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ABSTRACT

Most of the analytical techniques for evaluating the response of soil deposits to strong
earthquake motions employ numerical methods, initially developed for the solution of linear
elastic, small - strain problems. Various attempts have been made to modify these methods to

handle nonlinear stress - strain behavior induced by moderate to strong earthquakes.

However, questions arise regarding the applicability of commonly used standardized
shear modulus degradation and damping curves versus shear strain amplitude. The most widely
employed degradation and damping curves, are those originally proposed by Seed & Idriss, 1969.
Laboratory experimental data (Laird & Stokoe, 1993) performed on sand samples, subjected to
high confining pressures, show that for highly confined materials, both the shear modulus

reduction factor [G /GJ and the damping [ ] versus shear strain amplitude fall significantly
outside the range used in standard practice, overestimating the capacity of soil to dissipate
energy.

The equivalent linear iterative algorithm also diverges when soil amplification is
performed in deep soft soil profiles, due to the assumption of a linear hysteretic damping being
independent of frequency. High frequencies associated with small amplitude cycles of vibration
have substantially less damping than the predominant frequencies of the layer, but are artificially
suppressed when all frequency components of the excitation are assigned the same value of
hysteretic damping.

This thesis presents a simple four - parameter constitutive soil model, derived from

Pestana's (1994) generalized effective stress formulation, which is referred to as MIT-S1. When
representing the shear modulus reduction factors and damping coefficients for a granular soil
subjected to horizontal shear stresses imposed by vertically propagating shear [SH] waves, the
results are found to be in very good agreement with available laboratory experimental data.

Simulations for a series of " true" non-linear numerical analyses with inelastic (Masing-
type) soils and layered profiles subjected to broadband earthquake motions, taking into account
the effect of the confining pressure, are thereafter presented. The actual inelastic behavior is
closely simulated by means of equivalent linear analyses, in which the soil moduli and damping are
frequency dependent. Using a modified linear iterative analysis with frequency- and depth-
dependent moduli and attenuation, a 1-km deep model for the Mississippi embayment near
Memphis, Tennessee, is successfully analyzed. The seismograms computed at the surface not
only satisfy causality (which cannot be taken for granted when using frequency-dependent
parameters), but their spectra contain the full band of frequencies expected.

Thesis Supervisor: Eduardo Kausel
Title: Professor of Civil and Environmental Engineering



4



5

ACKNOWLEDGEMENTS

This work would not have been accomplished, without the collaboration of many individuals.

I am first indebted to my thesis supervisor, Prof. Eduardo Kausel, who supported my work

and provided superior intellectual challenges. I have learned enormously from him and gained

insight to numerous problems that I have encountered throughout this challenging experience.

This work would not have been accomplished without his continuous support and

enthousiasm, without the energy that he dedicated, both as a mentor and as a friend.

I would also like to thank:

Prof. Andrew Whittle, for his contribution to the soil behavior and modelling aspects of this

thesis, for providing new ideas and insightful comments towards my work.

Prof. Kenneth Stokoe, for providing experimental data, essential for the completion of this

research project.

I would also like to acknowledge the partial economic support provided by Grant GT-2 from

the Mid-America Earthquake Center, under the sponsorship of the National Science

Foundation.

Acknowledgements also go out to:

Prof. George Gazetas, who encouraged me to pursue graduate studies in Civil Engineering. His

spirit and enthousiasm will always nourish my interest for research.

The faculty of the Mechanics and Materials group at MIT.

I am specially grateful to my fellow soiland dynamic friends from MIT: Federico Pinto, Jorge

Gonzales, Martin Nussbaumer, Yun Kim, Alexis Liakos, Christoph Haas, Attasit "Pong"

Korchaiyapruk, Dimitris Konstandakos, Karen Veroy, Joon Sang Park, Daniel Dreyer and

Monica Starnes, for the unforgettable experiences we have lived together, and for making my

life at MIT enjoyable and my effort less tiring.

To my family I owe the most. This work would not have been possible without their

continuous support and love. This thesis is dedicated to them, who have been the main source

of my strength throughout this challenging period of my life.

Finally, I would like to thank George Kokossalakis, who has been continuously there for me,

supporting my efforts, and helping me overpass obstacles that I wouldn't have managed to, if I

were on my own. This thesis is literary completed thanks to him.



6



7

To my family and George



8



9

TABLE OF CONTENTS

A B S T R A C T .......................................................................................................................................................................... 3

A C K N O W L E D G M E N T S ............................................................................................................................................. 5

T A B L E O F C O N T E N T S ............................................................................................................................................ 9

L IS T O F T A B L E S ........................................................................................................................................................... 12

L IS T O F F IG U R E S ......................................................................................................................................................... 13

L IS T O F S Y M B O L S ...................................................................................................................................................... 16

1 . IN T R O D U C T IO N ..................................................................................................................................................... 2 1

1.1 O V ERV IEW O F T H E P RO BLEM ........................................................................................................................ 2 1

1.2 O RG A N IZA T IO N O F TH E S T U D Y ................................................................................................................... 2 3

2. SHEAR MODULUS AND DAMPING FOR DYNAMIC RESPONSE

A N A L Y S IS ................................................................................................................................................................... 2 5

2.1 IN T RO D U CT IO N ..................................................................................................................................................... 2 5

2.2 N O N - L IN EA R S O IL B EH A V IO R .................................................................................................................... 2 6

2.3 EFFECT OF CONFINING PRESSURE ON MODULUS AND DAMPING............................................ 29

2.3.1 C o hesio nless S o ils............................................................................................................................ 29

2.3 2 W et C o hesio nless S o ils................................................................................................................. 3 1

2.3.3 C o hesive S oils..................................................................................................................................... 3 2

2.4 EXPERIMENTAL DATA ON COHESIONLESS SOILS........................................................................... 33

2.5 C O N C LU SIO N S....................................................................................................................................................... 37

2.6 R EFEREN C ES........................................................................................................................................................... 37

3. M IT-Si M ODEL FOR SANDS AND CLAYS............................................................................. 39

3.1 IN TRO D U C T IO N ..................................................................................................................................................... 3 9

3.2 M O D EL FO R M U LA T IO N ..................................................................................................................................... 4 0

3.2.1 E lastic C o m p o nents........................................................................................................................ 4 0

3.2.2 H ysteretic B ehavio r....................................................................................................................... 4 1

3.3 EVALUATION OF INPUT MODEL PARAMETERS................................................................................. 43

3.4 EVALUATION OF SECANT SHEAR MODULUS REDUCTION CURVES....................................... 44

3.5 MATERIAL DAMPING USING M IT-Si MODEL....................................................................................... 45

3.6 M IT -S i C O M PR ESSIO N M O D EL...............................................................................................................--.. 4 7



10

3.7 EXAMPLE OF APPLICATION........................................................................................................................... 49

3.8 CONCLUSIONS....................................................................................................................................................... 54

3.9 REFERENCES............................................................................. ................................................................ 54

4. REPRESENTATION OF STRESS - STRAIN RELATIONS IN CYCLIC
LOADING ............ ......................................................................................................... 61
4.1 INTRODUCTION............................................................................. ......................................................... 61

4.2 THE LINEAR VISCOELASTIC MODEL......................................................................................................... 63

4.2.1 Cyclic Stress - Strain Relationship ..................................................................................... 63

4.2.2 Hysteretic Stress - Strain Curve............................................................................................ 64

4.2.3 Model Representation by the Spring - Dashpot System....................................... 67
4.3 THE NON-LINEAR CYCLE INDEPENDENT MODEL............................................................................ 68

4.3.1 Multi - Linear Stress - Strain Models................................................................................. 71

4.3.1a Elastoplastic Models.............................................................................................................. 71

4.3.1b Bilinear and Multilinear Models..................................................................................... 72
4.3.2 Curvilinear Stress - Strain Model........................................................................................ 72

4.3.2a Hyperbolic Model................................................................................................................. 72
4.3.2b Davidenkov and Ramberg - Osgood Models .................. 76

4.3.2c Parallel Series Model............................................................................................................. 79
4.4 REFERENCES........................................................................................................................................................... 82

5. FREQUENCY DEPENDENT SHEAR MODULUS AND DAMPING.......................... 85
5.1 INTRODUCTION..................................................................................................................................................... 85

5.2 FREQUENCY DEPENDENT DAMPING - SINUSOIDAL EXCITATION............................................. 87

5.3 FREQUENCY DEPENDENT DAMPING - ARBITRARY LOADING..................................................... 90

5.3.1 Energy Dissipated - Linear Hysteretic Model........................................................... 91

5.3.2 Energy Dissipated - Non-Linear Parallel Series Model .............. 94
5.3.3 Exampe of.Applic tion...............................

5.3.3 Example of Applic ation ............................................................................................................... 95

5.4 SMOOTHED STRAIN DISTRIBUTION IN THE FREQUENCY DOMAIN.......................................... 98

5.5 CONCLUSIONS....................................................................................................................................................... 102

5.6 REFERENCES........................................................................................................................................................... 102



11

6. COMPARISON OF LINEAR AND EXACT NONLINEAR ANALYSIS OF

S O IL A M P L IF IC A T IO N ....................................................................................................................................
6.1 IN TRO D UCTIO N .....................................................................................................................................................

6.2 FREQUENCY - DEPENDENT LINEAR ANALYSIS...................................................................................

6.3 E X A CT N O N LINEA R A N A LY SIS....................................................................................................................

6.4 E X A M PLE O F A PPLICA TIO N ............................................................................................................................

6.4.1 H om ogeneous S hallow Soil Profile......................................................................................

6.4.2 D eep S oil P rofile...............................................................................................................................

6.5 C O N CLU SIO N S.......................................................................................................................................................

6.6 R EFERENCES...........................................................................................................................................................

APPENDIX I ENVIRONMENTAL AND LOADING FACTORS AFFECTING DYNAMIC SOIL

PRO PERTIES ..........................................................................................................................................

1.1 Introductio n...........................................................................................................................................................

1.2 C ohesionless So ils..............................................................................................................................................

1.2.1 Ef fect of Prior Straining - Number of Loading Cycles, N............................................

1.2.2 D egree of S aturation, S [% ].............................................................................................. ..

1.2.3 E ffect of C em entation........................................................................................................................

1.3 C ohesive Soils......................................................................................................................................................

1.3.1 E ffect of P lasticity Index [P1]........................................................................................................

1.3.2 E ffect of L oading C ycles, N ............................................................................................................

I.3.3 Ef fect of Geologic Age, tg.........................................................................................

1.3.4 Q uick C lays...............................................................................................................................................

1.4 O ther Soils..............................................................................................................................................................

1.5 R eferences..............................................................................................................................................................

APPENDIX II RCTS TEST EQUIPMENT AND MEASUREMENT TECHNIQUES..................................

II.1 Introduction...........................................................................................................................................................

11.2 Resonant Column and Torsional Shear Equipment.....................................................................

11.3 M ethod of Analysis in the Resonant Column Test........................................................................

II.4 M ethod of Analysis in the Torsional Shear Test............................................................................

11.5 R eferences..............................................................................................................................................................

APPENDIX III FORTRAN COMPUTER CODES...............................................................................................

111.1 Frequency Dependent Damping and Shear Modulus...............................................................

111.2 Nonlinear Soil Amplification - Lumped Mass System..............................................................

105
105

106

109

110

110

118

124

125

129
129
130
130
131
132
133
133
136
136
137
138
138

143

143
143
145
148
149

151
151
164



12

LIST OF TABLES

2.1 Effect of Environmental and Loading conditions on modulus ratio and damping
ratio of Normally Consolidated and Moderately Consolidated Soils (Hardin &
Drnevich, 1972, modified by Dobry & Vucetic, 1987)................................................................... 29

3.1 Derivation of Modulus Degradation and Damping Curves from Perfectly
Hysteretic Form ulation used in M IT-Si.............................................................................................. 56

3.2 Input Param eters for M IT -Si......................................................................................................................... 50
3.3 Input Material Parameters for one-dimensional MIT-Si model formulation, for

cohesionless and cohesive soils......................................................................................................... 58
3.4 One-dimensional compression MIT-Si model formulation, for unified approach of

cohesive and cohesionless soils...................................................................................................................... 59
5.1 Typical Soil Parameters for non-linear Masing Soil using Modified MIT-Si model.... 87
6.1 Input Parameters for MIT-Si model (homogeneous shallow profile)................................... 110
6.2 Input Parameters for MIT-Si model (deep profile).......................................................................... 118
1.1 Environmental and Loading Factors affecting the dynamic properties of clean

sands and cohesive soils (by Hardin & Drnevich, 1972).................................................................. 129



13

LIST OF FIGURES

2.1 Loading - unloading at different strain amplitudes.......................................................................... 26
2.2 Secant modulus and damping ratio as function of maximum strain..................................... 27

2.3 Effect of Confining Pressure on Shear Modulus Degradation Curves measured for

Dry Remolded Sand (Laird & Stokoe, 1993)....................................................................................... 35

2.4 Effect of Confining Pressure on Material Damping Ratio measured for Dry

Rem olded Sand (Laird & Stokoe, 1993).............................................................................................. 35

2.5 Variation in Maximum (Low Amplitude) Shear Modulus with Confining Pressure

for Remolded Sand Samples (Laird & Stokoe, 1993)................................................................... 36

2.6 Variation in Low Amplitude Material Damping Ratio with Confining Pressure for

Remolded Sand Samples (Laird & Stokoe, 1993).......................................................................... 36

3.1 Comparison of Measured Degradation Curves for Remolded Sand Specimens

w ith proposed m odel predictions................................................................................................................. 45

3.2 Integration of Hysteresis loop to assess material damping........................................................ 46

3.3 Comparison of Experimental Material Damping on Dry Remolded Sand

Specimens and proposed model at different levels of confining pressure....................... 47

3.4 Void ratio as a function of mean effective stress............................................................................. 48

3.5 Soil profile used for 1-D soil amplification simulation (measured data from

Memphis area by Abrams & Shinozuka, 1997).................................................................:................. 50

3.6 Simulation of wave propagation in deep soil deposit for Kobe earthquake: (a)

Input Motion, (b) Surface Response, and (c) Fourier Spectra.................................................. 52

3.7 Simulation of wave propagation in deep soil deposit for Loma Prieta earthquake:

(a) Input Motion, (b) Surface Response, and (c) Fourier Spectra........................................... 53

4.1 Stress - strain hysteresis loop of a viscoelastic material............................................................... 66

4.2 T ypical V iscoelastic M odels............................................................................................................................ 67

4.3 Shear stress - strain relationship of: (a) An elastoplastic spring, and (b) A bilinear

sp ring .............................................................................................................................................................................. 7 2

4.4 Hyperbolic stress - strain relationship - Definition of reference strain................................ 73

4.5 Schematic illustration of the large strain limit value of material damping ratio............ 75

4.6 Schematic representation of an: (a) Elastoplastic Model, and (b) Elastoplastic

P arallel Series M odel............................................................................................................................................ 80

4.7 Multi-linear approximation of the backbone curve...................................................................... 80

5.1 Transfer functions at the surface of two soil deposits overlying rigid bedrock............ 87

5.2 Stiffness and Yield force of elastoplastic springs in parallel, using modified MIT-Si

m o d el.............................................................................................................................................................................. 8 8

5.3a Shear Strain time history and hysteresis loop of simulation using nonlinear model

of elastoplastic springs in parallel, with y / Y2= 2 ............................................................................. 89

5.3b Shear Strain time history and hysteresis loop of simulation using nonlinear model

of elastoplastic springs in parallel, with y1 / Y2= 4-----------------------------------------------------......................... 89



14

5.4 Inelastic Energy Dissipated in cyclic motion by a set of elastoplastic springs in
parallel .......... ................................................................... .... ................................................... 90

5.5 Comparison of the Linear-Hysteretic Frequency-Dependent model with the Non-
Linear Parallel Series model for the Kobe N-S earthquake (Vmax = 0.001)....................... 96

5.6 Comparison of the Linear-Hysteretic Frequency-Dependent model with the Non-
Linear Parallel Series model for the Kobe N-S earthquake (Vma. = 0.05).......................... 97

5.7 (a) Scaled Fourier Transform of strain time history of various earthquakes, and (b)
Smoothed Approximation of given data .................................................................................. 99

5.8 Frequency Dependent Damping and Shear Modulus Reduction Factor for the
Linear Hysteretic Model, and comparison of the energy dissipated, evaluated
using the exact, the smoothed strain FFT, and the parallel series model, for Helena
Earthquake scaled to Vmax = 0.001............................................................................................................... 100

5.9 Frequency Dependent Damping and Shear Modulus Reduction Factor for the
Linear Hysteretic Model, and comparison of the energy dissipated, evaluated
using the exact, the smoothed strain FFT, and the parallel series model, for Helena
Earthquake scaled to y . = 0.05............................................................................................................... 101

6.1 Frequency Dependent Damping and Shear Modulus for seismic wave propagation
- Illustration of the M ethod......................................................................................................................... 108
6.1a The Transfer function of the interface of interest is multiplied by the

smoothed strain Fourier Transform.................................................................................. 107
6.1b The product of the smoothed strain Fourier Spectrum and the Transfer

Function is then scaled to the maximum value of the strain time history,
and the frequency corresponding to the maximum value of the product is
defined.. ................................................................. ...... ........................................................ 108

6.1c The scaled Fourier Spectrum is assigned constant value of the strain time
history maximum until the frequency corresponding the maximum of the
product, is successively smoothed and used for the distribution of damping
and shear modulus reduction factors in the frequency domain.............................. 108

6.2 Idealization of the soil profile as a multi -degree of freedom system, for the exact
nonlinear soil am plification analysis............................................................................................................ 109

6.3 Simulation of seismic analysis of a shallow homogeneous soil deposit for a pure
sinusoidal excitation [2.0 Hz], using frequency dependent and nonlinear analyses...... 112

6.4 Simulation of seismic analysis of a shallow homogeneous soil deposit for the

superposition of 2 sinusoidal excitations [2.0 and 8.0 Hz], using frequency

dependent and nonlinear analyses............................................................................................................... 113
6.5a Simulation of seismic analysis of a shallow homogeneous soil deposit for the Kobe

Earthquake with maximum acceleration 0.01g, using frequency dependent and
nonlinear analyses................................................. .... ......... _.................................................................... 114



15

6.5b Simulation of seismic analysis of a shallow homogeneous soil deposit for the Kobe
Earthquake with maximum acceleration 0.5g, using frequency dependent and
nonlinear analyses................................................................................................................................................ 115

6.6a Simulation of seismic analysis of a shallow homogeneous soil deposit for the
Pasadena Earthquake with maximum acceleration 0.01g, using frequency
dependent and nonlinear analyses.............................................................................................................. 116

6.6b Simulation of seismic analysis of a shallow homogeneous soil deposit for the
Pasadena Earthquake with maximum acceleration 0.5g, using frequency
dependent and nonlinear analyses............................................................................................................... 117

6.7a Simulation of seismic analysis of a deep (1.0 km) soil deposit for the Kobe
Earthquake with maximum acceleration 0.01g, using frequency dependent and
nonlinear analyses.................................................................................................................................................. 120

6.7b Simulation of seismic analysis of a deep (1.0 km) soil deposit for the Kobe
Earthquake with maximum acceleration 0.1g, using frequency dependent and
nonlinear analyses.................................................................................................................................................. 121

6.7c Simulation of seismic analysis of a deep (1.0 km) soil deposit for the Kobe
Earthquake with maximum acceleration 0.5g, using frequency dependent and
nonlinear analyses.................................................................................................................................................. 122

6.8a Comparison of the predicted duration of the surface response, for the Kobe
earthquake scaled to maximum acceleration 0.01g......................................................................... 123

6.8b Comparison of the predicted duration of the surface response, for the Loma
Prieta earthquake scaled to maximum acceleration 0.01g.......................................................... 124

1.1 Shear Modulus Reduction curve in the field, predicted assuming arithmetic and
percentage increase in m oduli........................................................................................................................ 137

II.1 Idealized Fixed - Free RCTS Equipment................................................................................................. 144



16

LIST OF SYMBOLS

CHAPTER 2

G Shear Modulus

Go, Gn. Small Strain Shear Modulus

Material Damping Ratio

Small Strain Material Damping Ratio

y Shear Strain Amplitude

,6E Area enclosed in the hysteresis loop

dm Effective mean principle stress

e Void Ratio

N Number of loading cycles

S[%] Degree of Saturation for cohesive soils

OCR Overconsolidation Ratio

c, cp Effective Strength Stress Parameters

T Shear Stress

rmax Maximum Shear Stress - Shear Strength

y, Reference Strain (= r. / Gm.)

U In-situ pore water pressure

PI Plasticity Index

KO Effective Coefficient of Lateral Earth Pressure at Rest

G, Specific Gravity

p Soil Density

D60 Soil Particle Diameter at which 60% of the soil is finer

D30 Soil Particle Diameter at which 30% of the soil is finer

Die Soil Particle Diameter at which 10% of the soil is finer

CHAPTER 3

o', Effective Overburden Pressure

Pa Atmospheric Pressure

K Tangent Bulk Modulus

Kmax Small strain bulk modulus



17

CQ Small Strain Stiffness at load reversal

P1 Poisson's Ratio at load reversal

o Non-linear Poisson's Ratio

re Stress Reversal Point

Z1 Non-dimensional distance in stress-space describing changes in the mean effective

stress and stress ratio relative to conditions at the stress reversal point

KONC Lateral Stiffness Coefficient of the Normally Consolidated Deposit

OCR1  Overconsolidation Ratio at Ko =1

p, Tangential Slope of the Hydrostatic Swelling Curve in a loge- loga space

CO, Small strain nonlinearity in shear

ce I CFriction angle at large strain (critical state) conditions

C, C, Q Parameters depending on mean effective stress level

PC Soil Matrix Compressibility - Slope of the Limiting Compression Curve (LCC) in a

loge - logo space

de Incremental Volume change

de e Elastic Incremental Volume change component

de P Plastic Incremental Volume change component

Cr Reference Stress at a unit void ratio

eo Formation Void Ratio (Void Ratio at dm=0)

dit Upper limit of effective stress, where compressibility of soil particles is significant

emi Lower limit of void ratio, where the void space becomes discontinuous and

assumptions of free drainage are no longer valid

V Shear Wave Velocity

cc Compression Index (= de l dlogu)

wL Liquid Limit

CHAPTER 4

co Angular Frequency or Circular Frequency

& Angle of phase difference

y, Shear Strain Amplitude

r. Shear Stress Amplitude

Y Shear Strain in complex variables



18

Shear Stress in complex variables

p Elastic Modulus

p Loss Modulus

p' Complex Modulus

n Loss Coefficient

W Energy Stored

A W Energy Dissipated

Tf Failure Stress - Shear Strength

4o Large Strain Material Damping Ratio

y Yield Strain

r, Yield Stress

a, r Parameters of the Ramberg - Osgood Model, defining the stress-strain relationship

k Spring Stiffness of the ith element, in the parallel series model

ry Critical Slipping Stress of the ith element, in the parallel series model

tan(a,) Tangent Stiffness at ( y, i)

N Number of elastoplastic springs

n Number of elements that remain elastic

CHAPTER 5

fi Fundamental Frequency of the soil column

Edl Energy dissipated by the ith element, in the parallel series model

u (x,t) Solution of the one-dimensional wave equation

c Wave propagation velocity

P(t) Instantaneous Power

P Average Power Dissipated

yRMs RMS value of the Shear Strain

APPENDIX I

N Number of loading cycles

yce Elastic Strain Threshold

Vc" Volumetric Strain Threshold

GN Shear Modulus after N cycles of loading

G1 Shear Modulus in the first cycle of loading



19

Degradation index

Geological Age of the soil deposit

Shear Modulus measured in the laboratory

Estimated value of Shear Modulus in the field

APPENDIX 11

I Mass Moment of Inertia of soil specimen

IM Mass Moment of Inertia of membrane

I0 Mass Moment of Inertia of rigid end mass at the top of the specimen

/ Length of the specimen

V Shear Wave Velocity of the specimen

Co,, Undamped Natural Circular Frequency of the system.

req Equivalent radius of the soil specimen

8 max Angle of twist at the top of the specimen

Z1, Z2 Two successive strain amplitudes of motion

6 Logarithmic Decrement

A Shear Strain Amplitude, defined as 0.707 Am for the half-power bandwidth

method

f, Frequency below the resonance where the strain amplitude is A

f2 Frequency above the resonance where the strain amplitude is A

f,. Resonant Frequency of the specimen

'c Particle velocity

T Period of motion

c Viscous Damping Coefficient

W, Energy Stored

Wd Energy Dissipated

cc Critical Damping Coefficient

m Mass of the system

6

t9

Gqa

Gfied



20



21

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW OF THE PROBLEM

Analytical techniques for evaluating the response of soil deposits to strong earthquake

motions have received considerable attention in recent years. Most of these procedures employ

numerical methods, which were initially developed for the solution of linear elastic, small - strain

problems. As the stress - strain relationships for soils at the level of strains that might be induced

by moderate to strong earthquakes are nonlinear, various attempts have been made to modify

these methods to handle nonlinear stress- strain behavior.

The majority of practical methods of analysis for soil amplification require the soil to be

modeled as linearly visco - elastic material. The approximate method most frequently used at

present is the equivalent linear method (Seed & Idriss, 1969), an iterative method, which is

performed as follows:

a) From laboratory tests (usually cyclic loading), the secant moduli and damping

ratios of the soil as a function of strain are obtained.

b) The linear visco - elastic analyses are then carried out iteratively, values of

modulus and damping ratio being changed in successive cycles until they

correspond to the levels of strain computed. Analyses are done with lumped

masses, springs and dashpots or with finite elements, in the time domain or in the

frequency domain using Fast Fourier Transform.

Whilst the linear iterative solution may not provide an exact solution to the non-linear soil

dynamic analysis under consideration, it does often produces acceptable results for engineering

purposes (Constantopoulos, Roesset & Christian, 1973). SHAKE (Schnabel, Lysmer & Seed,

1972) is perhaps the best known and most widely used computer program using this type of

iterative linear algorithm.

The shear modulus degradation and damping curves versus shear strain amplitude most

widely used in practice, are the ones originally proposed by Seed & Idriss, 1969, for sands and

saturated clays. However, questions arise, regarding the range of applicability of standardized
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curves, irrespective of state soil variables, such as the void ratio (density) and the confining

pressure (mean effective stress).

