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ABSTRACT

Better precision at lower costs is a major force in design and manufacturing. However,
this is becoming increasingly difficult to achieve as the demands of many location applica-
tions are surpassing the practical performance limit (- five microns) of low-cost cou-
plings. The absence of a means to meet these requirement has motivated the development
of the Quasi-Kinematic Coupling (QKC). This thesis covers the theoretical and practical
considerations needed to model and design QKCs.

In a QKC, one component is equipped with three spherical protrusions while the other
contains three corresponding conical grooves. Whereas Kinematic Couplings rely on six
points of contact, the six arcs of contact between the mated protrusions and grooves of
QKCs result in a weakly over-constrained coupling, thus the name Quasi-Kinematic.
QKCs are capable of sub-micron repeatability, permit sealing contact as needed in casting,
and can be economically mass produced.

The design and application of a QKC is demonstrated via a case study on the location of
two engine components. Integration of the QKC has improved coupling precision from 5
to 0.7 microns. In addition, this QKC uses 60% fewer precision features, 60% fewer
pieces, costs 40% less per engine, and allows feature placement tolerances which are
twice as wide as those of the previous dowel-pin-type coupling.

Thesis Supervisor: Prof. Alexander H. Slocum
Title: Professor of Mechanical Engineering
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Equivalent modulus of elasticity [MPa, psi]

Modulus of component/part i [in, inches]

Amonton's friction force [N, 1bf]

it contact force in quasi-kinematic coupling [N, lbf]
Force per unit arc/line length [N/m, lbf/in]
Force per unit contact length require to initiate yield [N/m, lbf

Amonton's normal force [N, 1bf]

Coupling preload force [N, lbf]
Groove center offset in r direction [in, inches]

Groove center offset in z direction [in, inches]

Maximum gap [in, inches]

Minimum gap [in, inches]

(in]

18

Relative movement of coupled components in x direction [m, inches]

Incremental movement in x direction [in, inches]

Relative movement of coupled components in y direction [in, inches]

Incremental movement in y direction [m, inches]

Displacement component of far field point in contactor along z direction [in, inches]

Variation in location of mating surface on bottom coupling component in z direction (flat-
ness) [m, inches]

Incremental movement in z direction [m, inches]

Relative movement of coupled components in z direction [in, inches]

Coupling error [in, inches]

Variation (+/-) in joint gap [m, inches]

Incremental rotation about x axis [radians]

Incremental rotation about y axis [radians]

Incremental rotation about z axis [radians]

Dummy variable for 0 6nnax [radians]

Chamfer angle on end of contactor insert shank [m, inches]

Waviness spacing of surface irregularities [in, inches]

Coefficient of friction between clamping means and coupling [---]

Total coefficient of friction in i direction [---]

Poison's ratio [---]

Half included cone angle [radians]

Alternate name for Oc [radians]

Contact angle, [radians]

Conical integration angle [radians]

Integration angle at beginning of contact arc [radians]

Integration angle at end of contact arc [radians]

Density [kg/m 3 , lbf/in3]
Normal surface contact stress [MPa, psi]

Yield stress [MPa, psi]

Friction contact stress [MPa, psi]
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hnf Final height of asperity smashed by normal load [m, inches]

Initial peak-to-valley height of asperity [m, inches]

Kr Stiffness in radial (r) direction, also called in-plane stiffness [m, inches]

Kz Stiffness in mating (-z) direction [m, inches]

M p Coupling preload moment [Nm, in-lbf]

OGR Absolute groove offset in r direction [m, inches]

OSRr Offset of axisphere center in r direction [m, inches]

OSRz Offset of axisphere sphere center in z direction [m, inches]

RC Contact radius from z axis [m, inches]

Re Equivalent radius of contact [m, inches]

RG Groove radius [m, inches]

Ri Radius of component/part i [m, inches]

Rs Axi-sphere Radius [m, inches]

SCr Radial position of Axi-sphere center in the r direction [m, inches]

SCZ Position of Z Axi-sphere center in z direction [m, inches]

Si Beginning of contact arc [m, inches]

Sf End of contact arc [m, inches]

Wnf Width of smashed asperity surface due to normal load [m, inches]

Xcp X location of contact point (in plane cross section) between target and contactor surface
[m, inches]

Ycp Y location of contact point (in plane cross section) between target and contactor surface
[m, inches]

ZTF Location of mating surface on top coupling component in z direction [m, inches]

ZBF Location of mating surface on bottom coupling component in z direction [m, inches]

SUPERSCRIPTS:
a' Width of contact stress profile in negative I direction [m, inches]

p Average pressure on indentor which flattens asperities [MPa, psi]
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Chapter 1

INTRODUCTION

1.1 Motivation

The manufacture of quality products is dependent upon the ability of manufacturing and

assembly processes to repeatably align and maintain the position of objects. As a result,

better precision at lower cost is a major driving force in design and manufacturing. Often

the two are seen as mutually exclusive, but in order for manufacturers to survive, they

must find low-cost means which will increase their precision and thus the quality of their

goods.

This can be difficult, as most manufacturing processes require their alignment and fixtur-

ing methods to withstand brute force and/or high impact loads. As a result, the most com-

mon class of couplings used in manufacturing rely on elastic averaging or forced

geometric congruence. For example, pinned joints, tapers, V-flat, and other elastic aver-

aging methods have been widely used for their high load carrying capacity and their abil-

ity to form sealing interfaces.

Designers and manufacturers have pushed the practical performance of these methods to

their limit of approximately five microns. Below this level, the use of conventional cou-

plings becomes impractical, either because manufacturers can not hold the restrictive tol-

erances required to make them, or the cost for them to do so becomes too high. Many

current and certainly next generation assemblies require better coupling performance at a
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lower cost. The absence of a low-cost means of precision location has motivated the

development of a fundamentally new machine element, the quasi-kinematic coupling.

Quasi-Kinematic Couplings (QKCs) are a passive means for precision location which

combine elastically averaged and kinematic design principles. The result is a stiff cou-

pling which delivers sub-micron repeatability and permits sealing between mated sur-

faces. It is particularly well suited for high volume manufacturing applications such as

product assembly, fixtures, molds, and other processes.

A good example of the need for low-cost precision is the automotive engine shown in

Fig.1. 1. In manufacturing this engine (see section 5.1 for details), the components are

bolted together as shown in Fig. 1.2. Then the crank bore is simultaneously machined into

each component, with a half bore in each. Afterwards, the two components are disassem-

bled, the main bearings and crank shaft are installed between them, and the components

are reassembled. Maintaining the same alignment of the block and bedplate half bores

before and after assembly is critical as mismatch between them will adversely affect the

performance of the engine's bearings (see Section 5.1.3 on page 91).

Figure 1.1 2.5 Liter Six Cylinder Engine

This had been accomplished using 8 pinned joints which were capable of only five

microns repeatability. This design required tight feature size and placement tolerances

which resulted in high rework and scrap costs. Replacement of this coupling with a

Quasi-Kinematic Coupling (QKC) has enabled the manufacturer to improve their preci-
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Assembly Bolts

Bedplate

Crank Bore Halves

Block

Figure 1.2 Six Cylinder Engine Assembly Partially Assembled

sion from 5 microns to 0.7 microns, reduce cost, and simplify their manufacturing process

and tooling.

1.2 Precision Coupling Systems

The position and orientation of one object with respect to another can be described by six

relative degrees of freedom shown in Fig.1.3 as Sxi, 8 yi, 8zi, Exi, Eyi, and Ezi- The require-

ments of precision location are to constrain N of these degrees of freedom. The design

parameters are the means, usually contacting elements, which maintain position and orien-

tation by providing resistance to motion in the N degrees of freedom.

E y 1st Component

Ez _
8

2nd Component

Figure 1.3 Kinematic Coupling Fixture Shown With Six Degrees of Freedom
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If one treats a coupling as a system with behavior determined by geometric, material,

kinematic and thermodynamic properties, the coupling system can be modeled as shown

in Fig. 1.4. Given a coupling system where the inputs are uniquely matched to the outputs,

one can expect repeatable outputs from repeatable inputs. Practically, there are variations

in the inputs and system characteristics. The resulting outputs differ from the expected

output by an amount described as the error or repeatability

Displacement
Disturbance

[

Figure 1.4

Geometry
Disturbance

Material
Property

Disturbance

Inputs Coupling D i O p
*Force System Desired Outputs
-Displacement *Desired Location

Force Error
Disturbance Actual Outputs --...--

eActual Location

Model of a Mechanical Coupling System

Designing components to maintain precision location requires consideration of the effects

of applied disruptions, i.e. variations from nominal, on the interacting kinematic and con-

tinuum characteristics of the components/systems. These disruptions, shown acting on a

coupling system in Fig. 1.4, may be grouped into four categories:

" Force (momentum) - A momentum transfer to, or between the coupled
components. These can include forces due to coupling acceleration, error
loads, friction forces, etc...

- Geometry - Geometry disruptions are variations in the geometry of the cou-
pling or other structures which interact with the coupling. These can include
geometric such as surface finish irregularities.
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- Displacement - A displacement disruption is a relative motion between the
coupled components. Generally, it is not desirable for these displacements
to be parallel to sensitive directions. Sensitive directions are those in which
we wish to minimize error. Examples of this type of disturbance include the
stroke of compliant members or undesirable displacements due to creep.

- Coupling Properties - These disruptions result from variations of the cou-
pling's constitutive, thermal, or other properties. Note, care has been taken
not to specify this as a continuum disruption as on a small scale, for example
in MEMs devices, the physics which describe the behavior of some phenom-
ena no longer follows a continuum model.

1.3 Thesis Scope and Organization

The pursuit of scientific knowledge is a series of steps from one level of knowledge to the

next. When beginning research in a fundamentally new area, the best course of action is

to choose those issues which have the largest affect on the practical use of the scientific

knowledge. This is particularly important in this application as defining the effects off

each type of disruption on any coupling is an enormous task. Therefore, this thesis will

cover the practical and theoretical considerations needed to model, design, and manufac-

ture QKCs with emphasis on the affects of momentum and geometry disturbances. These

disturbances are generally the most common disturbance. Displacement and coupling

property disturbances usually are limited to a small number of specialized applications

and will be left as subjects of future research.

Thesis Organization

The first chapter in this thesis provides the reader with a short background on common

mechanical couplings. This knowledge is needed to understand the application of QKCs

and to appreciate their importance. The second chapter covers basics Quasi-Kinematic

Coupling geometry and function. It includes the terminology and variables which will be

used to describe the geometric components, analytic components, and their interaction.

Chapter three describes the methods for modeling and designing QKCs. The author has

chosen to incorporate a fair bit of analytical content in this chapter, but has taken care to

present it so that it does not read like an Appendix. The fifth chapter covers the details of
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the tools and procedures for designing QKCs. This is followed by a case study on the

design and integration of a QKC into an automotive engine. The thesis then closes with a

brief discussion of future work and future target applications.

1.4 Types of Passive Mechanical Couplings

There are many types of mechanical couplings. Instead of attempting to cover all of these

couplings in detail, they have been grouped into categories. The following discusses the

virtues, shortcomings, and general principles behind the operation of each category.

1.4.1 Elastic Averaging Methods

Methods of alignment based on elastic averaging such as tapers, rail and slots, dove tail

joints, V and flats, and press fits result in forced geometric congruence, or over-constraint.

Example of these are shown in Fig. 1.5. Though they can be used to define location, by

their nature they are grossly over-constrained, resulting in poor performance and cost/

quality problems. Common problems include geometric disruptions such as the effects of

surface finish and contaminants. These effects often require a long wear in period during

which the surface irregularities are burnished. Thus good repeatability is not achieved

until after a substantial "wear-in" period.

COLLET RAIL/SLOT DOVETAIL V/GROOVE

Figure 1.5 Types of Elastically Averaged Couplings

Despite their problems, elastically averaged couplings have several desirable characteris-

tics. When high load capacity is required, the coupling interfaces can be designed with the



Types of Passive Mechanical Couplings

appropriate contact area to make a stiff joint. They can also be designed to provide sealing

interfaces between the coupled components.

1.4.2 Pinned Joints

The pin-hole and pin-slot alignment methods have long been considered the easiest and

least costly method for aligning components. They operate by constraining relative move-

ment between components via pins which mate into corresponding holes or slots. An

example using holes is shown in Fig. 1.6. If there is no clearance, i.e. a press fit, between

the pin and hole these couplings can be grouped with elastically averaged couplings.

i. .........

Pins

--------------H o le s

Figure 1.6 Example of Casting Mold Located With Pinned Joints

When a finite clearance exists between the pin and hole, the relative location of the two

coupled components is not uniquely defined. To a point this may be acceptable if the

clearance or "slop" between the pins and holes is small compared to the required repeat-

ability. However, increased precision requires smaller clearances. Maintaining these

clearances forces trade-offs between repeatability and two important factors, ease of

assembly and manufacturing cost.

27
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In most pinned joint assemblies which are roughly the size of a bread box or larger,

achieving better than 0.08 mm (0.003 inches) is problematic due to jamming and wedging.

This is an approximate number and depends upon the size of the system. For instance, a

clearance of 0.08 nm (0.003 inches) in MEMs devices is much different than the same

clearance between the large components of an airplane frame.

Wedging and jamming are especially troublesome in applications where manual assembly

of large and/or heavy components is required. During a wedge or jam, most precision

assemblies require gentle handling, i.e. they can not be "hit with a hammer". Once

cleared, there is an instantaneous need to switch from low-force finesse motion, to the

high-force motion needed to support the weight of the freed component. Often, in the

above switch, fingers get pinched or parts of the coupling or components can be damaged.

The time and care needed to avoid this situation, translates into lower productivity and

higher costs.

Another problem is that manufacturing of precision pinned joints is expensive as the loca-

tion of hole/slot centers (4 per joint), hole/slot sizes (4 per joint), and peg diameters (2 per

joint), must be held to tolerances which are more restrictive than the required repeatability

of the joint.

1.4.3 Kinematic Couplings

A kinematic coupling, as shown in Fig. 1.7, can provide economical, sub-micron repeat-

ability. They are relatively insensitive to contaminants, and for most designs, do not

require an extensive wear in period. However, because these types of couplings transmit

force through near point contact, care must be taken to design the coupling elements such

that they can withstand the high contact stresses at these points (Slocum, 1988a) and main-

tain surface integrity after repeated cycles (Slocum and Donmez, 1988b). Though they

can be designed for moderate stiffness, their ability to resist error causing loads is still lim-

ited by the mechanics which dominate the stiffness of the point contacts. In addition, due
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Figure 1.7 Traditional Kinematic Coupling

to their kinematic nature, they do not allow intimate contact between mating surfaces as is

needed to form sealing joints (Culpepper et. al., 1998).

1.4.4 Compliant Kinematic Couplings

In compliant kinematic couplings, one or more mechanical members are designed to have

certain compliance characteristics. For instance, the flexural kinematic coupling in

Fig. 1.8 uses a multiplicity of cantilevers in series to provide compliance. This enables the

coupling to locate components in N degrees of freedom while permitting 6-N degrees to

remain free (Slocum et. al., 1997). This may be desired for instance in molding applica-

tions where the location of the mold surfaces could be initially constrained, but with some

distance separating them (Slocum, 1998b). Then a prescribed force is applied such that

the compliant member(s) displace perpendicular to the plane of mating, and allow the

mold halves to come into contact (Culpepper et. al., 1998).

When designed properly, these couplings can deliver 5 micron repeatability (Culpepper et.

al., 1998). In addition, because they allow contact between the mated components, the

location of molds, engine components, and other applications which require sealing con-
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Boll:'SeatedihV .. ..i* .. . .. .. .. .1. .~aw

.......... . ... .. .* . . ' w t

Figure 1.8 Mold Halves With Flexural Kinematic Coupling Elements

tact can benefit from their use. The ability of these couplings to permit contact gives them

a unique characteristic, the ability to decouple the location and stiffness requirements of

the coupling system. For instance, when the coupling shown in Fig. 1.8 is mated, location

is provided by the kinematic elements attached to the flexures. Resistance to error causing

loads in the direction of mating is provided by the contact between the opposed faces of

the mated components. Resistance in the plane of mating is provided by the friction at the

interface between the coupled components (Culpepper et. al., 1998).

The use of these couplings is primarily determined by the economics of the application.

Generally, they are affordable in precision fixtures or low to medium product integrated

applications. They are usually not affordable in high volume applications due to the cost

of making and assembling the flexural elements.

1.4.5 Quasi-Kinematic Couplings (QKCs)

A Quasi-Kinematic Coupling is a fundamentally new type of coupling which operates on

elastic and kinematic design principles. In their generic form, they consist of convex sol-

ids of revolution attached to one component which mate with corresponding concave or

"grooved" recesses of revolution in the second component. The coupling is assembled by

placing the convex members into the corresponding grooves. These mates result in 6 arcs

of contact as shown in Fig. 1.9; and not points of contacts as in a true kinematic coupling.

The resulting coupling is not as grossly over-constrained as many elastically averaged
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1st Piece

Convex Element

2nd Piece

Contact Arc

Relief

Figure 1.9 Generic Quasi-Kinematic Coupling

couplings such as collets and tapers, but not truly kinematic, thus the names quasi-kine-

matic or "near kinematic."

As will be shown, the Quasi-Kinematic Coupling can be designed to allows sealing

between faces of mated components. They are less sensitive to errors in the placement of

their locating features than current methods, require fewer precision features, and can be

manufactured economically in large volumes. Its use can be extended into other manufac-

turing and assembly applications such as molding, tooling, and fixture location.

1.4.6 Comparison of Mechanical Coupling Types

Figure 1.10 provides a comparison of the typical performance limits of common low-cost

couplings. Note that the QKC will enable manufactures to achieve approximately one

order of magnitude better precision than traditional methods. In many cases, this can be

done for substantially lower cost.
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Figure 1.10 Practical Performance Limits of Common Low-Cost Couplings
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Chapter 2

QUASI-KINEMATIC GEOMETRY
AND FUNCTION

This chapter describes the components of a QKC system and the reference systems used to

define their location. In line with the definitions in Chapter 1, we will examine a QKC as

a coupling system which consists of physical and analytic components. The physical

components are the coupled components to which contactors and targets, the kinematic

elements, are physically attached to or machine into. The analytic components are those

parts of the system used to mathematically describe and analyze the coupling.

2.1 Physical Components of QKCs

Contactors and targets are the features which establish intimate contact between the two

coupled components. Figure 2.1 shows the physical components of a generic QKC sys-

tem. In brief, contactors have convex surfaces of revolution while targets have either con-

vex or concave surfaces of revolution. This terminology is different from traditional

kinematic coupling terminology which refers to these members as balls and v-grooves.

The difference is used as QKC contactors and targets are surfaces of revolution, which

need not be spherical, straight v-grooves, or gothic arches.

Three drivers in reducing high volume precision manufacturing costs are the reduction of

the number of precision machining tasks, precision tolerances, and precision features. As

the QKC is geared toward use in high volume precision applications, one simplification

will be made to its design. Pairs of contactors and targets can be incorporated into com-
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1st Component

I /Contactor

Conta

Targets

2nd Componen E

Figure 2.1 Physical Components of a Generic QKC

ct Lines

mon pieces or features. In effect, this allows the simultaneous machining of pairs of con-

tactors or targets, halving the number of feature fabrication tasks. In turn, this reduces the

number of precision tolerances by coupling feature location and feature size tolerances

between pairs. For example, the tolerances on the location and orientation of the targets

in the conical groove of Fig.2.2 can be considered the same as long as geometry variations

due to spindle run out and perpendicularity errors are an order of magnitude less than the

tolerances on the placement and feature size of the QKC elements. This is usually the case

with modem machine tools and spindles.

Target Surface 2

Target Surface 1 Z

Figure 2.2 Two Targets Combined Into a Conical Groove

2.2 Analytic Components of QKCs

The analytic components of the coupling system are the joint coordinate systems, coupling

triangle, coupling centroid, and coupling centroid coordinate system. These components
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are used to define the location of the physical components of the coupling and provide the

means to analyze and describe the errors in the coupling system.

2.2.1 Joint Coordinate Systems

A cross section of a QKC joint is shown in Figure 2.3. Each joint has a coordinate system

in which the axis of symmetry for the contactors and targets is co-linear with the z axis of

the joint coordinate system. The x and y axes of every joint coordinate system is placed

in the coupling plane of the triangle which is defined by the plane through the nominal

location of the contact arcs. Though this constrains the applicability of the coming analy-

sis to planar couplings, this still encompass the majority of coupling applications.

SCri, SCzi 'OSRri

OSRzT

-Rci

RSzi

Yi

. Xi

0 ci-

Contact Cone

Figure 2.3 Placement of Joint Coordinate System and Variables For Joint i

Each joint has a contact cone. This is the surface defined by the tangents to the contactors

and targets at cross sections through the axis of symmetry. In the 2D case shown in

Fig.2.3, it appears as a "V", but since the elements contact over an arc in three dimensional

ZTF

ZBF

VE

0

I
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space, the actual shape is a cone. This cone is very important as half its included angle

(60) is used extensively in the calculation of QKC stiffness. We shall cover this in more

detail in Chapter 3.

Several variables which describe characteristics of QKC joints are defined via Figure 2.3.

The most important are:

* VD - Depth of the contact cone

e G - Gap, or distance between opposing faces of coupled components

- RG - Groove radius at contact point

" Rs - Sphere radius at contact point

" OSR - Offset of groove radius from center line

* OGR - Offset of groove radius from center line

Note that some variables appearing with the subscript r, i.e. SCr and GCr, would seem to be

redundant. The r subscript signifies that these values are invariant with respect to x and y

and have been defined using a radial coordinate within the x-y plane specified from the

joint coordinate system. This is in contrast to their "redundant" counterparts, OSR and

OGR, which must retain their sign for use in some calculations. Note that variables which

can either be positive or negative are shown using one sided arrows. The direction of the

arrow with respect to left or right of the axis of symmetry provides the sign of the quantity,

left is negative. For example, in Figure 2.3, OSR is shown as negative, while OGR is

shown as positive. For a convex groove, OGR would be negative.

2.2.2 Analytic Components of Coupling

The coupling triangle is defined by lines which connect the joint coordinate systems as

shown in Fig.2.4. The coupling centroid is defined as the intersection of the angle bisec-

tors of the included angles of the coupling triangle. A coordinate system, the centroid

coordinate system, is placed at this location. Note that these analytic components exist for

each of the coupled components and are initially coincident. After geometric or force dis-
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turbances, these coordinate systems will separate. The linear and angular movements

between these coordinate systems are used to describe the error between the components.

Coupling Centroid C l

1

Y 3 -- 0

Angle Bisector 2

X2

Figure 2.4 Analytic Components of A Quasi-Kinematic Coupling

2.2.3 Contact Angle

Each contactor-target contact arc sub-tends an angle called the contact angle, OeC as

shown in Fig.2.5. As the contact angle decreases, the arcs of contact become smaller,

approaching point contact in the limit as Ocr goes to zero.

Groove Relief

Target Contact Surface

Figure 2.5 Quasi-Kinematic Coupling Contact Angle, OCT, Note View Is Into Conical Groove From Top
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2.3 Function of Quasi-Kinematic Couplings

Due to friction and surface irregularities (Slocum, 1992a), when the coupling components

are first mated as in Figure 2.6-A, the components will not occupy the most stable equilib-

rium. Proper seating can be achieved by a preload that overcomes the contact friction and

causes the spherical elements to brinell out surface irregularities at the contacts (Culpep-

per et. al., 1999a).

JPRELOAD
........................---- IP E ......... L--A D-

A B C
Sinitiae-- Sinal

01,~

Figure 2.6 Mating Cycle of Quasi-Kinematic Couplings

If mating of opposed faces is desired, i.e. for sealing or stiffness, the gap between compo-

nents and the compliance of the kinematic elements can be chosen such that the preload

will close the initial gap, 8 initial as shown in Fig.2.6-B. On removal of the load, all or part

of the gap is restored through elastic recovery of the kinematic elements, thereby preserv-

ing the kinematic nature of the joint for subsequent mates. If the initial deformation is

elastic, the whole gap will be restored. If elastic and plastic, only a portion of the gap will

be recovered.

With the gap closed, high stiffness can be achieved. This is due to the fact that the cou-

pling stiffness becomes dependent on the interaction of the opposing surfaces, not the

quasi-kinematic interfaces. As such, the stiffness in the direction perpendicular to the

plane of the mated surfaces depends primarily on the stiffness of the clamping method.

