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Abstract

Aeroelasticity is a critical issue in the design of aircraft and other aerospace vehicles,
particularly those with highly flexible components. A reliable but efficient analysis
tool is required to aid decision-making in the preliminary design phase. This thesis
focuses on the unsteady aerodynamics component of the total aeroelastic system.
Classically unsteady aerodynamics has been grounded on the Theodorsen function,
which identifies the response of a 2-D wing section to harmonic pitch and plunge
oscillations. Recently, however, the Aerodynamic Impulse Response has emerged,
identifying a more fundamental aerodynamic response of a discrete-time system as
that to a unit impulse. With this response, the response to any motion in the time
domain can be easily predicted. This thesis examines the Aerodynamic Impulse
Response method using an aerodynamic panel code, PMARC, to obtain impulse
responses. The basic formulation of the method is limited to rigid-body analyses and
is thus of limited use to aeroelastic studies. To this end, the method is extended to
flexible-body responses by considering impulse distribution functions that are related
to structural mode shapes of the body. Both linear and nonlinear responses are
considered: the former uses convolution to generate arbitrary responses, the later
the Volterra series. Linear results for both rigid and flexible bodies are encouraging.
Predictions for a range of input motions closely match the unsteady response from
PMARC for the same motion. However, for harmonic motion accuracy erodes for
f/At < 0.05, limiting the frequency range over which the model is accurate. Nonlinear
responses are erratic and further study is required.

Thesis Supervisor: Carlos E. S. Cesnik
Title: Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

A vital ingredient of the design of modern aerospace vehicles is an aeroelastic stability

analysis. Aeroelasticity is the study of the interaction of a vehicle's structure and the

forces exerted on it by the flow of a fluid around it. Though generally considered in

its aerospace context, aeroelastic behavior extends into marine and civil structures

as well. Aeroelastic instabilities occur when a perturbation to the structure, rather

than being damped out, grows exponentially. Aeroelastic instabilities are typically

catastrophic. A well-known example of an aeroelastic instabilty is the collapse of the

Tacoma Narrows bridge in 1944. Wind flowing across the deck of the bridge excited

an unstable vibration that caused the deck to "gallop" until finally breaking apart.

Because of the catastrophic nature of aeroelastic phenomena, it is crucial that the

aeroelastic behavior of a new flight vehicle be well understood prior to its production.

Aeroelastic models consist of an unsteady aerodynamics component and a

structural dynamics component with an interface between the two. Structural

dynamic models predict deflections of a structure due to an applied force, and,

generally speaking, are well developed for both linear and nonlinear problems. Forces

exerted on the structure due to the flow over it are computed with the unsteady

aerodynamics component and fed back to the structural model. These forces are

generally time and motion dependent. The unsteadiness of the flow is key: the forces

exerted on a body in an unsteady flow field may be very different than those exerted on

it in a steady flowfield. In particular, aerodynamic lags or transient repsonses become
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important in unsteady analyses. Thus, robust aerodynamic models are called for. In

many cases, the bulk of the computational resources for an aeroelastic stabilty analysis

must be devoted to the aerodynamics component. High-fidelity fluid analyses often

require hours or tens of hours of machine time even on high-performance computers.

Hence, there is considerable interest in developing methods that will produce an

accurate result while not being prohibitively expensive to run. This is particularly

important for preliminary design work, as the design process is iterative and it would

not be feasible to run these high-fidelity analyses repeatedly.

Various methods to cut back the computational expense of unsteady aerodynamic

analyses have been proposed and investigated. One such model that looks promising is

the Aerodynamic Impulse Response (AIR) method, which has been recently developed

at the NASA Langley Research Center [8, 9, 10]. This technique identifies the

response of the aerodynamic system to a unit perturbation as the fundamental

response of the system; given this fundamental response, the response of the system

to an arbitrary input can be quickly calculated by convolution of the input and

the impulse response. This method offers considerable computational savings over

having to execute the aerodynamic analysis code for every input change. To date,

the method has primarily been employed using CFD models to obtain the impulse

response; however, because the theory is valid for arbitrary mathematical systems,

any unsteady aerodynamics model can be used with the method. The benefit of this

method is that the aerodynamic model needs only to be run once for a given set of

freestream flow parameters (e.g., Mach number and Reynolds number) to obtain the

impulse response. Once obtained, this impulse response can be used in conjunction

with a convolution routine, much faster than the flow solver, to obtain the response

to any input.

In some cases, further simplification of the model can be achieved by employing the

impulse response method with a low-order aerodynamic model instead of a CFD code.

Low-order aerodynamics models are obtained by approximating the nonlinear Navier-

Stokes equations. The assumptions involved have the effect of reducing the accuracy

of the solution and limiting the range of applicability of the model; however, when
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employed appropriately, low-order models provide preliminary design-level accuracy

results with substantial computational savings. The aerodynamic panel method is

one such low order aerodynamic model. By assuming inviscid, irrotational, and

incompressible flow, the Navier-Stokes equations reduce to the Laplace equation for

velocity potential. The panel method uses a distribution of aerodynamic singularities,

solutions to the Laplace equation, to simulate the body and the flow around it.

Once the distribution of these singularities-some combination of sources, doublets,

and vortices-is known, the flow conditions at any point in the field can be found.

Given the flow velocity, surface forces can be calculated with the unsteady Bernoulli

equation.

The primary goal of this research is to develop an efficient and capable unsteady

aerodynamic model that can be coupled with a structural model for the aeroelastic

analysis of flexible flight vehicles. This is accomplished with the Aerodynamic Impulse

Response method by employing an aerodynamic panel code to identify the responses

to various impulse excitations. As a stand-alone aerodynamic model, using this

method is a relatively simple way to extend the unsteady capabilities of the panel code.

When formulated to identify responses of flexible-body motions and coupled with a

structural dynamics code, it makes an efficient and reliable design-phase aeroelastic

tool.

The unsteady aerodynamics model developed is applicable to arbitrary flight

vehicle geometries operating in incompressible flow (traditionally, flows with Mach

number less than 0.3). However, the recent interest within the aerospace community

of employing highly flexible structures offers a unique test case around which this

research centers. In particular, High Altitude, Long Endurance (HALE) Unmanned

Aerial Vehicles (UAVs) have been a recent focus of research and development

activities. Examples of this type of vehicle include the Aurora Flight Sciences Theseus

and the AeroVironment Pathfinder as can be seen in Figures 1-1 and 1-2. The United

States Air Force has fostered an active interest in these vehicles for a wide range of

missions [11, 12], and civilian agencies such as NASA have additionally been heavily

involved [1].

21



Figure 1-1: Aurora Flight Science's Theseus HALE UAV, with Endurance of 50 hrs

at 88,000 ft [1]

These vehicles are commonly designed with exceptionally long and slender wings

with aspect ratios as high as 30 to 35 because of the aerodynamic efficiency of

such wings. Conventional design paradigms have dictated that wings be stiffened

to prevent significant bending and twisting and possible associated aeroelastic

instabilties. Wings of this length, however, would require an unreasonable amount

of stiffening to prevent large deflections. Because weight is a premium commodity

in the design of HALE vehicles, designers have turned to working with the inherent

flexibility of the wings rather than trying to prevent it.

This research is primarily motivated by the need for a reliable and accurate

aeroelastic analysis tool for the preliminary design of and the control-law development

for highly flexible aerospace vehicles. High wing flexibility poses some interesting and

complex engineering problems; namely, understanding the nonlinear aero-structural

interactions and a robust active control system to stabilize the wing. Traditional

designs encounter only small deflections that are relatively inconsequential in the

analysis, and thus the problem often may be linearized. In a linear formulation like

this, the aerodynamic forces are computed about the undeformed wing. In the case of

high aspect ratio wings, however, tip deflections can be as much as 30% of the semi-
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Figure 1-2: AeroVironment's Pathfinder HALE UAV, with Endurance of 16 hrs at
70,000 ft [1]

span. Deflections of this magnitude require nonlinear structural analysis as well as

some way to account for the nonplanar lifting surface. Large twisting deformations

also require the incorporation of nonlinear, high angle-of-attack aerodynamics and

account of dynamic stall phenomena.

This research seeks to provide an accurate and computationally efficient aero-

dynamic tool for the aeroelastic analysis of highly flexible aerospace structures. The

nature of the problem is ideally suited to the building block methodology. The

foundation of the model is the aerodynamic panel code, to which additional "blocks"

can be added. Each successive "block" extends the capabilities of the model. The

first step involves the implementation of the linear Aerodynamic Impulse Response

method for rigid-body motions. The model can subsequently be extended to capture

limited nonlinear effects, inclusion of flexible-body modes, and incorporation of

compressibility and dynamic stall effects. With this framework in mind, the specific

objectives of this study are as follows:

9 Reduce the computational effort required for unsteady aerodynamic analyses

using the Aerodynamic Impulse Response Method

o Formulate the Aerodynamic Impulse Response method for flexible-body

motions
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* Implement and test the rigid- and the flexible-body Aerodynamic Impulse

Response in an existing panel code

This research focuses on the linear formulation of the impulse response method;

however, some initial studies of the the nonlinear form will be presented.

Chapter 2 of this thesis explores the background of this problem and highlights

significant achievements by other researchers in the field, concluding with some

comments on what has been lacking in developments to date and why a new

formulation is important. Chapter 3 continues with an overview of the first component

of the proposed formulation, the Aerodynamic Impulse Response technique. The

second primary component of the research, the platform for the Aerodynamic Impulse

Response, an aerodynamic panel code, is discussed in detail in Chapter 4. Chapter

5 discusses the modifications to PMARC necessary to implement the Aerodynamic

Impulse Response method, detailing each the linear and nonlinear rigid-body and

linear flexible-body implementations. Chapter 6 covers modeling procedures and

details the generic wing geometries that are investigated. Preliminary tests prior to

the modification of the panel code are reviewed in Chapter 7, followed by results

of the three implementations and a discussion of these results. The final chapter

concludes by summarizing the accomplishments of this research and highlighting

future directions of study.
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Chapter 2

Background

The ultimate goal of the research presented in this thesis is to contribute towards

the development of a computationally efficient aeroelastic analysis tool for design-

phase analysis of vehicles with a high degree of structural flexibility. This chapter,

opens with a brief introduction of the field of aeroelasticity. Bisplinghoff, Ashley,

and Halfman provide a thorough examination of the subject [13]. There are two

primary components to any aeroelastic analysis, structural dynamics and unsteady

aerodynamics, and both are briefly introduced here, though unsteady aerodynamics

will be the primary focus of this research. The most direct approach to an aeroelastic

analysis is the direct solution of the coupled fluids and structural equations. Often

referred to as Computational Aeroelasticity, this method has become a feasible one

due to the development of computational tools and algorithms. Computational

Aeroelasticity relies on the coupling of Computational Fluid Dynamics (CFD)

and Computational Structural Dynamics (CSD). However, regardless of advances

in computational sciences, for anything but simple configurations, the CFD/CSD

method is very computationally demanding and hence is often not a practical solution.

Most research in the field has been in the development of more efficient alternative

approaches. The second section of this chapter surveys such work that has appeared

in the literature concerning or contributing to unsteady aerodynamic analysis with

application to the aeroelastic analysis of highly flexible structures. Besides the

pure CFD method, two main approaches are presented: reduced-order models and
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lower-order models. While there is some overlap between these two, the primary

distinction is that reduced-order models attempt to describe the system with a smaller

set of "states" while lower-order methods seek to simplify the governing equations.

Finally, these contributions are scrutinized with respect to the problem at hand, the

aeroelastic response of highly flexible structures.

2.1 Aeroelasticity

Loosely stated, aeroelasticity is the study of the interaction of structural and

aerodynamic forces on the static and dynamic behavior of a structure. Though

most commonly a concern for aerospace vehicles, there are numerous other instances

in which aeroelasticity is an important consideration, such as bridge and building

design, undersea cables, and turbomachinery. Collar's Triangle, as shown in Figure 2-

1, illustrates the interplay of aerodynamic, elastic, and inertial forces in classical

aeroelasticity. More recent developments have added additional nodes to this triangle,

controls and thermal effects, resulting in the so-called "aero-servo-thermo-elastic

hexadron" [14]. In this research, thermal effects are negligible and will be discounted;

however, the importance of a robust active control system necessitates keeping

control-law design considerations in mind. This coupling of classical aeroelasticity

with controls and flight dynamics is often referred to as aeroservoelasticity and is a

field of considerable research interest recently.

Aeroelastic systems can be classified as either linear or nonlinear depending on the

formulation of the aerodynamics and the structural dynamics. Linear aeroelasticity,

because of its relative simplicity, has been the most studied. There are three primary

phenomena associated with linear aeroelasticity. For level flight with steady flow

conditions, inertial forces are neglected. Structural deformations are due only to the

steady aerodynamic loading on the wing. There are two primary static aeroelastic

phenomena, divergence and control reversal. Divergence is a result of uncontrolled

wing twist; disturbances grow exponentially with responses of the form ekt. Control

reversal results when deflection of a control surface is negated by deformation of
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Figure 2-1: Collar's Triangle of Aeroelastic Forces

the wing. For an aircraft undergoing unsteady motion, the inertial terms must be

retained. The dominant dynamic aeroelastic phenomenon is known as flutter. Flutter

is an instability similar to divergence; it appears when oscillatory disturbances grow

exponentially, with responses of the form e(k+iwt. Because all of these phenomena

tend to be catastrophic in nature, it is important that they be identified and avoided

in the design phase; the flight envelope is typically limited by the velocity at which

these phenomena occur.

To better understand the aeroelastic behavior of real structures, particularly those

such as highly flexible wings, nonlinear aerodynamic and structural effects must be

considered. There are two primary differences from linear behavior introduced by

nonlinearity. First, the onset of flutter becomes a function of the trim condition.

In linear theory, steady conditions such as the root angle of attack do not appear

in the formulation; this is not the case in nonlinear problems. Secondly, rather than

diverging to infinity, nonlinear aeroelastic instabilties are generally amplitude-limited.

This phenomenon is known as limit cycle oscillation (LCO) and occurs because once
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the twist of the wing exceeds the stall angle of attack, the wing loses lift. The

aerodynamic loading on the wing consequently drops, and the instability does not

grow past this point. Additionally, the geometric stiffening of the structure with

deformation further contributes to the limitation of the amplitude of the oscillations.

While this phenomenon may prevent catastrophic failure, the vibrations may make

the ride uncomfortable and induce fatigue-related failures.

2.1.1 Structural Dynamics

The fundamental equation of structural dynamics is the coupled mass-spring-damper

system as given in discrete form in Equation 2.1

[M]{ii} + [C]{it} + [K]{u} = {F} (2.1)

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix,

{F} is the forcing vector, and {u} is the displacement vector. Time differentiation is

shown in dot notation, so () = j. This governing equation can be either linear or

nonlinear depending on the form of the mass and stiffness matrices and the forcing

vector. In aeroelasticity the forcing vector is generally motion dependent, a function

not only of time but also of {u} and its successive derivatives, so F = f (u, it, ii, ... , t).

It is often written as the sum of aerodynamic forces and controls forces:

{F} ={Faero} + {Fcontrois} (2.2)

Motion-dependent forces like damping, either structural or viscous, can be integrated

into the forcing vector.

In the case of a linear problem, the most common solution method is to use

modal techniques, in which the problem reduces to an eigenvalue problem. The

set of eigenvalues represent the natural frequencies of the system, and the set of

eigenvectors represent the corresponding shape functions, or modes, of the system.

The modal representation relies on linear superposition to represent a complex shape
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as a series of simpler mode shapes. Often this series can be truncated, retaining only

a few modes, without significant loss of accuracy. Thus,

N

u (x, t) ~E 7,r(x) q,(t) (2.3)
r=1

where u is the deformed shape, r are the mode shapes, q, are the corresponding

modal amplitudes, and x is a set of spatial coordinates. Other methods such as

the Rayleigh-Ritz method and Galerkin's method are refinements of this technique.

Modal methods have also been employed for nonlinear problems, though with much

greater complexity [15, 16, 17].

For large linear and nonlinear problems, the solution in time of the governing

equation is ordinarily carried out computationally using either the finite difference

method or the finite element method.

2.1.2 Aerodynamics

In the context of aeroelasticity, aerodynamic modeling differs in two respects from

conventional aerodynamic analyses. First, the flow is inherently unsteady. Second,

it is primarily concerned with determining {Faero} from Equation 2.2-that is, the

surface pressure forces acting on the body. A full description of the flowfield is not

required for an aeroelastic analysis.

The most pronounced effect of unsteady flow is aerodynamic lag. Where in steady

flow the response of the body is a function of its geometry only, in unsteady flow,

higher-order time derivatives influence the response. The result is that the response is

time-shifted from the motion. In addition, the amplitude of the response is affected by

non-circulatory inertial effects. Finally, in unsteady flow, the nonlinear phenomenon

of stall behaves differently than in steady flow. In unsteady flow, loss of lift often

is delayed to a pitch angle significantly larger than the static stall angle of attack.

Dynamic stall is a cyclic process and manifests itself in various forms throughout the

motion of the wing. The ONERA stall model is a semi-empirical model that is often

used to account for dynamic stall phenomena [18].
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As mentioned in the Introduction, there is a wide range of aerodynamic

models to choose from, ranging from the most complex, the fully nonlinear,

three-dimensional Navier-Stokes equations, to the simplest, the two-dimensional

linear potential equations. The Navier-Stokes equations are an analytically exact

representation of real, unsteady flowfields accounting for viscosity, compressibility,

flow rotationality, and thermal effects. Because of the complexity of the problem,

though, approximations to the full Navier-Stokes equation set are often employed.

Some of these simplified models will be seen later in this chapter in the section on

lower-order aerodynamic models.

Generally either the finite difference method or the boundary element method

(or, panel method) is used to solve the aerodynamic governing equations in time and

space, though recently the finite element method has been growing in popularity.

2.1.3 Aerodynamics and Structures Coupling

As is evident from Equations 2.1 and 2.2, there is a close coupling of the aerodynamics

and structures components of the aeroelastic system. Structural deformations affect

the aerodynamic loads, and changing the aerodynamic loads further affects the

structural deformations. There are several methods to solve the coupled equations,

often broken into three categories: unified methods, tightly-coupled methods, and

loosely-coupled methods [19, 20, 21, 22, 23]. Unified methods combine the structural

and fluids equations into a single formulation and solve it directly. Tightly-

coupled methods solve the structural and fluids equations separately at each time

t, iterating for a converged coupled solution; loosely-coupled methods are similar

though interaction of the two systems is only considered after several time steps.

The coupling of the structural and aerodynamic components is generally com-

plicated by two factors, first the coordinate frame and discretization method, and

second, the interface between structural and aerodynamic surfaces. Most commonly,

fluids problems are solved with finite differences based on an Eulerian coordinate

frame, whereas structural problems are typically solved using a Langrangean-based

finite element scheme. Once this conflict is resolved, data must be transferred from
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Figure 2-2: Aero-Structural Coupling Through an Interface

one component to the other. This is generally complicated, requiring interpolation

and extrapolation of data, because the aerodynamic and structural meshes rarely

coincide. This remains a subject of considerable research interest. There are currently

a variety of interface methods being used [24, 25]; however, this subject is beyond

the scope of this research, and it will be assumed that the wing is modeled as a set

of 2-D sections and that the 3-D lift distribution on the wing can be modeled as a

concentrated force at the aerodynamic center (quarter-chord) of each section.

2.1.4 Controls Coupling

The advent of active control systems in the past two decades has spurred the need

to couple control forces into the aeroelastic system as Equation 2.2 suggests. This

field of study is commonly known as aeroservoelasticity. The aeroelastic problem

becomes more complex in this case because controls add an additional source of energy

to the problem [26]. While controls considerations are mostly oustide the scope of

this research, there is nonetheless some impact. Highly flexible wings such as those

considered here will require a robust active control system to remain stable, hence

any aeroelastic model must be formulated to allow for future coupling with a controls

analysis. This places two primary requirements on the aeroelastic model. First, it

is desireable to have a system which may be cast in state-space form [27]. Secondly,

because of matrix size limitations in controls analysis, the state-space system must

be small. This has been one of the primary driving motivations of Reduced Order

31



Modeling (ROM) as is discussed later in this chapter.

2.2 Previous Work

Because of recent demands for highly capable and highly efficient aeroelastic models,

there is a sizeable body of work for this research to draw upon. This section will

review some of the more notable developments in unsteady aerodynamic modeling.

Computational fluid dynamics models (CFD) are briefly introduced; while still

impractical for preliminary design, they set the standard for computational accuracy.

The unsteady aerodynamics models reviewed subsequently are organized into two

categories, reduced-order models (ROMs) and lower-order models. Reduced-order

models use various techniques to extract important modes or states from a flow

analysis to represent the flow more cost-effectively with minimal loss of accuracy.

The reduced-order methods are not aerodynamic models themselves, but rather they

work in conjunction with an aerodynamic model. Lower-order models, also referred

to as simplified aerodynamics models, directly manipulate the governing equations to

reduce computational costs. Though represented independently, there is some overlap

between these methods because a lower-order model may be used in conjunction

with a reduced-order method for additional savings. The section closes with a brief

summary of the developments presented here and an examination of their limitations

towards application to highly flexible aircraft.

2.2.1 CFD Methods

While the exact boundaries of CFD are somewhat nebulous, in this thesis CFD

will refer to computational methods employing a finite difference or finite element

scheme to numerically solve the Navier-Stokes or Euler equations. The Navier-Stokes

equations, as given in Equation 2.4, analytically describe fluid motions. In their most

general form, the Navier-Stokes equations are given as follows:

pDV = pg - (2.4)
Dt
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Indicial notation is used here to express the equations compactly, where V is the

velocity vector, g is the body force (generally negligible for fluids problems), and r

is the stress tensor. For practical purposes, however, solutions of the Navier-Stokes

equations are approximate. The stress may be modeled linearly, giving

DV (9 ['v~ &v N
pD = pg -Vp + [y 0  i + ) +6 hAdivV (2.5)Dt axj a xj axi

where t is the coefficient of viscosity, and A is the bulk viscosity. Consideration of

turbulent flow requires extensive modeling that is still the subject of considerable

research. The Euler equations are the same with zero viscosity.

These methods could be called "brute force" methods because limiting as-

sumptions are few but computational cost is high, often requiring tens of hours on

high-performance computational platforms. Three-dimensional CFD analyses require

discretization of the entire flowfield with a grid density near the body surfaces fine

enough to resolve boundary layer phenomena, typically about ten elements across the

boundary layer thickness. This results in problems with tens of millions of degrees of

freedom, generally a considerably larger problem than the coupled structural analysis.

CFD analyses produce highly accurate results, but for applications outside of basic

research and detailed analyses the method is unwieldy. Edwards provides a thorough

review of the application of CFD analyses to aeroelastic problems [28].

2.2.2 Reduced-Order Methods

Because of the high computational costs involved with CFD methods, researchers have

been investigating options to improve the efficiency of the analyses. One or more of

three tactics are generally employed. The CFD scheme itself can be optimized, the

governing equations can be simplified where appropriate, or an additional analysis tool

in conjunction with the flow solver can be used to extract only the most important

information about the flow. Reduced-order methods are of this last sort. It is

important to note that a reduced-order aerodynamic model is comprised of two

parts. First, an appropriate aerodynamics model is required to describe the flow.
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Then a reduced-order method is applied to make that model more manageable. The

reduced-order method itself is only a mathematical conditioning tool and has nothing

to do with the aerodynamics. Three such reduced-order methods will be reviewed

here, the eigenanalysis method, proper orthogonal decomposition (POD), and the

Arnoldi basis vector method. These three methods all share a common tactic: in each

method, a small set of orthogonal basis vectors describing the system is assembled.

The Aerodynamic Impulse Response is an additional reduced-order type method;

however, discussion of this method will be deferred to Chapter 3.

Eigenanalysis

Modal analysis is a technique in widespread use in structural dynamics. With this

technique, complex structural deformations are described as the sum of a set of simpler

shape functions, which describe the geometry only, and a separate set of amplitude

functions describing the amplitude of each shape function with respect to time. In

conjuction with eigenanalysis techniques, these shape functions are orthogonal normal

modes. If the dynamic behavior of a structure can be represented this way, it can

be expected that the same technique might apply to the analysis of dynamic flows.

The aerodynamic eigenanalysis method that has been developed primarily by Hall,

Dowell and their co-workers [2, 29, 30, 31] does just this.

Eigenanalysis methods are based on the time linearization of the fluid system by

casting the problem into the frequency domain. The unsteady motion is assummed

to be small with respect to the mean flow, and the motion has the form et. This

harmonic oscillation causes the time derivative operator to drop out of the equation

and results in a set of linear equations that can readily be solved. This linear

analysis can be extended to nonlinear formulations such as the Navier-Stokes or Euler

equations; however, the method is limited to small disturbances about a nonlinear

static flowfield [29]. Even in the presence of nonlinear features such as shocks or

separated flow, this linearization remains valid for sufficiently small disturbances.

This eigenanalysis method has been applied to a variety of aerodynamic for-

mulations. The seminal work on the method is by Hall [2]. The foundation of his work
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is a three-dimensional vortex lattice method, which is discussed in greater detail later

in this chapter. This formulation is a potential flow model, assuming the flowfield

to be incompressible, inviscid, and irrotational. Point vortex elements are placed on

each element of the discretized wing and wake. Flow tangency (also referred to as

the non-penetration boundary condition) requires that at each element the velocity

induced by the distribution of discrete vortices matches the downwash velocity that

is a product of the unsteady motion of the wing. Then, given the time history of the

downwash and the vortex strength at time n, the vortex strength at time n+1 is

rn+1 - A- [wn+1 - BI"] (2.6)

where F is the vortex strength, w is the downwash, and A and B are coefficient

matrices derived from the vortex lattice kernel function, the conservation of cir-

culation, and wake convection equations. When coupled with a simple linear

structural dynamics model, this then yields aeroelastic equations as follows:

- -n+1 -- n n+1
A E r B 0 r w9 27[~ D ]{q [C ]{}l{}l+1(2.7)

_C2 D2 _ q _ C1 Di q 0

where C 1 , C2 , D 1 , and D 2 are coefficient matrices from the structural formulation,

E describes the relationship between the airfoil motion and the downwash, and w. is

downwash due to external sources such as gusts.

Eigenanalysis can proceed from Equation 2.7; however, a reduced order model

may be generated by writing Equation 2.6 in terms of the normal natural modes,

with

r = Xc (2.8)

where X is a matrix whose columns are the right eigenvectors of the system and c is

an amplitude vector. Results show that the solution can be represented accurately

using only the first few eigenmodes [2]. By retaining only m of the original N

modes and manipulating Equation 2.7, the size of the problem and consequently the
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computational effort required are considerably reduced. However, Hall notes that not

all problems are well represented by only a few eigenmodes; in these cases, a static

correction must be added to the formulation.

Eigenvectors were extracted using standard Eispack routines for small problems

and specialized methods based on the Lanczos algorithm for larger problems [29].

Figure 2-3 shows some of Hall's representative results. Heeg extends Hall's work

with the vortex lattice method to study the method as an aeroelastic tool in greater

detail [30].

c Direct Vortex Lattice Solver
0 ROM: m = 20 w/ static correction

AROM: m = 40 w/o static correction
S0O ROM: m = 40 w/ static correctionLto A0 RO:m=0wsttccreto
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Figure 2-3: Real and Imaginary Lift Components Using Eigenanalysis [2]

Florea et al. use the same techniques with the full potential equation instead of the

linear potential equation [31]. This allows for density variations (i.e., compressibility)

in the flow but cannot account for strong shocks, and thus is useful for the regime

of high subsonic and incipent transonic flows. In this case, the governing equation

employed is

a+ V -( V) = 0 (2.9)
at

where 3 is the local density and q is the velocity potential. After coupling with

structural dynamic equations, a reduced order model was obtained using two methods,

the eigenmode technique as employed by Hall and by using Arnoldi-Ritz vectors, a
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method similar to those described in the next section. Florea also finds that the

unsteady flowfield can be well represented with only a few eigenmodes. He also

notes that the Arnoldi-Ritz reduction method is more efficient than the eigenanalysis

method when the structural excitations are known a priori.

Approximate Eigenanalysis Methods

Proper Orthogonal Decomposition, commonly referred to as POD, and Arnoldi basis

vectors are two other methods of reducing the order of a system. Both are methods

that approximate the eigenmodes of a system. As will be seen, the two methods

are actually quite similar. The basic goal of both methods, as for the eigenanalysis

method, is to take a set of data, as might be obtained from a CFD analysis, and

indentify a small set of orthogonal basis vectors that will describe that system.

Obviously, there is some loss of information; however, with some knowledge of the

nature of the flow, the basis vector identification process can be tuned such that

relevant features of the flow are captured. In effect, these methods single out the

dominant effects within the flow and discard less important effects.

The set of POD basis vectors is calculated by first finding a set of M snapshots of

the flow with whatever flow solver is being used. In the time domain, these snapshots

are merely the instantaneous solutions at selected times. Because, however, it is

often difficult to capture the appropriate dynamics of the system, a more effective

approach is to linearize and cast the problem into the frequency domain [3]. In

this case, the snapshots represent the solutions for a set of excitation frequencies

spanning the frequency range of interest. It is important to note that the choice of

sample frequencies has a strong effect on the accuracy of the resulting reduced-order

model [3]. Once these snapshots are obtained, the basis vectors <bi are then linear

combinations of the snapshots, and the overall solution U' is a linear combination of

the basis vectors.

The Arnoldi vector method is similar except that, instead of finding a set of basis

vectors for a range of frequencies, it determines multiple basis vectors for a single

frequency. Willcox gives an algorithm for computing the Arnoldi vectors in [3]. It
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is worth noting that computing a single Arnoldi vector for M frequencies produces

an equivalent data set to finding M snapshots over the same range of frequencies [3].

Willcox postulates that combining the POD and Arnoldi methods could produce a

very efficient model.

Thomas et al. uses the POD method to reduce the order of the 2-D nonlinear Euler

equations for the investigation of unsteady transonic flow [32]. To time-linearize the

problem, small disturbances about a nonlinear steady-state condition are considered,

casting the problem into the frequency domain. The governing equation is

+f OF(fi) += 0 (2.10)
at ax By

where 6l is the vector of conservative variables and F and G are flux vectors. The

authors employ a second-order, explicit, cell-centered, finite-volume, Godunov-based

method utilizing the Roe approximate Riemann solver. Using this scheme an ensemble

of solutions for various pitching and plunging motions is assembled. From this solution

set, a reduced-order model was obtained by employing POD techniques. The reduced-

order fluid model was coupled with a two degree-of-freedom structural airfoil model

to form a reduced-order aeroelastic model. The authors study the pitch response

of an airfoil comparing the POD method to a CFD simulation [32]. The number

of snapshots used to construct the basis and the number of POD modes retained

are varied. Plotting real and imaginary parts of the lift coefficient transfer function,

excellent matching of the POD and CFD results when retaining all of the POD vectors

(from 21 total snapshots) was found; reasonable accuracy is demonstrated for other

cases.

