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ABSTRACT

The purpose of this thesis is to provide confidence for the designer that a concept of a

future space-based telescope will meet its very stringent requirements. More specifically,

our goal is to predict the amount of uncertainty in the performance prediction made

through out the design process. Also, given a statistical database for structural uncertainty,

the methodology presented will establish the probability of success of a particular

architechture.

The traditional design process starts by evaluating and comparing the performance of dif-

ferent concepts by using simplified structural and disturbance models. As the process

progresses the different solutions are evaluated and the most promising concept is retained

and refined. Eventually, some preliminary structural testing is performed, and the model is

updated to reflect the reality more accurately. Eventually, when the production of the sys-

tem is nearly complete, the model performance predictions should converge to the actual

system performance.

Large flexible space structures present a problem in using this approach because they are

often too flexible to support their own weight and/or too large to fit inside any laboratory

facilities to be tested fully assembled. For example, it would be impractical to test the

whole assembly of the International Space Station or SIM on the ground. Also, during the

preliminary design phase, no test data are available to update the models. Even when the

model is very mature and has been updated after experimental testing, a discrepancy

remains between the predicted and actual performance of the system. These uncertainties

are due to various sources of variability in the system: variable noises (sources and levels),

testing conditions and environmental factors, assembly/reassembly, shipset, disturbance

levels, and others. How then, can we have confidence that a particular concept will meet

the requirements if the only tool we have are finite element models that may not be accu-

rate? The solution is to try to estimate the range of uncertainty around our nominal model

performances. Since in the early design phase no test data are available, our best bet will
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be to use past experience to predict the expected uncertainty range on the performances of

our new design. Statistical uncertainty for the modal mass and stiffness parameters, [Has-

selman & Chrostowski, 1991], as well as for the modal damping ratios [Simonian, 1987],

can be obtained.
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Chapter 1

INTRODUCTION

1.1 Background

The National Aeronautics and Space Administration (NASA) is currently developing the

next generation of space based observatories, which are poised to succeed the Hubble

Space Telescope (HST) within a decade. They are expected to provide orders of magni-

tude improvement in angular resolution, spectral resolution and sensitivity. Figure 1 shows

a representation of the Space Interferometry Mission (SIM), scheduled for launch in 2006,

and the Next Generation Space Telescope (NGST) which is planned for 2009. Motivated

by the work done in the past on Large Space Structures (LSS), such as the NASA Voyager

spacecraft (1977) and Hubble Space Telescope (1990), the next generation of space-based

observatories will require breakthrough technology and unprecedented control perfor-

mance to meet the very stringent stability criterion required by their science instruments.

Elements of the optical train on these large space telescopes will have to maintain relative

stability to within a fraction of a wavelength of light [Joshi, 1999]. For example, SIM con-

sists of a series of light collectors and other optical elements placed on top of a flexible

light space structure of 10m span. Such a configuration will nearly approximate the light-

gathering capability of a single continuous 10-m diameter telescope. Optical elements on

the structure will have to maintain relative positions and orientations to within a few

nanometers. For reference, 1 nanometer (10-9 meters) corresponds to about 15 hydrogen

atoms' lined up side by side. Furthermore, such extreme requirements must be met despite

19



20 INTRODUCTION

the presence of external and internal disturbances such as reaction wheel disturbances,

solar pressure, thermally induced microdynamics (snaps or creaks), and other mechanical

and electronic disturbance sources.

NGST-2009

SIM-2006

Faint Star Interferometer Lightweight 8m-Optics
Precision Astrometry IR Deep Field Observations

Although the design process is an iterative procedure, critical design decisions must some-

times be made at an early stage. Typically, these early decisions are made based on simpli-

fied models and simulations. Before committing too many resources to a particular

architecture, it is paramount to validate these models through integrated analysis. The per-

formance assessment techniques of a system are mostly based on structural finite element

modeling to which disturbance models and optical sensitivity matrices are appended

[Gutierrez, 1999]. These techniques are not perfectly accurate. Modal frequency predic-

tions can be 5 to 10 percent off when compared to the actual test data. This error is com-

pounded by the fact that the available disturbance models are uncertain. The performance

predictions yielded by current state-of-the-art modeling techniques are thus held in doubt.

The central question addressed by this research is how to use preliminary design models,

which we know are not very accurate, to build confidence that a given preliminary design

will meet the stringent performance requirements. It is important to have a means to judge

1. Note: the radius of the hydrogen atom is 30 pm [DMK/DPK, 1984]
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the size of the errors made by the model. This entails the evaluation of uncertainty bounds

around the nominal performance prediction to make sure that the system will effectively

meet the requirements. Furthermore, the controller must remain stable and still meet the

requirements in the presence of the plant uncertainties.

1.2 Thesis Research Objectives

The fundamental objective of this research is to assess the amount of uncertainty in the

performance predictions of the current state of the art modeling technology in order to

reduce the level of risk and to assure suitable flight performance for space-based tele-

scopes.

There are two compelling reasons for conducting an uncertainty analysis early in the

design of a complex, integrated opto-mechanical system. The first reason is related to con-

trol design. Since it will not be possible to test the next generation of Large Space Struc-

tures (LSS) fully in the 0-g or microgravity operating environment, it will be necessary to

design the operating software and the control systems based on 1-g component and scaled

tests, and on full-scale modeling and simulation. The uncertainty of the structural behavior

of the system needs to be taken into account. It is well known in the field of robust control

design that there is an inherent trade-off between a controller's robustness to uncertainty

and the achievable disturbance rejection or tracking capability. Thus, performing a rigor-

ous uncertainty analysis on the system will provide the engineer useful uncertainty bounds

for controller design. If uncertainty is overestimated, resulting controllers might not suc-

ceed in meeting the performance requirements. On the other hand, if the uncertainties are

underestimated, what seems to be a good controller on paper might not satisfy the target

performance or might even become unstable once implemented on the real structure

[Joshi, 1999]. In applying multivariable robust control techniques to linear, time-invariant

systems, a particular set of plant models described by a nominal model, uncertainty struc-

ture, and norm bounds on the model uncertainty and exogenous input is required a priori

(for example, see the g -Synthesis Toolbox in [Balas & al., 1994]). In typical setting, a
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controls engineer selects or develops a best possible model either from first principles and/

or from system identification or parameter estimation. In situations where the physical

conditions are either not accurately known or not reliable, the engineer selects a model

uncertainty structure around a best possible nominal model to represent a set of plant mod-

els so that the robustness of the system can be analyzed and optimized through feedback

control, [Lim & Giesy, 2000]. Where measurements are available, the engineer can check

to see if the given set of plants is consistent with the available measurement data. The lack

of such measurements is the source of the performance prediction problem.

The second reason for conducting an uncertainty analysis is related to performance predic-

tion. It is essential that not only the nominal dynamics and controls performance (e.g.

RMS line-of-sight jitter) of the spacecraft be predicted, but that reasonable error bounds

be placed on the nominal performance values. Alternatively the uncertainty analysis

should provide the likelihood of achieving a required RMS performance, given an inte-

grated model of the system and reasonable uncertainty bounds on the structural parame-

ters. Performance predictions using integrated models (multidisciplinary) are somewhat

uncertain due to modeling approximations and assumptions, components uncertainties,

model reduction, and discretization. As a result, system designers tend to over-design sys-

tem components to account for these uncertainties. Such overly conservative design deci-

sions (e.g.: stiffer structure, less noisy sensors, smoother optical surfaces -- all more than

necessary) lead to overly expensive systems [Joshi, 1999]. It is, therefore, necessary to

have a method to predict the uncertainty bounds around the nominal performance predic-

tions in order to assess the suitability of a particular system concept that will then meet the

performance requirements.

The problem can be summarized as follows. Given a model of the plant G(s), the control-

ler K(s) and an uncertainty database, we want to know if the system is stable, and is per-

forming well within the required uncertainty bounds. Specifically, this thesis should

answer the following questions:



Uncertainty Analysis and the DOCS-Framework

1. What are the different methods for propagating uncertainty in the structural
parameters of the system to the opto-mechanical performance metrics of
interest?

2. How can mass, stiffness and uncertainty database information from previous
ground- and test- flight experience be used and updated in the most effective
way?

3. What is the probability (likelihood) that a system will meet the required per-
formance (expressed as an RMS metric) level given uncertainty bounds?

4. How do the propagation methods used in 1) make the answers more or less
conservative?

5. What are the key numerical and computational challenges in implementing a
structural uncertainty algorithm for large order integrated models such as
SIM or NGST?

1.3 Uncertainty Analysis and the DOCS-Framework

A Dynamics-Optics-Controls-Structures (DOCS) framework is being developed at the

M.I.T. Space Systems Laboratory in support of integrated modeling and simulation of spa-

ceborne telescopes during the conceptual and preliminary design phase. This subsection

explains the main features of the DOCS framework and how the uncertainty analysis is

embedded in it.
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The DOCS (Dynamics-Optics-Controls-Structures) framework discussed here is a power-

ful framework for the modeling and analysis of precision opto-mechanical space systems.

Within the MATLAB environment, an integrated model of the spacecraft can be created to

simulate the dynamic behavior of the structure, the optical train, the control systems and

the expected disturbance sources. The existing toolboxes are compatible with the existing

programs IMOS (version 4.0), MSC/NASTRAN, DynaMod, and DynaCon. Once an ini-

tial model has been created and numerically conditioned, the root-mean-square (RMS)

values of scientific and opto-mechanical performance metrics of the system (e.g. path

length difference, pointing jitter, fringe visibility, null depth) can be predicted. The exact

performance sensitivities of the RMS with respect to modal or physical design parameters

can be computed. These sensitivities are essential for conducting gradient-based optimiza-

tion, redesign or uncertainty analyses. The goal of the uncertainty analysis, the subject of

this thesis, is to associate error bars with the predicted RMS performance based upon an

uncertainty database resulting from past ground and flight experience. The gray shaded

box (lower left corner) in the above figure corresponds to the modules of the DOCS frame-

work that are related to uncertainty analysis. The actuator-sensor topology of the system

can be analyzed numerically to ensure that the control system uses the actuator-sensor

pairs that will, in turn, assure maximum disturbance rejection or tracking performance.

Once a design has been found that meets all requirements with sufficient margins, an isop-

erformance analysis can be conducted. Treating the performance as a constraint, the

expected error sources (error budgeting) or key design parameters (subsystems require-

ments definition) can be traded with respect to each other. If hardware exists, the experi-

mental transfer functions can be used to update the structural, avionics and uncertainty

models throughout the life of the program to achieve a convergent design that will render

mission success. Preliminary versions of the framework have been successfully applied to

conceptual designs of future NASA missions including SIM, NGST, TPF and Nexus.
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1.4 Definitions, Literature Review and Previous Work

1.4.1 What is Uncertainty?

When a model is created, there will undoubtedly be errors between the model and the

actual physical system. In the most general sense, a model uncertainty represents an

unknown error in a model of a physical system. We broadly divide model uncertainty into

parametric and non-parametric uncertainties. A parametric uncertainty is an uncertainty in

a parameter used to generate the model. Either the parameter can appear explicitly in the

state-space matrices, or the matrices can be implicit functions of the parameter. For exam-

ple, a physical parameter such as a stiffness may not appear explicitly in the model state-

space matrices; however, uncertainty in this parameter does have an effect on the modes

and frequencies, which do appear in the matrices. Non-parametric uncertainty cannot be

captured by an uncertainty in one or more parameters. For example, uncertainty in the

model order implies that the number of states might be incorrect. This type of uncertainty

can capture modeling errors such as modal truncation, lack of fidelity, and incorrect finite-

element types. However, the form of this uncertainty is difficult to specify. The error of

representing a nonlinear system with a linear model is another example of a non-paramet-

ric uncertainty.

The following definitions of uncertainty will be assumed in this thesis:

- Nominal model refers to to the analytical model evaluated for the nominal
values of its parameters. It will also be referred to as the analytical model.

- Physical model corresponds to the model obtained from the measurement of
the actual structure. In the perturbation analysis, we will refer to it as the per-
turbed model. It will also be referred to indistinctly as the actual, measur-
ment, or test model.

- Performance uncertainty is a measure of the variation of the actual perfor-
mance about the predicted nominal performance point. For example, the
nominal predicted RMS DPL (differential path length) of a system is 22.7
nm (+ 3.4 nm, - 2.8 nm). The +/- values are the uncertainty bounds on the
nominal prediction.
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- Parametric Uncertainty is the variation of model parameters about their
nominal values. The parameters describe the physical plant, on-board and
off-board disturbances, and the optics-controls design. The uncertain param-
eters appear explicitly in the state space matrices or in the mass, stiffness,
damping or other system matrices. Examples include material and structural
properties, dimensions, and harmonics of RWA disturbances.

e Non-Parametric Uncertainty is the variation of the assumed model from
physical reality based on modeling assumptions which do not explicitly
appear in any system matrices. Examples include missing poles, friction,
slip, other non-linearities, insufficient model order, use of inappropriate
finite element types.

- Modeling Error is the difference between the analytical model and the
physical system in modal (w, z, m) parameters by variations in assumed
physical parameters (E, r, n) or by non-linearities in the system. The model-
ing error is the mean of the stochastic errors.

- Modeling Uncertainty is the range of error differences across repeated
experiments, or the variance of the stochastic errors.

- Error Management implies understanding the causes of errors as well as
the resulting uncertainties to produce more accurate structural models and to
derive realistic requirement bounds on spacecraft performance

The purpose of this thesis is to predict performance uncertainty based on assumptions and

database information on parametric uncertainty.

1.4.2 Sources of Uncertainty

As illustrated in Figure 1.1, there are essentially three sources of uncertainty. The first type

is related to mismodeling, where there is a discrepancy between the physical reality of the

system and the virtual model used for control design and/or performance prediction. The

second source of uncertainty is related to the evolution of the design. Design decisions for

complex structures have to be made by several organizations in a short time frame and

may not be communicated effectively. Thus, it is likely that not all versions of a model

reflect the current design accurately. Finally, uncertainty arises from unknown environ-

mental factors. The solar flux, for example, is often assumed to be a constant at 1400 W/

m2 at 1 AU. This value however is subject to the 11 year solar cycle and daily fluctuations,

which can only be captured stochastically.
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effects
- Poor Modeling Ability

Environmental Changes
- Ground vs. On-Orbit
- Unknown Thermal

Environment

Figure 1.1 Sources of Modeling Uncertainty

Figure 1.2 shows the different physical sources of uncertainty that have to be taken into

account.

Figure 1.2 Physical Sources of Uncertainty

- Mismodeling
- Component types
- Components properties
- Geometry
- Suspension / Gravity

- Design Evolution
- Model Generations
- Model Fidelity / Size
- Model Truncation

- Testing Environment
- Air vs. Vacuum
- Ground vs. On-Orbit
- Quiet vs. Noisy
- Thermal

- Hardware
- Material Properties: E, p, v
- Assembly Repeatability
- Shipset Variations
- Structural Nonlinearities

- Experimental Procedure
- Sensor Bandwidth /

Resolution
- Sensor Noise
- Data acquisition Electronics
- Amplitude of Applied Forces
- Type of Experiment
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MIT has investigated a number model/data variations for ground and flight test programs.

[Bourgault & Ubelhart, 1999]. These variations were found to be due to the following fac-

tors:

- Hardware: Manufacturing tolerances and material variations between sup-
posedly identical components (shipset variations). Also, the residual stresses
in a single piece of hardware can vary between seemingly identical assem-
blies.

e Environment: Variability in the environmental parameters accounts for vari-
ability in the hardware performance. For example, testing and validating a
model on the ground (1-g environment) leads to error in predicting the 0-g
behavior. In addition, damping is greatly affected by temperature.

- Nonlinearities: Small nonlinearities in a structure joints account for the
damping sensitivity to the vibrations amplitude.

- Testing Method: Excitation amplitude, acquisition electronics, accuracy of
the instruments used, and choice of sensor/actuator placement (controllabil-
ity/observability) affect the accuracy of the results.

- Model Generations: Differences between 1st, 2nd, 3rd generation of model.
An un-updated model contains larger errors than a model that has been
updated after structural identification testing.

Figure 1.3 shows an example from MACE shipset variations.

1.4.3 Lessons from the MACE Program

The following remarks about uncertainty pertain to real life flight programs and are based

on experiences from the MACE (Middeck Active Control Experiment -1995) program:

We cannot eliminate uncertainty (= risk) but can manage it by gradually reducing the size

of the error bars.

A two pronged approach is recommended by reducing the sensitivity of the design to

uncertainty and by reducing the parameter uncertainty space Ap. This can be seen by look-

ing at the first order term of the a Taylor series expansion of the multivariable performance

function: aT
A =Z Z~
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Reacton Wheel (Y) to Bus Rate Gyfo (Y)

2
10 10

Figure 1.3 Example of MACE shipset variation

Redesign affects the nominal performance point, testing affects the size of the error bars

Uncertainty results from one phase of the program need to be passed on to the next phase

(traceability, converging process). Only in this way will the design converge and a suc-

cessful mission be achieved.

The design uncertainty is largest in the beginning and relates mainly to the hardware;

later-on, uncertainty is reduced but the ability to change the design is reduced as well. On-

orbit only software changes are possible (e.g. PID-gains).

The "evening before launch" uncertainty remaining in the system should only be due to

the magnitude of the external disturbances. Plant uncertainties should have been elimi-

nated via rigorous testing/modeling.

1.5 Thesis Overview and Contributions

The organization of the chapters in this thesis, as it is summarized in Figure 1.4, goes as

follows. First, in Chapter 2, we describe the integrated modeling framework [Gutierrez,
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1999], the corresponding notation, and the non-deterministic performance prediction tech-

niques used throughout this document. In Chapter 3, we describe how to generate a struc-

tural modal uncertainty database, as well as a damping uncertainty database. Then, the

sensitivity expressions necessary to propagate the uncertainties through the model are

derived in Chapter 4. The different uncertainty analysis techniques, described in

Chapter 5, are demonstrated and validated on a 2-DOF sample problem in Chapter 6. The

most promising techniques are then implemented on a space telescope model in Chapter 7

to assess the uncertainty in the performance predictions based on past experience. One

very interesting result from this analysis is the error budget probability curve from which

we can assess the risk and the suitability of a particular concept to meet the design require-

ments. Finally, the conclusions and a summary of the possible extensions of this research

work is presented in Chapter 8.
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Integral Analysis Framework

Framework Description:
(a) Obtain a model integrating structure, con-

trol and disturbance models [Chapter 2].
(b) Deterministic performance analysis to

predict the nominal performance of the
system (disturbance analysis) [Chapter 2].

(c) Generation of database including struc-
tural and damping parameters [Chapter 3].

(d) The sensitivities are used to propagate the
database uncertainty [Chapter 4] and aid
in redesign.

(e) Non-deterministic performance assess-
ment to determine statistical uncertainty
bounds and worst-case performance
[Chapter 5].

base(c)

Demonstration

Next Design Phase

Demonstration/Validation of the Method:
(f) Complete demonstration of the intergral

analysis framework on a sample problem
[Chapter 6].

(g) Implementation of the uncertainty analysis
on the SIM Classic model to obtain uncer-
tainty bounds, error budget probability
curve, and worst-case parformance [Chap-
ter 7].

(h) Conclusions on the analysis and future
work description [Chapter 8].

Sample ProblemN0

Uncertainty Analysis

for SIM model(g)

Conclusions(h)

Figure 1.4 Thesis Flow: Integral Performance Assessment for Spaceborne Telescope

I
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Chapter 2

INTEGRATED MODELING AND
PERFORMANCE EVALUATION

The basics of a general integrated modeling technique for high precision space systems

will be briefly presented in this chapter (Section 2.1). We will also present the tools

needed for the initial performance assessment on such systems (Section 2.2). Although the

contributions of this thesis are primarily related to the development and application of

structural uncertainty analysis tools, it is important to understand the underlying assump-

tions of the model as well as the type of inputs and outputs. A more thorough discussion of

these techniques is presented in [Gutierrez, 1999] from where we borrowed the modeling

notation. Complete descriptions of the application of these techniques on large-scale sys-

tems can be found in [Gutierrez, 1999] for SIM, and in [de Weck, 1999] for NGST, as well

as in Chapter 7 of this document, where we will perform the uncertainty analysis for these

systems.

2.1 Integrated Modeling Description

Integrated modeling techniques play an essential role in evaluating potential concepts for

the future generation of space-based telescopes. These techniques require modeling of

every subsystem, including the structure, disturbances, optics and control, and their inter-

actions in order to get to overall end-to-end system performances [Mosier & al., 1998].
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2.1.1 Structural Dynamics Modeling

Numerous well developed commercially available software packages exist to perform

structural modeling using the finite-element method (FEM). The level of fidelity, the type

of elements used, and the discretization can greatly affect the accuracy of the FEM model

and contribute to the overall system uncertainty. Also contributing to the uncertainty is the

approximate specification of the damping ratios, which are typically specified after taking

measurements on the structures, or estimated by the engineer based on experience, when

no data is available. The reader is referred to [Meirovitch, 1986] for a thorough discussion

on structural dynamics.

Equation of Motion

A linear time-invariant structural system can be discretized and represented by the follow-

ing standard equation of motion in physical coordinates.

MY+Cx+ Kx = Puu(t)+$%w(t) (2.1)

where the vector x represents the generalized displacements (translations and/or rotations)

in the physical coordinate space, M represents the global mass matrix, C is the equivalent

viscous damping matrix, K is the stiffness matrix, $u and @, map the control inputs, u,

and the disturbances, w, to the physical degrees of freedom. Note that

M, C, and K e 91n x , where n is the number of degrees of freedom.

Let us remark here that M and K are the actual "true", but unknown, mass and stiffness

matrices representing a discretization of the actual physical structure. The values of these

matrices are subject of the arbitrary discretization done by the designer and constitute an

approximation of the real mass and stiffness of the real continuous structure. One could

imagine, though, that these two abstract mass and stiffness matrices are a representation

that gives us the exact "true" natural frequencies and mode shapes (at least for the lower

ones) of the real "actual" structure. For the purpose of this work, since the natural frequen-

cies and the mode shapes obtained by analysis always differ slightly from the ones of the
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physical system, we will make a distinction between the actual (exact, true, real) model of

the structure and the analytical (nominal) model. The mass and stiffness matrices of the

analytical (or nominal) model will be denoted by M and K. In this document, the tilde

symbol (.) will always be attributed to the nominal system.

The sensor and performance outputs, y and z are typically expressed as linear combina-

tions, determined by the matrices C,, and Czx, of the physical degrees of freedom (dis-

placements and rates).

(2.2)
z = Czxx

It is also possible to add the so called feedthrough D terms which directly "feed" the con-

trol input u and the disturbances w to the outputs, although these terms are typically zero

for structural plants (output of an accelerometer is a notable exception).

Undamped Free-Vibration Equation

To find a solution to Eq. 2.1, we first consider the undamped homogeneous equations of

motions:

MY+ Kx = 0 (2.3)

Eigenproblem

Then, the ensuing undamped eigenproblem enables us to obtain the mode shapes and nat-

ural frequencies

(K - XrM)r = 0 (2.4)

where Xr and $r are the rth eigenvalue and eigenvector, respectively, corresponding to the

rth normal mode of the actual structure. The eigenproblem can also be written in matrix

form as:

(K-AM)<D = 0 (2.5)
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where the eigenvector matrix (D consists of the modes shapes $, organized column-wise

from r = 1, 2, ... , n, and, the eigenvalue matrix A contains the squared natural frequen-

cies on its main diagonal.

A = Xr] [ 2] = 2 (2.6)

Orthogonality Principle

The diagonal modal mass matrix m is obtained by pre-multiplying M with the transpose

of <D and by post-multiplying with 4D.

TM = m = m1/ 2 - 1/2 (2.7)

The eigenvectors (mode shapes) form an orthogonal set and we say that they are orthogo-

nal by the mass matrix since they diagonalize the mass matrix M into m. The matrix m

contains the modal masses on the main diagonal. Hence, if we pre and post-multiply the

left and right sides of the equation (2.7) shown above by m1/2 we get

-1/2 T T - 1/ 2  -1/2 T 1/2 1/2 -1/2
(m ) Tm =(m )m -m m =

(2.8)

where 40 = )m 1/2 contains the "mass normalized" mode shapes.

Similarly, from the analytical eigenproblem in matrix notation (2.5), by pre-multiplying

by <D , we get

DTK4= AT M = Am (2.9)

and as with the mass matrix, we pre- and post-multiply by mi/2 and obtain

(m-1/2 )T T K )m 1/2 A = DT K D = A = Q 2

(2.10)
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In the following, we will assume that the mode shapes are mass normalized and use the

symbol CD instead of 4 for simplicity. Therefore, assuming mass normalized mode

shapes, where O, and $, represent respectively the sth and rth (mass normalized) eigen-

vectors, or the sth and rth column of 0, we get

OTMO, 8s 1, if s = r
Q{Q.= 8sr = {~fs

0, if s # r
(2.11)

KX, if s = r

K sr = 0, if s # r

where r, s = 1, 2, ... , n and 6 sr, the Kroenecker delta function, is equal to one when

s = r and zero otherwise. The equations in (2.11) are referred to as the orthogonality

principle and can also be written in matrix form simply as

(DTMCD = I

(D TKO = A = Q2 
(2.12)

Modal Coordinates

When damping is small, which is typically the case for space structures, it is common

practice to treat damping as modal (e.g.: lightly damped structures can have damping

ratios in the range of C = 0.1% to 0.5%). Specifying modal damping for the structure

requires to have its model in modal coordinates.

We can change the coordinate system from physical (Eqs. 2.1 and 2.2) to modal by per-

forming the following linear transformation

x = <D (2.13)

where ij are the generalized modal coordinates. After pre-multiplying by <D , Eq. 2.1

becomes

Ii + E. f + Ai = (D pu(t) + <D $ww(t) (2.14)
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and Eq. 2.2 becomes

y = C YQT1

z = CZXD1
(2.15)

where

E =T C4) (2.16)

For our structural problem, we will specify damping in terms of modal damping ratios

[Ewins, 1984]. This is done by assuming that the global damping matrix, C, is propor-

tional to the mass and stiffness matrices as follows

C = aM + PK (2.17)

where a and % are constants. This leads to a diagonal damping matrix E calculated in

modal coordinates

E = 2A2Z = 2AZ (2.18)

where Z is a diagonal matrix whose

associated with the r th mode in (D.

r th diagonal element is the modal damping ratio (r

Z = (2.19)

Thus, the modal damping matrix, E, is given by

[d = 2(rX 2]

Therefore, Eq. 2.14 can be rewritten as following

(2.20)=L 2()r,.r

Iii+2ZQi +2 11 = 4D 1uu(t)+Q Ipww(t) (2.21)
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We notice that the assumption of proportional damping has a convenient property of

decoupling the equations of motions of the system into n independent equations since I,

Z and A (or Q2 ) are all diagonal matrices. In general, though, the modal damping matrix

is not diagonal, since off-diagonal terms may couple modes when their frequencies are

closely spaced [Hasselman, 1976]. Therefore, our assumption of proportional damping

will be valid only for low modal density structures.

State-Space Form

Rewriting (2.14) and (2.15) in state-space form leads to

4 P AP qP

Z = Czx [D0]

Cz

y = Cy 4)

CY

0
w +

(T
U

+ 0W+ Ou

DZ, Dzu

}+0w+0Lu

D,, D,

(2.22)

All of D terms are generally zeros for structural plants. Figure 2.1 shows the block dia-

gram of the open-loop plant representing Eq. 2.22.

W- B C Z

u 1- 5 r y

Figure 2.1 Open-loop plant block diagram

0 1 + 0
-A -2ZA 1/2 (DT o
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In compact form, the open-loop dynamics of the plant are given by

4P A P BW BU q

z =CZ Dz Dzu{w (2.23)

SC Dyw Du

2.1.2 Control Modeling

For the purpose of this work, we will assume the plant to be linear time invariant (LTI) and

that it can be a closed-loop system. Taking into account the presence of a dynamic com-

pensator will enable us to use a more general notation. The compensator, also called con-

troller, determines the command signal, u, based on the measurements, y, and is assumed

to be linear and strictly proper. The dynamics of the controller can be represented in state

space form by the following equation.

= 
(2.24)

U = Ceqe

Figure 2.2 shows block diagram representation of the compensator.

7--c Bc +c C u

Ac

Figure 2.2 Controller block diagram

The general closed-loop plant is obtained by linking the sensor measurements from the

structural plant, y, to the controller input, and the controller output to the plant input com-

mand, u, as illustrated in Figure 2.3.
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-~~ Structural ,
u Plant Y

-- Controller +

Figure 2.3 Closed-loop plant

The closed-loop dynamics of the plant are obtained by combining Eq. 2.24 with Eq. 2.22.

{p A BCC ] p + B
4c BcC, AB + BcDC c BcDt

(2.25)

z = [Cz DzuC] q +Dzww

As mentioned earlier, this notation has the advantage of being more general because it

allows for the presence of a compensator, or the absence of it by setting the respective

matrices to zero. Also, we can obtain a corresponding transfer function of the plant, also

called frequency response function (FRF), by solving the following matrix equation in the

s -domain:

Z(s) = GZW(s)W(s) where Gzw(s) = Cw[ sI -AAw]-1 Bzw +Dzw (2.26)

As shown on Figure 2.4, the general plant, including the compensator, can now be repre-

sented by a simple box with the physical disturbances, w, as input, and the performance,

z, as output.
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Plant model
GZ"(s)

Figure 2.4 General plant model

2.1.3 Dynamic Disturbance Modeling

The disturbances characterization should be given a high priority in the integrated model-

ing process because mismodeled disturbances can cause the predicted performance to dif-

fer substantially from the performance of the actual system in operation. This is especially

true for high performance systems where even low disturbance levels can cause the

response to exceed the requirements.

The modeling of disturbances is based on the energy perspective since they perform work

on the system. The modeling begins with understanding the type and number of energy

sources within the system, as well as their magnitude and frequency content. One way to

characterize the frequency content of the disturbance energy is to represent it in power

spectral density (PSD) form [Wirsching, 1995].

One of the main sources of disturbance on a spaceborne telescope is the attitude control

reaction wheel assembly. These wheels, although manufactured to the highest require-

ments, always have finite static and dynamic imbalances. When spun at high speed, these

imbalances cause jittering disturbances that have a considerable impact on a precision

space structure. A detailed analysis of wheel disturbances can be found in [Masterson,

1999]. Other mechanical disturbances are produced by thruster impulses, cryocooler pis-

tons and compressor imbalances, propellant sloshing, thermally induced micro-dynamics

(thermal snaps), fast steering mirrors, etc. Non-mechanical disturbance sources include

sensor and actuator noise, photon noise at the detector, dark current, shot noise, and oth-

ers. A comprehensive list of spacecraft disturbances is presented in [Gutierrez, 1999].
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In this thesis, we will model the physical disturbances into the plant, w, as being the out-

puts of a shaping filter that has a unit-intensity Gaussian white-noise, d, as input. The

power spectral density (PSD) function of the disturbance can be obtained from the follow-

ing relationship,

Sww(w) = GG(jo) Sdd-Gj(jo) (2.27)

where Gd(jo) is the white noise to disturbance transfer function matrix also referred to

as the "shaping" or "pre-whitening" filter, Sdd is the intensity of the white-noise (diagonal

matrix of constants), and SW, is the cross spectral density matrix of the disturbance w

(see Appendix A). For unit-intensity white noise (Sdd = I), the spectral density of the

output reduces to

Sww(o) = Gd(jo)G (jo) (2.28)

The dynamics of the disturbance filter is represented in sate-space form by the following

equation.

= + Bdd (2.29)
w = Cdqd

Figure 2.5 illustrates the above state-space representation of the disturbance filter.

Figure 2.5 Disturbances filter block diagram
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Placing the disturbance filter in series with the general plant representation allows us to

obtain directly the performance outputs, z, from a simple white-noise input (Figure 2.6).

d Disturbance filter- w Plant model Z

white Gd(s) phys. G ,(s) perf.
noise dist.

Figure 2.6 Disturbance model and general plant model

Hence, the overall state-space form is obtained by combining Eq. 2.29 with Eq. 2.25.

Ad

B" Cjd
BCD y

0

[AP

BC,

B
AC+

Azd

qd Bd

cc q, -+ 0

cD,, C qc -0.i

Bzd
q

d

z = [DZWCd CZ DzuC] q-

Czd c

The equations above can be rewritten in a more compact form

4 = Azdq+Bzdd

z = Czdq

where, to ensure that the performance has finite energy, Dd must be zero. One interpreta-

tion of such notation is that we can consider the assembly of the general plant model in

series with the disturbance filter to be nothing else but a filter shaping the white noise

4d

4C

4

d

(2.30)

(2.31)
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input to the performance output. Hence, the diagram of Figure 2.6 is reduced to the dia-

gram of Figure 2.7.

d z

white Gzd(iw) perf.
noise

Figure 2.7 Integrated plant model

where the transfer function Gzd(jo), can be obtained by performing the Laplace trans-

form on (2.31)

Z(s) = Gzd(s)D(s) where Gzd(s) = Czd[sI - Azd] Bd (2.32)

and evaluating it for s = jo (which correspond to the Fourier transform). This integrated

model form will allow us to use statistical tools in order to predict the overall perfor-

mances of the system (Section 2.2.3).