Laboratory experimental data (Laird & Stokoe, 1993) performed on sand samples,
subjected to confining pressures up to 5 Mpa, show that for the highly confined material, both the

shear modulus reduction factor [ G /Go ] and damping [ ] versus shear strain amplitude plot

significantly outside the range used in standard practice. Therefore, the use of the Seed - Idriss

curves in dynamic response analyses involving cohesionless soils at very high confining pressures

would generally be unconservative by overestimating the capacity of soil to dissipate energy.

The equivalent linear iterative algorithm also diverges when soil amplification or

deconvolution is performed in deep soft soil profiles, due to the assumption of a linear hysteretic

damping, independent of frequency. Since material damping is a function of amplitude, high

frequencies associated with small amplitude cycles of vibration have substantially less damping

than the predominant frequencies of the layer, but are artificially suppressed as in standard

practice, all frequency components of the excitation are assigned the same value of hysteretic

damping.

This thesis presents a simple four - parameter model, derived from a generalized

effective stress soil model referred to as MIT-S1 (Pestana, 1994), that can represent the shear

modulus reduction factors and damping coefficients for a granular soil subjected to horizontal

shear stresses imposed by vertically propagating shear [SH] waves. Results are found to be in

very good agreement with available laboratory experimental data.

Successively, a linear - hysteretic frequency - dependent damping model is developed,

and results are compared to a non-linear Masing soil model, consisting of elastoplastic springs in

parallel. For consistency, the yield strain and stiffnesses of the springs are also derived using the

stress- strain characteristics of MIT-Si.

Finally, the proposed model is implemented in a frequency - domain, soil amplification

computer code, and simulations are performed for earthquake excitations prescribed at rigid

bedrock underlying the soil deposit. Results are compared with exact nonlinear analyses, where

the soil deposit is modeled as a lumped - mass, multi - degree of freedom system, with the

nonlinear elements represented by a set of elastoplastic springs in parallel.
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1.2 ORGANIZATION OF THE STUDY

Chapter 2 describes briefly the nonlinear characteristics of soil, when subjected to large

strain amplitudes, as well as the environmental and loading factors affecting the shear modulus

degradation and damping curves. The effect of confining pressure in successively described in

detail, for dry, wet cohesionless and cohesive soils. Finally, laboratory experimental data from

resonant column and torsional shear tests, performed on dry sand specimens under high confining

pressures, are presented, alerting the need of formulating a theoretical soil model, capable of

representing the effects of confining pressure on the nonlinear stress - strain soil characteristics.

Appendices to this chapter include:

i detailed description of the parameters affecting the stiffness and damping characteristics of

soils (Appendix I), and

ii. description of the resonant column and torsional shear equipment and measurement

techniques for the evaluation of secant modulus and damping ratio of the soil, as a function

of the shear strain amplitude (Appendix II).

Chapter 3 presents a simple four - parameter soil model, based on a generalized

effective stress model, referred to as MIT-Si (Pestana, 1994). The model parameters depend

both on the soil type as well as on soil state variables and characteristics, such as current void

ratio (density), confining pressure (mean effective stress) and small strain nonlinearity. Analytical

expressions for the shear modulus degradation and damping curves are derived, results are

compared with available experimental data and simulations are performed for soil amplification

of a deep soil deposit, successively compared to the results derived using Seed - Idriss standard

practice curves.

Chapter 4 describes in detail available linear viscoelastic and nonlinear stress - strain soil

models. For each model, general stress - strain equations are presented, as well as analytical

expressions for the equivalent hysteretic damping ratio.

Chapter 5 alerts initially one of the shortcomings of the equivalent - linear analysis, namely

the assumption of linear hysteretic damping, independent of frequency. The problem is stated by

simulations performed using a nonlinear model of elastoplastic springs in parallel, subjected to the

superposition of two sinusoidal motions. Successively, a linear - hysteretic frequency - dependent

model is presented, with stress - strain characteristics derived from MIT-S1. The performance of

the model under arbitrary loading conditions, namely an earthquake excitation, is compared to a

non-linear model, consisting of elastoplastic springs in parallel, the stiffness and yield deformation
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of which, are also derived from the MIT-Sl formulation Appendices to this chapter include the

FORTRAN computer code used for the simulations (Appendix I.).

Chapter 6 presents soil amplification simulations, performed with the equivalent linear

iterative algorithm using frequency - and pressure - dependent dynamic soil properties. Results

are compared with these obtained by exact incremental nonlinear analyses, where the soil deposit
is simulated as a lumped mass multi - degree of freedom system, with the nonlinear elements

being represented by a parallel series model. For consistency of the comparison, the stress -
strain characteristics of the nonlinear springs are derived from the one-dimensional formulation of

MIT-Si, described in Chapter 3. Appendices to this chapter include the FORTRAN computer

code used for the nonlinear soil amplification analysis (Appendix I1I2).
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CHAPTER 2

SHEAR MODULUS AND DAMPING FOR DYNAMIC

RESPONSE ANALYSIS

2.1 INTRODUCTION

It is now standard practice in seismic engineering to take into consideration the non-linear

behavior of soils undergoing time-varying deformations caused by earthquakes. While it is in

principle possible to perform true incremental analyses in which the soil properties are adjusted

according to the load path and instantaneous levels of strain, this is seldom done in practice.

Instead, in the most widely used approach, approximate linear solutions are obtained using an

iterative scheme originally proposed by Seed and Idriss (1969). In this method, the soil properties

are chosen in each iteration in accordance with some characteristic measure of strain computed

in the previous iteration. While the linear iterative solution may not provide an exact solution to

the non-linear soil dynamics problem at hand, it does often produces acceptable results for

engineering purposes (Constantopoulos, Roesset & Christian, 1973). SHAKE (Schnabel, Lysmer

& Seed, 1972) is perhaps the best known and most widely used computer program using this type

of iterative linear algorithm.

Much progress has also been made recently in laboratory experiments attempting to

simulate the in-situ conditions that might exist in deep soil deposits (Laird & Stokoe, 1993). Soil

samples subjected in these tests to confining pressures as high as 5 Mpa have revealed

patterns of non-linear behavior that, while qualitatively similar to the response under lower

confining pressures, exhibited less degradation of shear modulus with strain (i.e. remained

nearly elastic). The damping due to hysteresis was correspondingly smaller. Testing at higher

confining pressures has proved a difficult task. Thus, it is desirable to develop an analytical

model that can supplement the experimental data, and can be used in computer models of

wave propagation in soils, such as SHAKE.
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2.2 NON-LINEAR SOIL BEHAVIOR

Once shearing strains exceed about 10-' (referred to as the linear threshold), the stress-

strain behavior of soils becomes increasingly nonlinear, and there is no unique way of defining

shear modulus or damping. Therefore, any approach to characterize the soil for analyses of

cyclic loading of larger intensity must account for the level of cyclic strain excursions.

Stress

Y1 V2 Strain

Figure 2.1 Loading-unloading at different strain amplitudes

When ground motions consist of vertically propagating shear waves and the residual

soil displacements are small, the response can often be characterized in sufficient detail by the

shear modulus and the damping characteristics of the soil under cyclic loading conditions. It is

usual practice to express the non-linear stress-strain behavior of the soil in terms of the secant

shear modulus and the damping associated with the energy dissipated in one cycle of

deformation. With reference to the hysteresis loop shown in Figure 2.1, the secant modulus is

usually defined as the ratio between maximum stress and maximum strain, while the damping

factor is proportional to the area (,6E) enclosed by the hysteresis loop, and corresponds to the

energy dissipated in one cycle of motion. It is readily apparent that each of the

aforementioned properties depends on the magnitude of the strain for which the hysteresis

loop is determined, so they are functions of the maximum cyclic strain.
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The simplified response illustrated in Figure 2.1 can be described through a backbone

curve, corresponding to first loading, together with a set of rules for unloading and reloading,

as proposed by Masing. Rheological models of this type can be represented by a set of elasto-

plastic springs in parallel, with input parameters obtained by curve fitting the measured data.

1.0

0.8

Modulus Degradation

0.6 G / G.

E

0.4

0.2 Damping, Z

0
10-6 105 10 10

Cyclic Shear Strain [ y

Figure 2.2 Secant modulus and damping ratio as function of maximum strain

When opting for an equivalent linear analysis, the characterization of the soil consists

of three parts (Figure 2.2):

i. The maximum shear modulus (Gax ), defined in the very small strain (linear) region.

ii. The reduction curve for G/Gm, versus maximum cyclic strain V (referred to as modulus

degradation curve), with G being the secant modulus, and

iii. The fraction of hysteretic (or material) damping ' versus the maximum cyclic strain ye.

This parameter is proportional to the area AE enclosed by the hysteresis loop, and

normalized it by the" elastid' strain energy, according to the following expression:

ri - {1}
2ni G y
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Typically G /Gm. decreases and [ increases as ye becomes larger, and in fact it has

been noticed that a fast decrease in GIG, with ye , corresponding to a strongly nonlinear soil,

is associated with a strong increase of [' with y, in the same soil, and vice versa.

In the case of dry cohesionless soils, the physical origin of the variation in modulus and

damping with cyclic strain, as reflected in the shapes of the curves in Figure 2.2, is now well

understood. Both parameters are related to the frictional behavior at the interparticle

contacts and the rearrangement of the grains during cyclic loading (Dobry et al., 1982; Ng and

Dobry, 1992; Ng and Dobry, 1994). Therefore, even crude analytical models of particles can

be used to mimic the shear modulus reduction factor, G / Gmax, and material damping, E

versus yc curves, provided that they include friction and allow for particle rearrangements.

It should be noted however that reversible behavior is associated with minimal

rearrangement of particle contacts and irrecoverable, plastic, strains become significant only

at strain levels ye > 107. For smaller cyclic strain amplitudes therefore, dissipation of energy

must be related to frictional behavior at contacts, yet the physical mechanisms related to

nonlinear stress - strain phenomena below the volumetric threshold (y "- 107) are not clearly

defined.

A comprehensive survey of the factors affecting the shear moduli and damping

factors of soils and expressions for determining these properties have been presented by

Hardin & Drnevich (1972a & b). In this study it was suggested that the primary factors

affecting moduli and damping factors are:

* Strain amplitude, y

* Effective mean principle stress, 'm
* Void ratio, e

* Number of cycles of loading, N

* Degree of saturation for cohesive soils, S[%]

and that less important factors include:

* Octahedral shear stress

" Overconsolidation ratio, OCR

" Effective strength stress parameters, c and cp'

" Time effects
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Table 2.1 summarizes the effect of these parameters on the shear modulus

degradation curves and damping. Further details can be found in Appendix I of the present

study.

Increasing Factor G / Gmax

Cyclic Strain, yc Decreases with yc Increases with yc

Confining Pressure, a'm Increases with o'm Decreases with o'm
(effect decreases with increasing PI) (effect decreases with increasing PI)

Void Ratio, e Increases with e Decreases with e

Geologic Age, tg May increase with tg May decrease with tg

Cementation, c May increase with c May decrease with c

Overconsolidation Ratio, OCR Not affected Not affected

Plasticity Index, PI Increases with PI Decreases with PI

Strain Rate, dy/dt G / Gmax probably not affected if Stays constant or may increase

G and Gmax measured at the with dy/dt

same strain rate d y/dt

Number of Loading Cycles, N Decreases after N cycles of large yc Not significant for moderate

for clays; for sands can increase (drained yc and number of cycles, N

conditions) or decrease (undrained conditions)

Table 2.1 Effect of Environmental and Loading conditions on modulus ratio and damping ratio
of Normally Consolidated and Moderately Consolidated Soils (Hardin & Drnevich,
1972, modified by Dobry & Vucetic, 1987)

Amongst the aforementioned parameters affecting the dynamic response of soils,

apart from the well known strain amplitude (y), the effective mean principle stress (o'i) is more

pronounced in the dynamic analysis of deep soil deposits studied herein, and it will be

therefore analyzed separately in the proceeding section.

2.3 EFFECT OF CONFINING PRESSURE ON MODULUS AND

DAMPING

2.3.1 COHESIONLESS SOILS

The modulus degradation and damping curves most often used for dry cohesionless

soils, such as sands, gravels and cohesionless silts, are those proposed by Seed and Idriss

(1970). Based on experimental data by Hardin & Drnevich (1970) and others, these standard

curves are extensively used in equivalent linear analysis of earthquake excitations and machine

vibrations. The Seed & Idriss approach assumes that the G / Gmax and j'curves are essentially

the same for sands, gravels and cohesionless silts. Their generic response curves, assume that
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the degradation curves are independent of the cycle number considered, as well as the void

ratio (or relative density), sand type and confining pressure, factors which, according to the

same study, do affect significantly the maximum shear modulus G,,,, defined below the

elastic threshold, ye 10-'.

Laboratory measurements provide evidence in support of some of these simplifying

assumptions. They show that void ratio, overconsolidation, sand type and cycle number

(Dobry et al., 1982, Iwasaki et al., 1978) do indeed have relatively small influence on the

measured backbone curves. They also show that the method of sand deposition, existence of

static shear stress, grain size (sands vs. gravels) are also of secondary importance (Hardin,
1965, Hardin & Drnevich, 1972a, Tatsuoka et al., 1979, Seed et al., 1986). However, the

influence of the confining pressure is significant and cannot possibly be ignored, especially

when performing dynamic analyses for deep soil sites.

A number of laboratory studies (see Section 2.4) on hydrostatically' consolidated

sands have shown that their stress-strain response becomes more linear as the confining

pressure increases (i.e. for a given shear strain amplitude, y, as o increases, G / Gnax increases

and decreases). In addition, large confining pressures lead to substantial reductions in

material damping at small strain, i.e. [i. The reason for these effects with increasing o is

related to the different rates at which the small strain modulus and the shear strength of the

soil increase when the pressure increases (Hardin & Drnevich, 1972a, Seed et al., 1986, Laird &

Stokoe, 1993).

To illustrate this assertion, consider the hyperbolic model frequently used to represent

the stress strain behavior of soils. In this model, the backbone curve is defined in terms of two

parameters, namely the small stain shear modulus Gmax and the shear strength rmax. The

hyperbolic equation for the backbone curve is:

r = {2}(1/ Gma+ y /r)ax

Alternatively, T = [ y / ( y, + )] Tmax, in which y = Tmax / Gma. is a reference strain (Hardin &

Drnevich, 1972b). Therefore, the corresponding modulus degradation curve is only a function

of the reference strain, namely:

'Laboratory data show minor influence of KO on the shear modulus degradation and damping curves (Hardin &
Drnevich, 1972a)
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G 1
G + ( I 1{ 3 }

Gax 1+(y / y,

For an isotropically consolidated sand subjected to a pure shear loading, Coulomb's

strength law indicates that rm = co tancp, in which qp is the angle of internal friction of the soil.

On the other hand, the low strain shear modulus is usually approximated as Gma. = A com,

where m = 0.5 ± 0.1 and A is a constant. Consequently, y is proportional to ac and as ao

increases, both y, and GIG. increase, as verified by the experimental data (Shibata &

Soelarno, 1975).

In particular, the analytical expression given by Shibata & Soelarno, 1975 to

incorporate in the shear modulus degradation curves the effect of the confining pressure is:

G 1

a 1±1.000

in which y = shedring strain (in. / in.); and ao = confining pressure (kg /cm 2). Once a confining

pressure is assumed, values of G/Gma. are computed for various strain levels. This is the earliest

attempt that has been made to take into account the modification of the shear modulus

degradation curves due to the confinement of the soil deposit, yet, along with the widely used

Seed & Idriss curves, this same curve is used independent from the characteristics of the soil

under consideration.

A later section presents experimental results obtained by Laird & Stokoe (1993) who

determined the degradation curves of isotropically consolidated sand specimens subjected to

confining pressures as high as co = 3.5 MPa. It will be seen that high values of o, lead to

degradation curves that lie beyond the bands given by Seed-Idriss (1970). Hence, use of the

standard curves for dynamic response analyses involving cohesionless soils at very high

confining pressures could be unconservative, since those curves might severely overestimate

non-linear effects in the soil as well as its tendency to dissipate energy.

2.3.2 WET COHESIONLESS SOILS

The degree of saturation in cohesionless soils certainly affects the reduction curves for

shear moduli and damping at large shear strain amplitudes (i.e. larger than the volumetric
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threshold ye > 10-3). For smaller strain amplitudes, the soil behavior can be approximated as

uncoupled, i.e. minimum volume change and pore pressure generation, are introduced by

shearing. Therefore, it is presumed that the curves for dry materials may also be applicable to

saturated granular soils for shear strain amplitudes yc: 1073 , with the response controlled by

the in-situ effective confining pressure:

a=a-u {5}

where: u the in-situ pore water pressure.

Clearly, if water is not trapped between the soil particles during shear, it does not

participate in the stress-strain response or in the energy dissipation in the material. In such

case, damping is completely caused by friction due to interactions between the particles, as if

the soil was dry. It should be noted, however, that this might not apply to small strain, high

frequency cyclic loads in a resonant column test. In such case, damping values will be higher for

a saturated material because of viscous effects caused by the relative movement between the

solid phase and the pore water. This difference in damping between dry and saturated soil is

generally not significant for low-frequency dynamic phenomena such as earthquakes, but may

be relevant to high-frequency vibrations such as generated by explosions and machine

vibrations.

2.3.3 COHESIVE SOILS

Based on experimental data on normally consolidated undisturbed specimens of clay

and silt obtained from several depths at a site in Japan, tested under confining pressures

ranging from 0.2 to 0.7 kg/cm 2, two general features can be clearly observed:

i. For the only specimen of non-plastic silt (PI = 0), the shear modulus degradation curve

plots together with the sand curve, and

ii. The shear modulus degradation curves of the rest of the cohesive soil samples plot

above the sand curve, with their location being higher when the PI is higher, more or less

irrespective of confining pressure.

These results are typical of many others published in the literature, indicating that the

shear modulus degradation (G / Gma.) and damping (f) curves of saturated cohesive soils in

sedimentary deposits are essentially independent of effective confining pressure, void ratio,
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and overconsolidation and are largely a function of the Plasticity Index (PI) of the clay (Zen, et

al., 1978; Kokusho, et al., 1982; Ishihara, 1986; Romo & Jaime, 1986; Dobry & Vucetic, 1987;

Sun, et al.,1988; Dobry & Vucetic, 1991).

While comparisons between G /Gm. and curves of natural clays do show an

influence of void ratio, e, it is primarily due to the fact that high plasticity clays tend to have

greater values of e than low plasticity soils, with the effect of e largely disappearing when the

Plasticity Index of the clay is considered (Lodde & Stokoe, 1982; Vucetic & Dobry, 1991).

2.4 EXPERIMENTAL DATA ON COHESIONLESS SOILS

To determine the dynamic properties of granular soils at significant depths, laboratory

tests were performed by Laird & Stokoe (1993), at UT Austin. The objective of the

experiments was to determine the dynamic properties of soils at significant depths, both for

dry and saturated specimens at confining pressures up to o = 3.5 MPa. The results of these

tests demonstrate the effects of confining pressure on shear modulus and damping described

previously.

Washed mortar sand was used to build remolded sand specimens. The sand is poorly-

graded, with a medium to fine grain size, and classifies as (SP) in the Unified Classification

System. For the construction of the remolded sand specimens, the undercompaction method

(Ladd, 1978) was used.

Resonant column and torsional shear (RCTS) equipment was used to investigate the

dynamic characteristics of the samples tested at high confining pressures, developed by the

group at UT Austin (Isenhower, 1979, Lodde, 1982, Ni, 1987, and Kim, 1991). The equipment is

of the fixed-free type, with the bottom of the specimen fixed and the torsional excitation

applied at the top. Both resonant column (RC) and torsional shear (TS) tests were performed

in a sequential series on the same specimen over a range of shearing strains from about 10-6 to

slightly more than 10-3, by changing the frequency of the forcing function.

The primary difference between the two types of tests is the excitation frequency. In

the RC test, frequencies above 20 Hz are required and inertia of the specimen and drive

system are needed to analyze these measurements. On the other hand, slow cyclic loading with

frequencies generally below 5 Hz is prescribed in the TS tests and inertia does not enter the

data analysis. Further information about the test equipment and measurement techniques
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used for the aforementioned laboratory program, can be found in Appendix II of the present

study.

In addition to the remolded specimens, four undisturbed specimens, two from

Treasure Island and two from Lotung were tested at high confining pressures. The samples

from Treasure Island were obtained from depths of 33 ft (10.1 m) and 110 ft (33.6 m) and were

classified as a sand with silt (described as SP-SM in the Unified Classification System). The

Lotung samples include a silty sand (SM) from a depth of 59 ft (18.0 m) and a silt (ML) from a

depth of 146ft (44.5 m). For the undistirbed specimens, the confining pressures tested were

based on the estimated in situ mean efffective stress, assuming the effective coefficient of

earth pressure at rest KO = 0.5. The behavior of the undisturbed samples, tested over a range

of confining pressures varying from 0.25 om + 4.00 or , was very similar to that of the

remolded specimens.

Figures 2.3 and 2.4 show the shear modulus degradation and material damping curves

of a remolded sand specimen for different values of confining pressure respectively. The

results show that the elastic threshold (i.e. the cyclic strain at the linear limit), increases with the

confining pressure.

Figures 2.5 and 2.6, on the other hand, show the dependence with the level of

confinement of the small-strain shear modulus, G, and material damping, [.. Clearly,

materials with higher confinement are stiffer at small values of strains.
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Figure 2.3 Effect of Confining Pressure on Shear Modulus Degradation Curves measured
for Dry Remolded Sand (Laird & Stokoe, 1993)
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2.5 CONCLUSIONS

The most important environmental and loading conditions on the shear modulus

degradation and damping curves have been briefly introduced, and special emphasis has been

given to the effect of confining pressure on the dynamic soil behavior.

Experimental results performed over a wide range of mean effective stresses have

been presented, alerting the need of taking into account the confining pressure effects,

especially when deep soil deposits are studied.

The need to implement concisely the experimental results presented previously into a

computer code for seismic amplification provided the motivation for formulating a theoretical

model representing the effect of confining pressure on the soil behavior under cyclic loading

(see Chapter 3).
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CHAPTER 3

MIT-SI MODEL FOR CLAYS AND SANDS

3.1 INTRODUCTION

The formulation and evaluation of constitutive models which can simulate reliably the

complex stress - strain - strength behavior of soils is an iterative process which attempts to extend

predictive capabilities, while controlling complexity such that input parameters are clearly defined.

There has been a substantial literature describing constitutive models for soils, yet

suffering from one or more shortcomings which include:

i. Perhaps the most important limitation of (most) existing elasto-plastic models for sands is

that their input parameters depend on density and confining pressure. This situation arises in

formulations, which assume that the yield surface, peak friction angle and dilatancy rates are

functions of the initial density (i.e. void ratio or relative density). As a result, the stress - strain

- strength properties of a given sand at two different initial states (void ratio or relative

density) are characterized as two separate materials with different sets of input parameters.

ii. In general, sand models do not describe critical state (i.e. large strain) conditions, in contrast

to most existing models for cohesive soils.

iii. Most constitutive models for sands are isotropic (e.g. Lade, 1977; Nishi & Esashi, 1982;

Jefferies, 1993; Crouch, 1994) although there is significant evidence that these soils exhibit

not only inherent anisotropy (i.e. due to depositional conditions) but also induced anisotropy

due to consolidation strain history and shear strain history. Existing models describing

anisotropic stress - strain - strength properties do not describe evolving anisotropy and only

describe peak conditions (e.g. Tatsuoka, 1980; Hirai, 1987; Yasufuku et al., 1991b).

iv. Finally, most models are formulated for freshly deposited (i.e. normally consolidated) sand

and do not describe overconsolidated behavior. Amongst others, the bounding surface

formulation (e.g. Dafalias & Hermann, 1982) has been intoduced to describe more

realistically overconsolidated behavior, but they have been consistently introduced in

otherwise isotropic models.

Pestana (1994) developed a generalized, effective stress soil model, referred to as MIT-S1,

which describes the rate independent behavior of freshly deposited and overconsolidated soils.
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The MIT-Si model formulation is based on the incrementally linearized theory of rate-

independent elastoplasticity. It retains the basic three-component structure of the MIT-E3 model

(Whittle, 1987), namely:

i. An elastoplastic model for normally consolidated soils with a single yield function, and non-

associated flow and hardening rules to describe the evolution of anisotropic stress-strain

properties.

ii. Equations for the small strain non-linearity and hysteretic stress-strain response in unload-

reload cycles.

iii. Bounding surface plasticity for irrecoverable, anisotropic and path dependent behavior of

overconsolidated soils.

In addition, the MIT-Si model addresses two well-known features of soil behavior:

i. The yield behavior is a function of previous stress history and depends on the current mean

effective stress and density;

ii. Dense sands and heavily overconsolidated clays exhibit dilative behavior during shearing,

while normally consolidated clays experience primarily contractive behavior.

Provided that modulus degradation and damping for 1-D wave propagation problems

involve relatively small strain amplitudes (i.e. plastic components of deformation can be ignored), a

reduced form of the MIT-Si model can be used to model the behavior of granular materials under

cyclic shear and constant effective stress. The goal is to develop, on a theoretical basis, the effect

of confining pressure on both the shear degradation curves and the material damping. The model

is then used in the simulation of one-dimensional amplification effects in a deep soil deposit. A brief

description of the MIT-Si input parameters required for one-dimensional analysis is first

presented, followed by a derivation of analytical expressions for the shear modulus degradation

and damping ratio curves. The following paragraphs use the notation introduced by Pestana

(1994).

3.2 MODEL FORMULATION

3.2.1 ELASTIC COMPONENTS

Most generalized soil models assume that the elastic bulk modulus is given by a power law

function of the mean effective stress while the shear modulus is obtained by assuming a constant

Poissoi s ratio p' The resulting elastic formulation is found to be non-conservative (i.e., generates
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or dissipates energy during a closed stress path; e.g. Houlsby, 1985). Conservative elastic

formulations both for granular soils as well as clays have been recently proposed (Loret & Luong,

1982, Lade & Nelson, 1987, Houlsby, 1985). In these cases, the resulting elastic bulk and shear

moduli are complex functions of the shear stress (or stress ratio), and of the mean effective stress.