Willcox employs both methods to develop a reduced-order aeroelastic model for

the aeroelastic analysis and control of turbine blades [3]. Here, too, the time-

linearized 2-D Euler equation is used. The POD model was constructed using twenty

snapshots; six POD modes were retained. Six vectors were used in the Arnoldi model

as well. The eigenvalue spectra of these two aerodynamic systems show that the

Arnoldi approach captures a greater portion of the system's dynamics than does the
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POD method. It is noted that increasing the number of basis vectors in the POD

model does not add any additional information since the model is only valid over the

frequency range the original snapshots were sampled over. On the other hand, the

use of additional Arnoldi vectors increases the portion of the system dynamics the

model will represent [3]. Results with just the reduced-order aerodynamics models

match well with full CFD solutions. Figure 2-4 shows the response of a turbine blade

section to a pulse using the POD and Arnoldi models and a full CFD simulation.

These two reduced-order aerodynamics models were subsequently coupled with a 2-

D, two degree-of-freedom structural model of a turbine blade to study the aeroelastic

response. The resulting model is ideal for controls analysis because of the small

number of states.

0.3
CFD simulation

POD ROM (4 modes)
Amoldi ROM (12 modes)

0.2 - -

0 .1 . .. ... . ... .. .. .. .... .. .. . .... ..... .. ..... ... . ... ..... ....

0

0
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-0.3
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time

Figure 2-4: Comparison
Pulse Response [3]

of POD and Arnoldi Models to the CFD Simulation of a

The Arnoldi-Ritz method that was employed by Florea et al. [31] with the full

potential equation, discussed in the previous section, is a similar method to Willcox's

Arnoldi method [3].
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2.2.3 Simplified Aerodynamics Models

The study of highly flexible vehicles has mostly been limited to lower-order, or

simplified, aerodynamics models. Lower-order aerodynamics models essentially

provide approximate solutions to the Navier-Stokes equations by making a series of

simplifying assumptions. One of the most immediate simplifications is the assumption

of inviscid flow; often empirical correlations can be used to add viscous effects to

an inviscid analysis more efficiently than retaining the viscous terms throughout

the calculation. Incompressibility and irrotationality are other simplifications taken

advantage of by most of the methods reviewed here. Examples of simplified

aerodynamics models are abundant. Those presented here include inflow methods,

vortex lattice methods, panel methods, and lifting line methods, all with various

formulations, and several other techniques. Anderson provides an overview of the

basic theory and implementation of several such methods [33] and Bisplinghoff,

Ashley, and Halfman discuss unsteady formulations [13].

Peters' Finite State Inflow Method

Peters and his co-workers have developed a modal-type method [4, 34, 35] that has

been employed by Patil and co-workers in the aeroelastic analysis of a highly flexible

wing [6, 36]. Two primary differences between this method and the eigenmode

approach mentioned earlier are worth noting. First, this method is self-contained;

that is, the reduced-order form is achieved from within the aerodynamic formulation.

Secondly, the aerodynamic modes used to describe the flow are not orthogonal

eigenmodes but are expansions of the Glauert transformation with the form

00

f () = E A, cos(n4) (2.11)
n=O

Peters prefers these Glauert expansion modes to the eigenmodes because they are

more physically based. For instance, while the physical nature of any of the

eigenmodes is entirely ambiguous, the first airfoil deformation mode using Peters'

method corresponds to a rigid body plunging motion, the second mode corresponds
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to rigid body pitch, and the third mode corresponds to a camber change.

y

VO

U 0

-b b

h(x,t)

Airfoil Centerline

Figure 2-5: Airfoil Coordinate System for Peters' Finite-State Inflow Model

In the 2-D formulation [34], a thin airfoil undergoing small motions is considered.

This allows the bound vorticity to be placed along the x-axis. Figure 2-5 shows the

coordinate frame employed in the formulation. The flow is calculated to satisfy the

non-penetration boundary condition [351,

Ou Oh v1x
S= uo- + -+ - A (2.12)

ax Ot b

where V is the downwash due to bound vorticity, uO and vo describe the uniform

freestream velocity in the x- and y-directions, respectively, vi is a velocity gradient

due to coordinate translation and rotation, and A is the downwash due to all other

sources (the shed wake, gusts, etc.). Glauert transformation expansions in the form

of Equation 2.11 are found for the downwash due to bound vorticity, the downwash

due to other sources, and the airfoil deformation, 2. Combining these expansions
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and expressions for vorticity, the general airloads are found to be [35]:

uo (wo - Ao) = ro (2.13)
1

b(tbo - I lb2 ) + uow 1 =1 (2.14)
2

b
(72_1 - ?On+ 1 ) + uown =n for n > 2 (2.15)

where wn = y + An is the relative motion of the airfoil (where 'Y7 is the Glauert

expansion for the bound vorticity) and rn are the Glauert expansion coefficients for

. Finally, Equation 2.13 is rewritten in a form amenable for aeroelastic analyses.
p

This involves changing from relative velocities wn to actual airfoil deformations hn

and forming the generalized forces Ln associated with each airfoil deformation. This

process yields

1
Lo = [-27rpuo(wo - Ao) - 7rpuow 1 - 7rpb(?bo - 1h 2 )]b (2.16)

2

which is the negative lift per unit span, and

1 1
Li = [7rpuo(wo - Ao) - -7rpuow 2 - 7pb(?i - 3)]b (2.17)

2 8

which is the pitching moment per unit length about the midchord normalized on the

semi-chord. The remaining modes are written as

1
Ln = I7rpb(Tn-1 - Tn+1) (2.18)

2

Findings show that good accuracy can be achieved with this model by retaining

only several modes. Peters also shows that his finite-state inflow model is easily

adjustable to empirical corrections. In this manner he is able to incorporate the

ONERA stall model to account for dynamic stall effects. Prediction of dynamic

stall effects is an essential ingredient in the final analysis of a highly flexible wing

undergoing large deformations.

Some of Peters' results using this model (without dynamic stall corrections) are
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shown in Figure 2-6. The figure compares the real part of the Theodorsen function

as computed exactly (XCT in the figure) to that computed with the finite state

method with four states, where the expansion coefficients are determined in two

ways, a binomial expansion (BNX) and an augmented least squares fit (AUG). An

even better fit is found by retaining eight states.

0.9

' 'r

08 BNX
---- AUG

ReCWk)0.7

0.6

0.5

0.4 I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k/(1+k)

Figure 2-6: Comparison of Results Using the Peters Inflow Model with Theodorsen
Theory [4]

Lifting Line Methods

Classical lifting line theory was an early contribution to the study of three-dimensional

aerodynamic bodies by Prandtl [33]. An infinite set of horseshoe vortices are

superimposed along the span of a 3-D wing to produce a continuous spanwise

circulation distribution, F(y). As described by the Biot-Savart law, each of these

horseshoe vortices induces a downwash velocity on the wing that produces an induced

angle of attack which must be added to the effective angle of attack. An integro-
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differential equation for the circulation distribution results [33]:

F(y) 1 b/2 dr/dy
a(y) = + aL=o(Y) + dyd (2.19)

7rVooc(y) 47rVoo, -b/2 Y - g

where a is the geometric angle of attack, aL=O is the angle of zero lift, c is the chord

distribution, and y measures along the span from - to . In practice, a discrete

distribution of horseshoe vortices is used. This gives a piecewise continuous circulation

distribution and the integrals in Equation 2.19 are replaced with summations. With

the circulation distribution in hand, the lift can be calculated by the Kutta-Joukowski

theorem,

L'(y) = pooj/F(y) (2.20)

A Fourier series expansion of F(y) is often employed to describe the circulation in a

mode-like form.

Drela utilizes an extension of this theory for the aerodynamics component in

the integrated simulation model ASWING [5]. This model integrates aerodynamic,

structural, and control-law design into a single package ideal for prelimary design

work. The aerodynamics analysis in ASWING features an unsteady version of the

lifting line theory, a wind-aligned wake, and the Prandtl-Glauert compressibility

correction. Air loads are computed in terms of a Fourier series, and the unsteady

wake is accounted for with an empirical lag term, resulting in the following expression

for the induced downwash velocity at a control point:

K b &r
(Vind) c.p. = W ZkAk (t) + ooVo(t) - w -ne.p. (2.21)

k=1

where Wk is the downwash induced by the horseshoe vortices per the Biot-Savart law,

w... is externally induced downwash, such as from a gust, Ak is the set of Fourier

coefficients, Vo is the freestream velocity, and the final term is the empirical lag

term. Lift along the wing span is computed two-dimensionally using a lumped vortex

at each span station with a flow tangency boundary condition. Harmonic, small

amplitude pitch and plunge are assumed and the empirical lag factor, b, is selected
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to match classical Theodorsen results for high reduced frequencies. Figure 2-7 shows

that Drela's numerical results for flutter speed with respect to mass centroid are a

near approximation to classical Theodorsen results.

0.3 0.35 0.4I3 0.35 Xcg/C 04
0.45 0.5

Figure 2-7: Flutter Speed Predicted with Various Models [5]

Vortex Lattice Methods

Vortex lattice methods are also popular for aeroelastic analyses. This method was

used successfully as a platform for the eigenanalysis method discussed earlier [2, 301.

The vortex lattice method is an extension of Prandtl's lifting line method, which is

limited to straight wings with a high aspect ratio. Instead of distributing a series of

horseshoe vortices in a single line along the span of the wing, the vortex lattice method

distributes horseshoe vortices along the span and chord of the wing. The Biot-Savart

law is again used to calculate a downwash velocity induced by the vortices, although

here a surface is considered instead of a line.

Mracek and Mook use a vortex lattice-type method with triangular elements to

couple dynamics and controls to the aerodynamics analysis [37]. Dynamics equations

of motion, aerodynamics, and control inputs are coupled by way of a fourth-order

45
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predictor-corrector scheme for a simultaneous solution for all three components. Using

this formulation, a low aspect ratio delta wing with control surfaces is studied. The

method is found to successfully predict the performance of a control law.

A similar study was performed by Hall et al., who also utilized the vortex-lattice

method in an integrated aerodynamic, structural, and controls model for the analysis

of actively-controlled wings undergoing gust loads [38]. In this case, a high aspect

ratio wing, as might be found on HALE vehicles, was studied under gust loading.

While the test case did not prove successful in controlling the response to a gust load,

it did illustrate the capability of the model.

Patil and his co-workers compare a vortex lattice method and Peters' finite state

method to investigate the aerodynamic effects of large deformations for aeroelastic

problems [6, 36]. A structurally nonlinear high aspect ratio wing was studied with

both methods, where Peters' method neglects the nonplanar geometry of the deflected

wing. Figure 2-8 shows results of a flexible wing at 25 m/s and a steady angle of

attack of 100. The spanwise lift distribution at steady-state equilibrium is shown for

the Peters model, labeled "flexible: linear," and the vortex-lattice model, labeled

"flexible: nonlinear." (Rigid results are shown as well.) These results indicate

that 3-D nonplanar aerodynamic modeling of the wing geometry offers only slight

improvement on the planar model of Peters. In the aeroelastic context, there was

a 5% margin in the predicted flutter frequencies and 1.5% margin in the predicted

flutter speed.

Panel Methods

Panel methods are also a popular alternative. In principle similar to the vortex

lattice method, they use a distribution of velocity sources and doublets or pressure

doublets rather than vortices; indeed, panel methods employing pressure doublets

are often called doublet lattice methods. Sources and doublets, as are vortices, are

fundamental solutions to the potential flow equation, the most fundamental form of

fluid flow equations. This is a linear, inviscid, incompressible method, though some

nonlinear effects can be incorporated with advanced wake models. The theory of
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Figure 2-8: Spanwise Lift Predicted with Various Models [6]

panel methods will be discussed in greater detail in Chapter 4.

Katz and Maskew employ a velocity source/doublet panel method to predict the

unsteady aerodynamic response of a complete aircraft configuration [7], a challenging

task for Navier-Stokes methods because of the incredible computational cost. The

use of simplified fluid dynamics equations allows for greater geometric complexity

while keeping computational cost to a minimum. The panel code employed in [7],

VSAERO [39], is a steady-flow code, and several modifications were needed to adapt

it for application to unsteady flows. A time-stepping wake was added so that the wake

would convect with the local velocity and roll up, and the non-penetration boundary

condition was modified to include a rotation component. Finally, the local velocities

used in Bernoulli's equation to calculate pressure forces from the velocity potential

were modified to include the rotation component. The resulting model was applied

to several configurations: a wing undergoing periodic heaving, a rotor in hover, a

two-dimensional wing airfoil undergoing pitching oscillations, pitching oscillations of

a complete aircraft configuration, and a delta wing with separated flow at the leading

edge. Figure 2-9 illustrates one of the results of this study: a wing's response to

plunging motion compared to the theoretical response due to Wagner [7].

One of the most versatile of the panel codes is PMARC [40], a code developed in
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Figure 2-9: Comparison of Theoretical Response Due to Wagner to the Response
Predicted Using the VSAERO Panel Code of 2-D and 3-D Wings to Plunging
Motions [7]

the late 1980s at the NASA Ames Research Center. The development time and costs

for this code were reduced by using an existing code, VSAERO [39], as a foundation.

PMARC is the code selected fo use in this research, and it will be discussed in greater

detail in Chapter 4.

Other Methods

Other methods associated with unsteady aerodynamics and flexible lifting surfaces

that appear in the literature are the two-dimensional strip model based on Theodorsen

theory of van Schoor and von Flotow [41], and Laplace domain and rational

approximation techniques (also based on Theodorsen theory) presented by Edwards

et al. [42]. Van Schoor and von Flotow analyze the aeroelastic response of MIT's

human-powered aircraft, the Michelob Light Eagle, a highly flexible aircraft with

some features similar to HALE-type UAVs. Steady and dynamic lift are found as a

function of the Theodorsen function, which is calculated analytically by way of Hankel

functions with a complex reduced frequency. The lift is assumed to be distributed
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elliptically across the wing span. Both quasi-steady and fully unsteady aerodynamic

formulations were used. This aerodynamic analysis was coupled with a finite-element

structural dynamics formulation. Results showed that, in the formulation, many

flexible modes need to be included for reliable results and that the fully unsteady

aerodynamic model is required.

Edwards, Ashley, and Breakwell used Laplace transform techniques to develop

a generalized Theordorsen function for arbitrary airfoil motions in two-dimensional

incompressible flows and two-dimensional supersonic flows [42]. Two components of

the unsteady response were identified, a rational part and a nonrational part. The

nonrational part was found not to contribute to the oscillatory response. This exact

aerodynamics model was coupled with structural equations for a flutter study of a

two-dimensional thin airfoil with a flap. Approximation methods using augmented

states and the Pad6 approximants were also investigated and were found to be in

good agreement with the exact calculations for frequencies near the imaginary axis.

2.2.4 Limitations Towards the Application to Highly Flexible

Vehicles

As is evident, considerable effort has been given to the problem of an efficient

and capable unsteady aerodynamics model for aeroelastic applications. All the

works presented here are significant contributions to the general field; however,

for application to the preliminary design phase of a highly flexible vehicle, most

of these methods are limited. CFD methods are the most accurate and have the

fewest limitations but are, of course, too unwieldy to be of much use early in the

design process. The bulk of the methods are limited by their implicit assumption

of small deformations that is employed to linearize the problem and hence make

it more manageable. The lifting surface is generally, as it is in Drela and Peters'

work, assumed to be planar, and aerodynamic singularity solutions (sources, doublets,

and vortices) are assumed fixed on the planar spanwise axis. This is valid for

problems with small deformations because the distance change between elements is
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inconsequentially small; however, deformations on the order of 25-30% of the semi-

span do result in non-trivial changes to this distance and consequently to the influence

coefficients. This will be discussed again in Chapter 5.
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Chapter 3

The Aerodynamic Impulse

Response Method

As was presented in the previous chapter, there are a variety of ways in which to

simplify, or make more manageable, a fluid flow analysis. Two categories of methods

were presented, reduced-order models and lower-order models. The method used in

this research, the Aerodynamic Impulse Response method, is of the former sort. By

itself, it does not model a fluid flow. Rather, it is used in conjunction with an existing

aerodynamic model to make the representation more efficient. In fact, the method is

a general one. Not limited to aerodynamic problems, it can be applied to any linear

or nonlinear system. This chapter presents a brief background of the method and the

theory behind it, largely culled from digital signal processing techniques. Both linear

and nonlinear formulations are examined, and the chapter closes with a look at the

application of the method to aerodynamics and aeroelasticity problems.

3.1 Background

The impulse response method has been in existence for years as, primarily, a digital

signal processing tool. The method is a general systems identification tool and hence

can be applied to a wide range of problems. There have been limited studies using

the method as a structural analysis tool [43, 44]. However, the application of the
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technique to unsteady aerodynamics problems was only recently proposed by Silva

at NASA Langley Research Center [9, 10, 8]. Classically, indicial (step) functions or

harmonic functions have been employed to predict unsteady aerodynamic responses

(e.g., the Wagner function and the Theodorsen function, respectively) [13]. Silva,

however, recognized that neither of these responses is the fundamental aerodynamic

response; rather, borrowing from mathematical systems theory and signal processing

techniques, the true fundamental aerodyanmic response is the response to an impulse.

Indicial or harmonic responses can then be derived from the fundamental response, as

he shows in his Ph.D. dissertation [8]. Silva focused his research on CFD applications

of the method. His work shows a significant reduction of the computational cost of

unsteady aerodynamic analyses by requiring the problem to be solved only once;

thereafter, a convolution scheme is employed to derive arbitrary responses from

the impulse response. Convolution is much less computationally demanding than

the flow solver. He presents results using two codes, CAP-TSD (Computational

Aeroelasticity Program-Transonic Small Disturbance), which solves the nonlinear

transonic small disturbance potential equation, and CFL3D, a Reynolds-averaged

Navier-Stokes solver. He finds, using CAP-TSD, nearly a twenty-fold saving in CPU

time required to process ten jobs, with results nearly indistinguishable from those

predicted directly by the code.

3.2 Mathematical Foundations

3.2.1 Clasification of Mathematical Systems

There are a variety of ways to classify mathematical systems; three such classifications

are referred to in this discussion. These classifications are as follows:

* Time-varying or time-invariant systems

e Discrete-time or continuous-time systems

9 Linear or nonlinear systems
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First, a system may be time-varying or time-invariant. Note that this is distinct

from time-dependence or independence. A time-invariant system may be a function

of time; however, a time-invariant system's fundamental properties do not vary with

time. Time-invariance is also known as shift-invariance because the response can be

shifted arbitrarily in time. These systems are not explicit functions of time; that

is, the response to a given input at time ti is the same response to the input at a

later time t2 . For example, the response in a wind tunnel of an aircraft model to

an angle-of-attack change is the same at 10:00 a.m. as it is two hours later. On the

other hand, the dynamics of a thrusting rocket is a time-varying system because the

mass of the propellant is an explicit function of time. Though the impulse response

method is not restricted from time-varying systems, development has been limited to

time-invariant systems for which the impulse response is the same at all times.

Mathematical systems can also be designated as either discrete-time systems or

continuous-time systems. Mathematically, a continuous-time system is defined as a

set of complex-valued functions f defined on the real line; a discrete-time system is

a set of sequences of complex numbers. Thus, the time domain of a continuous-time

system is the real line R, and the time domain of a discrete-time system is the set

of integers Z [45]. In other words, a signal in continuous-time is a function of time

with a value for every real value of time. A signal in discrete-time is a sequence of

values of the signal at integer units of time. Real-world systems are continuous-time

systems; however, they can only be described digitally as a set of values sampled at

discrete time units. No information is available between time units. All numerical

analyses operate on discrete-time systems; the impulse response method outlined here

is a discrete-time technique. There are small but significant differences between the

mathematical theory of continuous-time systems arid that of discrete-time systems.

The impulse function is one such distinction. In continuous-time the definition of

the impulse is somewhat ambiguous, and hence it is difficult to work with impulse
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functions; however, in discrete-time the impulse function is well defined. Namely,

[t] 1.0 for t =t o (3.1)

0.0 fort # to

This function is properly known as a unit sample function or the Dirac delta function;

note, however, that "impulse" is used throughout this thesis analogously.

The final classification that will be referred to is whether the system is linear or

nonlinear. A system F(x, y, U, Ua, 'Y, uXX, uYU, nyy,. . .) = 0 is linear if the coefficients

of all its derivatives are functions of the independent variables only and it is linear in

the unknown function u. A system that cannot be described this way is considered a

nonlinear system. A simple example of a nonlinear system common in fluid mechanics

is the Burgers equation,

ut + uuxx v'ua, (3.2)

which is a simple one-dimensional model for diffusive waves and is often used as a

test case for CFD models. The key difference between linear and nonlinear systems is

that superposition of solutions is valid for linear systems and is not valid for nonlinear

systems. The Aerodynamic Impulse Response method is valid for both linear and

nonlinear systems. Convolution, which is based on superposition, is the foundation of

the linear Aerodynamic Impulse Response method; to use the method with nonlinear

aerodynamic systems the nonlinear analog of convolution, the Volterra series, must

be employed.

3.2.2 The Linear Impulse Response Method

As Silva indicates, the linear impulse response method has been well developed in

the field of digital signal processing [8, 46, 47]. In essence, the method states that

the response of a linear system to an arbitrary input function can be derived from

the response of the same system to a unit sample function by using convolution.
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Convolution in discrete-time form is defined as follows:

N

y[n] E h[n - k]x[k] (3.3)
k=O

where y is the response to the arbitrary input, h is the impulse response, x is the

arbitrary input, and n, k c {, 1,..., N} are time units. Thus the response of a

linear system to an arbitrary input is the superposition of scaled and shifted impulse

responses as is shown in Figure 3-1. Because the response to any input can be

constructed from the impulse response, the impulse response is the fundamental

response of the system. It is also known as a memory function because it indicates

how long a perturbation affects the system; a system with an impulse response that

dies quickly to zero has little memory. That the impulse response dies to zero is one

of the benefits of the method-impulse responses, while just as accurate, require less

computational time than the identification of indicial-type responses [8].

Input Function Impulse Response Function

2 I

t=0 t=I t=2

2

t=3 t=4 Total Response

Figure 3-1: Simple Example of the Discrete-Time Convolution Method

Figure 3-2 describes the method diagrammatically. Whatever flow solver is being
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used makes up the core of the system identification component of the process. This

code is used to determine the response of the system-an aerodynamic body-to a

unit impulse. Once the impulse response is acquired, the flow solver is no longer

needed. Subsequent responses to arbitrary inputs are calculated using the impulse

response and a convolution code.

Arbitrary
Unit Sample Input

Function Function

Aerodynamics Unit Sample Convolution Response
Code Response Code

System Identification Arbitrary Unsteady Responses

Figure 3-2: Block Diagram of the Linear Aerodynamic Impulse Response Method

3.2.3 The Nonlinear Impulse Response Method

Not surprisingly, the analysis of nonlinear systems with the impulse response method

is more complicated than for linear systems; however, the method is still applicable;

nonlinear applicability is, in fact, one of the primary benefits of the method. Instead

of linear convolution, its nonlinear analog, a result of the Volterra-Wiener theory

of nonlinear systems, must be used. The discrete-time Volterra series is defined as

follows [81:

N N N

y[n] = ho + Z hi[n - k]x[k] + E S h2 [n - ki, n - k2]x[ki]x[k 2] + (3.4)
k=O k1 =0 k2 =0

In this case, hi is called the i-th order kernel of the impulse response. The zeroth-order

kernel, ho, accounts for some initial offset and is generally zero. The first-order kernel,
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hi, measures the amplitude dependence in the system; if the system is purely linear,
the first-order kernel is equivalent to the linear impulse response and the second-order

and higher kernels will be zero. Second- and higher-order kernels give a measure of

the interaction of multiple excitations at various times. This formulation has the

added benefit of providing a clear quantification of the degree of nonlinearity in the

system; the closer to zero the higher-order kernels are, the more linear the system is.

Higher-order kernels are found from the response of the system to multiple unit

impulses, where the number of impulses applied is equivalent to the order of the

kernel. Thus three impulses are applied at varying times ti, t2 , and t3 for the third-

order kernel. The nonlinear kernels thus describe the interaction of multiple impulses.

Silva details the method of determining the higher-order kernels in his dissertation [8].

This kernel identification process consists of varying the time at which each impulse

is applied until there is no interaction between them. All kernels are symmetric, and

the i-th order kernel is an i-dimensional function of time. Thus, the second order-

kernel can be represented as a matrix. An example of a second-order kernel is given in

Figure 3-3 [81. Because they require more than three-dimensions, higher-order kernels

are more difficult to visualize.

To identify nonlinear kernels, several responses must be acquired from the system.

The number of responses needed depends on the number of kernels desired and the

memory of the system. Here, only second-order kernels are considered. The responses

needed to assemble the first- and second-order kernels include the following:

" Response to a single unit impulse, y1[t]

* Response to a single double impulse, y2 [t]

* Responses to impulses at to and to + T, yii [t, T]

Once these responses are acquired, the kernels can be assembled. The first-order

kernel describes the amplitude dependence of the system, comparing the response to

a unit impulse to the response of a double-amplitude impulse. Mathematically, this

is
1

hi[t] = 2y1 [t] - y 2[t] (3.5)2
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Figure 3-3: Three-Dimensional View of the 2nd-Order Kernel of the Burgers
Equation [8]

If the system is linear, then doubling the amplitude of the impulse will give the

same response as doubling the response of a unit impulse, thus the linear impulse

response is recovered. Nonlinear kernels describe the difference of the response to

two impulses at different times and two superimposed and appropriately time-shifted

impulse responses. This difference is given as follows:

1
h2 [t, T] = - (yI[t, T] - y1[t] - y1[t + T]) (3.6)

2

The response at each impulse interval T is called a component of the kernel. The

first component is for T = 0, or two impulses occurring simultaneously-which is

equivalent to a single double impulse. For a system with short memory, only the first

several components will be nonzero. Once these componets have been obtained, they

can be assembled in matrix form.

Figure 3-4 depicts the method in block diagram form. As with the linear form, the

analysis is divided into two processes. First, the system identification process uses

the flow solver to acquire the impulse response kernels of the system. For moderately

nonlinear systems, it is generally sufficient to truncate the series after the second-

58



order kernel. The kernel identification process is done iteratively, varying the time

between the impulses until there is no interaction-the kernel goes to zero. Once the

impulse response kernels are obtained, the flow solver is no longer needed. Subsequent

responses to arbitrary inputs are determined with the impulse response kernels and

the Volterra series.

Unit I Arbitrary
Sample 1st Order Input

Function Kernel Function
t=to

Unit O
Sample Aerodynamics ,nteraction? 2nd Order Volterra Response

Function Code Kernel Series
t=t,

Unit
Sample Nth Order

Function Kernel
t=tN

Increment t,

System Identification Arbitrary Unsteady Responses

Figure 3-4: Block Diagram of the Nonlinear Aerodynamic Impulse Response Method

Silva examines the Riccati equation and the Burgers equation using the nonlinear

impulse response techniques outlined here. In both cases a very good match was

found between the response predicted with a combination of first- and second-order

kernels and the actual response. An amplitude dependence is, however, apparent. At

higher input amplitudes there is a noticable degradation of the fit. This can only be

accounted for by using a higher-amplitude impulse to obtain the impulse response

kernels.

Besides the amplitude limitations inherent to the nonlinear formulation, it should

also be noted that a set of impulse response kernels is strictly valid only at the

freestream conditions, e.g., Mo, for which it was identified. Thus, a single set of

impulse response kernels fully describes the unsteady aerodynamic behavior of a given
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configuration at, say, M, = 0.8. To study the response of the same configuration at

M, = 0.6, however, a new set of impulse response kernels must be identified.

3.3 The Aerodynamic Impulse Response Method

As described in the preceeding sections, the impulse response method is applicable

to any mathematical system. Application to particular systems-in this case,

aerodynamic systems-is accomplished by way of the boundary conditions of the

system. Every aerodynamics code is unique in its treatment of boundary conditions,

hence there is no generally applicable method of implementation. Typically, however,

some form of what Silva terms the "downwash equation" [8] appears. This equation

separates the spatial and temporal components of the body's motion and generally

can be expressed in the form

w(x, y, z) = <'(x, y)u(t) + <b(x, y)it(t) (3.7)

where ()' indicates spatial differentiation and ( ) indicates differentiation with respect

to time. Additional terms to account for wing thickness or other effects may appear,

but only the temporal functions are important.

It is important to notice from Equation 3.7 that there are actually two separate

"input channels," u and n. Consideration of the two channels as a single input would

lead to an undefined discrete time-derivative of the impulse, because as At -+ 0,

i[to] -* oo. Instead, the two channels must be considered separately. An impulse

response is obtained for

1.0 for t =to
u[t] =

0.0 for t to

with it[t] = 0.0 for all t. Then, a separate impulse response is obtained with

. 1.0 fort=to
0.t] =
0.0 for t# to
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and u[t] = 0.0 for all t. For linear systems the total response is simply the sum of

the response of each channel. For nonlinear cases, the method is more complicated,

involving consideration of the interaction of the two channels, and is described in

more detail in [8].

Depending on the formulation of the aerodynamic model, there may be fewer or

more input channels. As will be seen in Chapter 5, there are three input channels in

PMARC: pitch, a; pitch rate, 6; and plunge rate, vz

As the Aerodynamic Impulse Response formulation stands, it is applicable to

rigid-body analyses only; that is, wings or full aircraft configurations undergoing

rigid-body pitching and plunging motions. For application to aeroelastic analyses, the

response of the system to changes in geometry needs to be determined. Aeroelastic

models commonly couple the unsteady aerodynamics model with the structural

dynamics model iteratively-the structural dynamics model passes the deflection of

the structure due to aerodynamic loading to the aerodynamics model, which then

recomputes the aerodynamic loading. This process was illustrated in Figure 2-2.

Because it would be impractical to find the impulse response of every degree-of-

freedom of the system, a better approach is to use some form of modal analysis,

either linear or nonlinear, to find the impulse response of a flexible structure.

Because typically only several modes are required to describe the most significant

characteristics of a system, the aerodynamics code will only need to be run several

times to identify the impulse responses of these modes. Thenceforth only convolution

is required to determine arbitrary responses of the flexible structure.