The stiffness in directions contained in the plane of the mated surfaces, i.e. the plane of

mating, depends on the contact friction between the components and the load used to press

them into contact (Culpepper et. al., 1998).
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Chapter 3

MODELING AND ANALYSIS OF
QKCS

3.1 Modeling of Quasi-Kinematic Couplings

As explained in Section 2.3, these couplings operate on principles which are fundamen-

tally different from those which govern the behavior of traditional kinematic couplings.

As such they exhibit unique characteristics, some of which contradict classical kinematic

coupling theory. For instance the posses the ability to align the grooves to provide maxi-

mum stiffness in one direction. The following sections review the traditional kinematic

coupling solution process, explains why a new process is needed, then presents a means to

model and analyze the behavior of QKCs.

3.1.1 Kinematic Coupling Solution

It is beneficial to understand how one analyzes a traditional hard mount kinematic cou-

pling before attempting to analyze a QKC. Given the geometry, material, and applied

loads, one can model these couplings and find a closed form solution (Slocum, 1992a).

Figure 3.1 shows the general solution procedure. It is not possible to determine relative

movement between the components without considering the interaction at the contacts.

Therefore, the determination of the contact forces and displacements is necessary.

Consider the Kinematic Coupling of Fig.3.2 in static equilibrium. Were a combination of

forces and torques applied to the top component, reaction forces would the develop at the
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Geometry Applied Interface Denections Relative
Material =0 Loads n* Forces 5 -> Ar Error

[Fp & No] [Fl]

Figure 3.1 Solution Procedure For Kinematic Couplings

point contacts. A solution to the problem consists of the direction and magnitude of the

individual contact force vectors. For each contact force vector, the direction of the vector

is described by three independent quantities and the magnitude of the vector by one. This

yields 24 (6 x 4) quantities which must be solved for.

- - ---

Figure 3.2 Traditional Hard Mount Kinematic Coupling

Basic free body diagram analysis tells us that the contact forces will be perpendicular to

the groove surfaces if one can assume the coefficient of friction at the contact interfaces is

small. As we know the geometry of the grooves, we can determine the direction of the

contact forces. This is an important characteristic of kinematic couplings, which quasi-

kinematic couplings do not posses.
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With the directions of the forces known, only the magnitude of the six contact forces need

be determined. The six force and moment equilibrium equations can be used to determine

these forces, which are then used to calculate the hertzian deflections between the balls

and grooves. Knowing these deflections, one can estimate the relative movement of the

mated components (see Slocum, 1992a for further detail).

3.1.2 Solving the QKC Over Constraint Problem

Since QKCs rely on arc, not line or point contact, it is not possible to know a priori the

direction of the reaction forces between the contactors and targets. This leaves 24

unknowns, six equilibrium equations, and one equation for the minimization of stored

energy. There are more unknowns than equations, making solution in closed form impos-

sible. However, one can reverse part of the process used by kinematic coupling to esti-

mate the stiffness of the coupling. This is shown in the context of the kinematic coupling

solution procedure of Fig.3.3 and represented by the formal QKC solution process shown

in Fig.3.4

Geometry Applied Resultant Deflections Relative
Matril 1* Loads Forces 's >,&rrr

[Fp & IV] [ni & Fi]

Figure 3.3 Solution Procedure For Quasi-Kinematic Couplings In Context of Traditional Approach

Given the geometry, material properties of the coupling components, and contact stiffness,

one can impose a displacement between the coupled components and use the contact stiff-

ness (as a function of displacement) to determine the resultant forces between the contac-

tors and targets. The applied loads are then calculated and used to determine the stiffness

in the direction of the imposed displacement. Though this method is less desirable than a
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Material

Contact Stiffness -~

t

Geometry

Displacements

-J QKC Model - Force/Torque

p StiffnessI

Figure 3.4 Stiffness Solution Model For Quasi-Kinematic Couplings

closed form solution, it provides enough information to make practical use of these cou-

plings.

3.2 Quasi-Kinematic Coupling Contact Mechanics

No solutions for non-conforming axisymmetric arc contacts were found in the literature or

through consultations with leading researchers in the field. The only reference of some

help covered an iterative stiffness estimation for contact between a ball and a cone (Hale,

1999). This method is limited to applications with concentric contact of spheres and

cones. It is not suitable for our analysis as one must be able to calculate the stiffness of the

contactor-target interface when the axes of the contactor and target are misplaced by a

small amount. Furthermore this method can not take into account interrupted contact

between a contactor and target which occurs at the edge of the contactor/target surfaces,

i.e. where the reliefs begin. This has led to the following analysis for determining the

resultant force due to arc contact between non-conforming axisymmetric solids.

3.2.1 Contact Analysis Using a Rotating Coordinate System

The purpose of this section is to introduce the concept of a rotating coordinate system and explain why it is

useful to our analysis. This is done in the context of an axisphere mated in a cone. This method can be
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extended to arc contact between general solids of revolution by replacing the cone in the following discus-

sion with the contact cone (see Figure 2.3 on page 35).

Consider the cross section of the cone shown in Fig.3.5. Were we to press a sphere or axi-

sphere into a full cone, the arc of contact would be a circle. A conical coordinate system

Contact Stress Profile

Figure 3.5 Conical Coordinate System and Contact Stress Profile

consisting of unit vectors n, 1, and s, is placed coincident with the arc of contact and orien-

tated such that the n vector is normal to the cone surface and point toward the cone's axis

of symmetry. The 1 vector points along the cone surface and away from the cone's vertex.

The s vector is perpendicular to the s and 1 vectors and points in the direction of increasing

6r (Or is introduced below). The origin of the coordinate system is placed in the approxi-

mate center of the contact stress profile as shown in Fig.3.6. The shortest distance from

n

Generic Contact Stress Profile
x§x

Contact Arc (Seen as A Point In 2D)

Cone Surface

Figure 3.6 Cone Cross Section Showing Placement of Conical Coordinate System in Symmetric Profile
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the cones axis of symmetry to the center of the contact arc is called the contact radius, Rc.

It will be used to calculate the resultant force between the contactor and target.

A symmetric contact profile is attained if friction is negligible and the material properties

and the geometry of the contacting elements do not change much over the area of contact.

Practically, the effects of friction will skew this profile to one side, however, it has been

shown that in 2D line contact problems subjected to extreme engineering values, the effect

of friction will be to skew the maximum of the contact stress profile by approximately six

percent of the width of the contact zone (Johnson, 1985). In the case of large coefficients

of friction, the profile may not be symmetric, but positioning it about the "frictionless line

of symmetry" will introduce little error in the value of Rc. Typically the shift is on the

order of 6 - 10 % of the profile width, which is much smaller than the contact radius, Rc.

We plan to integrate the stress profile to obtain the force between the cone and groove. To

capture the contribution of all points along the arc, the n-l-s coordinate system is allowed

to rotate around the axis of symmetry of the cone during an integration. This will be

explained later in Section 3.3.1, but for now it is enough to know that the coordinate sys-

tem rotates. This rotation is defined by the angle 0r which is the angle between the vector

n' and the x axis of a Cartesian coordinate system whose z axis is co-linear with the axis of

symmetry of the cone. This is illustrated in Fig.3.7. Note that the n' vector is the compo-

nent of the n vector in the x-y plane.

If given the stress profile in Conical coordinates, i.e. as a function of Or, one can obtain the

resultant force relative to the joint's frame of reference (Cartesian) by transforming the

Conical coordinates to Cartesian coordinates, then integrating the modified function over

0 r. The transformation, the Culpepper Transformation, required to do this is provided in

Equation 3.1. The use of this equation will be further explored in Section 3.2.2.

n -COS(Or)cos(Oc) -sin(Or)cos(Oc) sin(OC)
^I = ~-Sin(,) Cos(0) 0 (3.1)

I Lcos(r)sin(oC) sin(Or)sin(Oc) cos(o) i
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Cone Surface

yi

-- 0

Contact Plane

Figure 3.7 Rotating Conical Coordinate System At Joint i

3.2.2 Relationship Between Surface Stresses and Force Per Unit Length

The goal of this section is to discuss how the contact stress profile, force per unit length, and friction are

related analytically. These relations will be used in section 3.3.1 to calculate the resultant force between the

contactor and targets.

Contact Stress

The contact stress profile can be integrated to determine the force per unit length of con-

tact. This can be done for any surface contact profile, elastic or plastic.

we will use an elastic Hertzian contact profile of the form:

As an example,

(3.2)2fn(Or) I /
CVl, Or) = ' 1- ^

a,

Integrating Equation 3.2 gives the expected result:

( 2) 1/2a 2f-(O) 
(,^ di

-a a2
(3.3)
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Friction Induced Traction

Friction is a complicated phenomena. It is the analytic embodiment of energy dissipation

through (Suh, 1993):

- Adhesion of contacting materials

* Plowing by wear particles and asperities

* Plastic working of the asperities, contacting surfaces, and trapped particles

In our analysis, we will consider friction caused by plowing of wear particles and plastic

working of asperities, contacting surfaces, and trapped particles. Adhesion typically plays

a minor role, especially where contaminants, i.e. oil, cutting fluid, and oxide layers pre-

vent adhesion and low temperatures do not act to breakdown surface oxide layers.

Following the approach of Section 3.2.1, we assume friction has little affect on the contact

stress profile. Note, if this were not the case, one could change the limits of the following

integral to adjust. It is then possible to describe the friction forces in the s and 1 directions

using Amonton's Law of Friction. In our case it is:

f(Or) = f -i Cy (1, Or)dl = jdn(Or)l (3.4)
-a Ti n

Note the subscript i denotes the friction force per unit length in either the s or 1 direction.

3.2.3 Far Field Distance of Approach

The goal of this section is to develop the equations for transforming imposed displacements (supplied by the

user) in cartesian coordinates to a form which can be used in the next section to calculate the resultant

forcesfrom these displacements.

Far field distance of approach or distance of approach is a term frequently used in contact

analysis. It is the change in distance between two far field points in contacting elements.

Far field implies that the points are far from the contact region, meaning far from any

points experiencing significant strain, say approximately 5% of the strain due to the con-

tact. The intersection of our axisphere's radius with the z axis will serve as one point, the
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other must be chosen along the line from the sphere center to the contact area. This point

is subject to the strain constraint discussed above. Note that the distance of approach is

not the compression of the surfaces at the contact interface. Determining this can be a

complicated task and it does not take into account the strain away from the contact zone.

For our purposes, working with the distance of approach is much simpler and still pro-

vides a general solution.

In learning how to make use of supplied displacements, we will first seek understanding

through a qualitative description. Consider a sphere which is seated in a cone. Due to the

axisymmetric nature of the problem, we can think of this as a series of 2D problems of

cross sections of the axisphere-cone joint. When we press the axisphere into the cone, or

in the -z direction, the distance of approach between the center of the sphere and far field

points in a particular cross section will be equal for every cross section through the cone's

axis of revolution. In other words, the distance of approach will be constant with Or This

is shown in Fig.3.8 as 8n(Sz)-

90

13 45

18 0-

6n1 (8~)

-6 .0(8) 225 315

8n (8z) + 6. (6) 270
Fr

Figure 3.8 Normal Distance of Approach of Two Far Field Points In Mated Contactor and Target
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Now consider imposing a displacement on the center of the sphere in a direction which is

perpendicular to the cone's axis of symmetry. This is shown in Fig.3.9. Initially, the cen-

y Final Position of Axisphere Center

C

rC A

OrA

~0+,

B

Figure 3.9 View Into Cone During Radial Displacement of Axisphere Center

ter of the sphere will be coincident with the cones axis of symmetry. After a finite motion

parallel to the x-y plane is imposed, the distance of approach will vary sinusoidally about

the cone, with 0 r The maximum distance of approach will occur along the line OA (at

OrA), the minimum along OB (at 0 rB) and zero distance of approach will occur along lines

OC (at Qrc) and OD (at OrD). This is shown if Fig.3.8 as Sn(6r). Note the superimposed

displacements, 6n(8z) + Sn(Sz). The resulting curve is a cardoid (Swokowski, 1988).

Now we will look at this from a quantitative perspective. To perform the analysis, it is

necessary to decompose the radial and axial components into the Conical coordinate sys-

tem. Equations 3.5 and 3.6 provide the transformations for the generalized cross section
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of a cone shown in Fig.3. 10. When considering geometries other than cones, one should

use the contact cone in place of the actual surface in Fig.3. 10.

n
Center of Sphere

8r S
"Oc/

z

Cone Surface

Figure 3.10 Decomposition of Radial and Axial Movements to Conical Coordinates

8n(er) = - 6r(Or)cos(Oc)+ 8z(Or)sin(Oc) (3.5)

81(Or) = 8,(or)sin(0)+8z(Or)COs(Oc) (3.6)

One should note that a difficulty can arise if Si(or) becomes greater than zero. When a

contactor and target are first mated, Si(Or) = 0. If the contactor is pressed down into the

cone 81(0,) becomes negative. If 6i(Or) becomes positive at any Or, this means that the con-

tact has traveled up the side of the cone past the initial seating point. When this happens,

a point at er + n looses contact with the cone.

This is undesirable in practice as it will adversely affect the stiffness of the coupling. Ana-

lytically, the model may calculate a tensile or imaginary contact force per unit length (fn),

thereby providing erroneous results. Upon rearrangement, equation 3.6 gives the follow-

ing criteria to avoid this situation.
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_8Z(0) > tan(0,) This must be satisfied for all 0,! (3.7)

Usually this is not difficult to achieve since Sz(Or) depends primarily on the preload dis-

placement Sz. This is typically 75 - 300 microns as opposed to the small error movements

Sr(r) whose maximum value 6 r is on the order of microns.

Note: The above is a worst case estimate for the situation where the coefficient offriction is zero. With finite

friction, the distance of approach along the 1 direction may occur without relative movement (slipping) of

the contact points. Equation 3.7 then becomes a conservative estimate for loss of contact between the target

surface and the contactor

3.2.4 Relationship Between fn and 8n

The purpose of this section is to develop a relationship between fn and 8,. This is the last step required

before solving for the reaction forces between contactors and targets.

The task of finding the load per unit length vs. normal deflection, f, vs. 6n, behavior of arc

contact becomes difficult as the problem is non-linear due to plastic flow. With no ana-

lytic solutions to this problem, one must use experimental or finite element methods. Fig-

ure Fig.3. 11 shows good agreement between an analytic Hertzian contact analysis and an

FEA based on the same geometry and loads. Though this plot is for elastic deformation, it

Surface Contact Pressure - Elastic Hertz
200000

.7
- .e--FEA Profile

150000 -9-- Hertz Profile

4) 100000

5000000
0

0

-0.0200 -0.0100 0.0000 0.0100 0.0200
Distance in L, in

Figure 3.11 Example Comparison Between Elastic Hertz Analysis and FEA Results
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is reasonable to expect that the FEA would provide good results for elasto-plastic prob-

lems. A general rule of thumb learned during this research, is that the mesh size of the

contacting elements near the point of contact should be less than 5 % of the width of the

contact region to obtain good agreement with classical Hertz theory. Using this rule of

thumb in plastic contact has shown to provide results which are near convergence.

The next section will show how to use the results of these analysis. For now, it is enough

to know that a curve must be fit to the FEA results for use in the QKC model. In many

cases, one can accurately express the results by a power law relationship. Examples are

shown through Fig.3.12 and equation 3.8.

= K(8,)b (3.8)

b > 1 b = 1

b < 1

Figure 3.12 Example Curve Fits For Quasi-Kinematic Coupling Analysis

3.3 Using the Quasi-Kinematic Coupling Model/Analysis

This section describes how to make practical use of the analysis just presented. The ultimate goal is to get

an estimate of the coupling's stiffness. We start by calculating the resultant reaction forces between the

contactors and targets.

3.3.1 Quasi-Kinematic Coupling Reaction Forces

The total reaction force is found by integrating the surface stress over the contact arc.

F = J Ia [a(l, s) + Tl C (1 s)l + p7TsGn(l, s)s] dlds (3.9)
si -a
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Where si and sf describe the start and finish points on the contact arc respectively.

Upon integration and substitution of ds = Rc dOr, and using equation 3.4, we obtain:

Urf
F = f R,[f& (,r) ^+ 7f,(or)l+ 7T4(or)s]dO, (3.10)

Ori

The limits of the integrand, Orf and 0 il, are the angular limits of 0r to which contact exists

on a given contactor-target contact arc. Note that erf - Ori will equal the contact angle, OCT.

The value of Oj is the start of the contact arc. It is distinguished from Orf in that its value

relative to the x axis is always less than 0rf . This is illustrated in Fig.3.13.

yi A

0 A.

Figure 3.13 Orf and 0 ii For a Target Mated With A Full Axisymmetric Contactor

The last step is to change from Conical to Cartesian coordinates using Equation 3.1. The

result is a vector with i, j, and k components.

-rf a Cos(0,)Cos (O)- tTs sn(r) + p7 Cos (0 sin( f
F = fa Rcn(l, Or) - r)sCO (O) + TICOS() + JrIsn(Or) sn(6c) d'dor (3.11)

Sin(Odc + 9 T COS (Oc

This solution is for any contact stress profile, elastic or plastic. It assumes the contact

stress profile shape and magnitude is not significantly affected by friction and that the fric-

tion shear stress at the interfaces obeys Amonton's Law. Amonton's Law states that the

friction force is related to the normal force by the following relation:

Ff = p FN(
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Where Ff is the friction force and FN is the normal force. When taking the differential

with respect to contact area, equation 3.12 can be expressed in terms of contact stress:

'V1, Or) = pan(l, ,) (3.13)

Where rf is the friction stress and cyn is the normal stress.

Brf Cos (0r) COS (Oc) ~ LTs sin(Or) + iTl cOs (Or) sin(Oc)

F ri Rfn(O,) -sin (0,) Cos (0,) +RTs COS (0r) + RT1sin(0r)sin(6c) ^ j 9
sin(o6) + Tlcos(oC)

We now substitute the curve fit for fn vs. 6n from Section 3.2.4. The type of fit does not

matter. For demonstration, we will use the power fit. Substituting Equation 3.8 into 3.14

yields:

erf 0)- Cos(CO,)COS(O) - LTsin(Or) + .iTlcos(Or)sin(C)

F = ri RCK(n())b _Sin(Or) Cos () + TsCOs (Or) + JrTIsin(Or) sin(c) j itr (3.15)

Lsin(Od + [RTcos(0d)

Given Sn(er), the resultant force between the contactor and target can be calculated.

If the method used to acquire fn vs. 8n is based on the assumption of constant plane strain

as an axisymmetric FEA typically is, then this assumption must be valid in our model.

Ideal constant plane strain is a condition in an axisymmetic problem where the difference

between the maximum and minimum strain in the angular direction does not vary signifi-

cantly from the nominal strain in that direction. When a sphere is pressed straight down

into a cone, the strain in the angular direction should be constant around the arc of contact.

But, displacing the sphere from the center of the cone will result in varying amounts of

angular strain around the cone. A derivation of the analysis used to determine a criteria

and relate it to QKCs is provided in Appendix G In general, the criteria is met for small

ratios of Sr / Re, i.e. 6r < 0.03 Rc.
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3.3.2 Stiffness of QKCs

The actual load vs. displacement plot for the coupling may not be linear. Usually it fol-

lows a trend similar to the supplied fr vs. 8n curve. Calculating the instantaneous stiffness

can be done, but is computationally intense, since the original equation is more than one

page wide. Fortunately, it is not necessary, as a good estimate of the coupling stiffness

can be obtained from linearizing the load vs. displacement plot locally. Given the result-

ant force, the stiffness of the coupling can then be estimated from the initial user supplied

displacement, 6.

If the function is continuous and "well-behaved" around 8, then local linearization of the

load vs. displacement plot provides a good approximation. The stiffness, i.e. slope, can

be estimated through differential movements around the point of initial displacement

using:

Stiffness = F(8 + d8) - F(8 - d8) (3.16)
d8

3.3.3 Limits on the Estimation of QKC Stiffness

Constant Contact Assumption

The analysis assumes the contactors and targets remain in contact over the entire contact

angle. This has already been address in section Section 3.2.3. The criteria for ensuring

constant contact was given in equation 3.7, and is repeated here for convenience.

8Z(01) > tan(O,) This must be satisfied for all Or! (3.17)

Plane Strain Assumption

The substitution of a plane strain load vs. displacement function in 3.15 imposes a con-

stant plane strain constraint on our model. How do we know when this is a good estimate?

For small values of 6r / R,, i.e. 6r < 0.03 R,, the model is valid. A derivation of the anal-

ysis used to determine this value is provided in Appendix G
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Rigid Body Assumption

In our analysis, we have assumed that the relative movement of the kinematic elements is

the same. This assumes no change in distance between the kinematic elements. For the

rigid body assumption to be valid, the relative in-plane movement between coupling ele-

ments, i.e. axiphere centers, should be an order of magnitude less than the distance of

approach between far field points in the kinematic elements (Slocum, 1992a).
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Chapter 4

DESIGN AND MANUFACTURE OF
QUASI-KINEMATIC COUPLINGS

4.1 Overview of the Quasi-Kinematic Coupling Design Process

The design process for QKCs consists of the four stages shown in Fig.4. 1.

1. Problem Definition - Information gathering and detailed description of the
problem. Description of design constraints, definition of what is required
and how it will be done.

2. Geometry Generation - Given input from the first stage, the geometry of
the coupling joint is generated using an algorithm which takes into account a
multiplicity of variables and attempts to find the best solution. The place-
ment and orientation of the joints is done manually.

3. Design Check - Checks to make sure all functional requirements are satis-
fied.

4. Functional Design or Iteration Step - If all design checks are satisfied, the
process has found a solution or functional design. If not, the process starts
over again with adjustments to the components of the Problem Definition
Stage.

Sadly, there is not a closed-form solution for modeling the behavior of QKCs. The results

is a an iterative design process (Culpepper et. al., 1999d). Though the process may be

time consuming or possibly not converge to a solution, significant benefits may be real-

ized if a functional solution is found. As will be shown in Chapter 5, coupling cost, the

number of precision features, and the number of tools required to manufacture a coupling

can be reduced up to 40 percent.
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Problem Definition

Geometry Generation

Gather Functional
Information Constraints Requirements

(Customer Req.)

Iodif------- -odifyi
------------------------------------

GA ? i t i?

GAP And Orientation

Design Check
Functional

Requirement Functinal

Test

Iteration (If Needed) Fal

Figure 4.1 Design Procedure For Quasi-Kinematic Couplings

The remainder of this chapter follows the order of the design process. The goal of each

section is to provide the reader with the general knowledge required to complete that

design stage. Chapter 5 will demonstrate the use of these principles through a case study

of an automotive assembly.

4.2 Problem Definition

The best way to begin is to gain a thorough understanding of the problem. This is best

accomplished by gathering all pertinent information and defining the problem via sets of

constraints and functional requirements. A set of design parameters, or those things which

satisfy the design requirements can then be developed. These are often specific to the

design/application, so the following will concentrate on making sure the designer can

identify what is required of the design and how to best implement a solution. We begin by

looking at constraints.
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4.2.1 Constraints

Constraints put bounds on acceptable solutions (Suh, 1990); and these limits are lines

which must not be crossed, i.e. there is no tolerance. The most common types of con-

straints are geometry, resources, manufacturing, or physical constraints. Geometry con-

straints, often called size constraints, place a limit on how large or small some aspect of

the design should be. Resource constraints, place a limit on designs via the availability of

material, monetary, or human resources. Manufacturing constraints limit the rate, preci-

sion, accuracy, and other factors which link a design to how it is/can made. Finally, phys-

ical constraints are limits which are placed by the laws of nature. For example, the second

law of thermodynamics constrains the efficiency of machines/systems to be less than

100%.

Failing to understand the constraints imposed on a design can only lead to trouble. At best

one may "get lucky" and the initial design will work. More often, the design must be

"patched up" or redesigned, often after significant time, resources, and monetary invest-

ment. The sum total of these is often several times the investment which is required to

determine the proper constraints.

4.2.2 Functional Requirements

Functional Requirements are required functions or outputs a design must deliver (Suh,

1990). A complete set of functional requirements consists of the least number of require-

ments needed to describe the desired functions of the design.

With respect to QKCs this can include:

s Stiffness

e Repeatability

- Sealing Contact

- Fool Proof Assembly - if the joints do not form an equilateral triangle, the
coupling can only be assembled one way
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4.2.3 Design Parameters

Design parameters are the means used to satisfy the functional requirements (Suh, 1990).