2.2 Initial Performance Assessment

The objective of a precision controlled structure is to ensure that the performances are

below some desired level when subjected to a given disturbance. Some of the performance

outputs, z, of a spaceborne telescope are, for example, the optical path difference (OPD),

the line of sight jitter (LOS), or the wave front error (WFE), and the requirements are gen-

erally specified in terms of RMS values in the form of a quadratic cost.

J = Tr{E[zz ]} (2.33)

As a first step in evaluating the capability of our system to meet the specified require-

ments, it is necessary to evaluate the performance of the nominal model. To evaluate the

stochastic performance z of a linear time invariant (LTI) system, several methods have

been developed. For example, three different and complementary techniques to assess the
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performance, dubbed as disturbance analyses, are presented in [Gutierrez, 1999]: The time

domain, the frequency domain, and the Lyapunov approach. For the purposes of this work,

we will describe only the two last methods because they are the tools that we will use to

evaluate the performance outputs and to verify whether the nominal models meet the per-

formance specifications.

2.2.1 Performance Modeling

For multiple performance outputs, z is a vector and in order to obtain a scalar performance

cost, it is possible to apply a weighting matrix R to z. The matrix R represents the rela-

tive importance between the output elements of z in the overall performance cost, but also

should take into account the scaling of the units of each performance. For simplicity of

notation, it can simply be absorbed into the matrix CZ .Let us denote the weighted perfor-

mance by z*,

z* = Rz (2.34)

and define the scalar cost to be its norm as

J = ||z*- =J Tr{RE[zz ]R } (2.35)

For high precision structures, it is common practice to specify the performance require-

ments in terms of RMS maximum values which are not to be exceeded. In the literature,

the RMS values are also referred to as the H2 norms, and the maximum values as the Ho,

norms.

2.2.2 Frequency-domain Analysis

For linear systems, the advantage of frequency domain analysis (i.e., Laplace domain) is

that the output of the system is equal to its transfer function multiplied by the input, while

in time domain the output is obtained by a convolution of the input with the impulse-

response function of the system. Using linear systems theory, it can be shown that the per-

formance PSD can be obtained by (see [Wirsching, 1995])
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Szz(o) = Gzw(jw) ' Sww(o) -G H(jO) (2.36)

where the disturbance PSD, Sww(w), was obtained in (2.28). This implies that Eq. 2.36

can also be written as

Szz(o) = Gzw(jw)Gd(jo) GHH(jo)GH(jo) = Gzd(jo)G H(jo)

where Gzd(jw) is the global transfer function matrix from the white noise disturbance, d,

to the performance outputs, z (see Figure 2.7).

As shown in (A.55), for zero-mean processes, integrating the elements of the spectral den-

sity function across the frequency range yields the covariance matrix as follows

(2.38)I Szz(O)do = Szz(f)dfZ t .1-00

where w is the frequency in [rad/s] and f = o/27E is the frequency in [Hz]. Since the

diagonal elements of the covariance matrix are the variances of the different performance

outputs, zi's (see Eq. A.56)

2 I 'f[Szz(ol)] dw = 2 [S=i A, i = - = 2 J10 zsz(f)],,,df (2.39)

we obtain the root-mean-square (RMS) values of the performance metrics by taking the

square root of (Zi, i

1/2

RMS(zi) = az {F[Szz(C)]i.ido)
1/2

= {2f[Szz(f)]i, df}

which can also be expressed in terms of the transfer function Gzd by substituting the iden-

tity of Eq. 2.37 into Eq. 2.40.

1 /2

= jGzd(j(O)| ido

1/2

oz, 1FSzz(O)], id(O

(2.37)

(2.40)
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Equations 2.40 and 2.41 are very useful expressions since they help determine if the RMS

requirements for the performance metrics zi's are met by the nominal plant. One interpre-

tation of the above expression is that the RMS performance corresponds to the area under

the transfer function magnitude curve (scaled by a factor it). Therefore, augmenting the

modal damping, thus reducing the height of the modal peaks, has the effect of improving

(reducing) the RMS values of the performance outputs by reducing the area under the

magnitude curve of the transfer function.

Another very useful expression is the cumulative RMSfunction defined as

z,, ef o) = 2f "[Szz(f) df 1/2 2 "[Szz(f)], idf 1/2 (2.42)

where to limit the amount of calculations, we limit ourself to the range where most of the

energy is concentrated fo c [fmin ... fmax] . Likewise, az,, c(fmax) should be very close

to the correct value of a ,. The usefulness of the above expression comes from the fact

that, by plotting the function, it becomes very easy to see graphically the contribution of

each mode to the RMS value of a particular performance output. The drawback comes

from that fact that the accuracy of the method depends on the resolution of the frequency

vector (step size) when performing the integration numerically.

2.2.3 Lyapunov Approach

The following Lyapunov approach is valid for a linear time-invariant system driven by

white noise. Using the integrated state-space representation of the system from Eq. 2.31,

also represented graphically by Figure 2.7, it is possible to obtain the steady-state covari-

ance matrix, Eq, by solving the following steady-state Lyapunov equation

Ad1 + A[T + BZdB d = 0 (2.43)

Since the state covariance matrix is symmetric, I = I. The performance covariance

matrix is obtained as follow
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Yz= E[zz ] = E[Czdqq Czd] = CzdE[qq ]Czd

= CzdqC zd

2 (2.44)

where the exact mean-square values of the performance outputs are given by the square

roots of the diagonal elements of Iz

1/2

RMS(z) = = {(Xz)i, 1/2 = {CzdIC } (2.45)

where Czd, corresponds to the ith row of Czd . For zero-mean process, the term "mean-

square" is synonymous with "variance" and thus the term "RMS", which we get by taking

the square root of the mean-square, is synonymous with "standard deviation". For the case

where the overall performance cost, J, is defined as the sum of all the weighted outputs

(Eq. 2.35), we have

J = Tr[1z] = aY + 2 + ... + 2 (2.46)

The main advantage of the Lyapunov method is that it provides the exact analytical

steady-state performances and does not suffer from poor frequency resolution. The draw-

back is that it does not provide any insight of the frequency content of the outputs, and that

the solution time for the Lyapunov equation increases dramatically for large-order sys-

tems. Therefore, the frequency-domain analysis and the Lyapunov approach should be

used complementary. For example, the Lyapunov analysis could be used to verify the fre-

quency-domain analysis results and validate the choice of the frequency range and fre-

quency resolution. Both techniques will be demonstrated on sample problems in

Chapter 6.
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2.3 Summary

We now have described the basic modeling tools and notation for performing integrated

modeling and assessing the performance of precision controlled structures. As discussed

in the introduction chapter, it is not enough to evaluate only the nominal performance of

the system based on the preliminary design models since these preliminary models can be

quite crude in early design phase. Although they can provide great qualitative assessment

of the performances, their quantitative predictions are not necessarily very accurate.

Therefore, in order for the designer to make sure that, once it is built, the system will meet

the requirements with a certain degree of confidence, it is a necessity to evaluate the uncer-

tainty range around the performance outputs of the system. The tools to evaluate the

uncertainty range around the nominal performances will be presented in the following

chapters.
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Chapter 3

MASS, STIFFNESS AND DAMPING
UNCERTAINTY

The purpose of this thesis is to provide confidence for the designer that a concept of a

future space-based telescope will meet its very stringent requirements. The traditional

design process starts by evaluating and comparing the performance of different concepts

by using simplified structural and disturbance models. As the process progresses the dif-

ferent solutions are evaluated and the most promising concept is retained and refined.

Eventually, some preliminary structural testing is performed, and the model is updated to

reflect the reality more accurately. Eventually, when the production of the system is nearly

complete, the model performance predictions should converge to the actual system perfor-

mance.

Large flexible space structures present a problem in using this approach because they are

often too flexible to support their own weight and/or too large to fit inside any laboratory

facilities to be tested fully assembled. For example, it would be impractical to test the

whole assembly of the International Space Station or SIM on the ground. Also, during the

preliminary design phase, no test data are available to update the models. Even when the

model is very mature and has been updated after experimental testing, a discrepancy

remains between the predicted and actual performance of the system. These uncertainties

are due to various sources of variability in the system: variable noises (sources and levels),

testing conditions and environmental factors, assembly/reassembly, shipset, disturbance

levels, and others. How then, can we have confidence that a particular concept will meet
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the requirements if the only tool we have are finite element models that may not be accu-

rate? The solution is to try to estimate the range of uncertainty around our nominal model

performances. Since in the early design phase no test data are available, our best bet will

be to use past experience to predict the expected uncertainty range on the performances of

our new design. Statistical uncertainty for the modal mass and stiffness parameters, [Has-

selman & Chrostowski, 1991], as well as for the modal damping ratios [Simonian, 1987],

can be obtained. These methodologies will be presented in Section 3.1 and Section 3.2

respectively.

3.1 Mass and Stiffness Uncertainty

In this section, we will describe the methodology used to express the modal mass and stiff-

ness uncertainties of a structural model as a function of the error in the eigenvalue and

mode shape predictions. We will then describe how to use this information to built a statis-

tical database.

First-order perturbation equations for the linear eigenvalue problem can be derived in a

variety of ways. The technique presented here is an augmented and more detailed version

of the developments presented in [Hasselman & Chrostowski, 1991]. Other similar devel-

opments can be found in various references ([Kato, 1966], [Rellich, 1969], [Huag, 1986],

[Chen, 1985], [Hasselman, Chrostowski & Ross, 1992]).

3.1.1 Methodology

The methodology will consist of performing a linear perturbation analysis on the equa-

tions of motion of the system (Eq. 2.1). For this perturbation analysis, since we have

assumed the mass and stiffness to be independent of damping and forcing function

(Chapter 2), we will consider only the undamped homogeneous equations of motion (2.3)

for which the corresponding undamped eigenproblem (2.4) is reproduced here

(K - XrM)$r = 0
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where Xr and $r are the eigenvalue and eigenvector, respectively, corresponding to the rth

normal mode of the structure, and M and K are the actual mass and stiffness matrices.

Linear Perturbation Analysis

The advantage provided by the perturbation analysis is that the changes in the modal prop-

erties can be expressed entirely in terms of the eigenproperties of the original system and

the changes in the system mass and stiffness. This means that the natural frequencies, loss

factors, and mode shapes of the perturbed system can be obtained directly, without the

need to re-solve the eigenvalue problem, as long as we know that the size of the perturba-

tion is small enough such that linearity is preserved.

The physical and modal parameters of the analytical, or nominal, model are related to

those of the actual structure as follows:

M = M + AM (3.2)

K = k+ AK (3.3)

Xr = r+ AXr (3.4)

$, = ip,+ Ar (3.5)

In matrix form, equation (3.4) becomes

A = A+AA (3.6)

where the eigenvalue matrices A and A are diagonal matrices containing respectively the

measured actual eigenvalues Xr and the analytical eigenvalues Xr along their diagonals.

The matrix AA is the difference between the actual and the analytical eigenvalue matrices

(A - A).

Equation (3.5) can also be expressed in matrix form as follows
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<D = jD + ACD (3.7)

where the matrices CD and 4) contain respectively the actual and analytical eigenvectors

organized column-wise from r = 1, 2, ... , n, and similarly, A<D is organized as follows

ACD = [A1 ... A$2] (3.8)

It is always possible to express the vector A$r as a linear combination of the original

eigenvectors since they span the vector space of all the possible displacements:

A$, = jAy,. (3.9)

where the matrix jD consists of the analytical modes shapes Or organized column-wise

from r = 1, 2, ..., n, and Ayr is the vector of linear combination coefficients. In matrix

notation, Eq. 3.9 becomes

A4b = DAT (3.10)

where AT is organized as follows

AT = [AW ... AW2] (3.11)

Substitution of equations (3.2) through (3.5) into the eigenproblem (3.1) gives:

[k + AK - (Er + AXr,)( + AM)](4r+ Ar) = 0 (3.12)

After multiplying out the factors we get

(K + AK - XrM - XrAM - AXrM - AXrAM)Or
(3.13)

+ (K + AK -XrM -XrAM - AXrM - AAM)A$, = 0

This expression contains second order terms

(- Ax,.AMr + AKAIr - XrAMA~r - AkMArr) and third order terms (-AXrAMA$r).

Ignoring these terms is equivalent to the "small numbers" or "first order" approximation
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which is valid as long as the perturbation is not "too large". In Chapter 4 we will discuss

the range of validity for the approximation.

Caution: One must keep in mind that the following developments will only be valid if the

mass and stiffness uncertainties, AM and AK, (or frequency and mode shape uncertain-

ties, AX,. and A$,.) are small compared to the nominal analytical quantities M, K, ir, ,..

For good structural modeling, however, we expect this assumption will hold. For example,

the natural frequencies are typically off by less than 10 or even 5 percent.

Hence, neglecting second and third order terms in Eq. 3.13, we get:

(k - Er)A$,.+ (+ + AK - ErM - ErAM - ArM)r = 0 (3.14)

where (k - XrM)4,. = 0 is the eigenproblem for the analytical (nominal) model (corre-

spond Eq. 3.1 evaluated for the nominal parameters). Thus, reducing equation (3.14) to:

(K - XrM)A,. + (AK - irAM - AXrM)Or = 0 (3.15)

This equation will be used extensively in the following developments to first obtain an

expression of the uncertainty on the eigenvalues based on the uncertainty in the mass and

stiffness matrices, and then to find approximate expressions for the mass and stiffness

based on the difference between the modal mass and stiffness of the test model and the

analytical model.

Firstly, pre-multiplying (3.15) by Of gives

ef(k - Xi ) A~r + ef(AK - ErAM - AxrM)r = 0
0 (3.16)

where (Or(K - ErM) = 0) since it is the transposed of the analytical eigenproblem (Eq.

3.1) kand k are symmetric (k = k , M = M ). That leaves us with:

4f(AK - ArAM)r = r (AX,-M)4r = AX,.,.r (3(3.17)
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Applying the orthogonality principle (see Eqs. 2.11 in Section 2.1.1) on equation (3.17)

leaves us with the following approximate expression for the perturbation in the rth eigen-

value caused by perturbations in the original mass and stiffness matrices:

AX, = 4(AK - EAM)r = Ak,.-IrAm,., (3.18)

where Ak,.,. = 4fAK4r and Am,.,. = $fAM,.. The above expression was first obtained

in [Nelson, 1976] and is important because it relates perturbations or uncertainties in the

physical space (AM, AK) to perturbations or uncertainties on the eigenvalues in the

modal space. It will be used in Chapter 4 to obtain the eigenvalue derivatives. The expres-

sions for Am,.,. and Ak,.,. are obtained later in Eq. 3.38 and 3.39, respectively.

Secondly, pre-multiplying (3.15) by 0f , where s # r, gives:

(- A,.A)A,. + K(AK - A,.AM - AX,.A)O,. = 0 (3.19)

Substitution of the expression for A,. from (3.9) into (3.19) gives

$f(k - ArK)5AV,.+ ef(AK - ErAM - AXk,.M)4r = 0 (3.20)

(K - Xr4f5M5D)Ar+ OS(AK - irAM)OrA~riVI r = 0 (3.21)

Applying the orthogonality principle (Eqs. 2.11), we obtain:

(Xs . e - r - e[ )AJ,.-+ OT(AK - ArAM)4r = 0 (3.22)

where e, is a column vector with a 1 at the sth entry and zeros elsewhere. Since AV,. is
also a column vector, then the product of eT and A,. reduces to a single element AtVsr

which is the sth element of the vector AW,., (or as seen later, the element of the A'P corre-

sponding to the sth row and rth column) yielding

(Xs -Xr)A~sr +$s(AK -XrAM)r = 0
(3.23)

< (Xr -Xs)AWsr = $s (AK -XAAM)$r
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For convenience, the following notation is defined:

m = (TM( = true modal mass matrix in e-coordinates
k = jDTKD = true modal stiffness matrix in c-coordinates

rmn = eDTM = I (identity matrix)

k = <DTkj = A (diagonal matrix of analytical eigenvalues = U 2)

Am = CFTAMi = m - I (modal mass matrix uncertainty in C5-coordinates)

Ak = (1TAKD = k - A (modal stiffness matrix uncertainty in (1-coordinates)

where by "4 -coordinates" we mean the analytical modal coordinates. By applying the

above notation to (3.23), we can get:

(Xr-Xs)AVsr = Aksr-XrAmsr (3.25)

where Aksr and Amsr are the elements of Am and Ak corresponding to the sth row and rt

column. Since Am and Ak are symmetric, we can write

(Xs - Xr)AIrs = Akrs - XsAmrs = Aksr - XsAmsr (3.26)

The difference of (3.25) and (3.26) gives:

(Xr - Xs )Alsr - (Xs - Xr)AIrs = Aksr - XrAmsr - (Aksr - XsAmsr)
(3.27)

o (Xr - Xs)(A~lsr + AMrs) = -(Xr - Xs)Amsr

= Amsr = -(AVsr + Ars) for (r # s) (3.28)

The sum of equations (3.25) and (3.26) gives:

(Xr - Xs)A'Vsr + (As - Xr)A'Vrs = Aksr - XrAmsr + Aksr - XsAmsr
(3.29)

e (Xr - Xs)(A1Vsr-Ars) = 2Aksr - (Xr + Xs)Amsr

where by substituting in (3.29) the newly found expression for Amsr (Eq. 3.28) yields
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(Xr - Xs)(A ysr-AVrs) = 2Aksr + (Xr + Xs)(Aisr + Alfrs)
(3.30)

4=*2Aksr =.-2(isANsr+XrVrs)

=>Aksr = ~(XsAIsr + ErArs) for (r # s) (3.31)

In (3.28) and (3.31) we have obtained the expressions for the off-diagonal terms of the

mass and stiffness uncertainty matrices expressed in analytical modal coordinates (Am

and Ak). We should now find the expressions for the diagonal terms Ak,.,. and Am,.r for

every mode r.

First, to obtain the term Am,.,. we start with the normalization condition on the actual

mode ,. (2.11).

= 1 (3.32)

Substituting (3.2) and (3.5) into (3.32) gives:

(Or + A$,r)T(W + AM)(*r + A$,.) = 1 (3.33)

Multiplying term by term and neglecting second and third order terms leaves

ef Air + $ + ATM4,. + 4rAAI,. = 1 (3.34)

where substituting the expression for A4,. from (3.9) gives

r $,.+ reAg,. + Ay{e $,.+ rfAM,. = 1 (3.35)

and applying the orthogonality principle (Eqs. 2.11) reduces (3.35) to

T
1 +re,.- A.+ A - er+ Amrr = 1 (3.36)

where, just like in Eq. 3.22, er is a column vector with a 1 at the rth entry and zeros else-

where. Since Ay,. is also a column vector, then the product of e T and AM,. reduces to a
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single element Ali,,. which is the rth element of the vector A.Ig, (or the element of the

AT matrix corresponding to the rth row and rth column) yielding

1 + Ai,.,.+ Ali,T + Am,. = 1 (3.37)

+= Amrr = -2Ay.rr (3.38)

Now, to obtain the Akrr term we substitute (3.38) into (3.18) and get:

Akrr = AA,.+ XrAmrr = AXr 2XrA rr (3.39)

It can be easily shown that combining equations (3.28) and (3.38) for the elements of Am,

and equations (3.31) and (3.39) for the elements of Ak yields

Am = -(AT+ ATT)

Ak = (3.40)Ak = AA - A - ATTA

where AA is the eigenvalues difference matrix (Eq. 3.6), and AT is the matrix that com-

bines linearly the analytical mode shapes to obtain the modes shapes difference matrix

ACD (Eq. 3.10). The two above expressions are very useful because they give us an approx-

imate (H.O.T. neglected) way to express the difference between the analytical modal mass

and stiffness matrices versus the mass and stiffness matrices corresponding to the experi-

mental test data, expressed in the analytical model modal coordinates system. The useful-

ness of these expressions comes, firstly, from the fact that it would be impractical to

measure the mass and stiffness elements on a real structure in order to get the uncertainty

matrices Am and Ak. Secondly, because these first order perturbations are expressed in

the analytical modal coordinates, they can be readily applied to the analytic (nominal)

model to obtain the actual (experimental) model matrices as follows

m = in + Am
(3.41)

k = k +Ak
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where we recall that the matrices m and k are the modal mass and stiffness matrices of

the actual structure expressed in the modal coordinates of the analytical model as defined

in (3.24).

To obtain the matrix AT , we must first find the cross-orthogonality matrix, T1, from the

following cross-orthogonality test between the analysis modes, e), and the actual test

modes, (D:

enM4) = en(4'P) = IT = T (3.42)

where we assume that the test mode shapes, 4D, can be expressed as a linear combination

of the analytical mode shapes, e), by the following expression

(D = 4)'T (3.43)

To obtain the explicit relationship between T and AT, we plug in the expression (3.43)

for 4) and expression (3.10) for A4) into equation (3.7), and get

e)! = D + 4'A (3.44)

which by pre-multiplying by T reduces to

T = I+AT

SAT = - I (3.45)

When there is no modeling error, meaning that there is no difference between the analyti-

cal and the actual eigenvalues and modes shapes (AA = 0 and Act = 0), it means that

A' in Eq. 3.7 is also equal to zero. In this case, we can see from Eq 3.45 that the cross-

orthogonality matrix is then equal to the identity matrix (' = I). This is consistent with

the definition of the cross-orthogonality matrix in (3.42) where it is obvious that, if the

analytical mode shapes and the actual mode shapes obtained experimentally are the same,

the left hand side of the equation reduces to the identity by the orthogonality principle.
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Lastly, substitution of (3.45) into the equations of (3.40) gives us the final expressions for

Am and Ak, the difference between the modal stiffness and modal mass matrices of the

actual (test) model expressed in the analytical modal (0) coordinates (see Eq. 3.24) and

the modal mass and stiffness matrices from the analytical model.

Am = (I-T)+(I- )T(

Ak = AA + A(I - T)+(I - J)TA

The above equations are very important since they give us a measure of the error made in

the analytical modal mass and stiffness matrices based on the measured errors in the

eigenvalues and the cross-orthogonality matrix (Eq.. 3.42). Let us notice that even though

the modal mass and stiffness matrices are diagonal, this is generally not the case for Am

and Ak. Studying statistically the size of these modal errors for different structures will

help us to build knowledge about the amount of uncertainty involved in modeling real

structures. The fact that these errors are expressed in modal form is a very useful property

because they can be readily applied to the modal model of a new structural system to esti-

mate its uncertainty.

3.1.2 Database

In order to estimate the range of uncertainty around our nominal model performance pre-

dictions, and thus build confidence that a particular concept will meet the requirements,

we have to rely on data from past experience. Performing a statistical analysis of the

modal mass and stiffness parameters will provide such data.

Statistical Analysis

Statistical analysis of the modal mass and stiffness variability involves averaging the ele-

ments of Ak and Am over a family of similar structure/model pairs. It is possible to statis-

tically analyze together all sorts of structures that could be very different topologically.

The knowledge gained from the statistical data of such structures would give us a very

general idea of the amount of uncertainty involved in a broad variety of structural models.
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For high-precision space structures with very tight requirements a lot of design effort is

usually expended to achieve models with higher accuracy. Therefore looking at the statis-

tical modeling errors for such structures would be more appropriate to estimate the uncer-

tainty on a space telescope model. This statement is even more true if the structures are

topologically similar (trusses, flexible appendages, etc...) since one can reasonably assume

that the same kind of modeling discrepancies are repeated for the same type of structures.

Also, as the design process progresses, the fidelity of the model increases over the differ-

ent generations (unupdated vs. updated models). To estimate the uncertainty of a prelimi-

nary design model, it is appropriate to use data from the unupdated models. Thus,

"generically similar" structures could refer to a more restricted set of structures with the

same kind of topology, function, and model generation altogether. Another criterion could

be that the structures have the same modal content (modal density and transition frequency

from global to local modes).

The Ak and Am matrices are found by comparing the measurements on the actual struc-

ture with the modal properties of the analytical model (Eq. 3.46). Data can be compiled

over multiple structure/model pairs. To perform a statistical analysis of the Ak and Am

data, we first normalize Ak to remove its inherent frequency dependence.

Ak ~ AkA-1/2
(3.47)

At this point, the non-dimensional matrices Am and Ak are vectorized. Since those matri-

ces are generally fully populated but symmetric, we can keep only the upper triangular

meaningful elements and obtain:
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Am11  Akii

Am 12  Ak 12

VA = Am 22  and V = (3.48)

AM 23  Ak 2 3

Am nn Aknn

Then, the vector of modal parameter errors representing the difference between the nomi-

nal (analysis) parameters and the test parameters (assumed to be the "truth") is formed:

Ap = (3.49)

The length of Ap is given by (n2 + n) where n is the number of modes in the system. In

this vector, the modeling errors are expressed with respect to the analytical modal coordi-

nates. It is reasonable to define the uncertainty in terms of the difference between the pre-

dicted and observed behavior even if the observations are not perfect. Thus, both

measurement and modeling inaccuracies are included in the parameter uncertainties.

If we also define the frequency normalized modal parameter vector, A, that contains the

actual vectorized upper triangular modal mass and normalized stiffness matrix elements,

mir and kij, (just like we have done for Ap in (3.48)), then the covariance matrix of p is

given by (see Section A.1)

N

Y2P-= E[(p - p)(p-p) T] = E[Ap ApT] = 1 A ApT], (3.50)
PP PP N P

i = 1

where E is the expectation operator (Appendix A), p is the normalized nominal modal

parameter vector (notice that we assume that the nominal values of p correspond to their

mean), and N is the overall number of comparisons (analytical models vs. experimental
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measurements). The unbiased version of the estimator in Eq. 3.50 would be normalized by

(N - 1) instead of N, but for a small number of samples, it is more accurate as is. Also,

the dimension of Epp is equal to n2 + n, where n is the number of modes modeled in the

system.

The covariance matrix of the modal mass matrix elements and the normalized modal stiff-

ness elements, Epp, as expressed in equation (3.50), is a very important result. The non-

dimensionality of its elements (variances and covariances of the modal mass and stiffness

matrix elements) makes it very suitable for use as a database as it can be readily propa-

gated to any analytical model in modal form (see Chapter 5). Also, Ipp can be written in

terms of its correlation matrix (Section A.1) as follows

E pp =: cypppp (3.51)

where op is a diagonal (square) matrix containing the standard deviations of the normal-

ized modal parameters (which correspond to the square roots of the diagonal elements of

the covariance matrix), and pp, is their correlation matrix:

ppp = r (3.52)

where pmm is the correlation matrix of the modal mass matrix elements, p,, is the corre-

lation matrix of the normalized modal stiffness matrix elements, and p is the cross-cor-

relation matrix of modal mass and normalized modal stiffness matrix elements.

Generation of the database

The covariance matrix of the normalized modal parameters (mass and stiffness), p, (Eq

3.50) can be used as a database when it is obtained for a set of generically similar struc-

tures. The data required to generate these covariance matrices consists of the following:

1. A set of frequencies and mode shapes normalized to unit modal mass
obtained from testing (A and CD);
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2. A corresponding set of analytical frequencies and mode shapes normalized
to unit modal mass (A and <D);

3. The analytical mass matrix, M, to compute the cross-orthogonality matrix.

In order to compute the cross-orthogonality matrix (Eq. 3.42), the analytical model must

be reduced to the test degrees of freedom (sometimes referred to as a "Test Analysis

Model"), or alternatively, the test modes may be expanded to match the original analytical

model. The description of model manipulation techniques is beyond the scope of this the-

sis. If the cross-orthogonality matrix is available, then all that is needed to compute the

covariance matrix, EgP, which constitutes an uncertainty database, are the analysis and

test frequencies (A and A). For the purpose of the uncertainty analysis in this document,

we will use the databases compiled by Hasselman in [Hasselman & Chrostowski, 1991]

and described in the next subsection.

Description of Hasselman's databases (see also appendix B)

The objective of this thesis is to evaluate the amount of uncertainty involved in the perfor-

mance predictions for large high-precision controlled structures. Assessment of the perfor-

mance uncertainty of these structures will be based on past experience. To do so, it is

important to have an uncertainty database, I , that reflects the amount of modeling error

usually involved with these type of space systems. In other words, the database must have

been obtained for structures "generically similar" to the one been evaluated. It is also

important that for a particular design phase, the database reflects the uncertainty involved

with the appropriate model generation. For example, early preliminary design phase corre-

sponds to unupdated low fidelity models (usually stick models with tabulated property val-

ues), and flight testing or operations should correspond to updated high fidelity models.

Data has been compiled for several "similar" space structures and corresponding data-

bases have been extracted [Hasselman & Chrostowski, 1991]. The data came from various

military, governmental and commercial sources and corresponds to different generations

of models. Two separate structural databases have been proposed: one for large truss-type

space structures (LSS); and one for conventional space structures (CSS). The data for the
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CSS database is segregated into pre-test models (CSS-I), which have not had the benefit of

experimental verification, and post-test models (CSS-II), which have been updated to

match test data as closely as possible. The models in the LSS database are considered to be

neither pre-test nor post-test models. They are not pre-test models in the strict sense

because all of them have been adjusted to some extent to resolve differences between the

pre-test models and test data. However, the models were not "fine-tuned" as required on

models of flight hardware. The models are therefore not considered post-test models in the

sense as those of CSS. Hence, the LSS models are referred to as "research models" for the

purpose of this text. Also, a combined database (COMB) was proposed by combining all

of the compiled structures. For the rest of this document, we will refer to these four data-

bases as Hasselman's databases.

Research Models of Large Space Structures (LSS):

LSS refers to large truss-type space structures currently being used for research purposes.

Compared to the CSS structures, these structures tend to have relatively low non-structural

mass. For example, JPL Micro-Precision Instrument (MPI) testbed would fit into this cate-

gory. The seven structures from which-the data sets were obtained to compile the database

are listed in Table B. 1. Since only four modes of data were available for the third structure

(LSS 3), it was omitted, leaving only 6 structures for the computation of the covariance

matrix, 1,,, presented in Appendix B.1.

Pre-test and Post-test Models of the Conventional Space Structures (CSS):

A conventional space structure is defined as a stiff bus with flexible appendages stowed in

the launch configuration. As designers minimize their structural weight to maximize pay-

load, these structures tend to have a large proportion of non-structural mass, especially

when compared to the LSS structures. The eleven structures used to compiled the CSS

database are listed in Table B.2. We can see from the table that data sets for pre-test and

post-test models were available. Therefore, two generic categories were created. For some

cases, both pre-test and post-test models were available, and for other cases, either cate-
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gory of models were available, but not both. A combination of seven structures were used

for the computation of the pre-test database (CSS-I) reproduced in Appendix B.2.1, and

eight for the post-test database (CSS-I) shown in Appendix B.2.2. One would expect the

covariance matrix of modeling error to be smaller for post-test models. Although, looking

at the databases in Appendix B.2.1 and Appendix B.2.2, it is not immediately apparent

that this is the case. The individual standard deviations appear to be roughly equivalent.

However, they are not as discussed in the following comparison subsection.

Combined Database (COMB):

The five mode covariance matrix for the combined LSS, and CSS pretest and posttest

models is reproduced in Appendix B.3. Again, no significant differences are immediately

apparent between the combined database and the three separate databases.

Database Comparison

As stated earlier, in order to assess the uncertainty of the performance predictions of a sys-

tem, it is important to use a database obtained from a set of structures of the same generic

category. Although, these categories can have a rather broad definition as they are largely

dictated by the availability of data.

For evaluating the uncertainty of the model predictions, a database obtained from unup-

dated (pretest) models should be used during the preliminary design phase, while a data-

base obtained from updated models should be used as the model of the system is refined

and as the modeling errors are expected to become smaller. Hence, for the latter, one

would expect the covariance matrix to reflect the smaller uncertainty of the modeling

errors. As we mentioned before, by looking at the database matrices listed in Appendix B,

it is not very obvious that it is the case. Although, the difference becomes more apparent

when comparing the eigenvalues of these covariance matrices which provide a measure of

their uncertainty. In fact, taking the trace of a covariance matrix or alternatively the sum of
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its eigenvalues, provides a scalar measure of uncertainty which in turn can be used to com-

pare the relative degrees of uncertainty represented by different databases.

Table B.3 compares the singular values of the four covariance matrices obtained by singu-

lar value decomposition (SVD). We can see from the table that the pretest models reflect

the largest uncertainty, while posttest models reflect the smallest uncertainty which is con-

sistent with our intuition. Furthermore, the uncertainty of the LSS database, involving par-

tially updated models, lies between the two extremes, while the combined database

reflects an average of the three. Notice that the uncertainty of the pretest CSS models is

approximately twice that of the posttest models, while that of the combined database is

slightly less than that of the LSS models.

We notice all four covariance matrices are singular. This is due to the fact that their rank,

which is governed by the number of structures in the database, is less than the dimension

of the matrices. The covariance matrices are of dimension 30 x 30, where basically 30 cor-

responds to the 15 upper triangular mass matrix elements and the 15 upper triangular stiff-

ness matrix elements of a five modes model.

Limitations of the database

The database uncertainty propagation method uses past experience to provide us with a

realistic way to quantify the amount of uncertainty on the FRF and the performance RMS

from an analytical model before any structural testing has been done. Once testing data is

available, the model can be updated and then one can still use the uncertainty propagation

method with a database for updated structural models to obtain the uncertainty on the out-

puts that reflects the variability in the structure due to testing conditions, assembly/reas-

sembly, and shipset variability.