In the MIT-Si model, there is no region of true linear elastic behavior. However, the response

immediately after a load reversal is controlled by the small elastic moduli (Km.,Gax) defined as

follows:

K max =C e3 [+ CT n -1/6 , K 1/3

p, e 2Gma C pa

2 Gm =( 1-2pj {2}
Kax 1+p+ )

where c'= c' (1+2 KO) /3 is the mean effective stress, Ko (=dO IW,O) is the lateral stress coefficient,

o', the effective overburden pressure, pa is the atmospheric pressure, C is a material constant

and p'o is the small strain Poisson's ratio (observed immediately after a load reversal). In principal,

this ratio can be determined from the effective stress path measured during one-dimensional

unloading in laboratory triaxial tests (6eg <0; Eh= 0), where:

0 1 +(Ac' /Aj,)

and A' /A', is the measured effective stress path gradient after reversal.

Expressions {1} and {2} provide an incrementally conservative elastic formulation, written

in terms of the tangent moduli and explicitly including the effect of the current void ratio, e , in soil

stiffness.

3.2.2 HYSTERETIC BEHAVIOR

The description of non-linear behavior during unloading and reloading is also described by

separate components for shear and volumetric response.

In modeling the response due to vertically propagating shear waves, only non-linear behavior

during shear is required for 1-D problems. The perfectly hysteretic response is based on the

incremental, isotropic relations between effective stress and elastic strain rates. For a load cycle in
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stress space, the perfectly hysteretic model describes a closed symmetric hysteresis loop in the

stress-strain response of the material, using a formulation that is piecewise continuous (i.e. the

moduli vary smoothly) between stress reversal points. Table 3.1 summarizes the equations used to

formulate the perfectly hysteretic MIT-Si model for horizontal cyclic shearing of a soil that is

consolidated at a constant mean effective stress level, a'.

The ratio of shear to bulk moduli (for the specific case of a'= c' ), during shearing is given by:

2G 2G 14}
K Kmax 1+

where 1, is a non-dimensional distance in stress space which describes changes in the mean

effective stress and stress ratio relative to conditions at the stress reversal point (rev). For

horizontal shear analysis, this distance is:

r - r

o, rev {5}

o is a constant that relates the swelling behavior and is selected from measurements of Ko versus

OCR during unloading. This parameter co can be determined directly from the effective stress path

in one-dimensional unloading:

3 (1+2KONc) 2G 1+2K0 NC 1
=-~ 2 IKONC± a 1  NCI {6}2 (1- KON C _ Kmax 3 OCR, j6

where: KONC the lateral stress coefficient of the normally consolidated deposit, and

OCR, the overconsolidation ratio (c', I' ) at Ko =1.

The stress reversal point is defined from the direction of the strain rates (Hardin & Drnevich,

1972), based on the observation that the non-linearity of the soil is most appropriately described in

terms of strain history. The tangent bulk modulus during one-dimensional unloading of a granular

soil is described by:

K e C_{'}
-~ ({7}

pa (1+e)Pp,.J
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+ c )2/3

Pr= { j8}

where Pr is the current (tangential) slope of the hydrostatic swelling curve in a loge - logo' space

diagram and w, describes small strain non-linearity during undrained shear.

3.3 EVALUATION OF MODEL INPUT PARAMETERS

The dimensionless material parameters needed to evaluate the stress strain behavior of a soil

deposit under cyclic loading using the MIT-Si model, which can be measured directly or estimated

with similar procedures for both sands and clays, are summarized below:

i. KoNC , is the coefficient of lateral earth pressure at rest. It can be directly measured from Ko

consolidation or from oedometer tests. It can also be estimated from empirical formulae (i.e.,

KONC = 1 - sinp' ; Jaky, 1948; Mesri & Hayat, 1993), with c' being the friction angle at

large strain conditions (critical state) in triaxial compression. For sands, this parameter is well-

bounded with values c', = 33.60±2.5. For practical applications, and in the light of the

uncertainties of the present analysis, the author has assumed Ko = KONC and Ko = 0.5.

ii. p' , is the elastic Poisson's ratio immediately after load reversal, and controls the ratio of

small strain elastic moduli (i.e. 2 Gmax IKmax ). It is determined from the initial slope of the

stress path during 1-D swelling. For uncemented materials, the expected range of p' is

narrow with typical values p' = 0.20 - 0.25 for both clays and freshly deposited sands.

iii. co describes the variation of the elastic Poisson's ratio accompanying changes in the stress

ratio (equation {6}). Common values of ca are found to be co = 1.0 ± 0.5 for both clays and

sands (Pestana, 1994).

iv. Cb defines the elastic bulk modulus at small strain levels (i.e. Kwax at stress reversal). For clean

uniform sands, average values of Cb are in the range 800 ± 100. For clays, on the other hand,

the parameter Cb decreases as the plasticity index increases. For low plasticity clays,

Pestana & Whittle (1994) report typical values of Cb = 400 - 500.

v. co, describes the small-strain non-linearity in shear and it is evaluated through the analysis of

shear modulus degradation with strain level.
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3.4 EVALUATION OF SECANT SHEAR MODULUS REDUCTION CURVES

The MIT-Si model formulation was next specialized and used to develop analytical

expressions for the secant shear modulus (Gc) in terms of the maximum cyclic strain (ye), based

on the definition of the tangential shear modulus Gan=dTdV (Table 3.1). For the evaluation of the

shear modulus degradation curves, only the analytical expression of the backbone curve (r, = 0,

yrev =0) is needed:

1 31
y(T) )=- CCC2r3+-1 C(Cl+C2) -2 + CT r{9}3 2

2e 1+p' 1 1 C'
C = - , - -

1+e 1-2io 3Cb c' p,)
where: {10}

C= C2
a a

are parameters with constant value for a given soil and level of confining pressure. The backbone

curve is then defined as follows:

[(A+2CjC2 B1/2)C2 ]1/3 C(C -C ) _C
T(y) {11}C C +C fl2CCC2 2CI[A 2 CjC2B1/2 ) C2 2 CjC2

where:

A =12 C2 C2 y + 3 C ClC 2 (C + C2) - C (C3 +C23)

B= (6C1 C2)2 2+[18 CCC 2 (C +C 2 )-6C(Cl +C|)]y+10C2CC2 -3C 2 (C +Cl)

Finally, the secant shear modulus can be written as a function of the maximum strain level:

G(y) = r (v{) 112}

For a given soil type, i.e. provided that the soil model parameters remain constant, this modulus

differs for each level of confining pressure.
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Four input constants are necessary to define the backbone curve given by equation {12}.

However, default values for three of these parameters (p'o, C, o) can be assumed without

significant lack of accuracy, and only the constant o, must be specified for a given soil type. The

proposed equations will then generate modulus degradation and damping curves, for all void

ratios, e, and confining pressures, c'.

Figure 3.1 shows a comparison between the shear modulus reduction curves predicted by

the proposed formulation and the experimental data presented by Laird & Stokoe (1993), using

ca 2.40. Results are found to be in very good agreement for all tests with a'= 28 to 1800 kPa.

1.2

0.8 -

E Dry Remolded Sand

C=80o, O=1.O, p =0.25,o =2.40

+ 1766 kPa, e = 0.636
0.4 A 883 kPa, e =0.646

E 442 kPa, e = 0.653
* 221 kPa, e = 0.658
V 110 kPa, e = 0.661
0 55.2 kPa, e = 0.662
o 27.6 kPa, e = 0.663

0

10-6 10~5 104 103

Cyclic Shear Strain [y]

Figure 3.1 Comparison of Measured Degradation Curves for Remolded Sand Specimens with
proposed model predictions.

3.5 MATERIAL DAMPING USING MIT-Si MODEL

Starting from the analytical expression for the backbone curve in the previous section, the

theoretical value of material damping ( ) can also be derived as a function of maximum cyclic

shear strain (yc) for different levels of mean effective stress (a' ). For this purpose, the area within

the hysteresis loop must be evaluated. It is convenient to introduce the auxiliary variables shown in

Fig. 3.2.

r I , y =C " Y +{13}
2 2
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These denote a shift of the origin of the coordinates to the lower-left reversal point, and a

scaling of the coordinates by a factor 0.5. Therefore, areas measured in the transformed

coordinate system are one-quarter the areas in the actual shear stress-strain coordinate system.

AT'

r'(v')

TV

Figure 3.2 Integration of hysteresis loop to assess material damping.

The shaded area above the loop can be obtained (in local coordinates) as:

TC 
Tc~Al = y'dr' = f C CIC2 (rf') + C (Cl + C2 )(T ')2 + C (r')1 dr =
4 ~1

0 1 0 1 31
= C C1C 2 (re)4 + 1 C(C, + C2 )(T)3 +1C (rT) 2

12 6 2

Therefore, using this transformation, the area within the hysteresis loop is given by:

AE = 4 [rC -C -2 A1]

Using the fundamental definition, the resulting material damping is:

{14}

{15}
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1 AE
2rn G(yv)- y

2 12 +1
=-1 -G(yc)- -CCC2(Te +-C(C1 +C2 )(re)+C
n- 6 3

{16}

where G (yc) is the secant modulus associated with the strain amplitude ye, and T (yc ) = re is

defined in equation {11}, for y = ye. The results are also summarized in Table 3.1.

Figure 3.3 shows very good agreement between the damping predicted by equation {16} at

different levels of confinement (o o= 0 to 1766 kPa), with the experimental data on dry remolded

sand specimens.

ct

0.

E

0.10

0.08

0.06

0.04

0.02

01

10 6

Cyclic Shear Strain [V ]

Figure 3.3 Comparison of Experimental Material Damping on Dry Remolded Sand Specimens and
proposed model at different levels of confining pressure.

3.6 MIT-Si COMPRESSION MODEL

Figure 3.4 summarizes the characteristic features of the compression model for

cohesionless soils proposed by Pestana (1994). The model describes the recoverable and

irrecoverable strain components during hydrostatic compression over a wide range of densities

and confinig pressures. Sand specimens compressed from different initial formation densities

Dry Remolded Sand

C = 800, o =1.00, 1 =0.25, o,= 2.40

+ 1766 kPa, e = 0.636
A 883 kPa, e = 0.646

9 442 kPa, e = 0.653
G 221 kPa, e =0.658
V 110 kPa, e = 0.661
0 55.2 kPa, e = 0.662
o 27.6 kPa, e = 0.663

--- --

10-5 10 -4 10-3
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approach a unique response at high stress levels, referred to as Limiting Compression Curve

(LCC). The behavior in the LCC regime can be described by a linear relationship in a loge - logo'

space, defined by the slope, pc, referred to as soil matrix compressibility, and the reference stress

at a unit void ratio, a.

1

02

02L

- - - - - - Idealized Soil Profile of Memphis Area

- - -Limiting Compression Curve (LCC)

I Experimental Data (Laird & Stokoe, 1993)

0.1
0.1 1 10 100 1000 10000

Normalized Mean Effective Stress [a' /pj

Figure 3.4 Void ratio as function of mean effective stress

The model describes irrecoverable, plastic strains, which develop thoughout first loading

and represents mechanisms ranging from particle sliding and rolling at low stresses, to crushing,

which is the principal component of deformation for LCC states. The behavior in the transitional

regime is controlled primarily by the formation density. The proposed model makes two

assumptions:

i. The incremental volume strains can be subdivided into elastic and plastic components:

de = d" + de" {17}

ii. The tangent bulk modulus, K, for loading can be written as a separable function of the

current void ratio, e, and the mean effective stress, c'

The variation of void ratio with confining pressure is given by:

In (-e) = - ; for first loading {18a}
e. 2/3 -C pa
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1 o-'
In(e) = exp K h J , for the Limiting Compression Curve Regime (LCC) {18b}

where eo is the void ratio at o'= 0; 0', is a 'reference stress' defined at e = 1.00; and C = 1 / p,

with p, being the slope of the Limiting Compression Curve in loge - logo' space.

The MIT-Si compression model assumes that the soil particles are incompressible and

that there is free drainage of pore fluid within the soil skeleton. The selection of a general

functional form for K (equation {7}), and the linearization of LCC behavior (equation {18b}), lead

to a conceptual framework for describing hydrostatic compression of freshly deposited

cohesionless soils.

There are two conceptual limits on the formulation of the MIT-Si compression model,

arising primarily from the basic assumptions of the particle compressibility and pore fluid drainage.

In particular:

i. a', , an upper limit on effective stress, where compressibility of the solid particles is

significant; and

ii. elirn , a lower limit where the void space becomes discontinuous and assumptions of free

drainage are no longer valid.

3.7 EXAMPLE OF APPLICATION

An idealized soil profile of depth 1000m and mass density varying from 2.12 ton/rn3 at the

surface to 2.21 ton/m3 at 1000m depth, is subjected to an earthquake prescribed at the

outcropping of rock. Two simulations are carried out in which the input motions are, respectively,

the 1995 Kobe (Japan) and the 1989 Loma Prieta (California) earthquakes, both scaled to a

maximum acceleration of 0.05g. The soil parameters are chosen identical to the remolded sand

specimens from Laird & Stokoe (1993). The variation of void ratio (and mass density) of the

profile with depth was chosen to match the soil properties in Memphis, Tennessee, as reported by

Abrams & Shinozuka (1997).

Table 3.2 lists the dimensionless input parameters for this model. These are used both to

estimate the small strain (y = 10-6) shear modulus Gma. and to determine the modulus degradation

and damping curves. The variation of the shear wave velocity with depth is depicted in Figure 3.5,

along with the reported profile for the Memphis area (Abrams & Shinozuka, 1997). The
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fundamental shear-beam frequency of the soil for this profile is 0.156 Hz, and there are some

twenty resonant modes in the 0-5 Hz frequency range.

Cb 800
(a 1
p'o 0.25
WS 2.4
eo 0.25

G'rev/ p a 6051
C 2.26

Table 3.2 Input parameters for MIT-Si model
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1000A
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200 400 600 800 1000

Shear Wave Velocity V, [m/sec]

Figure 3.5 Soil profile used for 1-D soil amplification simulation (measured data from Memphis
area by Abrams & Shinozuka, 1997)

The variation of void ratio with the mean effective stress is taken from the original

formulation for the MIT-Si model for cohesionless soils (Pestana & Whittle, 1995).

The dynamic response of the profile at the surface is calculated using the computer code

LAYSOL (Kausel, 1992), which is based on a continuum formulation of the wave propagation

problem in the frequency-wavenumber domain. The soil profile is divided into 100 homogeneous

layers of 10m thickness each, whose material properties are inferred from Fig. 3.5 (taking the

values at the center of the layers).
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Figures 3.6 and 3.7 present the simulation results for the Kobe and Loma-Prieta

earthquakes respectively. The time histories of these earthquakes are shown at the top in part (a)

of these figures. Parts (b) exhibit the simulated motions at the free surface, while parts (c) depict

the corresponding Fourier amplitude spectra. The left hand side shows the results obtained with

the proposed pressure dependent model formulation (reduced MIT-Si model), while the right

hand side displays those for the standard Seed-Idriss model for cohesionless soils. For

convenience, both sets of figures are drawn to the same scale. Inspection of these figures reveals

several important differences between the standard and proposed models:

* The new model produces generally larger amplifications.

" The high-frequency components suffer much less filtering.

* The duration of strong motion as well as total response duration are longer

All three items above are caused primarily by the decrease in damping with confining

pressure, and therefore, with depth.

The figures also show a characteristic 1.6 sec delay in initiation of the response at the

surface. This is consistent with the travel time of shear waves between the basal rock and the

surface with an average velocity of 600 m/s (as can be inferred from the 1/6 Hz resonant

frequency and the 1000 m thickness). Hence, the simulations do satisfy causality. In addition, the

reader should observe that while the response was obtained by Fourier-inversion of the frequency

response functions, the time histories do not suffer from wraparound (i.e. the' dog bites tail

phenomenon). In other words, the coda of the response does not spill into its beginning, as could

have been expected for the lightly damped system with long natural period being considered here.

These desirable characteristics are accomplished with the' complex exponential window method

described by Kausel & Roesset (1992).
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3.8 CONCLUSIONS

This chapter presented a simple four-parameter model for the dynamic shear moduli and

damping characteristics of granular soils when they deform in shear only. This model is based on

the MIT-Si generalized plasticity model proposed earlier by Pestana and Whittle (1995). Its four

parameters can readily be measured in the laboratory, or estimated from existing data. The shear

moduli and damping values predicted by the proposed model were found to be in excellent

agreement with experimental results obtained by Laird and Stokoe (1993) over a wide range of

confining pressures.

The proposed formulation takes into account the effect of confining pressure on soil

parameters and hysteretic behavior, and therefore, permits proper consideration of the hysteretic

characteristics of the ground with depth. As demonstrated with two simulations for a 1 km deep

site, the dependence of the dynamic moduli on confining pressure can be an important

consideration in the analysis of soil deposits for earthquake effects.

The simulations indicate that when the confining pressure is taken into account, the

elasticity of the soil steadily increases with depth. The refinement introduced by the pressure-

dependant characterization of the soil in turn alleviates significantly one of the alleged

shortcomings of the standard equivalent-linear model, which is that it unrealistically wipes out the

high-frequency components of motion when used for moderately deep to very deep soil profiles.
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PERFECTLY HYSTERETIC MODEL USED IN MIT-Si
(FOR ONE - DIMENSIONAL ANALYSIS)

DIMENSIONLESS DISTANCE MEASURE (in stress space)

= Trev

where , r, are the current stress and the stress at the reversal point, respectively. For the
definition of the backbone curve Trev =0.

DEFINITION OF TANGENTIAL ELASTIC MODULI

K -e ( ; where pr = (i+6) 5 rz'5 )2 3

p, (1+e)p, pa' Cb (Pa

2G 2G 1- "m" for c'= c'.;
K K. 1 +o , re

where m" = 3 ,
Kma 1+ P0

where Cq and p' are elastic parameters; o and o, are material constants introduced to
characterize the hysteresis.

DEFINITION OF BACKBONE CURVE - SECANT SHEAR MODULUS

(A +2C 1 C2 B112 )C 2 ]1/3

2CCC 2
+

C(C2 -C2)

2 C1C2 [(A + 2 C1C2Bz112) C2 11/3

where: A=12C C2y + 3CC1 C2 (C+C 2 )-C(C3 +C2)

B= (6C1 C2
2 2+[18 C C1 C2 (C +C 2 )-6C(Cf +Cl)]y+10C2C1C2 -3C 2 (Cf +Cl)

0 =2e 1+po 1 1
1+e 1-2po 3 Cb c

-- ; C 1 = ";C 2 =-
(p, a a

and C, C and C2 have constant value for each level of mean effective stress a'.

Table 3.1 Derivation of Modulus Degradation and Damping Curves from Perfectly

Hysteretic Formulation used in MIT-Si

C1+C2

2C1C2
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PERFECTLY HYSTERETIC MODEL USED IN MIT-Sl
(FOR ONE - DIMENSIONAL ANALYSIS)

MATERIAL DAMPING RATIO

S(yj) 1 -G(y,)- C CIC2 (rej2 + -C (C + C, )(re + C

where:
G (ye) is the secant modulus associated with the strain amplitude ye

r (yc) = rc is the shear stress associated with the strain amplitude yc

C, C and C2 have constant value for each level of mean effective stress c'.

Table 3.1(cont) Derivation of Modulus Degradation and Damping Curves from Perfectly

Hysteretic Formulation used in MIT-Si
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INPUT MATERIAL PARAMETERS FOR MIT-Si
(FOR ONE - DIMENSIONAL ANALYSIS)

COHESIONLESS SOILS (SANDS)

PARAMETER PHYSICAL CONTRIBUTION TEST TYPE MEAN VALUE

[Symbol] [Meaning]

PC Compressibility of Sands at

large stresses [LCC regime] Hydrostatic/Compression Test

O'r / pa Reference Stress at unity (Triaxial or Oedometer) -

Void Ratio

KONC Ko at the LCC regime 0.50

p' Poisson's Ratio at Load Reversal Ko Oedometer or 0.25

O Non-linear Poisson's Ratio Ko Triaxial 1.00

(1-D unloading stress path)

Cos Small Strain non-linearity in Shear Undrained / Drained 2.5- 0.5

Triaxial Shear Tests

Cb Small Strain Stiffness at Load Reversal Resonant Column Bender Elements 800

COHESIVE SOILS (CLAYS)

PARAMETER PHYSICAL CONTRIBUTION TEST TYPE MEAN VALUE

[Symbol] [Meaning]

pc Compressibility of Normally Hydrostatic/Compression Test 022±0.05

Consolidated [NC] Clay (Triaxial, Oedometer or CRS apparatus)

KONc Ko for NC Clay 0.50

P Poisson's Ratio at Stress Reversal Ko Oedometer or 025

controlling 2 GMAx/KMAx Ko Triaxial

o Non-linear Poisson's Ratio 100

(1-D unloading stress path)

os Small Strain non-linearity in Shear Undrained Triaxial Shear Tests -

Cb Small Strain Stiffness at Load Reversal Shear Wave Velocity / Resonant Columr 450

Table 3.3 Input Material Parameters for one - dimensional MIT-Si model formulation, for

cohesionless and cohesive soils
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ONE - DIMENSIONAL MIT-Si COMPRESSION MODEL

COHESIONLESS SOILS (SANDS)

For first loading

For the LCC Regime

where: eo

a' r

C=1/pc

In(e )= 1 - c')2

eo 2/3-C p,,

CJ 1  '
In(e)= exp In

C C,

is the void ratio at o'= 0,

is a 'reference stress' defined at e =1.00, and

with pc being the slope of the LCC, in loge - loga'space.

COHESIVE SOILS (CLAYS)

* Empirical Correlations for Compressibility of Normally Consolidated Clay

C = 2.303 p, eo [1 - 04J1

2

awL 1_ 202

100 [ w

where: Ce = de / dlog(d)

WL [%]
a

* Data Compilations

Compression Index

Liquid Limit

Empirical Constant

SOIL Cc SOIL Cc
NC Medium Sensitive Clays 0.2 - 0.5 Mexico City Clay (MH) 7-10

Chicago Silty Clays ( CL) 0.15 -0.3 Organic Clays ( OH) ) 4

Boston Blue Clay ( CL) 0.3 - 0.5 Organic Silt, Clayey Silts ( ML - MH) 1.5-4

Canadian Leda Clays (CL - CH) 1-4 San Fransisco Bay Mud ( CL) 0.4 - 1.2

Table 3.4 One - dimensional compression MIT-Si model formulation, for unified approach

of cohesive and cohesionless soils
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CHAPTER 4

REPRESENTATION OF STRESS - STRAIN RELATIONS

IN CYCLIc LOADING

4.1 INTRODUCTION

Soils do not exhibit linear elastic behavior except at very small strains (less than 10-5, in
general). In this range the nonlinear effects while present, have little influence and can hardly be

assessed because it is difficult to measure such small strains and stresses accurately.

At larger strains, such as the ones induced by relatively strong earthquakes,
experimental data (Hardin & Drnevich, 1972a, 1972b; Seed & Idriss, 1969; Thiers & Seed,
1968) show that the stress-strain relationships for soils deviate from linearity, and, therefore,
nonlinear effects cannot be ignored. Certain features of this relationship, whilst complicated,
can be identified from available experimental data:

i. The hysteretic stress stress-strain behavior of soils is nonlinear and strain-dependent.

ii. The loops exhibit a sudden change in slope when the strain changes direction.

iii. The unloading and reloading branches of the loops appear geometrically similar when

measured from the reversal point of strain.

iv. The tangent modulus upon reversal of strain is approximately the same for both the

unloading and reloading parts of the loop, and is approximately equal to the initial

modulus.

v. The area enclosed by each loop is the energy loss per cycle, and is independent of strain

rate.

Modeling of soil behavior under cyclic or random loading conditions may be made so

that the model can duplicate the deformation characteristics in the range of strains under

consideration. When soil behavior is expected to stay within the small strain range (i.e. below

the elastic threshold), the use of an elastic model is justified and the shear modulus is a key

parameter to properly model the soil behavior.

When a given problem is associated with the medium range of strain, approximately

below the level of 10-, the soil behavior becomes elastoplastic and the shear modulus tends to
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decrease as the shear strain increases. At the same time, energy dissipation occurs during

cycles of load application. The energy dissipation in soils is mostly rate - independent and of

hysteretic nature, and the damping ratio can be used to represent the energy absorbing

properties of soils. Since the strain level concerned is still small enough not to cause any

progressive change in soil properties, the shear modulus and damping ratio do not change with

the progression of cycles in load application. This kind of behavior is called non-degraded

hysteresis type. Such steady-stage soil characteristics can be represented to a reasonable

degree of accuracy by use of the linear viscoelastic theory. The shear modulus and damping

ratio, determined as functions of shear strain, are the key parameters to represent soil

properties in this medium strain range. The most useful analytical tool accommodating these

strain - dependent but cycle - independent soil properties would be the equivalent linear

method based on the viscoelastic concept. Generally, the linear analysis is repeated, by

stepwise changing the soil parameters until a strain - compatible solution is obtained. The

seismic response analysis performed for horizontally layered soil by use of the computer

program SHAKE (Schnabel et al., 1972) is a typical example of an analytical tool that can be

successfully used to clarify the soil response in the medium range of strain.

For the shear strain level larger than about 10-2, soil properties tend to change

appreciably not only with shear strain but also with the progression of cycles. This kind of

behavior is termed degraded hysteresis type. The manner in which the shear modulus and

damping change with cycles is considered to depend upon the manner of change in the

effective confining stress during irregular time histories of shear stress application. When the

law of changing effective stress is established, it is then necessary to have constitutive law in

which stress - strain relations can be specified at each step of loading, unloading and reloading

phases. One of the concepts most commonly used at present for this purpose is what is

referred to as the Masing law. For analysis of a soil response accommodating such a stress -

strain law covering large strain levels near failure, it is necessary to employ a numerical

procedure involving the step - by - step integration technique.

In what follows, the methods of modeling soil behavior will be discussed and the soil

model used for the present analysis will be described.
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4.2 THE LINEAR VISCOELASTIC MODEL

When the level of cyclic shear strain is still small, of the order of 10-3 and 10-4, the cyclic

behavior of soils can be represented to a reasonable degree of accuracy by means of a

constitutive model based on the classical theory of linear viscoelasticity. In this model, the

stress - strain relation is assumed linear, but the energy dissipating characteristics of soils can

be logically taken into account. It has been shown that there always exists a certain degree of

damping in soils and it plays an important role in determining motions in soil deposits during

earthquakes. Thus this model has frequently been used to represent soil behavior even in the

slightly nonlinear range where damping has important effects.

