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INVARIANT DIFFERENTIAL EQUATIONS ON
HOMOGENEOUS MANIFOLDS

BY SIGURDUR HELGASON 1

1. Historical origins of Lie group theory. Nowadays when Lie groups enter
in a profound way into so many areas of mathematics, their historical origin
is of considerable general interest. The connection between Lie groups and
differential equations is not very pronounced in the modern theory of Lie
groups, so in this introduction we attempt to describe some of the founda-
tional work of S. Lie, W. Killing and E. Cartan at the time when the interplay
with differential equations was significant. In fact, the actual construction of
the exceptional simple Lie groups seems to have been accomplished first by
means of differential equations.

Although motion groups in R3 had occurred in the work of C. Jordan prior
to 1870, Lie group theory as a general structure theory for the transformation
groups themselves originated around 1873 with Lie's efforts about that time
to use group theoretic methods on differential equations as suggested by
Galois' theory for algebraic equations. It seems that a lecture by Sylow in
1863 (when Lie was 20) on Galois theory2 (Lie and Engel [9, vol. 3, p. XXII])
and his collaboration with F. Klein, 1870, on curves and transformations
(Klein and Lie [6], Engel [3b, p. 35]) were particularly instrumental in
suggesting to him the following:

PROBLEM (LIE [8a]). Given a system of differential equations how can knowl-
edge about its invariance group be utilized towards its integration?

Since the solutions of a differential equation are functions, not just num-
bers as for an algebraic equation, one can take two different viewpoints for
an analogy with Galois theory.

Analytic viewpoint (Lie (1871-1874)). For a system of differential equations,
consider the group of diffeomorphisms of the underlying space leaving the
system stable (i.e., permuting the solutions).

Algebraic viewpoint (Picard (1883), Vessiot (1891)). For a given differential
equation consider the group of automorphisms of the field generated by the
solutions, fixing the elements of the coefficient field.

To indicate the flavor of the resulting theories I just recall a couple of the
best known results. In ordinary Galois theory one has the fundamental result
that an algebraic equation is solvable by radicals if and only if the Galois
group is solvable. In the Picard-Vessiot theory one introduces similarly the
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Galois group of a linear homogeneous ordinary differential equation, the
so-called differential Galois group (since the automorphisms are assumed to
commute with differentiation). The solvability of this group is then necessary
and sufficient for the equation to be solvable by quadratures, f(x)-
ff(x) dx, and exponentiation, g(x) eg( ' ).

To indicate the rudiments of Lie's theory, consider a differential equation

(1) dy/dx = Y(x,y)/X(x,y)

in the plane. It is called stable under a I-parameter group , (t E R) of
diffeomorphisms if each p, permutes the integral curves (all concepts are here
local).

EXAMPLE.

&

transformations

on R". Passing
law for (5) impl

(6)

where the Cal ai

(7) Ck, =

(2)
dy

dx

Y + X(X2 + y 2 )

X - y(X2 + y 2)

The equation can be written

dx x / x d x 

and since the left-hand side is the tangent of the angle between the integral
curve and the radius vector, it is clear that the integral curves intersect each
circle X2 + Y2 = r2 under a fixed angle. The group of rotations around the
origin therefore permutes the integral curves, i.e., leaves the equation stable.

For a I-parameter group , of transformations in the plane with p0 the
identity let T denote the induced vector field,

(3) TP, = [[) =() a(p) P E R.THEOREM 1.1 (LIE [8a]). Equation p) is stable under , if and only if t

THEOREM 1.1 (LIE [8a]). Equation (I) is stable under p, if and only if the
vector field Z = Xa / ax + Ya / ay satisfies

(4) [ T, Z] = xZ
where X is a function. In this case (Xr - Y)-' is an integrating factor for the
equation X dy - Y dx = 0.

Thus, knowing a stability group for a differential equation provides a way
to solve it. For the example above, equation (2) is stable under the group

0,: (x,y) -* (x cos t - y sin t, x sin t + y cos )

for which

a aT= - a +x
ax ay

and the theorem gives the solution y = x tan(- (x 2 + y 2) + C), C a constant.
Generalizing the -parameter group (,) above, let

(5)

be an r-parameter local transformation group of n-space, the origin
(tl, ... , tr) = (0, ... , 0) representing the identity transformation and rank
(fi/atk) = r. In analogy with (3) define the vector fields ("infinitesimal
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on R". Passing to the second derivatives of the f., Lie proved that the group
law for (5) implies that

(6) [TT,] = E CkrTp
p=!

where the Ck' are constants satisfying

(7) Ck, = -C Z (CkqClq + C PqCk + ClCcq ) = 0.
q= I

This device, which through Lie's so-called "three fundamental theorems"
relates the study of the local transformation group (5) to the algebraic study
of the Lie algebra (6), (7) (the third theorem amounts to the statement that
every system of constants C', satisfying (7) arises in this way), forms the
foundation of Lie's theory of transformation groups. His first proof of (6) (cf.
[8c. p. 52]) was incomplete (cf. loc. cit., p. 617) but was completed in his paper
[8d, p. 462]; in the modern theory of Lie groups relation (6) amounts to the
fact that when a Lie group G acts on a manifold M there is induced a
homomorphism of the corresponding Lie algebra .a into the Lie algebra of
vector fields on M.