One of the problem with the databases is that, often, few structures are available to gener-

ate a statistically valid generic database. Also, the only data one has available to generate a

database could be from very disparate set of structures breaking the generic structures

assumption. As we discussed earlier, the more similar (with respect to geometry, modal
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frequency range, modal density) the structures in the database are to the current analytical

model, the more confidence one will have in the uncertainty propagation results. Also, the

method offers no guarantees on the modeling ability of the designer, implying that the

actual error on the performance predictions might be worse, for a poor model, than the

range of uncertainty one would usually expect from models in the same class of generic

structures.

One other major problem we might encounter is to be faced with a database that contains

less modes than the structure for which we are trying to evaluate the uncertainty. For

example, the databases from [Hasselman & Chrostowski, 1991], presented in the above

subsection, contain the information for only five modes. However it would be easy to use

either the posttest CSS database (which has five structures with nine or more modes), or a

combination of the posttest CSS and LSS databases (see Table B.1 and Table B.2), which

would give us eight structures with nine modes of uncertainty data, to construct a larger

database containing nine modes. Also, it is worth mentioning that a beta version of UAI/

NASTRAN software Version 20.2 is now available with a predictive accuracy capability

that uses a more complete version of Hasselman's databases containing up to nine modes.

This is a slight improvement over the current five-mode database, but seems of marginal

importance when we are faced with large models containing tens to hundreds of modes.

Expansion of the database

For large space structures such as SIM and NGST that contain many modes (much more

than the five available in Hasselman's databases) it would probably be more appropriate to

construct a new dedicated database from more recent and more generically similar struc-

tures (e.g., HST, Chandra X-ray Observatory, or SRTM). The problem is that the neces-

sary data might be scarce or unavailable. Using the LSS, or the CSS databases, despite

their too few modes, seems at least to be a reasonable option. One can think of ways to get

around the problem of having too few modes in the database:

1) by expanding the database by extrapolation, or

2) by reducing the model by selecting only a few "significant" modes.



MASS, STIFFNESS AND DAMPING UNCERTAINTY

Database Expansion by Extrapolation

The idea of significantly augmenting the size of the available databases by somehow

extrapolating values for extra rows and columns of the covariance matrices I seems

very appealing. However, further research would have to be conducted to determine how

to properly extrapolate these databases and to verify the validity of such method. The der-

ivation of such extrapolation techniques is beyond the scope of this work.

Model Reduction by Selection

The selection of "significant" modes will be explained in greater detail in Chapter 7 where

one of Hasselman's databases will be used to perform the uncertainty analysis of the SIM

classic model. The idea is to use the fact that it is possible, by looking at the cumulative

RMS plot of a system, to identify which of the modes are contributing the most to the total

performance RMS [Gutierrez, 1999]..It turns out that, for most systems, even for very

large ones, the contributions of only a few modes account for most of the total RMS. For

example, a typical structure with 35 modes might have only three modes (not necessary

those lowest in frequency, say modes number 8, 12 and 15) contributing to 98% of the

total RMS. Also, in general those few "significant" modes are also the most sensitive ones

[Gutierrez, 1999], implying that small parameter changes on these modes would create

large variations in the RMS outputs. Therefore, we can argue that since the significant

modes are the ones that contribute the most to the RMS and that they are also the most

sensitive to parameter uncertainty, it is a valid approximation to propagate the uncertain-

ties to the modal parameters of these selected modes only, in order to estimate the uncer-

tainty on the total performance RMS. Doing so reduces greatly the amount of

computations involved without losing much of the accuracy. However, one could argue

against propagating the modal uncertainties of the database to parameters in the structures

corresponding to different mode numbers (e.g.: mode 1 of the database to mode 8 of the

model of our "typical" structure, mode 2 to mode 12, and mode 3 to mode 15).
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Another equivalent method would be to approximate the system by a reduced model con-

taining only the significant modes, and then perform the uncertainty analysis on the

reduced model. This way of looking at the problem would dissipate the reservation men-

tioned about the first method since in this case, for our imaginary structure, the modes

originally numbered 8, 12 and 15 would effectively become the first, second and third

modes corresponding to the same mode numbers in the database.

Yet another way to obtain the same results from uncertainty propagation would be to aug-

ment the I,, matrix with rows and columns of zeros corresponding to the "non-signifi-

cant" modes. The interpretation in this method would be that since we assumed that the

uncertainty contributions of the non-significant modes are negligible, the uncertainty in

the associated parameters can also be neglected.

3.2 Damping Estimation and Uncertainty

In this section, we will discuss how damping uncertainty plays a role in the uncertainty

analysis problem. We will first go through some background in damping modeling and

discuss why it is such a hard problem (Section 3.2.1). Then, we will explain how to model

damping uncertainty (Section 3.2.3), and how to obtain a modal damping uncertainty data-

base (Section 3.2.4).

3.2.1 Damping Modeling Problem

Current and future large space-based optical systems require state of the art precision

structural designs in order to meet the very stringent pointing requirements. The necessary

vibration suppression may be achieved through passive or active means, or a combined

passive/active control approach. The enhanced damping is necessary to prevent excessive

slew/settle times, unacceptable jitter levels, and harmful controls/structures interactions.

Determination of structural damping is a difficult problem [Barlow, 1992]. Historically,

the inherent damping characteristics of actual built-up structures have been and still are
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poorly understood and hence not particularly amenable to rational analysis. Although

recent studies have improved our ability to model damping for certain types of structures,

there are no general tools available for modeling damping as there are for modeling mass

and stiffness. Finite element modeling can be used to determine natural frequencies, but

modal testing is usually needed to provide the damping estimates necessary to predict the

realistic response from finite element codes. For further discussion on this topic, see

Ewins' work on structural identification [Ewins, 1984].

When no experimental data is available, for example during a preliminary design phase,

we are reduced to estimating the modal damping values. The current practice is to adopt

overly conservative assumptions and to assign very small damping values to these sys-

tems. For instance, values as low as 0.1 percent modal damping are sometimes assumed in

early design stage. Such conservative estimates are unacceptable for performance assess-

ment of future spacecraft systems.

Challenges with damping modeling

Sensitivity analysis of the deterministic equations of motion reveals that damping parame-

ters are extremely important to the performance of precision controlled structures [Simo-

nian, 1987]. Furthermore, flexible and actively controlled space structures impose

additional requirements for both the precision and nature of ground vibration testing, such

as developing an estimate of the on-orbit structural damping [Barlow, 1992], [Bourgault &

Ubelhart, 1999]. This is especially true in actively controlled structures where the level of

passive structural damping directly influences both the robustness and achievable author-

ity of the active controller [Balas, 1982]. Since these factors influence vehicle perfor-

mance, preflight knowledge of the structural damping becomes a necessity.

The difficulty of testing the next generation of large flexible space structures on the ground

places an emphasis on developing innovative means of validating the predicted dynamic

behavior. In some cases, the large size of the structure prohibits testing the full scale

spacecraft. In other cases, the gravity-induced loads and deflections are excessive. The
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prediction, and even measurement, of damping in such large built-up structures is espe-

cially challenging. Although several systematic approaches to damping prediction have

been proposed, none has yet been completely verified [Crawley & O'Donnell, 1987].

Background (Modeling techniques)

Some progress has been made in recent years in analytically synthesizing highly damped

structures with viscoelastic materials ([Gehling,1987], [Johnson & Kienholz, 1982], [Gil-

heany, 1989], [Johnson, 1985]). In addition, emerging technology for damping synthesis

can be found in literature describing the experimental design of large space structures

[Hasselman, 1972]. However, for the most part, damping is still estimated from empirical

data. Table 3.1 presents a sample reference on damping modeling and design techniques.

It is commonly acknowledged that damping must be included in the design as assuming

very low modal damping values is too conservative and is not acceptable on high perfor-

mance structures.

Current and future large space-based optical systems require state of the art precision

structural designs in order to meet the very stringent pointing requirements. The necessary

vibration suppression may be achieved through passive or active means or through com-

bined passive/active control approach. Enhanced damping is often necessary to prevent

excessive slew/settle times, unacceptable jitter levels, and harmful controls/structures

interactions. Table 3.1 gives a description of different damping enhancement devices.

3.2.2 Sources of Damping Uncertainty

Modal damping represents the energy dissipation per cycle in a particular mode, assuming

that the mode vibrates independently of the other structural modes. The modal damping

ratio, (r, is proportional to the ratio of modal dissipative energy, Dr, to modal kinetic

energy, Kr, which is constant in the case of linear viscous damping.

_= (3.53)r4n K
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TABLE 3.1 Damping Enhancement Devices

damping devices description reference

Constrained layer Significantly increases the initial amount [Slater, 1991],
damping technique of damping by replacing some of the struts [Balas, 1982], [Lim

of a truss structure with members having a & Giesy, 2000]
constrained layer of viscoelastic material.

Shunted piezoelec- Passive damping [Gutierrez, Bour-
tric materials gault & Miller,

1999] and [Hagood,
1989]

Semi-active ele- Combine active and passive isolation (e.g. [Crawley &
ments Honeywell "D-strut" for Hubble Space O'Donnell, 1987]

Telescope Reaction Wheel Assembly iso-
lation),

In general, the ratio of dissipative to kinetic energy is not constant, but depends on other

factors including vibration amplitude, frequency and temperature. Nevertheless, in the

absence of more accurate models, the equivalent linear viscous damping model is com-

monly accepted with the understanding that the parameters of that model must be deter-

mined experimentally and often with a large degree of uncertainty. Table 3.2 list different

sources of damping uncertainty.

3.2.3 Damping Uncertainty Estimation

Since a combination of passive and active damping measures will necessarily be imple-

mented on any future space telescope and will improve the damping by multiple orders of

magnitudes, it necessary that these measures be reflected in the model when propagating

the damping uncertainty. Otherwise, the variance on the performance predictions of damp-

ing uncertainty would be insignificant in comparison to the huge modeling error induced

by omitting damping enhancement techniques.

Since we made the proportional damping assumption (Chapter 2), all modes of the system

are considered decoupled (diagonal modal damping matrix). Stated differently, each mode

vibrates independently of the other structural modes and has its own damping ratio. On a

74



Damping Estimation and Uncertainty

TABLE 3.2 Sources of damping uncertainty in damping estimate

Sources of Damping Uncertainty References

Fast Fourier Transform approximations due to leakage, [Pandit, 1989]
resolution, bias and variance errors (FFTs typically over-
estimate damping ratio).

Nonlinearities in the system introduce dependence on [Wada, 1988], [Ing-
forcing amplitude (e.g. joint deadband). ham, 1998]

Non-structural sources which are absent in the space [Ingham, 1998],
environment (e.g. gravity effects, air damping, wiring [Barlow, 1992]
harnesses).

Linear viscous damping approximation: [Hasselman, 1976]

* The ratio of dissipative to kinetic energy is
not really constant, but depends on other
factors including amplitude, frequency and
temperature.

* Despite the fact that the off-diagonal ele-
ments of the transformed damping matrix
are generally of the same order of magni-
tude as the diagonal elements, they are typi-
cally neglected. The diagonal elements are
expressed in terms of critical damping ratio
consistent with the assumption that the
equations of motion are uncoupled in modal
coordinates. This assumption is valid for
lightly damped, well separated modes.

real structure, this is not necessarily the case, and the damping matrix is in general fully

populated. This, in addition to the fact that the modal damping ratios, which represent the

energy dissipation capacity, are amplitude, frequency and temperature dependent, partially

accounts for the large degree of the uncertainty in damping.

In the previous subsection, we have seen that although there have been improvements in

the ability to model structural damping, it remains a challenging task. General tools for

modeling damping are not yet available. Thus, damping ratios must be estimated from

experimental measurements. If no measurements are available, the modal damping ratios

must be estimated based on past experience. Therefore, the rationale for quantifying the
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uncertainty based on the variability between the analytical and test model parameters over

a family of similar structures is not valid for the damping. Instead, we will define the

damping uncertainty in terms of the variability of the experimental modal damping esti-

mates. In this case, we can think of several ways to obtain a measure of the damping

uncertainty depending on the availability of the data and the current generation (maturity)

of our structural model. We present here three different methods of building a damping

database, (later referred to as databases of type 1, 2, and 3) which correspond to an

increasing need for accuracy in the uncertainty predictions:

1. If the available statistical data is rare, and/or the model is in an early stage,

insofar as we do not have a good feel for the damping values, we could sta-

tistically analyze the experimental values of the damping ratios obtained for

one particular structure. The single global mean, g, and the variance, a2

obtained for the ensemble of damping ratios could be used as a first cut esti-

mate for all the nominal damping ratios ( r = pg), and their variability

(a = a2 ). The same type of database could also be obtained from the sta-

tistical analysis of the experimental damping values from more that one

structure at the time. The advantages of this method are that it is very cost-

efficient to perform and it provides us with both an estimate for the uncer-

tainty and the nominal parameter values. Alternatively, we could decide to

arbitrarily set the nominal values at more conservative levels. The high level

of uncertainty of our estimates is captured by the large value of a, which

comes from the high variability of the experimental damping values from

mode to mode.

2. If more data is available, and we want to increase the accuracy of our uncer-

tainty predictions, we could perform the statistical analysis for each mode

from the data of multiple structures. This way, multiple modal mean values
2 2

p ,,1] and variances [a, ... , a] are obtained. While providing us

with estimates of the nominal parameters ( r = 9,) and their uncertainty

(2g = a,), this method also reveals the fact that the modal damping ratios,
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and their variability, are different for each mode. In this way, the estimates

are more accurate as they reflect the acknowledged fact of the modal depen-

dence of the damping values. Here too, rather than using the mean values

provided by the statistical analysis, we could decide to use our own arbitrary

modal damping ratio estimates, yet still use the variances from the statistical

analysis to estimate their uncertainty.

3. If our damping model is very accurate (for example, if it is updated from

experimental measurements), then we can assume that the damping errors

depend only on the variability of the environmental factors affecting the

damping (noises, perturbations, temperature). In this case, in order to have a

more accurate estimate of the uncertainty, we could statistically compute the

variance and mean values of each modal damping ratios from multiple mea-

surements of the same structure taken on different days. In so doing, we

would have a fairly accurate model of the uncertainty (and the nominal value

of the damping ratios). To get an uncertainty model for shipset variability,

the same procedure could be implemented where the multiple measurements

would come from different representatives of the same type of structure.

Other variations of the same methodology could be appropriate as well.

Methodology

For the purpose of this work, we will assume the modal damping ratios to have lognormal

distributions. This assumption is based on the results presented in [Simonian, 1987]. Log-

normal distributions are not symmetric (see Figure A.3), but it is possible to transform

them into Gaussian distributions -- a rather useful characteristic. Linear systems have the

property of preserving "Gaussianness" (or normality) [Gelb & al., 1974]. To use this prop-

erty for the uncertainty propagation of the damping, the first step will be to transform the

damping ratio distributions from the logarithmic space ((,) to the gaussian space (y,)

r-+ yr = ln(,. (34
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where (, is the modal damping ratio as defined in Chapter 2, and y, is the transformed

modal damping ratio. The reciprocal of equation (3.54) is given by

C, = e Y (3.55)

This means that the modal damping matrix, Z, as defined in equation (2.19), becomes

Z = ( = [Yr =ZY (3.56)

where even though the matrices Z and ZY are equal, we will use through out this docu-

ment the notation Zy to distinguish the transformed matrix Z. The Gaussian PDF is

obtained from the lognormal PDF as follows

fy(y,.) = fr(Cr0 ) dQro (3.57)
dY ro

where the Jacobian of the transformation is given by

= e Yr (3.58)
dY ro

Using the lognormal distribution as defined in equation (A.44) and replacing in (3.57)

yields the normal distribution

1 -(ln( )c) - /2d2 Yr

fYr(YrO) = e -e

C (3.59)
1 -(Yr,-c) 2/2d 2

=e

where the mean and variance of the gaussian distribution correspond to the parameters c

and d of the lognormal
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pY, = C
2 2 (3.60)

a, = dYr,

and where c and d are obtained from the statistical analysis of the modal damping ratio

C, from equation (A.45)

ln ' , d = ln(p r+1) (3.61)
P27pg+ 1)

where 2 is the covariance and is given by

2
= (3.62)

Therefore, once we have p and aG, for each mode from statistical analysis of the data

(using one of the three above) the gaussian distribution parameters for each mode (pY, and

aY) are very easy to obtain using equations (3.60) and (3.61).

Linear Perturbation Analysis

We will relate the analytical transformed modal damping parameters to the parameters of

the actual structure as follows

Yr = ir +Ayr (3.63)

or in matrix notation

F = ['+ A (3.64)

where, due to our assumption of proportional damping, the parameters are decoupled, and

the matrices F and f are diagonal. They contain, respectively, the actual transformed

modal damping ratios y,. and the nominal transformed damping ratios ir. The matrix AF

is the difference between the actual and the nominal transformed modal damping ratio

matrices (f - f ).
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Statistical Analysis

At this point, we vectorize the matrix AI' as follows

AYi
VAY=AY= - (3.65)

[AynJ

where n corresponds to the number of modes in the system. Just like we did for the modal

mass and stiffness parameters (Eq. 3.50), we can define a covariance matrix for the trans-

formed modal damping ratios, I , as follows

S = E[AY Ay T] (3.66)

which is a diagonal matrix since, based on our assumption that all damping parameters are

independent. The diagonal elements correspond to the variance of every transformed

modal damping parameter. Therefore, Iy can be constructed directly from the trans-

formed variances obtained after the statistical analysis (Eq. 3.60)

[yy = ] [ d2 (3.67)

We extend our definition of the uncertain modal parameters, as defined in equation (3.49),

by appending to the normalized vector of modeling errors Ap , the vector of transformed

modal damping parameters errors VAY , as follows:

VA,

A^= V (3.68)

where, for a system with n modes, the length of p becomes equal to
2 2

(n + n + n = n + 2n ). The augmented covariance matrix is given by
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E[APAP] = 0PP = k m kk (3.69)

_ 0 0 E Y

which is block diagonal since the damping uncertainty is estimated independently from

the mass and stiffness uncertainty.

3.2.4 Database

To fulfill the objective of determining jitter amplitude uncertainty for spaceborne tele-

scopes, it is critical to evaluate the damping uncertainty, as it has great impact on the over-

all performance of the system. Damping being hard to model, one must look at past

experience data for similar types of structures to determine its statistical characteristics. In

the previous subsection, we described three different approaches to obtain a damping data-

base. All these approaches were based on statistical analysis of measured damping data.

For the purpose of this research we will use the damping measurement data compiled by

Simonian [Simonian, 1987]. After describing Simonian's damping compilation, we will

give an example of how to generate a database of Type 1.

Description of Simonian's damping compilation

Simonian has gathered and compiled measured damping values for a multitude of space-

craft structures. His results include published data from on-orbit damping measurements

and results from ground modal testing of spacecraft. Since damping is amplitude depen-

dent, satellite data measured at higher vibration amplitudes were removed from the survey.

The damping data compiled is comprised of results taken from 23 different spacecraft

(Table C. 1) with a total of 290 sample measurements spanning the frequency range from

0.15 through 195 Hz.

The results of the statistical analysis are summarized in Table C.2. This analysis was per-

formed for various combinations of the data, grouped by frequency bandwidth (identified

81



MASS, STIFFNESS AND DAMPING UNCERTAINTY

by letter A through G in the table). For each group of data analyzed, a histogram was con-

structed, and the probability density functions (PDF) were obtained by fitting the data.

The most interesting result of the study is perhaps the fact that, for each frequency group,

it appears that the disturbances at the damping ratios (, fit well to a lognormal probability

density function (PDF). The parameters for this type of fitted PDF are presented in

Table C.2. It is also very interesting to note that measured building damping factors also fit

well with these types of PDF ([Haviland, 1976], [Hasselman & Simonian, 1980]). The fact

that the damping ratios for structures from very different fields (buildings vs. light space-

craft) have the same kind of distribution supports the validity of the approach.

Generation of the database

In this subsection, we give an example of how to generate a damping uncertainty database

using Simonian's statistical data. The database generated will be of Type 1, as described in

Section 3.2.3. This exercise will be particularly useful for the application in Chapter 7

where we will perform the uncertainty analysis on the old SIM Classic model which,

though quite detailed, constitutes an early stage model for which it is fair to say that its

damping model is very uncertain. To match the number of modes contained in Hassel-

man's database (see Section 3.1.2), we will built a five mode damping database.

Database of Type 1:

In this case, we use the broadband (group A) statistical data from the Simonian's compila-

tion (Table C.2). From the table, we get the lognormal parameter d = 0.680 which, using
2 2 2

the identity, translates to a variance in the Gaussian-space of a = d = (0.680)

Hence, in this case, the covariance matrix is constant for all the modal damping ratios.

I [ d2 j d21 (3.70)
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It should be noted that the ( values used to construct the tables in Appendix C are in per-

cent (%). It has been shown experimentally that the amount of damping varies for each

mode [Ewins, 1984], actual damping measurements on various spacecraft have given val-

ues between 0.02 and 0.005.

Database of Type 1 (variant):

In this variant of the Type 1 method, in an attempt to increase the accuracy of the uncer-

tainty analysis, we want the covariance matrix to reflect the modal dependency of the

damping uncertainty. With this in mind, we assume that the first five modes of the SIM

model are spread such that each of them is included in the frequency range of a different

group. Hence, we have associated the mode numbers 1 to 5 to the frequency bins B to F in

Table C.2. The pertinent data, extracted from Table C.2, are reproduced here in Table 3.3.

TABLE 3.3 Extracted Damping Statistics

Frequency
Interval c d

(Hz
B: 0.14 - 9.99 0.379 0.725

C: 10.00 - 19.99 -0.218 0.560

D: 20.00 - 29.99 -0.0475 0.653

E: 30.00 - 39.99 -0.108 0.623

F: 40.00 - 49.99 0.0755 0.572

Gaussian py GY
Parameters

Using the data from Table 3.3 we construct the damping covariance matrix as follows
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(0.725)2

(0.560)2

Yyy = (0.653)2 (3.71)

(0.623)2

(0.572)2

This is the covariance matrix that we will use to demonstrate the methodology of the

uncertainty analysis in Chapter 7.

Although the nominal values for the (,'s have already been set up in the SIM model, we

could also use the data from the table to obtain an estimate of the nominal transformed

damping ratios by setting the nominal values equal to the mean (i, = py = c,).

We would like to remark at this point that because of the way the data was analyzed in

Simonian's compilation, the above transformed modal damping database (Eq. 3.71) repre-

sents more of a frequency dependent damping uncertainty than one that is dependent on

the modal number. Indeed, for each frequency bin in Table C.2, the statistical parameters

presented were computed over a range of disparate modes. This is due to the fact that dif-

ferent structures have different modal frequency spacing. Hence, in the frequency range

responding to group B, (Table C.2) for example, it is possible that many modes of a partic-

ular structure are included in the bandwidth; for another structure, the first mode could be

at a higher frequency than the range and not even be included; while a few of the interme-

diate modes of yet another structure could be in the middle of the range, and so on. There-

fore, it is the author's belief that in order to remove the frequency dependence from the

uncertainty database, and better represent the modal dependence of the uncertainty, future

damping uncertainty data analysis should be performed by evaluating the statistical

parameters either for a single mode at a time or by grouping the data using modal bins

rather than frequency bins. Such an analysis would correspond to a Type 2 method.
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3.3 Summary

In this chapter, we have presented methodologies for computing uncertainties for the

modal mass, stiffness and transformed damping. Modal mass and stiffness uncertainties

for a structural model are expressed as a function of the error in the eigenvalue and mode

shape predictions (cross-orthogonality). The methodology for obtaining modal mass and

stiffness uncertainties is based on linear perturbation analysis of the eigen-problem. A

database consisting of a covariance matrix of the normalized modal parameters (m and k),

constructed from statistical analysis of families of structure/model pairs was presented

[Hasselman & Chrostowski, 1991]. The main limitations of the database are the limited

sources of data available for statistical validity, and the limited number of modes docu-

mented for each sampled structure. Damping uncertainty for a structural model is defined

in terms of the variability in experimental modal damping estimates. A methodology for

obtaining damping uncertainties was outlined, assuming lognormal distributions for the

modal damping data. The damping parameters were transformed from the lorgnormal

space to the Gaussian space, in order to propagate their corresponding uncertainties. Three

methods for generating damping uncertainty database were introduced, corresponding to

different levels of accuracy (from model generation) in the uncertainty predictions.
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Chapter 4

SENSITIVITY ANALYSIS

In order to propagate the uncertainties from the databases presented in Chapter 3, we will

need to first perform a sensitivity analysis. In this chapter, we derive the first order deriva-

tives (sensitivities) of the RMS metrics and FRF (magnitude and phase) with respect to the

database parameters, p (Section 4.1). Also, in order to establish the range of validity for

these sensitivities, it is necessary to evaluate their curvature (second order derivatives)

(Section 4.2). These curvatures will help us determine the range of perturbation for which

the linearity of the system is preserved.

In a broader perspective, the sensitivity analysis can be used to identify which of the sys-

tem design parameters (modal or physical) have the strongest influence on the perfor-

mance of the integrated system, and use this knowledge to modify the design and improve

the performances. This will not be the subject of the present document as it is well dis-

cussed in [Gutierrez, 1999].

4.1 First Order Derivatives (Sensitivities)

As we mentioned in Chapter 5, the derivatives, au /ap, are particularly easy to derive

whenever u represents an eigenvalue or eigenvector and p represents a modal mass or

stiffness parameter (Section 4.1.1). Also, au /ap= 0 when u represents an undamped

eigenvalue or an eigenvector and p represents modal damping.
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4.1.1 Eigenderivatives

In this section, we derive the expressions for the eigenvalue and the eigenvector first order

derivatives with respect to the modal mass and stiffness matrix elements m and k

(expressed in the analytical modal coordinates). A similar development can be found in

[Hasselman & Chrostowski, 1991]. Other references include [Kato, 1966], [Rellich,

1969], [Huag, 1986], and [Chen, 1985]. The resulting expressions will be used to propa-

gate the uncertainties in the modal mass and stiffness matrices and, ultimately, into the

FRF and the RMS response of the system.

Eigenvalue derivatives

We start with the undamped eigenproblem seen in Eq. 2.4 and reproduced below

(K - XM)$r = 0 (4.1)

Taking the derivative with respect to the modal parameter Pk, the kth element of the vector

of modal parameters p, gives

[(K - XrM)$r] = 0 (4.2)
aPk

<=> (K - XrM) -r + - - X,- r- -M_ r = 0 (4.3)
aPk a( rap k

Pre-multiplying equation 4.3 by $r gives

T O r TaK am 0ar T(4)
r (K -xM}Pk +$Or XrM Or - a r M$r = 0 (4.4)

Using the transpose of Eq. 4.1, $ (K -XrM) = 0 with K and M symmetric (K = K

and M = M ), and the orthogonality principle ($,.M0r = 1), we get the following

expression
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~ r am)r

After post-multiplication by APk , the uncertainty on modal parameter Pk , we obtain

APx
jPk

T aK
=Or aPk 

aMA
- r APk Or

aPk
(4.6)

The above expression can be rewritten as follow

ax, T
- APk = 4r (AKk - XrAMk)#r
aPk

(4.7)

where AKk and AMk are the uncertainty contributions to the stiffness and mass matrix

respectively, due to the uncertainty on the parameter Pk and are elements of matrices AK

and AM, defined as follows

Y = M
k

AKk
k

k dPk X

~ aPk
k aPk

(4.8)
= AK

Substituting equation 3.5, for $,., in equation 4.7, we get

JAPk =(O~r + A4)T (AKk - X,.AMk)( , + A4)r (4.9)

which after performing the multiplication gives

JaPk = ~r (AKk - XrAMdk) + ~r (AKk - XrAmk)A~r

T T
+A$ (AKk - XAkr )r + Ar (AKk - XAMk) 0r

(4.10)

Neglecting second and third order terms, and replacing X,. in the above equation with the

expression given in (3.4), we get

axr

aPk r = Pk
(4.5)
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axrT
Apk = Or (AKk -(Xr +AXr)AMk)Or (4.11)

jPk

Again, we neglect the second order term and obtain the following expression

;JxrA -T
a"-APk = Or(AKk -XrAMk)OPr (4.12)

Summing over all kth derivatives we find

'&Pk= rAKkXrAMk)4$r = r(AKXEAk>$

k Pk k k k (4.13)

= T(AK- XAM)$r = Ar

If we divide both sides of equation (4.12) by Apk and take the limit as Apk approaches

zero, and use the definitions in (4.8), we get an expression of the sensitivity of the rth

eigenvalue with respect to the kth modal parameter

$r5xrX M$ (4.14)
aPk Pk aPk

It is important to remember that the above sensitivity expression is for the nominal plant

(i.e., it is evaluated at the nominal parameters) and should in fact be designated

(al/ap)|IN to be precise. Since, for the purposes of uncertainty propagation, we always

evaluate the sensitivities for the nominal plant, it will be assumed through out this docu-

ment that the sensitivity as noted in (4.14) are always evaluated at the nominal parameter.

Equation (4.14) can be rewritten as following

ar ~TaK ~ ~ ~ TaM-
- r ~ r - APr r (4.15)

$TaK- -TaM-
where we will compute 4 r FpOr and $r j ,. separately.
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First, let us calculate the part containing the mass matrix, M. We have defined the true

modal mass expressed in the nominal modal coordinates in equation (3.24) as

m = ~j~T~cj, (4.16)

Differentiating with respect to Pk gives

am _ de aM~ ~ 8
-M4 + a k + TM (4.17)

where - - = 0 since the nominal mode shapes are constant. This leaves us with
aPk aPk

~TaM~ am
aPk aPk

(4.18)

or

Ta M ~ am amrs
r s 0= er Wes= aPk 1,

ifPk = mrs

otherwise
(4.19)

where er and es are unitary vectors containing one at the rth and Sth entry respectively and

zeros everywhere else.

Then, using a similar approach for the part with the stiffness matrix, K, we obtain

~T aK T ak akrs 1,
r -- $s r e = e-

O~k g, S~k 0,

if pk = krs

otherwise

where as defined in (3.24), k is the true modal stiffness expressed in analytical modal

coordinates. Substituting equations (4.19) and (4.20) into (4.15) gives us the final expres-

sion for the eigenvalues sensitivity expression

axk a k mk = rr _ A r __ = 1 if Pk = (4.21)

0, otherwise

(4.20)
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Eigenvector derivatives

Let us now attack the derivation of the mode shape sensitivities. Starting with equation

(4.3) and substituting the expressions for K, M, Xr and (Pr from equations (3.2), (3.3),

(3.4) and (3.5), we get

(k+AK-(Ar+Ar)(M+AM)) + ( (ir +A,)Mj(,.+ A)r)-(M+ AM)( r+ Ar) = 0 (4.22)

Expanding and neglecting second and third order terms gives

~ O~ar DK ~'M ~ x (4.2r(K-XrM)L+ - M A $- r = 0 (4.23)

It is interesting to mention here that in the same way that we have demonstrated the equiv-

alence of equations (4.12) and (3.18) by performing the summation over the "k" parame-

ters, we could show that the newly obtained equation (4.23) is also consistent with

equation (3.15). In order to compute equation (4.23), we start by rearranging it as the fol-

lowing

~ r - ar ~~ K ~

Pk Pk (Pk PT (4.24)

=Fr

where Fr is a (n x 1) vector. The problem with solving equation (4.24) comes from the

rank deficiency of (k- XrM). For example, we can express the eigenvector derivative as

a linear combination of all nominal eigenvectors

= i $jai = <~Da (4.25)

where a is a vector of arbitrary constants that we have to find. If we plug in this expres-

sion as is into equation (4.24) and pre-multiply by 4 , we get the following

<D (K - ArM)Da = [A - ArIla = CD Fr (4.26)
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which in detail looks like

x1 an

ari n -r

Xn

_ 1 Xr (XrXr)

a,

a .r 4)TFr (4.27)

(in -Xr)

where we notice that the rth element on the diagonal is equal to zero (Xr - Xr = 0). From

(4.27), we can see that the i th element of the vector a can be express as

~ T

a, = (i i F r ,
(Ai-Ar)

for i # r (4.28)

where Fr was defined in (4.24). So, all the elements of vector a can be found except ar

since when we write explicitly Fr in (4.28) and apply the orthogonality principle and the

definition for aXl/apk from (4.14) we get

rT Frar = r Fr
(Xr -Xr)

axr TM ~ T aK ~ M) ~
p - r M -r - p krry r

(Xr - r)

axr axr

ak aPk 0
=

(4.29)

which constitutes an indeterminate situation. Hence, we need an extra procedure to find

the term ar.

To resolve this problem, we can rewrite equation (4.25) as a linear combination of (n - 1)

nominal eigenvectors, for which we can find the associated coefficients, ag 's, plus the

product of an indeterminate constant, ar,, and the remaining eigenvector as follows

r _
n

bga, + 4 rar = Vr + brar

ir

Vr

(4.30)

Notice that Vr is orthogonal with 4 rar with respect to the mass matrix since

-_.
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K T

V,. y., = ai O a,.
r~~~~ i~r r a frr

n

=~ aga,.4M4r = 0a
i= 1
i~r

where, by the orthogonality principle, 4i M, is always equal to zero for i # r.

