability distribution of any one of the elements is the simplest possible distribution (the

Bernoulli distribution with equal probabilities).

The uniform distribution can be generalized to a family of Bernoulli distributions by

varying the probability that any cell of the random matrix X equals to one. Thus, the uniform

distribution discussed above is a special case of the Bernoulli distribution. In the Bernoulli

distribution, the cells of X are assumed to be Bernoulli random variables with probabilities

P(Xj=1)= P0, if i~j

P(X,=1)= 0, ifi=j (4.11)

where 05 P 51. The 4 Pj I may differ from element to element to allow some nodes to

choose other nodes with different probabilistic tendencies. If the { P0 } are all equal, but not

equal to 1/2, the distribution is not uniform.

If we assume that the random variables representing the g(g-1) possible arcs in the

digraph follow a Bernoulli distribution, we can test particular hypothesis about L (the number of

arcs in the digraph, that is, the number of non-zero cells in matrix X).

Let us assume that X follows a Bernoulli distribution with a constant probability Po, and

L, the number of arcs or non-zero cells of X, is a random variable, with a binomial distribution

with parameters g(g- 1) and P0 . It follows that

E(L)= P g(g-1) (4.12)

and the variance of L is
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Var(L) = Po (1- Po)g(g-1) (4.13)

Thus, we want to test the hypothesis

H: L- Bin(g(g-1), P0)

Assuming that g is large enough to support the large sample theory for the binomial

distribution, the test statistic for this hypothesis can be determined as follows (Wasserman and

Faust, 1994):

-= I-P 0 g(g -1) (4.14)
Po(1-P)- g(g --1)

zi is approximately standard normal with a mean of 0 and a variance and standard

deviation of 1. The p-value for the significance test of hypothesis H can be found by

determining the probability that a standard normal variable exceeds the value of z, calculated

according to 4.12. Since this is a two-tailed significance test, the p-value for the hypothesis is

twice this probability.

4.2.1. Estimating the Constant Probability Governing a Bernoulli Distribution

In order to strengthen our assumption that both the design interface matrix and the team

interaction matrix follow a Bernoulli distribution, we estimate the constant probability governing

the presence/absence of a non-zero cells on each of these matrices. By substituting P0 for the

unknown constant probability P on equations 4.12 and 4.13 we can express the expected values

of L and its variance as a function of P. The maximum likelihood estimate of this unknown

probability is simply the empirical fraction of non-zero cells present in the corresponding matrix,

that is I/(g(g- 1)). With this estimate we can also estimate E(L) and Var(L). We can also calculate

a confidence interval for the unknown value of P as follows:

Plower - 5 P upper

where,

trr1 =Z 0 ,2 il( -ityg(g-J) (4.15)

and

2uppe P=P+ Z01 (i~flg-J) (4.16)
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where Zais the upper a x 100 percentage point of the standard normal distribution

(Wasserman and Faust, 1994).

Specifically, for the design interface matrix we estimate the probability of a non-zero cell

as:

569
?designinte,,aces - 5693)0.199 (4.17)

54(53)

The endpoints for a 95 percent confidence interval (using zo.025= 1.96) for the unknown P

for the design interface matrix are:

lower=0.184 and?^ =0.213

Similarly, for the team interaction matrix we estimate the probability of a non-zero cell as

423
eam,, te,,,, .is = =0.148 (4.18)

54(53)

with a 95 confidence interval specified by the following endpoints:

lower = 0.135 and ?wAr =0.161

The Bernoulli distribution is a very simple distribution that does not take into account

tendencies of differential attraction of the nodes nor reciprocation effects. Even though both the

design interface matrix and the team interaction matrix seem to exhibit those effects, we are

going to postpone to chapter five the discussion on how to incorporate such effects in our

statistical analysis. For the analysis completed in this chapter, we will assume that the design

interface matrix and the team interaction matrix follow a Bernoulli distribution with estimated

constant probabilities given by (4.17) and (4.18), respectively.

4.3. Overall Results

Figure 4.1 summarizes the binary results shown in the resultant matrix (Figure 2.8). As

expected, the majority of the cases (90% of the cells) are the cases when known design interfaces

were matched by team interactions (349 "#" cells), and the cases with no design interfaces and no

reported team interactions (2219 blank cells). The unexpected cases accounted for 10% of the

cells; those were the cases when known design interfaces were not matched by team interactions

(8%, or 220 "X" cells), and the cases when reported teams interactions were not predicted by

design interfaces (2%, or 74 "0" cells).
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NO X
Team (2439) (220) (2219)

Interactions YES # 0
(423) (349) (74)

YES NO
(569) (2293)
Design Interfaces

Figure 4-1. Overall Results

Among the 569 design interfaces, we found that 61% of those interfaces were matched by

team interactions. Among the 423 team interactions, we found that 83% of those team

interactions were predicted by design interfaces. Additionally, of the 2293 cases in which no

design interfaces were known, 97% did not report team interactions. Finally, of the 2439 cases in

which no direct team interactions were reported, 91% did not correspond to design interfaces.

4.4. Testing the Nominal Hypothesis

Before testing the hypotheses posed in chapter 3, we first test the nominal null hypothesis

that "a team interaction is independent of whether there is a design interface associated to it".

We first assume that both design interface matrix and the team interaction matrix follow

Bernoulli probability distributions with corresponding constant probability estimates given by

4.17 and 4.18. The joint probability distribution that predicts the cases where a design interface is

matched by a team interaction yields to 3% of the 2862 cases have a chance of being "#" cell.

Figure 4.2a shows the expected values under the null hypothesis previously stated, and Figure

4.2b exhibits the X2 resulted when comparing the expected with the actual values of Figure 4.1.

As expected, the x2 obtained are remarkably greater than the critical value of 6.635 (for one

degree of freedom and a = 0.01), therefore we strongly reject the nominal null hypothesis stated

above.
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Figure 4-2. a) Expected values under H,. b) x2 values.

Although we provide strong evidence to support the hypothesis that the existence (or lack) of

a design interface is matched by the presence (or absence) of a team interaction, we focus on

understanding the unexpected mismatches between design interfaces and team interactions.

In order to test the hypotheses posed in the previous section we perform analyses of

frequencies on various subsets of the data, relevant to each hypothesized effect (see Figure 4.3).

Set of data points Set of data points
used to test H3.1,H3.2, H3.3,H3.4 used to test H3.7

NOea X Set of data points NO X
am usedto test H3.5 TeamInteractions YES #/0 Interactions Y # 0 Set of data points

used to test H3.6
YES NO YES NO

Design Interfaces Design Interfaces

Figure 4.3. a) Data sets used to test H3.1, H3.2, H3.3, H3.4, and H3.5. b) Data sets used

to test H3.6, and H3.7.

In the next sub-section, we test the hypotheses that explain the cases where known design

interfaces were not matched by team interactions (H3. 1, H3.2, H3.3, H3.4, and H3.5). Then, we

show the results of testing the hypotheses that help us to explain the cases where reported team

interactions were not predicted by design interfaces (H3.6, and H3.7).

4.5. Design Interfaces Not Matched by Team Interactions

The results presented in this section help us to understand the 220 cases ("X" cells) in which

known design interfaces were not matched by team interactions.
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Design Interfaces
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NO 144.7 35.9
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Design Interfaces



4.5.1. Effects due to organizational boundaries

As stated in H3. 1, we hypothesize that organizational boundaries between design teams

may increase the likelihood that teams which share design interfaces across such boundaries will

fail to execute coordination-type communications. For the project studied, organizational

boundaries are created by the way design teams were assigned to system groups such as the fan

group or low-pressure compressor group. Since the organizational structure mirrors the

architecture of the product, organizational boundaries and system boundaries are equivalent and

they are identically highlighted in each of the matrices by the large, square boxes along the

diagonals.

In order to test hypothesis H3. 1, we categorize the 569 design interfaces (YES column of

Figure 4.1) according to the following two criteria:

" First criterion: Whether a design interface is matched by a team interaction or not.

" Second criterion: Whether a design interface is either within or across organizational

boundaries.

We display the cross-classification of the data in a contingency table (Table 4.1) to

perform a chi-square test of independence. The results shown in Table 4.1 allow us to reject the

null hypothesis that the two criteria mentioned above are independent. The test resulted in a x2

of 63.101, well above the critical value of 6.635 (for one degree of freedom and a = 0.01). As

shown in Table 4.1, of the 231 design interfaces within organizational boundaries, 81% of them

were matched by team interactions whereas of the 338 design interfaces across organizational

boundaries, only 48% were matched by team interactions. Therefore the empirical evidence

supports hypothesis H 1 that design interfaces within organizational boundaries are more likely to

be matched by team interactions than when interfaces are across organizational boundaries.
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Table 4-1. Chi-square test of independence. Effects of organizational boundaries

Expected Expected Actual number Actual number X2 of design x2 of design

number number (fraction) of (fraction) of interfaces interfaces not

Total (fraction) of (fraction) of design interfaces design interfaces matched by team matched by team

design interfaces design interfaces matched by team not matched by interactions interactions

matched by team not matched by interactions team interactions

interactions team interactions

Design interfaces

orgiZtonai 231 141.685 89.315 187 44 14.493 22.991

boundaries (61.34%) (38.66%) (80.95%) (19.05%)

Design interfaces
ro 338 207.315 130.685 162 176 9.905 15.713

Organizational
boundaries (61.34%) (38.66%) (47.93%) (52.07%)

Total 569 349.000 220.000 349 220 24.398 38.703

H,: Design interfaces within organizational boundaries are as likely to be matched by team interactions as
design interfaces across organizational boundaries.

X2=63.101 Critical Xo.99) = 6.635 Since X2> Critical X2o(.9.1. we reject H.

4.5.1.1. Moderating effects due to systems modularity

Given the distributed nature of integrative systems we expect integrative design teams to

be less affected by organizational boundaries. Since the design interfaces of integrative systems

are distributed throughout the engine, we anticipate integrative design teams to be more

accustomed to cross organizational boundaries than do modular design teams. Indeed, we

hypothesize that integrative design teams handle a larger portion of design interfaces across

organizational boundaries than do modular design teams.

The chi-square tests of homogeneity shown in Table 4.2 resulted in a X equal to 0.095

for the cases within boundaries, which is well below the critical value of 6.635 (for a=0.01 and

one degree of freedom). On the other hand, for the cases across organizational boundaries X2

equaled 8.740, which is well above the critical value.

These results did not allow us to reject the null hypothesis that design interfaces within

organizational boundaries are equally handled by teams that design modular systems and by

teams that design integrative systems. However, analyzing the cases across organizational

boundaries we found that integrative design teams handle a statistically significant higher portion

of design interfaces than modular design teams do. Specifically, integrative design teams
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matched 53.51% of the cross-system design interfaces while modular design teams matched

36.36% of their cross-system design interfaces.

Table 4-2. Chi-square test of homogeneity. Effects of organizational boundaries t

Expected cases Expected cases Actual cases of Actual cases of X2 of x2 of

of design of design design interfaces design interfaces cases of design cases of design

Total interfaces interfaces not matched by team not matched by interfaces interfaces not

matched by team matched by team interactions team interactions matched by team matched by team

interactions interactions interactions interactions

Design interfaces

within organizational 137 110.905 26.095 110 27 0.007 0.031

boundaries (80.95%) (19.05%) (80.29%) (19.71%)

(Modular systems)

Design interfaces

within organizational 94 76.095 17.905 77 17 0.011 0046

boundaries (80.95%) (19.05%) (81.91%) (18.09%)

(Integrative systems)

Total 231 187.000 44.000 187 44 0.018 0.077
Design interfaces

across organizational 110 52.722 57.278 40 70 3.070 2.826

boundaries (47.93%) (52.07%) (36 36%) (63.64%)

(Modular systems)

Design interfaces

across organizational 228 109.278 118.722 122 106 1.481 1 363
boundaries (47.93%) (52.07%) (53.51%) (46.49%)

(Integrative systems)

Total 338 162.000 176.000 162 176 4.551 4.189

t Expectedvaluesare determined with the pooled data which indicates that 80.95% of the 231 design interfaces
within organizational boundaries are matched by team interactions while 47.93% of the 338 design interfaces across
organizational boundaries are matched by team interactions.

Xw-n-tan ie,= 0.095 X = 8.740 Critical X2tt (9 91)= 6.635

4.5.2. Effects due to design interface strength

We define the strength of a design interface by the number and level of criticality of the

design dependencies. Hence,

design interface strength = Xc, I
I=pndpcndency type

where,

dependency type = [spatial, structural, material, energy, information]
C = level of criticality of dependency "i" =[-2,-I,0,+l,+2]

(4.1I9)
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Among the 569 design interfaces, 371 of those comprise critical dependencies only

(required and/or detrimental dependencies), 39 design interfaces comprise non-critical

dependencies only (desired and/or undesired dependencies), and 159 comprise a mixture of both

critical and non-critical dependencies.

To perform a chi-square test of independence with respect to hypothesis H3.2, we

categorize the 569 design interfaces (YES column of Figure 4.1) according to the following two

criteria:

" First criterion: Whether a design interface is matched by a team interaction or not.

" Second criterion: Whether a design interface is either weak (design interface

strength 4) or strong (design interface strength >4). Note that the average design

interface strength is 4.4.

The chi-square test of independence resulted in a x2 of 21.385, exceeding the critical

value of 6.635 (for one degree of freedom and a = 0.01). Hence, we reject the null hypothesis

that matching a design interface by a team interaction is independent of the strength of the design

interface. More specifically, of the 319 weak design interfaces, 53% were matched by team

interactions, whereas of the 250 strong design interfaces 72% were matched by team

interactions. Therefore the empirical evidence supports hypothesis H2 that strong design

interfaces are more likely to be matched by team interactions than weak design interfaces (see

Table A.1).

4.5.2.1. Moderating effects due to systems modularity

We complete chi-square tests of homogeneity to explore whether the effect of design

interface strength is statistically different for modular and integrative systems. We found that the

effect of design interface strength is homogenous for both modular and integrative systems. The

chi-square tests shown in Table A.2 resulted in a X2 equal to 0.888 for the cases of weak design

interfaces, which is well below the critical value of 6.635 (for a=0.01 and one degree of

freedom). Similarly, for the cases of strong design interfaces x2 equaled 0.710, which is also

below the critical value. Hence, the effect of design interface strength on communication patterns

between design teams is not moderated by systems modularity.
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4.5.2.2. Moderating effects due to organizational boundaries

Before proceeding further we should test whether the criteria used to categorize design

interfaces based on organizational boundaries and design interface strength are independent of

each other. We found that the portion of strong design interfaces within organizational

boundaries is statistically significant greater than the portion of weak design interfaces within

organizational boundaries. Similarly, the portion of weak design interfaces across organizational

boundaries is statistically significant greater than the portion of strong design interfaces across

organizational boundaries (see Table A.3). The test resulted in a x2 of 33.214, exceeding the

critical value of 6.635 (for one degree of freedom and a = 0.01).

This result suggests we should test the effect of organizational boundaries and design

interface strength simultaneously in order to capture the interaction effect between these two

hypothesized effects. To do so, we construct a three-dimensional contingency table (see Table

4.3) whose expected values are estimated according to equation 4.8. As stated before, the model

specified in 4.8 allows for testing the null hypothesis that the joint effect of design interface

strength and organizational boundary is independent of whether such design interface is matched

by its corresponding team interaction. The results exhibited in Table 4.3 supports the rejection of

the null hypothesis. The test resulted in a x2 of 71.463, exceeding the critical value of 11.345

(for three degrees of freedom and a = 0.01).

More specifically, under the null hypothesis specified by equation 4.8 the portion of

strong design interfaces (for both within and across boundaries) matched by team interactions

were statistically significant larger than the portion of weak design interfaces (for both within

and across boundaries). (X2within-boundaies = 43.175, x2across-boundaries= 28.288, both greater than the

critical value of 6.635 -for one degree of freedom and a = 0.01-) Similarly, the portion of design

interfaces within organizational boundaries (for both weak and strong interfaces) matched by

team interactions were statistically significant larger than the portion of design interfaces across

organizational boundaries (for both weak and strong interfaces). (X2wea = 30.085, X2 strong =

41.378, both greater than the critical value of 6.635 -for one degree of freedom and a= 0.01)

58



Table 4-3. Joint effects of design interface strength and organizational boundaries t

Expected cases Expected cases Actual cases of Actual cases of X2 of x2 of

of design of design design interfaces design interfaces cases of design cases of design

Total interfaces interfaces not matched by team not matched by interfaces interfaces not

matched by team matched by team interactions team interactions matched by team matched by team

interactions interactions interactions interactions

Weak design interfaces

(Within organizational 96 58.9 37.1 69 27 1.735 2.749

boundaries) (61.34%) (38.66%) (71.88%) (28.13%)

Weak design interfaces

(Across organizational 223 136.8 86.2 100 123 9.894 15.707

boundaries) (61.34%) (38.66%) (44.84%) (55.16%)

Total 319 169 150 11.629 18.456

Strong design interfaces

(Within organizational 135 82.8 52.2 118 17 14.975 23.716

boundaries) (61.34%) (38.66%) (87.41%) (12.59%)

Strong design interfaces

(Across organizational 115 70.6 44.4 62 53 1.038 1.649

boundaries) (61.34%) (38.66%) (53.91%) (46.09%)

Total 250 180 70 16.013 25.365

Expected values are determined according to equation 4.8, which indicates that 61.34% of the design
interfaces on each row of the table are expected to be matched by team interactions.

H: The joint effect of design interface strength and organizational boundary is independent of whether the
design interface is matched by its corresponding team interaction.

X2= 71.463 Critical x(0.99.3) = 11.345 Since X2> Critical X 2 . we reject H.

Additionally, we test the null hypothesis that the effect due to organizational boundaries

is homogenous throughout the data (for both weak and strong design interfaces). We performed a

Chi-square test of homogeneity and found that for the cases within organizational boundaries, the

portion of strong design interfaces matched by team interactions was statistically significant

greater than the portion of weak design interfaces matched by team interactions (X2 = 8.778),

which is in line with hypothesis H3.2 (see Table 4.4). However, for the cases across

organizational boundaries we could not reject the null hypothesis that weak design interfaces are

as likely to be matched by team interactions as strong design interfaces (x2 = 2.501), which is

contrary to hypothesis H3.2.
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Table 4-4. Chi-square test of homogeneity. Organizational boundaries controlling for
design interface strength.

H,,: The effects of organizational boundaries are
interfaces.

Xwn sjuanee%= 8.778 x ,.across.bouug

the same for weak design interfaces as for strong design

les= 2.501 Critical xho n.u = 6.635

We also need to test the null hypothesis that the effect due to design interface strength is

homogenous throughout the data (for both within-boundary and across-boundary design

interfaces). We found that, for both weak and strong design interfaces, the likelihood that a

design interface is matched by a team interaction is greater when it is within organizational

boundaries (see Table 4..). The test resulted in a x2 equal to 19.685 for weak design interfaces,

and x2 equal to 34.558 for strong design interfaces.
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Expected cases Expected cases Actual cases of Actual cases of x2 of x2 of

of design of design design interfaces design interfaces cases of design cases of design

Total interfaces interfaces not matched by team not matched by interfaces interfaces not

matched by team matched by team interactions team interactions matched by team matched by team

interactions interactions interactions interactions

Withinorganizational 96 77.714 18.286 69 27 0.977 4.153boundaries
(Weak design interfaces) (80.95%) (19.05%) (71.88%) (28.13%)

Within organizational

(Strongdsign 135 109.286 25.714 118 17 0.695 2.953

interfaces) (80.95%) (19.05%) (87.41%) (12.59%)

Total 231 187.000 44.000 187 44 1.672 7.106

Across organizational

(Weak in erfaces) 223 106.882 116.118 100 123 0.443 0.408
(47.93%) (52.07%) (44.84%) (55.16%)

Across organizational

(Song dsign 115 55.118 59.882 62 53 0.859 0.791

interfaces) (47.93%) (52.07%) (53.91%) (46.09%)

Total 338 162.000 176.000 162 176 1.302 1.199



Table 4-5. Chi-square test of homogeneity. Design interface strength controlling for
organizational boundaries.