4.2.1 CYCLIC STRESS - STRAIN RELATIONSHIP

Before discussing the stress - strain law for a specific viscoelastic model, the general

form of expression relating the viscoelastic stresses and strains is introduced.

Let the stress and strain in any mode of deformation, such as triaxial, simple shear or

torsional shear be denoted as r and y. Let a sinusoidally reciprocating shear stress:

T = rasin (o t) {1}

be applied to a body exhibiting viscoelastic response, where ra is the amplitude, t is the time,

and co stands for the angular frequency or circular frequency. As a result of the shear stress

application, shear strain with the same frequency will be produced, accompanied by a time

delay as:

y = ya sin(t t -6) {2}

where y is the amplitude and 6 stands for the angle of phase difference indicating that the

time lag in strain response, which is conveniently represented by r / y, is not only a function of

amplitude ratio Ta / ya, but also a function of the phase angle difference 6.

Making use of the complex variables method, we denote herein:

TR = Ta cos (co t) {3}

YR = y, cos (o t -6) {4}

and it may be stated further that if a viscoelastic body is subjected to an input stress

expressed in a form of complex variables as r= TR + i r, then the resulting response in strain
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would be V= YR + i V , where i is the unit imaginary number and T and y are the stress and

strain in complex variables. We therefore have:

S=T re e''' {5}

y = Va e {6}

The strain versus stress response can be described by the ratio T*/ , which is explicitly written

as:

T rT
- = -"-e' = -"-(cos6+isin)=p+i p=p {7}
V ya Ya

where p and p'are called elastic modulus and loss modulus, respectively, and p' is named

complex modulus. The elastic modulus is a parameter indicative of elastic or instantaneous

power and loss modulus represents the energy dissipating characteristics of the viscoelastic.

Finally we have:

Va
=a M, 2+p2 -18a}

tan 3= =n {8b}
p

where n is a parameter called loss coefficient which is indicative of energy loss or damping

characteristics. From equation {8a} and {8b}, the absolute value of the complex modulus p* is

shown to indicate the shear modulus of the material.

It is to be noted here that the material parameters p and p'need not necessarily be real

constants, but could be a function of the angular frequency co. Therefore the moduli P and p'

as defined in equation {7} are regarded as the most general expression, and consequently can

take any form expressed as a function of frequency. Once a functional form is specified to

these moduli, the viscoelastic behavior of the material can be described in a more tangible

manner. Several methods for specifying these moduli have been proposed, either on the basis

of direct experiments or on the basis of spring-dashpot models.

4.2.2 HYSTERETIC STRESS - STRAIN CURVE

Describing the stress - strain behavior of a viscoelastic body, the pair of equations {1}
and {2} can be viewed as a stress - strain relation, correlated through a tracking parameter cot.

Therefore, by eliminating the parameter cot, a single relation as follows is obtained:
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- 2 cos + - sin2C5=0 {9}ra Y, ra y"

This is regarded as a second order equation with respect to r / r. Solving with

reference to the definition of p and p' one obtains:

r=/JYp' Ya y {10}

An alternative expression is obtained by decomposing the right - hand side of

equation {10} in two parts, namely:

T =T 1 +TF 2

7I =Ip V {11}

T2 2 + (If =1
p Va Ya

-Therefore, the actual value of shear stress can be graphically represented as the

addition of a straight line with slope p (r) and an ellipse (r2 ). The result of this manipulation is

an ellipse with inclined axis, as shown in Fig. 4.1.

As indicated in Fig. 4.1, the inclined ellipse cut the ordinate at a shear stress point of

p'-y . Therefore, the value of p' may be taken as a measure to indicate a degree of flatness in

the shape of the ellipse. The greater the value of A , the rounder the ellipse indicating that the

energy loss or damping is bigger, whereas the smaller the value of p' ,the thinner the ellipse and,

hence, the smaller the damping during cyclic loading.
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T

y

Figure 4.1 Shear stress - strain hysteresis loop of a viscoelastic material

In order to quantify the damping characteristics, the amount of energy dissipated in

one cycle of load application is initially calculated. The energy loss per cycle is equal to the

area enclosed by the hysteresis loop shown in Fig. 4.1, and it can be readily evaluated using the

well - known formula of an ellipse:

AW = frdy = p' ny2 {12}

Next we consider the maximum elastic energy stored in a unit volume of a viscoelastic

body. The stored energy is defined by the elastic component of the shear stress r1. Therefore,

using eq. {11}, the energy is expressed as follows:

1 12
W = - Ti Y, = - P ya {13}

2 2

As a measure of the damping characteristics, the ratio of energy loss per cycle to the

maximum stored energy is evaluated, and the loss coefficient, n, is thereafter calculated as

follows:

-- ------- --------------
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2
'W- P, n y, = 2,1L

W 1 2 P
2 P V {14}

1lAW p'
n - = --- = tan3

2rn W p

The above procedure may be used most conveniently to calculate the loss coefficient,

even in case of nonlinear hysteresis curves where the linear viscoelasticity is no longer exactly

applicable.

4.2.3 MODEL REPRESENTATION BY THE SPRING - DASHPOT SYSTEM

The viscoelastic behavior of a body discussed above has been also examined by using

spring - dashpot systems. In this type of model, the elastic property is represented by a spring

and the damping characteristics are represented by a dashpot, connected in parallel or in

series, as illustrated in Figure 4.2.

G 4 V
G G'

G' 47V2

(a) Kelvin Model (b) Maxwell Model

Figure 4.2 Typical viscoelastic models

Even if it is well known that the energy loss can occur from numerous different internal

mechanisms in a deforming body, the dashpot can represent energy loss characteristics due

only to the viscosity, that is, the damping generated in proportion to the velocity or time rate

of deformation. This kind of energy loss is referred to as rate - dependent damping. In case of

cyclic loading, the rate dependency is manifested in such a way that the deformation depends

upon frequency.
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* Kelvin model

The most widely used model is the Kelvin model, consisting of a spring and a dashpot

connected in parallel, as shown in Fig. 4.2 (a). In this model, while the strain y is imposed equally

to two elements, the stress r is divided in two parts: One carried by the spring, r and the other

borne by the dashpot, r2 .Therefore, according to equation {11}, the total stress is evaluated as

follows:

r =Gy+G' dT {15}
dr

* Maxwell model

This model consists of a spring and a dashpot connected in series, as shown in Fig. 4.2 (b). In

this model, the stress r is carried commonly but the strain y consists of two parts: V coming

from the deformation of the spring V2 resulting from the dashpot deformation. Therefore, the

stress - strain relationship for the Maxwell model is evaluated as follows:

r 1 dT dy
- + - -= - {16}
G' G dt dt

Evaluating the loss coefficient for each one of the aforementioned viscoelastic models, it can

be proven that:

n = tan 3 = G' o Kelvin Model
G

n = tan 6 = G Maxwell Model
co G'

Therefore, the damping evaluated by means of the two models is frequency dependent, with

the Kelvin model loss coefficient increasing and the Maxwell model loss coefficient decreasing

with increasing frequency in cyclic loading.

4.3 THE NON - LINEAR CYCLE INDEPENDENT MODEL

When the amplitude of shear strain is still small, the response of soils does not change

with the progression of cycles and therefore the modulus and damping properties remain the

same throughout the duration of cyclic stress application. However, the level of shear strain is

assumed to be large enough to produce a nonlinear hysteresis loop in the cyclic stress - strain

relationship. This type of soil behavior seems to be manifested when the induced shear strain is

within the range approximately between 10-5 and 10-3.
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Modeling the stress - strain nonlinear soil behavior, two types of curves need to be

specified. In particular, one is associated with monotonic loading and the other constitutes a

cyclic loop. The former is referred to as backbone curve or skeleton curve and the latter is

called a hysteresis loop. As an extension to the nonlinear case, it may be mentioned that the

skeleton curve and the hysteresis loop indicate respectively, the elastic property and energy

dissipating characteristics, which are nonlinear. Due to this feature, the skeleton curve is not a

straight line nor does the hysteresis loop have rounded corners.

In constructing a nonlinear cyclic stress- strain relation, two basic functions need to be

specified, one for the backbone curve and the other for the hysteresis loop. The backbone

curve can be expressed by the following relationship:

T = f( y) {18}

which is obtained from monotonic loading tests on soils. For the load reversal occurring at

point (ya, Ta ), the equation of the stress- strain curve for the subsequent unloading is given as:

T-T y-y_ {9
"2 f " {19}

2 k2)

The unloading branch of the stress - strain curve as defined above implies that a half

part of the hysteresis curve is obtained by two - fold stretching of the skeleton curve and by

translating its one end to the point of the stress reversal. Similarly, for reloading occurring at

point (- ya,,- Ta), the stress - strain curve for the reloading branch is now given by:

r + r y+T = fj " {20}

It is shown that the reloading branch defined by equation {20} intersects the backbone

curve at the initial point of stress reversal. Thus the pair of curves defined by equations {19}

and {20} constitute a complete closed loop representing the nonlinear hysteresis curve in the

cyclic loading. The rule for constructing the unloading and reloading branches as above using a

skeleton curve is called the Masing rule.

The characteristics of hysteretic stress-strain behavior of soils, which have been

summarized above and have been experimentally observed, are similar to observations made

by Masing, who studied the plastic deformations of metals under uniaxial simple cyclic loading
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conditions and observed their hysteretic behavior. Their hysteretic stress-strain behavior,

known as Masing's Principles, has the following characteristics:

i. The non-linearity of the material is plastic, with the charactesistic that at each change in

direction of loading, the stiffness of the material returns momenarily to its initial stiffness.

ii. Under uniform cyclic loading of constant amplitude, a steady-state stress-strain behavior

is obtained (stabilized loops), provided the hysteretic damping is sufficient to attenuate

any transient effects within a few cycles.

iii. For stabilized loops under uniform cyclic loading conditions, the unloading and reloading

branches of the stabilized loops are of the same form as the spine except for an

enlargement of two in strain.

iv. The damping or energy loss is independent of the rate of strain and is entirely hysteretic.

By analogy with the reasoning in the linear viscoelastic model, the nonlinear

deformation characteristics are normally represented by the secant modulus, defined as the

slope of the straight line connecting the origin and the point of strain amplitude on the

backbone curve (see Chapter 3). In the same fashion as in the viscoelastic model, the damping

ratio, s, is defined as:

1 A W 
{21

4 n W

where according to Masing s rule:

1
W -y f (V)2

AW = 8 f (v)dv - W {22}

Using equations {21} and {22}, the damping ratio is defined as follows:

Ya

2 f f(y) dy
= - 0 *1- 23}

ni v-- f (v_)
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It should be noted herein that both parameters controlling the nonlinear deformation

characteristics of soils, namely the shear modulus G and material damping [, are expressed as

a function of the strain amplitude Va , as the derivation of the formulae is based on the

backbone curve. For a constitutive model expressing the shear strain in terms of shear stress

(y= y(r)), the damping ratio would be defined as follows:

2 V(r)dT

= j 1 {24}

Several models have been suggested to reproduce the nonlinear stress - strain

characteristics of soils. They generally fall into two categories.

1. Models with multi-linear stress - strain relationship.

2. Models with curvilinear stress - strain relationship.

These models are briefly presented in the following sections.

4.3.1 MULTI-LINEAR STRESS - STRAIN MODELS

4.3.1a Elastoplastic Models

These systems are described by a stress - strain or load - deflection relationship similar

to the one plotted in Figure 4.3a. During loading up to a yield value r, the system exhibits a

constant stiffness G. If loading (or rather straining) continues, the system exhibits zero stiffness.

The same behavior characterizes the model during unloading. Under forced vibration

conditions the system dissipates energy as indicated by the non-zero hysteresis loop area.

Under free vibrations though (i.e. the system is initially displaced beyond the elastic threshold

and successively released, undergoing free oscillations), energy is not dissipated. The

elastoplastic model has been primarily used in load - deformation studies with finite elements

and finite difference methods.
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GA

(a) (b)

Figure 4.3 Shear stress - strain relationship of: (a) An elastoplastic spring and, (b) A bilinear
spring

4.3.16 Bilinear and Multilinear Models

The load - deflection relationship as shown in Fig. 4.3b is typical of these systems.

During loading up to a yield value r, the system has initial stiffness G and, for further loading

beyond the yield point, the stiffness becomes 02 until the next yield point, re,, is reached. The

same sequence occurs during unloading.

In particular, the actual continuous curve of the force - deflection relationship is

approximated by several straight-line segments. Hence this system more closely represents

the idealized curve than either the elastic or the elastic - perfectly plastic systems do.

For the present analysis, a multilinear model is used to simulate the inelastic soil

behavior under cyclic and arbitrary loading. The model is more extensively analyzed in

subsequent section.

4.3.2 CURVILINEAR STRESS - STRAIN MODELS

4.3.2a Hyperbolic Model

Considering the stress - strain curve of soils, it is bounded by two straight lines, namely

the tangent Go (the elastic modulus) at small strains, and the horizontal asymptote at large

strains indicating the strength of soils r1, as illustrated in Fig. 4.4.
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y r yaQ y

Figure 4.4 Hyperbolic stress - strain relationship - Definition of reference strain

The stress - strain curve bounded by these two straight lines may be expressed in

dif ferential form as:

dT (1
dT= G1

d y r,
{25}

where n is an arbitrary number. This expression indicates that the tangent to the stress - strain

curve takes a value of Go at r= 0 and decreases with increasing stress until it becomes zero at

r= ry. Except of the case of n = 1, equation {25} can be integrated, as follows, so as to satisfy

the condition y=0 when r= 0,

{26}y = Yr
n -1

where a new parameter is introduced, yr , referred to as reference strain and defined as

follows:

Vr Tf
Y r {27}

The reference strain indicates a strain that would be attained at failure stress, if a soil were to

behave elastically.
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Defining the shear stress in terms of the shear strain, equation {26} can be written as

follows:

T
- 1= {28a}

which, for the special case of n =1, is reduced to the following expression:

V

- = 1 - e v{28b)
i-f

The stress - strain curve defined by equation {25}, produces a constant damping ratio

of 2/n as an upper limit, when the strain becomes large. This can be readily proved by

modifying equation {23} as follows:

1 2+JV I f(y0) = 2 ff(y) dy {29}
0

If the damping ratio is assumed to take constant value lo at large strains, equation {29} can

be differentiated as follows:

21- f(y.)= V f'(yv) {30}

Introducing equations {25} and {26} into equation {30} with y= ya and r= ra, one obtains:

1- V G. 1 + n e 1 " - 1 " {31}1-2 eo n-1 ro 2 r, r,

When the strain is very large, T becomes equal to r, and the right - hand side of equation {31}

vanishes. Therefore o =2 / n.
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This limit value of material damping can be also obtained as follows. From equation

{29}, we have:

f(y) dy

1 + n =2 0
2 y-f(y)

{32}

In Figure 4.5,

and the limit value of

Tf

U)

a
U)

the numerator and denominator of the RHS of equation {32} are plotted,

the ratio, as the shear strain becomes sufficiently large, is unity.

Shear Strain [y] Shear Strain [y]

Figure 4.5 Schematic illustration of the large strain limit value of material damping ratio

Therefore, from equation {32} we obtain:

ff(y)dy

lim =1
Y--O y.f(y)

lim 1+ =2
V -+ 00 2

{33}

2
and liml=le=-

v -*C n

The stress - strain curve for the hyperbolic model can be directly obtained from

equation {26}, by introducing n = 2:

rT Go Y

1+
Yr

{34}

This equation has been extensively used to represent the stress - strain relations for variety of

soils. The hyperbolic model has also been used to specify the hardening rule in the theory of

plasticity (Venmeer, 1978).
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The expression for the secant modulus in the cyclic loading is obtained from equation

{32} as follows:

G _ 1 r 35-G-=, G =-"-{35}
Go 1 + ya/ yr V,

It is can be readily noted that the secant modulus is reduced to half the initial shear modulus

when the shear strain becomes equal to the reference strain.

Applying Masing s rule to the skeleton curve given by equation {34}, the damping ratio

of the hyperbolic model evaluates to:

4 [1+ 1 1l_ In (1+ ya / Yr 1 {36}

n y" / yr ya / y, nl

In the hyperbolic model as specified above, there are two parameters Go and r, which

define the model. In some cases, it is difficult to specify both the strain - dependent shear

modulus and damping ratio by means of only two parameters. Particularly inconvenient is the

fact that, once the reference strain yr is specified from the stress- strain characteristics of the

secant shear modulus, the value of strain - dependent damping ratio is automatically

determined, and there is no choice for any parameter to be adjusted so as to provide a good

fit to experimentally obtained damping data.

Usually the model representation is satisfactory in the range of small strains, yet it

tends to deviate from actual soil behavior with increasing shear strains, thereby overestimating

the damping ratio.

4.3.2b Davidenkov and Ramberg - Osgood Models

The hyperbolic relationship, in spite of the fact that it adequately represents part of a

cycle, has certain shortcomings:

i. It models only the loading part of a given cycle.

ii. The parameters for the relationship have to be changed for each cycle.

iii. It does not have "memory", and hence unloading cannot be handled uniquely by the

same relationship unless the parameters are changed continually.
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Therefore, it would be desirable to use a relationship that is relatively smooth and

continuous at yielding and yet is general enough to describe yielding behavior between the

extremes of linear elastic and elastic- perfectly plastic material.

Constitutive soil models satisfying Masing's Principles belong to one of two general

classes, namely the Davidenkov (D) class models and the Ramberg-Osgood (RO) models. The

major difference between these two classes is that for the D class models, strain is the

independent variable, while for the RO class models, stress is the independent variable. The D

class models have received little attention in the field of seismic analysis of rate - independent

yielding systems, although they are probably best suited for this purpose. This arises from the

fact that strains or displacements are normally obtained from the numerical solution of

equations of motion, and they are then used as the independent variable in the constitutive

model.

However, the RO class models have been used in the past to model the nonlinear

hysteretic stress - strain behavior of such systems under seismic loading conditions despite the

shortcomings that arise from the use of stress as independent variable. In what follows, the RO

class model principles will be briefly presented.

In the original formulation of the Ramberg-Osgood model, for a spring representing a

soil element, the stress - strain relation for the backbone curve is given by:

V- 1 +a T {37}

where ry and y are shear stress and shear strain, respectively, to be appropriately chosen, and

a and r are constants. Thus, the RO model contains four parameters that can be adjusted to

achieve a best fit to experimental data. The most widely used way to specify the quantities Ty

and Yy is to equate them to the shear strength Tf and the reference strain yr respectively, as

suggested Idriss et al. (1978) and Hara (1980). Therefore, equation {37} can be rewritten as

follows:

Go y {38}

1+ a T
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The expression for the strain- dependent modulus for the cyclic loading condition, as well as

for the damping ratio, can be obtained by setting y = ya and r= Ta:

G 1

Go G r-1
G0 1+ a G "

Go y,

Gy' {39}

2 r-1 Go Y,

n r+1 G y1+a G "a
GO Yr

One of the drawbacks of the RO model is the fact that the shear strain Va increases in

proportion to Ta when the shear strain becomes large, as it can be readily seen by equation

{38}. In view of the possible range of the parameter r supposedly taking a value between 2 and

4, the quantity Ta tends to increase indefinitely with increasing shear strain, which is

inconsistent with the real behavior of soils. One of the ways of overcoming this contradiction

would be to set a rule for determining the parameter a so that in no case the shear stress Ta

exceeds the value of Tf corresponding to failure.

With respect to the determination of the parameter r, it would be reasonable to take

into account the damping characteristics of soils. Combining equations {39} and eliminating the

shear strain ratio ya / y,, the parameter r could be evaluated if the values of eand G/ Go at a

certain strain level are known.

The main disadvantage of the models analyzed in this section is that their use cannot

be arbitrarily extended to more complicated cyclic loading conditions because these classes of

models are not physical models of rate independent yielding systems. This shortcoming can be

readily seen, when the system is subjected to a steady - state cyclic strain time history,

containing two reversal points in addition to the extreme reversal points during a cycle. Due to

the presence of the two additional reversal points, an additional smaller hysteresis loop is

expected in the overall hysteretic stress - strain behavior. The important feature of these

models without memory capacity of intermediate reversal periods, is that the overall

hysteresis loops are not stable under the given strain time history and in fact, for continued

cyclic loading, the stress increases without bound. The explanation of this behavior is that the
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D and RO class models only consider the most recent reversal point, and hence unload and

reload without regard to reversal points prior to the most recent one.

4.3.2c Parallel Series Model

The two classes of models described in Section 4.3.2b were developed on a purely

phenomenological basis and are consistent with the experimentally observed stress - strain

behavior of rate - dependent yielding systems under one-dimensional simple cyclic loading

conditions. Their main disadvantage is that they cannot be arbitrarily extended to more

complicated loading conditions because these classes of models are not physical models of

rate- independent yielding systems.

In particular, the D and RO class models consider only the most recent reversal points.

Hence, the model always unload and reload without regard to load reversal points prior to the

most recent one, a fact which, in the light of experimental laboratory data, is unrealistic (see

Appendix II).

Numerous laboratory data confirm that the soil tested under arbitrary loading has a

"memory", i.e. its performance depends on all previous load reversal points and follow the

loading curve associated with the appropriate load reversal point. After the strain has

increased past the last extreme strain at which there was a load reversal, the loading curve

resumes the initial backbone curve.

The shortcomings of D and RO models have been analyzed by Jennings (1964),

Cundall (1975) and Finn et al. (1975). Both Jennings and Finn limited the arbitrary cyclic stress -

strain behavior by upper and lower bounds if the present strain fell between previously

established minimum and maximum strains. The bounds chosen were the loading and

unloading curves corresponding to these minimum and maximum strains, respectively. Beyond

these extremes, the backbone curve defines the stress - strain behavior.

Realizing the shortcomings of the phenomenological D and RO models described

above, it is anticipated that a model representing the physical behavior of rate-independent

yielding systems would probably be much more satisfactory for arbitrary cyclic loading

conditions. The simplest physical model for such systems is obviously an elastoplastic model,

described by a stress-strain or load-deflection relationship shown in Fig.4.3a.

This model comprises a spring with shear stiffness, k, in series with a Coulomb unit with

critical slipping stress, r (Figure 4.6a). It can be seen that this model satisfies Masing's
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Principles and also has a "memory capacity", i.e. it inherently remembers the last yield point

from which unloading occurred.

By using a large number of elastoplastic springs in parallel, as shown in Fig. 4.6b, any

non-linear characteristic of a stress-strain relationship, derived from test results, may be

simulated as closely as desired by selecting appropriate values of stiffness and Coulomb

resistance for as many elements as necessary. In this case, the continuous backbone curve is

approximated by a series of straight segments, as shown in Fig.4.7 and the approximation

becomes more accurate, as the number of springs increases.

ko i

kk

TY k
T ''k,-~ThT

Coulomb Spring
Unit kN

kI

(a) (b)

Figure 4.6 Schematic Representation of an: (a) Elastoplastic
parallel series model.

A

TN --------------- --------------- --------------

Modeland (b) Elastoplastic

KO V1 VN

Figure 4.7 Multi - linear approximation of the backbone curve

If finite number of springs is used, the tangent stiffness, tan(a, ), is defined as following:
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tan (ao )= ko + k1 + + kN

tan (a)= k+...+ kN {40}

tan (aN) kN

Therefore, from equation {40}, the spring stiffness kj is defined as follows:

kj= tan (a,)- tan (aj+) {41}

Defining , as the yield shear stress corresponding to the yield shear strain yj, the secant

stiffness is successively evaluated as:

T .
Gj ={42}

V

Therefore, the tangent stiffness can be expressed in terms of the secant stiffness, as follows:

r, -Tjrl_. G, y, - Gj-j y,_ yjG -G
tan (a,) = 1  G 1 = J G- - {43}

Y, - Y,-1 V, - Y,-1 Y,

(V,-1

Choosing y, = zi yo, and introducing it into equation {43}, the expression for tangent stiffness is

now reduced to:

tan (a) = ' - {41}
z -1

In terms of shear stress - strain behavior, with N being the number of elastoplastic

elements in parallel, the backbone curve is described by:

N N

r = -I - y1 + I i{44}
j=1 N ,__n+ N

where: k, the shear modulus of the ith element

the critical slipping stress of the ith elementTy;
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n the number of elements which remain elastic

r the shear stress on the backbone curve obtained for a given shear strain, y

Using the parallel series model described above for rate-independent yielding systems,

such as soils, the shear stress-strain relationship under arbitrary cyclic loading conditions can

be accurately represented, provided that it is updated with the appropriate reversal point

coordinates as the solution marches in time.

In what follows, the parallel series model shall be used for the performance of true

incremental non-linear analyses (see Chapters 5,6). For consistency, the shear stiffness of the

discrete elements is defined using stress - strain characteristics of the modified MIT-Si model

(see Chapter 3), and the material damping ratio is evaluated by integration of the shear stress-

strain hysteresis loop.

Consequently, results obtained by means of the nonlinear analysis are compared with

these obtained using the equivalent linear wave propagation analysis.
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CHAPTER 5

FREQUENCY DEPENDENT SHEAR MODULUS AND

DAMPING

5.1 INTRODUCTION

In many cases, the ground motions developed near the surface of a soil deposit during

an earthquake may be attributed primarily to the upward propagation of shear waves from

an underlying rock formation. If the ground surface, the rock surface and the boundaries

between the layers are essentially horizontal, and the soil deposit is homogeneous, the lateral

extent of the soil deposit has no influence on the response, and the deposit may be considered

as a series of layers extending to infinity in all horizontal directions. In such cases, the ground

motion at the surface, induced by a horizontal excitation at the base of the deposit, is the

result of shear deformations in the soil, and the deposit may be represented by a one-

dimensional shear beam model.

For soil deposits with essentially horizontal boundaries, the analytical determination of

the effect of soil conditions on the characteristics of the motion at the surface can be

conducted along two methods (Roesset and Whitman, 1969; Seed, 1969):

i. The solution of the wave equation in which each soil layer is considered to be a linearly

viscoelastic material.

ii. The idealization of the deposit by a lumped mass system, with the masses connected by

shear springs whose force - deflection properties are defined by the stress - strain

relationship of the corresponding layer of the soil.