The structural mode shapes describing the deformed state of the structure can

be found with a structural analysis model using only the homogeneous form of the

aeroelastic governing equation, Equation 2.1. These structural modes can then be

written in terms of the spanwise kinematic velocity. As noted earlier, it is generally

sufficient to retain only several mode shapes; an impulse response due to each mode

shape can be calculated and applied to find the response of the flexible-body system

to arbitrary motions. Figure 3-5 illustates this method. The method is discussed in

greater detail in Chapter 5.
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Structural Dynamics:

Modeshapes

Figure 3-5: Schematic of the Aeroelastic System Using Structural Modal Analysis

and the Aerodynamic Impulse Response Method
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Chapter 4

An Overview of Aerodynamic

Panel Methods

The Aerodynamic Impulse Response method is applicable to any aerodynamic

method-either CFD or any of the simplified models mentioned in Chapter 2. In

this research, the aerodynamnic platform employed is a low-order aerodynamic panel

code similar to that employed by Katz and Maskew [7]. This chapter provides a brief

overview of panel methods in general and of the particular panel code chosen for this

work, the NASA Ames code PMARC. The chapter begins with a brief history of the

development of panel codes and then continues with an overview of the theory of

panel methods. Next, the specific benefits of the panel method are detailed, and,

finally, PMARC and some specifics of its methodology are presented. References [48]

and [49] are invaluable references on the panel method and are referred to throughout.

4.1 History

The aerodynamic panel method is based on the linear potential flow model governed

by Laplace's equation. The method was first formulated for two-dimensional lifting

and non-lifting airfoils and not long afterwards the technique was expanded to three-

dimensional bodies. The earliest work appeared in Germany before the widespread

availability of digital computers. The first successful three-dimensional panel code
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appeared in the early 1960s, a development of the Douglas Aircraft Company called

Hess [50]. This method used constant sources only with a Neumann boundary

condition and hence solved for only non-lifting three-dimensional flows. Development

continued through the 1960s, and by the early 1970s the USSAERO code [51] was

available featuring linear source and vortex distributions for sub- and supersonic

lifting flows. Douglas's Hess code was improved at the same time to include constant

doublets for the solution of lifting flows.

Three paths of innovation appeared at this point, marking the so-called "second

generation" of codes. The first was the development of the Dirichlet boundary

condition, which eliminated the need for non-physical "lift-carry-over" surfaces at the

intersection of wing-type surfaces and body-type surfaces [49]. The second innovation

was the development of high-order singularity distributions, primarily quadratic. This

provided a more accurate solution at the expense of increased code complexity and

more stringent discretization requirements. (Low order methods are substantially

less sensitive to gaps in panelling.) Finally, codes capable of simple unsteady analysis

appeared. Representative codes of this generation include MCAIR [52], SOUSSA [53],

PAN AIR [54, 55], and an updated Hess code often referred to as Hess II [56].

The third generation of panel codes appeared concurrently with the micro-

computer. Previous codes required mainframe computers and hence were

only practical for large aerospace companies, but the widespread availability of

microcomputers in the 1980s allowed for the explosive growth of the market for

panel codes. Interest in higher-order methods waned, and a flurry of new techniques

appeared including integrated boundary layer effects using sources to adjust the

effective body shape (transpiration) and numerical optimization of the solver routines,

and improved wake models allowing for roll-up were introduced [48]. VSAERO [39]

was the first panel method that was widely available commercially, and this was

followed by a Lockheed development, QUADPAN [57], and the NASA Ames code

PMARC [40].
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4.2 Theory

The foundation of panel methods is potential flow theory, which can be derived from

the fluid flow continuity equation. If density is assumed to remain constant, the

incompressible form of the conservation of mass equation gives

V -V = 0 (4.1)

where V = ui + vj + wk is the velocity vector. Further, if the flow is assumed to be

irrotational, a velocity potential 4 can be defined such that

V=VqV (4.2)

Combining Equations 4.1 and 4.2 gives Laplace's equation,

V2 4 = 0 (4.3)

reducing the set of three equations to a single equation. This equation has been

exhaustively studied and its solutions are well understood [33, 48, 58]. This is the

governing equation for incompressible potential flows.

For a potential flow analysis about a body and wake as shown in Figure 4-1, there

are four boundary conditions that must be satisfied. On the body surface Sb, the non-

penetration, or flow tangency, condition is applied. In the body frame-of-reference,

this is commonly given for steady flows as

(Vo + ) - n = vn (4.4)

where v,, is a prescribed normal velocity, usually zero, and y is a small perturbation

potential, so that the local velocity is v = V, + Vo. For unsteady flows, the same

boundary condition can be written as

(V, + Vpige + Q x R + V() - n = vn (4.5)
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Sb

P.

SW

Figure 4-1: Body and Wake for Potential Flow Analysis with a Panel Method

where Vtras, is the body translation velocity, 0 is the rotation rate vector (comprised

of pitch, roll, and yaw), and R expresses the distance from the element to the

rotational center. This condition can be satisfied with either a Neumann condition or,

as is generally the case in recent codes, a Dirichlet condition, which sets the potential

inside the body to zero. The second boundary condition is that the static pressure

must be continuous through the wake surface S., so

AC=--C(Sw) - C(S;) =-0 (4.6)

Thirdly, at the trailing edge, the flow must leave the body smoothly (the Kutta

condition), and, finally, the perturbation vanishes at infinity upstream.

The governing equation and the boundary conditions are satisfied with a

distribution of two types of elementary solutions: the source, with strength -; and the

doublet, with strength p-. In incompressible flows, sources produce a jump in velocity

in the normal direction and doublets cause a velocity jump in the tangential direction.
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Thus the body, Sb, is described with a distribution of sources and doublets, while the

wake, S, which has a velocity jump only in the tangential direction, is described by

a distribution of doublets only. Though the wake is physically a vortex system, it

can be modeled with doublet elements because, as Lamb shows, the induced velocity

from a doublet of constant strength is equivalent to that from a vortex ring with the

same strength [58].

The potential at any point P in the flowfield due to the source distribution is

1 = (x ) d(4.7)
47r ff Irl

Sb

where r is the distance from point P to the element dS. The potential at point P

due to the doublet distribution is

1 nr -r
A = p(x) dS (4.8)

Sb+Sw In 3

where n is the unit normal vector from element dS.

Since the normal velocity at the surface is known a priori, the source strengths

can immediately be determined. If no flow through the surface is assumed, the source

strengths are given by

a = 7 n - Voo (4.9)47r

Distributing these sources and doublets on the discretized body and wake surfaces,

simplifying with Equation 4.9, and applying the boundary conditions, some ma-

nipulation yields an integral equation for the unknown doublet strengths results:

[ p-fi V dS-2y + ( dS+Jp-fiV ()dS=0 (4.10)
.Sb-P _ Sb Sw

P in this case is an element dS on the body or wake, and Sb - P indicates integration

over all elements except P (because at P the integral is singular). pp is the, as yet

unknown, doublet strength at panel P.
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Finally, this equation is written in discretized form. The body and wake are

described with a set of small rectangular elements called panels. Low-order panel

codes, as will be assumed here, take advantage of the constant singularity strength

on each panel to extract the source and doublet strengths from the integral, leaving

a matrix equation for the doublet strengths at time t,

Ns Ns N.

E AkCjk + (-kBjk + wCj = 0 (4.11)
k=1 k=1 1=1 j=1,Ns

where N, is the number of body panels, N, is the number of wake panels, and the

influence coefficient matrices Bk and Cyk are defined as follows:

Bjk = f dS (4.12)
k

and
-27r j=k

Cik = (4.13)
ff ii - V(l)dS j # k
k 

r

These coefficient matrices dictate the influence on panel j of a singularity of unit

strength at panel k. For rigid bodies, as is assumed in the basic panel code

formulation, Equations 4.12 and 4.13 are functions of geometry only and thus need

only be evaluated once. (For flexible bodies with small deformations, it can be

assumed that the influence coefficient matrix is constant. Highly flexible structures

require the coefficient matrix to be updated, however.) Source strengths are known,

as given in Equation 4.9, and can be moved to the right hand side of Equation 4.11.

Doublet values in the wake, pw, are calculated as a function of body panel

doublet strength values. A variety of wake models are available, the simplest being

a prescribed rigid wake. Most modern panel codes employ some form of wake

timestepping so that the wake grows with the time iteration-a row of wake panels

is shed from the trailing edge at each time step and the previous wake panels are

convected downstream. Wake relaxation is also common in modern codes. Using this

technique, the position of each wake panel is recomputed at each time step based on
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the local velocity rather than the freestream velocity. This allows the wake to roll

up at the edges as is physically observed. It is important to note that if a prescribed

rigid wake is used, the problem is entirely linear; wake relaxation, on the other hand,
introduces some nonlinearity to the problem.

The Kutta condition fixes the doublet strength values of the first row of wake

panels. The Kutta condition simply states that the velocity at the trailing edge must

be finite. The trailing edge is defined as the common edge between panels on the lower

and upper surfaces of a lifting surface. As indicated earlier, a doublet is equivalent

to a vortex ring with the same strength. As shown in Figure 4-2, at the trailing edge,

one edge of the two vortex rings coincides and, since they flow in opposite directions,

the resulting vortex strength is the difference between the two. The first wake panel

shares this edge as well, and hence its doublet strength is equal to the difference of

the doublet strengths of the two body panels.

Upper Surface Trailing Edge Panel

UU

Wake Panel

Lower Surface Trailing Edge Panel

Figure 4-2: Determination of Doublet Strength Shed into the Wake

By prescribing an initial wake, a steady state solution beginning at some time

t > 0 can be achieved. On the initial wake, all rows of wake panels are given the same

doublet strength as the first row. If no initial wake is given, an impulsive start at t = 0
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is simulated, and the wake at the first time step consists only of a single row of wake

panels. At subsequent time steps, a new row of panels is added at the trailing edge

and the remaining panels are convected downstream, retaining the doublet strength

of the previous time step. Hence, the strength of the first row is written in terms of

the body doublet strengths and the remaining wake panel strengths are known and

can be moved to the right hand side of Equation 4.11. The system is solved using an

iterative solver for a system of linear equations.

Once the doublet distribution is found, the potential at any point in the flow can

easily be calculated. For aeroelastic applications, only surface forces are of interest.

Velocity components at each panel can easily be reduced from the velocity potential,

and the pressure at each panel can be found with the unsteady form of Bernoulli's

equation,

k d$ V 47r ( (4.14)Ck = V12- + -t = 1 - L-+ 2 (4.14)- A

where CPk is the nondimensional pressure coefficient at panel k, V is the local velocity

at panel k, and n is the current time step. Forces and moments are calculated by

integrating the pressure over the surface.

4.3 Benefits of the Panel Method

Engineering analysis is always a matter of compromise, and this case is no different.

Flow simulation via the Navier-Stokes equations would obviously provide the most

accurate solution but are prohibitively expensive both in the preparation phase and

in the execution phase. For research of fundamental phenomena and for detailed

analyses, this cost may be acceptable; however, in the case of preliminary design where

multiple design iterations are ordinarily necessary, CFD is still not a realistic tool.

The simplified aerodynamic models mentioned in Chapter 2 are more appropriate.

Panel methods are a popular choice and were selected for this research for a number

of reasons.

Panel codes are fast for reasonably sized problems. Though not very efficient-

the cost is proportional to N 2 or N3 , where N is the number of panels [49]-the
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problem size is orders of magnitiude smaller than CFD control-volume approaches.

In three-dimensional panel methods, only the body surface and the wake need to

be discretized, and the elements (panels) are two-dimensional. Three-dimensional

CFD methods, on the contrary, require discretization of the entire control volume

with three-dimensional elements. Inviscid solutions with panel methods require on

the order of one thousand panels; solutions coupled to boundary-layer methods

typically require several thousand panels. CFD problems typically involve hundreds

of thousands or millions of elements. Because of the reasonable problem size, panel

methods can be run on a wide variety of platforms, while CFD methods often require

high-end workstations or supercomputers.

Another advantage of panel methods is their applicability to general

configurations-arbitrary three-dimensional bodies. Lifting-line based methods like

the lumped vortex model employed by Drela [5] are limited to two-dimensional

sections extended to three-dimensional planar lifting surfaces by way of strip

theory. Panel methods, on the other hand, apply to arbitrary three-dimensional

bodies, meaning that a highly deflected nonlinear equilibrium position of a wing

is an acceptable geometry; with the appropriate modifications, large geometrically

nonlinear deformations may be considered.

Finally, panel methods, when employed within their range of applicablity, provide

reasonably accurate results [7, 40, 48, 49]-results accurate enough for preliminary

design decisions. The region of applicablity of panel methods has the following

bounds:

" High Reynolds number flow (inviscid)

* No flow separation

" Vorticity confined to thin layers (i.e., wakes)

" Incompressible flow or small-perturbation compressible flow with no shocks

The linearity of the governing equation restricts the method from prediction flow-

related nonlinearities such a shocks, separation, and stall phenomena; however,
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geometrical and wake nonlinearities are accounted for.

4.4 PMARC

The panel code selected to use with this research is PMARC [40]. This code is a

low-order (constant strength) source/doublet method that was developed in the late

1980s at the NASA Ames Research Center. PMARC is one of the most capable

modern panel codes, including such features as

" Time-stepping, relaxed nonlinear wake

" Internal flow modeling

* Jet plume modeling

" Simple harmonic pitch and plunge

" Boundary layer modeling

Additionally, the problem size is limited only by hardware; PMARC can readily be

adjusted for any number of maximum panels. The source code for versions prior to

the latest is readily available and is written in standard FORTRAN 77, hence can

be compiled on any platform supporting ANSI FORTRAN. Handy modeling features

are included, such as an automatic NACA 4-digit series wing generator.

The unsteady capabilities of PMARC are rudimentary, limited to single-frequency

sinusoidal pitching and plunging oscillations. Martin and Kroo compared unsteady

results using PMARC with theoretical predictions using Theodorsen theory for two-

dimensional airfoils (high aspect ratio wings) [59]. Their findings suggest that

PMARC does effectively model unsteady motions. It will thus be effective both as a

platform for the impulse response and to provide control data-predictions using the

impulse response method in conjuction with PMARC will be compared to predictions

for sinusoidal oscillations using PMARC alone.

The methodology followed in the PMARC code is similar to that outlined in the

theory section above. Figure 4-3 is a flowchart that traces the operation of the code.
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Program input is achieved through a data file that specifies the geometry of the body

and wake, if specified, as well as program control options. Upon reading the job

information from the data files, PMARC assembles the geometry and locates the

corner and control points of all panels. Once the geometry is complete, the source

and doublet influence coefficient matrices are constructed-as mentioned earlier, since

PMARC assumes only rigid body motion, this needs only to be done once. Initial

wake data is read in, and then the time-stepping loop commences. Time step size

and total number of time steps are specified in the data file.

Figure 4-3: Schematic of the Operation of PMARC

The time-stepping loop begins by computing a kinematic velocity, that is, the flow

velocity due to the freestream and the motion of the body. In the case of steady flow,

this is simply the freestream velocity rotated by any static pitch and yaw angles given
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in the input file; it remains constant throughout the time-stepping loop. PMARC

also is capable of sinusoidal pitch and plunge oscillations; if this unsteady capability

is employed, a new kinematic velocity is calculated at each time step. The wake

for the current time step is assembled, and a wake influence coefficient matrix is

constructed. The system of linear equations is then assembled and solved for the

unknown doublet strengths using an iterative scheme. A convergence parameter is

specified in the input file to control the iteration. Given the doublet distribution,

surface velocities and forces are computed and, if specified, written to an output file.

Wake information for the next time step is generated, and the loop repeats until the

final time step is reached, at which point the final results are written to the output

file and the program ends.
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Chapter 5

PMARC Modifications and Other

Coding

As indicated in Chapter 3, the Aerodynamic Impulse Response method is not a

flow solver itself; rather, it "sits on top" of a traditional flow solver to reduce

the computational effort required for repeated unsteady analyses. Any unsteady

flow solver is applicable; this research investigates the impulse response method in

conjunction with an aerodynamic panel code, as discussed in Chapter 4. Specifically,

PMARC Version 12.20 was selected. This chapter outlines the modifications to the

source code required for the implementation of the Aerodynamic Impulse Response

method for rigid-body responses, followed by the additional changes necessary to

obtain flexible-body responses. The resulting code, PMARC with the addition of

impulse response capabilities, will be referred to as PMARC/AIR. Implementations

using the linear form of the impulse response method will be referred to as Linear

PMARC/AIR, while those employing nonlinear impulse response techniques will

be referred to as Nonlinear PMARC/AIR. Finally, additional codes such as the

convolution program used to generate the response to arbitrary inputs with an impulse

response from PMARC/AIR are reviewed. Refer to the Appendix for a full source

code listing of programs developed in this research and PMARC subroutines that

have been significantly altered.
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5.1 Linear PMARC/AIR for Rigid Bodies

Implementation of the linear Aerodynamic Impulse Response method for a rigid-body

analysis (pitch and plunge of wings or bodies) is fairly straightforward. Examination

of the PMARC source code reveals that the boundary condition that should be

perturbed is the unsteady non-penentration condition (as given by Equation 4.5).

The freestream flow plus velocities induced by pitch and plunge is referred to as

the kinematic velocity, and a single subroutine is responsible for the calculation of

the kinematic velocity at the current time step, PATH. The flowchart in Figure 5-1

indicates where this subroutine fits within the entire framework of PMARC. This

subroutine in its modified form can be found in Appendix A.1.

Figure 5-1: Flowchart Outlining the Rigid-Body PMARC/AIR Methodolgy
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Because Version 12 of PMARC uses a frame-of-reference fixed on the body,

unsteady motions are achieved by adjusting the freestream flow. Because of this,

besides implementing the impulse on the body, the impulse affects the wake as well.

The wake is updated at each time step in the WAKSTEP subroutine. Modifications

to this subroutine were similar to those carried out in the PATH subroutine, except

that the impulse actually appears in two time steps because a forward difference

derivative is used. However, subsequent testing with both the linear and nonlinear

PMARC/AIR implementations showed that carrying the impulse over onto the wake

has a nearly negligible effect on the response. Impulse responses are nearly identical

as when only the body is impulsed.

In the current implementation of PMARC/AIR for rigid-body responses, an

impulse is triggered by a negative integer value for the frequency of oscillation about

the z-axis, WTZ. The absolute value of this "frequency" is the time step at which the

impulse is applied. This allows the impulse to be applied after the wake has developed

over several time steps. However, experimentation shows that impulses applied at all

time steps greater than zero produce an identical response. Thus, throughout this

research, the impulse is applied at the first time step, WTZ=-1.

As indicated in Chapter 3, PMARC actually has three independent "input

channels" that must be accounted for separately when using the impulse response

method, a pitch channel, a pitch rate channel, and a plunge rate channel. The

variable VZ represents the plunge rate, THETA is the pitch, and Q is the pitch

rate. From the code it is evident that, in fact, as many as nine input channels are

available for arbitrary motions in three dimensions-translation in the x, y, and z

directions, pitch, yaw, and roll, and pitch, yaw, and roll rates. Because they are

the most significant for aeroelastic applications, this research only considers vertical

plunge and pitching rotations. All nine imput channels may be helpful for advanced

flight dynamics analyses.

The implementation of PMARC/AIR for rigid bodies as listed in Appendix A.1

is rather inelegant, in that a separate executable is needed for each input channel,

but functional. (This is fixed in the flexible-body implementation, as will be detailed
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shortly.) To find the impulse response of a given channel, first the remaining channels

are set to zero for all time steps. The selected input channel is also set to zero for

all time steps except the impulse time step, which is given by the abolsute value

of WTZ. At the impulse time step, a pulse is applied to the selected channel. For

example, to obtain a plunge rate impulse response, Q and THETA are both set to

zero for all time steps and VZ is set to 1.0 for the pulse time step and 0.0 for all

other times. Likewise, for a pitch impulse response, VZ and Q are set to zero for

all times, and THETA is pulsed at the time step specified by WTZ. The output

of the code is a data file containing the time history of the total lift coefficient in

the body frame-of-reference-the impulse response. Figure 5-2 is a block diagram

showing the process of an analysis using this method. The flow solver is run once for

each input channel; once the impulse responses are obtained it is no longer needed.

For subsequent responses to arbitrary input functions, only the convolution code is

needed.

System Identification Arbitrary Unsteady Responses

Figure 5-2: Block Diagram of an Unsteady Flow Analysis Using PMARC/AIR
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PMARC is generally considered to be a linear code, but, in fact, this is not entirely

true. While the governing equation of the flow is linear, the relaxed wake can actually

be weakly nonlinear. This nonlinear behavior appears for large amplitude pitching

and plunging. Initial results of convolving impulse responses with sinusoidal input

functions revealed this amplitude-related nonlinearity. The impulse response method

implies that the amplitude of the impulse should be 1.0 since a unit response is

desired, but this does not always produce the correct result. As shown in Figure 5-3,
convolution of the pitch channel impulse response with a sinusoidal function did not

reproduce the expected response, while the pitch rate channel results, in Figure 5-4

show a good match. In fact, the units of the input channels must be considered,

because, depending on the units, an impulse with magnitude 1.0 may be a large or

a small input. The pitch channel is measured in radians, the pitch rate channel in

radians per second, and the plunge rate channel in length units per second (where

any length unit can be used and is specified in the PMARC input file). Because of

the small angle assumption, the impulse must be small. A unit pulse of plunge rate

and pitch rate is satisfactory; however, for the pitch channel, a pulse of 0.01 is used

because 1 radian is a very large angle. The pitch channel impulse response is then

scaled by 100 later to recover a "unit" response. A possible resolution of this pulse

amplitude issue may be found by employing the nonlinear form of the Aerodynamic

Impulse Response method, as is discussed in the next section.

5.2 Nonlinear PMARC/AIR for Rigid Bodies

As detailed in Chapter 3, the nonlinear form of the Aerodynamic Impulse Response

method involves collecting the response of the system to multiple impulses. The first-

order kernel of the nonlinear impulse response is exactly the same as the linear form,

and the implementation within PMARC is the same as in the preceding section.

The nonlinear responses studied in this thesis are limited to second-order kernels.

Implementation of the method for a second-order kernel is the same as that described

above for the linear impulse response except that two impulse are applied, the first
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at time step n and the second at time step n + T. The code must be run repeatedly,

varying the time TAt between the two impulses, until there is no interaction of the

two impulses-when the T-th component of the second-order kernel goes to zero. The

nonlinear kernel identification method was described in detail in Section 3.2.3.

5.3 Linear PMARC/AIR for Flexible Bodies

Significantly more complicated to implement is the Aerodynamic Impulse Response

method for flexible bodies. This section details this implementation. First, the

frame-of-reference and the relation of complex structural deformations to pitch and

plunge motions are examined. Relevant assumptions are introduced, then a simple

implementation of the method using a simplified aerodynamic formulation, a two-

dimensional lumped vortex model, is presented. Results of this simplified formulation

are examined to verify the validity of the approach. Finally, the modifications to

PMARC are detailed.

5.3.1 Modeling Complex Deformations

There are two ways in which a flexible body can be represented in PMARC. The direct

approach is, based on the output of the structural analysis, to update the geometry

at each time step. This, however, is complicated and expensive. The other option

is to relate the motions of the body to the unsteady flow parameters available, pitch

and plunge. This later method is preferred.

PMARC Version 12.20 fixes the frame-of-reference on the body. This means that

pitch and plunge of the body are actually represented by rotating the freestream

velocity; this rotated freestream is refered to as the kinematic velocity (with the

addition of rotation and translation rates in unsteady flows). In the rigid-body

formulation, a single impulse amplitude is applied uniformly to the entire body. It

is not much of an extension to suppose that if a varying impulse amplitude were

applied to the body, some kind of bending or twisting of the body would be modeled.

The flexible-body form of PMARC/AIR utilizes structural modal analysis to represent
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complex geometrical deformations as a series of mode shapes; these same mode shapes

are used to define distributions of pitch and plunge to obtain the impulse response

of each mode. Only linear flexible-body problems will be considered in this thesis;

superposition is valid for linear problems, and the resulting modal responses can be

appropriately scaled and superimposed.

This approach may be considered a fixed-panel frame-of-reference. Given the

spanwise deformation distribution of a structural mode, the velocity induced by

this motion is determined at each panel. Figure 5-5 illustrates linear bending of

a wing-a non-physical phenomenon-or rigid body rotation about the wing root

(roll). The principle holds for any modal shape; the linear mode was used for

simplicity. Assuming that the structural analysis finds linear bending to be the

first structural mode, in the body's frame-of-reference, it appears that the wing

bends linearly along the span. In the panel-fixed frame-of-reference, however, the

geometry remains unchanged. Instead, the wing sees an additional plunge velocity

that increases linearly from zero at the wing root to a maximum value at the wing

tip, as is shown in Figure 5-6. For an impulse response of this mode, the plunge

velocity varies linearly from 0 at the root to 1 at the tip. Linear bending is the

simplest of examples. Likewise, if the pitch is varied linearly, linear twist is modeled.

Higher-order pitch and plunge distributions give higher-order mode shapes.

5.3.2 Assumptions

The implementation of the flexible-body form of the Aerodynamic Impulse Response

presented here has two primary limitations. First, the wing is assumed to have a rigid

chord. In other words, the airfoil does not change as the wing is deflected. This is

a common assumption that is valid primarily for high aspect ratio wings, for which

spanwise bending and twisting are the dominant forms of deflection. Additionally,

the implementation presented here is valid only for small deflections about the initial

geometry. This limitation is a result of the influence coefficient matrices being

calculated only once (see Section 4.2 and Figures 5-1 and 5-11). For rigid bodies, the

distance between panels never changes; for flexible bodies with small deformations the
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change in the distance between panels is negligible; however, for flexible bodies with

large deformations, the influence coefficient matrices need to be recomputed at each

time step based on the current geometry. This is not undertaken in this research,

hence the flexible-body responses are valid only for small (linear) deformations-

deformations about either a static or a nonlinear equilibrium.

5.3.3 Two-Dimensional Lumped Vortex Model

Prior to addressing the complex code modifications to implement the flexible-body

impulse response in PMARC, the approach was investigated using a simple two-

dimensional lumped vortex formulation. MATLAB was used for this study. A copy

of the input file is included in Appendix B.1.

b

x

Figure 5-7: Rectangular Wing Modeled with the Lumped Vortex Formulation

Figure 5-7 shows the geometry studied with this model, a flat rectangular wing

with span b and chord c. Discrete vortex elements with circulation F are distributed

along the span at the quarter-chord point as shown in the two-dimensional section

in Figure 5-8. The downwash induced by the vortex element is computed at the
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Figure 5-8: 2-D Section of the Wing Modeled with the Lumped Vortex Formulation

three-quarter-chord point according to the equation

_ F(t) # / dF(t) (5.1)
rc Uo0  dt

where c is the airfoil chord and ,3 is a lag parameter found to equal 2/7r by matching to

Theodorsen theory for large reduced frequencies, k -+ oo [5]. Strip theory is assumed:

each spanwise location is considered independently, and downwash at each spanwise

station is induced only by the local vortex element.

The wing surface in Figure 5-7 is defined as

F(x, y, z, t) = ZA(X, y, t) - z - 0 (5.2)

The flow tangency boundary condition requires that the flow be aligned with the

body. This is described mathematically with the substantial derivative operator,

giving i = 0. Using the definition of F from Equation 5.2, manipulating, and

dropping higher-order terms,

OZA e
9
ZA0

+aUt - O' = 0 (5.3)

where w' is a small perturbation velocity in the z-direction. (Note that x- and y-
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components of the perturbation velocity were dropped as higher-order terms.) Thus,

at the control point,
OZA

wcp at + U ZA+UO)a 2
Now, the surface section ZA is writen in terms of pitch and plunge variables, a

and h. This gives

ZA = h(t) - x tan a(t) (5.5)

For small angles a and suppressing the explicit time dependence,

ZA = h - ax

aZA

at
aZA

ax

(5.6)

S-a

(5.7)

(5.8)

Combining Equations 5.7 and 5.8 with Equation 5.4 gives

wcp = h - x& - Ucma) = h- - Ua
c, 4

(5.9)

Using the definition of the downwash, Equation 5.1, and manipulating gives the

governing differential equation for the circulation about a pitching and plunging wing

dF 1 U U2
-_+ F F 0= a
dt 37c /

U. c . U.+ -a-
/34 

The solution of this governing equation is found numerically using a first-order

forward difference finite difference scheme in MATLAB. The spanwise distribution

of circulation is then found to be

Fiij = U aAt , + -6,,B 40 a F
-h,,- Fj + Fi,jj
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and

section:
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(5.11)



where i is the temporal variable and j is the spatial variable representing the span

section.

As in PMARC, three separate input channels are available. This study examines

the pitch and pitch rate channels only; plunge is assumed to behave similarly. For

the impulse responses, the inputs are as follows:

For pitch:

a(y, t) = y fort=to (5.12)

0 for t # to

h(y, t) = 0 for all t (5.13)

&(y, t) = 0 for all t (5.14)

For pitch rate:

2y for t = to
6(y, t) = y (5.15)

0 for t # to

h(y, t) = 0 for all t (5.16)

a(y, t) = 0 for all t (5.17)

The pitch and pitch rate impulse responses are shown in Figure 5-9. The response

to sinusoidal pitching is desired, so the following input functions are used:

27iAt
ainp[i] = sin 5 (5.18)

5,
27 27riAt

dir, [i]= - cos5 5

where i is the time index. This is a simple sine function and its time derivative with

unit amplitude and a frequency of 0.2 Hz. The built-in MATLAB convolution function

is used to convolve each impulse response with its corresponding input function. The

total response to sinusoidal pitching is obtained by superimposing the pitch channel

response and the pitch rate channel response. The result is shown in Figure 5-10.

A full time-marching solution of the differential equation is used as a control case.
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Neglecting the plunge channel, this gives

Fi+1 ,j = - [Uodt - + - Fi + £i, (5.20)
0 .4 47 rc .

with the input
2 27iAt

',i j jAy sin ( (5.21)

where i is the time index, j is the span station index, and Ay is the width of each

span station. This equation has the same form as Equation 5.18 except that here the

spanwise variation of pitch angle is imbedded in the input function.

The solution of Equation 5.20 for this input is determined with MATLAB; the

result is shown in Figure 5-10. Clearly, the impulse response method is equivalent to

the full time-marching solution. The result is shown for the wing tip only; examination

of the three-dimensional response shows that both responses are equivalent along the

entire wingspan. It was thus considered justified to continue with the implementation

of this approach for flexible-body response in PMARC.