Expected cases Expected cases Actual cases of Actual cases of X2 of x2 of

of design of design design interfaces design interfaces cases of design cases of design

Total interfaces interfaces not matched by team not matched by interfaces interfaces not

matched by team matched by team interactions team interactions matched by team matched by team

interactions interactions interactions interactions

Weak design interfaces

(Within organizational 96 50.859 45.141 69 27 6.471 7.290

boundaries) (52.98%) (47.02%) (71.88%) (28.13%)

Weak design interfaces

(Across organizational 223 118.141 104.859 100 123 2.786 3.138

boundaries) (52.98%) (47.02%) (44.84%) (55.16%)

Total 319 169.000 150.000 169 150 9.256 10.429

Strong design interfaces

(Within organizational 135 97.200 37.800 118 17 4.451 11.446

boundaries) (72.00%) (28.00%) (87.41%) (12.59%)

Strong design interfaces

(Across organizational 115 82.800 32.200 62 53 5.225 13.436

boundaries) (72.00%) (28.00%) (53.91%) (46.09%)

Total 250 180.000 70.000 180 70 9.676 24.882

n: Thet efecas uj aesign unerjace sirengin are inc same jar wimnn-aounaary aesign interaces as for across-
boundary design interfaces.

x1weakinwrfaces= 19.685 Xsirong-intcraces= 34.558 Critical X )ocI) = 6.635

As a result, we conclude that the effects of organizational boundaries are more severe

than the effects of design interface strength. That is, we found empirical support for hypothesis

H3.1 throughout the data (for both weak and strong design interfaces). On the other hand, the

data support hypothesis H3.2 within organizational boundaries only, while across organizational

boundaries design interface strength makes no statistically significant difference on whether or

not design interfaces are matched by team interactions.

4.5.3. Effects due to design dependency type

We test the effects due to the type of design dependency by selecting the subset of design

interfaces in which only one type of dependency was identified. A total of 122 design interfaces

(out of 569 design interfaces) were categorized according to the following two criteria:
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* First criterion: Whether a design interface is matched by a team interaction or not.

* Second criterion: Whether a design interface is either:

" Spatial-type dependency, or

" Transfer-type dependency. This category includes structural and/or energy and/or

material4 .

Table A.4 shows the results of the chi-square test of independence, which resulted in a

X2 of 3.225, below the critical value of 3.841 (for one degree of freedom and a= 0.01). This

result did not allow us to reject the null hypothesis that matching a design interface by team

interactions is independent of the type of design interface.

4.5.3.1. Moderating effects due to systems modularity

The subset of 122 design interfaces were split in two subgroups according to the

modularity of the systems involved in the design interface. A chi-square test of homogeneity was

used to explore hypothesis H3.3. The chi-square test resulted in a X 2 spatia-type = 4.360 and

X2 transer-type= 6.035, which are both greater than the critical value of 3.841 (for c=0.05 and one

degree of freedom). These results allow us to reject the null hypothesis that spatial-type design

interfaces and transfer-type design interfaces are equally handled by modular design teams and

integrative design teams.

The results obtained support the hypothesis that teams designing modular systems have a

stronger preference, ability, or willingness, to deal with spatial-type design interfaces than do

teams designing integrative systems. As shown in Table A.5, 62.5% of the modular spatial-type

design interfaces analyzed were matched by team interactions, while 29.4% of the integrative

spatial-type design interfaces were matched by team interactions. Similarly, data also support the

hypothesis that teams that design integrative systems are more willing to deal with transfer-type

design interfaces than modular design teams. Table A.5 shows that 45.0% of the integrative

transfer-type design interfaces analyzed were matched by team interactions, while only 19.5% of

the modular transfer-type design interfaces were matched by team interactions.

4 We do not include information-type dependencies in this category because they are only relevant for the externals

and controls systems.
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4.5.4. Effects due to redesign of the interface

We carried out follow up interviews to better understand qualitatively the reasons for

some design interfaces not being matched by team interactions. Some of the reasons that came

up during those interviews were that "the interface had not changed with respect to the previous

design" and therefore no interaction needed to take place, which is the argument hypothesized in

H3.4a.

To test the effect of redesign of the interface many factors need to be taken into account.

We need to assess not only how much the engine model changed with respect to the previous

generation but also how much the development organization changed with respect to the

organization involved in the design of previous generations (as hypothesized in H3.4b).

Therefore, hypothesis H3.4 is directly related to the dynamic problem of how the product

architecture and the development organization evolve with time, which is in our agenda for

future research.

We completed limited statistical tests based on the assumption that the development

organization which developed the engine studied had access to the knowledge learned in the

design of previous generations. The results of this analysis, presented in Appendix B, do not

strongly support hypothesis H3.4. That is, there is not statistically significant difference in the

way the unchanged design interfaces were addressed by team interactions with respect to the

design interfaces that exhibited certain percentage of redesign.

4.5.5. Effects due to potential indirect team interactions through other design

teams

Based on a fundamental property of the adjacency matrix from graph theory (Harary (1969),

Gebala and Eppinger (1991)) we square the 54x54 binary team interaction matrix to obtain the

number of potential indirect interactions between each pair of teams. Since we defined potential

indirect team interactions for the cases when no direct interactions were reported, we analyzed

the 2439 cases corresponding to the NO row of Figure 4.1. Hence,
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K = Potential Indirect Interaction Matrix (through other design teams)

K4= T4,4 xT'.4 where T45 = Team Interaction Matrix (binary) from (2.2)
54.5 54,4 54(4.20)

k,"; = Number of potential indirect team interactions from team" i" to team "j"

k7" is undefined for t4J =1,and for i = j

The sample analyzed was categorized according to the following two criteria:

" First criterion: Whether or not a pair of teams shares a design interface (NO row of Figure

4.1).

" Second criterion: The number of potential indirect team interactions through other design

teams:

- No potential indirect team interactions

- One potential indirect team interaction

- More than one potential indirect team interaction

The chi-square test of independence resulted in a X2 of 93.911, far exceeding the critical

value of 9.210 (for two degrees of freedom and a = 0.01) (see Table A.6). More specifically,

5.0% of the cases with no potential indirect team interactions coincided with design interfaces,

10.2% of the cases with one potential indirect team interaction coincided with design interfaces,

and 19.8% of the cases with more than one potential indirect team interaction coincided with

design interfaces. These results support hypothesis H3.5 that teams, which share a design

interface but do not interact directly are more likely to interact indirectly through other design

teams.

4.5.5.1. Moderating effects due to systems modularity

We complete a chi-square test of homogeneity to explore whether the effect due to

potential indirect team interactions thorough other design teams is statistically different for

modular and integrative systems. We found that such effect is not statistically significant for both

modular and integrative systems. The chi-square tests shown in Table A.7 resulted in an overall

x2 equal to 11.939, which is below the critical value of 15.086 (for a=0.0 1 and five degrees of

freedom).

64



4.5.5.2. Moderating effects due to organizational boundaries

We next test whether the effects of indirect team interactions (through other design teams)

are independent of organizational boundaries. We found that a statistically significant higher

number of potential indirect team interactions occur within organizational boundaries (test

resulted in a x2 of 94.529, exceeding the critical value of 9.210 (for two degrees of freedom and

a = 0.01) (see Table A.8). Therefore, we need to test if the effects due to indirect team

interactions still hold when controlling for organizational boundaries.

After splitting the sample in two subgroups, within and across organizational boundaries, we

complete separated tests of independence. The results of the chi-square tests supported

hypothesis H3.5 for the cases across organizational boundaries (test shown in Table A.9 resulted

in a x2 of 81.876, exceeding the critical value of 9.210 for two degrees of freedom and a =

0.01). More specifically, 17.3% of the cases with more than one potential indirect interaction

coincided with design interfaces, whereas 9.5% of the cases with one potential indirect

interactions coincided with design interfaces, and only 4.0% of the cases with no potential

indirect interactions coincided with design interfaces. For the cases within organizational

boundaries, the data did not support hypothesis H3.5 (the test resulted in a X2 of 6.104) (see

Table A.9).

The results in Table A.9 are confirmed by the chi-square test based on the model

specified in equation 4.8 (see Table A. 10). Table A. 10 shows the results of testing the null

hypothesis that the joint effect of potential indirect interactions through other design teams and

organizational boundaries is independent of whether such case would coincide with a design

interface. Even though the test resulted in a X2 of 129.038 for the cases within boundaries, there

is not statistically significant association between the number of potential indirect team

interactions and the presence of design interfaces. However, in the cases of across organizational

boundaries the test not only resulted in a x2 of 75.757 (exceeding the critical value of 9.210 for

two degrees of freedom and a = 0.01), but also exhibited a statistically significant association

between the number of potential indirect team interactions and the presence of a design interface.

This supports the hypothesis H3.5.
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4.5.6. Indirect team interactions through system integration teams

In order to determine the number of potential indirect team interactions through system

integration teams, we first squared the.60x60 team interaction binary matrix to obtain the

potential indirect teams interactions both through other design teams and through system

integration teams. We took the first 54x54 portion of this matrix and subtracted the 54x54 matrix

that contained the potential indirect teams interactions through other design teams, resulting in a

matrix that contains the number of potential indirect interactions through system integration

teams only.

K5 4 5 4 = Potential Indirect Team Interaction Matrix (through system integration teams only)

K,54 = Kt 54 -K* 5 4

where, K4 = Potential Indirect Team Interaction Matrix (through other design teams only) from (4.20)

K 6.= Potential Indirect Team Interaction Matrix (4.21)
(through both other design teams and system integration teams)

K 0,6= T xT6', where, Ti,0 = Team Interaction Matrix (binary) from(2.2)

= x K X x where, '54W and '.54 contain "Is" in their diagonal and 'Vs" otherwise.

We analyzed a sample of 2439 cases in which no direct team interactions were reported

(NO row of Figure 4.1). Similar to the case of potential indirect interactions through other design

teams, we categorized the data according to the following two criteria:

* First criterion: Whether or not a pair of teams shares a design interface.

" Second criterion: The number of potential indirect team interactions through system

integrators:

- No potential indirect team interactions

- One potential indirect team interaction

- More than one potential indirect team interaction

The Chi-square test of independence performed resulted in a x2 of 1.435, well below the

critical value of 9.210 for two degrees of freedom and a = 0.01 (see Table A8). Hence, we

accept the null hypothesis that the number of potential indirect interactions through system

integration teams is independent of whether or not those teams share a design interface (contrary

to hypothesis H3.5).
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4.6. Team interactions Not Predicted by Design Interfaces

In this section, we test the hypotheses that help us to understand the cases when team

interactions were reported even though such teams did not share known design interfaces (the 74

"0" cells of Figure 4.1).

4.6.1. Effects due to system boundaries

We hypothesize in H3.6 that unknown design interfaces are more likely to occur across

system boundaries than within system boundaries, resulting in a higher portion of unpredicted

team interactions across system boundaries than within system boundaries. To test this

hypothesis, we select the 423 team interactions (YES row of Figure 4.1), and categorize them

according to the following two criteria:

* First criterion: Whether or not a team interaction is predicted by a design interface.

* Second criterion: Whether the design interface corresponding to each pair of teams

is within or across system boundaries.

The chi-square test of independence performed resulted in a x2 of 15.517, exceeding the

critical value of 6.635 (for one degree of freedom and a = 0.01). More specifically, of the 208

team interactions within system boundaries, 89.9% were predicted by design interfaces whereas

75.4% of the 215 team interactions across system boundaries were predicted by design interfaces

These results, shown in Table A. 12, support hypothesis H3.6.

4.6.1.1. Moderating effects due to systems modularity

We want to test whether there is a statistically significant difference in the way design

interfaces predict team interactions of modular versus integrative design teams. The chi-square

tests of homogeneity shown in Table A. 13 resulted in a x2 equal to 0.482 for the cases within

system boundaries, which is well below the critical value of 6.635 (for a=0.01 and one degree of

freedom). On the other hand, for the team interactions across system boundaries the X2 equaled

9.567, which is above the critical value.

These results allow us to accept the null hypothesis that the portion of unknown design

interfaces within system boundaries is equivalent for both modular and integrative systems.

However, for interactions across system boundaries we found that the portion of unknown design
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interfaces across modular systems is statistically significant larger than for integrative systems.

Note that unknown design interfaces are characterized by unpredicted team interactions ("0"

cells). Specifically, 38.5% of the modular design team interactions across system boundaries

were not predicted by design interfaces whereas only 18.7% of the integrative design team

interactions across system boundaries were not predicted by design interfaces.

4.6.2. Effects due to potential secondary design interfaces

In order to quantify the effect of system-level design dependencies, we square each of the

binary matrices corresponding to each design dependency type to obtain the number of

secondary design dependencies of each dependency type. The total number of potential

secondary design dependencies is obtained by adding up the five squared matrices. We now have

a mapping of the potential secondary design interfaces for the 2293 cases in which no direct

design interface was known (NO column of Figure 4.1). In algebraic terms we have the

following:

S454 = Secondary Design Interface Matrix

s454  = 545
k=dependency type

S= Total number of secondary dependencies on which component j depends on component i

where, (4.22)

5454= A x A

where,

ai = I if component " j" depends on component " i" (dependency " k" type)

a4=0 otherwise

The sample analyzed is formed by the 2293 cases where potential secondary design

dependencies are defined (NO column of Figure 4.1), and it is categorized according to the

following two criteria:

* First criterion: Whether or not team interaction was reported.

* Second criterion: The number of secondary design dependencies (Note that the

average number of secondary design dependencies is 2.4):

- No secondary design dependency

- Three or fewer secondary dependencies

- More than three secondary dependencies
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We found empirical evidence supporting hypothesis H3.7. The test resulted in a x2 of

51.561, far exceeding the critical value of 9.2 10 (for two degrees of freedom and a = 0.01).

Specifically, 0.5% of the cases with no secondary design dependencies were matched by team

interactions, whereas 3.9% of the cases with three or fewer secondary dependencies were

matched by team interactions, and 6.8% of the cases with more than three secondary

dependencies were matched by team interactions (see Table A. 14).

4.6.2.1. Moderating effects due to systems modularity

We complete a chi-square test of homogeneity to explore whether the effect due to

potential secondary dependencies is statistically difference for modular and integrative systems.

We found that such effect is not statistically significant for both modular and integrative systems.

The chi-square tests shown in Table A. 15 resulted in an overall x2 equal to 9.717, which is below

the critical value of 15.086 (for a=0.01 and five degrees of freedom).

4.6.2.2. Moderating effects due to system boundaries

We found that a higher number of secondary design dependencies occur within system

boundaries (test, shown in Table .16, resulted in a x2 of 97.796, exceeding the critical value of

9.210 for two degrees of freedom and a = 0.01). Therefore, we need to test if the effects due to

secondary design dependencies still hold when controlling for system boundaries.

After splitting the sample in two subgroups, within and across system boundaries, we

complete separated tests of independence. The results of the chi-square tests shown in Table

A. 17 support hypothesis H3.7 for the cases across system boundaries (test resulted in a X2 of

37.203, exceeding the critical value of 9.210 for two degrees of freedom and a = 0.01).

However, the data did not support hypothesis H3.7 for the cases within system boundaries (test

resulted in a X2 of 1.304).

The results in Table A. 17 are confirmed by the chi-square test based on the model

specified in equation 4.8 (see Table A. 18). Table A. 18 shows the results of testing the null

hypothesis that the joint effect of potential secondary design dependencies and system

boundaries is independent of whether such case would coincide with a team interaction. Even

though the test resulted in a x2 of 112.489 for the cases within boundaries, there is not
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statistically significant association between the number of potential secondary design

dependencies and the presence of team interactions. In contrast, for the cases across

organizational boundaries the test not only resulted in a X2 of 32.713 (exceeding the critical

value of 9.210 for two degrees of freedom and a = 0.01), but also exhibited a statistically

significant association between the number of potential secondary design dependencies and the

presence of team interactions, supporting hypothesis H3.7.

A note of caution regarding the results for the cases within boundaries exhibited in Tables

A. 17 and A. 18 needs to be made. The small expected frequencies in some of the cases within

boundaries poses a possible threat to validity of the chi-square tests shown in these tables.

Statisticians disagree as to how to handle this problem. We will follow the recommendation of

Cochran (1952, 1954), who states that for tables with more than one degree of freedom a

minimum expected frequency per cell of 1 is permissible if no more than 20% of the cells have

expected frequencies of less than 5. In any case, the tests provide some empirical evidence to

reject hypothesis H3.7 for within-boundary cases.

4.7. Discussion of Results

Table 4.6 provides a summary of the results obtained from testing the hypotheses posed in

Section 3. It is important to note that there are other ways to explain the unexpected cases in our

data set. One important explanation we could not test is the presence of measurement errors. We

recognize that not all known design interfaces were captured during our data collection, nor were

all coordination-type interactions reported during the survey. We also recognize that some design

interfaces might have been mistakenly documented and some team interactions might have been

erroneously reported.

We first focused our analysis on the effects imposed by organizational

boundaries, design interface strength, design interface redesign, and indirect team interactions to

explain the cases when design interfaces were not matched by team interactions. We found that

design interfaces across organizational boundaries are less likely to be matched by team

interactions (in line with hypothesis H3.1). We also found that weak design interfaces are less

likely to be matched by team interactions than strong design interfaces (in line with hypothesis

H3.2).
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We analyzed the cases with no direct team interaction to study the effects of potential

indirect team interactions through other design teams. We found that the portion of cases that do

not interact directly, but share a design interface, was statistically significant higher in the

presence of higher number of potential indirect team interactions, which is in line with

hypothesis H3.5. We found no empirical support of this effect for the teams within

organizational boundaries (contrary to hypothesis H3.5). This suggests that teams within a group

interact directly to handle their design interfaces, whereas teams across groups might not

interact directly because they obtain the information needed through other design teams

(perhaps, even from their same group).

We also studied the effects of potential indirect team interactions through system

integration teams (the last six teams of the team interaction matrix shown in Figure 2.6). We did

not find statistically significant evidence that supports the hypothesis that a higher number of

potential indirect interactions through system integration teams is associated with teams that

share a design interface (hypothesis H3.5). This result corresponds with the nature of the work

performed by system integration teams. These teams interact with design teams in every group of

the development organization making the likelihood of potential indirect team interaction

(through these teams) independent of whether or not two teams share a design interface.

We also studied the effects of system boundaries, and the extent to which secondary

design dependencies explain the cases when team interactions were not predicted by design

interfaces. We found that team interactions across system boundaries were less likely to be

predicted by design interfaces (in line with hypothesis H3.6). That is, design experts are more

likely to fail to identify design interfaces across system boundaries than within system

boundaries.