In the first case it is generally more convenient to carry out the solution in the

frequency domain, using the Fourier Transform. In the second case the solution can be

performed in the time domain using modal superposition analysis or direct, step by step,

integration of the equations of motion (see Chapter 6).

While it is theoretically possible to perform true incremental analysis, in which the

properties of the soil are varied according to the load path and instantaneous levels of strain,

such procedures are seldom used in practice. Instead, approximate linear solutions are
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obtained by an iterative scheme originally proposed by Seed and Idriss (1969). Each iteration

assumes constant values of soil properties during the earthquake, but the properties are

chosen at the beginning of each iteration so as to be consistent with the levels of strain

computed in the previous iteration. These levels of strain are usually measured by a

characteristic strain, which is either the peak or the root mean square value of the principal

shearing strain.

While the linear theory and iterative solution do not provide exact solutions and have

a limited range of application, they provide acceptable results for engineering purposes.

However, the iterative algorithm can diverge when large amplitude of motion is specified at or

near the surface of a deep deposit of soft soil. According to Kausel & Roesset (1984), the

failure of the iterations to converge is the result of a number of factors:

i. The soil may be required to transmit a higher level of motion than it can accommodate.

There is necessarily a limit to the stress that can be sustained by a layer of soil.

ii. The soil may be required to transmit too much energy at high frequencies. The motion

specified at the free surface may have a frequency content inconsistent with the

properties of the soil and particularly with the damping.

Typical transfer functions at the surface of two homogeneous strata of 10m and 100m

depth, overlying rigid bedrock are shown in Figure 5.1. The soil deposits have the same

stiffness properties (V, = 100 m/sec) and the same value of linear hysteretic damping,

namely = 0.05. The fundamental frequencies of the strata are f, = 2.5 Hz and f, = 0.25

Hz respectively. As it can be readily seen, the deep soil deposit tends to wipe out the high

frequency components of the excitation, a fact which cannot be ignored when studying

the soil amplification of deep soft soil deposits.

iii. The assumption of linear hysteretic damping, independent of frequency is only an

approximation. Since material damping is a function of amplitude, high frequencies

associated with small amplitude cycles of vibration may have substantially less damping

than the predominant frequencies of the layer.

In what follows, a general rule for frequency dependent damping and shear modulus is

developed using general characteristics of various accelerograms, and the performance of the

frequency dependent linear hysteretic model is then compared with the true nonlinear analysis

results (see Chapter 6).
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Figure 5.1 Transfer functions at the surface of two soil deposits overlying rigid bedrock

5.2 FREQUENCY DEPENDENT DAMPING - SINUSOIDAL EXCITATION

In order to illustrate qualitatively the frequency dependence of the shear modulus and

damping, two sets of excitations are initially used, consisting of a combination of two single-

frequency harmonics.

For the simulations performed, the soil is represented by the parallel series model, as

described in Section 4.3.2c, where the spring stiffnesses and yield forces are evaluated using

the modified MIT-Si model (see Chapter 3). Table 5.1 presents the selected values of the

parameters needed for MIT-Si, and the resulting values of spring stiffnesses and yield forces

are shown in Figure 5.2.

Soil Parameter

Cb 800

(a 1.00

p'o 0.25

Ws 2.40

eo 0.50
o'I pa 1.00

Ko 0.50

Table 5.1 Typical Soil Parameters for Non-Linear Masing Soil using Modified MIT-Si model
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Figure 5.2 Stiffness and Yield Force of elastoplastic springs in parallel, using modified MIT-Si
model

This model is subsequently used to illustrate the frequency dependence of damping

and shear modulus, as it can accurately represent the shear stress - strain hysteresis loop,

including the change in stiffness at reversal point.

The analysis is performed directly in the time domain, using a Fortran computer code

(see Appendix 111.1). As the solution marches in time, the elastoplastic springs (see Section

4.3.1a) become successively plastic, and each individual spring dissipates energy equal to:

E = 4 ( ,x - vy = 4 k, y (y-ax y) {1}

where: k, the stiffness of the ith element,

T the critical slipping stress of the ith element,

ymax' the maximum shear deformation of the ith element, and

y the yield shear deformation of the ith element.

In both multi-frequency excitations used for the simulation, the low amplitude

component, y2(t), is assigned four times the frequency of the high amplitude component, y1(t).

The superposition of the two harmonic motions is subsequently scaled to the amplitude of the

low frequency component. In particular:

Y1 (t) = , sin(cot) } y(t)= V1  y, sin(Ct) + y2 sin(4ct)] {2}
V2 (t) = y 2 sin(Amta) ymax
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Results are presented in Figure 5.3a and b for amplitude ratios of the two components

being y / V2=2 and y1 / V2=4 respectively.

As it can be readily seen, the dominant hysteresis loop corresponds to the low

frequency component, whilst the energy dissipated due to the presence of the high frequency

component is substantially lower and the shear modulus is higher.

Successively, the true inelastic energy dissipated is evaluated in the time domain for

the two excitations. Results are shown in Figure 5.4, where the decreased hysteresis loop area

in the second simulation is visualized through the reduced ability of the system to dissipate

energy.

Therefore, the use of common damping ratio and shear modulus reduction factor for

both harmonic motions would be unrealistic, underestimating the stiffness and overestimating

the ability of the model to dissipate energy.
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Figure 5.4 Inelastic Energy Dissipated in cyclic motion by a set of elastoplastic springs in
parallel.

5.3 FREQUENCY DEPENDENT DAMPING - ARBITRARY LOADING

Using the parallel series model described above, the frequency dependence of

damping and shear modulus is now evaluated for arbitrary loading, i.e. an earthquake

excitation. The energy dissipated by the frequency - dependent linearly - hysteretic model is

then compared with the true energy dissipated by the nonlinear Masing soil model.

For the simulations performed, the excitation is a strain time history, obtained by

integration of a real accelerogram. The acceleration time history was integrated once and then

scaled to the desired value of strain, taking advantage of the fundamental property of wave

propagation, that the particle velocity is proportional to the strain.

In particular, for u (xt) being the solution of the one-dimensional wave equation and c

the wave propagation velocity corresponding to the type of stress wave of interest (here

shear wave velocity), we have:

u = f t -j- {3}

Differentiating equation {3} with respect to t, the particle velocity is evaluated as follows:

au _U aT u
- =- -= - ==f {4}t aT at ur

x
where: T=t- -

C
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Successively, differentiating equation {3} with respect to x, the shear strain is evaluated as

follows:

aU BU BrT 1 B3u_ 1
y - auar - - - {5}

ax aax c ar c

Therefore, combining equations {4} and {5}, the shear strain (and shear stress) is proportional

to the particle velocity.

The distribution of the shear modulus reduction factor and damping in the frequency

domain, for the linear -hysteretic model, was evaluated by calculating the Fourier Transform

of the strain time history, scaling it to the maximum shear strain and successively assigning for

each discrete frequency values of modulus reduction and damping using the MIT-Si model

(see Chapter 3, equations {12} and {16}).

For consistency, the nonlinear springs of the Masing soil were evaluated using the same

soil model, with the characteristics described in Section 5.2.

5.3.1 ENERGY DISSIPATED - LINEAR HYSTERETIC MODEL

The energy dissipated for the frequency - dependent model was evaluated in the

frequency domain. In particular, the Fourier transform of the shear strain time history is

defined as:

y(t) = y(2)e'''tdw {6}

In analogy, the Fourier transform of the shear stress time history is:

r(t) = 21n fJ(co)e" do {7}

where: r(CO)= G [1+2 i (a) sgn(co)] y(w),

y (c) the Fourier transform of the shear strain time history, and

Z(o) the frequency dependent damping.

Therefore, the instantaneous power is given by the expression:
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P(t) = T(t) '(t) = 12 f Tr(CO') y(O") i" e(("'+w")t dodor" {8}

Successively, the total energy dissipated by the linear - hysteretic model is evaluated as:

Ed= fP(t) dt =Jf 2 i j f r(o') y(")ico" e ddco dt {9}

Using the congruence 2in- e'c'' dt = 6 (O' +")

Ed = T(-O) y(co)jiw do
2n

,the energy dissipated is:

{10}

Defining the complex conjugate r (-CO ) = r * (o)), and substituting in equation {10} the Fourier

transform of the shear stress from equation {7}, the energy dissipated is finally given by the

following equation':

Ed = fr'().y(co)i dco = -i[1-2il(w)sgn(co)] y'd =2 002 n d00

{11}G i 20 2G "0 (O O)I1d) 2 G 00
S coJy dco + - cosgn(w){{w)|y|2 dc = G 0(() y|2de2 n 2n n _ymmetric

antisyrnmetric symrnetric

1 Note.-If damping was constant with frequency, the energy dissipated could be expressed directly in the time
domain. Using equation {7}, the shear stress is defined in the time domain as follows:

r(t)=G [y(t) + 2 4 P(t)]

where: f(t) = i sgn(o)] y(W) e''' dw is the Hilbert Transform of y(t).
2 n -

Therefore, the power and the energy dissipated as a function of time would be evaluated as follows:

P(t) = T = G (y+2 P) y

Ed (t)= 2,rGj ydt
d 0
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With T being the duration of motion, the average power dissipated is defined as follows:

- E
d

T {12}

The RMS value of the shear strain, is obtained as an integral (summation) in the time

and frequency domain as following:

T

fy 2 dt -
0

1 1
T 2n

Jv2dko - {13}1 |y2 do,
Tnf jdC

Considering that for a pure harmonic motion, the RMS value of the shear strain is

yp,,k = V yRms, we define:

k = %My s {14}

and therefore the maximum energy stored is evaluated as follows:

E= G Y2k = G y = |y|2 de {15}

From equations {11} and {15}, the equivalent energy ratio is defined as the following

integral ratio in the frequency domain:

1 Ed

4rn Es

10 n0n 0GJ) r~) Jyj2 d~o fO (co) Jy|2 dco

4 G 10* d
y|12dco co f |y|2 dc

riT 0 ~c 0

where: coo = c=A
T

2 1
yus = T

{18}
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5.3.2 ENERGY DISSIPATED - NONLINEAR PARALLEL SERIES MODEL

The energy dissipated for the nonlinear parallel series model was successively

evaluated directly in the time, as described in Section 5.2 for the sinusoidal loading. In

particular, using the notation introduced in 4.3.2c, the tangent and spring stiffnesses are

evaluated as follows:

_dr_

Gtan =d - G' y+G
dy

dG d2r
""ta 2 Gry +2G'

dy dy

_(d2 
dGtan

dyJ2 dy

Tangent Stiffness

{19}

Spring Stiffness

Therefore, the energy dissipated for an infinite number of elastoplastic springs is

evaluated as the integral (for the present analysis, finite number of springs was used):

Ymn

Ed= 4 fky(yma- y)dy
0

=-4 f y (y - y)dy
o V

4 ymaydGa" ydy - V'axdGtn V)2 dy
0d 0 }

V. G d
Gtan V 2 1 -mx_2 f Gtn v dy

0

Y"'"x drT

Vmax dy
0 dy

2 Gvdy -
0

".a dr
-2 y

0 dy

G y2

Ymax

-yG,,n Y1"+Yx y Gtan dy
0

dy

After performing the algebraic operations and substituting from equation {19} the tangent and

secant moduli, the energy dissipated is calculated as:

=4

= 4

= 4

}
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Ed= 4 2 Gydy -G y {20}
f Vmax

Successively, the energy stored is evaluated as follows:

1
E, = - G y2 {21}

2

Combining equations {20} and {21}, the hysteretic damping ratio, Z, is calculated as follows:

Vmax Vmax

1 Ed 2 2 GV 2 fd
-- =-< 02 -1 >=-< -1 {22}
4n E n Gy2 n 1 TsJmx[ -2 ymax J2

5.3.3 EXAMPLE OF APPLICATION

In what follows, the performance of the frequency-dependent linear-hysteretic model

is compared to the exact nonlinear solution, using the parallel series model. Both models were

coded in FORTRAN, and the computer code can be found in Appendix III.1. For the

simulation, the Kobe N-S accelerogram was used, the integral of which was scaled to V.ax =

0.001 and ymax = 0.05.

Results are shown in Figures 5.5 and 5.6 successively. For each simulation, the

following items are presented:

(a) the shear strain time history,

(b) the shear stress - strain hysteresis loop (nonlinear model),

(c), (d) the frequency dependent damping and shear modulus reduction factor, and

(e) comparison of the energy dissipated, evaluated using the two models.
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As it can be readily seen, results of the frequency dependent linear hysteretic model

are in very good agreement with the nonlinear parallel series model. As it was expected, the

distribution of shear modulus reduction factor and damping in the frequency domain shows

that the model has a stiffer response and therefore dissipates less energy due to the high

frequency components of the excitation.

In what follows, a general rule for the distribution of strain in the frequency domain is

developed. By this approximation, an attempt to avoid errors arising from numerical

instabilities due to the spikes characterizing the exact Fourier transform, and on the same time

to accelerate the time required for the solution of the wave propagation problem, using the

linear-hysteretic, frequency-dependent damping model, is made.

5.4 SMOOTHED STRAIN DISTRIBUTION IN THE FREQUENCY DOMAIN

In order to develop a general rule for the distribution of strain in the frequency domain,

various accelerograms were used, namely Helena, Golden Gate, Kobe, Pacoima Dam, Loma

Prieta, Olympia, San Fernando, Parkfield and El Centro.

The strain time history was successively approximated, by integrating the acceleration

time histories once, and scaling them to the desired maximum strain value, according to the

rationale described in Section 5.3.

Figure 5.7 shows the Fourier transform of the strain time histories obtained as

described above and successively scaled to the same mean value in the frequency range 0 - 5

Hz. As it can be readily seen, the distribution of the strain in the frequency domain for all the

earthquakes under consideration was approximately the same and therefore, a smoothed

curve could approximate within desired degree of accuracy, the exact distribution.

The smoothed curve to fit the strain distribution in the frequency domain was chosen

to be the following:

exp(-0.15.f)
y = yo - 0.62s 23

(f +1)

where: yo maximum strain amplitude, and

f frequency [Hz].
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Figure 5.7 (a) Scaled Fourier transform of strain time history of various earthquakes, and
(b) Smoothed approximation of given data

Using the proposed smoothed strain distribution in the frequency domain, numerical

instabilities are avoided and the solution time is reduced as only the maximum value of strain is

sufficient to evaluate the damping and shear modulus reduction factor in the frequency

domain.

In what follows, the performance of the frequency-dependent linear-hysteretic model

with smoothed strain Fourier transform is compared to the exact nonlinear solution, using the

parallel series model. The FORTRAN computer code (Appendix 111.1), was now modified to

include the smoothed curve given by equation {23}. For the simulation, the Helena

accelerogram was used, the integral of which was scaled to ymax = 0.001 and yVax = 0.05.

Results are found to be in very good agreement for both the low and high intensity

excitations (Figures 5.8 and 5.9). For each simulation, the following items are presented:

(a), (b) the exact and approximate distribution of damping and shear modulus

reduction factor in the frequency domain, and

(c) comparison of the energy dissipated, evaluated using the frequency

dependent model with both exact and smoothed strain FFT, and the nonlinear

parallel series model.
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Figure 5.8 Frequency dependent damping and shear modulus reduction factor for the linear

hysteretic model, and comparison of the energy dissipated evaluated using the
exact, the smoothed strain FFT, and the parallel series model, for Helena
earthquake scaled to ymax = 0.001.
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5.5 CONCLUSIONS

In this chapter, a refinement of the equivalent linear iterative procedure, namely to

include frequency dependent hysteretic damping ratio and shear modulus reduction factor,

was proposed. Results of the suggested linear - hysteretic frequency - dependent model have

been compared to the results obtained using a nonlinear set of elastoplastic springs in parallel

and are found to be in very good agreement.

Successively, an approximation of the strain distribution in the frequency domain was

evaluated, to accelerate the solution and prevent numerical instabilities. Results using this

approximation are found to be in agreement with the 'exact" iterative procedure, within

satisfying degree of accuracy.

Including the frequency dependent model into a wave propagation analysis code

would lead to improved representation of the wave amplification through the continuum. In

particular, for a given value of characteristic strain amplitude, the shear modulus reduction

factor and damping being non-uniform in the frequency domain, would prevent the filtering of

the higher frequencies, as they would be assigned lower damping and higher values of shear

modulus.

The effect of including the frequency dependence of damping and shear modulus in

wave propagation analysis alleviates significantly one of the alleged shortcomings of the

equivalent-linear model, when used for moderately deep to very deep soil profiles.

5.6 REFERENCES

Assimaki, D., Kausel, E. & Whittle, A.J. (1999)." A Model for Dynamic Shear Modulus and
Damping for Granular Soil?', Journal of Geotechnical and Geoenvironmental
Engineering, under publication

Constantopoulos, I. V. (1973)." Amplification Studies for a Nonlinear Hysteretic Soil Model',
Research Report R73-46, Massachusetts Institute of Technology, September

Constantopoulos, I. V., Roesser, J. M. & Christian, J. T. A. (1973)." Comparison of linear and
exact nonlinear analyses of soil amplification , Proc. 5 th World Conference on
Earthquake Engineering, Rome

Dames & Moore, Science Applications Inc. (1978)." Study of Nonlinear Effects on One -
Dimensional Earthquake Response", prepared for Electric Power Research Institute,
Projects 615-1,-2

Hall, J. R. Jr. & Richard, F. E. Jr. (1963). " Dissipation of Elastic Wave Energy in Granular
Soils' ,Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 98, No. SM6,
November, pp. 27-56



103

Iwan, W. D. (1967). " On a class of Models for the Yielding Behavior of Continuous and
Composite Systems , Journal of Applied Mechanics, Vol. 34, No. 3, September, pp. 612-
617

Joyner, W. B. & Chen, A. T. F. (1975). " Calculation of Non-linear Ground Response in
Earthquakes , Bulletin of the Seismological Society of America, Vol. 65, No. 5, October,
pp. 1315-1336

Kausel, E. & Roesset, J.M. (1984)." Soil Amplification: some refinements , Soil Dynamics and

Earthquake Engineering, Vol. 3, No.3, March, pp.1 1 6 - 123
Keydner, R. L.& Zelasko, J. S. (1963)." A Hyperbolic Stress - Strain Formulation for Sands ,

Proc. 2 d Pan American Conference on Soil Mechanics and Foundation Engineering,
Vol. 1, Brazil

Konder, R. L. (1963)." Hyperbolic Stress-Strain Response: CohesiveSoils" ,Journal of the Soil

Mechanics and Foundation Division, ASCE, Vol. 89, No. SM1, February, pp. 115-143
Kramer, S. L. (1996)." Geotechnical Earthquake Engineerin ' , Prentice - Hall
Masing, G. (1926)." Eigenspannungen und Verfestigung beim Messing' , Proc. 2 d International

Congress of Applied Mechanics, Zurich, pp. 332-335
Roesset, J.M & Whitman, R.V. (1969)." Theoretical Background for Amplification Studies ,

Research Report R69-15, Massachusetts Institute of Technology, Soils Publication No.
231, March

Seed, H. B. (1969). " The influence of local conditions on earthquake damage , Proc. 7th

International Conference on Soil Mechanics and Foundation Engineeering, Mexico City,
Mexico, August

Weissman, G. F. & Hart, R. R. (1961). " The Damping Capacity of Some Granular Soilg',
Symposium of Soil Dynamics, Special Technical Publication No. 305, American Society
for Testing and Materials, pp. 15-19

Whitman, R. V. (1970). " Evaluation of Soil Properties for Site Evaluation and Dynamic
Analysis of Nuclear Plants , Seismic Design for Nuclear Plants, R. J. Hanson (ed.), MIT

Press, Cambridge, Massachusetts



104



105

CHAPTER 6

COMPARISON OF LINEAR AND EXACT NONLINEAR

ANALYSIS OF SOIL AMPLIFICATION

6.1 INTRODUCTION

In the previous chapters of the present study, two major disadvantages of the equivalent

linear iterative algorithm for soil amplification of deep deposits were studied in detail. In particular:

i. The shear modulus degradation and damping curves originally proposed by Seed & Idriss,

1969, and widely used in practice, are essentially the same for sands, gravels and

cohesionless silts, and are independent of the cycle number considered, as well as the void

ratio (or relative density), sand type and confining pressure. Laboratory experimental data

provide evidence in support of some of the above simplifications, yet prove that the

influence of confining pressure is significant and cannot be ignored, especially when dynamic

analyses for deep soil deposits are performed.

ii. The assumption of a linear hysteretic damping, independent of frequency is only an

approximation, which leads to non-realistic results when wave propagation in deep soil

deposits is studied. As a result of this simplification, the high frequency components of

the base excitation are artificially suppressed by the uniform distribution of hysteretic

damping in the frequency domain.

Attempting to overcome the aforementioned shortcomings, two refinements to the

linear iterative algorithm were introduced, namely:

i. A theoretical four - parameter soil model, derived from MIT-S1, with analytical

expressions for the shear modulus reduction factor and damping versus shear strain

amplitude, which depend on the soil type and the soil current state (void ratio and mean

effective stress) and nonlinear characteristics (small strain nonlinearity).

ii. A frequency - dependent linear - hysteretic model, with analytical expressions for the

shear modulus reduction factor and damping in the frequency domain.
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In what follows, the improved proposed iterative algorithm is used for dynamic

analyses of deep soil deposits, and results are compared to the true nonlinear incremental

analyses performed in the time domain.

For consistency of the comparison, the properties of the nonlinear model, consisting of

a series of elastoplastic springs in parallel, are derived from the stress - strain formulation of

MIT-S1.

6.2 FREQUENCY - DEPENDENT LINEAR ANALYSIS

The equivalent linear iterative algorithm used in the present study for dynamic analysis

of deep soils operates as follows:

1. The soil deposit is divided in homogeneous sub-layers. For each one, the following input

parameters for MIT-Sl need to be evaluated (see Chapter 3):

a. the soil type (sand or clay),

b. the mean effective stress acting in the middle of the stratum (calculated from the

effective overburden stress and the coefficient of lateral earth pressure at rest - KO),

c. the current void ratio, e, (or the formation void ratio eo, the slope of the LCC, pc, and

the mean effective stress), and

d. the small strain non-linearity characteristics (described by the parameter oz).

After the input parameters of the soil model are evaluated, the shear modulus degradation

and damping curves are generated for each sub-layer.

2. For each homogeneous sub-layer, initial estimates of the shear modulus [ G ] and damping

[( ] are made, usually corresponding to the low strain values.

3. The estimated G and Z values are used to compute the ground response, including time

histories of shear strain for each sub-layer.

4. The maximum value between the fundamental frequency of the analyzed stratum and the

mean frequency of the excitation velocity spectrum (which is proportional to the strain

Fourier spectrum as shown in Section 5.3) is defined. Successively, the smoothed Fourier

Spectrum is assigned constant value until the aforementioned frequency and decays

according to the rule described in Section 5.4 thereafter.

5. The smoothed distribution of shear strain in the frequency domain is multiplied by the

strain transfer function of the analyzed interface (for a layered soil deposit) and scaled to
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the maximum value of shear strain in each sub-layer (see Chapter 5). The frequency

corresponding to the maximum value of the scaled product (i.e. the maximum strain) is

defined, and the scaled product is assigned constant value equal to the maximum until the

corresponding frequency.'

6. Successively, each discrete frequency is assigned a value of shear modulus reduction

factor and hysteretic damping, using the corresponding value of the scaled strain Fourier

spectrum, constructed as described above, and the G/Go and Z curves are derived for each

sub-layer in step 1.

7. The iterative procedure is repeated (i.e. steps 5-7), until differences between the computed

values of shear modulus and damping between two successive iterations, do not exceed a

prescribed tolerance value.

The procedure described above, referring to the distribution of damping in the frequency

domain, is schematically illustrated in Figure 6.1.

00

Maximum of-
I -Fundamental Frequency of Stratum, or

- -- -- -- -
rFreuny of Excitation Foier Spectrum

Frequency [Hz] Frequency [Hz]

6.1a The Transfer function of the interface of interest is multiplied by the smoothed strain
Fourier Spectrum

Note.- The product of the smoothed strain Fourier spectrum and the transfer function at the interface under
consideration, is at this point smoothed using a "smoothing window' of 0.75 Hz. The amplitude of the smoothed
window was chosen such that no sharp peaks, introduced by the strain transfer functions, appear in the analysis,
probably causing numerical instabilities to the solution. In addition, a wider "smoothing window", i.e. including
more points, would probably assign less damping to the resonant frequencies of the stratum.
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6.1b The product of the smoothed strain Fourier Spectrum and the Transfer function is then
scaled to the maximum value of the strain time history, and the frequency corresponding
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It should be noted herein that the proposed iterative algorithm would lead to similar

results with the procedure commonly used in practice, when shallow soil deposits are studied.

However, the incorporation of a theoretical soil model and a frequency - dependent damping

rule makes the algorithm applicable for a wider range of studies.

In addition, by introducing the distribution of damping and shear modulus reduction

factor in the frequency domain, the need of defining a characteristic level of strain, which for a

transient motion has not been standardized yet, is eliminated.

6.3 EXACT NONLINEAR ANALYSIS

To verify the validity of the approach described in Section 6.2, results are compared

to the exact nonlinear incremental analysis. For the analysis performed herein, the soil profile

was modeled as a lumped mass, multi - degree of freedom system, as shown in Figure 6.2.

The nonlinear soil elements were modeled as a set of elastoplastic springs in parallel

(Masing soil), the stiffness and yield deformation of which was derived from the stress - strain

formulation of the modified MIT-Si soil model, as described in Sections 4.3.2c and 5.2.

The equations of motion were directly integrated in the time domain using the Central

Difference Method.

p Ih

2

hi, pi, el, Kol , C h 2 1hp2h2 ih

h2, P2, e 2, K02 , f, C. 2 2 2

h, p,, e, K", (o", "b 2 2

__________________________p,_ ph, p, h.

hn, pn, en, Ko, )' n' C. 2 2

Figure 6.2 Idealization of the soil profile as a multi-degree of freedom system, for the exact
nonlinear soil amplification analysis.