In one generalization of Theorem 1.1 from R2 to R (cf. Lie [8b]) one
considers a differential equation

p ER2 .

if and only if the

iting factor .for the

)n provides a way
ler the group

(8)
nx, af o

i- xi

where Xi E C"(R"). Assuming the equation stable under a solvable (n - 1)-
parameter transformation group, its solutions can be found by quadratures.
(Here the term "solvable" has replaced the older term "integrable" and the
term quadrature is used for integration f(x) -- ff(x) dx in analogy with
taking square roots in the analogous result for an algebraic equation.)

Such results, and their generalization to systems, suggested the problem of
classifying all local transformation groups of Rn. Lie solved this for n = I
where the local groups are

(9)
(10)

(II)

x -- x + a,
x - ax + b,

x-(ax + b)/ (cx + d),

a E R const,
a ER-(O), bE R,

a, b, c, d E R, ad - bc = I.

C). C a constant.

pace, the origin
mation and rank
is ("infinitesimal

For n = 2 the possibilities are already quite numerous (cf. [8f, vol. V, p. 768])
so the assumption of primitivity (no invariant decomposition of the space into
lower-dimensional submanifolds) was introduced. Then there are for n = 2
just 3 possibilities, namely the 8-parameter analog of ( 1) (the projective
group), the 6-parameter analog of (10) (the affine group), and its 5-parameter
subgroup of area preserving transformations (analog of (9), the special affine
group).3 Lie [8e] and, his student in Leipzig, Page [11] settled the cases n = 3,

3 In [10] Mostow determines all global transitive Lie transformation groups of surfaces.
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4 respectively; later Kowalewski and Beutner worked out the cases n = 5 and
n = 6, respectively. The direct attack on the problem was not continued
further because the complexities had become rather formidable, and since the
problem had taken a new direction through the work of Killing and Cartan.

W. Killing, who wrote his dissertation with Weierstrass in 1872, began in
1877-1878 geometric investigations which, without knowledge of Lie's work,
led him to concepts close to Lie's infinitesimal transformations and to
relations equivalent to (6). (Cf. Lie and Engel [9, vol. 3, p. 768].) Even before
getting acquainted with Lie's work, Killing had set himself the problem of
finding all possible "Zusammensetzungen" of r-parameter groups. In other
words, he wanted to find all possible ways, up to isomorphism, in which an
r-dimensional vector space can be turned into a Lie algebra.

Thus Lie's classification problem (which, as indicated, arose from his study
of differential equations) consisted of Killing's algebraic problem together
with the problem of classifying the various representations of a given group as
a transformation group. This viewpoint was decisive for the theory of Lie
groups, but separated it gradually from differential equations.

On 18 October 1887 Killing wrote to F. Engel, who was then Lie's assistant
in Leipzig, that he had succeeded in finding a complete classification of the
simple Lie algebra g over C. In this work [5] Killing introduced many of the
fundamental concepts for the theory of simple Lie algebras, in particular, the
following:

(a) The rank I of g.
(b) For the linear transformation ad X: Y [X, Y] the characteristic

equation

(12) det(w - ad X) = o' - 42(X)*r-2 + ... + ,_!i(X)(O = 0.
The coefficient 2 2(X) which equals Trace(ad X)2 is now called the Killing
form. Equation (12) had also been used extensively by Lie.

(c) The roots of g which, by definition, are the functions (X) on q
satisfying (12).

(d) A basis ol, ... , w, of roots of which all roots are integral linear
combinations (with all coefficients of the same sign) and the associated
matrix (ai) where

(13) -aij = the largest integer q such that wj + qwi is a root.

This matrix is now called the Cartan matrix.
In this remarkable work, Killing finds all possibilities for the matrix (aij)

and writes down the corresponding roots (X) (cf. [5, II, §15]). Thus he
arrives at the statement that apart from the classical simple Lie algebras

Al (l > 1), B(l > 2), C ( l > 3), D (l > 3)

(known from Lie's work), there are only six more, of ranks and dimension,
respectively,

1 = 2, 4, 4, 6, 7, 8,
r = 14, 52, 52, 78, 133, 248.

These exceptional Lie algebras are denoted G2, E4, F4, E6, E7, E8, respec-
tively. Killing denoted G2 by (IIC); he observed that A 3 = D3, but did not
notice that E4 = F4, although, as Cartan remarked, this is immediate from his
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as a breakthrouE
3, pp. 768-771],
problem of givin
pointing out m
Killing's papers
explicit assumpt
correct, his justi
proof that at mc
Cartan showed,
later by van der

The actual e;
weakness of Kil
constants C c.

identity (7) has 1
indications [5, II

In his thesis I
results stated by
determined the
exceptional Lie
simple and symi
(presumably) sii
exceptional Lie;
the Lie algebra 

Killing had be
group in R5, but
that it can be rez

in R5 (Engel [3a]
Cartan represt

(14) dz =

where z, xi, yj, xi
(14) i,j, h, k is a
E7 in R27 and 
Unfortunately, 
exceptional grou

4 In [15], Witt gi~
proves a priori that 1
so for I < 4). Chevw
Harish-Chandra [4].

754



INVARIANT DIFFERENTIAL EQUATIONS

he cases n = 5 and
vas not continued
lable, and since the
lling and Cartan.

in 1872, began in
.dge of Lie's work,
ormations and to
768].) Even before
elf the problem of
r groups. In other
)hism, in which an
L.

;ose from his study
problem together

of a given group as
the theory of Lie

)ns.
then Lie's assistant
lassification of the
luced many of the
;, in particular, the

the characteristic

'X), = 0.
called the Killing

ctions w(X) on g

ire integral linear
nd the associated

is a root.

