
EGGG: The Extensible Graphical Game Generator

by

Jon Orwant

Sc.B. Computer Science and Engineering, MIT (1991)
Sc.B. Cognitive Science, MIT (1991)

S.M. Media Arts and Sciences, MIT (1993)

Submitted to the Program in Media Arts and Sciences, School of Architecture and

Planning in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2000

@ 2000 Massachusetts Institute of Technology. All rights reserved.

Author

Program in Media Arts and Sciences, School of Architecture and Planning
November 19, 1999

Certified by

26
Walter Bender

Senior Research Scientist
Progva in edia Arts ay Sciences

i, A I /Thes' Supervisor

Accepted by

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

0PR 0 42000

LIBRARIES

Stephen A. Benton
Chairman, Department Committee on Graduate Students

Program in Media Arts and Sciences

Thesis Committee

Thesis Supervisor

Walter Bender
Senior Research Scientist

Program in Media Arts and Sciences

Reader __

Mitchel Resnick
Associate Professor

Program in Media Arts and Sciences

Reader

Murray Campbell
Research Scientist

International Business Machines

EGGG: The Extensible Graphical Game Generator

by

Jon Orwant

Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning

on November 19, 1999 in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Media Arts and Sciences

ABSTRACT

An ontology of games was developed, and the similarities between games were
analyzed and codified into reusable software components in a system called EGGG,
the Extensible Graphical Game Generator. By exploiting the similarities between
games, EGGG makes it possible for someone to create a fully functional computer
game with a minimum of programming effort. The thesis behind the dissertation is
that there exist sufficient commonalities between games that such a software system
can be constructed.

In plain English, the thesis is that games are really a lot more alike than most people
imagine, and that these similarities can be used to create a generic game engine: you
tell it the rules of your game, and the engine renders it into an actual computer game
that everyone can play.

Thesis Supervisor: Walter Bender

Title: Senior Research Scientist

Table of Contents

PREFACE...6
About This Dissertation.. 6
Acknowledgments .. 7

CHAPTER 1: INTRODUCTION .. 8

What's In A Computer Game? .. 8
Decoupling Hard from Soft .. 10
The Tradeoff .. 10
Games As A Domain For Automated Program Generation ... 12
Design Principles: Languages, Overengineering, and... 12
Brevity... 13
What This Dissertation Is And Is Not.. 15
Related Systems ... 17
Related Fields.. 20
The Eight Games .. 22

CHAPTER 2: ANATOMY OF A GAME.. 24

A Structural Categorization Of Video Games.. 24
A Designer's Taxonomy of Games .. 27
The Six Types Of Synchrony ... 30
M ovement .. 32
Tangibles... 35
Abstract Facet s of Play .. 44

CHAPTER 3: THE PHYSIOLOGY OF EGGG .. 47
Game Descriptions .. 47
A New Game: Deducto... 55
Software Architecture .. 68
Documentation .. 77
Naming.. 81
Error Recovery .. 83

CHAPTER 4: ENEMY OF THE GAME STATE (COMPUTER OPPONENTS) ... 84

A Generic M inimax Procedure... 84
A Generic Static Evaluator... 85
Competition versus Cooperation .. 92
Common Strategies.. 93
Garnering Trust..104

CHAPTER 5: BEAUTY ON THE INSIDE (GRAPHIC LAYOUT) .. 105

The Frame .. 106
The Board...113
The Pieces .. 123
Color..125
Get Your Game Face On...126

CHAPTER 6: CONNECT THE BOTS (NETWORKING)... 127

The Henhouse, And Stateless Connections...128
Multiplayer Networked Games, And Stateful Connections................................ 131

CHAPTER 7: CONCLUSION...136
What We've Learned ... 136
Lessons Learned ... 153
What To Do Next .. 156

BIBLIOGRAPHY ... 162.. -.....-................. 162

4

APPENDIX A: EGGG INSTALLATION INSTRUCTIONS..168

APPENDIX B: SAMPLE EGGG GAMES ... 172
Rock Paper Scissors.. 172
T ic Ta c Toe ... 1 72
P o ke r..1 72
Crossword .. 173
D ed ucto.. 173
T etris .. 1 74
C h ess..1 75

APPENDIX C: THE EGGG GRAMMAR..178

COLOPHON...182
BIOGRAPHICAL NOTE ... 183

Preface

About This Dissertation
This dissertation is part of an ongoing project called EGGG, the Extensible
Graphical Game Generator. As its name suggests, EGGG is a system that creates
computer games, and the thesis behind the dissertation is that there exist sufficient
commonalities between games that such a software system can be constructed.

In plain English, the thesis is that games are really a lot more alike than most people
imagine, and that these similarities can be used to create a generic game engine: you
tell it the rules of your game, and the engine renders it into an actual computer game
that everyone can play. You can play with EGGG if you want; details are given in
Appendix A.

In the Introduction, I talk about what drove me to create EGGG, and how my work
differs from what others have done.

Anatomy of a Game discusses the common components of games that made this
dissertation possible.

In the Physiology of EGGG, I explain the design of the EGGG parser and engine. I
also describe the user experience of creating EGGG games: what novices have to
know about programming, and what they don't.

Enemy of the Game State explores how EGGG builds computer opponents that can
play games designed by users - including how they can bet and bluff.

Beauty on the Inside: Graphic Layout explains how EGGG generates the graphical
elements of computer games.

Connect the Bots: Networking examines the networking components that EGGG
uses to link computer games together.

Conclusion and Analysis concludes the dissertation and suggests future research
directions.

The Bibliography lists relevant sources for games, computer gaming, game
variations, and game creation.

Appendix A: EGGG Installation Instructions describes how to install and use EGGG.

Appendix B: Sample EGGG Games contains some EGGG files for some popular
games to demonstrate EGGG rulesets.

Finally, Appendix C: The EGGG Grammar contains a Backus-Naur specification of
the EGGG language.

Acknowledgments
I've spent a substantial portion of my life at the MIT Media Laboratory, and above all, I
would like to thank Walter Bender for the environment he's somehow managed to maintain
during all of that time. I defected from the MIT Al Lab in 1988 because Walter gave me the
chance to hack image processing on the Connection Machine, and soon became enthralled
by the freedom and intellectual camaraderie of the Terminal Garden and now the Cube.
Since then, I've worked on news, user modeling, a multitude of other projects, and finally
games, the subject of this dissertation. Walter combines a love of ambitious ideas with a
laid-back attitude - an unusual combination, and I cannot imagine a better advisor.

Thanks to the other members of my thesis committee, Mitchel Resnick and Murray
Campbell, for their helpful insights and suggestions.

Thanks to my friends who contributed, knowingly or not, to some of the ideas in this
dissertation: Sandy Aronson, Alan Blount, Amy Bruckman, Richard Christie, Diego
Garcia, Carolyn Grantham, Kyle Pope, Kimberly Scearce, and Sekhar Tatikonda.

I'd like to thank the many members of the Perl community that have provided me
with innumerable distractions during my Ph.D.: David Blank-Edelman, Tom
Christiansen, Mark-Jason Dominus, Jarkko Hietaniemi, Tuomas J. Lukka, John
Macdonald, Linda Mui, Chris Nandor, Andy Oram, Tim O'Reilly, Madeline
Schnapp, Mike Stok, Nathan Torkington, and Larry Wall. In particular, Nathan
Torkington and Tom Christiansen were a continual source of intellectual
amusement.

Thanks to the officemates who've put up with my folding bike and my ten pounds of
silly putty: Judith Donath, Doug Koen, and Marko Turpeinen. Other members of the
Media Lab provided camaraderie, inspiration, and help: Nathan Abramson, Bill
Butera, Pascal Chesnais, Klee Dienes, Scott Fullam, Dan Gruhl, Roger Kermode, Jill
Kliger, Hakon Lie, Michelle McDonald, Chris Metcalfe, Warren Sack, Laura
Teodosio, Sunil Vemuri, and Chris Verplaetse. Thanks to Nicholas Negroponte for
creating the Media Lab, and to Felice Gardner and Linda Peterson for making it
function so smoothly.

Finally, thanks to Robin Lucas, and to my parents, Jack and Carol.

Chapter 1: Introduction
I think the thing I take the most pride in about Spacewar is that it got
so many people hooked on computer programming. It caught a lot of
eyes and got a lot of interesting people asking, "How do you do that?"

Steve Russell, author of Spacewar, the first video game.

There are obviously similarities between games. Are those similarities sufficiently
numerous and deep that a system can be constructed which turns a written
description of a game into a playable program? This dissertation is an attempt to
answer that question in the affirmative. In support of this thesis, a system that
translates the rules of a game into a program was built: EGGG, the Extensible
Graphical Game Generator.

In this chapter, I'll describe what motivated me to create such a system, and survey
related work. First, we'll look at the breadth of computer games that exist today.

What's In A Computer Game?
Frenetic shoot-em-up games like Doom and Quake sell millions of copies and tax
the abilities of today's most powerful personal computers. Considerably less
demanding games like the ubiquitous Windows Solitaire occupy thousands of hours
of idle (and not-so-idle) time; Napoleon played the old-fashion version while in exile
on Elba. Supercomputers like IBM's Deep Blue defeat the world's greatest human
chess player. Internet users circumvent U.S. gambling laws by wagering in Antigua.

Each of these four experiences is considered "computer gaming", even though they
differ in who plays them, and why, and how. Games like Doom are graphic-
intensive, often violent, and players move from location to location in a virtual
world. (In spite of what some detractors say, some of these games have challenging
puzzles and intricate narratives.) The various Windows Solitaire games are played
with picture-for-picture identical 52-card decks. The heart of Deep Blue is the same
as every other chess-playing program: a minimax engine coupled with a static
evaluator and a library of opening moves. Gambling games, whether online or off,
involve unpredictable outcomes.

In an attempting to categorize computer games, we could treat each of these four
scenarios as representative of an entire genre of games:

" "First-person-shooter" games

" Card games

0 Chess-like games

e Gambling games

Is this a good categorization? No; many games are missing. Where's tic tac toe, or
Tetris? Here's another categorization:

" Games requiring hand-eye coordination

* Card games

e Games played on a grid

" Gambling games

This is still not up to snuff. Some of these categories overlap: is poker a card game
or a gambling game? And who cares about a taxonomy of games, anyway?

Programmers do. Once you arrive at a comprehensive categorization of games, you
can begin to make the leap from merely categorizing games to drawing inferences
about them - and ultimately, to helping people create them. Here's an elaboration of
those categories:

" Games requiring hand-eye coordination

...have a main loop and need callbacks

e Card games

...use the same images and share some actions, like shuffling.

" Games played on a grid

...need a two-dimensional array to contain the game state.

* Gambling games

...require security and a "Money" abstraction.

Now we're getting somewhere. This categorization is still quite unclean - the first
category has to do with process, the middle two with structure, and the final category
with function - but it serves to illustrate what I'm talking about when I say that
there are similarities between games. These similarities are all obvious, but in
Anatomy of a Game (Chapter 2) we'll develop a more comprehensive taxonomy of
games, arriving at some far less obvious (but just as useful) observations. For the
remainder of this chapter, let's just assume that such a taxonomy exists.

Decoupling Hard from Soft
Before the Atari 2600 debuted in 1978 (and its obscure predecessor, the Fairchild
Channel F in 1976), videogames were embedded in chips inside chunks of wires and
plastic called game consoles. When you tired of whatever games were burned onto
the chip, you stopped using the system entirely.

The 2600 (also called the "Atari VCS") revolutionized the game industry because of
cartridges - no longer were chunks of plastic and wires only able to play a fixed set
of games. When you got tired of a cartridge, you'd just buy a new one, for a fraction
of the console price.

This decoupling of hardware and software was made possible by simpler and more
flexible hardware components. The decoupling is what made home video game
systems a commercial success, because someone plunking down $250 wouldn't be
restricted to a small fixed number of games. He knew that as long as tens of
thousands of fellow gamers had consoles just like his, that new games would be
developed for it.

So what's the next step? We can take the decoupling further, thanks to simpler and
more flexible software components. Instead of decoupling hardware from software,
what we can do is decouple a game's implementation (the "hard software") from the
rules of play (the "soft software"). This is what EGGG does, and it does it by
incorporating assumptions about game play into a program that translates the rules of
play into a fully-functioning game.

The Tradeoff
Programming is hard. But programming for a particular domain needn't be - when
you can build assumptions about the domain into the language. And more to the
point, those assumptions can be built into whatever system (compiler, translator,
interpreter, or combination of all three) that ultimately turns the program into
something you can run.

Let's say your domain is widgets. If you know your clientele will be designing
widgets, you could create a software package called a Widget Designer that lets
them specify a recipe for building their widget. The recipe can be viewed as a
program, and the Widget Designer is a translator that transforms the program into
something more complex.

Designing a widget might not seem like programming for two reasons. First, the
Widget Designer might be easy to use, and people are unfortunately conditioned to
think that programming has to be difficult. Second, the range of behaviors permitted
by the Widget Designer will be severely limited: you won't be running spreadsheets
or calculating differential equations with it. You just design widgets. There's a
tradeoff between expressivity and convenience; the Widget Designer chooses

convenience.

Another example: drawing pictures on a screen used to be hard. In the old days,
graphics libraries gave you ways of drawing points and lines and circles, and not
much more. Creating usable applications with buttons and pictures and scrollbars
was tough - but you had enough low-level control over what the electron gun shot
to the CRT that you could do anything. You could be expressive, but it wasn't very
convenient. Later, graphics toolkits took away the drudgery, but they also took away
some of the low-level control. Applications were developed faster, but they all had a
certain similarities of appearance. In Xlib, you could do anything. In Motif, you can
do almost anything, and people would look at the result and say, "Oh, you must have
used Motif." The same is true of other visual programming environments, like Visual
Basic and NeXTSTEP's Interface Builder.

You can see the same phenomenon with HTML. People used to speak about "HTML
programming", but that phrase is becoming more and more rare as programs like
ColdFusion are used to generate HTML automatically. You don't hear people saying
"Oh, you must have used ColdFusion" when they see those web pages, but that's
only because web browsers affect how web pages appear.

Every system that helps you build things has to make a tradeoff between the variety
of things it lets you build, and the ease with which you can build them. EGGG is an
attempt to help people create programs, but it is not a generic programming assistant
like the Programmer's Apprentice, described later. Nor is it a visual development
environment that lets people drag and drop elements into place, which would permit
only a small variety of games.

Circumventing the Tradeoff: Patching and Burrowing

NeXTSTEP's Interface Builder lets you construct applications by dragging and
dropping components (buttons, frames, text boxes, and the like), and by establishing
links between them. As you would expect, the applications you construct all have the
same look and feel; there's only so much customization you can do. But under the
hood, what the Interface Builder does is generate Objective C code. Programmers
who want to specify the behavior of the component do so in code. The look and feel
is still constrained, but the system lets you patch the generic output by writing your
own code.

Other systems let you burrow down into internals. For instance, languages like Perl
and some versions of LISP let you implement chunks of code in another lower-level
language when speed is paramount. Browsers like Netscape, web servers like
Apache, and paint programs like the GIMP and PhotoShop provide hooks so that
developers can write code for features not provided by the prepackaged application.

EGGG lets you both patch and burrow. details are provided in Chapter 3, the
Physiology of EGGG.

Games As A Domain For Automated Program
Generation
What is the right size domain for creating an automated program generator? If the
domain is too broad, the assistant won't be able to help much, because it won't be
able to infer the intentions of the would-be programmers. If the domain is too
narrow, the assistant won't be necessary. No one needs help creating calculator
programs, because there aren't that many different programs to create.

Games have several advantages as a domain:

e Games have the right amount of diversity. The similarities between games
like chess and tic tac toe are obvious; the similarities between poker and
chess and Tetris, less so. By building a system that can create all of those
games, we support to our thesis that the similarities between games are
broadly applicable and useful to an automated program generator.

e There are many game programs. This allows us to identify common
techniques in their design, and exploit those techniques in the design of
EGGG.

" Many games can be easily represented with a small set of rules. It is possible
to create systems that generate stories, or financial applications, or music -

but the systems would require much more input from the user.

" A game generator needn't be perfect. Because games are so popular, they'll
still be used even if they lack the polish and speed that only dedicated
programmers can provide.

* Games benefit from large populations of users. One way to improve a system
as large and sprawling as EGGG is to release it and see whether (or how)
people use it. Furthermore, games appeal to novices and experts alike, so a
system that solicits feedback from users will benefit. Novice programmers
will have different comments and suggestions about the system than experts,
and EGGG can use feedback from both camps. This feedback won't be
evidence for or against the thesis, but it will help make EGGG more useful
and fun for everyone.

So how can users communicate their intentions to EGGG? They do so by codifying
the rules of their game in a pseudo-English language. We call this the EGGG
language, and turn to it in the next section.

Design Principles: Languages, Overengineering, and

Brevity
It's an uncertain world out there, and classically trained programmers know this.
They know to design for scalability: if your program operates on a thousand pieces
of data today, it might be called upon to manipulate a million pieces of data next
year. And designers decide that since they can't know what protocols or standards or
data formats will be around in a year, they create abstractions for those protocols and
standards and data formats.

The unfortunate result is that many designers overdesign, abstracting out
components too much, and in so doing slow down their programs (that's bad) and
make them harder for others to understand (that's worse). The abstractions that seem
so clear to a designer are opaque to the next person who has to use the program.
When designers assume that their users share their tenacity and attention to detail,
the result is bad software.

But this is the wrong approach. The right approach is to be able to program quickly,
so when that new protocol arrives, you can throw away your old code and begin
anew. The right approach is to create lots of tiny tools that do one thing well, so you
can combine them in whatever pipeline you need.

Consider the Berkeley socket library used for networking computers together. The
library doesn't do very much: it just creates a connection between two computers on
the Internet, or between two processes on the same Unix system. Yet because the
designers wanted a uniform interface to both, they ended up with a system that
requires you to specify which connection you want. Some of the arguments you have
to provide make no sense if you're connecting two computers, and others make no
sense if you're connecting two processes. Nowadays Berkeley sockets are used
almost exclusively for Internet connections, because there are better ways to
communicate between processes on the same computer, like SysV IPC and threads.

What is the right level of abstraction for games? As with the Berkeley socket library,
there's a danger here. Abstractions are all well and good, but designers shouldn't
force users to cope with their particular organization of the world unless it's intuitive.
EGGG disguises its abstractions behind terms with common usages, providing a
simple language through which game designers can communicate their intentions to
the system.

So "EGGG the engine" and "EGGG the dissertation" include "EGGG the language":
a high level language that lets users describe games in as few words as possible
while still retaining the precision that the EGGG engine needs to render the
language. The language is expressive (you can create nearly any kind of graphical
two-dimensional game) and concise (statements are short and powerful, so that
debugging is easy).

The importance of brevity shouldn't be underestimated. It's good to be able to see all
of the game on a single page - you never have to visit different files, or even scroll
up and down. For instance, here's how one tells EGGG that players alternate turns in

chess:

turns alternate

Here's how one stipulates that the deal moves clockwise in poker:

deal moves clockwise

Every attempt was made to mimic language that people would normally use to
describe games. That's not always possible, of course, and there is a particular
danger involved with systems that accept natural language as input: users tend to
assume that the parser is much more sophisticated than it actually is [Brennan 90].
Here's the description of a stalemate in chess:

Stalemate means turn(P) and no moves(P) => tie

This can be read as "A stalemate is a situation where it's P's turn and he doesn't have
any moves. If that happens, the result is a tie." This single statement triggers EGGG
to do a number of tasks:

1. Create a subroutine called Stalemate.

When EGGG encounters Stalemate means, it sees that Stalemate is
capitalized. Lowercased words have special meaning to EGGG; uppercased
words are terms that have a per-game or per-rule meaning.

2. Execute the subroutine at appropriate times.

Because the subroutine mentions a turn, it will be executed at the beginning
of each turn. Checkmate is checked for at the end of each turn; that's why the
Stalemate definition needn't verify that the player isn't in check.. If the game
designer preferred precision to brevity, the rule could have been written this
way:
Stalemate means turn(P) and no moves(P)

and not Attacking(Q, King) => tie

3. Have the subroutine set a variable, P, to whoever's move it is.

Different single letters mean different things. P always means a player, and
because it's capitalized, it means a particular player. Had it been p instead,
EGGG would have generated a loop that cycled through all players. Of
course, in chess there are only two players, but in a game like poker, the rule
we saw earlier, deal moves clockwise would indicate how the loop
would proceed.

4. Have the subroutine check to see if P has any available moves.

EGGG will already have generated a subroutine that enumerates all of the
moves available for each player. no moves (P) causes that subroutine to be
invoked, and immediately returns zero if any moves are found.

5. If there are no available moves, invoke the tie () subroutine.

EGGG will already have created a tie () subroutine on a previous pass
through the game description; any mention of "tie" triggers that behavior. If
the subroutine gets to this point, it must be player P's turn, he must have no
available moves, and he must not be in check, so a stalemate occurs and the
game is tied.

These game descriptions are stored in single files. The description is very concise:
the rules of poker require 19 lines, and even chess requires only 81 lines. The
ordering of the lines within the file is immaterial.

There is plenty more to the EGGG language than what is shown here, and we'll see
more examples throughout this document. The EGGG language strives to approach
the brevity and simplicity of human writing.

When there is ambiguity in the language (in poker, "draw" means to receive cards
and "rank" means the strength of a hand, while in chess, "draw" means to tie the
game and "rank" means the y-coordinate) EGGG makes its best guess. If it's really
stumped, it queries the user.

It is assumed that most users will create their own games by copying game
description files from EGGG's central repository and modifying them. As one would
expect, variations on traditional games are easier to create than entirely new games.

The design criteria for the EGGG language and engine are the following, in
approximately decreasing order of importance:

- Game descriptions should be brief.

- Easy games should be easy to generate, and hard games should be possible to
generate.

* The EGGG engine should contain as little a priori information about particular
games as possible.

* It should be easy to create variations.

- The EGGG engine and the games that it generates should be maximally portable.

- The games generated by EGGG should be easy to modify.

- EGGG shouldn't take a long time to generate games, and the games that it does

generate shouldn't run so slowly that playability is affected.

What This Dissertation Is And Is Not
EGGG is not about the "who" or the "why" of games, only about the "what" and
"how". It is an exploration of the similarities between traditional games like board
games and card games, and how those games are realized in computer programs.

The thesis underlying the dissertation is that those similarities are sweeping enough
that it is possible to construct a system that generates a computer game from its
distilled essence: the rules of play.

This dissertation is not about children, society, gender, culture, education, or any
particular community of game players. While there are many interesting research
topics in these areas, EGGG's focus is on the similarities between games and the
resulting implications for the mechanics of computer game creation. This
dissertation offers no opinion about what sort of games should be created, nor about
the effects of any game - good or bad - on the people who play them. However,
we do note that Monopoly sends a rather brutal message to would-be industrialists,
and no game generated by EGGG can be as dangerous as the fluoroscopes found in
the earliest penny arcades, where medically uninformed amusement seekers paid for
the ability to X-ray the bones in their hand.

The games that EGGG creates are those that lend themselves to concise descriptions:
the simpler the game, the better. It is best-suited for creating games involving pieces
and boards and cards and icons, and not well-suited at all for games like Mortal
Kombat, or Doom, or sports simulations. The graphical sheen of games like Mortal
Kombat and Doom is intrinsic to their appeal, and EGGG can't supply artistry.
Sports simulations might not require so much polish (although the successful ones
certainly do), but the sheer number of rules involved in any sport makes it difficult to
write the description in such a way that EGGG could know how to render it. If
you're creating a baseball game, you can't just tell EGGG to create bases. You have
to tell it how far apart to make the bases, and the pitcher's mound, and the outfield
wall. You'd have to describe - algorithmically - the paths of the different types of
pitches. You'd have to express the speeds of the pitches, and maybe even of the
runners and the bat. And so on. It is impossible to describe baseball concisely to
EGGG, because it is impossible to describe baseball concisely.

Theoretically, EGGG could create any game, since you can always burrow down
into the underlying Perl programming language. However, in this dissertation we
will restrict ourselves to games that are graphical, but not graphics-intensive or
overly complex.

One could argue that these are the best games to study because they are the most
timeless: card and dice and board games have been around for centuries, so they best
epitomize gameness. I don't agree with this; while arcade games have eclipsed
"classic" games, it's unclear whether this is because of changing tastes of youth
exposed to incessant marketing or because those games really are more fun to play.
It's quite possible that if the ancient Romans had had Nintendo, the empire would
have collapsed a lot sooner. I make no claims about the superiority of some games
over others, nor do I claim that game play is an intrinsic part of intellectual life.
Gaming is less universal than many suspect; despite the best efforts of
anthropologists, no one has been able to stake a claim for the universality of games
across cultures [Avedon 71].

However, game play is nearly universal among computer scientists, and in the next

section we turn to other systems pertaining to computer game creation and
automated programming assistance.

Related Systems

The Programmer's Apprentice

Before I came to the MIT Media Laboratory, I worked at the MIT Artificial
Intelligence Laboratory on the Programmer's Apprentice, an automated
programming effort headed by Charles Rich and Richard Waters. The Programmer's
Apprentice project yielded a series of intelligent assistants for software engineers:
programs that helped programmers formalize requirements, create and edit
programs, and analyze the programs they created.

EGGG differs from the Programmer's Apprentice in that its goal is simultaneously
both more and less ambitious. EGGG is more ambitious in the sense that it is an
attempt to create something that people with a minimum of programming skill can
use: its target audience is not programmers, but people who want to create computer
games - people who may not have much (or any) programming experience. EGGG
is less ambitious in that it drastically constrains what type of systems you can create.
EGGG does not do requirements analysis or program verification; it simply
generates games.

METAGAME

METAGAME [Pell 92] is similar in spirit to EGGG, but arose from a different
premise. For a long time, chess was considered a formidable problem for AI. The
reasoning was that any program that could beat an expert player, or even a
competent one, would surely possess some of the intellectual capacity of a human.
Yet Deep Blue and other successful chess programs demonstrate that this is not
necessarily the case: chess programs have gotten better largely through
improvements in computer power and in hardwiring knowledge of chess into the
architecture. Put another way, chess is not AI-complete: just because a program is an
intelligent chess player doesn't mean that it's intelligent.

Barney Pell's METAGAME strives to bring the Al back to computer game playing.
He suggests that the test of a computer's game-playing prowess shouldn't be chess,
or even Go, but the ability to play a game with no a priori knowledge. To this end,
Pell develops a formalism for representing "Symmetric Chess-Like" (SCL) games,
including a proof that all finite two-player games of perfect information (that is,
games that can be represented as game trees) can be represented using his formalism.
A computer program that can play aribtrary SCL games is called a metagame player.

Pell goes on to develop an evaluation mechanism for metagame players and a
program that generates games that are similar to chess, but with random rules. He
then tests his METAGAMER program against several such games and reports the
results.

METAGAME is a mathematical framework for developing programs that can play
games well, in contrast to EGGG, which is a system for developing games.
Nevertheless, METAGAME has influenced the design of EGGG in a few ways. In
particular, EGGG uses logical predicates that represent changes in the state of game
play, cf. [Pell 1993], p. 104:

In addition, these predicates are all logical, in that state is represented as a
relation between two variables, StateIn and Stateout, instead of a
global structure which is changed by side-effects (as in a current board array
used in many traditional playing programs). This enables a program to use
the predicates in the domain theory in both directions. For example, by
constraining Sout in Figure 12.2 instead of SIn, a program can determine
possible predecessor states, thus using the rules "in reverse" to find all the
positions which would have been legal before a given move.

EGGG has global structures that are changed by side effects, but it also has "actions"
that are passed around, composed, concatenated, and hypothesized about, just like
METAGAME.

Commercial Products

There have been several commercial "game construction kits", but they are typically
not very expressive: the range of the games you can generate is quite limited. Bally's
Pinball Construction Kit, for instance, let you adjust the number and placement of
flippers, and it let you change gravity, but at the end of the day all you could create
were slightly different variations on the same pinball game. Many game
constructions kits are like this.

In this section, we will briefly discuss two commercial products that have broader
approaches to game construction: GURPS and Klik & Play.

GURPS

Steve Jackson's GURPS (Generalized Universal Role Playing System) is an
ambitious attempt to generalize role-playing games into a single set of all-
encompassing rules. It focuses on dice-and-paper simulations and therefore is only
tangentially related to computer games, but faces the same problem EGGG does:
how do you partition the universe of games, and what are the proper levels of
abstraction? For instance, GURPS has a single unifying architecture for all combat,
but overrides that architecture when certain conditions occur (for instance, when the

combatants are in water). Parallels exist for EGGG: it makes guesses about games
and then overrides those guesses as more specific rules are found.

GURPS is a reference manual; it is essentially a compendium of information to help
you create your own simulation. It does not create the simulation for you, nor can it
supply the creativity that every successful role-playing game requires. (EGGG can't
supply the creativity either, of course.)

Nevertheless, GURPS is an ambitious work, and it is a philosophical ancestor of
EGGG. Reading it, you can sense Steve Jackson's frustration as an avid scenario
designer who recognized the similarities between the different milieus: protecting
your body with chain mail against an arrow is not unlike protecting your body with a
Kevlar vest against a bullet. In each case you have to establish probabilities that the
target will be able to dodge the projectile (the bulkier the protection, the slower the
target can react), the probability that the projectile will penetrate the target (which
depends on the speed and force of the projectile), and the probability that the wounds
caused will be fatal. That, in turn, depends on the health of the target, and so on. Nor
is GURPS entirely about combat; it provides guidelines for a scenarios as obscure as
loading cargo onto an aircraft without the aircraft having to land.

Implicit in GURPS's design are decisions about when to generalize (social traits that
are universal, and combat rules that apply to all milieus) and when not to (a
character's skill at xenology - the knowledge of alien races - which is unique to
space-age milieus). However, GURPS' generalizations are all obvious: you can fight
in any game, but laser weapons have no place in Westerns.

Klik & Play

Klik & Play, originally created by Europress Software and distributed in the U.S. by
Maxis, is a game construction kit that has met with some commercial success. In
contrast to GURPS, Klik & Play is more than a reference guide: like EGGG, it
creates computer games.

Klik & Play is aimed at children. It's a visual application builder that provides you
with predefined objects - a running man, walls, monsters, and the like - and lets
kids assemble them into video games. There is an "event editor" that lets you define
complex actions - but these actions are all essentially simple conditionals that
depend on the other objects. Klik & Play games aren't Turing complete.

The video games all look pretty much the same: in J.C. Herz's categorization of
games (see The Game Space in Chapter 2), they are all "shooters", a subgenre of
action games. Herz's genres, in turn, are all subgenres of video games. You can't
make crosswords, or poker, or chess, with Klik & Play.

The system touts its object orientation, which only means that its monsters and walls
and objects have independent picture, animation, and movement properties. Klik &
Play is good, but it is not a universal game generation engine. In the tradeoff

between expressivity and ease, it favors ease to a much higher degree than EGGG.

Related Fields

Game Theory

EGGG is about games, and EGGG is about theory, but EGGG is only tangentially
about game theory. Game theory is a branch of mathematics (some would say
economics) that deals with human interactions where the outcomes depend on the
interactive strategies of two or more people with opposing motives. Game theory
began with a simple betting card game called le Her, in which two players each drew
a card and could optionally exchange the card for another based on simple rules. An
optimal strategy for playing le Her was discovered in 1713, and that optimal strategy
was applied to all two-player deterministic games with the Generalized Minimax
Theorem by John von Neumann in 1928.

One well-studied game in game theory is the Prisoner's Dilemma, which has this
scenario: Two criminals, in cahoots, are arrested for the same crime. They are placed
in separate interrogation booths where they can't communicate with one another, and
each is encouraged to confess to the crime. If one criminal confesses and indicts the
other, the confessor gets a light sentence while the holdout does heavy time. If both
confess, they both get a heavy sentence, but not as heavy as a single holdout. If both
hold out, they both get a light sentence - but not as light as a single confessor.

What should a criminal do if he wants to minimize his jail time? Tough question,
and this is the bread and butter of game theory. Active research topics include
variants of this scenario. What if there are repeated trials? What if they are able to
communicate? What if they aren't rational? What if there are three criminals instead
of two? What if the criminals aren't sure of the penalties? What if one criminal is less
averse to jail than the other? And so on, applied to many other scenarios: arms
control, marriage, patents, college applications.

Game theory has nothing to do with actual computer game creation; it is only about
strategies for making the best decision, in games where it's possible to reason about
what a best decision is (as opposed to arcade games or crossword puzzles). EGGG
uses the results of game theory when it generates computer opponents for a game,
but the strategies it uses are not the cutting-edge game theory research. The
strategies are discussed in Chapter 4, Enemy Of The Game State.

Complexity Theory and Game Automata

It's possible to view games as problems to be solved. Can the first player guarantee a
win in tic tac toe? No. Can the first player guarantee a win in chess? No one knows;

it's a problem yet to be solved. You can try to solve this problem with brute force,
but you'll fail. There are thought to be 10120 chess games, and there are thought to be
about 1070 protons in the universe. If every proton in the universe were evaluating a
trillion chess boards per second, you still wouldn't be able to answer the problem
before the universe ended.

Complexity theory is the branch of computer science that analyzes how hard
problems are to solve. If a problem can be solved in polynomial time, it is said to
belong to P. (More precisely, P is the class of languages that are decidable by some
Turing machine in a number of steps that is bounded by a polynomial.) If a problem
can be solved by a nondeterministic Turing machine in polynomial time, it belongs
to NP. Every problem in P is obviously in NP as well. It has not yet been proven that
there are problems in NP that aren't in P as well, although it's a good bet. Much of
complexity theory involves proving that a given problem can be "reduced" to a
known problem in P or NP, where "reduced" means, roughly, "translated into, if you
change how you represent the problem in a nonintrusive way."

Garey and Johnson [Gar 79] list the known complexities of hundreds of problems,
including crossword puzzle construction (which is NP-complete), checkers
(PSPA CE-hard), and Go (PSPA CE-hard). This translates roughly into:

* Given a set of words, finding a crossword grid that contains those words will
take too long if you have enough words.

* Given checkers on an NxN grid, determining whether a player can always
win will take too much memory if N is high enough.

* Given Go on an NxN grid, determining whether a player can always win will
take too much memory if N is high enough.

These results may seem far removed from the practical concerns involved in
determining a game designer's intentions and converting them into working
programs, and for the most part they are. When a typical game opponent is created,
its designer has a rough idea of how complex the problem is. Perhaps he can't
determine it to the satisfaction of a theoretical computer scientist, but he knows
whether a brute-force approach is feasible or not, and he can choose an appropriate
strategy accordingly. EGGG doesn't have that luxury.

Condon's Probabilistic Game Automaton

Condon's Computational Models of Games [Con 89] notes that "Traditional models
of computation, such as Turing machines, do not reflect the game-like properties of
many problems of interest to computer scientists. On the other hand, the traditional
approach of mathematicians to game theory did not focus on questions regarding the
computational complexity of the game."

To rectify this, Condon defines a theoretical construct called a probabilistic game
automaton that combines elements of several game-theoretic models. The
probabilistic game automaton is able to model features of games that traditional
game theory can't accommodate: randomness, secrecy, and limited resources of the
players.

The different types of probabilistic game automatons can be classified along three
dimensions:

Universal steps Coin-tossing steps [Degree of information

B (bounded) Z (zero)

U (unbounded) P (partial)

I C (complete)
In Condon's analysis, every probabilistic game automaton has at most one symbol
from each of the left and center columns, and exactly one symbol from the right
column. The left column, Universal steps, has only a single symbol, the "for all"
operator. Universal steps are situations where a player has a move available to him
without any randomization involved. The middle column, Coin-tossing steps, are
situations where what a player does is determined randomly. B or U are chosen
depending on whether the automaton needed to model the game is finite or infinite.
The right column, Degree of information, indicate how much information a player
reveals. A completely secretive game reveals zero information, Z; a game in which
the player reveal some information is P, and a game where no information is
concealed is C.

These games are all between two players. Multiplayer games like poker, or single-
person games like crosswords, cannot be modeled by probabilistic game automatons.
And games that depend on hand-eye coordination can't be easily modeled by any
automaton at all.

The Eight Games
Computer science has a narrower view of games than the broader population, and so
for exploring the similarities between games and describing EGGG's capabilities,
we'll focus on a representative core of eight games that, taken together, portray the
versatility of EGGG:

" Tic Tac Toe

A two person game of complete information, with no randomness and simple
rules.

" Chess

A two person game
complex rules.

of complete information, with no randomness and

e Poker

A two to six person
complex rules.

game of partial information, with randomness and

e Crosswords

A one person game
rules.

of complete information, with no randomness and simple

e Tetris

A one person game of partial information, with randomness and simple rules.