The FORTAN computer code used to evaluate the nonlinear seismic response of the

soil profiles successively studied, can be found in Appendix 111.2.
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6.4 EXAMPLE OF APPLICATION

In what follows, soil amplification analyses using both approaches (Section 6.2 and 6.3)

are presented. The validity of the proposed method is initially illustrated for the seismic

analysis of a shallow homogeneous profile overlying rigid bedrock, and then for the deep soil

profile analyzed in Section 3.7.

6.4.1 HOMOGENEOUS SHALLOW SOIL PROFILE

An idealized homogeneous profile of depth 25.00m and mass density 2.00 ton/m3 is

subjected to various excitations prescribed at the rigid bedrock. The profile is analyzed using

both the equivalent - linear, frequency - pressure dependent, as well as the lumped mass

nonlinear approach, as described in Sections 6.2 and 6.3 successively.

The shear wave velocity of the profile is 200 m/sec, and therefore the fundamental

shear-beam frequency of the stratum is 2.00 Hz.

Table 6.1 lists the dimensionless parameters for the modified MIT-Si soil model, which

was used to estimate the material damping and shear modulus reduction factors distribution in

the frequency domain.

Cb 800
0) 1

p'o 0.25
Cos 2.4
Ko 0.5
eo 0.5
C 2.03

Table 6.1 Input Parameters for MIT-Si model

For both the equivalent linear and nonlinear analyses, the profile was divided into 10

homogeneous layers of 2.5m each. The equivalent linear dynamic analysis of the profile was

carried out using the computer code LAYSOL (Kausel, 1992), based on a continuum

formulation of the wave propagation problem in the frequency - wavenumber domain, which

was modified to incorporate frequency dependent damping.
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The profile was initially subjected to a pure sinusoidal excitation with frequency of

2.00 Hz (coinciding with the fundamental frequency of the soil deposit). Successively to the

superposition of two sinusoidal motions (2.00 Hz and 8.00Hz) with the high frequency

component having half the amplitude of the low frequency. Finally, the profile was subjected

to various earthquake excitations of intensities varying from 0.01g, where the response was

nearly elastic, to 0.5g where nonlinear effects dominate in the response of the profile.

It should be noted herein that when the nonlinear analysis is performed, the value of

damping is internally adjusted according to the level of strain as the solution marches in time.

On the other hand, whilst using the equivalent linear frequency dependent analysis, the same

pattern of frequency dependent damping is maintained throughout the solution. The results of

this approximation become apparent when observing the response of the profile to the

sinusoidal excitation, where the equivalent linear solution produces more damping until the

motion reaches the steady state regime.

Results are shown in Figures 6.3 - 6.6 and are found to be in very good agreement. In

particular, the analysis for each excitation under consideration is presented as follows:

(a) The input motion prescribed at bedrock.

(b) The response at the top of the profile, evaluated using both the equivalent linear pressure

- frequency dependent and nonlinear analysis.

(c) The distribution of material damping ratio and shear modulus reduction factors in the

frequency domain, for the bottom layer of the stratum, used for the equivalent linear

analysis.2

(d) The hysteresis loops at the bottom and middle layer of the stratum, evaluated using the

nonlinear parallel series model.

It readily seen that the equivalent linear pressure - frequency dependent analysis

represents the nonlinear behavior of the stratum, within acceptable degree of accuracy, even

for very strong motions, where nonlinear effects dominate in the response.

2 Note.-In the modified computer code used for the seismic response of the stratum with the frequency
dependent model, material damping ratio was constrained to 0.1%, when smaller values would result following the
approach described in Section 6.2.
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Figure 6.6a Simulation of seismic analysis of a shallow homogeneous soil deposit for the
Pasadena earthquake with maximum acceleration 0.01g, using frequency
dependent and nonlinear analyses.
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6.4.2 DEEP SOIL PROFILE

The idealized soil profile described in detail in Section 3.7, namely of depth 1000m and

mass density varying from 2.12 ton/m3 at the surface to 2.21 ton/m3 at 1000m depth, is

subjected to an earthquake prescribed at the bedrock. The soil parameters are chosen

identical to the remolded sand specimens from Laird & Stokoe (1993). The variation of void
ratio (and mass density) of the profile with depth was chosen to match the soil properties in

Memphis, Tennessee, as reported by Abrams & Shinozuka (1997).

Table 6.2 lists the dimensionless input parameters for this model. These are used both

to estimate the small strain (y = 10-6) shear modulus Gm. and to determine the modulus

degradation and damping curves. The variation of the shear wave velocity with depth can be

found in Figure 3.6, along with the reported profile for the Memphis area (Abrams &
Shinozuka, 1997). The fundamental shear-beam frequency of the soil for this profile is 0.156

Hz.

Cb 800
Ci 1

p'o 0.25
os 2.4
eo 0.25

a'rev/ p a 6051
C 2.26

Table 6.2 Input parameters for MIT-Si model

The variation of void ratio with the mean effective stress is taken from the original

formulation for the MIT-Si model for cohesionless soils (Pestana & Whittle, 1995).

The dynamic response of the profile at the surface is calculated both by means of the

equivalent linear pressure - frequency dependent, as well as the nonlinear analyses described

above. For the analyses performed, the soil profile is divided into 100 homogeneous layers of

10m thickness each, whose material properties are inferred from Fig. 3.6 (taking the values at

the center of the layers).

For the equivalent linear approach, the computer code LAYSOL (Kausel, 1992) was

used, appropriately modified to incorporate the material damping ratio and shear modulus

reduction factor distribution in the frequency domain.
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The profile was subjected to various earthquake excitations of intensities varying

from 0.01g, where the response was nearly elastic, to 0.5g where nonlinear effects dominate in

the response of the profile.

Results are shown in Figures 6.7a-6.7c for Kobe earthquake and are found to be in

very good agreement. In particular, the analysis for each excitation under consideration is

presented as follows:

(a) The response at the top of the profile, evaluated using both the equivalent linear

pressure - frequency dependent and nonlinear analysis.

(b) The Fourier Spectrum of acceleration time history at the surface, evaluated using

both the equivalent linear pressure- frequency dependent and nonlinear analysis.

(c) The absolute value of the transfer function at the uppermost interface of the profile,

obtained using the equivalent linear pressure- frequency dependent approach.

(d) The hysteresis loops at the middle layer of the stratum, evaluated using the nonlinear

parallel series model.

It readily seen that the equivalent linear pressure - frequency dependent analysis

represents the nonlinear behavior of such a deep stratum, within acceptable degree of

accuracy, even for very strong motions, where nonlinear effects dominate in the response.

Moreover, the response of the deep profile obtained by means of the modified

equivalent linear analysis, i.e. both frequency and depth dependency of shear modulus

reduction factor and material damping, lead to significant less filtering of the high-frequency

components of the excitation, in contrast to the equivalent linear approach used in practice,

where high-frequency components would be completely wiped out.

The figures also show a characteristic 1.6 sec delay in initiation of the response at the

surface. This is consistent with the travel time of shear waves between the basal rock and the

surface with an average velocity of 600 m/s (as can be inferred from the 1/6 Hz resonant

frequency and the 1000 m thickness). Hence, the simulations do satisfy causality. In addition, it

should be observed that while the response of the equivalent linear model was obtained by

Fourier-inversion of the frequency response functions, the time histories do not suffer from

wraparound. In other words, the coda of the response does not spill into its beginning, as could

have been expected for the lightly damped system with long natural period being considered

here. These desirable characteristics are accomplished with the' complex exponential window

method described by Kausel & Roesset (1992).
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earthquake with maximum acceleration 0.5g, using frequency dependent and

nonlinear analyses.
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Finally, it should be noted that for the case of the low intensity excitation, where the

profile is subjected to very low shear strains, and the material damping ratio - according to the

frequency- and pressure- dependent equivalent linear model - is successively minimal, no

attenuation of the response amplitude is predicted by the proposed algorithm. Results of the

surface response of the profile, when subjected to Kobe and Loma Prieta earthquakes, scaled

to maximum acceleration 0.01g (Figures 6.8a and 6.8b), are compared with these obtained by

the conventional Seed & Idriss (1970) approach.

This phenomenon, is found to be in agreement with accelerograms reported at the

surface of deep basins (for example the Mississippi embayment), where the intensity of the

ground motion is usually small, yet the profile characteristics (soft sediments) result to surface

records of very long duration.
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40

10 20 30 40

Time [sec]

Figure 6.8a Comparison of the predicted duration of the surface response, for the Kobe
earthquake scaled to maximum acceleration 0.01g.
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Figure 6.8b Comparison of the predicted duration of the surface response, for the Loma
Prieta earthquake scaled to maximum acceleration 0.01g.

6.5 CONCLUSIONS

In this chapter, a modified equivalent-linear iterative procedure is proposed for

amplification analyses of soil deposits. The proposed approach consists of a frequency- and

pressure-dependent model, and was used to evaluate the seismic response of a shallow

homogeneous and a deep (1.0 km) soil profiles.

Successively, results were compared to the response evaluated using" true nonlinear

incremental analysis, were the soil profile was modeled as a Jumped mass, multi-degree of

freedom system. The nonlinear elements were modeled as a set of elastoplastic spring is

parallel (Masing soil), the stiffness and yield deformation of which was derived from the stress-

strain formulation of MIT-Sl soil model.
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The profiles were subjected to various excitations, with amplitudes varying from 0.01g

(nearly elastic behavior) to 0.5g (very pronounced nonlinear response). Results were found to

be in very good agreement, both for the shallow homogeneous as well as for the deep soil

profiles.

Moreover, as it was expected, the seismic amplification analysis evaluated in the

frequency - wavenumber domain, by means of a continuum formulation of the wave

propagation problem, demands significantly less computational effort than the incremental

analysis. In particular, a considerably lower time step is required for the conditionally stable

direct integration scheme used for the present study, namely the central difference method, to

allow for an accurate representation of the resonant frequencies of the profile, a fact which

becomes more apparent as the depth and / or the shear wave velocity of the profile analyzed

increases.

The proposed algorithm represents within acceptable degree of accuracy the

nonlinear soil behavior and prevents the artificial filtering of the high-frequency components of

the excitation.
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APPENDIX I

ENVIRONMENTAL AND LOADING FACTORS AFFECTING DYNAMIC SOIL

PROPERTIES

1.1 Introduction

A comprehensive general stress - strain relation for shear modulus and damping for

soils would be very complex, simply because of the numerous parameters affecting soil

behavior. One approach towards developing a general constitutive relation is to study special

cases. Once these are understood, it may then be possible to link them together to formulate a

generalized constitutive relation. An attempt to describe how the controlling parameters,

briefly described in Chapter 2, affect the stress - strain relation of soils subjected to cyclic

shear deformation (for example the vibration of horizontal soil layers due to the horizontal

component of an earthquake) is made herein.

According to Hardin & Drnevich, 1972, the relative importance of the parameters

affecting the dynamic properties (namely shear modulus [G] and damping [ ]) of clean sands

and cohesive soils,.can be summarized in the following Table:

IMPORTANCE TO*

PARAMETER Modulus Damping

Clean Sands Cohesive Soils Clean Sands Cohesive Soils
Strain Amplitude V V V V

Effective Mean Principle Stress V V V V
Void Ratio V V V V

Number of Cycles R** R V V
Degree of Saturation R V L U

Overconsolidation Ratio R L R L

Effective Strength Envelope L L L L

Octahedral Shear Stress L L L L
Frequency of Loading (above 0.1 Hz) R R R L

Other Time Effects (Trixotropy) R L R L

Grain Characteristics, Size, Shape,

Gradation, Minearology R R R R

Soil Structure R R R R
Volume Change due to Shear Strain

(for strains less than 0.5%) U R U R

* V means Very Important, L means Less Important, and R means Relatively Unimportant, except as
might affect another parameter; Umeans relative importance is not clearly known.

** Except for saturated clean sand where the number of cycles of loading is a Less Important
parameter.
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What can be readily seen is that the strain amplitude, effective mean principle stress,

and void ratio are very important for the modulus and damping in all soils, whereas

overconsolidation ratio is a less important parameter for cohesive soils, and is unimportant for

clean sands. The Table also shows that a parameter such as grain distribution is relatively

unimportant for both modulus and damping in all soils, except from the case where it affects

other parameters listed. Grain characteristics will affect both the void ratio (a very important

parameter) and the effective strength envelope (a less important parameter). But if the void

ratio and effective strength envelope of the soil are accounted for, then the effects of grain

distribution are automatically taken into account as well, making it relatively unimportant in

this context.

In what follows, cohesionless and cohesive soils are analyzed separately, and the most

important parameters affecting the dynamic behavior of these two major soil categories are

examined.

1.2 Cohesionless Soils

The dynamic behavior of cohesionless soils is affected by various parameters, the

most important of which are the cyclic strain amplitude, mean effective principle stress (i.e.

confining pressure) and void ratio, which were analyzed in detail in Chapter 2. Among the

remaining parameters, the most important are:

1.2.1 Effect of Prior Straining - Number of Loading Cycles, N

The effect of prior cyclic straining in sands is significant, both for the values of initial

(small strain) shear modulus, Gm., as well as for the values of material damping, especially in

the small strain regime. The influence of number of cycles on the dynamic characteristics of

cohesionless soils becomes more apparent, when the strain amplitude of prior loading cycles

exceeds the plastic threshold, i.e. y P" > 10 2%.

In particular, the values of initial shear modulus and damping after the soil specimen

has been subjected to prior cyclic loading, plot significantly higher that the "virgin" soil curves.

On the other hand, the effect of number of cycles in the shear modulus reduction factor

G/Gmax depends of the drainage conditions of the loading procedure. For draining conditions,

the reduction factor tends to increase (due to possible densification of the material resulting

from prior loading), and for undrained conditions, the reduction factor tends to decrease n

value.
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The effect of prior straining on the dynamic soil properties tends to disappear for

cyclic strain amplitude equal to the one used in the prior straining. At this particular amplitude,

the values of G/Gmax and Z are about the same in the prestrained and virgin specimen, as

verified by experimental data (Drnevich & Richart, 1970).

1.2.2 Degree of Saturation, S [%]

Another important factor affecting the dynamic properties of cohesionless soils is the

degree of saturation. However, whilst numerous experimental data are available for fully

saturated cohesionless soils, very little or no information is available on partially saturated soils.

Presumably, the shear modulus degradation and damping curves developed for dry materials,

are also applicable to partially saturated granular soils, under the condition that the cyclic

loading will not induce excess pore water pressures. For example, the values of G and Z for a

partially saturated cohesionless silt above the ground water table could be evaluated if the

effect of capillarity were taken into account, leading to an increased value of the confining

pressure.

For a fully saturated soil, a differentiation between drained and undrained cyclic

loading must be established. If the cyclic loading is applied slow enough and in a complete

drained condition, i.e. there is no pore pressure built up due to the cyclic loading, then

statements made for dry cohesionless soils are also applicable for fully saturated material, with

the confining pressure now being interpreted as the effective confining pressure (a' = a - u ).

The reason is that, given the drainage conditions of loading, the pore water can move freely in

and out of the soil, not participating in the stress - strain response nor in the energy dissipation

of the material. In that case, energy is still almost exclusively dissipated due to friction at the

contacts and other intergranular interactions, resembling to the mechanisms of energy

dissipation of dry materials.

However, the cyclic loading conditions of interest involve rapid succession of

introduced shear strain cycles, leading to a characterization of the loading as undrained. In this

particular case, water cannot move freely through the soil skeleton and as a result, it

participates to the stress- strain behavior along with the solid skeleton.

In this case, if the shear strain amplitude is less than the elastic threshold (i.e.

approximately y = 10-5), the material damping ratio is strongly affected by the frequency of

the loading, due to viscous effects arising from the interaction between the solid and fluid

phases of the material. On the other hand, in this range, neither the shear strain amplitude nor
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the number of cycles, affect the dynamic soil properties. If the shear strain amplitude is larger

than the elastic threshold, but still smaller than the volumetric threshold (i.e. approximately

y;'= 10-'), the role of frequency on the value of material damping becomes less important, and

the value of the shear modulus reduction factor is approximately equal to the one established

for the dry material.

In essence, between the two thresholds, the level of strain amplitude is important but

the number of cycles not. On the other hand, if the shear strain amplitude is larger than the

volumetric threshold, then the effect of frequency on the dynamic properties of the material

becomes negligible, and the value of shear modulus decreases with increasing strain amplitude

and number of cycles.

This phenomenon of shear modulus degradation, which can reduce the value of G to a

value close to zero, is due to the built up of excess pore pressures in the soil, an extreme

example of which being the phenomenon of liquefaction of saturated cohesionless soils. The

value of material damping ratio, whilst pore pressure built - up occurs with increasing number

of cycles, remains constant or decreases (Dobry, et al. 1982, Stokoe, et al., 1995, Vucetic, et al.,

1996).

In conclusion, the behavior of saturated cohesionless soils described above indicates

that there is no substantial difference between the dynamic properties of a saturated soil and

a dry soil under similar confining pressure. Therefore, the effect of excess pore pressure in

decreasing G/Gmax can be explained by the corresponding reduction in effective confining

pressure. However, for high frequency cyclic loading such as applied in resonant column tests,

and for small cyclic strains, the material damping is higher for the saturated sand, due to

viscous effects related to the relative movements involving solid phase and pore water, which

essentially become insignificant at greater cyclic strains. Therefore, the difference in damping

between dry and saturated soil is generally more important when high - vibration phenomena

are encountered, such as machine vibrations or explosions.

1.2.3 Effect of Cementation

The cementation of a cohesionless material, either natural or artificial, increases both

the small- strain shear modulus Gmax, as well as the small- strain material damping value, Zmn.

Strong cementation also decreases the significance of confining pressure. It may also radically

change the shapes of the modulus reduction and damping curves, by decreasing the relative

importance of friction at the interparticle contacts and the freedom of movement of the
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grains. In particular, the stress - strain relationship of the material becomes more linear, a fact

which becomes more apparent in the small - strain regime and might even disappear at cyclic

strain amplitudes large enough to destroy the cementation. At those high strain amplitudes,

the dynamic properties of the cemented material may approach the uncemented values, with

the shear modulus degradation curve of the remolded material even plotting lower than the

equivalent uncemented.

1.3 Cohesive Soils

Probably the most important parameter affecting the dynamic behavior of cohesive

soils apart from the shear strain amplitude, is the plasticity index [PI]. Parameters as the

overconsolidation ratio or confining pressure play minor role in this category of soils. In what

follows, various parameters apart from the Plasticity Index, namely the number of straining

cycles and the geological age of the material, are further analyzed, and experimental formulae

existing in the literature for the estimation of material damping and shear modulus reduction

factor as a function of these parameters are briefly discussed.

1.3.1 Effect of Plasticity Index [PI]

Numerous experimental data, available in the literature, reveal the importance of

plasticity index in the characterization of the dynamic properties of cohesive soils. In the early

years of geotechnical earthquake engineering, the modulus reduction behavior of coarse- and

fine- grained soils were treated separately (e.g., Seed & Idriss, 1970). Recent research however,

has revealed a gradual transition between the modulus reduction behavior of non-plastic

coarse-grained (cohesionless) soil and plastic fine-grained (cohesive) soil.

Zen et al. (1978) and Kokushu et al. (1982) first noted the influence of soil plasticity on

the shape of the modulus reduction curves; the shear modulus of highly plastic soils was

observed to degrade more slowly with shear strain than did low-plasticity soils. Laboratory

data show that the linear cyclic threshold shear strain is greater for highly plastic soils than for

soils with low plasticity. Moreover, for non-plastic cohesive soils such as non-plastic silt, the

shear modulus reduction curves plot together with the non-cohesive soil curves.

After reviewing experimental results from a broad range of materials, Dobry &

Vucetic (1987) and Sun et al. (1988) concluded that the shape of the modulus reduction curve

is influenced more by the Plasticity Index than by the void ratio and/or the confining pressure.
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Five major aspects of fine-grained soil undrained cyclic behavior being influenced by

Plasticity Index can be identified. In particular, as the value of PI increases:

i. The low strain shear modulus Gmax increases faster with overconsolidation ratio

[OCR].

ii. The low strain shear modulus Gm increases faster with geological age [tg] (see

Section 1.3.3).

iii. The material exhibits more elastic behavior (i.e. the shear modulus reduction curve

G/Gma versus cyclic strain, ye rises).

iv. The material damping ratio [Z] versus cyclic strain [yc] curve plots lower.

v. The shear modulus G degrades less after N applied cycles of amplitude yc.

Whilst effects (i) and (ii) relate to Gmax, and therefore to very low strains (i.e. ye ~ 10-6)

the effects (iii)-(v) are related to the behavior at larger strains, above ye ~ 107. These effects

lead to the same conclusion: the soil is more linear and its stiffness degrades less at a given

strain amplitude with increasing PI, i.e. the level of cyclic strain needed to induce significant

nonlinear stress - strain response and stiffness degradation increases with PI.

In what follows, an attempt is being made to speculate on the possible reasons for this

influence of PI from a soil - structure point of view, especially considering that index properties

are determined on fully disturbed or remolded soil specimens, and yet correlate well with the

cyclic response of the soil in its natural, undisturbed state. The influence of PI indicates that

highly plastic soils tend to develop a microstructure that behave linearly to higher shear strains

than soils with lower plasticity.

Soils of high and very high plasticity are composed of very small particles that have a

relatively high surface area per unit weight of the particle [SSA]. In such soils, the number of

particle contacts is also large. Consequently, the electrochemical and repulsive forces between

particles are large compared to the weight of the particles themselves, and as a result, bonds

and repulsion forces dominate the behavior of the soil skeleton under externally applied loads

(Mitchell, 1993). At the other extreme, in soils with low plasticity or zero plasticity, such as

sands and gravels, consisting of larger particles and less interparticle contacts, the gravitational

forces and associated friction between grains exert a dominant role on the response to

external loads. Therefore, it can be hypothesized that the microstructural bonds and repulsion

forces in higher plasticity soils act like a system of relatively flexible linear springs, with the

ability to take relatively large shear strains (as much as 10-3) before they are broken, i.e. before



135

the particles are permanently displaced and nonlinear and stiffness degradation effects

become apparent.

On the other hand, in low - plasticity soils, the elasticity of particles is practically the

only source of linear behavior, resulting in significant nonlinear and stiffness degradation

response starting at strains as low as 10~4, at which particle sliding and permanent deformation

(reorientation) occurs.

The combined effects of effective confining pressure and Plasticity Index on modulus

reduction and damping behavior, were combined by Ishibashi and Zhang (1993), in the

following form:

G K(y,P) )m(VPI ) - m
Gmax

1 +exp(-0.0145.PI"-) G 2 G
2=0.333 0.586 - -1.547 +1
2 G ) CGID ]

where:

K(y,PI) = 0.5 1 + tanh In 0.000102+n(PI)

m(y,PI) - m= 0.272 1- tanh In j 0 exp(-0.0145. P1 3 )

'0.0 for PI=0

3.37 x 10-6 p1404 for 0<PI 15
n (M) =17.0 x 10-7 P 9 76 for 15 <P1 70

2.7x 10~ PI"'5 for PI>70

The effect of Plasticity Index on the dynamic soil properties renders it one of the most

significant properties for site-response evaluations, seismic microzonation, and other

applications. This is also a very convenient conclusion from a practical point of view, as

Plasticity Index is a common soil index property, determined practically in every project. The

Atterberg limits needed to obtain the PI are among the simplest, most inexpensive and well-

established geotechnical tests (e.g., Lambe & Whitman, 1969).
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1.3.2 Number of Loading Cycles, N

Similarly to the behavior of cohesionless soils, the stiffness of a saturated cohesive soil

decreases with number of cycles when subjected to undrained cyclic loading. The degradation

of shear modulus G is accompanied by interparticle bond breakage and pore pressure built-

up, with the rate of modulus degradation with number of cycles, for a given strain amplitude,

decreasing with increasing Plasticity Index. Even for low plasticity cohesive soils, this rate is

much smaller than for saturated sands, and for a small number of cycles, results from a single

loading - unloading - reloading path can be used without modification.

For large amount of straining cycles (N> 102 - 10), the shear modulus after N cycles,

GN can be related to its value in the first cycle G1 as follows:

GN=6 -G1,

where the degradation index, 5, is obtained as 6 = Nt and t is the degradation parameter

(Idriss et al., 1978). The degradation parameter has been shown to decrease with increasing

Plasticity Index and increasing OCR, and to increase with increasing cyclic strain amplitude

(Idriss et al., 1978, Vucetic & Dobry, 1989, Tan & Vucetic, 1989).

1.3.3 Effect of Geologic Age, t.
Another factor affecting the dynamic soil properties of cohesive soils is the time of

loading. In particular, the small - strain shear modulus Gmax increases with time of loading and

material damping ratio Z decreases. This is part of the explanation of why older geologic

deposits tend to be stiffer (higher Gm. and V, values), and the effect must be considered when

predicting Gma. and V, values from laboratory measurements. This effect is also present in the

secant shear modulus G at larger cyclic strains.

Experimental data on the influence of time of loading on the shear modulus

degradation curve is not conclusive, and two different procedures have been proposed to

estimate the secant shear modulus of the field (Gf,) from the corresponding measured in the

lab using a short loading time (Glab). Some laboratory data suggests that time of loading affects

Gmax but not the G/Gmax versus V curve, and Kokusho et al. (1982) have proposed to correct G

measured in the lab, as follows:

Gfigd = (Gmax)f i. x (G / Ga)ab

where (Gma.)i, is the corrected value of the small shear strain shear modulus.
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For the material damping ratio, the following approach has been proposed by

Kokusho et al. (1982):

(G x ( )Ia= (G x Z)fil
Anderson and Woods (1976) and Richard et al. (1977) have proposed a different

approach for estimating Gfi. Specifically, experimental data of shear modulus versus

duration of confinement in a semi-log plot for different strain levels were plotting

approximately parallel, therefore the value of shear modulus in the field could be

approximated as Gf. ~ Glab + Ar, where A, = (Gm.jf - (G.)ab. Therefore:

Gfie = Glab + [(Gm.)fi - (Gma),ab]

The two proposed methods for correcting laboratory results are schematically illustrated in

Figure 1.1.

(G )field Percentage Increase

G = (G) x (G/G )ab

(G )a
Arithmetic Increase

G =Gia+A

-0

One-day Laboratory

Curve (Giad

10-6 104 102 100

Shearing Strain [y]

Figure 1.1 Shear Modulus Reduction curve in the field, predicted assuming arithmetic and
percentage increase in moduli.