755

root tables in [5, II, pp. 30-311. Killing's work [5] was immediately recognized
as a breakthrough. However, it was also criticized, particularly by Lie [9, vol.
3, pp. 768-771], for serious gaps and inaccuracies. E. Cartan set himself the
problem of giving genuine proofs of the results stated by Killing. Apart from
pointing out many errors in detail, Cartan found the following gaps in
Killing's papers particularly significant: (a) In [5, II] Killing makes the
explicit assumption that the nonzero roots of (12) are simple. While this is
correct, his justification in [5, III] of this assumption was incorrect. (b) A
proof that at most one g can correspond to a given matrix (a.) was lacking.
Cartan showed, case-by-case, that this is so; an a priori proof was given much
later by van der Waerden [13].

The actual existence of the exceptional Lie algebras is another major
weakness of Killing's work. He indicates in [5, II, § 18] how the structural
constants C can be determined from his root tables. Then the Jacobi
identity (7) has to be verified; Killing does this for G2, but for the others his
indications [5, II, p. 48] seem unconvincing.

In his thesis [lb], E. Cartan gave a complete proof of the classification
results stated by Killing; in outline his method follows Killing's program. He
determined the matrices (aj), the roots w(X) and a basis for each of the
exceptional Lie algebras with respect to which the structural constants have a
simple and symmetric form [lb, §§18-20] whereby the Jacobi identity (7) is
(presumably) simple to verify.4 But he was also interested in realizing the
exceptional Lie groups by transformations, like e.g. the classical algebra C is
the Lie algebra of the linear group leaving invariant the Pfaffian form

xldy - ydx l + · · · + xdy - ydx,.

Killing had been led to expect that G2 could be realized as a transformation
group in R5, but not in a lower-dimensional space. Engel and Cartan showed
that it can be realized as the stability group of the system

dx3 + xdx 2 - x2dx = 0,

dx4 + x 3dx - Xldx 3 = 0,

dx5 + x 2dx 3 - x 3dx 2 = 0,

in R5 (Engel [3a], Cartan [lb, p. 281], Lie and Engel [9, vol. 3, p. 764]).
Cartan represented F4 similarly by the Pfaffian system in R'5 given by

(14)for the matrix (ai)
II, § 15]). Thus he
Lie algebras

> 3)

ks and dimension,

4

dz = E yidx,,
l

dx = xidx -xdx i + YhdYk- Ykdyh,

where z, xi, y, x = - xji (i = j, i,j = 1, 2, 3, 4) are coordinates in R 5 and in
(14) i,j, h, k is an even permutation [la, p. 418]. Similar results for E6 in R'6 ,
E7 in R27 and E8 in R29 as contact transformations are indicated in [la].
Unfortunately, detailed proofs of these remarkable representations of the
exceptional groups do not seem to be available.

6,, E, E8, respec-
= D3, but did not
:nmediate from his

4 In [15], Witt gives an explicit geometric construction of the 5 exceptional Lie algebras and
proves a priori that to each Cartan matrix (ao) corresponds a simple Lie algebra (provided this is
so for < 4). Chevalley [2] indicates a general algebraic proof (without this proviso); see also
Harish-Chandra [41.
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2. Invariant differential operators. In our days when Lie group theory has
been so highly developed, it is reasonable to reverse the viewpoint in Lie's
problem in §1, that is, consider the group as the given object and investigate
differential operators invariant under a given group.
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D'= D.
This is a very natural condition on a differential operator and examples

abound; the polynomials P(L) in the Laplacian L on R" (or on any two-point
homogeneous space) are precisely the differential operators invariant under
all isometries; similarly the wave operator on R4 (or on an isotropic Lorentz
space) is characterized by its invariance under the Poincar& group (respec-
tively, its isometry group), cf. [10a].

We shall now discuss differential operators on a manifold invariant under a
transitive Lie group of diffeomorphisms. To be specific, let G be a Lie group,
K C G a closed subgroup, G/K the manifold of left cosets gK (g E G) and
D(G/K) the algebra of differential operators on G/K invariant under all the
transformations r(g): xK- gxK of G/K onto itself. We write D(G) for
D(G/e), the algebra of left invariant differential operators on G. Let q and f,
respectively, denote the Lie algebras of G and K, let U(() denote the
universal enveloping algebra of and U(Q)r the centralizer of f in U(q). As
noted by Schwartz and proved in [8a, p. l l 1] we have the canonical
isomorphism

(2) D(G) U(q).
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(3)

expressing the algebra of invariant differential operators in Lie algebra terms.
Of the many problems one can contemplate for these operators we will

discuss the following.

A. Solvability. Given D E D(G/K), is the differential equation Du = f. for
f E C°(G/K) arbitrary, globally solvable (respectively, locally solvable)? If
so we say that D is globally solvable (respectively, locally solvable).

For the simplest case G = R", K = (0), the operators in D(G/K) are those
of constant coefficients and the global solvability is well known (Ehrenpreis
and Malgrange).

B. Joint eigenfunctions. Determine the functions on G/K which are eigen-
functions of each D E D(G/K). Similar problems for joint eigen-
distributions.

C. Eigenspace representations. Let 4: D(G/K)-C be a homomorphism
and let E, denote the corresponding joint eigenspace, i.e.,

E, = {f E C (G/K)lDJ = pt(D)f for all D E D(G/K)}
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and let T, denote the natural representation of G on this eigenspace, i.e.,

(T,(g)f)(xK) = f(g-l'xK) forg, x E G,
f E E,. For which is this "eigenspace representation" T, irreducible and
what representations of G are so obtained?