Ideally, there is a unique relationship between the functional requirements and design

parameters such that changing a design parameter does not affect, to within an acceptable

level, the satisfaction of other functional requirements. For example, consider the follow-

ing pairs of functional requirements (FRs) and design parameters (DPs).

TABLE 4.1 Example Quasi-Kinematic Coupling Functional Requirements and Design Parameters

Functional Requirement Design Parameter

Repeatability -> Stiffness of Coupling Elements

In Plane Stiffness -> Friction Force Between Opposed
Faces of Mated Components

Changing the coefficient of friction between the mated components will affect the in-

plane stiffness of the coupling, but will not affect the coupling repeatability. This in

essence decouples the stiffness requirements of the coupling from the repeatability

requirements. A good designer will see this as a benefit, because the work needed to make

changes or to redesign is reduced. When possible, one should strive to develop designs in

this manner. For further discussion on functional requirements and design parameters, see

Suh, 1990.

4.3 Geometry Generation

The performance of the coupling is very sensitive to the initial gap between the mated

components, it often determines success or failure. Therefore we will use it as a starting

point for the design. This reduces the amount of iteration which would result from starting

with a different, less sensitive part of the design, say aesthetics.
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4.3.1 Quasi-Kinematic Coupling Gap

Equation 4.1 through 4.4 provide the relations required to calculate the maximum and

minimum gap of a coupling joint. Due to manufacturing errors, the gap will vary from the

nominal value given in Equation 4.1. To ensure the existence of a gap, one sets the mini-

mum gap, GMM, equal to the controllable gap variation, AG, plus a margin of safety,

SGMS.as seen in Equation 4.3.

SCri,SCzi 'OSRri

OSRzi
Contact Cone

RS
z.

Yi
Xi

ci /

Figure 4.2 QKC Joint Showing Gap (G) and Related Variables

From equations 4.2 and 4.3, the maximum gap, GMx is found as a function of the vari-

ables seen in Fig.4.2. With so many variables, it becomes evident that some computa-

tional analysis will be needed to find the best, or a workable solution.

R 1 0
S

G = VD+ 0 + SRr o SR-ZBFsin(O,) tanr(O,)

AG ~VD + + (80SRr + + 8OSRz ) + 8zBF
SRr c SRz

(4.1)

(4.2)

ZTF

ZBF

VE

IRCi

i F Contact Cone

Coupling Plane

RGi

GRi

, GCri, Gczi



DESIGN AND MANUFACTURE OF QUASI-KINEMATIC COUPLINGS

GMAX = A G + 8 GMS (4.3)

GMIN = G+ AG = 2AG+ 8 GMS (4.4)

Gaps Resulting in Elastic Line Contact

When the deformation of the contacting elements is purely elastic, a Hertzian line contact

solution can be used to estimate the stresses and displacements in arc contacts (Hale,

1999). However, with QKCs, the deformation is well into the full plastic region. This is

due to the fact that most high volume manufacturing processes are incapable of holding

the feature size and placement tolerances which are necessary to maintain a gap which

will result in only elastic deformation upon closure. At best, one can expect +/- 25

microns (+/- 0.001 inches) reliable size and position control for dimensions such as VD

(8VD) and ZBF (8 ZBF). A quick look at the equations will show that the minimum gap will

be at least 100 microns due to the effects of 6 VD and 3 ZBF-

To verify whether plastic deformation has occurred, one solves for the force per unit

length, fnYIELD, required to induce plastic flow. A suitable relationship is given in equa-

tion 4.5 (Johnson, 1985).

2.8nRecyy (4.5)
fnYIELD 

Ee

Here Re is the equivalent radius of contact, Cy is the yield stress of the materials, and Ee is

the equivalent modulus of elasticity. The equivalent variables are common to hertzian

analysis and calculated using equations 4.6 and 4.7. The radius of each it component at

the point of contact is Ri. Poisons ratio and Young's Modulus for each component are

denoted as vi and Ei. The subscripts 1 and 2 differentiate quantities for the two objects in

contact.

Re= (4.6)

(Ri R2)
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Ee= 1 2 (4.7)
E1 =

With the value of fyiELD, one can use equation 4.8 modified from the analysis given in

Johnson, 1985 to calculate the contact displacement which would induce plastic flow, thus

providing the limit of elastic hertztian analysis.

=) 1)21n 2R -I1 + (1_)T ln2R2R J 1 (4.8)

The associated displacement in the z direction or closure of the gap is:

8 = G = n (4.9)
Z sin(O.)

For most applications the allowable 8n is on the order of 5-40 microns, well below the

lowest possible gap of 50 microns.

Gaps Resulting in Plastic Line Contact

The solution to plastic herztian contact problems is not straight forward. There are limit

analyses for plastic deformation of point contacts (Johnson, 1985) which can accurately

predict the material state in the contacting elements. Due to the difference in conditions,

these analyses are not applicable to line or arc contacts. An extensive literature review

found no results to predict the behavior of plastic line contacts. This is curious given the

fact that the backbone of the nation's industry was once the rail system which relies on

line contact of rails and train wheels that must at sometimes be plastic. The author's

attempts to find relationships via other means, i.e. dimensional analysis were not fruitful.

The necessary information, fn vs. 8n, can be found via a finite element analysis. Though

we are able to obtain the information we desire, this is not the most desirable solution.

Performing a non-linear FEA adds a step to the design which is temporally and computa-
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tionally expensive, especially if the QKC design process is iterative. The author uses it

here as it is the only means available to obtain the necessary data.

Iterative Modeling of Gap Using 0C Minimization

As mentioned before, it is necessary to use a computational method to decide upon the

best gap. Before discussing the details, an understanding of what must happen is needed.

For now, it is enough to know that there are inputs which are incorporated into the analysis

as functions or inequalities. For instance:

Constraints - Absolute limits on the design. These would include the size
of the QKC elements/joints. Figure 4.3 shows the variables which might be

-z

VD
0.25

5 6 r

-0.150.1

-0.25

4--POD--

0.15

Figure 4.3 Model for Iterative Solution To Joint Geometry

used to describe the size of a QKC joint. Relations can be set between these
quantities to constrain their values as is presented in Appendix A. Another
example is cost. If the contactor is to be mass produced, the major contribu-
tor to its cost is material. A good cost estimate can be obtained from the
mass required to make the peg. Equation 4.10 shows how the size/cost of
the contactor could be estimated as a function of the geometry. The iteration
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process would then use an inequality such as Equation 4.11 to enforce the
cost constraint during the analysis.

Cost(Contactor) - p x Volume X Cts (4.10)

Cost(Contactor) Constraint (4.11)

- Functional Requirements - These are the desired functions of the design.
Like constraints, these functions must be performed. However, they are
assigned a tolerance within which a solution is acceptable. For instance the
sealing pressure between opposed surfaces would be specified as some nom-
inal value with a tolerance. Since we do not have a relationship between the
variables which describe the geometry and the functional requirements, the
design process is iterative. We can minimize the amount of iteration using
rules of thumb.

* Rules of Thumb - We enter the iteration process without the information
required to predict the contact stresses, radial stiffness (Kr), and stiffness of
the coupling in the direction of mating (Kz). Therefore we must rely on rules
of thumb to force the analysis to consider such quantities. A good rule of
thumb is to minimize Oc to the lowest limit allowed by manufacturing con-
straints. This is explained below.

It is fortuitous that minimizing Oc has the desired affects on the following quantities:

TABLE 4.2 Affect of Minimizing Ocon Important QKC Constraints/Functional Requirements

Kr Kz
Contact Stress Radial Stiffness Stiffness in z Direction

Decreases Increases Decreases

Decreasing the contact stress is desirable to avoid material failure of the kinematic ele-

ments. Increasing the radial stiffness will make the coupling more resistant to error caus-

ing loads in the plane of mating. These loads are often proportional to the loads from the

method used to clamp the joint. For instance, when using a bolt, the friction between the

bolt head and the coupled component it slides against is proportional to the force in the

bolt. This in turn is dependent upon the stiffness of the QKC joint in the z direction.
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Therefore, lowering the stiffness in the z direction can help reduce error causing loads in

the plane of mating.

Parenthetically, it should be noted that the ratio in Equation 4.12 can be used as a means to

compare the performance of geometrically identical couplings with similar means of

clamping, but different 6 4. This ratio increases as e decreases.

(4.12)
Kr

There is a limit on how small 0c, can become. As 0c, decreases, the gap becomes increas-

ingly more sensitive to variations in ec. This is illustrated in Fig.4.4 which shows the sen-

sitivity of the nominal gap used in the case study. From a manufacturing perspective, the

ideal OC would be 45 degrees or larger. From a material and/or stiffness perspective, we

would like to decrease this value.

0.5 I

d G inch 0
dO-c Id-egree

-0.5 0 10 20 30 40 50 60 70 80 90

0 C, degrees

Figure 4.4 Sensitivity of Nominal Gap to eC For the QKC Described in the Case Study

A good approach to the problem is to set Oc at 45 degrees, solve for the kinematic element

dimensions, then perform the stress and stiffness design checks to determine if the design

is feasible. If not, the iterative solver in Appendix A can be used to find a lower, feasible

Oc. The design checks can then be run again to determine feasibility. If a solution is still
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not found, one should try to "loosen" the constraints of the design. The goal of the case

study was to minimize the stress and maximize the radial stiffness, i.e. in plane stiffness,

so the iterative solver was used to find a minimum acceptable solution of 32 degrees.

Joint Location and Orientation

The repeatability of a coupling under load is primarily dependent upon the applied error

loads and the stiffness of the coupling. In a kinematic or quasi-kinematic coupling, the

choice of joint location has a strong influence on the rotational stiffness of the coupling.

This can be explained qualitatively by examining Fig.4.5. Two coupling triangles are pre-

Figure 4.5 Comparison of Two Coupling Triangles

sented, the left is half the size of the right. The direction of coupling is parallel to the z

axis, i.e. out of the page. If the joints of both couplings are similar, the coupling on the left

will have a lower torsional stiffness about the z axis. Therefore, locating the coupling

joints to define the widest possible triangle is desirable. This of course is subject to the

geometry/size constraints of the design. The same line of thinking applies to rotation

about the other axes. The exact affect on the stiffness of the coupling can be determined

using the tool detailed in Appendix B. This tool is based on the models introduced in

Chapter 3 for finding the stiffness of a QKC joint.

Joint orientation also affects the stiffness of the coupling. In traditional kinematic cou-

plings, stability and good overall stiffness can be achieved if the grooves are oriented such

that the normals to the planes containing the contact forces bisect the angles of the cou-

pling triangle (Slocum, 1992b). This is illustrated in Fig.4.6. This orientation may be
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Sensitive Direction

Traditional Alignment For Aligned For Maximum Stiffness
Good Overall Stiffness in Sensitive Direction

Figure 4.6 Comparison of Groove Orientations in Traditional and Aligned Kinematic Couplings

changed to allow for higher stiffness in a certain direction, but doing so adversely affects

overall coupling stability. The right side of Fig.4.6 provides an example. Though able to

provide maximum resistance to error causing loads in the direction in which we wish to

prevent errors, this coupling provides no constraint in the perpendicular, i.e left-right

direction as the balls can slide right and left in the grooves.

y

x

Figure 4.7 Aligned Grooves in Quasi-Kinematic Couplings

Quasi-Kinematic Couplings on the other hand, due to the curvature of their groove seats,

can be aligned to provide maximum resistance to error causing loads in one direction,

while still providing reasonable stiffness in the perpendicular direction. For example, the

coupling in Fig.4.7 is positioned to provide maximum stiffens in the y direction.

Figure 4.8 is a typical polar plot of the in-plane stiffness (Kr) of a kinematic coupling

which resembles the one shown in Fig.4.7. This particular plot is for an aligned coupling
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Figure 4.8 Stiffness Plot of Aligned Kinematic Coupling

with contact angles, Oe, equal to 120 degrees and 0, equal to 32 degrees. The indepen-

dent variable is er, measured from the x axis. The maximum stiffness occurs at er = 90

and 270 degrees, in line with the sensitive directions. The ratio of stiffness in the sensitive

to non-sensitive direction is approximately 2.4 for this contact angle. Assuming similar

error causing loads in both directions, the errors motions in the non-sensitive direction will

be about a factor of 2.4 times the error in the sensitive direction. Close agreement with

this relationship has been measured during testing of the coupling which was integrated

into the automotive application discussed in Section 5.8.

4.4 Design Check

The next step is to verify that all functional requirements which were modeled as rules of

thumb, not by inequalities in the iteration process, are met. The following should be

checked:

- Contact Stresses - Given the joint geometry and gap, a finite element analy-
sis can be preformed to determine the stresses in the contact region.
Depending upon the application, these can then be compared to the stress
needed to brinell out surface contacts and the yield or ultimate stress to
determine if the coupling will fail.
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" Radial Stiffness (Kr) - Using the tool detailed in Appendix B, the design is
tested to determine if it meets the stiffness requirements in the sensitive and
non-sensitive directions.

- Axial Stiffness (Kz) - The same tool is used to determine if the stiffness in
the z direction is acceptable.

4.5 Iteration If Needed

If any of the design checks fail, an iteration is required. Either one or more of the con-

straints or functional requirements must be modified to make it possible for the solver to

find a solution. Which constraint or functional requirement to change depends on the con-

straint or functional requirement which failed the design check. The designer must make

an educated decision based on the sensitivity of the failed constraint to those variables

which can be changed.

4.6 Design Specific Quasi-Kinematic Coupling Constraints

4.6.1 Enhancing QKC Performance Via Moderate Plastic Deformation

In this section we will explain the reason(s) why plastic deformation enhances the function

of a Quasi-Kinematic Coupling. A means for estimating the required load to achieve this

is provided.

It is common knowledge that the repeatability of couplings is dependent upon the surface

finish of the mating components. The customary method for minimizing surface effects is

to impart a very fine surface via expensive and time consuming processes, such as polish-

ing. It is undesirable if not impossible to integrate these types of processes into the manu-

facture of high volume, low-cost goods, i.e. QKC elements. An ideal method for

eliminating the effects of surface roughness would minimize the need for these processes.

Fortunately, a mechanism for halving the number of finishing operations is built into the

QKC. We will see that only one kinematic element requires a fine surface finish. How-
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ever, before this is discussed, some background on the details of surface finish effects is

necessary.

After a coupling has worn in, this affect has been found to be on the order of 1/3 pm Ra

(Slocum, 1992a). However, during the first few mates of a coupling, the surfaces are not

worn-in and one can expect, as a worst case scenario, that the repeatability of the coupling

to be approximately equal to half the waviness spacing, X, of the surface. This is

explained with help from Fig.4.9 and some simplifying assumptions.

Figure 4.9 Rough Model Of Surface Finish Affects on Couplings

A general rule of thumb is that the roughness profile height, or peak-to-valley height, is

about 4 times the measured average surface roughness (Oberg, et. al., 1992). This is a

rough simplification, but we make it for convenience in illustrating the following point. If

we assume the waviness spacing is approximately the same value, then the relative posi-

tion of A and B in Fig.4.9 will vary between +/- X/2. We say that this is approximately the

error in coupling repeatability due to surface finish affects. So the surface affects on the

early cycle repeatability of a coupling can be estimated as:

- Repeatability - 2Ra (4.13)

Therefore, if we are looking for sub-micron repeatability, the surface finish of the part

should be less than 0.5 gmRa. This is the same as an average ground or roughly lapped
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surface. The above is a rough estimate, but a designer can follow the same procedure

given their specific surface topography.

Regardless, attaining fine surfaces with a machining process is very expensive. In the

QKC, this is accomplished by another, less expensive means, a three step burnishing pro-

cess of the contacting surfaces. Figure 4.10 shows an example trace of a QKC target sur-

face as burnished after this process.

1,20

=0.80E
0.40

0)

74
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Distance Along Cone Surface, inches

Figure 4.10 Profile Trace of Burnished Quasi-Kinematic Coupling Groove Surface

Stage 1: Elastic Deformation

In the first stages of burnishing, the contacting asperities deform elastically. Generally,

these deflections are very small compared with the plastic deformation required to

"smash" the asperities flat. In our analysis we will assume the deformations from this step

are negligible. This assumption can be checked by modeling the asperity contacts as herz-

tian contacts.

Stage 2: Plastic Flow Due to A Normal Force (From Johnson, 1985)

In stage two, significant plastic flow is seen as the result of a normal load. Through the

use of plastic slip line theory with the models of Fig.4. 11 and Fig.4.12, one can estimate

the shape of the surfaces after the initial impression. This model assumes a flat, rigid
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L

St

Softer and Rougher Surface

Back Extrusion of Displaced Material

Softer Burnished Surface

Figure 4.11 Model For Analyzing Surface Asperity Deformation Due To Normal Loads

indentor, plain strain conditions, perfectly plastic material, a periodic rough surface, and

peak-to-valley height h.. The asperities are modeled as two dimensional pyramids with a

half included angle, (x. For our purposes, we will estimate this angle as 650.

ho

4 Wn = 0.8 )

00I

4%

41%

Lp

_ _ _ . . . . . .-O ....

Figure 4.12 Simple Model of Asperity Before and After Deformation

Under load, the rigid indentor forces the asperities to comply. As a side note, the material

will back extrude as shown, but exaggerated in Fig.4. 11, effectively reducing the error

causing surface features. Plastic deformation of the asperity will continue until the

crushed width of the asperity, wn, reaches 0.8 X. At this point, the normal pressure and

interaction of the slip line fields from adjacent asperities are such that increased pressure

will deform the sub-surface material, not the asperities. This is why asperities can not be

I- - I
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completely burnished by normal loads as was shown by Childs, 1973. At this point, the

average pressure, p, on the rigid indentor has been found to be 5 k where k is the yield

stress in simple shear. This can be used to find the required burnishing load or average

pressure, p, between an asperity and the indentor surface.

L 2kX

P=2kXP _ 2kXp
Lw w

(4.14)

(4.15)

Figure 4.11 illustrates the results of the surface before and after the second stage of bur-

nishing. The author calculates the ratio of the final to initial asperity height, hnf/ho, to be

approximately 1/5. At this point, the usefulness of increasing the normal force to remove

asperities has ended. Further deformation can only occur in the presence of a tangential

traction or tangential displacement.

Stage 3: Plastic Flow Due To Normal & Tangential Traction (From Johnson, 1968)

Wf

w = O.8 X

-00,

4%
4%

4%
4%

.% ...................

.............. ...........11 ..... .. 11......... .. IN
............................

10;.......... . ,2- R-M-, NIX-1

Figure 4.13 Plastic Deformation From Normal and Tangential Traction

In the third stage, we start from the final state of loading in stage 2. As stage three begins,

a different slip line field emerges as a tangential traction begins to pull material from the

asperity to the side, much like a knife smearing peanut butter. The "smearing" can be seen

M!"
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on the right side of Fig.4.13. This model maintains the assumptions of a flat, rigid inden-

tor, plain strain conditions, and a perfectly plastic rough surface, but two additions are

made. First, it is assumed that there is no slip at the interface between the rigid member

and the asperity. Second, the normal load, P, remains constant at the same value as in

stage 2.

At this point, our analysis will break with Johnson's analysis and look at the remainder of

the problem from a practical standpoint. Before we do so, the reader should realize that

we have traveled this far to show that further deformation via tangential loading is possi-

ble. Johnson's method can be used to find a good approximation to continued asperity

deformation, but this level of detail is not required.

We will assume that the tangential deformation required to entirely flatten the asperity is

roughly 20% of the asperity spacing, X, which is all that is left. Remember the top, wnf, is

already 80% as wide as the bottom, X. If we maintain the no slip condition at the contact

interface, the relative movement between the contacting elements need only be approxi-

mately 20% of the asperity spacing to work the asperity to a point where w - X. In looking

at QKCs, 0.2 X is about 0.5 - 5 microns, which is much less than KC preload displace-

ments. This is several orders of magnitude larger the preload displacements which are

often 100 - 300 microns. It is then quite reasonable to assume that the relative sliding

between the kinematic elements provides the necessary means to finish the burnishing.

If the no slip condition is violated, i.e. due to unwanted lubrication, then the ability of the

sliding contact to finish flattening the asperity will be diminished. This is a reason for

avoiding lubrication of QKC elements during the first couple mates, i.e. the wear-in

period. Regardless, even without sliding deformation, the increase of w to 0.8 X achieved

by the normal indention, including the back extrusion, provides some filter for surface

effects.
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4.6.2 Affects of Localized Plastic Deformation on QKC Performance

The Consequence of Interrupted Contact

Depending upon the end conditions of a line contact, the local stress state can decrease,

increase, or become theoretically infinite. Unfortunately, QKC joints exhibit the third

behavior, which leads to gross local plastic deformation. This happens at the edge of a

contactor flat where the contactor & target lose contact. At this location, one surface ends

in a sharp corner, while the other has a continuous profile. If the constraints of the pro-

cess/application allow, the sharp edge can be rounded by secondary processing. If not,

then we must deal with the deformation.

Gross Plastic Deformation in QKCs

In the context of a quasi-kinematic coupling, this is undesirable. This is best explained

with the help of Fig.4.14 which shows a cross section of a QKC joint through the arc of

contact. To start, the contactor is seated in an unloaded state. When the contactor is

Local Deformed Shape ,#''

Displaced Contactor ..-.... ota..

Contactor Before Loading

Direction of Centering Abilit

Figure 4.14 Simple Model of Edge Contact in Quasi-Kinematic Couplings

7.7
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pressed or displaced into the groove, the edges of the groove flats will press into the sur-

face of the contactor. As long as the contactor is made of roughly three to four times

harder material than the target surfaces, the edges of the groove will be rounded off to

some extent. When increasing load/displacement is applied, the contactor surface will

begin to plastically deform as shown in Fig.4.15. This is undesirable as the high stress and

sliding contact in these areas can make them prime sources for wear/particle generation.

Figure 4.15 Deformed Contactor Surface, Cleaned For Viewing

This has been observed in the testing of QKCs. Silver bands were observed on the surface

of the contactors which corresponded with the location of the edges of the target surfaces.

This area is pointed out in Fig.4.16. These bands consisted of a fine aluminum powder

which had worn away from the edges of the target surface. Once a coupling exhibited

these symptoms, repeatability quickly degraded as additional wear particles were gener-

ated.

This has two negative effects. First, the introduction of wear particles between the con-

tacting elements increases the friction between them. Accounting for the effects of fric-

tion in precision couplings is a notoriously difficult task, especially because friction is not
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Generation site for wear particles

I

Contactor
Deformed peg surface

Figure 4.16 Location For Wear Particle Generation in QKCs

always constant. This situation introduces a variation in coupling performance which can

only be determined by testing. As a designer, the author finds this most unpalatable!

The second effect is the error from the wear particles themselves. As with any coupling,

contamination between mated surfaces ruins coupling performance. A reasonable esti-

mate for the affects of wear particles on repeatability can be obtained by modeling the

wear particles as asperities as discussed in Section 4.6.1. For instance, when a one micron

particle comes between the contactor and target, a coupling error on the order of 1 micron

can be expected. Regardless, this situation is to be avoided at all costs.

Quantifying the Limits of Plastic Deformation in QKCs

There are several problems in quantifying the limit for acceptable indentation. First, some

means is needed to determine the shape of the kinematic elements as a function of load or

displacement. Three dimensional FEA analysis of this problem is not a feasible solution

as an incredibly fine local-mesh is needed to pick up the small deformations, approxi-

mately one to five microns, which we are looking for. This considered, the computational

costs for a three dimensional model with the non-linear effects of friction, contact, and

plasticity are extremely high.
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In light of the above, three dimensional FEA analysis does not seem a practical solution.