* Rock Paper Scissors

A two person game of zero information, with no randomness and simple
rules.

* Deducto

A one person game of partial information, with randomness and complex
rules. Deducto is the author's creation, and will be discussed in Chapter 3,
The Physiology of EGGG.

* Mammon

A multiple-person game of partial information, with no randomness and
complex rules. Mammon is the author's creation, and will be discussed in
Chapter 6, Connect the Bots: Networking.

EGGG can generate an infinite number of games, and it can generate games that are
substantially different from these eight, but in the interests of having concrete
examples that can be continued throughout the discussion of EGGG, we will restrict
ourselves to these.

In the next chapter, we'll take a deeper look at the similarities between games that
made EGGG possible.

Chapter 2: Anatomy of a Game
[Game] genres do seem to hold together in the middle, weathering
revolutions in chip speed and licensing. It's like the proverbial fourteen
novels that have been endlessly rewritten throughout history. The costumes
change, but the basic matrices remain. There are certain things that people
want to see on a video screen. There are certain strategies that are inherently
satisfying. There are certain ways of organizing obstacles that are hard to
improve upon.

J.C. Herz, in Joystick Nation (page 25).

In this chapter, we will develop a taxonomy of games, laying the foundation for
Chapter 3, The Physiology of EGGG, where we discuss the actual mechanics of
game generation.

How are games organized? Is there some Platonic essence of gameness, an ur-game
from which all other games have evolved over millennia? A romantic thought, but
the answer is no: even if Australopithecus took turns seeing how far they could
throw a rock, plotting a gradual evolution from that to Myst would require
shoehorning cricket, logic puzzles, Pac-man, card tricks, and professional wrestling
all into the same family tree. With games, as with most other collectible things,
categorizing is messier than it would first appear.

If we're going to make sweeping conclusions, we first need to identify what it is that
we're making conclusions about. Is baseball a game? What about hide and go seek?
Anthropological literature typically divides leisure activity into game, play, and
sport. Play has no explicit goal, sport involves a test of physical ability, and
everything else falls under the catchall category: games. This has the curious
corollary that a baseball game played on a field is a sport, while a baseball game
played on a computer is a game, even though the two differ only in which muscles
are being strained. Nevertheless, it is this definition that we will use when we
categorize games and game elements. Game strategies are deferred until Chapter 4,
Enemy of the Game State.

A Structural Categorization Of Video Games
We showed some overly simplistic categorizations in the Introduction. For another,
deeper categorization, we can examine a particular genre of computer games: the
arcade game. J.C. Herz, in Joystick Nation, divides up the space of arcade games as
follows:

e Action games.

These are also known as "twitch" games, and are the most popular subgenre
of arcade game. They also have commercial opportunities that few other
subgenres do, because they can have character development, and are
therefore ripe for cross-licensing deals with other entertainment industries.
Sometimes the games lead to television shows (Pac-Man) or movies (e.g.
Mortal Kombat), and sometimes television shows (The Simpsons) or movies
(Star Wars) lead to games. In Herz's words, these relationships are good for
"hatching a slew of games based on movies that are mostly special effects
anyway." Herz continues, "These include some of the worst cartridges and
arcade cabinets ever produced."

Herz divides up action games into what she calls "structural subcategories":

" Horizontal scrolling games. In these games, ships move horizontally
across dangerous terrain. Examples: Scramble, Defender.

" Maze chase games. The player navigates around the screen, eluding
opponents. Examples Pac Man, Rally X.

" Platform climbing games. The player tries to navigate obstacles by
moving between areas of the screen. Examples: Donkey Kong, Lode
Runner.

* Shooters. Enemies are attacking you; shoot them all. Examples:
Doom, Robotron.

* Raining games. Missiles are falling down at you; avoid them (or
prevent them from hitting the innocents below you). Examples:
Missile Command, Kaboom.

* Breakout. Break down a wall with many repeated attacks. Examples:
Breakout, Arkanoid.

" Adventure games

Adventure games include some of the earliest computer games: Zork and
Adventure, which were text-based; and the graphics- and sound-intensive
commercial success Myst. Common to all of them is that you wander about
accumulating items which are used to solve puzzles.

" Fighting games

In Herz's words, "comic books that move." An enemy is attacking you; use
the right combination of moves to defeat him. Examples: Mortal Kombat,
Tekken.

e Puzzle games

Adventure games have an ultimate goal, a Holy Grail; these don't. For

instance, Tetris has no ending. The play just gets harder and harder.

e Role-playing games

In these games, the player chooses or invents a character and behaves
accordingly: you can't just hack and slash everything in sight. Examples:
Wizardry, Ultima.

e Simulations

Simulations strive for realism over frenetic button pushing; frequently, there
is military funding somewhere in the development pipeline. In some
simulations, the player needs to manipulate a complex vehicle; in others, he
needs to manage limited resources to develop something. Examples: Lunar
Lander, SimEarth, and all flight simulators.

* Sports

Sports games are a combination of action games and simulations, and try to
be as realistic as possible so that they can cater to real-life sports aficionados.
Examples: NBA Jam, NFL Quarterback Club 99.

" Strategy

These are games where you have to plan long-term strategies, or foster
temporary alliances with enemies. Frequently, the theme is consolidation of
power, and the games are often multiplayer - either between humans or
between a human and "intelligent" computer opponents. Examples:
Civilization, Populous.

Herz is only attempting to categorize video games here, but note how she does it: she
categorizes them by the player's experience. That makes sense, because her audience
is players.

Burns categorizes non-video games into the following categories [Burns 98]:

e Card games

e Patience Games

" Gambling Games

* Non-Trick Games

" Trick Games

" Children's Games

e Board Games

o Family Board Games

e Race Games

" War Games

" Territorial Games

e Domino & Dice Games

* Domino Games

* Dice Games

* Family Games

* Parlor Games

* Paper & Pencil Games

" Word Games & Spoken Games

e Written Games

e Sporting & Active Games

e Games of Skill

* Outdoor Games

However, if we try to categorize games from the developer's perspective, we need
different criteria. When you're programming, the difference between a shooter and a
raining game is far less than the difference between either of those games and a card
game. Likewise, the difference between the software architecture of a Go game and a
rendition of Capture The Flag is tremendous, even though Burns would classify
them both a territorial games.

A taxonomy of games from the player's perspective focuses on structure. A
taxonomy from a mathematician's perspective focuses on information and
probability, as Condon's probabilistic game automata suggest. A taxonomy of games
from the designer's perspective focuses on process.

A Designer's Taxonomy of Games
In the rest of this chapter, we will explore the similarities of games by creating a
game taxonomy: an organization of games. Each game will be described by a
categorization string that describes the process of game play. The categorization
strings don't contain the rules of the game, and knowing the categorization doesn't

enable one to reconstruct the game, or even visualize it. But if you know the
categorization string for a game, you can generate the entire software infrastructure
of the game. Everything else is just frosting.

In our taxonomy, we attempt to use familiar English words wherever possible. While
the taxonomy would sound loftier if we used precise terms (Occ ludingBarr ier,
PlayingSurf ace, IntrinsicAttribute) we have chosen to use imprecise
terms instead (Hand, Board, Color) in the interest of making our study of games
a little more accessible.

Frenetics

The first criterion of how a game is to be programmed is whether it is frenetic -

whether it requires "quick" action. We can divide those games into "twitch" games
that require near-continuous quick action (most arcade games) and those that are
simply time-based, like chess when it is played with a chess clock.

Any game that requires moves in a fixed period of time requires a program that can
record how much time has elapsed, which in turn requires that any sort of pause
feature not provide a player with an undue advantage.

This provides us with the first category of our taxonomy, which we will depict with
a table:

Frenetic and fast ff

Frenetic, but merely timed ft

If an f f is present in the categorization string for a game, it means that the game is
frenetic and fast; if an f t is present, it means that game is merely timed. If there's
nothing at all, the game isn't time-critical at all. These categorization strings were
part of the design of EGGG, but are not part of its implementation; they serve only
to help us identify the similarities between games.

Some Tetris implementations blank out the screen when you pause, so that you can't
analyze where a piece would best fit, unpause, and play the perfect game. There are
right ways to pause and wrong ways to pause; that's a right way to pause. However,
any pause feature would defeat the purpose of timed chess; since chess has relatively
little state (any reasonably good chess player will be able to reconstruct the board
from memory), blanking out the screen isn't sufficient.

Thus, a universal game generator that renders games from descriptions first needs to
determine whether the game is time-based, and then needs to determine what to do
when pausing: the more frenetic the game is, the more sufficient it will be to simply
blank out the screen.

This provides the second category of our taxonomy:

Let's classify the eight games described in the Introduction according
bits:

to these three

Frenetic History

Tic tac toe

Chess (with chess clock) ft h

Poker h

Crosswords (untimed)

Tetris ff

Rock Paper Scissors ft h

Deducto h

Mammon ft

Throughout this chapter, we'll add new categories to our classification scheme as we
define the other components of our taxonomy. Before we add more bits to our
classification scheme, we'll examine history in greater depth.

History

In this section, we turn to the notion of a game's history. This has nothing to do with
how or when the game itself was developed; instead, it refers to the succession of
moves made in a game, and their importance to deciding how future moves should
be played.

In particular, we turn to what we call local history, which is what Condon calls
simply "history": the sequence of moves in a particular game between particular
players.

Condon [Condon 89] defines Markov games as games where history is irrelevant. If
you look at a tic tac toe game in progress, you know everything you need to know
just from looking at the board and identifying whose turn it is. Tic tac toe is a
Markov game; so are crosswords. To say that something is a Markov game is the
same as saying that you can choose your move without remembering earlier moves.

Text adventure games are not Markov games, because what happens to the player at

a given point depends on actions he took earlier.

Chess, to the surprise of some, is not a Markov game. You cannot capture a pawn en
passant unless the opponent moved that pawn forward two squares in his last turn -
so you need to remember the last turn: a history of one move. Furthermore, you
cannot castle unless you have never moved your king. Therefore, a chess program
has to remember all of the moves back to move 2, which is the earliest that a king
could be moved. You need to remember almost the entire history. Go also requires
history: even though Go books teach readers by depicting boards and asking what
the player should do, which suggests that the board contents are all you need to
know to render a decision, Go is not a Markov game, due to the rule of ko, which
prevents a board from having the exact same arrangement of stones on successive
turns.

When you peer closer at what it means to be a Markov game, the distinction between
Markov games and non-Markov games gets even more slippery. For instance,
consider Rock Paper Scissors. Is it a Markov game? It might seem so, because the
previous rounds don't affect the play of the current round: the rules are all still the
same. Yet the strategy of the game involves analyzing the history of your opponent.

When the history is itself part of the board, the distinction blurs even more. Consider
Mastermind, where a player inserts pegs into the lowest level of the board on turn 1,
level 2 on turn 2, and so on up to the top of the board. On turn N, the pegs in levels 1
to N-I are there only to provide a record of the game history. Yet you can look at the
board and immediately have all the information you need to decide the perfect move
- clearly a Markov game. The play of Mastermind would be exactly the same if the
player had only one level available to him, which he would fill with pegs and then
remove when his next turn began. He'd just have to remember all of his previous
moves - clearly a non-Markov game.

Classifying games into Markov games and non-Markov games seems clear-cut when
you consider the idealized games of theoretical computer science, but it falls down
upon closer scrutiny.

Condon's probabilistic game automata view history as something that a particular
game possesses. But EGGG takes a broader view with a global history, defined in
Chapter 6, Connect the Bots: Networking.

The Six Types Of Synchrony
In this section, we continue our emphasis on the process of the game, rather than its
structure. Once we know whether the game is time critical, whether it is frenetic, and
whether it has to remember everything it's done, we can turn to the actual game
construction.

In a game like bridge or chess or tic tac toe, the turns alternate. If you assume that

the game is not networked (networked games will be explored in Chapter 6), you
could envision players taking turns playing the game on a single computer, with one
player using the keyboard and then handing it off to the next player; the game
program then has to rotate the board so that it is presented from the appropriate
viewpoint for each player.

But there are some games for which this doesn't make sense. Consider Diplomacy, in
which everyone decides where to move their armies and navies, and submit their
moves simultaneously. Or consider Spit, a card game where two players are racing
to place their cards on top of a central pile. Even one-person games like Doom,
which have no discrete moves at all, aren't without synchrony: the monsters move at
the same time you do.

We classify the synchrony of a game as follows: If all players move simultaneously,
we call that complete synchronization. If only a subset of the players (which we'll
call a team) move simultaneously, that is partial synchronization. And if the game is
sequential, we call that zero synchronization.

If only one thing happens at a time, we call that a sequential game. Poker is
sequential, because only one person at a time can move. In sequential games, the
turns might alternate between two players, as they do in chess, or they might
circulate in a particular order, as in the clockwise betting rotation of poker. They
might be arbitrary but fixed, as they are in Monopoly. They might have no order at
all, as in quiz shows or Charades: you "move" whenever you like.

Here, then, are the different types of synchrony. We have no categorization for
simple alternation, since alternation between two players can be viewed as a
degenerate form of clockwise or counterclockwise rotation. (Below, we refer to
counterclockwise rotation by its more esoteric and evocative name, "widdershins",
so that we can have a unique one-letter descriptor for the six types of synchrony.

_Synchronization
fTotal synchronization st

Partial synchronization sp

Sequential movement (rotation clockwise) F sc

Sequential movement (rotation widdershins) sw

Sequential movement (other ordering) F so

Sequential movement (random) F sr

Games that are not sequential usually require multiple strands of execution: either
the threads provided by many operating systems, or distributed computing, or a
fork/exec computation model. At the very least, they will require emulating multiple

threads of execution.

Games that are sequential can use the ordering to loop through the
appropriate order.

Now we can classify the eight games of our dissertation according
as well as the previous time and history criteria.

players in the

to their synchrony

Frenetic History Synchrony

Tic tac toe [sc
Chess [ft [h sc

Poker _ h sc
Crosswords [sr
Tetris ff sr

Rock Paper Scissors I ft j h st

Deducto j h sr

Mammon ft sp

Movement
Now that we've classified the sequence of play in the game, we can turn to what is
being synchronized: the moves. Our taxonomy defines several components to
movement: the move, the phase, the turn, the round, and the step. Few games have
all five components. (Magic: The Gathering is one such game.) Each of these
components is denoted with a single letter following m: A game with moves is
denoted mm. A game with moves and phases is denoted mmp.

To a first approxmation, these components form a hierarchy: a round can consist of
multiple turns; a turn can consist of several moves; a move can consist of multiple
phases; and a phase can consist of multiple steps. However, there is not strictly
adhered to: in Nine-Men's Morris, phases consist of multiple moves, and is denoted
mpm to indicate that moves constitute a phase instead of the other way around.

We now discuss each of the five components of movement.

The Move

In games like tic tac toe and chess, the notion of a move is intuitive, and we hear it in
"X should move here", or "Black moved his king's pawn forward two squares." Yet
even these moves are slightly different. In tic tac toe, the movement is really
placement: a player chooses which square to occupy, and by so doing occupies it. In
chess, choosing a square is not enough. You have to choose two squares: a source
and a destination. In Diplomacy, even the source and destination of a move aren't
enough.

In a crossword, a move is writing a letter in a square. But a crossword move can also
be erasing a letter in a square. Thus, moves aren't always steps toward a goal, and
they don't always add information to the game state.

At this point, the astute reader will note that we've corrupted the intuitive definition
of move - casual users would never call filling in a crossword grid as a series of
moves. That's okay, because here we are only talking about the abstractions inside
EGGG. The casual user never sees these abstractions, because they can use the more
familiar terminology when describing games. EGGG maps the familiar terms to the
internal abstractions described in this chapter. Multiple words in the EGGG
vocabulary trigger the same abstraction; the choice of abstraction depends on their
context.

The Phase

The picture becomes further complicated when we consider the moves of other
games. People don't speak of making "moves" in poker, but it's not difficult to
broaden the concept of moves to include what it is that players do in poker: ante, bet,
call, raise, fold, and discard. Now we have several different types of moves, and
each is valid only at particular times during the game. Likewise, deciding who goes
first in Monopoly or backgammon or billiards implies a sequence of actions entirely
different from the regular play of the game.

We call these distinct times phases, and if a game has phases, it is represented as mp.
The movement letters can be concatenated; a game with both moves and phases is
denoted mmp if the phases are part of the move (as in poker) or mpm if the moves are
part of the phase (as in backgammon).

The Turn

Where does a game like Progressive Chess fit into this categorization? In
Progressive Chess, the first player takes one move; the second player takes two
moves; the first player take three moves, and so on. Games typically last about seven
or eight turns [Burns 98].

When a sequence of moves are made at a time, we call that a turn, and designate it
mt. In Progressive Chess, EGGG needs to know not just that moves are combined
into turns; it also needs to know how. Unfortunately, this requires that you burrow
down into the underlying representation and specify how: with code. When a
component of the taxonomy requires writing code, we designate it with an additional
opening curly brace, {.

In games like that have tricks, like bridge and pinochle, the moves are individuals
playing cards, and the turns are the tricks.

The Round

When a game consists of a series of short, independent games, each with its own
winner, it is said to consist of rounds. Poker has rounds, as does Rock Paper
Scissors. In both of these games, there is no state kept between independent rounds.
You can play one round of poker, but in practice many rounds are played at a sitting.
A game with rounds consisting of turns would be represented mrt.

The Step

Some games have complicated moves that require compound actions. If the actions
are integral to the play of the game, they are the moves and phases that we discussed
earlier. If they are merely customary or superficial, they are called steps. Rapping
your knuckle on the table to signify the end of a phase in Magic, or sorting the cards
in your hand, or saying "Check" in chess: these are all inconsequential actions that
are nevertheless important for any faithful rendition of the game by a computer.

Here is a summary of the five components of movement:

Movement

Move 1mm
Phase mp

Turn mt

IRound
mr

jStep I ms

And here are the categorization strings for our eight games:

Frenetic History Synchrony Movement

Tic tac toe sc mm

Chess ft h sc mms

Poker h sc mrmp

Crosswords sr mm

Tetris ff sr mtm

Rock Paper Scissors ft h st mrm

Deducto h sr mrpms

Mammon ft sp mmp

We've now classified when players act, and the sequence of actions. But we haven't
talked about what it is the players are acting upon. We turn to that in the next
section, Tangibles.

Tangibles
Descriptions of games from the player's perspective typically begin with the look
and feel of the tangible objects: board, pieces, cards, and so on. Or they begin with
what the user first sees in the game. "You have a sideline view of a basketball court,
and you control one character at a time in a game of two-on-two."

This is precisely the way you want to describe a game to a person, because it helps
them visualize the game. Pictures first, rules and buttons and controls later.
However, we have delayed introducing tangible objects into our taxonomy for a
reason: they actually aren't that important to the design of a game. You can play
chess with cards instead of solid pieces; you can play poker with chess pieces instead
of cards. They are not intrinsic to the game play.

Some tangible objects are important to render properly, however. You can play tic
tac toe on a chessboard, but you can't play chess on a tic tac toe board: appearance
matters. In this section we discuss the different tangible objects that a game designer
needs to sprinkle on the screen; in Chapter 5 we will discuss how EGGG renders
them. We call the spatial objects "tangibles" to avoid confusion with the "objects" of
object-oriented programming.

First, we turn to the board.

The Board

In our taxonomy we use the term "board" to mean any playing surface. It might be a
Scrabble board, or a poker table, or a virtual baseball field. In our taxonomy, we use
b to denote a board.

In our taxonomy, every game has a board, but the board might be invisible. For
instance, text adventures and role playing games have an invisible board. Why not
just say that these games have no board? Because all computer games inevitably
have to be rendered on a screen, and having a board abstraction is necessary so that
the game generator knows how to depict whatever text it needs to show. Invisible
boards are denoted bi.

There is a large variety of visible boards, and we define the major subtypes now.

The Grid

[Burns 98] classifies chess as a "board game" and tic tac toe as a "pencil and paper
game". But this is clearly the wrong way to organize games from the perspective of a
computer programmer, because both chess and tic tac toe are board games. More
specifically, they are grid games, and we denote them with bg.

Chess, checkers, tic tac toe, and crosswords all played on square grids of squares.
That is, the grid itself is square, and the constitutent elements are square as well. We
call the constituent elements "squares" no matter what their shape.

There are other types of grids; the mathematician Piet Hein invented Hex in the
1940's, which is played on either a hexagonal or a triangular grid. Like the familiar
square grids, the grids of Hex are tessellated: the constituent shapes completely fill
the grid. Only three equilateral shapes can tessellate a grid: squares, triangles, and
hexagons.

The board of Chinese checkers is a series of tessellated triangles, but the overall
shape is a star. For our purposes, we consider that a grid where many of the triangles
are off limits.

Games like Scrabble are played on grids, but the individual squares have different
meanings. That's okay; we're just concerned with the architecture of the spaces on
the board, and not their meaning.

Monopoly (still banned in Cuba, China, and North Korea, even though the original
version was developed as a tool of anti-capitalist propaganda) is played on the
border of a grid. We consider that a grid too.

So we have three different shapes of grids (square, hexagonal, and triangular) and
one bit to set if the border of the grid is used. The meanings of the squares isn't part
of our taxonomy, so Scrabble is just a bgs game, for board-grid-square. If Scrabble

were just played on the border, we'd add a b to the end: bgsb.

We call the component elements of a grid squares, even if they are triangles or
hexagons.

The Graph

In games like chess and hex and Chinese checkers and Go, distances are
proportional. That is, adjacency on the grid implies adjacency in game play; the
geometry of the grid allows a computer to infer how far apart squares must be.
However, in games like Chutes and Ladders, certain squares can "teleport" you to
other squares. Even though the board is shaped and packed like a grid, it's not really
a grid, because distances aren't linear. The board is best viewed as a series of nodes
with arbitrary connections between them - what computer scientists call a graph.

Chutes and Ladders is a directed graph, because the connections are one-way. We
can model games like Diplomacy and Risk as undirected graphs, because the
connections are two-way. In general, most war games can be modeled as undirected
graphs, since geography is two way: if you can cross from Austria into Germany,
you can cross from Germany to Austria. In mathematical terms, adjacency is
symmetric in games like Risk but asymmetric in games like Chutes and Ladders.
Once you slide down a chute, you can't climb back up.

If a game has a board that is best represented as a directed graph, we call that bdg.
Undirected graphs are bugs.

The Canvas

To play a card game, all you need is the cards and a flat surface. The surface can be
blank, or mottled, or a grid. It doesn't matter what the surface looks like. We call that
a canvas.

A canvas is not the same as an invisible board. An invisible board is used when a
board has no physical meaning, as in a text adventure or role playing game. A
canvas is used when there must be a playing surface, but it doesn't matter what the
playing surface is.

Topology

Most board games are two-dimensional. We call text-based games zero-dimensional,
because they have no spatial meaning. Text adventures and MUDs (Multi-User
Dungeons) might seem to be a counterexample, because there is a spatial
architecture that the players inhabit. However, our taxonomy is from the perspective
of the game developer, not the game player.

Some games are nominally three dimensional, but the third dimension adds nothing
substantive. In card games, some cards will be on top of others, but that can be easily
represented with two dimensions. Connect Four is a three dimensional game that
relies on gravity to slide checkers into position, but it can easily be represented with
a straightforward two-dimensional grid.

There are some true three-dimensional games, like 3D tic tac toe and Jenga. And
there are some games in which the topology of the board is important. Defender and
Pitfall are situated in spaces that are topological cylinders: your up and down
movement is bounded, but your left and right movement is not; we call that a tube,
and a game with the topology of a two-dimensional tube is denoted t2 t. Asteroids
is a two-dimensional doughnut (torus), and we denote that t2d. Games that are
played in or on spheres use b, for ball. A t3b game is played on a sphere; a t2b is
played on a two-dimensional sphere, otherwise known as a circle.

Board Summary

Here are the types of boards recognized by our taxonomy:

Board

Invisible bi

Grid of squares bgs

Grid of triangles bgt

Grid of hexagons bgh

Directed graph j bdg

Undirected graph bug

Canvas bc

Here are some sample topologies:

Topology

Text-based games to

Conventional games t2

Three-dimensional games t3

Two-dimensional tube t2t

Two-dimensional doughnut t2d

Four-dimensional ball t4b

We can categorize our eight games (and a few extras) as follows:

Frenetic History Synchrony Movement Board Topology

Tic tac toe sc mm bgs t2

Chess ft h sc mms bgs t2

Poker h f sC mrmp bc t2

Crosswords [sr mm bgs t2

Tetris ff sr mtm bgs t2

Rock Paper Scissors ft h st mrm bc tI

Deducto h sr mrpms bgs[t2

Mammon t sp mmp bi to

Chinese checkers sc mm bgt [t2

Chutes and Ladders sc mm bdg [t2

Diplomacy ft st mptm bug t2

Now that we know
pieces.

what the board looks like, we examine what's placed on it: the

The Piece

Most classic games have small objects that are picked up and moved around. We call
these pieces, whether they are checkers, chess pieces, cards, stones, or tiles.

In arcade games like Tetris, you control the piece. In an arcade game like Pac Man
or Doom, you are the piece. When the player projects himself onto the screen,
identifying with the protagonist and cringing when he dies, a much more immersive
game experience results. (Immersion isn't always desirable; when you're playing
solitaire, you don't want to be the cards, perishing in screams when you end an
unsuccessful game.)

For our taxonomy, this is all irrelevant anyway. Whether the player is the piece, or
merely controls it, doesn't matter to how the game is programmed.

Sometimes the pieces themselves have state. In Othello and Shogi, a piece has two
sides, and which side is up has a great deal of meaning. Othello and Shogi pieces
have one bit of state. A Trivial Pursuit piece has six bits of state, corresponding to
which of the six wedges it contains. A piece with state is denoted ps.

Some pieces have artistic meaning that is essential to the look and feel of the game
but unimportant to the play; computer versions of the games need to give them the
appropriate appearance. Monopoly is the canonical example; the game could refer to
the players by number or color, but instead uses the tycoon, the thimble, and so on.
A piece which is best represented with art rather than a simple geometric shape is
denoted pa.

Some games have two very different kind of pieces. Poker has both cards and,
sometimes, chips. The chips could just as well be real money, but a faithful rendition
of the game must treat them as tangible objects that can be stacked and moved
around. When a game has multiple pieces, our categorization strings separate them
with semicolons. Poker's piece categorization string is pac ; nc. The ac refers to the
cards, which require art and color. The nc refers to the chips, which stand for a
number (the value of the chip) and depend on color as well.

Even a game like Rock Paper Scissors has "pieces" when it's rendered on a computer
screen - they just don't move, simply appearing and disappearing as the game is
played. Rock Paper Scissors is a pa game. The pieces of a crossword are the letters,
a p1 game.

In games like chess and Scrabble, no more than one piece can be on a square. In
Monopoly, multiple pieces can be on a square. In Tetris, the active piece constitutes
many squares. To denote whether pieces and board locations have a one-to-one,
many-to-one, or one-to-many relationship, we use the mathematical terms for these
mappings: bijection, surjection, and injection. The relationship is assumed to be a
bijection unless the categorization string implies otherwise.

Here are some examples of piece categorization strings:

Piece
Plain piece p

Piece, colored pc

Piece, letter pl

Piece, artistic pa

Piece, artistic and colored pac

Piece, with state and color psc

Piece, many of which can occupy a board location pb

Two pieces, one with state and number, another with art and color psn;ac

And here are the piece strings of the twelve games shown earlier, plus Trivial
Pursuit:

Frenetic History Synchrony Movement Board Topology Piece

Tic tac toe sc mm bgs t2 pc

Chess ft h sc mms bgs t2

[Poker I h sc mrmp bc t2 pacnc

Crosswords sr mm bgs t2 pl

f Tetris ff sr mtm bgs t2 pi

Rock Paper Scissors ft h st mrm bc ti pa

Deducto h sr mrpms bgs t2 pc

Mammon ft j sp mmp bi tO

Chinese checkers sc mm bgt t2

Chutes and Ladders sc mm bdg t2 pC

Diplomacy ft j st mptm bug t2 pac

Trivial Pursuit I sc mm bug t2

More About Color

In all of the abstractions EGGG uses, color is the most inappropriately named. That's
because color is almost exclusively used as an identifying attribute, to distinguish
between players. The red and black of checkers or backgammon could be replaced
by 1 and 2 or X and 0. Similarly, the letters in tic tac toe or the numbers in
Minesweeper could just as easily be represented by colors.

We considered calling any attribute that serves merely to identify a player a name,
and decided against it, because "name" has too many other meanings. It would be
strange to say that a "black knight" is a named piece, not because it is a knight, but
because it is black. The word "color" is much more evocative, and even if it
sometimes evokes the wrong concept, we have chosen to retain it. That's why tic tac
toe is classified as a pc game above.

In developing EGGG, two games were designed that made use of color as a
meaningful attribute instead of just an identifier. The games are RGB Deducto and
Color Deducto, and are described in the next chapter.

Compartments

Not all pieces are on the board at the same time, and in this section, we discuss
compartments: containers for pieces that aren't on the board: hands and bags. When
rendering a game, the computer needs to know what to show to every player, what to
show only to some players, and what to conceal from everyone.

The Hand

Poker is a game of partial information: you reveal some information to the other
players, and you keep some to yourself by concealing them in your hand. Scrabble
operates the same way, even though the tiles aren't physically in your hand, and
aren't called a hand: the wooden barrier that hides your tiles from prying eyes is a
hand as well, in our taxonomy. A hand is a compartment, ch, that only a single
player can see.

Hands can be finite, chf, as in the five cards that constitute a poker hand. Or they
can be infinite, chi. The particular size of the hand is not part of our taxonomy,
although obviously the game generator needs to know it, just like the generator
needs to know the colors of pieces or the artwork on cards. Those are part of the
game description; they just aren't part of the vital information needed to classify
games.

Furthermore, a player's hand can conceal information from himself as well. In the

trading card game Magic, the hand has two components. The first component is a
deck of cards that the player has chosen, but shuffled so that he doesn't know the
order. The second component are the cards that he actually holds in his hand. His
opponents have no knowledge of either component; he has total knowledge of one
component and only partial knowledge of the other.

The Bag

In Scrabble, there is a bag of pieces (tiles) from which players replenish their hands
after every play. The bag is a concealed set of pieces just like the hand, but it is
unordered and concealed from everyone.

Poker has a bag, too: the deck. But poker's deck has one subtle difference from
Scrabble's bag: in a deck, the cards have a fixed but unknown order. Drawing from
the deck doesn't change the order, whereas every draw from the bag randomizes the
bag.

If this seems like a pedantic distinction, consider the passed cards of Anaconda or
competitive Tetris: in each of these games, there is a set of pieces, with the order
determined by another player as part of the strategy of the game.

Incorporating this distinction also allows EGGG to model the inefficiencies of
various shuffling methods. There is a shuffle method that performs a true random
shuffling, but also "riffle shuffle" and "cut" methods that more accurately model how
real decks of cards are perturbed by human hands.

Bags are types of hands, so infinite bags are denoted cbi and finite bags are denoted
cbf.

Chinese
checkers sc mm bgt t2 pc

Abstract Facets of Play
In this section, we turn from the tangible objects of boards and pieces to four
intangible aspects of game play: genre, ending, and communication.

The Genre

Some games have themes, like war games, or role playing games, or the futuristic
alien battles of Doom and Quake. These are richly-expressed genres, and the themes
pervade the artistic expression of the game. You could take the play of a game like
Diplomacy or Doom, or the family-oriented utopia of Life (the one by Hasbro, not
the cellular automata game by Conway), and render it with bland geometric shapes,
but people wouldn't recognize it. These games have a genre that is expressed richly,
and so we denote it gr.

Many games have themes, but they're stripped down. Chess is a game of war, but
only nominally. A chess game rendered with pieces that bleed, or a variation that
involved the more familiar aspects of war games like ambushes or resource
management, would seem strange indeed. [Barnes 98] categorizes backgammon and
Chinese checkers as race games, but the trappings of actual flesh-and-blood (or
engine-and-gas) races are missing. These are weakly expressed genres, and we
denote that gw. (However, unusual variations of a game can impart a richly-
expressed theme where there was none previously, such as the Jews versus Catholics
chess game on display at the Corning Glass Museum in Corning, New York.)

Other games are divorced from any theme whatsoever, or are so far removed from
whatever genre they might have once had that renderings of the game can safely
ignore the genre. All card games fit this category; even the children's card game of
War is so far removed from what is traditionally called a war game that we can say
that no genre exists. Gambling games typically have no genre as well. We call these
gn games.

Information

Information communicated between players can take many forms. Here, we refer to
messages passed between players that is over and above the information conveyed
by moves. Chess has no communication; players speak with their pieces. Simple
bridge has no communication, because bids are moves. Precision bidding and the
Blackwood Convention, on the other hand, are out-of-band communication, because
the bids are meant to tell your partner what cards you have rather than what tricks
you plan to take. Games like Pictionary and Netrek and Dungeons & Dragons
involve cooperative communication between players; we denote this ic.

In poker, the communication isn't friendly. Poker players aim to reveal as little
information as possible; or if they do reveal information, they want it to be
misleading. We denote this unfriendly communication iu.

Referees

Games like Kriegspiel, Dungeons and Dragons, Black Box, and Mastermind have
referees: one player who knows more than the others - and because of his
knowledge acts as an umpire rather than a competitor. If a game has a referee, we
denote that r.

Endings

Finally, we turn to the ending of the game. It's tempting to call this a goal; artificial
intelligence and common parlance suggest that would be the best term. We chose
ending instead. Goals are something you strive for - a win condition. But consider
a game like Tetris. You cannot win; you just play until you lose. You could say the
goal is to maximize the number of points, or to get to the highest level, but those
goals are independent of when the game ends. The programmer needs to know when
to end the game: the end condition. We denote endings with e.

If the end condition is synonymous with the player's goal, as it is in chess, we call
that an es game. If the end condition is antonymous with the player's goal, that's an
ea game. And if the end condition has nothing to do with player goals, we denote
that en. Note that a game can have several end conditions; when there are, we
separate them with semicolons in the category string.

We now have a reasonably complete taxonomy of games:

Chess

Poker

f t sc mm bgs t2 pac gw [-es;n

sc mrmp bc t2 acn chf;bf gn iu es

Crosswords sr Fmm bgs F2 p1 gn es

____________ff j sr mtm bgs[7 pag

Rock Paper Scissors' j jhf st mr pa chf gn F7F e
Deducto _ hj sr mrpms bgs [t2 pc gn

Mammon_____I ft 1Isp mmp chi~ gr [F77e
Chinese checkers sc s

Chutes and Ladders jjj Fsc mm [IT pc -f77 es

Diplomacy jft st mptm [u t pac gri

Trivial Pursuit j-1f sc Fmm [ibu[I 2 psc I 1g

In the next chapter, we turn to how these categorizations are used by the EGGG
engine to generate games.

Chapter 3: The Physiology of EGGG
Programs... that write programs... are the happiest programs in the
world.

Andrew Hume

We now turn to a demonstration of EGGG, a system that exploits the similarities
between games to translate high-level game descriptions into fully functional game
programs. In this chapter we discuss how EGGG accomplishes this transformation.

EGGG also generates computer opponents that can play games with users; the
strategies that EGGG uses are discussed in the next chapter. Similarly, the graphic
appearance of the games and networking aspects of game programs each merit their
own chapters, and will be deferred until later.

First, we turn to the EGGG language, which is what game designers use to specify
the rules of their game to EGGG. Next, we cover the software architecture of the
EGGG engine, and then turn to some of EGGG's features, such as the automatic
generation of documentation and instructions for game players.

Game Descriptions
To use EGGG, the first step is to create a game description-typically a page or half-
page of ASCII text provided as a file with an .egg extension. In this section, we'll
examine a game description line by line as a way of showing you what the EGGG
language is (and isn't) capable of expressing.

Here is the game description for poker:

game is poker

turns alternate clockwise

Discard means player removes 0..3 cards or 4 cards if Ace
Fold means player loses

2. .6 players

game is Shuffle(deck) and Deal(cards, 5) and (bet(money)
or Fold) and Discard(hand, N) and Deal(cards, 5-N)
and (bet(money) or Fold) and compare(cards)

StraightFlush is (R, S) and (R-1, S) and (R-2, S)
and (R-3, S) and (R-4, S)

FourKind is (R, s) and (R, s) and (R, s) and (R, s)
FullHouse is (R, s) and (R, s) and (R, s) and (Q, s)

and (Q, s)
Flush is (r, S) and (r, S) and (r, S) and (r, S) and (r, S)
Straight is (R, s) and (R-1, s) and (R-2, s) and (R-3, s)

and (R-4, s)
ThreeKind is (R, s) and (R, s) and (R, s)
TwoPair is (R, s) and (R, s) and (Q, s) and (Q, s)
Pair is (R, s) and (R, s)
HighCard is (R, s)
hands are [StraightFlush, FourKind, FullHouse, Flush,

Straight, ThreeKind, TwoPair, Pair, HighCard]
hand is five cards
goal is highest(hand)

As you can see, game descriptions are a series of statements. The statements can
appear in any order. The EGGG language intentionally has no flow control; that's
why we call it a description and not a program.