5.3.4 PMARC Implementation

To implement the flexible-body form of the Aerodynamic Impulse Response in

PMARC, changes were required throughout the code. For this reason, Appendix A.2

includes only the most significant portions of the code modifications. Figure 5-11

illustrates the modifications diagrammatically. Comparing to the flowchart of the

rigid-body PMARC/AIR methodology in Figure 5-1, it is evident that superficially

the only change is the addition of a loop over the wing span within the time iteration

loop.

The primary modification is to convert the kinematic velocity arrays VFR and

OMEGA from one-dimensional to two-dimensional arrays. In their original form,

VFR contains the three components of velocity and OMEGA the three rotation rate

components. In modified form, VFR and OMEGA become (N + 1) x 3 arrays, where

N is the number of columns of panels. Thus a unique kinematic velocity may be used
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Figure 5-11: Flowchart Outlining the Flexible-Body PMARC/AIR Methodolgy
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at each span station. (By assuming the wing to be rigid in the chordwise direction, the

kinematic velocity is constant at each span station, thus reducing the problem size by

obviating the need to compute and store the kinematic velocity at every panel.) The

first column (with index 0) of these arrays is reserved for the rigid-body kinematic

velocity components, which is used on all panels not specified as wing panels. To fill

these arrays, an additional loop is required within the time iteration. With this new

scheme, at each time step the program loops over the wing columns and determines

the local kinematic velocity based on a mode shape inputted by way of a data file.

This implementation could, in fact, be more efficient. For large problems execution

time will increase because of the need to compute the kinematic velocity at each span

station for each time step. A marked improvement in the implementation's efficiency

would be achieved by noticing that the kinematic velocity is actually uniform for

all time steps except at the moment of the impulse, timipse. Thus execution of the

additional spanwise loop is actually only required at one time step.

Job control is handled more elegantly in this implementation than in that for rigid

bodies. An additional namelist is added to the PMARC input file to specify whether,

when, and to which channel an impulse should occur. Three variables are added in

this namelist:

CHAN specifies the input channel to be used, with

1 - Plunge

2 - Pitch

3 - Pitch Rate

IMPTYP specifies the type of impulse used, with

0 - No impulse; standard execution of PMARC

1 Rigid-body impulse

2 Flexible-body impulse with distribution stored in the file IMPULSE

STEP specifies the time step n at which to apply the impulse
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Mode shapes are specified with an input file, IMPULSE. This file lists the impulse

magnitude at each span station. All three input channels are listed in the same file.

For simplicity, equal spacing of panels in the spanwise direction is assumed for this

research. An example of the impulse mode shape file IMPULSE for linear bending is

given in Appendix C.4. The mode shape specified in the input file should be obtained

from a structural modal analysis.

Because for flexible-body problems the concern is with the spanwise lift dis-

tribution, the output is the sectional lift coefficient rather than the total lift coefficient,

as was used in rigid-body analyses. This output can then be passed to a structural

dynamics module to find the structural response to that lift distribution.

The modifications mentioned here should leave the code "backwards compatible."

Namely, the response with no impulse (IMPTYP=0) should be identical to that from

the unmodified PMARC code; when IMPTYP=1, the response should be equivalent

to that obtained with the rigid-body implementation discussed above; and when

the flexible mode is selected (IMPTYP=2), input of a constant impulse distribution

should duplicate rigid-body responses. These comparisons were studied as part of

the validation of the implementation. The results of these studies are presented in

Section 7.4.

5.4 Other Codes Developed

Various utility programs were developed over the course of the research. These are

briefly described here, and the source code is reproduced in the Appendix.

5.4.1 Convolution

The linear convolution scheme employed in this program is a simple one based on the

definition of convolution in discrete-time,

N

y[n] ( h[n - k]x[k] (5.22)
k=O
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This simple formulation is adequate for moderate sized jobs. (Execution takes less

than a second on an Intel Pentium II for N ~ 1000.) Very large jobs can be processed

more expediently by utilizing one of several more efficient convolution schemes.

The inputs to the convolution code are as follows: the name of the impulse

response file, an impulse scaling factor (100 for the pitch channel, 1 for the pitch

rate and plunge rate channels), and the names of the input function file and the

output file. The total CL response obtained form the convolution for each time step

is written to the specified file in columnar form.

Convolution of flexible-body impulse responses requires a slight modification to

the base convolution scheme. Because the impulse response is different at each span

station, an additional loop was included. The user is prompted for the number of

span stations on the wing, and the convolution scheme is executed at each station

using the global input function and the local impulse response function.

More extensive modifications are required for "nonlinear convolution" by way of

the Volterra series, Equation 3.4. Two input files are required here, one for the first-

order kernel and a second for the second-order kernel. The first input file is identical

in structure to the input file for linear convolution, and the data is read into an array

in the same way as in linear convolution. The second-order kernel is listed component

by component in the second input file. The data is organized into a symmetric two-

dimensional array with the first component along the main diagonal, the second

component in the next diagonal, and so forth. Any remaining array elements are set

to zero. The "convolution" scheme is performed in two parts, the first the same as

previously for the first-order kernel, the second requiring an additional loop for the

double summation of the second-order kernel.

5.4.2 Deflected Wing Generation

For the steady and unsteady cases discussed in Section 7.2, a program was developed

to generate the PMARC input file for a nonlinearly deflected NACA 00xx-series

rectangular wing. The user inputs the airfoil thickness ratio, the span, the chord,

discretization options, and the wing tip deflection ratio. This wing tip deflection
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ratio is actually the linear value and not the true wing tip deflection ratio; that is,

the ratio of the projected tip deflection at y = b to the semi-span, b. Figure 5-12

illustrates this difference. The deflection shape is quadratic. The program generates

two output files. The contents of the first, wing.txt, can be pasted into the geometry

definition section of a PMARC input file. The second output file, curve.txt, gives

the translation and rotation of each span station for use with the lift extrapolation

method discussed in Section 7.2.

y

Deflection

c b

Figure 5-12: Detail of True versus Projected Wing Tip Deflections in Wing Generation
Program

5.4.3 Sinusoidal Input Function Generator

A simple program to generate sinusoidal functions to convolve with impulse responses

was developed as well. This program takes the user's input of the input type (pitch,

pitch rate, plunge rate), the frequency, the amplitude, the time step size, and the

duration, and writes the result to the file input.txt.
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Chapter 6

Geometry Models

Two aspects. of modeling are considered in this work. The first, as has been the

focus up to this point, is the modeling of flow features. This chapter, on the other

hand, concerns geometric modeling of the aerodynamic body-a wing-subjected to

a flowfield. The chapter opens with a brief discussion of the highly flexible, high

aspect ratio wings that motivate this work. Comments on the modeling procedure

in PMARC follow, and the chapter closes by detailing each geometry model that is

studied in this work.

6.1 Highly Flexible, High Aspect Ratio Wings

Though any geometry may be studied with the Aerodynamic Impulse Response

method and the implementation of it described in this thesis, the particular

application that motivated this work is the design and study of highly flexible, high

aspect ratio wings. Such wings are found on a variety of aircraft but are of particular

interest for High Altitude, Long Endurance (HALE) unmanned aircraft. What

distinguishes the behavior of these wings is their high flexibility and, consequently,

large deflection during flight. At the lowest level of analysis, wings are typically

assumed to be rigid. At the next level, structural elasticity is accounted for, but

deformations are assumed to be small. A highly flexible wing, however, experiences

large deformations-bending up to 30% of its semi-span, for instance-and the

95



traditional small displacement/rotation theories are not valid.

In the past, high aspect ratio wings generally were stiffened extensively to prevent

large deflections and aeroelastic instabilities. However, doing so incurs a significant

weight penalty. To achieve the performance goals set for the next generation of HALE

vehicles, highly efficient designs are necessary. High aspect ratio wings are desirable

for their high aerodynamic efficiency-the lift-to-drag ratio increases with wing span.

The design must also be light and be capable of carrying enough fuel for missions

extending to the tens or hundreds of hours. In addition, a large payload capacity is

desired. To achieve these goals, one solution is to cut back on the wing stiffening,

allowing the wings to bend and twist more, controlling the deformations through

material tailoring and active control systems if necessary [60]. Substantial savings

may be achieved but at the cost of greater complexity of the engineering analysis of

the vehicle.

The Aerodynamic Impulse Response method in combination with PMARC is

an effective and efficient aerodynamic analysis tool for the study of this type of

wing. Combined with a modal (linear or nonlinear) structural analysis module, the

aeroelastic characteristics of such a wing may be studied at the design level. Figure 6-1

illustrates a representative Highly Flexible, High Aspect Ratio (HFHAR) Wing design

that will ultimately be the subject of study with the combined suite of aerodynamics,

structural, and controls tools. This wing has NACA 0014 cross section, an effective

chord, 3, of 0.169 m, and a semi-span aspect ratio of 11.8; the inboard section is

rectangular, and outboard the wing tapers to half the root chord. For this research,

the geometry is slightly simplified. The ensuing sections describe the geometries used

and how they are modeled with PMARC.

6.2 Geometry Modeling with PMARC

Geometry modeling in PMARC is accomplished via a data input file. Data is read by

PMARC by way of a series of namelists, each of which contains a set of job control

variables. The first section of the the input file contains basic job control data and
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HFHAR Wing

NACA 0014
Root chord=0.2 m
Semi-span=2 m
400 wing panels
20 wing tip panels

Figure 6-1: Highly Flexible, High Aspect Ratio Wing Modeled in PMARC

global geometry information. The following are the most pertinent of the namelists

contained in this section of the input file:

" Basic job control and print options

" Solver parameters

" Time step parameters

" Symmetry and computation parameters

" Freestream conditions

" Angular position and constant rotation rates

" Sinusoidal rotation and translation

" Reference dimensions
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In the flexible-body implementation of PMARC/AIR, a new namelist is added to this

section to control the impulse, as was described in Section 5.3.4.

The next section contains the geometry definition. Complex geometries can be

handled by taking advantage of the hierarchy of coordinate systems in PMARC.

Large, uniform surfaces such as a wing or fuselage section are defined as patches by

two or more sections, which describe cross sections of the patch. Patches are then

discretized into small rectangular panels. Patches are generally rectangular, but they

may be curved, and they may have a side with zero length or be folded such that

two sides are coincident. Wings are modeled this way, a single patch folded such that

two originally opposite sides form the trailing edge. Because PMARC is a low-order

code, exact matching of panels at the patch boundaries is not necessary. Patch and

section options allow the user to control the number of panels on each patch as well

as the spacing of the panels. Four spacing options are available,

" Equal spacing

" Full-cosine spacing, which places the smallest panels near both edges

" Half-cosine spacing, with smallest panels near the first edge

" Half-cosine spacing, with smallest panels near the opposite edge

For wings, typically full-cosine spacing is employed in the chordwise direction to

concentrate panels near the leading and trailing edges, and half-cosine spacing is

used in the spanwise direction to concentrate panels near the wing tip. NACA 4-

series wings can be automatically generated by PMARC in this section, and PMARC

also can automatically generate a closing wing tip patch, either flat or rounded.

Wake definition follows the geometry definition. Here the user specifies all edges

on the body from which a wake is shed. Wakes can be set to either rigid or relaxed

mode, and initial wake shapes can be specified if desired. In rigid mode the wake is

time-stepped with the freestream velocity, while in relaxed mode the wake is time-

stepped with the local velocity.
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The final sections of the data file are for special options including off-body velocity

scans and off-body streamlines. These options are not used in this research.

6.3 Simple High Aspect Ratio Wing

Studies with PMARC and the Aerodynamic Impulse Response detailed in this thesis

are limited to wing models only. The wing model used, the Simple High Aspect Ratio

Wing (referred to as the SHAR Wing), is a slightly simplified version of the HFHAR

Wing-principally, the wing is rectangular with no tapered section. Again, the airfoil

is a NACA 0014. Various configurations of this wing design are studied throughout

this research. For the initial studies with PMARC described in Section 7.2, a wing

with a chord of 0.2 m and semi-span of 2 m (hence an aspect ratio of 10) is used, as

illustrated in Figure 6-2. The wing is discretized in PMARC with 750 wing surface

panels and 30 wing tip panels. Panels are equally spaced in the spanwise direction

and are full-cosine spaced in the chordwise direction, which results in smaller panels

at the leading and trailing edges. A relaxed wake model is used with no initial wake,

and the freestream flow is 10 m/s. The freestream density is set by specifying a speed

of sound. Here, the sea-level value, 340 m/s, is used. This configuration is referred to

subsequently as "SHAR1" or the "baseline" configuration; a listing of the PMARC

input file for this model is included in Appendix C.1.

Flat NACA 4-series wings are simple to model in PMARC because they can be

automatically generated. For the initial studies, however, it was desired to study

this same SHARI Wing in a highly deflected state. The deflected wing generation

program described in the previous chapter was used for this purpose. Figure 6-

3 shows a resulting wing model in a quadratic bending mode, where the tip is

deflected (nonlinearly) 29.3% of the semi-span. This configuration is referred to as

the "deflected" SHARI configuration.

For the impulse response method studies, the wing configuration is similar, though

with a semi-span aspect ratio of 50. Additionally, the length units are feet rather than

meters. As before, a relaxed wake is used. Freestream flow in this case is 100 ft/s,
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SHAR1 Wing

NACA 0014
Chord=0.2 m
Semi-span=2 m
750 wing panels
30 wing tip panels

Figure 6-2: Simple High Aspect Ratio Wing (SHARI) Modeled in PMARC

Deflected SHAR1 Wing

NACA 0014
Chord=0.2 m
Semi-span=2 m
750 wing panels
30 wing tip panels
Wing Deflection=29.3%

Wing Profile

0.6

0o2

Y (in)
s. 2

Figure 6-3: Simple High Aspect Ratio Wing (SHARI) with 29.3% Bending

100

o.s



and the speed of sound is set to its sea-level value, 1116 ft/s. Figure 6-4 illustates

the primary wing configuration used with PMARC/AIR, which is referred to as the

"SHAR2" Wing. The PMARC input file listing for this configuration can be found

in Appendix C.2. Additionally, studies were performed varying the aspect ratio of

the wing to examine sensitivity to three-dimensional flow effects. Impulse response

method results for these configurations are presented in Sections 7.3 and 7.4.

SHAR2 Wing

NACA 0014
Chord=1 ft
Semi-span=50 ft
600 wing panels
45 wing tip panels

Figure 6-4: Simple High Aspect Ratio Wing (SHAR2)

6.4 BACT Wing

With an aspect ratio of 2, the BACT (Benchmark Active Controls Technology) Wing

is not considered a highly flexible, high aspect ratio wing; however, it was chosen

for initial testing with PMARC/AIR because of its simplicity and to study the

possible aspect ratio dependence of the method. Additionally, experimental data

is available from wind tunnel testing at NASA Langley, though only at elevated
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Mach numbers [61]. The wing is a rectangular NACA 0012 with a chord of 16 inches

and a semi-span of 32 inches. The wing tip is rounded. In PMARC, 600 panels are

distributed on the wing surface and 60 on the wing tip. The wing surface is discretized

with full-cosine spacing of the rows and half-cosine spacing of the columns, so that

panels are smallest at the leading edge and trailing edge and towards the wing tip.

The relaxed wake model is employed with no initial wake. Freestream velocity is 100

ft/s. Figure 6-5 shows the PMARC model of the BACT Wing, and the geometry

input file is listed in Appendix C.3.

BACT Wing

NACA 0012
Chord=1 6 in
Semi-span= 32 in
600 wing panels
60 wing tip panels

Figure 6-5: BACT Wing
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Chapter 7

Results and Discussion

Two codes resulted from the modifications to PMARC discussed in Chapter 5,

the rigid-body PMARC/AIR code and the flexible-body PMARC/AIR code. This

chapter presents some of the results obtained with the final versions of each of these

codes for the purpose of validation of the method. The unmodified form of PMARC

was used, when possible, to generate control data against which to compare the

results predicted with the Aerodynamic Impulse Response method. This chapter

begins by briefly describing the error analysis method employed where needed, then

the numerical studies are presented, organized as follows:

" Preliminary testing

- Steady baseline versus deflected configurations

- Unsteady baseline versus deflected configurations

- PMARC unsteady results for various time steps

- Separation of input channels

" Impulse response tests for rigid bodies

- Linear impulse responses

- Linear response to sinusoidal motions

- Linear response to step motions
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- Linear response to arbitrary motions

- Nonlinear impulse responses

- Nonlinear response to sinusoidal motions

e Impulse response tests for flexible bodies

- Linear response with no impulse

- Linear response with a constant impulse

- Linear response to distributed impulses and various inputs

7.1 Error Analysis Method

Throughout this chapter, results obtained using the AIR method are presented in

comparison with those generated by PMARC. In some cases a qualitative comparison

of the results is adequate; however, when the error needs to be quantified, Fast Fourier

Transforms (FFTs) of the data are used. As implemented in MATLAB, Fourier

transforms are a sine/cosine series expansion of the original function with the form

N/2t
f (n) ao + E ak cos ( kt + bk sin t(7.1)

k=1 N tN(

where k is the discrete frequency index. This can be rewritten as

N/2 27rkt
f (n) = ao + Ak Si11 + #k (7.2)

k=1 NAt

With this result, three properties of a signal can be easily quantified for comparison

with those of another signal: the frequency or frequencies of the signal, k, the

amplitude of these frequencies, Ak, and the phase angle of each frequency, #k. The

MATLAB 'fft' function was used to compute the Fourier transform. Care must be

taken to ensure that the input signal is exactly an integer number of cycles. For the

results presented in this chapter, the second cycle of the response was used for the FFT

analysis because the first few data points from both PMARC and PMARC/AIR can
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be erratic. With this input, MATLAB returns a complex-valued frequency domain

transform. The real values of the transform give the cosine coefficients, ak, and the

imaginary values give the sine coefficients, bk. The total amplitude coefficients Ak and

phase angles /k are obtained by simple trigonometric manipulation. Error results for

the response amplitude are presented in relative form with respect to the PMARC

results, so

%Error = Ak,AIR - Ak,PMARC x 100% (7.3)
Ak,PMARC

Because of the very small phase angles of the responses, phase error is shown in

absolute form, where

AO k = Ok,PMARC - Ok,AIR (7.4)

and is measured in radians.

7.2 Preliminary Testing

Two primary purposes motivate this preliminary set of tests: first, to evaluate

the PMARC unsteady routines; and second, to quantify the aerodynamic effects

of a highly deflected lifting surface. Preliminary testing was done prior to any

implementation of the Aerodynamic Impulse Response; the only modification to the

code is the separation of input channels for an unsteady PMARC test.

7.2.1 PMARC Unsteady Tests

Before proceeding with the implementation of the impulse response method, though,

two validation tests of PMARC's unsteady capabilities were performed. The intent

of these tests was to establish whether PMARC is an effective platform for the AIR

method and if it may be used to generate control data against which to compare the

results from the AIR method. Both tests use the SHAR2 model described in the

previous chapter.

First, the time step dependence of the unsteady responses was investigated.

Responses from PMARC at various values of At were compared at different pitch
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amplitudes and frequencies. Figures 7-1 and 7-2 show the results for moderate pitch

amplitude (3' was the amplitude tested). Figures 7-3 and 7-4 present the results

at high pitch amplitudes (150). For the range of time steps tested, it is evident

that the response is nearly independent of time step size. The significance of this

conclusion is that control data generated with the original, unmodified PMARC code

does not need to have the same time step size as the responses generated with the

AIR method. This allows for a substantial reduction in the time required to collect

the necessary responses. A small degree of time step size dependence is noted for the

large amplitude, 10 Hz case in Figure 7-4. Care will need to be taken in selecting

control data to use with high amplitude, high frequency test cases.

0.5

0.4 -s--a dt=O0.05 sec
-A- dt=.03 sec

G dt=0.02 sec

0.3-

0.2 -

0.1

-0.1

-0.2

-0.3

-0.4

-0.5
0 0.25 0.5 0.751

Time (sec)

Figure 7-1: 1 Hz, 30 Pitch Response of the SHAR2 Wing from PMARC at Various
Values of At

The second validation test confirms that the total unsteady response may be

broken into pitch, pitch rate, and plunge rate components as is required by the AIR

method. The total response of the SHAR2 Wing to 1 Hz, 3' pitching oscillations was

found using the PMARC unsteady routines. The response of the pitch channel only

was found by setting the pitch rate variable, Q, to zero, recompiling the code, and
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Figure 7-2: 10 Hz, 3'
Values of At

2-

1.5 -

1

0.5

-0.5

-1
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0.025 0.05 0.075 0.1

Time (sec)

Pitch Response of the SHAR2 Wing from PMARC at Various

0.25 0.5 0.75 1
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Figure 7-3: 1 Hz, 15' Pitch Response of the SHAR2 Wing from PMARC at Various
Values of At
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Figure 7-4: 10 Hz, 15' Pitch Response of the SHAR2 Wing from PMARC at Various
Values of At

executing it with the same input file as previously. The same procedure was repeated

for the pitch rate channel response. Figure 7-5 shows that adding the pitch response

and the pitch rate response produces a response equivalent to the total response of the

wing. (The deviations evident at t 0.045 sec and t ~ 0.055 sec are due to PMARC

not converging at those time steps. This happens occasionally and is the result of

some numerical instability at that particular point.) Additional tests of 15' pitching

confirm the same behavior at large oscillation amplitudes. This result confirms that

the separation of input channels is valid and is properly implemented.

7.2.2 Nonplanar Wing Tests

The work in this thesis rests largely on the assumption that non-trivial aerodynamic

effects result from large deflections of the lifting surface. A key early study was

the aerodynamic behavior of rigid, nonplanar wings with PMARC (in its original,

unmodified form).
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Figure 7-5: Pitch Response of the SHAR2 Wing with Separate and Combined Input
Channels (20 Hz, 30)

The first test was a steady PMARC analysis comparing the lift generated

at various angles of attack of the SHARI Wing in its undeflected ("baseline")

configuration to the lift generated with the wing deflected 29.3% of its semi-span. Two

methods of simulating the deflected geometry were studied. The first uses the actual

deflected wing geometry as generated by the wing generation program (referred to in

subsequent figures as "Exact"). The second method uses the results of the baseline

configuration analysis to extrapolate the lift generated by a deflected wing (referred

to subsequently as "Extrapolated"). The process is illustrated in Figure 7-6. One of

the output files of the wing generation program gives the translation and rotation of

each span station on the deflected wing. Lift of the deflected wing can be extrapolated

from the baseline analysis using this rotation data. If lift at each station is assumed

to be normal to the surface, then the component of the lift in the vertical direction

is simply

Lext - L cos 0 (7.5)
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where L is the sectional lift of the current span station and 0 is the rotation of that

span station due to the spanwise bending. The vertical lift component at all the span

stations are summed for the total lift of the wing.

Z

L cosO

0

L
Ly

Figure 7-6: Diagram of the Lift Extrapolation Method

The results of this test are shown in Figure 7-7. It is evident that there

is a significant lift loss associated with the deflection of the wing-the deflected

configuration develops nearly 10% less lift than does the baseline configuration. It is

thus clear that the wing deflection must be considered in the aerodynamic analysis.

The extrapolation method described above seems to account for the lift loss well,

particularly at low angle of attack.

The second of these preliminary tests considered the unsteady response of

the rigid, highly-deflected wing. The responses of the SHAR1 Wing at pitching

frequencies of 1 Hz, 10 Hz, and 20 Hz were considered; four bending configurations

were used-0%, 29%, 37%, and 49%. Deflection was achieved with the same

two methods as previously described, through generating a deformed geometry for

the exact response and by extrapolating the response of a deformed shape from

the response of the baseline, undeflected configuration. Figure 7-8 shows some

representative results. It is clear from the figure that the extrapolation method

breaks down as the frequency and the amount of deflection are increased. Table 7.1

summarizes the error analysis results of the complete set of test cases. The tabulated
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Figure 7-7: Lift of the SHARI Wing in Baseline and Deflected Configurations

data clearly shows the large deviation in amplitude-as high as 25%. In nearly

all cases, phase differences are minimal. (The 1 Hz, 37% bending case seems to

be anomalous.) These tabulated data consider only the primary frequency of the

response; in some cases, the FFT analysis shows there to be other frequencies of

lesser importance. Figures 7-9 and 7-10 show the full FFT results for the exact

and extrapolated responses of two cases, 20 Hz pitching at 29% bending and 1 Hz

pitching at 49% bending. In both cases there are clear differences between the exact

and extrapolated results.

It is clear that the deflection of the wing must be accounted for in some manner.

The extrapolation method works reasonably well for steady flows and unsteady flows

with low frequency and low to moderate deflections. However, for general unsteady

flows over flexible wings, a more accurate solution is desired. This solution is to be

achieved by employing the Aerodynamic Impulse Response method with PMARC.
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(a) 1 Hz, 29% Bending (b) 10 Hz, 29% Bending

Time (sec)
0.125

Time (sec)

(c) 1 Hz, 49% Bending (d) 10 Hz, 49% Bending

Figure 7-8: Unsteady Lift of the Deflected SHARI Wing Undergoing 30 Pitching
Oscillations at Various Frequencies
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Figure 7-10: FFT Results of the Unsteady Lift Response of the Deflected SHARI
Wing, 49% Bending, 1 Hz
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Table 7.1: Error Results for Pitching of the Nonplanar SHAR1 Wing

Pitch Frequency % Bending Amplitude Error Phase Error
1 Hz 0% -2.14% -0.0002 rad
1 Hz 29% 7.08% -0.0166 rad
1 Hz 37% 25.5% -0.4844 rad
1 Hz 49% 16.0% 0.0558 rad

10 Hz 0% -1.45% -0.0893 rad
10 Hz 29% 5.35% 0.0678 rad
10 Hz 37% 8.20% 0.0160 rad
10 Hz 49% 11.5% -0.0700 rad
20 Hz 0% -2.15% 0.0000 rad
20 Hz 29% 0.622% 0.0026 rad
20 Hz 37% 8.18% 0.0322 rad
20 Hz 49% 11.57% 0.0023 rad

7.3 Rigid-Body PMARC/AIR

The rigid-body form of the Aerodynamic Impulse Response method with PMARC was

the first step towards an effective aerodynamics component for an aeroelastic analysis

tool. The rigid-body analysis alone is insufficient for an aeroelastic analysis because

the very nature of aeroelastic analysis is to study flexible bodies; however, the rigid-

body formulation is an important stepping stone and offers significant contributions

itself: principally, decreased computational costs and the extension of PMARC's

unsteady capabilities to include arbitrary motions. Of all the validation studies

of the Aerodynamic Impulse Response method, the bulk were performed with the

rigid-body code, primarily because it can most easily be compared with control

PMARC responses. Except where noted, all studies of the rigid-body formulation

of PMARC/AIR were performed with the SHAR2 Wing per the specifications in

Chapter 6.

7.3.1 Linear Impulse Responses

The fundamental result of the Aerodynamic Impulse Response method is the linear

impulse response of a body. Given this impulse response, the body's response to any
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motion can quickly be determined. Impulse responses for the three PMARC input

channels, pitch, pitch rate, and plunge rate, are shown in Figures 7-11 through 7-13

for At = 0.005 seconds. An important observation is that the impulse response is

dependent on time step size. Figure 7-14, for instance, compares an impulse response

of the pitch channel with At = 0.005 see to one with At = 0.05 sec. The amplitude of

the response is inversely proportional to the time step size. Experimentation indicates

that as At -+ 0, the response amplitude goes to infinity.

It is important to notice, however, that the variation of the impulse response with

At has little effect on the convolution response, as will be seen in the following

sections. Early in this reserach, a better defined impulse response curve was

sought by reducing the time step size; however, it quickly became clear that no

"converged" impulse response would be found. However, but for small inaccuracies,

the convolution process eliminates apparent differences in the impulse responses;

seemingly quite different impulse responses, when convolved with the same input

function (note, though, that the time step size of the input function must match that

of the impulse response), produce the same response.

It is also evident from the impulse responses that this system is one with very little

memory, because the responses die quickly to zero. The rapid damping to zero of the

response is one of the advantageous features of the method. PMARC computes the

impulse response much more quickly than it does a sinusoidal unsteady response-

198.05 CPU seconds were required on an Intel Pentium II for twenty time steps of the

sinusoidal response, while twenty time steps of the impulse response were computed

in 81.8 CPU seconds. In addition to the computational benefits, the nonlinear kernel

should only require several components for this system because of its short memory.

7.3.2 Linear Responses to Sinusoidal Motions

Because of the ease of generating control data using the built-in PMAIRC unsteady

capabilities, the bulk of the testing of the PMARC/AIR implementation was

performed for sinusoidal pitching and plunging motions. The robustness of the

method was scrutinized by varying the following parameters:
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Figure 7-11: Pitch Channel Impulse Response with At = 0.005 see, SHAR2 Wing
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* Input function amplitude

" Input function frequency, f

* Impulse response time step size, Atimpujse

* Freestream velocity magnitude

" Wing aspect ratio

Pitch and Plunge Amplitude

If PMARC were purely linear, the unit impulse response would be sufficient to

predict the response to any input. However, as has already been seen, there is

some nonlinearity and the AIR responses are expected to deviate from the PMARC

responses at high amplitudes. The results presented in this section compare PMARC

control data to responses generated with the AIR method for 10 Hz pitching with

amplitudes varying from 10 to 100 and for 10 Hz plunging with amplitudes varying

from 0.1 ft to 1.0 ft-that is, 0.1 to 1.0 chord lengths. (Note that the plunge

amplitude is related to the plunge rate amplitude by the oscillation frequency, so

the maximum plunge rate for this case is 62.83 ft/s. Plunge amplitude rather than

plunge rate amplitude is referred to throughout for two reasons: first, the built-in

PMARC unsteady routine takes the plunge amplitude as an input, and secondly, it

is more physically meaningful than plunge rate.) Pitch channel results are shown in

Figures 7-15 through 7-18. The pitch channel exhibits little amplitude dependence

within this range; however, 100 is still well within the linear small angle range. The

deviation apparent for the 10 amplitude case at 0.14 seconds are the result of difficulty

in obtaining a converged solution at several time steps with PMARC.