Despite this, a 3D FEA was attempted. Several unsuccessful attempts were made to

obtain data from very coarsely meshed three dimensional FEA model. The model shown

in Fig.4.17 shows three mesh densities which were tried, from fine to coarse, in attempting

Peg Relief Block

Bedplate

Figure 4.17 Side View of 3D FEA Mesh, Shows Examples of Mesh Densities Used in Finite Element
Analysis, Symmetry of Model Allowed Use of 1/4 of Joint Geometry

to solve the problem. Note that all of these are far too coarse to capture the small features

we are interested. On a high end computer, two FEA program failed to begin the analysis

because sufficient memory was not available. Faced with these difficulties, the three

dimensional FEA method was abandoned.
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Instead, the small and inexpensive test fixture in Fig.4.18 was used to determine the limits

Figure 4.18 Quasi-Kinematic Coupling Plastic Deformation Test Fixture

on the QKC gaps. In one half, the fixture housed a QKC contactor, in the other, QKC tar-

get surfaces. These could be bolted together to simulate loading of a real QKC joint. Two

dowel pins provide resistance to rotation between the components during testing. With

this fixture, one can use shims to vary the distance between the mated halves, thereby

obtaining a full range of test gaps.
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Avoiding Local Plastic Deformation

If cost constraints permit, one should use a low modulus, high yield stress material, such

as titanium for the contactors. The combination of these properties provides a wider range

of strain before plastic deformation sets in.

With respect to geometry of the contactor in the case study, contact angles smaller than

120 degrees allow ovaling of hollow contactors, i.e. contactors with through holes for

bolts. Figure 4.19 shows the arc of contact between the contactor and target surfaces as a

ec = 60 degrees

ec = 120 degrees

Pinch Points

pronounced "ovaling"

0
Figure 4.19 Axial View of Contactor, Effect of Contact Angle on Ovaling On Similarly Loaded Pegs

red line. The arrows signify the pressure loading on each arc. Unfortunately, when a con-
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tactor "ovals," the target surface does not. This leads to pinching of the contactor at the

edges of the target flats. The result is local plastic deformation on the contactor surface.

4.6.3 Load and Displacement Behavior of QKC Joints

Depending upon the gap between opposing faces of the mated components, the deforma-

tion in the kinematic elements can be elastic or elastic and plastic. This is important as the

load-displacement behavior of the coupling is dependents upon the nature of the deforma-

tion. If the deformation is purely elastic, then the load-displacement plot will follow a

curve with increasing slope. If the deformation is elastic and plastic, the slope of the curve

will increase during the initial elastic deformation, then decrease as the material begins to

flow plastically. This is due to the fact that the subsurface material can no longer provide

as much resistance (per unit depth of penetration) as it could during the elastic deforma-

tion. In some cases, the plastic deformation extends beyond the contact interfaces, such

that the bulk of the kinematic elements deforms plastically. Figure 4.20 shows the rela-
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Figure 4.20 Axial Load-Displacement Plot for Engine QKC Joint

tionship between the displacement and axial force, i.e. along the cone axis of symmetry,

82

15



Design Specific Quasi-Kinematic Coupling Constraints

for the QKC joint used in the case study. The initial and final loading of the curve are not

shown due to difficulties in obtaining the data.

What is important in designing QKCs is the "moment of mate" stiffness, or the stiffness at

the instant the surfaces of the coupled components mate. This is the slope of the load-dis-

placement curve at the instant the displacement equals the gap. Consider the following in

the context of Fig.4.20. During the first mate, a joint being loaded will exhibit of the load-

ing portion of the curve in Fig.4.20. When the coupling is "un-mated", the behavior will

follow the "un-loading" portion of Fig.4.20. For subsequent assembly and disassembly of

the coupling, the load-displacement behavior will follow the "un-loading" curve. This is

illustrated by the "un-load" and "re-load" arrows in the figure.

4.6.4 Ratio of Contactor to Target Hardness

As discussed in Section 4.6.1, we wish to minimize the affects of surface geometry on

coupling performance. When the contactor and target are pressed together, normally with

no sliding, the surfaces of each material will deform and conform to each other. However,

it has been shown (Suh, 1993) that if component A is approximately four times harder than

component B, then the surface of A will not be affected by the geometry of surface B.

It is simpler and less expensive for manufacturers to obtain a better surface finish on the

contactor. Section 4.7.2 discusses this in detail. Therefore, the ratio of contactor hardness

to target hardness should be approximately four. Since the brinell hardness of metals is

proportional to the tensile strength, this allows one to use the ratio of contactor to target

tensile strength in place of the hardness ratio.

The ratio for the application in the case study is actually 2.5. Though lower than the ideal

ratio of four, the affect of the target geometry, rougher and softer aluminum with ay - 27

ksi did not affect the surface of the contactor, with y ~72 ksi. This may be due to the fact

that the analysis upon which this ratio is based does not account for sliding contact. Slid-

ing between the two components as discussed in Section 4.6.1 enhances the "flattening" of
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surface asperities. Therefore, any deformation of the contactor surface may be hidden by

this phenomena. It is fortuitous that sliding acts to help the cause.

This raises the question, "How low can the hardness ratio be?". To answer this, an analy-

sis similar to that in Section 4.6.1 is needed which does not consider the harder element as

infinitely rigid. The literature appears to be absent of such an analysis and it is beyond the

scope of this thesis to provide one. Therefore, the designer should think of the hardness

ratio as a guideline, or target to shoot for. If this is impractical, one can try a ratio of 2.5,

or lower if the cost of prototyping and testing a test joint is allowable.

4.7 Manufacturing of Quasi-Kinematic Coupling Elements

The Quasi-Kinematic Coupling was developed for high volume manufacturing processes.

Because each assembly needs 3 contactors and 3 sets of target surfaces, the means used to

manufacture them must be able to make large quantities at low-costs. They must also be

of sufficient quality to maintain a functional gap between the mated components. The fol-

lowing sections present an economical method for making the elements.

4.7.1 Manufacture of Target Surfaces

The "manufacturing equation" in Fig.4.21 shows a way to economically create target sur-

faces. The reliefs are manufactured first, preferably by casting/molding in their shape. It

is possible to machine these features with an end mill or by spot drilling, but this adds

more complex machining tasks and tooling to the manufacturing process. To make the

groove seats, a form tool is used to machine a hole which is coaxial with the outer con-

tours of the pre-cast reliefs.

There are several benefits to this method.

- Clamping - It provides a through hole for a bolt which can be used to apply
the clamping load.

- Retrofitting existing pinned joint processes - Retrofitting an existing
pinned joint is made easy as the reliefs can be placed coaxial with the loca-
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.... ... ...

Figure 4.21 Method For Inexpensive Manufacture of Target Surfaces

tion of the old dowel holes. A form tool similar to the one in Fig.4.21 is then
used in place of the old tooling which formed the dowel hole. This type of
form tool is compatible with most standard tooling holders, so tooling
changes are minimal.

4.7.2 Manufacture of Contactors

An inexpensive way to manufacture small, axisymmetric parts is to use screw machines.

It is not atypical for screw machines to produce millions of a particular part per year for

pennies apiece. This is particularly impressive when considering the size tolerance on

these parts can be +/- 10 microns.

Figure 4.22 shows an example of such a piece made for press fit into the components of a

Quasi-Kinematic Coupling. Note the through hole which allows for placement of clamp-

Figure 4.22 Spherical Peg For Press Fit in Quasi-Kinematic Couplings
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ing bolts. This is important as clamping loads should be placed directly over the kine-

matic joints to avoid excessive rocking of the components before the mating. If this is

not avoided and there is a large coefficient of friction, or if the edges contact via burrs

between the mated surfaces, one could clamp in an error during mating. Typically, how-

ever, for clean surfaces with coefficients of friction less than 0.5, the stiffness of the quasi-

kinematic coupling joints will resist these forces, and pull the coupling into its most stable

equilibrium. Regardless, friction is an unreliable variable in design, so one should be safe

and design the clamping loads coaxial or in the closest proximity to the QKC joints.

If the clamping means is not bolted joints, then another inexpensive way to produce con-

tactors is to use ball bearings. These items are inexpensive and can be purchased in large

quantities from bearing manufacturers.

4.7.3 Feature Size and Placement Tolerances

Within a pinned joint pattern, if the axes of a mating dowel and hole pair is off by more

than the clearance, it is nearly impossible to assemble the coupling. Quasi-Kinematic

Couplings do not have this problem as it is easy to fit a convex part into a conical groove

with a little mismatch. After applying a certain load, the mating members are forced to

conform during the initial deformation. Thus the Quasi-Kinematic Coupling is a form-in-

place coupling. In comparison, pinned joints are incapable of eliminating initial misalign-

ment. Depending upon the application, the tolerance range for QKC placement can be a

factor of two to three times wider than pinned joints. The limit is set by the formation of

indentions on the pegs surface as shown in Fig.4.15.

A clever designer will realize that it is possible to place a substantial portion of the joint's

precision in the contactor. This is desirable as most high volume manufacturing lines can

hope to hold at best +/- 25 to +/- 50 microns tolerances, while screw machines can easily

hold +/- 10 microns. Manufacturers will generally find it beneficial to purchase these pegs

from screw machining companies rather than run their own machines. As such, assigning

tighter tolerances to the component made on the screw machine enables the designer to
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specify wider tolerance ranges at the manufacturers factory where it is most needed. This

is especially important in light of tool wear which will happen at the factory, and must be

considered.

4.8 To QKC or Not To QKC?

In comparing the Quasi-Kinematic Coupling to a pinned coupling, one might say that the

moderate complexity of the analysis needed to design the QKC does not justify the change

from pinned joints because pinned joints are "so much easier" to design.

For some designs this may be true, for instance if only 250 microns (0.010 inches) repeat-

ability is required, it is much easier to design, implement, and manufacture the pinned

joint. On the other extreme, if 5 micron repeatability is required in a high volume applica-

tion, the design, implementation, and manufacturing costs associated with the QKC will

probably be much lower than the pinned joint. There would seem to be a fuzzy boundary

on either side of which the use of one type of coupling is best. This is illustrated in

Fig.4.23.
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* Materials

- Cost of the dowel pins vs. cost of contactors

- Cost of boring the dowel holes vs. cost of making the contactor surfaces

- Change in process

- Change in equipment

- Scrap/rework costs associate with poor alignment

All of these are highly dependent on application and machinery. It is up to the designer to

set up the cost model to determine which joint will be less expensive to manufacture.



Chapter 5

CASE STUDY: ASSEMBLY OF A SIX
CYLINDER AUTOMOTIVE ENGINE

This chapter demonstrates the analysis, design, and manufacturing of a Quasi-Kinematic

Coupling via a case study of the precision alignment of automotive components. The

chapter layout follows the design process presented in Chapter 4. We begin with problem

definition.

5.1 Problem Definition

5.1.1 Application: The Six Cylinder Engine.

Figure 5.1 shows a fully assembled six cylinder automotive engine. This engine is manu-

factured in large volumes, typically in annual quantities of 300, 000 units, and is a fair rep-

Figure 5.1 2.5 Liter Six Cylinder Engine

resentative of the next generation of automotive engines. For example, to reduce the
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weight of the engine, the block and most other large components of the engine are made

from cast 319 aluminum. In addition, many of the parts and subassemblies in this engine

are manufactured to race engine tolerances (Minch, 1999a). Of these, the most critical and

difficult to machine is the crankshaft-journal bearing assembly.

5.1.2 Main Journal Bearing Assembly

A cross section of this assembly is shown in Fig.5.2. In virtually all automotive engines,

the assembly is the same. The crankshaft resides between two main journal bearing halves

Block Main Bearing Half:-. : ' :: Crank Journal

D Oil Fil m9

Block/Main
Bearing Cap
Interface

d 0

Main Beaxing Cap Main Bearing Half

Figure 5.2 Cross Section of Typical Journal Bearing Assembly

with clearance on the order of 0.002". During operation, the rotation of the crankshaft

induces a pressure profile in the bearing which acts to separate the crankshaft from the

bearings. The crankshaft then rotates within the bearing halves on a film of oil. Misalign-

ment between the main bearing halves has detrimental effects on the performance of the

bearing. Some affected characteristics include:

* Decreased load capacity - The ability of the pressure film to maintain the gap
between the bearings and the crank shaft can decrease with increasing mis-
match.

* Increased coefficient of friction - If the mismatch is large enough, the gap
between the bearings and the crankshaft could become very small or even
close. This could lead to boundary lubrication for which the coefficient of
friction can be an order of magnitude larger than hydrodynamic lubrication
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(Heywood, 1988). Additional energy is required to overcome the increased
friction, which in turn leads to lower gas mileage.

- Increased wear - If the mismatch is large enough to close the gap, direct
metal to metal contact will lead to wear.

- Seizure or fatigue failure - An increased bearing coefficient of friction leads
to overheating of journal bearings. This in turn can lead to thermal fatigue
or in extreme cases, the bearing can seize (Shigley and Mischke, 1989).

In automotive engines, an analytic solution for the relationship between these quantities

and the misalignment is not known. This is due to the complexity of the fluid dynamics

which govern the pressure and velocity profiles in the bearing. In these bearings, the flow

is typically turbulent, the bearing geometry is eccentric, and the bearing is dynamically

loaded. Some software packages are available for dynamic journal bearing analysis, how-

ever results from the best of these packages compare poorly with experimental data

(Brower, 1999). Sadly, experimental misalignment data for this engine is not available for

publication. What can be said about the affects of misalignment on this engine's bearing

performance is summarized in Table 5.1.

TABLE 5.1 Qualitative Effect of Bearing Centerline Misalignment

Misalignment Affect on Bearing Performance

0 - 5 microns Low

5 - 10 microns Moderate

Over 10 microns Severe

5.1.3 The Need For Repeatability

Main bearing halves are made from very soft materials, usually babbit, thus they conform

to the shape of the elements into which they are pressed. In this engine, the block and bed-

plate house the halves of the main journal bearings, so misalignment of these components

becomes the "precision problem". Ideally, no mismatch between the journal bearing cen-

ter lines is desired, but practically some will exist due to manufacturing and assembly

errors. Figure 5.3 shows the components disassembled, Fig.5.4 shows a partially assem-
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Dowel Pin Holes (8 shown)

Block

Figure 5.3 Block and Bedplate Components

Dowel Pins (8 shown)

..................I ..................................................................
Bedplate

Assembly Bolts

........
..........

Crank Bore Halves

Bedplate

Block

Figure 5.4 Six Cylinder Block - Bedplate Assembly

bled block-bedplate pair with the crankshaft and main bearings removed for clarity, and

Fig.5.5 shows the full block-bedplate-crankshaft assembly.

Because the half bore sizes and alignment are critical, it is best to manufacture them

simultaneously. Presently, the block and bedplate are aligned via the eight hollow dowel

pin joints shown in Fig.5.3 and clamped together with eight bolts which are coaxial with

the pinned joints. The crank bore is then simultaneously bored into each component.

Afterwards, the block and bedplate are disassembled, the crankshaft and main bearings are

put in place, then the two components are reassembled. Maintaining alignment of the half
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/ n Crank Shaft

.om-Block

Figure 5.5 Block and Bedplate Assembled With Crankshaft and Main Bearings In Place

bore center lines with respect to their freshly machined position is the need. Due to rela-

tive rotation and translation, the maximum center line mismatch will occur at either of the

outer journals. The error, 8e, is illustrated in Figure 5.6.

Block Bore Center Line

__ ILi

Left Journal, JL

Figure 5.6 Center Line Error Between Block and Bedplate

Bedplate Bore Center

Right Journal, JR

5.1.4 Rough Repeatability Error Budget

There are several sources of error which contribute to the centerline mismatch.

- Relaxation of residual stresses during operation

- Geometry changes of the components due to thermal effects during machin-
ing

- Geometry changes of the components due to removal of residually stressed
material

- Error loads between the block and bedplate

Bedplate
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Relaxation of residual stresses during operation has recently been shown to be a problem.

This is not a major concern for the bearing center lines unless the engine is disassembled

after considerable running time. Before disassembly, friction between the block and bed-

plate surface prevent significant movement of material surrounding the crank bores. After

disassembly, this constraint is removed and the components can change size. There is no

database of such measurements in the vicinity of the crank bore, but limited measurement

of other areas of the engine have shown up to 75 microns movement (Minch, 1999a).

There is little a practical mechanical coupling can do to correct this. Determination of an

exact value for errors due to relaxed stresses is beyond the scope of this thesis, but further

research by the manufacturer is strongly recommended.

A limited database of in-factory measurements has shown the cumulative effect of geome-

try changes due to machining of residually stressed materials. This error seen in the loca-

tion of the half bore center lines has been measured at approximately 5 microns (Minch,

1999a). Considering these facts and Table 5.1, this leaves little room for error from a

mechanical coupling. Given that the present pinned joint coupling is at best capable of 4.9

micron repeatability, one can expect the effect of the total misalignment on bearing perfor-

mance to be near the severe level shown in Table 5.1.

5.2 Constraints

As this was a retrofit application, there were many constraints imposed on the design.

Cost - An increase in coupling cost per engine was not allowed. The new coupling had to

be less expensive than the pinned coupling.

Manufacturing - The new method had to be implemented with minimal change in the

transfer line's core machinery. This included spindles, machine tools, fixtures, and any-

thing else which would require a large capital investment to alter.
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Joint location and size - The new coupling was constrained to fit within the footprint of

the pinned joint pattern. The joints themselves were constrained to be located at positions

previously occupied by the pinned joints. With respect to joint size, the new joints had to

fit within the footprint of the old joint plus a small margin of safety, roughly 0.030" on the

diameter. This was necessary as the transfer line was designed around "knowing" that

pins of certain size would stick out of the bedplate surface at certain locations. Using

joints of different size or at different locations from the dowel pins would result in inter-

ference problems.

Loose pieces - The engine components are flipped several times during the manufacturing

process to bare different surfaces for machining. This eliminates the use of any loose

pieces in the coupling. For instance one could not use ball bearings with through holes

for the contactor in the coupling.

Material / Material Treatment - The material and heat treatment of the block and bed-

plate were not subject to change.

5.3 Functional Requirements

The functional requirements of the design were to:

Repeatability - Minimize the bearing centerline mismatch. A range of acceptable solu-

tions exists from 0 to 5 microns.

Mating of Opposed Faces - The opposing faces of the block and bedplate needed to mate

with a certain contact pressure. This actually translates into the percentage of bolt load

which is dedicated to compressing the joint. The change in this percentage was not to

exceed 25% from the initial loading of 11,000 lbf per bolt (Yerace, 1999). Strictly speak-

ing, the functional requirement is: Maintain 8300 lbf in the bolt after mating of the cou-

pling.
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Fatigue - Prevent fatigue of the engine components before and up to the normal lifetime

of an engine.

5.4 Gap

The iterative solver illustrated in Appendix A was used to find the minimum 0, and corre-

sponding coupling element dimensions. The goal of the iteration was to find the minimum

ec, which could provide a plausible solution. This approach was taken to maximize the

lateral stiffness, minimize the axial stiffness, and reduce the stress at the coupling inter-

face. Several constraints, i.e. joint footprint, were placed on the size of the QKC elements

which forced the solver to converge to the nominal values given in Table 5.2

TABLE 5.2 Nominal Dimension and Associated Tolerances for QKC Kinematic Elements

Nominal +/- Tolerance
Dimension mm (inches) mm (inches)

VD -12.59 (-0.4955) +/- 0.08 (0.0030)

OSRz 3.05 (0.1202) +/- 0.01 (0.0005)

zBF 0.00 (0.0000) +/- 0.03 (0.0010)

OsRr -1.92 (-0.0757) +/- 0.01 (0.0005)
0 cTool 32 deg +/- 0.01 deg
0cWear N/A + 0, - 0.01 deg

RS 10.04 (0.3951) +/-

Using these values and Equation 4.4, the characteristics of the gaps were calculated and

tabulated in Table 5.3.

TABLE 5.3 Quasi-Kinematic Coupling Gap

Minimum Nominal Maximum
mm (inches) mm (inches) mm (inches)

0.03 mm (0.0013) 0.20 (0.0077) 0.36 (0.0143)
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As an exercise in understanding, if we consider the sensitivity of the gap to the angle 0', it

can be seen from Fig.5.7, that the solver sought a solution until the sensitivity of the gap

0.5

d G inch
dcdegree 0

-0.5 0 10 20 30 40 50 60 70 80 90

0 C , degrees

Figure 5.7 Sensitivity of Nominal Six Cylinder Engine QKC Gap to 0C

began to increase, stopping before the magnitude of the sensitivity became too large.

5.5 Joint Location and Orientation

5.5.1 Review of Sensitive Directions

The sensitive directions are the rotation about the z axis and the direction perpendicular to

the bore centerline and in the plane of mating. Both of these contribute to the error

between the center lines of the bearing half bores.

5.5.2 Error Loads

When this Quasi-Kinematic Coupling is clamped down, friction between the bolt heads

and the bedplate can cause errors in the alignment of the coupling. The coupling must be

stiff enough in the sensitive directions to prevent error loads from resulting in displace-

ment greater than the desired repeatability.

- ------ I

I r i I I I I I
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The loads acting to produce errors in the sensitive directions are:

- Friction torques between the bolt heads and the bedplate

- Forces parallel to the plane of mating, i.e. parallel to the x-y plane

These are estimated using a conventional bolt head friction model. The coefficient of fric-

tion used for steel on steel (Avallone et. al., 1996) was 0.8.

TABLE 5.4 Error Loads on Six Cylinder Assembly

Parameter English Metric

Maximum Bolt Load 2300 lbf 10 kN

Total Friction Torque 60 ft-lbf 80 N-m

Total Engine Side Load 60 lbf 260 N
Varies direction as wrench rotates

5.5.3 Joint Location/Orientation

To provide maximum resistance to motion due to the friction induced torques between the

bolts and bedplate, the joints are positioned such that they form the largest triangle possi-

ble. Note the ideal place to put the joints would be on the outer perimeter of the engine, as

explained in Section 5.2, the location of the QKC joints was constrained to be coaxial with

the pinned joint locations.

The coupling target surfaces were oriented as illustrated in Fig.5.8 and Fig.5.9 to maxi-

mize the centering ability and stiffness of the coupling in the sensitive direction.

5.5.4 Coupling Stiffness

The methods described in Chapter 3 were implemented via a finite element analysis, dis-

cussed in Appendix C, and a MathCadTM worksheet discussed in Appendix B.
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fatigue characteristics of the joint. However, the designer takes some confidence in the

following:

- Prototype Car - One prototype has been integrated into a functioning test car.
The car has over 30, 000 miles of normal use and exhibits no problems.

The issues with respect to fatigue in this engine are not a trivial "plug and chug" problem.

First there are the residual stresses in the castings which are of significant magnitude to

affect any mean stress fatigue analysis, ie. Modified Goodman. The author has seen the

effects of these stresses first hand while sectioning pieces of the engine. Several times,

loud popping noises were heard as cracks propagated throughout the casting from the saw

blade kerf. On several occasions, this was accompanied by relative movement, across the

crack, of 1/8 inch to 1/4 inch. It is safe to assume that the stresses required to resist these

displacements in a large casting, close to 24" x 20" x 20", are not small. Determining

these stresses and using them in fatigue analysis of these engines via analytic means is

currently a research topic for the manufacturer. Unfortunately, this subject is very compli-

cated and the research is still in its infancy. The author has recently become aware of non-

destructive means for measuring sub-surface residual stresses. Unfortunately, data will

come too late for incorporation into this thesis, but will be the subject of future research.

Another issue complicating the fatigue analysis is the superposition of time varying ther-

mal loading and mechanical loading. There is very little information on this subject in the

literature. The author found only one publication which shows that traditional methods

used to analyze the fatigue in common automotive cast aluminums compare poorly with

experimental results, particularly with superimposed time varying thermal and alternating

mechanical loading (Bressers et. al., 1995). The publications further describes complica-

tions from strain softening and creep which occur over time. Unfortunately, this data is

not available for the engine under consideration. The author has determined that any

meaningful fatigue analysis will have to be obtained through experiment, or several Ph.D.

dissertations. Though the experimental means is undesirable because it adds time and cost
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to the design process, it seems to be the only method until more fatigue knowledge/data is

available for this engine and its materials.

Though this problem has not been solved in this thesis, the author wishes to emphasize the

fact that a working prototype was been built and is functioning fine after 30 000 miles.

For an average trip of 20 miles, this is roughly 1500 thermal cycles. Though not a com-

plete fatigue test, it adds some comfort to the design. The reader should also not forget the

comparison of stress states between the threads in the block just below the QKC joints and

the QKC interface.

Sealing of Opposed Faces - The force required to close the maximum gap was deter-

mined for the FEA analysis at 2300 lbf. The remaining load in the bolt dedicated to clos-

ing the gap is 11, 000 - 2300 or 8700 lbf, which is greater than required by the QKC

design.