We studied the effects of secondary design dependencies by analyzing the cases where no

direct design interfaces were identified. We found, for the cases across system boundaries, that

the higher the number of secondary dependencies the more likely the teams involved in those

design interfaces interact (in line with hypothesis H3.7). However, the data did not support

hypothesis H3.7 for the cases within system boundaries. This result implies that higher-order

dependencies are not significant within system boundaries. Indeed, the system-level
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dependencies are expected to occur between components of different systems, and some are

handled by the design teams themselves.

Table 4-6. Summary of results

8% of the cases were design interfaces not matched by reported
team interactions.
Explanation for these cases to occur (statistically supported) include:
" Design interfaces across organizational boundaries (supporting

hypothesis H3.1).
" Weak design (supporting hypothesis H3.2).
* Unexpected design interface type (supporting hypothesis H3.3)
* Indirect interactions through other design teams across

organizational boundaries (partially supporting hypothesis H3.5).
12% of the cases
revealed design
interfaces matched by
team interactions.
These cases were
expected to occur.

78% of the cases
revealed no design
interfaces and no
corresponding team
interactions.
These cases were
expected to occur.

2% of the cases were team interactions not predicted by design
interfaces.
Explanations for these cases to occur (statistically supported) include:
o Unknown design interfaces occur across system boundaries

(supporting it hypothesis H3.6).
o Higher number of secondary design interfaces across system

boundaries (partially supporting hypothesis H3.7).

4.7.1.1. Designing Modular versus Integrative Systems

We analyze the effects of system modularity whose results can be summarized as

follows:

" The statistically significant differences in the way integrative design teams handle

design interfaces across boundaries suggest that these teams are more efficient at

overcoming the barriers imposed by organizational boundaries. The distributed nature

of the integrative systems forces these design teams to overcome organizational

barriers in order to handle design interfaces with all the systems.

* When analyzing the effects of system boundaries, we found a statistically significant

larger proportion of unpredicted team interactions ("0" cells of Figure 9) associated

with modular systems. Since unpredicted team interactions represent unrecognized

design interfaces, we conclude that design interfaces across modular systems are

more difficult for design experts to recognize than interfaces with integrative systems.
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* The existence of various types of design interfaces and the statistically significant

difference in the way they were handled by modular and integrative design teams

provide empirical support to the notion of "communication filters" introduced by

Henderson and Clark (1990). We found that spatial-type design interfaces are largely

addressed in the design of modular systems while transfer-type design interfaces are

more likely to be handled in the design of integrative systems.

4.8. Limitations of the Analysis

The analysis presented in this chapter is based on classical techniques used in categorical

data analysis. We have based our analysis on the assumption that both the design interface matrix

and the team interaction matrix follow a Bernoulli probability distribution (statistically

independent cells). However, research in social science has shown that social network data (such

as that presented in the team interaction matrix) possess strong deviation from randomness. More

specifically, empirical evidence (Holland and Leinhardt, 1981) shows that social networks

exhibit several types of dependence: tendency toward reciprocation, tendency toward

expansiveness (i.e. to generate interactions) and tendency toward attraction (i.e. to attract

interactions).

In the next chapter we present a log-linear model built upon social network analysis

research that allows us to validate the results of some of the tests presented in this chapter.
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5. A Log-linear Model
"Los beneficios que se hacen hoy, se reciben mafiana,
porque Dios premia la virtud en este mundo mismo"

Sim6n Bolvar

We address some of the limitations of the categorical data analysis presented in the

previous chapter, by developing a log-linear model based on research completed in the area of

social network analysis. The models described in this chapter contain parameters that quantify

the "structural effects" present in a network, such as reciprocity and tendencies toward

differential expansiveness and differential attraction. The objective of this chapter is to illustrate

how to validate the assumptions made in the analysis presented in chapter four. The model

presented here allows us to test the effects of organizational/system boundaries, and the

moderating effects of system modularity. These models are dyadic interaction models, which use

the natural log of probabilities as their basic modeling unit. Specifically, we will estimate a

model of the form:

In [P(component i depends on componentj and team i reports interaction with teamj)]=

F(overall mean, tendency of component i to generate design interfaces to other

components, tendency of componentj to depend upon other components, overall

tendency to reciprocate design interfaces, tendency of team i to report interaction with

other teams, tendency of other teams to report interaction with teamj, overall tendency to

reciprocate team interactions, overall association between design interfaces and team

interactions, effect due to system/organizational boundaries, effect due to systems

modularity) (5.1)

Statistical network analyses allow us to assess a model by measuring the fit of the model

to data. Hence, we will compare the observed effects to hypothesized effects, as well as

significance tests to determine whether an effect is due to sampling variation (Wasserman and

Faust, 1994).
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Before we describe our log-linear model, we review some basic statistical and graph-

theory notation. We then introduce the Holland and Leinhardt's (1981) p, distribution. Then, we

show how these types of models can be fitted to data by using maximum-likelihood procedures

employed to fit log-linear models to multidimensional contingency tables (Fienberg and

Wasserman (1981)). Following the work by Fienberg, Meyer and Wasserman (1985) on solving

the problem of analyzing multiple relationships in a network, and Wasserman and lacobucci

(1988) on analysis of sequential network data, we propose a base model to describe the network

associated with the resultant matrix (Figure 3.X). Finally, following a similar approach to the

one presented by Van den Bulte and Moenaert (1998), we extend the base model with structural

parameters that capture the effects associated to organizational/system boundaries and with the

strength of design interface, so that some of the hypotheses could be formally tested.

5.1. Mathematical Notation

Let D. be a specific digraph on g nodes from a single binary relation R with at most one

arc connecting node i to nodej. In our context, the mathematical term node refers to a

component of the digraph associated with the design interface matrix or a team of the digraph

associated with the team interaction matrix. The mathematical term arc refers to the presence of

a design interface between components, or a team interaction between two design teams. Each

digraph has a corresponding adjacency matrix X with elements (X,,). The binary design interface

matrix and the binary team interaction matrix are the adjacency matrices of their corresponding

digraphs.

Since our unit of analysis is the dyad, we need to provide some mathematical notation for

it. We will label a dyad as follows:

D,. = (Xi, X,,) for i<j

Hence, D, is a bivariate random variable with 22= 4 possible states. These states are:

Di = (1,1); if mutual interaction

D, = (1,0) or (0, 1); if asymmetric interaction

DI = (0,0); if null interaction

Also, let us define the following quantities associated to adjacency matrices:
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M = X4 -xi,;hence, M = number of mutual interactions
i<j

Xi+= I xi ; out-degree of node i, which is the total number of non-zero entries in row i
j=I

x = X q; in-degree of nodej, which is the number of non-zero entries in columnj

A detailed discussion of these and other related network summaries can be found in

Harary, etal (1965).

Fienberg and Wasserman (1981) introduced an alternative notation to describe the basic

structure for the study of dyads with a single relation. The objective of this alternative notation is

to facilitate the analysis of the network as a categorical data set for which standard statistical

software packages provide solutions. Let us consider a four-dimensional g x g x 2 x 2 cross-

classification (the Y-array), Y = [Yij,], where the subscripts i andj refer to the two elements in a

dyad while k and 1 refer to the state of the dyad, hence

Yjk1 = 1 if DJ = (kl)

Yijkl= 0, otherwise

Therefore, for a given dyad (ij) we obtain a 2 x 2 table as shown in Table 5.1. It is important

to note that Yijoo + YjIo + Yo +Y, = 1 for all (i J), hence these 2 x 2 tables contain one I and

three O's. Also, Yli= Yjilk, and thus we should only consider i<j, however we will retain the

entire Y-array to facilitate the process of fitting the models to data.

1 YOJ YijII

1 = Xi 0 Y4 Ywjio

0 1

k = Xy

Table 5-1. Dyadic Contingency Table

5.2. The p, Distribution

There are empirical results from social science that support the notion that social

adjacency matrices, such as our team interaction matrix, are not distributed randomly and that, in
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fact, they exhibit expected non-random behavior. Can we say the same for adjacency matrices

that contain relations between the components of a product, such as our design interface matrix?

We believe so, and we based the analysis presented in this chapter on this fundamental

hypothesis. Indeed, we test this hypothesis when evaluating the goodness-of-fit of our models.

Holland and Leinhardt (1981) developed a model termed p, to emphasize that is the first

or simplest family distribution that expresses the three elementary social tendencies of

reciprocation, differential expansiveness and differential attraction.

The model discussed in this section assigns probability functions on the links between

elements (i.e. components or design teams) by specifying the probability that a pair of elements

has one of four possible dyadic relationships (see Table 5.1). The entire network of g (g = 54)

elements is decomposed into an equivalent set of dyads. To determine the probability

distribution of the network, the dyads are assumed to be conditionally independent, so that we

just multiply the dyad probability distributions to obtain their joint probability distribution.

Regarding the independent dyads assumption Holland and Leinhardt (1981) pointed out

that "this independence assumption means that pi cannot express tendencies toward transitivity,

cliquing, hierarchy, and so on, other than those already implied by tendencies toward

reciprocation and differential attraction". On the same issue, Fienberg, et al (1985) stated that

"the assumption of independent dyads is common to many recent models for networks, although

it is, at best, an approximation to reality. But building into the models either a dependence

structure among dyads or probability distributions on larger subgraphs such as triads appears to

be very difficult".

Holland and Leinhardt (1978) present empirical evidence that the independence dyads

assumption may be satisfied in a significant number of social network studies. Hence. the p

distribution may not only provide a null model but also provide adequate models for representing

certain types of empirical data associated to networks.

Given the Y-array, the Holland and Leinhardt distribution, p, can be expressed as

follows:
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In P{YiJO =1}= Ai

In P{Yj, 10 =1}= A + +a, +f3j

In PYo, =1=k,+e+a 1 + A
In PI&g =1i=4 +29+a, + +a, +fi +p

or in shorthand,

Inp{Yj,, =l}= Aj+(k+I)0+k-a +l -# +l-aj+k -f/3+(k)p (5.2)

subject to the constraints

P{Y,100 =I}+ P{1Y1 =1)+ P{Yo, = 1)}+P{Y =1}=1 (5.3)

for all dyads, and

± i =jPi =0 (5.4)
i=H j=1

The parameters { a); measure the expansiveness or "productivity" of the elements of the

network, indicating how likely an element is to generate relational ties (non-zero cells in row i of

the matrices). The parameters {#8jI measure the attraction or "popularity" of the elements of the

network, indicating how likely an element is to receive relational ties (non-zero cells in columnj

of the matrices). The "reciprocity" parameter, p, measures the overall tendency in the network to

reciprocate interactions. The 9 parameter indicates the overall volume of interaction in the

network. Finally, the Zj parameters are "dyadic" effects that ensure that the probabilities sum to

one for each dyad (equation 5.3), they have no substantive meaning. For a more detailed

description of these parameters refer to Holland and Leinhardt (1981).

5.3. Fittingp, to a Single Relational Data

Fienberg and Wasserman (1981) presented the log likelihood function for the model p

given the Y-array as follows:

log L (a, },JPj}, }/y +O -y(..+ + (5.5)

Note that even though the log likelihood is defined for i<j, it can be described through

the use of marginal totals of the complete Y-array.
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Fitting the p model to an observed matrix, such as the binary design interface matrix or

the binary team interaction matrix, is equivalent to constructing an "expected" matrix with in-

degrees, out-degrees, number of mutuals (M), and total number of choices identical to those of

the observed matrix. We then ask how much the expected and observed matrices differ. A large

difference indicates that we need to incorporate additional parameters to capture structural

effects into the model.

Fienberg and Wasserman (1981) showed that by using the redundant representation of the

full Y-array, one can transform the statistical problem of fitting p to X into an equivalent

statistical problem, fitting the "no-three-factor interaction" log linear model to the Y-array.

Therefore, we can use standard iterative proportional fitting cimputer programs for contingency

tables (we used SPSS), and no need to do any programming to fit p;.

Following the well-known Fienberg notation (see Fienberg 1980 for details), the no-

three-factor interaction log-linear model simultaneously fits the following margins of Y:

[12][13][24][14][23][34] (5.5)

The numbers in brackets in (5.5) are the margins of Y, which are sufficient statistics for

the parameters in the basic model. This notation uses marginal totals as used to describe log

linear models that fit to multiway arrays. For example, [12] refers to the two-way marginal totals

of the Y-array corresponding to the first two subscripts, i andj, that is, [12] corresponds to the

margin { Y,, 1 }. Because the log-linear models considered here are hierarchical, the I -

dimensional margins for variables 1 and 2, ( Yi+.+}and { Y. 1++}, are also included. Similarly, [24]

refers to the two-way marginal totals corresponding to the second and fourth subscripts,j and 1.

The inclusion of the [12] margin assures us that the probabilities add to one for each dyad, that

is. it includes the {4} parameters in the model. The [13] and [241 margins are identical and

allow for the inclusion of { c) and Gin the model. Similarly, the [14] and [23] identical margins

correspond to the inclusion of (/ij}. Finally, the [34] margin allows for the inclusion of p (for

more details refer to Wasserman and Faust, 1994, pp. 625).

After fitting the pi model, we need to evaluate how good the model fits the observed data.

We compute likelihood-ratio goodness-of-fit statistics according to the following expression

provided by Fienberg and Wasserman (1981):
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2 = 2Z1:y,- -in(yj,,, /yjk,) (5.6)
icj k,l

A

where ijkl = predicted value of Yijk.

When calculating the G2 associated to p, from commercial statistical packages we divide

the computed G2 by 2 to adjust for the duplication of Y,u ==Yj;Ik. To complete an informal

goodness-of-fit test using G2, we need to determine the number of degrees of freedom associated

to pi to informally compare G2 with the proper x2 distribution. Our test is informal because the

sparseness of the Y-array does not allow us to use standard asymptotic theory. More specifically,

the natural asymptotic setting for this type of network problem is one in which the size of the

network increases (without upper bound) with the number of nodes, g, which prevents us to use

standard asymptotic theory. Our final model addresses the limitation due to lack of asymptotic

theory by aggregating the elements of the network according to external attributes.

Even though cannot formally test goodness-of-fit of a p model, we can complete

conditional test statistics, based on Haberman's (1977) results, to check whether all the

parameters in the model are required. (Refer to Fienberg and Wasserman (1981) for more

details.)

We have to be careful when estimating the number of degrees of freedom (DF) associated

with p. The general rule is

DF = Number of cells in the contingency table - Number of parameters fitted

There are 2 DF for each 2 x 2 table contained in the Y-array; hence 2 ( )= g(g-1) = 2862

DF for modeling the Y-array, which is exactly the number of off-diagonal entries in X. When

fitting p, we use 1 DF for each Gand p and (g-1) DF each for {(c,} and {#)}. Hence, we have a

total of g(g-3)= 2754 DF associated to the p, model of each of the matrices, the design interface

matrix and the team interaction matrix.

The intention of this section was not to build a typical p, model for our matrices, but to

introduce the fundamental concepts supporting the formulation of the p, model, which is the

basis of our model.
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5.4. Our Base log-linear Model

When developing our base log-linear model we follow the following steps:

" Extend the p, model to a network with two relations, that is, a network of elements

(i.e. design teams) whose designing components may share design interfaces, and the

teams themselves may report technical interactions with each other.

* Aggregate components and teams into groups, according to the system boundaries of

the product and the organizational boundaries of the development organization.

* Extend the model with association parameters that capture the basic correlation

between design interfaces and team interactions.

* Estimate, and compute goodness-of-fit of the base model.

In the next section we describe how we extend the base model to incorporate structural

parameters to test the hypotheses related to the effects of organizational and system boundaries,

and the moderating effects due to systems modularity.

5.41. Extending p, to a two-relation data

henberg, et al (1985) first addressed the problem of extending p, to multiple sociometric

relations. Wasserman and lacobucci (1988) used their results as the basis to study sequential

network data. More recently, Van den Bulte and Moenaert (1998) used these results to analyze

the interactions between R&D teams in two points in time (before and after collocation). We

want to extend this approach to develop a base model of the resultant matrix containing both the

design interfaces and the team interactions between the 54 elements of our network data.

We expand the pi model described in the previous section by considering the joint

distribution of both design interfaces and team interactions for a given dyad. That is, each dyad

(ij) consisting of elements i andj will have four (2 x 2) states associated to their design interface

relation, times four (2 x 2) states associated to their team interaction relation, resulting in 16

states for each dyad.

We assign the subscripts (k,i,) to describe the states associated to the design interface

relation, while the subscripts (k2,b) refer to the states associated to the team interaction relation

of dyad (ij). The redefined Y-array has six dimensions 54 x 54 x (2 x 2) x (2 x 2), and its

characteristic element can be defined as follows:
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Y iil k2,12 = I if dyad (ij) behaves as described by (k,, 1) for their design interfaces and

by (k2 ,12 ) for their team interactions.

Y ijkl.1 k2.12= 0 otherwise.

Considering the joint distribution of design interfaces and team interactions yields to the

following log-linear model, which describe simultaneously the behavior of the elements of our

network according to two independent relations (design interfaces and team interactions). The

log-linear model can be written as follows:

In P{YiJkki21 = 1= X2 i + (k, +11 )01 + kai + ilAi + la 1 + k,/ 1 + (k,11 )p1 +

(k2 + 12)02 + k2a 2i +l2/ 3 2i + l2a2 +k 2 fi 2 +(k 212 )P 2

The parameters on this model have the same meaning as in the original p' model, but

applied to either design interfaces (subscript 1) or team interactions (subscript 2).

5.4.2. Aggregating components and teams into groups (The W-array)

Since the elements of our network are categorized into subsets according to their

membership to engine's systems or teams'groups, we can aggregate them without using

relational information (i.e. design interfaces or team interactions). In other words, the way we

aggregate components and teams into groups is not the result of manipulating the data such

as clustering or partitioning, it is just the result of inherent attributes of the elements of the

network studied.

Fienberg and Wasserman (1981) introduced the approach of placing actors into subsets

using relevant actor characteristics so that, actors within a subset are assumed to behave

similarly. This assumption of comparable behavior of elements within subsets has been

termed stochastic equivalence (Wasserman and Weaver, 1985). Assuming that elements i

andj are stochastic equivalent means, in mathematical terms, that:

o =cs and ff=fij (5.8)

We operationalize the concept of stochastic equivalence by aggregating the 54 elements

of the Y-array into 8 subsets 5. By doing so, we obtain a much smaller W-array whose

dimensions are 8 x 8 x (2 x 2) x (2 x 2), with elements { Wr, k1.11k2.12} defined as follows:

5 We lump the last 10 elements corresponding to External and Controls into one subset.
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Wrs kill k212 Yij kill k 2 2  (5.9)
iE Gr je G

That is, we simply sum the dyads between groups r (Gr) and s (G) that behave as

(ki, 11,k2,12). Note that the entries of the W-array are not binaries. Indeed, the minimum value

Wrs k1,11 k2,12 can take is zero and the maximum possible value is the number of dyads between

groups r and s. The expected value of Wrs U, 11 k2,12 can be expressed as:

E(WrskU,11 k2,12) = gr (gs - (5rs) P Yrsk],11 k2,12=1} (5.10)

where gr and gs are the number of elements in groups G, and G,, and rs is the Kronecker

delta function (equal tol if r=s, and 0 otherwise).

Hence, we can rewrite model (5.7) as follows:

1n E (Wrs kill k212 ) = Xrs +(k, +11 )01 +kialr +11ir +11a1 s +klp 13 +(kl 1 )pl + (5.11)
(k 2 +12 )02 +k 2 C 2 r +1202r +1 2a 2s +k 2 02s +(k 2 12 )P2

For this model, we are estimating 32 parameters: 7 os, 7 is, 1 0 and 1 p for each relation.