Plunge rate channel results are shown in Figures 7-19 through 7-22. A noticable

deviation from the control data appears in the plunge rate channel response beginning

with a plunge amplitude of 0.5 ft, and the deviation becomes significant for the 1.0

ft amplitude case. For both of these cases, the plunge amplitude is on the order of

the wing chord-length. This suggests that the chord-length is a good reference of the

119



0.12

. Convolution Response
0.1 PuARC Response

0.08

0.06

0.04

0.02

-0.-

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12 ---
0 0.05 0.1 0.15 0.2

Time (sec)

Figure 7-15: AIR and PMARC Pitch Channel Responses of the SHAR2 Wing for 10
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Figure 7-16: AIR and PMARC Pitch Channel Responses of the SHAR2 Wing for 10
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Figure 7-18: AIR and PMARC Pitch Channel Responses of the SHAR2 Wing for 10
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boundary between large- and small-amplitude motions. This case is repeated with a

nonlinear analysis in Section 7.3.6, which shows the difference here to be attributable

to nonlinearity of the solution.

0.4 -e---- Convolution Response
A'-- PMARC Response
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-0.3

-0.4
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Figure 7-19: AIR and PMARC Plunge Rate Channel Responses of the SHAR2 Wing
for 10 Hz Sinusoidal Plunging Oscillations with Amplitude 0.1 ft

Pitching Frequency

The pitch and pitch rate channel responses were studied with sinusoidal input

functions of varying frequencies. A single impulse response for each input channel

was generated with PMARC/AIR with AtimpzLise = 0.002 seconds, then sinusoidal

responses were generated by convolving the impulse response with three sinusoidal

input functions, each with an amplitude of 30 and with frequencies 1 Hz, 10 Hz, and

20 Hz. Results for the pitch channel are shown in Figure 7-23, and those for the pitch

rate channel are shown in Figure 7-24. It appears that the frequency of the input

function does have an effect on the accuracy of the predicted response. Interestingly,

there does not appear to be a consistent trend to this behavior-while there is a
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Figure 7-20: AIR and PMARC Plunge Rate Channel Responses of the SHAR2 Wing
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Figure 7-21: AIR and PMARC Plunge Rate Channel Responses of the SHAR2 Wing
for 10 Hz Sinusoidal Plunging Oscillations with Amplitude 0.5 ft
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Figure 7-22: AIR and PMARC Plunge Rate Channel Responses of the SHAR2 Wing
for 10 Hz Sinusoidal Plunging Oscillations with Amplitude 1.0 ft

close fit for the 10 Hz case, the AIR method significantly underpredicts the response

amplitude for both 1 Hz and 20 Hz cases. This behavior is exhibited in both the

pitch and pitch rate channel responses. The plunge rate channel was not rigorously

studied but was observed to have similar behavior. Since the time step size was held

fixed at 0.002 seconds for all frequencies, some relationship between time step choice

and excitation frequency seems to be exhibited. This will be studied further in the

following section.

The magnitude of the error for each time step choice was quantified using the FFT

method described in Section 7.1. Table 7.2 summarizes the FFT analysis results for

this test. As one can see from the table, the match is reasonable for both amplitude

and phase. As will be seen in the following section, error can be minimized by properly

tuning the time step size to the excitation frequency. Here, a constant time step size

is utilized for each frequency. As will be seen, the time step size, Atimpuise = 0.002

sec, is actually too small for all cases studied here. Examination of the full FFT

results show no significant contribution due to additional frequencies.
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Figure 7-23: Pitch Channel Responses of the SHAR2 Wing for Sinusoidal Pitch Input
at 1 Hz, 10 Hz, and 20 Hz with Amplitude 3' and Atimpulse = 0.002 sec
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Figure 7-24: Pitch Rate Channel Responses of the SHAR2 Wing for Sinusoidal Pitch
Input at 1 Hz, 10 Hz, and 20 Hz with Amplitude 30 and Atimpuise = 0.002 sec
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Table 7.2: Error Results for 3' Pitching at Various Frequencies Using the FFT Method

Channel Frequency Amplitude Error Phase Error
Pitch 1 Hz -10.06% 0.0471 rad
Pitch 10 Hz 2.63% -0.0467 rad
Pitch 20 Hz -7.79% -0.0521 rad

Pitch Rate 1 Hz -9.93% 0.0579 rad
Pitch Rate 10 Hz 4.13% 0.0189 rad
Pitch Rate 20 Hz -9.88% 0.0418 rad

Time Step Size

To further study the deviation of the AIR method results from the PMARC responses

that was noted in the previous section, a similar test was carried out, only this time

the frequency was held constant at 1 Hz and the time step size used for the generation

of the impulse response, Atmpulse, was varied. The input amplitude was again 30.

The plots in Figures 7-25 and 7-26 show representative results of this test. Time steps

range from 0.002 seconds to 0.1 seconds. Here it is evident that, in general, accuracy

increases with time step size. There is a significant amplitude error for the smallest

time step, while there is no discernable difference between the control data and the

AIR method predicted response at Atimpuse ;> 0.05 seconds. Table 7.3 summarizes

the FFT error analysis of these results. A large degree of uncertainty was found in the

computation of phase angles, and the result was heavily dependent on the starting

point of the signal. For the cases marked with (*), accuracy of the result cannot be

assured because the starting point of the AIR response could not be matched to that

of the PMARC response. Regardless, a trend is evident: in general, accuracy of the

result increases as the time step size increases.

Given the results of varying the time step size and the frequency independently,

there seems to be a relationship between the two. Results clearly show that a large

time step is desirable. Combining the results of the two tests, it is postulated that

best accuracy can be achieved by selecting a time step such that fAtimpulse 0.05.

Figures 7-27 through 7-29 show pitch, pitch rate, and plunge rate channel responses

for sinusoidal pitching and plunging at 1 Hz, 10 Hz, and 25 Hz with Atimpulse =
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Table 7.3: Amplitude Error for 30,
FFT Method

1 Hz Pitching at Various Time Steps Using the

, J

Time Step Size Amplitude Error Phase Error
0.002 s -10.07% 0.0471 rad
0.003 s -5.51% 0.0321 rad
0.004 s -2.52% 0.0195 rad
0.01 s 3.00% -0.0239 rad
0.02 s -0.12% -0.0502 rad
0.03 s -3.12% -0.0330 rad (*)
0.04 s -1.17% -0.0048 rad
0.05 s -0.39% 0.0044 rad
0.06 s 0.45% -0.0660 rad (*)
1.0 s 0.21% 0.0188 rad
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Figure 7-25: Pitch Channel Responses of the SHAR2 Wing for Sinusoidal Pitching
Input at 1 Hz with Amplitude 3' and Varying Time Steps
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Figure 7-26: Pitch Channel Responses of the SHAR2 Wing for Sinusoidal Pitching
Input at 1 Hz with Amplitude 3' and Varying Time Steps (continued)

0.05, 0.005, and 0.002 seconds, respectively. In nearly all cases a close fit between the

control data from PMARC and the responses using the AIR method is found; only

the high frequency pitch rate and plunge rate responses show any discernable error.

However, regardless of the close match that was obtained, putting these results into

a broader perspective, this behavior limits the method's applicability. Though near

perfect accuracy can be assured for a specific time step-frequency combination, only

adequate accuracy can be promised for a different frequency at the same time step.

Since it is desired to divorce the arbitrary response analysis from the aerodynamic

code by obtaining one impulse response from which all other responses can be derived,

this is a potentially severe limitation. This can clearly be seen when the input is

not sinusoidal, and the f-At factor becomes ambiguous because there is not a single

frequency upon which to base the time step choice.

A better understanding of the time step-frequency dependence of the predicted

response is desired so as to improve the applicability of the method to general cases.

It is believed that the late-time behavior of the impulse response may be responsible
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Figure 7-27: Pitch Channel Responses of the SHAR2 Wing for Sinusoidal Pitch Input

at 1 Hz, 10 Hz, and 25 Hz with Amplitude 3' and fAtimpuse = 0.05
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Figure 7-28: Pitch Rate Channel of the SHAR2 Wing Responses for Sinusoidal Pitch
Input at 1 Hz, 10 Hz, and 25 Hz with Amplitude 3' and fAtimpulse 0.05
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Figure 7-29: Plunge Channel Responses of the SHAR2 Wing for Sinusoidal Plunging
Input at 1 Hz, 10 Hz, and 25 Hz with Amplitude 0.2 ft and fAtimpulse = 0.05
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for the error that is seen in these results. Close study of the impulse responses shows

that the response does not go to exactly zero but to a small, non-zero value (roughly

two to three orders of magnitude smaller than the initial response). The superposition

of many such responses as occurs in the convolution process at a small time step may

cause a residual large enough to affect the overall response. The significant portion of

the response seems to occur before the fourth time step. Figure 7-30 compares control

data from PMARC with responses generated from impulse responses truncated at

various points. A response generated with an impulse response retaining the residual

for twenty time steps, as has been used in all previous analyses, is also shown and is

seen to give the best fit to the control data. Consequently, further study will have to

be directed towards understanding the frequency-time step size interaction to improve

the accuracy of the method.

0.4
AIR, 20 Time steps

- - ---- AIR, 10 Time steps
-.3 ---. --. AIR, 5 Time steps

0.3 ------ PMARC

0.2

0.1

0 -

-0.1

-0.2

-0.31
0 0.1 0.2 0.3

Time (sec)

Figure 7-30: Comparison of Various Pitch Channel Impulse Response Lengths for 10
Hz, 30 Pitching, Atimpuise = 0.002 seconds
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Freestream Velocity

The default freestream velocity used to obtain the impulse response of the SHAR2

Wing is 100 ft/s. The question then stands whether this impulse response can be used

for arbitrary responses at any velocity, if a simple scaling factor for other velocities

exists, or if it can only be used for arbitrary responses also at a freestream velocity

of 100 ft/s. If the flow were steady, the response should be the same regardless

of the freestream since the lift coefficient is independent of velocity; however, the

unsteadiness of the flow introduces rate-dependent effects. As Figure 7-31 clearly

shows, results using the AIR method incur a loss of accuracy when the freestream

velocity of the impulse response does not match the freestream velocity of the input

function. For this test, two pitch channel impulse responses were generated, one with

a freestream velocity of 100 ft/s, the other at 50 ft/s. Both impulse responses were

convolved with the same input function, 5 Hz sinusoidal pitching with amplitude 30

and At = 0.002 seconds, and the results were compared to the PMARC response for

the same unsteady conditions with a freestream flow at 50 ft/s. Though the impulse

response at 50 ft/s does not produce a perfect result (as seen earlier, greater accuracy

would be achieved by choosing Atimpulse = 0.01 seconds), the impulse response at

100 ft/s generates a worse response, and there is not clear scaling factor between

the responses. It is thus apparent that impulse responses are only strictly valid for

responses at the same freestream conditions.

Aspect Ratio: the BACT Wing

The pitch channel response of the BACT Wing, with an aspect ratio of 2, was studied

to see if any wing aspect ratio dependence appears in the results. Figure 7-32 shows

the response of the BACT Wing undergoing 10 Hz, 3' amplitude pitching oscillations

as predicted by PMARC and by the impulse response method. The time step used

was 0.005 seconds, satisfying the fAtimpuise factor discussed above. These results

show no evidence of any aspect ratio dependence of the AIR method: the method

appears to be as accurate for low-aspect ratio wings as it is for high-aspect ratio
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Figure 7-31: Pitch Channel Response of the SHAR2 Wing to 5
Impulse Responses Computed at 50 ft/s and 100 ft/s, Atimpulse

wings. A distinguishable error does appear at the bottom for

response; however, this error disappears in subsequent valleys.

0.4

Hz, 3' Pitching with
= 0.002 seconds

the first cycle of the

7.3.3 Linear Response to Step Input

Useful input types for the validation of the AIR method are limited to those that

can be duplicated in PMARC to provide control data. Sinusoidal inputs are simplest

because the capability is built into PMARC. In addition, a step input response can

be studied with a simple modification to the PMARC/AIR code. For a step change

in pitch, the pitch channel impulse amplitude, THETA, is changed so that instead

of being 0.01 rad at t = to and 0.0 for all other times, it is set to a non-zero step

amplitude for t > to. For the total response, the derivative must be considered as well.

This is approximated by setting the pitch rate amplitude, Q, to the step amplitude

divided by the time step size at t = to and zero for for all other times. (The derivative

of a discrete-time step function is a discrete impulse function.) However, this study
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Figure 7-32: Pitch Channel Response for 10 Hz, 3' Pitching Oscillations of the BACT
Wing, Atimpuise = 0.005 seconds

only looks at the pitch channel response, so pitch rate channel is left at zero for all

times.

Figure 7-33 shows the response generated by this modified code and the response

predicted using the pitch channel impulse response with Atimpulse =0.05 seconds. The

step amplitude is 0.1 radians, or 5.73'. The response predicted using the AIR method

is fairly accurate; however, there is a noticeable error that increases as time increases.

This is likely an artifact of the non-zero residual of the impulse response, in which

case the error should asymptote to a constant value. For the response shown here,

the error at t = 1 second should be near this constant value because the impulse

response was truncated after twenty time steps, and t = 1 second is at the twentieth

time step of the response. Further study into this residual response will be necessary

to improve the accuracy of the method.
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Figure 7-33: Pitch Channel Responses of the SHAR2 Wing to 0.1 rad (5.730) Step
Input with At = 0.05 Seconds

7.3.4 Linear Response to Arbitrary Input

A particularly useful feature of PMARC/AIR is the ability to predict the response

to an arbitrary input. For the purpose of testing this feature, a Fourier sine series

with three components, as is given in Equation 7.6 and is shown in Figure 7-34,

was used. This results in an input signal with three frequencies: 1 Hz, 2 Hz, and 3

Hz. This input function was selected because modification of the PMARC code to

generate control data was relatively simple-additional frequency terms had simply

to be added to the unsteady terms in the PATH subroutine.

O[t] = 3 sin(27rt) + 3' sin(47rt) + 30 sin(67rt) (7.6)

The pitch channel response to this pitch input is shown in Figure 7-35. The

response was calculated with the AIR method using impulse responses generated

with three time steps, Atimpuase = 0.01 seconds, 0.015 seconds, and 0.02 seconds, and

with the modified PMARC code at At = 0.015 seconds. All three time step choices
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Figure 7-34: Arbitrary Pitch Input

produce a fairly accurate prediction of the response. The time step-frequency factor,

as was discussed in Section 7.3.2, is ambiguous in this case, as it was for the step input,

because multiple frequencies are involved. Typically, the highest frequency restricts

the choice of time step. In this case, if 3 Hz is used in the time step-frequency factor,

an optimal time step of Ct - 0.0167 seconds is predicted. Surprisingly, in this case

the optimal results are found with the smallest of the time steps, suggesting that the

time step-frequency factor may have little significance for arbitrary responses.

Regardless of the the time step choice ambiguity, it is clear from Figure 7-35

that the AIR method predicts the response to this arbitrary input fairly reliably.

These results indicate that the method is a useful one for predicting the response to

arbitrary inputs that cannot so easily be modeled in PMARC, making a significant

improvement over the capabilities of PMARC alone.
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Figure 7-35: Pitch Channel Responses of the SHAR2 Wing to Arbitrary Pitching
Motions given in Figure 7-34

7.3.5 Nonlinear Impulse Responses

The linear AIR method was found, as shown in Figure 7-22, to have quite poor

accuracy for high amplitude oscillatory motions. This suggests that nonlinearity may

be a factor. Because of the relaxed wake used, PMARC is weakly nonlinear. At

small impulse amplitudes, the nonlinearity does not appear. For the original 1 ft/s

plunge rate channel impulse, nonlinearity was negligible. However, by increasing

the impulse amplitude to 20 ft/s, slight nonlinearities appeared. For the kernels

shown here, a plunge amplitude of 40 ft/s was used. Best results are expected for

a plunge amplitude near the excitation amplitude. The excitation amplitude for the

study presented in the following section is 1 ft plunge at 10 Hz, or a plunge rate of,

maximally, 62.83 ft/s. The first-order kernel is shown in Figure 7-36 compared to the

purely linear impulse response. Figure 7-37 shows the first seven components of the

second-order kernel-clearly, the degree of nonlinearity is quite small; the first-order

kernel deviates only slightly from the linear impulse response, and the magnitude of
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the T = 0 component is an order of magnitude smaller than the first-order kernel.

Qualitatively, the second-order kernel shows rapid damping to zero as T increases, as

was expected-in fact, Figure 7-36 shows that the third and higher components are

nearly negligible compared to the first two. The second-order kernel is predominantly

positive as expected; strangely, however, the second component behaves oppositely

to the remaining components. This behavior remains unexplained.
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Figure 7-36: First-Order Kernel for High-Amplitude Plunge, Atmpulse 0.01 seconds,
SHAR2 Wing

Obtaining the responses from PMARC needed to assemble the first- and second-

order nonlinear kernels turned out to be significantly more computationally expensive

than the linear impulse response identification. Besides the fact that seven responses

for just the plunge rate channel were required, the solver converged very slowly for

high-amplitude, multiple impulses. While 77 CPU seconds were required for the

computation of the linear impulse response, the average time required for the multiple

impulse response was 392 CPU seconds.

140



0.025 0.05 0.075

Time (sec)

Figure 7-37: Seven Components of the Second-Order Kernel
Plunge, Atimpulse = 0.01 seconds, SHAR2 Wing

C.,

6

5

4

3

2

1

0

-1

-2

-3

0.05 0.1 0.15

Time (sec)

for High-Amplitude

0.2

Figure 7-38:
Hz Plunging

Linear and
Oscillations

Nonlinear AIR Responses of the SHAR2 Wing to 1.0 ft, 1
Compared to the PMARC Response

141

0.6

0.5

0.4

0.3

0.2

0.1

0-

-0.1 -
0.1



7.3.6 Nonlinear Responses to Sinusoidal Motions

The first- and second-order plunge kernels shown above were "convolved," using the

Volterra series, with a 10 Hz sinusoidal input function with various amplitudes as

was done with the linear response and illustrated in Figures 7-19 through 7-22. The

results of this nonlinear analysis for the 1.0 ft plunge amplitude (62.83 ft/s) case

are shown in Figure 7-38. The figure compares the linear AIR response, the first-

order nonlinear AIR response, and the second-order nonlinear AIR response with

the response predicted by PMARC. As might be surmised from Figure 7-36, the

linear impulse response gives a better fit to the control data than does the nonlinear

first-order kernel. Both significantly overpredict the amplitude of the response. The

behavior of the response due to the second-order kernel is peculiar. The lower half of

the response matches the control data well; however, the upper half is overpredicted

by a greater amount than both the linear and first-order responses. This is the result

of the second-order term in the Volterra series being nearly always positive. Further

study will be required to investigate this behavior; it remains unclear whether this is

the result of a conceptual error or an implementation error.

7.3.7 Summary of Rigid-Body Results

In general, the results obtained for rigid-body motions using the AIR method

were very satisfactory. The method works well for all the types of motions and

configurations examined and provides a considerable extension to PMARC's unsteady

capabilties. The validation tests presented in this section lead to the following

conclusions about the method:

9 With the appropriate choice of Atimptse, the method predicts sinusoidal

responses with near perfect accuracy

9 Responses to step and arbitrary input functions are predicted with reasonable

accuracy, thus extending PNIARC's unsteady capabilities

9 The Aerodynamic Impulse Response method markedly improves the
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computational efficiency of PMARC, especially for long-time inputs

" The fA.timpuise frequency-time step factor restricts the method's general

applicability

" Input function amplitude limitations with the linear AIR formulation were

observed

* For best accuracy, the method is only valid at the freestream conditions at

which the impulse response was computed

" The accuracy of the method does not appear to be aspect ratio dependent; this

indicates the method should work equally well for arbitrary configurations

* Slight nonlinearity appears only with large impulse amplitudes, not

unexpectedly since PMARC is weakly nonlinear

" Inclusion of nonlinear kernels appears to improve the prediction of responses to

high-amplitude oscillations, but the method remains unperfected

" However, nonlinear responses may be unwieldy because of the need to generate

many impulse responses; in this case, seven per input channel were needed, and

the average time required to generate each response was much greater than for

linear impulse responses

7.4 Flexible-Body PMARC/AIR

Limited studies using the flexible-body implementation of the AIR method were

performed and the results are presented here. All results are for the SHAR2 geometry,

and only linear responses were considered. PMARC in its original state is a rigid-body

code; because of this, control data was available only for select cases.

143



7.4.1 Initial Testing

The first step in testing the flexible-body implementation was to ascertain that it

reproduces steady and unsteady rigid-body responses. PMARC/AIR for flexible

bodies has been designed to accommodate a range of impulse types, controlled by the

IMPTYP variable that has been added to the PMARC input file. Setting IMPTYP

to 0 specifies steady, rigid-body flow-no impulse. The code then executes similarly

to the original code and should exactly duplicate its results. For this test, the SHAR2

Wing with a fixed angle of attack of 50 was used. Both the original PMARC code

and the PMARC/AIR code were run using the same data input file-the original

PMARC code simply skips the added namelist. As is shown in Figure 7-39, the code

modifications are transparent, and, in fact, the execution times are nearly identical,

50.13 CPU seconds for the flexible-body case and 50.06 CPU seconds for the rigid-

body case.
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Figure 7-39: Comparison of Flexible-Body PMARC/AIR with PMARC for Rigid-
Body, Steady Flow with the SHAR2 Wing

By setting IMPTYP to 1, rigid-body impulse execution is selected. Rigid-body
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impulses use the same impulse magnitude along the entire span of the wing. The

program outputs two impulse response data files, one of the total CL response and one

of the sectional CL response. For this test, the total CL response of the pitch channel

was compared with that predicted by the rigid-body PMARC/AIR implementation.

The flexible-body code reproduces the impulse response from the rigid-body code,

and execution times are nearly equal, 65.13 seconds and 64.43 seconds for flexible-

and rigid-body implementations, respectively.

7.4.2 Linear Impulse Responses

Impulse responses were obtained for two types of impulse distributions: constant and

linear. As shown in the previous section, a constant impulse distribution recovers

the rigid-body response. Figure 7-40 is an example of the pitch channel impulse

response for a constant impulse distribution. This response curve is simply the three-

dimensional representation of multiple sectional impulse responses. The execution

time for the flexible-body code for this constant impulse response was nearly equal

to its execution time in the previous section for a rigid-body response.

Simple flexible-body motion is modeled with a linear impulse distribution, which

approximates a linear deformation, either linear twisting or linear bending. This is

the same deformation mode that was studied using the lumped vortex formulation

in Section 5.3.3. Though not a physical deformation mode, it is the simplest to

study because limited comparisons can be made with results from PMARC. This will

be discussed in greater detail in the next section. Figure 7-41 shows the response

of the SHAR2 Wing to a linearly distributed pitch impulse for -Atimpuise = 0.05

seconds. Execution time for the linear impulse distribution was slightly longer than

the preceeding cases, 68.12 CPU seconds. Pitch rate and plunge rate channel impulse

responses are similar.
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Figure 7-40: Impulse Response of the Pitch Channel to a Constant Impulse
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Figure 7-41: Response of the Pitch Channel to a Linear Impulse Distribution with

Atimpulse = 0.05 seconds, SHAR2 Wing
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7.4.3 Linear Responses to Various Input Motions

Only for limited flexible-body cases can comparisons with PMARC be made because

PMARC is, strictly speaking, a rigid-body code. The case presented here compares

the impulsive start of a linearly twisted rigid wing with the the response of a flexible

wing to a step input of the pitch channel. The linearly twisted rigid wing can be

modeled easily with PMARC by, starting with the SHAR2 Wing input file, specifying

a 100 rotation of the outboard wing section. The pitch channel response of this

wing to an impulsive start was found using PMARC with no initial wake. For the

flexible-body response, the linearly distributed pitch impulse response (Figure 7-41)

was convolved with a step function of step amplitude 10'. These two responses are

compared in Figures 7-42 through 7-44, where Figures 7-42 and 7-43 show the full

three-dimensional responses from two different views and Figure 7-44 shows a two-

dimensional slice at the 60% span location. The three-dimensional representations

show that there are indeed noticeable differences between the two responses. The

magnitude of the flexible-body response is slighly higher (as was also seen in the

comparison of the rigid-body PMARC/AIR code with the original PMARC code,

Figure 7-33), and at the tip, the flexible body response drops to zero while the rigid-

body response drops but remains significant. Scrutiny of the two-dimesional slice

in Figure 7-44 shows that, as hypothesized earlier, the convolved response reaches a

constant value after the twentieth time step, the point at which the impulse response

was truncated. While differences in the responses are present, the AIR method result

is reasonably accurate.

The remaining flexible-body response is shown independently as no control data is

available. However, based on the comparisons shown already, it is expected that the

method does predict the response to arbitrary flexible-body motions with reasonable

accuracy. Figure 7-45 shows the response to sinusoidally oscillating linear bending-

basically, flapping-with an amplitude of 0.1 ft at the wing tip and a frequency of 1

Hz. Results appear reasonable. The figure shows, as is expected, a linear increase in

lift along the span, and at the tip the lift drops to zero.
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7.4.4 Summary of Flexible-Body Results

For the aeroelastic analysis tool that is the ultimate end of this research, the flexible-

body responses are those of most interest. The results shown here indicate that

the flexible-body formulation of the Aerodynamic Impulse Response method is an

effective one for predicting the unsteady aerodynamic forces on a deformable body.

The code developed was able to duplicate earlier results for steady and unsteady

rigid bodies. The accuracy of the flexible responses studied was difficult to ascertain

due to the lack of control data. However, the responses appear reasonable. The

frequency-time step factor was not studied for the flexible-body response, though it

is assumed to behave similarly to the rigid-body implementation. Further study is

required to resolve the issue. Finally, the small deformation assumption remains in

this implementation. The code is valid for small deformations about the undeflected

shape or about a highly deformed nonlinear shape; the code cannot, strictly speaking,

handle large motions of the wing. Dynamic modification of the influence coefficient

matrix in PMARC will be required to eliminate this limitation.

150



Chapter 8

Concluding Remarks

This thesis has presented the development and implementation of the Aerodynamic

Impulse Response method with the aerodynamic panel code PMARC for rigid and

flexible structures. The AIR method is a general reduced-order method that identifies

the impulse response as the fundamental unsteady aerodynamic response, and, given

this fundamental response, can determine the response to an arbitrary excitation

quickly and efficiently. The method has linear and nonlinear forms employing,

respectively, linear convolution and the Volterra series.

Prior work with the AIR method has been done employing CFD methods to

obtain impulse responses. For the design-phase analysis, often sufficient accuracy can

be obtained with a simplified aerodynamic model, such as a panel code, without the

man and machine costs of preparing and running a full CFD model. Such models are

much less computationally expensive than CFD methods, but are valid for limited flow

regimes and are often limited to steady flow or simple unsteady motions. Coupling a

simplified model to the impulse response method enables the prediction of arbitrary

unsteady responses with a modest additional time savings. The panel code PMARC

was selected as the aerodynamic platform for this research.

The PMARC source code was modified to obtain the impulse response of rigid

wings; in conjunction with a simple convolution code, the response of these wings

to any unsteady motion can be found. Obtaining the impulse response is the most

computationally demanding part of the process, and this needs only to be done once.
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Convolution of the impulse response with the arbitrary input takes seconds at most.

For the response of flexible wings, as is required for an aeroelastic analysis, a

novel approach was taken. Instead of using a constant impulse amplitude for the

entire wing, the impulse was allowed to vary. Using impulse "modes" corresponding

to structural mode shapes, the response of a flexible wing can be determined. In

essence this is similar to performing a rigid-body impulse response analysis at each

span station; however, because the problem is approached globally rather than strip-

wise, interactions between span stations are accounted for.

8.1 Conclusions

The results of the various formulations of the impulse response method presented in

Chapter 7 show clearly that the method is a capable and effective one for predicting

arbitrary responses. Using this method, the capabilities of PMARC are extended to

include arbitrary unsteady motions for both rigid and flexible structures. Besides

extending PMARC's capabilities, because the same impulse response can be used to

determine the response of various input motions, a substantial computational savings

is realized as well.

Sinusoidal responses with the rigid-body implementation do reveal some

limitations which will have to be studied further. Most significantly, for best accuracy

the time step size of the impulse response is dictated by the frequency of the input

function. Specifically, it was found that best results were obtained for large time steps.

A frequency-time step factor, f Atimpuise, was identified; best accuracy is obtained

when this factor nears 0.05. This factor, however, is somewhat ambiguous for non-

sinusoidal input functions. Experimentation with a three element sine-series input

revealed that even for input with discrete but multiple frequencies, the frequency-time

step factor remains ambiguous.

In addition to the frequency-time step dependence, some input amplitude

restrictions were identified as well. Good accuracy was obtained for pitch through

±10 , but a noticeable degradation of the solution was found for plunge amplitudes
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greater than about half-chord, 0.5c. The nonlinear form of the impulse response

method was employed to attempt to improve the results for high-amplitude inputs.

First- and second-order kernels for a plunging wing were obtained and the response to

a sinusoidal input was generated using the Volterra series. However, rather than an

overall improvement, the response improved in some regions and worsened in others

when compared to linear theory. This behavior remains unexplained.

Besides the frequency-time step dependence and some input amplitude limitations,

the rigid-body formulation of the AIR method has been found effective for several

wing configurations undergoing various motions. With that foundation, a flexible-

body implementation was developed. Flexible-body analyses were approached with

a modal-type formulation. Preliminary testing with a lumped vortex model in

MATLAB indicated that arbitrary wing deformations can be described with the

kinematic velocity. An impulse varying across the wing then provides the fundamental

response of the wing undergoing deformations of that form. Validation tests showed

that this new implementation can duplicate steady and rigid-body analyses. Limited

experimentation with the code in flexible-body mode suggests that the formulation

is valid and is an effective one for predicting the aerodynamic response of flexible

bodies. With this flexible-body code, an aeroelastic analysis tool can be put together

by coupling in a structural modal analysis module.

8.2 Recommendations for Future Study

While a great deal has been accomplished towards using the Aerodynamic Impulse

Response method with PMARC, the ultimate goal of developing an aeroelastic

analysis tool for highly-flexible structures demands considerably more work. The

work presented in this thesis is merely the first of several stepping-stones towards that

goal. Several refinements to PMARC/AIR remain necessary before the next steps can

be taken towards the aeroelastic model. Steps yet to be taken include extension of the

linear flexible-body PMARC/AIR implementation to nonlinear aerodynamic systems

and coupling PMARC/AIR to a linear and then nonlinear structural analysis.
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There remains work to be done with the Aerodynamic Impulse Response method

as implemented here, as well. Most significantly, no satisfactory explanation for

the loss of accuracy for fZ\timpulse < 0.05 has been found. Because of this time

step requirement, the current implementation of the method is limited from highly

accurate responses across a broad range of input excitations. Desirably, the time step

size should be selected to resolve the highest frequency to be studied; currently, the

time step needs to be selected for every frequency to obtain best accuracy. Further

research will have to be dedicated towards studying the nature of the impulse response

from the panel code to get a better understanding of this behavior.