Now, since I M, = 1, we get the following expression after differentiation

ar TFMr
akM$,.+$Or ak $r T aPk

TaM rT ar
= r ak $r + r2 M aPk

By post multiplying the above by Apk, it becomes

TaM T r
Or - APkPr + 2$r M--Apk

wPk apc

which can be rewritten as

T AM +2$~r 'kr +2r M(A4~r) k = 0

where the vector (A$r)k is the uncertainty contribution (or perturbation) on the rth eigen-

vector due to the uncertainty (or perturbation) on the parameter Pk and is defined as

E(Ar)k = rAPk = A~r
k k aPk

(4.35)

Substituting the expression for M from (3.2), and $r from (3.5) in equation (4.34) pro-

duces

( r + A~r) AMk(r + A~r) + 2(4r + A$r) (M + AM)(Ar)k = 0 (4.36)

which after expanding and neglecting second and third order terms becomes

T T
$rAMbr + 2$r M(A$,.) = 0 (4.37)

(4.31)

(M$,) _

aPk =
= 0 (4.32)

= 0 (4.33)

(4.34)
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Dividing by Apk, using the definitions for AMk and (AOr)k from (4.8) and (4.35), yields

O, - ,.-+ 2 r M-- = 04 3pk d p2 (4.38)

Substituting the expression for ar/apk from (4.30) into (4.38) gives

(4.39)

which can be reduced by using the orthogonality condition described in (4.31)

(4.40)

From the above expression, we finally obtain the expression for the indeterminate coeffi-

cient ar

1- TaM
ar 2 r 4 r (4.41)

After the expressions for all the linear combination coefficients ai's in (4.28) and (4.41)

have been found, they can be substituted in equation (4.30) to obtain the complete expres-

sion for the mode shape derivatives

n - -T
-~r y QOi Fr

aPk i X 1 i-r)
i#r

+ Qr - -
2 apk

(4.42)

where replacing Fr by the expression from (4.24) leaves us with

n -~ T -a, ~ K
- = Q, ~r Mi ,-- - -

aPk X i - r Pk aPk jPk)
i r

r I

Applying the orthogonality condition reduces the above to

r r+ 2 r,.(Vr+ Ora,. = 0
aPk

T aM - T- -
r -- r+2'2r M(rar = 0

aPk1

+ arQ,.- 4,.r ,
2 pk

(4.43)
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aor -=

apk

n ~T
- $~ ~aK - A $r - ---

i%'Xr - Ai aPk k) 2 p
i#r

(4.44)

Which can be written

2.11) as follow

in a more compact form using the Kroenecker delta function (see

, " ~T 1 ir K ~M 8ira M
-k $i$,~ ~ - r(4.45)

P A i=1 Xi Pk jp 2 ap

Using equations (4.19) and (4.20) in the above expression, we get the following results for

the eigenvector sensitivities evaluated at the nominal parameters

(4.46)

Example

In the two subsections above we have found useful expressions to compute the eigenvalue

and eigenvector sensitivities (evaluated at the nominal parameters) with respect to the

modal mass and stiffness parameters. The resulting expressions (4.21) and (4.46) are easy

to compute as we will see in the following 3-DOF example.

For a 3-DOF system (n = 3), <D, m and k are all 3 x 3 matrices, and the modal parame-

ter vector p, as defined in Chapter 3, would contain the following elements

] Tp = Im11 M12 M13 M22 M23 M33 kit k12 k13 k22 k23 k33 71 Y2 Y3]

-r ~ Ar, if Pk = mir

r = if Pk = mrr

0,i 
e rfPkwkir

Xr-

0, otherwise

(4'47)
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We recall that since both modal matrices m and k are symmetric, we only use their upper

triangular elements as parameters. Also, since the eigenvalues and eigenvectors are inde-

pendent of the damping, their derivatives with respect to the y,'s are zero. Therefore, for

simplicity of notation in this example we will consider only the derivatives with respect to

the mass and stiffness parameters. Hence, by applying equation (4.21) we obtain the

eigenvalue sensitivity matrix

( axrPk
Sax

[-xi
= 0

0

ax I ax1I axI a), IaxI
am1i am 12 am13 am22 am2 3

A2 a12  A 2 ax2 ax2
amil am12 am 13 am22 am23
ax3  0X a 33 aX3
am 1 am12 am 13 am22 am2 3

00 0 0 0 10000 0

0 0-X 2 0 0 000 10 0

0 0 0 0-X 3 00000 1-

axI
12

A12

a12

ax
3

12

ax,
ak

13

ax
2

ak
13

ax
3

ak13

ax1
ak

22

aX
2

a22

aX3
a22

ax,
k23

A2

a23

ax
3

k23

k33a12
ax2
a33

aX3
R33

(4.48)

where the indices r and k for the rth eigenvalue and kth parameter correspond respectively

to the ith row and jth column (Eq. C.11) of the sensitivity matrix (r = i = 1, ... , n and

k = j = 1, ... , (n2 + n)).

Similarly, the eigenvector sensitivity matrix can be obtained by applying equation (4.46)

a~, a~1 ao,
am, am12 am13

a 2  a02  a$2
j am am12 am13

a$3 a$3 a03
am, am12 am13

-
0

0- 0
22

0 0 -

0 0 - 3 0I

ao, a~l ao,
am 22 am 23 am3 3

a02  a$2  a$2
am 22 am23 am 33

a 3 a03 a03
am 22 am23 am 33

a~1  a~, a~1
Ali ak12 ak13

a$2 a$2 a$2
ak11 ak12 ak13

a$3 a$3 a$3
ak1, ak12 ak13

a~, a~, a~,
522 

23 ak33

a$ 2 a0 2 a0 2

22 ak 23 ak 3 3

a$ 3 a$ 3 a0 3
ak22 ak23 ak33

(4.49)

C k

0 0 0 02 0 0 0 0

0 , x-X2 XI -X3 -

0 0 0 0 0 ~3 0
A12- X32-XI X2-X

2X3  0 0 0 ~ 2 0
A3-A22 x3-x1 i3-A 2
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where we recall that each of the eigenvectors, $,, has n = 3 elements

[ Ir

#r = 2r

03r

(4.50)

which means that all of the elements in (4.49) are themselves three element vectors

Or O1r k9rlaPk
rr [a0laPk1

aPk -Pk

03r La03rlaPk

(4.51)

Therefore, the complete expression for the mode shape sensitivities (from Eq. 4.49) would

look like

- 11 - 12A1 _ 13A1

2 x 1 - i 2 A1 -A 3

_21 _ 22 1 _ 2351

2 Al - i 2 X1 --X 3

$31 4 32 51 _ 3 3X 1

2 Al -A2 A -A3

0 2 
1- 2  0

0 - 0
0 2 0

X 2 - X
0 2-31 2 0

0 0 ~ 1 1X3

i3- 1

0 0 -

X 3 -X 1

0 0 31 3

i3- 1 I

0. 0

0 0

0 0

_ 12 _ 13X2

2 A2-X3

_022 _ 0 23X2

2-X3

0 0 $12

1-X 2

13

X1 -X3

0 0 022 23
A1 - 2 A1 -i 3

0 0 ~32
A-X 2

0

0

$32 
3 3 \2 0

0 _0 12X3  013

3-A2 2

0 022X3 023

3- 2 2

0 _ 3 2X3  _33_

E3-E 2 2

0

~ 0 2X2 -X1

0 0

0 0

~ 3~ 0
1-X3

0 0

0 0

0 0

0 0 ~ 1~ 0X2 -X3

0 0 023 0
X2- X3

E2-X3
~ i~ 0 ~ 12 0

A3 -A 1 X3 -X 2

~021

X3 -l X

0 0 ~031
i3 -A 1

0 ~22 00X3 - 02

0 ~32 0
03 -A 2

0"r-) (4.52)
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4.1.2 Frequency Response Function Derivative

For control design purposes, it is useful to evaluate the uncertainty range on the magnitude

and phase of the frequency response function (FRF). In this section we will derive the FRF

sensitivity with respect to the modal parameters, Pk 's directly from the forced equations

of motion, as well as from the FRF state-space representation which is more useful from

the integrated model framework perspective.

Equations of motion derivative

Assuming zero initial states, the transformation to the frequency domain of the forced

equation of motion in modal form (2.14) is given by

[(A -oI2 )+ jo ]N(jw) = P(jw)N(jo) = (D $uU(jot)+1 $TwW(jo) (4.53)

where

2
P(jw) = [(A - m2I) + joE] (4.54)

and N(jw), U(jo), and W(jo) are respectively the Fourier transforms of the vectors

'q(t), u(t) and w(t). This means that the modal states, N, as a function of complex fre-

quency (s = jo) are given by

N( jo) = P uU +P~ $wW (4.55)

Since the outputs are given by

Y(jw) = CYXON(jo) (4.56)

Z(jo) = CZX(N(jo)

we get the following expression for the FRF
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z
y } _ CzxDP~ -1 DTw C (DP~j bD Tu

C DP -- - -C D- - - -
icxp-1()T PWCIifj )T U~L~y~P~wIyxP Ti

{W
U

= zx (-- D T [ ]
L c Yj

G(jo) - [Gzwjo) Gzu(jo)

G,,(jo) G,,(jo)

(4.57)

I

(4.58)C x Op-1 4T(,
-C J

The derivatives of the FRF, G(jo), with respect to the (scalar) modal parameter, Pk,

(assuming that Czx, C, , ,and $,, are not functions of Pk) is

C,__ (j)) +CT Pk

raP-(4 +rp-1 kCD 
] UIaPk (joSPk_

where aP-1 (jo)pk is given by

ap (jw)
aPk

= P-1 () P(j )p-1(jO)
aPk

and aP(jo)/aPk is obtained from differentiating (4.54)

aP(jo)

aPk

_ A a-E

aPk (OPk

= +j A Z +
P k aPk

I

2A 2a (4.61)

1)

= 1+ joA 2Z aA

)p 5P

I

+jo)2A
jPk

({

where

aG(jo)
aPk

(4.59)

(4.60)
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where A is the eigenvalue matrix, and Z is the modal damping matrix as defined in Chap-

ter 3. Evaluated for the nominal parameters, equation (4.61) becomes

1 '1

1 + joA Z + jw2A2 aZ (4.62)
pk jpk apk

and equation (4.60) becomes

aPk (j (4.63)

Therefore, the sensitivity of the nominal structural plant FRF to parameter Pk is obtained

by substituting (4.62) and (4.63) into (4.59)

3G(juo) _C aDTP_1 D T- IaP p- +T-1a<D p p (4.64)
Ap- K C YX Pk aPk apk

with the nominal expression for P given by

2 2
W(jo) = [(A- I) + jco] = [(A mI)+jw2AZ] (4.65)

We will not demonstrate it here, but we want the reader to bear in mind that when the

structure is base-excited, $, (or its equivalent) is then a function of Pk, as the disturbance

coming into the system depends on the system compliance, and should not be ignored in

the derivative terms (Chapter 4 of [Hasselman & Chrostowski, 1991]).

State-space form derivative

Equation (4.64) is very useful to compute the FRF sensitivities, but in an integrated model

framework, it is more useful to use the integrated model notation as was defined in

Chapter 2. Thus, in this subsection, we will derive the FRF sensitivity directly from the

expression for Gzd(s) (Eq. 2.32) reproduced below

Gzd(s) = Czd[sI - Azd]Bzd (4.(4.66)
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where Gzd(s) is the integrated plant transfer function from the white noise input signal,

d, to the performance outputs, z. The frequency dependent sensitivity of the system FRF

with respect to the parameter Pk, noted TGzdpk(o>) is obtained as follows (with s = jo)

aGz(djO) ( i(Czd(jwI - Azd) 1 Bzd)
GP( aPk aPk

-1
= (jwI - Azd)-1 BZd + Czd - AZd) Bzd (4.67)

aEk E~k

+ Czd( joI - Azd) -azd
apk

where

3(imI -A d)- (_13- lAzd -1 (.8
aok z Azd) 1a k (jwl - Azd) (4.68)

Substituting (4.68) into (4.67), and evaluating for the nominal parameters, yields the sensi-

tivity equation for the integrated (nominal) system model

-a~w C d - -1 - I1 -~d a~k (469
TGzP ~ (( Azd) Bzd+ ezd(ij)O~Azd) -j(OI-Azd) zd+ ezd(jOI-Azd) -d

which, since Bzd is independent of p, see equation 2.30 for Bzd, reduces to

aCzd - -1aAzd -1h
TGP(w) = wk - zd) Bzd + Czd( joI - Azd) -jpEk (foI - Azd) Bzd (4.70)

We recall that the parameters in vector p are defined as

PkE mr k 1qr Y- for r n (4.71)
q - 1 .. ,r

where the m qr 's and kqr 's correspond to the upper triangular elements of the modal matri-

ces, and the Yr's are the transformed damping parameters. We can see that, except for the
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Yr 's, the parameters Pk do not appear explicitly in the state-space matrices Azd' Bzd, or

Czd. However, the eigenvalues in A and the modes shapes, <D, appear explicitly in Azd

and Czd, and do depend on the Pk's. This parameter dependence can be expressed in

functional notation as

Azd - Azd(A(p),<D(p), Z(p)) (4.72)

Czd Czd( (p))

The matrix derivatives and - need to be computed. Bzd is independent of p. By
aPk aPk

invoking the chain rule (Appendix C.2) and based on the parameter dependence expressed

in (4.72), the derivatives of Azd and Czd can be expressed as

aAzd N aAzd aXr aAd a AzdAY r= r+ qr (473)
apk r1 axr aPk q qr Pk +'Yr aPk

aCd N n - c aq

a = I 1 0 Z 0 (4.74)
Ek r= lq= 1 aOqr _ r

since, as defined in (2.30), where Dzw and Du are both zero. Also, in the above expres-

Czd = [DZWCd CZ DZUC]

sions, N is the number of modes kept in CD, and n is the number of DOF's. N and n are

different in the case where we have truncated some of the modes (N n ). In order to eval-

uate expressions (4.73) and (4.74), we will first compute the derivatives with respect to

pk, namely 'Oq, LX r, and , the mode shape, eigenvalue, and damping parameter deriv-
a~k a~k aPk'

atives. We already have obtained the expressions for the eigenvalue and mode shape deriv-

atives in expressions (4.21) and (4.46), and the expression for the transformed damping

ratio derivatives is trivial.
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Yr _ '

aPk 0,

if Pk = Yr

otherwise
(4.75)

We now need to compute the state-space matrix derivatives with respect to eigenvalues,

mode shapes and modal damping ratios (i.e.: -5., ,A- -A-, and z ). Before we per-
a3Ad aAzd r aor&r 4qr

form the computations for and about the nominal plant, we recall that the inte-
axr

grated model dynamic matrix, Azd, as defined in equation (2.30), is of the following shape

Azd =

Ad 0 0

0 1/2 0 cc
rDTO Cd L-A -2ZYA _ DT C

L0 _ BCcyx[( 0 AC

(4.76)

where Z = Zy as defined in Chapter 2. Using the above definition, the following deriva-

tives (evaluated for the nominal plant) are easily obtained by inspection.

0

[0
_(1)0

0

0

K-1/2 e,

0]

0

0 0

acz
(4.77)

0

0
aAzd

axr

0
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0

0

0

0

0

0 0

0

~1/2
-2Ar e

ir

0]

0 0

0

0

z - [ 0 ]
ac -r 0

(4.78)

Sparse matrix representation may be necessary to use while implementing these computa-

tions in order to reduce storage requirements and speed up the code [Gutierrez, 1999]. The

derivatives with respect to $qr are also easily obtained by inspection.

0

0 C
nxN )T P d
q,r)w]

0

0

BcCyxI inx N ]

ac =
a4oqr 0 Czx [(1,x N) 0 (4.80)

where we define the term (I rN) as an n x N matrix whose entry corresponding to the

q th row and the r th column is 1 and is zero elsewhere.

FRF Magnitude derivative

In order to propagate the uncertainty to the magnitude of the FRF Gzd(jo), we have to

compute explicitly the derivatives for magnitude, H, given by

1

H(O) = |Gzd(jo)| = (Gzd(jo)Gzd(-j0)) = (GzdGzd) (

aA

_Y r

aAzd

aqr

0

0

n 0 T c

(4.79)

1I

(4.81)
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where the notation (.) designate the complex conjugate. Taking the derivative of the mag-

nitude with respect to the parameters Pk gives us the magnitude sensitivity

TH(0)) aH(o) 1 [aG GzdGzd (4.82)THk p~ 1/2 a Gd Ga 3(482
aEk 2 (GzdGzd) . k Gk

where we already have obtained the expression for aGzd in Eq. (4.70). Often times for plot-

ting purposes (e.g., Bode plot), we like to have the magnitude expressed in decibels [dB].

To propagate the uncertainty on the FRF magnitude in dB, we will have to compute

explicitly the sensitivity in dB. A bell is the logarithm of the ratio of two measurements of

power. A decibel is one-tenth of a bel and is given by

(4.83)

dB = 10 log 0 "z()I

Thus, a doubling in the spectral density of a signal for example corresponds to an increase

of approximately 3 dB, since 10 logio(2) 3.01. For quantities that are not powers, or

powerlike in having units of z 2, the decibel is defined to be 20 times the logarithm of the

ratio. A doubling of voltage, for example, corresponds approximately to 6 dB. The magni-

tude expressed in dB is thus given by

HdB(O) = 20 logo1|H(w)| = 20 InH(w) (4.84)
Tn 10

Taking the derivative with respect to Pk produces

1. named after Alexander Graham Bell (1847-1922)
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a 20 InH(o))
aPk Inl0 )1

20 a( InH)
In10 aPk

20 1 aH
SIn1OHaPk

where replacing a-
tivity

from (4.82) yields the final expression for the magnitude in dB sensi-

TH(o) = =---10Gd + G 1
HdBpk aPk In 10- GzdGZd _ ap, z z aPk _

H2(H 2(w)

FRF Phase derivative

The transfer function can expressed into a real and a an imaginary part as follows

Gzd(jo) = Re{Gzd(jo)} + jm{Gzd(jo)}

where the real and the imaginary parts of Gzd are given as

Re{Gzd(jo)} = [G (jo)+ Gzd(jo)]

Im{Gzd(jo)- = Gzd(j)-Gz(jo)l]

Thus, the argument (phase) of the FRF in [rad] is calculated as

Im{ Gzd(io)} ~ 1i-z
(p(w) = ZGzd(jo) = atan =Re{ Gzd(j I atan Gzd -

Re{I Gzd(0o)} _j(Gzd + Gzd )

Taking the derivative with respect to the parameters, Pk , gives

aydB(O))

aPk
(4.85)

(4.86)

(4.87)

(4.88)

(4.89)
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a<p(<O) _ 1 a [Gzd - Gzd

aPk 1+[Gzd G- 2 P j(Gzd )

.j( Gzd + Gzd ).

-
2

[ j( Gzd + Gzd )]
j(G +Gzd ) [a azd j(Gzd -Gzd )aGzd +

.Ok aPk aPk aPk

[j(Gzd + Gzd) 2+ [Gzd - Gzd2 [j(Gzd + 2

-Gzd aGzd -- G --- Gzd1 F aGzzdI G -GGZd
jiGz d G +Gdp -Gzd p -j G pk +Gzd - Z;dak Gzdy IIZ~ Ok aPk aPk J Lk ]~ k Pk aPk

(4.90)

-[Gzd ZdI + [Gzd - Gzd]2

2 Gzd - G .kzdaj2
j2 G d pk Gzd aP j2I

- r 2 + 2 GzdG + [ 2Gzd2d +G 2
zdzd Gzd I + [G zd GzdGzd + zd

...3 Gzd aU&
zd ap - Pk j

- 4
GzdGzd

which reduces to the final expression for phase sensitivity

aGzd - Gzd
jGzda -_Gz

a(p(w) _P ___ _ _ _ _ _T ( )= B Pk40 Ik
aPk 2 GzdGzd

H2

(4.91)

4.1.3 Performance RMS Derivative

The performance RMS sensitivities are most useful from a structural design point of view.

As an important step in the performance uncertainty analysis, they help the designer to

build confidence whether or not the design will meet the requirements. (e.g., if the nomi-

nal model meets the specifications, what is the probability (range of confidence) that the

actual plant will meet these requirements). The sensitivity analysis can also point the

designer towards possible performance enhancement alternatives [Gutierrez, Bourgault &

Miller, 1999].

From equation (2.45) we can see that it is not possible to obtain a closed form expression

for the sensitivities of the individual performance RMS, a4, with respect to our modal

parameters, Pk' because they do not depend explicitly on the state covariance matrix, Iq,
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which is the solution of the Lyapunov equation (2.43). An alternative way to compute the

performance RMS derivatives, , is to use the so-called Lagrange multiplier with the

Lyapunov equation being the constraining equation. Similar developments are presented

in [Gutierrez, 1999]. We start by computing the Lagrangian of the variance (RMS

squared), 2
CZi

() = Cz C T + tr Li(Azd + . AT +BZdB)

q { J (4.92)
CYzi

where the notation (.)L denotes the Lagrangian, and Li is the symmetric Lagrange multi-

plier matrix for the ith output performance. Li is obtained by solving the following

Lyapunov equation

LiAza+ A TL + C TCZd = 0 (4.93)

which is also referred to as the dual form of the Lyapunov equation (2.43) reproduced

below

Aza q + qA T + Bzd B =0 (4.94)

Taking the derivatives of (4.92) with respect to Pk gives the following expression for the

variance sensitivity

___ [ a(C T Cd)] (3A_ +( B T
=a t (CqaCzdi) +zd aAfd a(BzdB d)

aPk- tr +tr Li + q + (4.95)

The above expression is very general and could be used to perform sensitivity analysis for

various parameters p, modal or physical. It requires to solve two Lyapunov equations,

namely (4.93) for L, and (4.94) for Xq (which we had already solved during the nominal

performance assessment). The sensitivity for the global cost, J, as defined in (2.46) would

be obtained in a very similar fashion with the following equation
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__J a(CzdCzd)
- tr C

apk q aPk

r aAzd+tr{L q +
apk q

A T a(BzdB )
S + k

a4 3p pk

where Iq is again obtained by solving (4.94), and the global Lagrange multiplier, L, is the

solution of

LA + A T L + CTdC = 0 (4.97)

For the modal parameters Pk 's as we have defined them in Chapter 3, and the state-space

notation for the integrated model defined in Chapter 2, equation (4.95) reduces to

a(Czd Czd)
= trTI z(C zd )

q aPk

= tr al zpk Czdi( aC

(Azd+Li Lq+

T aCzdi
+ i Cz )

aPk

+ L aAd
ak 1dq

as Bzd is completely independent of the Pk 's. In order to obtain the derivative for the per-

formance RMS, we use the following calculus identity to express how it relates to the vari-

ance sensitivity.

[2 =
() y(x)] = 2 y(x) -[y(X)] <=-> [ yWx)]ax

= 2(x1)
(4.99)

The sensitivity of the RMS value, rz,, is computed as follows

_ z 1
- - -tr

aPk 2aczi

aI C
Iq 'kC zdi

a Pk zi

ra Czd<
+ CTd azk) '(Azd

+ ak

which evaluated for the nominal plant is written

(4.101)

(4.96)

a p 2

aok
(4.98)

+ zd
SaPk

aRMS(z;)

aPk

aA[T -
+ a 4.100)

o Pk),

aRMS(z;) c1 CK T aCzd A aA d
= -- tr i 'CZ+ Cd, + T k) Lak + d

apk 20y,, I apk ' ~Pk SPk)
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dAvt aCzd
where the necessary derivatives and have already been computed in

a~k aPk

Section 5.1.2, and the nominal state covariance matrix and the nominal Lagrange multi-

plier are evaluated from the following (nominal) Lyapunov equations

AzdXq + Y2qAzd + BzdBzd = 0 (4.102)

Li zd + Azdi + CzdCzd = 0

4.2 Second Order Derivatives (curvatures)

Most of the uncertainty propagation techniques that we will present in Chapter 5, make

use of the linear approximation (Eq. 5.2). For this approximation to be valid, the curvature

terms must be small. In other words, the second order terms must be negligible compared

to the first order terms. That means that, in the following series expression for a perfor-

mance output variable u (FRF or performance RMS),

2
U = +3Ak 2Ap + H.O.T. (4.103)

the second order terms must be much smaller than the first order term.

au la2u 2 (4.104)

In fact, the smaller the ratio, E, of the second order term over the first order term, the bet-

ter the approximation. Also, by setting a limit on E , e.g. 1%,

l au 2

2 2 
4k

I ~ =Nk 0.01 (4.105)
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we can specify the accuracy of the linear approximation. The error bound on the linear

approximation provides us with a bound on the kth parameter uncertainty, Apk , that must

be respected to preserve the linearity of the system (for our accuracy specification).

Diu
2-

Ap| (.0) k (4.106)
JA~j (-0) -a u

ap2
pk

The above expression can be used in the uncertainty analysis to determine the range of

uncertainty in the parameters Pk which is allowed for the linear approximation to be valid.

Determining the range of validity of the linear approximation is even more important for

the uncertainty propagation. It is well known that linear systems with normally distributed

input parameters have outputs that are also normally distributed [Gelb & al., 1974]. The

implications of this statement are great for our uncertainty analysis as the uncertainty data-

base presented in Chapter 3 assumed normal, or Gaussian, distributions of the uncertain

parameters. This means that the distribution of the performance outputs (RMS and FRF)

are also normal as long as the bounds of Eq. 4.106 are respected.

Caution: Notice that the series expansion, as described in equation (4.103), is valid for the

case where the function u is dependent on one parameter only. To be accurate, for the case
2

where p contains multiple parameters Pk , mixed derivative terms, a p , should appear

in the expression as follows

NN Np 2

U = + a pk N N 2 Ap a2 Ap+ H.O.T. (4.107)
k=1 k=lj 

where N, is the number of uncertain parameters in the vector p. This expression can also

be written in a more formal way as

u = n+Vu Ap+ Ap HAp+ H.O.T. (4.108)
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where Vu, the gradient of u, and H, the Hessian matrix, are defined as

au a U32ua 2 2. PIO

Vu= H= : .. (4.109)

au a 2  
a2u

LaPNP aPN apI a 2

For the purposes of determining the range of uncertainty in the parameters Pk that pre-

serves the linearity, we assume equation (4.106) is adequate. We have obtained the first

order derivatives in Section 4.1. We will now derive the second order derivatives for FRF

(magnitude and phase) and performance RMS necessary to evaluate equation (4.106).

4.2.1 FRF Second Order Derivative

The Taylor series for the FRF looks like

= G aGzd(s) 1a2 Gzd(s) 2
GZd(s) Gzd(s)+ 2apAp +... (4.110)

ak

and based on Eq. 4.106, for a given parameter uncertainty size Apk, we can determine if at

a certain frequency the linear approximation is valid and therefore, determining the fre-

quency range for which the linear covariance propagation can be used.

1 a2 Gzd(s) aGzd(s) (4.111)
- 2 APkl < zd_(.__

ak aPk

We have found already found an expression for the first derivative of the FRF in equation

(4.69). We now have to find the second order derivative, which is done by differentiating

Eq. 4.69 and using the identity of Eq. 4.68.
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a 2Gzd(s) = (2 Czd aCzd + zAd aC aBzd

ap2 3P 2 zd aPk F Pk FBzd F aPk

+ CFzd +FB + CdFa2 FB + C A- zd zdF B

+~ aPk Fzd+ Fd aS Pk d z ap FB +CF Fzd +zdF Pk Fapk Fzd +C d apPk a)

+ C -z d 3 B z d + z d a z d 3 B z d C d p2B z d ) kPk 
F Pk 

aPk 
+P k +C

(4.112)

where F(s) = (sI - Ap)-1 is used to simplify the notation. Collecting terms,

2Gzd(s) =2Czd +Czd 4zd a Bzd d azd

2FB+2 p F apkFB +2F Pk + 2 CzdF Z F Pk FBzd

Pk ak a2 AzdF + C FaA zF a zdC Fa 2Bzd (4.113)
2 zd z 2 zda Bzd zd

+C F aPk a Pk + ap

Based on our integrated model notation and the definition of the parameters Pk, we find

that the matrix Bzd is completely independent of the Pk 's which simplifies Eq. 4.113.

Therefore, provided that we can obtain the expressions from differentiating Eqs. 4.73 and

4.74, the FRF curvature, evaluated for the nominal parameters, is obtained by

a2 cFBz+2 F a FB +2CzdFF FB +C FdaFB d4d4)
2 ZPak aPk FB Zd FZF zdF dFzd (4.114

ak kp Tzd +~ + C' aPk aPk zd aPk

where we refer to Section 4.1 for the first order derivatives for Azd and Czd. To obtain the

expressions for the second order derivatives -2 and -f , the second order derivatives
aPk aPk

for the mode shapes and eigenvalues with respect to the modal mass and stiffness elements

need to be computed. More research needs to be done to obtain these expressions and their

derivation is included in the subsequent future work.

4.2.2 RMS Second Order Derivative

In order to compute the performance RMS second derivative with respect to PkI we need

first to compute the second derivative of the variances, a [Gutierrez, 1999]
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32 2 2,
____ aa'

2 (4.115)
apk aPk aPk

32
where as we have determined in (4.98), z' is a function of the state covariance matrix,

~Pk
Iq, and the Lagrange multiplier, Li, both of which do not depend explicitly on Pk as they

are solutions to Lyapunov equations. One way to get around this problem would be to use

the Lagrange multiplier technique, like we have done in Section 4.1.3, and treat the two

Lyapunov equations (i.e., equation (4.93) for L;, and (4.94) for 1q) as constraint equa-

tions

acy2 L 
aa2

= + tr Mi,k (A +A TL+CT CzI

(4.116)

+ tr Ni, Mzd + ZAT +B B) }
where the Lagrange multiplier matrices Mi k and Ni k depend on the performance metric

2 2

of interest, zi, and the modal parameter of interest, Pk. Another way to obtain -' is to
3 2  3 2

start directly with the expression for -i given in (4.95) and write out the derivative
aPk

explicitly as

322 C 2T 2CTCz 
a 2CZ. qcd T ~d aCd aCzdj

2 traP aPk Czd,+ Czd kd) + p2 Cd + 2 P k + Czdj k2
akak aPkk k

IaaA aA T aB T

+tr L Ly +X + B +Bzd zd
~aPk~ aPk q -~;; aPk Z Pk) (4.117)

+tr L{ l: + aAZd+ z + 2 j
aPkaPk +aPk aPk q +Pk

[JBdT a 2aB B T
+trtL(a2BzdB+ 2a-d&--+B zd),Jap d akaPk z aPk 2
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B 2B
With our definition of Bzd, we have = aBzd = 0 and the above expression for the sec-aPk 2

ond order derivative of the variance, ayz, can be reduced and evaluated for the nominal

parameters as follows

2 rr 2 C 2  ca a2

a a q = ( zd ~T ICzdi ~ ' 2Czd ~ 2Ck DaCzd ~ T Czdj
2 aP C CPk zdp* + zdi 2

a3k L +2-, ~C(.

raLj(aA,7AZ aA~i] (4.118)

where, as described in [Mallory, 2000], the derivatives for Li, and I can be obtained as

follows. First, for the state covariance matrix derivative, we start by differentiating the

Lyapunov equation (4.94) with respect to Pk

a (T T

ak zd q + + BZdzd Bzd

aA TE al 7TABB rd I+Azd + A+X + a Bzd T + B zdP ~ a ~ q a + aPk Z aPk=0

(4.119)

which, if we rearrange, we realize that we can obtain -q simply by solving another type
aPk

of Lyapunov equation.

Azd aAzd + aB +Bzd

aPk q+q aPk aPk zd Pk =0
(4.120)

B
which for the nominal parameters (with -d= o) is written

(4.121)

The derivative for the Lagrange multiplier is also obtained the way by differentiating

explicitly the dual Lyapunov equation (4.93)

A ayq S T +
Ad- + dp a+
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A T T

pLA~ + A zdL+ Czd Czd )- =O

aL a 3T ac T aC (4.122)
Li A ALzd Uzd L AT aEi CzdjC +T Czdj=>-Azd + L + L;+ A + Pk +C ' 0

p d Wp ap dp zdzd zdj -- Pkj3Pk 'a k + Pk j~ kZdi

By rearranging the above expression we obtain another form of Lyapunov equation for

which is the solution.
aPk

L 7 Li Ad aAT cTC T aczd
-Azd+Azd'~~+ + L+ Czdi =0 (4.123)

Pk aPk aPk aPk aPk aPk

which evaluated for the nominal parameters is written

-T 3L~K.aAZd, aJAT CT Tz o
a z a L d Czd . zdCzd
Ap zd+Azd I ap+ ap L p 'zd.+ z aPk

(4.124)

Now that we have all the elements necessary to evaluate the second derivative of the per-

formance metric variance (Eq. 4.118), we need to find the expression that will tell us how

it relates to the second derivative of the performance RMS. First, as we have determined in

(4.99), the relation between the variance sensitivity and the RMS sensitivity is described

as follows

32
z' - 2a !' (4.125)

-p zapg

Taking the derivative of the above gives

3202 2 2

z' = 2 ' + 2a z (4.126)
32 (Lk 43p 2

from which we solve for the second derivative of the RMS and obtain
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_2az. 1 r z 22-
2 - 2 -'p) (4.127)

aPk 26 2 aPk

an expression that depends only on the sensitivity of the RMS (Eq. 4.101) and the second

derivative of the variances (Eq. 4.118). Therefore, we now have everything for computing

second order derivatives of the RMS. Using equation (4.106) will tell us the range of

uncertainty for which the linearity of the system is preserved and hence the Normal distri-

bution of the performance RMS distribution. Knowing the shape of the probability distri-

bution function is very useful because integrating under the curve will give us the

cumulative distribution function (CDF) used to determine the probability that the require-

ments will be met. These results will be illustrated on two sample problems in Chapter 6.