A statement can be split along multiple lines, as long as lines after the first are
indented with any whitespace. Comments can appear anywhere, and begin with #.

These seventeen lines are all that is required for EGGG to produce a fully functional
poker program. (Tic tac toe and Rock Paper Scissors each require only eight.) Our
poker game is shown below:

Pat: 20

+

Discard Fold Call Pass Bet $10 Raise $10 Deal 9

We'll now proceed through the poker description line by line.

game is poker

This serves only to name the game. It is optional; if this line isn't present, EGGG
assigns a name based on the filename of the game description.

turns alternate clockwise

This tells EGGG that if there are more than two people playing, that the action of the
game (dealing and betting, but EGGG doesn't know that yet) passes from player to
player, clockwise.

When someone runs this program from the command line (on either Windows or
Unix), EGGG assumes that there's only a single player. That's why it generates the
screen you see above; the opponent is played by the computer.

Discard means player removes 0..3 cards or 4 cards if Ace
Fold means player loses

EGGG refrains from assigning meaning to any capitalized word; relying on the game
designer to do that instead. That's what the game designer does in these two lines,
defining the Discard and Fold actions. EGGG turns these definitions into
subroutines in the generated game program.

Later on in the game description, we see Discard (hand, N); because of the
capitalization, EGGG treats this as a reference to the action defined above.
Discard (hand, N) is then translated into a subroutine invocation.

What will the Discard () subroutine do? When it is invoked, it insists that the
current player remove between zero and three cards, or four cards if the player has
an Ace. Similarly, a Fold () subroutine is generated; when invoked with a player's
name, that player is removed from further play this round.

player is lower case, which means that it has a special meaning for EGGG. EGGG
knows what a player is; for instance, it assumes that when turns alternate
clockwise, that the things being alternated are players.

removes is also lower case, and EGGG assumes that it is pieces that are being
removed from the player's collection unless the designer specifies otherwise. Note
that we say "collection" and not "hand" - as was described in the last chapter,
"hand" has a particular meaning to EGGG, and EGGG can't yet infer that poker is a
game that has hands.

That inference becomes possible as soon as EGGG encounters "cards", which
triggers a number of behaviors by EGGG later.

There are two possible interpretations of the expression removes 0.. 3 cards
or 4 cards if Ace, depending on the relative precedence of the or and if
operators. Without knowledge of EGGG's precedence, it could mean (removes
0. .3 cards if Ace) or (remove 4 cards if Ace), or it could mean
(removes 0. .3 cards) or (remove 4 cards if Ace). It means the

latter; if binds tightly in EGGG.

How does EGGG know what an Ace is? It doesn't. Ace is capitalized, so EGGG
assumes that it will either be defined elsewhere in the game description (it isn't) or
that it will be defined in a module. Modules link names like "Ace" to images (a
picture of a particular Ace) and ranks (asserting that it can be both below a deuce
and above a King). None of this is known to EGGG as the game description is being
parsed; the capitalization is enough to tell EGGG what code to generate for the
Discard () subroutine.

EGGG does not distinguish between singular and plural cases. player and
players are interpreted identically, as are remove and removes and card and
cards. This tolerance allows users to write in grammatical English without
requiring EGGG to verify grammatical correctness.

2. .6 players

This statement tells EGGG how many players the game can support. Again, the
range operator . . is used. All EGGG games contain code that looks for the number
of players on the command line, and networked games look for connections from
other players. The sole effect of this line is as a check that terminates command-line
programs if too many players are specified, and refuses additional connections if the
maximum number of networked players are already present.

game is Shuffle(deck) and Deal(cards, 5) and (bet(money)
or Fold) and Discard(hand, N) and Deal(cards, 5-N)
and (bet(money) or Fold) and compare(cards)

The earlier game is poker named the game; this defines the game play. (EGGG
determines how to interpret a game is statement by the number of words in the
statement: if only one or two words follow game is, it's treated as the name of the
game.) Here, the game play is a shuffle followed by a deal, a bet or a fold, a discard,
another deal, another bet or fold, and a final comparison. Every word preceding a
left parenthesis turns into a subroutine invocation, and the subroutine definition can
originate from three places. It can originate from the game description itself, as in
the Discard () subroutine shown earlier. It can be something that EGGG has
particular knowledge about, such as the bet () and compare () subroutines.
Finally, it can be something defined in a module bundled with EGGG. The Deck
module defines subroutines for shuffling and dealing; it defines a Deck object with
shuf f le () and deal () methods, as well as the ranking that defined Ace. In the
Deck module, Ace () is actually a subroutine; when Ace () is called with no
arguments, it returns true if the current player has an ace.

StraightFlush is (R, S) and (R-1, S) and (R-2, S)
and (R-3, S) and (R-4, S)

This line defines the condition that a set of cards must meet to contain a stright flush.
EGGG doesn't yet know that a straight flush is a good hand; that comes later.
StraightFlush is triggers a subroutine definition, just like game is earlier.
That subroutine loops through all of the cards in the player's hand.

In each iteration of the loop, it sets a variable, R, to the rank of the current card. It
sets S to the suit of the hand. Subsequent loops generated by EGGG test subsequent

cards. If the rank of the second card isn't one less than the rank of the first card and
with the same suit, the loop exits prematurely, and no straight flush will be found.

To be precise, the loop will begin another iteration through the cards, starting with
the second card, as soon as that first noncompliant card is found. The subroutine
doesn't know that a StraightFlush requires that all the cards be part of the
straight flush; it only knows thatfive cards must be part of the straight flush. So on
the next loop iteration it will look for a straight flush starting with the second card
and ending with the sixth. It will fail, move on to the third card, and so on until there
are no cards left in the hand.

This is exactly the sort of inefficiency that you don't want in a program dedicated to
playing poker, but that you do want in a generic game-playing program. Perhaps
someone will devise a variation that involves more than five cards. Someone might
even devise a variation where different players have different numbers of cards at
different times during the game, and in those cases it's important to distinguish
between a straight flush of five cards and a straight flush of all cards.

FourKind is (R, s) and (R, s) and (R, s) and (R, s)
Flush is (r, S) and (r, S) and (r, S) and (r, S) and (r, S)

These lines are similar; in each, the ordered pair representing each hand has one
lower case letter and one upper case letter. As we saw, upper case letters have to
match particular piece attributes. Lower case letters do not. The s and r letters
above are mere placeholders.

FullHouse is (R, s) and (R, s) and (R, s) and (Q, s)
and (Q, s)

TwoPair is (R, s) and (R, s) and (Q, s) and (Q, s)

Q is like R, only different; in the definition for FullHouse, Q is used to distinguish
the second rank (the rank of the pair of cards) from the first rank.

As you can see, each piece (card) is represented as a coordinate pair. EGGG actually
represents all pieces, not just cards, as tuples (arrays).

The values of each coordinate can be a variable (R, Q, or S above), a placeholder (r
or s), or a literal value. Traditional poker has no literal values in its rankings - that
is, there aren't any hands that require you to have some particular card. Pinochle
attributes special meaning to a Queen of Spades / Jack of Diamonds combination,
which would be represented like this:

Pinochle is ("Queen", "Spades") and ("Jack", "Diamonds")

The remaining hand definitions should be self-explanatory.
hands are [StraightFlush, FourKind, FullHouse, Flush,

Straight, ThreeKind, TwoPair, Pair, HighCard]

This tells EGGG what the possible hands are - and more importantly, their order.
StraightFlush is the highest, because it is first.

Note that poker hands overlap: a straight flush is both a straight and a flush, three of
a kind is also a pair, and every hand also has a high card. How does EGGG know to
identify four aces as a FourKind and not as a TwoPair? After all, any hand with
four of a kind also satisfies our definition of two pair. Because EGGG searches for
the hands in order, the FourKind () subroutine will be invoked first, return a true
value, and preclude TwoPair () from ever being called.

This is another of the similarities behind games built into the design of EGGG: in
games, rare piece combinations are worth more than common combinations. Code
generated by EGGG will, by default, check for the best outcomes first. This
assumption won't work for all games, but it does for the vast majority of them. Game
designers can always override EGGG's assumptions in the game description by
specifying the play of the game with greater precision. This is one of the design
principles underlying EGGG: with apologies to Alan Kay, our goal is to make easy
games easy, and hard games possible.

hand is five cards

The first two words of this statement are parsed exactly the same as the first two
words of the previous statement: since EGGG ignores pluralizations, hand is is
interpreted identically to hands are. However, the words that follow trigger
different behaviors. In the hands are statement discussed previously, the game
designer provided a list of hands, each with a definition elsewhere in the game
description. hand is f ive cards tells EGGG that the game has hands (which
makes EGGG conceal the computer's hand from the player) and how many cards
each should contain. To specify that a game has hands without specifying how many
cards the hand should contain, the designer could have written game has hands.

Numbers can be either spelled out ("five"), or provided as numerals ("5"); this
statement could also have been written hand is 5 cards.

goal is highest(hand)

This final line of the game description tells EGGG what each player should be
attempting to do. This serves two purposes: it serves to generate a strategy for the
computer opponent (discussed in the next chapter) and it tells EGGG how to decide
the winner once the round is over.

How Does EGGG Know That Poker Is A Game Of Rounds?

People play many rounds of rummy at a sitting, but not many rounds of chess.
EGGG needs to know whether poker is more like rummy or chess; in particular, it
needs to know whether to maintain state between rounds. Without knowing that

poker consists of rounds, EGGG would display GAME OVER at the end of a poker
game, and empty the player's coffers if the player chose to play again.

This is a rather abstract concept to explain to a game designer, so EGGG infers
whether a game has rounds without the designer having to specify it explicitly.
Games with concealment usually have rounds, so the presence of hand in the game
description file suggests that the game may be played multiple times at a sitting. But
this rule is not ironclad. Scrabble, Stratego, and Battleship are games of
concealment, but typically aren't played over and over.

The best metric for determining whether a game has rounds is the average length of
time that it takes to play. The shorter the game, the more likely that it's played more
than once at a time. However, EGGG has no way to infer how long a game takes
merely from the game description.

Looking closer, we can see that these are really one and the same rule. The reason
that games with concealment (or games of incomplete information, to use Condon's
classification scheme) are more likely to employ rounds is because they take less
time, and the reason they take less time is that they require less analysis than games
of perfect information.

EGGG's heuristic is that a game is not played in rounds if it fulfills any of these
conditions:

e The game has levels (as in Deducto or Sokoban).

e The game has a particular solution (as in crosswords, logic puzzles, or
number puzzles).

e The game has no hands.

e The game has hands, but the hands contain more than thirteen pieces per
side.

e The game is played on a grid with more than 25 squares.

For games that are played in rounds, the score (or money tally) is kept from round to
round.

We considered including another trait in this heuristic: whether the game has
unequal roles for players. In games like poker, the deal shifts from player to player;
in games like MasterMind or Black Box or Charades, there is one person who knows
a secret, and other players try to guess. In such games, there's usually a notion of
rounds so that other players can take turns knowing the secret. However, games like
Dungeons and Dragons or Kriegspiel have referees even though the individual
games take too long for rounds. MasterMind and Black Box and Charades all have
concealment (hands), so the above heuristic works for them.

Furthermore, note that the presence of random elements in the game is not used to

determine whether a game has rounds. It's not whether you know what's going to
happen, but how much you can predict what will happen from the information
provided to you. Another way to say this is that the distinction between "games of
skill" and "games of chance" is artificial. Yahtzee is both; being good at Yahtzee
means being good at probability theory, whether the player is conscious of his
knowledge or not.

How Can EGGG Assume That The Cards Are In Descending
Order?

Here is poker's definition for a high card (the lowest possible hand, where the
highest ranking card determines its strength).

HighCard is (R, s)

How does EGGG know which card is the high card? The HighCard subroutine will
verify that any hand satisfies this definition as soon as it inspects the first card,
without regard to whether there is a higher card elsewhere in the hand. Since the
ranking subroutine return not just a true or false value, but a score indicating how
good the hand is, it's important for Highcard to identify the highest card of the
hand for tie breakers.

Earlier, we saw that EGGG searches for hands from the best to the worst; this is an
example of a general principle: EGGG does everything from best to worst. After
hands are dealt, EGGG sorts them from highest to lowest. When captured chess
pieces are shown off to the side, EGGG shows the queen first and the pawns last.

EGGG has a generic sorting algorithm for pieces (remember, cards are pieces too)
that orders rare, valuable, or powerful pieces first. When it doesn't know the rarity or
power, it estimates them. Those estimates are used for the generic static evaluator
described in the next chapter, and the estimation process is described further there.

This is important for graphic layout, too: when there is a limited amount of screen
real estate, you want to make sure that the players can see the most significant
pieces. Even if the pieces are displayed in some area with scroll bars, you want to
most important information to be not front and center, but top and left. (This is
gaming's answer to the inverted pyramid scheme of news articles.)

How Did EGGG Know To Generate All Those Buttons?

Notice the seven buttons generated by EGGG: Discard, Fold, Call, Pass, Bet
$10, Raise $10, Deal. Only Discard and Fold are defined explicitly in the
game description. Deal is mentioned, and defined in EGGG's Deck module,
described later in this chapter.

As for the other four buttons (Call, Pass, Bet $10,and Raise $10), EGGG
scanned the game description and found the expression bet (money). The bet
triggers five options for players: offering a bet, declining an offer, declining to offer,
meeting an offer, and trumping an offer. These correspond to the four buttons, and
Fold. EGGG chose the names of the buttons because of hardcoded rules about card
games; for non-card games it calls those actions Challenge, Reject, Pass,
Accept, and Raise.

The presence of money adds the dollar signs, and nothing more. Without money,
the currency of betting is treated as abstract points. EGGG uses $10 as a default
betting amount.

There are also three labels: in the picture shown earlier, they read 90, Pot: 20,
and 90. In any betting game, EGGG reserves a central area of the game canvas (or
one side of a grid game) as an escrow area, orpot, where the wagered dollars, points,
or pieces are displayed before players win them. (Incidentally, rummy acquired its
name because players used to gamble for rum while playing.)

In the next section, we'll examine Deducto, a game where EGGG can't deduce what
buttons to make.

A New Game: Deducto
EGGG is an attempt to showcase the similarities between games, and if the EGGG
engine were only able to generate known games, that would still be ample evidence
for the existence of those similarities.

But that wouldn't be very useful. EGGG is also good for generating entirely new
games, and variations on games. In this section, we will develop a new game using
EGGG, and later in the chapter we will create a variation on it.

The new game is called Deducto; it is a logic game played on a 5x5 grid. Here is
what the game board looks like:

EGGG Deducto xM

Example Test Understand VoteYes VoteNo

Each of the twenty-five squares is always black or white. You can see from the green
label above and to the right of the buttons that this game has levels; we start with
level 1.

Each level has a secret rule, and your goal is to determine the rule. The rule for level
1 is simple: the grid of squares must be at least half white. When the player presses
the Example button, it generates a random grid satisfying the rule.

There are actually thirty buttons in this game - not five, as it might appear. The
other twenty-five buttons are the grid squares themselves. When a player presses one
of the grid squares, it toggles from black to white and back. Thus, a player can take a
compliant grid - one that satisfies the current level's rule - and make it non-
compliant, or vice versa. He can then test whether the board satisfied the rule by
pressing the Test button.

When the player thinks he understands the rule, he presses Understand. The game
then generates either a board that satisfies the rule or a board that does not, each with
probability 50%. The board is displayed, and the player is prompted to Vote Yes
(if the grid fits the pattern) or Vote No (if it doesn't):

EGGG Deducto MR]

FilePreereces Help

Example Test Understand VoteYes VoteNo

If the player guesses correctly, his score increments. If he gets five in a row, he is
deemed to have understood the level. The level increments, and the process repeats
with a new rule.

In the words of one Media Laboratory ex-graduate student who would probably
prefer to remain anonymous, it's "like you're a neural net." The former student
explained that he didn't really understand the rule behind each level, but could still
tell when a grid satisfied the rule or not.

We use Deducto to demonstrate some of the features - and more importantly, some
of the limitations - of automated game generation. The limitation that Deducto
highlights best is in the language necessary to express the rule behind each level.
The rule might be simple, like counting the white squares on each level, or it might
be complex. Maybe the number of squares on each level has to be prime; maybe the
white squares have to form a letter, or a face; maybe the squares have to encode the
current time. EGGG could restrict the patterns that appear, but that would constrain
the game too much and run counter to the game's intention of testing players'
analytical skills.

Obviously the EGGG language needs the expressiveness of a
fully-featured programming language. Rather than develop yet another
programming language, EGGG lets users burrow down into the language
that it's implemented in: Perl. The loop constructs and operators are
easy to learn for anyone experienced with programming, but it is at
this point that creating a game stops being a matter of describing and
becomes a matter of programming. Again, the underlying tenet of EGGG
as an application is to make easy games easy, and hard games possible.

As with poker, we will go through the game description line by line, explaining
EGGG's features along the way. Here is the game description:
game has Example button
game has Test button
game has Understand button
game has VoteYes button
game has VoteNo button
Example means grid becomes Generate(level)
Test means display(Tester(level))
Understand means display("Vote Yes or No.");
VoteYes means Tester(level) and ++CORRECT or CORRECT = 0
VoteNo means not Tester(level) and ++CORRECT or CORRECT = 0

goal is level(highest)
one player
5x5 grid
squares are white and black
click makes square toggle
board starts empty
Generate(l) is while (!Tester(l)) { grid[x][y] = flip ? 1 : 0 }
Generate(2) is { grid[x][y] = flip ? 1 : 0 }; grid[3][3] = 1
Generate(3) is while (!Tester(3)) { grid[x][y] = flip ? 1 : 0 }
Generate(4) is while (!Tester(4)) { grid[x][y] = flip ? 1 : 0 }
Generate(5) is while (!Tester(5)) { grid[x][y] = flip ? 1 : 0 }

AntiGenerate(1)
AntiGenerate(2)
AntiGenerate(3)
AntiGenerate(4)
AntiGenerate(5)

is while (Tester(l)) {
is { grid[x][y] = flip
is while (Tester(3)) {
is while (Tester(4)) {
is while (Tester(5)) {

grid[x][y] = flip
?1:0 }; grid[3][3]
grid[x][y] = flip
grid[x][y] = flip
grid[x][y] = flip

Tester(1)
Tester(2)
Tester(3)

is Tot++ if grid[x][y]; return Tot > 12
is return grid[3][3]
is return 1 if grid[3][y] && (grid[l][y]
&& grid[2][y] or grid[4][y] && grid[5][y]) ; return 0

This one is tricky. Tester(4) is true if there's an "on" square
in each row.
Tester(4) is Tot 1= (2**y) if grid[x][y]; return Tot == 62 ?l:0
Tester(5) is Tot++ if grid[x][y]; return Tot % 2

assert VoteYes: lastmove("Understand")
assert VoteNo: lastmove("Understand")
assert after move: CORRECT == 5 => level = level+1 => CORRECT=0
assert after Understand: flip ? Generate(level)
AntiGenerate(level); update()

?1:0
= 0

?1:0
?1:0
?1:0

We will tackle the game description in chunks.
game has Example button
game has Test button
game has Understand button
game has VoteYes button
game has VoteNo button

When EGGG sees these lines, it creates five buttons, each with the specified text on
it. It also creates a callback for each button - a subroutine that will be invoked
when the player presses the button. It doesn't know what the buttons do yet, and if no
part of the game description specifies what the button does, EGGG warns the user
that the button does nothing. It still generates a callback; all it does is display "You
pressed the <name of button> button." Luckily, the game description defines the
buttons:

Example means grid becomes Generate(level)
Test means display(Tester(level))
Understand means display("Vote Yes or No.");
VoteYes means Tester(level) and ++CORRECT or CORRECT = 0
VoteNo means not Tester(level) and ++CORRECT or CORRECT = 0

(Note that extra whitespace is ignored by the EGGG parser; that's why we can align
these rules on means to enhance readability.)

Each line generates the callback for a button. The Example callback changes the
state of the entire board: grid becomes. The grid becomes whatever
Generate (level) returns; that's a function invocation (which is actually
translated into Generate ($state { level}) when the game program is
created). The Generate function (not yet defined) is passed whatever the current
level is (an integer from 1 to 5), and returns a data structure representing the entire
board, which then becomes the grid that the player sees. becomes is used to change
the state of a board, piece, or hand in a sweeping way.

The display function (lower case, so it's known to EGGG) shows a message to the
user. display decides which message area is appropriate; in EGGG games, the left
area is used for informative messages ("Vote Yes or No") by default, and the right
area is used for stats, such as scores and levels.

The definitions of the VoteYes and VoteNo buttons are the first examples we've
seen of burrowing down into the language underlying EGGG: Perl. VoteYes
invokes the Tester function with one parameter, the current level. CORRECT,
because it is capitalized, is a variable that EGGG creates - and remembers even
after the subroutine terminates. The single letters P and Q and S that we saw with
poker all disappeared when the subroutine ended; CORRECT is what we call a state
variable, and lasts for the entire game. Here's the actual VoteYes () subroutine
generated by EGGG:

sub VoteYes {
Tester($state{level} and ++$state{CORRECT} or $CORRECT = 0;

}

EGGG's logical operators short-circuit. In the expression A and B, B is only
evaluated if A is true. In the expression A or B, B is only evaluated if A is false.
That's short-circuiting. And ++ just means to add one to something, so this
subroutine is equivalent to:

sub VoteYes {
if (Tester($state{level}) {

$state{CORRECT} = $state{CORRECT} + 1;
} else {

$state{CORRECT} = 0;
}

}

The next lines are all straightforward:

goal is level(highest)
one player
5x5 grid

Players try to attain the highest level, it's a one-player game, and the board is a grid
with five squares on each side.

squares are black and white
click makes square toggle

The first line indicates the two colors that a square can be. That's important, because
the second line indicates what happens when a user clicks on one: it toggles between
the two colors. Had the lines been:

squares are black and white and red
click makes square rotate

...then clicking on a square would cycle from black to white to red and back to black
again.

Board Initialization

board starts empty

This tells EGGG that the initial state of the Deducto grid is empty. The twenty-five

squares won't be black or white; they'll be gray. In a game like chess, the board
doesn't start empty. To demonstrate how players can specify the initial state of a
board, we'll talk about chess instead of Deducto briefly.

How would you describe the initial state of a chessboard? You'd say that it's an eight
by eight grid, and you'd say which pieces belong on which squares. Specifying the
tabula rasa state of a chess game is pretty easy, because it's the same each time. In
EGGG, the initial board state looks like this:

board starts [[black Rook, black Knight, black Bishop, black Queen,
black King, black Bishop, black Knight, black Rook],

[black Pawn, black Pawn, black Pawn, black Pawn,
black Pawn, black Pawn, black Pawn, black Pawn],
[empty, empty, empty, empty,
empty, empty, empty, empty],
[empty, empty, empty, empty,
empty, empty, empty, empty],
[empty, empty, empty, empty,
empty, empty, empty, empty],
[empty, empty, empty, empty,
empty, empty, empty, empty],
[white Pawn, white Pawn, white Pawn, white Pawn,
white Pawn, white Pawn, white Pawn, white Pawn],
[white Rook, white Knight, white Bishop, white Queen,
white King, white Bishop, white Knight, white Rook]]

Note that there is no syntactic distinction between squares which have pieces on
them and those that don't. How does EGGG know that empty isn't a piece? Because
empty is one of words in EGGG's vocabulary. It's used for the pieceless triangles in
backgammon and for the empty squares in a crossword grid. (If empty hadn't been
a known word, it would have been considered an unknown attribute instead of a
piece because it's not capitalized, and "empty" would have been printed on each of
the 32 initially empty squares.)

Where does a game like Random Chess fit into this categorization? Bobby Fischer, the
eccentric chess champion, once claimed that he'd never consider playing any form of
chess again other than Random Chess. In Random Chess, the play of the game is the
same as regular chess, but the pieces on each player's back row are randomized. Both
black and white get the same pieces in the same order, so (for instance) the kings and
queens of each side will be on the same file; and the only constraint is that the bishops
must be on squares of different color [Bums 98, p. 145]. It would be incorrect to say
this:

BigBlackPiece is [black Rook, black Knight, black Bishop,
black Queen, black King]

board starts [[rand BigBlackPiece, rand BigBlackPiece,
rand BigBlackPiece, ...]

These are legal EGGG statements; the generated game will choose a
BigBlackPiece at random, place it on the first square of the back row, and repeat
that seven more times. However, that could result in two queens, or five bishops.
That's not Random Chess.

Instead, the game designer has to treat the collection of black pieces as a set:

BigBlackPiece is [black Rook, black Knight,
black Bishop, black Queen,
black King, black Bishop,
black Knight, black Rook]

shuffle BigBlackPieces
board starts [[BigBlackPieces],

Note that the earlier invocation of BigBlackPiece treated the collection of pieces
as an enumerated type, while the second treated the collection as what computer
scientists call a bag (like a set, but allowing duplicate elements). EGGG chooses the
internal representation based on whether or not duplicates occur.

Functions

Now, back to Deducto. The game description mentions three functions:
Generate (), AntiGenerate (), and Tester (). The first two are functions
that generate grids that match, and fail to match, the rule of the current level.
Tester () is a function that returns true if the current grid matches, and false if it
doesn't.

In traditional programming languages, such functions might be written like this:

sub Generate {
if (level == 1)
elsif (level == 2)
elsif (level == 3)

{ ... }
{ ... }
{ ... }

You can write functions this way with EGGG. But the line-oriented EGGG language
also allows designers to specify functions simply by identifying what happens for
each input. In the fifteen lines below, each line indicates one input-output pair.

Generate(l) is while (!Tester(l)) { grid[x][y]
Generate(2) is { grid[x][y] = flip ? 1 : 0 };
Generate(3) is while (!Tester(3)) { grid[x][y]
Generate(4) is while (!Tester(4)) { grid[x][y]
Generate(5) is while (!Tester(5)) { grid[x][y]
AntiGenerate(l) is while (Tester(l)) { grid[x]
AntiGenerate(2) is { grid[x] [y] = flip ?1:0 };
AntiGenerate(3) is while (Tester(3)) { grid[x]
AntiGenerate(4) is while (Tester(4)) { grid[x]
AntiGenerate(5) is while (Tester(5)) { grid[x]

Tester (1)
Tester(2)
Tester(3)

= f lip ? 1 : 0
grid[3][3] = 1

= flip ? 1 : 0
= flip ? 1 : 0
= flip ? 1 : 0
[y] = flip ?1:0
grid[3] [3] = 0

[y] = flip ?1:0
[y] = flip ?1:0

[y] = flip ?1:0

Tot++ if grid[x] [y]; return Tot > 12
return grid[3][3]
return 1 if grid[3][y] && (grid[l][y] &&
grid[2][y] or grid[4][y] && grid[5][y]); return 0

This one is tricky. Tester(4) is true if there's an "on"
square in each row.
Tester(4) is Tot 1= (2**y) if grid[x][y]; return Tot == 62 ?1:0
Tester(5) is Tot++ if grid[x][y]; return Tot % 2

These functions burrow down into Perl, and are the core of the Deducto game. We
won't discuss how they all work, but note that many of them look like this:

Generate(3) is while (!Tester(3)) { grid[x][y] = flip ? 1 : 0 1

This indicates what the Generate () subroutine should do when the level is 3 and
a matching board needs to be generated. A while loop is entered, and continues for
as long as Tester (3) is false; that is, as long as the grid generated doesn't match
the current rule. Inside the while loop, EGGG sees grid [x] [y], and so generates
two implicit loops through the possible values of x and y - the lower left square
being grid [1] [1] and the upper right being grid [5] [5]. For each square, the
value of the square is set to f lip ? 1 : 0 - EGGG flips a virtual coin, and if
the coin comes up heads, EGGG sets the square to white, otherwise black. (As a
value, EGGG treats 1 and + and on the same as white.) Here is relevant part of the
Generate () subroutine, with the rules for levels other than 3 omitted:

Generate($level) returns a new grid in which the squares
match the current level $level.

The Generate() subroutine is called by the Example() button
and by the Understand() button.
sub Generate {

my ($x, $y);
my $board;
if ($_[0] == 1) { .
if ($ [0] == 2) { .

if ($[0] == 3) { # If the level is 3
do {

for ($x = 1; $x <= $SIDES[0]; $x++) { # Loop horizontally
for ($y = 1; $y <= $SIDES[l]; $y++) { # Loop vertically

$board[$x][$y] = (rand() < 0.5) ? 1 :0
}

}
} while !Tester(3); # as long as Tester(3) is false
return $board; # Return the generated board

}
if ($[l] == 4) { ..

if ($_[0] == 5) { .

}

Assertions

Here is the remainder of Deducto's game description.

assert VoteYes: lastmove("Understand")
assert VoteNo: lastmove("Understand")
assert after move: CORRECT == 5 => level = level+1 => CORRECT = 0
assert after Understand: flip ? Generate(level)

: AntiGenerate(level); update()

These lines are the first assertions we've seen. Assertions allow game designers to
create actions that will be triggered at particular times. The first two assertions are
conditions that must be satisfied for the VoteYes () and VoteNo () subroutines to
be invoked. If the player's last move wasn't pressing the Understand button,
nothing will happen when the user presses either VoteYes or VoteNo. That's to
prevent users from cheating; otherwise, they could use the Test button to learn
whether the grid matches before voting yes or no.

The other two assertions begin assert af ter, and are not so much assertions as
actions to be taken. After every action by a player, EGGG checks to see whether the
number of correct guesses has reached 5; if so, it increments the level and sets the
CORRECT variable to zero. And whenever the player presses Understand,
Deducto generates a new grid - a grid that matches or a grid that doesn't, each with
a 50% probability. This behavior could just as well have been part of the
Understand means statement; we include it as an assertion for variety.

Variations

EGGG makes it easy to create variations on games. Game designers can copy game
descriptions from EGGG's central repository (described in Chapter 6) and modify
them, or they can take the game description and create a new game description with
a like rule. For instance, the Random Chess game described earlier can be created
with this game description file:

RandomChess is like Chess
BigBlackPiece is [black Rook, black Knight,

black Bishop, black Queen,
black King, black Bishop,
black Knight, black Rook]

shuffle BigBlackPieces
BigWhitePiece is [white Rook, white Knight,

white Bishop, white Queen,
white King, white Bishop,
white Knight, white Rook]

shuffle BigWhitePieces
board starts [[BigBlackPieces], ..., [BigWhitePieces]]

The complete board description has been omitted to save space, but other than that,

this is the entire game description. The game designer only has to include the
statements that differ between the two games; the rules in common will be read in
from the description of chess in chess. egg.

For the October 1998 News in the Future consortium meeting at the MIT Media
Laboratory, I demonstrated a sequence of five variations, each building on the last. I
started with the tetris .egg file in Appendix B, and made the following changes.

I turned the game on its side, so that pieces went from left to right instead of from
top to bottom:

SideTetris is like Tetris

I changed the game from one player to two, so that the "serving" player could choose
the piece:

TwoPlayerTetris is like SideTetris

I changed the game so that players could bounce a piece back to the other side:

BounceTris is like TwoPlayerTetris

I sped the game up by shortening the delay between each piece motion:

BounceFast is like BounceTris

I made all the pieces square:

SquareBounce is like BounceFast

I removed the stickiness of the left and right edges:

Pong is like SquareBounce

The result is the classic game Pong. With another ten steps, you could probably turn
Tetris into tic tac toe, and then you're another ten steps from chess or Rubik's cube.
But poker is a long way off.

A Sample Variation: Color Deducto

We'll now create a variation of Deducto, called Color Deducto. This variation was
used as a teaching exercise in Color in Media Technology, a graduate course at MIT.

Color Deducto is like Deducto, except that the squares are colored instead of black
and white, and the rules have to do with the colors. for instance, the rule for the first

level tests whether enough of the squares are bright; the second level tests whether
the grid has saturated colors at the top of the grid, and pale colors at the bottom.
EGGG has a Color module (more about modules later in the chapter) that provides
functions such as red (), green (), and blue (), which extract the red, green,
and blue components of a color. value () computes the brightness of the color
("value" is the color term for brightness), hue () returns the Munsell hue of the
color, opponenthue () returns the opponent Munsell hue (red for green, blue for
yellow), and chroma () returns the saturation. It also provides functions that
generate random colors and color components (randmunsell (),
randvalue (), randhue (), and randchroma ()), and functions for
incrementing and decrementing the color components (munse 11_hueadd ()
munsellvalue-add () , munsellchroma add ()). A screenshot is shown
below.

EGGG Coor Deducto

Fi Irrerunces _

Example Test Understand VoteYes VoteNo Hue Value

Here is the game description for Color Deducto.

Chroma

ColorDeducto is like Deducto
Generate(l) is while (!Tester(l)) { grid[x][y] =

munsellvalue_add(munsell_chromaadd(randcolor(, -1, 1),
2, 1) }

Generate(2) is while (!Tester(2)) { grid[x][y] =
randmunsell("10PB", undef, "==l.5*int(2**(y-2))")

Generate(3) is { grid[x][y] = randhue() . " 5/" randchroma(1,3) };
Generate(4) is while (!Tester(4)) { grid[x][y] = ((x%2) ?

(randmunsell("10G", "<9", ">2")):(randmunsell("10RP", "<9", ">2")))}
Generate(5) is { grid[x][y] = randcolor() }; grid[3][3] = "5Y 9/0"
AntiGenerate(l) is while (Tester(l)) { grid[x][y] = randcolor() }
AntiGenerate(2) is while (Tester(2)) {

grid[x][y] = randmunsell("10PB", undef,
"==1.5*int(2**((6-y)-2))) }

AntiGenerate(3) is { grid[x] [y] = randhue() " " randvalue(0,2)
"" . randchroma(1,2) };

AntiGenerate(4) is while (Tester(4)) { grid[x][y] = randcolor() }
AntiGenerate(5) is { grid[x] [y] = randcolor() };

grid[3][3] = "5Y 1/0"

Tester(l) is Tot++ if value(grid[x][y]) > 6; return Tot > 15
Tester(2) is Tot++ if chroma(grid[x][y]) > chroma(grid[x][y-1]);

return Tot > 19
Tester(3) is Tot++ if value(grid[x][y]) == 5; return Tot > 24
Tester(4) is Tot++ if x>l && hue(grid[x][y]) eq

opponenthue(hue(grid[x-1] [y])); return Tot > 19
Tester(5) is return value(grid[3][3]) > 8
game has Hue button
game has Value button
game has Chroma button
Hue means MODE = "hue"
Value means MODE = "value"
Chroma means MODE = "chroma"

squares are colors
click makes square increment mode

Color Deducto replaces the Tester (), Generate (), and Ant iGenerate ()
functions of regular Deducto, as one would expect. Three additional buttons are
provided: Hue, Value, and Chroma, which set a "mode" variable to "hue",
"value ", or " chroma "; when the player presses on a square, the c lick makes
square increment mode looks for a way to add something to the hue, value,
or chroma, triggering the appropriate functions from the EGGG Color module.

Software Architecture
In this section, we'll discuss how EGGG was built, and the reasons for our
implementation decisions.

Why Perl?

The games that EGGG generates are Perl programs, and EGGG itself is written in
Perl. Perl is ideal for several reasons:

e Portability.

EGGG games work on all Windows and Unix platforms without any
modification whatsoever. No recompilation is needed.

e Speed

1. Regular expressions. Speedy regular expressions allow some game
data structures to be represented as simple strings for ease of
programming. Typically, the disadvantage of representing data as
strings is speed - but Perl's text manipulations are fast enough that
they can be performed between player actions even in frenetic games
like Tetris.

2. Hash tables. Most of EGGG's data structures are represented
internally as hashes, providing a time- and space-efficient way to
encapsulate the implementation of a game and the state of a currently
playing game. Efficient storage is especially important for EGGG
because of all the redundancy in the programs it generates - it's not
unusual to see vestigial code and data structures in the programs that
it generates.

Perl supports persistent storage of its data structures, so these hash
tables can be dumped out to disk and read back in again. EGGG uses
this to save and recreate the complete state of a game (even arcade
games), and to record the successes and failures of the strategies that
its computer opponents use.

* Introspection. A program that generates programs is necessarily a complex
beast. Perl has several features that make automated programming easier:

1. Closures. Closures are dynamically generated subroutines, and are
used to implement the actions triggered when a player performs an
action like pressing a button.