Additional work is also necessary on the nonlinear formulation of the impulse

response method. That all the components of the second-order kernel were positive

except the second is puzzling and should be looked into futher. The nonlinear response

shown in Section 7.3.6 is clear evidence that further work is required. Though overall

a poor match to the PMARC control response, the lower half of the response matches,

suggesting that further tuning of the technique could produce a better result. It is

still not clear whether the mismatch is the result of a conceptual or an implementation

error.

Though structurally sound, the code implementations could also benefit from some

revisions to improve efficiency and robustness. As noted earlier, considerable savings

could be realized by eliminating the spanwise loop in the flexible-body PMARC/AIR

code for all time steps but that of the impulse. Though not a particularly expensive

operation, the fact remains that for all but one time step the loop is unnecessary.

A more efficient algorithm not involving significant code modifications would greatly

benefit the final model.

The flexible-body PMARC/AIR unsteady aerodynamics model presented here

remains limited in one key aspect that will have to be reconsidered in the final model.

Namely, the code is limited to small perturbations. These perturbations may be about

a static nonlinear deflected shape, provided that shape is specified in the PMARC

input file, but the code, as is, does not handle large dynamic deformations. The

reason for this is that large deformations result in nontrivial changes to the influence
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coefficient matrix. Currently, that matrix is calculated only once at the beginning

of the code execution. To account for large deflections, that matrix will need to be

recomputed at each time step.

Once these refinement issues have been settled, development of the aeroelastic

model may continue. For a first-order aeroelastic model, linear aerodynamics will

suffice; the flexible-body PMARC/AIR code need only be coupled with a structural

modal analysis program. This will enable the determination of linear aeroelastic

responses to arbitrary motions of a vehicle in the time-domain. For greater accuracy

for highly flexible wings, the method will then have to be extended to include at least

nonlinear structural dynamics. Some aerodynamic nonlinear effects such as dynamic

stall should be incorporated, as well, for completeness and robustness of the model.
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Appendix A

PMARC/AIR Code Listings

A.1 Linear Rigid-Body PMARC/AIR

The rigid-body code required modifications to only the PATH and WAKSTEP

subroutines. The PATH subroutine is exerpted here; modifications to the WAKSTEP

subroutine are similar.

SUBROUTINE PATH(T)

C
C ALPHA AND YAW, AS INPUT, CONVERTED TO RADIANS

C
ALPHA = (ALDEG) * PI/180.
YAW = (YAWDEG) * PI/180.

C
C
C

SET UP INITIAL FREE-STREAM VELOCITY VECTOR

SB = SIN(YAW)

CB = COS(YAW)
CA = CB * COS(ALPHA)

SA = CB * SIN(ALPHA)

VX1 = -CA * VINF

VY1 = SB * VINF

VZ1 = -SA * VINF

C
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C --ADDED BY REG 05 AUG 99
PLUNGE RATE CHANNEL; CHANGE VZ TO 1.0, SET Q AND THETA TO 0.0
FOR IMPULSE RESPONSE OF THIS CHANNEL

IF (WTZ.LT.O.0) THEN
IF (ITSTEP.GE.IABS(INT(WTZ/(2*PI))))

Vx=Vx1
VY=VY1

VZ=VZ1
ELSE

VX=VX1

VY=VY1
VZ=VZ1

ENDIF

THEN

DETERMINE THE CONTRIBUTION TO TRANSLATION VELOCITY
COMPONENTS FROM HEAVING OSCILLATIONS

ELSE
VX = VX1 + DXMAX * WTX * COS(WTX*T)

VY = VY1 + DYMAX * WTY * COS(WTY*T)
VZ = VZ1 + DZMAX * WTZ * COS(WTZ*T)

ENDIF
C

DETERMINE CURRENT ANGULAR ROTATION RATES IN RADIANS (INCLUDING
OSCILLATORY COMPONENT)

P = PHIDOT * PI/180. + PHIMAX * WRX *
Q = THEDOT * PI/180. + THEMAX * WRY *
R = PSIDOT * PI/180. + PSIMAX * WRZ *

C
C ADDED BY REG JAN 00
C PITCH RATE CHANNEL UNIT PULSE INPUT
C

IF(WTZ.LT.O.0)THEN
IF (ITSTEP.EQ.IABS(INT(WTZ/(2*PI)))) THEN

Q=1.0
ELSE

Q=0.0
END IF

END IF
C
C SET TO ZERO FOR PITCH IMPULSE RESPONSE
C

COS(WRX*T) * PI/180.
COS(WRY*T) * PI/180.
COS(WRZ*T) * PI/180.
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C
C DETERMINE CURRENT ANGULAR POSITION IN RADIANS (INCLUDING

C OSCILLATORY CONTRIBUTION)

C

PHI = PHIDOT * PI/180. * T + PHIMAX * SIN(WRX*T) * PI/180.

THETA = THEDOT * PI/180. * T + THEMAX * SIN(WRY*T) * PI/180.

PSI = PSIDOT * PI/180. * T + PSIMAX * SIN(WRZ*T) * PI/180.

C
C ADDED BY REG JAN 00

C PITCH CHANNEL UNIT PULSE INPUT

C
IF(WTZ.LT.O.0)THEN

IF (ITSTEP.EQ.IABS(INT(WTZ/(2*PI)))) THEN

THETA=0.01

ELSE
THETA=0.0

END IF

END IF

C
C SET TO ZERO FOR PITCH RATE IMPULSE RESPONSE

C
C THETA=0.0

C
C WRITE INPUT TO FILE

C
WRITE(14,602)ITSTEP,THETA

C
C STORE VELOCITY VECTOR AND ROTATION RATES IN ARRAYS.

C
SPSI = SIN(PSI)
CPSI = COS(PSI)
STHETA = SIN(THETA)
CTHETA = COS(THETA)

SPHI = SIN(PHI)

CPHI = COS(PHI)
DC(1,1) = CTHETA * CPSI

DC(1,2) = CTHETA * SPSI

DC(1,3) = -STHETA

DC(2,1) = -CPHI*SPSI + SPHI*STHETA*CPSI

DC(2,2) = CPHI*CPSI + SPHI*STHETA*SPSI

DC(2,3) = SPHI*CTHETA

DC(3,1) = SPHI*SPSI + CPHI*STHETA*CPSI

DC(3,2) = -SPHI*CPSI + CPHI*STHETA*SPSI

DC(3,3) = CPHI*CTHETA
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IFLAG = 1
CALL TRANFRM(IFLAG,DC,VX,VY,VZ)

CALL TRANFRM(IFLAG,DC,VX1,VY1,VZ1)

VFR(1) = VX
VFR(2) = VY
VFR(3) = VZ
OMEGA(1) = P
OMEGA(2) = Q
OMEGA(3) = R
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A.2 Linear Flexible-Body PMARC/AIR

The flexible-body code required more extensive modifications. The PATH subroutine

is shown here. In addition, throughout the code, VFR and OMEGA were redefined

as two-dimensional arrays. The VFR(0,x) element is used repeatedly through the

code for the calculation of velocity potential off the wing surface.

SUBROUTINE PATH(T)

C
C ALPHA AND YAW, AS INPUT, CONVERTED TO RADIANS

C
ALPHA = (ALDEG) * PI/180.
YAW = (YAWDEG) * PI/180.

C

C SET UP INITIAL FREE-STREAM VELOCITY VECTOR
C

SB = SIN(YAW)
CB = COS(YAW)
CA = CB * COS(ALPHA)
SA = CB * SIN(ALPHA)
VX1 = -CA * VINF
VY1 = SB * VINF
VZ1 = -SA * VINF

C
C Added REG 21 Feb 00
C Set up impulse vector
C

DO I=1,NCOL(1)

C No impulse
IF(IMPTYP.EQ.0)THEN

IMPVZ(I)=0.0

IMPTH(I)=0.0

IMP.Q(I)=0 .O
C Rigid-body impulse

ELSEIF(IMPTYP.EQ.1)THEN
IF(CHAN.EQ.1)THEN

IMPVZ(I)=1.0

IMPTH(I)=0.0
IMPQ(I)=0.0
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ELSEIF(CHAN.EQ.2)THEN

IMPVZ(I)=O.0
IMPTH(I)=0.01
IMPQ(I)=0.0

ELSEIF(CHAN.EQ.3)THEN

IMPVZ(I)=0.0
IMP_TH(I)=0.0

IMPQ(I)=1.0
ENDIF

C Flexible-body impulse
ELSEIF(IMPTYP.EQ.2)THEN

IF(ITSTEP.EQ.STEP)THEN

READ(10,*)DUMIMPVZ(I),IMPTH(I),IMPQ(I)

ELSE
IMPVZ(I)=0.0
IMPTH(I)=0 .0
IMPQ(I)=0.0

END IF
END IF

END DO

C
C Added REG 21 Feb 00
C Loop over columns to determine stripwise kinematic velocity

C components. Column zero is the rigid-body mode

C
DO I=0,NCOL(1)

C
C DETERMINE THE CONTRIBUTION TO TRANSLATION VELOCITY

C COMPONENTS FROM HEAVING OSCILLATIONS

C
VX = VX1 + DXMAX * WTX * COS(WTX*T)
VY = VY1 + DYMAX * WTY * COS(WTY*T)
VZ = VZ1 + DZMAX * WTZ * COS(WTZ*T)

C

C DETERMINE CURRENT ANGULAR ROTATION RATES IN RADIANS

C (INCLUDING OSCILLATORY COMPONENT)
C

P = PHIDOT * PI/180. + PHIMAX * WRX * COS(WRX*T) * PI/180.
Q = THEDOT * PI/180. + THEMAX * WRY * COS(WRY*T) * PI/180.

R = PSIDOT * PI/180. + PSIMAX * WRZ * COS(WRZ*T) * PI/180.
C
C DETERMINE CURRENT ANGULAR POSITION IN RADIANS (INCLUDING

C OSCILLATORY CONTRIBUTION)
C

PHI = PHIDOT * PI/180. * T + PHIMAX * SIN(WRX*T) * PI/180.
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THETA = THEDOT * PI/180. * T + THEMAX * SIN(WRY*T) * PI/180.

PSI = PSIDOT * PI/180. * T + PSIMAX * SIN(WRZ*T) * PI/180.

C

C ADDED BY REG JAN 00/ Modified 21 Feb 00

C PLUNGE/PITCH/PITCH RATE CHANNEL UNIT PULSE INPUT

C
IF((IMPTYP.NE.0).AND.(I.NE.0))THEN

IF (ITSTEP.EQ.STEP) THEN

VZ=IMPVZ(I)

Q=IMPQ(I)
THETA=IMPTH(I)

ELSE
VZ=0.0

Q=0.0
THETA=0.0

END IF

END IF

STORE VELOCITY VECTOR AND ROTATION RATES IN ARRAYS.

SPSI = SIN(PSI)
CPSI = COS(PSI)
STHETA = SIN(THETA)
CTHETA = COS(THETA)
SPHI = SIN(PHI)
CPHI = COS(PHI)

DC(1,1) = CTHETA * CPSI

DC(1,2) = CTHETA * SPSI

DC(1,3) = -STHETA

DC(2,1) = -CPHI*SPSI + SPHI*STHETA*CPSI

DC(2,2) = CPHI*CPSI + SPHI*STHETA*SPSI

DC(2,3) = SPHI*CTHETA

DC(3,1) = SPHI*SPSI + CPHI*STHETA*CPSI

DC(3,2) = -SPHI*CPSI + CPHI*STHETA*SPSI

DC(3,3) = CPHI*CTHETA
IFLAG = 1
CALL TRANFRM(IFLAG,DC,VX,VY,VZ)

Modified REG 22 Feb 00

Transform VX1,VY1, and VZ1 only for the rigid body mode

IF(I.EQ.0)THEN
VX1_RIG=VX1
VY1_RIG=VY1

VZ1_RIG=VZ1

171

C

C
C

C
C

C
C



CALL TRANFRM(IFLAG,DC,VX1_RIG,VY1_RIGVZ1_RIG)
END IF

C

VFR(I,1) = VX
VFR(I,2) = VY
VFR(I,3) = VZ
OMEGA(I,1) = P

OMEGA(I,2) = Q
OMEGA(I,3) = R

C End column loop

END DO

C
C SET THE CURRENT ALPHA AND YAW ANGLES
C

IF(ABS(VX1_RIG).GT.EPS)THEN

ALPHA = ATAN(VZ1_RIG/VX1_RIG)
YAW = -ATAN(VY1_RIG/VX1_RIG)

ELSE
IF(VZ1_RIG.GT.0)THEN

ALPHA = PI/2.0
ELSE

ALPHA = -PI/2.0
ENDIF
IF(VY1_RIG.GT.0)THEN

YAW = -PI/2.0
ELSE

YAW = PI/2.0

ENDIF
ENDIF
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A.3 Convolution

C convolution.f

C
C Convolutes the "impulse response" in file IMPULSE with

C an arbitary input in file INPUT to yield the response

C to the arbitrary input. Output is written to the file

C RESPONSE. Filenames are entered at run-time.

C
C By Randal E. Guendel

C 24 November 1999

C

PROGRAM CONVOLVE

PARAMETER (NMAX=10000)

REAL Y(O:NMAX),H(0:NMAX),X(O:NMAX)

CHARACTER*25 INPUT,IMPULSE,RESPONSE

REAL FACT

WRITE(*,*)'Enter the name of the impulse response file:'

READ(*,*)IMPULSE
WRITE(*,*)'Enter a scaling factor for the impulse:'

READ (*, *)FACT
WRITE(*,*)'Enter the name of the input file:'

READ(*,*) INPUT
WRITE(*,*)'Enter the name of the output file:'

READ(*,*)RESPONSE

OPEN(UNIT=10,FILE=IMPULSE,FORM='FORMATTED', STATUS='OLD')

OPEN (UNIT=11 ,FILE=INPUT,FORM= 'FORMATTED' ,STATUS= 'OLD')

OPEN (UNIT=12 ,FILE=RESPONSE,FORM='FORMATTED' , STATUS='NEW')

C---- Initialize arrays to zero

C
DO I=O,NMAX

Y(I)=0.0

H(I)=O.0
X(I)=0.0

END DO

C---- Read impulse response from the file

C
READ(10,101)TSTEPP
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READ(10,102)NTSTEP_P

101 FORMAT(F8.5)
102 FORMAT(I5)

C---- Skip column heading lines and zeroth iteration

C (because pulse is applied at iteration 1)

C
READ(10,*)

READ(10,*)
DO I=0,NTSTEPP-1

READ(10,*)DUM,H(I)

END DO

C---- Read arbitrary input data from file
C

READ(11,101)TSTEP_I

READ(11,102)NTSTEP_I
IF(TSTEPI.NE.TSTEPP)THEN

WRITE(*,*)'Timestep of impulse resp. and input must match!'

STOP

END IF

C---- Skip column heading line
C

READ(11,*)
DO I=0,NTSTEP_I

READ(11 ,*)DUM,X(I)

END DO

C---- Perform convolution

C

DO N=0,NTSTEP_I
DO K=0,NTSTEPI

IF(((N-K).GE.0).AND.((N-K).LT.NTSTEPP))THEN

Y(N)=Y(N)+FACT*H(N-K)*X(K)

END IF
END DO

END DO

WRITE(12,103)

103 FORMAT('RESPONSE TO ARBITRARY INPUT GENERATED BY CONVOLUTION')

DO I=0,NTSTEP_I

WRITE(12,110)I*TSTEPP,Y(I)

END DO

110 FORMAT(F8.5,6X,E12.4)

STOP

END
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A.4 Volterra Series

C volterra.f

C

C Convolutes the "impulse response" in file IMPULSE with

C an arbitary input in file INPUT to yield the response

C to the arbitrary input. Output is written to the file

C RESPONSE. Filenames are entered at run-time.

C

C By Randal E. Guendel

C 12 April 2000

C

PROGRAM VOLTERRA

PARAMETER (NMAX=10000)

PARAMETER (KMAX=50)

REAL Y(0:NMAX),Y2(0:NMAX),H1(0:KMAX),H2(0:KMAX,O:KMAX)
REAL X(0:NMAX)
CHARACTER*25 INPUT,KERNEL1,KERNEL2,RESPONSE

REAL FACT

INTEGER K1,K2

WRITE(*,*)'Enter the name of the 1st order kernel file:'

READ(*,*)KERNEL1

WRITE(*,*)'Enter the name of the 2nd order kernel file:'

READ(*,*)KERNEL2
WRITE(*,*)'Enter a scaling factor for the impulse:'

READ(*,*)FACT
WRITE(*,*)'Enter the name of the input file:'

READ(*,*)INPUT
WRITE(*,*)'Enter the name of the output file:'

READ(*,*)RESPONSE

OPEN(UNIT=9,FILE=KERNEL2,FORM='FORMATTED',STATUS='OLD')
OPEN(UNIT=10,FILE=KERNEL1,FORM='FORMATTED',STATUS='OLD')

OPEN(UNIT=11,FILE=INPUT,FORM='FORMATTED',STATUS='OLD')

OPEN(UNIT=12,FILE=RESPONSE,FORM='FORMATTED',STATUS='NEW')

C---- Initialize arrays to zero

C
DO I=0,NMAX

Y(I)=0.0

175



Y2(I)=0.0
X(I)=0.0

END DO

DO I=O,KMAX

H1(I)=0.0
DO J=0,KMAX

H2(I,J)=0.0

END DO
END DO

C---- Read impulse response from the file

C
READ(10,101)TSTEP_P

READ(10,102)NTSTEP_P
101 FORMAT(F8.5)

102 FORMAT(I5)
C---- Skip column heading lines and zeroth iteration

C (because pulse is applied at iteration 1)

C
READ(10,*)

READ(10,*)

DO I=O,NTSTEPP-1
READ(10,*)DUM,H1(I)

H2(I,I)=H1(I)

END DO
C---- Read 2nd order kernel; fill in matrix

C
READ(9,101)TSTEPK2
READ(9,102)NTSTEPK2

READ(9,102)NCOMP
IF(TSTEPK2.NE.TSTEPP)THEN

WRITE(*,*)'Time step of kernels must match!'

STOP

END IF

READ(9,*)
DO I=1,NCOMP

DO J=0,NTSTEPK2

READ(9,*)DUM,TEMP
IF(J.GE. I)THEN

H2(J-I,J-1)=TEMP

H2(J-1,J-I)=TEMP

END IF

END DO

END DO
C---- Read arbitrary input data from file

176



C
READ(11,101)TSTEP_I
READ(11,102)NTSTEP_I
IF(TSTEP_I.NE.TSTEPP)THEN

WRITE(*,*)'Timestep of impulse resp. and input must match!'

STOP

END IF
C---- Skip column heading line

C
READ(11,*)

DO I=O,NTSTEP_I

READ(11,*)DUM,X(I)

END DO

C---- Perform convolution

C
DO N=O,NTSTEP_I

DO K=O,NTSTEP_I

IF(((N-K).GE.0).AND.((N-K).LT.NTSTEPP))THEN
Y(N)=Y(N)+FACT*H1(N-K)*X(K)

END IF

END DO

DO K1=0,NTSTEP_I

DO K2=0,NTSTEP_I
IF(((N-K1).GE.0).AND.((N-K2).GE.0))THEN

IF(((N-K1).LT.NTSTEPP).AND. ((N-K2) .LT.NTSTEPP))THEN
Y2(N)=Y2(N)+FACT*H2(N-K1,N-K2)*X(K1)*X(K2)

END IF
END IF

END DO

END DO

Y (N) =Y (N) +Y2 (N)

END DO

WRITE(12,103)

103 FORMAT('RESPONSE TO ARBITRARY INPUT GENERATED BY CONVOLUTION')

DO I=0,NTSTEP_I
WRITE(12,110)I*TSTEPP,Y(I)

END DO

110 FORMAT(F8.5,6X,E12.4)
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STOP
END
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A.5 Input Generation Program

C

C
C
C

C
C
C

WRITE(*,*)'Enter

READ(*,*)FREQ

WRITE(*,*)'Enter

READ(*,*)DT

WRITE(*,*)'Enter

READ(*,*)TIME

WRITE(*,*)'Enter

READ(*,*)AMP

frequency (in Hz):'

time step size:'

the duration of the oscillation (in sec):'

the amplitude (in deg/length units):'

OPEN(UNIT=10,FILE='input.txt',FORM='FORMATTED',STATUS='NEW')

Convert to radians if either pitch; convert to radians

and multiply by omega=2*pi*f if pitch rate

IF(INPTYP.EQ.1)THEN

AMP=AMP*PI/180

ELSEIF(INPTYP.EQ.2)THEN

AMP=AMP*PI/180*FREQ*2*PI

ELSEIF(INPTYP.EQ.3)THEN

179

Generates an input file for convolution with an impulse

response file. User specifies the frequency, amplitude,

and duration of the input, and can select a pitch, pitch

rate, or plunge type function.

by Randal E. Guendel

14 Feb 00

PROGRAM GENINPUT

INTEGER INPTYP

PI=3.14159

WRITE(*,*)'Select:'
WRITE(*,*)' 1. Pitch Input (sine)'

WRITE(*,*)' 2. Pitch Rate Input d/dt(sine)'

WRITE(*,*)' 3. Plunge Input (cosine)'

READ(*,*)INPTYP

C

C



AMP=AMP*2*FREQ*PI
ENDIF

NTSTEPS=NINT(TIME/DT)

WRITE(10,*)DT
WRITE(10,*)NTSTEPS

WRITE(10,*)'STEP AMPLITUDE'

DO I=0,NTSTEPS
T=I*DT

IF(INPTYP.EQ.1)THEN
WRITE(10,*)I,AMP*SIN(2*PI*FREQ*T)

ELSE
WRITE(10,*)I,AMP*COS(2*PI*FREQ*T)

ENDIF
END DO

WRITE(*,*)'Input data written to file input.txt'

STOP

END
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Appendix B

Other Code Listings

B.1 MATLAB Lumped Vortex Model

X LumpVortexWing.m

X by Randal E. Guendel

X 18 November 1999

% Uses a lumped vortex formulation and strip theory to calculate
% the circulation and lift of a rectangular wing with span b and
% chord c for a unit perturbation of the pitch, pitch rate, and
% plunge rate.

% Then computes the circulation response for a sinusoidal input by
% convolution with the impulse responses. This is compared to the
X sinusoidal responses as computed by direct time integration.

clear all;

% Compute impulse responses

T=10.0;
dt=0.01;

N=10;

M=T/dt;

Uinf=1.0;
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beta=2/pi;
b=10;
c=1;
eps=le-5;
rho=1.0;

time(1)=0;
for i=1:M

time(i+1)=i*dt;

end;

timeO=clock;

a=zeros(M+1,N);

adot=zeros(M,N);

hdot=zeros(M,N);

dy=b/(N*2);
for j=1:N

a(1,j)=2*dy*j/b;
adot(1,j)=2*dy*j/b;

hdot(1,j)=2*dy*j/b;

y(j)=j*dy;
end;

% Circ1 -> respons
% Circ2 -> respons

% Circ3 -> respons

for j=1:N
Circl(1,j)=0.O;

Circ2(1,j)=0.O;
Circ3(1,j)=0.O;

for i=2:M+1

e
e

e

to the alpha (pitch) channel

to the alpha-dot (pitch rate) channel

to the hdot (plunge rate) channel

Circ1(ij)=Circl(i-1,j)+(Uinf*dt/beta)
(1/(pi*c))*Circ1(i-1,j));

Circ2(i,j)=Circ2(i-1,j)+(Uinf*dt/beta)

(1/(pi*c))*Circ2(i-1,j));

Circ3(i,j)=Circ3(i-1,j)+(Uinf*dt/beta)
(1/(pi*c))*Circ3(i-1,j));

*(Uinf*a(i-1,j)-

*((c/4)*adot(i-1,j)-

*(-hdot(i-1,j)-

end;
end;

etime(clock,timeO)

timeO=clock;

figure(1);
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subplot(3,1,1), plot(time,Circl(:,N))
title('Response at tip of alpha input channel

(linear distribution)');

subplot(3,1,2), plot(time,Circ2(:,N))

title('Response at tip of d(alpha)/dt input channel
(linear distribution)');

ylabel('circulation');

subplot(3,1,3), plot(time,Circ3(:,N))

title('Response at tip of d(h)/dt input channel

(linear distribution)');

xlabel('time (sec)');

T1=10;

A=1;
M2=T1/dt;

for i=1:M2+5

Inp-a(i)=sin(4*pi*dt*i/T1);
Inp-a-dot(i)=(4*pi/T1)*cos(4*pi*dt*i/T1);

Inp-h-dot(i)=0;

end;

time2(1)=0;
for i=1:M2-1

time2(i+1)=i*dt;

end;

% Convolution of the impulse responses with the sinusoidal input

Resp-a=zeros(M2,N);

Resp-a-dot=zeros(M2,N);

Resp-h-dot=zeros(M2,N);
for j=1:N

Temp1=conv(Circ1(:,j),Inp-a);

Temp2=conv(Circ2(:,j),Inp_a-dot);

Temp3=conv(Circ3(:,j),Inp-h-dot);

for k=1:length(Circ1)-1
Respa (k, j) =Templ (k);

Resp-a-dot(k,j)=Temp2(k);

Resph-dot (k, j) =Temp3 (k);

end;

end;

etime (clock ,timeO)

timeO=clock;
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Resp=Resp-a+Resp-a-dot+Resp-h-dot;

% Time-marching, fully discretized lumped vortex model

for j=1:N
for i=1:M2+5

Inpa2(i,j)=a(1,j)*sin(4*pi*dt*i/T1);
Inp_a_dot2(i,j)=adot(1,j)*(4*pi/T1)*cos(4*pi*dt*i/T1);
Inp_h_dot2(i,j)=0;

end;

end;

for j=1:N

CompareCirc(1,j)=O.O;
CompCirc2(1,j)=O.O;

for i=2:M+1

CompareCirc(i,j)=(Uinf/beta)*((Uinf*dt-c/4)*Inp-a2(i-1,j)+
(c/4)*Inpa2(i,j)-(dt/(pi*c))*

CompareCirc(i-1,j))+CompareCirc(i-1,j);

end;

end;

figure(2);

plot(time,CompareCirc(:,N));

title('Response at tip of lumped vortex model to sinusoidal pitching');

xlabel('Time (sec)');

ylabel('Circulation');

hold on

plot(time2,Resp(:,N),':');

etime(clock,timeO)
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B.2 Deflected Wing Generation Program

C FOILGEN
C
C Written by Randal E. Guendel

C Technology Laboratory for Advanced Composites (TELAC)
C Massachusetts Institute of Technology
C

C 5 October 1999
C
C Program to generate an arbitrarily deflected and twisted
C rectangular wing comprised of NACA 00xx airfoil sections.
C Output is two files: 'wing.txt' is the PMARC-formatted
C geometry and 'curve.txt' gives the displacement and rotation
C for each section.
C

C Notes:

C
C 1. Currently only wing deflection has been implemented.
C 2. Currently the wing root leading edge is at (0.0, 0.0, 0.0)
C 3. The wing tip deflection ratio (TIP) actually represents
C the deflection if the wing were extended to y=b. When
C the wing is deflected, the actual wing tip deflection
C will be somewhat smaller than TIP.