D. Extensions to vector bundles. In the following sections we survey various
results concerning A, B, and C for certain important classes of homogeneous
spaces (symmetric spaces and their duals). First we explain how invariance
condition (1) can be generalized in a natural way to a smooth vector bundle
E over a manifold X (cf. Bott [1]). If p: E--> X is the projection map, a
smooth section is a C ® map s: X ---> E such that p(s(x)) = x for all x E X.
The smooth sections form a vector space r(E). Let D be a differential
operator on E, that is, a linear operator from (E) to (E) which via
arbitrary local trivializations of E is expressed by means of ordinary partial
differential operators with linear transformations of the fibers E as
coefficients (cf. [29, p. 66]). Let ): E -- E be a diffeomorphism commuting
with p such that for each x E X the restriction map E - E(, is a vector
space isomorphism. Then 4) acts on (E); if s E (E) the map s given by

s (x) = (s( `x)) (x E X)
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D": s (Ds ') , s E r(E).

Again we call D invariant under q) if DO = D. For the trivial bundle E =
X x R sections become functions, and this invariance notion reduces to (1).

As an example let X = R4, and G the universal covering group of the
Lorentz group G, and vr the natural mapping of G onto G; G acts on R4 as the
Lorentz group and G acts on R4 via the spinor respresentation. Each g E G
acts on the trivial bundle E = R4 x R4 by

g- (x,y)= (=(g) xg-y)
and the Dirac operator is invariant under this action.

Now suppose X = G/K and 6 a representation of K on a finite-dimen-
sional vector space V. Let E = G x K V denote the product G x V modulo
the equivalence relation (gk, v) (g, 8(k)v) for g E G, k E K, v E V. If
[g, v] denotes the equivalence class of the element (g, v) E G x V, then the
mapping p: [g, v] - gK turns E into a vector bundle over X = G/K. The
group G acts on E via the map g [g, v] = [gog, v] and this action
commutes with p. If for a section s E r(E) we put

5 (g) = g-'.s(gK),
then the mapping s -- is a bijection of (E) onto the set of smooth
V-valued functions f on G satisfying f(gk) = 6(k-')(f(g)). Let D(G)
denote the set of left invariant differential operators on G with coefficients in
Hom(V, V) and let DV(G)r denote the centralizer of the set {T + (T)IT E
tf in D(G). Assuming K compact and connected we have, in analogy with
(3), that the mapping which sends D E D v(G)r to the differential operator
/L(D) given by
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f(g)). Let Dv(G)
with coefficients in /

It {T + 6(T)!T E
,e, in analogy with
ifferential operator

(,(D)s) = DS, s E r(E),

is a homomorphism of DV(G)t onto the algebra Da (G/K) of G-invariant
differential operators on E.

Problems A, B, and C are meaningful for the invariant differential opera-
tors on E; problem C is particularly interesting for the algebra D 8 (G/K) and
for subalgebras of it. As will be explained later it seems that the known
irreducible representations of semisimple Lie groups and of nilpotent Lie
groups can thus be realized as eigenspace representations.

For a manifold X we shall use Schwartz's notation 'l (X) and (X) for the
spaces C(X) and C(X), respectively, with their customary topologies.
Their strong duals i'(X) and w,'(X) then consist of the distributions on X
and the distributions of compact support, respectively.

3. Solvability. For the solvability question A we consider first one of the
best known class of coset spaces, the symmetric spaces X = G/K of the
noncompact type (G a connected semisimple Lie group with finite center, K a
maximal compact subgroup). Here we have for each D E D(G/K) the global
solvability

(1) ~~Dc ' (X) = C°° (X)

as was proved in [10e] using the Fourier transform on X. We recall the
original definition of the Fourier transform on X from [10c] since we shall
state some new results for it below. The Fourier transform of a function F(y)
on R" can be written

(2) F(qo) = F(y)eiy ' ) dy
tt

where > 0, Jo = 1 and (y, ) is the usual inner product. Geometrically,
(y, o) is the (signed) distance from the origin to the hyperplane through y
perpendicular to o. It turns out to have an analogue for the symmetric space
X = G/K. To define it let G = KAN be an Iwasawa decomposition of the
group G; here A is an abelian subgroup and N a nilpotent subgroup. (In the
case G = SL(n, R), K = SO(n) the group A is the group of positive diagonal
matrices with determinant 1, N the set of supertriangular matrices with
diagonal 1; here the decomposition amounts to the usual Gram-Schmidt
orthonormalization process.) Let M denote the centralizer of A in K and B
the coset space K/M.

A horocycle in X is an orbit in X of a group of the form gNg- '. The group
G permutes the horocycles transitively. More precisely let o = {K) (the
origin in X) let 0 denote the horocycle N o. Then each horocycle can be
written 5 = ka. , where kM is unique in B (called the normal to the
horocycle), and a E A is unique (called the complex distance from o to 5).
This representation of is obvious in the case of the Poincar6 disk where the
horocycles are the circles tangential to the unit circle. Given x E X, b E B
there is a unique horocycle through x with normal b; let a(x, b) denote its
complex distance from o and let A (x, b) be the element in the Lie algebra a
of A satisfying exp A (x, b) = a(x, b). This vector-valued function A (x, b) on
X x B is the desired analog of the scalar product (y, w) for R" x S"-'.
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The space X has a certain canonical Riemannian metric and we let dx
denote the volume element on X with respect to this metric. Let a* denote the
dual of the vector space a.