2. Self-examining source code. EGGG verifies the syntactic correctness
of the programs that it produces as it generates them. However,

players and game designers might well use EGGG merely as a
starting point, using it to create a game and then manually applying
their own modifications. Or, the vagaries of different environments
might somehow cause EGGG to fail.

When an EGGG game runs, it reads in its own source code and
verifies that it's a syntactically correct Perl program. If it isn't, EGGG
can spot the errors before the program aborts, and sends diagnostic
mail to EGGG central (the "Henhouse"). The mail includes the game
description, the generated game, and a copy of the EGGG engine
used to create the game.

3. Symbolic references. Symbolic references let you manipulate a data
structure by name; for instance, you can modify %game, the game
data structure, given only the string "game ". This is used for games
in which players or pieces are added while the game is in play - in
such cases, the data structures have to be created dynamically, and
symbolic references give EGGG a way to use meaningful names for
the data structures created by the additions.

4. eval. Perl's built-in eval function lets EGGG create and execute
little Perl programs inside itself. When game descriptions burrow
down into Perl code (as Deducto does), eval provides a way for Perl
to execute that code and trap both compile-time and run-time errors.

* Graphics. The Perl/Tk library makes it easy for Perl to create fully-
functioning graphical applications. Perl/Tk restricts EGGG portability more
than Perl itself does, since the Tk library has been ported to fewer
architectures than Perl. That's why EGGG games won't work on Macs until
someone ports Tk to that platform.

* Database support. Perl has free APIs for all major database engines, and
provides its own simple database management system. EGGG uses it to store
the results of game play, high score files, e-mail addresses, and other
configuration information.

* Networking. Perl has built-in support for creating TCP/IP sockets and
sending data across them. When EGGG creates multiplayer games meant to
be used across the Internet, each game implementation is able to behave as
both server and client.

e Mail filtering. The abundance of mail tools available for Perl makes the
Henhouse possible. The Henhouse, described in Chapter 6, retrieves mail
sent to eggg@media. mit . edu. This mail includes the bug reports
mentioned above, as well as which games are being played, and the success
or failure of strategies employed by EGGG's autogenerated computer
opponents.

e Popularity. There are over a million Perl programmers as of this writing, and
over a thousand free Perl utilities on the Comprehensive Perl Archive
Network.

Perl is an object-oriented language, but only the EGGG modules employ object-
oriented features - a small part of the EGGG system. Modules are described later in
this chapter.

Running EGGG

To run EGGG, game designers create the game description in a single text file using
the editor of their choice. They then run the eggg program, providing the game
description:

$ eggg poker.egg
This is a card game.
Creating a game called poker.
Boardtype is canvas.
Main loop written.
State subroutines written.
User subroutines written.
Display subroutines written.
Looking for assertions.
Goal written.
Strategies created.
poker created.
Eggg::Poker module found.

This creates an executable program called poker.

Systems that don't recognize the #! syntax may be unable to identify eggg as a Perl
program. They need to invoke the Perl interpreter explicitly:

$ perl eggg poker.egg

Users can specify a different name for the generated game with the -o option:

$ eggg -o mypoker poker.egg

The Parser

Early implementations of EGGG used a top-down recursive descent parser: Perl's
Parse: : RecDescent module. The grammar used is shown in Appendix C, and
consists of 71 words that have special meaning to EGGG. 15 of these words were
non-game-specific words like "means" and "are". The other 56 were game-specific

words like "piece", "board", and "button".

However, this parser was abandoned for speed reasons; it took about twenty minutes
to generate a chess game on a 233 MHz Pentium II. And because EGGG was
intended to make the process of game design demand as little knowledge from the
user as possible, the parsing process was made interactive. (Examples of this
interactivity are shown in Interactive Parsing, below.)

The decision to forgo the rigor of a true parser in favor of a more haphazard "look at
the game description and see what you can see" loosely parallels what Perl itself
does: instead of a strict division between lexical analysis and parsing, EGGG
performs both simultaneously. Traditional compilers make a small number of passes
through the code - usually no more than two. EGGG, in a sense, makes hundreds of
passes, using Perl's regular expressions to scan for one clue at a time. Most computer
scientists wouldn't view this as compilation at all, but the effect is the same:
transforming a higher-level language (EGGG) into a lower-level one (Perl). In the
current implementation of EGGG, the parsing of a game description happens as the
engine is running. Most of the parsing takes the form of ad hoc statements like this:

$eggg->{colormatters} = 1 if $game =- /\b(redchromalhue)\b/m;

The eggg data structure contains information gleaned from the parse; here, the
colormatters attribute is set to 1 if the words "red", "chroma", or "hue" appear
anywhere in the game description. This tells EGGG to make the generated game use
the EGGG Color module, and it tells EGGG not to make its other color choices
arbitrarily. For instance, if $eggg-> { colormatters } is true, then EGGG won't
choose green as the default canvas color for betting games, because that green might
make it hard to discern the other colors in the game.

Similar rules determine whether a game is played on a grid, whether a game has
betting, and so on. Instead of making the game designer explicitly categorize the
game, EGGG attempts to infer it from the presence of words in the game description.
The EGGG language isn't elegant, for the same reason that English isn't elegant:
there are messy rules, and messy exceptions to the messy rules, and messy
exceptions to the messy exceptions.

Ambiguity in the EGGG language

A certain degree of ambiguity in game vocabularies is inevitable. For instance, the
"height" words in EGGG descriptions (like "over" and "above" and "higher") have
very different meanings in games played on a grid (chess, tic tac toe, Go) than in
"accumulation games" (poker, blackjack, Monopoly, rock paper scissors). In the
former, "height" words refer to position. In the latter, they refer to ranking in a set -

usually having to do with the score (the size of your bank account in Monopoly, the
ranking of your hand in poker). (And the set needn't be well-ordered; consider rock-
paper-scissors, where hand ranking is intransitive.) The same is true for a word like

"rank", which refers to the y-coordinate on a chessboard but the strength of one's
hand in poker.

EGGG uses the categorization string of the game (described in Chapter 2) to
disambiguate words with multiple meanings.

Interactive Parsing

When I first demoed EGGG, I decided to demonstrate creating a variation on the fly.
I took the game description for poker and defined a new hand. The new hand was
just like a straight, but you only had to have four cards in succession: a baby straight.
I copied the line for Straight:

Straight is (R, s) and (R-1, s) and (R-2, s) and (R-3, s) and (R-4, s)

and made it into a BabyStraight:

BabyStraight is (R, s) and (R-1, s) and (R-2, s) and (R-3, s)

Unfortunately, I forgot to paste the Straight line back into the game description.
EGGG generated a syntactically correct program, and it even generated a
Straight () subroutine because Straight was mentioned in the hands are
rule, but the subroutine did nothing.

As a result, EGGG was modified to query the user during the parse. If EGGG sees
that it is about to generate an empty subroutine, it allows the game designer to
correct the error:

$ eggg poker-baby.egg
This is a card game.
Creating poker-baby.
Boardtype is canvas.
Main loop written.
State subroutines written.
User subroutines written.
Display subroutines written.
Eggg::Poker module found.
No rule found for Straight.

Enter rule: (R, s) and (R+1, s) and (R+2, s) and

(R+3, s) and (R+4, s)
Looking for assertions.
Goal written.
Strategies created.
poker-baby created.

The Engine

The eggg data structure described earlier exists only while the game is being
created. The generated game makes use of similar structures; the two most important
are game and state.

The Game

The %game data structure is a hash table containing the permanent aspects of game
play. The contents of %game vary from game to game, typically including:

" $game { type }, the type of the board

e $game{ sides}, the dimensions of the board

* $game {board_start}, the initial configuration of the board

" $game {num_players }, the minimum and maximum number of players

* $game { synchrony}, the synchronization of the game

These are all attributes that remain constant regardless of who is playing the game or
how it is being played. For instance, in a crossword puzzle, the arrangement of the
black and white squares are part of the %game data structure ($game {board}, in
particular).

The State

Whereas the grid arrangement of a crossword is stored in $game {board}, the
actual letters that the player has written in are stored in $ state {board}. The
state data structure complements the game data structure; it's a hash table
containing the ephemeral aspects of game play such as these:

* $state{board}, what's on the board at the moment

" $state{playerl} {name}, $state{player2} {name},..., the
names of the current players

e $state{ turn}, whose turn it is

EGGG games perform some rudimentary memoizing, or caching of function results.
When a function takes a long time to execute, and depends only on the %state,
EGGG remembers the result. Then, if the function is called again with the same
%state, the result can be returned immediately. There is a dirty bit,

$state{dirty}, that indicates whether any component of the %state data

structure has changed, and this is used as the game is running to determine whether
memoized results are still valid.

Modules

In Perl, a module is a collection of variables and subroutines occupying their own
namespace and their own file. Modules are the fundamental unit of code reuse in
Perl; when people make their programs available to others on the Comprehensive
Perl Archive Network, they typically do so by extracting the reusable components of
their programs and building a module out of them.

EGGG uses Perl modules to provide behaviors that are common to many games. It
does not use them for behaviors that are common to nearly all games; if the behavior
is that common, it's integrated into EGGG itself. There are a few modules currently
included with EGGG:

* Eggg::Deck

When EGGG deduces that a game is a card game (by the presence of "card
words" like "deal" or "ace" or "cards" in the game description), it creates
code that invokes Eggg: : Deck, the Deck module. This module contains an
object-oriented deck implementation. EGGG games create Deck objects, and
invoke Deck methods that deal cards from the deck, and use Deck functions
that, given a card name, returns a filename containing an image of the card.
Eggg: : Deck can't shuffle the deck, however.

* Eggg::Random

Games that require randomness beyond the simple pseudorandom number
generator that Perl provides use the Eggg: : Random module. The Deck
objects created by Eggg: : Deck are shuffled with the shuf f le ()
function provided by Eggg: : Random.

shuf f le () generates a perfect shuffle. However, when real fingers shuffle
real cards, the shuffling is never perfect. The riffle shuffle that most dealers
use don't randomize the cards very well, even if two are performed in
immediate succession, followed by a cut of the deck. This module provides
rif f leshuf f le () and cut () methods so that the deal in an EGGG
card game can more closely approximate the deal in a tangible card game.
You can change the dealing behavior by changing this line:

game is shuffle(deck) and ...

to
game is riffleshuffle(deck) and riffleshuffle(deck)

and cut(deck) and ...

Eggg: : Random also provides functions for generating random numbers
with weighted distributions (so you can make the long bars of Tetris twice as
rare as other pieces, for instance).

When games rely on the randomness of a pseudorandom number generator,
the initial state can be recreated from one number, called the seed. The
saveseed () subroutine stores it, allowing those games (notably, card
games) to be recreated later.

* Eggg::Color

EGGG games have to represent colors as red-green-blue triplets for the sake
of the graphics libraries it uses, but RGB is the wrong colorspace for most
meaningful color manipulations. For instance, it's tough to make an object
brighter or paler with RGB, but it's trivial with other colorspaces.

RGB is an especially bad colorspace for Color Deducto, which has rules
involving the brightness or paleness of colors. To make these manipulations
easier, the Eggg: : Color module was created. Eggg: : Color provides
functions that give designers greater control over the colors in their
application, by letting them manipulate a game's colors in the Munsell
colorspace instead of RGB. The module makes use of routines from Perl's
Image: : Colorimetry module, by the author of this dissertation.

" Eggg::Chess and Eggg::Crossword

This was the first EGGG module created. EGGG can figure out everything it
needs to know about how chess is played from the game description in
chess . egg, except for one thing - what the pieces look like. The

Eggg: : Chess module provides a single function, pieceimage (), that
takes the name of a piece as input and returns a filename that contains a GIF
image of that piece. EGGG games then use that image whenever the piece is
placed within view. Eggg: : Crossword does the same for grid squares,
providing one image for every letter on squares labeled from I to 200. Both
piece image () functions can accept either a piece name, or grid
coordinates. If there's no piece on the grid at the specified coordinates,
piece image () returns an "empty" piece - a black square for
crosswords, or a beige or brown square for chess, depending on whether the
sum of the coordinates is odd or even. (That results in the checkerboard
pattern common to all chessboards.)

The complete EGGG system comes with an images directory containing
the chess, crossword, and card GIF files.

In addition, EGGG generates a module for each game as the game is being created.
If the game is a variation, then the module will inherit the subroutines and variables
from the game it's derived from. Most of these game-specific modules have little
else; they serve mostly as repositories for recording the outcomes of play: who

played what when, and which strategies worked. For instance, the Eggg: : Chess
module slowly builds up a library of opening moves - not because it has any
knowledge of how the game is played, but because as people play EGGG Chess,
their opening moves and eventual outcomes (win/lose/draw) are recorded and used
by EGGG's computer opponent to model both individual players and to model a
"universal" player. This will be discussed more in the next chapter.

Sorting

Game-specific modules can also provide a piece-sort () subroutine; if one
exists, it will be used to override EGGG's default piece sorting algorithm. By default,
EGGG sorts pieces from most valuable to least. Sometimes, that won't be what's
desired. In a bridge hand, aces are still the most valuable cards, but players typically
sort them by suit (the primary sort) and then by value (the secondary sort). (Some
competitive players avoid this, because the physical act of moving cards around -

or the patterns of eye movement resulting from a sorted hand - can reveal
information about their hand to opponents.)

Furthermore, some games impose twists on the default orderings: in pinochle and
skat, the ten is between the ace and the king. A piecesort () subroutine for
these games might look like this:

my %card-values = (A => 6, 10 => 5, K => 4, Q => 3, J => 2, 9 => 1);

sub piece-sort {
return $card-values{$b} <=> $cardvalues{$a};

}

EGGG uses the piecesort () routine as an input to Perl's quicksort algorithm.
Why are the piece values provided as a hash table (the my %cardvalues line
above) instead of an ordered array where the index implies rank? Because there are
games in which two different pieces are worth exactly the same.

Timing

In the taxonomy of games developed in Chapter 2, games were classified as frenetic-
fast, frenetic-timed, or not frenetic at all. If the game is frenetic-fast or frenetic-
timed, the program generated by EGGG needs to keep track of how much time has
elapsed.

In frenetic-fast games, this is accomplished with Tk's af ter () method for
graphical games, and Perl's built-in select () function for non-graphical games.
Each lets the designer specify a minimum delay between player actions, in
milliseconds. EGGG chooses a default delay based on how frenetic the game seems;
it uses the granularity of the board as an estimate. Tetris has a coarse 10x20 grid, and

EGGG starts the delay at 1000 milliseconds. Shooter games use canvases instead of

grids, and EGGG starts the delay for those games at 100 milliseconds. If there are

levels in the game, EGGG reduces the delay by ten percent when the level

increments.

Frenetic-timed games require speed but not hand-eye coordination; chess with a

chess clock, or Minesweeper, are examples. These games don't require sub-second

accuracy. While frenetic-fast games typically require continual actions, some

frenetic-timed games can get by with POSIX alarms. Once an alarm is set, the game

progresses as normal, until the alarm triggers and passes control elsewhere.

However, not all platforms support alarms - in particular, Windows doesn't. If the

game is graphical, there's no problem: Tk's af ter () method works fine. For non-

graphical games, select () will do, as long as the platform also supports a

separate thread of execution (either through f ork, threads, or some other

interprocess communication). If all of those fail, EGGG uses Perl's time ()

function to count seconds, and checks how many seconds have elapsed after every

player action.

Documentation

Avoid Missing Ball For High Score

Deposit Quarter

The two instructions for Pong.

One criticism of EGGG might be that it works by exploiting the similarities between

games, rather than through achieving a "deep understanding" of the game, using

natural language parsers and formal planning techniques from Al. One of the

touchstones, then, would be how well EGGG can use its educated guesses about

games to explain how a particular game works.

EGGG generates documentation for the Perl code that it creates, and it also generates

instructions for the players to read. In this section, we'll explore both of these

features.

Documenting The Program

Writing documentation is tedious. The programmer typically knows all too well

what his code does, sometimes too well to explain to an audience of indeterminate

ability. And often the programmer is unsure whether anyone will even bother to read

the documentation.

EGGG doesn't mind the tedium, and generates thorough documentation. Generated

programs start with headers like this:

This game was automatically generated by EGGG
at Tue Oct 5 10:13:33 1999
For more information about EGGG, visit
http://orwant.www.media.mit.edu/eggg/eggg.

EGGG documents most standalone lines of code:

Included modules:

use Eggg; # Primary EGGG routines
use Data::Dumper; # For deep copies
use Tk; # Perl/Tk graphical display routines
use Sys::Hostname; # So that EGGG can identify who's playing

During compile-time, search through the lib directory
for Eggg:: modules.
We don't know what delimiter the filesystem uses, so we check
$"O to see if we're on Windows.

BEGIN { if ($^0 =~ /win32/i) { push @INC, '.\lib\ ' }
else { push @INC, './lib' } }

Load the game-dependent Chess module (for pictures of pieces)
use Eggg::Chess;

It also documents every subroutine, and some of the lines inside:

moves($board, $x, $y, $player, $piece) returns a
list of the moves available for the piece at $x, $y.
sub moves {

my ($board, $x, $y, $player, $piece) = _

my (@results); # The array of moves to be returned.
if (ref $x) { ($x, $y) = @{$x->[0]}; }
If $x is a reference, this contains both coordinates.

EGGG also uses the documentation that it generates in one part of the game to
generate other parts of the program. This happens when EGGG generates a chess
game. The game description for chess has rules like these:

Bishop moves (x-l. .7, y-l. .7) if empty(x-l. .7, y-l. .7)
Bishop moves (x+l. .7, y+l. .7) if empty(x+l. .7, y+l. .7)
Bishop moves (x-l. .7, y+l. .7) if empty(x-l. .7, y+l. .7)
Bishop moves (x+l. .7, y-l. .7) if empty(x+l. .7, y-l. .7)
Bishop captures as it moves

The first four lines describe how a bishop moves when there are no intervening
pieces; that is, when a bishop moves without capturing. The first line describes a
move in the direction of the lower left corner. Here's the code that EGGG generates
for that line:

Code chunk 25
One type of move for Bishop
Bishop moves ($x-1..7, $y-1..7) if empty($board, $x-1..7, $y-1..7)
Loop through possible moves for Bishop
MOVE: for (my $i = 1; $i <= 7; $i++) { # Loop horizontally

last unless $piece eq "Bishop";
for (my $j = $i-1; $j >= 0; $j--) { # Loop vertically

next MOVE unless empty($board, $x-$i+$j, $y-$i+$j);

push @results, [$x,$y,$x-$i,$y-$i]; # Found a valid move.

End of code chunk 25

The ### Code chunk 25 and ### End of code chunk 25 are markers
that EGGG sprinkles throughout the programs that it generates. EGGG generates
code for "plain" moves before it generates code for captures; when it sees a line like
Bishop captures as it moves in the game description, it searches through the already
generated code and duplicates it, modifying it to search for moves where the final
square is occupied by another piece (the other ($board, $player, $x,
$y, $x-$i, $y-$i); below).

Code chunk 61
(Autogenerated from chunk 25)
One type of move for Bishop
Bishop moves ($x-1..7, $y-1..7) if empty($board, $x-l..7, $
Loop through possible moves for Bishop
MOVE: for (my $i = 1; $i <= 7; $i++) { # Loop horizontally

last unless $piece eq "Bishop";
next unless other($board, $player, $x, $y, $x-$i, $y-$i);
Occupied by opponent
for (my $j = $i-1; $j >= 1; $j--) { # Loop vertically

next MOVE unless empty($board, $x-$i+$j, $y-$i+$j);

y-1. .7)

push @results, [$x, $y, $x-$i, $y-$i]; # Found a valid capture.

}
End of Code chunk 61

Documenting The Game

Earlier in the chapter, we noted that game designers were allowed to use whatever
plurals they like, and in general that EGGG ignores grammar wherever possible.
This is ostensibly to make designing games easier, but it has another advantage: by
letting game designers express their rules grammatically, EGGG can transform the
rules into instructions without a deep understanding of what the rules mean. For
instance, a line like players are black and white is transformed into
"The two players are black and white", which isn't much of a transformation.

Here are the instructions that EGGG generates for chess. These instructions are
generated by a standalone program named egggdescribe.

EGGG Chess is a two-player game played on an eight by eight board.

The two players are called white and black; white moves first. In
each turn, the player moves one piece. The pieces are King, Queen,
Rook, Bishop, Knight, and Pawn.

Each player tries to checkmate, which means that the opponent
king has no moves and a piece P is Attacking the opponent King
and no piece Q captures P. If a player has a turn and has
no moves, the game is a tie.

It is illegal for a player's king to be attacked after a move.

The king can move left one, down one, down and to the left one,

right one, up one, up and to the right one, down and to the right

one, or up and to the left one. The king also captures as it moves.

The queen can move down from one to seven, up from one to seven,

left from one to seven, right from one to seven, down and to the

left from one to seven, up and to the right from one to seven, up

and to the left from one to seven, or down and to the right from one

to seven. The queen also captures as it moves.

The rook can move down from one to seven, up from one to seven, left

from one to seven, or right from one to seven. The rook also

captures as it moves.

The bishop can move down and to the left from one to seven, up and

to the right from one to seven, up and to the left from one to

seven, or down and to the right from one to seven. The bishop also

captures as it moves.

The knight can move up one and right two, down one and right two, up

one and left two, down one and left two, up two and right one, down

two and right one, up two and left one, or down two and left one.

The knight also captures as it moves.

This is a reasonably coherent and concise explanation of chess. However, the rules
for castling and en passant captures lack the same literary punch:

The white king can move to (7, 1) if it is on (5, 1) and a white

rook is on (8, 1) and (6, 1) is empty and (7, 1) is empty and no

opponent piece attacks (5, 1) and no opponent piece attacks (6, 1)

and no opponent piece attacks (7, 1) and the white king has not

moved and the white rook on (8, 1) has not moved. If so, then the

piece on (8, 1) moves to (6, 1).

The white king can move to (3, 1) if it is on (5, 1) and a white

rook is on (1, 1) and (2, 1) is empty and (3, 1) is empty and (4, 1)

is empty and no opponent piece attacks (3, 1) and no opponent piece

attacks (4, 1) and no opponent piece attacks (5, 1) and the white

king has not moved and the white rook on (1, 1) has not moved. If

so, then the piece on (1, 1) moves to (4, 1).

The black king can move to (7, 8) if it is on (5, 8) and a black

rook is on (8, 8) and (6, 8) is empty and (7, 8) is empty and no

opponent piece attacks (5, 8) and no opponent piece attacks (6, 8)

and no opponent piece attacks (7, 8) and the black king has not

moved and the black rook on (8, 8) has not moved. If so, then the

piece on (8, 8) moves to (6, 8).

The white king can move to (3, 8) if it is on (5, 8) and a black

rook is on (1, 8) and (2, 8) is empty and (3, 8) is empty and (4, 8)

is empty and no opponent piece attacks (3, 8) and no opponent piece

attacks (4, 8) and no opponent piece attacks (5, 8) and the black

king has not moved and the black rook on (1, 8) has not moved. If

so, then the piece on (1, 8) moves to (4, 8).

The white pawn can move to y=4 if it is on y=2 and y=3 is empty and

y=4 is empty, or up one if up one is empty. It can capture up one

and to the right, up one and to the left, from (x, 5) to (x+l, 6) if

the last move was a black pawn from (x+l, 4) to (x+l, 5), or from

(x, 5) to (x-1, 6) if the last move was a black pawn from (x-1, 4)

to (x-1, 5).

The black pawn can move to y=5 if it is on y=7 and y=6 is empty and

y=5 is empty, or down one if down one is empty. It can capture down

one and to the left, down one and to the right, from (x, 4) to (x+l,

3) if the last move was a white pawn from (x+l, 2) to (x+l, 4), or

from (x, 4) to (x-1, 3) if the last move was a white pawn from (x-1,

2) to (x-1, 4).

Note that the instructions for chess omit the starting board. Any array of data with
over 25 elements is omitted from the instructions to minimize verbosity.

Perl's Text: : Wrap module is used to format the generated instructions to 80
columns.

Naming
Most games have some way of naming the forces that are competing (or
cooperating). The distinction might be by color (chess), symbol (tic tac toe),
direction (bridge), or country (Diplomacy and other war games). Role playing games
let players choose their names. Some games name the players after their pieces
(chess and Monopoly) and other on more abstract qualities or roles (bridge and
craps).

In any multiplayer game where the players are named in the game description file

(players are . . .), EGGG has it easy, because the game designer has just

provided the names, knowingly or not. In unsynchronized games, the players are

assumed to take their turns in the order in which they're mentioned. That's why the

game description file for chess says players are white and black instead

of players are black and white: because white always moves first.

When the players aren't named, EGGG assigns names to the human players. If there

is only one human player, EGGG imaginatively names him "Player". If there are

two, four, six, or eight players, EGGG names them after the appropriate compass
points. If there is some other number of players, EGGG calls them simply "Player
1", "Player 2", and so on.

Computer opponents deserve names too, and EGGG generates names based on the
vocabulary of the game description. It first looks for piece names, goal states, or rule
definitions - anything that begins with a capital letter followed by lower case
letters. It then picks one of those words at random and transforms it into a name via
an ad hoc "cutening" rule, which can add r, er, ster, ie, or y to the end of the
word depending on the length and vowel-consonant pattern.

For instance, the names chosen at random for chess computer opponents are:

$state{names}{computer} = ["Kingy", "Stalemateer", "Rookie",
"Checkmateer", "Queenie", "Knightie", "Bishopy",
"Pawny", "Attacker"];

The possible names for poker opponents are:

$state{names}{computer} = ["Ace", "Cardster", "Straightie",
"Pairy", "Discardie", "Highster", "Flushie", "Housey",
"Fully", "Kindy"];

Abbreviations

EGGG can sometimes generate ASCII versions of games. Translating graphical
games into a seven-bit character set necessarily means making compromises in the
representations of the pieces - images have to be replaced by abbreviations of a few
characters. The game specific modules can provide a pieceabbreviation ()
function that map piece names to abbreviations. In the absence of a
piece_abbreviation(), EGGG uses Perl's Text: : Abbrev module to find
the shortest unique abbreviation for each piece. "king" becomes k in EGGG poker,
but would become ki in chess since "knight" also begins with a "k". (The
pieceabbreviation () function in Eggg: : Chess overrides this,
abbreviating the king and knight to the more conventional k and n.)

When there are two players, EGGG lowercases one and capitalizes the other, so that
the white queen becomes q and the black queen becomes Q. When there are more
than two players, EGGG appends an abbreviation for the player name to the end of
the piece abbreviation in grid games. In canvas games, the ownership of the piece is
determined by the placement on the canvas. For instance, a king of hearts (kh) in
poker doesn't need to be named khs if it's owned by the South player; the fact that
it's in front of the South player is enough.

Error Recovery
There are several ways in which the act of playing a game with EGGG might fail.

The first type of error occurs when parsing the game description. That can happen in
two ways: First, the game designer might create an ungrammatical ruleset for a
game. If that happens, EGGG stops and refers the designer to the EGGG grammar.
Second, the EGGG engine might need information not present in the game
description, as with the poker example earlier. EGGG sees that it there is a hand
called Straight, but it can't find a definition of what that means, either in the

game description or in the Eggg: : Poker module. In that case it queries the user if

it was invoked from the command line, and generates an empty subroutine instead:

if (!$rule) {
if (-t STDIN)
print "No rule found for $ranks[$i].\n\tEnter rule: ";

chomp($rule = <STDIN>);
} else {
print STDERR "No rule found for $ranks[$i]. Creating a null rule.\n";

print 0 " "x$in, "return 0;\n";
$in-=4; print 0 "}\n\n";
next;

}

The second type of error occurs when the game parses correctly, but EGGG
generates a syntactically incorrect game. This is hard to guard against; one of the
prices paid for allowing people to include Perl code in an EGGG description is that
there is no way to verify the syntactic correctness of that code without invoking the
Perl interpreter. So immediately after hatching a game, EGGG invokes the Perl
interpreter to verify that game is syntactically valid. If it isn't, it sends mail to

eggg@media. mit . edu with the EGGG engine and the game description for

analysis.

Third, the game might be generated correctly, but fail to run on a particular platform.
For instance, if EGGG was installed incorrectly, or some of the modules it depends
upon aren't present, Perl will abort the program as it is compiled into bytecode. It is
also possible that the vagaries of different Perl distributions will cause other errors,
either during compile-time or run-time. In these cases, Perl's $SIG{_DIE_}
handler is used to intercept the error message and send it to
eggg@media. mit . edu along with the engine, generated game, and game

description (if available) for later analysis.

Fourth, the game might generate and run without error, but still fail to behave as the
designer wanted. There's nothing EGGG can do about this.

In the next chapter, we explore the common strategies of computer opponents and

describe how EGGG integrates them into the games it generates.

Chapter 4: Enemy of the Game State
(Computer Opponents)

A habit sometimes adopted by children who are faced with inevitable
loss at chess is to prolong the game by "spite checks": sacrificial
attacks on the winner's king, which merely waste time and have no
effect on the ultimate result of the game. (Children usually grow out
of this habit; computers, in my experience, do not.)

John Beasley, in The Mathematics of Games, p. 131

The wealth of similarities between games includes similarities between the strategies
used to play them. Humans have strategies, computers have strategies, and on
occsasion the two blend in interesting ways. In this chapter, we will discuss how
EGGG imparts strategies to the computer opponents that it generates.

We will first consider what Pell calls SCL (Symmetric Chess-Like) games: game
like chess, checkers, tic tac toe, and Go, two-player alternating games that rely on
neither chance nor concealment. Computer programs that play these games typically
consist of three components:

e A minimax procedure

" A static evaluator

e A "library" of precalculated moves

We will turn to the first two now. EGGG's technique for amassing a library of moves
will be deferred to Chapter 6.

A Generic Minimax Procedure
In the literature of computer gaming, the most-analyzed games are typically games
of perfect information: games like chess or checkers or Go, where one can "prove"
what the best move is in a given situation. Such analyses almost always depend on
the assumption that one's opponent thinks just like you do; only recently have
researchers thought to model the opponent's strategy in a generalized way [Gao 99].

In particular, most analyses have to do with game trees. A game tree is a data
structure that helps an entity (either a computer program or a human) figure out what
move to make. It works like this: you enumerate all of the moves available, and
consider your opponent's responses, and your counterresponses to those responses,
and so on. Eventually, when you can't search any further, you compute a score for

each board, and work your way back up the tree, assuming that at each opportunity
the player will choose the best available move. The number of boards that you have
to consider increases exponentially with how far into the future you look.

There are many variations on the procedure just described, most of which have to do
with pruning the tree so that you don't have to consider as many moves. Taken
together, they are often called minimax algorithms. The first known minimax
procedure was described in a 1713 letter by James Waldegrave. He wrote about the
card game "le Her" to Pierre-Remond de Montmort, who then wrote about it to the
famous mathematician Nicolas Bernoulli, who popularized it.

Obviously, minimax algorithms apply only to certain types of games. The games
have to have moves that can be enumerated; you can't use a minimax algorithm to
play tennis or Pictionary, because there an infinite number of "moves" available.
Minimax assumes that the play is one against one, and not one against one against
one, or one against many, or many against many. It also assumes that the game is
deterministic.

You'll find a minimax procedure in just about every chess program. The minimax
procedure will make use of a static evaluator - a function that computes the "score"
of a given board and is used to rank the moves available to a player. The basic
algorithm is fine-tuned for chess.

EGGG has a generalized minimax procedure that works for any game that permits
conventional minimax analysis. The procedure makes no assumptions about the
particular game being played; one provides it with the %game and %state data

structures, and two subroutines: enumeratemoves () and scoreboard (),
and it returns the optimal move for the current player. EGGG-generated opponents
thus qualify as metagame players, according to Pell's definition [Pell 1993].

EGGG generates computer opponents only for asynchronized games - games in
which players alternate turns. That includes grid games like chess and tic tac toe,
games where the design of computer opponents has been well-studied. But it also
includes games like poker, which have been analyzed far less due to the
psychological elements of successful play.

EGGG generates the enumeratemoves () subroutine by iterating through all of

the player's pieces, identifying all the possible moves (including captures) for each,
and eliminating any moves deemed illegal by assertions included in the game
description.

A Generic Static Evaluator
EGGG generates the scoreboard () subroutine (the static evaluator) with the

following procedure (given a board and the player whose turn it is):

e Set the board score to zero.

* If the goal is binary or trinary - that is, you either win, lose, or draw -

loop through all the pieces on the board:

1. Set piecescore equal to the power of the piece. (The power of
the piece is defined in the next section.)

This step ensures that pieces with no moves and no surrounding
empty squares are not ignored.

Because we're looping through all the pieces, this rule rewards boards
in which the player has more pieces and his opponent has less, so
capturing is favored.

2. Increment piecescore by the power of the piece times the nth
root of the number of moves it has available. n is the dimension of the
board (usually 2 for grid games) or the density of the board if it is
represented as a graph.

3. For each location on the board, increment piecescore by the
power of the piece divided by the nth root of the distance of that
location from the piece, where n is the dimension of the board or
density of the graph, as before.

This rewards pieces played in the center of the board, which is good
for chess but bad for Go. On a standard 8x8 chessboard, this weights
the squares as follows (assuming unit power):

29.2 31.2 32.4 32.9 32.9 32.4 31.2 29.2
31.2 33.6 34.9 35.6 35.6 34.9 33.6 31.2
32.4 34.9 36.5 37.2 37.2 36.5 34.9 32.4
32.9 35.6 37.2 38.0 38.0 37.2 35.6 32.9
32.9 35.6 37.2 38.0 38.0 37.2 35.6 32.9
32.4 34.9 36.5 37.2 37.2 36.5 34.9 32.4
31.2 33.6 34.9 35.6 35.6 34.9 33.6 31.2
29.2 31.2 32.4 32.9 32.9 32.4 31.2 29.2

e If the goal is comparative - that is, your goal is to maximize (or minimize)
some quantity, like points or dollars - the game description might supply a
direct means of determining how many points a board is worth. If so, that is
used; otherwise, the piece power is replaced by its expected value if it can be
calculated. The pieces are then looped through as above.

This static evaluator will perform quite badly in comparison to one hand-tuned for a

particular game. On the other hand, it can be dropped into any game, and in most
games it will be better than nothing. We make no claims that this is how static

evaluators should be built; only that in the absence of deeper information about
game strategy, EGGG has to make assumptions about game play that may well turn

out to be misguided.

Estimating Piece Power

To score a board, the static evaluator uses an estimate of the value of a piece, called
the power. (We call it "power" instead of "value" to avoid confusion with the
"values" that variables contain, and the "value" of a Munsell color.)

The power of a piece is computed as motility times rank times rarity.

Estimating Piece Motility

The static evaluator heuristic described above uses the number of moves available to

a particular piece in some situation - that is, the piece in a particular %state.
Here, we consider the number of moves available to a piece in all situations.

One way to do this would be to place the piece in the center of an empty board and
calculate how many moves it has. However, that wouldn't allow for moves involving
other pieces - castling or en passant moves in chess, or the moves of the cannon in
Chinese chess (Xiangqi).

Instead, EGGG examines the rules involving the piece motion in the game
description file. For each piece, the rank is calculated as follows:

e Set $gamee{piece}{rank} to 0.

" Extract all the rules involving motion of that piece, and loop through them:

1. Increment $game {piece} {rank} by the length of the rule.

This step might seem arbitrary at first glance, since longer rules count
more toward motility, regardless of what the rule means. A very long
rule - say, one that applies only in unusual conditions and hence
needs many expressions to describe - will add linearly to the piece
motility in spite of the rarity of the situation it describes. This is
compensated in part by the next step, which has much greater
potential to affect the rank.

In a game like Stratego, this step has the effect of weighting immobile
pieces like flags and bombs more heavily than mobile pieces; really,
this heuristic is more about estimating the importance of a piece than
estimating its motility. For chess, this step weights the king more
heavily because of the rules describing checkmate and castling. One
can make the argument that if there are lengthy rules describing what
a piece can do, that it's more likely that the piece is important.
Whether this is a good assumption for games is very much open for

debate, although it does work well for the small subset of games used
to test EGGG.

2. Increment $game {piece} {rank} by the dimension of the board
(or density of the graph) raised to the power of itself, minus the board
dimension (or density) raised to number of dimensions that are
constrained in the rule describing piece motion.

This rule may seem complex, and is best explained using chess as an
example. Here is a rule for rook motion:

Rook moves (x, y+1. .7) if empty(x, y+1. .7)

And here is one of the rules for a bishop:

Bishop moves (x+1. .7, y+1. .7) if empty(x+1. .7, y+l. .7)

The bishop rule is longer, but only because it has a constraint that the
rook rule doesn't have. This rule weights the rook (22-21) more highly
than the bishop (22-22).