1.3.4 Quick Clays

Shear modulus reduction and material damping curves, commonly used for cohesive

soils are not applicable to soils with a very sensitive structure. An important example, are the

quick clays which cover large extensions of Eastern Canada and the Scandinavian Peninsula in

Europe. Quick clays are the result of a particular geological history and are very sensitive,

behaving essentially as liquid if their structure is destroyed by remolding (Mitchell, 1993).

Comparison of the degradation curves of quick clays with Plasticity Index of PI = 20, show
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correspondence to a regular clay with PI = 50, while the values of material damping

correspond to a regular clay with PI ~ 200. This results from the unusual structure of this

particular soil type, which can exhibit more linear behavior, including a much lower material

damping, than would have been predicted from its Plasticity Index.

1.4 Other Soils

In the preceding sections, parameters affecting the shear modulus and material

damping values for applications over a broad range of cohesive and cohesionless soils have

been analyzed. However, some characteristics of the materials described above may not be

applicable to so called special soils and other geotechnical materials of interest having a very

different composition or structure as compared with the normal soils.

Laboratory measurements and analysis of earthquake records have provided

valuable information on the shapes of modulus and damping curves for some of these special

geotechnical materials of interest.

In some cases, like that of frozen soils, the cyclic stress - strain behavior is quite

complicated and is strongly affected by parameters such as temperature and frequency.

Experimental evidence for one marine calcareous soil near Western Australia indicates that

the shear modulus degradation curves, G/Gmax, characteristic for sands are applicable for this

particular material as well, whilst the wide variety of calcareous soils, both onshore as well as

offshore suggests that no generalization is possible.

Among other geotechnical materials of interest, soft rock and residual soils, peat and

solid waste could be distinguished due to their irregular soil behavior. Comparison of

experimental data obtained in two different projects in New York City and Washington State

indicate that peats can exhibit both a very linear stress - strain response, accompanied by very

low values of material damping, and significant non-linearity, associated with substantial

amount of energy dissipation.

1.5 References

Anderson, D.G. & Woods, R.D. (1976)." Comparison of field and laboratory shear modulus ,
Proc. ASCE Conference on In-situ Measurement of Soil Properties, Vol.1, pp. 62-92.

Chen, A. T. F., Stokoe, K. H., 11 (1979). "Interpretation of Strain Dependent Modulus and
Damping from Torsional Soil Tests", Report No. USGS - GD - 79 - 002, NTIS NO. PB -
298479, U.S. Geological Survey, 46 P.



139

Daniel, A. W. T., Harvey, R. C. and Burley, E. (1975). "Stress - Strain Characteristics of Sand",
Technical Note, Journal of the Geotechnical Division, ASCE, Vol.101, No. GT5, May, pp.
508-512

Das, B. M. (1993). "Principles of Soil Dynamics", PWS-KENT Publishing Company, Boston, MA
Dobry, R., Ladd, R.S., Yokel, F.Y., Chung, R.M. & Powell, D. (1982). "Prediction of pore water

pressure buildup and liquefaction of sands during earthquakes using the cyclic strain
method", NBS Building Science Series 138, National Bureau of Standards, Gaithersburg,
Maryland

Dobry, R. & Vucetic, M. (1987). " Dynamic Properties and Seismic Response of soft clay
deposits' , Proc. International Symposium on Geotechnical Engineering of Soft Sois,
Mexico City, Vol. 2, pp. 51-87

Drnevich, V.P. & Richard, F.E. Jr. (1970)." Dynamic Prestraining of Dry Sand' , Journal of the
Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM8, pp. 807-825.

Finn, W. D. L., Lee, K. W. & Martin, G. R. (1975)." Stress-Strain Relations for Sand in Simple
Sheaf , ASCE National Convention, Denver, Colorado, November, Meeting Reprint 2517

Hall, J. R. Jr. & Richard, F. E. Jr. (1963). " Dissipation of Elastic Wave Energy in Granular
Soils' ,Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 98, No. SM6,
November, pp. 27-56

Hardin, B. 0. (1965). "The nature of damping in sands", Journal of Soil Mechanics and
Foundation Engineering Division, ASCE, Vol. 91, No. SM1, February, pp. 33-65.

Hardin, B. 0. & Drnevich, V. P. (1970)." Shear modulus and damping in soils: I. Measurement
and parameter effects, II. Design equations and curves' , Technical Reports UKY 27-70-
CE 2 and 3, College of Engineering, University of Kentucky, Lexington, Kentucky.

Hardin, B. 0. & Drnevich, V. P. (1972a)." Shear modulus and damping in soils: Measurement
and parameter effects', Journal of Soil Mechanics and Foundation Engineering
Division, ASCE, Vol. 98, No. SM6, June, pp. 603-624.

Hardin, B. 0. & Drnevich, V. P. (1972b)." Shear modulus and damping in soils: Design equations
and curves", Journal of Soil Mechanics and Foundation Engineering Division, ASCE,
Vol. 98, No. SM7, pp. 667-692.

Ishibashi, I. & Zhang, X. (1993)." Unified Dynamic Shear Moduli and Damping Ratios of Sand
and Clay' , Soils and Foundations, Vol. 33, No.1, pp. 182-191.

Ishihara, K. (1996). "Soil Behavior in Earthquake Geotechnics", Oxford Science Publications,
Oxford Science Press, Walton Street, Oxford OX2 6DP.

Iwasaki, T., Tatsuoka, F. & Takagi, Y. (1978). "Shear Moduli of Sands under Cyclic Torsional
Shear Loading", Soils and Foundations, Vol. 18, No.1, pp. 39-56.

Kramer, K. L. (1996)." Geotechnical Earthquake Engineering , Prentice Hall Inc.
Kokushu, T., Yoshida, Y. & Esashi, Y. (1982)." Dynamic Properties of Soft Clay for wide strain

rang' , Soils and Foundations, Vol. 22, No.2, pp. 45-60.
Krizek, R. J. & Franklin, A. G. (1968)." Energy Dissipation in a Soft Clay', Proc. International

Symposium on Wave Propagation and Dynamic Properties of Earth Materials,
University of New Mexico, pp. 797-807.



140

Laird, J. P. & Stokoe, K. H. (1993)." Dynamic properties of remolded and undisturbed soil
samples tested at high confining pressured', Geotechnical Engineering Report GR93-6,
Electrical Power Research Institute.

Lambe, T.W. & Whitman, R.V. (1969). Soil Mechanics, Wiley, New York.
Mitchell, J.K. (1993)." Fundamentals of Soil Behavior , John Wiley & Sons, Inc.
Ray, R. P. & Woods, R. D. (1988)," Modulus and Damping due to uniform and variable cyclic

loading' , Journal of Geotechnical Engineering, ASCE, 114 (8), pp. 861-876.
Seed, H. B. & Idriss, I. M. (1970), " Soil moduli and damping factors for dynamic response

analyses', Report EERC 70-10, Earthquake Research Center, University of California,
Berkeley.

Seed, H. B., Wong R. T., Idriss, I. M. & Tokimatsu T. (1984)," Moduli and damping factors for
dynamic analyses of cohesionless soils' , Report EERC 84-14, Earthquake Engineering
Research Center, University of California, Berkeley.

Seed, H. B., Wong R. T., Idriss, I. M. & Tokimatsu T. (1986)," Moduli and damping factors for
dynamic analyses of cohesionless soilV', Journal of Soil Mechanics and Foundation
Division, ASCE, Vol. 112, No. SM11, pp. 1016-1032.

Shibata, T. & Soelarno, D. S. (1975), " Stress strain characteristics of sands under cyclic
loading' , Proc.. Japanese Society of Civil Engineering, 239, pp. 57-65.

Shibuya, S., Mitachi, T. & Muira, S. (1994). "Pre-failure Deformation of Geomaterials", Proc.
International Symposium on. Pre-Failure Deformation Characteistics of Geomateria/s,
Sapporo, Japan, September.

Stokoe, K. H., Hwang, S. K., Lee, J. N. & Andrus, R. D. (1994)." Effects of various parameters
on the stiffness and damping of soils at small to medium strains" , Proc. Int. Symposium on
Prefailure Deformation Characteristics of Geomaterials, Japan.

Sun, JI., Golesorkhi, R. & Seed, H.B. (1988). " Dynamic Moduli and Damping Ratios for
Cohesive Soils', Report No. EERC-88/15, Earthquake Engineering Research Center,
University of California, Berkeley.

Tan, K. & Vucetic, M. (1989)." Behavior of medium and low plasticity clays under cyclic simple
shear conditions' , Proc. 4 th International Conference on Soil Dynamics and Earthquake
Engineering, A.S. Cakmak & I. Hererra, eds., Mexico City, pp. 131-142.

Tatsuoka, F., Iwasaki, T., Fukushima, S. & Sudo, H. (1979)." Stress Conditions and Stress
Histories affecting Shear Modulus and Damping of Sand under Cyclic Loading", Soils and
Foundations, Vol. 19, No.2, pp. 29-43.

Vucetic, M. & Dobry, R. (1989)." Degradation of marine clays under cyclic loading' , Journal of
Geotechnical Engineering, ASCE, Vol.114, No.2, pp. 133-149.

Vucetic, M. & Dobry, R. (1989). " Effect of soil plasticity on cyclic response" , Journal of
Geotechnical Engineering, ASCE, Vol. 117, No.1, pp. 89-107.

Whitman, R. V., Dobry, R. & Vucetic, M. (1997). Soil Dynamics (book manuscript in
preparation).



141

Zen, K., Umehara, Y. & Hamada, K. (1978)." Laboratory tests and in-situ seismic survey on
vibratory shear modulus of clayey soils with different plasticities" , Proc. 5 th Japan
Earthquake Engineering Symposium, Tokyo, pp. 721-728.



142



143

APPENDIX 11

RCTS TEST EQUIPMENT AND MEASUREMENT TECHNIQUES

11.1 Introduction

Resonant column and torsional shear (RCTS) equipment has been employed in the

laboratory program described in Section 2.4 of the present study, for measurement of the

deformation characteristics (shear modulus and material damping) of intact soil specimens.

This equipment has been developed at the University of Texas at Austin over the past two

decades (Isenhower, 1979, Lodde, 1982, Ni, 1987, and Kim, 1991). The equipment is of the

fixed - free type, with the bottom of the specimen fixed and torsional excitation applied at the

top. Both resonant column (RC) and torsional shear (TS) tests were performed in a sequential

series on the same specimen over a range of shearing strains from about 10~ % to slightly

more than 10' % by changing the frequency of the forcing function. The primary difference

between the two types of tests is the excitation frequency. In the RC test, frequencies above

20 Hz are required and inertia of the specimen and drive system are needed to analyze these

measurements. On the other hand, slow cyclic loading with frequencies generally-below 5 Hz is

prescribed in the TS tests and inertia does not enter the data analysis.

11.2 Resonant Column and Torsional Shear Equipment

The RCTS apparatus can be idealized as a fixed - free system, as shown in Fig. II.1.

The bottom end of the specimen is fixed against rotation at the base pedestal, and top end of

the specimen is connected to the driving system. The driving system, which consists of a top

cap and drive plate, can rotate freely to excite the specimen in cyclic torsion.

The basic operational principle of a fixed - free resonant column (RC) test is to vibrate

the cylindrical specimen in first - mode torsional motion. Harmonic torsional excitation is

applied to the top of the specimen over a range of frequencies, and the variation of the

acceleration amplitude of the specimen with frequency is obtained. Once first - mode

resonance is established, measurements of the resonant frequency and amplitude of vibration

are made. These measurements are then combined with equipment characteristics and

specimen size to calculate shear wave velocity and shear modulus based on elastic wave

propagation. Material damping is determined either from the width of the frequency response

curve or from the free - vibration decay curve.
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Figure II.1 Idealized Fixed - Free RCTS Equipment

The torsional shear (TS) test -is another method of determining shear modulus and

material damping, using the same RCTS equipment but operating it in a different manner. A

cyclic torsional force at a given frequency, generally below 10 Hz, is applied at the top of the

specimen. Instead of determining the resonant frequency, the stress - strain hysteresis loop is

determined from measuring the torque - twist response of the specimen. Shear modulus is

calculated from the slope of a line through the end points of the hysteresis loop, and material

damping is obtained from the area of the hysteresis loop.

The RCTS apparatus consists of four basic subsystems, which are:

i. a confinement system, by which the specimen is isotropically confined using compressed

air,

ii. a drive system,

iii. a height - change measurement system, and

iv. a motion monitoring system which, in the RC test, is designed to measure the resonant

frequency, shearing strain and free - vibration decay curve, and in the TS test, to monitor

the torque - twist hysteresis loops of the specimen.
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1.3 Method of Analysis in the Resonant Column Test

The resonant column test is based on the one - dimensional wave equation derived

from the theory of elasticity. The shear modulus is obtained by measuring the first - mode

resonant frequency while material damping is evaluated from either the free - vibration decay

curve or from the width of the frequency response curve assuming viscous damping.

Shear Modulus

The governing equation of motion for the fixed - free torsional resonant column test is:

I (0m, 1 0,/-= -- - tan ( {1}
I0 V, V

where: Z/I,+IM,+...

I, mass moment of inertia of soil specimen,

Im mass moment of inertia of membrane,

I0 mass moment of inertia of rigid end mass at the top of the specimen,

I length of the specimen,

V, shear wave velocity of the specimen, and

on undamped natural circular frequency of the system.

Once the first - mode resonant frequency is determined, the shear wave velocity can be

calculated from eq. {1}, assuming that the resonant circular frequency and con coincide.

As noted above, the resonant circular frequency, o, is measured instead of the undamped

natural frequency, and cr is used to calculate shear wave velocity. If the damping in the

system is zero, then or and on are the same. In particular:

Or = 0), 1 - 2 2 2}

A typical damping ratio encountered in the resonant column test is less that 20 percent, which

corresponds to a difference of less that 5 percent between wr and con .

Once the shear wave velocity is determined, shear modulus is calculated from the relationship:

G=p -V 2  {3}

where p is the total mass density of the soil.
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Shearing Strain

The shearing strain varies radically within the specimen and may be expressed as a function of

the distance from the longitudinal axis. The equivalent shearing strain, Yeq or y, is represented

by:

r-8y e= ' max {4}
1

where: req equivalent radius,

,max angle of twist at the top of the specimen, and

/ length of the specimen.

Material Damping

In the resonant column test, the material damping ratio can be evaluated from either the free -

vibration decay method or from the half - power bandwidth method. Each of these methods is

briefly discussed below.

e Free - Vibration Decay Method

Material damping in soils can be quite complex to describe. However, the theory for a single -

degree - of - freedom system with viscous damping is a useful framework for describing the

effect of damping, which occurs in soil (Richard et al., 1970). The decay of free vibrations of a

single - degree - of - freedom system with viscous damping is described by the logarithmic

decrement, 6, which is the ratio of the natural logarithm of two successive amplitudes of

motion as:

6 ZI 2n(n {5}
Z2 #

where: Z1, Z2 two successive strain amplitudes of motion, and

material damping ratio.

Once the free - vibration decay curve is recorded, Material damping ratio is calculated from

logarithmic decrement according to:

625 ={6}
4ni2 +6 2

In this method, it is not certain which strain amplitude is a representative strain for damping

ratio calculated by eq. {6} because strain amplitude decreases during the free - vibration



147

decay. In the laboratory test program described in Chapter 2, a representative strain

amplitude was used as the peak strain amplitude during steady - state vibration for shearing

strains below 0.001%. However, at larger strains, the representative strain is smaller than the

peak strain, and the average strain determined for the first three cycles of free vibration was

used.

* Half - Power Bandwidth Method

Another method of measuring damping in the resonant column test is the half - power

bandwidth method, which is based on the measurement of the width of the frequency

response curve near resonance. From the frequency response curve, the logarithmic

decrement can be calculated from:

f 2 fA -2(2
(5 = -- - {7}f2 A - A 2  1-22 m ax

where: f, frequency below the resonance where the strain amplitude is A,
f2 frequency above the resonance where the strain amplitude is A,

f,. 'resonant frequency, and

6 material damping ratio.

If the damping ratio is small and A is chosen as 0.707 Ax, which is called the half - power

point, eq. {7} can be simplified as:

f -f
~ - 1 {8}

Therefore, the damping ratio can be expressed as:

f2 -f {9}

2 f,

Backround noise can lead to problems when measuring material damping using the

free - vibration decay method at strains less than about 0.001%. On the other hand,
backround noise generally has a smaller effect on the frequency response curve at strains

below 0.001%. Therefore, the half - power bandwidth method is preferred to the free -

vibration decay method for making small - strain damping measurements. However, at larger
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strains, symmetry in the frequency response curve is no longer maintained, and serious errors

can arise by using the half - power bandwidth method.

1.4 Method of Analysis in the Torsional Shear Test

The torsional shear test is another method f determining the deformational

characteristics (modulus and damping) of soil using the same RCTS device. Rather than

measuring the dynamic response of the specimen, the actual stress - strain hysteresis loop is

determined by means of measuring the torque - twist curve. Shear modulus is calculated using

the area of the hysteresis loop.

Shear Modulus

Because the shear modulus is calculated from the characteristics of the stress - strain

hysteresis loop, shearing stress and shearing strain in the torsional shear test need to be

defined. Once the stress - strain hysteresis loop is measured, the shear modulus, G, is

calculated from the slope of a line through the end points of the hysteresis loop, as follows:

G= rI y {10}

where: r the peak shearing stress, and

y the peak shearing strain.

Hysteretic Damping Ratio

Hysteretic damping ratio in the torsional shear test is measured using the amount of

energy dissipated in one complete cycle of loading and the peak energy stored in the

specimen during the cycle.

In the torsional shear test, the dissipated energy is measured from the area of the

stress - strain hysteresis loop. The energy per cycle, Ed, due to a viscous damping force, Fd, is:

T

Ed= Fd k dt {11}
0

where: k the velocity, and

T the period of motion.

For a simple harmonic motion with frequency co, i.e. x = A cos (ot - p ), the energy dissipated

per cycle of motion becomes:

Ed = Ti c CO A 2 {12}
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From eq. {12}, the viscous damping coefficient can be expressed as:

W
n (j2 A

The peak strain energy, W, stored by the spring is equal to the area under the secant modulus

line and can be written as:

W, = k A2 / 2 {14}

The critical damping coefficient, CC, is:

CC = 2- V km = 2 k / cn {15}

where k is an elastic spring constant, m is a mass, and con is a natural frequency of the system.

Using eq. {14}, eq. {15} can be rewritten as:

= ' W,{16}

and the damping ratio can be expressed as:

C W on {17)
Cc 4 nW, w

For soils however, material damping is often assumed to be frequency indepednent.

Therefore, the term con 1o can be ignored, and hysteretic damping is written as:

1_ Wd {18}1r W~
4 n W,

where: Wd the area of the hysteresis loop, and

W, the area under the secant modulus.
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APPENDIX III

FORTRAN COMPUTER CODES

111.1 Frequency Dependent Damping and Shear Modulus

Compares the true energy dissipated by a non-linear Masing soil (elastoplastic springs in

parallel) with the energy dissipated by frequency - dependent linearly - hysteretic soil

(represented by the MIT-Si model). The excitation is a shearing strain time history, obtained

by integration of an actual accelerogram (real earthquake).

Note. -The particle velocity is proportional to strain.

parameter

parameter

parameter

parameter

parameter

parameter

parameter

(pi=3.14159265, two-overpi=2./pi)

(twopi=6.2831853)

(xO=1.E-6)

(xmax=1)

(nn=1024)

(nkmax=300)

(nf=nn/2)

Small strain limit

Maximum strain for G/Go curve
Number of time intervals
Max. Number of elastoplastic springs

character*80 eqfile

real st(O:nkmax)

real xy(O:nkmax)

real fy(O:nkmax)

real damp(O:nkmax)

real energy(O:nn)

real stress(O:nn)

real strain (0: nn)

real v(O:nn)

real gamma(O:nf)

real g(O:nf)

real d(O:nf)

real tau(O:nn)

complex ctau(O:nf)

equivalence (tau(O), ctau(O))

integer plastic

integer unload

Stiffness of springs

Yield deformation of springs

Yield force in each spring

Fraction of hysteretic damping

Dissipated energy

Stress time history

Strain time history

Rate of strain (initially = quake)

Strain Fourier amplitude spectrum

Frequency Dependent Shear modulus

Frequency Dependent Damping

Hysteretic stresses

Fourier transform of hysteretic stresses

Keeps track of springs in yield

Indicator for unloading/reloading
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***************************************************** *********** ****

!GAUSSIAN QUADRATURE COEFFICIENTS

dimension xi(5), wt(5)

data xi/-0.9061798459, -0.5384693101, 0.,

* 0.5384693101, 0.9061798459/

data wt/ 0.2369268850, 0.4786286704, 0.5688888888,
* 0.4786286704, 0.2369268850/

call GETPARAMETERS (eqfile, strma

tt = nn*dt

df = 1./tt

dom = twopi*df

call MIT-Si (xO)

open (1,file='damping')

open (2,file='modulus')

fac = 10.**(0.05)

fac1 = fac - 1.

x1 = x0

gl = 1.
nk = 0

st(0) = gl

xy(0) = x1

fy(0) = gl*xl

damp(0) = 0.

sum = xO**2

write (1,'(2e15.5)') x1, damp(0)

write (2,'(3e15.5)') x1, gl, gl

do while (xl.le.xmax .and. nk.lt.nk

nk = nk + 1

x2 = fac*xl

a = 0.5*(x2 + xl)

b = 0.5*(x2 - xl)

s = 0.

do j=1,5

x = a + xi(j)*b

s = s + wt(j)*x/fun(x)

end do

sum = sum + 2.*b*s

damp(nk) = (sum*fun(x2)/x2**2

g2 = 1./fun(x2)

st(nk) = (fac*g2 - gl)/facl

x, dt)

Fraction of damping
Secant & tangent shear modulus

Factor for strain intervals

Small strain limit
Small strain G/Go

Small strain damping
sum = integral (2*x*G/Go*dx)

max)

Center of integration interval
Half-width integration interval

Gaussian integration

- 1.)*two over pi

Secant stiffness
Tangent stiffness

Gaussian points

Gaussian weights
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xy (nk) = x2 Yield deformation

write (1,'(2e15.5)') x2, damp(nk)

write (2,' (3e15.5) ') x2, (fac*g2 - gl)/facl, g2
x1 = x2

gl = g2

end do

do j=O,nk-1

ts = st (j) Tangent stiffness

st (j) = st (j) - st (j+1) Spring stiffness

fy(j) = st(j)*xy(j) Yield force

end do

fy(nk) = st(nk)*xy(nk)

close (1)

close (2)

open (l,file='loop')

open (2,file='energy')

open (3,file='stress')

open (4,file='strain')

call INMOT (v, nt, nn, eqfile)

call INTEG (strain, v, nt, nn, strmax, dt)

call MODULI (xy, damp, gamma, tau, ctau, g, d, nk, nn, nf, df)

do i=O,nn

energy(i) 0.

stress(i) = 0.

end do

do k=0,nk

nl = 0

ul = 0.

fl = 0.

plastic = 0

uy = xy(k)

do while (nl .lt. nn)

if (plastic .ne. 0) then

call SPRING IS PLASTIC (strain, v, stress, energy, ul, n1,

* fl, fy(k), unload, plastic, nn)

else

call SPRING ISELASTIC (strain, stress, ul, nl, fl,

* fy(k), uy, st(k), unload, plastic, nn)

end if

end do

end do

work = 0.

edis = 0.

do i=0,nn-1
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t = i*dt

work = work + energy

write (l,'(2e15.5)')

write (2,'(3e15.5)')

write (3,'(3e15.5)')

write (4,'(2e15.5)')

edis = edis + tau(i)

(i)

strain(i), stress(i)
t, work, edis

t, stress(i)

t, strain(i)

*(strain(i+1) - strain(i))

(1)
(2)

(3)
(4)

SUBROUTINE MODULI (xy, damp, gamma, tau, ctau, g, d, nk, nn, nf, df)

Determines shear moduli and damping values as function of frequency as well as the hysteretic stress

time history (tau)

parameter (twopi=6.28318)

real xy(O:nk), damp(O:nk)

real gamma(O:nf), tau(O:nn),

complex ctau(0:nf)

g(0:nf), d(0:nf)

open (11,file='frddamp')

open (12,file='frd_shmd')

do i=0,nf

d (i) = damping (gamma (i) , xy, damp, nk)

g(i) = l./fun(gamma(i))

ctau(i) = df*g(i)*ctau(i)*cmplx(0.,2.*d(i))

write (11,'(2e15.5)') i*df, d(i)

write (12,'(2e15.5)') i*df, g(i)

end do

close (11)

close (12)

ctau(0) = 0.

call FFT' (tau, nn, 1, 1, -1)

Note.-Subroutine FFT is a multi - dimensional Fast Fourier Transform routine. Computes the following:
Ni N2

F (Ji , J 2 ,...) = SUM SUM ... G(Ki, K2,...) EXPr EXP 2-..-
Ki =1 K 2 =1

where: 1 . LE. J. LE. Ni (for each of the NDIM dimensions)

EXPi = EXP (TWOPII- (Ki-1) - (Ji-1) /N1 )
inwhich: TWOPII = 6.28318*ISIGN*SQRT(-1)

end do

close

close

close

close

end
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return

end

SUBROUTINE SPECTRUM (strain, gamma, tau, nn, nf, strmax, rms, dt, df)

Computes the Fourier Amplitude Spectrum of Strains

real strain(O:nn), gamma(O:nf), tau(O:nn)

do i=O, nn

tau(i) = strain(i)*dt

end do

tau(nn+1) = 0.

call fft (tau, nn, 1, -1, 0)

rms = 0.

peak = 0.

do i=0,nf

j = 2*i

sr = tau(j) ! realpart

si = tau(j+1) ! imaginary part

a2 sr**2 + si**2 ! amplitude squared

rms rms + a2

gamma(i) = sqrt(a2)

if (peak .lt. gamma (i)) peak = gamma (i)

end do

tt = nn*dt

rms = sqrt(2.*rms*df/tt)

factor = strmax/peak

do i=0,nf

gamma(i) = gamma(i)*factor

end do2

write (*,'(a,e15.4)') ' Peak strain

write (*,'(a,e15.4)') ' RMS strain

rms = rms/strmax

write (*,'(a, f15. 4)') ' RMS/peak strain

return

end

= ', strmax

= ', rms

= ', rms

2 Note.-If frequency dependent damping linear hysteretic model was used with smoothed strain Fourier
transform, the loop should be substituted with:
do i=0,nf

gamma(i) = strmax*exp(-0.15*(df*i))/(df*i+1)**0.625

end do
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SUBROUTINE INTEG (strain, v, nt, nn, ampl, dt)