Since the unit of analysis of the model specified by (5.11) is still the dyad, there are 54(54-1)

- 32 = 2830 degrees of freedom associated to the model. There are two other implications

associated to having the dyad as the unit of analysis. First, the model specified by (5.11) still

assumes independent dyads. Second, the likelihood-ratio goodness-of-fit statistic computed

by commercial statistical packages is not correct, and it has to be calculated as specified by

Fienberg and Wasserman (1981):

G =-2 Wrs kl k 2 2 I( W rskll k 2 12 /,11 g s '+ Wr kil k2 12 In( W r kill k21 2 /[g r (9 r Y 512)

r<s kjl r MJ

Based on the assumption of equal parameters within subsets, our model has been greatly

simplified. Indeed, we need to estimate 32 parameters for model (5.11) rather than 110

parameters for the original model (5.7). Furthermore, the standard chi-square distributions are

more appropriate as reference distributions for the resulting test statistics. This is because the

number of parameters is fixed and does not increase in the limit, as g -+ oo (Haberman, 1981).

5.4.3. Testing the correlation between design interfaces and team interactions

The base model specified in equation 5.11 assumes that design interfaces and team

interactions are two independent relations of the same network of elements. We will consider
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second-order interaction effects between design interfaces and team relations to capture the

correlation between the design interface matrix and the team interaction matrix. We adapt the

description of these effects provided by Wasserman and lacobucci (1988) to our context as

follows:

612= parameter measuring tendency toward conformity across relationships. That is,

component i depends on componentj, AND team i reports interaction with teamj.

P12 = parameter measuring tendency toward flow reversal. That is, component i depends

upon componentj, AND teamj reports interaction with team i.

The 612 parameter reflects the overall tendency toward positively associated design

interfaces and team interactions (the "#" and the "blank" cells of Figure 3.X), and we expect this

parameter to be statistically significant positive. On the other hand, the P12 parameter reflects the

overall tendency toward dominance, that is, how likely it is that component i depending on

componentj, influences teamj to interact with team i, and we have no reasons to expect this

parameter to be statistically significant.

After extending the model with the second-order interaction parameters described above,

the model can be written as follows:

In E (WrskilkI12 )= X, +(k, +1, )0, +kialr +1iDir +Ila, +k,3,, +(kl11 )p1 + (5.13)
(k 2 +12 )02 +k 2 a, +1212, +12 at, +k 2. 2% +(k 212 )p,+012+P1

Holland and Leinhardt (1981) emphasize that testing whether 62 = P12 =0 is the natural

test to investigate for the existence of a true correlation between two matrices where each

follows the p, distribution. Therefore, this base model provides a formal method to test the

correlation of two design structure matrices that follow the p, distribution.

5.4.4. Fitting the base model to data

Wasserman and lacobucci (1988) fit models of the form specified in (5.13) to analyze

relation between actors at different points in time. Following the same rationale described

previously on fitting pi models to data, the log-linear model for W-array that corresponds to the

model (5.13) is

[12][13][24][14][23][15][26][16][25][34][56][35][46][36][45] (5.13)
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Where the margins [35][46] allow for the inclusion of 612, while the margins [36][45]

allow for the inclusion of p12.

Testing the significance of any of the parameters in the model is relatively straight-

forward using conventional rules for likelihood-ratio hypothesis tests for log-linear models for

categorical data (for more details refer to Bishop, Fienberg, and Holland (1975)). Statistically,

we must fit two models: 1) the null hypothesis model, with parameter restrictions given by H,

and 2) the alternative hypothesis model, without the parameter restrictions. The difference in G2

statistics for the two models then provides a test statistic for H0 , which is asymptotically x2 with

degrees of freedom equal to the difference in degrees of freedom for the two models.

Table 5.2 shows the results of fitting various models to data. Model 1 fits the independent

model as specified in (5.11), and it serves as our reference model to test the null hypothesis (012

= P12 =0). The goodness-of-fit of model 1 indicates that the pi distribution provides a good fit to

our data (G2 = 5243, df= 5692). Model 2 improves the goodness-of-fit of model 1 by adding the

parameter 612 (AG 2 = 943.66, Adf= 1, p < .001), while model 3 including p12 improves the

goodness-of-fit of model 1 (AG2 = 690.31, Adf= 1, p < .001) but it is not as good as model 2.

Finally, model 4 includes both second order parameters resulting in a model that is not

statistically significant better than model 2 (AG 2 = 0.66, Adf= 1, p = .42), which indicates than

612 is statistically significant positive whereas P12 is not statistically significant.

It is important to note that the subscript 1 corresponds to the parameters of the design

interface matrix, whereas the subscript 2 corresponds to the parameters of the team interaction

matrix. The subscript FAN refers to the first group (r=l, s=1) while, the subscript LPC

corresponds to the second group (r=2, s=2), and so on.
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Table 5-2. Results of fitting base model to data
Parameters Model 1 | Model 2 Model 3 Model 4

Parameters for design interface matrix
QIFAN 0.4321 0.3647 0.5379 0.3632

EI pC 0.2090 0.3687 0.3445 0.3632
alwc -0.01 19 0.1134 0.0988 b.1061
CL1BD -0.0171 -0.2261 -0.1974 -0.2137
amrr -0.5652 -0.5774 -0.6754 -0.5731

uIm -0.0770 -0.0474 0.0541 -0.0533
a:MC -0.2566 -0.1597 -0.3627 -0.1496
aFc 0.2869 0.1638 0.2001 0.1575
I
3 IFAN -0.7415 -0.6637 -0.8206 -0.6587
DILPC -0.0671 0.1406 0.0272 0.1355
pmwC 0.0509 0.2175 0.1288 0.2169
013D -0.0956 -0.4275 -0.2303 -0.4262
Omyr 0.4363 0.3355 04792 0.3360
Olm -0.38601 -0.2278 -0.3494 -0.2229
PIC 0.3176 0.1866 0.3883 0.1773
Iic -0.4856 0.434 0.3766 0.4420
I

3
8-1.0653 0.1633 -0.1802 0.1032

PI 3.9891 3.3M9 3.5645 3 52 24
Parameters for team interaction matrix

a2FAN 0.2778 0.2415 0.4805 0.231
azupC 0.0061 -0.2359 -0.0917 -0.2327
azHo -0.0313 -0.1505 -0.1086 -0.1437
a2BD 0.0008 0.441 0.1583 0.2323
a2w_ _ _-0.3079 -0.0763 -0.3376 -0.0678
a2 -0.0197 0.0719 0.1177 0.0706
CE2MC -0.3880 -0.3505 -0.4613 -0.3491I
a2EC 0.4619 0.2511 0.2427 0.2595

02 AN -0.5182 -0.2435 -0.5361 -0.2337
ON2PC -0.1838 -0.364S -0.3424 -0.3553

-IHPC -0.1618 -0.3141 -0.2362 -0.3210
N2BD 0.2766 0.5727 0.4218 0.5694
O'2IMr 0.3068 0.2731 0.4691 0.12591
Ou2m -0.5070 -0.364I -0.4339 -0.3638
02MC 0.4"24 0.4074 0 5224 0.4057

p2c0.3,148 0.0327 0.1351 0.0307
02 -1.0619 -0.1969 -0.3954 -0.6043
PI, 3.5191 2.3742 2.7958 3 .2314

Second-order interaction parametecrs
012 3.107 3.2314
P12 1 2.3158| -0 210 1

Goodness-of-fit
G2 5242.96 4299.30 4552.65 4298.64
DF 5692 5691 5691 5690
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5.5. Including the Effects due to Organizational/System Boundaries

Before defining structural parameters that explicitly take into account the effects due to

organizational/system boundaries, let us re-write hypotheses H3.1 and H3.6 as follows:

H5.1 Design interfaces are less likely to be matched by team interactions when they

are across (organizational/system) boundaries. More specifically,

H5.a When considering the dyads with design interfaces only, design

interfaces across organizational boundaries are less likely to be matched by team

interactions than the ones within boundaries (the "X" cells of Figure 3.1).

H5. lb When considering the dyads with team interactions only, team

interacions across system boundaries are less likely to be predicted by design

interfaces than the ones within boundaries (the "0" cells of Figure 3.1).

To explicitly represent organizational/system boundary effects, we define the following

indicator variable:

ACROSS = 1 if elements (i.e. component and team) i andj are in the different groups

(rav)

ACROSS = 0 if r=s

By expanding the dimension of the W-array with ACROSS as the seventh dimension, we

can estimate the parameter associated to the interaction ACROSS x k, x k2 (due to symmetry of

the W-array identical to ACROSS x 1, x 2). As shown in our base model the interaction terms k,

x k2 = 11 x l2captures whether or not design interfaces are matched by team interactions. Hence,

the third-order interaction effect that defines 6ACROSS.kI.k2 = 0 ACROSS.1/.I2 captures whether dyads

across boundaries with design interfaces matched by team interactions are statistically significant

different than dyads within boundaries with design interfaces matched by team interactions.

Hence, a formal hypothesis testing of H5.1 can be specified as follows:

H5. 1: OACROSS.AI.k2 < 0

Since our model cannot differentiate the dyads with a state of either design interface with

no team interaction ([k,=1] x [k 2=0J= [1=I1] x [2=0J) or team interaction with no design
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interface ([k 1=0] x [k 23l] = [11=0] x [12=1]), it is not possible to capture the hypothesized effects

described in H5. la and H5. lb. Therefore we are limited to formally test H5. 1 only.

It is important to note that ACROSS is just an indicator variable and does not increase the

number of states of the dyad. ACROSS it is completely defined by the independent states r and s.

We consider this issue when fitting the data by defining structural zeros6 (when using SPSS) for

the dyads where ACROSS = 1 and r=s, and for the dyads ACROSS = 0 and r #s.

5.5.1.1. Testing Hypothesis H5.1

Table 5.3 shows the structural parameters of fitting the extended model to data. The

BASE model corresponds with Model 2 from Table 5.2 (no structural parameters added). Model

1, Model 2 and Model 3 include second-order interaction effects which result in statistically

significant negative effects indicating that fewer design interfaces and fewer team interactions

take place across boundaries. Model 4 includes the third-order interaction effect of interest,

which result (as expected) in a statistically significant negative parameter (AG 2 = 6.74, Adf= 1, p

< .01, supporting H5. 1). Following conditional likelihood ratio tests (G2 difference tests) Model

1 and Model 2 have been tested against the Base model, Model 3 has been tested against Model

2, and Model 4 has been tested against Model 3.

Table 5-3. Models extended to capture effects due to organizational/system boundaries
Structural BASE Modell Model2 Model3 Model4
Parameters

Second order interactions effects with ACROSS
0ACROSSki = 0ACROSS,1 -1.644*** -0.8046*** -0.1595***

OACROSSk2 = OACRoSS 12 1 | 1 -1.9335*** -1.3042*** -1.0191***
Third order interaction effects with ACROSS

0ACROSSI,kI,k2= -0.9450***
0ACROSSI~LU~
G; 4299.30 3189.26 3093.78 3068.3 3061.56

DF 5691 5690 5690 5689 5688
*<0.1 **<0.05 ***<0.01
Significance estimated with conditional likelihood ratio tests (G2 difference tests) with 1 df

6 Structural zeros are zeros imposed by design. Those are "zero occurrence" because such cases cannot occur by

definition. For example WITHIN = 1 for a dyad whose elements belong to different groups.
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5.6. Including the Effects due to Systems Modularity

In this section we test how the effects due to organizational/system boundaries are

moderated by systems modularity. More specifically, we want to test the following hypothesis:

H5.2 The effects due to organizational/system boundaries arc statistically

significant different for interactions between modular systems than Jr interactions with

integrative systems.

Similar to the previous section, we define structural parameters to include the effects due

to systems modularity into the model. For that purpose, we define the following indicator

variable:

MODULAR= 1 if both components of a dyad belong to modular systems (r<7 and s<7)

MODULAR=0 if one of the components of a dyad belongs to integrative systems (r 7 or

s 7).

By expanding the dimension of the W-array with MODULAR as the eighth dimension,

we can estimate the parameter associated to the fourth order interaction effect MODULAR x

ACROSS x k, x kz2 (due to symmetry of the W-array identical to MODULAR x ACROSS x I x

12). 0MODULAR.ACROSS.kIk (= OoDUA R.ACROSSkl.k2) captures whether the effect due to

organizational/system boundary is statistically significant different for modular systems than for

integrative systems. To formally test hypothesis H5.2 the following condition needs to hold:

H5.2: 0MODUIAR.ACROSS.kk2 #0.

Indeed, we expect this parameter to be less than 0, which corresponds with less cross-

boundary design interfaces (matched by team interactions) between modular systems than with

integrative systems.

It is important to note that MODULAR is just an indicator variable and does not increase

the number of states of the dyad. MODULAR is completely defined by the independent states r

and s. This issue is considered when fitting the data by defining structural zeros (when using

SPSS) for the cases where MODULAR = 1 and (r 7 or s 7), and for the cases where

MODULAR = 0 and (r<7 and s<7).

90



5.6.1.1. Testing Hypothesis H5.2

Table 5.4 shows the structural parameters of fitting the extended model to data. The

ACROSS model correspond with Model 4 from Table 5.3. Model 1, Model 2 and Model 3

include second-order interaction effects with MODULAR which result in not statistically

significant effects indicating that the distribution of design interfaces and team interaction for

modular systems is not statistically significant different than for integrative systems. Model 4

includes the third-order interaction effect with MODULAR which also result in a not statistically

significant parameter indicating that the distribution of design interfaces matched by team

interactions for modular systems is not statistically significant difference than for integrative

systems. Model 5 includes the four-order interaction effect of interest which resulted to be

statistically significant negative supporting hypothesis H5.2.

Table 5-4. Models extended to capture moderating effects due to systems modularity
Structural Parameters ACROSS I Modell I Model2 I Model3 Mode14 Model5

Second order interactions effects with ACROSS
OACROSS = ACROSS,1J -0.1595*** |-0.1028*** -0.9671*** -0.1029*** -0.1162*** 0.5517***
0AcRoS.,k2= OACRoss12 -1.0191*** 1 -1.0157*** 1 -0.154*** | -1.0153*** -1.0207*** | -1.469***

Third order interaction effects with ACROSS
0ACROSSkk2= OACROSS.11.12 -0.9450***7 -0.9512*** 1 -0.9569*** -0.9512*** -0.936*** -0.6188***

Second order interaction effects with MODULAR
OMODULARAk2 =MODUAR,12 0.2187 0.2180 0.1697 -0.0961

0MODULARk2 OMODULAR,12 0.1725 0.0014 -0.0228 0.0444
Third order interaction effects with MODULAR

0MODULARkik2 = OMODUAR,11.12 0.0571 0.4768
Four order interaction effects with ACROSS and MODULAR

0MODULAR,ACROSSk],k2= -0.3354***

OMODULARACROSS 11,2
G 3061.56 3060.83 3060.79 3060.78 3060.76 3030.81

DF 5688 5687 5686 5685 5684 5683
*<O. 1 **<0.05 ***<0.01
Significance estimated with conditional likelihood ratio tests (G2 difference tests) with 1 df

5.7. Discussion of the Results

Based on previous research from social science we acknowledge that team interaction

data reported by design team members are likely to present effects of reciprocation, differential

expansiveness and differential attraction. Similarly, we assume that design interface data

reported by design experts are also subject to these effects. These observations are the main

threats to validity of the results presented in chapter four, and the main motivation of the analysis

presented in this chapter.
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We built upon research completed in the field of social network analysis to develop a

base log-linear model that allows for the simultaneous estimation of parameters that measure the

average tendency toward reciprocation (p), and the amount of differential expansiveness and

differential attractiveness of each element of the network (o's and 's, respectively). We then

extended the base model by adding structural parameters that capture the effects of

organizational/system boundaries and the effects of system modularity. We confirmed the results

that design interfaces are more likely to be matched by team interactions when they take place

within organizational/system boundaries. Also, we found that the effect due to

organizational/system boundaries is moderated by systems modularity.

Three major limitations of the model presented in this chapter are the following:

* It assumes statistically independent dyads, therefore we cannot use this model to

study triadic effects. Triadic effects are associated to the hypothesized effects due to

potential indirect team interactions and to potential secondary dependencies. Future

research might take advantage of more recently developed models (Wasserman and

Pattison, 1996) that better handle triadic effects.

" Structural parameters have to be defined for all the dyads in the network. For

example, the effects due to design interface strength cannot be tested with this model

because it is not possible to define a binary indicator variable "STRENGTH" for the

dyads that do not share an interface. That is, there would not be any difference

between a dyad that shares a weak design interface (STRENGTH=O) and a dyad that

does not share a design interface (STRENGT H=O).

* Even though commercial statistical software packages can be used to fit the model to

empirical data, the data obtained from the printouts needs further manipulation to

estimate the model's parameters (see Appendix D). Also, the G2 obtained from the

statistical packages is wrong and needs to be corrected.
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6. Geographically Distributed Product
Development: An Empirical Study in

the Telecommunications Industry

La Pie, 1868-69
Claude Monet

6.1. Introduction

The dynamics of current businesses have challenged the execution of product

development projects by increasingly requiring more geographically distributed teams to work

together (Chen and Bolon, 1993; De Meyer, 1993; Granstrand et al., 1993; Griffin, 1997).

Current practices in product development involve the execution of various stages of the process

in various locations around the globe. It is common to encounter firms that design their hardware

in one location, their software in another location, while having their manufacturing facilities yet

spread to other locations. Ghoshal et al (1990) recognize the importance of developing products

in a distributed fashion when serving diverse markets. McDonough et al (1999) present the

challenges associated with managing global new product development. Leonard et al (1998)

present a case study of a geographically distributed software development project, illuminating

the problems faced when managing these types of virtual organizations.

Many researchers have also recognized the tremendous changes occurring in the way

current organizations communicate (Yates and Orlikowski, 1992). The use of electronic-based

communication media is increasing the number of options distributed development teams have
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available to coordinate activities, to keep knowledge up-to-date and to spark creativity with non-

collocated team members. The widespread use of information technology is reducing the

traditional reliance on face-to-face communication in what has been called the "network

organization" (Sproull and Kiesler, 1991).

While previous research demonstrating the negative relation between communication and

distance is well established (cf. Wells, 1965; Conrath, 1973; Allen, 1977; Keller and Holland,

1983; Pinto et al., 1993), less is known about how the relationship varies with different types of

media or communication content nor how distance affects the choice of media used (Van den

Bulte and Moenaert, 1998). Utilizing a rich empirical data set collected from interviews in three

geographically distributed development teams in the telecommunications industry, we analyze

the moderating effects of communication media and content on the relation between

communication frequency and distance. In addition, we examine how distance, and other

moderating variables, affects the choice of communication media.

6.2. Related Work in Communication in Global Product Development

Ghoshal and Bartlett (1988) reported findings from an empirical study of sixty-six North

American and European multinationals indicating that subsidiaries with higher levels of inter-

unit communication were more effective in the creation, adoption and diffusion of innovations.

In their study of global new product development teams (GNPDT's), McDonough e al. (1999)

correlated GNPDT performance with the use of multiple communication mechanisms, what they

called an "affiliated set," consisting of phone, fax, email, teleconferencing and company

databases.

While communication patterns in product development depend on the nature of the

project and the organizational structure executing it (Barczac and Wileman (1991); Morelli et al.