Given a function f(x) on X we define its Fourier transform in analogy with
(2) by

f (X, b) = fxf()e-i+p)(A(xb)) ad (A E a*, b E B).

symmetrization
universal envelol
of the space of I
Since U (g)= (U(
have a mapping
nU(g). As in Kc
matrix

Here p is a certain fixed element of a*: 2p(H) is the Jacobian of the
automorphism n .- exp(H)n exp(- H) of N. It turns out that the transform
(3) is one-to-one on 6D (X). There is an inversion formula of the same type as
well as a Plancherel formula relating the L2 norms of f and f. But for the
proof of (1) the important result to have is a theorem of Paley-Wiener type,
that is, an intrinsic characterization of the space 6D(X)-. To describe it let W
denote the Weyl group of a, that is, the (finite) group of linear trans-
formations of a induced by those elements of K which normalize a. Then we
have the following result [10e].

THEOREM 3.1. The space 6 (X) ~ of Fourier transforms consists of the smooth
functions f(A, b) on a* X B satisfying:

(i) X --, (X, b) extends to an entire function of exponential type on the
complexification a*, the exponential type being uniform in b E B.

(ii) For each s E W and each x E a*,

Ie(is+ p)A (xb))(s, b) db (' A + p)(A (xb))(X b) db

where db is a K-invariant measure on B.

The application of the Fourier transform (3) to prove () is based on the
fact that the kernel in (3) is an eigenfunction of D, i.e.,

(4) Dx (e(iX+P)(A(xb))) = pD (X)e(iA+p)(A(x.b))

where the eigenvalue is a polynomial PD(X), independent of b. After proving
first local solvability of D and using functional analysis tools familiar from
the constant coefficient theory, (1) is reduced to proving the implication,

(5) f E 6i)(X), supp(Df) c V > supp(f) C V

tor any closed ball V in X, supp denoting support. But using Theorem 3.1,
statement (5) is translated into the following known property for holomorphic
functions. If F is an entire function of exponential type, P # 0 a polynomial
and PF of exponential type < R, then F is of exponential type R.

In order to have an analog of (1) for distributions it would be sufficient to
have a topological version of Theorem 3.1. We will now describe a special
result of this type. For this let 6 be an irreducible unitary representation of K
on a vector space V, of dimension d(8), and let 6' denote the contragredient
representation. Let V denote the set of vectors v E V fixed under (M)
and 1(8) = dim V. We assume 1(8) > 0. Let p be the orthogonal comple-
ment of f in g with respect to the Killing form and p, f and ,: their
respective complexifications. Let H be the set of K-harmonic polynomials in
the symmetric algebra S(p¢) and put H* = A(H), where is the canonical

The space 9C(a*;
topology with res
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9(a*, V) of ho
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with the relative
ing of those func
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f (;
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insists of the smooth

zential type on the
B.

\, b) db,

(1) is based on the

symmetrization map of the symmetric algebra over q, onto the complex
universal enveloping algebra U(q). Let (vi) be a basis of V8M and (ej) a basis

of the space of linear maps of V8 into H* commuting with the action of K.

Since U (g)= (U(g) f + n U ( )) U(a) (where n is the Lie algebra of N) we
have a mapping u -* qu of U(q) into U(a) given by u - qu E U(q)f +

n U(g). As in Kostant [22a] we consider for A E a* the complex 1(6) x 1(8)
matrix

Q() = [q5i)(p - A)]1 < jca )

The space C(a*) of entire functions of exponential type on a* has a natural
topology with respect to which the Euclidean Fourier transform

F(a) - F*(X) F(a)ei(loga) da

is a homeomorphism of Li(A) onto 'X(a*) [6b]. The same holds for the space

'.(a*, V) of holomorphic functions of exponential type with values in a

finite-dimensional vector space V. Consider now the subspace

(6) X8o(a*) = (F E (a*, Hom(V,, V6 ))l(Q' )-'F W-invariant}

with the relative topology, and the closed subspace )l'8 .(X) C -'(X) consist-
ing of those functions in 6D(X) which are K-finite of type 8'. Finally let X.46

denote the generalized sphericalfunction

(Ia 6(x ) A e i"' p)(A (x,kM)) (k) dk.

Then we have the following refinement of Theorem 3.1 (cf. [10g]).

THEOREM 3.2. The mapping f- jf where

of b. After proving
tools familiar from
the implication,

CV
using Theorem 3.1,
;rty for holomorphic
P # 0 a polynomial
type < R.

ould be sufficient to
v describe a special
representation of K

e the contragredient

6 fixed under 6(M)
orthogonal comple-

PC, tf and ¢ their
Lonic polynomials in
e A is the canonical

i (A) =d( )f f(x),( 6(x)* dx (* - adjoint)

is a homeomorphism of tD8.(X) onto X'. (a*).

In addition to Theorem 3.1, the proof uses the relationship of Q6(X) to the

intertwining operators for the principal series found by Johnson and Wallach

[17]. From Theorem 3.2 we have immediately the following consequence.

COROLLARY 3.3. Let D # 0 in D(G/K) and let "id(X) denote the space of
K-finite distributions on X. Then

(7) DO'~6 (X) = IO'(X).

For the space & '(X) the analog to (7), of course, fails; as a consequence of
Theorem 3.1 the range D E' consists of those distributions T E b '(X) whose
Fourier transform T(A, b) is divisible by the polynomial PD(X) in (4) (cf. [Oe.