3. Divide $game {piece} {rank} by the square of the number of
times the piece occurs in the starting board configuration.

* Normalize the ranks so that the lowest ranking piece has rank 1.

The result, applied to the chess . egg game description:

$game{King}{rank} = 23.6277551725428;
$game{Queen}{rank) = 15.2191074823911;
$game{Rook}{rank} = 3.95340184744318;
$game{Knight}{rank} = 3.11256637988997;
$game{Bishop}{rank} = 2.72902739469025;
$game{Pawn}{rank} = 1;

In comparison, chess books for beginners typically rank the pieces as follows:

King = infinity

Queen = 9

Rook = 5
Knight = 3

Bishop = 3

Pawn = 1

Estimating Piece Rank

A piece has rank if it can capture pieces that can't capture it, or if it has a higher

point value than another piece (such as in playing cards: a jack is higher than a ten, a
ten is higher than a nine, and so on).

The rank of a piece may be hard (or impossible) to calculate if the piecewise
comparisons are intransitive. Rank is impossible to calculate in Rock Paper Scissors,

since the three "pieces" form a cycle: Rock beats Scissors, Scissors beats Paper,
Paper beats Rock. However, consider Stratego. In Stratego, the pieces form a strict

military hierarchy: the marshal beats the general, the general beats the colonel, and

so on down to the scouts, which beat the lowly spy. But the spy can beat the marshal.

It might seem that no ranking makes sense - but that's not the case. There is only
one spy and one marshal, but there are eight scouts, each of which can capture the

spy. The spy has eight ways to be captured, and the marshal only has one, so EGGG
ranks the marshal higher than the spy - and from there, the rest of the piece
rankings follow. Rock Paper Scissors has no such disparities, so each piece is given
rank 1.

Chess has no ranks, because every piece can capture every other piece. (That isn't

quite true - a king can't capture a king - but since that is a result of the prohibition
against moving into check, it can't be deduced from such a cursory analysis of the

game description.) So every chess piece has a rank of 1.

Estimating Piece Rarity

The third component of the power is the rarity of the piece.

When the pieces are part of a bag (in the mathematical sense: a set, but allowing
duplicates), the rarity is the size of the bag divided by the number of times the given
piece occurs in the bag. In Scrabble, J and Q and Z occur only once; they each have
a rarity of 100, because there are 100 tiles in a Scrabble set. In chess, the king and
queen have rarities of 16; rooks, bishops, and knights have rarities of 8; and pawns
have rarities of 2. In conventional card games, all cards have the same rarity.

If the pieces are part of an enumerated type, as they are in Tetris, Diplomacy, and

crossword puzzles, they are all considered to have the same rarity unless EGGG

finds a rule that invokes the randomweighted () function from the

Eggg: : Random module. In that case, the proportional weights supplied to that

function are used to establish the rarity.

The one exception to this heuristic is when the pieces are letters - say, for

Hangman or crossword puzzles. In that case, EGGG uses a frequency table of

English letters: E is less rare than T, which is less rare than A, and all the way on

down to the most infrequent letter, Z.

Estimating Piece Expected Value

In some comparative games, the power of a piece can be calculated directly. First,
we assume that each outcome is equally likely. Then, the possible outcomes have to
be enumerated and the ranking of each established; the expected value of the piece is
then the sum of the scores where the piece is on the board divided by the sum of the
scores of all possible boards.

For instance, it is clear that a king is worth more than a queen in poker, but it is not
clear how much more it is worth - and it's hard to find out because the number of
poker outcomes is so large. Similarly, an ace is worth more than a king in poker -
and the difference between and ace and a king will be greater than the difference
between a king and a queen, because the ace can be used in more hands (low
straights as well as high).

To our knowledge, no one has done this for regular draw poker; the analysis for
draw poker is much more difficult than for stud poker, since it depends on the
player's strategy. The probabilities for five-card stud poker are easily calculated.

Now that we have a way to estimate the power of a piece, we've finished our generic
static evaluator - and we can use it even for games of incomplete information, such
as poker. In poker, the moves taken by players aren't responses and
counterresponses, but they are moves. Unknown pieces are assumed to have the
mean of the expected values of the set of all pieces, less the pieces that are known to
the player.

As an aside, we conjecture that when pieces have numeric point values, their
frequency of occurrence is often approximated by Zipf's law: the value multiplied by
the frequency is a constant. (Zipf was actually interested about the ranked occurrence
of words in a corpus.) Data is sparse, however; few games have pieces with
universally agreed-upon point values. However, we will examine the applicability of
Zipfs law for chess and Scrabble to illustrate what Zipf's law means. If we assume
the 9-5-3-3-1 point values in chess (for the queen, rook, bishop, knight, and pawn),
we can multiply those values by the number of times that each piece occurs in the
starting configuration:

25

20

15

10

5

0 0.5 1 1.5 2 2.5 3 3.5 4

The lower line contains the point values, and the upper line contains the point values
multiplied by the number of occurrences. The closer the upper line is to horizontal,
the more Zipf's law is obeyed.

Here are similar calculations for Scrabble, where the point values are fixed by the
rules of the game:

18 "scrabble.mult"--

16

14

12

10

6

4

2

5 10 15 20 25 30

Next, we turn to an unconventional use of our generic minimax procedure - for
helping players, and not computer opponents, solve single-person puzzle games.

Competition versus Cooperation
There is no general way of solving puzzles, of course; if there were, they
would cease to be puzzling.

John Beasley, in The Mathematics of Games.

So far, we have discussed a generalization of a standard minimax procedure to
handle arbitrary grid games, and a further generalization to any unsynchronized
game in which the turns alternate from one player to another. Can we generalize our
procedure further, to incorporate puzzles as well?

Minimax was designed for games in which players compete: moves at one level of
the game tree, responses at the level beneath, counterresponses beneath that, and so
on. EGGG identifies the player to consider for a given level by calling
player-next (), which rotates clockwise in poker and alternates between players
in chess. In single-player games, player-next ($state{ turn}) simply
returns $state{ turn) - our game tree can be applied to single-player games.
Our minimax becomes "maximax."

In puzzles, the computer opponent might be able to provide hints to the player. If the
solution is part of the game description, this is trivial; a far more interesting question
is whether the computer can help even when it has no access to the answer.
[Hofstadter 95] attacks this problem for number sequence puzzles; with a much
shallower analysis we might be able to help players solve letter puzzles like
crosswords. Letter puzzles offer greater opportunities for easy help, because EGGG
could look in word lists to help players solve crosswords, and use letter frequency
lists to help people play Hangman.

(This has not yet been implemented in EGGG.)

Common Strategies
Any truly comprehensive game theory would therefore have to
include a thorough understanding of the human psyche.

M. Eigen and R. Winkler, Laws of the Game, p. 16

In this section, we discuss analytic strategies - techniques that EGGG employs to
predict what human players will do, or what they are thinking. Some of this work
derives from the techniques used in Doppelganger ([Orwant 91] and [Orwant 93]) to
identify an individual's taste in news. In that domain, the problem is one of
incomplete information: given only a few bits of information about a reader (say,
which articles he read, or when he last read his newspaper), how can the system
deduce why he read those articles, or when he'll next read his newspaper? That can
be viewed as a game of incomplete information, and EGGG uses the same
framework to make its assertions about players as Doppelganger did about
newspaper readers.

We call these strategies "analytic" because their goal is to uncover the reasons
behind the player's actions. In the following section, we discuss synthetic strategies
- proactive decisions that EGGG makes to win games. These include generic rules
of thumb for choosing moves apart from a minimax model, and decisions that
EGGG makes to intentionally mislead players. In a word, bluffing.

Analyzing Strategies With Hidden Markov Models

Given a discrete series of observations, and a series of mathematical models that
generate observations, a Hidden Markov Model technique allows a system to
determine what model is most likely to be generating those observations. For our

purposes, the "observations" are player moves, and the "models" are player
strategies. EGGG's goal is to have EGGG determine the player's strategy given his

moves, and it uses a Hidden Markov Model algorithm (in particular, the Viterbi
lattice algorithm, described in [Rabiner 89]) to make that determination.

A few strategies have been included in EGGG: simple functions that, given a history
of player moves, return what the next move should be for a given player. EGGG's
implementation of the Viterbi algorithm accepts an arbitrarily large set of these
functions and the game history. It then ranks the functions according to their success
in predicting those histories. That is, given the first move, how well did each strategy
predict the second move? Given the first two moves, how well did each strategy
predict the third move? And so on. The result allows EGGG to infer what (if any)
strategy a player is using, without requiring that the player's moves rigidly adhere to
the strategy. The Viterbi algorithm is also tolerant of players who switch strategies
during the game.

Rock Paper Scissors

The Hidden Markov Model approach is best explained with an extensive example.
We choose Rock Paper Scissors, for two reasons. First, it's a very simple game, with
only three kinds of moves. Second, there would seem to be no possible successful
strategy for winning at what appears to be a game of pure chance.

Here is the game description for Rock Paper Scissors:

move is choose
pieces are Rock and Paper and Scissors
board starts [[Rock, Paper, Scissors]]
turns synchronize
Beat means player(Rock) and opponent(Scissors)

or player (Scissors) and opponent (Paper)
or player(Paper) and opponent (Rock)

goal is Beat
score increments
3x1 grid

A screenshot of the generated game:

EGG Rp =xl
Help

Play again

The player presses either Rock (the fist), Paper (the open hand), or Scissors (the two

Fir eferences ,

fingers), and the computer opponent reveals what it picked. The trick to winning this
game is predicting what your opponent is going to do, and choosing the one move
that beats it. In a session of one round, it is hard (but not impossible) for EGGG to
have a better than 1/3 chance of beating a human opponent. In a session of multiple
rounds, EGGG records the move histories and attempts to infer the player's strategy.
Obviously, the longer the history, the more information EGGG has to reveal the
strategy, and the better its predictions will be.

Predicting what your opponent is going to do is a special case of predicting what
your opponent's strategy is: the Hidden Markov Model problem. We now enumerate
the strategies that EGGG considers.

Nothing Beats Rock

This is the simplest of all strategies: the player picks one symbol and chooses it
again and again. Some of the people that have played EGGG's Rock Paper Scissors
adopted this strategy because they figured that it's what EGGG would least expect.
Unfortunately for the players, it's easy to deduce when this strategy is being used.

In games like poker, the "Nothing Beats Rock" strategy maps to making the same
sequence of decisions at each phase: perhaps always betting ten and then calling, or
always calling and then raising ten, without regard to what opponents do.

Randomness

The most common player strategy in Rock Paper Scissors is to aim for a draw over
the long term: choosing randomly so as to reveal no information to EGGG. Were
players to actually choose randomly, this strategy would be successful at
accomplishing its modest goal. Unfortunately (for the players) guessing randomly is
harder than it might first appear.

In the Rock Paper Scissors trials at the 1997 News in the Future Consortium, players
played ten rounds of Rock Paper Scissors with EGGG. As an exercise, write down a
sequence of ten R's, P's, or S's, simulating how you would play EGGG if you were
trying to guess randomly. The strings you generate probably look like this:

RSPPRSRPSSP
SPRPRSRPPRS
SSRPPRSRPSR
RPSSRPRPPSS

Those look pretty random. Here are some strings generated at random with the help
of a computer.

PRRSRSPRPRS

RRPRRRPRPRS
PSSPRRSSSRR
PRSPPRPRRPP
RPSPPSSPRSP
RPPPSSRSSPS
PSSPSPRPRRR
SRRPRPSRSSR
SSRRRPRSPSR
RPSRPRPSSSP
SSPRSPSRSRP

(This was the first and only run of the program.) Note that six of the ten truly
random strings have runs of three: RRR, or PPP, or SSS. Note that none of the
seemingly random strings have runs of three. This is the key to the strategy: when
players try to guess randomly, they usually do so in a predictable way.

As it turns out, one would expect 56.4% of randomly generated strings of ten
symbols to have a run of three. That is, it's more likely than not to find an RRR, PPP,
or SSS, then to find none of them. And obviously when more than ten rounds are
played, the likelihood of a run of three will increase.

If someone following this strategy makes the same move twice in a row, they are
unlikely to choose it a third time. In a game like Rock Paper Scissors, the computer
opponent can then choose the piece that the move would have beaten, and be assured
of either a draw or a win.

Switcheroo

A less patient player might simply decide never to do the same thing twice in a row.
This strategy is even easier to identify and exploit, since it requires looking at only
the last move, instead of the last two moves (to decide what response to make) or the
entire history (to determine the confidence that the player is using this strategy).

Generalized Tit For Tat: The Vendetta

"Tit for tat" is a general strategy that can be summarized as "If you're nice to me, I'll
be nice to you." It was found to be a good strategy in a famous iterated Prisoner's
Dilemma contest many years ago, and people routinely follow this strategy in
Diplomacy, Dungeons and Dragons, Risk, Monopoly, multiplayer Magic, and even
in casual poker, where the desire to beat someone who beat you earlier can
sometimes override a more logical analysis of the game - especially when the
stakes are low. The greater the number of players in a game, the more likely
vendettas will materialize, for there is greater opportunity to make, and therefore
break, alliances.

Sacrifice

Many games involve the notion of sacrifice - accepting a short-term loss for a
long-term gain. Games that people bet on typically don't involve sacrifices. Games
that do involve sacrifices can be divided into three categories:

" Games where you forgo a good move now (or forgo avoiding a bad move)
for a great move later (gin, Scrabble)

* Games where you have to go two steps back to go three steps forward
(Rubik's cube, Othello)

" Games where you concentrate resources in one area to the detriment of
another (Go, Risk, chess).

EGGG currently has no way to identify sacrificial moves other than searching the
game tree to a sufficiently great depth.

Synthesizing Strategies

In the previous section, we discussed a few patterns that EGGG looks for in player
moves. In this section, we discuss a few strategies that EGGG can generate itself.

Freedom As A Universal Strategy

In nearly every grid and graph game, it's better to have more opportunities than
fewer. Chess is the only common example where this maxim fails, because a
stalemate results in a draw rather than a loss. This suggests a simple and often
surprisingly effective strategy: moving to maximize the ratio of the moves you have
available to the moves your opponents have available.

This strategy is part of the generic static evaluator discussed earlier.

You Cut, I'll Choose

The notion of freedom as a universal strategy is similar to the children's algorithm
for dividing up dessert, or other divisible resources. One child divides the resource,
and the other child chooses which division to consume.

What these two strategies have in common is the notion of equalizing an opponents
options. [Beasley 89] notes that this is the ideal bluffing strategy as well: ensuring
that the opponent has no reason to favor one move over another.

Beasley notes that this strategy can be applied to any contest where the probabilities
of success for different players are unequal. As an example, he describes a

construction worker who bets another that he can demolish a building faster. The
problem is that there's only one building to demolish.

If he believes the abilities to be unequal, he should stipulate a target
at which he estimates that his own chance of success equals his

opponent's chance offailure. Note that this rule applies whether or
not he regards himself as the stronger. If he is indeed the stronger, it

guarantees a certain chance of success (assuming that his estimate is

indeed correct); if he is the weaker, it minimizes the amount that his

opponent can gain. (p. 70)

Hypotheses

In a game like Rock Paper Scissors, it might be the case that a player has an inherent
bias toward a certain piece. Perhaps he's trying to be random but really isn't, or
perhaps he is following some strategy that is more likely to choose one piece than
another. EGGG has the player's move history available to it, and it's easy to tally the
different moves made and identify which was the most common.

The problem is in interpreting these results. If someone plays Rock Paper Scissors
for nine rounds and chooses Rock five times, Paper twice, and Scissors twice, is it
fair to assume that the player favors Rock? Or are nine rounds too little to make that
conclusion?

Nine rounds is too little; we know this because of the Chi square test from statistics.
When EGGG makes hypotheses of this sort, it uses Perl's
Statistics: : ChiSquare module, by the author of this dissertation, to
establish a confidence level for the hypothesis. (If a 5:2:2 ratio between the three
choices is observed, the player would need to play 43 rounds for the hypothesis to be
statistically significant at the p=0.5 level.)

Estimating Player Ability

In a game like Go, both human and computer players usually try to play the most
rational game possible. It doesn't matter who the opponent is; there is a single course
of action that is "provably" best. This assumes that the opponent will play the best
possible game, when in fact he is far more likely to play merely to the best of his
ability- it assumes that players don't model the psychological state of their
opponent. If you know that your opponent has a particular weakness, it should
obviously be exploited to maximize the chances of winning. You can never know for
sure whether you've uncovered a true weakness, or are being hustled. You have to
consider likelihoods and confidence levels, and that is why game theorists prefer the
comfort of game models in which the players are rational and skilled. The paradox is
that if players actually were equally skilled and maximally rational, most gaming
competitions would be moot.

This is true even for games of incomplete knowledge, like poker. Part of what makes
casual poker enjoyable is that players can continuously model one another: the
actions and gestures that reveal, or fail to reveal, or merely seem to reveal
information beyond the simple play of the game.

The notion of modeling opponents thus includes ascertaining not just how skilled
they are, but what particular foibles they have. Apart from the strategy analysis
described in the previous section, EGGG has no way to identify foibles; all it can do
is try to guess a player's skill. In a game like chess, that means determining how
good the player is; in a game like poker it means measuring both the player's success
rate and his skill at bluffing. A better understanding of games would enable EGGG
to make more profound inferences, such as "this player is weak in the endgame" or
"this player is more likely to bluff when this other player remains in the game", but
such an understanding is beyond EGGG's capabilities at the moment.

If a player beats EGGG at chess, that tells us that the player is probably better than
EGGG at chess. But what does that tell us about the player's innate ability? Less than

it would seem. The chess ranking system assumes that a player's performance can be
described by a normal distribution, but as [Beasley 1989] points out, this is almost
certainly not the case, and the research supporting this contention is specious.
Beasley is clearly correct; the tendency to see the normal distribution everywhere
unfortunately manifests itself in Arpad Elo's research, used as a justification for
chess rankings. Elo wrote The Rating Of Chessplayers, Past And Present, and the
Elo rating system has been used to rate chess players since 1970; today, it's used to
rate dozens of different board games. Elo calculates his standard deviations without
allowing for draws, and he does not take into account the circular nature of his

system: the ratings that his system generates are used to estimate the strengths of

players, which are then used to justify the ratings that his system generates. Beasley
notes that other sports publish only rankings and not claims about not absolute
strength. Such statistics are less precise than Elo's rankings, but undoubtedly more
accurate.

It is unfortunate how much emphasis U.S. researchers place on creating better chess
programs, because chess games tell us so little about the strengths of the players.
Unlike Go, chess has no handicap system, so unevenly matched players must play an
unevenly matched game. Game outcomes in chess are trinary (win/lose/draw); in
Go, there are no draws, and a player wins by a certain number of points (stones). The

higher the number, the greater the disparity between the player abilities. A Go game
doesn't just reveal who the winner is, it reveals how much stronger the winner is than

his opponent. The result of a chess game has just over 1.5 bits of information; the
result of a Go game, nearly 8.5.

Sometimes winning 99% of your games is better than winning all of them. Consider

someone who plays Windows Solitaire instead of working on his dissertation.
Because of the length of his dissertation, he plays a lot of Windows Solitaire, and

becomes pretty good at it. Windows Solitaire records the number of games you've

played, and displays that as well as your winning percentage. If player A wins five

games, his winning percentage is 100%. If player B plays one hundred games and

wins 99, his percentage is 99%. Who is the better player?

In binary (win/lose) games, EGGG estimates the strength of the player (relative to
EGGG) with the beta distribution. This is how the Doppelgdnger user modeling
system [Orwant 93] estimated a reader's interest in particular topics. The system
maintains the entire play history, and weights more recent outcomes more heavily to
account for improvements in the play of both the player and EGGG. The beta
distribution yields both an assertion about strength and a confidence that the strength
is accurate. The strength is easy to calculate: just the mean of the distribution, which
is trivially the number of wins divided by the number of wins plus the number of
losses. The confidence is defined as the inverse of the variance. The greater the
number of trials, the lower the variance, and the higher the confidence. The variance
of the beta distribution for a and b (a wins, b losses) is:

a * b

(a+b) * (a+b) * (a+b+1)

For instance, if a player plays EGGG ten times and wins seven times, the strength is
7/10 = 0.7, and the confidence is 1100/21 = 52.381. Strengths range from 0 to 1, and
confidences can be any non-negative number. Note that the confidence for both
unbeaten and winless players will be zero. This makes sense, because until some

upper and lower bound on a player's strength has been established, assertions about
the player's ability cannot be definitive. For our Solitaire example, the strength of
someone who wins five games and loses none is unbounded - but the confidence is
zero. In contrast, someone who wins 99 times and loses once has a strength of 0.99
and a confidence of just over 10,202.

Some EGGG strategies rely on an assumption that the player has less than (or more
than) a particular degree of skill. It is one thing to say that our best estimate for the
player's skill is 0.7; how can we estimate the likelihood that the player's skill is less

that 0.8? This is why the beta distribution was chosen; it allows EGGG to establish
confidence levels for estimates other than the most likely.

In trinary (win/lose/draw) games, a draw is treated as two separate events: a half-win
and a half-loss. A player who plays ten times, winning four, drawing three, and
losing three, would have a calculated strength of 0.55 and a confidence of 4.44. It is
unclear whether this is the best approach.

In comparative (win by a certain number of points) games, a different approach is
required due to the extra information available. Implicit in our use of the beta

distribution was that the individual trials could be modeled with a Bernoulli
distribution, but Bernoulli will no longer do because each sample is an element of a

range rather than simple success or failure. We have to choose another distribution to

base our analysis on. We choose the normal distribution, and hope that we're not

committing the same error that Elo did when he established rankings for chess

players. However, we feel that using the normal distribution to model the variation
in one player's play against another is a much lesser sin than using the normal
distribution to model play against a population of players.

100

Note that in these analyses we used a Bayesian approach: we chose a probability
distribution (strictly speaking, a probability massfunction) and then attempted to
estimate the distribution parameters. There is an ongoing controversy between
Bayesians and classical statisticians. The classical approach is more conservative,
involving no assumptions about the underlying distribution. The price you pay for
this risk avoidance is a less-sweeping result: classical statistics give the best results
only when the data set is large. Since EGGG needs to make decisions based on
sparse data, the Bayesian approach was selected.

Bluffing

An inexperienced player thinks of a bluff as a manoeuvre whose
objective is to persuade his opponent to play wrongly on a particular
occasion. There are indeed many occasions on which such bluffs are
successful, but their success depends on the opponent's lack of
sophistication.

John Beasley, The Mathematics of Games, p.71

In addition to trying to determine what the player is thinking so that it can choose the
best move, EGGG can try to fool the player as well. In this section, we turn to how
computer opponents can bluff players.

Bluffing brings to mind two things: poker and negotiations. But bluffing is far more
general than this, cropping up in almost every game. I once played a game of Go
with someone far better than myself. He awarded me a nine-stone handicap - large,
but we both knew it wasn't large enough to equalize the disparity between our
abilities. A game of Go consists of many parallel battles; much of the skill of the
game comes from realizing when a battle is lost or won, and concentrating your
efforts elsewhere. The player who realizes that one corner is lost (or won) can play
elsewhere on the board, and seize initiative.

This initiative is a critical part of Go play; the player that possesses it is said to have
sente, and his opponent is said to have gote. When a player has sente, he is the
protagonist. He acts, and his opponent reacts. His opponent has gote. You always
want sente, and never gote. Whenever my opponent switched battles, I followed,
because I knew that he could see farther down the game tree than I could. I willingly
accepted gote - and essentially, willingly accepted a loss - in the hope that I

would lose by fewer stones. Of course, this gave my opponent a prime opportunity to
bluff. He says he didn't, and I believe him: Go players pride themselves on ignoring
psychological evidence and being as rational as possible. Tricking someone into a
bad play is dishonorable. Nevertheless, the option was available.

Because EGGG is a computer program, it has a valuable advantage. Players
willingly accept gote, for the same reason that I accepted it when playing Go against
the stronger player: players assume that EGGG can see farther than they can. We see

101

it in Rock Paper Scissors, where people give up trying to second-guess the computer
and bet randomly instead; we see it in chess, where people try unusual opening
moves in an attempt to avoid the well-trod paths of the game tree.

So we disagree with Beasley, who claim that the best bluffs are simply those which
make the opponent's actions irrelevant in the long term. This is a good strategy for a
static evaluator, but there are other strategies - the psychological bluffing strategies
familiar to every casual poker player - that can be generated computationally even
when they cannot be treated with the same mathematical precision of the more
predictable games that Beasley analyzes.

In Beasley's defense, he hedges his claim with the assumption that opponents play
with what he calls "sophistication". Yet Beasley's sophistication is quite rare in real
games played by real people; it requires that people use every bit of the information
available to them, and in the most rational manner possible. Yet psychological
strategies clearly work for poker; they even work for Go. Only for games of perfect
knowledge and low-to-moderate complexity, like Go, will psychological strategies
nearly always fail.

Future versions of EGGG might take advantage of the fact that people are primed to
perceive patterns where there are none. EGGG would present just enough behavioral
cues to make it seem like it is following a particular course of action in order to
mislead the player.

Let's categorize the different types of probabilistic games. There are two types of
probabilistic games: games where the true odds are unknown (e.g. sports), and
games where the odds are known. Games where the odds are known can be further
divided into games where the odds are easy to calculate (e.g. roulette), and games
where they aren't (e.g. poker). So we have three types of probabilistic games:
unknown odds, easy known odds, and hard known odds. Note that it is important to
distinguish the odds of winning from the payout. A 20:1 bet on the Cleveland
Browns winning a football game falls into the category of unknown odds (as all
sporting contests do), since it is impossible to calculate the actual chances of
winning. Bluffing is only possible in games of hard known odds.

As our Go example showed earlier, bluffing is also possible in non-probabilistic
games, and since EGGG maintains an estimate of a player's skill relative to itself, it
could in theory try to mislead its opponents when the player is likely to perceive
EGGG as being far superior. It does not do this at the moment, EGGG models
players, and it models player strategies, but it does not model the player's estimate of

the skill disparity. EGGG might believe that it is stronger than the player, but it will
never hypothesize that the player believes EGGG to be stronger when it is in fact
weaker, so it is unable to attempt sente/gote bluffing.

So we are left with bluffing for games of hard known odds. We will turn to EGGG's
technique for bluffing soon, but to set the stage we will first talk about making
interesting moves.

102

Making Interesting Moves

When the confidence levels for all its strategies is below a particular threshold,
EGGG has little information about how to play: every opportunity seems equally
attractive. EGGG sorts the available moves from most attractive to least, and early
versions of computer opponent would simply choose the first move on that list,
without regard to whether subsequent moves were equally attractive.

The result was dull play: given a game state, EGGG would always make the same
exact move. It always opened chess games by moving its king pawn forward two
squares. So what EGGG does is to choose randomly, but to make the probability of
each move proportional to its attractiveness. So if five moves are equally attractive,
EGGG is as likely to choose the first as the last.

We don't want our proportionality to be linear, however. If two moves are available,
one with a score of 10 and the other with a score of 1, it would be folly to choose the
worse move one-tenth as often as the better move. So in the absence of other
information, EGGG squares the linear distribution (a mass function, actually) and
then uses the we ighteddistribut ion () function in the Eggg: : Random
module to choose its moves. The move with the score of 10 will then be chosen one-
hundred times as frequently as the move with the score of 1.

Probabilistic Bluffing

This framework for interesting moves helps computer opponents play more
interesting chess, but it can also help them play better poker. We can generalize the
notion of applying a weighted distribution to our move choice, developing it into a
generic bluffing strategy. No strategy is provably optimal, and we make no claims
about the effectiveness of what we describe here.

Bluffing is tantamount to flattening the weighted distribution. This lessens the
disparities between the relative attractiveness of different moves, making high-
scoring moves less attractive,and low-scoring moves more attractive. This makes it
less likely that EGGG will bet the "ideal" amount, and more likely that it will choose
an amount that is either higher or lower.

The extent to which EGGG considers non-optimal betting amounts is determined by
a state variable, $ state {bluf f }. The higher the value, the more random EGGG's

bets will be. The procedure is as follows: EGGG takes the squared mass function
described in the previous section, and raises each value to power of
1/$state{bluf f }. In betting games with no knowledge about the players,

$state {bluf f } begins at two, so the dampening is exactly equivalent to a square

root, and we end up undoing the squaring that the last section described. EGGG
maintains a separate $s tate {blu ff } for each player (the actual values are stored

as $state{player} {bluf f }) and uses a gradient descent algorithm to adjust

103

that value over the course of the game, and from game to game. When an EGGG
opponent finds that a bluff fails, $state{player} {bluf f } decreases; when a
bluff succeeds, it increases.

In poker, bluffs can go undetected; a player who scares his opponents out of the
round doesn't have to reveal his cards. Since the computer-generated opponent is
part of the game program, EGGG could orchestrate omniscience easily. It does not.
Some players will trust EGGG not to cheat, and others need to be convinced.

Garnering Trust
In a game of complete information like chess or tic tac toe, cheating is impossible. In

games of partial information, like poker or Scrabble, cheating is possible, but human
players tend to trust that computer opponents won't cheat. In games of zero
information, like Rock Paper Scissors, the player presses an icon and is immediately
greeted with "You lost!" or "You won!" or "Draw." How can the player verify that
the computer didn't cheat?

EGGG uses Perl's MD5 module to compute a cryptographic signature - a
hexadecimal message digest of a few random words and numbers concatenated with
the text of EGGG's choice. The result was visible near the top of the Rock Paper
Scissors screenshot shown earlier:

Rocky has moved. Proof: 6ec22e8d46e98df39a08e3ddlafe2917

The 6ec22e8d46e98df39a08e3ddlafe2917 is the message digest. The MD5

digest algorithm is one-way; given that string of hexadecimal digits, it is
computationally intractable to uncover the message that was digested. But if the
player selects Ver ify, EGGG will reveal the message, ensuring that it had already

made its selection when the screen was displayed.

104

Chapter 5: Beauty on the Inside
(Graphic Layout)

Drunkard: "Will I ever, ever get home again?"

Polya: "You can't miss, just keep going and stay out of 3-D!"

G. Adam and M. Delbrueck, Reduction of Dimensionality in Biological Diffusion
Processes

When I was a child, one of my favorite toys was a ten dollar handheld electronic
game. It consisted of fifteen diodes. You'd press one button, and a series of diodes
leading to your thumb would illuminate. When the diode closest to you lit up, you
had to press another button. If your timing was right, other diodes would light up.
That was it. That was the whole game.

But because the diodes were arranged in a particular sort of diamond, and the areas
of the game field without diodes were painted green and brown, I was playing
baseball.

How a game appears to the player has a profound impact on the player's experience.
When the game is a simulation of a real-life activity like my electronic baseball
game, it fosters a mental model of the gaming activity that would not otherwise be
present. The play of the game is more easily learned as a result, and the strategies
that a player chooses are affected as well.

The similarities between games extends to their appearance. Some of these
similarities are irrelevant from a developer's perspective. For instance, the theme of a

game - say, the medieval theme of games like Dungeons and Dragons or Magic -

is important to someone who's marketing the game or designing artwork, but it is not
critical information for developer concentrating on the core of the game's design. All
he needs to know is that the game has a theme and that it is important, because if so
he must render the game with an eye toward detail. EGGG doesn't generate artwork,
and its games do not have the level of detail that such themed games require for
popularity.

In Chapter 2, there were three graphical components included in our categorization

of games: topology, board, and piece. In this chapter, we will explore how the

different types of boards and pieces are rendered.

Topology merits a quick discussion. Most games are two-dimensional, and EGGG is

best suited to generate two-dimensional games. One-dimensional games like our

visual rendition of Rock Paper Scissors are treated as degenerate two-dimensional

games: that's why the game description for Rock Paper Scissors includes the

statement 3x1 grid. Zero-dimensional games are just games with no spatial

105

meaning, and that gives EGGG no clues about how to render the game. Typically,
EGGG won't be able to render the game; only MUD-like games such as Mammon
are possible at the moment. EGGG is also not capable of handling games in three
dimensions, for the most part because the Tk graphical library on which it relies does
not support three-dimensional rendering.

So in this chapter, we will discuss only the rendering of two-dimensional elements:
the elements that we called boards, squares, and pieces in our ontology.

EGGG stores the display-dependent aspects of the game in an object named
%display. This object can be saved to disk for persistence of gaming: players can
store and recreate any game, and it contains attributes such as
$display{paused},$display{iconified},$display{height},
$display{colordepth}, and $display{granularity}.

Before we turn to boards, we'll briefly discuss what we'll call the frame of a
computer game. The frame includes the essential elements of computer games not
present in traditional games: graphical elements like the titlebar, window, and
menubars.

The Frame
When a traditional game is "ported" to a computer screen, certain decisions that need
to be made as a consequence. For instance, there needs to be a way for players to
quit the game. In traditional game play, there's no commonly accepted way for
players to stop playing; they just agree to do so. On the other hand, most windowing
systems provide a uniform way to let users quit their applications, typically via a
button on the upper right-hand corner of the titlebar. The appearance of the titlebar is
often customizable by the user or fixed by the windowing system, so it's out of
EGGG's control.

What we call the frame has three components: the window itself, the menu bar, and
the status line.

The Window

An early version of EGGG generated four windows for each game. There was a

window for the board, a "control" window that contained the menu bar, an "opinion"
window that conveyed EGGG's assessment of how well the computer opponent was
performing, and a picture of a face that conveyed the performance graphically.

The current version of EGGG has only one window, ever. This was an aesthetic
decision - since many window managers sometimes force people to cycle through
all the windows on the screen to arrive at a particular desired window, we decided to
minimize the number of windows that players had to cope with. The disadvantage is

106

that now EGGG has to place all of that information onto the screen somehow. We
discuss how this happens throughout the chapter.

The Menu Bar

EGGG generates the pulldown menus familiar to most computer users. Every game
has a "File" menu, a "Preferences" menu, and a "Help" menu. These provide
application-oriented features that are common to all computer games.

The File Menu

In the figure below, we see the five File options: New Game, Quit, Iconi fy,
Load, and Save.

Discard Fold Call

901 *S
Pass Bet $10 Raise $10

New Game restarts the game, running the entire application again. The current game
window is destroyed and a new one takes its place. This is different from the Play
Again button you see on games with rounds, such as Rock Paper Scissors and
poker.

Quit quits the game, appending a notation that the game was terminated
prematurely to the game's global history. (Global histories are discussed in the next
chapter.)

107

Deal 90j

Iconi fy replaces the game window with a much smaller version, or makes it

disappear entirely and adds an entry to the icon manager. Precisely what happens
depends on the window manager and any user customizations to the manager.

Players can also save the state of a game (Save), which dumps the %state
structure to disk using the Perl Data: : Dumper module. The saved game can then

be loaded in later with Load. The state of the game is exactly duplicated, with one

difference: $state{ loaded} is set to the time value at which the game was

loaded. If the game is timed (that is, $game { timed} is true), then the results are

assumed to be corrupt and the game result is not appended to the game's global
history. This lets players cheat, but it doesn't let them impress EGGG.

The Preferences Menu

The Preferences menu allows players to change a few elements of the %state data

structure. By default, players can change only one element: their player name.
EGGG uses the login name of the player if the operating system supports login
names, and "player" otherwise. The player names are used to identify the player to
others in multiplayer games, and to identify the player to EGGG in the global
history.

108

FGGG515 Chess-small MlE
Ae Preferences

£hange player name
let level

omputer opponent

II
*

I
~1
J

It IA

It

If EGGG is able to generate a computer opponent for the game, the Preferences
menu will include the Computer opponent option you see pictured above.

If the game description includes a line that begins with player can set, an
entry is automatically added to the Preferences menu. This statement might look like
this:

player can set level to 1. .8

Such a statement causes EGGG to add a Set level option to the Preferences
menu; selecting that option would then let the player set $state {level} to an
integer from one to eight. If the line had been this, players would be allowed to
change the size of the board while the game was running:

player can set board size to 2..8

The board would then be cropped along the top and right edges, since EGGG's
coordinate system places (0, 0) at the lower left.

109

The Help Menu

Every Help menu has an Instructions option that displays (in a new window,
regrettably) the game's instructions, generated automatically with the
egggdescribe utility mentioned in Chapter 3.

110

Fe JPreferences
Pause

EGjGG Tets FIRE

Help

istructions
boutNs game

Tetris.eaa

To encourage players to learn about EGGG game descriptions, the Help menu
allows players to see the game description for the game they're playing: that's the
Tetris .eggg selection shown. Puzzle games such as crosswords have the
solutions embedded in the game description; if EGGG finds a solut ion line in the
game description, it omits this option.