(1995)), distance also plays an important role (Allen, (1977); De Meyer (1991)). The negative

influence of distance on communication has been studied so extensively as to be "accepted as an

axiom in social theory" (Van den Bulte and Moenaert (1998: p. S3)). Allen's (1977) research on

the communication processes in R&D organizations, describing how increasing distance between

team members reduced the chances of two team members communicating for technical matters,

is probably the best known of these studies in the R&D context. However, there have been
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several, more recent studies supporting his general findings (cf. Keller and Holiand (1983); De

Meyer and Mizushima (1989); Jaffe et al. (1993); Pinto et al. (1993); Van den Bulte and

Moenaert (1998)).

Taking exception with much of the previous research on the influence of distance on

communication, Van den Bulte and Moenaert (1998) claim that "previous research does not

allow one to conclude confidently that distance is a major barrier to communication in R&D

settings" (p. S3). They note that much of this research lacks contextual realism, internal validity

and statistical conclusion validity. Utilizing statistical modeling techniques for sequential

network data (Wasserman and lacobucci (1988)), Van den Bulte and Moenaert examine a

"naturally occurring managerial intervention involving the relocation of R&D teams in a leading

high-tech company" (1998: p. S4). Although they found that collocation of R&D team members

did enhance communication among the members of the team, they also discovered that the

communication frequency between R&D and marketing was not affected by the resulting

increase in physical distance. "This unexpected asymmetric result suggests that the effect of

distance on communication may be moderated by the nature of the communication. Because we

measured oral communication broadly, without discriminating between various media or

contents, directly testing such a conjecture must be left for future research" (Van den Bulte and

Moenaert (1998: p. S 15), emphasis added).

6.3. Formulating the Hypotheses

Similar to Hightower and Sayeed's (1996) "opportunity" and "motivation," we divide the

factors that influence technical communication into two categories: communication drivers and

communication barriers. We define communication drivers as the factors that motivate

information transfer between interacting team members, and communication barriers as the

factors that hinder the process of exchanging information.
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Figure 6-1. Factors that influence technical communication

6.3.1. Communication Drivers

In the organizational communication literature, Daft and Lengel (1986) present an

integrated framework, based on the concepts of uncertainty-the absence of critical and stable

information and equivocality-the lack of understanding of a situation-to explain what drives

information processing in organizations7 . Similarly, technical communication in product

development is required to reduce information deficit-that is, team members deal with unstable

information and so must communicate critical parameters as they become known-and to reduce

ambiguity-that is, team members deal with imprecise information and so must communicate to

define problems or to reach consensus on the solution of a problem. This is similar to the

concepts of coordinative information-that used simply to coordinate activities-and innovative

information-that used in problem solving-described by Hauptman (1986).

The degree of task interdependence describes the degree to which tasks require collective

action (Wageman, 1995): The greater the degree of task interdependence, the greater the

coordinative and innovative information requirements (De Meyer, 1991). This is consistent with

previous research that has shown that a greater degree of task interdependence leads to greater

communication (Crawford and Haaland, 1972; Adler, 1995; Allen, 1997). Allen (1997)

recognizes that the degree of interdependence between engineers' work is directly related to the

probability that they engage in frequent technical communication. At the task level, Smith and

Eppinger (1997) use the strength of task interdependency to identify the activities that require

higher effort to coordinate. Loch and Terwiesch (1998) present an analytical model to study the

They were primarily concerned with managerial communication instead of technical communication.
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coupling of uncertainty, dependence and communication, suggesting that average

communication frequency increases with the level of uncertainty and dependence 8. These results

are consistent with the empirical evidence presented by Adler (1995) and the numerical approach

presented by Ha and Porteus (1995).

Thus, we propose the following hypothesis regarding the effects of interdependence on

communication frequency:

H6.1: Communication frequency increases with the degree of interdependence,

independently of the communication media used.

Although the majority of technical communication among interacting team members is

likely to involve coordinative and innovative information, these are not the only types of

communication. Team members may also engage in technical communication for inspiration

and general knowledge, not directly related to specific development tasks (Morelli et al., 1995;

Allen, 1997). Team members can communicate for creative inspiration, managerial affirmation,

and to keep up to date with the latest developments in their disciplines. In addition, there is a

general tendency for individuals to seek out similar others with which to communicate-what

Van den Bulte and Moenaert (1998) refer to as homophily effects.

Organizational structure establishes boundaries within the organization. People within

such boundaries are subjected to organizational bonds that promote the development of a

language and an identity inherent to the group. Allen (1977) found that organizational bonds9

increased the probability of two team members engaging in technical communication. Thus, we

expect the following hypothesis to hold true:

H6.2: Communication frequency is higher between individuals who share an

organizational bond, independently of the communication media used.

" They model uncertainty as the number of design changes. and dependence similar to the "downstream sensitivity"

of Krishnan et al (1997).

9 Other terms are: organizational affiliation, organizational ties.
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6.3.2. Communication Barriers

There are several factors opposing technical communication between members of a

product development team. The literature suggests three major types of geographic barriers to the

communication process:

* physical distance

" overlapping working time, and

* cultural/language differences.

As stated above, there is considerable empirical research demonstrating the negative

effects of distance on technical communication. Allen summarizes his findings about how

individual location influences technical communication in the "communication-distance" curve

for face-to-face communication in collocated R&D organizations (Allen (1977, p. 239)). Allen

found that the probability of two engineers engaging in technical communication rapidly decays

with distance, and suggested that such a communication pattern is independent of the medium

used to communicate (Allen (1997)). It is important to note that Allen's (1977, 1997) results

imply that distance is a discontinuous function, that is, "it is only within the first thirty meters

that separation has any real effect on the probability of communication" (Allen (1977, p. 240)).

Allen's work uses distance as a proxy for a wider issue of the influence of architecture on

communication. On the other hand, we use distance to capture separation from a global point of

view.

Although it is not difficult to hypothesize how physical distance presents a direct barrier

to face-to-face communication, it is less clear why physical distance would reduce

communication independently of the media used. One possible explanation is the concept of the

"affiliated set" of communication mechanisms that support each other (McDonough et al.

(1999)). De Meyer (1991) found in his studies of global R&D that "(o)ther than calls for simple

exchanges of data, one only calls the people one knows well and sees fairly often." Thus, one

might expect a positive correlation in the communication frequency among various media. As

distance reduces face-to-face communication, there is a correlated reduction in the use of other

media.
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H6.3: Communication frequency decreases with distance, independently of the

communication media used.

In addition, as distance increases, so might working-time differences. With decreasing

overlapping working time, synchronous communication would become more difficult. Under

the hypothesis that communication frequency is correlated among the various media, then

asynchronous communication would also decrease.

H6.4: Communication frequency increases with overlapping working-time,

independently of the communication media used.

Another possible explanation is that distance is a proxy for other factors such as culture,

language and identity. With increasing distance, one would expect increasing differences in

language and cultural identity, and thus homophily-one of the proposed drivers of

communication-independent of any organizational bonds that might be shared. Thus, if one

could measure differences in language and culture directly, one could identify the effects of these

on communication.

H6.5: Communication frequency decreases with cultural/language differences,

independently of the communication media used.

6.3.3. Media Choice:

Before formulating the effects of geographic dispersion on media choice, we map three

communication media (face-to-face, telephone and email), commonly used in organizations, in a

space-time domain (Figure 6.2).
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Figure 6-2. Time-space domain of communication media.

Although H3 predicts that distance reduces communication frequency across all media,

one would expect that the magnitude of the impact would differ. Given the need of physical

proximity for face-to-face communication, we would expect distance to have a much greater

impact on face-to-face communication than for non-collocated communication.

H6.6: The rate of decay depends upon the communication medium used. Face-to-

face communication would exhibit faster decay than non-collocated communication such

as telephone and email.

This, of course, has an implication for the choice of media used. Media richness theory

(Daft and Lengel, 1984)-one of the most broadly studied iheories about media choice-ranks

communication media according to their capacity to process ambiguous information.

Specifically, they rank media based upon their ability to provide feedback, their capacity to

transmit multiple cues, their availability to use natural language, and their personalfocus.

According to the theory, face-to-face is a richer medium than telephone, and telephone is a richer

medium than email. This theory provides a rational criterion to select media to reduce ambiguity.
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Empirical evidence has supported this theory for managerial type communications (Trevino et al,

1987, Jones et al (1988), Schmitz and Fulk (1991)).

Allen and Hauptman (1990) agree with media richness ranking when comparing the

bandwidth of certain communication media. However, they also rank media according to their

data-transmission efficiency. They argue that email is a more efficient medium than telephone

and face-to-face from a data-transmission standpoint . By ranking communication media by a

data-transmission efficiency standpoint they provide a rational criterion to select media to reduce

information deficit. This criterion is particularly relevant when large amounts of information,

such as CAD models, analysis results, and design or manufacturing specifications, need to be

transferred.

While "improvements in information technologies will make it easier for technical

professionals to communicate, ... knowledge is best transferred to engineers through personal

contact" (Allen and Hauptman, 1990: p. 282-284). Other authors have addressed the issue of

effectiveness and efficiency of communication media (Hiltz and Turoff, 1978; Siegel et al,

1984). Warkentin, et al. (1997) found that although virtual and face-to-face team interactions

exhibited similar levels of communication effectiveness, teams using face-to-face interactions

reported higher levels of satisfaction with team performance.

Given the fact that face-to-face is a synchronous, collocated medium (see Figure 6.2) we

expect its probability of being used to rapidly decay with distance, whereas the probability of

using an asynchronous, non-collocated medium such as email should grow with distance. When

product development teams are distributed around the globe, effects of distance are compounded

by the time zone difference between the interacting team members. Its major effect is that

simultaneous working time reduces, increasing the efforts to have synchronous communication

or simply fast feedback (Gulati and Eppinger (1996), McDonough et al (1999)). Telephone (a

synchronous, non-collocated medium) may be preferred for distant communication as long as

there is simultaneous working time (low time zone difference). Finally, email (an asynchronous,

non-collocated medium) will be preferred for long-distance communication. As a result, we

formulate the following hypotheses:

"0 Marril (1980, p. 185) discusses in more detail the efficiency of transmitting digital data.
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H6.7a) The probability of using face-to-face communications rapidly decays with

distance.

H6.7b) The probability of using telephone communication increases, reaches a

maximum and then decays with distance.

H6.7c) The probability of using email communication increases with distance.

Probability of using...
Email -7c)

Telephone (H7b)

Face-to-face (H7a)

Distance
Short time zone Long time zone

Collocated difference difference

Figure 6-3. Effects of distance on media choice (H6.7)

Geographical separation also implies, in many cases, cultural difference. Language

differences, different customs, different ways of referring or treating others have all been

recognized as a major barriers to communication (McDonough III and Kahn, 1996; Gulati and

Eppinger, 1996; Leonard et al., 1998). Language differences, in particular, create the need for

written-asynchronous communication, which allows interacting parties to take more time to

interpret and process the information exchanged (McDonough et al., 1999). Thus, we formulate

the following hypothesis regarding the influence of language difference on media choice:

H6.8: The probability of using written-asynchronous communication media, such as

email, rather than verbal-synchronous communication media, such as telephone, increases

with language difference.

6.4. The Empirical Study

In the spring and summer of 1995, more than 200 interviews were conducted at 30

facilities, in 13 countries, in three large multinational corporations (MNCs) in the
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telecommunications industry. These interviews were part of a three-year study of innovation in

MNCs conducted from 1994 to 1996. The interviews, which lasted anywhere from one to three

hours, were structured with a list of questions, taped and later transcribed. In addition, field

notes were taken, and forms were filled out when quantitative data were requested. The

transcriptions, field notes and data forms were then used to construct a systematic data set.

Communication data were collected by interviewing members of three different

development teams at three different companies within the telecommunications industry. In each

interview the respondent was asked to give the name, location and position (including functional

affiliation) of the people he/she communicated with during the project. Respondents were asked

repeatedly to give us as complete a list as possible. However, on a few occasions, respondents

would tire after about two pages (20 partners).

For each communication partner, respondents were asked to rank from 1 (lowest) to 10

(highest) the importance of the communication for the execution of their project-related tasks.

Additionally, the medium selected to communicate as well as the communication frequency was

reported per each interaction. Finally, a brief, qualitative description of the content of the

communication was requested.

Given information on the location of the respondent and their communication partners,

we estimated the distance (in kilometers) between the facilities where individuals were located.

Communication partners located at the same facility were given a distance of zero, regardless of

the particular "micro-location" of their offices. We also determined the time zone difference to

calculate the overlapping working time. Language differences were estimated based on the

location and name of the respondent and communicating partners. Examining the title, position

description and role in the project of the respondents and their communication partners we

determined the level of their organizational bonds (either function organizational bonds or

project organizational bonds). Since the general content of the message exchanged was also

provided for each interacting pair, we grossly estimated the type of technical communication

associated to each interaction. A detailed description of the variables used in our analysis is

provided in Table 6.1.
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Table 6-1. Description of variables used in the analysis.

Metric Description
Importance of the Scale metric that measures the level of criticality of the
interaction interaction from the respondent standpoint. It assesses

the degree of task interdependence associated to each
interacting pair. A scale from 1 to 10 was used (l=low
importance, 10=high importance).

Organizational bonds Binary metric to capture the level of organizational
affiliation between interacting parties. O=weak
organizational bond such as different organizations,
different tasks, different professional background.
1=strong organizational bond such as same
organization, similar tasks, similar professional
background.

Distance Distance (in kms) between the cities where each of the
parties was located.

Overlapping working time Number of hours in which both parties would be in
their office simultaneously (assuming working hours to
be from 9 am to 5 pm).

Language difference Binary variable. 0=same native language. 1=different
native language.

Communication frequency Number of interactions per week using certain
using certain communication medium (face-to-face, telephone and
communication medium email).

Some researchers (Tushman, 1978; Allen and Cohen, 1969) have already attempted to

measure information processing by counting communication transactions such as number of

memos, number of telephone conversations or face-to-face communications. We also use

communication frequency (i.e. number of interactions per unit time per each communication

medium used) as our dependent variable.

However, it is important to note that our metrics for capturing technical communication

differ from the ones used by Allen (1977). Allen determined the probability of two researchers

engaging in technical communication as a function of distance. Allen determines such

probabilities by dividing the number of team members who communicate (at least once a week)

by the total number of people available at each distance range. Allen considered all potential

pairs in the development organization. Given the scale of our project, it is impractical for us to

use the same approach. Instead, we consider only the pairs that actually communicate and their
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absolute and relative use of communication media to exchange technical information, from the

respondent's point of view.

From 255 interviews (respondents) we obtained a total of 829 interacting pairs (dyads)

that formed the initial raw data. A screening to eliminate pairs with missing and/or inconsistent

information reduced the data set to a sample of 653 interacting pairs of which 485 pairs

contained complete information for all the variables. Table 6.2 shows the descriptive statistics of

the sample data analyzed.

Tables 6.3 and 6.4 show correlations among the independent and dependent variables,

respectively. As one might expect, overlapping working time is highly correlated with distance

(-0.945). This will make it difficult to disentangle the two in the analysis. Language is also

positively correlated with distance, and thus, with overlapping working time, but to a much

lesser extent (0.599). Also as expected, the frequency of communication in face-to-face is

positively correlated with the frequency of communication in telephone, but only slightly

(0.245). Email, though positively correlated with face-to-face (0.172), has very little correlation

with telephone (0.027).
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Table 6-2. Descriptive statistics
ORG. DISTANCE OVERLAP LANGUAGE FACE-to-FACE TELEPHONE EMAIL

IMPORTaINCE BONDS (kim) TIME (0/1) FREQ FREQ FREQ

(1-10) (W1) (hours) (#/week) (#/week) (#/week)

Mean 6.94 0.476 1,922 6.68 0.222 1.325 0.574 0.935

Maximum 10.0 1.0 15,658 8.00 1.0 25.0 20.0 35.0

Minimum 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Std. Dev. 2.36 0.4999 3,754 2.48 0.416 2.279 1.584 3.105

Skewness -0.569 0.0949 2.157 -1.708 1.333 4.061 6.934 7.663

Kurtosis 2.495 1.009 6.862 4.492 2.777 32.003 68.349 71.424

Jarque-Bera 31.36 80.83 677.6 280.7 144.7 18332.0 90188.7 99359.9

Observations 485 485 485 485 485 485 485 485

Table 6-3. Correlation between the independent variables

Table 6-4. Correlations between the dependent variables
FACE-to-FACE TELEPHONE

FREQ FREQ

FACE-to-FACE FREQ 1.000

TELEPHONEFREQ 0.245 1.000

EMAILFREQ 0.172 0.027

6.5. Statistical Analysis

Several studies have posited and examined the effects of subsidiary type and MNC

strategy on patterns of communication (c.f. Ghoshal and Bartlett, 1990; Nobel and Birkinshaw,

1998). Although we have not set out to examine explicitly these relationships, we must be aware
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IMPORTANCE ORG. OVERLAP

BONDS DISTANCE TIME

IMPORTANCE 1.000

ORG. BONDS 0.101 1.000

DISTANCE -0.049 -0.088 1.000

OVERLAP TIME 0.051 0.096 -0.945 1.000

LANGUAGE -0.052 -0.007 0.599 -0.554



that firm-level characteristics could have a significant influence on communication. The three

multinationals that we studied were all in the telecommunications industry, but each was

headquartered in a different country: Sweden, Japan and North America."

The Swedish MNC was the furthest along in terms of the internationalization of its new

product development. Most of its facilities could be classified as international creators in the

typology of Nobel and Birkinshaw (1998). The Japanese MNC was the least internationalized,

with many of its facilities evolving from local adopters to international adopters. The North

American MNC was in between, but closer to the Swedish MNC in internationalization of new

product development.

The three projects that we studied consisted mainly of software development-though

with some, more or less related hardware developments as well. The projects in the Swedish and

North American MNCs each involved the development of a global product platform. The

project in the Japanese MNC involved the development (adaptation) of a product local to the

North American market. Figure 6.4 plots the dyad-distance profiles for each of the three project

samples. It highlights the difference of the Japanese distance profile from those of the other two

MNCs. In light of this evidence, we ran separate analyses for each firm. However, because the

results were not statistically significantly different from the pooled data, the results presented in

this section are for the pooled data only.

' The "North American" corporation had its original headquarters and basic research labs in Canada, but had

recently moved the headquarters for the particular business unit that we were examining to the US.
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Dyad-Distance Profiles by Company
(non-collocated dyads)

140-
North American MNC

51%
1 2 0 -- - - - -- -- - - - - - -

CLN
U

38%

* 80
0

244

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000

Dyad Distance
(kilometers)

Figure 6-4. Dyad-distance profiles for each of the three project samples

6.5.1. Communication Frequency

We completed several linear regression models whose results are compiled in Table 6.5.

The first column of this table contains the independent variables. The rest of the columns contain

the non-standardized coefficients included in each of the models. An empty cell indicates that

such a variable was excluded from the model due to lack of significance.

The dependent variable of the models exhibited in Table 6.5 is the natural log of

communication frequency. This specification of the dependent variable has three important

implications.

1. ln(communication frequency) is closer to a normal distribution, supporting the

assumption that the errors of the regression models are normally distributed.

2. the negative coefficients of ln(distance+1.0) can be interpreted as the rate of decay of

communication frequency due to distance.