C 4. Any consitent set of units may be used.
C
C

PROGRAM FOILGEN
C
C VARIABLE DECLARATIONS------------------
C

REAL XO,YO,ZO,X,Y,Z,SPN,CHD,THK,TIP,TWIST,A(5),CHD_X,
+ CHD_YCHD_ZSURF_ZTHETA,L,TY,TRAT

INTEGER NPANX,NPANY,XSPACE,YSPACE,I,J

CHARACTER TAPERED
C
C DATA INPUT

C
WRITE(*,*)'AIRFOIL AND WING DATA'
WRITE(*,*)'------- --- ---- ---- >

C WRITE(*,*)'ENTER THE STARTING COORDINATE (X,Y,Z)'
C READ(*,*)XO,YO,ZO

WRITE(*,*)'ENTER THE WING SPAN'
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READ(*,*)SPN

WRITE(*,*)'ENTER THE CHORD LENGTH'

READ (*, *) CHD

WRITE(*,*)'ENTER THE THICKNESS RATIO (DECIMAL)'

READ(*,*)THK
WRITE(*,*)'TAPERED WING? (Y or N)'
READ(*,*)TAPERED
IF (TAPERED.EQ.'Y')THEN

WRITE(*,*)'ENTER NORMALIZED LOCATION OF START OF TAPER'

READ(*,*)TY

WRITE(*,*)'ENTER TAPER RATIO'

READ(*, *)TRAT

END IF

WRITE(*,*)'DISCRETIZATION DATA'

WRITE(*,*) '-------------- ---- '

WRITE(*,*)'ENTER NUMBER OF SPANWISE PANELS'

READ(*,*)NPANY
WRITE(*,*)'ENTER NUMBER OF CHORDWISE PANELS'

READ(*,*)NPANX
WRITE(*,*)'ENTER SPANWISE SPACING'

WRITE(*,*)' FULL COSINE= 0 INC. HALF COSINE= 1,

WRITE(*,*)' DEC. HALF COSINE= 2 EQUAL= 3'

READ(*,*)YSPACE

WRITE(*,*)'ENTER CHORDWISE SPACING'

READ(*,*)XSPACE

WRITE(*,*)'DEFLECTION DATA'

WRITE(*,*) '---------- ---- '

WRITE(*,*)'ENTER TIP DEFLECTION RATIO (0-1)'

READ(*,*)TIP

WRITE(*,*)'ENTER TIP TWIST (DEGREES)'

READ(*,*)TWIST

C
C AIRFOIL POLYNOMIAL COEFFICIENTS

C
A(1)=0.2969
A (2) =-O. 1260
A(3)=-0.3516
A(4)=0.2843
A(5)=-0. 1015

C
C ADJUST FOR THICKNESS OTHER THAN 0.20

C
DO I=1,5

A(I)=THK*A(I)/0.20

END DO
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C
C OPEN OUTPUT FILES
C

OPEN(UNIT=9,FILE='wing.txt',STATUS='NEW')

OPEN(UNIT=10,FILE='curve.txt',STATUS='NEW')
C
C WRITE PATCH HEADER
C

WRITE(9,501)
WRITE(9,506)

C
C GENERATE DEFLECTED AIRFOIL SECTIONS
C

DO J=O,NPANY

L=J*(SPN/NPANY)

CHDY=YPRIME(L,ABS(TIP),SPN)
CHDZ=SPN*TIP*(CHDY/SPN)**2
IF ((TIP.NE.O.0).AND.(CHDY.NE.O.0)) THEN

THETA=ATAN(2*(TIP/SPN)*CHDY)
ELSE

THETA=0.0

END IF

C

C WRITE SECTION HEADER
IF(J.EQ.NPANY)THEN

WRITE(9,505)NPANY,YSPACE

ELSE

WRITE(9,502)
END IF

C
C WRITE DISPLACEMENT AND ROTATION DATA

WRITE(10,520)J,CHD_YTHETA
C
C LOWER SURFACE, FROM TE TO LE

DO I=O,NPANX
CHDX=CHD-I*(CHD/NPANX)
SURFZ=-POLY(CHD_XCHD,A)
X=CHD_X

Y=CHDY-SURFZ*SIN(THETA)*COS(THETA)

Z=CHD_Z+SURFZ-SURFZ*SIN(THETA)*SIN(THETA)
WRITE(9,510)X,Y,Z

END DO
WRITE(9,503)NPANX,XSPACE

C
C UPPER SURFACE, FROM LE TO TE
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DO I=0,NPANX
CHDX=I*(CHD/NPANX)

SURFZ=POLY(CHDX,CHD,A)

X=CHD_X
Y=CHDY-SURFZ*SIN(THETA)*COS(THETA)

Z=CHDZ+SURF_Z-SURF_Z*SIN(THETA)*SIN(THETA)

WRITE(9,510)X,Y,Z

END DO

WRITE(9,504)NPANX,XSPACE

END DO

C
C FORMAT STATEMENTS

C
501 FORMAT(' &PATCH1 IREV=0 IDPAT=1 MAKE=0 KCOMP=1'/

+ ' KASS=1 IPATSYM=0 IPATCOP=0 /')

502 FORMAT(' &SECT1 STX=0.00 STY=0.00 STZ=0.00 SCALE=1.00'/
+ ' ALF=0.0 THETA=0.0 INMODE=4'/

+ ' TNODS=0 TNPS=0 TINTS=0 /')

503 FORMAT(' &BPNODE TNODE=2 TNPC=',I2,' TINTC=',I2,' /')

504 FORMAT(' &BPNODE TNODE=3 TNPC=',12,' TINTC=',I2,' /')

505 FORMAT(' &SECT1 STX=0.00 STY=0.00 STZ=0.00 SCALE=1.00'/
+ ' ALF=0.0 THETA=0.0 INMODE=4'/

+ ' TNODS=3 TNPS=',I2,' TINTS=',I3,' /')

506 FORMAT(' WING')

510 FORMAT(5X,F10.5,5X,F10.5,5X,F10.5)
520 FORMAT(I4,5X,F10.5,5X,F10.5)

STOP

END

C FUNCTION POLY

C
C AIRFOIL POLYNOMIAL (FROM NASA TM 4741, 'COMPUTER PROGRAM TO OBTAIN

C ORDINATES FOR NACA AIRFOILS', DEC 96)

C

REAL FUNCTION POLY(X,CHD,A)

REAL X,CHD
REAL A(5)

POLY=CHD*(A(1)*(X/CHD)**0.5+A(2)*(X/CHD)+A(3)*(X/CHD)**2+
+ A(4)*(X/CHD)**3+A(5)*(X/CHD)**4)

RETURN
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END

C
C FUNCTION YPRIME
C

C COMPUTES THE DEFLECTED Y-POSITION OF THE CURRENT AIRFOIL SECTION
C CHORDLINE
C

REAL FUNCTION YPRIME(B,A,SPN)

REAL A,B,SPN

INTEGER I
REAL LEN,W
I=0

LEN=0.0

W=0.001

IF (B.EQ.0.0) THEN
YPRIME=0.0

ELSE
DO WHILE(LEN.LT.B)

LEN=LEN+TRAPAREA(W,I,A,SPN)

I=I+1
END DO

IF (LEN.EQ.B) THEN
YPRIME=W*I

ELSE

YPRIME=(W*I+W*(I+1))/2
END IF

END IF

RETURN
END

C
C FUNCTION TRAPAREA

C
C COMPUTES THE AREA OF THE CURRENT TRAPEZOID FOR THE COMPUTATION
C OF THE CURVE LENGTH BY THE TRAPEZOIDAL RULE

C
REAL FUNCTION TRAPAREA(W,I,A,SPN)

REAL W,A
INTEGER I

REAL X1,X2,F1,F2

X1=W*I
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X2=W* (1+1)
F1=SQRT(1+(2*A/SPN)**2*X1**2)

F2=SQRT(1+(2*A/SPN)**2*X2**2)

TRAPAREA=W/2*(F1+F2)

RETURN
END
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Appendix C

Input Files

C.1 SHAR1 PMARC Input File for 29% Bending

BASELINE WING IN 1st BENDING MODE
&BINP2 LSTINP=2, LSTOUT=1,

LPLTYP=1, /
&BINP3 LSTGEO=1, LSTNAB=0,
&BINP4 MAXIT=500, SOLRES=0.000
&BINP5 NTSTPS=125 DTSTEP=0.01
&BINP6 RSYM=0.0 RGPR=0.0

RCOREW=0.0080 /
&BINP7 VINF=10.00 VSOUND=340.0
&BINP8 ALDEG=0.0 YAWDEG=0.0

PSIDOT=0.0 /
&BINP8A PHIMAX= 0.0 THEMAX= 3.0

WRX=0.0
&BINP8B DXMAX=0.0

WTX=0.0
&BINP9 CBAR=0.2

RMPX=0.00
&BINP10 NORSET=1

NCZPCH=0
&BINP11 NORPCH=0

NOCF=0

&BINP12 KPAN=0
&BINP13 NBLIT=0 /

LSTFRQ=0,

LSTWAK=2,

5 /
/

RFF=5.0

/
PHIDOT=0.0

LENRUN=0,

LSTCPV=0,

RCORES=0.0080

THEDOT=0.0

PSIMAX=0.0
WRY=2.0 WRZ=0.0
DYMAX=0.0 DZMAX=0.0
WTY=0.0 WTZ=0.0

SREF=0.80 SSPAN= 2.00
RMPY=0.00 RMPZ=0.00
NBCHGE=1 NCZONE=0

CZDUB=0.0 VREF=0.0
NORF=0 NORL=0
NOCL=0 VNORM=0.0

KSIDE=0 NEWNAB=0 NEW

/

/

/

SID=0 /

&ASEM1 ASEMX=0.00 ASEMY=0.00 ASEMZ=0.00

191



ASCAL=1.00
&ASEM2 APXX=0.00

AHXX=0.00

&COMP1 COMPX= 0.0000
CSCAL= 1.000

&COMP2 CPXX= 0.0000

CHXX= 0.0000

ATHET=0.00
APYY=0.00
AHYY=1 .00
COMPY= 0.0000
CTHET= 0.0

CPYY= 0.0000

CHYY= 1.000

NODEA=5 /
APZZ=0.00

AHZZ=0.00 /
COMPZ= 0.0000
NODEC= 5 /
CPZZ= 0.0000
CHZZ= 0.0000 /

&PATCH1 IREV=0 IDPAT=1 MAKE=0 KCOMP=1

KASS=1 IPATSYM=0 IPATCOP=0

WING
&SECT1 STX=0.00

ALF=0.0

TNODS=0

0.20000
0.18667

0.17333
0.16000
0.14667
0.13333
0.12000

0.10667
0.09333
0.08000

0.06667
0.05333
0.04000
0.02667
0.01333

0.00000

&BPNODE TNODE=2

0.00000

0.01333
0.02667

0.04000

0.05333

0.06667

0.08000

0.09333
0.10667

0.12000

0.13333

0.14667
0.16000

0.17333

STY=0.00 STZ=0.00 SCALE=1.00

THETA=0.0 INMODE=4

TNPS=0 TINTS=0

0.00000 -0.00029

0.00000 -0.00239

0.00000 -0.00433

0.00000 -0.00612

0.00000 -0.00777

0.00000 -0.00929

0.00000 -0.01065

0.00000 -0.01183

0.00000 -0.01281

0.00000 -0.01354

0.00000 -0.01395

0.00000 -0.01394

0.00000 -0.01339

0.00000 -0.01204

0.00000 -0.00935

0.00000 0.00000

TNPC=15 TINTC= 0 /
0.00000 0.00000

0.00000 0.00935

0.00000 0.01204

0.00000 0.01339

0.00000 0.01394

0.00000 0.01395

0.00000 0.01354

0.00000 0.01281

0.00000 0.01183

0.00000 0.01065

0.00000 0.00929

0.00000 0.00777

0.00000 0.00612

0.00000 0.00433
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0.18667
0.20000

&BPNODE TNODE=3

&SECT1 STX=0.00
ALF=0.0

0.00000
0.00000

TNPC=15 TINTC= 0
STY=0.00 STZ=0.00

THETA=0.0 INMODE=4

0.00239
0.00029

/
SCALE=1 .00

TNODS=0 TNPS=0 TINTS=0
0.20000
0.18667
0.17333
0.16000
0.14667
0.13333
0.12000
0.10667
0.09333
0.08000
0.06667
0.05333
0.04000
0.02667
0.01333
0.00000

&BPNODE TNODE=2

0.00000

0.01333
0.02667
0.04000
0.05333
0.06667

0.08000
0.09333

0.10667

0.12000
0.13333
0.14667
0.16000

0.17333
0.18667
0.20000

&BPNUDE TNODE=3
&SECT1 STX=0.00

ALF=0.0

TNODS=0
0.20000

0.18667

0.08052
0.08063
0.08073
0.08082
0.08091
0.08099
0.08106
0.08113
0.08118
0.08122
0.08124
0.08124
0.08121
0.08114
0.08100
0.08050

TNPC=15 TINTC=

0.08050
0.08000
0.07986

0.07979
0.07976
0.07976

0.07978
0.07982
0.07987

0.07994
0.08001

0.08009
0.08018
0.08027

0.08037
0.08048

0

TNPC=15 TINTC= 0
STY=0.00 STZ=0.00

THETA=0.0 INMODE=4

TNPS=0 TINTS=0

0.16053
0.16075

0.00078
-0.00131
-0.00325
-0.00503
-0.00668
-0.00819
-0.00955
-0.01073
-0.01171
-0.01243
-0.01284
-0.01283
-0.01228
-0.01094
-0.00825
0.00107

/
0.00107
0.01039
0.01308
0.01442
0.01497
0.01498
0.01457
0.01385
0.01287
0.01169
0.01033
0.00882
0.00717
0.00539
0.00345
0.00136

/
SCALE=1 .00

0.00396
0.00189
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0.17333
0.16000
0.14667
0.13333
0.12000
0.10667
0.09333
0.08000
0.06667
0.05333
0.04000
0.02667
0.01333
0.00000

&BPNODE TNODE=2

0.00000

0.01333
0.02667

0.04000

0.05333
0.06667
0.08000

0.09333
0.10667
0.12000

0.13333
0.14667
0.16000

0.17333
0.18667

0.20000

&BPNODE TNODE=3

&SECT1 STX=0.00

ALF=0.0

TNODS=0

0.20000
0.18667

0.17333
0.16000

0.14667
0.13333

0.12000

0.10667

0.09333

0.08000

0.16095 -0.00003

0.16114 -0.00180

0.16131 -0.00344

0.16147 -0.00493

0.16162 -0.00628

0.16174 -0.00745

0.16184 -0.00842

0.16192 -0.00914

0.16196 -0.00954

0.16196 -0.00954

0.16190 -0.00899

0.16176 -0.00766

0.16148 -0.00499

0.16050 0.00425

TNPC=15 TINTC= 0 /
0.16050 0.00425

0.15952 0.01350

0.15924 0.01616

0.15910 0.01749

0.15904 0.01804

0.15904 0.01804

0.15908 0.01764

0.15916 0.01692

0.15926 0.01595

0.15938 0.01478

0.15953 0.01343

0.15969 0.01194

0.15986 0.01030

0.16005 0.00853

0.16025 0.00661

0.16047 0.00454

TNPC=15 TINTC= 0 /
STY=0.00 STZ=0.00 SCALE=1.00

THETA=0.0 INMODE=4

TNPS=0 TINTS=0
0.24055 0.00926

0.24087 0.00721

0.24117 0.00532

0.24145 0.00357

0.24170 0.00196

0.24194 0.00048

0.24215 -0.00084

0.24233 -0.00200

0.24248 -0.00296

0.24260 -0.00366
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0.06667
0.05333
0.04000
0.02667
0.01333
0.00000

&BPNODE TNODE=2

0.00000

0.01333
0.02667
0.04000

0.05333
0.06667

0.08000
0.09333

0.10667
0.12000

0.13333
0.14667

0.16000
0.17333

0.18667
0.20000

&BPNODE TNODE=3

&SECT1 STX=0.00

0.24266
0.24266
0.24257
0.24236
0.24195
0.24050

TNPC=15 TINTC=
0.24050

0.23905
0.23864
0.23843

0.23834
0.23834

0.23840
0.23852
0.23867

0.23885
0.23906

0.23930

0.23955
0.23983

0.24013
0.24045

0

TNPC=15 TINTC= 0
STY=0.00 STZ=0.00

-0.00406
-0.00406
-0.00351
-0.00220
0.00042
0.00954

/
0.00954
0.01866
0.02129
0.02260
0.02314
0.02315
0.02275
0.02204
0.02109
0.01993
0.01860
0.01713
0.01551
0.01377
0.01188
0.00983

/
SCALE= 1

ALF=0.0 THETA=0.0 INMODE=4
TNODS=0 TNPS=0 TINTS=0

0.20000
0.18667
0.17333
0.16000
0.14667
0.13333
0.12000
0.10667
0.09333
0.08000
0.06667
0.05333
0.04000
0.02667
0.01333
0.00000

&BPNODE TNODE=2

0.00000

0.32056
0.32098
0.32138
0.32174
0.32207
0.32238
0.32266
0.32290
0.32309
0.32324
0.32332
0.32332
0.32321
0.32294
0.32239
0.32050

TNPC=15 TINTC=

0.32050

0.01667
0.01466

0.01281
0.01109
0.00951
0.00806
0.00676
0.00562
0.00468
0.00399
0.00360
0.00360
0.00413
0.00542
0.00800
0.01695

0 /
0.01695
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0.01333
0.02667
0.04000
0.05333
0.06667
0.08000
0.09333
0.10667
0.12000
0.13333
0.14667
0.16000
0.17333
0.18667
0.20000

&BPNODE TNODE=3

&SECT1 STX=0.00

ALF=0.0
TNODS=0

0.20000
0.18667

0.17333
0.16000
0.14667

0.13333
0.12000

0.10667

0.09333
0.08000

0.06667

0.05333
0.04000

0.02667

0.01333

0.00000

&BPNODE TNODE=2

0.00000

0.01333

0.02667

0.04000

0.05333
0.06667

0.08000
0.09333

0.10667

0.31861
0.31806
0.31779
0.31768
0.31768
0.31776
0.31791
0.31810
0.31834
0.31862
0.31893
0.31926
0.31962
0.32002
0.32044

TNPC=15 TINTC= 0

STY=0.00 STZ=0.00
THETA=0.0 INMODE=4

TNPS=0 TINTS=0
0.39957
0.40009
0.40057
0.40101
0.40142

0.40179
0.40213
0.40242

0.40266
0.40284

0.40294
0.40294
0.40280

0.40247
0.40180

0.39950

TNPC=15 TINTC= 0

0.39950

0.39720

0.39653

0.39620

0.39606
0.39606

0.39616
0.39634

0.39658

0.02590
0.02847
0.02976
0.03029
0.03030
0.02991
0.02921
0.02828
0.02714
0.02584
0.02439
0.02281
0.02109
0.01924
0.01723

/
SCALE=1.00

0.02606
0.02410
0.02229
0.02061
0.01906
0.01765
0.01638
0.01527
0.01435
0.01367
0.01329
0.01330
0.01382
0.01508
0.01759
0.02633

/
0.02633
0.03508
0.03759
0.03885
0.03937
0.03937
0.03899
0.03832
0.03740
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0.12000
0.13333
0.14667
0.16000
0.17333
0.18667
0.20000

&BPNODE TNODE=3

&SECT1 STX=0.00

ALF=0.0

TNODS=0
0.20000

0.18667
0.17333

0.16000
0.14667

0.13333
0.12000

0.10667
0.09333
0.08000
0.06667

0.05333
0.04000
0.02667

0.01333
0.00000

&BPNODE TNODE=2
0.00000

0.01333
0.02667
0.04000

0.05333
0.06667
0.08000

0.09333

0.10667
0.12000

0.13333
0.14667

0.16000
0.17333

0.18667
0.20000

&BPNODE TNODE=3

0.39687
0.39721
0.39758
0.39799
0.39843
0.39891
0.39943

TNPC=15 TINTC= 0
STY=0.00 STZ=0.00

THETA=0.0 INMODE=4
TNPS=0 TINTS=0

0.47958

0.48019
0.48075
0.48126

0.48174

0.48217
0.48256

0.48290
0.48319

0.48340
0.48351
0.48351

0.48335
0.48296
0.48219

0.47950
TNPC=15 TINTC= 0

0.47950

0.47681
0.47604
0.47565
0.47549
0.47549

0.47561
0.47581

0.47610

0.47644
0.47683

0.47726
0.47774
0.47826

0.47881
0.47942

TNPC=15 TINTC= 0

0.03629
0.03502
0.03360
0.03206
0.03038
0.02857
0.02661

/
SCALE=1.00

0.03767
0.03576
0.03400
0.03237
0.03087
0.02949
0.02826
0.02718
0.02629
0.02563
0.02526
0.02526
0.02577
0.02699
0.02944
0.03794

/
0.03794
0.04643
0.04888
0.05011
0.05061
0.05061
0.05024
0.04958
0.04869
0.04762
0.04638
0.04500
0.04350
0.04187
0.04011
0.03820

/
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&SECT1 STX=0.00
ALF=0.0

TNODS=0
0.20000
0.18667

0.17333
0.16000
0.14667

0.13333
0.12000
0.10667

0.09333

0.08000

0.06667
0.05333

0.04000

0.02667
0.01333

0.00000
&BPNODE TNODE=2

0.00000

0.01333
0.02667
0.04000

0.05333
0.06667
0.08000
0.09333
0.10667
0.12000

0.13333
0.14667

0.16000

0.17333

0.18667

0.20000
&BPNODE TNODE=3

&SECT1 STX=0.00

ALF=0.0

TNODS=0
0.20000

0.18667
0.17333

0.16000
0.14667

STY=0.00 STZ=0.00
THETA=0.0 INMODE=4
TNPS=0 TINTS=0

0.55760

0.55827

0.55890
0.55948
0.56002

0.56051
0.56095
0.56134

0.56165
0.56189

0.56202

0.56202

0.56184
0.56140

0.56053
0.55750

TNPC=15 TINTC= 0

0.55750

0.55447
0.55360

0.55316
0.55298
0.55298
0.55311
0.55335
0.55366

0.55405
0.55449
0.55498

0.55552

0.55610
0.55673

0.55740

TNPC=15 TINTC= 0

STY=0.00 STZ=0.00

THETA=0.0 INMODE=4

TNPS=0 TINTS=0

0.63660

0.63735

0.63805

0.63869
0.63928

SCALE=1.00

0.05102
0.04918
0.04747
0.04589
0.04444
0.04310
0.04190
0.04086
0.04000
0.03936
0.03900
0.03900
0.03949
0.04068
0.04305
0.05128

/
0.05128
0.05952
0.06189
0.06307
0.06356
0.06357
0.06321
0.06257
0.06171
0.06066
0.05946
0.05813
0.05667
0.05509
0.05339
0.05154

/
SCALE=1.00

0.06660
0.06481
0.06317
0.06164
0.06024
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0.13333
0.12000
0.10667
0.09333
0.08000
0.06667
0.05333
0.04000
0.02667
0.01333
0.00000

&BPNODE TNODE=2
0.00000

0.01333

0.02667
0.04000

0.05333
0.06667

0.08000
0.09333
0.10667

0.12000
0.13333
0.14667

0.16000
0.17333

0.18667
0.20000

&BPNODE TNODE=3
&SECT1 STX=0.00

0.63982
0.64030
0.64073
0.64108
0.64133
0.64148
0.64148
0.64128
0.64080
0.63984
0.63650

TNPC=15 TINTC=

0.63650

0.63316

0.63220
0.63172

0.63152
0.63152

0.63167
0.63192
0.63227

0.63270
0.63318
0.63372

0.63431
0.63495

0.63565
0.63640

TNPC=15 TINTC=

STY=0.00 STZ=0

0

0
00

ALF=0.0 THETA=0.0 INMODE=4
TNODS=0 TNPS=0 TINTS=0

0.20000
0.18667
0.17333
0.16000
0.14667
0.13333
0.12000
0.10667
0.09333
0.08000
0.06667
0.05333
0.04000

0.71461
0.71542
0.71617
0.71686
0.71750
0.71808
0.71861
0.71907
0.71944
0.71972
0.71988
0.71988
0.71966

0.05895
0.05780
0.05679
0.05595
0.05534
0.05499
0.05500
0.05547
0.05661
0.05890
0.06685

/
0.06685
0.07479
0.07708
0.07823
0.07870
0.07870
0.07836
0.07774
0.07691
0.07590
0.07474
0.07346
0.07205
0.07053
0.06888
0.06710

/
SCALE=1

0.08399
0.08228
0.08069
0.07923
0.07787
0.07664
0.07552
0.07455
0.07375
0.07316
0.07282
0.07283
0.07328

.00
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0.02667
0.01333
0.00000

&BPNODE TNODE=2

0.00000

0.01333

0.02667

0.04000
0.05333
0.06667
0.08000

0.09333
0.10667

0.12000
0.13333

0.14667
0.16000

0.17333

0.18667
0.20000

&BPNODE TNODE=3

&SECT1 STX=0.00

ALF=0.0
TNODS=0

0.20000
0.18667

0.17333

0.16000
0.14667
0.13333
0.12000
0.10667

0.09333
0.08000

0.06667

0.05333
0.04000

0.02667
0.01333
0.00000

&BPNODE TNODE=2

0.00000

0.01333
0.02667

0.04000

0.71914
0.71811
0.71450

TNPC=15 TINTC= 0
0.71450

0.71089
0.70986

0.70934

0.70912
0.70912
0.70928

0.70956
0.70993

0.71039
0.71092

0.71150

0.71214
0.71283

0.71358
0.71439

TNPC=15 TINTC= 0
STY=0.00 STZ=0.00
THETA=0.0 INMODE=4

TNPS=0 TINTS=0
0.79262

0.79348

0.79428
0.79501
0.79569

0.79631
0.79687
0.79736

0.79776

0.79806

0.79823

0.79823
0.79800

0.79744

0.79634

0.79250
TNPC=15 TINTC= 0

0.79250

0.78866

0.78756

0.78700

0.07438
0.07659
0.08423

/
0.08423
0.09188
0.09408
0.09519
0.09564
0.09564
0.09531
0.09472
0.09392
0.09294
0.09183
0.09059
0.08924
0.08777
0.08619
0.08447

/
SCALE=1.00

0.10340
0.10175
0.10023
0.09882
0.09752
0.09634
0.09527
0.09434
0.09357
0.09300
0.09268
0.09268
0.09312
0.09418
0.09629
0.10363

/
0.10363
0.11097
0.11308
0.11414

200



0.05333
0.06667
0.08000
0.09333
0.10667
0.12000
0.13333
0.14667
0.16000
0.17333
0.18667
0.20000

&BPNODE TNODE=3

&SECT1 STX=0.00

ALF=0.0
TNODS=0

0.20000
0.18667

0.17333
0.16000
0.14667

0.13333
0.12000
0.10667
0.09333

0.08000
0.06667
0.05333

0.04000

0.02667
0.01333
0.00000

&BPNODE TNODE=2

0.00000

0.01333
0.02667
0.04000

0.05333
0.06667
0.08000

0.09333
0.10667
0.12000

0.13333
0.14667

0.78677
0.78677
0.78694
0.78724
0.78764
0.78813
0.78869
0.78931
0.78999
0.79072
0.79152
0.79238

TNPC=15 TINTC= 0
STY=0.00 STZ=0.00

THETA=0.0 INMODE=4
TNPS=0 TINTS=0

0.86963
0.87053

0.87137
0.87214
0.87286

0.87351
0.87410
0.87461

0.87503
0.87535

0.87552
0.87552

0.87528

0.87470

0.87354
0.86950

TNPC=15 TINTC= 0
0.86950

0.86546
0.86430

0.86372
0.86348
0.86348
0.86365
0.86397
0.86439

0.86490
0.86549

0.86614

0.11458
0.11458
0.11426
0.11369
0.11292
0.11199
0.11092
0.10973
0.10844
0.10703
0.10551
0.10386

/
SCALE=1.00

0.12452
0.12295
0.12149
0.12014
0.11890
0.11776
0.11674
0.11584
0.11511
0.11456
0.11425
0.11426
0.11467
0.11569
0.11771
0.12475

/
0.12475
0.13178
0.13380
0.13482
0.13523
0.13524
0.13493
0.13438
0.13365
0.13275
0.13173
0.13059
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0.16000
0.17333
0.18667
0.20000

&BPNODE TNODE=3

&SECT1 STX=0.00
ALF=0.0

TNODS=0
0.20000

0.18667

0.17333

0.16000
0.14667

0.13333

0.12000

0.10667
0.09333
0.08000

0.06667
0.05333
0.04000
0.02667
0.01333

0.00000
&BPNODE TNODE=2

0.00000

0.01333
0.02667
0.04000

0.05333

0.06667
0.08000

0.09333
0.10667

0.12000

0.13333
0.14667

0.16000

0.17333

0.18667

0.20000
&BPNODE TNODE=3

&SECT1 STX=0.00
ALF=0.0
TNODS=0

0.86686
0.86763
0.86847
0.86937

TNPC=15 TINTC= 0
STY=0.00 STZ=0.00

THETA=0.0 INMODE=4
TNPS=0 TINTS=0

0.94563

0.94657

0.94744

0.94825
0.94899

0.94967
0.95028

0.95082
0.95126
0.95158

0.95176
0.95176

0.95151

0.95091
0.94970
0.94550

TNPC=15 TINTC= 0
0.94550
0.94130
0.94009
0.93949

0.93924
0.93924
0.93942

0.93974
0.94018
0.94072

0.94133

0.94201

0.94275

0.94356

0.94443
0.94537

TNPC=15 TINTC= 0
STY=0.00 STZ=0.00

THETA=0.0 INMODE=4
TNPS=0 TINTS=0

0.12935
0.12800
0.12654
0.12497

/
SCALE=1.00

0.14729
0.14578
0.14439
0.14310
0.14191
0.14082
0.13984
0.13899
0.13828
0.13776
0.13747
0.13747
0.13787
0.13884
0.14078
0.14751

/
0.14751
0.15423
0.15617
0.15714
0.15754
0.15754
0.15725
0.15673
0.15602
0.15517
0.15419
0.15310
0.15191
0.15062
0.14923
0.14772

/
SCALE=1 .00
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0.20000
0.18667
0.17333
0.16000
0.14667
0.13333
0.12000
0.10667
0.09333
0.08000
0.06667
0.05333
0.04000
0.02667
0.01333
0.00000

&BPNODE TNODE=2

0.00000

0.01333

0.02667
0.04000

0.05333
0.06667
0.08000
0.09333
0.10667

0.12000
0.13333
0.14667

0.16000

0.17333
0.18667
0.20000

&BPNODE TNODE=3

&SECT1 STX=0.00
ALF=0.0
TNODS=0

0.20000

0.18667

0.17333
0.16000

0.14667
0.13333
0.12000
0.10667

1.02164
1.02261
1.02351
1.02434
1.02510
1.02580
1.02644
1.02699
1.02744
1.02778
1.02796
1.02796
1.02771
1.02708
1.02583
1.02150

TNPC=15 TINTC= 0
1.02150

1.01717
1.01592

1.01529

1.01504
1.01504
1.01522
1.01556
1.01601

1.01656
1.01720
1.01790

1.01866
1.01949
1.02039

1.02136
TNPC=15 TINTC= 0
STY=0.00 STZ=0.00
THETA=0.0 INMODE=4
TNPS=0 TINTS=0

1.09764
1.09864

1.09956

1.10041
1.10119

1.10191
1.10256
1.10312

0.17197
0.17053
0.16920
0.16796
0.16683
0.16579
0.16485
0.16404
0.16336
0.16286
0.16258
0.16259
0.16297
0.16389
0.16574
0.17217

/
0.17217
0.17860
0.18045
0.18138
0.18176
0.18176
0.18148
0.18098
0.18031
0.17949
0.17856
0.17752
0.17638
0.17515
0.17381
0.17237

/
SCALE=1 .00

0
0

0
0

0
0
0
0

.19855

.19718

.19590

.19473

.19364

.19265

.19176

.19098
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0.09333
0.08000
0.06667
0.05333
0.04000
0.02667
0.01333
0.00000

&BPNODE TNODE=2

0.00000
0.01333

0.02667

0.04000

0.05333
0.06667
0.08000

0.09333

0.10667
0.12000
0.13333
0.14667

0.16000
0.17333

0.18667
0.20000

&BPNODE TNODE=3

&SECT1 STX=0.00
ALF=0.0

TNODS=0

0.20000

0.18667
0.17333

0.16000
0.14667

0.13333
0.12000

0.10667

0.09333

0.08000

0.06667

0.05333
0.04000

0.02667
0.01333

0.00000

1.10359

1.10393
1.10413
1.10412
1.10386
1.10322
1.10194

1.09750
TNPC=15 TINTC= 0

1.09750
1.09306

1.09178
1.09114
1.09088
1.09087

1.09107

1.09141
1.09188
1.09244

1.09309
1.09381

1.09459
1.09544
1.09636
1.09736

TNPC=15 TINTC= 0

STY=0.00 STZ=0.00

THETA=0.0 INMODE=4

TNPS=0 TINTS=0

1.17264
1.17366
1.17459

1.17546

1.17626

1.17700

1.17765

1.17823

1.17870

1.17905

1.17925

1.17925

1.17898

1.17833

1.17702

1.17250

0.19034
0.18986
0.18960
0.18960
0.18996
0.19085
0.19261
0.19874

/
0.19874
0.20488
0.20664
0.20752
0.20789
0.20789
0.20762
0.20715
0.20651
0.20573
0.20483
0.20384
0.20276
0.20158
0.20031
0.19894

/
SCALE=1.00

0.22665
0.22534
0.22413
0.22301
0.22197
0.22103
0.22018
0.21943
0.21882
0.21837
0.21811
0.21811
0.21846
0.21930
0.22099
0.22683
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&BPNODE TNODE=2