5.7 Verification of Plastic Deformation Range

It is necessary to ensure that the given geometry and material properties of the kinematic

elements do not result in plastic deformation of the peg surfaces. As has been explained,

there is a maximum gap beyond which closure of the gap will result in gross plastic defor-

mation of the peg surfaces. For the geometry generated in Section 5.4, experimental test-

ing found this gap to be 0.015 inches. This is comfortably above the maximum gap of

0.012 inches.

Figure 5.10 shows a trace of the cone surface along the 1 direction after the initial mate

with the peg. Because the steel peg was harder than the aluminum groove, the surface of

the groove was burnished. As the discussion in Section 4.6.1, covered this in detail based

on data from this case study, the author will refer the reader to the previous discussion.

The plot of the burnished surface is provided for those who may have skipped the previous

section.
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Figure 5.10 Profile Trace of Burnished Quasi-Kinematic Coupling Groove Surface

Ideally, following the reasoning of Section 4.6.4, one would like to have the ultimate

strength ratio, or hardness ratio of the contactor/target materials to be about four. The

ratio for this application is (72 ksi /27 ksi) or about 2.5. Though lower than the ideal ratio

of four, the affect of the target geometry (rougher and softer aluminum) did not affect the

surface of the contactor. This may be due to the fact that the analysis upon which this ratio

is based does not account for sliding contact. Sliding between the two components (as

shown in Section 4.6.1 enhances the "flattening" of surface asperities. Therefore, any

deformation of contactor surface may be hidden by this phenomena. It is fortuitous that

sliding acts to help the cause. More expensive, hardened pegs could have been used, but

the results of testing and the observation of the contactor surface show this was not neces-

sary. The hardness ratio should then be thought of as a guideline, not a rigid requirement.

5.8 Testing and Performance Verification

5.8.1 Coupling Repeatability

The block and bedplate were assembled in a test stand as shown in Fig.5. 11 and Fig.5.12.

The bedplate and block fixtures were rigidly attached to their respective components. Rel-

ative movement between the block and bedplate was determined by measuring the move-

ment of the bedplate fixture with three capacitance probes attached to the block fixtures.

The entire assembly was mounted on a coordinate measuring machine which was used to
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JL Cap Probe

1st Block Fixture

Bedplate Fixture

JR Cap Probe

Axial Cap Probe

2nd Block Fixture

CMM Head

Bedplate

Figure 5.11 Top View of Test Setup For Six Cylinder Engine QKC

JL Cap Probe

1st Block Fixture

Block .
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JR Cap Probe

- 2nd Block Fixture

Figure 5.12 Front View For Six Cylinder Engine Quasi-Kinematic Coupling

measure the pre-mate and post-mate gap between the bedplate and block by measuring the

height of the bedplate's top surface. Each mate, represented by a data point, involved bolt-

ing the components together, taking position readings, disassembling the components,

reassembling them, then taking the final readings. Note that the resolution of the CMM

and capacitance probes was five and 0.05 microns respectively.
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Repeatability of the couplings is calculated by dropping the high and low readings, then

dividing the maximum difference, or range, between the remaining data points by two.

The repeatability in the sensitive direction at the JL and JR journals is 0.55 and 0.75

microns respectively, giving an average repeatability of 0.65 microns. The axial repeat-

ability is found to be 1.35 microns. The difference in performance in the two directions is

expected as the coupling uses a 120 degree groove seat which when orientated as shown in

Fig.5.9 are 2.4 times more stiff in the sensitive direction than in the axial direction. Con-

(Range/2) 1 AVG= 0.65 gm

Figure 5.13 Repeatability Measurements For Six Engine QKC
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sidering the application of error loads can take on random orientations, it is fair to com-

pare the repeatability in the two directions by taking a ratio of the stiffness in the two

directions.
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(5.1)

The repeatability ratio is calculated as 2.1 which compares favorable with the in-plane

stiffness ratio, 2.4. The difference can most likely be attributed to friction effects which

can not easily be modeled.
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5.8.2 The Affect of Contact Angle on Repeatability

As discussed in Section 4.6.2, small contact angles can lead to ovaling of the contactor,

then plastic deformation at the pinch points. A test was run to determine the affect of con-

tact angle on repeatability. Figure 5.14 shows the best angle for the QKC was 120

Figure 5.14 Effect of Oc (shown as Ocon) on Coupling Repeatability

degrees. It is fortuitous that at 120 degrees +/- 30, the repeatability does not vary signifi-

cantly. This is important as the contact angle geometry will be dependent upon the ability

of the casting process, which is not a precision process, to place the side reliefs. The loss

of repeatability on the other end (150 - 180 degrees) is attributed to the inability of the

coupling joints to adjust for misalignment between the three joints. The stiffer the joint,

the more severe the effect on repeatability.

Clearly it is best to decouple the testing of joint misalignment and contact angle. This was

done to the best of the author's ability. Precautions such as allowing the engine compo-

nents to stabilize thermally over night and the use of a temperature controlled room were

Affect of Contact Angle On

2.0- 6 Cyl QKC Repeatability

o 1.5-

Ep

1.0

0.54) 0.5-

0.0 I I I

0 30 60 90 120 150 180
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taken. The patterns of the kinematic coupling joints in each component were measured

with a CMM before mating. Those with close matching patterns were used in the contact

angle study. This was a long and arduous process. Most of those which did not have close

matching patters were used in the following study.

5.8.3 The Effect of Joint Misalignment on Repeatability

In this study, one of the coupling joints was moved a distance r, with equal components in

the x and y directions illustrated in Fig.5.15. What is of interest here, is that one can mis-

match a coupling joint by up to +/- 0.04 mm with little affect on coupling performance.

This is nearly twice as wide as the tolerance allowed for misplacement of the pinned joint

elements.

Figure 5.15 Affect of Joint Misalignment on Repeatability

Affect of Joint %salignnnt On
6 CylCKC Repeatability
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5.9 Comparison of QKC and Pinned Joint Methods

5.9.1 Manufacturing Comparison

Figure 5.16 shows the basic operations of interest in the machining of the locating mem-

bers in the pinned and QKC couplings. The only change needed to switch between the

two designs is a tooling change from drill to the form tool, which fits in the same tool

holder as the replaced drill, and the elimination of 13 of the 16 bored dowel pin holes.

Note that three of the bored dowel holes were kept to accommodate the pegs.

Engine Manufacturing Process With Pinned Joint Coupling (8 pins)t

Op. #10 Op. #30 Op. #50 Op. #100
" Mill Joint Face * Drill Bolt Holes e Press in$ Dowels e Semi-finish crank boreE
" Drill/Bore 16 Holes +.J e Assemble * Finish crank bores
" Drill Bolt Holes [ Load BoltsJ Torque Bolts

Modified Engine Manufacturing Process Using Quasi-Kinematic Coupling

Op. #10 Op. #30 Op. #50 Op. #100
" Mill Joint Face * Drill Bolt Holes e Press 3 Pegs in BP e Semi-finish crank bores
" Drill/Bore 3 Peg Holes e Assemble * Finish crank bores
" Drill Bolt Holes & Form * Load Bolts

3 Conical Grooves 0 Torque Bolts

Figure 5.16 Comparison of Manufacturing Processes For Different Pinned and QKC Couplings

5.9.2 Design Comparison

A comparison of important characteristics and the performance of the pinned and QKC

couplings is provided in Section 5.5. In all areas, the QKC out performs or has more

desirable characteristics.
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TABLE 5.5 Comparison of Six Cylinder Pinned and Quasi-Kinematic Coupling Designs

QKC Pinned Joint
Feature Placement Tolerance +/- 0.08 mm +/- 0.04 nm

Feature Size Tolerance +/- 0.02 mm +/- 0.02 mm

Precision Pieces 3 8

Boring Tools 3 16

Precision Features 3 16

Average Centerline Repeatability 0.65 microns 4.85 microns

Normalized Cost Per Engine 0.64 1.00



Chapter 6

SUMMARY AND FUTURE WORK

6.1 Implications of the QKC

6.1.1 Manufacturing

It is very satisfying to have developed a new technology which will change the way peo-

ple think about precision high volume manufacturing. The two major implications of the

Quasi-Kinematic Coupling are increased precision and wider manufacturing tolerances.

To a designer or manufacturer, these are items for which a change for the better usually

has a large influence on the bottom line. This was demonstrated for one application in the

case study (Section 5.9) which has shown that the use of the QKC can provide near mag-

nitude of order increased precision at substantially lower costs. In addition, the doubling

of feature location tolerances in that application will enable the manufacturer to decrease

scrap, rework, and the associated labor costs which plagued the use of the previous pinned

joint.

6.1.2 Economic and Technological (Other Applications)

In a larger context, the quality of life and the economy in the Untied States are strongly

dependent on the ability of manufacturers to produce quality goods at low cost. The

author anticipates that there will be a large need for the QKC in areas which are highly

dependent on precision, i.e. the automotive, aerospace, and machine tool industries. It is
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difficult to estimate the affect on the economy, but the importance to the economy can be

qualitatively understood by considering that these industries make up a substantial portion

of the GNP.

The information storage industry may also benefit from QKCs. Portability of data, i.e. Zip

Drives, DVDs, and CDs, has now passed from being a "nice feature of a product" to being

a must. Would you buy a computer now without some form of portable media storage?

Increasing storage needs will result in increase storage density and smaller feature sizes.

The ability of the mechanisms to properly locate its internal components as well as the

storage media to its receptor will become increasingly important. This opens the door for

the Quasi-Kinematic Coupling.

6.2 Future Work

6.2.1 Plastic Line Contact

The ease of designing and analyzing a QKC would increase dramatically were there a gen-

eral solution for plastic line contacts. The development of the plastic line contact theory is

better suited for a thesis on mechanics of materials. As such, it fell outside the scope of

this thesis, but the author believes it should be the first area of research in the extension of

general QKC theory. The solution of such a process will reduce the time and effort spent

on running finite element analysis. This can become quite costly given the iterative nature

of the design process.

6.2.2 Displacement and Coupling Disturbances

This thesis has addressed the two major factors, shown in Fig.6.1 with check marks, influ-

encing the performance of a precision coupling: momentum and geometric disturbances.

Strictly speaking, though the analysis presented in Chapter 3, is displacement based, it is

not meant to account for the motion of flexures and creep or thermal effects, therefore it
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Displacement
Disturbance

Geometry
Disturbance 40

[Inputs Coupling Desired Outputs
-Force System Desired Location
-Displacement (GeordeLcaio

Force Error
Disturbance Actual Outputs --..--

-Actual Location

Model of a Mechanical Coupling System

does not address displacement disturbances. Material property disturbances also are not

addressed as these tend to cover specific applications, and therefore fall outside the goals

of this thesis. The determination of the affects of material property and displacement

would be important to some applications where for instance the material properties of the

coupling changed significantly with temperature. This might be the case in the alignment

of journal bearings in jet engines, or the alignment of cryogenic components. As stated

earlier, these would make interesting research topics, but the author does not anticipate the

theory of these couplings to extend into these areas unless motivated by specific applica-

tions.

6.2.3 Metric For Degree of Over-Constraint

Quasi-Kinematic Couplings are not truly kinematic, but not grossly over-constrained

either. A subject of future work would include a means to evaluate the degree of over-

constraint. This is probably primarily dependent upon the contact arc length. Such a

quantity would be useful as it could be used to quantify the limit to which a traditional

kinematic coupling solution could be used. This would allow for a closed form solution to

the analysis of some QKCs. For example, if the contact arc lengths were near zero, then

Material
Property

Disturbance

Figure 6.1
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the direction of the contact force vectors could be approximated and a kinematic coupling

solution could be performed.
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Appendix A

EXCEL SPREADSHEET USED TO
ITERATE BEST SOLUTION

The iterative analysis used to minimize the contact angle and find dimensions of the joint

elements was implemented in an ExcelTh spreadsheet. There are three components to the

spreadsheet.

- User Input - Section for user provided values which describe some parts of
the coupling joint. The user can specify custom dimensions.

- Graphical Representation of QKC Joint - Using the data provided by the
user, ExcelT plots a cross section of the joint so the user can visually verify
a model. As an aside, the author has found this to be an invaluable tool for
debugging spreadsheet calculations.

" Constraint Matrix - The constraint matrix contains the calculations and
logic needed to determine if the constraints have been met. The equations
contained within help drive the iteration.

To use the spreadsheet:

- 1. With the spreadsheet open, enter the nominal values the sheet requires

* 2. Choose: Tools > Solver

* 3. In the "Set Target:" cell, select the numerical value for 0, (boxed value)

- 4. In the "Equal To:" cell, choose minimize (this tells ExcelTM to minimize 0,)

* 5. In the "By Changing Cells:" cell, select the values for R,, , 0 SRr OSRz (boxed values)

- 6. In the "Subject To Constraints:" area, input the solver constraint values for each constraint
and set their values to be greater than or equal to 0

- 7. Click the solve button
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If the solver does not find a solution, the solver constraints or margins of safety must be

loosened to allow convergence to a workable design.

User Input

Units in (enter in or mm)

Nominal Tolerance
Value Inut Description of Variable

General Variables
Oc 32.0 +j- 0.0000 deg Half Cone Anggle

GAP 0.007 +/- 0,0000 inches Nominal Pre-Mate Gap

Sphere Dimns-Coords
Rs 0.3946 +:- 0.0000 inches Sphere Radius

OSRr -0.0752 +- 0.0000 inches r Coord. Of Sphere Center (Use Curve in 1st Quadrant)

OSRz -0.1207 +- 0.0000 inches z Coord. Of Sphere Center (Use Curve in 1st Quadrant)

Peg-Hole Dimns
DBH 0.4331 +/- 0.0000 inches M10 Diameter of Bolt Hole

DH 0.5000 inches Diameter of Peg Hole

INT 0.0010 inches Peg-Hole Interference (DIAMETER)

LPEG 0.2000 inches Length of Peg Shank

DR 02756 inches Dowel Pin Radius (For Constraint)

COD 0.3004 inches PEG Forced Crown OD @ y=O

t 0.0335 inches Peg Wall Thickness

DP 0.5010 inches Diameter of Peg Shank

Chamfers
CHK-b 0.0150 inches X Width of Bottom Peg Chamfer

yb4. e Bottom Chamfer Angle

Contact Coordinates (r,z)
XCp 0.2594 inches X Coord. Of Contact Point

Yap 0.0884 inches Y Coord. Of Contact Point
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Geometry Constraint Checks

Solver
# Constraint Check MOS Constraint Units
1 Contad Point-Bolt Hole OK 0.0400 0.0029 inches

Xcp-(DBH/2+N41)

2 V RAD @ y=0 < DR OK -0.0300 0.0052 inches
dr-(COD+MOS)

3 Peg Indent Check OK 0.0100 0.0057 inches

4 Reference Check
COD>DP/2+MOS? OK 0.0450 0.0049 inches

Description of Constraint

1 Constraint Which Keeps Contact Point Away From Bolt Hole

2 Enforces Largest Diameter on Peg Crown to be Less Than Diameter of Dowel Pin + MOS

3 Enforces Cone Diameter at Surface to be Less Than Peg Crown Diameter at Surface

4 Enforces Peg Reference Stop (A-POD in Fig.) to be Greater Than Margin of Safety

Note:

1 "MOS"= Margin of Safety

2 Solver Constraint must be greater than 0!

3 The "Check" States if Constraint is Met
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Appendix B

MATHCAD WORKSHEET FOR
FINDING COUPLING STIFFNESS

The analysis to determine the stiffness of Quasi-Kinematic Couplings was implemented in

a MathCadTM worksheet. A sample program is provided on the following pages and can

be used with ease for those who understand the terminology presented in Chapter 2 and

understand the analysis detailed in Chapter 3. The worksheet is broken into several steps

to make it easier to follow the analysis. These steps are outlined below with the required

inputs and calculated outputs.
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TABLE 6.1 Steps in MathCadTM Worksheet for QKC Stiffness Determination

# Step Label Inputs and Calculations

Define Joint Parameters

Define Coefficients of Friction

Define Joint Positions

Define Target Surface Geometry

Joint Position Vectors

Define Displacements

Solve For cz Direction Angles

Calculate Normal Displacements

Normal Force Per Unit Length

Integration of Contact Profiles

Solution For Total Force/Torque

Solution for Total Force Application Point

Stiffness Calculation

User Supplies Dimension of Coupling Elements

User supplies coefficients of friction for I and s
directions (Conical coordinates)

User provides location of coupling joints relative to
arbitrary coordinate system

User defines angles over which contactors and tar-
gets make contact.

Program calculates coupling centroid and position
of joint relative to coupling centroid.

User specifies magnitude and direction of imposed
displacement

No input required, program calculates direction of
maximum 6n due to user imposed rotations of cou-
pling about the z axis.

No input required, program calculates the normal
displacements (of far field approach) between the
contactor and target surfaces

User inputs unit load vs. normal displacement
curve obtained for FEA analysis

No input required, program integrates force per unit
length profile over contact surfaces

Program calculates total load on coupling due to
resultant contact forces

Program calculates the application point of total
load from torque balance

Program calculates stiffness of coupling for given
displacements and directions

8

9

10

11

12

13



SAMPLE PROGRAM FOR QKC, VALUES FOR CASE STUDY HELD FOR CONFIDENTIALITY

QUASI KINEMATIC COUPLING FORCE - DISPLACEMENT MODEL
BY: MARTIN L.. CULPE.PPER

STEP1:USERINPUT

JOINT DIMENTIONS:

0c:= 32 - TE
180

OSRr := -0.0752. in Rs:= 0.3946- in

FRICTION COEFFICIENTS:

pLJ := 0 pTs := 0

IMPOSED DISPLACEMENTS:

1.
Ar:= 1 0 in

id6
b:= 45deg 8zc:= -0.003- in

-X := 10F, 71 .-rad

180. 106

-99 71
Ey:= 10 - rad

180. 10
-z:= 10~99- - rad

180. 106

JOINT POSITIONS RELATIVE TO ARBITRARY COORDINATE SYSTEM:

Joint 3 Must Be Leftmost in x-y Plane

-10.8366. in"

P3 6.772- in

1- in

3 -1

-..

p2= 3.

(1.7618. in

pi:= 6.772. in

1-in

f94. in

2677. in

1 - in I
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CONTACT FLAT INTEGRATION ANGLES:

0ja is always less than (ir;.1.

Joint 1, Flat 1:

0,jj := 30 - -t
180

Joint 2, Flat 1:

Ofi2l := 30 - -C
180

Joint 3, Flat 1:

,3 1 := 30 - --
180

Ofll:= 150. -
180

Joint 1, Flat 2:

IT
,12 := 210 - -

180

Joint 2, Flat 2:

Oni22 := 210. -
180

Joint 3, Flat 2:
It

Of02 := 210. -
180

,f21 := 150 - -
180

0,r31:= 150 - --
180

0
f12 := 330 - -

180

Orf22 := 330 - -
180

7t
0 f32 := 330 - --

180

VARIABLES FOR FEA FORCE VS DISPLACEMENT CURVE FIT:

Joint 2

b2 := b,b1 := 0.43

K1 := 28456 lbf
1.43

lbf
K2 := 28456

1.43

lbf
K3 := 28456 -

1.43m

124
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STEP 2: SOLUTION FOR JOINT POSITION VECTORS RELATIVE TO COUPLING CENTER

01 :=atan p20 -P,P2 -PI) 02:=atan+p3 - p1,p3 -PI 1) 03:=atan p20 - P3,P21 - 31)

(4:=- -(03 + 2 -) 05:=1 - (01 + 02)2 06:=' * (01 + 03)2

(P3 1 -i + ta4O5) P10 -ta4 4 ) -p3

4c- ta4O5) -ta+)4)
YcC:=ta405) ( c-pi) + p1

Coupling Center Position Relative To Arbitrary Coordinate System:

rC -3x 1(yf

Pcc:= Ycc Pcc= 5x 16 in

Joint Coordinate System Positions Vectors Relative To Coupling Center

res1 :=p1 -Pcc

res =4.850ki

rcs2:=P2 -Pcc

Ircs =1.897fn

rcs3:=P3 -Pcc

Ircs =8.191il
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STEP 3: CALCULATION OF IMPOSED DISPLACEMENT VARIABLES AND DIRECTIONS

e:=Ar- cos. -i7j

0&max,:=atan#Sc,8y-)

a =ox 1(f deg

xy:= (E, + Ey . rad

8y:= Ar -s+ - 180
8,:= k. 2+ 8yge

k=0

1 1)

r,,:= 0 - in

0

ray := 0 - in

0

iEY - cos(Y)J

Egy := rzy- sin(y)

0

STEP 4: DIRECTION ANGLES FQfDISPLACEMENTS

x= x (r. i - r.) 8
rmaz :=z sx (rs 2 -r.)

0
&max1~z atan~8~~, 8mio~~z1) 
0

&maA~ atan u,~kz~ atan~8~,~, 8nuL~ckz 1)

8
n:=z E x (r. 3 -r

y :=atan#x, Ey



STEP 5: NORMAL DISPLACEMENTS

k(e): L-Lk,. cos(e - e.-)+ iex (re -r-)l cos(e.- e,l-)J cos(e,)+ L, - esy (R cos(e,) + Os,. sin(e- )+k Le+i x (rn, -r.)Jj- sin(e,)j

(E.r) - cos(6Q- e..) + Ie.x (rc. -r.)- cos(e- e.)] cos( ) + - styw (F,. cos(e,) + os) sin(. -) + k [e, x (rx 2 - r._] sin(e,)]

4,48,) - - [{4 . cos(8, - ) +I x ( -r) cos(e.- ) cos(e,) + [A., - Esy (. cos(e,) + os) sin(e - y) + k t x (r. 3 - r.,l]- sin(e8)]
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STEP 6: UNIT FORCE VS DISPLACEMENT LINE FIT EQUATIONS

fn2(0r) :=K2. (1In20r) I)b2 fn3(Or) :=K 3 (In3(Or)I)b3

STEP 7: CONTACT FORCES
Flat 11:

FARci ]:=(R - cos() + OSRr

Flat 12:

FARC12:=(Rs -cos(0c) + OSRr

f nf r( COS Or)- cos oC) - PTs SiWOr) + 1T- COS(Or) Si4Oc)) dOr

-fn (r) -(-SinOr) - cos() + PTs cos(Or) + PTU Si-iOr) si(Oc)) dOr

-fni(O,) (sir~6c) + PTu eo- o) d040
0

riI 1

f 
'2

.12 -fnl(Or) (OS(Or) - cos(o) - PTs *SiOr) + jTI COS(Or) - siOc)) dOr
0ri12

f-l2fni(Or) -(-si#Or) -cos(oc) + pTs -cos(Or) + pTV siidOr) - sir(Oc)) dOr

r rf 2O 12

-fni(Or) - (sin(c) + 1T1 -Cos(Oc)) dOr

128
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FARC21:=(R, -cos(Oc) + OSRc) '

OrI21f
0

i21

f 
21

-fn2(0r) s(Or) cos() - Pys - siO(r) + p1 i cos(Or) sin(o)) dOr

-fn2 (Or) -(-si(r) -cos(oc) + prs - cos(Or) + sin(Or) sin(c)) dOr

r r121
0

.21

-fn2 (Or) - (sin(c) + joi - cos(ec)) dOr

Flat 22:

FARC22:=(Rs - cos(Oc) + OSR)

rf22 n2(Or) (-cos(or) -cos(oc) - Trs Sin(Or) + pqj -Cos(o r) sin(Oc)) d 0r
0

ni22

fr122
0

.22

-p 2(Or) ' (~Si(Or) - cos(Oc) + Ts - cos(Or) + pT -si(Or) - sin(Oc)) dOr

rf22

0
.22

-fn2(Or) - (sin(o) + tm -cos(Oc)) dOr

FPEG2:=FARC21 + FARC2 2

Flat 31:

FARC3 1: s - cos(oc) + OSRr -
0

ri31

f 31-fn3(Qr) - (-cos(Or) - cos(O) - p'f - sin(or) + IT, - cos(Or) -sin(oc)) dOr
0

.31

-n 3 (Or) (-sin(or) - cos(oc) + PTs - cos(Or) + T1 -Sif(Or) sin(Oc)) dOr

f f1310
.31

-fn3(0r) - (siO(ec) + por -cos(Oc)) dOr

Flat 21:
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FARc32:=(RS -cos(Oc) + ORr)

Ori32

Ori32

-fi3(Or) (-cos(or) cos(O) - 's - sin(Or) + pt' cos(Or) sin(Oc)) dOr

-fj3(0r) (- Si(Or) cos(Oc) + gTs - cos(Or) + pri- si(6r) sin(6c)) dOr

32

f.2-f,,3(0r) - (sin(Oc) + 9T - cos(Oc)) d~r

FPEG3:=FARc 31 + FARc32

o

FARC11= 679 lbf

-513)

o '

FARc21= 679 lbf

-513)

o '

FARC31= 679 lbf

-513 )

0 )

FARC12= -679 lbf

-513)

0 )

FARc22= -679 lbf

-513)

0 )

FARC32= -679 lbf

-513)

0

FPEG1 0 bf

K1026)

FPEG2 IOJ bf

-1026

FPEG3= 0 lbf
1026)
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STEP 8: TOTAL FORCE AND TORQUE

FTOT :- PEG1 + 'FPEG2 + FPEG3

1

Fr :(FTOT) 2 + (FTOT )2 2

TTOT := rcs, x 'pEG1 + rcs2 x FPEG2 + rcs3 x FPEG3

0.33 )

FTOT! 0.01 lbf

-3077.53

Fr = 0.331bf

-1409)

TTOTr -3273 lbf-in

STEP 9: STIFFNESS CALCULATION

THIS IS BEST DONE BY HAND. TO FIND STIFFNESS,
IMPOSE DEFLECTIONS (+/-s) and follow procedure in Chapter 3

131
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Appendix C

NON-LINEAR FINITE ELEMENT
ANALYSIS

C.1 About the FEA Code

Following is the complete code for a Cosmos/M 2.5 two dimensional analysis of the

Quasi-Kinematic Coupling joint used in the case study. This code can be typed into a text

file and saved as: problemname.ses. When this file, the session file, is loaded into Cos-

mos/M, the program will automatically create the geometry, mesh, boundary conditions,

gap elements, and assign material properties. To change any values for the analysis, mod-

ify the session file accordingly, start a new problem, reload the new session file, and run

the analysis.