3. the coefficients of the other variables included in the models provide an approximation of

the percentile change in communication frequency given a unit change in the

corresponding variable.
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Table 6-5. Regression results for communication frequency t

Independent Model 1 Model 2 Model 2' Model 3 Model 4

Variables (Total ) (Face-to-face) (Face-to-face) (Telephone) (Email)

Constant -0.916*** -2.463*** -1.239*** -1.505*** -1.495***

Importance 0.191*** 0.199*** 0.200*** 0.161*** 0.184***
Organizational bonds 0.402*** 0.155*** 0.341*** 0.678*** 0.653***
Distance

ln(distance+1.0) -0.117*** -0.199*** -0.254*** -0.075*** -0064***

Overlapping 0.305**
working time

Language difference

N 485 298 298 213 224

Adj. RA2 0.290 0.452 0.445 0.213 0.260

t communication frequency = e(ao + a, importance+a 2 organizational bonds)> (distance +1.Q)a,

* <0.1; **<0.05; *** <0.01

The first model shown on Table 6.5 (Total) refers to total communication frequency,

defined as the summation of all three communication frequencies (i.e. face-to-face, telephone

and email communication frequencies) associated with each interacting pair. Models 2-4 are

separate runs for each media type. The results clearly support hypotheses H6. l-H6.3. That is,

communication frequency increases with the importance of interaction (H6. 1) and with the

presence of strong organizational bonds (H6.2), but decreases with distance (H6.3) across all

media.

Not surprisingly, given its strong correlation with distance, the results for overlapping

working-time, and thus, for hypothesis H6.4, are mixed. For face-to-face communication,

overlapping working time is significant at the 0.05 level, but is not statistically significant for

total communication or for the other two media. Given its correlation with distance, we exclude

it in model 2'. The results do not support the homophily hypothesis (H6.5) that communication

frequency decreases with language differences for any media.

By looking at the coefficients of importance of the interaction and their standard error for

each of the models, and thus, for each media, we observe no statistically significant difference

among them. Furthermore, importance of interaction explains about the same amount of

variation for each of the models (media). As a result, we can conclude that the effect of

importance of interaction is fairly consistent across all media used.
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When analyzing the effects of organizational bonds on each of the models, we observe

that both telephone and email communication frequencies are much more sensitive to the

presence of strong organizational bonds. Additionally, organizational bonds explain a greater

portion of variation of telephone and email communications than they do for face-to-face

communications.

As we hypothesized (H6.6), the effect of distance on communication frequency is

significantly contingent to the media used. For face-to-face communication, the rate of decay in

communication frequency and the amount of variation in the data explained by ln(distance+ 1.0)

is much greater than for telephone and email communications.

6.5.2. Media Choice

In order to explore the effects of degree of interdependence, organizational bonds and

geographic dispersion on media choice, we derive a relative communication frequency per

medium by dividing each communication frequency per medium by the total communication

frequency associated to each interacting pair. That is, we define the probability that an

interacting pair uses a certain communication medium as follows:

.Communication frequency of medium. . .
P(using medium)-= Cmuiainfrqec fmdu per interacting pair.

Total communication frequency of all media

In order to test the effect of distance on media choice we ran linear regression models

that include distance and ln(distance+1.0) as independent variables. The results are shown in

Table 6.6 and the resultant curves that describe these models are graphed in Figure 6.5. The

dependent variable of the models shown in Table 6.6 is the natural log of the probability of using

either face-to-face, telephone or email, respectively. We included the p-values (between

parentheses) of the variables included that were not significant.
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Table 6-6. Results for the effects of distance on media choice

Independent Variables P(face-to-face) P(telephone) P(ernail)

Constant 0.476*** 0.138*** 0.118***

Importance -0.002 -0.001 0.005

(0.696) (0.859) (0.251)

Organizational bonds 0.034 -0.023 -0.027

(0.103) (0.293) (0.212)

Distance 6.96E-6 -1.88E-5*** 9.97E-6**

(0.113)

ln(distance+1.0) -0.055*** 0.040*** 0.016***

N 485 485 485

Adj. RA2 0.427 0.173 0.132

*<O. 1; **<0.05; ***<0.01 (p-values within parentheses)

probability of using certain medium = e (ao + a'i"c') -(distance +1. 0 )a2 -1.0

The results presented in Table 6.6 and graphed in Figure 6.5 support hypotheses H6.7a-c.

That is, the probability of using face-to-face rapidly decays with distance, the probability of

using telephone increases, peaks and then decays with distance, while the probability of using

email increases with distance. Given the significant and consistent influence of importance and

organizational bonds on communication frequency across all media, it is interesting to note that

neither importance nor the presence of organizational bonds is shown to influence media choice.

Probability of
using ...

0.5 . Telephone

Email

0.3

0.2.

Face-to-face

2000 4000 000a 00M 12000 14000

Figure 6-5.Distance-based linear regression results
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As noted previously, distance can be a proxy for language and working time differences.

Table 6.7 presents the new results when we add these later two variables to the model. Again,

the results for overlapping working time are not significant. However, we see the language

differences are significantly negatively correlated with the use of telephone and positively

correlated with the use of email. The results in Table 6.7 support hypothesis H6.8 that the

probability of using written-asynchronous communication media, such as email, rather than

verbal-synchronous communication media, such as telephone, increases with language

difference.

Table 6-7.Results for media choice with language and working time

Independent P(face-to-face) P(telephone) P(email)

Variables

Constant 0.462*** 0 122*** 0.153***
Importance

Organizational bonds 0.033 -0.O35*

(0.110)

Distance -1.66E-5*** 2.15E-6

(0.224)

ln(distance+1.0) -0.046*** 0.054***

Overlapping

working time

Language difference -0.054 -0. 199*** 0.269***

(0.117)

N 485 485 485

Adj. R^2 0.429 0.222 0.239

*<O.1; **<0.05; ***<t.f1. p-values in parentheses.

6.6. Discussion of Results

Even though we completed another study on how distance negatively influences

communication in distributed development organizations, this study makes important

contributions along many dimensions. First, noting Van den Bulte's and Moenaert's (1998)

comments about "contextual validity", our study examined communication within three global

new product development teams (GNPDTs). Interviews were conducted during the actual

development project, and so did not rely on the ability of respondents to recall details of previous
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experiences. Second, our study is on a much different scale then many others-notably, Allen's

(1977) often-cited study of collocated R&D personnel and Van den Bulte and Moenaert's (1998)

study of the relocation of R&D personnel into another building. Our study is more on the macro

scale of "global" dispersion in international development activities. Finally, and most

importantly, we not only studied the use of different communication media, which allows us to

discriminate the effects of geographic dispersion among various media, but also we found that

the negative influence of distance can be compensated by high degree of team interdependence,

strong organizational bonds, and use of electronic-based communication media. Given the

empirical results presented in this paper a more sophisticated version of Figure 6.1 is exhibited in

Figure 6.6.

* Team interdependence
* Organizational bonds +

Communication

Geographic dispersion:
* distance

* time zone difference Use of electronic-
* Cultural/language difference based media

Figure 6-6. Summary of results

Consistent with previous research, we found that both interdependence (as measured by

the importance of the interaction) and organizational bonds were positively correlated with

communication frequency across all media. This observation supports the hypotheses that

interaction criticality and homophily are major communication drivers. The surprising result

was that neither of these two independent variables was correlated with media choice.

Apparently, people involved in critically interdependent tasks or who share strong organizational

bonds engage in broad spectrum of communication means.

Even when team members were non-collocated higher communication frequencies were

observed for highly interdependent pairs. These results reinforce the importance for managers

identifying critical tasks dependencies in their organizations in order to facilitate intense

communication among the team members involved in such interdependent tasks. Furthermore,
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managers can overcome the negative effects of distance by constantly notify their team members

about the level of criticality of their interdependence.

Conversely, by documenting communication frequencies managers can uncover the

underlying structure of development projects as illustrated by McCord and Eppinger (1993).

Since the effect of importance of the interaction on communication frequency is fairly consistent

across all media used, we can track electronic-based communication transactions to easily

identify team dependencies, especially when teams are geographically distributed. Tracking

electronic-based communication frequencies can provide an easy and non-disruptive way to

obtain the dependency-structure' 2 of a development project.

Although we also found supporting evidence to the hypothesis that communication

frequency increases in the presence of strong organizational bonds, the surprising finding was the

moderating effect of media used. As evidenced by our results, strong organizational bonds have

stronger positive effect on telephone and email communications than in face-to-face

communications. Therefore, organizational bond is another element that can help managers to

overcome the negative influence of distance on technical communication.

As hypothesized, distance between interacting pairs negatively correlates with

communication frequency across all media. However the magnitude of this effect depends upon

the medium used to communicate. Face-to-face communication frequencies rapidly decay with

distance while telephone and email communication frequencies decay at slower rates.

When we analyzed the propensity to use each of the three media, we found that the use of

face-to-face communication is substituted by telephone and email communication when distance

increases. Furthermore, our empirical evidence shows (see Figure 6.5) that the relative use of

telephone communication starts to decay after around 3000 kms, possibly because time-zone

difference makes synchronous communication more difficult to accomplish.

Exploring this further, we found that team members located in countries that do not share

the same first language show higher probability of using email communication than telephone

communication. This supports the hypothesis that people with language differences prefer using

2 For a formal introduction to the Design Structure Matrix (DSM) and how it is used to analyze the dependency

structure of development projects refer to Steward (1981) and Eppinger, et al. (1994)
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written, asynchronous communication media, such as email, rather than verbal, synchronous

communication media, such as telephone. We recommend managers to identify whether there is

significant language difference between team members involved in critical interactions in order

to facilitate asynchronous-written communication.

In summary, relative location of interacting team members influences both

communication frequency and media choice. Even if face-to-face communication can be

substituted by other electronic-based communication such as email, instant messaging, or video-

conferencing, managers should be aware that communication frequency tends to decrease with

distance, independent of the media used to communicate. However, managers have other

elements, such as team interdependence and organizational bonds, to mitigate the negative

effects due to geographic dispersion of development organizations.

6.7. Limitations and Future Research

The fairly large size of our sample and the diverse nature of the projects examined offer

encouragement as to the general nature of our findings. However, like most empirical research,

there are significant limitations in our study. Our unit of analysis is the interacting pair. We do

not attempt to describe how distance affects the propensity to communicate, only the frequency

of communication and relative frequency of media use given that two people communicate.

Also, our study is cross-sectional, not longitudinal. Thus, the standard caveats apply in drawing

conclusions as to situations where one or more of the independent variables are adjusted due to

managerial control.

The nature of information technology is changing at an incredible speed. At the time of

the field study (1995), despite the fact that all three MNCs were themselves at the confluence of

the merging technologies of computer and telephony, none of the development teams used, to

any significant extent, emerging communication media such as video-conferencing, desktop

conferencing or other "intra-net-based" technologies. Thus, our study is mainly limited to the

three primary forms of communication used at the time: face-to-face, telephone and email. More

research needs to be done to understand better the trade-off between media richness and data-

transmission efficiency of the various communication media now widely available for

development teams.
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Furthermore, our study did not effectively examine the moderating effects of the content

of communication. Clearly, some types of content are better suited to distant-communication

than others. It would be useful to examine whether distance reduces communication frequency

across media and content, and whether content has a significant influence on media choice.

Finally, we have not studied in detail the effect of barriers due to information technology

differences. Our results emphasize the importance of minimizing such barriers between

critically interdependent team members. Communication barriers due to information technology

differences, such as corporate firewalls and incompatible information systems, have to be

overcome to facilitate electronic information transfer between interdependent team members. An

interesting stream of future research is to study the various effects imposed by these types of

communication barriers.
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7. Contributions and Future Work
"Jamds un hombre que no prefiri6 su Patria y la sirvi6fitlmente

pasa a la historia sino con un nombre obscurecido"
Marzo 1824

Mariscal, Antonio Josi de Sucre

This thesis describes a method for analyzing the coupling between the architecture of a

product and the development organization that designs it. Our approach involves three steps.

First, we identify and document the design interfaces between the physical components that

comprise the architecture of a product. Second, we identify the occurrence of technical

interaction between design teams. We assume that design teams must interact with each other to

address the technical design interfaces. Finally, we compare the predicted team interactions

corresponding to each design interface with the actual team interactions.

By studying the coupling of product architecture and organizational structure of a large

commercial aircraft engine we were able to predict 83% of the coordination-type interactions

between the design teams that participated in the detailed design period of the development

process. We focused our analysis on explaining the mismatch between design interfaces and

team interactions. We have contributed to an understanding of what drives technical

communication in product development organizations by formulating and testing several

hypotheses to explain the cases when: 1) known design interfaces were not matched by team

interactions, and 2) reported team interactions were not predicted by design interfaces.

7.1. About the Research Method

The research method presented in this thesis illustrates a novel approach to study the

coupling of two key domains of strategic importance for established firms, the product

architecture domain and the development organization domain. By documenting the product

architecture in the design interface matrix we capture the current structure of a product. Then, by

documenting the technical interactions between design teams in the team interaction matrix we

capture the integration efforts of the development organization. Finally, by comparing these two

matrices to generate the resultant matrix we create a valuable framework that provides the
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roadmap to analyze how the product architecture drives technical communication in product

development organizations.

First, we confirmed the nominal hypothesis that team interactions are not statistically

independent of design interfaces. Indeed, there is a strong association between the occurrence of

team interactions and the existence of design interfaces. Then, we focused on understanding the

mismatch between design interfaces and team interactions. We formulated several hypotheses to

explain the unexpected cases when: 1) design interfaces where not matched by team interactions

(the "X" cells of the resultant matrix), and 2) team interactions were not predicted by design

interfaces (the "0" cells of the resultant matrix).

Our research approach is particularly easy to implement when there is a one-to-one

mapping between the product architecture and the development organization. We developed an

algebraic model (see Appendix C) that allows one to determine a predicted team interaction

matrix for the cases when there is not a direct mapping between physical components and design

teams.

By studying the coupling of the architecture of an aircraft engine and its development

organization we have gained important insights about how product architecture drives technical

communication in product development organizations. While we cannot claim the generality of

these findings before completing similar studies in other types of products in different industries,

we would expect to find similar results in other projects developing complex systems and where

the development teams are organized according to the product architecture.

7.2. About the Analysis

We provided two different ways to analyze the results captured in the resultant matrix:

7.2.1. Categorical data analysis

First, we assumed that every cell in both the design interface matrix and the team

interaction matrix are not only statistically independent between the matrices but also within the

matrices. That assumption allowed us to use categorical data analysis techniques to test the

hypotheses formulated to explain the mismatch between design interfaces and team interactions.
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Under the categorical data analysis we completed three types of tests. First, we used chi-

square tests of independence to test the hypothesized effects presented in chapter three. Second,

we used chi-square tests of homogeneity to test the moderating effects due to systems

modularity. Finally, we constructed three-dimensional contingency tables to test the moderating

effects of organizational/system boundaries.

The advantage of using categorical data analysis is that since the unit of analysis is the

cell, we can select sub-groups of cells according to the hypothesized effect we want to test. At

the same time, the main limitation of the analysis is that its modeling unit is the cell and

therefore it assumes statistically independent cells.

7.2.2. The log-linear model

Many researchers have shown empirically that social network data possess strong

deviation from randomness. Hence, we needed to validate the assumption of independent cells

within the matrices considered when completing the categorical data analysis. We validated the

independent-cell assumption by developing a log-linear model based on Holland and Leinhardt's

(1981) p, distribution. This model allows for the simultaneous estimation of parameters that

measure the average tendency toward reciprocation (p), and the amount of differential

expansiveness and differential attraction of each element of the network (ds and #'s,
respectively). This model provides a more formal statistical method to test the association

between two networks that follow the p, distribution.

We extended the base log-linear model to include structural terms that allowed us to

simultaneously test the hypothesized effects of organizational/system boundaries and the

moderating effects of systems modularity. The results showed that these effects were statistically

significant confirming the findings obtained from the categorical data analysis.

We found empirical evidence that, similarly to social networks, network of product's

components exhibit a p distribution. Having developed this log-linear model, based on social

network analysis, provides a more robust method to formally test the level of association

between two networks that exhibit a p distribution.
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7.3. Designing Modular versus Integrative Systems

In very complex products, we applied the definitions of modular and integral architecture

(Ulrich and Eppinger, 1995) at the level of the many systems (and subsystems) which comprise

the product. We defined modular systems as those exhibiting modular architecture characteristics

while integrative systems are those with features of integral architectures. By analyzing the

distribution of design interfaces across system boundaries we formally identified modular and

integrative systems. Studying how the hypothesized effects are moderated by systems modularity

allows us to understand better the difference between designing modular versus integrative

systems.

Our analysis provided three important findings:

1. The distributed nature of the integrative systems forces these design teams to

overcome organizational barriers in order to handle design interfaces with all the

systems. That is, effects of organizational barriers are more severe among teams that

design modular systems.

2. Design interfaces across modular systems are more difficult for design experts to

recognize than interfaces with integrative systems.

3. Design teams handle some design interfaces according to their type. We found that

spatial-type design interfaces are largely addressed in the design of modular systems

while transfer-type design interfaces are more likely to be handled in the design of

integrative systems.

7.4. Managerial Implications

This thesis outlines a method for analyzing the architecture of a product, once it is known, to

determine potential technical communication linkages in the development organization. We also

address several issues that need to be taken into account when predicting communication

linkages. Managers may be able to better use understanding of product architecture to design

organizational structures effectively, which facilitate coordination-type communications. This

further suggests that managers may be able to improve product development performance by

effectively selecting team members to deal with specific critical design interfaces and by

outlining organizational boundaries to foster critical technical teams interactions.
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Our results suggest that organizational boundaries foster communication within boundaries

and prevent communication across boundaries. Furthermore, the effects of organizational

boundaries are even more dominant than the effects of design interface criticality. These results

should be good news for managers because they can take direct actions to place the

organizational boundaries so that their effects truly improve product development performance.

Hence, by studying the product architecture managers should identify the critical design

interfaces to conceive organizations whose boundaries enclose such critical interfaces.

Our results also suggest that managers should pay particular attention in identifying modular

and integrative systems because the effects of organizational boundaries are moderated by

systems modularity. Since modular systems are not perfectly modular, their cross-boundary

design interfaces are less likely to be handled by design teams. On the other hand, design teams

that develop integrative systems are less vulnerable to organizational boundaries due to the

physically distributed nature of the systems they design. Hence, managers should identify the

critical cross-boundary design interfaces occurring between modular systems to facilitate the

technical interaction between the corresponding design teams.

We found empirical evidence that suggests that system integration teams (i.e. design teams

that are not responsible for the design of any specific component, but rather are in charge for

system-level design issues) exchange technical information with almost every design team in the

organization. This further indicates that the use of system integration teams can be an effective

mechanism to handle critical cross-boundary design interfaces.

The effects of system boundaries were highlighted by the existence of team interactions that

were not predicted by design interfaces. Such empirical evidence provided great benefits to the

organization where our approach was implemented. In particular, the development organization

for the next model of that aircraft engine assigned a design team that would handle those cross-

boundary design interfaces that had not been recognized before by the design experts.

We found empirical evidence that supports the hypothesis that indirect exchange of technical

information between design teams may take place across organizational boundaries. Indirect

team interactions mitigate the negative effects of organizational boundaries because they handle

design interfaces that are not addressed by direct team interactions. However, indirect team

interactions are difficult to plan. Nonetheless, use of electronic-based integration systems (i.e.
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centralized databases or product-data management systems) provides the tools to facilitate cross-

boundary indirect team interactions. Hence, managers can facilitate effective indirect interaction

by promoting the use of electronic-based integration systems.