0.00000
0.01333
0.02667

0.04000

0.05333
0.06667
0.08000

0.09333
0.10667
0.12000
0.13333
0.14667
0.16000

0.17333

0.18667
0.20000

&BPNODE TNODE=3

&SECT1 STX=0.00
ALF=0.0
TNODS=0
0.20000

0.18667
0.17333

0.16000
0.14667

0.13333
0.12000
0.10667

0.09333
0.08000

0.06667
0.05333
0.04000

0.02667
0.01333
0.00000

&BPNODE TNODE=2
0.00000

0.01333

0.02667
0.04000
0.05333

0.06667
0.08000

TNPC=15 TINTC= 0
1.17250
1.16798

1.16667
1.16602
1.16575

1.16575
1.16595

1.16630

1.16677
1.16735

1.16800
1.16874
1.16954

1.17041
1.17134
1.17236

TNPC=15 TINTC= 0
STY=0.00 STZ=0.00

THETA=0.0 INMODE=4
TNPS=0 TINTS=0

1.24664
1.24767
1.24862

1.24950
1.25031

1.25106
1.25172

1.25231

1.25279
1.25314
1.25334

1.25334
1.25307
1.25241
1.25109
1.24650

TNPC=15 TINTC= 0
1.24650

1.24191
1.24059

1.23993

1.23966
1.23966

1.23986

/
0.22683
0.23268
0.23437
0.23521
0.23556
0.23556
0.23530
0.23485
0.23424
0.23349
0.23264
0.23170
0.23066
0.22954
0.22833
0.22702

/
SCALE=1.00

0.25620
0.25495
0.25379
0.25272
0.25173
0.25083
0.25002
0.24931
0.24873
0.24830
0.24805
0.24806
0.24839
0.24919
0.25080
0.25637

/
0.25637
0.26195
0.26355
0.26435
0.26469
0.26469
0.26445
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0.09333
0.10667
0.12000
0.13333
0.14667
0.16000
0.17333
0.18667
0.20000

&BPNODE TNODE=3

&SECT1 STX=0.00

ALF=0.0
TNODS=0

0.20000

0.18667

0.17333
0.16000
0.14667

0.13333
0.12000
0.10667
0.09333

0.08000
0.06667
0.05333
0.04000

0.02667
0.01333

0.00000

&BPNODE TNODE=2

0.00000
0.01333

0.02667

0.04000

0.05333

0.06667

0.08000

0.09333

0.10667
0.12000

0.13333
0.14667

0.16000
0.17333

0.18667

1.24021
1.24069
1.24128
1.24194
1.24269
1.24350
1.24438
1.24533
1.24636

TNPC=15 TINTC= 0

STY=0.00 STZ=0.00

THETA=0.0 INMODE=4
TNPS=0 TINTS=0

1.32065
1.32168

1.32264
1.32353
1.32435

1.32510
1.32577
1.32636

1.32685
1.32721
1.32741
1.32741
1.32713

1.32646
1.32513

1.32050

TNPC=15 TINTC= 0
1.32050
1.31587

1.31454

1.31387

1.31359

1.31359

1.31379

1.31415

1.31464

1.31523
1.31590
1.31665

1.31747

1.31836
1.31932

0.26401
0.26343
0.26272
0.26191
0.26101
0.26002
0.25895
0.25780
0.25655

/
SCALE=1.00

0.28755
0.28636
0.28525
0.28424
0.28330
0.28244
0.28166
0.28099
0.28043
0.28002
0.27979
0.27979
0.28011
0.28087
0.28240
0.28771

/
0.28771
0.29303
0.29456
0.29532
0.29564
0.29564
0.29541
0.29500
0.29444
0.29377
0.29299
0.29213
0.29119
0.29017
0.28907
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0.20000
&BPNODE TNODE=3

&SECT1 STX=0.00
ALF=0.0
TNODS=0

0.20000
0.18667

0.17333

0.16000
0.14667

0.13333

0.12000
0.10667

0.09333

0.08000

0.06667

0.05333

0.04000

0.02667
0.01333
0.00000

&BPNODE TNODE=2

0.00000
0.01333

0.02667

0.04000

0.05333
0.06667

0.08000
0.09333
0.10667

0.12000

0.13333
0.14667

0.16000
0.17333

0.18667
0.20000

&BPNODE TNODE=3

&SECT1 STX=0.00
ALF=0.0
TNODS=0

0.20000
0.18667
0.17333

1.32035
TNPC=15 TINTC= 0
STY=0.00 STZ=0.00

THETA=0.0 INMODE=4
TNPS=0 TINTS=0

1.39365
1.39469
1.39566

1.39655
1.39737
1.39813

1.39881

1.39940

1.39988

1.40025

1.40045

1.40045
1.40017

1.39950
1.39816
1.39350

TNPC=15 TINTC= 0
1.39350
1.38884

1.38750
1.38683

1.38655
1.38655
1.38675

1.38712
1.38760
1.38819
1.38887

1.38963
1.39045
1.39134

1.39231

1.39335
TNPC=15 TINTC= 0
STY=0.00 STZ=0.00

THETA=0.0 INMODE=4
TNPS=0 TINTS=0

1.46565
1.46669
1.46766

0.28788
/

SCALE=1.00

0.32024
0.31911
0.31806
0.31709
0.31619
0.31537
0.31464
0.31399
0.31346
0.31307
0.31285
0.31285
0.31315
0.31388
0.31534
0.32040

/
0.32040
0.32547
0.32693
0.32766
0.32796
0.32796
0.32774
0.32735
0.32682
0.32617
0.32544
0.32462
0.32372
0.32275
0.32170
0.32056

/
SCALE=1.00

0.35422
0.35313
0.35213

207



0.16000
0.14667
0.13333
0.12000
0.10667
0.09333
0.08000
0.06667
0.05333
0.04000
0.02667
0.01333
0.00000

&BPNODE TNODE=2

0.00000

0.01333
0.02667
0.04000

0.05333

0.06667
0.08000

0.09333
0.10667
0.12000

0.13333

0.14667

0.16000
0.17333
0.18667

0.20000
&BPNODE TNODE=3
&SECT1 STX=0.00

ALF=0.0

TNODS=0

0.20000

0.18667

0.17333

0.16000

0.14667

0.13333
0.12000
0.10667

0.09333

0.08000
0.06667

1.46856
1.46939
1.47014
1.47082
1.47141
1.47190
1.47227
1.47247
1.47247
1.47219
1.47152
1.47017
1.46550

TNPC=15 TINTC= 0
1.46550

1.46083

1.45948
1.45881

1.45853
1.45853
1.45873

1.45910
1.45959
1.46018
1.46086
1.46161

1.46244
1.46334
1.46431

1.46535
TNPC=15 TINTC= 0
STY=0.00 STZ=0.00
THETA=0.0 INMODE=4
TNPS=0 TINTS=0

1.53765

1.53870

1.53966

1.54056

1.54139

1.54214

1.54282
1.54342

1.54391
1.54427

1.54447

0.35121
0.35035
0.34957
0.34887
0.34825
0.34775
0.34737
0.34716
0.34717
0.34745
0.34815
0.34954
0.35437

/
0.35437
0.35920
0.36059
0.36129
0.36157
0.36157
0.36136
0.36099
0.36048
0.35987
0.35917
0.35839
0.35753
0.35660
0.35560
0.35452

/
SCALE=1.00

0.38990
0.38887
0.38791
0.38703
0.38621
0.38547
0.38480
0.38421
0.38373
0.38337
0.38317
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0.05333
0.04000
0.02667
0.01333
0.00000

&BPNODE TNODE=2
0.00000
0.01333
0.02667
0.04000

0.05333

0.06667
0.08000

0.09333
0.10667
0.12000

0.13333
0.14667

0.16000
0.17333

0.18667

0.20000
&BPNODE TNODE=3
&SECT1 STX=0.00

ALF=0.0

TNODS=0
0.20000
0.18667
0.17333

0.16000

0.14667
0.13333

0.12000
0.10667

0.09333
0.08000

0.06667
0.05333
0.04000
0.02667

0.01333
0.00000

&BPNODE TNODE=2
0.00000

0.01333

1.54447
1.54419
1.54352
1.54217
1.53750

TNPC=15 TINTC= 0
1.53750
1.53283

1.53148
1.53081
1.53053

1.53053
1.53073

1.53109
1.53158
1.53218

1.53286
1.53361

1.53444
1.53534

1.53630

1.53735
TNPC=15 TINTC= 0
STY=0.00 STZ=0.00

THETA=0.0 INMODE=4
TNPS=0 TINTS=0

1.60865
1.60969
1.61066

1.61155

1.61238
1.61314

1.61381
1.61441
1.61490
1.61526
1.61546

1.61546
1.61518

1.61451
1.61317
1.60850

TNPC=15 TINTC= 0
1.60850

1.60383

0.38318
0.38345
0.38411
0.38544
0.39004

/
0.39004
0.39465
0.39598
0.39664
0.39691
0.39692
0.39672
0.39636
0.39588
0.39529
0.39462
0.39387
0.39306
0.39218
0.39122
0.39019

/
SCALE=1.00

0.42676
0.42578
0.42487
0.42402
0.42324
0.42253
0.42189
0.42134
0.42088
0.42053
0.42034
0.42034
0.42061
0.42124
0.42250
0.42690

/
0.42690
0.43130
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0.02667
0.04000
0.05333
0.06667
0.08000
0.09333
0.10667
0.12000
0.13333
0.14667
0.16000
0.17333
0.18667
0.20000

&BPNODE TNODE=3

&SECT1 STX=0.00
ALF=0.0
TNODS=0

0.20000
0.18667
0.17333

0.16000

0.14667

0.13333

0.12000
0.10667

0.09333
0.08000
0.06667

0.05333
0.04000

0.02667

0.01333
0.00000

&BPNODE TNODE=2

0.00000
0.01333

0.02667
0.04000

0.05333

0.06667
0.08000

0.09333

0.10667
0.12000

1.60249
1.60182
1.60154
1.60154
1.60174
1.60210
1.60259
1.60319
1.60386
1.60462
1.60545
1.60634
1.60731
1.60835

TNPC=15 TINTC= 0
STY=0.00 STZ=0.00

THETA=0.0 INMODE=4
TNPS=0 TINTS=0

1.67865
1.67969
1.68065

1.68154

1.68237
1.68312

1.68380
1.68439

1.68487
1.68523
1.68544

1.68544
1.68516

1.68449

1.68315

1.67850
TNPC=15 TINTC= 0

1.67850

1.67385

1.67251
1.67184

1.67156

1.67156
1.67177

1.67213

1.67261
1.67320

0.43256
0.43319
0.43346
0.43346
0.43327
0.43292
0.43246
0.43191
0.43127
0.43056
0.42978
0.42893
0.42802
0.42704

/
SCALE=1.00

0.46473
0.46379
0.46292
0.46212
0.46137
0.46069
0.46008
0.45955
0.45911
0.45879
0.45860
0.45860
0.45885
0.45946
0.46067
0.46486

/
0.46486
0.46906
0.47027
0.47088
0.47113
0.47113
0.47094
0.47062
0.47018
0.46965
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0.13333
0.14667
0.16000
0.17333
0.18667
0.20000

&BPNODE TNODE=3
&SECT1 STX=0.00

ALF=0.0

TNODS=0

0.20000
0.18667

0.17333

0.16000

0.14667

0.13333
0.12000
0.10667

0.09333

0.08000
0.06667
0.05333

0.04000

0.02667
0.01333
0.00000

&BPNODE TNODE=2

0.00000
0.01333

0.02667
0.04000
0.05333

0.06667
0.08000

0.09333
0.10667

0.12000
0.13333
0.14667

0.16000
0.17333
0.18667

0.20000
&BPNODE TNODE=3

&SECT1 STX=0.00

1.67388
1.67463
1.67546
1.67635
1.67731
1.67835

TNPC=15 TINTC= 0
STY=0.00 STZ=0.00

THETA=0.0 INMODE=4
TNPS=0 TINTS=0

1.74865

1.74968

1.75064

1.75153

1.75235

1.75310
1.75377
1.75436
1.75484
1.75520
1.75540
1.75540
1.75513

1.75446
1.75313
1.74850

TNPC=15 TINTC= 0
1.74850
1.74387

1.74254
1.74187
1.74160

1.74160
1.74180

1.74216
1.74264

1.74323

1.74390
1.74465
1.74547
1.74636
1.74732

1.74835
TNPC=15 TINTC= 0
STY=0.00 STZ=0.00

0.46903
0.46836
0.46761
0.46681
0.46594
0.46500

/
SCALE=1.00

0.50432
0.50342
0.50259
0.50182
0.50111
0.50046
0.49988
0.49937
0.49895
0.49864
0.49847
0.49847
0.49871
0.49928
0.50044
0.50445

/
0.50445
0.50846
0.50961
0.51019
0.51043
0.51043
0.51025
0.50994
0.50952
0.50901
0.50843
0.50778
0.50707
0.50630
0.50547
0.50457

/
SCALE=1 .00
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ALF=0.0

TNODS=0
0.20000
0.18667
0.17333
0.16000
0.14667
0.13333
0.12000
0.10667
0.09333
0.08000
0.06667
0.05333
0.04000
0.02667
0.01333
0.00000

&BPNODE TNODE=2

0.00000
0.01333

0.02667
0.04000
0.05333

0.06667
0.08000
0.09333
0.10667

0.12000

0.13333
0.14667
0.16000

0.17333

0.18667

0.20000
&BPNODE TNODE=3
&SECT1 STX=0.00

ALF=0.0

TNODS=3

0.20000

0.18667
0.17333

0.16000
0.14667

0.13333

THETA=0.0 INMODE=4
TNPS=0 TINTS=0

1.81764

1.81868
1.81963
1.82051
1.82132

1.82207

1.82274

1.82332
1.82380

1.82416
1.82436

1.82436
1.82408

1.82342

1.82210
1.81750

TNPC=15 TINTC= 0
1.81750
1.81290

1.81158
1.81092
1.81064

1.81064
1.81084

1.81120
1.81168

1.81226
1.81293

1.81368
1.81449

1.81537
1.81632

1.81736
TNPC=15 TINTC= 0
STY=0.00 STZ=0.00

THETA=0.0 INMODE=4
TNPS=25 TINTS= 3

1.88564

1.88667

1.88761

1.88849

1.88930
1.89003

0.54493
0.54407
0.54327
0.54254
0.54186
0.54124
0.54068
0.54019
0.53979
0.53949
0.53933
0.53933
0.53956
0.54011
0.54121
0.54505

/
0.54505
0.54888
0.54998
0.55053
0.55076
0.55076
0.55060
0.55030
0.54990
0.54941
0.54885
0.54823
0.54756
0.54682
0.54603
0.54517

/
SCALE=1.00

/
0.58648
0.58566
0.58490
0.58419
0.58354
0.58295
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0.12000
0.10667
0.09333
0.08000
0.06667
0.05333
0.04000
0.02667
0.01333
0.00000

&BPNODE TNODE=2

0.00000
0.01333

0.02667
0.04000
0.05333

0.06667
0.08000
0.09333

0.10667

0.12000

0.13333
0.14667

0.16000
0.17333

0.18667
0.20000

&BPNODE TNODE=3

1.89070
1.89128
1.89176
1.89211
1.89231
1.89231
1.89204
1.89138
1.89006
1.88550

TNPC=15 TINTC= 0
1.88550

1.88094
1.87962

1.87896
1.87869

1.87869
1.87889

1.87924

1.87972

1.88030

1.88097
1.88170
1.88251

1.88339
1.88433

1.88536
TNPC=15 TINTC= 0

&PATCH1 IREV= 0
IPATSYM=0
WINGTIP

&PATCH2 ITYP= 1

&WAKE1 IDWAK=1
WINGWAKE

&WAKE2 KWPACH=1

KWPAN2=0

&ONSTRM NONSL = 0

IDPAT= 1 MAKE=
IPATCOP=0

TNODS= 5

1 KCOMP= 1 KASS= 1

/

TNPS= 2 TINTS= 3 /

IFLXW=0 /

KWSIDE=2

NODEW=5

KPSL = 0

KWLINE=0
INITIAL=0

KWPAN1=0
/

/

NVOLR= 0 NVOLC= 0 /
XO= 5.0000 YO= 3.0000 ZO= -2.0000 /
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0.58242
0.58195
0.58157
0.58128
0.58112
0.58112
0.58134
0.58187
0.58292
0.58659

/
0.58659
0.59026
0.59132
0.59185
0.59206
0.59207
0.59191
0.59162
0.59124
0.59077
0.59024
0.58964
0.58899
0.58829
0.58753
0.58671

/

&VS 1
&VS2



&VS3 X1= 10.0000 Y1= 3.0000 Z1= -2.0000 NPT1= 3/
&VS4 X2= 5.0000 Y2= 0.0000 Z2= -2.0000 NPT2= 5/
&VS5 X3= 5.0000 Y3= 3.0000 Z3= 2.0000 NPT3= 10/
&VS6 XRO= 2.0000 YRO= 2.0000 ZRO= 0.0000 /
&VS7 XR1= 4.0000 YR1= 2.0000 ZR1= 0.0000

XR2= 2.0000 YR2= 2.0000 ZR2= 1.0000 /
&VS8 R1= 0.1000 R2= 1.0000 PHI1= 0.0 PHI2=360.0/

&VS9 NRAD= 5 NPHI= 12 NLEN= 3 /

&SLIN1 NSTLIN=0 /
&SLIN2 SXO= -2.0000 SYO= 1.0000 SZO= -0.5000

SU= 0.0000 SD= 10.0000 DS= 0.2500 /
&SLIN2 SXO= -2.0000 SYO= 1.0000 SZO= -0.4000

SU= 0.0000 SD= 10.0000 DS= 0.2500 /
&SLIN2 SXO= -2.0000 SYO= 1.0000 SZO= -0.3000

SU= 0.0000 SD= 10.0000 DS= 0.2500 /
&SLIN2 SXO= -2.0000 SYO= 1.0000 SZO= -0.2000

SU= 0.0000 SD= 10.0000 DS= 0.2500 /
&SLIN2 SXO= -2.0000 SYO= 1.0000 SZO= -0.1000

SU= 0.0000 SD= 10.0000 DS= 0.2500 /
&SLIN2 SXO= -2.0000 SYO= 1.0000 SZO= 0.0000

SU= 0.0000 SD= 10.0000 DS= 0.2500 /
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C.2 SHAR2 PMARC Input File

SIMPLE HIGH ASPECT RATIO WING - NACA 0014
&BINP2 LSTINP=2, LSTOUT=1, LSTFRQ=0, LENRUN=0,

LPLTYP=1, /
&BINP3 LSTGEO=1, LSTNAB=0, LSTWAK=2, LSTCPV=0,
&BINP4 MAXIT=250, SOLRES=0.0005 /
&BINP5 NTSTPS=20 DTSTEP=0.005 /
&BINP6 RSYM=0.0 RGPR=0.0 RFF=5.0 RCORES=0.0080

RCOREW=0.0080 /
&BINP7 VINF=100.00 VSOUND=1116.0 /
&BINP8 ALDEG=0.0 YAWDEG=0.0 PHIDOT=0.0 THEDOT=0.0

PSIDOT=0.0 /
&BINP8A PHIMAX= 0.0 THEMAX=0.0 PSIMAX=0.0

WRX=0.0
&BINP8B DXMAX=0.0

WTX=0.0
&BINP9 CBAR=1.0

RMPX=0.00

&BINP10 NORSET=1
NCZPCH=0

&BINP11 NORPCH=0
NOCF=0

&BINP12 KPAN=0

&BINP13 NBLIT=0 /

WRY=0.0 WRZ=0.0
DYMAX=0.0 DZMAX=0.0
WTY=0.0 WTZ=-1.0

SREF=100.00 SSPAN= 50.00

RMPY=0.00 RMPZ=0.00
NBCHGE=1 NCZONE=0
CZDUB=0.0 VREF=0.0

NORF=0
NOCL=0

KSIDE=0

NORL=0
VNORM=0.0
NEWNAB=0

/

/
NEWSID=0

&ASEM1 ASEMX=0.00

ASCAL=1.00
&ASEM2 APXX=0.00

AHXX=0.00

&COMP1 COMPX= 0.0000
CSCAL= 1.000

&COMP2 CPXX= 0.0000
CHXX= 0.0000

ASEMY=0.00

ATHET=0.00
APYY=0.00

AHYY=1.00
COMPY= 0.0000
CTHET= 0.0
CPYY= 0.0000
CHYY= 1.000

ASEMZ=0.00

NODEA=5 /
APZZ=0.00
AHZZ=0.00 /

COMPZ= 0.0000

NODEC= 5 /
CPZZ= 0.0000
CHZZ= 0.0000 /

&PATCH1 IREV= 0 IDPAT= 1 MAKE= 0 KCOMP=
IPATSYM=0 IPATCOP=0 /
WING

&SECT1 STX= 0.0000 STY= 0.0 STZ= 0.0000

ALF= 0.0 THETA= 0.0

INMODE= 5 TNODS= 0 TNPS= 0

&SECT2 RTC= 0.1400 RMC= 0.0000 RPC=

IPLANE= 2 TNPC= 15 TINTC= 0

1 KASS= 1

SCALE= 1.000

TINTS= 0

0.0000
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&SECT1 STX= 0.0000 STY= 50.00
ALF= 0.0 THETA= 0.0
INMODE= 0 TNODS= 3

STZ= 0.0000 SCALE= 1.000

TNPS= 20 TINTS= 2

&PATCH1 IREV= 0

IPATSYM=0

WINGTIP
&PATCH2 ITYP= 1

IDPAT= 1 MAKE=

IPATCOP=0

TNODS= 5

1 KCOMP= 1 KASS= 1

/

TNPS= 3 TINTS= 3 /

&WAKE1
WINGWAK

&WAKE2

IDWAK=1
E
KWPACH=1

KWPAN2=0

&ONSTRM NONSL = 0 KPSL = 0 /

NVOLR= 0
XO= 5.0000
X1= 10.0000
X2= 5.0000
X3= 5.0000
XRO= 2.0000
XR1= 4.0000
XR2= 2.0000
R1= 0.1000
NRAD= 5

&SLIN1 NSTLIN=0

&SLIN2 SXO=
SU=

&SLIN2 SXO=
SU=

&SLIN2 SXO=
SU=

&SLIN2 SXO=

SU=

&SLIN2 SXO=
SU=

&SLIN2 SXO=
SU=

-2.0000
0.0000

-2.0000
0.0000

-2.0000
0.0000

-2.0000
0.0000

-2.0000
0.0000

-2.0000
0.0000

KWLINE=0
INITIAL=0

IFLXW=0

KWSIDE=2

NODEW=5
KWPAN1=0

0 /&VS 1

&VS2
&VS3
&VS4
&VS5
&VS6
&VS7

&VS8
&VS9

/
NPT1=
NPT2=
NPT3=
/

3
5

10

-2.
-2.

-2.
2.

0.
0.
1.

0.0
3

0000
0000
0000
0000
0000
0000
0000

PHI
/

/
/
/

/
/

2=360. 0

NVOLC=
YO=
Y1=
Y2=

Y3=
YRO=
YR1=
YR2=
R2=
NPHI=

/
SYO=

SD=
SYO=

SD=
SYO=
SD=
SYO=

SD=
SYO=
SD=
SYO=

SD=

3.0000
3.0000
0.0000
3.0000
2.0000
2.0000
2.0000
1.0000
12

1.0000
10.0000
1.0000

10.0000
1.0000

10.0000
1.0000

10.0000
1.0000

10.0000
1.0000

10.0000

ZO=
Z1=
Z2=
Z3=
ZRO=
ZR1=
ZR2=
PHI 1=
NLEN=

SZO=

DS=
SZO=

DS=

SZO=

DS=
SZO=

DS=
SZO=
DS=
SZO=

DS=

-0.5000
0.2500

-0.4000
0.2500

-0.3000
0.2500

-0.2000
0.2500

-0.1000
0.2500
0.0000
0.2500
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C.3 BACT PMARC Input File

B

ENRUN=3,

STCPV=0,

ES=0. 0080

HEDOT=0 .0

&ASEM1 ASEMX=0.00

ASCAL=1.00
&ASEM2 APXX=0.00

AHXX=0.00

&COMP1 COMPX= 0.0000
CSCAL= 1.000

&COMP2 CPXX= 0.0000

CHXX= 0.0000

ASEMY=0.00
ATHET=0.00
APYY=0.00

AHYY=1.00

COMPY= 0.0000
CTHET= 0.0
CPYY= 0.0000
CHYY= 1.000

ASEMZ=0.00
NODEA=5 /
APZZ=0.00
AHZZ=0.00 /

COMPZ= 0.0000
NODEC= 5 /
CPZZ= 0.0000

CHZZ= 0.0000

&PATCH1 IREV= 0 IDPAT= 1 MAKE
IPATSYM=0 IPATCOP=0
WING

&SECT1 STX= 0.0000 STY= 0.0

0 KCOMP= 1 KASS= 1

/

STZ= 0.0000 SCALE= 1.3333
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ACT TEST WING NACA 0012
&BINP2 LSTINP=2, LSTOUT=1, LSTFRQ=0, L

LPLTYP=1, /
&BINP3 LSTGEO=1, LSTNAB=0, LSTWAK=2, L
&BINP4 MAXIT=500, SOLRES=0.0005 /
&BINP5 NTSTPS=10 DTSTEP=0.1 /
&BINP6 RSYM=1.0 RGPR=0.0 RFF=5.0 RCOR

RCOREW=0.0080 /
&BINP7 VINF=100.00 VSOUND=1116.0 /
&BINP8 ALDEG=0.0 YAWDEG=0.0 PHIDOT=0.0 T

PSIDOT=0.0 /
&BINP8A PHIMAX= 0.0 THEMAX= 0.0 PSIMAX=0.0

WRX=0.0 WRY=0.0 WRZ=0.0 /
&BINP8B DXMAX=0.0 DYMAX=0.0 DZMAX=0.0

WTX=0.0 WTY=0.0 WTZ=0.0 /
&BINP9 CBAR=1.3333 SREF=3.5555 SSPAN= 2.6667

RMPX=0.00 RMPY=0.00 RMPZ=0.00
&BINP10 NORSET=1 NBCHGE=1 NCZONE=0

NCZPCH=0 CZDUB=0.0 VREF=0.0
&BINP11 NORPCH=0 NORF=0 NORL=0

NOCF=0 NOCL=0 VNORM=0.0
&BINP12 KPAN=0 KSIDE=0 NEWNAB=0 NEWSID=0
&BINP13 NBLIT=0 /

/

/

/



ALF= 0.0
INMODE= 5

THETA=
TNODS= 0

0.0
TNPS= 0 TINTS= 0 /

&SECT2 RTC= 0.1200 RMC= 0.0000 RPC= 0.0000
IPLANE= 2 TNPC= 15 TINTC= 0 /

&SECT1 STX= 0.0000 STY= 2.6667 STZ= 0.0000 SCALE= 1.3333
ALF= 0.0
INMODE= 0

THETA=
TNODS= 3

&PATCH1 IREV= 0 IDPAT= 1 MAKE=

IPATSYM=0 IPATCOP=0
WINGTIP

&PATCH2 ITYP= 2 TNODS= 5

&WAKE1 I
WINGWAKE

DWAK=1 IFLXW=0

&WAKE2 KWPACH=1 KWSIDE=2
KWPAN2=0 NODEW=5

&SECT1 STX= 0.0000 STY=

ALF= 0.0 THETA=

INMODE=- 1 TNODS= 3

0.0
TNPS= 20 TINTS= 2 /

1 KCOMP= 1 KASS= 1

/

TNPS= 4 TINTS= 3/

/

KWLINE=0 KWPAN1=0
INITIAL=1 /

0.0000 STZ= 0.0000 SCALE= 1.0000

0.0
TNPS= 0 TINTS= 1

&ONSTRM NONSL = 0 KPSL = 0 /

&VS 1
&VS2
&VS3
&VS4

&VS5
&VS6
&VS7

&VS8
&VS9

NVOLR=
X0=
X1=

X2=
X3=
XRO=
XR1=

XR2=
R1=

NRAD=

0

5.0000
10.0000
5.0000
5.0000
2.0000
4.0000
2.0000
0.1000
5

&SLIN1 NSTLIN=0

&SLIN2 SXO= -2.0000

SU= 0.0000

&SLIN2 SXO= -2.0000

SU= 0.0000

&SLIN2 SXO= -2.0000
SU= 0.0000

&SLIN2 SXO= -2.0000
SU= 0.0000

&SLIN2 SXO=
SU=

-2.0000
0.0000

NVOLC=

YO=
Y1=
Y2=
Y3=

YRO=
YR1=
YR2=
R2=
NPHI=

SYO=

SD=
SYO=

SD=
SYO=
SD=
SYO=

SD=
SYO=

SD=

0

3.0000
3.0000
0.0000
3.0000
2.0000
2.0000
2.0000
1.0000
12

1.0000
10.0000
1.0000

10.0000
1.0000

10.0000
1.0000

10.0000
1.0000

10.0000

ZO=
Zi=

Z2=
Z3=
ZRO=

ZR1=
ZR2=
PHI1=

NLEN=

SZ0=

DS=
SZO=

DS=
SZO=

DS=
SZO=

DS=
SZO=

DS=

-2.0000 /
-2.0000 NPT1= 3/
-2.0000 NPT2= 5/
2.0000 NPT3= 10/
0.0000 /
0.0000
1.0000 /

0.0 PH12=360.0 /
3 /

-0.5000
0.2500

-0.4000
0.2500

-0.3000
0.2500

-0.2000
0.2500

-0.1000
0.2500

/

/

/

/

/
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&SLIN2 SXO= -2.0000 SYO=

SU= 0.0000 SD=
1.0000 SZO=

10.0000 DS=
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0.0000
0.2500



C.4 Flexible-Body Impulse Distribution File

(IMPULSE)

Linear Twist, 20 span stations

Y VZ THETA Q
1.25 0 0.00025 0

3.75 0 0.00075 0

6.25 0 0.00125 0

8.75 0 0.00175 0

11.25 0 0.00225 0

13.75 0 0.00275 0

16.25 0 0.00325 0

18.75 0 0.00375 0

21.25 0 0.00425 0

23.75 0 0.00475 0

26.25 0 0.00525 0

28.75 0 0.00575 0

31.25 0 0.00625 0

33.75 0 0.00675 0

36.25 0 0.00725 0

38.75 0 0.00775 0

41.25 0 0.00825 0

43.75 0 0.00875 0

46.25 0 0.00925 0

48.75 0 0.00975 0
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