§8]).
Next let us consider the solvability question for a Lie group L viewed as a

homogeneous space under left translations. The operator a/ax + i alay +
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ix a/az on R3 is a left invariant differential operator on the Heisenberg group

I x z
0 1 y , x,y,z ER,

yet it is essentially the same as H. Levy's operator which he proved was not
locally solvable (cf. [3]). Thus the operators in D(L) are not, in general,
locally solvable.

The contrast between this negative result for L and the positive results for
the symmetric space G/K disappears when we view L as a symmetric space.
A coset space B/ C (B a Lie group, C a closed subgroup) is called a symmetric
coset space if there exists an involutive automorphism a of B with fixed point
set C. The spaces G/K considered above have this property. Now we
consider L as a homogeneous space under left and right translations simulta-
neously, i.e., we let the product group L x L act on L by

(gl, g2 ): g - ggg2g, g E L.
The subgroup leaving e fixed is the diagonal L* L so we have the coset
space representation

(8) L = (L x L)/L*.
Then the algebra D(L x L/L*) is canonically isomorphic to the algebra
Z(L) of bi-invariant differential operators on L, and the natural problem
becomes: Given D E Z(L), is it globally (respectively, locally) solvable? In
[5], Duflo and Rais proved

THEOREM 3.4. Let L be a solvable Lie group. Then each bi-invariant
differential operator D vL 0 is locally solvable.

This had been proved in Rais [31] for the special case of a nilpotent Lie
group. Their proof is based on a detailed description of the operators
D E Z(L) by means of harmonic analysis on L, whereby a local fundamental
solution can be constructed, giving local solvability. An entirely different
proof was given recently by F. Rouvi&re [33]. He proves that given D E Z(L)
there exists a bi-invariant differential operator E # 0 on the derived group L'
such that for L2 norms on L,

(9) IIEull < IDull

for u E C°(L) of sufficiently small support. On the other hand Hormander
showed [15, p. 157] that local solvability of E on L' implies certain sup norm
inequalities which, using the invariance of E, Rouviere converts into norm
inequalities,

(I0) Lu(x)v(x) dx < C11kI'EvII.

Here dx is a right invariant Haar measure, Ca constant, 'E the transpose of
E, 11 Ilk a Sobolev-type norm (involving L2 norm of derivatives up to the kth
order) and u and v have sufficiently small support. On the other hand it is
well known (cf. [15, p. 178] or [38, p. 142]) that (10) implies local solvability of
E on L'. Now (9) and (10) imply by elementary estimates that (10) holds for
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Heisenberg group

ie proved
e not, in

the operator D on L. Thus local solvability of E implies that of D so the
theorem follows by induction. 5

THEOREM 3.5. Let L be a semisimple Lie group. Then each bi-invariant

differential operator D # 0 is locally solvable.
was not
general,

positive results for
l symmetric space.
called a symmetric 
B with fixed point
iroperty. Now we
anslations simulta-

we have the coset

This is proved in [10e] using Lemma 24 in [8a] which relates explicitly the
action of D on invariant distributions with the action of a constant coefficient
operator on the Lie algebra, together with a result of [31] that all invariance
properties of a constant coefficient operator are preserved in a suitable
fundamental solution.

Global solvability does not, in general, hold in Theorem 3.5, as shown by
the following interesting example due to Cerezo and Rouviere [3]. Let G and
K be as above and assume that g has a complex structure J; then g = f + Jf.
Let (T.) be a basis of f, orthonormal with respect to the negative of the
Killing form on g. Then the operator o = 2i(JTi)Ti lies in Z(G) but anni-
hilates all functions on G which are right invariant under K, hence is not
globally solvable.

Nevertheless we have the global solvability

QC (G) = C'(G)

hic to the algebra
e natural problem
.cally) solvable? In

each bi-invariani

of a nilpotent Lie
of the operators

.local fundamental
i entirely different
at given D E Z(L)
ie derived group L'

r hand Hbrmander
-s certain sup norm
converts into norm

for the Casimir operator 2 on any connected noncompact semisimple Lie
group G. This was proved in [3] for complex G using harmonic analysis on G.
For general semisimple G, (11) was proved by Rauch and Wigner [32]. The
main ingredient in their proof is the verification that no null bicharacteristics
of f2 lie over a compact subset of G. They also prove that f2 is injective on
C (G) and has a property similar to (4). Some general results of that nature
have been proved by K. Johnson [16].

Since a general Lie group L decomposes into a semisimple Lie group and a
solvable Lie group (strict semidirect product if the big group is simply
connected) one could hope for a joint generalization of Theorems 3.4 and 3.5
to all Lie groups.6 But taking (1) into account as well as the representation (8)
of L as a symmetric coset space, we are led to an even more general question:

Let B/C be a symmetric coset space and D a B-invariant differential
operator on it. Is D necessarily locally solvable?

4. Joint eigenfunctions. We shall now give a survey of relatively recent work
towards determining the joint eigenfunctions of the operators in D(G/K).
First we consider the case when G/K is a symmetric space X of the
noncompact type. The joint eigenfunctions can be characterized (cf. [10b, p.
439]) by the functional equation

(1)

'E the transpose of
atives up to the kth
the other hand it is
s local solvability of
3 that (10) holds for

,(o) f(gk x) dk= (g o)f (k x) dk,

5 After this was written I received a preprint [4] from M. Duflo establishing this local

solvability in general. His proof combines new algebraic results about Z(L) with the method of

Theorem 3.4.

6 ADDED IN PROOF. In a recent preprint [42], Wigner proves global solvability for a simply
connected nilpotent Lie group.