From a product innovation viewpoint, the project studied was a mix of modular and

incremental innovation. However, the lessons learned on this study may help development

organizations to face architectural innovation. By documenting the architecture of the product in

a design interface matrix for every generation of product family, novel architectures can be

quickly identified. Furthermore, by documenting the interactions between the design teams (team

interaction matrix) to compare them with the potential interactions provided by the design

interface matrix provides a systematic way to evaluate how development organizations manage

architectural knowledge, a critical issue for firms facing architectural innovation (Henderson and

Clark, 1990).

What if the development organization is geographically distributed? We found empirical

evidence that confirms previous research about how distance negatively influence

communication. However, our results suggest that managers can mitigate distance effects by

identifying critical team interdependence, using organizational bonds, and use of electronic-

based communication media. Again, studying the product architecture would help managers to

identify critical team interdependence and design organizational structures that foster critical

non-collocated interactions.

7.5. Future Research Directions

This thesis opens a new stream of research in the interface of product architecture and

development organization. This study is based on the assumption of a direct mapping of product

architecture and development organization. What if this were not the case? Which types of

barriers are more severe (organizational or system barriers)? Is an organizational design that

mirrors the architecture of the product a good one? Extending this method to study various

mappings of product architectures and development organizations may help us to answer these

research questions.

To better understand the implications of this study on architectural innovation it is worth

exploring the evolution over time of both design interface matrix and team interaction matrix for
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several generations in a product family. We expect the massive use of electronic-based

communication media will improve the efficiency and effectiveness of the process of

documenting team interactions over periods of time.

From an analytical perspective, future research might benefit from development of models

that consider triadic effects. Those models might be better suited to test the effects of indirect

team interactions and secondary design dependencies.

If we envision how product development will be done a few years from now, it is not

difficult to imagine geographically distributed teams developing models that are seamlessly

integrated with others' models through web-based tools (Wallace, et al. (2000)). How would the

architecture of the product map the network of design models? Would teams interact more or

less given that their models are integrated? What can we learn from studying the mismatch

between models' dependency and team interactions, or between model's dependency and design

interfaces?

These questions can be addressed by using the approach outlined in this thesis and taking

advantage of having design models and design teams electronically connected. By counting

electronic-based transactions we can assess the interaction intensity between design teams.

Similarly, by counting the iterations between the various models that comprise a product we can

estimate the level of dependency between them. Additionally, by studying the models'

dependencies related to the architecture of the product we could obtain the design interfaces

between the components of the product.
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A. Chi-square Tests Results

Table A-i. Chi-square test of independence. Effect of design interface strength.
Expected Expected Actual number Actual number x2 of design x2 of design
number number (fraction) of (fraction) of interfaces interfaces not

(fraction) of (fraction) of design interfaces design interfaces matched by team matched by team
Total design interfaces design interfaces matched by team not matched by interactions interactions

matched by team not matched by interactions team interactions
interactions team interactions

Weak design 319 191 176 127.824 169 150 3633 5763
interface (61 34%) (38 66%) (52 98%) (47.02%)
(strength:54)
Strong design 250 149.824 100176 180 70 4635 7354
interface (61.34%) (38 65%) (72.00%) (28.00%)
(strength >4)

Total 569 349.000 220.000 349 220 8.268 13.116

H,: Weak design interfaces are as likely to be matched by team interactions as strong design interfaces.
X2 = 21.385 Critical x 2 o99.1) = 6.635 Since x2 > Critical X2()99. 1, we reject H,.

Table A2. Chi-squ re test of homog neity. Effects of design interface strength
Expected Expected Actual number Actual number X2 of design X. of design
number number (fraction) of (fraction) of interfaces interfaces not

Total (fraction) of (fraction) of design interfaces design interfaces matched by team matched by team
design interfaces design interfaces matched by team not matched by interactions interactions
matched by team not matched by interactions team interactions

interactions team interactions

Weak design interfaces
(Modular systems) 140 74.169 65.831 70 70 0.234 0.264

(52.98%) (47.02%) (50.00%) (50 00%)
Weak design interfaces
(Integrative systems) 179 94.831 84.169 99 80 0 183 0'207

(52.98%) (47.02%) (55.31%) (44.69%)
Total 319 169.000 150.000 169 150 0.418 0.471
Strong design interfaces
(Modular systems) 107 77.040 29.960 80 27 0.478 0.439

(72 00%) (28.00%) (74 77%) (25.23%)
Strong design interfaces
(Integrative systems) 143 102 960 40.040 100 43 0.871 0799

(72.00%) (28.00%) (69.93%) (30.07%)
Total 250 180.000 70.000 180 70 0.199 0.511
H,,: The effect of design interface strength is the same on modular systems as on integrative systems.
X2overall = 1.598 Critical X2 

99.3 = 11.345 Since X2 < Critical X2099.3,, we do not reject H,,
X weak = 0.888 Critical X2o99 = 6.635 Since X2 < Critical X2 o99.1 we do not reject H0

X strong= 0.710 Critical X2
( 99.1) = 6.635 Since x2 < Critical X2 o99., we do not reject H,.
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Table A3. Chi-square test of independence of organizational boundaries and design
interface strength

Expected Expected Actual number Actual number x2 of design x' of design
number number (fraction) of (fraction) of interfaces within interfaces across

Total (fraction) of (fraction) of design interfaces design interfaces organizational organizational
design interfaces design interfaces within across boundaries boundaries

within across organizational organizational
organizational organizational boundaries boundaries

boundaries boundaries

Weak design 319 129.506 189.494 95 223 8.669 5925
interface (40.60%) (59.40%) (30.09%) (69.91%)
Strong design 250 101.494 148.506 135 115 11.061 7560
interface (40.60%) (59.40%) (54.00%) (46.00%)
Total 569 231.000 338000 231 338 19.730 13.484

H,: The strength of the design interface is independent of whether or not the design interface is within or across
organizational boundaries.
X2= 33.214 Critical Xro 99.1 = 6.635 Since x2 > Critical X(os .. we reject HO.

Table A4. Chi-square test of indepedence. Effect of design interface type.
Expected Expected Actual number Actual number x2 of design x2 of design
number number (fraction) of (fraction) of interfaces interfaces not

Total (fraction) of (fraction) of design interfaces design interfaces matched by team matched by team
design interfaces design interfaces matched by team not matched by interactions interactions
matched by team not matched by interactions team interactions

interactions team interactions

Spatial-type 41 15.459 25.541 20 21 1.334 0.807
(37.70%) (62.30%) (48.78%) (51.22%)

Transfer-type 81 30.541 50.459 26 55 0.675 0.409
(37.70%) (62.30%) (32.10%) (67.90%)

Total 122 46.000 76.000 46 76 2.009 1.216
H,: Spatial-type design interfaces are as likely to be matched by team interactions as transfer-type design interfaces.
X2= 3.225 Critical X2to951)= 3.841 Since x2 < Critical Xt.95.1,, we do not reject H,.
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Table A5. Chi-s uare test of homogeneity. Effect of design interface type.
Expected Expected Actual number Actual number x2 of design X2 of design
number number (fraction) of (fraction) of interfaces interfaces not

Total (fraction) of (fraction) of design interfaces design interfaces matched by team matched by team
design interfaces design interfaces matched by team not matched by interactions interactions
matched by team not matched by interactions team interactions

interactions team interactions

Spatial-type 24 11.707 12.293 15 9 0.926 0.882
(Modular systems) (48.78%) (51.22%) (62 50%) (37.50%)
Spatial-type 17 8.293 8.707 5 12 1.307 1.245
(Integtrative systems) (48.78%) (5 1.22%) (29.41%) (70-59%)
Total 41 20.0 21.0 20 21 2.233 2.127
Transfer-type 41 13.160 27.840 8 33 2.024 0.957
(Modular systems) (32.10%) (67.90%) (19.51%) (80.49%)
Transfer-type 40 12.840 27.160 18 22 2074 0.980
(Integrative systems) ___(32 10%) (67.90%) (45.00%) (55.00%)
Total 81 26.0 55 0 26 55 4.098 1.937

H,: The effect of design interface type is the same on modular systems than on integrative systems.
X2 overall = 10.395. Critical X2(0 95.3)= 7.815. Since X2 > Critical x2(o095.3). we reject H0.
X 2s -type = 4.360 Critical %2(095.1) = 3.841. Since X2 > Critical X2(o,9. 3 we reject H0.
X2 Iateal =6.035 Critical X2(0 95.1 )= 3.841. Since x2 > Critical X2(o ._.3), we reject H0.

Table A6. Chi-square test of independence.
Effect of indirect team interactions (through other design teams)

Expected Expected Actual number Actual number X2 of indirect x2 of indirect
number number (fraction) of (fraction) of team interactions team interactions

(fraction) of (fraction) of indirect team indirect team covering design not covering
Total indirect team indirect team interactions interactions not interfaces design interfaces

interactions interactions not covering design covering design
covering design covering design interfaces interfaces

interfaces interfaces

No potential indirect 1401 126.371 1274.629 70 1331 25.146 2.493
team interaction (9.02%) (90.98%) (5.00%) (95.00%)

One potential 579 52.226 526.774 59 520 0.879 0.087
indirect team (9.02%) (90.98%) (10.19%) (89.81%)
Interaction
More than one 459 41.402 417.598 91 368 59.416 5.891
potential indirect (9.02%) (90.98%) (19.83%) (80.17%)
team Interaction

Total 2439 220.000 2219.000 220 2219 85.440 8.471
H,: The likelihood that two design teams, who do not interact directly, share a design interface is independent of the
number of potential indirect interactions through other design teams.
X2= 93.911 Critical X2 o.99,2)= 9.210 Since X2 > Critical X20 99.2). we reject H0.
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Table A7. Chi-square test of homogeneity.
Effects of indirect team interactions (through oher design teams).

Expected Expected Actual number Actual number x2 of indirect X. of indirect
number number (fraction) of (fraction) of team interactions team interactions

Total (fraction) of (fraction) of indirect team indirect team covenng design not covering
indirect team indirect team interactions interactions not interfaces design interfaces
interactions interactions not covering design covering design

covenng design covering design interfaces interfaces
interfaces interfaces

No indirect interaction
(Modular systems) 747 37.323 709.677 29 718 1.856 0 098

(5.00%) (95.00%) (3.88%) (96.12%)
One indirect interaction
(Modular systems) 258 26.290 231.710 31 227 0.844 0096

(10.19%) (89.81%) (12.02%) (87.98%)
More than one indirect
interaction 138 27.359 110.641 37 101 3.397 0.840
(Modular systems) (19.83%) (80.17%) (26.81%) (73.19%)

No indirect interaction
(Integrative systems) 654 32.677 621 323 41 613 2 120 0.1 12

(5.00%) (95 00%) (6.27%) (93 73%)
One indirect interaction
(Integrative systems) 321 32.710 288.290 28 293 0.678 0077

(10.19%) (89.81%) (8.72%) (91.28%)

More than one indirect
interaction 321 63.641 257.359 54 267 1.460 0.361
(Integrative systems) (19.83%) (80.17%) (16.82%) (83.18%)
Total 2439 220.000 2219.000 220 2219 10.356 1.583

Ho: The effect of potential indirect interactions is the same for modular and integrative systems.
X2 overan = 11.939 Critical X2 0.99,5) = 15.086 Since x2 < Critical X2 99.)s, we do not reject Ho

Table A8. Chi-square test of independence.
Indirect team interaction s (through other design teams) vs. organizational boundaries

Expected Expected Actual number Actual number X2 of indirect X2 of indirect
number number (fraction) of (fraction) of team interactions team interactions

(fraction) of (fraction) of indirect team indirect team within across
Total indirect team indirect team interactions interactions organizational organizational

interactions interactions within across boundaries boundaries
within across organizational organizational

organizational organizational boundaries boundaries
boundaries boundaries

No indirect team 1401 68.930 1332.070 28 1373 24.304 1.258
interactions (4.92% (95.08%) (2.00%) (98.00%)

One indirect team 579 28.487 550.513 31 548 0.222 0.011
interactions (4.92%) (95.08%) (5.35%) (94 65%)

More than one 459 22.583 436.417 61 398 65353 3 382
indirect team (4.92%) (95.08%) (13.29%) (86.71%)
interactions

Total 2439 120.000 2319.000 120 2319 89.878 4.651

H,: The number of potential indirect team interactions between two teams is independent of whether they are within
or across organizational boundaries.

X2= 94.529 Critical X 2 o992)>= 9.2 10 Since x2 > Critical xho99.2). we reject H0.
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Table A9. Chi-square test of homogeneity. Effects of organizational boundaries controlling
for indirect team interactions (through other design teams)

Expected Expected Actual number Actual number x2 of indirect 2 of indirect
number number (fraction) of (fraction) of team interactions team interactions

Total (fraction) of (fraction) of indirect team indirect team covering design not covering
indirect team indirect team interactions interactions not interfaces design interfaces
interactions interactions not covering design covering design

covering design covering design interfaces interfaces
interfaces interfaces

No indirect interaction
(Within organizational 28 10.267 17.733 15 13 2.182 1.263
boundaries)__ (36.67%) (63.33%) (53.57%) (46.43%)
One indirect Interaction 31
(Within organizational 11.367 19.633 7 24 1.678 0.971
boundaries) (36.67%) (63.33%) (22.58%) (77.42%)
More than one indirect
interaction 61 22.367 38.633 22 39 0.006 0.003
(Within organizational (36.67%) (63.33%) (36.07%) (63.93%)
boundaries)
Total 120 44.000 76.000 44 76 3.866 2.238
No indirect interaction
(Across organizational 1373 104.204 1268.796 55 1318 23.233 1.908
boundaries) (7.59%) (92.41%) (4.01%) (95.99%)
One indirect interaction
(Across organizational 548 41.590 506.410 52 496 2.605 0 214
boundaries) (7.59%) (92.41%) (9.49%) (90.51%)
More than one indirect
interaction 398 30.206 367.794 69 329 49.823 4.092
(Across organizational (7.59%) (92.41%) (17.34%) (82.66%)
boundaries)_I
Total 2319 176.000 2143.000 176 2143 75.662 6.214

H,: The effect of potential indirect interactions is the same within or across organizational boundaries.
X 2overall = 87.980 Critical X2(o99, = 15.086 Since x2 > Critical x2(o.99.5 , we reject H,.
X2,with= 6.104 Critical x2o.99.2>= 9.2 10 Since X2 < Critical X2(o.99.2), we do not reject H,.
Xa2crO= 81.876 Critical X2(o.9.2>= 9.210 Since x2 > Critical X2099.2>, we reject H,.
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Table A10. Chi-square test of homogeneity. Joint effects of organizational boundaries and
indirect team interactions (through other design teams).

Expected Expected Actual number Actual number X2 of indirect x2 of indirect
number number (fraction) of (fraction) of team interactions team interactions

Total (fraction) of (fraction) of indirect team indirect team covering design not covering
indirect team indirect team interactions interactions not interfaces design interfaces
interactions interactions not covering design covering design

covering design covering design interfaces interfaces
interfaces interfaces

No indirect interaction
(Within organizational 28 2.526 25.474 15 13 61.612 6.108
boundarIes (9.02%) (90.98%) (53.57%) (46.43%)
One indirect interaction 31
(Within organizational 2.796 28.204 7 24 6 320 0 627
boundaries) (9.02%) (90.98%) (22.58%) (77.42%)
More than one Indirect
interaction 61 5.502 55.498 22 39 49 466 4.904
(Within organizational (902%) (90.98%) (36.07%) (63.93%)
boundaries)
Total 120 44 76 117.399 11.639
No indirect interaction
(Across organizational 1373 123.846 1249.154 55 1318 38.271 3794
boundaries) (9.02%) (90.98%) (4.01%) (95.99%)
One indirect interaction
(Across organizational 548 49.430 498.570 52 496 0.134 0013
boundaries) (9.02%) (90.98%) (9.49%) (90.51%)
More than one indirect
interaction 398 35.900 362.100 69 329 30.518 3 026
(Across organizational (9.02%) (90.98%) (17.34%) (82.66%)
boundaries)
Total 2319 176 2143 68.923 6.833

H: The joint effect of organizational boundaries and potential indirect interactions is independent of whether
design interfaces are matched by team interactions or not.
X2 overall = 204.795 Critical X2(o.9.5) = 15.086 Since x2 > Critical X2o.>,), we reject E
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Table All. Chi-square test of independence. Effect of indirect team interactions (through
system integration teams)

Expected Expected Actual number Actual number x2 of indirect x2 of indirect
number number (fraction) of (fraction) of team interactions team interactions

(fraction) of (fraction) of indirect team indirect team covering design not covering
Total indirect team indirect team interactions interactions not interfaces design interfaces

interactions interactions not covering design covering design
covering design covering design interfaces interfaces

interfaces interfaces

No indirect 1098 99.041 998.959 91 1007 0.653 0.065
interactions with (9.02%) (90.98%) (8.29%) (91.71%)
system integrators

One indirect 1044 94.170 949.830 102 942 0.651 0.065
interaction with (9.02%) (90.98%) (9.77%) (90.23%)
system integrators

More than one 397 26.790 270.210 27 270 0.002 0.000
indirect interaction (9.02%) (90.98%) (9.09%) (90.91%)
with system
integrators

Total 2439 220.000 2219.000 220 2219 1.306 0.129

H,: The likelihood that two design teams, who do not interact directly, share a design interface is independent of the
number of indirect interactions through system integration teams.
X2= 1.435 Critical X2(o99,2)= 9.210 Since x2 < Critical X2(o.99. 2), we do not reject Ho.

Table A12. Chi-square test of indepndence. Effect of system boundaries
Expected Expected Actual number Actual number x2 of predicted x2 of unpredicted
number number (fraction) of (fraction) of team interactions team interactions

Total (fraction) of (fraction) of predicted team unpredicted team
predicted team unpredicted team interactions interactions

interactions interactions

Team interactions 208 171.612 36.388 187 21 1.380 6.507
within system (82.51%) (17.49%) (89.90%) (10.10%)
boundaries

Team interactions 215 177.388 37.612 162 53 1.335 6.295
across system (82.51%) (17.49%) (75.35%) (24.65%)
boundaries

Total 423 349.000 74.000 349 74 2.715 12.803

H,: Team interactions within system boundaries are as likely to be predicted design interfaces as team interactions
across system boundaries.