4.3 Summary

This chapter presented the derivation of first order and second order derivatives of the fre-

quency response function (FRF) matrix and the performance RMS of a linear time invari-

ant system with respect to modal parameters p = [m, k, y]. The first order derivatives are

necessary for uncertainty propagation as presented in Chapter 5. The second order deriva-

tives are used to establish parameter uncertainty bounds Apt within which linearity is pre-

served. This is essential since the assumed normally distributed uncertainty parameters

will lead to a Gaussian distribution of the performance RMS and FRF magnitude and

phase.
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Parametrized models can be classified as being analysis- or measurement-based [Hagood,

1991]. The analysis-based model is developed using assumptions on system properties

and the nature of component interactions. The measurement-based model is generated

based on identification of measured data. That is, the response of the system is measured

after a known input is applied. Hence, the measurement model is obtained mathematically

by fitting the data [Jacques, 1994]. These two model types are in some sense complemen-

tary: measurement-based models provide the accuracy which analysis based models lack,

while analysis based models provide more insight into the structure of the system.

The approach for generating a parameterized model depends on whether the model is

measurement- or analysis-based. It is important to consider the nature of parametric uncer-

tainty. In general, uncertainty can arise from four sources: errors in the values of system

parameters used in the model, unmodeled dynamics, neglected nonlinearities, and

neglected disturbances ([Skelton, 1989], [Campbell, 1996]). A key concept for evaluating

the merits of a given uncertainty representation is the idea of conservatism (i.e., the degree

of uncertainty attributed to each parameter). The conservatism of a representation can be

reduced by tracking the correlations of the uncertainties in the model rather than modeling

correlated uncertainties as statistically independent. Averaging the performance cost over

the model set allows it to reflect the effects of parametric uncertainty on the system perfor-

mance.

119
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In Chapter 3, we expressed the modeling uncertainties in terms of modal parameters

(m, k, y ). One of the advantages of doing so is that it becomes very easy to propagate the

uncertainty through the model to evaluate either the eigenvalue and eigenvector uncer-

tainty, the frequency response uncertainty, or the performance cumulative RMS uncer-

tainty.

5.1 Current Design Practice

In the preceding chapters, we have described the different steps involved in deterministic

jitter analysis, which summarized the current design practice. In brief, a detailed FEM

model is first constructed to generated the mass and stiffness matrices. Then the undamped

modal characteristic of the structure are determined (an eigenproblem is solved). It is gen-

erally assumed that spacecraft are lightly damped [Ewins, 1984]. Then, based on engineer-

ing judgment and past experience, the modal damping ratios are specified. Finally, for a

given disturbance (e.g., reaction wheels and their dynamic imbalances [Masterson, 1999]),

a closed-form solution is obtained to predict the appropriate dynamic response quantities

such as pointing, wave front tilt, optical line difference, or line of sight errors [Gutierrez,

1999]. These initial performance predictions are referred to as the nominal performances.

That is where the analysis typically stops if the model predicts that performance require-

ments are met.

However, preliminary model predictions, although useful for comparing qualitatively

competing design architectures, are not suitable for making absolute performance predic-

tions. It is important to perform a disturbance analysis to determine the error bounds

around the nominal performance values. Figure 5.1 illustrates the dangers of not meeting

the requirements even when the nominal predictions are within the bounds of the require-

ments.

Given a particular nominal design and uncertainty level, the ultimate question the designer

wants to answer is: "What is the worst or best possible performance I can expect from my

system, and what is the probability that the actual system will effectively meet the require-
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2 3 4 5 6

Figure 5.1 Example of uncertainty bounds for different designs.

ments?" For example, a system having its worst case bound outside the acceptable range

might still constitute a valid solution if the probability of getting such worst case perfor-

mance is sufficiently low. Therefore, in addition to determining the worst (and best) case

performance, the capability to estimate the non-deterministic performance distribution

would be very useful.

Hence, following the initial disturbance analysis, the steps involved in performing the

uncertainty analysis are as follows:

1. Perform a parametric sensitivity analysis of the performances due to changes
in the calculated modal parameters (modal mass and stiffness matrix ele-
ments, and transformed modal damping) as described in Chapter 4.

2. Based on the final sensitivity step in the deterministic analysis, identify
parameters which significantly affect the computed magnitude of the output
variable of interest. The sensitive parameters can now be identified as "ran-
dom" parameters or random variables (RV) of the problem at hand.

3. Statistically characterize each chosen RV, e.g., mean, variance, probability
density functions (PDF).

4. Formulate and solve the resulting random vibration problem.

5. For a given analysis confidence level (i.e. 2o , 3a equivalents), calculate the
performance output (e.g., OPD or LOS error RMS).

6. Integrate under the distribution curve to get the probability of failure.
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In this chapter, we will describe the following techniques, each having its own merit, to

propagate uncertainties through the dynamic model of the system:

* Monte Carlo numerical simulation;

e linear approximation based on Taylor series expansion;

e linear covariance propagation method;

* extensive search of all "corners" of the uncertain parameter space (vertex
method) for evaluating functions of interval (fuzzy) variables; and

e constrained optimization.

5.2 Monte Carlo Simulation

For simple systems with a few degrees-of-freedom and only several uncertain parameters,

given the probability distributions of these parameters, it is possible to compute the proba-

bility distribution of the predicted performance, if not in closed-form then, at least, numer-

ically. For larger models, however, such solutions are not feasible. Therefore, in order to

validate a particular uncertainty propagation methodology, it is useful to compare its pre-

diction to the results from an exhaustive random simulation.

The Monte Carlo simulation consists in obtaining the performance distribution by averag-

ing the performance outputs over a large ensemble of random plants. These plants are

computed based on randomly generated parameters. The larger the ensemble, the more

accurate the uncertainty prediction. For our sample problem in the next chapter, we will

perform such a simulation in order to compare the results of the different uncertainty eval-

uation techniques.

5.3 Linear Approximation Method

Based on the Taylor series expansion, this method is very straightforward. It uses the slope

(sensitivity) of a specific output metric versus an uncertain parameters. For a particular

perturbation size, the method provides the corresponding variation in the output. The

assumption is that the linearity of the system is preserved for the perturbation size.
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First, we define the vector u containing the variables of interest. The variables down-

stream from the modal parameters in the analysis flow are referred to as the "responses

variables" and include the RMS performance and the FRF (magnitude and phase).

u = u(p) (5.1)

The vector, u, which might represent eigenvalues, eigenvectors or frequency responses,

are expanded into Taylor series about the nominal vector, 5, such that

U= + Ap + h.o.t. (5.2)

The matrix, au lap, is called the sensitivity matrix and is designated T,,. The derivatives,

au lap, are particularly simple to derive when u represents eigenvalues or eigenvectors

and r represents modal mass and stiffness parameters (Chapter 4). Also, au lap is zero

whenever u represents an eigenvalue (undamped) and/or eigenvector and r represents

modal damping.

T au (5.3)Tup=Wp

Thus, by linear approximation, the vector of uncertainty Au = u - u is given by

Au = TUAp - (5.4)

The sensitivities can be calculated for various structural parameters, not just the modal

parameters as defined in Chapter 3. For example, we could compute the sensitivities with

respect not only to the physical parameters of the structure such as the physical mass and

stiffness of structural elements, but also for parameters such as characteristic length, mate-

rial density, temperature, etc. The accuracy of this method is very sensitive to the size of

the perturbations and is really only valid for small perturbations. Also, it does not provide

us with statistical information on the distribution of the output parameters, u unlike the

approach described in the following section.
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5.4 Linear Covariance Propagation

The linear covariance propagation builds on the linear approximation method to propagate

statistical uncertainty from a database. Between the database uncertainty propagation

methods described below, this is the most straightforward, economical, and generally

applicable.

5.4.1 Database Scaling

In order to be able to use the database described in Chapter 3, it must first be scaled appro-

priately for the particular nominal modal model under consideration. As we recall, the

database must be normalized to remove frequency dependence. Hence, the scaled covari-

ance matrix, Z,,, is obtained from the dimensionless covariance matrix, 1P., by appro-

priate frequency scaling. Given, I,,, in the form

mm Imi 0

1 1km Z i 0 (5.5)

IPP is obtained by multiplying the individual elements of Epp by the appropriate fre-

quencies to get the following form

mm Imk 0

,= Ikm Xkk 0 (5.6)

[0 0 In

As stated in Chapter 3, p, represents the covariance matrix of the modal mass, stiffness

and transformed damping parameters. It is in block-diagonal form, provided that the

damping uncertainty is estimated independently of mass and stiffness uncertainty, as is

usually the case in structural dynamic modeling. Therefore, when a particular element of

Imk corresponds to mgh and ki1, then
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xmhkij - O iJ Mhkij (5.7)

where the o are the natural frequencies corresponding to the square roots of the eigenval-

ues X. Similarly, when an element of Zkk corresponds to kgh and kgj, then

(5.8)Ekghkij g h i j kghiij

The corresponding scaling operations of equations 5.6 through 5.8 can be obtained by pre-

and post-multiplying the database covariance matrix by a transformation matrix, TP

I = T pp pp Tp p (5.9)

where the transformation matrix is given by
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(5.10)

where n is the number of modes in the database, and N = 1(n + n) corresponds to the

number of uncertain modal mass parameters (upper triangular).

5.4.2 Covariance Propagation

The covariance matrix of the output variable uncertainty Au is defined as

YIU = E[AuAuT] (5.11)
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which can be simplified using the linear approximation from equation (5.4).

S= T E[ApApT ]T T = T I T T (5.12)

To obtain the covariance matrix of the performance outputs, it is only necessary to pre-

and post-multiply the modeling error covariance matrix by the sensitivity matrix. The sim-

plicity and the computational cost efficiency of this method makes it very attractive. The

diagonal elements of I correspond to the variance, a , of the variables contained in the

vector u which gives us directly a measure of the uncertainty in the output parameters.

The square root of the diagonal elements correspond to the standard deviations of the

parameters examined. Hence, it is very easy to propagate the uncertainty through the vari-

ables of interest in an analysis as long as we have an expression for their sensitivities.

Since we have assumed Gaussian distributions of the statistical database parameters, we

can deduced that the performance outputs also have Gaussian distributions as long as the

linearity is preserved. This is a very important result. Stated differently, it means that,

inside the range of validity of the linear approximation, the output will be distributed

around its nominal value with a standard deviation ay as illustrated in Figure 5.2

This has a very strong implication for the uncertainty analysis on the performance RMS.

For instance, integrating under the PDF, gives us the cumulative distribution density func-

tion (CDF) that tells us, for a particular error budget, with what probability the current

design will satisfy that requirement. Figure 5.3 shows the RMS distribution for a system

with a nominal prediction of p = 4 [m rms] and a standard deviation of a = 1 [m]. For

this example, the performance requirement is 5.5 [m rms] (which corresponds to a 1.5y

bound). The corresponding cumulative RMS plot is shown on the right and shows that

even though there is a slight possibility for the system to exceed the specification, there is

a 93% probability of success.

From the probability of success curve, it is also possible to compute the probability of fail-

ure (which correspond to its complementary probability).
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Figure 5.4 illustrates the probability of failure for the above example, which happens to e

1
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1 2 3 4 5 6 7

U nom Req. RMS

Figure 5.4 Probability of failure

slightly less than 7% for the given requirement. If the RMS requirement is tightened, the

probability of failure increases accordingly.

In summary, we use the performance RMS sensitivity to the modal parameters as follows:

1. we propagate the uncertainty covariance matrix I,. to obtain the perfor-
mance covariance matrix Izz

2. the square roots of the diagonal elements of Zzz correspond to the standard
deviations of the performance RMS metrics;

3. since we assumed that the linearity is preserved and that the uncertain
parameters are gaussian, we obtain the normal distribution of the RMS cen-
tered around the nominal prediction;

4. integrating under the PDF gives us the probability of success (CDF) for a
given error budget;

5. we can also obtain the probability of failure from the complementary proba-
bility.
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For the FRF magnitude and phase, it is also possible to use the covariance propagation

method. The only difference is that the process must be repeated at every frequency point.

Using the a(w), we can plot the transfer function along with its Tna bounds. However,

around the poles and zeros, the linear assumption. fails and the covariance propagation

results are no longer valid. This will be demonstrated in Chapter 6.

5.5 Vertex Method

5.5.1 Corner Search

Another approach to evaluating the bounds on the performance predictions is to perform

an extensive search of all the "vertices", the possible combinations of the upper and lower

limits of each parameter. These combinations correspond to the vertices of a rectangular

hyperspace. Figure 5.5 illustrates a two-dimension space for the case of two uncertain

parameters.

P1,, P2,

PI

P2

Plu, P2,

Plu, P21

Figure 5.5 Two-dimensional corner space

The upper and lower bounds of the response interval correspond to the largest and smallest

response obtained while searching the corner space.

1
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Diagonalization of the Covariance Matrix

Before the method can be applied, it is necessary to uncouple the parameters in the data-

base by transforming them from the original database parameters in vector p to an uncor-

related set of parameters r. Since the covariance matrix E,, is symmetric and non-

negative definite, it can be diagonalized via a singular values decomposition

Ipp = Uz2rrU (5.14)

where the eigenvector matrix U is unique and defines the linear transformation between

the database modal parameters, p, and the uncorrelated parameters, r.

Ap = UAr (5.15)

By applying the above transformation to the covariance matrix definition (Eq. 3.50), we

recover the expression from (5.14).

I,, = E[ApAp ] = E[UArAr U ] = UE[ArAr ]U

= UrrUT(5.16)

where the diagonal covariance matrix of the uncorrelated transformed parameters, r, is

expressed as follows

X,., = [ -.. j= R R (5.17)
2

ryr

where N = (n2 + 2n) is the total number of parameters in the database (n being the
2

number of uncertain modes), ar are the variance of the uncorrelated transformed parame-

ters rk and the matrix R is the diagonal matrix of their standard deviations.
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R = -.. (5.18)

CrrN

Possibility Intervals

To evaluate the possibility bounds on the output variable u1 corresponding to the ±na r,

parameter intervals, we define

Ark = ±nar (5.19)

A particular vertex {Ar} (corner) is obtained by selecting a particular combination, vi, of

perturbation on the parameter rk, where the corner, for a na bound, is expressed as

{Ar}; = nRv (5.20)

where the combination vector, vi, contains only (+1)'s and (-1)'s, corresponding to the

upper and lower bounds of the parameters, rk respectively. To recover the corresponding

perturbation vector for the original parameters, Pk 's, we use equation (5.15) as follows

{Ap}, = U{Ar}; = UnRv; (5.21)

For a particular vertex, we can reconstruct from {Ap} the corresponding modal mass,

stiffness and transformed damping matrix errors ({ Am }, { Ak };, { Arl };) from which we

get

{m}; = I+{Am}j

{k}, = A+{Ak} (5.22)

{F} + = AF}

From there, two options are available. We can either use the sensitivity equations of the

response variable u1 , with respect to the uncertain parameters, to propagate linearly, as

described in Section 5.3, the perturbations { Ap } to obtain an approximate value of u,
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for each corner. This is a simple and fast result to obtain. Or, we can compute the response

of the system evaluates for the perturbed parameters, {p};, the vertex is given by

{p}, = p Ap}, (5.23)

This would be a more accurate, but more costly answer. Notice that for a system with N

uncertain parameters, there is 2N possible combinations to search. This means that the

number of corners to search increases very rapidly as the number of degrees of freedom of

the system increases. For example, a 1-DOF system has three uncertain parameters (i.e.,

one modal mass, one modal stiffness, and one transformed modal damping parameter)

which corresponds to height vertices. For a 2-DOF system, the number of uncertain

parameters goes to N = (22 + 2(2)) = 8 which corresponds to already 256 combina-

tions! Therefore, for large order models, the method becomes very costly as thousands of

vertices have to be searched to find the lower and upper bounds on the response. Further-

more, for the uncertainty on the FRF Bode plot, the procedure must be repeated for every

frequency points. The number of calculation, x, is then given by

x = Nf NF(2N') (5.24)

where Nf is the number of frequency points, NF is the number of FRF's, and N, is the

number of uncertain parameters.

Improvements

In order to limit the number of corners to be searched and limit the computation time,

Gutierrez proposes to use the sensitivity information (sign of the slopes) to identify a pri-

ori the "bad" or "good" corners [Gutierrez, 1999]. This method is inspired by the so-called

Taguchi Methods which propose ways to reduce the number of corners to search [Taguchi,

1995].

Since, even for large systems, only a few modes contribute for most of the performance

RMS [Gutierrez, 1999], we propose to select only these critical modes, and perform the
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corner search only for the modal parameters corresponding to these particular modes. This

ideas as the benefic result to reduce by orders of magnitudes the amount of computation.

We will demonstrate this technique in Chapter 7 for the SIM Classic model.

5.5.2 Included Maxima and Minima

One other issue with the vertex method, is that it is assumed that the worst and/or best case

will occur at one of the vertices. It is often the case for simple SISO system with flat

(white noise) disturbances. In general, it is not the case.

For system with closely spaced modes, there is combinations of incremental perturbation

sizes (inside the lower and upper bounds interval of the parameters) for which the poles

and zeros of the system will interact in a constructive and/or destructive way increasing

the interval of the response (higher RMS when two poles combine together, and smaller

RMS for poles zeros cancellation). Gutierrez shows the example of a cantilever beam

whose two perpendicular bending modes are very close [Gutierrez, 1999].

Another type of system for which the maxima and minima of the response will not neces-

sarily be at the vertices, even when the modes are widely spaced in frequency is for the

case when the disturbance is tinted. For instance, if the disturbance has discrete frequency

content, then the poles of the plant will interact with the peaks of the disturbance. The

worst case will be when all the poles align with the disturbance frequencies. Vice-versa for

the best performance, which will occur when the poles are far away from the disturbances

frequencies and/or when the zeros of the plant will attenuate the disturbance effects.

Therefore, in order to increase the accuracy of the worst/best case estimate, it will is nec-

essary to search the whole uncertainty space. Three methods can be implemented to do so:

1. Uniform grid search: compute the response at different interval (Fuzzy anal-
ysis)

2. Random search (corresponds to a Monte Carlo simulation inside the parame-
ter bounds)

3. Constrained optimization.
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Uniform Grid Search

Performing a uniform grid search, also known as Fuzzy analysis [Dong & Shah, 1987], as

illustrated in Figure 5.6 for a 2D's case will improve the accuracy of the estimate of the

worst/best response performance, but will also increase significantly the computation cost.

The finer the grid, the better the estimates, but the higher the costs.

P 11,

Plt,

L

P2,

P2

Piu, P2U

Pi

P1n' P21

Figure 5.6 Uniform 2-D search grid

Constrained Optimization

This approach has better chance to find a more accurate prediction of the worst/best case

estimate of the response. This extra accuracy though comes at a great cost as it is a compu-

tational intensive method.

The approach described by Gutierrez in [Gutierrez, 1999] attempts to find a solution to an

optimization problem cast as follows

max J = trace(X,),
P

where PLB P p PUB

where p is the vector of uncertain parameters, and PLB and PUB are the lower and upper

bounds, respectively of the parameters.

(5.25)

A
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The contribution of the present work to this method is to provide the constrained optimiza-

tion with realistic parameter bounds, extracted from a statistical database, for the modal

mass and stiffness matrix elements and the transformed damping parameters.

Recapitulation of the Vertex Method

In summary, the vertex method gives us a worst/best case estimate of the response (RMS

or FRF). It can become very costly unless measures a taken to reduce the search space.

The method suggested in this research is to select the critical modes and perform the cor-

ner search only on the parameters of these modes. Also, one inconvenient of the method, is

that it does not provide us with a measure of the probability of having the worst/best case

to happen. In fact it correspond more to a "3 a" type event that has very small chance to

happen. Therefore, using the vertex bounds for design would be very conservative.

5.6 Hybrid Method for the FRF Bounds

As described in Section 5.4 the linear covariance propagation is not valid to evaluate the

uncertainty bounds on the FRF magnitude and phase near the poles and zeros. Hasselman

suggests to use the vertex method to limit the uncertainty around these singularities [Has-

selman, Chrostowski & Ross, 1994]. Although, the vertex method gives us a worst-case

type analysis, it is the most convenient way to evaluate the bounds on the FRF near the

poles and zeros. We will show an example of this method in the next chapter.

5.7 Summary

In this chapter we have presented different methods that we use to propagate the uncer-

tainties and evaluate the error bounds around the nominal performance predictions. One

contribution of this research work was to obtain the probability distribution of the

response and hence evaluate the probability of success of the design given a certain error

budget. We have also obtained the complementary probability of failure of the design

given an error budget. This is an important result in the context of high profile spacecraft
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mission such as SIM or NGST as it help the engineer build confidence that a particular

architecture is suitable to meet its specific tight requirements in presence of modeling

uncertainties. An other contribution was to provide the constrained optimization tech-

nique, use to evaluate the worst-case performance, with the necessary bounds on the

parameters. These bounds were obtained from the past experience database.



Chapter 6

SAMPLE PROBLEM

In order to build intuition about how the uncertainties propagate through the dynamic

model and to validate the uncertainty analysis methods presented in Chapter 5 for the per-

formance RMS and the transfer function (magnitude and phase), we will present a thor-

ough numerical uncertainty analysis of a two-degree-of-freedom oscillator. The

uncertainty analysis will be demonstrated for realistic large-scale models on the SIM Clas-

sic integrated model in Chapter 7.

Although the two-degree-of-freedom (2-DOF) oscillator is the most simplistic abstraction

of a dynamical system and very few structures could realistically be modeled by such a

simple system, we will spend time analyzing this 2-DOF oscillator because it will be eas-

ier to grasp the implications of the parameter uncertainties with no complications arising

from analyzing a realistic structure standing in the way. In fact, the knowledge of the prop-

erties of this system will help us build intuition for more complex multi-degree-of-free-

dom (MDOF) systems. Complex structures can always be represented as a linear

superposition of a number of single-degree-of-freedom characteristics [Ewins, 1984]. This

is especially true for lightly damped structures with large modal frequency separation.

After describing the model characteristics in the next section, we will go through the steps

of evaluating the nominal performance of the system (Section 6.2), describe the uncer-

tainty database (Section 6.3), and computing the sensitivities (Section 6.4). We will then

validate the uncertainty analysis methodology by performing the uncertainty analysis
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using the methods described in Chapter 5 (Section 6.5) and compare the accuracy of their

predictions.

6.1 Model Description

6.1.1 Physical Description

A mechanical implementation of a two-degree-of-freedom oscillator is illustrated in

Figure 6.1. It is composed of two mass elements, M1 and M 2 , linked in series and

attached to a fixed wall (fixed boundary condition) by two springs of stiffnesses K, and

K 2 . The system is driven by a zero-mean unit-intensity white noise disturbance force w

applied to the second mass.

X (t) ,X2 (t)

K,1 K2

M1 M2

. u(t) w(t)

Figure 6.1 Two degree of freedom oscillator

We want to determine the uncertainty on the FRF (magnitude and phase) as well as on the

root-mean-square (RMS) value of the displacement response of the second mass x2 due to

a collocated disturbance force w. In order to do so, we will first compute the nominal FRF

and the nominal performance RMS. Then we will proceed to compute their sensitivities

with respect to the system uncertain parameters. The model of a dynamic system is a

mathematical abstraction of a real physical system and is only as good as our estimates of

the physical parameters of the system are. Furthermore, for a continuous system, the way

the system is discretized also has a great influence on the accuracy of the predictions.
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For the purposes of this example, we consider a 2-DOF oscillator designed to vibrate

freely at two different specific frequency, oI and W2 [rad/s]. The analytical model of this

system will be called the nominal (also referred to as analytical) model

. The nominal masses, Mi and M2 , have values of 3.0 kg and 1.5 kg respectively, and the

springs have nominal stiffnesses, K and K2 , of 8 N/m and 4 N/m respectively. The nom-

inal damping ratios, di and 2, as we modeled them, are equal to 1% and 0.5%.

In order to build an intuitive feeling for the uncertainty propagation and also validate the

techniques described in Chapter 5, we will imagine that we want to mass produce this

oscillator that we have designed. Even if manufactured with great precision, we know that

the physical masses and springs, as well as the damping ratios, will have actual values dif-

ferent than the specified ones. Three factors influence the probability distribution of the

physical mass and stiffness values:

* tolerances (affect the width of the distribution);

e the manufacturing process (homogeneity of the material characteristic,
repeatability and stability of the process);

e and quality control (affects the width of the distribution, but can also influ-
ence the shape of the distribution (e.g. by removing the tails of the distribu-
tion)).

Therefore, the behavior of any of the oscillators manufactured in presence of disturbances

will differ from the predictions made by the nominal model. The mathematical representa-

tion of one particular unit will be called the actual (also referred to as test, or measured)

model. For our example, we will assume that the actual mass and stiffness elements have

gaussian distributions (X (g, 2)) centered around their means which correspond to their

nominal values:

M1 - X (3, (0.2) )

M2~ - (1.5, (0.1)2) 612 (6.1)
KI - X (8, (0.4) )

K2~ X (1.5, (0.2 )2)



Figure 6.2 illustrates the probability density functions for the mass and stiffness elements

as described above.

4-

3.5-

3--

2.5-

12--

0-

0.5 -

0

Figure 6.2

2 4 6 8 10
MO, K

Distribution for M and K

The damping ratios, C,., also have values distributed around their mean values (nominal).

Unlike the mass and spring distributions, the damping ratios distributions are not symmet-

ric. Typically, they have log-normal distributions, which can also be expressed in terms of

the mean and standard deviation (g and ag). For our design, we have set the standard

deviations to 0.8% and 0.4% respectively for (i and (2. Following equations (3.60)

through (3.62), we can transform a log-normal distribution (noted X iog(g, at)) into a

Gaussian distribution (noted X (gy, ay)), where y1 and Y2 are the corresponding trans-

formed damping parameters. The damping ratio distributions are transformed as follows

( ~og (0.01, (0.008)2 c = -4.8525
Kio108d = 0.70335

( ~ ' (0.005, (0.004)2 c = -5.5457
2 gog J d = 0.70335

2
=> X (-4.8525, (0.70335) ).-yl

2_> (-5.5457, (0.70335) ) ~-Y

(6.2)
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Figure 6.3 illustrates the above transformation from the damping ratios log-normal distri-

bution to their corresponding Gaussian distributions.

400

300

100r

0-
0

Figure 6.3 Distributions for the damping ratios: Lognormal PDF for the (r 's (left), and corresponding Gaussian PDF for the Y r 's (right)

Table 6.1 summarizes all nominal parameters values and their standard deviations.

TABLE 6.1 Nominal Structural Element and their Uncertainty

Nominal
Parameters Values Units Uncertainty

P = gp OP

M 3 [kg[ 0.2

M2 1.5 [kg[ 0.1

K1  8 [N/m] 0.4

K2  4 [N/m] 0.2

Y1 -4.8525 --- 0.70335

Y2 -5.5457 --- 0.70335
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6.1.2 Modeling

The equations of motion (see Eq. 2.1) for the 2-DOF system are given by

MX+Cx +Kx = Pw
(6.3)

where C is the equivalent damping matrix, and the performance matrix C, is an identity

matrix. For the two-mass-two spring problem, the mass and stiffness matrices are given by

M =MI 0

L0 M 2j

SK= K1+ K2 -K2

L-K2 K2_

Following the procedure described in Chapter 2, the first step in solving the equations of

motion is to solve the generalized eigenvalue problem for the undamped case (C = 0 and

w = 0)

(K - XrM)$r
K1 + K 2 - XrMi

-K2

K2 [1,:r
K2 - X,.M2 02, -

from which we obtain the eigenvalues

2 1 K,=XIA = o, -21,2 1,2 2 M

K2(
+-

M2

Ki

M
M ] 2 4KK2}+ 22

M) MIM 2

and the mass normalized mode shapes

<D = $11 $12

$21 0 2 2j

(6.7)21 K 2K 2  
1

)MK+ 2(K + K2 - lMI) _K +2-XlM K +K2- 2Mi

Performing the following transformation on equation (6.3),

x = <DT

yields the uncoupled modal equations of motion

(6.4)

= 0 (6.5)

(6.6)

(6.8)
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i + 2ZA1/2 + A1 = <D $pwW

z = Czx<Dn

which when written in state-space form (for the nominal plant) gives

[..]
q1

0
~ T

CD $w
w

-1 +
AZ

Z = D 0] + [0]
CZX D

czw Z

(6.10)

For this example C = [0 1 and $w = [.]

After having obtained our system model, the next step of the performance analysis is to

evaluate nominal performance.

6.2 Initial Performance Evaluation

For the nominal model described in the previous section, we get the following nominal

variables. The nominal eigenvalues are given by

1.333 0

_ 0 5.333]
(6.11)

and since A = U , we can get the natural frequencies

2= JA= = 1.1547 09
0 2.3094

(6.12)

The mass normalized nominal eigenvector matrix is

(6.9)
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-0.3333 -0.4714

-0.6667 0.47141

and therefore, we get the following values for the state-space matrices

0
~03

AW -1.333

_ 0

0
0

1

0
0 -0.023094

-5.333 0

0
1)

0
-0.023094

0

=W 0
-0.6667
-0.4714

(6.14)

Czw = [-0.6667 0.4714 0 0]

We can now proceed to evaluate the nominal performance RMS and the FRF of this deter-

ministic model.

6.2.1 Frequency Response Function (FRF)

The FRF of the disturbance input w to the performance output z, illustrated on Figure 6.4,

is given by

Gzw(s) = C,,(sI - Azw) 1Bzw (6.15)

Because we have assumed proportional damping, the equations of motion, as written in

equation (6.9), are decoupled. It can be shown that the above transfer function (also called

dynamic response) can also be written in the following modal contribution form

Czx'-4r Iw
Gzw(jIO) = r(~ 2  

~ ~ 1/2
r=1(Ar -(0 ) + j2(rl,- 0

which for our specific Czx and 6, reduces to

Gzw(JO) =
~ T ~ T

221$21 + 2#22 22 Gzw + Nzw2 (6.17)
(E 1- )+ j2 2 ( ii i (A _ 2 - o 2 j 2 2 2

(6.13)

(6.16)
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The Bode plot of the magnitude and phase of the above FRF is shown in Figure 6.4.

Transfer Function G (jo) for 2-DOF oscillator

.~0

-20
C
M

-60 '1
10' 10 10

-200 '
10 10

Frequency [rad/s]

Figure 6.4 2-DOF oscillator Frequency Response Function.
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Notice that since the input w and the output z are collocated, the phase of the FRF

(ZGzw(jo)) is bounded between 00 and -1800. This is always the case for collocated sen-

sors and actuators. Also, we notice that at DC (o = 0), the slope of the magnitude of the

transfer function is zero. In fact, from equation (6.16), we can see that the gain of the FRF

reduces to a constant K-I when o is set to zero. It can be shown (for C, = $, = 1)

that this constant gain is equal to

K-1 KI+K 2 _ 1
K1K 2 K

(6.18)

which is consistent with Hooke's law for springs in series (K b7eing the equivalent stiff-

ness). Explicitly, at DC, we have the displacement x that is proportional to the amplitude
W

of the applied force W = w(0) (i.e., x = Uzw(0) . W = - )K
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6.2.2 Nominal Performance RMS

We define the output performance as the displacement x2 of the second mass. We will

compute the nominal performance RMS using two methods described in Chapter 2: the

power spectral density (PSD) integration and the Lyapunov equation method. The compu-

tations for the second method will be carried out explicitly to be used later in sensitivity

analysis.

Lyapunov Approach

The first step is to find the 2 x 2 state covariance matrix by solving the following

Lyapunov equation (from Eq. 2.43)

Az q +1 AT+B B =0 (6.19)

The performance covariance matrix can then be obtained as

z= Czw IqC T (6.20)

In general, the diagonal terms of Ez represent the mean-square values ca , and the root-

mean-square (RMS) values are simply ar obtained by taking the square roots of the diag-

onal elements of 1z. Since we only have a single-input-single-output (SISO) system,

I = a and so the RMS is found as

RMS=a =(Cz T 1/2 (6.21)

Frequency-domain Analysis

The RMS of the performance output can also be obtained by computing the square root of

the area under its PSD curve in the frequency domain as below (from Eq. 2.41):
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= ) _ FSzz(o)dW) = (f Gzw(jo) Sw(W) Gzw(jo) H(do) 1/2

(6.22)

IGzw(jo) 2do)

where Szz is the PSD of the performance output, and S,, is the PSD of the disturbance

input. Since we have assumed unit-intensity white-noise as the input, SW, is set to 1.