(11)
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g E G, x E G/K. By (4) in §3 the
eigenfunctions and the inversion
suggests them as building block
Chandra's integral formula

(2) 4 (x) ef"A

for the K-invariant eigenfunctions (
type of the integral representations
In Furstenberg [7b] and Karpelevi:

THEOREM 4.1. The functions

(3) x -> ef(A (xb

functions x - e(A(x,b)) (v E a*) are joint
formula for the Fourier transform (3)
s for all joint eigenfunctions. Harish-

(x,b)) db (v E a*)

on X (the spherical functions) is the proto-
one might expect for the solutions of (1).
[18] the following result is proved.

For the proc
similar method
[27a, b, c]).

The K-finite
follows, genera

THEOREM 4.

D(G/K) are pi

(5)

where E a* c
invariant differnX X,

where v E a* and AL a positive measure on B constitute all the positive joint
eigenfunctions of D(G/K).

Furstenberg's proof is purely measure-theoretic. It consists of proving,
using methods of Choquet and Deny, that the convex cone of positive
solutions to (1) is generated by the extremal rays, which then are related to
the integrand in (3). Karpelevi's method goes further and he gives an integral
representation of the positive eigenfunctions of the Laplace-Beltrami operator
L on G/K. A fundamental solution for the operator L-const is constructed
rather explicitly via the heat equation on G/K and the minimal solutions are
constructed from the fundamental solution by means of the method of
Martin [26]. Since any positive eigenfunction is a measure-theoretic super-
position of minimal eigenfunctions, the integral representation for positive
eigengenfunctions of L follows; formula (3) is a simple corollary.

The problem of determining all joint eigenfunctions was raised in [10d, p.
139] and it was proved for the hyperbolic disk that analytic functionals (alias
hyperfunctions) on the boundary are what is needed to give (by superposition)
all the eigenfunctions of L.

The proof i:
functions (The
Theorem 4.4 in

where T is a
conjecture, sug
analytic functi
cooperation o1

Tanaka (cf. [19

THEOREM 4.5

(6)

for all restricte
homomorphism
functions

THEOREM 4.2. The eigenfunctions of the Laplace-Beltrami operator on the
hyperbolic space X are precisely the functions

(4)

where v E a* and T an analytic functional on B.

The method amounts to first determining the K-finite eigenfunctions of L
in terms of hypergeometric functions, and then showing, using asymptotic
properties of the hypergeometric functions, that the convergence of the
expansion of an arbitrary eigenfunction on X into K-finite ones implies
convergence of the boundary values in the sense of analytic functionals. This
method gives the following partial solution for X of rank one.

THEOREM 4.3. Let X be symmetric of rank one. The functions (4) for real
(i.e., v E a*) constitute all the eigenfunctions of L with eigenvalue - (p, p>.

(7)
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)) (v E a*) are joint
irier transform (3)
functions. Harish-

ctions) is the proto-
the solutions of (1).
lt is proved.

For the proof see [10f]. Intermediary results extending Theorem 4.2, using a
similar method, were given by Hashizume, Minemura and Okamoto (cf. [9b],
[27a, b, c]).

The K-finite joint eigenfunctions of D(G/K) are determined in [10d, g] as
follows, generalizing (2).

THEOREM 4.4. Let G/K be arbitrary. The K-finite joint eigenfunctions of
D(G/ K) are precisely the functions

(5) ((x) e(A(xb))F(b) db

ill the positive joint

:onsists of proving,
'x cone of positive
then are related to
he gives an integral

:e-Beltrami operator
const is constructed
iinimal solutions are
of the method of

ure-theoretic super-
ntation for positive
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ami operator on the

eigenfunctions of L
g, using. asymptotic
:onvergence of the
-finite ones implies
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ictions (4) for real
'envalue > -(p, p.

where E a* and F is a K-finite function on B. Moreover, there exists a right
invariant differential operator D on G such that

4,(gK) = Dg(,(gK)), g E G.

The proof is primarily based on the Paley-Wiener theorem for K-finite
functions (Theorem 3.2). As pointed out in [10d, p. 138] for X of rank one,
Theorem 4.4 implies that each joint eigenfunction of D(G/ K) has the form

f(x) = f;e'(A(x'b)) dT(b),

where T is a "functional" on B (possibly depending on and f). The
conjecture, suggested by Theorems 4.2-4.3, that these functionals are just the
analytic functionals (hyperfunctions) on B was taken up in a remarkable
cooperation of Kashiwara, Kowata, Minemura, Okamoto, Oshima, and
Tanaka (cf. [19]), and they proved the following general result.

THEOREM 4.5. Assume X E a* satisfies7

(6) 2(iX, a>/(a, a> £ Z

for all restricted roots a of g with respect to a and let it: D(G/K) -o C be the
homomorphism given by Iu(D)= PD(X) in the notation of (4), §3. Then the
functions

(7)

where T is a hyperfunction on B constitute all the elements in the joint
eigenspace E,.

The proof uses many results from the extensive theory of hyperfunctions
while Theorem 4.3 only requires a characterization of their spherical harmon-
ics expansion.

It is of interest to observe that if X has rank 1 and if condition (6) fails, the
condition of Theorem 4.3 is satisfied, so we have

THEOREM 4.6. If X has rank one the functions (7) constitute all the eigenfunc-
tions of the Laplacian on X.

In his paper [24], J. Lewis investigates the functions (7) as T runs through
the space '(B) of distributions on B, and proves the following result.