133
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C.2 What the Code Does

Force Loa Soft Springs

Peg __Bedplate

Block

Figure C.1 Axisymmetric Mesh For FEA Model of QKC Joint, Note: Mesh Shown to Illustrate FEA
Geometry, Actual Mesh Was Much Finer (Considerably More Cluttered)

The code generates the peg-groove geometry as a combination of points and curves, then

defines surfaces using the curves of the geometry. Next, a series of soft springs are

attached to the top surfaces/components. This is necessary to ensure stability of the model

as the top component requires some constraint (soft springs) in the y direction for the anal-

ysis to run. Without the springs, the model is under defined.

Next the element types are defined followed by the material properties. As plastic flow is

involved in this analysis, a representation of the stress-strain curve is input during this

134 APPENDIX C
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stage. The curve is approximated by two straight lines, the first represents the elastic

region and the second representing the plastic region starts at the end of the elastic curve

and continues with a different (lower) slope. Figure C.2 shows the curve fit for the steel

used for the contactors in the case study (12L14 steel). The behavior of the material is

modeled as Von Mises Isotropic Hardening and as strain rate insensitive. A series of con-

stants, i.e. gap friction, etc..., are then defined as real constants.

12L14 Steel True Stress-Strain Behavior
600

80

500 - 70.41 GPa (0.06 Mpsi) 70

400 60

503
( 300-k

- 40;.
190 GPa (27.4 Mpsi)

200 - 30-

-20
100 1

-10

0.00 0.01 0.02 0.03 0.04 0.05

Strain, mm/mm

Figure C.2 Elastoplastic Model For Material Properties of 12L14 Steel

The surfaces are then meshed with the appropriate material and element properties. Then

boundary conditions and gap elements between contacting components are defined. Next

the type of solution control, force or displacement, and associated variables are input.

This is followed by the temperature change the joint experiences during operation which

can be used to determine the stress amplitude due to temperature change.
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Various non-linear analysis options are then set. Next an alternate coordinate system

which matches the n - 1 coordinate system introduced in Section 3.2.1 is defined to sim-

plify calculation of displacements and stresses normal to and perpendicular to the groove

surface (n direction). The final commands runs the non-linear analysis.

C.3 Complete Cosmos/M 2.5 Non-linear FEA Code

C* CONE-GROOVE CONTACT SIMULATION
C* THETAc = 32
C* MU = 0
C* MARTIN L. CULPEPPER
C* MIT DEPARTMENT OF MECHANICAL ENGINEERING
C* ROOM 3-449G
C* WORK: 617 - 452 - 2395
C* mculpepp@mit.edu
C**********************************************************

C********************* GEOMETRY

CRLCORD,1,0,0.25046143803,0.650391004320539,0.0,0.216502098435614,0.650391004320539,0.0
CRLCORD,2,0,0.25046143803,0.650391004320539, 0.0, 0.25046143803,0.450421791070732, 0.0
CRLCORD,3,0,0.284844051714361,0.392740759514652,0.0,0.313902435159875,0.439243893900624,0.0
CRLCORD,4,0,0.374454281581981,0.439243893900624,0.0,0.313902435159875,0.439243893900624,0.0
CRLCORD,5,0,0.216502098435613,0.192229845762822,0.0,0.216502098435613,0.283370771900562,0.0
CRACSE,6,0,0.0,-0.0751884237119689,0.552758210512732,0.216502,0.000000,0.400445,0.147298
CRACSE,7,0,0.0,-0.0751884237119835,0.571103210512729,0.216502,0.305438,0.285844,0.411991
CRLCORD,8,0,0.25046143803,0.450421791070732,0.0,0.300440673876797,0.450421791071432,0.0
CRLCORD,9,0,0.216502098435613,0.366579244869357,0.0,0.216502098435613,0.305438265058888,0.0
CRACSE,10,0,0.0,-0.0751884237119621,0.55275821051274,0.216502,0.192230,0.280014,0.254605
CRLCORD, 11,0,0.216502098435613,0,0.0,0.216502098435613,0.192229845762822,0.0
CRLCORD, 12,0,0.539416734030825,0.439243893900624,0.0,0.374454281581981,0.439243893900624,0.0
CRLCORD,13,0,0.216502098435613,0.283370771900562,0.0,0.227671035675278,0.30124480781789,0.0
CRLCORD, 14,0,0.227671035675278,0.30124480781789,0.0,0.284844051714361,0.392740759514652,0.0
CRACSE, 15,0,0.0,-0.0751884237119992,0.552758210512754,0.491957,0.290136,0.539417,0.439244
CRLCORD, 16,0,0.34739903393138,0.361750610814435,0.0,0.491957327611912,0.290135483477866,0.0
CRACSE,17,0,0.0,-0.0751884237119906,0.552758210512752,0.400445,0.147298,0.491957,0.290136
CRLCORD, 18,0,0.280014158285545,0.254605249363136,0.0,0.400444504321378,0.147297586320461,0.0
CRACSE,19,0,0.0,-0.075188423711971,0.552758210512748,0.280014,0.254605,0.347399,0.361751
CRLCORD,20,0,0.227671035675278,0.30124480781789,0.0,0.280014158285545,0.254605249363136,0.0
CRACSE,21,0,0.0,-0.0751884237119988,0.552758210512762,0.347399,0.361751,0.374454,0.439244
CRLCORD,22,0,0.284844051714361,0.392740759514652,0.0,0.34739903393138,0.361750610814435,0.0
CRACSE,23,0,0.0,-0.0751884237120159,0.571103210512743,0.285844,0.411991,0.300441,0.450422
CRLCORD,24,0,0.25046143803,0.417584400273011,0.0,0.25046143803,0.450421791070732,0.0
CRLCORD,25,0,0.25046143803,0.417584400273011,0.0,0.285844051714361,0.411990748269025,0.0
CRLCORD,26,0,0.216502098435613,0.366579244869357,0.0,0.25046143803,0.417584400273011,0.0
CRLCORD,27,0,0.216502098435613,0.450421791070731,0.0,0.216502098435613,0.366579244869357,0.0
CRLCORD,29,0,0.216502098435613,0.450421791070731,0.0,0.25046143803,0.450421791070732,0.0
CRLCORD,28,0,0.216502098435613,0.650391004320539,0.0,0.216502098435613,0.450421791070731,0.0
ACTSET,CS,O
VIEW,0,0,1,0
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C****************** SURFACES & SPRINGS

SF4CR,1,7,25,26,9,0
SF4CR,2,23,25,24,8,0
SF4CR,3,26,24,29,27,0
SF4CR,4,29,2,1,28,0
SF4CR,6,14,20,19,22,0
SF4CR,7,13,20,10,5,0
SF4CR,8,3,22,21,4,0
SF4CR,9,19,18,17,16,0
SF4CR,10,10,18,6,11,0
SF4CR,11,21,16,15,12,0
SF4CORD, 12,0.25,0.451421791070731,0,0.310,0.451421791070731,0,0.31,0.7,0,0.25,0.7,0
SF4CORD,13,0.31,0.451421791070731,0,0.539416734030825,0.451421791070731,0,0.539416734030825
,0.7,0,0.31,0.7,0
CREXTR,1,2,1,Y,0.125
CREXTR,26,29,3,Y,0. 125
SCALE,0

C****** * ELEMENT GROUPS

EGROUP,*1* PLAN*E2*D,*,*2,1,0,1,2,0,1
EGROUP,2,PLANE2D,0,2,1,0,1,2,0,1
EGROUP,3,TRUSS2D,0,0,0,0,0,1,0,0;
EGROUP,4,GAP,1,2,0,1,3,0,0,0;
EGROUP,5,PLANE2D,0,2,1,0,1,2,0,1
EGROUP,6,GAP,1,2,0,1,3,0,0,0;
EGROUP,7,GAP,1,2,0,1,3,0,0,0;
EGROUP,8,GAP,1,2,0,1,3,0,0,0;

C * * MAT'L PROPERTIES

MPROP,1,EX,27448448,NUXY,0.29,ALPX,06E-6,ALPY,06E-6,SIGYLD,7201 1,ETAN,059847;
MPROP,2,EX,09890683,NUXY,0.33,ALPX, 1 5E-6,ALPY, 1 5E-6,SIGYLD,27391,ETAN,524736;
MPROP,3,EX,20,NUXY,0.3;
MPROP,5,EX,27448448,NUXY,0.29,ALPX,06E-6,ALPY,06E-6,SGYLD,7201 1,ETAN,59847;

C******************** REAL CONSTANTS

RCONST,3,1,1,4,1,0,0,0
RCONST,4,2,1,2,0,1e-8,
RCONST,6,6,1,2,0,1e-8,
RCONST,7,7,1,2,0,1e-8,
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RCONST,8,8,1,2,0,1e-8,

C*********************** MESH

C*----------------------------------------------
C* PEG MESH
C* ---------------------------------------

ACTSETEG,1,
ACTSET,MP,1,
M_SF,1,1,1,4,20,10,1,.5
M_SF,2,2,1,4,10,10,1,0.5
M_SF,3,3,1,4,10,12,1,1
M_SF,4,4,1,4,5,15,1,1
BONDDEF,1,1,1,1,3,2,1,1
BONDDEF,2,1,4,1,3,3,1,1

0* ------------------------------------------------
C* CONE MESH
C* ----------------------------------------
ACTSETEG2,
ACTSET,MP,2,
M_SF,6,6,1,4,20,10,1,1
M_SF,7,7,1,4,8,10,1,1
M_SF,8,8,1,4,10,10,1,1
M_SF,9,9,1,4,10,10,1,1
M_SF,10,10,1,4,8,10,1,1
M_SF,11,11,1,4,10,10,1,1
BONDDEF,2,1,6,1,7,11 1,1

C* -----------------------------------------------
C* TRUSS MESH
C* ------------------------------------------
ACTSETEG,3,
ACTSET,MP,3,
ACTSET,RC,1,
M_CR,37,40,1,2,1,1
NMERGE;

C* -------------------------------------------------
C* HOLE MESH
C* ----------------------------------------------

ACTSETEG,5,
C*ACTSET,MPC,5,
ACTSET,MP,5,
M_SF,12,12,1,4,5,10,1,1
M_SF,13,13,1,4,5,10,1,1
BONDDEF,3,1,12,1,13,13,1,1

C * * BOUNDRY CONDITIONS
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DPT,30,AU,0,33,1,
DCR,6,UY,0,6,1,
DCR,17,UY,0,17,1,
DCR,15,UY,0,15,1,
NMERGE;
EMERGE;

C***** **** GAP ELEMENTS

C* ---------------------------------------------
C* DEFINE BALL-GROOVE GAP ELEMENTS
C* ------------------------------------------
ACTSET,EG,4
ACTSET,RC,2
NLGSAUTO,0,7,0,14,14,1,1

C* ---------------------------------
C* DEFINE PEG-HOLE INTERFERENCE GAP ELEMENTS
C* --------------------------------------------
ACTSET,EG,6
ACTSET,RC,6
NLGSAUTO,0,32,0,2,2,1,1
CURDEF,TIME,2,1,0,0,1,1;

C* --------------------------------------
C* DEFINE PEG STOP - BEDPLATE SURFACE GAP ELEMENTS
C* ----------------------------------
ACTSET,EG,7
ACTSET,RC,7
NLGSAUTO,0,30,0,8,8,1,1

C* ----------------------------------------------
C* DEFINE BEDPLATE-BLOCK SURFACE GAP ELEMENTS
C* ----------------------------------------
ACTSET,EG,8
ACTSET,RC,8
NLGSAUTO,0,34,0,4,12,8,1

C******************* SOLUTION CONTROL

C*---------------------------------------------
C*DEFINE SOLUTION CONTROL-FORCE
C* ---------------------------------------
CURDEF,TIME,1,1,0,0,2,0.01,100,1,110,1
FCR,31,FY,-80,31,1;
NLCONTROL,0,1,

C*------------------------------------------------
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C*DEFINE SOLUTION CONTROL-DISPLACEMENT (use either force or displacement, not both, comented
out)
C* -------------------------
C*CURDEF,TIME,1,1,0,0,1,-.010,100,-0.017, 110,-0.017,
C*PCR,31,1,31,1,1,4
C*TIMES,0,110,1,
C*NLCONTROL,1,1,431,UY,

C******************* THERMAL CHANGE
C***************************************************************
CURDEF,TIME,3,1,0,70,100,70,110,302
NTSF,1,1,13,1;
TREF,70;

C* --------------------------
C* SET UP NONLINEAR ANALYSIS
C* ----------------------------------

TIMES,0,100,1,
A_NON,S,1,1,100,0.0001,0,T,0,0,1 E+010,0.0001,0.01,0,0.0,0,
NLAUTO, 1, 1E-008,5,100,
STRAIN_OUT,1,1,1,1,1,1

C********************************************************************
C**************** CONE COORDINATE SYSTEM

CSANGL,3,0,0,0,0,0,0,58,0
ACTSET,CS,3
CSPLOT,3,3,1
ACTSET,CS, 1

C********************* RUN ANALYSIS

R_NON
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GENERAL QUASI-KINEMATIC
COUPLING PATENT

One of the most important steps in product development is the procurement of a patent to

protect one's intellectual property. Therefore, the patent for the generic Quasi-Kinematic

Coupling has been included. This patent is still pending, hence the claims have been

omitted. The patent should issue by January, 2001 at which time the claims will be public

knowledge, available at the library in each state capital or via the web.

Note that Appendix E contains a similar patent. The two are separate as they describe two

distinct inventions. The patent in this Appendix covers the QKC in general, for all appli-

cations. The patent in the following Appendix is more specific, in that it covers an appli-

cation to automotive assemblies.

On a side note, writing a patent is a very valuable experience for an engineer. It forces one

to think about the economic and business side of design. This also saves money as the

engineer (who is more familiar with the invention) can write a patent in a short amount of

time (this patent took 10 days) compared to a patent attorney who might take several

weeks at several hundred dollars per hour. This is the third patent the author has written.
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QUASI-KINEMATIC COUPLING AND METHOD FOR USE IN ASSEMBLING AND

LOCATING MECHANICAL COMPONENTS AND THE LIKE

TECHNICAL FIELD

The present invention relates to the coupling of mechanical component parts, surfaces or

assemblies and the like (hereinafter sometimes generically termed "components"), where

low cost and repeatable coupling are desired, as, for example, in applications and pro-

cesses involving machine tool fixtures and other general assembly applications.

BACKGROUND

Better precision at lower cost is a major driving force in design and manufacturing. Tradi-

tionally, precision assemblies have used precision pins and holes for part alignments; but

the demands of manufacturing processes have now pushed performance requirements

beyond the approximately ten micron repeatability limits of such techniques. Next gener-

ation assemblies, such as, for example, machining fixtures, require low cost methods of

assembly with consistently better than ten microns repeatability. The present invention is

accordingly directed to a fundamentally new kinematic coupling, termed here a "quasi-

kinematic" coupling, which meets the more stringent demands of these processes.

While certain types of prior kinematic couplings have been used to provide affordable

sub-micron repeatability, their operation generally leaves gaps between the mated compo-

nents, and they are therefore not well-suited for those types of precision assembly applica-

tions that require contact or sealing, such as in casting. This problem has been addressed

in part by compliant kinematic couplings as described in US Patent No. 5,678,944, Flex-

ural Mount Kinematic Coupling and Method, of common assignee Advanced Engineering

Systems Operation and Products (AESOP) Inc. herewith. These types of couplings kine-
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matically locate components and then allow translation parallel to the mating direction

until contact is made between the desired surfaces. Though constituting a significant

improvement, such couplings are not ideally suited for use in high volume manufacturing

and assembly processes, due to the cost of manufacturing and assembling the flexural and

kinematic components. Another limitation of these couplings resides in their inability to

be arranged so that most of the resistance to error-causing loads is aligned in a common

direction, while maintaining high stiffness in an orthogonal direction.

The present invention, on the other hand, as later more fully explained, overcomes such

limitations by using conical shaped grooves with relieved sides which can direct a desired

portion of their error resistance along a direction without seriously compromising the

resistance to error in an orthogonal direction. Accomplishing this function in prior classi-

cal or flexural kinematic couplings is not achievable since their use of conventional

straight V grooves leaves one degree of freedom and with very low stiffness.

In further US Patent No. 5,769,554, also of common assignee, an invention is described

for use in sand casting and similar applications which incorporates kinematic elements

into parts of the mold in a manner that admirably solves this problem, though only for low

precision or sand mold assemblies and the like. The use of this coupling in large scale

assembly and locating applications is, however, somewhat limited due to the fact that the

kinematic elements must be pre-formed into the components. This technique, therefore, is

not well suited for coupling situations requiring precision assemblies where machining of

the mating surfaces is required, more specifically, in high precision assembly activities

where the mating of the components is dependent upon the depth and size of the kinematic

elements (i.e. grooves.) For such higher precision assemblies, this geometric relationship

is sensitive enough that the capability of net shape manufacturing processes is insufficient

to hold the relation between the kinematic features and the mating surface. While this

problem may be addressed by machining the contact surfaces of the mated components,

this would destroy the geometric relationship initially imparted to the components by the

net shape process, nullifying the advantage of pre-formed elements.
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In the absence of the ability to form, as, for example, by casting these kinematic features,

they must be machined. Machining straight grooves into components requires translation

motion in a minimum of two directions; depth perpendicular to the mating surface and

translation in a direction contained in the plane defined by the contact surface. In compar-

ison, the present invention, through using the principle of said patents, also introduces a

novel way to form quasi-kinematic elements during a simple plunge operation using a

rotating form tool, further providing a low cost method to manufacture these elements

while simultaneously machining other features into the mated components.

OBJECTS OF THE INVENTION

An object of the present invention, accordingly, is to provide a new and improved low cost

quasi-kinematic coupling and method which enable repeatably locating two or more com-

ponents, surfaces, or assemblies or the like without any of the above-described or other

limitations of prior couplings.

A further object is to provide such a novel coupling in which opposing surfaces of the

components are allowed to come into intimate contact and form a sealable joint, and

wherein repeatability is less sensitive to errors in the relative placement of the kinematic

elements, and with the transverse stiffness of the coupling decoupled from the transverse

quasi-kinematic coupling stiffness by relying on the resistance to motion due to friction

between the surfaces of the mated components, and the stiffness of the coupling in the

mated direction is decoupled from the quasi-kinematic coupling stiffness by relying on the

resistance to motion due to a clamping force and the contact of the mated surfaces.

Another object of the invention is to provide a quasi-kinematic coupling in which the ori-

entation of its kinematic elements can be set to provide maximum resistance to error-caus-

ing loads in a plane perpendicular to the mating direction, while maintaining resistance to

motion in the same plane, but perpendicular (orthogonal) to the sensitive direction.
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Other and further objects will be explained hereinafter and are more fully delineated in the

appended claims.

SUMMARY

In summary, from one of its important aspects, the invention embraces a method of quasi-

kinematic coupling of two matable components with repeatable location alignment of

their mating surfaces, that comprises, providing the mating surfaces with correspondingly

disposed respective sets of three grooves and corresponding mating protrusions, each of

the grooves and protrusions being formed as surfaces of revolution, bringing the mating

surfaces together to establish six lines of groove-protrusion contact, two lines at each mat-

ing groove and protrusion, and with a small gap maintained between the two components

mating surfaces; and clamping by forcing the components together to seat the protrusions

in the grooves and seal the gap to effect the coupling with the two component mating sur-

faces in contact.

This invention is a fundamentally new kinematic coupling for use in precision alignment

of product components, tooling, and fixtures and the like which require a repeatable, low

cost manufacturing and assembly process, and it incorporates conical grooves, sometimes

with accompanying side reliefs, into one mated component and spherical members into

the other component. These elements can either be machined directly into the mating

components or attached to them. This is herein described as "quasi-kinematic" because

the relative position of the mated components is defined by six lines of contact at the kine-

matic interfaces, as distinguished from six points of contact used in a true kinematic cou-

pling. The line contact results from mating two surfaces of revolution, the conical groove

and the spherical peg.

The six lines of contact (two at each sphere-groove interface) act to define the six relative

degrees of freedom between the mated components. This is a weakly over-constrained
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system that still effectively acts like a kinematic coupling. The interface is designed such

that a small gap is left between the contacting surfaces in order to ensure the kinematic

nature of the joint. A force is then applied to properly seat the spherical members in the

grooves. Specific compliance characteristics can be designed into the kinematic elements,

making it possible for them to deform under additional preload, even to the point where

the opposed surrounding planar surfaces touch. When the clamping force is released, all

or a fraction of the gap is restored through elastic or resilient recovery of the kinematic

element material, thus ensuring that the next mate will still be quasi-kinematic.

The coupling is readily designed or incorporated into existing parts since the kinematic

elements can be made by simple, low cost manufacturing processes. Its application is

especially suited to applications which have traditionally heretofore used pinned joints,

including many medium and large scale manufacturing processes such as casting, assem-

bly, and fixturing.

Preferred and best mode design and operation methods are hereinafter detailed.

DRAWINGS

The aforementioned invention will now be described with reference to the accompanying

drawing in which:

FIG 1 is an illustration of a generic quasi-kinematic coupling constructed in accordance

with a preferred embodiment of the invention;

FIG 2 is a detail of a generic quasi-kinematic spherical element;

FIG 3 is a detail of a hollow center crowned peg that allows a preload bolt to pass through

it center;

FIG 4 is a detail of a generic quasi-kinematic conical groove;



APPENDIX D 147

FIG 5 is a two-dimensional view of several quasi-kinematic grooves with different con-

tact angles;

FIG 6 is a cross section of a generic quasi-kinematic joint clamped together by a bolt;

FIG 7 details the contact lines in a quasi-kinematic coupling's conical groove;

FIG 8 shows a tool which can simultaneously machine a conical groove and drill a hole;

FIG 9 shows side reliefs of a conical groove cast in prior to the machining of the seats;

FIG 10 shows a conical groove with cast in side reliefs after machining with a form tool;

PREFERRED EMBODIMENT(S) OF THE INVENTION

FIG 1 shows the open coupling 2-4 of the invention in its generic form. The coupling

consists of three spaced conical grooves 3a, 3b, and 3c attached to or machined into the

inner surface 25 of the first (lower) component 4, and three corresponding spherical peg or

protruding elements la, lb, and 1c attached or machined into the opposing or inner sur-

face 26 of the second (upper) component 2, FIGs. 1 and 2. When such a coupling is ini-

tially mated, each spherical protrusion element la, 1b, and lc contacts its corresponding

conical groove 3a, 3b, and 3c, and surfaces 25 and 26 will be parallel and separated by a

small gap.