Using the modal contribution form defined in Eq. 6.17, the above equation can be rewrit-

ten as follows

aYz = (1f(Gzw 2+\GzW 2)do 'o = (A G I 2zo2do) + G2 I 2 do)

= (I2.+2) (6.23)

We compute the 12 terms, which represents the integral of the magnitudes squared, using

the formula in Appendix C. In order to do so, we must first express FRF modal contribu-

tion terms, in the following form

(jw)2b + (jw)b 1 + bo _2121

zw,(Jo) = 2  (2 ~ ~ 1/2 ~
(jo)) a2 + (jo) a, + ao - o + jo2(ili +Xj

2 b $T (6.24)
S(jo)2b 2 + (j0)b 1 + b 522 22

UZW2(w) 2 - 1/2
(jo) a2 + (jw)a I+ ao - + jw2(2X2 + X2

By comparing the coefficient in the above expression, we can compute the 12 values:

2a0 b2 + a 2b ~ ~_-T 2

I2 = Gzw1i(O) 1 d(o= n 1 0= 7t(212)
2a) 

=~ a I a2 3/2 (6.25)
2a0 b2 + a 2b ~T 2

I2 = IiGzw2(j) do = 7t= 22022).
2b =Jz 2 Ia 0 a Ia 2 - X 3/2



Thus, we get a closed form expression for the mass displacement RMS as a function of the

parameters of the structure:

~$T 2 ~-T 2
~ 2 '1 1 ($121)+ ($22$22)

-z = 3/(2,2b) = ~~ 2 / (6.26)

Substituting in the respective values of the parameters, we obtain a nominal RMS value of

bz = 1.8462 [m rms], which is the same value as the one we would obtain using the

Lyapunov approach (Eq. 6.21). Also, using the expression for the cumulative RMS (Eq.

2.42) and integrating numerically gives the cumulative RMS curve shown in Figure 6.5.

1.5

E
0.5

0

100

E

10 -

Figure 6.
(bottom)

Cumulative RMS of the Tip Displacment

PSD

10-1 100
Frequency (Hz)

2-DOF oscillator cumulative RMS plot (top), and PSD plot

5

5

We can see from the cumulative RMS curve, that the first mode contribute for almost all of

the performance RMS. Figure 6.6, shows the relative modal contribution of each mode to

the total RMS..
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Tip Displacement, x
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Figure 6.6 Modal contributions to performance RMS

As stated earlier, we can be assured that none of the real oscillators, manufactured under

our design specifications (nominal parameters), will perform exactly as predicted. To

understand how they will be distributed, we will have to perform an uncertainty analysis.

Before we can do this, we will have to generate the uncertainty database.

6.3 Database Generation

In this section, we will generate a structural database and a damping database based on the

distributions of the mass and stiffness elements and damping ratios.

6.3.1 Structural Database

In order to generate a database of modal mass and modal stiffness modeling errors, we

will simulate the sampling of one thousand 2-DOF oscillator units coming out of the

assembly line. We will imagine that the units are assembled by picking up randomly one

of each of the components (i.e., one mass of type 1, one mass of type 2, one spring of type

1, and one spring of type2) from a large batch (ensemble). One thousand units of each

component are generated randomly according to their distribution parameters (Table 6.1)

and assembled to create the actual units.
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Then, each of the sampled oscillator is tested (e.g., hammer test) to get their actual mode

shapes and eigen frequencies (CD and A). These values are all that is needed to generate

the database. Here are the steps:

1. compute the cross-correlation matrix P using equation (3.42);

2. get AA simply from the difference between the sguares of the measured and
the analytical modal frequencies ([A - A] = [w - A ]);

3. obtain the modal parameters modeling error matrices (Am and Ak) using
equation (3.46);

4. vectorize Am and Ak (upper triangular elements only) to get the modeling
error vector Ap (Eq. 3.49).

Then the covariance matrix of the modeling errors is obtained using equation (3.50) repro-

duced here

N

Ipp =E [ApApT] = E [ApApT] (6.27)
i = 1

where N is the number of samples. For this example, we do not need the frequency nor-

malized modal stiffness errors Ak as we would, if we were to propagate these uncertain-

ties to the model of a different system. The database resulting from this exercise is the

following

0.31579 -0.089355 0.24968 0.030676 -0.013382 0.043698
-0.089355 0.20218 0.05938 0.030336 0.005591 0.036106

0.24968 0.05938 0.29661 0.008316 0.010168 0.016757 x 10-2 (6.28)
0.030676 0.030336 0.008316 0.13294 0.031466 0.10934

-0.013382 0.005591 0.010168 0.031466 0.12176 -0.049742
0.043698 0.036106 0.016757 0.10934 -0.049742 0.14229 _

Needless to say that the more samples used in the estimation of p , the more accurate the

database would be. Although, this is not the only factor affecting the accuracy of the esti-

mation. Because of the linear approximation made to obtain the expressions for Am and

Ak (second and third order terms neglected), the covariance matrix will also be affected
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by the size of the errors. That means that for large modeling errors (or large variability in

the distribution of the components values) the approximation will fail and the error in the

estimation of Y. will increase. Therefore, it is important to keep in mind that this meth-

odology is only valid if we assume that the analytical model is reasonably good.

In steps 1 through 4, we obtained the covariance matrix for the ensemble of the sampled

oscillators. The components of these units were generated randomly based on the standard

deviation of their respective distribution. To illustrate the accuracy of the estimation of

I,, dependence on the error sizes, we have repeated the exercise many times for different

values of the components standard deviations. The standard deviations were all modified

simultaneously by applying the same multiplicative factor to all of them at the same time.

As the standard deviations are increased, the approximate values for Am and Ak, com-

puted with equation (3.46), become less and less accurate as the linear assumption is vio-

lated. We can see in Figure 6.7 that the error in the estimation of I increases drastically

for multiplicative factor values greater than -1.3. We are also happy to see that for our

database, (multiplicative factor equal to one), the estimation error is small.

The estimation error is defined as the maximum singular value of the difference between

the real and the approximate covariance matrices:

Error, = max(SVD[PP - IPPPROX (6.29)

where I PPAPPROX corresponds to the covariance matrix obtained as described above. The

real covariance matrix is obtained using the following exact expressions as defined in Eq.

3.24, instead of using Eq. 3.46, to compute the Am and Ak

-T T
Am = (I AM4 = 4 (M - I)4 = m - I

(6.30)
T -T -

Ak = eTAK4 = 0 (K - K)<D = k-A

The reason why we do not always use the expressions of (6.30) to generate the database is

that in real life, the actual modal mass and modal stiffness are not available. Only the
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Number of samples = 1000
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Figure 6.7 Covariance matrix estimation error vs. standard deriva-
tive multiplicative factor.

actual mode shapes and eigenvalues are made available from modal testing. This explains

why equation (3.46) is so important.

6.3.2 Damping Database

Assuming that the modal damping ratios are independent, the damping database can be

obtained directly using equation (3.70) and the transformed damping distribution parame-

ters given in Table 6.1 as follows

2
S(0.70335)

_ 0
(6.31)0

(0.70335)

We get the global database as shown in equation (3.69) by appending the damping data-

base (Eq, 6.31) to the structural element database (Eq. 6.28).
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1.0165 0.41675 0.80857 1.4543 0.42911 1.1012

0.41675 0.26572 0.5989 0.75004 0.23642 0.81279

-m 01 - 0.80857 0.5989 1.4849 1.6605 0.51631 2.0396 0
'"' mk 1.4543 0.75004 1.6605 2.4237 073796 2.3116

PP= Ek Igg 0 = 0.42911 0.23642 0.51631 073796 0.25817 0.71622 (6.32)

0 0 1 _ 1.1012 0.81279 2.0396 2.3116 0.71622 2.8449.

0 (0.70335)2 0

0 (0.70335)

With the uncertainty database compiled, the next step before we can actually perform the

uncertainty analysis, is to compute the sensitivity.

6.4 Sensitivity Analysis

The sensitivity expressions for the performance RMS and the FRF with respect to the

database parameters were obtained in equations (4.101) and (4.70) respectively. In this

section, to demonstrate validity of linear approximation, we will derive explicitly sensitiv-

ities with respect to physical parameters (referred to as the r parameters) for our specific

example. The vector of physical parameters is defined as follows

r = [M1 , M 2, K 1, K 2, Y1, Y2] (6.33)

For brevity, we will only derive the sensitivity expressions with respect to three of these

parameters, namely M 1 , K1 and y1 .

6.4.1 Performance RMS Sensitivity

In equation (6.26) we have obtained an analytical expression for the performance RMS

which is reproduced here

( )4 )4 )4 )4
1 (21) ($22) 1 ($21) (022)

2 ~ ~3/2 23/22 i~3/3 Y2 /2

1 2Al e 2

where the eigenvalues and modes shapes are obtained from equation (6.6) and (6.7).



SAMPLE PROBLEM

First Order Derivatives

The derivative with respect to y I can be obtained directly as follows

~4
aaz (21) +

=y 4e 3/2d ~ ( l I

while for the derivatives with respect to MI and K, , we need to apply the chain rule

_1 ax,
ax 1aM,

+aaF- aX2
a2 M

aaT ax 1 + z 2

aX~aK, a2K

+ ac~z a021
4am 21

+ 4a21 aK

+ aarz a0 22

a$ 2 2 aMi

zaa a0 2 2

+a022 aKI

The needed derivatives to evaluate the two expressions above will be obtained in the fol-

lowing. First, the derivatives of the RMS with respect to the eigenvalues

I
_az 1 (21)4

4 (e ~ 3/2

4 X
aar _1r (P21) 4

ax 4 ~ ( 3/2
2 k.Al

( 22 2)4

i2~ 3/2

($22)4
i2 2 

3 / 2
)

1

4
-3 (21)
2 f;- 5/2

e

-3 ($22)
2 i,~ 5/2

e A

Then, the derivative with respect to the eigenvector elements

(P22))

+ 2 3/2
e x2

( P22)
4 )

+ 2 h- 3/2I

- 3
(021)

- 3/2

4 22) 3

(6.38)

-

Then we also have to get the eigenvalues and eigenvector elements derivative with respect

to MI and K, . First, the eigenvalue derivatives

-4 x
(022) 4

Y2~ 3/2e 2/

-( 21 )4

9, 3/2!
.e Xl /

(6.35)

(6.36)

(6.37)

~4
1($21 )

~ 4/2($21) I

a 2 z

apz
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K2 4K K 2 K1 K K2 M~ 4K4KX 1,2 I= K (l+L( M 22
2(M1 F! 1 +) [2L) --iM1 Mim1  2 I - 2 11- 2 1-I 1  M I) M 2

aK Ad2 MM M))M d A AT I~M M\M)M

and finally the eigenvector element derivative

21_-l(K 1 + K2 _.X1 Ai)(!) [K2 + 2M42(K1 + K2 - X1 M1 )(-X 1 )]
a 0 2/ 2 2 2 /

1 2M1 + 2 (K + K 2 - X1 MO) ( 1 K 2 + 2 (K1 +K2 -x 1 M 1 ))

a$22 -X 2

- (M K 2+M 2 (KI+K 2 -XIM )2

421 22 1

(6.40)

(K1 + K 2 -X, 2M) - [2M2 (K + K 2 -xiM)]
+ )1242

dK 1  (MK 2+ M2(Kj+K2AM )2 2M K 2+M2 2~AM)23
+ K 2 -X 1 M1) ) ( 1K 2 + 2(KI + K - 1 M1 ) )

Solving for equations (6.37) to (6.40) and substituting into (6.36) gives us the RMS sensi-

tivity with respect to M, and K, . We have already obtained the sensitivity with respect to

Y1 in (6.35). Figure 6.8 shows an example of sensitivities computed with respect to the

modal mass and stiffness elements, and the transformed modal damping.

Range of Validity of the Linear Approximation

In order to evaluate the range of validity of the linear approximation as described in

Chapter 4, we must first determine the second order derivatives.

The second derivative of the RMS with respect to y, is obtained by differentiating equa-

tion (6.35)

3 -1

= ! L ( 21)2+( 2 _ 4_2_ _ 44 4 2 
4

y 14 2 ,%13/2 ,2 3/22 %l 2 e 1/2

Differentiating Eq. (6.36) gives the second derivatives for M, and K,
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Sensitivities of Tip Displacement, x RMS value with respect to database paramete
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aaaX~ a20 axaM aX 2 aMK
aax 2 a as

+ a1SK 2ax 2 aK I

We have already obtained the first order derivatives needed in the above expression, but

we also need the second order derivatives for all the parameters. First, the second order

derivatives of the RMS with respect to the eigenvalues

2 0 , _ ) - 2 - 3 ( 3 2 ) +)4 2

4 2 1 3/2 y2E23/2 2 % 15/2]
1 1 ee 2 eX~

2  + $ 12 ()421) )

4 2 % 3/2 E 2 3/

+ ( 4.y' 3/2
,2E23/2)

I1 -

2(15 ((21)

4 i 7/2

4 y 27/2

(6.43)

4+ 
4(2 2)

2 7 25/2 3/2 12E23/2J

Then, the derivative with respect to the eigenvector elements
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Then we also have to get the second derivatives of the eigenvalues and eigenvector ele-

ments with respect to M1 and K . First, the eigenvalue second derivatives
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II1
and finally the eigenvector element derivative
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(MK 2 +M 2(K +K 2 ~ M )2 )

Solving for equations (6.37) to (6.40) and substituting into (6.36) gives us the RMS sensi-

tivity with respect to MI and K, . We have already obtained the sensitivity with respect to

Y1 in (6.35).

I
(6.44)
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TABLE 6.2 Maximum allowable perturbation size

Parameters Variability Range
r |ApI max

M 0.2 0.332

K1  0.4 0.521

y 0.70335 0.881

6.4.2 FRF Sensitivity

As suggested above, one of the reasons for using the structural modification method is to

bring modify dynamic properties of the structure, perhaps by moving certain critical fre-

quencies. Even on a relatively simple structure, there will be a large number of possible

modifications which could be made and it is necessary to determine which of these would

be the most effective for the desired change.

One way of selecting the parameter(s) to modify is to use a sensitivity analysis based on

the modal model of the original structure. Using a form of perturbation theory, valid for

small changes, it is possible to determine the rate of change of each natural frequency of

the original structure with each of the system parameters. Those with the greatest "slope"

are singled out as the most effective elements for bringing about specific changes and the

same can also be used to assess the secondary effects which will also accrue - i.e. changes

in the other natural frequencies - since it is important to avoid removing one problem and

introducing a different one.

It should be noted that because of "small" differences assumed in the sensitivity analysis,

it is possible to predict accurately the extent of the changes which will result from a spe-

cific (non-second order) change in one of the structure's parameters. The analysis will

indicate the direction of change in frequencies, and will rank them in order of extent of

change, but generally will not predict the magnitude of that change reliably (see Gutierrez,

1999).
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Range of Validity of the Linear Approximation

We could use equation (4.111) to determine the maximum allowable perturbation size at

every frequency point in function of a specified ratio E like we have done in the previous

section for the performance RMS derivatives. Although this would be very useful since we

already have found these values for the RMS case (Table 6.2). A useful thing to do, is to

determine the frequency range for which the linear approximation hold for the FRF.

1 a Uncertainty of FRF of Tip Displacement, x, with respect to parameters p
40

3 0 -.. . .. .. -.. .

10 -.. . -
o.0

0 -2 0
10- 104 100

Frequency, [Hz]

-. .. .-. ..... .... ... . .

.... ... .... .... .......-

400

300

200

0100

0
10 10010-1

Frequency, [Hz]

Figure 6.9 Frequency response derivatives (1st and order) evaluated at ApI max

These range of validity of the linear approximation correspond to the range of validity of

the linear covariance propagation technique as we will discuss later.
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TABLE 6.3 Frequency range of validity of the linear approximation.

Parameters Frequency Range
M0.

K1 0-0.13, 0.21-0.24, 0.42-...

K 1  0-0.12, 0.22-0.26, 0.44-...

71 0-0. 11, 0.225-0.21, 0.45-...

6.5 Uncertainty Analysis

In this section, we will demonstrate all of the uncertainty propagation techniques pre-

sented in Chapter 5 firstly on the RMS performance predictions (Section 6.5.1), and then

on the FRF (magnitude and phase) (Section 6.5.2). For the RMS uncertainty, we will com-

pare the accuracy of the results with the results obtained analytically. We will discuss the

advantages and inconveniences each methods as well.

6.5.1 Performance RMS Uncertainty

Analytical /Numerical Evaluation

To evaluate the standard deviation of the performance RMS we apply Eq. A.7 to get

YRMS = Caz = VE[(aY-E(az)) 2] = VE(aY )-(E(ac))2 (6.48)

Hence, we will have to compute the E(a2 ) and E(az) terms.

Computation of the RMS expectation

Let us start first with the RMS expectation, E(az). If the linearity is preserved, it should

be equal to our nominal performance RMS prediction. Applying Eq. A.10, with the

expression that have obtained for az in (6.26) yields
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E[az(r)] = f f f f f az(r)fMM2KK2YiY2(Ml , M 2 , K 1 , K 2 , y Y20)dM dM2 dK dK2 dy 1 dy2

~j ~ 4 (6.49)

-cocooo-o-o- X1 2 X

where we recall that r is the vector of physical parameters (Eq. 6.33). In our assembly

plant, the way the spring and mass elements were picked from their respective batch to

make an oscillator was completely independent. Hence, assuming independence, and

using Eq. A. 13, the above expression is rewritten as follows

4 4

E[az(r)] = 2 Y j i/2i 3/2 M2(M 2)dM .. ( (6.50)

where the explicit expressions for the eigenvalues and the necessary eigenvector elements

were given in equation (6.6) and (6.7) respectively. Notice that on a real structure, it is

generally not possible to separate the compound distribution of the mass and stiffness for

they are not independent. In explicit, it is very difficult to change the mass of a structure

without affecting its stiffness and vice-versa. For example, a stiffer beam is often heavier

than a flexible beam. This is why space structures, which are generally optimized for light-

ness are sometimes very flexible.

All the parameter PDF's in equation (6.50) are Gaussian and are expressed as follows (Eq.

A.31)

1-(rk -r )2 /2ar 2

frk (rk,) = e *k k (6.51)
k 0k

which substituted into (6.50) yields

(M 0-M) 2 (Y2,-2

04 4 - 2 2

E[a(r)] f ff 4 22 e I dM1 ...e 2<dy (6.52)
167t ay,...Y e_'_X_ _/_ _ e X e 32
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The above expression can only be evaluated numerically. The obtained computation result

is

E(az) = 1.8462 [m rms] (6.53)

which compared to the nominal value prediction, gives an error of only 0.005%.

E(az) - az

E(az)

1.8462 - 1.846 1
1.8462 x 100 = 0.005%

This small error in the performance RMS estimation confirms again that, for our system,

the linearity is preserved which means that we can use this fact to say that the Gaussian-

ness is also preserved.

Computation of the performance variance (MS) expectation

Now that we have computed E(az), we need to evaluate E(az 2) in Eq. 6.48. From Eq.

6.26, we deduce the expression for az2

S2 
1 

421

z 4 Yi 3/2
(6.55)+ 022

Y2 23/2

Therefore, E(az 2) is given by

E[a (r)] = +
J .1 f4I Ye 3/2e? 11

(6.56)
Y 3/2 fM(M o)dM10...fyY2 )dY2

e YX 2 ,/ Y(Y0d

which can be evaluated numerically.

E(caz) = 3.5181 [m2 rms]

If we plug the values of (6.57) and (6.62) in Eq. 6.48 we get

aRMS = Ca = 3.5181 - (1.8462)2 = 0.31 [m rms]

(6.54)

(6.57)

(6.58)
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Monte Carlo Simulation

In this section we will perform a numerical simulation of the 2-DOF oscillator assembly

plant. One hundred plant were sampled randomly (see the Database Generation,

Section 6.3) from the production line for which their components characteristics were

known for the purpose of this example. Figure 6.10 shows the sampled physical masses

and physical stiffnesses with their corresponding gaussian distribution for which the

parameters s and a where evaluated statistically.

3

0
2

...... ll

2.5

0
1 1.2

3
M-4

1.4 1.6

3.5 4

1.8 2

1.5

0

3

6 7 8 9

O' x
3 3.5 4.5 54

M. K.
Figure 6.10 Histograms of the sampled physical mass (left) and stiffness (right) elements distributions with their correspond-
ing Gaussian PDF's.

Figure 6.11 shows the sampled transformed damping parameters also represented with

their corresponding Gaussian distribution.

It is very relieving that as we predicted, the distribution of the output RMS is also Gauss-

ian in Figure 6.12. This result is extremely satisfying as it support the methodology that

we count on implementing to predict the performance uncertainty range for large models.

14 .. . . ... . . ... "
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Figure 6.11 Histogram of the "sampled" transformed modal damp-
ing parameters with their corresponding Gaussian PDF's.
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Figure 6.12 Histogram of the performance RMS distribution from
the Monte Carlo simulation
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Vertex Method

Although we mentioned in the previous chapter, it is generally not sufficient to only search

the vertices to predict the worst case performance this the technique implemented for this

example. Since the modes of our system are well separated and since that the disturbance

input is a flat white noise, we have good confidence that the predictions will be accurate.

In this example, we did performed the vertex method on the performance RMS, but we

have demonstrated the technique on the FRF Bode plot in the next section.

Linear Covariance Method

As described in Chapter 5 this method is straight forward to use once we have the parame-

ters sensitivities from the sensitivity analysis. It consist in propagating the uncertainty

covariance matrix by pre- and post-multiplying it by the sensitivity matrix. Now, suppose

we wish to analyze a modified system, whose difference from the nominal system are con-

tained in the matrices AM and AK. (Note: It is assumed that the same coordinate are used

in both cases.) The equation of motion for the unforced, undamped modified system may

be written as:

[M + AM]X+ [K + AK]x = 0 (6.59)

or, using the original system modal transformation 6.8 (noting that the eigenvector and

eigenvalue are NOT those of the new system), as:

[1+5 AMe]i1+[A+4 AKI]n = 0 (6.60)

Using this equation we have established a new equation of motion with a new mass matrix

(m) and stiffness matrix (k), both of which can be defined using the modal data available

on the analytical system together with a description of the perturbations in mass and stiff-

ness which are to constitute the actual system mass and stiffness matrices expressed in the

modal coordinates of the analytical model.
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m = 1+ T AM> = 1+Am
(6.61)

k = A+4' AKe = A+Ak

The eigenvalue and eigenvector of these new mass and stiffness matrices can be deter-

mined in the usual way, thereby providing the natural frequency and mode shape of the

actual structure.

These all stem from the fact that it is much easier to specify changing individual elements

in a mass or stiffness matrix than it is to realize such changes in practice. For example, if

we wish to add a mass at some point on the structure, it is inevitable that this will change

the elements in the mass matrix which relate to the x, y, and z directions at the point in

question and will also have an effect on the rotational motions as well since any real mass

is likely to have rotary inertia as well. This means that it is seldom possible or realistic to

consider changing elements individually, and also that it may be necessary to include rota-

tional coordinates in the original modal model. This last consideration is seldom made,

thanks to the difficulty of measuring rotations, but should be if reliable modification pre-

dictions are to be made. Similar comments apply to the stiffness matrix: the attachment of

any stiffener, such as a beam or strut, will influence the stiffness in several directions

simultaneously, including rotational ones. Lastly, it must be noted that this method, in

common with all which rely on a modal data base that may not include all the structure's

modes, is vulnerable to errors incurred if the effects of the modes omitted from the modal

model are (a) not negligible and (b) ignored. This point will be discussed further in the

next section.

Interpretations

In conclusion we are very happy to see that the distribution output of a 2-DOF system is

Gaussian if the the uncertain parameters also have normal distribution, and as long as the

linearity assumption is preserved.
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TABLE 6.4 RMS Uncertainty Analysis Results

Mean Uncertainty
Evaluation prediction prediction Comments

Method 11RMS ORMS

Deterministic 1.8461 --- Not too hard too obtain if
(nominal predic- size of the model is reason-
tions) able.

Analytical/ 1,8462 0.26 Gets very complicated for
Numerical any system that has more

than one mode, but the
solution is exact

Monte Carlo 1.9243 0.24 Useful to determine the
shape of an unknown dis-

tribution

Vertex Method Not predicted Not predicted Becomes very costly for
(gives worst- large model, even more so
case predic- for the FRF. Provide a mea-

tions) sure of the worst-case.

Linear Covariance Assumed nomi- 0.32 Very efficient and necessi-
Propagation nal tate few computations. Can

be used to obtained the
probability of success as
described in Chapter 5

6.5.2 FRF Uncertainty

Monte Carlo Simulation

The Monte Carlo simulation provides us with the envelope inside which all the possible

plants will lay, Figure 6.13. It is always a good thing to start an analysis with a Monte

Carlo simulation as it gives insight on the shape of the unknown distribution of the

response. It also help us validate the uncertainty propagation techniques we are assured

that any predictions should never get out of the envelope. Otherwise, it indicates a serious

problem in our theory.
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Figure 6.13 Monte Carlo simulation envelope for 100 random plants.

Vertex Method

In the context of evaluating the uncertainty on the FRF magnitude and phase, the vertex

method must be used around the poles and zeros as all the method based on linear approx-

imation fail. Near resonance, and antiresonance (zeros) the second and higher order terms

become much important than the slopes, and therefore the linearity assumption is no

longer valid. This is why, the linear covariance propagation does not work around the

poles and zeros. Since the vertex method necessitate a lot of computations at every fre-

quency point, we will use it in combination with the covariance propagation method to

limit the computation costs,.

-1

..........

........ ... -

-. . . . ..

-- -...... .. .. ...

168 SAMPLE PROBLEM

-50n
1(

1(



Uncertainty Analysis

Linear Covariance Method

Figure 6.14 shown the prediction of the 1 sigma bound on the bode plot of the FRF

1 a Uncertainty of FRF of Tip Displacement,, x, with respect to parameters p
40

3 0 -. .. .- .. . .- .. .-.

a20

0
10 10 100

400 -

300
CL

200

100

0-
102

Frequency, [Hz]

10010 1
Frequency, [Hz]

Figure 6.14 One sigma uncertainty for the FRF magnitude (top) and phase (bottom)

obtained by linear covariance propagation method. We can see very well that near the

poles and zeros, the derivatives completely blow up. Nevertheless, the Covariance propa-

gation method is very good at predicting the uncertainty bounds on the modal frequencies,

or corresponding eigenvalues as shown Figure 6.15

It is clear from this simple example that the linear covariance propagation breaks down

near the poles and zeros of the system where the second order derivatives become very

169
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Eigenvalue Uncertainty Using Linear Covariance Propag.
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Figure 6.15 One sigma uncertainty bounds on the eigenvalues (left) and the correspond-
ing modal frequencies in [rad/s] (right).

large. Away from these critical frequencies though the uncertainty intervals computed are

valid as the linearity is preserved for these frequency range. In order to bound the uncer-

tainty intervals near the singularities, we will use a vertex method approach. Figure 6.16

shows the results from the application of the linear covariance propagation technique on

the bode plot of the FRF. We really see the effects of the non-linearities near the poles and

zeros. Therefore, this technique will be applied complementary with the vertex method.

Hybrid Method

Figure 6.17 shows the composite plot of the covariance propagation method bounded by

the vertex method near the poles and zeros. We can see that there is no more extravagant

amplification of the bounds at poles and zeros. This is also shown in Figure 6.19 where on
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*1a Uncertainty Bounds of FRF of Tip Displacement, x, Using Lin. Cov. Propag
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2 -60
101

Frequency, [Hz]
100

.~ 0

-200
101

Frequency, [Hz]

Figure 6.16 1 sigma bounds around the nominal FRF

the top figure we show that the linear covariance bounds are going out of the allowable

envelope provided by the Monte-Carlo simulation.

On Figure 6.18 we also confirm the usefulness of bounding the covariance propagation

method results. Not doing so would give enormous uncertainty bounds while integrating

under the PSD curve to get the cumulative RMS plot. Even though the resulting bounds

are less conservative, they are still large, This tells us that integrating under the PSD curve

to get the uncertainty on the performance RMS might not the best choice. In fact, if we

compare the hybrid bounds on Figure 6.20, we see that they are far larger than the extreme

bounds obtained from the monte carlo simulation. This tells us that we should in fact apply

the linear propagation directly to the global performance RMS using the sensitivities as

calculated in Chapter 4. In fact doing so, as shown on the Figure 6.20 gives the sigma

bounds that correspond very well to the standard deviation obtained statistically from the
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Fi ure 8: One-Sigma Uncertainty Intervals on FRF: Linear Covariance Propagation Limited by Possibility Bounds
0x
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Figure 6.17 One sigma bounds on the FRF magnitude obtained by the hybrid method.

random simulation. This is very encouraging since it validates the approach we intend to

implement on the large models of spacecraft missions such as SIM and NGST. An even

more promizing fact shown on Figure 6.20, is that the Monte Carlo maximum and mini-

mum predictions on the RMS correspond almost perfectly to the 3sigma bounds of the lin-

ear covariance propagation applied directly to the RMS predictions. This also confirms

that the linear approximation is valid for the performance RMS.
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40 Cumulative RMS and Oumulative RMS Uncetlainty (using Lin. Cov. Propag.)
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Figure 6.18 Comparison of the nominal and ±sigma interval response computation for the PSD and cumulative RMS (using LSS data-
)ase) from Linear Covariance Propagation (left) and hybrid method (right).

6.6 Summary

In this chapter, we have applied different method of propagating uncertainties from a data-

base. We have demonstrated a way to get the uncertiantiy bounds around the FRF, but

more interesting is the propagation of the uncertainty to the performance predictions as it

is the quintescential question of strcutral design - will the systems meet the requirements?

We have identified that in order to evaluate the uncertainty on the performance RMS, it is

best to do it using the RMS sensitivities as oppose to try to integrate under the uncertain

PSD curve.
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Figure 10: Comparison of Monte Carlo vs Linear Covariance Propagation
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Cumulative RMS and Cumulative RMS Uncertainty w/ Statistical Analysis
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Figure 6.20 Cumulative RMS bounds comparison between the hybrid method, Monte Carlo, statistics
on Monte Carlo, and first order approximation
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Chapter 7

CONCLUSIONS

7.1 Thesis Summary and Contributions

To summarize the work done in this thesis, we first described the basic modeling tools and

notation for performing integrated modeling and assessing the performance of precision

controlled structures. We have established that it is not enough to evaluate only the nomi-

nal performance of the system based on the preliminary design models since these prelim-

inary models can be quite crude in early design phase. Although they can provide great

qualitative assessment of the performances, their quantitative predictions are not necessar-

ily very accurate. Therefore, in order for the designer to make sure that, once it is built, the

system will meet the requirements with a certain degree of confidence, it is a necessity to

evaluate the uncertainty range around the performance outputs of the system. The tools to

evaluate the uncertainty range around the nominal performances will be presented in the

following chapters.

We have also presented a way to generate statistical structural database for performance

analysis of space missions. For the near future, these techniques will be of utmost impor-

tance since direct system structure test data will not be available for large space systems.

We have also introduced an innovative way of including the damping uncertainty into the

system. As it was assumed to have lognormal distribution, we transform the modal damp-

ing parameters into the Gaussian space in order to propagate the uncertainty through linear
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systems. It was also shown how the data obtained from a survey of spacecraft damping

measurements could be utilized to probabilistically assess electro-optic jitter problems.

We have presented methodologies for computing uncertainties for the modal mass, stiff-

ness and transformed damping. Modal mass and stiffness uncertainties for a structural

model are expressed as a function of the error in the eigenvalue and mode shape predic-

tions (cross-orthogonality). The methodology for obtaining modal mass and stiffness

uncertainties is based on linear perturbation analysis of the eigen-problem. A database

consisting of a covariance matrix of the normalized modal parameters (m and k), con-

structed from statistical analysis of families of structure/model pairs was presented [Has-

selman & Chrostowski, 1991]. The main limitations of the database are the limited sources

of data available for statistical validity, and the limited number of modes documented for

each sampled structure. Damping uncertainty for a structural model is defined in terms of

the variability in experimental modal damping estimates. A methodology for obtaining

damping uncertainties was outlined, assuming lognormal distributions for the modal

damping data. The damping parameters were transformed from the lorgnormal space to

the Gaussian space, in order to propagate their corresponding uncertainties. Three meth-

ods for generating damping uncertainty database were introduced, corresponding to differ-

ent levels of accuracy (from model generation) in the uncertainty predictions.

The derivation of first order and second order derivatives of the frequency response func-

tion (FRF) matrix and the performance RMS, for a linear time invariant system, with

respect to modal parameters p = [m, k, y] was presented. The second order derivatives

are used to establish parameter uncertainty bounds Ap, within which linearity is pre-

served. This is essential since the assumed normally distributed uncertainty parameters

will lead to a Gaussian distribution of the performance RMS and FRF magnitude and

phase. Expressions for second order derivatives for the eigenvalues and mode shapes with

respect to the modal mass and stiffness matrix elements have still to be obtained.
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Different methods that we use to propagate the uncertainties and evaluate the error bounds

around the nominal performance predictions were presented. One contribution of this

research work was to obtain the probability distribution of the response and hence evaluate

the probability of success of the design given a certain error budget. We have also obtained

the complementary probability of failure of the design given an error budget. This is an

important result in the context of high profile spacecraft mission such as SIM or NGST as

it help the engineer build confidence that a particular architecture is suitable to meet its

specific tight requirements in presence of modeling uncertainties. An other contribution

was to provide the constrained optimization technique, use to evaluate the worst-case per-

formance, with the necessary bounds on the parameters. These bounds were obtained from

the past experience database.

7.2 Recommendations for Future Work

Still a lot of work needs to be done in order to characterize statistical structural uncertain-

ties. Also, the characterization of the disturbance uncertainties would be most useful in

order to evaluate the overall uncertainty of the integrated system.