III

The Status Line

Below the menu bars is what we call the status line, which can contain up to three
elements: the message field, a Play Again button, and a score field.

The Message Field

Every game has a message field, which is used for information that EGGG wants to
convey to players. Announcing that someone has just won or lost, or stating whose
turn it is, or complaining about illegal moves: these are all messages that appear in
the message field.

EGGG has an internal subroutine called display () that paints the message on the
screen. Most regular buttons invoke display (). (By "regular", we mean buttons
that aren't themselves grid squares.) The message field is always on the left side of
the game window.

Play Again

Games with rounds have a Play Again button immediately to the right of the
message field. An earlier version of EGGG assumed the player would always want
to play another round, and began a new round as soon as the old one ended.
However, the new round overwrote the message field from the old round, making it
difficult to tell who won the old round. That's why the Play Again button was
added.

The Score Field

For games where the player has a score, EGGG creates a score field to the left of the
Play Again button if there is one, and to the left of the message field otherwise.
Nothing is ever placed to the right of the score field, so it ends up defining the right
edge of the game window.

Whenever the player's score ($state{score}) changes, the score field is updated
appropriately. In some games, lower scores are better that higher ones, but this has
no effect on how the score field is displayed: when the window updates, it merely
dumps whatever is in $state{score} into the field and prepends Score:.

If there is a statement beginning score starts in the game description, EGGG
initializes $state {score} to that value. The values needn't be strings, either.
Statements like this let the score increment through an array of values:

112

score is [Acolyte, Prestidigitator, Thaumaturge, Magician, Wizard]

If a line like this is present in the game description, $state{ score}++ will
advance $state{score} along this array, terminating at Wizard (and not
wrapping around back to Acolyte).

The Board
'Ah yes," he says. "Hunt the Wumpus. Hunt the Wumpus was another one of
those fifty-line BASIC programs, although this one was more like two
hundred lines. It was a network of tunnels and nodes. And I believe the actual
geometry of the network was a dodecahedron. So there were twenty vertices
with three tunnels coming to each node."

J.C. Herz, in Joystick Nation, p. 10, quoting Walt Freitag

We now turn to the primary element in the window: the board. Recall that by our
definition, it's not just board games that have boards. Any game with spatial meaning
has a board. Poker has a board, and that board is a blank canvas onto which cards are
dealt. Rock Paper Scissors has a board: the display on which the choices are made
available. Only Mammon (described in the next chapter) has no board, because it is a
purely text-based game.

The Geometry Manager: Packing, Placing, and Gridding

The first stop in our survey of board architecture has more to do with the window
manager than with the board itself. Here, we talk about the geometry manager used
by EGGG games. The geometry manager creates new graphical elements on the
screen and decides where to place them, whether to make them "stick" to each other
or to the borders of the screen, and how the graphical elements should adjust if the
window dimensions change.

The Tk library provides three managers: the packer, the gridder, and the placer.

" The gridder lays down an invisible grid over the screen, letting programs
place elements onto the grid given x and y coordinates along the grid axes.

e The placer lets a program position a graphical element anywhere on the
screen, without regard to the positions of other elements.

* The packer "packs" the graphical elements onto the screen. When an element
is rendered, the geometry manager locates it in, say, the leftmost available

113

space ($element->pack (-side => ' lef t')), or the bottommost

space ($element->pack (-side => 'bottom')). The element can

be packed in one direction but anchored (attached) in another:
$element->pack(-side => 'bottom', -anchor => 'n'))
With the packer, it is difficult to stack elements into a grid without creating
an intermediate graphical abstraction called a frame.

Each geometry manager is good for certain classes of games. The packer is generally
the easiest manager to use, because it deals in relationships between the graphical
elements. So if the user resizes a window and the elements need to be repositioned,
the relationships between them are maintained automatically.

It's awkward for an applications to use more than one geometry manager, and early
on in the implementation of EGGG we settled on one. The gridder clearly was not
appropriate; it would be fine for some grid games, but extremely awkward for other
games. The placer was attractive because of its pixel-by-pixel control, but we settled
on the packer because of the ability to express relationships between graphical
elements. This is especially important; since EGGG can't know what elements it will
have to generate before reading the game description (and sometimes not even then,
if the board structure changes during the course of the game), it made sense to
choose the manager that represented positioning via relationships instead of pixels.

This was the wrong choice. In the tradeoff between expressivity and convenience,
the packer was too far toward the right. An example of the packer's inadequacy was
revealed in the rendering of Color Deducto.

114

Help

Understand VoteYes VoteNo Hue Value Chroma

The mullions (gaps between the squares) are undesirable, since they affect how the
color relationships are perceived by the player, which is the heart of the game.
However, the mullions are an unavoidable consequence of using the packer.

Ideally, the squares in Color Deducto would be flush against one another, like this:

115

E G GG Colot D educto

Fie Preferences

Example Test

EGmGDeductog

Fie Preferences

Example Test

Help

Understand VoteYes VoteNo Red Green Blue

This is not an actual game created by EGGG, but rather a Color Deducto game that
was patched after generation to use the placer instead of the packer.

Board Shape

In this section, we turn to the shape of the overall board. Here, we are unfortunately
constrained by the fact that many window managers are unable to display non-
rectangular windows. Game descriptions can include lines like this:

board is circle

The result will be a circle inscribed inside a square:

116

E6G Mables M91x

_ PreferencesJ Help

EGGG recognizes any equilateral polygonal board shape. A game with the statement
board is heptagon yielded this:

117

EGGG Striker REE
le IPrefences Help

Polar coordinates are used to determine the vertices of the polygon, and by default
the vertices are aligned so that an edge is parallel with the bottom of the screen, as
shown above. This was done because many games that have polygonal boards
expect that each player will "own" a side. Since players playing an EGGG game
aren't likely to tilt their heads, it makes sense to ensure that the bottom of the board
is an edge and not a point.

Squares

Our Soldiers and Lowest Classes of Workmen are Triangles...

Our Middle Class consists of Equilateral or Equal-Sided Triangles.

Our Professional Men and Gentlemen are Squares (to which class I myself
belong) and Five-Sided Figures or Pentagons.

Next above these come the Nobility, of whom there are several degrees,
beginning at Six-Sided Figures, or Hexagons, and from thence rising in
number of their sides till they receive the honourable title of Polygonal,

the
or

118

many-sided. Finally when the number of the sides becomes so numerous, and
the sides themselves so small, that the figure cannot be distinguished from a

circle, he is included in the Circular or Priestly order; and this is the highest
class of all.

Edwin A. Abbott, Flatland, p. 8-9

Many games can be represented as grids even when there's nothing truly gridlike
about the game. For instance, Rock Paper Scissors is represented as a 3x1 grid.
These are not the grids of the Tk library; the grid abstraction is entirely within
EGGG.

From the ontology developed in Chapter 2, every grid is a two-dimensional array of
elements, and we call those elements squares no matter what their shape. Game
designers can specify different designs with riddlesome statements like these:

squares are triangles
squares are hexagons
squares are circles

These can be combined with board and grid statements to generate an infinite
variety of boards:

board is hexagon
squares are hexagons
5x5 grid

Here is the board for that game description.

119

Preferences elE

Note that the "5x5" no longer refers to x- and y-axes; new axes are chosen parallel to
the oblique sides of the polygon. This result is sometimes surprising, because a 5x5
grid won't have 25 squares when the board shape is a hexagon. As you can see from
the above diagram, there are actually 13 squares (and six half-squares).

The squares needn't be the same shape as the board:

board is hexagon
squares are triangles
16x16 grid

120

E G 31e Dx

Our algorithm for tessellating the grid is recursive; generating a 16x16 grid involves
generating a 2x2 grid, and subdividing those grids into a 4x4, an 8x8, and finally the
complete 16x16 grid. When there are more than 100 squares, the initial subdivision
is drawn with thick lines, as shown above.

Note that these boards have clean lines and intersect at exact points only because we
chose our board and square shapes carefully. No equilateral polygons other than
triangles, squares, and hexagons can tessellate a plane; board is pentagon and
squares are triangles generates a mess.

Checkerings

Checkerboards and chessboards alternate light and dark squares. This alternation
makes it easier to convey the rules of the game: "checkers go on all the red squares"
or "a bishop on a white square will never be able to move to a black square" or "a
queen starts on the square of its own color." The colors don't affect the play of the
game; the squares on a chessboard could just as well alternate between red, green,
and blue, or be chosen at random, or be all black. The square color is a superficial
aspect of the game appearance.

121

We seem the same phenomenon in tables of data: tables are often displayed with
alternating rows or columns shaded. As with checkerboards, the alternation helps
people view the grid more easily.

Fren Hist Synch Move Board Topo Piece Compart Genre Info Ref End

Chess

Poker

Crosswords

Rock Paper Scissors

ft h

sc mm bgs

sc mm bgs

h er mrmp bc

sr mm bgs

st mrm bgs

h st mrm bc

pac gw

pacinc chfbf gn

gn

gn

chf

Mammon ft sp mmp bi tO chi gr if;u

Cinese checkers szzzzmm bg-t 2iiic PC_ _

Chutes and Ladders

Trivial Pursuit

sc mm bdg t2 PC

sc mm bug t2 psc

EGGG alternates square colors when the following conditions hold:

e The grid is a square, and the squares are truly square. We don't want squares
sharing an edge to share the same color, because then the boundary between
the squares disappears. Only grids of squares and triangles can be colored
with two colors; other shapes need more than two, and we decided that the
coloring might confuse as much as it helps. We also elected not to color
triangular grids.

* The grid is 5x5 or larger. Small grids are easy to see all at once, so they aren't
colored.

* Pieces fit inside a square. In games like Tetris, pieces consist of multiple
squares; the motion of a Tetris piece on an alternating field of colors means
that the piece would change color as it moved.

EGGG does not color a Go board, because in Go one plays on the
intersections of squares and not inside the square. That is, the squares are

122

es;n

r en

gw

actually crosses so large that they touch.

The Pieces
Pieces can be things placed on top of the squares, or they might be attributes of the

squares themselves. They can even be the squares. We now consider the eight games
of EGGG mentioned in Chapter 1.

* Pieces placed on top of squares. Chess is the best example of placing pieces
on top of squares. The piece images are placed by the window manager on

top of the squares beneath, and both piece and square are rendered as buttons.
In the example shown earlier, the images have no transparency layer; that's
why their backgrounds obscure the colors of the squares beneath.

Players need to be able to click either the pieces or the squares; that's why
they're both buttons. Players need to be able to select the pieces to identify
which piece they want to move, and they need to be able to select the square
to move to. If the move is a capture, the square will already have a piece on it
(with the exception of en passant capture), so EGGG has to distinguish
between the phases of the move: the first phase is picking a piece up, and the
second phase is putting it down again.

Poker is also a game where the pieces are laid on top of the surface below,
but since the surface is a canvas and therefore unresponsive to user actions,
this is uninteresting.

" Pieces that are attributes of squares. In many games, the pieces can simply be
treated as the text or color of the square. When the squares are truly square,
they can then be implemented as Tk buttons.

In deducto, the "piece" is simply the color of the square: black or white in
regular deducto, and the hue/value/chroma or RGB triplet in the color
variants. Clicking on the piece is therefore the same action as clicking on the
square.

In tic tac toe, the pieces are simply X and 0 symbols: simple text strings.
When the pieces are strings, EGGG renders them as the text attributes of the
buttons representing the squares.

In Tetris, each piece is a set of several adjacent squares, colored differently
from their background. Since color is all that is necessary to distinguish

"piece" from "not-piece", the squares of a Tetris grid can be represented as

simple attributes and not as the squares themselves.

* Pieces that are squares themselves. In EGGG's rendition of Rock Paper
Scissors, the squares don't move, and no attributes of the squares ever
change. The squares are the pieces themselves; the act of selecting the piece

123

is the move.

The identification of pieces that are squares themselves is tough to deduce
from the game descripton alone. One might assume that in the crosswords
that EGGG generates, the squares are simply white or black, and the pieces
are the letters, placed on the squares by setting the text of the corresponding
Tk button to the appropriate letter. If that were all there was to a crossword
grid, that's what EGGG would do. The problem is that some of the white
squares need a visible clue number in the upper left, and the text attribute of a
Tk button can't have text in two places. The solution is inelegant: the
Eggg: : Crossword module contains links to an image directory with a
pre-rendered image of every possible square. There's a black square, a white
square, a square with a I and an A, a square with a 1 and a B, and so on
throughout the alphabet and up to 200: 5202 images in all. When the user
types a letter on a square, he may think that he's typing into a text field; in
fact, he is deleting a button, reading in a new image from disk, and creating
another button in its place. Luckily, the images are small, and players don't
perceive the computation happening behind the scenes.

This odd treatment of pieces-as-squares highlights the discrepancy between a
gamer's perspective of game classifications and a developer's perspective.
Crosswords are an example where players might expect pieces and squares to
be implemented as separate abstractions, but they are not. The "15-puzzle" is
an example of the opposite.

In the 15-puzzle, a 4x4 grid of fifteen tiles is numbered one through fifteen.
Initially, the tiles are in some random order, and the player's goal is to order
them numerically. You can slide any tile in any direction as long as it
satisfies the intuitive physical constraint: the space you slide it into must be
empty. Players would assume that the fifteen puzzle is a perfect example of a
game where the pieces are the squares, because they are in the tangible, real-
life version. However, not in EGGG. Here is how EGGG renders the game:

124

Alo Preferences Help

5 3 1 15

2 10 7 8

4 9 13 12

6 14 11

The buttons never actually move; the act of clicking on one of the squares
simply renumbers all of the squares as if they had moved.

* Games without pieces. Mammon (discussed in the next chapter) has no
pieces at all.

Whenever a game has pieces, EGGG always places it in the center of the square if
there are squares, and half the distance from the center of the canvas if there are no
squares. If the piece overlaps the square or canvas boundaries, it is cropped to fit.

Color
The agitation for the Universal Colour Bill continued for three years; and up
to the last moment of that period it seemed as though Anarchy were destined
to triumph.

Edwin A. Abbott, Flatland, p. 38

EGGG divides games into those in which color has intrinsic meaning, and games for
which color is ignored or is only a superficial attribute. In the games rendered by
EGGG, only the color variants of Deducto treat color as an attribute with intrinsic
meaning - that is, using color as a multidimensional value in the play of the game,
rather than merely as something to identify players or pieces. In games where color
matters, EGGG represents colors as Munsell values, and only converts to RGB
triplets when Tk requires it.

EGGG also makes a few aesthetic choices for games in which color doesn't matter.
For instance, the canvas for any sort of betting game is colored green. EGGG also

125

sets the white point of the game's window (affectionately called the "EGGG white")
using Tk's setPalette () method to enhance legibility of the text or grid when
necessary. At some point, EGGG will be modified to represent all colors as Munsell
values, in part so that both regular and highlighted text can be guaranteed legible
regardless of the palette. The color choices will be made according to the alignment
and amplitude model of color juxtapositions described in [Jacobson 911.

Note: this has not yet been implemented in EGGG.

Get Your Game Face On
This type of illusion is generally known as the "Eliza effect", which
could be defined as the susceptibility of people to read far more
understanding than is warranted into strings of symbols - especially
words - strung together by computers. A trivial example of this effect
might be someone thinking that an automatic teller machine really
was gratefulfor receiving a deposit slip, simply because it printed out
"THANK YOU" on its little screen.

Douglas Hofstadter, in Fluid Concepts and Creative Analogies, p. 157.

What Hofstadter says is as true of faces as it is of words. An early version of EGGG
emphasized conveying the state of the computer opponent to the player. As it
searched the game tree, it would display a one-phrase opinion of how well it was
doing in a window. Another window displayed the opinion in the form of a crude
face:

O O

The length and arc of the smile were proportional to how well the computer
opponent thought it was doing. As EGGG played, the smile would subtly deepen as
it did better and better, or frown more and more as its condition worsened. When the
game began, the face would begin with a slight smirk to convey its confidence and
intimidate the player.

The eyes drifted randomly. Some players assumed that the EGGG face was looking
at the part of the board that it was considering. This made it, inadvertently, a cheap
form of bluffing - by conveying illusory intentions, it misled players into believing
that EGGG was following a different strategy that it actually was.

Note: this has not yet been reimplemented in the current version of EGGG.

126

- -1

Chapter 6: Connect the Bots
(Networking)

The multitude is always in the wrong.

Wentworth Dillon, Earl of Roscommon

The Internet has rendered solitaire obsolete. If you're looking for a human opponent
for a popular game, you can always find someone at a server that lets participants
play at any hour of the day or night. Most computer games today are sold as
standalone applications, but it's likely that not long from now, it will be the
exception rather than the norm for computer games not to make some use of the
Internet.

To a large extent, the networking needed for games is no different than the
networking needed for other computer applications. But this is true only up to a
point; the networking process is not completely independent of game play. For
instance, multiplayer frenetic-fast games require a stateful networking protocol, and
the faster the action, the less overhead the protocol can have. The once-popular game
Netrek is a space-themed shoot-em-up with up to sixteen simultaneous players. The
original version allowed only TCP/IP connections, which is fast enough for most any
networked application, but not Netrek. TCP is a "reliable" protocol; when a client
receives a packet, it sends an acknowledgment back to the server. Later versions of
Netrek introduced a UDP option that allowed a player to jettison the
acknowledgments. He'd occasionally lose a packet or two, and missiles would
appear out of nowhere or stop dead in their tracks as packets were lost, but this
tradeoff of accuracy for speed was deemed worthwhile by the vast majority of
players.

Likewise, the synchronization of the game affects the protocol used to exchange
information between players. When all the players must move at once, the game can
only be as fast as the slowest connection. In some games, every player action must
be broadcast to all the other players; in others, there can be a division between
information kept locally, information sent to selected other members (a single
player, or a team), and information that everyone has to know about. Some games
can be peer-to-peer, and others require a centralized server.

EGGG is able to generate some networked games. In this chapter, we will discuss
how this is made possible. First, we will talk about a lot of games with a little
networking - the intermittent connectivity made available to all EGGG games, and
then we'll discuss "serious" networking - multiplayer games that require
networking at their core.

127

The Henhouse, And Stateless Connections
Game designers do not, as a rule, assume that their computer games have an Internet
connection available to them. That's unfortunate, because constant connectivity
enables new styles of game generation, play, and analysis. If that sounds sweeping,
it's because we're not just referring to the potential of networked multiplayer games,
which consumer markets have to some extent already realized. Instead, we are
talking about features that apply to all games, and to the collaborative design process
that can only be made possible with a central repository of game design knowledge.

EGGG maintains a single central repository on a computer at the MIT Media
Laboratory. The repository is called the Henhouse, and it contains four datasets:

e Game descriptions (. egg files) created by game designers.

This is an important resource for new game designers who want examples of
the EGGG language, or for designers who want to create variations on
already existing EGGG games.

Ideally, this will become like the Comprehensive Perl Archive Network, or
the Comprehensive TeX Archive Network, where people upload their
creations (Perl modules, or TeX utilities) for everyone to use. Such a
Comprehensive Game Archive Network would make it possible for users
worldwide to share their games with one another.

e Invocations of the EGGG engine.

Whenever someone runs the EGGG engine to create a game, a message is
sent to the Henhouse containing the current time, the EGGG version, and
who the game designer is (if the operating system identifies users). This
includes bug reports: when EGGG generates a game with a syntax error, or
an EGGG game generates an error (either during compilation or run-time),
three things are sent to the Henhouse: the error message, the game
description triggering the error, and the entire EGGG engine for good
measure.

" Move histories for EGGG games.

EGGG keeps a history of game moves throughout the course of the game.
When the game terminates, the sequence of moves is sent to the Henhouse
along with the usernames of each player if available. The data structure
containing the game moves is of limited size (it holds 8192 moves by default;
this prevents games with continuous flurries of key- and mouse-clicking from
filling up the Henhouse).

e Computer names and port numbers for networked multiplayer games.

Both the games that EGGG generates and EGGG itself have a -private
command-line switch. When EGGG or its games are invoked with this option, the

128

Henhouse notifications are suppressed.

Mail Generation

Network connections can be either stateless (also called connectionless) or stateful
(connection-oriented). Electronic mail and web pages are stateless mechanisms;
telnet and FTP are stateful mechanisms. Stateful mechanisms are necessary when
the communication requires continuous data exchange. In this section, we'll discuss
the only stateless connection that EGGG supports at the moment: electronic mail.

EGGG searches for a mail program - either common Unix mail utilities in expected
locations (e.g. /usr/bin/mail, /usr/ lib/sendmail) or the Perl Mail: :
modules that enable automatic mail generation regardless of the operating system. (If
it can't find any of these utilities, it doesn't send mail.) All mail is sent to
eggg@media. mit . edu. The four message types are illustrated below.

From: nobody@name.of .machine
To: eggg@media.mit.edu
Subject: Game description

Game description filename (e.g. "mammon.egg")
Game description (mammon.egg contents)

From: nobody@name.of .machine
To: eggg@media.mit.edu
Subject: EGGG engine

Operating system, Perl version, and available modules
The entire eggg program, including the version number

From: nobody@name.of .machine
To: eggg@media.mit.edu
Subject: Bug report

Operating system, Perl version, and available modules
The error message
The entire generated game

From: nobody@name. of .machine
To: eggg@media.mit.edu
Subject: Move history

Game description
Game outcome
Array of player names, rounds, phases, and moves

Mail sent to eggg@media. mit. edu is filtered through a program named

129

eggg f ilter that stores the data in an mSQL database and notifies me of any bug
reports. People can also send mail requesting instructions for a particular game in the
repository; EGGG runs the egggdescribe program and mails back the results.

EGGG-generated games read in their own source code before the game begins. This
is how the games check themselves for syntax errors: during compilation, they read
themselves and invoke a separate instantiation of the Perl interpreter to compile the
program. If any errors are found, the program mails itself to the Henhouse before
terminating. Likewise, if the program aborts while a game is running, a last-ditch
handler traps the error and sends mail.

Global History and Adaptive Learning

In Chapter 2, we talked about the history of a game. This refers not to the common
usage of history, which suggests the genesis and evolution of the game over years,
but to the sequence of player actions during the course of a single session. This is
what Condon and other game researchers mean when they say "history".

We call the history of a particular game session the local history. Distributed gaming
lets us consider the set of every game session ever played by anyone. We call this
the global history, and EGGG uses it to amass a library of opening moves. Every
night, EGGG follows these steps:

1. Store all of the game names in a @games array.

2. Pop the first game off @games.

3. Extract the opening moves of the game into @array.

4. Sort @array by frequency of occurrence.

5. Pop the first sorted move off @array.

6. If there are no more moves, move down the game tree one level (from the
opening moves to second moves, or from second moves to third moves),
extract the moves into @array, and go to step 4.

7. Calculate the Chi-square value for two hypotheses: that the move wins more
often than it loses, and loses more often than it wins.

8. If either move is statistically significant at the 0.05 level, store it in the
Henhouse's module for the game after the __DATA__ token.

9. If 1024 significant moves have been found for the game, go to step 2.

10. If the entire game has been searched, go to step 2.

11. If the amount of time spent evaluating the results exceeds the number of

130

games in EGGG's repository, divided into six hours, go to step 2.

Games can update their strategies when they are invoked with the -update switch;
that establishes a TCP/IP connection to a server that makes the Henhouse results
available.

Thus, EGGG games can change every time they're played. Hopefully for the better.

Multiplayer Networked Games, And Stateful
Connections
Email is fine for reporting game results and bug reports, but networked multiplayer
gaming requires a continuous connection between players' computers.

There are many network topologies for stateful connections; by far, the two most
popular are server/client and peer-to-peer. When EGGG games connect to the
Henhouse, EGGG is a server, and the games are clients.

When a game designer includes a statement like this in a game description, EGGG
creates a game that can be both a server and a client:

networked game

The game window will have two buttons at the bottom: Connect and Serve.
Connect makes the game into a client, first connecting to the Henhouse to find out
what servers are currently available. Serve makes the game into a server that
accepts connections.

The current incarnation of EGGG can only send text back and forth, so typically
those statements look like this:

networked multiplayer text game

(Game designers can stipulate their own protocol, but only by burrowing down into
the underlying Perl code.) By default, EGGG creates a TCP/IP connection, including
code that creates Berkeley sockets, invoking the socket, connect, bind,
accept, and listen system calls as appropriate. The server is built on the
f ork/exec model: one process listens for new connections; when one is found, a
new process is spawned to manage the new connection. Since Windows does not
support f ork, EGGG games on Windows cannot be servers.

131

A Sample Networked Game: Mammon

To illustrate a networked multiplayer text game, we'll examine Mammon, a stock
picking game where players log in to a dedicated server, buy and sell stocks using
play money, and chat with one another. Mammon (in its non-EGGG incarnation)
was actually the first Internet stock-picking game, developed by the author in July
1994 and supporting over six thousand users.

The first statements of mammon. egg are the following:

networked multiplayer text game
port 10900
players are 0. .20

Communication between the server and client will take place over port 10900 (port
numbers are recorded in the Henhouse) and that the server can accept up to twenty
simultaneous connections. Why is that written as 0 . . 20 and not 1. . 20? Because

of the zero, the server will stay up even when no players are present. These three
lines alone generate a chat server where people can send messages to one another.

Here is a screenshot of Mammon:

132

EM nol

Fle Preferences

You are now connected to a Mammon server at fahr.xmedia.it.edu, port 10900
There is 1 other player currently connected.

S login orvant th3rlck
Velcoe, orvant.

$ who
orvant idle 0:00:01
drdre idle 0:36:12

$ say "Anyone here?"
You say, Anyone here?

$ port
Portfolio for orvant:
200 EBAY @ 145 5/16 - 29,062.25
700 IBM @ 98 1/4 = 68,775.00
500 ARTG @ 54 - 27,000.00

-100 RHAT @ 88 5/8 = -8,862.50
You have $47,108.35 in cash.
Total: $163,083.10

S sell 500 ARTG
500 ARTG sold at 54 for $27,000.00.

$ port
Porfolio for orvant:
200 EBAY @ 145 5/16 - 29,062.25
700 IBM @ 98 1/4 = 68,775.00

-100 RHAT @ 88 5/8 - -8,862.50
You have $74,108.35 in cash.
Total: $163.083.10

SI

(The Connect button changes to a Disconnect button once a connection to a
server is made.)

Other statements of note from manmon. egg:

player has %Stocks and $Money
player start is %Stocks = () and $Money = 100000

In networked multiplayer games, each player has his own state; the player has
statement indicates the game-dependent components of that state. (We call attributes
like $state{player) {name) and $state{player) {history) game-
independent components because all EGGG games have them.) The two statements
shown here create a hash called $state {player) {Stocks) to contain the
stock portfolio and a scalar called $state (player} {Money) to contain the
players remaining cash.

133

every minute, { @prices = 'downloadstocks';
for (@prices) { /(.*)\s(.*)/; $prices{$1} = $2} }

Everything between the braces is Perl; what is of interest here is the clause before
the braces - every minute. That instructs the game, when run as a server, to

execute the Perl snippet every minute. (The snippet launches an external program to
download stock information from a real-time quote feed and store the results into the
%prices hash.)

moves are (Portfolio, Buy, Sell, Limitbuy, Limitsell,
Stoplimitbuy, Stoplimitsell, Short, Fund, Say,

Program, Quit, Rank, Who, Login, Register, Price,
Password)

The moves are the commands available to each player; in the screenshot, we saw

the player execute login, who, say, portfolio, and sell commands. Players

can abbreviate the commands; the shortest unique prefix for each command is
determined with Perl's Text: : Abbrev module; that's why the port f olio

command was invoked when the player typed port.

The rest of the game description contains the definitions of the different commands,
which generate the subroutines to be executed (by the server; the client does
virtually nothing) when the player types one of the commands. The command is sent
to the server as soon as the player hits Return. Here is a sample command definition:

Limitbuy(STOCK, AMOUNT, LIMIT) means { Buy(STOCK, AMOUNT)
when $prices{STOCK} <= LIMIT }

This illustrates the syntax of commands: the player can type 1 imi tbuy IBM 30 0
112 3 /16 to buy 300 shares of IBM at 112 3/16 or less. The STOCK is IBM, the

AMOUNT is 300 shares, and the LIMIT price is 112 3 /16. As usual, everything

inside the curly braces is Perl (the capitalized words are replaced with the function
parameters), but here there is an exception: the when token triggers a persistent

action in the server. "Persistent" means that the server will remember the condition,
check for it periodically, and execute the action when the condition is fulfilled.

Interactive chat servers typically take thousands of lines of code, but most of that

code is the same no matter what the server does. EGGG allows game designers to
specify what makes their server different; all the rest is generated automatically.

EGGG is able to generate three types of multiplayer games: those with no spatial

meaning, like Mammon; games where each player has his own side of a grid or

canvas (chess, Chinese checkers), and games where the orientation is fixed
(Scrabble, Monopoly). If the game is designed for a particular fixed number of

players, EGGG will usually be able to render it, generating all the necessary
networking code and identifying how to rotate the board (if there is one) from client

to client. However, EGGG is not tolerant of internally inconsistent game

134

descriptions. For instance, if you take the usual chess description and change

players are white and blacktoplayers are white and black

and red, EGGG will create a nonsensical game that expects a third player to

move-even though he has no pieces to move with.

135

Chapter 7: Conclusion
Since that's the way we're playing it... let's play it that way...

Hamm, in S. Beckett's play End Game

In this dissertation, we have advanced the thesis that the similarities between games
are sufficiently great that they can be abstracted into reusable software components.
To support this thesis, we have developed a system called EGGG that translates
concise game descriptions into fully functional computer games. EGGG exploits
these similarities between games, making it possible for game designers to create
games with a minimum of programming expertise. Designers have to specify only
the rules that make their game different from more generic examples of the genre;
EGGG's reusable components supply the rest of the game logic.

In Chapter 1, we talked about how the decoupling of software and hardware enabled
video gaming to become popular, and we identified the next logical step: decoupling
the soft software (the rules of the game) from the hard software (the
implementation); this is what the EGGG system does.

The games that EGGG creates are not polished. They lack the artistry and speed of
commercially viable software packages, but this is irrelevant to our thesis. We strive
only to show that the similarities between game play are sufficient to create the
games; we make no claims that the generated games rival what a dedicated
programming team can accomplish.

Nevertheless, we have tried to make EGGG as complete as possible, and this
includes adding features that are only tangentially related to game play. For instance,
the automatic generation of documentation is not strictly necessary to advance our
thesis; it simply enhances the EGGG by-product. Our attention to features like
documentation generation underlie the dichotomy pervading this document: first, we
have explored the similarities between games and established a taxonomy of game
classification. Second, we have developed a real software project in the hope that
other people will find it of use.

This dichotomy will pervade this final chapter, which is divided into two parts: What
We've Learned, which examines the degree to which our thesis has been proven, and
What To Do Next, which suggests future improvements to the EGGG system.

What We've Learned
In this section, we recap the similarities between games, enumerate some tips for

game designers, and talk about how games can help turn work into play.

136

Abstraction Revisited

The similarities between games are best revealed by realizing just how little one has
to abstract the components. We could have abstracted them far more than we did,
extending Condon's probabilistic game automaton to handle more than two players, a
model of hand-eye coordination for games requiring frenetic activity, and single-
player games involving no competition. We could also have emulated Pell's
approach, introducing mathematical operators and parameterized functions to

express the play of the game. Or we could have introduced our own formalism and
terminology for representing games.

All of those approaches would have been misguided, because they wouldn't have
made it easier to create games. Nor would they have effectively communicated the

mechanics of game creation to a wide audience. It's also likely that different schemas
would be needed to represent game play, strategies, and graphic layout, and this
would have precluded one of the contributions of this dissertation: establishing the
linkages between these areas.

Similarities Revisited

We can divide the similarities of game play into similarities of structure, similarities
of strategy, and similarities of appearance.

Similarities of Structure

e Player actions can be divided into turns, moves, phases, and steps. Some
games (typically betting games, or games involving quick play) are repeated
many times at a sitting.

* There are a small number of main loops for game programs, and these
depend on the synchronization of player moves and the time requirements of
the program.

* Games can be divided into Markov games, games of partial history, and
games of total history; this determines how much state the game program
must keep.

* Any game with spatial meaning has a playing surface, and a few types of
playing surfaces suffice to represent the vast majority of games. Games
without spatial meaning typically involve the exchange of text.

* Some pieces have state, but most have only a position. Some pieces can be

ranked relative to one another; some pieces are part of an ordered set (like

137

letters) but have no implicit ranking.

" Many game boards are grids - coordinate systems of elements (squares) that
typically hold exactly one piece. In a few games, the squares can hold many
pieces; in a few games, a piece consists of many squares.

" There are two ways that piece information is concealed from players: from a
"hand", where a player physically conceals his pieces from opponents; and
from a "bag", where unseen pieces are concealed from everyone.

" Themes don't matter to game programmers; they usually find expression only
in the superficial aspects of the game: the artistic aspects of the pieces or
board, for example.

" When players need to communicate information to one another, the types of
messages fit cleanly into three categories: friendly information (between
teammates), unfriendly information (bluffing), and information merely
required by the play of the game.

* When the game play is asymmetrical, with one player having a different role
from other players, he is likely to be a referee, and can be given unlimited
access to the game state.

* Every player in a game has some goal, which is better called an ending since
its primary purpose is to determine when the game is over and not who has
won. The ending can be binary (win/lose), trinary (win/lose/draw), or
comparative (amass the most/least of something).

* Both pieces and sets of pieces can often be sorted and ranked; the sortings
and rankings needn't be transitive.

e When the initial state of the game requires randomization, the randomization
might involve pieces in the hand, pieces on the board, or pieces in the bag.
Sometimes the initial state of the board needs to be concealed from the
players.

" Many game situations can be represented as assertions that trigger when
particular conditions exist. Buttons are well-suited to assertions; endgames
are not if the computer program needs to generate strategies.

" Game play can be divided into variants and invariants, and placed into

separate data structures (%s tate and %game, in EGGG).

" Game knowledge can be divided into intrinsic and extrinsic characteristics,
and placed into separate namespaces (the game description and the game
module, in EGGG).

" Piece names sometimes reflect their owner, owner names sometimes reflect
their location. All names need to be abbreviated uniquely.

138

Similarities of Strategy

e A generalized minimax procedure can be applied to many different types of
games, not just games of perfect knowledge. If the static evaluator is chosen
appropriately, even games of psychology can employ minimax.

* A generalized static evaluator can be applied to many different types of
games - even games where it is difficult to estimate the distance between
the game state and a player's goal.

" A library of opening moves can be amassed from the aggregate play of a
population of players.

" It is easier to generate opponents for asynchronous games than synchronous
games - not because the simultaneity of moves poses a problem, but
because asynchronous games are easier to analyze.

* When the rank of a piece can't be easily extracted from the rules of a game, it

can be estimated by enumerating the number of situations in which the piece
is less powerful than others.

e The motility of a piece is not as easy to estimate as it might seem, since the

available moves are often determined by interactions with other pieces in
situations of unknown frequency.

* The rarity of a piece type can sometimes be inferred from the board
configuration, and sometimes from the probability distribution underlying
piece generation. When the rarity is known but the piece values aren't, or the
piece values are known but the rarities aren't, the unknown quantity can be
estimated with Zipf's law.

* When all possible outcomes of the game can be enumerated, the expected
value of a piece can be calculated, and then we don't have to use our ad hoc
estimate of piece power.

" Most games have discrete moves being made at discrete times, and for these

games Hidden Markov Models can be used to identify patterns in a player's
behavior.

" Behaving randomly (usually with a weighted distribution) is often a good

strategy, even for bluffing. Unfortunately, people aren't very good at
behaving randomly; it's often possible to determine when they are trying to

behave randomly and even predict what they will do next.

" Even in Markov games (games where the state doesn't rely on the history),
histories sometimes provide a clue to how players will move. This is true
both for local histories (the history during a particular game session) and for

139

global histories (the history of all games played).

* One generic strategy is to maximize the ratio of the moves you have
available to the moves that your opponents have available.

" When player abilities need to be estimated, either the beta distribution or the
normal distribution can be used, depending on whether the game ending is
binary/trinary or comparative.

" When there are multiple attractive moves, a weighted distribution can be
used to choose one at random to keep play interesting. However, the
likelihood of choosing a move must be supralinearly proportional to the
attractiveness; otherwise, the premium placed on interesting moves is likely
to result in a loss. When no premium is placed on interesting moves, the
result is an optimal bluffing strategy for games between rational players.

* People are eager to believe that computers have insights into the game that
they might not actually possess, and this can be exploited to the computer's
advantage.