This contact takes place on seats of the conical grooves, as shown at 7a and 7b for the

illustrative groove 3a, in FIG 4 and FIG 7. The contact can be modeled as along lines 17a

and 17b, FIG 7, since the surfaces of the spherical elements la, lb, and lc and the sur-

faces of the conical grooves 3a, 3b, and 3c are surfaces of revolution. With each conical

groove 3a, 3b, and 3c having reliefs 8a and 8b at the appropriate location, the contact areas

can be made to resemble those of a kinematic coupling.
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FIG 5 shows four views of conical grooves with varying contact angles (O0, 01, 02, 03) at

59a, 59b, 59c, and 59d, respectively. As the contact angle of the seats 10a, 10b, 10c, and

1Od increases, as by decreasing relief zones 11a, 1lb, 11 c, and 11d, respectively, the cou-

pling becomes more like a deterministic kinematic coupling. The benefit of reducing the

contact angle 59 is limited by the contact stress, which increases with decreasing contact

angle Q.

The resulting contact defines a near kinematic or "quasi-kinematic" definition of six

degrees of freedom between the first component 2 and second component 4, as before

described. Practically, due to manufacturing errors, only a portion of the seats 7a and 7b

in a joint will contact the surface of the spherical member, such as the member I a shown

in FIG 3. This situation, in addition to friction forces at the sphere-groove contact inter-

face, can prevent the first component 2 from settling into its most stable equilibrium. This

can further be prevented with a preload force (schematically shown as F in FIG 1) that is

ideally parallel to the mating direction and large enough to overcome the contact friction

and properly seat the spherical member la in its groove 3a. Once the preload is applied,

the coupling defines a repeatable mate. In addition, if the mating of the opposed faces 25

and 26 of components 4 and 2 respectively, is desired, compliance characteristics (elastic

and plastic) can be designed into the kinematic elements la, 1b, 1c, 3a, 3b, and 3c so that

additional preload force causes them resiliently to deform and allow the opposing surfaces

25 and 26 to contact, thereby forming a sealable joint.

Depending upon several factors, including the manufacturing capability of the machines

used to make and locate the kinematic elements la, lb, 1c, 3a, 3b, and 3c, shown generi-

cally in FIG 1, the size of the mated gap 60 seen in the cross section in FIG 6, will vary.

Ideally, the gap variation will be such that mating of the opposed surfaces 25 and 26 will

require only elastic deformation of the kinematic elements la, lb, 1c, 3a, 3b, and 3c.

However, when the manufacturing process is not capable of holding the required toler-

ances, plastic deformation of the kinematic elements la, lb, 1c, 3a, 3b, and 3c may occur.

In either case, after the initial mate, the material in the kinematic elements la, lb, 1c, 3a,
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3b, and 3c will recover elastically, restoring a portion of the initial gap 60. This is neces-

sary to maintain the quasi-kinematic nature of the joint for future mating sequences.

The present invention provides a low cost alternative to prior methods. A quasi-kinematic

coupling of the invention can readily use for example three conical grooves 35a, 35b, and

35c machined into a block and three crowned pegs pressed into a mating component. A

crowned peg la, as shown in FIG. 3, can be inexpensively made as a semi-precision piece

in a turning operation. Since conical grooves and press fit holes can be created by revolv-

ing tools, their placement is well suited, but not limited, to be aligned with features which

are manufactured by revolving tools (i.e. drilled holes.) This allows the simultaneous

machining of the conical grooves and additional features with a form tool 31 shown in

FIG 8. The form tool 31 can also be used in conjunction with pre-cast reliefs 22a and 22b,

shown in FIG 9, to form the joint seen in FIG 10.

FIG 3 and FIG 4 show holes 50a and 49a in the kinematic elements through which bolts

can pass. In addition, the joints should be located over features which form the largest tri-

angle that will fit within the perimeter of the components. This is desired to provide max-

imum resistance to the torsion loads induced by the friction between the head(s) of the

bolt(s) 12 and the surface of the component 2 which is bolted on.

As shown in FIG 9, the pre-machined reliefs 22a and 22b can be economically manufac-

tured by casting. This is permissible as the depth of the reliefs 22a and 22b need not be

precisely located with respect to the mated surface 25. In addition, if the position of

reliefs 22a, and 22b in the plane of the mated surface 25 is on the order of the capabilities

of most the casting processes, it will not have a significant effect on the repeatability of the

coupling.

Important design parameters of the quasi-kinematic joint of the invention will now be

examined with reference to FIGS. 3, 4, 5, and 6. The two radii of the spherical member

la, for example, the two radii of the corresponding conical groove 3a, the seat contact

angle 59 (Q), the depth of the conical groove 3a, the depth of the side reliefs 8a and 8b,
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and the materials used for the peg la and conical groove 3a are the most important param-

eters. With reference to FIG 6, it has earlier been stated that quasi-kinematic couplings of

the invention initially have a small gap 60 between the mating surfaces 25 and 26. This

might, for example, be on the order of 0.10 mm, more or less. It is desired to choose the

design parameters such that the gap 60 is not so large as to cause the surface of the spheri-

cal element such as la, to undergo plastic deformation during mating. If this is not

avoided, the edges of the groove seats 62a, 62b, 62c, and 62d will leave indentations in the

surface of the spherical element la, etc. This will adversely affect the repeatability of the

coupling as during re-mating, the indentations will catch at random locations on the edges

of the conical grooves 62a, 62b, 62c, and 62d. The result is an additional error in the

location of the kinematic coupling which may not be correctable by additional preload.

Choosing materials such that the spherical member la is harder than the conical groove 3a

and optimizing the dimensions of the kinematic elements via finite element analysis are

thus recommended.

Another important design consideration is the clamping force F. The clamping load and

coefficient of friction should be chosen to provide an adequate friction force to resist all

applied loads, even if the kinematic components were absent. In certain applications, a

glue or sealing agent can be introduced between the mated components which will act to

seal the interface or maintain joint position.

Transverse stiffness of the coupling is decoupled through the resistance to motion due to

friction between the mating surfaces and the stiffness in the direction of mating is decou-

pled through the resistance to motion due to the clamping force and the contact of the

mated surface.

In some applications where a kinematic joint is used coaxial with a tapped hole, an addi-

tional relief 45 may be required, as illustrated in FIG 6. The deformation in the first

threads 53 of the taped hole can cause deformation in the groove seats 63a and 63b. To

avoid this, the threads 53 should start far enough from the seats 63a and 63b so that the
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deformation in the threads 53 does not affect the geometry of the seats 63a and 63b. If

space is limited, finite element analysis is well suited to determine the minimum size of

the relief needed to accomplish this.

Quasi kinematic couplings of the invention have many benefits over traditional kinematic

couplings and other alignment methods, such as pinned joints, as earlier pointed out. They

are less expensive to manufacture than many pinned joints since the kinematic elements

require little precision machining and can be made with standard manufacturing pro-

cesses. This, in conjunction with fewer components, make their use more economical and

less complex than pinned joints. When comparing repeatability, a quasi-kinematic cou-

pling constructed in accordance with the present invention, such as shown in FIG 1, can

attain 1 micron repeatability at a fraction of the cost of a pinned joint, which is typically

only capable of five - ten micron repeatability. In addition, quasi-kinematic coupling joint

placements are less sensitive to misalignment, since a spherical element, such as la, can

easily fit into a conical hole 3a which is somewhat misaligned; then, through elastic/plas-

tic deformation, make it conform during the initial mate. Increased clamping force F

causes the surfaces 25 and 26 to touch without a loss of relative repeatability, thereby

allowing the joint to be sealed. In comparison, the pinned joint method is intolerant and

incapable of eliminating initial misalignment. Another benefit is that clamping the com-

ponents together in a quasi-kinematic coupling, forces each spherical element into a coni-

cal groove, thereby inducing a centering effect which forces the mated components 2 and

4 into a best overall position. When using the pinned joint method, on the other hand, a

centering effect does not occur.

In alternative embodiments, this coupling may also be used, as before stated, in the preci-

sion alignment of product components, parts to machine tool fixtures, machine tool fix-

tures to machines, casting molds and the like. In some applications, the three sets of

mating conical grooves and spherical plugs are spaced to form a symmetrical equilateral

or substantially equilateral triangle as in FIG 1, for example; whereas in other applica-

tions, particularly where the structure of the mating components does not permit such
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symmetrical spacing, other and non-symmetrical spacing geometries may also be used.

Other variations, modifications, and other implementations of what is described herein

will also occur to those of ordinary skill in the art without departing from the spirit and the

scope of the invention as claimed. Accordingly, the invention is to be defined not just by

the preceding illustrative description, but instead by the spirit and scope of the following

claims.

What is claimed is:

CLAIMS

This patent is still pending, therefore the claims must be omitted for confidentiality.
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ABSTRACT

A quasi-kinematic coupling for mating components (mechanical parts, surfaces, assem-

blies and the like) employing mating sets of surface of revolution, (conical) grooves and

cooperative surface of revolution (spherical/conical) protrusions for establishing six lines

(not just prior points) of contact at the kinematic interfaces, and with elastic compliance

therebetween and preferably with relief features to define the effective orientation as a

clamping force seats the protrusions in the grooves and seals the component mating sur-

faces into contact.
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Appendix E

AUTOMOTIVE QUASI-KINEMATIC
COUPLING PATENT

This patent is still pending, hence the claims have been omitted. The patent should issue

by January, 2001 at which time the claims will be public knowledge, available at the

library in each state capital or via the web.

Note that Appendix D contains a similar patent. The two are separate as they describe two

distinct inventions. The patent in Appendix D covers the QKC in general, for all applica-

tions. The patent in this Appendix is more specific, in that it covers an application, use in

automotive assemblies.

157
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QUASI-KINEMATIC COUPLING AND METHOD FOR USE IN ASSEMBLING AND

LOCATING ENGINE VEHICLE COMPONENTS AND THE LIKE

TECHNICAL FIELD

The present invention relates to the coupling of mechanical component parts, surfaces or

assemblies and the like (hereinafter sometimes generally termed "components"), where

low cost and repeatable coupling are desired, particularly, in applications and processes

involving the manufacture and assembly of automobile or similar engines, and the like.

BACKGROUND

Better precision at lower cost is a major driving force in design and manufacturing. Tradi-

tionally, precision assemblies have used precision pins and holes for part alignments; but

the demands of manufacturing processes have now pushed performance requirements

beyond the approximately ten micron repeatability limits of such techniques. Next gener-

ation assemblies, such as, for example, automotive assemblies and machining fixtures,

require low cost methods of assembly with consistently better than ten microns repeatabil-

ity. The present invention is accordingly directed to a fundamentally new kinematic cou-

pling, termed here a "quasi-kinematic" coupling, which meets the more stringent demands

of these processes.

While certain types of prior kinematic couplings have been used to provide affordable

sub-micron repeatability, their operation generally leaves gaps between the mated compo-

nents, and they are therefore not well-suited for those types of precision assembly applica-

tions that require contact or sealing, such as in casting. This problem has been addressed

in part by compliant kinematic couplings as described in US Patent 5,678,944, Flexural
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Mount Kinematic Coupling Method, of co-assignee Advanced Engineering Systems

Operation and Products (AESOP) Inc. These types of couplings kinematically locate

components and then allow translation parallel to the mating direction until contact is

made between the desired surfaces. Though constituting a significant improvement, such

couplings are not ideally suited for use in high volume manufacturing and assembly pro-

cesses, due to the cost of manufacturing and assembling the flexural and kinematic com-

ponents. Another limitation of these couplings resides in their inability to be arranged so

that most of the resistance to error-causing loads is aligned in a common direction, while

maintaining high stiffness in an orthogonal direction.

The present invention, on the other hand, as later more fully explained, and as a specific

application to vehicular engine assembly of the invention of U.S. Patent application Serial

No. , filed , entitled Quasi-Kinematic Coupling and

Method For Use in Assembling and Locating Mechanical Components and the Like and

also assigned to said AESOP, overcomes such limitations by using conical shaped grooves

with relieved sides which can direct a desired portion of their error resistance along a

direction without seriously compromising the resistance to error in an orthogonal direc-

tion. Accomplishing this function in prior classical or flexural kinematic couplings is not

achievable since their use of conventional straight V grooves leaves one degree of free-

dom and with very low stiffness.

In further, US Patent No. 5,769,554, also of common assignee, an invention is described

for use in sand casting and similar applications which incorporates kinematic elements

into parts of the mold in a manner that admirably solves this problem, though only for low

precision or sand mold assemblies and the like. The use of this coupling in large scale

assembly and locating applications is, however, somewhat limited due to the fact that the

kinematic elements must be pre-formed into the components. This technique, therefore, is

not well suited for coupling situations requiring precision assemblies where machining of

the mating surfaces is required as with automobile engine components; more specifically,

in high precision assembly activities where the mating of the components is dependent
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upon the depth and size of the kinematic elements (i.e. grooves.) For such higher preci-

sion assemblies, this geometric relationship is sensitive enough that the capability of net

shape manufacturing processes is insufficient to hold the relation between the kinematic

features and the mating surface. While this problem may be addressed by machining the

contact surfaces of the mated components, this would destroy the geometric relationship

initially imparted to the components by the net shape process, nullifying the advantage of

pre-formed elements.

In the absence of the ability to form, as, for example, by casting these kinematic features,

they must be machined. Machining straight grooves into components requires translation

motion in a minimum of two directions; depth perpendicular to the mating surface and

translation in a direction contained in the plane defined by the contact surface. In compar-

ison, though the present invention is based upon, uses, and embraces the principles of said

patents and of said co-pending application, it introduces a novel design which orients the

kinematic elements in a way which enhances the stiffness in a desired sensitive direction

without substantially degrading the repeatability in the non-sensitive orthogonal direction.

OBJECTS OF THE INVENTION

An object of the present invention, accordingly, is to provide a new and improved low cost

quasi-kinematic coupling and method which enable repeatably locating two or more vehi-

cle components, surfaces, or assemblies or the like without any of the above-described or

other limitations of prior couplings.

A further object is to provide such a novel coupling in which opposing surfaces of the

engine components or the like are allowed to come into intimate contact and form a seal-

able joint, and wherein repeatability is less sensitive to errors in the relative placement of

the kinematic elements, and with the transverse stiffness of the coupling decoupled from

the transverse quasi-kinematic coupling stiffness by relying on the resistance to motion

due to friction between the surfaces of the mated components, and the stiffness of the cou-

pling in the mated direction is decoupled from the quasi-kinematic coupling stiffness by
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relying on the resistance to motion due to a clamping force and the contact of the mated

surfaces.

Another object of the invention is to provide a quasi-kinematic coupling of engine compo-

nents and the like in which the orientation of its kinematic elements can be set to provide

maximum resistance to error-causing loads in a plane perpendicular to the mating direc-

tion, while maintaining resistance to motion in the same plane, but perpendicular (orthog-

onal) to the sensitive direction.

Other and further objects will be explained hereinafter and are more fully delineated in the

appended claims.

SUMMARY

In summary, from one of its important aspects, the invention embraces a method of quasi-

kinematic coupling of two matable vehicle engine components with repeatable location

alignment of their mating surfaces, that comprises, providing the mating surfaces with

correspondingly disposed respective sets of three non-symmetrically space grooves and

corresponding mating protrusions, each of the grooves and protrusions being formed as

surfaces of revolution, bringing the mating surfaces together to establish six lines of

groove-protrusion contact, two lines at each mating groove and protrusion, and with a

small gap maintained between the two components mating surfaces; and clamping by

forcing the components together to seat the protrusions in the grooves and seal the gap to

effect the coupling with the two component mating surfaces in contact.

This invention is a fundamentally new kinematic coupling for use in precision alignment

of product components, tooling, and fixtures and the like which require a repeatable, low

cost manufacturing and assembly process, and it incorporates conical grooves, sometimes

with accompanying side reliefs, into one mated component and spherical members into

the other component. These elements can either be machined directly into the mating
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components or attached to them. This is herein described as "quasi-kinematic" because

the relative position of the mated components is defined by six lines of contact at the kine-

matic interfaces, as distinguished from six points of contact used in a true kinematic cou-

pling. The line contact results from mating two surfaces of revolution, the conical groove

and the spherical peg.

The six lines of contact (two at each sphere-groove interface) act to define the six relative

degrees of freedom between the mated components. This is a weakly over-constrained

system that still effectively acts like a kinematic coupling. The interface is designed such

that a small gap is left between contacting surfaces in order to ensure the kinematic nature

of the joint. A force is then applied to properly seat the spherical members in the grooves.

Specific compliance characteristics can be designed into the kinematic elements, making

it possible for them to deform under additional preload, even to the point where the

opposed surrounding planar surfaces touch. When the clamping force is released, all or a

fraction of the gap is restored through elastic or resilient recovery of the kinematic ele-

ment material, thus ensuring that the next mate will still be quasi-kinematic.

The coupling is readily designed or incorporated into existing parts since the kinematic

elements can be made by simple, low cost manufacturing processes. Its application is

especially suited to applications which have traditionally heretofore used pinned joints,

including many medium and large scale manufacturing processes such as casting, assem-

bly, and fixturing.

Preferred and best mode design and operation methods are hereinafter detailed.

DRAWINGS

The aforementioned invention will now be described with reference to the accompanying

drawing in which:



FIG 1 is an illustration of a generic quasi-kinematic coupling constructed in accordance

with the invention of said co-pending application and the principles of which are used in

the vehicle engine application of the present invention;

FIG 2 is a detail of a generic quasi-kinematic spherical element;

FIG 3 is a detail of a crowned peg used in the assembly of an internal combustion engine;

FIG 4 is a detail of a generic quasi-kinematic conical groove;

FIG 5 is a two-dimensional view of several quasi-kinematic grooves with different con-

tact angles;

FIG 6 is a cross section of a generic quasi-kinematic joint clamped together by a bolt;

FIG 7 details the contact lines in a quasi-kinematic coupling's conical groove;

FIG 8 shows a tool which can simultaneously machine a conical groove and drill a hole;

FIG 9 shows side reliefs of a conical groove cast in prior to the machining of the seats;

FIG 10 shows a conical groove with cast in side reliefs after machining with a form tool;

FIG 11 shows the error caused by misalignment of the bore and bedplate center lines;

FIG 12 shows an engine block equipped for use with a quasi-kinematic coupling in accor-

dance with the present invention;

FIG 13 shows an engine bedplate equipped for use with a quasi-kinematic coupling;

FIG 14 is an exploded view of a generic reciprocating internal combustion engine;

FIG 15 shows the elements of a typical pinned joint incorporated into an engine bedplate;

FIG 16 is a three-dimensional view of half of an aligned quasi-kinematic coupling;
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FIG 17 is a two-dimensional view of half of an aligned quasi-kinematic coupling;

FIG 18 is a three-dimensional view of the half of an aligned kinematic coupling;

FIG 19 is a two-dimensional view of the half of an aligned kinematic coupling;

FIG 20 is a schematic illustrating the most stable orientation of a kinematic coupling;

FIG 21 is a schematic illustrating an unstable orientation of a kinematic coupling;

FIG 22 is a view further clarifying the orientation of the kinematic components in FIG. 20;

and

FIG 23 is a similar view further clarifying the orientation of the kinematic components in

FIG 21.

FIG 24 is a view which illustrates how a quasi-kinematic coupling can be used to define a

repeatable mate between engine heads and blocks for the purposes of the present inven-

tion.

PREFERRED EMBODIMENT(S) OF THE INVENTION

FIG 1 shows the open coupling 2-4 of the invention of said co-pending application in its

generic form. The coupling consists of three spaced conical grooves 3a, 3b, and 3c

attached to or machined into the inner surface 25 of the first (lower) component 4, and

three corresponding spherical peg or protruding elements la, lb, and lc attached or

machined into the opposing or inner surface 26 of the second (upper) component 2 , FIGS.

1 and 2. When such a coupling is initially mated, each spherical protrusion element la,

lb, and 1c contacts its corresponding conical groove 3a, 3b, and 3c, and surfaces 25 and

26 will be parallel and separated by a small gap.
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This contact takes place on seats of the conical grooves, as shown at 7a and 7b for the

illustrative groove 3a, in FIG 4 and FIG 7. The contact can be modeled as along lines 17a

and 17b, FIG 7, since the surfaces of the spherical elements la, lb, and 1c and the sur-

faces of the conical grooves 3a, 3b, and 3c are surfaces of revolution. With each conical

groove 3a, 3b, and 3c having reliefs 8a and 8b at the appropriate location, the contact areas

can be made to resemble those of a kinematic coupling.

FIG 5 shows four views of conical grooves with varying contact angles ( 0, 0, 02, 03) at

59a, 59b, 59c, and 59d, respectively. As the contact angle of the seats 10a, 10b, 10c, and

10d increases, as by decreasing relief zones 1la, 11b, 11c, and 11d, respectively, the cou-

pling becomes more like a deterministic kinematic coupling. The benefit of reducing the

contact angle 59 is limited by the contact stress, which increases with decreasing contact

angle E).

The resulting contact defines a near kinematic or "quasi-kinematic" definition of six

degrees of freedom between the first component 2 and second component 4, as before

described. Practically, due to manufacturing errors, only a portion of the seats 7a and 7b

in a joint will contact the surface of the spherical member, such as the member la shown

in FIG 3. This situation, in addition to friction forces at the sphere-groove contact inter-

face, can prevent the first component 2 from settling into its most stable equilibrium. This

can further be prevented with a preload force (schematically shown as F in FIG 1) that is

ideally parallel to the mating direction and large enough to overcome the contact friction

and properly seat the spherical member la in its groove 3a. Once the preload is applied,

the coupling defines a repeatable mate. In addition, if the mating of the opposed faces 25

and 26 of components 4 and 2 respectively, is desired, compliance characteristics (elastic

and plastic) can be designed into the kinematic elements la, 1b, 1c, 3a, 3b, and 3c so that

additional preload force causes them resiliently to deform and allow the opposing surfaces

25 and 26 to contact, thereby forming a sealable joint.
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Depending upon several factors, including the manufacturing capability of the machines

used to make and locate the kinematic elements la, ib, 1c, 3a, 3b, and 3c, shown generi-

cally in FIG 1, the size of the mated gap 60 seen in the cross section in FIG 6, will vary.

Ideally, the gap variation will be such that mating of the opposed surfaces 25 and 26 will

require only elastic deformation of the kinematic elements la, 1b, 1c, 3a, 3b, and 3c.

However, when the manufacturing process is not capable of holding the required toler-

ances, plastic deformation of the kinematic elements la, ib, 1c, 3a, 3b, and 3c may occur.

In either case, after the initial mate, the material in the kinematic elements la, ib, 1c, 3a,

3b, and 3c will recover elastically, restoring a portion of the initial gap 60. This is neces-

sary to maintain the quasi-kinematic nature of the joint for future mating sequences.

The use of this device is more clearly illustrated in the context of applications underlying

the present invention such as the manufacture and assembly of reciprocating internal com-

bustion engines, hereinafter referred to as RIC engines. FIG. 14 and FIG 15 show the

crankshaft 61, journal bearings 38a - 38j, alignment pins 32a - 32j, and fastening bolts 39a

- 39t common to these types of engines. The crankshaft 61 is held between the journal

bearings 38a - 38j which reside in the block 34 and the bedplate 30. In either case, during

operation, the rotation of the crank 61 induces a pressurized oil film in the gap between the

crank shaft 61 and main bearings 38a - 38j. There is an optimal gap (on the order of 0.01

to 0.10 mm) between the bearings 38a - 38j and the crank shaft 61 which results in a min-

imum coefficient of friction for a particular design. Deviation from the optimal gap

results in an increased coefficient of friction and increased power loss.

As the relative location and size of the half bores 29a - 29e and 37a - 37e seen in FIG 12

and 13 are critical, many RIC engines are manufactured by clamping the block 34 and

bedplate 30 together, then simultaneously machining the bearing bore halves 29a - 29e and

37a - 37e. Later, the block 34 and bedplate 30 must be disassembled for crank shaft 61

and main bearing 38a - 38j installation, then reassembled. Error in relocating the bedplate

30 and block 34 results in a departure from the nominal gap between the journal bearings

38a - 38j and crank shaft 61. The allowable misalignment 64 seen in FIG 11 between the
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block bore center line 27 and bedplate bore center line 28 is quantified by specifications

on the order of five microns.