Integrates the ground acceleration time - history, then scales the computed ground velocity to convert

it into a strain time history (based on the assumption that the strain is proportional to the particle

velocity)

real strain(O:nn), v(O:nn)

strain(O) = 0.

do i=1,nt

strain(i) = strain(i-1) + v(i)

end do

du = strain(nt)/nt

amp = 0.

do i=1,nt

strain(i) = strain(i) -i*du

v(i) = v(i) - du

if (abs(strain(i)) .gt. amp) amp abs(strain(i))

end do

fac1 = ampl/amp

fac2 = facl/dt

do i=0,nt

strain(i) = strain(i)*facl ! Strain

v(i) = v(i)*fac2 Rate of strain

end do

do i=nt+1,nn

strain(i) = 0.

v(i) = 0.

end do

return

end

FUNCTION DAMPING (strain, xy, damp, nk)

Returns the damping for the current level of strain

real xy(0:nk), damp(0:nk)

i = 0

do while (strain.gt.xy(i) .and. i.lt.nk)

i =i + 1

end do
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if (i .le. 1) then

damping = damp(l)*strain/xy(l)

else if (strain .le. xy(nk)) then

dd = log( xy(i)/xy(i-1)

xl = log( xy(i)/strain

x2 = log( strain/xy(i-1))

damping = (xl*damp(i-1) + x2*damp(i))/dd

else

damping = damp (nk)

end if

return

end

Must modify for strain > xy(nk)

**************** ************* ************************** **** **** *** ****

SUBROUTINE GETPARAMETERS (inpfil, strmax, dt)

Returns the parameters on the command line

character*80 inpfil

character*5 type

real KO

integer*2 status

common /soil/ Cb, eO,

! *** Default values

e0 = 0.5

KO = 0.5

conf = 1.

type = 'sand'

strmax = 1.e-3

dt = 0.02

n = nargs ()
if (n .ge. 2) then

call GETARG (1,

else

KO, conf, xmin

Void ratio

Coefficient of lateral earth pressure

Atmospheres

Maximum strain

Time step for earthquake

inpfile, status) ! Get name from command line

write (*,'(a)') ' Input file?'

read (*,'(a)') inpfile

end if

open (5,file=inpfil)

read (5,'(a)') type

read (5,*) eO

read (5,*) KO
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read (5,*) conf

read (5,'(a)') inpfil

read (5,*) dt

read (5,*) strmax

close (5)

if (type.eq.'clay' .or. type.eq.'CLAY') then

Cb = 450.

else

Cb = 800

end if

return

end

SUBROUTINE MIT-Si (xO)

Computes the soil constants for the MIT - S1 model shear modulus degradation curves

real KO, KONC

parameter (FTHRD=1.6666667, TWOTHRD=0.6666667)

parameter (SR15=1.224744871) sqrt(1.5)

parameter (OCR1=6.67777) OCRatKo=1

parameter (POISO=0 .25) Small Strain Poisson's ratio

parameter (KONC=0.5)

common /soil/ Cb, eO, KO, conf, xmin

common /constants/ C, C1, C2, C12, C3, C4, Al, A2, B1, B2, B3, GO

conf = (1.+2.*KO)*conf/3.

e = e0*exp(-0.00169*conf) Voidratio

Cl = 2.4 Exper. Data (Laird & Stokoe, 1993)

C = (1. - 2.*POISO)/(l. + POISO)
C2 = c*(1 + 2.*KONC - 3./OCR1)

C2 = SR15*(KONC - 1. + C2)*(l.+ 2*KONC)/(l.- KONC)**2

C = e*conf**TWOTHRD/( 1.5*C*Cb*(l. + e)
C11 = C1**2

C12 = C1*C2

C22 = C2**2

Al = 12.*C12**2

A2 = C*(Cl + C2)*(4.*C12 - Cll - C22)

Bl = 3.*Al

B2 = 6.*A2

B3 = (10.*C12 - 3.*(Cll + C22))*C**2
C12 = 2.*C12

C3 = (Cl - C2)**2
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C4 = C1 + C2

GO = 1.

GO = l./fun(xO)

xmin = xO

return

end

Set appropriate value before calling FUN ( )

FUNCTION FUN(xO)

Shear modulus degradation curve

parameter (THIRD=0.3333333)

common /soil/ Cb, eO, KO, conf, xmin

common /constants/ C, C1, C2, C12, C3, C4, Al, A2, B1, B2, B3, GO

if (x .le. xmin) then

FUN 1.

else

A = Al*x + A2

B = C12*sqrt((Bl*x + B2)*x + B3)

A = ((A + B)/C)**THIRD

T = conf*(A + C3/A - C4)/C12

G = T/x

FUN = GO/G

end if

return

end

Stressat strain = x
Shear modulus

************************************************************* **********

SUBROUTINE SPRINGISPLASTIC (u, v, stress, energy, ul, n1, f 1,

* fy, unload, plastic, nt)

Determines the point at which the spring will stop flowing as well as the energy dissipated by it in plastic

flow

real u(0:nt), v(0:nt), stress(0:nt), energy(0:nt)

n2 = n1

if (plastic .eq. 1) then

do while (v(n2) .ge.0. .and. n2.It.nt)

n2 = n2 + 1

end do

Flowing L->R
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unload = -1

f2 = fy

else if (plastic .eq. -1) then

do while (v(n2).le.0. .and. n2.lt.nt)

n2 = n2 + 1

end do

unload =

f2 = -fy

1

end if

plastic = 0

n2 = n2 - 1

u2 = u(n2)

work = (u2 - ul)*f2

if (n2 .gt. n1) then

work = work/ (n2 - n1)

energy(nl) = energy(n1) + 0.5*work

energy(n2) = energy(n2) + 0.5*work

do i=nl+1,n2-1

energy(i) = energy(i) + work

end do

else

energy(n2) = energy(n2) + work

end if

do i=nl+1, n2

stress(i) = stress(i) + f2

end do

fl = f2

ul = u2

nl = n2

return

end

SUBROUTINE SPRINGIS_ELASTIC (u, stress, ul, n1, fl, fy, uy,

* st, unload, plastic, nt)

Determines the next point at which spring will flow (if at all)

real u(O:nt), stress(O:nt)

integer unload, plastic

n2 = nl + 1

if (unload .lt. 0) then Springunloading?

u2 = ul - uy Yes. Set lower yield limit

do while (u(n2).lt.ul .and. u(n2).gt.u2 .and. n2.lt.nt)

n2 = n2 + 1

Flowing R->L
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end do

if (u(n2) .ge. ul) then

plastic = 1

f2 = fy

u2 = ul

else if (u(n2) .le. u2) then

plastic = -1

f2 = -fy

u2 = u2

else

f2 = f1 - st*(ul - u(n2))

end if

else if (unload .gt. 0) then

u2 = ul + uy

do while (u(n2).gt.ul .and. u

n2 = n2 + 1

end do

if (u(n2) .le. ul) then

plastic = -1

f2 = -fy

u2 = ul

else if (u(n2) .ge. u2) then

plastic = 1

f2 = fy

u2 = u2

else

ff2 = f1 - st*(ul - u(n2))

end if

else

Resumes flow L->R ?

Yes, it does resume

Exceeds yield in unloading?

Yes, begin flow R->L

(n2)

Spring reloading?
Yes. Set upper yield limit

.lt.u2 .and. n2.lt.nt)

Resumes flow R->L?
Yes, it does resume

Exceeds yield in reloading?

Yes, begin flow L->R

f1 = 0. Spring still virgin

u2 = -uy

do while (u(n2).lt.uy .and. u(n2).gt.u2 .and. n2.lt.nt)

n2 = n2 + 1

end do

if (u(n2) .ge. uy) then

f2 = fy

u2 = uy

uy = 2.*uy

plastic = 1

else if (u(n2) .le. u2) then

ff2 = -fy

u2 = -uy

uy = 2.*uy

plastic = -1

else

u2 = u(n2)

First flow L->R

First flow R->L
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f2 = st*u2

end if

end if

do i=nl+1,n2-1

stress(i) = stress(i) + f1 - st*(ul - u(i))

end do

stress(n2) = stress(n2) + f2

fl = f2

ul = u2
n1 = n2

return

end

******************* ******************************* ******** *************

SUBROUTINE INMOT (th, nt, nn, eqfile)

Reads input earthquake

character*(*) eqfile

real th(O:nn)

open (5,file=eqfile)

I **** INITIALIZE TIME HISTORY VECTOR

do i=O,nn

th(I) = 0.

end do

I **** READ THE TIME HISTORY

nt = nn-1

read (5,*,end=1) (th(i), i=0,nt)

! **** CHECK FOR END OF FILE

read (5,*,end=l) dummy

! **** END OF FILE NOT DETECTED, PRINT WARNING

write (*, ' (A)') ' * WARNING: Input time history too long!

go to 2

1 **** FIND NUMBER OF NON-ZERO POINTS IN TIME HISTORY

do while (th(nt).eq.0. .and. nt.ge.0)

nt = nt - 1

end do

if (nt .lt. 0)
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*

close (5)

return

end

stop ' **** ERROR: Input time history is empty!'

************** ******************* **************************************
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111.2 Non-linear Soil Amplification - Lumped Mass System

Computes the seismic response of a soil deposit modeled as a set of non-linear springs. The

solution is obtained by modeling the non-linear elements as a set of elastoplastic springs in

parallel (Masing's law). The properties of these springs are inferred from the shear modulus

degradation curves of the MIT-Si model.

The equations of motion are integrated in the time domain with the Central Differences

Method.

implicit real*8 (a-h,o-z)

parameter (x0=1.D-6)

parameter (xmax=1 .0)

parameter (nkmax=300)

parameter (ntmax=10000)

real*8 acc(O:ntmax)

integer mat [allocatable] (:)

G

h

am

conf

eO

KO

ak

fy

real*8 strain

[allocatable]

[allocatable]

[allocatable]

[allocatable]

[allocatable]

[allocat able]

[allocatable]

[allocatable]

[allocatable] ( :)

Small strain limit

Maximum strain for G/Go curve

Max. Number of elastoplastic springs

Max. Number of time steps

Earthquake record (time history)

Material index for each layer

Shear modulus

Layer thickness

Lumped Soil mass

Confining pressure (atmospheres)

Initial void ratio

Coefficient of lateral earth pressure

Spring stiffnesses

Spring yield forces

Strain vector

call PROMPTUSER (acc, nt, ntmax, lay, nmat)

allocate (G(lay), h(lay), am(lay), conf(lay), mat(lay))

allocate (eO(0:nmat), KO(0:nmat), strain(nkmax))

call READINPUT (G, h, am, conf, eG, KO, mat, dt, dtl, ndt)

call MAKESTRAIN (strain, nkmax, nk, xO, xmax, fac)

allocate (ak(nk,lay), fy(nk,lay))

call MAKESPRINGS (ak, fy, strain, conf, eO, KO, mat, fac, nk,

* lay, nmat)

call CENTRAL DIFFERENCE (acc, G, h, am, ak, fy, dt, dtl, ndt,

* nt, nk, lay)

deallocate (ak, fy, strain, eO, KO, G, H, am, conf, mat)

end

real*8

real*8

real*8

real*8

real*8

real*8

real*8

real*8
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SUBROUTINE CENTRALDIFFERENCE (acc, G, h, am, ak, fy, dt, dtl,

* ndt, nt, nk, lay)

Integrates the equations of motion by central differences

implicit real*8 (a-h,o-z)

real*8 acc(O:nt)

real*8 G(lay), h(lay), am(lay)

real*8 ak(nk,lay), fy(nk,lay)

U

ul

u2

aa

f

for

[allocatable]

[allocatable]

[allocatable]

[allocatable]

[allocatable]

[allocat able]

parameter (ACCG=32. 17)

layl = lay + 1

allocate (aa(layl),

allocate (f(O:lay),

call INITIALIZE (ul,

u (layl)

for (nk,

u2, u,

Relative displacements, next step

Relative displacements, current step

Relative displacements, previous step

Absolute accelerations, current step
Forces in each layer

Forces in elastoplastic springs

Acceleration of gravity, ft/s**2

, ul(layl), u2(lay2))

layl))

f, for, layl, nk)

open (3,file='response')

open (4,file='loop')

write (3,'(3e15.5)') 0., 0., 0.

write (4,'(3E15.5)') 0., 0.

dt2 = dtl**2

eps = dtl/dt

acl = acc(0)

k= 0

do ts=1,nt

ac2 = acc(ts)

do j=1,ndt

xi = j*eps

gacc = (1.d0-xi)*ac1 + xi*ac2

do i=1,lay

dul = ul(i) - ul(i+1)

du2 = u2(i) - u2(i+1)

dx = (dul - du2)/h(i)

f(i) =force(ak(1,i), fy(1,i),

end do

do i=1,lay

aa(i) = (f(i) - f(i-1))/am(i)

for(1,i), g(i), dx, nk)

real*8

real*8

real*8

real*8

real*8

real*8
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u(i) = 2.*ul(i) - u2(i) - dt2*(gacc + aa(i))
u2(i) = ul(i)

ul(i) = u(i)

end do

k = k + 1

time = k*dtl

write (3,'(3E15.5)') time, -aa(1)/ACCG, gacc/ACCG

write (4,'(3E15.5)') ul(1), f(1)

end do

acl = ac2

end do

deallocate (aa, u, ul, u2, f, for)

close (3)

close (4)

return

end

************************************************************ **** *******

REAL*8 FUNCTION FORCE (ak, fy, for, G, dx, nk)

Computes the non-linear force in current layer

implicit real*8 (a-h,o-z)

dimension ak(*), fy(*), for(*)

force = 0.

do i=1,nk

for(i) = for(i) + ak(i)*dx

if (for(i) .gt. fy(i)) then

for(i) = fy(i)

else if (for(i) .lt. -fy(I)) then

for(i) = -fy(i)

end if

force = force + for(i)

end do

force = g*force

return

end
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REAL*8 FUNCTION FUN (x)

Shear modulus degradation curve

implicit real*8 (a-h,o-z)
parameter (THIRD=0.333333333333333DO)

common /soil/ Cb, conf

common /constants/ C, Cl, C2, C12, C3, C4, Al, A2, B1, B2, B3, GO

A = Al*x + A2

B = C12*sqrt((Bl*x + B2)*x + B3)

A = ((A + B)/C)**THIRD

T = conf*(A + C3/A - C4)/C12

G = T/x

FUN = GO/G

return

end

Stress at strain = x
Shear modulus

SUBROUTINE INITIALIZE (ul, u2, u, f, for, layl, nk)

Initializes the arrays

implicit real*8 (a-h,o-z)

real*8 ul(*), u2(*), u(*), f(*)

real*8 for(nk,layl)

do i=l,layl
do j=1,nk

for(j,i) = 0.

end do
ul(I) = 0.

u2(I) = 0.

u(I) = 0.

f(I) = 0.

end do

return
end
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SUBROUTINE MAKESTRAIN (strain, nkmax, nk, xO, xmax, fac)

Generates the strain vector

implicit real*8 (a-h,o-z)

real*8 strain (nkmax)

fac = 10.**(0.05) ! Factor forstrainintervals

strain (1) =x ! Small strain limit

nk = 1

x1 = x0

do while (xl.le.xmax .and. nk.lt.nkmax)

nk = nk + 1

x1 = fac*xl

strain(nk) = xl

end do

return

end

SUBROUTINE MAKESPRINGS (ak, fy, strain, conf, eO, KO, mat,

* fac, nk, lay, nmat)

Computes the elasto-plastic springs for current soil

implicit real*8 (a-h,o-z)

real*8 ak(nk,lay), fy(nk,lay), strain(nk)

real*8 conf(lay), eO(0:nmat), KO(0:nmat)

integer mat (nmat)

fac = fac - 1.

nkl = nk - 1

do i=l,lay

m = mat(i)

call MIT_S1 (strain(l), conf(i), eO(m), KO(m))

gl = 1. Small strain G/Go

fy(l,i) = gl*strain(l)

ak(l,i) = gl

do j=2,nk

x2 = strain(j)

g2 = 1. / fun (x2) Secant stiffness

ak(j,i) = (fac*g2 - gl)/facl ! Tangent stiffness

gl = g2
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end do

do j=l,nkl

ak(j,i) = ak(j,i) - ak(j+l,i)

fy(j,i) = ak(j,i)*strain(j)

end do

fy(nk,i) = ak(nk,i)*strain(nk)

end do

return

end

Spring stiffness
Yield force

SUBROUTINE MIT-Si (xO, sconf, eO, KO)

Computes the soil constants for the MIT - S1 model shear modulus degradation curves

real KO, KONC

parameter (FTHRD=1.6666667, TWOTHRD=0.6666667)

parameter (SR15=1.224744871) sqrt(1.5)

parameter (OCR1=6.67777) OCR at Ko=1

parameter (POISO=0 .25) Small Strain Poisson's ratio

parameter (KONC=0.5)

common /soil/ Cb, eO, KO, conf, xmin

common /constants/ C, Cl, C2, C12, C3, C4, Al, A2, B1, B2, B3, GO

! DEFAULT VALUES

Cb = 800. Sand (for Clay, use Cb = 450.)

! DEFINE CONSTANTS

conf = (1.+2.*KO)*sconf/3.

e = e0*exp(-0.00169*conf) Voidratio

C1 = 2.4 Exper. Data (Laird & Stokoe, 1993)

C = (1. - 2.*POISO)/(l. + POISO)

C2 = c*(l + 2.*KONC - 3./OCR1)

C2 = SR15*(KONC - 1. + C2)*(1.+ 2*KONC)/(l.- KONC)**2

C = e*conf**TWOTHRD/( 1.5*C*Cb*(l. + e)

C11 = C1**2

C12 = C1*C2

C22 = C2**2

Al = 12.*C12**2

A2 = C*(Cl + C2)*(4.*C12 - C11 - C22)

B1 = 3.*A1

B2 = 6.*A2

B3 = (10.*C12 - 3.*(C11 + C22))*C**2
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C12 = 2.*C12

C3 = (Cl - C2)**2

C4 = C1 + C2

GO = 1. Set appropriate value before calling FUN ()

GO 1./fun(xO)

return

end

*************** ********************************************************

SUBROUTINE PROMPTUSER (acc, nt, ntmax, lay, nmat)

Returns the parameters on the command line, or prompts the user

implicit real*8 (a-h,o-z)

integer*2 status

real*8 acc(*)

character*80 input, quake, output

n = nargs ()

if (n .ge. 4) then

! ** GET FILE NAMES FROM COMMAND LINE

call GETARG (1, input, status)

call GETARG (2, quake, status)

call GETARG (3, output, status)

else

write (*,'(a)') ' Input data file?

read (*,'(a)') input

write (*,'(a)) ' Earthquake file?'

read (*,'(a)') quake

write (*,'(a)') ' Output file?

read (*,'(a)') output

end if

open (1,file=input, status='old')

open (2,file=quake, status='old')

call SCANINPUT (lay, nmat, scale)

call READQUAKE (acc, scale, nt, ntmax, 2)

close (2)

open (2,file=output)

return

end
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SUBROUTINE READQUAKE (th, scale, nt, nn, unit)

Reads - Scales input earthquake

implicit real*8 (a-h,o-z)

integer unit

real*8 th(O:nn)

character*1 marker

character*80 row

parameter (ACCG=32 . 17) Acceleration of gravity, ft/s**2

marker = ' '

do while (marker.ne.';' .and. marker.ne.'/')

read (unit,'(al)', end=l) marker

enddo

if (marker .eq. '/') then

do while (marker .eq. '/')

read (unit,'(al)') marker

enddo

backspace (unit)

endif

go to 2

1 write (*,'(a)')

* ' Could not find marker in earthquake. Will try without...'

rewind (unit)

2 read (unit, '(a)') row Read first line of quake...

backspace (unit) ... and return to previous line

nl = 0

i= 80

do while (i .gt. 0) Find number of items in line

do while (row(i:i).eq.' ' .and. i.gt.0) !Jump over white

i = i - 1

enddo

if (i .gt. 0) then

nl = nl + 1

do while (row(i:i).ne.' ' .and. i.gt.0)

i=i- 1

enddo

endif

enddo

! *** INITIALIZE TINE HISTORY FILE

do i=0,nn

th(i) = 0.

enddo

! Jump over number

Find marker

Skip over remaining Ps
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if (nl .gt. 4) then

* *** READ NORMAL EARTHQUAKE FILE

nil = nl - 1

do nt=O,nn-nll,nl

read (unit,*,err=3,end=3) (th(i), i=nt,nt+nll)

enddo

else if (nl .eq. 1) then

! * READ A SINGLE COLUMN OF ACCELERATION VALUES

do nt=O,nn

read (unit,*,err=3,end=3) th(nt)

enddo

else

* READ A "Time history" FILE (TIME, ACC, VEL, DISP)

do nt=O,nn

read (unit,*,err=3,end=3) t, th(nt)

enddo

endif

3 nt = nn

do while (nt.ge.O ~.and. th(nt) .eq.0.)

nt = nt - 1

enddo

if (nt .lt. 0)

* stop ' **** ERROR: Input time history is empty!'

** SCALE THE "Time history" FILE

call GETMAX(nt, NMAX, dt, TMAX, ATHMAX, THMAX, th)

if (scale .EQ. 0.) scale = ATHMAX

FACTOR = scale/ATHMAX

do i=0,nt

th(i) = th(i)*FACTOR*ACCG

end do

return

end
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SUBROUTINE GETMAX (NEQ, NMAX, DT, TMAX, ATHMAX, THMAX, TH)

Finds the signed and absolute maxima of the array TH, ie. THMAX = TH (NMAX), and ATHMAX
=ABS (THMAX) where NMAX is the corresponding index, and TMAX the time of max.

integer neq, nmax
real*8 dt, tmax, athmax, thmax, th
DIMENSION TH(O:NEQ)

ATHMAX = 0.

NMAX = 0

DO I=0,NEQ

A = ABS( TH(I)

IF (ATHMAX .LT. A) THEN

ATHMAX = A

NMAX = I

END IF

END DO

TMAX NMAX*DT

THMAX = TH(NMAX)

RETURN

END

SUBROUTINE READINPUT (G, h, am, conf, eO, KO, mat, dt, dtl, ndt)

Reads the input data for the current problem
TITLE (any title)

DT, DT1, SCALE Parameters for earthquake, in which
DT Time step for earthquake
DT1 Time step for analysis (should be less/equal to DT)
SCALE Scaling factor for earthquake
NMAT Number of different materials (=0 if using defaults)
Enter NMAT lines with:

eO, KO Void ratio and coef f. of lateral earth pressure
NLAY Number of physical soil layers
Enter NLAY lines, each of which contains:

N, H, W, Cs, M Material properties, in which
N Number of sub-layers for dividing current layer
W Specific weight (in lb/cf)
Cs Shear wave velocity (ft/s)
M Material index to choose eO etc (if =0, use default)
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implicit real*8 (a-h,o-z)

! *** ASSUNED UNITS: LB

parameter (ACCG=32. 17)

parameter (ATMU=2116.22)

parameter (PCF=ACCG/ATMU)

parameter (PMIN=0 .5)

integer mat(*)

real*8 G(*), h(*), am(*),

real*8 e0(0:*), K0(0:*)

character*80 title

common /titles/ title

(FORCE),

conf(*)

FT, SEC

Acceleration of gravity, ft/s**2

Atm. pressure, lb/ft**2
Pressure conversion factor
Minimum confining pressure used

101 format (/, ' Time step for earthquake =
* ' " " analysis =

* ' Scaling factor for earthquake =

102 format (//, 'Material Properties:', /,
* ' Material eO KO ', /, I5, 2fl2.3)

103 format (//, 'Soil Profile:', /,

* ' Layer Mater Thickn Sp. Weight',

* 6x, 'Cs', lOx, 'G', 8x, 'Conf. P.')

read (1,'(a)') title

write (2,'(a)') title

read (1,*) dt, dtl, scale

if (dtl.eq.0 .or. dtl.gt.dt) dtl = dt

ndt = (dt + 0.5*dtl) /dtl Number of intervals in dt

dtl = dt/ndt

write (2,101) dt, dtl, scale

eO (0) = 0. 5 Default value for void ratio

KO (0) = 0. 5 Default value for coefficient of lat. earth pressure

write (2,102) 0, eO(O), KO(0)

read (1,*) nmat

do i=1,nmat

read (1,*) eO(i), KO(i)

write (2,'(i5, 2fl2.3)) i, eO(i), KO(i)

end do

pr = 0.

bm = 0.

lay = 0

read (1,*) nlay

write (2,103)

do i=1,nlay

read (1,*) nn, hh, ww, cs, mtype

f10.4, /,

f10.4, /,

fl0.4)
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if (mtype .gt. nmat) then

write (*,'(a,i5,a)') '*** Warning: Material ', mtype,

* ' does not exist!'

mtype = 0

end if

dh = hh/nn

ro = ww/ACCG

gg = ro*cs*cs

dp = ro*dh*PCF

dm = ro*dh/2.

do j=1,nn

lay = lay + 1

pr = pr + dp

G(lay) = gg

h(lay) = dh

am(lay) = bm + dm

mat(lay) = mtype

conf (lay) = pr - 0. 5*dp ! Overburden pressure, atm. units

if (conf(lay) .lt. PMIN) conf(lay) = PMIN

bm = dm

write (2,'(i5,2x,i5,5e12.3)') lay, mtype, dh, ww, cs

* gg, conf(lay)

end do

end do

close (1)

return

end

SUBROUTINE SCANINPUT (lay, nimat, scale)

Scans the input files to determine max. dimensions

implicit real*8 (a-h,o-z)

character*4 title

read (1, ' (a) ') title Ignore title

read (1,*) dt, dtl, scale

read (1,*) nmat

do i=1,nmat

read (1,*) eO

end do

lay = 0

read (1,*) nlay

do i=1,nlay
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read (1,*) nn

lay = lay + nn

end do
rewind 1
return

end

I;