Similarities of Appearance

* Non-frenetic games can always be paused, frenetic-fast games can sometimes

be paused if you blank out the screen, and frenetic-timed games should never
be paused.

" Games need to know not just what information to show a player, but how
long the information should stay visible. Put another way, displayed
messages should have expiration dates.

* A few attributes of the game state can be made directly manipulable by the
player in a Preferences menu; most cannot.

* Players are more likely to perceive their opponent as intelligent when it is
depicted with a humanoid face.

" There is no substitute for a geometry manager that provides pixel-by-pixel
control over the placement of windows; simple relationships like "this widget
should be attached to the top of that widget" aren't sufficient for many games.

" Boards should be oriented so that the flattest side is facing down; the flatter

the side, the more likely that it belongs directly in front of a player.

" Large grids need something to help players divide the board into manageable

chunks. Checkerings and thickenings help accomplish this.

" Pieces can be on top of squares, attributes, or they can be the squares
themselves. However, the appropriate choice is determined more by the type

140

of display than by the rules of the game.

e The Munsell color space is better than RGB for representing colors in games.

Complexity

Perhaps surprisingly, we have avoided talk of complexity in this dissertation.
Complexity can mean a variety of different phenomena. To Condon and Pell, it
means computational complexity; to Beasley, it means the difficulty of determining
who can win; to a developer, it might mean how hard the game is to implement; to a
player, it might mean how hard the game is to learn or play. We now turn briefly to
two crude observations about complexity from the player's perspective.

If we define complexity as the number of moves that a player has to consider at a

time, we can categorize games by the shape of the complexity over time. Chess
complexity peaks in the middle, because beginnings and endings permit fewer
moves than the midgame. Nine-men's morris peaks in the middle as well, at the
moment you switch from placing pieces to removing them. Scrabble complexity
more or less monotonically increases, since the number of possible plays increases
as number of words on the board grows. The complexity of crosswords, Black Box,

and Stratego monotonically decreases. Go ramps up fast (the board starts simply, and
standard openings allow players to move quickly), stays high for a long time, and
ramps down fast at the very end.

If we instead define complexity as the amount of detail that a player must consider
during the typical move, we can categorize games into those that blind people can
easily learn and those that they can't. Poker, tic tac toe, and even chess are in the first

category. Monopoly and Diplomacy are in the second category, because they have
arbitrary (some would say inelegant) boards that possess a lot of detail. A blind

person has to memorize a lot of bits to play Monopoly or Diplomacy. Games in this

category are hard to generate with EGGG because there's no concise way to describe
them. What's interesting about this classification is that it gives you a hint about
when the game was made; most games in the second category were developed after

the industrial revolution, since they require custom boards that only modern
manufacturing processes can produce inexpensively.

Tips for Game Designers

EGGG helps implement games; it doesn't help design them. Nevertheless, in the

course of designing many EGGG games we've made a few observations that might
help designers create better games.

141

Computer Opponents Should Act Smarter Than They Are

In Conversation With and Through Computers, Brennan notes that system designers

are frequently overzealous in adding human touches to their programs, with the
unfortunate result that users ascribe more intelligence to the program than it actually
has.

But one man's bug is another's feature: This is an asset to the creation of intelligent-
seeming game opponents. In poker, a little bit of posing helps the opponent.
Computers don't have much of a chance at seeming stupider than they are, but
they're great at pretension.

Make Mistakes

Some of my more interesting variations resulted from bugs as I was designing
EGGG. For instance, my first chess game allowed a player to capture his own
pieces. I'm a poor chess player, but this seems to me like a perfectly reasonable
variation.

One of my first Tetris games never turned squares back to their original colors once
occupied; the result was blue piece-tendrils racing down the screen to the bottom. To
avoid immediate death, you'd have to rotate each piece so that the narrowest side
was facing down, and then hope that the next piece would start from a different
horizontal location. These games wouldn't last long, but it was surprisingly fun
trying to stay alive for as many pieces as possible.

To fix the problem, I switched EGGG into a debugging mode that displayed the
coordinates of each square comprising the Tetris piece. As the Tetris piece moved
down the screen, the squares of the piece would display their coordinates - which
wouldn't fit entirely inside the square, so the square would grow. After the piece
passed by, the square would shrink again. The result was that the piece looked like it
was being squeezed through a spongy medium. The game became a little more
difficult; since you couldn't align the piece with the bottom of the screen, it was
harder to project the piece onto its eventual resting place. A screenshot is shown
below.

142

I -- 1- - - -1 -1-- -- ---------- O M N

In one of my poker games, I experimented with a (later abandoned) feature that had
EGGG try to figure out what pieces should look like, by searching through the local
filesystem and then the web to find appropriate pictures. It found images of cards,
but it found images of chess pieces first. The result: aces through jacks looked as you
would expect, but the queens and kings were chess pieces instead of cards. This

143

obviously makes for a lousy poker game, but it does raise the interesting question of
what card game variants might result if certain cards were physically different from
others, so that opponents had some information about the contents of your hand.

While none of these variants are likely to be more popular than the original versions,

they do suggest ideas for other games. When your language is at a high-enough
level, some bugs look like brainstorms.

Include Easter EGGGs

Some computer games (typically one-player games) retain their popularity because
players are always finding new ways to play, or new avenues to explore. The Easter
eggs found in some arcade games are examples: rumors float around that if you
perform this action just so on level X, the hero grows a tail, and all of a sudden
everyone is pumping quarters into the machine to see it happen.

If Microsoft can include a flight simulator in Excel (open a new workbook, press F5,
type X97: L97, click Ok, press tab, hold down Ctrl-Shift and click on the Chart

Wizard icon on the toolbar), EGGG chess programs can include Easter eggs. They
are most easily implemented with assertions, since assertions provide a way to let

game designers specify particular actions to occur when arbitrary conditions are met.
Here's a sample:

assert after move: { if ($state{board}[8][8] = "white Pawn") {
use LWP;
$_=get("http://www.intellicast.com/weather/BOS/content.shtml";);
s/^ .*<\/?BLOCKQUOTE>//gs;s/< [^>] +>//g;s/\n{3,}//g;

display(wrap(",",$_)); } }

If white promotes a pawn to the upper right hand corner of the board, EGGG
displays the current weather in Boston.

The only problem is that the egggdescribe utility will faithfully document the

Easter EGGG. It's not much of a secret when players can discover the egg just by
reading the documentation.

Measuring Playability

It's a truism that games evolve to maximize playability: if gamers don't enjoy playing
a game, they won't play it, and that lack of popularity will prevent the game from

spreading. Games compete for the increasingly scarce resource of leisure time;

people can only spend so many hours per month playing games, and so the more

playable games extinguish others in the marketplace (or download areas). But some

games are tenacious: in the last five hundred years, chess has seen only two rule
changes: the rule that allows pawns to move two squares from their initial position,

144

and the en passant rule to counterbalance it.

To what extent could EGGG be used to evaluate the playability of games or
variations? This is a difficult question. Not only is any measure of playability
subjective, but playability is likely to be confused with enjoyability in the minds of

many users. The quality of the graphics in many of today's arcade games disguises
insipid play: if the same game were rendered with crude geometric shapes, it would
be an utter failure. When an ugly game is nonetheless popular, that's when you know
it's playable.

Can EGGG measure the playability of a game just by looking at the game
description? It would be nice if EGGG could provide some assistance to would-be
game designers trying to create a game from scratch.

One simple metric is the size of the .egg file. The larger the file, the more

information is necessary to represent the game. The .egg files for tic tac toe, chess,

Monopoly, and card trading games might well span four orders of magnitude. The
notion that the size of the representation is proportional to complexity isn't new: the
Kolmogorov complexity of a program is the minimum length of the Turing machine
needed to generate its behavior.

Another criterion would be to assume that current popular games are paragons of
playability, and the more a variation deviates from the known game, the less
playable it is. This is a bit reactionary, assuming as it does that the natural evolution
of games cannot be improved upon.

Both of these metrics assume that all rules contribute or detract equally from
playability, but obviously not all rules are the same. For instance, would chess be a
less playable game if a stalemated player were to lose instead of draw? Perhaps, but
only slightly, since the situation occurs so infrequently. So frequently-invoked rules
should have larger absolute weights. How often will a particular rule be invoked?
We can't know, because there's no way to know beforehand how a game will be
played. (It even depends on the quality of the documentation.) When Parker Brothers
rejected Monopoly in the 1930's, one of the reasons was that the game took more
than 45 minutes to play - that was one of their criteria for playability. The current
version of EGGG has no way of knowing how long games take to play. At the end of
the day, the only feasible measure of playability is empirical.

Empirical Evidence Of Playability

EGGG gathers empirical evidence of playability: since the games generated by
EGGG send messages to the Henhouse identifying which game was played, we can

tell how popular each game is. This allows compilation of statistics about which

games are being played, and we believe this the best evidence of playability one can

hope for. The statistics about the games are automatically compiled and made
available on the web.

145

This feature is keyed to the current year. All of the invocations sent in the years 1999
and 2000 will be included, half the possible messages sent in 2001 will be included,
one quarter of the messages in 2002, and so on. Thus, if EGGG becomes popular,
this will give the Henhouse a random sampling of the computer gaming universe -

at least, that portion of the universe spanned by EGGG.

We borrow our empirical measure of playability from the slogan of Othello: "a
minute to learn, a lifetime to master". The measure is simply computer opponent's
win-loss ratio divided by the compressed bytecount of the EGGG description. The
briefer the description, the easier the game is to learn ("a minute to learn"); the worse
the computer generated opponent does, the deeper the strategies get ("a lifetime to
master.")

Of course, many people find Othello boring. And the simple-minded EGGG
opponents have simple-minded adaptive learning; they improve (slightly) over time,
so the playability of a game will decrease over time as the computer's proficiency
increases. And EGGG can't generate computer opponents for every game, only for

games that can be represented as game trees.

Why There Can Be No Good Measure Of Playability

Without a deeper understanding of games, EGGG has only the game description and

player actions available to it. Player actions are a mediocre measure of popularity,
and the game descriptions won't always have the information necessary to conclude
anything about the game's playability.

Consider this game description:

goal is solve
one player
Colors are { open(FILE, "colors.txt"); <FILE> }
shuffle Colors
Randnames are { (map (m/BGCOLOR="(.*?)"/, Colors)) }
Randcolors are { (map (m!<FONT.*?>(.*?)!, Colors)) }
board starts [shuffle Randnames, Randcolors]
2x5 grid
squares display numbers
solution displays numbers
solution is { Randcolors => Randnames }

This yields a color matching game that teaches players how to match up Munsell

names with colors:

146

E MI
File I Preferences I HeM 1

Players type letters in the left-hand column, and the game rearranges the squares in
that column. When each name is matched with the appropriate color on the right, the
game is won. For instance, the "lOG 9/6" color is the cyan color labeled "D", so the
player should type "D" on the square labeled "lOG 9/6", which makes the second
and fourth squares of the left column exchange their labels.

Now let's consider another game:

goal is solve

147

one player
Dictionary is { open(FILE, "german-words.txt"); <FILE> }
shuffle Dictionary
Randenglish is { (map (/^(.*?)\t/, Dictionary)) }

Randgerman is { (map (/\t(.*?)$/, Dictionary)) }
board starts [shuffle Randenglish, Randgerman]
2x5 grid
squares display numbers
solution displays numbers
solution is { Randgerman => Randenglish }

This game teaches German vocabulary. Note that the game description is nearly
identical to the game description for the color matcher.

148

-63(3G ix Ma RE

about

necktie

Krawatte twenty

real

juice

Finally, here is another nearly identical game description.

goal is solve
one player
News is { local $/ = ""; open(FILE, "news.txt"); <FILE> }
shuffle News
Randpicture is { (map (/^picture\s+(.*?)$/m, News)) }
Randheadline is { (map (/^headline\s+(.*?)$/m, News)) }
board starts [shuffle Randpicture, Randheadline]

149

zwanzig

Sart

echt

etwa

2x4 grid
squares display numbers
solution displays numbers
solution is { Randheadline => Randpicture }

This game has players match headlines of news articles to accompanying photos:

EGGGNewsmath Mli E

A program was used to gather live data from the Internet (http://www.cnn.com, in
particular) and break out the picture, headline, and text of the article into a
news. txt file. (The text of the article is ignored in this game, but one can envision
games in which the text is used for other purposes.)

Each of these three games has essentially identical game descriptions. Some of the

150

statement names are different, and each uses different regular expressions to extract
the two columns of data from the appropriate . txt file, but the play of the game is
exactly the same in each. Yet while these games might be deemed playable, games
with the same play architecture might not be. A game description that matches up,
say, the first letter of a web page to the size of the web page would look just like the
three games just shown, but wouldn't send Hasbro running for their checkbooks. The
game description will never be enough to determine playability.

Making Work Into Play

Each player has a string with a total of 80 beads on it. The red,
green, blue, and yellow beads are arranged in an irregular sequence.
The colors of the beads, as the name "RNA Game" suggests,
correspond to the four building blocks of ribonucleic acid... two kinds
of linkages - the one joining red beads to green, the other joining
blue with yellow - represent the hydrogen bonds that hold the
complementary bases together.

M. Eigen and R. Winkler, Laws of the Game, p. 285

Deducto does a pretty good job at fooling people into learning, or more precisely, at
making the task of finding signal in noise as enjoyable as possible. It's not hard to
imagine a Deducto-like game put to more professional use for domains in which
analysis involves pattern recognition. This is the stuff of science fiction, but it raises
the larger question of whether EGGG can be used for more than just games - to
what extent is it a generalized programming assistant? Unfortunately, the answer is
that EGGG makes a lousy programming assistant. The game descriptions are as
concise as they are only because the EGGG engine already has a pretty good idea of
what it's creating.

Nevertheless, in our opinion there are many ways in which automated game
generation, combined with a transformation of the rules of some phenomenon into a
game context, could be used to make work into play. Below, we list a sampling of
ideas.

Making language learning into a game.

" Matchers that embody vocabulary drills like the German word game
shown above.

" Frenetic-fast games that reward players for quick comprehension:
translating a sentence, filling in a blank, or following directions in the
foreign language before time runs out.

* Puzzles that involve shapes corresponding to grammatical roles;
adjectives can be chained together because the end of one fits into
another; verbs cannot.

151

0 Making programming into a game.

" Simulation games in which players design Turing machines to solve
simple problems.

" Detective games that entice players into debugging programs with an
arsenal of tools: magnifying glasses that examine data structures,
tripwires that create breakpoints, flashlights that create print
statements, probes that provide a multitude of inputs to the program.

e Black box-like games in which players try to deduce how a program
works given input and output.

" Simulation games in which players assemble programs with visual
representations, by combining prebuilt program structures (loops,
subroutines, reducers, input and output idioms) in the right order to
solve some task.

" Making physics into a game.

" Arcade games in which players have to quickly solve simple
problems involving gravity, friction, rotation, or optics.

* Multiplayer games in which players create theories to explain
fictitious phenomena; the theories are scored according to Occam's
razor.

" Spacewar-like arcade games in which magnetic ships must navigate
around (and into) charged geometric objects, as a way of learning
about Maxwell's equations.

* Making mathematics into a game.

" Sequence puzzles in which players have to predict the next number in
a sequence.

" Games in which multiple graphical elements move about following
simple constraints, and the player has to predict where they will end
up, solving a differential equation.

e Games in which players combine visual representations of axioms to
prove geometric theorems.

* Making news into a game.

" A race game in which you're the investigative reporter trying to amass
stories (gathered from the Internet) for the next edition before time
runs out.

" A betting game in which players predict the news based on real

152

events, with parimutuel odds based on how many people bet on which
side. The Iowa Electronic Markets (http://www.biz.uiowa.edu) and
Vadim Gerasimov's News Totalizator
(http://vadim.www.media.mit.edu) are two examples.

* A matcher game like the one shown earlier, but with the text of the
articles present. Alternately, the texts might all cover the same story,
and the player's goal is to match the article to the news source, as a
way to illuminate the biases or writing styles of different news
sources.

" A game similar to the Qix arcade game in which players must lay out
advertisements and articles on the page, balancing revenue with
printing costs and subscriber disaffection.

" A game like Balderdash, in which players have to identify a fictitious
news story from a collection of real news stories.

Lessons Learned
As stated in the introduction, EGGG is not about children, education, gender, or
culture. In this section, we discuss what EGGG is good for - not in the obvious
sense that it helps people create games, but in the broader context of what systems
like EGGG portend for the game-designing and software communities.

0 EGGG makes game design easier, and therefore better.

Although EGGG offers no feedback on the games it generates, it indirectly improves
game quality by shortening the game development cycle from months to minutes.
This enables game designers to implement a game quickly, and then play it to
discover any problems with their design. If problems are found, they can be fixed,
and a new game generated immediately. Game design thus becomes an iterative
process of trial and error, an inherently easier way to create and refine programs than
to rely on perfect planning and meticulous execution.

EGGG also provides something that hasn't existed before: a centralized repository
for games and game designs. The repository shows people the rules governing
successful games, making it easier for people to examine what has made other games
successful and to modify them, creating variations.

An interesting question is whether EGGG might someday be able to critique the
design effort, or even suggest what games to create, instead of merely automating
their creation. Earlier in this chapter, we offered evidence that directly estimating
the playability of the game from the rules alone isn't possible without a deep
understanding of the player's experience. But a data-driven approach is possible:
what EGGG might someday be able to do is to calculate the difference between a

153

newly-created game and already existing games. One way to accomplish this would
be to chart the universe of games, treating it as a multidimensional space in which
each game is a single point defined by some combination of how it is categorized
and the rules that ultimately define the game. The distance between chess and its
variations would be small; the distance between chess and poker larger, and the
distance between chess and Doom larger still. How many dimensions would the
space have, and more importantly, which dimensions are the most important?
Would the dimensions correspond to the taxonomy in Chapter 2? For instance, one
dimension could be the number of players, and another could be some measure of
the complexity of the playing surface.

If such a space were defined, it could be used to tell designers what other games
their game resembles. The next step would be to use it to create new games without
human intervention. Underrepresented regions of the space could be mined for new
game ideas. One could interpolate between games, creating a game halfway
between two others; or extrapolate them, making a game less like another game, or
less like all other games.

0 EGGG is an unusual software engineering approach.

Automated programming efforts always embody a compromise between the scope of
the automated programs and the degree of automation. The Programmer's
Apprentice had a broad scope - it helped programmers create any sort of program,
but it was a suite of tools that helped expert programmers program better. In
contrast, the currently available game generation systems allow users to "program"
with nothing more than a mouse - but the domain is extremely narrow, restricted to
a particular game subgenre. Similarly, non-game automated programming systems
are also tailored to very narrow domains.

We can think of the Programmer's Apprentice as being top-down - full of deep
abstractions, discoveries about the programming experience, and domain-
independent idioms used by expert programmers. We can think of the more
commercial systems (whether game-related or not) as being bottom-up, driven by a
particular task and full of domain-dependent behaviors. EGGG, then, is middle-out,
combining the lofty aims of a generic solution with the realities of a domain-specific
real-world software project and its attending desiderata - efficiency, speed,
portability, modifiability, and so on. EGGG can now be taken in two directions; it
can grow upward, with more emphasis placed on formalizing its abstractions and
exploring their applicability to domains other than games. Or, it can grow
downward, with more attention paid to making the system used by thousands of
would-be game programmers. It is a source of satisfaction to us that both options are

available, and for all its flaws, we consider EGGG a promising model for automated
software design.

The most salient flaw in EGGG is the disconnect between the taxonomy of games
described in Chapter 2 and the actual EGGG implementation of the taxonomy. To

put it bluntly, the mapping is messy, full of special cases not for particular games
(that would be cheating) but for genres of games. The end result works well for

154

easy-to-pigeonhole games and their variations, but at heart EGGG's categorization of
games is too coarse. Many game variations that fall through the cracks, exposing
EGGG's inflexibilities. Consider Siamese chess, a game for four players on two
chessboards, side by side. When one player captures a piece, he can give it to his
partner, who is playing on the other chessboard. This can be represented in EGGG,
but only with difficulty. EGGG makes it easy to create a game with any single
playing surface; creating two playing surfaces is substantially more difficult,
requiring that the designer burrow down into the underlying Perl. The designer
could take another approach: define a single 8x16 board, but with an invisible barrier
down the middle. Then the board is simple, but the piece movement is now more
complex. For instance, a bishop can no longer simply move diagonally up to the
board edges; instead, a bishop on the left half-board can move diagonally to the
upper, left, and bottom edges, but must obey the invisible barrier to prevent it from
crossing over onto the right half-board.

So we have two quite different ways to describe the same game. In one, the board is
complex and the piece movement simple; in the other, the board is simple and piece
movement complex. This tells us that EGGG's taxonomy can't easily be translated
into dimensions in our game space: if our taxonomy were mapped directly onto axes,
these two descriptions of Siamese chess would each become different points in the
space. However a game space is structured, it must be consistent; games should map
uniquely to points in the space regardless of how they are described to EGGG.

9 People learn when they design games.

People learn about games when they design EGGG, even though EGGG itself offers
no tips about how to make games better. Part of that education comes from users
realizing what they have to describe and what they don't - it makes users consider
the core of their game play, but little more. In the course of designing games with
EGGG, we found that an important criterion is what we'll call balance. A game is
balanced when players have multiple options available to them for most of the game.
Games in which key moves force players into rigidly-defined courses of action
(whether as part of a winning strategy or a losing one) tend to be less fun for the
player whose decisions have been constrained. EGGG can't determine a game's
balance from the game description, but the fact that the games are networked could
make it possible for EGGG to analyze this aspect of playability from the history of
moves (in game-tree games, where the minimax procedure can enumerate the
available moves at each point during the game), or even the time taken for each
move.

There is also room for the a deeper analysis of the game description. For instance,
EGGG could confirm that the rules governing different players are symmetric. If a
chess variant included a rule for white without a corresponding rule for black, that
could be identified and fixed during parsing in the same way that EGGG currently
queries the designer when a nonexistent definition is referenced in the game
description.

To a lesser extent, people learn about programming when they use EGGG. They see

155

their descriptions translated into a large program complete with documentation and
graphics, and they can see how tiny changes in the game description can
dramatically affect the structure of the generated program. By seeing what code
EGGG generates, and in particular how the code changes from game to game,

designers can acquire knowledge about the software components that EGGG uses.

To a still lesser extent, EGGG users can learn a little bit about how complexity arises
from simple rules. If the time spent playing them is any indication, games are

compelling phenomena, and an understanding of how entertainment emerges from
the interaction of a dozen or two rules would be powerful indeed. Perhaps future
versions of EGGG will be better able to convey this understanding of not just how a

game works, but why.

What To Do Next
In this final section, we will discuss potential improvements to the EGGG system.

Text Adventures

One genre of games lacking from EGGG's repertoire is the text adventure. There are

similarities among text adventure games: most of them have an emphasis on puzzles;
most involve a first-person journey through a virtual space of around a hundred
locations; most involve the player gathering objects and using them to gain entry to
particular locations. EGGG cannot supply the creativity that all good text adventures
require, but it should be able to provide a framework to let designers concentrate on

the rooms, roles, objects, and puzzles, instead of the programming.

Evidence for the similarities between text adventures is provided by the existence of

the Z-machine. Years before Java popularized virtual machines, Infocom (makers of

most of the popular text adventures of the 1980's, including their flagship game
Zork) invented the Z-machine, a virtual computer that allowed Infocom adventures
to run on all popular operating systems of the mid-eighties, from the PDP-10 to the

IBM PC. The Z-machine consisted of a series of opcodes and an interpreter to run

them; the effect was to allow game designers to separate the platform-independent
story file (e.g. zork1. dat) from the platform-independent interpreter

(zork1. com).

Michael Edmonson created rezrov, an Open Source Z-code intepreter written in

Perl [Edmonson 99], and it may be integrated into a future version of EGGG.

Speed

The early versions of EGGG were quite fast, because they didn't do much. Later

156

versions got slower and slower as the EGGG language grew in complexity, with
EGGG ultimately taking over twenty minutes to render chess. egg into a chess
game. That prompted me to dispense with EGGG's parser, replacing my recursive
descent parser with a series of short, fast passes over the game description. This will
curdle a language designer's blood: what EGGG does is to read the game description
into one long string; decisions are then made on the basis of regular expression
matches.

Here is a typical line from the EGGG engine:

$output .= "use MD5; # Message digest algorithms, for security\n"

if $game =~ /^turns\s+synch/m;

As the game description is parsed, the generated game is amassed in one long string:

$output. In this line, the statement use MD5; is added to $output along with a

comment - if the game description contains a statement that begins with turns, one
or more spaces, followed by synch.

The current version of EGGG is again quite fast; no game takes more than thirty
seconds to generate on the two platforms used to develop EGGG: a 233 MHz
Pentium II laptop running Windows 98, and a 199 MHz DEC Alphastation running
OSF/1 v4.0.

Speed is more of a concern in the play of the generated game. For instance, the
minimax procedure is woefully inefficient, because it has none of the shortcuts that a

program for a specific game would employ. The extra layer of indirection provided

by the generic %game and %state structures slows the procedure even more. Many

optimizations are possible; the first to be implemented will probably be a memoizer
for identifying previously evaluated moves.

How About Some Real Graphics?

You did your best to razzle-dazzle them with what graphics you had,

but you had, like, sixteen colors and three blocky things. So a lot of

the work just went into the play of the game.

Eugene Jarvis, creator of Defender and Robotron, in Joystick Nation.

The most popular computer games of today are more interactive movies than games.

The play of games like Doom, Quake, and Tomb Raider are relatively

straightforward; they are little more than lavishly produced visualizations of text

adventure games. But their popularity stems from the production values. [Herz 97]
says,

Those games require people whose sole job it is to do texture

157

mapping, or polygon animation, or backgrounding, or puzzle

building. 'At this point, game worlds have become so immense and

complicated that their construction requires crews of postcollegiate

code carpenters and graphic design masons working sixteen-hour

days for months or years...

EGGG will never be able to generate games like these. EGGG is best at generating
algorithmically and geometrically simple games. A parallel can be found in Doug
Lenat's seminal Al project, "AM", which generated theorems about geometry. AM
was well-suited for geometric theorems, and ill-suited for everything else.
Generalizing it to other mathematical disciplines would have required, in effect,
creating an entirely new system. In the same way, EGGG works for games that can
be expressed with simple algorithms; a system that generated games like Doom
would require an entirely different software architecture. That's not to say that
similarities between Doom-like games don't exist, only that abstracting them into
reusable code components requires an attention to graphical detail that is far
removed from the purity of simple game play.

What About Sound?

All of EGGG's games are silent. A reasonable future direction for EGGG would be
to have it automatically generate sounds for games.

There are similarities between the sounds that different games use. Some of the
similarities stem from what sound effects are available to game designers. Other
similarities exist because many of the actions meriting sound are shared among
games. When something explodes it should make an explosion sound, whether the
thing exploding is a box, bomb, or planet. Sounds with a quick attack and decay are
used to indicate that two things have collided and stuck together; sounds with a
quick attack and long decay are used for things traveling through space, like missiles
from a ship. There are traits common to the sounds of success: chirping trills or short
ditties.

Unfortunately, there is no software library that does for sound what Tk does for
graphics, so sounds are not planned for EGGG in the near future.

Other Domains

Games are an ideal domain for research into automated programming. They possess

just the right amount of diversity; they're popular enough that wide audiences can be
obtained; they're never so mission-critical that perfection is required; they can be

represented with a concise set of rules; and there will always be a demand for a
multitude of different programs - no one game can eliminate the demand for the
rest.

158

What other domains fit this criteria? It's hard to say without comprehensive research
into the types of programs that people create. Areas like image processing or
financial programming are too broad for generalizations like those explored in this
dissertation. In this section, we'll touch on a few other domains.

Certainly there are many similiarities between large numbers of existing web pages.
Good web pages embody a few basic design principles, and there are a limited
number of ways to make web pages collect information and react to the user
dynamically. However, there are many existing tools for automating web page

design, and people often want to fine-tune web pages in ways that can't be described
much more concisely than whatever HTML or code would be used to implement the
fine-tuning.

The domain (if it can be called that) of downloading web pages is more promising.
Many people would like to be able to download web pages automatically, to collect
weather information, comic strips, news articles, or their stock portfolios. Typically,
a user wants to download only a portion of the web page, skipping advertisements
and navigational information. A variety of mechanisms keep them from doing so:
the programming knowledge needed to automate HTTP requests, the effort needed
to digest web cookies, links hidden behind links. Furthermore, the ever-changing
formats of web pages thwart any permanent solution: whatever effort goes into
downloading a web page can be rendered useless when that web page is redesigned,
and this is the best argument for an adaptable solution that can examine a web page
and generate a program on the fly to download the appropriate information from a
web site.

Graph design might constitute a good domain for automatic programming.
[Mackinlay 86] develops rules for choosing how to represent and lay out graphs of
quantities in two and three dimensions, determining what attributes to use (position,
size, color, and so on) based on the relationships between the information to be
presented. Many people need to generate graphs, it's often a labor-intensive process,
and the absolute best presentation isn't required for the graph to be useful.

Music generation might constitute a rich area for automated programming. There
are similarities between genres of music (time signatures, keys, modes), between
super-genres (for example, the pentatonic scale common in Eastern music), and
between sub-genres (the 2.5-to-five-minute verse-chorus-bridge pattern common in
rock songs). Such a system might choose these mid-level "cliches" (as they are
called in the Programmer's Apprentice [Rich 90]) at random, which would differ

from the completely bottom-up approaches toward music generation (such as fractal

music synthesis) or completely top-down approaches that start with a theme, and
from there develop it "downward" into movements and phrases and bars. An
EGGG-like system can't supply the creativity; all it can do is automate the grunt

work. The success of such a system will inevitably be constrained by the extent to

which the language hinders or helps the expression of creativity.

A more mundane domain is data translation - converting information from one

well-defined format to another. Many formats have ways to tag information, to

159

delimit beginnings and ends, and ways to escape information or handle binary
objects; these are the similarities that could be exploited by an EGGG-like system.
There have been many attempts to facilitate conversion between data formats;
typically, these operate by defining a more generic format (XDR, ASN. 1) capable of
representing all of the formats to be converted. Such metaformats typically enjoy
very limited success; we suggest that this is because the extra layer of abstraction
required makes them harder to learn and easier to forget. But if the mapping
between two specific formats can be described with precision, an EGGG-like system
could be used to create a utility that converts between them.

Still, none of these areas are completely satisfactory. Most fall short of our last
criterion for choosing a domain: the domain should benefit from a plethora of
programs. Why create a system that generates programs to download web pages
instead of simply creating a generic downloader? Why create a system that
generates translators instead of a generic translator? Music synthesis meets the last
criterion, because the system's output would be not applications, but artworks -
there will always be a demand for new and different music. The similarities are
certainly there, and synthesized music won't have to be perfect. But music can't be
represented with a concise set of rules. More precisely, only a small portion of the
elements comprising a musical performance can be represented with a concise set of
rules; an EGGG-like system won't be generating operas, symphonies, or Top 40 hits
anytime soon.

Finally, it would be seductively elegant to apply automated programming to itself,
creating a system that generates EGGG-like systems, by exploiting the similarities of
similarities between domains. Perhaps someday this will be possible, but automated
programming has a long way to go before it is.

Scriptability and Glass Boxes

Too many applications these days require physical presence at a computer - click
here to make this dialog box go away; move the mouse over here to select that
option. This is unfortunate, because it means that you can't operate the applications
from another computer. Worse, it means that you can't write programs to operate
those programs on your behalf. (Many people insist on calling the controlling
programs "scripts", as though there were some qualitative difference between scripts,
programs, and applications - even though under the hood they're all just programs.)

All applications should be scriptable; that is, you should be able to control them via
some text-based protocol. EGGG programs are not scriptable, but scriptability is part
of a planned redesign to make EGGG programs "portable" to ASCII, so that any
game can be represented with both the familiar Tk widgets and raw text terminals.

The non-scriptability of EGGG highlights one of its most serious deficiencies.
EGGG makes game designers more productive, and it (arguably) helps make them

into better game designers by shortening the game development cycle, but it doesn't
help them become better game programmers. The convoluted design of EGGG
encourages users to treat it as a black box: they provide input (the game description)

160

and the system turns that, somehow, into output (the game program). The
implementation of the abstractions described in chapters 2 and 3 are hidden from the
user; exposing these abstractions would let designers use EGGG more intelligently
by enabling them to see how EGGG translates game descriptions into programs. Put
another way, EGGG doesn't encourage game designers to become power users, and
it should.

Open Source Games

Id software, the company that made Doom, had the right idea. They released a demo
version of their game for free, and then they released the API for their game engine.
This allowed people to write their own Doom levels, and made a lot of people design
their first games ever. "Happy" versions of Doom where guns shot flowers, games
where the sinister chords of the game were replaced by Muzak-perverted versions of
pop songs, and games with the monsters replaced by cartoon chracters. Doom has
been used by the military to train soldiers, and by system administrators to find and
destroy errant processes on workstations.

Allowing devoted players to embrace and extend a game is, in my opinion, a critical
step toward breaking the stagnation of fresh game ideas that has settled over today's
arcades. All games are interactive, but this is a new, intellectually promising type of
interactivity - drawing people into the game generation process and fostering the
creativity, insight, cleverness, and critical thought needed as a result.

Chapter 1 began with this quote from Steve Russell, the author of the first video
game:

I think the thing I take the most pride in about Spacewar is that it got
so many people hooked on computer programming. It caught a lot of
eyes and got a lot of interesting people asking, "How do you do that?"

The game consoles of Sony, Sega, and Nintendo don't encourage players to become
designers. The software architectures are proprietary; licenses and development kits
cost tens or even hundreds of thousands of dollars. I wish these companies were
more like Id software, because when players become designers, both people and
games benefit.

The game isn't over till it's over.

Yogi Berra

161

Bibliography
Abelson, H. and G.J. Sussman. Structure and Interpretation of Computer Programs.
MIT Press, Cambridge MA, 1985.

Aho, A.V., S.C. Johnson, and J.D. Ullman. Deterministic Parsing of Ambiguous
Grammars. In Communications of the A CM 18:8, pp. 441-452, August 1975.

Aho, A.V., R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

Allis, L.V., H.J. van den Herik, and I.S. Herschberg. Which Games Will Survive, in
D.N.L. Levy and D.F. Beal, eds., Heuristic Programming in Artificial Intelligence 2
- The Second Computer Olympiad. Ellis Horwood, 1991.

Arnot, M. Crossword Puzzles For Dummies. IDG Books, 1998. (Yes, it is a
"Dummies" book, but it really does have insightful comments about crossword
creation.)

Avedon, E.M. and B. Sutton-Smith. The Study of Games. John Wiley & Sons, 1971.

Baumgartner, V. Graphic Games: From Pattern to Composition. Prentice Hall,
Englewood Cliffs, NJ, 1983.

Beasley, J. The Mathematics of Games. Oxford University Press, Oxford, 1989.

Berlekamp, E., and D. Wolfe. Mathematical Go: Chilling Gets the Last Point. A.K.
Peters, Wellesley MA, 1994.

Bennahum, David S. Extra Life: Coming of Age in Cyberspace. Basic Books, New
York, 1998.

Bennett, P.G. (ed.) Analysing Conflict and its Resolution: Some Mathematical
Contributions. Clarendon Press, Oxford, 1987.

Berlekamp, E.R., H.H. Conway, and R.K. Guy. Winning Ways For Your
Mathematical Plays. Academic Press, 1982.

Blaquiere, A. Quantitative and Qualitative Games. Academic Press, New York,
1969.

Blass, A. A Game Semantics for Linear Logic. In Annals of Pure and Applied Logic

(56) pp. 182-220, 1992.

Blass, A. Degrees of Indeterminacy of Games. In Fundamenta Mathematicae (77),
pp. 151-166, 1972.

Burns, B. (ed.) The Encyclopedia of Games. Brown Packaging Books Ltd., London,

162

1998.

Brennan, Susan. Conversation With and Through Computers. Second International
Conference on User Modeling, Honolulu, 1990.

Bruckman, A. MOOSE Crossing: Construction, Community, and Learning in a
Networked Virtual Worldfor Kids. PhD Thesis, MIT Media Laborary, May 1997.

Caillois, R. Man, Play, and Games. Free Press of Glencoe, New York, 1961.

Carse, J.P. Finite and Infinite Games. The Free Press, 1986.

Condon, A. Computational Models of Games. MIT Press, Cambridge MA, 1989.

Costello, M.J. The Greatest Games Of All Time. John Wiley & Sons, New York,
1991.

David, F.N. Games, Gods, and Gambling. Hafner Co., New York, 1962.