X2= 15.517 Critical X2 o99,1= 6.635 Since X2 > Critical X2o.991), we reject H0.
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Table A-13. Chi-souare test of homoieneitv. Effects of cvstem hnunrlsrfa

L
"l: i ctcuj system LJUflCrLCs tue same jor moawar ana integrative systems.
x withirnboundanes = -0.483 X2across-boundanes = 9.566 Xtcucal ((195.1>= 3.841

Table A14. Chi-square test of indepndence. Effect of secondary desig dependencies.
Expected Expected Actual number Actual number x2 of secondary x2 of secondary
number number (fraction) of (fraction) of design interfaces design interfaces

(fraction) of (fraction) of secondary design secondary design matched by team not matched by
secondary secondary design interfaces interfaces not interactions team interactions

Total design interfaces interfaces not matched by team matched by team
matched by team matched by team interactions interactions

interactions interactions

No secondary design 1005 32.433 972.567 5 1000 23.204 0.774
interfaces (3.23%) (96.77%) (0 50%) (99.50%)

Three or fewer 643 20.751 622.249 25 618 0870 0029
secondary design (3.23%) (96 77%) (3.89%) (96 11%)
interfaces

More than three 645 20.816 624.184 44 601 25.823 0.861
secondary design (323%) (96 77%) (6.82%) (93.18%)
interfaces

Total 2293 74.000 2219.000 74 2219 49.897 1.664

H,,: The likelihood that two design teams, who do not share direct deuign interfaces, interact is independent of the
number of secondary design dependencies.
X2= 51.561 Critical X2 99.2) = 9.2 10 Since x2 > Critical X2o9.2>, we reject H3.
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Expected cases Expected cases Actual cases of Actual cases of X2 of x2 of
of predicted of unpredicted predicted team unpredicted predicted team unpredicted

Total team team interactions team interactions team
interactions interactions interactions interactions

Design interfaces 124 111.5 12.5 110 14 0.020 0.175
within system (89.9%) (10.1%) (88.7%) (11.3%)
boundaries
(Modular systems)

Design interfaces 84 75.5 8.5 77 7 0.029 0.259
within system (89.9%) (10.1%) (91.7%) (8.3%)
boundaries
(Integrative systems)
Total 208 187.0 21.0 187 21 0.049 0.434
Design interfaces 65 49.0 16.0 40 25 1.645 5.029
across system (75.3%) (24.7%) (61.5%) (38.5%)
boundanes
(Modular systems)
Design interfaces 150 113.0 37.0 122 28 0.713 2.179
across system (75.3%) (24.7%) (81.3%) (18.7%)
boundaries
(Integrative systems) __
Total 215 162.0 53.0 162 53 2.358 7.208



Table A15. Chi-square test of homogeneity. Effects of system boundaries controlling for
secondary design dependency.

Expected Expected Actual number Actual number x2 of secondary X2 of secondary
number number (fraction) of (fraction) of design interfaces design interfaces

Total (fraction) of (fraction) of secondary design secondary design matched by team not matched by
secondary secondary design interfaces interfaces not interactions team interactions

design interfaces interfaces not matched by team matched by team
matched by team matched by team interactions interactions

interactions interactions

No secondary dependency 594.
(Modular systems) 2.955 591.045 4 590 0.369 0.002

(0.50%) (99.50%) (0.67%) (99.33%)
Three or fewer secondary
dependencies 259 10.070 248.930 17 242 4.769 0.193
(Modular systems) (3.89%) (96.11%) (6.56%) (93.44%)
More than three
secondary dependencies 232 15.826 216.174 18 214 0.299 0.022
(Modular systems) (6.82%) (93.18%) (7.76%) (92.24%)
No secondary dependency
(Integrative systems) 411 2.045 408.955 1 410 0.534 0.003

(0.50%) (99.50%) (0.24%) (99.76%)
Three or fewer secondary
dependencies 384 14.930 369.070 8 376 3.217 0.130
(Integrative systems) (3.89%) (96.11%) (2.08%) (97.92%)
More than three
secondary dependencies 413 28.174 384.826 26 387 0.168 0.012
(Integrative systems) (6.82%) (93.18%) (6.30%) (93.70%)
Total 2293 74.000 2219.000 74 2219 9.355 0.362
H0: The effect due to secondary design dependencies is the same for modular and integrative systems.
Xo2 ,a = 9.717 Critical X2 o9.) = 15.086 Since x2 < Critical x(.99.5, we do not reject HO.

Table A16. Chi-square test of independence. Secondary design dependencies vs. System
boundaries.

Expected Expected Actual number Actual number X2 of secondary X of secondary
number number (fraction) of (fraction) of design interfaces design interfaces

(fraction) of (fraction) of secondary design secondary design within system across system
secondary secondary design interfaces within interfaces across boundaries boundanes

Total design interfaces interfaces across system system
within system system boundaries boundaries

boundaries boundaries

No secondary design 1005 42.514 962.486 2 1003 38.608 1.705
Interfaces (4.23%) (95.77%) (0.20%) (99.80%)

Three or fewer 643 27.201 615.799 29 614 0.119 0.005
secondary design (4 23%) (95.77%) (4.51%) (95.49%)
interfaces

More than three 645 27.285 617.715 66 579 54 932 2.426
secondary design (4.23%) (95.77%) (10.23%) (89.77%)
interfaces

Total 2293 97.000 2196.000 97 21% 93.659 4.137

H: The number of secondary design dependencies between two components is independent of whether they belong
to the same system or not.

= 97.796 Critical Xo.2= 9.2 10 Since x2 > Critical Xo 99 .2, we reject H,.
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Table A17. Chi-square test. Effects of secondary design dependency controlling for system
boundaries.

Expected Expected Actual number Actual number x2 of secondary x2 of secondary
number number (fraction) of (fraction) of design interfaces design interfaces

Total (fraction) of (fraction) of secondary design secondary design matched by team not matched by
secondary secondary design interfaces interfaces not interactions team interactions

design interfaces interfaces not matched by team matched by team
matched by team matched by team interactions interactions

interactions interactions

No secondary dependency
(Within boundaries) 2 0.433 1.567 0 2 0.433 0.120

I __(21.65%) (78.35%) .L%) (100.00%)
Three or fewer secondary
dependencies 29 6.278 22.722 8 21 0.472 0.130
(Within boundaries) (21.65%) (78.35%) (27.59%) (72.41%)
More than three
secondary dependencies 66 14.289 51.711 13 53 0.116 0.032
(Within boundaries) (21.65%) (78.35%) (19.70%) (80.30%)
Total 97 21.000 76.000 21 76 1.021 0.282
No secondary dependency
(Across boundaries) 1003 24.207 978.793 5 998 15.240 0.377

(2.41%) (97.59%) (0.50%) (99.50%)
Three or fewer secondary
dependencies 614 14.819 599.181 17 597 0.321 0.008
(Across boundaries) (2.41%) (97.59%) (2.77%) (97.23%)
More than three
secondary dependencies 579 13.974 565.026 31 548 20.744 0.513
(Across boundaries) (2.41%) (97.59%) (5.35%) (94.65%)
Total 2196 53.000 2143.000 53 2143 36.305 0.898

Ho: The likelihood that two design teams, who do not share direct design interfaces, interact is independent of the
number of secondary design dependencies (for both within and across system boundaries)
X =overa 38.507 Critical X2o.99.5)= 15.086 Since X2 > Critical X2 o.99.s, we reject H0
X 2 iti= 1.304 Critical X20.9.2>= 9.210 Since X2 < Critical X2o.2>, we do not reject H.
X cros= 37.203 Critical X2(.9.2>= 9.210 Since x2 > Critical Xo 99.2), we reject HO.
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Table A18. Chi-square test. Joint effects of system boundaries and secondary design
de ndency.

Expected Expected Actual number Actual number x2 of secondary x2 of secondary
number number (fraction) of (fraction) of design interfaces design interfaces

Total (fraction) of (fraction) of secondary desigii secondary design matched by team not matched by
secondary secondary design interfaces interfaces not interactions team interactions

design interfaces interfaces not matched by team matched by team
matched by team matched by team interactions interactions

interactions interactions

No secondary dependency
(Within boundaries) 2 0.065 1.935 0 2 0.065 0.002

1 (3.23%) (96.77%) (0.00%) (100.00%)
Three or fewer secondary
dependencies 29 0.936 28.064 8 21 53.320 1.778
(Within boundaries) (3.23%) (96.77%) (27.59%) (72.41%)
More than three
secondary dependencies 66 2.130 63.870 13 53 55.474 1.850
(Within boundaries) (3.23%) (96.77%) (19.70%) (80.30%)

Tta__97 21 76 108.859 3.630
No secondary dependency
(Across boundaries) 1003 32.369 970.631 5 998 23.141 0.772

(3.23%) (96.77%) (0.50%) (99.50%)
Three or fewer secondary
dependencies 614 19.815 594.185 17 597 0.400 0.013
(Across boundaries) (3.23%) (96.77%) (2.77%) (97.23%)
More than three
secondary dependencies 579 18.686 560.314 31 548 8.116 0271
(Across boundaries) (3.23%) (96 77%) (5.35%) (94.65%)
Total 2196 53 2143 31.657 1.056
H: The joint effect of secondary design dependencies and system boundaries is independent of whether team
interactions are reported or not.
X2 vern = 145.201 Critical X t()99.5) = 15.086 Since x2 > Critical X2o99,s, we reject HO
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B. The Effects due to Interface Redesign

This appendix includes the description of the statistical analyses, and additional data

collected to test the effects of interface redesign (hypothesis H3.4).

B.1. Regression Analysis

Linear regression between the percentage of redesign of component i and the fraction of

design interfaces of component i matched by team interactions. That is, we test whether the

correlation between the estimated percentage of redesign of component i and the fraction of

design interfaces of component i matched by team interactions (i.e. ratio of number of "#" cells

in row i of the resultant matrix over the number of "X" cells in row i of the binary design

interface matrix) was positively statistically significant. The test resulted in a not statistically

significant correlation coefficient equal to 0.08 (p-value = 0.26).

B.2. Change and Impact of the interface

Let us consider the design interface in which component i depends on componentj.

Previous researchers (Krishnan and Eppinger (1997), Loch and Terwiesch (1998), Carrascosa et

al. (1999)) have used the concepts of evolution and sensitivity to categorize information transfer

between development tasks. We extend those concepts to define the redesign of an interface. We

defr- -hange of component j, and impact on component i as follows:

* Change of component] (pj) is the probability that new design information that affects its

interface with component i would be generated.

* Impact on component i (r,) is the probability that changes in the interface with componentj

would generate design changes in component i.

B.3. Additional Data Collection

Based on the concepts of change and impact of the interface, we collect additional

information to capture the redesign between the design interfaces of the high-pressure turbine

(HPT) and low-pressure turbine (LPT).
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We document the interface redesign data in the change interface matrix (Figure B. 1) and

in the impact interface matrix (Figure B.2). A mark in row i of the change interface matrix

indicates that redesign of component i generated changes to the interface with componentj.

Similarly, a mark in row i of the impact interface matrix indicates that changes in the interface

with componentj had an impact on the design of component i.

_ 281O231132 3T341313613738
HPT Blades 28 * C C C C
HPT CV29 C * C C
HPT 2V 30 C * C C
HPT Rotor 31 C C C
HPT Case/OAS32 C * C

LP Shaft 331C
LPT Case 34 * C
TEC 35 *

LPT Vanes 36 C *C

LPT Blades 37 *

LPT OAS / TDucts / Insulation 38 *

Figure B-1. Change Interface Matrix (binary)

8I29131 321323 13637138
HPT Blades 28 1 1 1 1
HPT CV 29
HPT 2V 301 *1

HPT Rotor31 1 I *
HPT Case/OAS 32 1 I *

LP Shaft 33
LPT Case 34I *
rEC 35 *
LPT Vanes 36i *
LPT Blades 37I *

LPT OAS / TDucts / Insulation 38 *

Figure B-2. Impact Interface Matrix (binary)

B.4. Chi-square Tests Results

We analyze the 57 design interfaces of the 11 components for which additional redesign

data was collected. First, we test the null hypothesis that a change on interface (ij) is

independent of whether or not team i reports interaction with team j. To test that null hypothesis

we categorize the 57 design interfaces according to two criteria:

e First criterion: whether or not the design interface (ij) is matched by a team

interaction reported by team i
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* Second criterion: whether the design interface is the result of a change from

component i

The results of the chi-square test of independence shown in Table B. do not allow us to

reject the null hypothesis that.

Table B-2. Chi-square test results. Effects due to change of the interface

Expected Expected Actual number Actual number x2 of design x2 of design

number number (fraction) of (fraction) of interfaces interfaces not

Total (fraction) of (fraction) of design interfaces design interfaces matched by team matched by team

design interfaces design interfaces matched by team not matched by interactions interactions

matched by team not matched by interactions team interactions

interactions team interactions

Design interfaces
with no change 39 24.632 14.368 25 14 0.005 0.009

(63.16%) (36.84%) (64.10%) (35.90%)

Design interfaces
with change 18 11.368 6.632 11 7 0.012 0.020

(63.16%) (36.84%) (61.11%) (38.89%)

Total 57 36.000 21.000 36 21 0.017 0.029

Similarly, we test the null hypothesis that the impact on component i due to changes in
interface (ij) is independent of whether or not team i reports team interaction with teamj. The
results exhibited in Table B.2 do not allow us to reject such a null hypothesis.

Table B-1. Chi-square test result. Effects due to impact of the interface

Expected Expected Actual number Actual number x2 of design x2 of design

number number (fraction) of (fraction) of interfaces interfaces not

Total (fraction) of (fraction) of design interfacus design interfaces matched by team matched by team

design interfaces design interfaces matched by team not matched by interactions interactions

matched by team not matched by interactions team interactions

interactions team interactions

Design interfaces
with noimpact 43 27.158 15.842 27 16 0.001 0.002

(63.16%) (36.84%) (62.79%) (37.21%)

Design interfaces
with impact 14 8.842 5.158 9 5 0.003 0.005

(63.16%) (36.84%) (64.29%) (35.71%)

Total 57 36.000 21.000 36 21 0.004 0.007
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B.5. Sample of survey used

Review Redesign of Interfaces

System:
Representative:

1) What portion of key interfaces that your system has with each of the others was
channed byyour system?

HPT Blades:
HPT IV:
HPT 2V:
HPT Rotor:
HPT Case/OAS:
LP Shaft:
LPT Case:
TEC:
LPT Vanes:
LPT Blades:
LPT OAS/Tducts/lnsulation:

None
None
None
None
None
None
None
None
None
None
None

Less than half
Less than half
Less than half
Less than half
Less than half
Less than half
Less than half
Less than half
Less than half
Less than half
Less than half

Half or more
Half or more
Half or more
Half or more
Half or more
Half or more
Half or more
Half or more
Half or more
Half or more
Half or more

2) What was the imnact to your system caused by key interfaces changes made by each of
the other systems?

HPT Blades:
HPT IV:
HPT 2V:
HPT Rotor:
HPT Case/OAS:
LP Shaft:
LPT Case:
TEC:
LPT Vanes:
LPT Blades:
LPT OAS/Tducts/Insulation:

None
None
None
None
None
None
None
None
None
None
None

Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor

Major
Major
Major
Major
Major
Major
Major
Major
Major
Major
Major
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C. An Algebraic Model to Address Various Task Assignments

In this appendix we describe an algebraic model that allows us to relax the assumption of

one-to-one mapping between the architecture of the product and the development organizations.

The model described here allows mapping a development organization split in m design teams to

a product decomposed into n components. The model allows us to consider teams that participate

in the design of various components as well as components designed by several teams.

C.1.Model Description

If component i depends on componentj, then the teams designing those components are
expected to interact to solve such a technical interface. In algebraic terms, such observation leads
us to the following definition:

T=CTAC (C.1)

where,

T ,m= Potential Team Interaction Matrix. Matrix that contains the number of

technical interfaces each pair of teams needs to resolve during the design process.

t Ij= Number of interfaces that team i needs (potentially) to resolve with teamj to

complete its design(s).

A .,n= Binary Design Interface Matrix.
a"ig = 1, if component i depends on componentj for functionality.

a " = 0, otherwise.

a ij=0, if i=j

For a development organization, arranged in "m" design teams, that designs "n"

components, we define the following matrix:

C .,.= Design Contribution Matrix. It is a binary matrix that contains whether or not a
team directly contributes ("beyond the interface") to the design of a component.

c Ij = 1, if teamj directly contributes to the design of component i.
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C.2.Proof of the Model

First, let us solve D = A C, where row i of A contains the components on which

component i depends on, and columnj of C indicates which components are designed by

teamj. Hence,

d UX= alckj (C.2)
k=1

Note that d u 0 only for the cases where component i depends on componentj

AND componentj is designed by teamj. More specifically, d U equals the sum of

interfaces of component i on which teamj participates (as designer of other components).

Now, let us solve T = CT D, where row i of CT indicates which components are

designed by team i, and columnj of D indicates the components that share interfaces with

components designed by teamj. Hence,

t uX= cTikdkj (C.3)
k=1

Hence,

t u = cTijj$ as cpj) (C.4)
k=1 p=1

Note that t u #0 only when team i designs a component(s) that depends on a

component(s) designed by teamj. Furthermore, t u equals the sum of interfaces of components

designed by team i which depend on components designed by team j.

For the particular case when the mapping between components and teams is one-to-one

(i.e. the design of each component is assigned to a design team) the Contribution Design Matrix

(C) becomes the Identity matrix. Hence,

T=A (C.5)

C.3. Properties of the Model

The model specified in (C. 1) exhibits several properties derived from linear algebra

theory (Strang, 1980).
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C.3.1. Associative property

T= CT (AC)= (CT A) C (C.6)

C.3.2. About symmetry of T

If A is symmetric, then T is symmetric.

C.3.3. Inertia Law of Sylvester

If C is square and no singular matrix (i.e. det C #0), then T = CT A C, has the same

number of positive eigenvalues than A, the same number of negative eigenvalues and the same

number of zero eigenvalues. Therefore, the signs of the eigenvalues of A, but not their values,

are preserved.

C.3.4. Markov transition matrix

T could represent the transition matrix of a Markov process associated to the interactions

between design teams if the rows of T sum less than I and all the entries of T are non-negative.
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D. From Printouts to Parameters (log-linear model)

The values found in the printouts provided by commercial statistical packages, such as

GLIM, BMDP, SYSTAT, or SPSS, need to be translated to obtain estimates of parameters of the

pi-based models (for details refer to Wasserman and Faust, 1994 pp. 665, and Wasserman and

Weaver, 1985). Since we used SPSS (version 10.0) to complete our analysis, we illustrate the

translation process for as and p of pi given the printouts provided by SPSS 10.0.

Note that the translation process described here is different than the description offered

by Wasserman and Faust, 1994. The difference is due to the fact that SPSS (newer versions) uses

the constraint that the last row and the last column of any set of u-terms are defined to be zero

(they are called "aliased" or redundant parameters). For example, the estimated u-terms produced

by SPSS corresponding to the r x k interaction terms of model I of Table 5.2 are the following:

K1=0 KI=l
R=l -0.1452 0
R=2 0.0779 0
R=3 0.2989 0
R=4 0.3041 0
R=5 0.8522 0
R=6 0.364 0
R=7 0.5436 0
R=8 0.0000 0

To translate the r x k, u-terms to ais, we first need to "recenter" the first column by

computing its mean and subtracting it from each of its elements. That is,

K1=0 Kl=l
R=1 -0.1452- 0.28694 = -0.43214 0
R=2 0.0779 - 0.28694 = -0.20904 0
R=3 0.2989 -0.28694 = 0.012 0
R=4 0.3041 -0.28694 = 0.0172 0
R=5 0.8522 -0.28694 = 0.5653 0
R=6 0.364 -0.28694 = 0.0771 0
R=7 0.5436 -0.28694 = 0.2567 0
R=8 0.0000 -0.28694 = -0.28694 0
The at parameters are obtained by multiplying the values of the first column by (-1),

which correspond with the values of a, (a parameters of the design interface matrix of model 1)
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reported in Table 5.2. We proceed similarly with the r x I1 u-terms to obtain the values of the #
parameters.

Since the constraints used by SPSS are the same we use for the p parameter, the u-term k,

x 11 corresponds to the estimate of p, no further adjustment is required. Standard errors of the

model parameters estimates can be also derived from slight adjustments of the standard errors of

the u-terms (for details see Wasserman and Weaver, 1985).
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