The tools and methods developed in this thesis could be used in populating an uncertainty

management for a flight program such as SIM or NGST. Such an uncertainty management

plan could involve the following steps:

Flight Program Uncertainty Roadmap

1. Start: Define science and engineering requirements (WFT, DPL, BS, LOS
Jitter)

2. Conceptual Design: Selection between competing designs using nominal
performance &z and level of uncertainty Aaz.

3. Preliminary Design: Design for small sensitivity to uncertainty, i.e. reduce
sensitivity of performance to parametric uncertainty.

4. Detail Design: Optimization of design based on uncertainty bounds. Ensure
that worst-case bound remains within requirements.



5. Testing and Integration: Establish testing requirements, focusing on the
uncertain parameters p, which most affect performance uncertainty. Reduce
Ap as much as possible.

6. Launch: At the time of launch the only remaining uncertainty should be in
the environmental (disturbance) influences.

2 3 4 5 6

This plot shows the evolution of the error bars with respect to the nominal performance.

The numbering corresponds to the flight program steps mentioned above.
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Appendix A

SOME PROBABILITY AND RANDOM
VARIABLES FUNDAMENTALS

In this Appendix, we will breifly review some some of the basic and pertinent fundamen-

tals of probability and random variables that are useful in this thesis. For a more detailled

discussion on probability theory the reader is referred to [Drake, 1967].

A.1 Probability for continuous Random Variables

A random variable (RV) x is, in simplest terms, a variable which takes on values at ran-

dom; and may be thought of as a function of the outcomes of some random experiment.

The manner of specifying the probability with which different values are taken by the RV

is by the Cumulative Distribution Function (CDF), also called the probability distribution

function F,(xo) which is defined by:

F,(x0) = PxX0) = P(x 0 X0 fx(xo)dxo (A.1)

or by the Probability Density Function (PDF) fx(xo) which is defined by:

F,(x0) d pX (xo) = fx(x0) (A.2)

where

FX(oo) = f(xo)dxo = 1 (A.3)
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The expectation of a RV x is defined as the sum of all values the RV may take, each

weighted by the probability with which the value is taken. For a continuous RV, it is given

by

E(x) = fx 0fx(x0 )dx0 = 5c (A.4)

This is also called the mean value of x, or the first moment of x. The notation (.) can be

used interchangeably for the expectation operator.

The expectation of a function of RV can computed directly from the distribution of x by

the integral

E(g(x)) = fg(xo)f,(xo)dxo (A.5)

Note that it is not necessary to derive the PDF of a function of RV (f5 (go)) to get its mean

(E(g(x))) or its variance (c ).

To derive the PDF for g, a function of one or multiple RV's, we need to perform only two

steps in the event space of the original random variables (see Chapter 2 of [de Weck,

1999]) :

Step 1) Determine the probability of the event g ; go for all values of go . In other

words, get the CDF, pg <(go).

Step 2) Differentiate this quantity with respect to go to obtain fg(go).

An important statistical parameter descriptive of the distribution of x is its mean-squared

value. Using Eq. A.5, the expectation of the square of x is written

E(x2) = 20fx(x 0)dx0 (A.6)
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This quantity is also called the second moment of x. The root-mean squared (RMS) value

of x is the square root of E(x 2). The variance of a RV is the mean squared deviation of

the RV from its mean; it is denoted by ac where

S2= E[(x - E(x)) 2] = (xO - E(x))2fx(xo)dxo = E(x2) - (E(x))2 (A.7)

The square root of the variance, or ax, is the standard deviation of the RV x. The RMS

value and the standard deviation are equal only for a zero-mean RV.

The probability that x is comprised between a and b is then given by

P(a<x5 b) = fx(x0)dxo = px<(b)- px<(a) (A.8)

In the two-dimensional event space for the possible experimental values of RV's x and y,

we have the compound, or joint, PDF, f,, (xo, yo), and the probability of an event A is

given by the integral over its surface:

P(A) = fff,,(x0 , 0 )dxOdy0  (A.9)
SA

The expectation of a function of two RV's can computed directly from the compound dis-

tribution of x and y by the integral

E(g(x, y)) = ff(g(x,YO)f y(xo,O)dxdyO (A.10)

Conditional probability of RV x given the event that RV y = yo:

fXiy(xO|YO) = fXY(x 0 ,YO) (A.11)
f,( y0)

Two continuous RV's x and y are defined to be independent (or statistically independent)

if and only if
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fXiy(xoIYo) = fx(xo) for all x0 , yo (A.12)

This means that for independent RV's, the compound PDF is given by

fx,(xo, Yo) = fx(xo)f,(yO) for all x0 , yo (A.13)

We say that any number of RV's are mutually independent if their compound PDF factors

into the product of their marginal PDF's for all possible experimental values of the RV's.

Of greatest interest, is the second order moment of RV's x and y about their centroid, that

is, the expected value of g(x, y) = (x- p4)(y - p,). This moment is known as the cova-

riance and denoted ar :

axy = E[(x - [x)(y - ,y)] = ( (x 0 - gx)(Y 0 - y)fxy(x 0 , y0)dxody0  (A.14)

In the mechanical analogy, the covariance is the product of inertia of the joint density

function. By expanding the product and simplifying, it can be shown that

aX, = E[xy] - (A.15)

This equation is the most useful way to compute the covariance. The expexted value of the

product, E[xy], is known as the correlation of x and y and is of cardinal importance in

the study of ramdom processes. Just as the variance mesures the deviations of x from its

centroid, the covariance mesures deviations of x and y together from their centroid. Rela-

tively large absolute values of ax, indicate that x and y tend to vary from the centroid

together; for example, it x is large, then y will also be large. Values of ax, near zero indi-

cate that they tend not to vary together.

To speak of "relatively" large or small values of %X,) we must normalize the covariance to

eliminate units of measurements and to account for the marginal dispersion of x and y. A

nondimensional measure is given by the ratio known as the correlation coefficient pxy:
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x Y ___ (A.16)

where the ratio ranges between +1 and -1. Note that pxy can also be written as

P = E[(X - ) (y - gy)
xy [ x Y (A.17)

which is to say that the correlation coefficient is equal to the expected value of the product

of the standardized variables for x and y.

The correlation coefficient is a measure of the linear dependance of two RV's. If random

variable y is a linear function of x, where for example y = ax + b, the corelation coeffi-

cient is equal to ±1. If x and y and independent, the correlation cooefficient is equal to

zero. If y is partially linearly related to x, the correlation coefficient is in the range -1 to

+1 depending on the strength of the linear relation. If x and y are nonlinearly related, the

correlation coefficient can tell us nothing about that relationship.

Example 1: x and y are linearly related by y = ax + b, where a and b are constants.

pY = E[(x - )( - y)]

= E[(x - p,)(ax + b - (ap + b))- aE (A.18)

a

|al

Thus, if y is perfectly linearly dependent on x, py = ±1, depending on the sign of the

constant a.

Example 2: x and y are independent. Then their correlation, E(xy), is just the product of

the marginal expected values because the joint PDF may be factored into the product of

the marginal density functions (see A.13):
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E(xy) = f(fxoyofxy0o, .O)dxdyO = rxofx(xo)dxo yf(O)dyO-** oo -o -- (A. 19)

= 9Xp,

It follows immediately that their covariance, ac, = E[xy] - pxpy, and hence their corre-

lation coefficient are equal to zero. The converse of the above is not necessarily true. That

is, if the covariance of x and y is equal to zero, it is not necessarily true that x and y are

independent as shown in the following example.

Example 3: Let the PDF of x be symmetric about the origin, that is, fx(-xo) = fx(xo).

By symmetry, the expected value of x is equal to zero, g = 0. Let y be related to x by a
2symmetric, nonlinear function such as y = x . The covariance is shown to be equal to

zero as follows:

,= E[xy] - gg = E[x x2 ] = E[x3 ] = xfx(x)dx 0XY-o0 (A.20)
=0

3The integral in the last step is equal to zero because xofx(xo) is antisymmetric; for each

function evaluation at +x, there is a canceling evaluation at -x. Hence, if the dependence

between x and y is nonlinear, their covariance might be equal to zero. The fact that

aCX = 0, or pxy = 0, does not mean that x and y are independent. If aX, = 0 , we say

that x and y are uncorrelated. If the correlation between x and y is equal to zero,

E[xy] = 0, we say that x and y are orthogonal.

Covariance Matrix:

The cross-covariance matrix of two vectors r and s is defined in terms of the outer prod-

ucts:

Xrs = E[(r - E(r))(s - E(s))T] = E[rsT] - E[r]E[s T] (A.21)
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When r = s , Eq. A.21 defines the covariance of r ;it is simply a matrix whose elemenrs

are the second moments of the random components r1 , r2, ... , r,. In the following, we

define the error Ap in the estimate of a parameter vector to be the difference between the

actual p and the estimated (nominal) h values:

Ap = p -h (A.22)

The covariance of Ap, designated I, is given by

E,, = E[ApAp ] (A.23)

It provides a statistical measure of the uncertainty in p. The notation permits us to discuss

the properties of the covariance matrix independently of the mean value of the paramters.

Some features of the covariance matrix can be seen by treating theerror in the knowledge

of two uncertain paramters,

Ap = (A.24)
Ap2

The covariance matrix of Ap is

2 22
Ap2 Ap1 Ap 2  E[Ap ] E[ApIAp 21  (A.25)

Ap1 Ap2 Ap2  E [ApAp2] E[Ap2 2

Notice that the covariance matrix of an n-parameter vector is an (n x n) symmetric matrix.

The diagonal of this covariance matrix are the mean square errors in knowledge of the

uncertain paramters. Also, the trace of I,, is the mean square length of the vector Ap.

The off-diagonal terms of E,, are indicatord of cross-correlation between the elements of

Ap. Specifically, they are related to the linear correlation coefficient p(Apl, Ap 2) by
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E[Ap 1 Ap 2 ]
P(API, AP 2) =

G I C2
(A.26)

where cT indicates the standard deviation of Ap;.

A.2 Probability Density Function (PDF)

Two important specific forms of probability distribution are the uniform and normal distri-

butions.

A.2.1 Uniform Probability Density Function

The uniform distribution is characterized by a uniform (constant) probability density, over

some finite interval. The magnitude of the PDF in this interval is the reciprocal of the

interval height as required to make the integral of the function unity. This function is

shown in Figure A. 1.

0.7

0.6 F

'-15.4

x

0.3

0.2

0.1

0 0.5 1
a 1.5 2 2.5 3.5

Figure A.1 Uniform Probability Density Function
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The standard deviation for a uniform distribution can be found using the square root of Eq.

A.7

aT = JE[(x-E(x))2] = E(x2)-(E(x)) (A.27)

where E(x) is given by

E (x) = a + b
2

(A.28)

and E(x 2) is given by

= b

3(b -a) a

3 3
b -a
3(b - a)

b 2+ab+a
3

(A.29)

plugged in A.27, we get

12 2

r _ b2+ab+a 2

3
_a+b) 2

2)

2 2
b -2ab+a _ (b-a)

12

A.2.2 Gaussian Probability Density Function

The Gaussian (or normal) PDF, shown in Figure A.2, has the following analytic form:

fX(xo) = e -oo < X0 00

where the two parameters that define the distribution are p,, the mean, and ax, the stan-

dard deviation. The s transform of the normal distribution is given by

T ((S2a2)/e) - sE(x)
fx (s) = e x (A.32)

The integral of the function, or area under the curve, is unity. The area within ±1 a bounds

centered about the mean is approximately 0.68. Within the ±2a bounds, the area is 0.95.

E(x 2 ) = 2 1 dx
aXOb - a 0

(A.30)

(A.31)
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0.5
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0.15

0.1 -
0.135/sqrt(2It)a

0.05 - - - - - - - -xT
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Figure A.2 Normal Probability Density Function

As an interpretation of the meaning of these values, the probability that a normally distrib-

uted random value is outside the ±2T bounds is approximately 0.05. The normality of the

Gaussian distribution is preserved under sums of independant random variables and linear

transformations.

ex.: -if ax and $ are scalars, then y = ax + $ is also normal.

= Ci+B
2 2 2 (A.33)

Cav = ac CF

-if x and y are normal (indep.) RV's, then z = x + y is also normal.

= +y
2 2 2 (A.34)

Since a Gaussian PDF is symmetrical about its expected values, the CDF may be fully

described by tabulating it only for values above (or below) its expected value. The follow-

ing is a four-place table of O(xo0 ), the CDF for a unit normal random variable:
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TABLE A.1 CDF for the unit normal PDF

x 0
0  0(x 0 ") x 0

0  0(x 0 ") X0 " 0(x 0 ") x0
0  0(x 0

0 )

0.00 0.5000 1.00 0.8413 2.00 0.9772 3.00 0.9987

0.10 0.5398 1.10 0.8643 2.10 0.9821 3.10 0.9990

0.20 0.5793 1.20 0.8849 2.20 0.9861 3.20 0.9993

0.30 0.6179 1.30 0.9032 2.30 0.9893 3.30 0.9995

0.40 0.6554 1.40 0.9192 2.40 0.9918 3.40 0.9997

0.50 0.6915 1.50 0.9332 2.50 0.9938 3.60 0.9998

0.60 0.7257 1.60 0.9452 2.60 0.9953

0.70 0.7580 1.70 0.9554 2.70 0.9965

0.80 0.7881 1.80 0.9641 2.80 0.9974

0.90 0.8159 1.90 0.9713 2.90 0.9981

A more complete table of the cumulative distribution function of a standard normal RV

can be found in Section E.1 of [Skelton, 1989].

Given a normal distribution X (g, a ), how do we get its CDF?

p ,(x 0 ) = P(x5 &X0 ) = ( x - M< (x2, = 0(x 0
0 )

0(x 0 *) = fe dx 0 (A.36)

Values of the cumulative distribution function for negative argument can be calculated

using the relation

0(-xO*) = 1 - 0(xO ) x0
0 > 0 (A.37)

Joint Normal Distribution

The bivariate normal distribution is given by

where

(A.35)
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2 xpo - px)2 - 2pxy(jo [L( YO - 1t)2]

12(1 - p )L Cr. CT Cxr ) G

2naXa 1 - p y-(A.38)

-00. < XQ 00

-00 < yO <00

If the correlation coefficient between x and y is equal to zero, p = 0, the bivariate den-

sity can be factored into the product of two marginal PDF's. This means that if x and y

are jointly normally distributed, a correlation coefficient equal to zero implies that x and

y are independent. Recall that this is not generally true.

The bivariate density function can be easily generalized to more than two dimensions. Let
2

there be n jointly distributed normal RV's xi with mean values gi, variances a, , and

covariance c. The general multidimensional or multivariate normal distribution is

f -x 1o2' -nn/ 1/2 (A.39)XIX 2 ... X,~A 0 X 2 01 .. o (27c) n12 111/2
(2xt) |X|

where . is the symmetric covariance matrix:

2
G1 G12  a mIn

T 2
= = x E[(x - m)(x - m) ] = a 2 1 a2 --- a2n (A.40)

2
anl an2 'n

and x - m is the vector

xi-91

x-m = X 2 - 92 (A.41)

xn - i
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Since all the statistical properties of a gaussian random process are defined by the first and

second moment of the distribution, it is appropriate to introduce a shorthand notation like

the following

x ~ 9 (M, 1) (A.42)

which indicates that x is a gaussian (normal) random vector with mean m and covariance

E. By way of example, for a one-dimensional random process x with mean p and stan-

dard deviation a, we would write

x 2 (( 2 A.43)

A.2.3 Lognormal Probability Density Function

The Lognormal PDF, shown in Figure A.3, has the following analytic form:

1 -(ln(xO) -- c) 2/2d 2

f,(xo) = e x0>0 (A.44)

where the two parameters that define the distribution are c and d, defined in function of

the statistical mean, p,, and standard deviation, ax, of the data as follows:

C = ,) d = ln ( p + 1), pX =- (A.45)J_ _2

px + 9 x

where the mean and variance can also be obtained by the following

1 2
c + d

E(xo) = gx = e (A.46)

2 = e2c+d d2
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Lognormal Probability Density Function

A.3 Random Processes

The subsequent review of random processes theory was presented in [Gutierrez, 1999].

For a more detailed discussion of the fundamentals of random processes, the reader should

refer to [Wirsching, 1995], [Lutes & Sarkani, 1997], or [Gelb & al., 1974].

Suppose w(t) is a random process, its correlation function is defined as

Rww(tl, t 2 ) = E[w(t,)w (t 2 )] (A.47)

For a stationary process, meaning a process for whci the statistics do not change, the cor-

relation function can be written more simply as

Rww(T) = E[w(t)w T (t + T)] (A.48)

where the variable T is called the time-lag. This is a usefull expression since the covari-

ance matrix for a zero-mean process can be obtained by evaluating the correlation matrix

at T = 0.
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1W = R,(O) =

2
E[w1 ]

E[W2W 1]

E[w1 w 2 ]

21
E[w2 ]

... E[w1 wn3

... E[w 2Wn

2
... E[w]

2
a 1  a 12  -- ln

2
a 2 1  a 2  -- 2n

2
On1 an2 -- an]

where n is the total number of elements in the vector w . The above simplification is pos-

sible for zero-mean processes since, from the covariance definition

Gwj = E[(wi - w)(w +- w)]

= E [wiwj] - E [wj wv] - E [wjwj] + E [TviWj]

= wj;- Wi-v - i;+ i Is' (A.50)

= wiw.+wiW = w w.+0

= wiw.

Hence, the diagonal entries in the covariance matrix are simply the mean-square values of

the elements of w.

2 ~2
(xw),, = E[w; (t)]= w (A.51)

Zero-mean processes have the nice characteristic to have their mean-square values identi-

cal to their variances.

2 2
w, = EIw(t)] - (E[wi])

0

2 2
= wi

(A.52)

The spectral density function (for zero-mean processes) is obtained by taking the Fourier

transform of the correlation function (Eq. A.48).

Sw(o) = Z[Rw()] f Rww(T)e 1 (tr dt

Conversely, the inverse Fourier transform recovers the correlation function.

(A.53)

(A.49)

207APPENDIX A
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RW,(Tr) = 3 [SW@O()] = f Sww(o)ewdo) (A.54)

As we mentioned earlier, evaluating the correlation function at T = 0 gives us the covari-

ance matrix. Therefore, by seting T = 0 in (A.54), we get the covarinace matrix of w.

1W = rfSww(o)do (A.55)

Likewise, when the spectral density functions are available, Eq. A.55 provides us with an

alternative way of calculating the mean-square values of w, as follow

a 2= (EIf [S,,(O)], ido (A.56)=i W~i = [S-E)~d

where the diagonal elements of the spectral density function matrix ([Sw,(o)] ,) are

referred to as the power spectral densities (PSD's). For the frequency expressed in Hz, the

equivalent expression is given by

= f [Sww(f)], ,df (A.57)

where w = 2rf . The interpretation of the above expression is that the variance of a ran-

dom signal is equal to the area under the PSD curve. This is a powerful result that is used

a lot in frequency-domain analysis.



Appendix B

HASSELMAN'S DATABASES

The following databases, as described in Chapter 3, where reproduced from [Hasselman &

Chrostowski, 1991]. They represent two types of generically similar structures, namely

large space structures in launch configuration (LSS, Section B. 1), and conventional space

structures (CSS, Section B.2) as well as a combined set of structures from LSS and CSS

(COMB, Section B.3). The singular values for these four database are listed in Table B.3

(Section B.4).

The databases are presented in the form the correlation matrix of the modal mass matrix

elements, pmm, the correlation matrix of the normalized modal stiffness matrix elements,

pgk, and the cross-correlation matrix of modal mass and normalized modal stiffness

matrix elements, p k

p Pp = T (B.1)

L mk Pkkj

The covariance matrix, lp,, of the modal mass and normalized modal stiffness matrix

elements can be obtained by constructing the correlation matrix ppp as follows

spp ph p emppp (B.2)

where the standard deviations form the elements of the diagonal (square) matrix acy

209
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B.1 LSS database (research models)

The seven structures from which the data sets were obtained to compile the LSS database

are listed in Table B.1.

TABLE B.1 Structures in LSS Database.

Structure No. Frequency
No. Description Source Modes Range (HZ)

LSS 1 LaRC Minimast 3-Longeron NASA Langley 5 0.85 - 6.11
Deployable Truss Beam Research Center

LSS 2 LaRC Ten Bay 4-Longeron NASA Langley 9 18.05 - 200.20
Cantilever Erectable Truss Research Center

Beam

LSS 3 JPL 4-Longeron Cantilever Jet Propulsion 4 8.31 - 35.53
Precision Truss Structure Laboratory

LSS 4 JPL 3-Longeron Cantilever Jet Propulsion 5 10.61 - 71.83
Tetrahedral Bay Truss Beam Laboratory

LSS 5 JPL 3-Longeron Pre-Free Tet- Jet Propulsion 6 17.94 - 69.17
rahedral Bay Truss Beam Laboratory

LSS 6 PACOSS Free-Free Dynamic Martin Marietta 22 1.03 - 9.26
Test Article (DTA) Corporation

LSS 7 PACOSS Cantilevered Solar Martin Marietta 9 0.93 - 16.6
Array (Substructure of DTA) Corporation

The number of modes indicated are the number of analysis-test mode pairs in the fre-

quency range indicated, beginning with fundamental mode.

Standard Deviation Vectors:

0.185 0.183 0.248 0.214 0.104 0.140 0.136 0.235 0.269 0.151 0.191 0.100 0.330 0.143 0.290

0.271 0.175 0.353 0.098 0.230 0.214 0.204 0.159 0.316 0.165 0.194 0.123 0.296 0.142 0.230
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Correlation Matrices:

Pmm =

1.000

-.327

-.339

-. 119

0.483

0.841

-. 108

-. 181

0.152

0.187

0.127

0.282

0.295

-.095

-.327

1.000

-.427

0.162

-.631

0.189

-.438

0.349

-. 374

0.328

0.318

-. 113

-. 113

-.685

-.339

-.427

1.000

0.047

0.109

-.647

0.734

0.005

0.262

-.869

-.733

-.264

0.050

0.078

-. 119

0.162

0.047

1.000

-.789

-.227

0.453

0.963

-.936

-.483

-.660

0.246

-.831

0.201

0.483 0.841

-.631 0.189

0.109 -.647

-.789 -.227

1.000 0.272

0.272 1.000

-.045 -.515

-.872 -.174

0.880 0.103

0.167 0.530

0.282 0.493

0.134 0.134

0.768 0.341

0.070 -.447

-. 108 -. 181

-.438 0.349

0.734 0.005

0.453 0.963

-.045 -.872

-.515 -. 174

1.000 0.289

0.289 1.000

-.142 -.938

-.871 -.428

-.923 -.561

0.341 0.102

-.097 -.854

0.189 0.044

0.152

-.374

0.262

-.936

0.880

0.103

-. 142

-.938

1.000

0.160

0.358

-.203

0.861

-. 167

0.187

0.328

-.869

-.483

0.167

0.530

-.871

-.428

0.160

1.000

0.959

-.009

0.260

-.079

0.127

0.318

-.733

-.660

0.282

0.493

-.923

-.561

0.358

0.959

1.000

-. 163

0.377

-. 171

0.282

-. 113

-.264

0.246

0.134

0.134

0.341

0.102

-.203

-.009

-. 163

1.000

0.056

0.083

0.295

-. 113

0.050

-.831

0.768

0.341

-.097

-.854

0.861

0.260

0.377

0.056

1.000

-.470

-.095 0.315

-.685 -.337

0.078 0.164

0.201 -.848

0.070 0.789

-.447 0.268

0.189 -. 116

0.044 -.889

-. 167 0.894

-.079 0.223

-. 171 0.348

0.083 -.262

-.470 0.895

1.000 -.225

0.315 -.337 0.164 -.848 0.789 0.268 -.116 -.889 0.894 0.223 0.348 -.262 0.895 -.225 1.000

pkk =

0.381 0.843 0.912

-. 146 -.239 -.262

-.321 -.575 -.602

1.000 0.502 0.307

0.502 1.000 0.812

0.307 0.812 1.000

0.596 0.451 0.398

0.119 -.632 -.554

-.432 0.024 -.289

-.518 -. 149 0.133

-.360 0.121 0.191

0.446 0.283 0.584

-.611 0.228 0.532

0.232 -.272 -.292

-.608 0.174 0.420

1.000

-.372

-.652

0.381

0.843

0.912

0.390

-.670

0.001

0.049

0.220

0.298

0.407

-.082

0.398

-.372

1.000

0.060

-. 146

-.239

-.262

-.489

0.302

-.057

0.455

0.106

-. 186

-. 110

-.729

-.450

-.652

0.060

1.000

-.321

-.575

-.602

0.255

0.740

0.122

-.509

-.739

-.273

-.036

0.064

0.022

0.390 -.670

-.489 0.302

0.255 0.740

0.596 0.119

0.451 -.632

0.398 -.554

1.000 0.240

0.240 1.000

-.283 -.426

-.827 -.413

-.772 -.759

0.432 0.131

-.036 -.449

0.199 0.096

0.044 -.507

0.001 0.049

-.057 0.455

0.122 -.509

-.432 -.518

0.024 -. 149

-.289 0.133

-.283 -.827

-.426 -.413

1.000 0.026

0.026 1.000

0.237 0.842

-.923 -.063

0.188 0.399

0.026 -.423

0.348 0.209

0.220

0.106

-.739

-.360

0.121

0.191

-.772

-.759

0.237

0.842

1.000

-. 153

0.273

-. 160

0.234

0.298

-. 186

-.273

0.446

0.283

0.584

0.432

0.131

-.923

-.063

-. 153

1.000

0.044

-.043

-.079

0.407

-. 110

-.036

-.611

0.228

0.532

-.036

-.449

0.188

0.399

0.273

0.044

1.000

-.450

0.914

-.082 0.398

-.729 -.450

0.064 0.022

0.232 -.608;

-.272 0.174

-.292 0.420

0.199 0.044

0.096 -.507

0.026 0.348

-.423 0.209

-.160 0.234

-.043 -.079

-.450 0.914

1.000 -.080

-.080 1.000
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mkc

0.945 -.393 -.605 0.489 0.959 0.847 0.479 -.677 0.074 -. 142 0.137 0.248 0.273 -.093 0.286

-.263 0.956 -. 190 -. 150 -. 196 -. 147 -.630 0.127 -. 126 0.657 0.349 -.092 -.074 -.691 -.416

-.438 -. 166 0.944 -.242 -.315 -.421 0.452 0.550 0.225 -.666 -.768 -.257 0.066 0.130 0.181

-. 134 0.256 0.165 0.735 -. 111 -. 169 0.408 0.691 -.486 -.450 -.621 0.259 -.717 0.163 -.788

0.432 -.685 -. 153 -.293 0.453 0.471 0.200 -.647 0.248 -.051 0.244 0.104 0.639 0.072 0.798

0.826 0.061 -. 801 0.279 0.858 0.767 -.003 -.784 0.133 0.334 0.514 0.106 0.314 -.436 0.177

-. 115 -.242 0.697 0.222 -. 125 0.002 0.794 0.693 -.391 -.717 -.929 0.366 -.007 0.151 0.024

-.234 0.452 0.148 0.674 -.124 -.277 0.239 0.657 -.366 -.355 -.521 0.106 -.767 0.016 -.884

0.122 -.383 0.086 -.683 0.153 0.175 -. 113 -.541 0.477 0.149 0.311 -.218 0.749 -. 133 0.854

0.317 0.056 -. 824 -.225 0.131 0.284 -.697 -.718 0.082 0.841 0.970 -.009 0.223 -.070 0.184

0.205 0.080 -.713 -.396 0.110 0.175 -.773 -.767 0.266 0.831 0.998 -. 174 0.294 -. 148 0.268

0.307 -.206 -.297 0.479 0.331 0.587 0.443 0.097 -.905 -.094 -. 143 0.996 0.014 -.038 -. 100

0.361 -. 159 -.086 -.612 0.300 0.515 -.071 -.541 0.203 0.374 0.349 0.064 0.961 -.457 0.892

-.089 -.732 0.044 0.284 -.258 -.255 0.233 0.132 -.094 -.435 -. 180 0.070 -.475 0.991 -. 122

0.388 -.359 -.007 -.641 0.228 0.366 -.049 -.600 0.523 0.242 0.312 -.254 0.896 -. 165 0.973

B.2 CSS database (for pretest and posttest models)

Table B.2 lists the eleven conventional space structures from which the data were

extracted to compute the CSS the databases. Neither the structures nor the source of data

are identified at the request of the contributors who considered the data proprietary.

The number of modes indicated are the number of analysis-test mode pairs in the fre-

quency range indicated, beginning with fundamental mode. In this case case, some of the

analysis modes were omitted because a test mode was not found to correlate with it. For

the most part, the frequency range for the paired modes, where no analysis modes were

skipped, represents the range of paired modes having cross-orthogonality of at least 0.50.

The resulting databases for the the prestest modes] (CSS-I), and the posttest models (CSS-

II) are reproduced in the following two subsections.
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TABLE B.2 Structures in CSS Database.

Structure No. Modes Frequency No. Modes Frequency
No. Pretest Model Range (HZ) Posttest Model Range (HZ)

CSS 1 9 13.71 - 23.58 N/A

CSS 2 5 16.27 - 52.70 5 16.27 - 52.70

CSS 3 6 14.49 - 49.97 6 14.49 - 49.97

CSS 4 6 14.45 - 50.29 N/A

CSS 5 9 29.38 - 95.99 9 29.38 - 95.99

CSS 6 5 15.11 - 27.35 N/A

CSS 7 N/A 34 7.04-46.50

CSS 8 N/A 4 41.64 - 93.77

CSS 9 N/A 14 5.84-24.51

CSS 10 N/A 12 12.50 -35.67

CSS 11 16 16.15 - 46.60 27 16.15 - 50.76

B.2.1 Pretest Models Database (CSS I)

Standard Deviation Vectors:

0.097 0.084 0.137 0.096 0.134 0.117 0.131 0.116 0.062 0.383 0.094 0.109 0.467 0.177 0.278

aT =[];

0.193 0.104 0.196 0.072 0.072 0.287 0.133 0.122 0.073 0.634 0.096 0.125 0.407 0.175 0.320
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Correlation Matrices:

Pm = 1;

1.000 -.707 -.256 0.288 0.046 0.953 0.821 -.644 -.376 0.792 0.724 0.625 0.874 0.120 0.429

-.707 1.000 0.140 -.533 -. 179 -.608 -.834 0.739 0.500 -.386 -.526 -.798 -.751 -.287 -.284

-.256 0.140 1.000 0.305 0.482 -.249 -.043 0.004 -.368 -. 109 -.585 0.013 -.330 0.465 -.514

0.288 -.533 0.305 1.000 0.699 0.139 0.661 -.624 -.937 0.002 -. 131 0.851 0.153 0.766 -.631

0.046 -. 179 0.482 0.699 1.000 0.000 0.254 -.508 -.867 0.138 -.609 0.417 0.044 0.987 -.683

0.953 -.608 -.249 0.139 0.000 1.000 0.634 -.434 -.264 0.919 0.656 0.416 0.780 0.032 0.530

0.821 -.834 -.043 0.661 0.254 0.634 1.000 -.878 -.643 0.381 0.566 0.941 0.781 0.383 0.049

-.644 0.739 0.004 -.624 -.508 -.434 -. 878 1.000 0.702 -.274 -.284 -. 859 -.766 -.625 0.090

-.376 0.500 -.368 -.937 -.867 -.264 -.643 0.702 1.000 -.224 0.223 -.782 -.265 -.911 0.597

0.792 -.386 -. 109 0.002 0.138 0.919 0.381 -.274 -.224 1.000 0.378 0.164 0.651 0.115 0.477

0.724 -.526 -.585 -. 131 -.609 0.656 0.566 -.284 0.223 0.378 1.000 0.351 0.686 -.515 0.721

0.625 -.798 0.013 0.851 0.417 0.416 0.941 -.859 -.782 0.164 0.351 1.000 0.586 0.540 -.221

0.874 -.751 -.330 0.153 0.044 0.780 0.781 -.766 -.265 0.651 0.686 0.586 1.000 0.136 0.526

0.120 -.287 0.465 0.766 0.987 0.032 0.383 -.625 -.911 0.115 -.515 0.540 0.136 1.000 -.669

0.429 -.284 -.514 -.631 -.683 0.530 0.049 0.090 0.597 0.477 0.721 -.221 0.526 -.669 1.000

pkk = [1;

1.000 -.453 0.025 0.005 0.089 0.675 0.402 -. 124 -.259 0.700 0.436 0.261 0.437 0.022 0.562

-.453 1.000 0.040 -.579 -.555 -.077 -. 898 0.390 0.293 -.366 -.591 -.744 -.712 -.294 -.015

0.025 0.040 1.000 -.033 0.042 -. 188 -. 160 0.172 -.304 0.024 -.362 0.274 -.223 0.299 -.263

0.005 -.579 -.033 1.000 0.840 -.077 0.595 0.157 -.600 0.021 -.029 0.761 0.295 0.765 -.404

0.089 -.555 0.042 0.840 1.000 -.065 0.630 -.276 -.630 -.042 -. 119 0.834 0.304 0.919 -.443

0.675 -.077 -. 188 -.077 -.065 1.000 -.098 0.109 0.238 0.889 -.039 -.257 0.488 -.059 0.868

0.402 -.898 -. 160 0.595 0.630 -.098 1.000 -.487 -.413 0.127 0.688 0.817 0.613 0.334 -. 156

-. 124 0.390 0.172 0.157 -.276 0.109 -.487 1.000 -.159 0.049 -.386 -.249 -.427 -.025 -.003

-.259 0.293 -.304 -.600 -.630 0.238 -.413 -. 159 1.000 0.264 0.066 -. 776 0.288 -.717 0.603

0.700 -.366 0.024 0.021 -.042 0.889 0.127 0.049 0.264 1.000 0.173 -.062 0.716 -.090 0.850

0.436 -.591 -.362 -.029 -. 119 -.039 0.688 -.386 0.066 0.173 1.000 0.231 0.486 -.440 0.228

0.261 -.744 0.274 0.761 0.834 -.257 0.817 -.249 -.776 -.062 0.231 1.000 0.267 0.734 -.512

0.437 -.712 -.223 0.295 0.304 0.488 0.613 -.427 0.288 0.716 0.486 0.267 1.000 0.031 0.535

0.022 -.294 0.299 0.765 0.919 -.059 0.334 -.025 -.717 -.090 -.440 0.734 0.031 1.000 -.510

0.562 -.015 -.263 -.404 -.443 0.868 -. 156 -.003 0.603 0.850 0.228 -.512 0.535 -.510 1.000
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Pmk = [];

-.409

0.016

0.847

0.298

0.287

-.469

-.019

-.005

-.229

-.409

-.473

0.094

-.313

0.307

-.440

0.444

-.539

0.015

0.764

0.759

0.395

0.563

-.627

-. 854

0.417

-. 104

0.678

0.424

0.774

-.336

0.408 0.411 0.825 -.329

-.493 -.118 -.831 0.333

0.193 0.171 -. 194 0.194

0.788 -.334 0.658 -.037

0.883 -.018 0.234 0.061

0.278 0.616 0.638 -. 111

0.622 -.038 0.984 -.482

-.822 0.086 -.869 0.633

-.927 0.103 -.629 0.055

0.264 0.768 0.369 0.115

-. 197 0.126 0.596 -.408

0.723 -.273 0.943 -.384

0.416 0.281 0.779 -.488

0.931 -.074 0.359 -.061

-.484 0.531 0.056 -. 145

-. 122

0.271

-.434

-.919

-.658

-.045

-.418

0.326

0.850

0.043

0.294

-.625

0.156

-.682

0.741

0.541 0.703

-.404 -.556

0.197 -.495

-.220 0.079

-.072 -.533

0.682 0.593

0.219 0.659

-. 118 -.328

0.046 0.073

0.766 0.264

0.320 0.963

-.031 0.503

0.521 0.605

-.079 -.424

0.648 0.526

0.473

-.691

0.255

0.951

0.649

0.286

0.836

-.819

-.920

0.116

0.059

0.951

0.419

0.747

-.450

0.813

-.679

-. 196

-.011

0.007

0.774

0.648

-.651

-. 148

0.715

0.614

0.407

0.959

0.078

0.631

0.106 0.368

-.253 -.057

0.483 -.080

0.772 -.647

0.991 -.478

0.029 0.546

0.356 -. 103

-.584 0.226

-.915 0.504

0.117 0.623

-.539 0.427

0.519 -.406

0.088 0.330

0.997 -.509

-.697 0.833

B.2.2 Posttest Models Database (CSS II)

Standard Deviation Vectors:

am

0.125 0.143 0.042 0.044 0.048 0.132 0.036 0.043 0.030 0.153 0.061 0.105 0.336 0.096 0.297

01 =]14;

0.163 0.142 0.040 0.049 0.100 0.175 0.023 0.023 0.047 0.233 0.074 0.096 0.383 0.111 0.316

0.654

-.440

0.310

0.180

-.038

0.702

0.482

-.210

-.227

0.592

0.418

0.298

0.355

-.001

0.293

-.762

0.989

0.146

-.571

-.213

-.636

-.901

0.813

0.550

-.407

-.553

-. 856

-. 804

-. 329

-.243
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Correlation Matrices:

Pmm =-16.