Deng, X., and S Mahajan. Infinite Games, Randomization, Computability, and
Applications to Online Problems. In Proceedings of the Twenty Third Annual ACM
Symposium on Theory of Computing, pp. 289-298, May 1991.

Dershowitz, N., and J.-P. Jouannaud. Rewrite Systems. In Handbook of Theoretical
Computer Science, Vol. B, pp. 243-320. J. van Leeuwen (ed.), North-Holland,
Amsterdam, 1990.

Diderich, C.G. and M. Gengler. A Survey on Minimax Trees and Associated
Algorithms. Computer Science Department, Swiss Federal Institute of Technology
DI-94/50, May 1994.

Donnelly, R.J. Active Games and Contests. Ronald Press Co., New York, 1958.

Duke, R.D. Game-Generating-Games: A Trilogy of Games for Community and
Classroom. Sage Publications, Beverly Hills CA, 1979.

Edmonson, M. The rezrov Infocom Game Interpreter. In The Perl Journal, Spring
1999, pp. 52-60.

Eigen, M. Laws of the Game: How the principles of nature govern chance. Harper &
Row, New York, 1983.

Elo, A. E. The Rating of Chessplayers, Past And Present. Batsford, 1978.

Felleisen, M. On the Expressive Power of Programming Languages. In Proceedings

of the European Symposium on Programming, pp. 134-151. Springer Press, Berlin,
1990.

Fine, G.A. Shared Fantasy. University of Chicago Press, 1983.

Fokkinga, M.M. On the Notion of Strong Typing. In Algorithmic Languages,

163

DeBakker and can Vliet (eds.), pp. 305-320, IFIP North-Holland, Amsterdam, 1981.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1984.

Gamson, W.A. What's News: A Game Simulation of TV News. Macmillan Press,
New York, 1984.

Gao, X., H. Iida, J.W.H.M. Uiterwijk, and H.J. van den Herik. A Speculative
Strategy. In Computers and Games, Lecture Notes in Computer Science, First
International Conference, CG '98, Tsukuba, Japan, November 1998.

Garey, M.R., and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

Geertz, C. Notes on the Balinese Cockfight. In The Interpretation of Cultures, Basic
Books, 1973.

Goodfellow, C. A Collector's Guide to Games and Puzzles. Chartwell Books, 1991.

Guiasu, S. Coalition and Connection in Games: Problems of modern theory using

methods belonging to systems theory and information theory. Pergamon Press, New
York, 1980.

Gunter, C.A. Semantics of Programming Languages: Structures and Techniques.
MIT Press, Cambridge MA, 1992.

Gunter, C.A. and D.S. Scott. Semantic Domains. In Handbook of Theoretical
Computer Science, Volume B., J. van Leeuwen (ed.), pp. 633-674, North-Holland,
Amsterdam, 1990.

Halck, O.M. and F.A. Dahl. On Classification of Games and Evaluation of Players
- with Some Sweeping Generalizations About the Literature. Machine Learning in

Game Playing Workshop, 16th International Conference on Machine Learning,
Slovenia, June 30, 1999.

Hennessy, M. The Semantics of Programming Languages: An Elementary
Introduction using Structured Operational Semantics. Wiley, 1990.

Herz, J.C. Joystick Nation. Little, Brown & Company, 1997.

Hodges, W. Building Models by Games. Cambridge University Press, 1985.

Hofstadter, D. Fluid Concepts and Creative Analogies. Basic Books, New York,

1995.

Horowitz, E. Fundamentals of Programming Languages. Computer Science Press,
1984.

Jackson, S. GURPS: Generic Universal Role Playing System. Steve Jackson Games,
1997.

164

Jacobson, N., W. Bender, and U. Feldman. Alignment and Amplification as
Determinants of Expressive Color. In Proceedings of the SPIE, Vol. 1453, February
1991.

Klop, J.W. Term Rewriting: A Tutorial. In EATCS Bulletin (32), pp. 143-182, 1987.

Koda, T. Agents with Faces: A Study on the Effects of Personification of Software
Agents. M.S. Thesis, MIT Media Laboratory, September 1996.

Kotzamani, M.A. Wittgenstein on Philosophy and Language-Games. MIT M.S.
Thesis, 1987.

Lance, D.F. and B. Allan Tindall, eds. The Anthropological Study of Play: Problems
and Prospects. Proceedings of the first annual meeting of the Association for the
Anthropological Study of Play. Leisure Press, Cornwall N.Y, 1976.

Landin, P.J. The Next 700 Programing Languages. In Communications of the ACM
(9), pp. 157-166, 1966.

Larrabee, T., K. McCall, C. Mitchell, and B.C. Pierce. Gambit: A Video Game
Programming Language. Stanford project report CS-242, December 1982.

Larrabee, T. and C. Mitchell. Gambit: A Prototyping Approach to Video Game
Design, IEEE Software, Vol. 1, No. 4, October 1984.

Lewis, H.R., and C.H. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1981.

Liskov, B. and J. Guttag. Abstraction and Specification in Software Development.
MIT Press, Cambridge MA, 1986.

Loftus, G.R. Mind At Play: The Psychology of Video Games. Basic Books, New
York, 1983.

London, R.L. Program Verification. In Research Directions in Software Technology,
P. Wegner (ed.), MIT Press, Cambridge MA, pp. 302-315, 1978.

Luce, R.D., and H. Raiffa. Games and Decisions: Introduction and Critical Survey.
Dover Publications, New York, 1957.

Mackinlay, J. Automating the Design of Graphical Presentations of Relational
Information. In A CM Transactions on Graphics 5:2, pp. 110-141, April 1986.

Matsubara, H. Proceedings of 2nd Game Programming Workshop. Computer Shogi
Association, Tsukuba, Ibraki, Japan, 1995.

McDonald, J.D. Strategy in Poker, Business, and War. Norton, New York, 1950.

Meyer, B. Object-Oriented Software Construction. Prentice Hall, 1988.

Mitchell, J.C. Foundations of Programming Languages. MIT Press, Cambridge MA,

165

1996.

Mitchell, J.C. On Abstraction and the Expressive Power of Programming Languages.
In Proceedings of the Theoretical Aspects of Computer Software pp. 290-310,
September 1991.

Mohr, Merilyn Simonds. The New Games Treasury. Houghton Mifflin, 1997.

Moore, J. The Complete Book of Sports Betting. Carol Publishing Group, New York,
1996.

Morehead, A.H., R.L. Frey, and Geoffrey Mott-Smith. The New Complete Hoyle,
revised ed. Doubleday, 1991.

Morgan, C. Programming from Specifications. Prentice-Hall, 1990.

Orwant, Jon. Doppelgdnger Goes To School: Machine Learning for User Modeling.
MIT M.S. Thesis, Media Arts and Sciences, September 1993.

Orwant, Jon. The Doppelgunger User Modeling System. MIT B.S. Thesis,
Department of Electrical Engineering and Computer Science, June 1991.

Orwant, Jon. For Want Of A Bit The User Was Lost: Cheap User Modeling. In IBM
Systems Journal, 38:3-4, 1996.

Pell, Barney. METAGAME: A New Challenge for Games and Learning. H.J. van
den Herik and L.V. Allis, eds., Heuristic Programming in Artificial Intelligence 3 -
The Third Computer Olympiad. Ellis Horwood, 1992.

Pell, Barney. Strategy Generation and Evaluation for Meta-Game Playing. PhD
thesis, University of Cambridge, August 1993.

Rabiner, L.R. A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. In Proceedings of the IEEE, 77(2):257-285, 1989.

Rapoport, A. and A.M. Chammah. Prisoner's Dilemma. University of Michigan
Press, 1965.

Reif, J.H. Universal Games of Incomplete Information. In Conference Record of the
Eleventh Annual (ACM) Symposium on Theory of Computing, pp. 288-308, May
1979.

Rich, C. and R.C. Waters. The Programmer's Apprentice. ACM Press, 1990.

Ross, D.T. On Context and Ambiguity in Parsing. In Communications of the ACM
7:2, pp. 131-133, February 1964.

Samuel, A.L. Programming Computers to Play Games. In Advances in Computers
(1), pp. 165-192, 1960.

Scarne, J. Scarne's Encyclopedia of Games. Harper & Row, New York, 1973.

166

Schmittberger, Wayne R. New Rulesfor Classic Games. John Wiley & Sons, 1992.

Schoett, 0. Data Abstraction and the Correctness of Modular Programs. CST-42-
87, University of Edinburgh, 1987.

Sethi, R. Programming Languages: Concepts and Constructs. Addison Wesley,
1989.

Singleton, R. Games and Programs: Mathematicsfor Modeling. W.H. Freeman, San
Francisco, 1974.

Solomon, E. Games Programming. Cambridge University Press, New York, 1984.

Steiner, Peter 0. Thursday Night Poker. Random House, 1996. (Equal parts
probability and psychology, the way every poker book should be.)

Stoyan, H. The Influence of the Designer on the Design - John McCarthy and
LISP. In Artificial Intelligence and the Mathematical Theory of Computation:
Papers in Honor of John McCarthy, V. Lifschitz (ed.) pp. 409-426, Academic Press,
1991.

Therrien, C.W. Decision, Estimation, and Classification. John Wiley & Sons, New
York, 1989.

Weintraub, E.R. (ed). Toward a History of Game Theory. Duke University Press,
1992.

Williams, P.W., and D. Woodhead. Computer Assisted Analysis of Cryptic
Crosswords. In The Computer Journal, 22:1, pp. 67-70, February 1979.

Wittgenstein, L. Philosophical Investigations. Macmillan, 1958.

Wittgenstein, L. The Blue and Brown Books. Harper, 1958.

167

Appendix A: EGGG Installation
Instructions
0. Retrieve the EGGG distribution from
http://orwant.www.media.mit.edu/eggg/eggg.

1. If you are on Windows, go to step 4. Otherwise, unpack the EGGG distribution
with

gzip -d eggg-0.1l.tar.gz
tar xvf eggg-0.11.tar

If you don't have gzip, you can FTP the latest version from
ftp://prep.ai.mit.edu/pub/gnu.

2. Install Perl 5.004 (or higher) if you don't have it already, from
http://www.perl.com/CPAN/src. You can find out what version of Perl you have by
typing this at your command prompt, regardless of what directory you're in:

perl -v

If you see a "command not found" error, try

/usr/bin/perl -v
or

/usr/local/bin/perl -v

If you still get "command not found" errors, or if the version is less than 5.004, you'll
need to install Perl 5.004. (Perl 5.005, which is the latest verion, is preferable.)

3. Install the following Perl modules. Once you've installed Perl, the CPAN module
can install other Perl modules for you. To use the CPAN module, type this at your
command prompt, regardless of what directory you're in:

perl -MCPAN -e 'shell'

That places you into a shell where you'll have to answer all sorts of questions about

how you want Perl modules installed. After you've done that, you're ready to install
modules by typing at the cpan> prompt:

cpan> install Data: :Dumper
cpan> install Sys::Hostname
cpan> install MD5

Those modules should install relatively quickly. This one

will take a while, however:

cpan> install Tk

Exit the cpan> shell by typing "quit" at the prompt.

168

Skip to step 6: "Testing your installation".

4. To install EGGG on windows, unzip eggg.zip. If you don't have the WinZip
utility, you can download it from http://www.winzip.com.

I like running EGGG from Emacs in shell mode, because Emacs in shell mode is a
MUCH better shell than MS-DOS. (You can get Win32 Emacs from
http://www.cs.washington.edu/homes/voelker/ntemacs.html.)

5. Install Perl on Win32 by downloading the latest version from
http://www.activestate.com/ActivePerl/. This also installs the other modules that
EGGG needs, like MD5 and Sys::Hostname and Tk.

6. Testing your installation.

By now, you should have a working Perl with all of the modules that EGGG needs.
Move into the directory with the EGGG distribution. The next step is to see if your
Perl environment is working properly.

Try running one of the games that I created with EGGG. Anything ending in ".test"
will do. The best ones to begin with are: poker.test, cross.test, tictactoe.test,
chess.test, tictactoe4.test, rps.test, deducto.test, deducto-rgb.test, deducto-hsv.test.

From a Unix shell prompt, just type the name of the game. Here's how to launch a
crossword puzzle:

cross . test

From a DOS or Win32 Emacs shell, prepend "perl":

perl cross.test

If any errors occur, please let me know. Perhaps Perl won't be able to find one of the

modules; if that happens, the error message will contain the word "@INC" near the

beginning. Or perhaps there's a runtime error, in which case the error message will
be something like:

Warning: something's wrong at cross.test line 432.

If you can tell me what the error message is, I'll fix the problem.

7. Running EGGG with a preexisting game description

Assuming step 6 was successful, the next step is to run EGGG itself. (Step 6 was just
running a game *generated* by EGGG.) The "eggg" program is invoked like so, on
Unix:

eggg -o poker poker.egg

Or on Win32 (this will work on Unix also):

perl eggg -o poker poker.egg

This runs the "eggg" program with three arguments: "-o", "poker" and "poker.egg".
The first two arguments tell EGGG that it's creating a game named "poker". EGGG
will obliterate any currently existing file named poker and replace it with the game.

169

"poker.egg" is the game description. View it with your favorite editor if you like, so
you can see what information EGGG uses to create the game.

Once you've run eggg, you should have a fully functioning game that you can run as
shown in Step 6:

perl poker

8. Running EGGG with a new game description

To create your own game, choose a currently existing game description file that's
similar to the game you want to create. (You could start from scratch, but I haven't
written up how to do that yet.) Hopefully you'll be able to infer enough from the
EGGG language. As a test, I suggest you copy the game description file for poker
and edit it to define a new hand.

Unix: cp poker.egg poker-new.egg

emacs poker-new.egg
or

vi poker-new.egg

Windows: copy poker.egg poker-new.egg

emacs poker-new.egg
or

edit poker-new.egg

Let's say you want to define a hand called BabyStraight, which has four cards of
successive ranks, like 2-3-4-5 or 9- 1O-J-Q. Notice how Straight is defined like so:

Straight has (R, s) and (R+1, s) and (R+2, s) and (R+3, s) and (R+4, s)

Each ordered pair represents a card; the first term is the rank, and the fact that it's
capitalized means that it's important, and should be remembered from term to term.
So if R is 4 for the first card, then R+1 is constrained to be 5 for the second card. The
s is the suit; since it's not capitalized, it's not important. So a BabyStraight is just a
Straight without the last term:

BabyStraight has (R, s) and (R+1, s) and (R+2, s) and (R+3, s)

You can add this line anywhere in the file you like.

The hands are ranked with this line:

hands are [StraightFlush, FourKind, FullHouse, Flush, Straight,
ThreeKind, TwoPair, Pair, HighCard]

You'll need to edit that line and stick BabyStraight in wherever you'd like it to go:

170

hands are [StraightFlush, FourKind, FullHouse, Flush, Straight,

ThreeKind, BabyStraight, TwoPair, Pair, HighCard]

Generate the game with perl eggg -o poker-new poker-new. egg and

then run it with perl poker-new.

Enjoy!

171

Appendix B: Sample EGGG Games

Rock Paper Scissors
move is choose
pieces are Rock and Paper and Scissors
board starts [[Rock, Paper, Scissors]]
turns synchronize
Beat means player(Rock) && opponent(Scissors)

or player(Scissors) && opponent(Paper)
or player(Paper) && opponent(Rock)

goal is Beat # success!
score increments
3x1 grid

Tic Tac Toe
turn is player place piece
3x3 grid
pieces are X and 0
turns alternate
players are X and 0
goal is &Threein_a_row
Threein_a_row means (x-1, y) && (x, y) && (x+l, y)

or (x, y-1) && (x, y) && (x, y+1)
or (x-1, y-1) && (x, y) && (x+l, y+1)
or (x-1, y+1) && (x, y) && (x+l, y-1)

board starts empty

Poker
turns alternate clockwise

Discard means player removes 0..3 cards or 4 cards if Ace()
2..6 players

game is poker

game is shuffle(deck) and deal(cards, 5) and bet(money) and
Discard(hand, N) and deal(cards, 5-N) and compare(cards)

StraightFlush has (R, S) and (R+1, S) and (R+2, S) and (R+3, S)
and (R+4, S)

FourKind has (R, s) and (R, s) and (R, s) and (R, s)
FullHouse has (R, s) and (R, s) and (R, s) and (Q, s)

and (Q, s)
Flush has (r, S) and (r, S) and (r, S) and (r, S) and (r, S)

172

Straight has (R, s) and (R+1, s) and (R+2, s) and (R+3, s)
and (R+4, s)

ThreeKind has (R, s) and (R, s) and (R, s)
TwoPair has (R, s) and (R, s) and (Q, s) and (Q, s)
Pair has (R, s) and (R, s)
HighCard has (R, s)

hands are [StraightFlush, FourKind, FullHouse, Flush,
Straight, ThreeKind, TwoPair, Pair, HighCard]

goal is highest(hand)

Crossword
goal is solve
game is Crossword
text is Clues

squares are black or white
squares have letters and numbers
squares display numbers
solution displays letters
board displays numbers with abbreviations (Clues)
board starts [[1, 1, 1, 0, 0, 1, 1, 1],

[1, 1, 1, 0, 0, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 1, 1, 1, 0, 0] ,
[0, 0, 1, 1, 1, 0, 0, 0],

[, 0, M, , U, T, , R],

[1, 1, 1, 0, 0, 1, 1, 1],
[1, 1, 1, 0, 0, 1, 1, 1]]

solution is [[E, T, A0, 0, R, R, E, F],
[S, I, R, 0, 0, A, K, A],
[C, 0, M, P, U, T, E, R],

[0, 0, 0, A, S, E, 0, 0],

[0, 0, 0, L, E, 0, 0, 0],

[F, L, 0, 0, R, I, N, G],

[0, A, R, 0, 0, C, I, A],

[E, N, T, 0, 0, E, L, M]]

8x8 grid
composite puzzle # as opposed to a puzzle with a single answer
one player

Deducto
Tester(2) is return grid[3][3]
Tester(l) is Tot++ if grid[x][y]; return Tot > 12
Tester(3) is return 1 if grid[3][y] && (grid[l][y] && grid[2][y] or

grid[4][y] && grid[5][y]); return 0

Tricky: Tester(4) is true if there's an "on" square in each row.

173

Tester(4) is Tot |= (2**y) if grid[x][y]; return (Tot == 62) ? 1 : 0
Tester(5) is Tot++ if grid[x][y]; return Tot % 2

Generate(l) is while (!Tester(l)) { grid[x][y] = flip ? 1 : 0 }
Generate(3) is while (!Tester(3)) { grid[x][y] = flip ? 1 :0 }
Generate(2) is { grid[x][y] = flip ? 1 : 0 }; grid[3][3] = 1
Generate(4) is while (!Tester(4)) { grid[x][y] = flip ? 1 :0 }
Generate(5) is while (!Tester(5)) { grid[x][y] = flip ? 1 :0

AntiGenerate(l) is while (Tester(l)) { grid[x][y] = flip ? 1 0 }
AntiGenerate(2) is { grid[x][y] = flip ? 1 : 0 }; grid[3][3] = 0

AntiGenerate(3) is while (Tester(3)) { grid[x][y] = flip ? 1 0 }
AntiGenerate(4) is while (Tester(4)) { grid[x][y] = flip ? 1 0 }
AntiGenerate(5) is while (Tester(5)) { grid[x][y] = flip ? 1 0 }

Example means grid becomes Generate(level)
Test means display(Tester(level))
VoteYes means Tester(level) && ++CORRECT or CORRECT = 0
VoteNo means not Tester(level) && ++CORRECT or CORRECT = 0
assert: after move CORRECT == 5 => level = level+1 => CORRECT = 0

assert: after move CORRECT == 0 => display("you have 0 correct")
assert VoteYes: lastmove("Understand")
assert VoteNo: lastmove("Understand")

Understand means display("Vote Yes or No.");
assert after VoteYes: flip ? Generate(level) : AntiGenerate(level)
assert after VoteNo: flip ? Generate(level) : AntiGenerate(level)

assert after Understand: flip ? Generate(level)
AntiGenerate(level);

update()

game has Example button
game has Test button
game has Understand button
game has VoteYes button
game has VoteNo button
goal is level(6)
one player
5x5 grid
squares are white and black
click makes square toggle

Tetris
ClearLines means LineFull(Y) and MoveDown(higher Y) and score

increments
LineFull means on(all x, some y)

MoveDown means given(Y) and move(x, Y+1, x, Y)

bottom is sticky
sides are solid

round is merge(ActivePiece, Bottom) and ClearLines() and

create(random piece P, 5, 20) and set(ActivePiece, P)

goal is no Fill

174

Fill is touches(ActivePiece, Top)
piece touches Bottom => round(n+l)

key j
key 1
key k

moves(x-1, y)
moves(x+l, y)
transforms(Barl, Bar2, Bar2, Barl, Zigl, Zig2, Zig2, Zigl,

Zagl, Zag2, Zag2, Zagl, Lelll, Lell2, Lell2, Lell3,
Lell3, Lell4, Lell4, Lelll, Rell1, Rell2, Rell2,
Rell3, Rell3, Rell4, Rell4, Rell1, Teel, Tee2, Tee2,
Tee3, Tee3, Tee4, Tee4, Teel)

turn is 0.5 seconds

turn is ActivePiece moves(x, y-1)
10x20 grid
pieces are [Barl, Bar2, Block, Zigl, Zig2, Zagl, Zag2, Lell1, Lell2,

Lell3, Lell4, Relll, Rell2, Rell3, Rell4, Teel, Tee2,
Tee3, Tee4]

one player

Barl
Bar2
Block
Zigl
Zig2
Zagl
Zag2
Lelll
Lell2
Lell3
Lell4
Rell1
Rell2
Rell3
Rell4
Teel
Tee2
Tee3
Tee4

[[1,
[[0,
[[1,
[[1,
[[0,
[[0,
[[1,
[[0,
[[1,
[[0,
[[1,
[[1,
[[1,
[[1,
[[0,
[[0,
[[0,
[[1,
[[1,

1],
0],
0]
0]
0]
0]
0],
1],
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]

[0,
[0,
[1,
[1,
[1,
[1,
[0,
[0,
[1,
[1,
[0,
[0,
[0,
[1,
[0,
[1,
[1,
[0,
[1,

[0,
[0,
[0,
[0,
[0,
[1,
[0,
[0,
[1,
[0,
[0,
[0,
[0,
[0,
[1,
[0,
[0,
[0,
[1,

[0,
[0,
[0,
[0,
[0,
[0,
[0,
[0,
[0,
[0,
[0,
[0,
[0,
[0,
[0,
[0,
[0,
[0,
[0,

0]]
0]]
0]]
0]]
0]]
0]]
0]]
0]]
0]]
0]]
0]]
0]]
0]]
0]]
0]]
0]]
0]]
0]]
0]]

Chess
Stalemate means turn(player P) && no moves(P) => tie

Checkmate means no moves(opponent King) and
Attacking(player piece P, opponent King) and
no moves(opponent piece Q remove P)

turn is player move piece
assert: after move not Attacked("King")
goal is &Checkmate
tie is &Stalemate

175

turns alternate
pieces are King and Queen and Rook and Bishop and Knight and Pawn

players are white and black

board starts [[black Rook, black Knight, black Bishop, black Queen,

black King, black Bishop, black Knight, black Rook],
[black Pawn, black Pawn, black Pawn, black Pawn,
black Pawn, black Pawn, black Pawn, black Pawn],

[empty, empty, empty, empty,
empty, empty, empty, empty],
[empty, empty, empty, empty,
empty, empty, empty, empty],
[empty, empty, empty, empty,
empty, empty, empty, empty],
[empty, empty, empty, empty,
empty, empty, empty, empty],
[white Pawn, white Pawn, white Pawn, white Pawn,
white Pawn, white Pawn, white Pawn, white Pawn],

[white Rook, white Knight, white Bishop, white Queen,

white King, white Bishop, white Knight, white Rook]]

King moves(7, 1) if white && on(5, 1) && on("white Rook", 8, 1)

&& empty(6, 1) && empty(7, 1) && nocheck("white", 5, 1)

&& nocheck("white", 6, 1) && unmoved("white Rook", 5, 1)

&& unmoved("King") => move(8, 1, 6, 1)
King moves(3, 1) if white && on(5, 1) && on("white Rook", 1, 1)

&& empty(2, 1) && empty(3, 1) && empty(4, 1)
&& nocheck("white", 5, 1) && nocheck("white", 4, 1)

&& nocheck("white", 3, 1) && unmoved("white Rook", 1, 1)

&& unmoved("King") => move(l, 1, 4, 1)
King moves(4, 8) if black && on(5, 8) && on("black Rook", 5, 8)

&& empty(6, 8) && empty(4, 8) && nocheck("black", 5, 8)

&& nocheck("black", 6, 8) && unmoved("black Rook", 5, 8)

&& unmoved("King") => move(5, 8, 6, 8)
King moves(3, 8) if black && on(5, 8) && on("black Rook", 1, 8)

&& empty(2, 8) && empty(3, 8) && empty(4, 8)

&& nocheck("black", 5, 8) && nocheck(4, 8)

&& unmoved("black Rook", 1, 8) && unmoved("King")
=> move(1, 8, 4, 8)

Knight moves(x+2, y+l) if empty(x+2,
Knight moves(x+2, y-1) if empty(x+2,
Knight moves(x-2, y+1) if empty(x-2,
Knight moves(x-2, y-1) if empty(x-2,

Knight moves(x+1, y+2) if empty(x+l,
Knight moves(x+l, y-2) if empty(x+1,
Knight moves(x-1, y+2) if empty(x-1,
Knight moves(x-1, y-2) if empty(x-1,
Knight captures as it moves

y+l)
y-1)
y+l)
y- 1)
y+2)
y-2)
y+2)
y-2)

Pawn moves (x+l,

Pawn moves (x-1,

Pawn moves (x+l,

Pawn moves (x-1,

6) if white and on(x, 5) and
lastmove("black Pawn", x+l, 4, x+l, 5)

6) if white and on(x, 5) and
lastmove("black Pawn", x-1, 4, x-1, 5)

3) if black and on(x, 4) and
lastmove("white Pawn", x+l, 2, x+l, 4)

3) if black and on(x, 4) and

176

lastmove("white Pawn", x-1, 2, x-1, 4)

Pawn moves (x, 4) if white and on(x, 2) and empty(x, 3) and
empty(x, 4)

Pawn moves (x, 5) if black and on(x, 7) and empty(x, 6) and
empty(x, 5)

Pawn moves (x, y+l) if white and empty(x, y+1)
Pawn moves (x, y-1) if black and empty(x, y-1)
Pawn captures (x+l, y+l) if white and other(x+l, y+1)
Pawn captures (x-1, y+1) if white and other(x-1, y+l)
Pawn captures (x+l, y-1) if black and other(x+1, y-1)
Pawn captures (x-1, y-1) if black and other(x-1, y-1)

Rook moves (x, y-1..7) if empty(x, y-l..7)
Rook moves (x, y+l..7) if empty(x, y+1..7)
Rook moves (x-l..7, y) if empty(x-l..7, y)
Rook moves (x+l..7, y) if empty(x+1..7, y)
Rook captures as it moves

Bishop moves (x-l..7, y-l..7) if empty(x-1..7, y-l..7)
Bishop moves (x+l..7, y+1..7) if empty(x+1..7, y+l..7)
Bishop moves (x-l..7, y+l..7) if empty(x-1..7, y+l..7)
Bishop moves (x+l..7, y-1..7) if empty(x+1..7, y-l..7)
Bishop captures as it moves

Queen moves (x, y-1..7) if empty(x, y-1..7)
Queen moves (x, y+l..7) if empty(x, y+l..7)
Queen moves (x-l..7, y) if empty(x-1..7, y)
Queen moves (x+1..7, y) if empty(x+l..7, y)
Queen moves (x-l..7, y-1..7) if empty(x-l..7, y-1..7)
Queen moves (x+l..7, y+l..7) if empty(x+l..7, y+l..7)
Queen moves (x-1..7, y+l..7) if empty(x-1..7, y+l..7)
Queen moves (x+l..7, y-1..7) if empty(x+1..7, y-l..7)
Queen captures as it moves

King moves (x-1, y) if empty(x-1, y)
King moves (x, y-1) if empty(x, y-1)
King moves (x-1, y-1) if empty(x-1, y-1)
King moves (x+l, y) if empty(x+l, y)
King moves (x, y+1) if empty(x, y+1)
King moves (x+l, y+1) if empty(x+1, y+1)
King moves (x+l, y-1) if empty(x+1, y-1)
King moves (x-1, y+1) if empty(x-1, y+1)
King captures as it moves

8x8 grid

177

Appendix C: The EGGG Grammar
Game : Statement(s) TokenBlock(s?)
Statement: Block | CompoundStatement

Block : BlockWord '{' SimpleStatement(s) '}'
BlockWord : 'forever' | 'while' |'do'

CompoundStatement: SimpleStatement

SimpleStatement: Assertion Comment(?) "\n"
Declaration Comment(?) "\n"
Assignment Comment(?) "\n"
" \n"

Comment: '#' String(s)

Declaration: Imperative Noun HowVerb Rvalue

Action Condition(?) Result(?)
Adjective Noun

HowVerb: 'with' I 'by'

Action: Noun StateVerb Rvalue(?)

Noun InvertVerb
Noun Invocation

InvertVerb: /toggles?/ I /inverts?/ I /flips?/ f /reverses?/

Result: '=>' Invocation Result(?)

Assignment: Noun IsVerb Code

Noun IsVerb Action
Noun IsVerb Rvalue Result(?)

Rvalue: BooleanRvalue
Coordinate (Operator Coordinate) (s?)

Result

BooleanRvalue: SimpleRvalue (Junction SimpleRvalue) (s?)

SimpleRvalue: (InvertOp) (?) (Invocation | ArrayRvalue | Time
Object | PieceValue I ButtonValue | Direction Status

| Adjective) Condition(?)

ArrayRvalue: '[' SimpleRvalue(?) (', ' SimpleRvalue) (s?) ']

ButtonValue: Name 'button'
Direction: 'clockwise' 'counterclockwise' 'up' 'down' 'left'

'right'
Condition: Predicate Boolean

Boolean: (InvertOp) (?) Invocation (Junction Boolean) (s?)
(InvertOp) (?) Adjective (Junction Boolean) (s?)

178

Invocation: Function Arguments
Assertion: 'assert:' RelativeTime Phase Boolean Result(?)

RelativeTime: 'before' 'after'

Phase: 'turn' | 'game' 'round' |'move'

Function: /\w+/

Arguments: '(' Argument(?) (',' Argument)(s?) ')'

Argument: GenericObject j Term

Coordinate: '(' Term (/,/ Term) (s?) ')'

Mutator: 'remove'

Term: Code | '"' Word(s?)'"'
'"' Adjective Name
Factor (Operator Factor) (s?)

Factor: Range | Letter I /\w+/ | Number
Letter: /\w+/ '[' /\w/ ']'

CompactExpression: /\w.\w/

Operator: Junction | InvertOp j '-' j '+' f '*' '/'

Junction: 'and' 'or' | '&&' '||' 1 'with'
InvertOp: 'not' '!' | 'no' 'avoid'

Adjective: Color J Size I Shape | Location j Completion I I0
| Name Subroutine

10: 'input' I 'output'
GenericObject: Invocation I Qualifier Thing(?) (Axis I Name

Variable I Number) (?) (StateVerb (Variable
I Name)) (?)

Object: Qualifier I Thing

Qualifier: 'opponent' | 'self' | 'player' I 'random' I 'all'
'some' 'higher' | 'lower' | 'greater' I 'smaller'
'more' 'less' | 'max' | 'min' 'length' 'first'
'second' | 'last' | Type

Thing: 'piece' I 'board' 'card' | 'deck' 'word' 'number'
Variable: /[A-Z]/
Axis: /[a-z]/
Type: /strings?/ I /integers?/ I /numbers?/ | /words?/
Status: 'on' | 'off'

Imperative: 'choose' I'ask' 'solve'
IsVerb: 'is' |'am' | 'are' 'has' | 'have'

I /\bstart(sjing)?\b/ I /\bbegin(sjning)?\b/
I /\bmean(sling)\b/ I /\bmake(sling)\b/
| /\bimpl(yIiesjying)\b/

StateVerb: /\bplac(elesling)\b/ I /\bbecomes?\b/

179

I /\balternat(elesling)\b/ I /\bsynch(roniz(elingles))?\b/
I /\b(re)?mov(elesJing)\b/ I /\btouch(esling)?\b/
I /\bpresent(sjing)?\b/ I /\bcompar(ejesling)\b/
| DisplayVerb | CardVerb | BetVerb

DisplayVerb: /\bdisplay(sling)?\b/ I /\bshow(sling)?\b/
CardVerb: /\bshuffl(ejesling)\b/ I /\bfold(sling)?\b/

I /\bdeal(sling)?\b/ I /\bdiscard(sling)?\b/
BetVerb: /\bbet(slting)?\b/ /\brais(elesling)\b/

/\bcall(sling)?\b/

Color: 'black' 'white' | 'red' 'blue' | 'green' | 'yellow'
| 'gray' 'orange'

Size: Dimension I Number Unit | Range Unit(?) | Number
Range: Integer '..' Integer

Dimension: /\d+x\d+(x\d+)?/

Unit: OneDimensionalUnit I TwoDimensionalUnit | ThreeDimensionalUnit
OneDimensionalUnit: /in(ch(es)?)?/ I /(cmlcentimeters?)/ I /pixels?/

I /char(acters?|s?)/ I /cards?/
TwoDimensionalUnit: /sq(uare)?/ OneDimensionalUnit

| /squares?/ I /spots?/ I /places?/
ThreeDimensionalUnit: 'cubic' OneDimensionalUnit | /cubes?/

I /spots?/ I /places?/
Shape: 'square' I 'circle' | 'triangle' | 'card' | 'line'

Time: Number (/seconds?/ I /minutes?/)

Location: RelativeLocation I AbsoluteLocation
RelativeLocation: 'top' I 'bottom' | 'left' 'right' |'up'

| 'down'
AbsoluteLocation: ' (' Number ',' Number ') ' Number

Number: /\d+(\.\d+)?/ | 'one' 'two' | 'three' | 'four' |'five'
I 'six' I 'seven' I 'eight' | 'nine' | 'ten'

Noun: Invocation /grids?/ /pieces?/ | /players?/ I /turns?/
/rounds?/ | /cards?/ /words?/ I 'money' | 'game' | 'goal'
'tie' I 'board' I /hands?/ I /puzzles?/ I /squares?/
/numbers?/ | 'origin' | 'solution' 'button'
Key | Click Name

Key: 'key' /\S/
Click: 'click' | 'left' | 'right' | 'middle'
TokenBlock: '_' ('START' | 'PRELOOP' | 'LOOP' 'POSTLOOP'

'FINISH' I 'PARSER') '_' String(s) '_END

PieceValue: 'piece' 'card' /numbers?/ | /letters?/

I Adjective Name

Completion: 'full' | 'whole' j 'covered' 'blank' I 'clear'
'empty' 'done' 'partial' | 'composite'

Predicate: 'if' I 'unless'

180

Code: "'" SnippetQuote(s) "'" I '{' SnippetBrace(s) '}'

Name: /[A-Z]\w*/
Subroutine: /&\w+/
Word: /\w+/
SnippetQuote: /[^']+/
SnippetBrace: /[A}]+/
String: /\S+/
Integer: /\d+/ I /[mnr]/i

181

Colophon
This document was written in pod, which stands for Plain Old Documentation. pod
is a very simple markup system, simpler even than HTML. By minimizing the
presence of markup characters in a text, pod allows authors to concentrate on the
words they are writing instead of the more superficial qualities of appearance and
structure.

The document was converted to LaTeX, HTML, and FrameMaker by the pod
conversion programs bundled with Perl.

182

Biographical Note
Jon Orwant received a Bachelor of Science in Computer Science and Engineering, a
Bachelor of Science in Cognitive Science, and a Master of Science in Media Arts
and Sciences, all from MIT. He worked in the MIT Artificial Intelligence Laboratory
from 1987 to 1989, and in the MIT Media Laboratory from 1988 until the present.

He is the author of two books: O'Reilly's Mastering Algorithms with Perl and
Macmillan's Perl 5 Interactive Course. A third book, O'Reilly's Manipulating Text
with Perl, will be published in 2000.

Mr. Orwant was a founding director of The Perl Institute and served on its board of
directors from 1996 to 1999. He is on the advisory board of The Perl Mongers, and
is on the technical advisory board of Focalex, Inc.

He has published numerous articles about user modeling, and runs the annual
Internet Quiz Show. He was Publisher of The Perl Journal since its inception in
1995, and remains Editor-in-Chief. He has written numerous articles about Perl, and
has been on the technical committees of all Perl conferences.

183