FIGS. 14 and 15 show a traditional pinned joint often used to locate the block 34 and bed-

plate 30. The pins 32a - 32j are fitted into corresponding holes in the block 34. Often,

good repeatability can only be achieved with the elastic averaging effect achieved with a

multiplicity of pinned joints (8 or more.) This makes manufacture of the joints difficult as

the location of the hole patterns in each component as well as the relative location of the

individual holes must be held to tight tolerances (on the order of 0.02 mm). Many manu-

facturing operations which machine these features have high scrap or re-work rates due to

the difficulty of holding these tolerances. Other methods for defining position such as

slotted joints and V in flats can be used; such, however are grossly over-constrained and

their performance is susceptible to contaminants.

The present invention provides a low cost alternative to these prior methods. A quasi-

kinematic coupling of the invention can readily be incorporated into RIC engines in many

ways, one of which is shown in FIG 12 and FIG 13. Three conical grooves 35a, 35b, and

35c are thereshown be machined into the block 34 and three crowned pegs 33a, 33b, 33c

are pressed into corresponding holes in the bedplate 30. A crowned peg la, as shown in

FIG 3, can be inexpensively made as a semi-precision piece in a turning operation. Since

the conical grooves 35a, 35b, and 35c and press fit holes can be created by revolving tools,

their placement is well suited, but not limited, to be aligned with features which are manu-

factured by revolving tools (i.e. drilled holes.) This allows the simultaneous machining of

the conical grooves 35a, 35b, and 35c and additional features with a form tool 31 shown in

FIG 8. In the case of an RIC engine, the placement of the joints is best suited to be coaxial

with the bolt holes used to hold the components together. The form tool 31 can also be

used in conjunction with pre-cast reliefs 22a and 22b, shown in FIG 9, to form the joint

seen in FIG 10. The structures of the engine components-to-be-mated invariably provide

non-symmetrical spacings amongst the three grooves and the corresponding three pegs or



168 APPENDIX E

protrusions, and do not lend themselves to symmetrical equilateral spacings as, for exam-

ple, in the illustration of FIG 1.

FIG 3 and FIG 4 show holes 50a and 49a in the kinematic elements through which bolts

such as 39a (FIG 14) can pass. In addition, the joints should be located over features

which form the largest triangle that will fit within the perimeter of the components. This

is desired to provide maximum resistance to the torsion loads induced by the friction

between the heads of the bolts 39a, etc. and the lower surface 71 of the bedplate 30. The

areas for this interface can most clearly seen in FIG 14.

As shown in FIG 9, the pre-machined reliefs 22a and 22b can be economically manufac-

tured by casting. This is permissible as the depth of the reliefs 22a and 22b need not be

precisely located with respect to the mated surface 25. In addition, if the position of

reliefs 22a, and 22b in the plane of the mated surface 25 is on the order of the capabilities

of most the casting processes, it will not have a significant effect on the repeatability of the

coupling. In FIGS. 12 and 13, for example, plastic deformation of the kinematic elements

33a, 33b, 33c, 35a, 35b, and 35c during the initial mating, forces alignment of the ele-

ments 33a, 33b, 33c, 35a, 35b, and 35c. Alternatively, one could machine in these fea-

tures, but in most cases at substantial added cost.

With reference to FIG 6, it has earlier been stated that quasi-kinematic couplings of the

invention initially have a small gap 60 between the mating surfaces 25 and 26. In an RIC

engine, this gap is on the order of 0.10 mm. FIGS. 12 and 13 show the spherical members

33a, 33b, and 33c which are seated in the grooves 35a, 35b, and 35c. After seating, a

series of bolts 39a - 39t are tightened, forcing the mating faces 40a, 40b and 41a, 41b of

the block 34 and bedplate 30 respectively together. As this happens, the pegs 33a, 33b,

and 33c mate with the conical grooves 35a, 35b, and 35c. Depending on system dimen-

sions and bolt forces applied, some plastic yielding may occur. The machining of the

engine then proceeds as normal. When the components are disassembled for crank shaft

61 and main bearing 38a - 38j installation, part or all of the initial gap 60 is restored
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through elastic recovery. Whether the whole or a fraction of the gap 60 is restored

depends on the nature of the initial deformation. If the deformation was purely elastic, all

of the initial gap 60 will be recovered. If the initial deformation was elastic and plastic,

only a fraction of the gap 60 will be recovered. Restoration of gap 60 is, however, neces-

sary to maintain the quasi-kinematic nature of the coupling by insuring that the mating

surfaces 40a, 40b, 41a, and 41b do not contact before the pegs 33a, 33b, 33c and conical

grooves 35a, 35b, 35c. After the bearings 38a - 38j are installed in the engine, the block

34 and bedplate 30 are mated again and fastened together.

Important design parameters of the quasi-kinematic joint of the invention will now be

examined with reference to FIGS. 3, 4, and 5. The two radii of the spherical member la,

for example, the two radii of the corresponding conical groove 3a, the seat contact angle

59 (E), the depth of the conical groove 3a, the depth of the side reliefs 8a and 8b, and the

materials used for the peg la and conical groove 3a are the most important parameters. It

is desired to choose the design parameters such that the surface of the spherical element

such as la, does not undergo plastic deformation. If this is not avoided, the edges of the

groove seats 62a, 62b, 62c, and 62d will leave indentations in the surface of the spherical

element la, etc. This will adversely affect the repeatability of the coupling as during re-

mating, the indentations will catch at random locations on the edges of the conical grooves

62a, 62b, 62c, and 62d. The result is an additional error in the location of the kinematic

coupling which may not be correctable by additional preload. Choosing materials such

that the spherical member la is harder than the conical groove 3a and optimizing the

dimensions of the kinematic elements via finite element analysis are thus recommended.

Another important design consideration is the clamping force F. For instance, consider

again the RIC engine shown in FIG 14. During operation, there are loads induced by the

normal operation of the engine which could cause relative movement between the block

34 and bedplate 30 if the joint between them was not suitably rigid. The components nor-

mal to the mated surfaces 40a, 40b, 41a, and 41b are counteracted by the force supplied by

the bolts 39a - 39t and the force supplied by the contact between the surfaces 40a, 40b,
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41a, and 41b. The loads which act to shear the two apart are counteracted by friction

resistance between mated faces 40a, 40b, 41a, and 41b. The clamping load and coefficient

of friction should be chosen to provide an adequate friction force to resist all applied

loads, even if the kinematic components were absent. In certain applications, a glue or

sealing agent can be introduced between the mated components which will act to seal the

interface or maintain joint position.

Transverse stiffness of the coupling is decoupled through the resistance to motion due to

friction between the mating surfaces, and the stiffness in the direction of mating is decou-

pled through the resistance to motion due to the clamping force and the contact of the

mated surfaces.

In some applications where a kinematic joint is used coaxial with a tapped hole, an addi-

tional relief 45 may be required, as illustrated in FIG 6. The deformation in the first

threads 53 of the taped hole can cause deformation in the groove seats 63a and 63b. To

avoid this, the threads 53 should start far enough from the seats 63a and 63b so that the

deformation in the threads 53 does not affect the geometry of the seats 63a and 63b. If

space is limited, finite element analysis is well suited to determine the minimum size of

the relief needed to accomplish this.

Quasi kinematic couplings of the invention have many benefits over traditional kinematic

couplings and other alignment methods, as earlier pointed out. For instance, as shown in

FIG 11, repeatability (minimizing the error 64) is only important in one direction perpen-

dicular to the bore center lines 27 and 28 and contained in the plane of the mated surfaces

40a, 40b, 41a, and 41b. In a traditional kinematic coupling, the grooves are orientated as

shown in FIGS. 20 and FIG 22. Ideally, the tangents 54a, 54b, and 54c to the planes con-

taining the normal force vectors 51 a, 51b, 52a, 52b, 53a, and 53b bisect the angles of the

coupling triangle (sides 67a, 67b, and 67c.) Were one to align the grooves as shown in

FIGS. 18, 19, 21, and 23, the tangents 57a, 57b, and 57c to the planes containing the nor-

mal force vectors 55a, 55b, 56a, 56b, 57a, and 57b would be parallel, as shown in FIG 21.
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This would result in a coupling which is better able to resist error-causing loads in the y

(sensitive) direction. This coupling, however, would not constrain motion in the orthogo-

nal x direction. FIG 16 and FIG 17 representing three and two-dimensional views of half

an aligned quasi-kinematic coupling, show the curved seats 65a, 65b, 65c, 65d, 65e, and

65f of a quasi-kinematic couplings wherein this curvature allows nominal orientation of

the conical grooves 42a, 42b, and 42c, thus maximizing resistance to errors in the y (sensi-

tive) direction without greatly compromising the resistance to motion in the x direction.

This is compared with the designs of kinematic couplings shown in the corresponding

three and two-dimensional views of FIG 18 and 19.

Quasi-kinematic couplings also have other benefits over pinned joints. They are less

expensive to manufacture since the kinematic elements require little precision machining

and can be made with standard manufacturing processes. This, in conjunction with fewer

components, make their use more economical and less complex than pinned joints. When

comparing repeatability, a quasi-kinematic coupling constructed in accordance with the

present invention, such as shown in FIG 1, can attain 1 micron repeatability at a fraction

of the cost of a pinned joint, which is typically only capable of five - ten micron repeat-

ability. In addition, quasi-kinematic coupling joint placements are less sensitive to mis-

alignment, since a spherical element, such as la, can easily fit into a conical hole 3a which

is somewhat misaligned; then, through elastic/plastic deformation, make it conform dur-

ing the initial mate. Increased clamping force F causes the surfaces 25 and 26 to touch

without a loss of relative repeatability, thereby allowing the joint to be sealed. In compar-

ison, the pinned joint method is intolerant and incapable of eliminating initial misalign-

ment. Another benefit is that clamping the components together in a quasi-kinematic

coupling, forces each spherical element into a conical groove, thereby inducing a center-

ing effect which forces the mated components 2 and 4 into a best overall position. When

using the pinned joint method, on the other hand, a centering effect does not occur.

In alternative embodiments, this coupling may also be used, as before stated, in the preci-

sion alignment of product components, parts to machine tool fixtures, machine tool fix-
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tures to machines, casting molds, RIC engine blocks and heads and the like. Fig. 24

shows an example of an engine head 72 equipped with quasi-kinematic elements 71 a, 7 1b,

71c that mate with corresponding quasi-kinematic grooves in the block 34. In this appli-

cation, repeatable coupling is desired to minimize misalignment between the combustion

chambers 73a, 73b, 73c, 73d and the cylinders in the block. Other applications in RIC

engines include fuel injector components, manifold to block mates, and other areas where

close fit tolerances or bearing clusters are required. Variations, modifications, and other

implementations of what is described herein will also occur to those of ordinary skill in

the art without departing from the spirit and the scope of the invention as claimed.

Accordingly, the invention is to be defined not just by the preceding illustrative descrip-

tion, but instead by the spirit and scope of the following claims.

What is claimed is:

CLAIMS

This patent is still pending, therefore the claims must be omitted for confidentiality.

ABSTRACT

A quasi-kinematic coupling for mating vehicle engine components and the like employing

mating sets of surface of revolution, (conical) unsymmetrically spaced grooves and coop-

erative surface of revolution (spherical/conical) protrusions for establishing six lines (not

just prior points) of contact at the kinematic interfaces, and with elastic compliance there-

between and preferably with relief features to define the effective orientation as a clamp-

ing force seats the protrusions in the grooves and seals the component mating surfaces into

contact.
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Appendix F

DERIVATION OF SINUSOIDAL
NORMAL DISPLACEMENTS

The QKC stiffness model allows the user to estimate the stiffness of the coupling in any of the six degrees of

freedom. This appendix covers the derivation for imposed displacement equations which were implemented

in the Math Cad model (Appendix B).

F.1 Review of Distances of Approach

The details of converting imposed displacements in six degrees of freedom into compo-

nents in functions 6r(0r) and 8z(Or) is fairly involved geometrically and mathematically. It

is not necessary to understand this conversion before using the tool in Appendix B, how-

ever, they have been included here for those seeking understanding. We begin where

Section 3.2.3 left off.

Imposed radial (6r) and axial (6) distances of approach can be broken into their compo-

nents in a Conical coordinate system. With the help of Figure F 1, one can determine

these displacement as:

8n = -8rcos(0c)+8zsin(6c) (F.1)

81 = 8,sin(oc)+ zcos(oc) (F.2)

When we consider that both 6 r and 6z can be functions of 0r, these equations become:

8n(0,) = -8r(r)COS(Oc)+ 8z(0,)sin(oc) (F.3)

183
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n
Far Field Distance of Approach

zz

8r

Cone Surface

Oc

Figure F.1 Decomposition of Radial and Axial Movements to Conical Coordinates

81(0r) = 8r(Or)sin (0c) + 8z(Or)cos(0c) (F.4)

The task then is to determine the components 8 r and 8z as functions of the radial angle, er
Fortunately, it is simpler to do all calculations in terms of r, 0, and z coordinates because

the distances of approach are a combination of various error motions which can (with

clever manipulation) be easily described in terms of r, z, and 0 r This will be made appar-

ent in subsequent sections, but Table F. 1 gives a preview of these relationships and the

nature of their components.

TABLE F.1 Error Motion Affects on Normal and Lateral Distances of Approach

Affect on 8n and 61

Sub- Sinusoidal Constant
Error Motion Component(s) Component Component

6 rcc 8xec and 6SYC X
6 zcc szcc X
Exy Ex and EY X X

X
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In the following sections, the derivations of the relationships are provided for individual

joints. They are then combined into a general formula for determining the resultant con-

tact force for a joint. These resultant forces can then be summed over the three joints.

F.2 Components Due to 6ree

F.2.1 Magnitude

The relative movement between a contactor axis and target axis (parallel to the plane of

mating) has components 8,,, and 8y. These components are combined into a common

vector, 8 rcc. As this vector is parallel to the plane of mating, it has no components in the z

direction.

e8rmax+"/2 y

C A

8ycc

Sx

N8rmax

BD

Figure F.2 Radial Displacement of Axisphere Center Relative To Cone Axis of Symmetry

It is easy for the user to understand and mathematically simpler for us to represent this and

subsequent sinusoidal relations in terms of a maximum magnitude (equivalent to ampli-

tude of the sinusoidal function) and direction the magnitude is applied. In this case, we

choose to specify the magnitude of the maximum displacement as, Ar, and the direction of

this displacement, 08rmax (specified from the x axis). The distance of approach between

far field points in the contactor and target is a function of Ar and 6 8mx and varies with or-
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F.2.2 Direction

Using Figure F.2 as an example, if we take a cross section along the line AB, the maxi-

mum distance of approach will occur in the direction of A (8rmax), the minimum in the

direction of B (6 Srmx + iT). In a cross section along CD ( 0 -mx + '/2 or 08,...x + /2), the

distance of approach will be zero. The radial component of the distance of approach can

then be represented as:

8r(0r) = 6rmax -cos( 6 rmax -Or) = Ar - cos( 68rmax - Or) (F.5)

Again using Figure F.2 as an example, 08,-_ax= 45 degrees. As a check for understanding,

the results of equation F.5 (as applied to Figure F.2) have been presented in Table F.2 for

comparison with our qualitative discussion.

TABLE F.2 Tabulated Relation Between Or and 6r(Or)

Or In Context of
Or Figure F.2 Sr(Or)

Nn-ax 450 Ar

08rmax +"/2 1350 0

O8rmax + n 2250 -Ar

Nrmax + 2 3150 0

Equation F.5 can then be substituted into the Sr(Or) portion of E3.

F.3 Components Due to EXY

Before we continue, it is best to explain a generic form we will use for calculating compo-

nents of errors due to imposed rotations.

F.3.1 Calculating Errors Due To Rotation

We consider the two components of error due to rotations as shown in Figure F3. Pro-

vided the rotation is small (less than 50), the secondary component of the error will be less
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r A

EroTAbbe Error

A'
Secondary Error

Figure F.3 Abbe Error Due To Rotation. (Rotation Vector Points Out Of Page)

than 5% of the Abbe error. Since we are dealing with very small error motions (micro-

radians), the remainder of this discussion assumes this condition is satisfied.

Given E as the rotation vector and r as the vector from the point of rotation to the location

where an Abbe error is desired, the error can then be estimated using equation F.6.

S= x (F.6)

F.3.2 Decomposition of Rotational Errors

A B C
0<L

Figure F.4 Model For Decomposition of Rotation Abbe Error

Consider a ball which is rotated about point 0. The rotation vector points into the page

and the position vector (r) is the vector from 0 to the center of the ball. We will consider

the displacement of three points (A, B, and C) in a cross section normal to the rotation vec-

tor. The displacement of B can be calculated using F.6.
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= X (F.7)

The displacements of points A and C could be done likewise, but upon inspection one can

see that they can be expressed as a combination of the displacement at B and the product

of the ball radius (R) and magnitude of the rotation (e).

SA = r o k + (R -E) (F.8)

S_ = r e k- (R -E) (F.9)

Here we have taken the dot product of equation F.7 with the unit vector in the k direction

(direction of Abbe error) to make this a scalar equation. This amounts to plucking the z

component of the displacement from the vector and using it in the calculation.

Equations F.8 and F.9 then become:

8A = E - r+ (R - E) (F. 10)

8C = E-r-(R-E) (F.11)

We began with the plane perpendicular to the rotation vector, as this will always contain

the maximum distance of approach (for use in a sinusoidal equation). To describe the dis-

placement in planes which are not perpendicular to the rotation vector, a modification

must be applied to the second term in equations F 10 or F. 11. The general equation for all

cross sections then becomes (for 6C),

8 = (E - r)+ (R -E - cos(A)) (F.12)

Here A is the angle between the perpendicular plane and the new plane of interest.
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F.3.3 Applying Decomposition of Rotational Errors to QKCs

rexy ICi

EXY CSi

Rotate About
riFXY Y

Figure F.5 Model For Calculating the Affects of EY

Figure F.5 shows the model used for calculating the affect of er, on QKCs. In addition to

the geometry of the coupling, this model requires the magnitude (IeYl) and direction (y) of

the rotation vector. Alternatively, one could define E. and E- then calculate ey and y using

equations F 13 and F. 14. It makes no difference which method is used, but the reader

should notice the tool in Appendix B is set up to receive input for er, and y.

y = atan2(_X, sY) (F.13)

Exy1 = (Ex + (F. 14)

The position (relative to the coupling center) about which the rotation occurs (rexy) is also

needed. Given r,,,, one can find riexy for each joint i. Following the reasoning of the pre-

vious section and using the variables described in Figure F.5, one can calculate the dis-

tance of approach for contact at each joint.

Sz(Or) = E x+ -x-cos(,.-r 8zsxymax) (.15)

Here O8zxy.ax is the direction at which the maximum distance of approach occurs. By

default, this direction is y + "/2. Again, Or is the angle measured from the x axis. Equation
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F. 15 can then be substituted in to the Sz component of the general distance of approach

equation, F3.

F.4 Components Due to Ez

r~z IICSi
XEZ9 Yz' Zc

Ez riz t-CSi

Figure F.6 Model For Calculating the Affects of Ez

Calculating the distance of approach due to ez is more straight forward than that due to F-,.

Figure F.6 shows the model used for calculating the affect of sz on QKCs. In addition to

the geometry of the coupling, this model requires the magnitude (IzI) of the rotation and

the position about which the rotation occurs. It also requires the direction of maximum

distance of approach. We will find this first.

We start with the form of equation F.6 expressed in terms of our model for the affects of

Fz. This gives the maximum distance of approach in the r direction as,

Xr = r = e X (r s - r) (F.16)

Where i denotes which joint is under consideration. The direction of the maximum dis-

tance of approach can found from the components of the vector S. This is simplified in

equation F. 17.

0 8rmaxisz = atan2[(Xcsi-Xe), (1 iz YEcs)] (F. 17)
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Or alternatively calculated as,

068rmaxisz = atan2 (Srmaxiszx9 8 rmaxiEzy) (F.18)

The radial distance of approach for one joint can then be calculated knowing the magni-

tude and direction of the maximum distance of approach.

6 rmaxisz zx (r. - r-F- cos(O-6rmaxiz) (F.19)

F.5 General Distance of Approach Equation

The results of the preceeding equations are combined in a general equation (F.20) for the

distance of approach in the n direction (see following page). This equation is used in

Appendix B.



8ni(Or)= -[8rccos(or - 0 8rmaxi) + K' x ('csj - ) Cos(,- 0
rmaxisz)]cos(oc) +[8 - F (R cos(Oc)+ 0SRr)sin(Or -Y)+ k- x (--. - )] sin(O)

_z - - ) +k - - X(rcs - .,y in 0
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PROOF FOR CONSTANT PLANE
STRAIN ASSUMPTION

The QKC stiffness model assumes that the data provided from the FEA input is for constant plane strain.

The following proof uses scaling arguments to develop the criteria for determining if the assumption of con-

stant plane strain is valid.

G.1 Introduction to the Analysis

The use of axisymmetric elements in an FEA analysis assumes that the strain in the direc-

tion of the radial angle is constant. In QKCs, this is not necessarily true, as the distance of

approach varies sinusoidally about the axis of symmetry. For instance, if we place a

sphere in a cone and press the sphere into the cone along the cone's axis of symmetry, then

the strain at all cross sections through the axis will be identical. However, we are impos-

ing motions, i.e. 8, which result in varying amounts of strain about the contact arc. The

task then, is to develop a criteria, which relates the geometry of the coupling elements and

the imposed displacements to an acceptable amount of error. We will begin by expressing

the analytic goal and reasoning used to reach it.

G.2 Goal and Reasoning Behind the Analysis

This analysis uses scaling arguments to justify our assumption of near constant strain with

or We will use cylindrical coordinates which greatly simplify the analysis. In scaling the
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following equations, we determine order of magnitude estimates for various quantities

using characteristic dimensions of the coupling. These are provided in Table G 1.

TABLE G.1 Order of Magnitude Scaling Quantities

Quantity Order of Magnitude
Varies As: Estimate

Ur --- Sr
r ---> Rc

AOr ---> 2n

a
ao 0UOr) ---> 28r

a 2  2 r

a(Ur) --- >26
a 2 2n

a 28,
o,.(U,.) --->

The equation for strain in the direction of the radial angle is:

U

E Or =+
r

(G1)1 ar
- (r )

We wish for the variation in angular strain, AF-r, to be small to the value of E0r Mathe-

matically, this is expressed as:

- -' Or A(
A - aer r (

«1 2)
Or 60r
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Which says the ratio of the change in angular strain to the nominal value of angular strain

should be much less than unity. We define the right most ratio in equation G2 as the

angular strain ratio.

G.3 Analysis For Estimating the Angular Strain Ratio

Taking the partial derivative of equation G 1 yields,

aF0r

a Or =1a(Ur) +
r -O

Ura + a(ur) -
-j -r r D (G3)

Within equation G3, the following term is equivalent to:

ar a (S)ao~ ao~s (G4)

Where S is the motion along the s direction. Through a scaling argument, one can obtain

an order of magnitude estimate of the differential as follows:

r -AOr) = a(r) . AO,
(RC + 8r) - (Rc - )

2n . 2n =

Where the scaled values have been chosen to provide the worst case, i.e. largest number,

scenario. Using the values in Table G 1 and equation G3, one can estimate the maximum

variation in angular strain as:

1 6r

2T
-( 1

RC+ 8r

_ 1
Re-S,)

28r 1
+ -1
2it 'Rc+8,

28r

2n
1

RC-S)
(G6)

Equation G6 can be simplified in terms of the radial distance of approach ratio, Sr/Re:

as0  R
r ~ (G7)

_(r 2

RC)

a (S)
ar

a
aor 2 - 8 r (G5)

as0 r 26 r

2n
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By combining the results of equations G2 and G7, the angular strain ratio can be esti-

mated as:

_r4

EOr 3

(
R)

Or 2
R - -

(G8)

We wish the ratio on the left hand side to be much less than 1. With some rearrangement,

equation G8 is expressed as:

3
2

- << 1
1 -«12

(G9)

A plot of the equation G7, provided in Figure G 1shows the relationship is approximately

linear for small values of 8r/Rc. It is common engineering practice to say that quantities

Figure G.1 Relation of Angular Strain and Radial Distance of Approach Ratios
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which have less than X % effect on the total can be neglected. A common value for prac-

tical applications is X = 5 %, or 1 in 20 affect. From Figure G 1, one can see that this

occurs at '/Rc ~ 3/100. In QKCs, this is not a difficult criteria to satisfy, as the ratio will be

on the order of:

6r 1micron 1
R 5mm 5000

cQKC
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