1.000 -. 167 0.043 0.426 -.631 0.905 0.161 0.118 -.233 0.868 -.902 -.951 0.653 -.700 0.846

-. 101

-.016

1.000

-. 813

0.585

0.119

0.713

0.511

0.356

-.243

-.597

0.498

-. 327

0.468

-.113

-.009

-.345

1.000

-.459

0.115

0.786

0.281

-.757

0.114

-.367

-.639

0.231

0.331

-.296

0.423

-.813

1.000

-.604

0.301

-.766

-.081

-.386

0.451

0.767

-.659

0.235

-.654

-.376

-. 111

0.342

-.459

1.000

-.345

-.247

-. 133

0.522

-.322

0.360

0.574

-.382

-.204

-.427

0.317

0.585

-.604

1.000

0.412

0.232

0.190

0.942

-.676

-.860

0.798

-.849

0.911

0.849

-.270

0.158

0.115

-.345

1.000

-. 139

-.414

-.233

0.971

-.388

-.600

0.920

-.725

-.968 0.374 -.491 -.514 0.069

0.777 -.293 0.492 0.412 0.072

0.119 0.713 0.511 0.356 -.243

0.301 -.766 -.081 -.386 0.451

0.412 0.232 0.190 0.942 -.676

1.000 -.450 0.489 0.467 -. 112

-.450 1.000 0.396 0.035 0.160

0.489 0.396 1.000 0.070 0.518

0.467 0.035 0.070 1.000 -.666

-. 112 0.160 0.518 -.666 1.000

-. 122 -.220 0.157 -.743 0.880

0.036 0.563 0.323 0.689 -.282

-.550 0.014 -.262 -.821 0.509

0.097 0.398 0.114 0.847 -.553

-.393

-. 141

-.035

0.786

-.247

-. 139

1.000

-.072

-.538

-.085

-.012

-.223

-.016

0.492

-.419

0.548

-.524

0.281

-. 133

-.414

-.072

1.000

-.382

-.399

0.157

0.055

-.233

0.595

-.090

-.494

0.555

-.757

0.522

-.233

-.538

-.382

1.000

-.282

0.101

0.505

-.471

-.285

0.783

-.285

0.268

0.114

-.322

0.971

-.085

-.399

-.282

1.000

-.201

-.482

0.973

-.649

-.558

0.087

0.450

-.367

0.360

-.388

-.012

0.157

0.101

-.201

1.000

0.879

-. 155

0.452

0.088 -.086

0.116 0.145

-.597 0.498

0.767 -.659

-.860 0.798

-. 122 0.036

-.220 0.563

0.157 0.323

-.743 0.689

0.880 -.282

1.000 -.599

-.599 1.000

0.589 -.692

-.764 0.946

-.622

0.013

0.464

-.639

0.574

-.600

-.223

0.055

0.505

-.482

0.879

1.000

-.508

0.365

0.732

-. 124

0.130

0.231

-.382

0.920

-.016

-.233

-.471

0.973

-. 155

-.508

1.000

-.528

0.518

-.661

-.327

0.235

-.849

-.550

0.014

-.262

-.821

0.509

0.589

-.692

1.000

-.794

-.809

0.289

-.204

0.331

-.204

-.725

0.492

0.595

-.285

-.649

0.452

0.365

-.528

1.000

-.131

0.175

0.468

-.654

0.911

0.097

0.398

0.114

0.847

-.553

-.764

0.946

-.794

1.000

0.764

-. 128

-.029

0.345

-.282

0.938

0.029

-.278

-.457

0.912

-.448

-.714

0.917

-.660

0.764 -. 128 -.029 0.345 -.282 0.938 0.029 -.278 -.457 0.912 -.448 -.714 0.917 -.660 1.000

-. 167

0.043

0.426

-. 631

0.905

0.161

0.118

-.233

0.868

-.902

-.951

0.653

-.700

0.846

1.000

-.793

-. 101

-.296

-.427

-.968

0.374

-.491

-.514

0.069

0.088

-.086

0.518

-. 131

-.793

1.000

-.016

0.423

0.317

0.777

-.293

0.492

0.412

0.072

0.116

0.145

-.661

0.175

pkk = [1;

1.000

-.048

-.088

-. 113

-.376

0.849

-.393

-.419

-.090

0.783

-.558

-.622

0.732

-.809

-.048

1.000

-.819

-.009

-. 111

-.270

-. 141

0.548

-.494

-.285

0.087

0.013

-. 124

0.289

-.088

-. 819

1.000

-.345

0.342

0.158

-.035

-.524

0.555

0.268

0.450

0.464

0.130

-.204
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Pmk =[]

0.784

-.083

0.121

-.090

-.272

0.670

0.026

-.064

-.356

0.717

-.645

-.604

0.666

-.650

0.789

-. 139

0.992

-.796

-. 170

-.247

-.440

-.963

0.284

-.596

-.500

0.002

0.077

-. 149

0.530

-. 161

-.306

-.786

0.764

-. 177

0.539

0.041

0.727

-.259

0.668

0.142

0.495

0.417

0.063

-.272

-.060

0.422

0.058

-.202

0.956

-.848

0.515

0.018

0.647

0.386

0.257

-.304

-.642

0.432

-.247

0.414

-.558

-. 124

0.558

-.427

0.743

-.473

0.204

-.441

0.115

-.377

0.405

0.642

-.489

-.020

-.482

0.743

-.253

0.326

0.196

-.384

0.832

0.194

0.192

0.093

0.863

-.440

-.580

0.888

-.802

0.942

0.016

-.058

-.175

0.666

-.464

0.192

0.206

0.326

0.555

-.051

0.053

-.284

0.165

-.049

0.064

-.211

0.561

-.462

0.334

-.360

-.311

-.649

0.638

-.099

-.384

0.177

0.123

-. 182

0.535

-.232

-.308

-.574

0.530

-.661

0.879

-.301

0.530

-.820

-. 142

-.049

0.131

0.472

-.583

0.061

-.485

0.612

-.246

0.346

0.210

-. 369

0.761

0.176

0.293

0.248

0.756

-.255

-.463

0.933

-.763

0.910

-.883

0.152

0.003

-.320

0.444

-.689

-.202

0.159

0.435

-.670

0.989

0.878

-.241

0.526

-.516

-.955

0.024

0.091

-.604

0.780

-. 855

-.056

-.269

0.179

-.736

0.883

0.988

-.621

0.619

-.791

0.585

-.069

0.205

0.313

-.511

0.718

0.001

0.478

0.258

0.656

-.214

-.475

0.975

-.686

0.917

-.556

0.335

-.579

0.270

-. 162

-.531

-.330

0.383

0.220

-.652

0.494

0.319

-.416

0.791

-.576

0.767

-.095

0.269

0.390

-.549

0.847

0.088

0.348

0.131

0.793

-.485

-.665

0.920

-. 842

0.972

B.3 Combined LSS and CSS Database (COMB)

The database reproduced below was obtained by combining the data from the three data-

bases describe precedently (LSS, CSS-I, and CSS-II).

Standard Deviation Vectors:

Gm = [];

0.138 0.140 0.160 0.133 0.102 0.129 0.109 0.148 0.153 0.257 0.124 0.105 0.386 0.142 0.289

01 014;

0.211 0.142 0.227 0.075 0.145 0.231 0.137 0.114 0.181 0.410 0.128 0.115 0.368 0.145 0.294
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Correlation Matrices:

Pmm= ;

1.000 -.330 -.262 0.019 0.119 0.870 0.204 -.229 0.056 0.497 0.074 -.033 0.543 -.152 0.505

-.330 1.000 -.309 0.009 -.351 -. 190 -.534 0.377 -.250 -. 153 0.121 -. 185 -.255 -.219 -.238

-.262 -.309 1.000 0.101 0.261 -.361 0.431 -.003 0.178 -.262 -.655 -. 102 -.088 0.168 -.055

0.019 0.009 0.101 1.000 -. 197 -.017 0.477 0.638 -.881 -. 111 -.530 0.269 -.246 0.313 -.511

0.119 -.351 0.261 -. 197 1.000 -.012 0.140 -.643 0.308 0.087 -.044 0.366 0.131 0.614 -.173

0.870 -. 190 -.361 -.017 -.012 1.000 0.081 -. 173 0.038 0.733 0.285 -. 129 0.642 -.338 0.584

0.204 -.534 0.431 0.477 0.140 0.081 1.000 -. 131 -. 191 0.079 -.357 0.517 0.369 0.227 -.012

-.229 0.377 -.003 0.638 -.643 -. 173 -. 131 1.000 -.701 -.229 -.464 -.220 -.553 -.191 -.361

0.056 -.250 0.178 -. 881 0.308 0.038 -. 191 -.701 1.000 0.005 0.333 -.207 0.363 -.261 0.564

0.497 -. 153 -.262 -. 111 0.087 0.733 0.079 -.229 0.005 1.000 0.341 -.067 0.575 -.055 0.460

0.074 0.121 -.655 -.530 -.044 0.285 -. 357 -.464 0.333 0.341 1.000 0.176 0.329 -. 190 0.249

-.033 -. 185 -. 102 0.269 0.366 -. 129 0.517 -.220 -.207 -.067 0.176 1.000 0.090 0.407 -.428

0.543 -.255 -.088 -.246 0.131 0.642 0.369 -.553 0.363 0.575 0.329 0.090 1.000 -. 192 0.743

-. 152 -.219 0.168 0.313 0.614 -.338 0.227 -. 191 -.261 -.055 -. 190 0.407 -. 192 1.000 -.541

0.505 -.238 -.055 -.511 -. 173 0.584 -.012 -.361 0.564 0.460 0.249 -.428 0.743 -.541 1.000

pk = 1;

1.000 -.292 -.389 0.175 0.457 0.770 0.331 -.426 -.039 0.475 0.146 0.072 0.488 -. 190 0.538

-.292 1.000 -.008 -.218 -.238 -.187 -.502 0.303 -.051 -. 135 -.036 -.278 -.281 -.278 -. 183

-.389 -.008 1.000 -.221 -.403 -.324 0.129 0.531 0.071 -.075 -.589 -.022 -.080 0.129 -.080

0.175 -.218 -.221 1.000 0.382 0.100 0.575 0.136 -.427 -.057 -.272 0.345 -.029 0.460 -.251

0.457 -.238 -.403 0.382 1.000 0.279 0.414 -.475 0.008 -.084 0.121 0.417 0.049 0.029 -.093

0.770 -. 187 -.324 0.100 0.279 1.000 0.117 -. 187 -. 114 0.760 0.009 -.082 0.608 -.258 0.769

0.331 -.502 0.129 0.575 0.414 0.117 1.000 -.029 -.285 -.084 -.347 0.496 0.216 0.245 -.041

-.426 0.303 0.531 0.136 -.475 -. 187 -.029 1.000 -.344 -.057 -.583 -.039 -.345 0.061 -. 188

-.039 -.051 0.071 -.427 0.008 -. 114 -.285 -.344 1.000 0.049 0.201 -.599 0.080 -. 129 0.191

0.475 -. 135 -.075 -.057 -.084 0.760 -.084 -.057 0.049 1.000 0.201 -. 125 0.669 -.208 0.715

0.146 -.036 -.589 -.272 0.121 0.009 -.347 -.583 0.201 0.201 1.000 0.139 0.208 -. 140 0.051

0.072 -.278 -.022 0.345 0.417 -.082 0.496 -.039 -.599 -. 125 0.139 1.000 -.031 0.404 -.456

0.488 -.281 -.080 -.029 0.049 0.608 0.216 -.345 0.080 0.669 0.208 -. 301 1.000 -.239 0.756

-.190 -.278 0.129 0.460 0.029 -.258 0.245 0.061 -. 129 -.208 -. 140 0.404 -.239 1.000 -.442

-. 188 0.191 0.715 0.051 -.456 0.756 -.442 1.0000.538 -.183 -.080 -.251 -.093 0.769 -.041
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pmk =[];

0.829

-.239

-. 168

-.049

0.119

0.733

0.132

-.201

0.035

0.469

0.138

0.048

0.415

-. 154

0.462

-. 378

0.970

-. 137

0.026

-.372

-.282

-.499

0.458

-.233

-.248

-.062

-.275

-.347

-.251

-.252

-.483

-. 163

0.914

0.186

0.058

-.529

0.412

0.104

0.051

-.404

-.607

-.077

-. 146

0.125

-. 135

0.453

-. 173

-. 156

0.728

0.129

0.361

0.338

0.300

-.575

0.193

-.303

0.272

0.053

0.399

-.266

0.537

-.203

-. 167

-.019

0.506

0.366

0.072

-.236

0.068

0.051

0.102

0.435

0.107

0.076

-.092

0.620

-. 152

-.094

-. 164

0.075

0.698

-.002

-.078

0.108

0.679

0.059

-. 122

0.476

-.255

0.582

0.484

-.539

0.252

0.468

0.183

0.206

0.843

-.056

-. 169

0.003

-.376

0.505

0.302

0.253

0.000

-.481

0.185

0.410

0.463

-.258

-.414

0.129

0.635

-.392

-. 128

-.605

-. 102

-.427

0.053

-.322

0.015

-.116

0.143

-.525

0.046

0.042

-.311

-.291

0.488

0.032

0.253

-.502

0.072

-. 166

0.333

0.293

-.077

-.015

-. 161

-.092

0.533

0.046

-. 101

0.051

0.765

0.262

-. 121

0.543

-.208

0.554

0.052

0.152

-.651

-.462

-.029

0.250

-.332

-.434

0.274

0.281

0.989

0.251

0.285

-. 148

0.168

-.021

-. 188

-.037

0.338

0.467

-. 121

0.520

-.212

-.254

-.064

0.058

0.969

0.052

0.499

-.484

0.502

-.206

-.021

-.244

0.073

0.620

0.297

-.441

0.313

0.585

0.252

-.006

0.957

-.246

0.796

-. 140

-.238

0.180

0.337

0.553

-.272

0.206

-. 155

-.214

-.042

-. 175

0.302

-. 167

0.956

-.491

0.449

-. 177

0.066

-.428

-. 147

0.558

-.029

-.224

0.439

0.554

0.131

-.433

0.632

-.483

0.911

B.4 Database comparison

Table B.3 compares the eigenvalues of the four covariance matrices obtained by singular

values decomposition (SVD) of the covariance matrices. The rank of the matrices in gen-

eral equals the number of structures in the database, as confirmed by the number of non-

zero eigenvalues.
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TABLE B.3 Eigenvalues of Covariance Matrices.

LSS Research CSS Pretest CSS Posttest Combined LSS
Models Models Models and CSS

Matrix Rank = 6 Matrix Rank = 7 Matrix Rank = 7 Matrix Rank = 20

= 0.569675

= 0.337463

= 0.226366

= 0.125469

= 0.0888634

= 0.0303972

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

s.v.#1 = 0.933333

s.v.#2 = 0.293328

s.v.#3 = 0.170940

s.v.#4 = 0.0752265

s.v.#5 = 0.0427559

s.v.#6 = 0.0219202

s.v.#7 = 0.0102209

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Trace = 1.377 J Trace = 1.547 J Trace = 0.734 [ Trace = 1.210

s.v.#1

s.v.#2

s.v.#3

s.v.#4

s.v.#5

s.v.#6

s.v.#1 = 0.582411

s.v.#2= 0.0590164

s.v.#3 = 0.0466032

s.v.#4 = 0.0279430

s.v.#5 = 0.0136299

s.v.#6 = 0.00339969

s.v.#7 = 0.00122147

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

s.v.#1 = 0.599062

s.v.#2 = 0.125285

s.v.#3 = 0.120427

s.v.#4 = 0.110258

s.v.#5 = 0.0693005

s.v.#6 = 0.0581739

s.v.#7 = 0.0324544

s.v.#8 = 0.0239023

s.v.#9 = 0.0236756

s.v.#10 = 0.0157983

s.v.#1 I = 0.0103530

s.v.#12 = 0.00622819

s.v.#13 = 0.00535949

s.v.#14 = 0.00414099

s.v.#15 = 0.00365832

s.v.#16 = 0.00239505

s.v.#17 = 0.00091741

s.v.#18 = 0.00037091

s.v.#19 = 0.00026105

s.v.#20 = 0.00013077

0.0



Appendix C

SIMONIAN'S DAMPING
COMPILATION

The following compilation of damping data as described in Chapter 3, was taken from

from [Simonian, 1987]. Table C.1 lists the twenty-three spacecrafts from which the data

was collected.

TABLE C.1 Satellites Surveyeda

Vehicle

Intelsat IV (in-orbit data) HERMES (in-orbit data) M35 Phase II upgrade

Space Teles. Metering Truss Intelsat IV-A M35 Phase I

Ranger III STM Skylab M35 Phase II

SEASAT Apollo-Satrun V, 1/10 scale FLTSATCOM

Hughes Satellite Nimbus OGO-3 (in-orbit data)

Hughes Satellite ATS-F OSO-8 (in-orbit data)

Hughes Satellite 777 Redesign FRUSA (in-orbit data)

Scatha Satellite 777

a. From [Simonian, 1987]

The computed statistical damping parameters are summarized in Table C.2. It appears that

the damping ratios, (,'s, distributions fit well to a lognormal and/or gamma probability

density function. The statistical analysis was performed for various combinations of the

data, grouped by frequency bandwidth (identified by letter, A through G in the table).
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TABLE C.2 Summary of Spacecraft Measured Damping Statisticsa

Frequency 9Cp _ _Gammab Lognormal' Number
Interval Mean Standard CO of

(Hz) (% critical) Deviation (%) a b l'(b) c d samples
(% critical) (%)

A: 0.14 - 195 1.20 0.92 76.7 0.705 1.701 0.909 -0.0488 0.680 290

B: 0.14 - 9.99 1.90 1.58 83.2 1.314 1.446 0.886 0.379 0.725 39

C: 10.00 - 19.99 0.94 0.57 60.6 0.346 2.800 1.569 -0.218 0.560 85

D: 20.00 - 29.99 1.18 0.86 72.9 0.627 1.883 0.956 -0.0475 0.653 56

E: 30.00 - 39.99 1.09 0.75 68.8 0.516 2.112 1.053 -0.108 0.623 51

F: 40.00 - 49.99 1.27 0.79 62.2 0.491 2.584 1.413 0.0755 0.572 29

G: 50.00 - 195 1.16 0.50 43.1 0.216 5.382 43.369 0.0632 0.413 30

a. From [Simonian, 1987]

b. p(() = a EXP a = /), b= ((/aC)2, F(b) = yb-1,-ydy

C.

(() = dJEXP(nQ c)] c = ln(t/ pc 1), d = ln(p+ 1), p = /



Appendix D

CHAIN RULES

All the development of the next two sections can be found in [Johnson, 1985].

D.1 Derivatives and Differentials of Composite Functions

The functions to be considered in the following will be assumed to be defined in appropri-

ate domains and to have continuous first partial derivatives, so that the corresponding dif-

ferentials can be formed.

THEOREM If z = f(x,y) and x = g(t), y = h(t),then

dz dzdx dzdy (D.1)
dt dx dt dy dt

If z = f(x,y) and x = g(u,v), y = h(u,v), then

dz dzdx dzdy dz dzdx+ dzdy
du dxdu dy du' dv dx dv dy dv (D.2)

In general, if z = f(x,y,t,...) and x = g(u,v,w,...), y = h(u,v,w,...),

t = h(u,v,w,...), ..., then
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dz dzdx dzdy dzdt
du dxdu dy du dt du '

dz dzdx dzdy dzdt
dv dxdv dydv dtdv ' (D.3)
dz dzdx dzdy dzdt
dw dxdw +dydw dtdw '

These rules, known as "chain rules", are basic for computation of derivatives of composite

functions. Equations(D.1), (D.2), and (D.3) are concise statements of the relations

between the derivatrives involved. Thus in (D.1),

z = f[g(t),h(t)]

is the function of t whose derivative is denoted by dz/dt, while dx/dt and dy/dt stand

for g'(t) and h'(t), respectively. The derivatives dz/dx and dz/dy, which could be writ-

ten (dz/dx), and (dz/dy),, stand for f,(x,y) and f,(x,y). In (D.2),

z = f[g(u,v),h(u,v)]

is a function whose derivatives with respect to u is denoterd by dz/du, which should be

understood as (dz/du),. A more precise statement of the first equation in (D.2) would be

as follows:

(dz (dz~yd dz d

du, ,duddyj du' 

and similar remarks apply to the other equations.

The proof of (D. 1) will be given as a sample; the other rules are proved in the same way.

Let t be a fixed value and let x, y, z be the corresponding values of the functions g, h,

and f. Then, for given At, Ax and Ay are determined as

Ax = g(t + At) - g(t), Ay = h(t + At) - h(t),

while Az is then determined as

Az = f(x + Ax,y + Ay) - f(x,y).



FUNDAMENTAL LEMMA If z = f(x,y) has continuous first partial derivatives in
its domain D, then z has a differential

dz = -Ax
x

+-Ayay (D.4)

at every point (x,y) of D.

By the Fundamental Lemma, one has

az
Az =xAx

Hence

Az
At

azAx +azAy

axAt yAt

+ E1Ax + E2 Ay.

Ax
+ot

Ay
+ 2At

As At approaches 0, Ax/At and Ay/At approach the derivatives dx/dt and dy/dt,

respectively, while e , and -2 approach 0, since Ax and Ay approach 0. Hence

lim Az
At-+0 At

dx
dt

az
+y F

dy
dt

+0 dx
-

dy+0-
dt

that is,

dz
dt

az dx
ax dt

az dy
+3y dt'

as was to be proved.

The threee functions of t considered here (x = g(.t), y = h(t) and z = f[g(t),h(t)])

have differentials

dx
dx = -At,

dt

From (D. 1), one concludes that

dytdy = dt,

-At= -I At
dt ax dt2

dzdz = -At.
dt

+ At,

that is , that

az azdz = -dx + -dy .
ax ay

(D.5)

This is the same as (D.4) since Ax and Ay can be replaced by dx and dy, for being arbi-

trary increments of independents variables, in the Fundamental Lemma. Thus (D.5) holds
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whether x and y are independent and dz is the corresponding diffenrential or whether x

and y, and hence dz, depend on t, so that dx, dy, dz are differentials of these variables

in terms of t.

Similar reasoning applies to (D.2). Here u and v are independent variables on which x,

y, and z depend. The corresponding differentials are

dx=ax Au+ax a d y ay az a
dx = -Au+-Av, dy= Au+ Av, dz= Au+ Av.avau av U av

But (D.2) gives

(azax azay (azax az ay
dz(=j(xau+5yau )u( xFv+5yav Av

az ax ax az ay ayA
= -Au + -Av + (-Au+ax~au av V) ay Yau av })

a= dx + -dy.
x ay

Again (D.5) holds. Generalization of this to (D.3) permits one to conclude:

THEOREM The differential formula
az az az

dz = -dx + a dy + dt +..., (D.6)ax ayat

which holds when z = f(x,y,t,...) and dx = Ax, dy = Ay, dt = At, ... , remain-

strue when x, y, t, ..., and hence z, are all functions of other independent variables
and dx, dy, dt, ...,dz are the corresponding differentials.

As a consequence of this theorem, one can conclude: Any equation in differentials that is

correct for one choice of independent and dependant variables remains true for any other

choice. Another way of saying this is that any equation in defferentials treats all variables

on an equal basis. This if

dz = 2dx -3dy

at a giveb point, then

1 3dx = Idz + dy
2 2

is the corresponding differential of x in terms of y and z.



An important practical application of the theorem is that in order to compute partial deriv-

atives, one can first compute differentials, pretending that all variables are functions of a

hypothetical single variable (for example, t), so that all the rules of ordinary differential

claculus apply. From the resulting differential formula, one can obtain all partial deriva-

tives desired.

2

EXAMPLE 1 If z = X ,then
y

dz

by the quotient rule. Hence

az
ax

2
2xydx - (x -1)dy

2
y

2x az _ 1- x 2

y ' y y2

EXAMPLE 2 If r2 2 +y2

Ifr =x +yC =x-
wx j r'

then rdr = xdx + ydy, whence
3,r y x r

L = -, and soon.
y - r' ar , x

EXAMPLE 3 If z = atany/x, (x #0), then

dz = 1 2 xdy - ydx
/z N2' 2 2

1 + x + y

az _-y z_ x

3x 2 X + y 2

and hence

D.2 The General Chain Rule

On occasion, one deals with two sets of functions:
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y1  = ui, ... ,U )

Ym = fm(ui, ... ,up)

(D.7)

and

U1 = g1(xI, ...,xn)

... ... (D.8)

UP = g (xI, ... , x,)

If one substituess the functions (D.8) in the functions (D.7), one obtains composite func-

tions

(D.9)
Ym = f1(g 1(xi, ... , x,), ... ,g(xi ... , x,)) = F(xi, ... , x,)

ym = m m(g I(X 1, - - n), - - pai - -, Xn)) =Fm (x1, - - n)

Under the appropriate hypotheses, one can obtain the partial derivatives of these compos-

ite functions by chain rules, as in the previous section:

y ay, au I
xj 5u 1 ax;

ay, au
au,+ ax1

(D.10)

The formulas (D.10) can be expressed consicely in matrix language. The partial deriva-

tives ay;/ax1 are the entries in the m x n matrix

Cy

a 2, a, ayn

ax, aX a..

ay.

ax,
aym

ax2

aym

axn_

(D.11)

This is the Jacobian matrix of the mapping (D.9). The formulas (D.10) involve two other

Jacobian matrices:

228 APPENDIX D

(i = 1,...,M, j = 1,...,n).
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ay,
au,

aym
au,

ay,
'' auP

... P
Yaux)

au,

ax,

(D.12)

The chain rules (D.10) state that the product of the last two Jacobian matrices equals the

previous one:

~ay au,
j U:j> N\-i

(D.13)

This equation is called the general chain rule. It includes all the rules of the previous sec-

tion.

2 2
EXAMPLE 1 Let y1 = ugu 2 -ugu 3, Y2 = uIu 3 +u 2, uI = x1cosx2 +(x --x 2)

2 2
U2 = x1sinx 2 + x Ix2, u3 X1 - 1X 2 + x 2 .Then, by (D.13),

uu 3 2u2 ui -

LU3 2U2 #1-

sinx 2 +X2

2xi 2

x2) -xi sinx 2 - 2(xl - X2)

X 1cosx2 +x 1

2x 2 - x j

On the right-hand side, u1 , u2 , u3 can be expressed in terms of x, , X2, and the two matri-

ces can be multiplied. However, for many purposes it is sufficient to leave the result in

indicated form. In particular, to obtain numerical values, one can substitute the appropriate

values and multiply the matrices only as a last step. Fro example, for x, = 1, x 2 = 0, we

obtain u1 = 2, u2 = 0, u3 = 1 and hence

C I -1 2-2 -7
jaxJ a 1 0 2 0 2 7 -4

that is tsay, lax^, = 7-%7 /yi/vx = ;4%y2/ax1 7, and iay2/ax2 = ~4-
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Differentials and the chain rule. If we take differentials in Eqs. (D.7) and (D.8), we obtain

the equations

ay ay,
dy = 1 u + ... + du

au1  aup

... ... (D. 14)

ay b
dy, = du + ... + dup,

ap

and

du1 = -- dx + ... + --- dx,ax, axn

... ... (D.15)

d u au Pd ,au P x
du~ = ~dx+..+ d

P x a x .. + X nOx n

In (D. 14), du ,... du, are arbitrary increments Au , ...Aug, whereas in (D.15) they are

functions of the arbitrary increments dx1 (= Ax 1 ), ... dx,(= Ax,). However, we know

from Section D. 1 that the relationships are the same no matter how we interpret the differ-

entials. We can write these equations in matrix form:

dy du [du Aujdxl

.) ... ... ... . (D .16)

-dYmj du LduP xdAn

If we eliminate the vector col (du ,... , du) in these equations, we obtain

dyl Adx

(dyau g (D. 17)

dy, dxn

or
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dy ay = u + .. + dx + (y1a + ... ) dx2 +..
dya 2au x

and so on. From these equations we can read off ayl/ax, ayl/ax2 , .... Clearly, the

results are the same as (D.10) or (D.13). Thus (D.17) can be termed the general chain rule

in differential form.
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Appendix E

INTEGRAL OF TRANSFER
FUNCTIONS'

For stable linear systems with trabsfer functions Hn(w) of the form

bo + (io))bi + (io))2b2 + ... + (io0)"- 1 bn
2 n b0+(i) 1 +(i) b 2+...+(i) as1

The integral I, of the complex modulus squared, IHn(O)I 2

in= f Hn(0)|2do

b2
I1 = n -

0 1

a0b2 + a2b2

a0aIa 2

n = 1

n = 2

a0a3(2bob2 - b)-a 0a b2 + a2a3b2

aoa 3(a0a3 - a1a2)
n = 3

1. From James, Nichols and Phillips (1947). Also found in [Skelton, 1989].
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Hn(W) = (E.1)

is given by

(E.2)

I2

(E.3)

13 = It

(E.4)

(E.5)
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3 2 3 2)
2 2

a0 a4(a0 a3 + ala 4 - ala 2a 3 )

-a00 3a4(b - 2b0b2) + a4b20(aa 4 - a2a3)

14 = 7C} j

4. F
2 2

0004(ao0 3 + a; a4 - a;a2a3) -

I~ (E.6)

n = 4