7 ADDED IN PROOF. In a recent communication Minemura and Oshima avoid this restriction.

765

f () = e(A~p)(A(~b)) dT(),



SIGURDUR HELGASON

THEOREM 4.7. If T E ,t'(B) then the function f(x) in (7) grows no faster
than ecd(x) (C = constant, d distance). The converse holds for X of rank one
provided (6) is satisfied.

In the case when G/K is a Hermitian symmetric space there are integral
representations of the type (3) (with B replaced by the Bergman-Silov
boundary) for bounded holomorphic functions [13], [25], [7a], [28], and for
solutions of a certain overdetermined system [21].

We can also consider the case when G/K = R" (n > 1) and G the group of
all isometries. Here D(G/K) is generated by the Laplacian L; from general
results of Ehrenpreis [6a] we have that the solutions to Lu = -X 2u (X E C)
are given by

u(x)= f ei(x dtl( )

where y is a measure with support on ({ G C"nl2 + · · · + = A2 ) satisfy-
ing

l e-(x m>( + 1T)N d( ) < 

for all N and all x E R"; here, however, is not unique. One can also prove
(forX :A 0) an integral formula

u(x) = f, eAi(x,) dT(w)

for the solutions to Lu = -X 2u in analogy with (4) (cf. [9a], [10f]), but then T
is more general than an analytic functional: for n = 2 the T are the continu-
ous linear functionals on the space of analytic functions on S' which extend
to holomorphic functions f on C - (0) such that f(z) and f(z - ) have
exponential type at z = oo (cf. [10f]).

Next we consider the case of a simply connected symmetric space U/ K of
the compact type. We assume U/K dual to the noncompact space G/K in
Theorem 4.4, that is, G is a subgroup of the simply connected complexifica-
tion Gc, whose Lie algebra qc is the complexification of . as well as of the Lie
algebra u of U. We also take U to be the analytic subgroup of G, with Lie
algebra u; then U and U/K are both simply connected.

Let A(g) = A(gK, eM) (g E G) so g = n exp A(g)k with n E N, k E K.
The mapping A: G--->a can be extended to a holomorphic mapping A:
G,: -- ac of a neighborhood G,° of the identity in Gc into the complexification
ac of a as follows (Stanton [36], Sherman [35b]). For the complexified
Iwasawa decomposition qa = n + a% + t¢ the mapping

(X, H, T)---> exp X exp H exp T

is a holomorphic diffeomorphism of a neighborhood of (0, 0, 0) in n x a x
Ct onto a neighborhood GC° of e in G.. The mapping

exp X exp H exp T - H

is then the desired holomorpnic map A: G --n. Taking with the
customary Hilbert space inner product (X, Y) - - B(X, Y), where T is the
conjugation of a, with respect to u, we may take G as the diffeomorphic
image (under exp) of an open ball Bo c .K with center 0. Let
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continuation) gi'

where L is the h

A. More general

THEOREM 4.8.

f(u]

where dkM = db
for all restricted
f extends unique
of D( U/K).

Next we consi
space -= G/Ai
G/K, and has n
G-invariant diffe

(Dpip)( gA

(8) 

where P E S(a,
D(G/MN) [10{
coefficient ques
following answe

PROPOSITION 

(9) I( )=
fA

where X E a t
dent of S.

Let LDOi() di

interest are the
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contrast to the
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Theorems 4. 10,
these distributic
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(7) grows no faster
Is for X of rank one

:e there are integral
the Bergman-Silov
, [7a], [28], and for

and G the group of
an L; from general
lu = -X 2 u (X E C)

+ 52 = N2) satisfy-

One can also prove

l], [10f]), but then T
T are the continu-

on S' which extend
) and f(z-) have

,etric space U/K of
pact space G/K in
ected complexifica-
as well as of the Lie
*oup of Gc with Lie

aith n E N, k E K.
)rphic mapping A:
he complexification
r the complexified

0, 0) in n X (IC X

aking qc with the
TY), where r is the

s the diffeomorphic
-et

U0 = exp(B 0 Lt).

It is clear that for each v E ac* the function u - e(A(u)) on U0 is
function of each D E D(U/K); moreover, as noted in Stanton
Sherman [35a, b], the spherical functions on U/ K are (by
continuation) given by the analog of Harish-Chandra's formula (2),

(uK) = Ke - t(A(kuk-' )) dk,

an eigen-
[36] and
analytic

namely

u E Uo,

where is the highest weight of the spherical representation associated with
0. More generally we have (cf. [10h])

THEOREM 4.8. Each joint eigenfunction of D( U/K) has the form

f(uK) f e-t(A(k-'uk))F(kM) dkm (u E U )
K/M

where dkM = db, F E C'(K/M) and Ft E a* satisfies <(i, a)>/a, a> E Z+

for all restricted roots a > O. Conversely, if i satisfies this condition the function
f extends uniquely to an analytic function on U/ K which is a joint eigenfunction
of D(U/K).

Next we consider for a symmetric space G/K of the noncompact type the
space = G/MN (§3), which is identified with the space of horocycles in
G/K, and has many properties analogous to those of G/K. In particular, the
G-invariant differential operators on .7 are all of the form

(Dp)( gMN)

(8) =(·t a ,· · · _ )0(gexp(tlH + ... + tH,)MN)}

where P E S (a) and the mapping P -, Dp is an isomorphism of S (c) onto
D(G/MN) [Od]. Thus the solvability questions of §3 reduce to constant
coefficient questions. Noting that G/MN = (K/M) x A we find easily the
following answer to Problem B, §2.

PROPOSITION 4.9. The joint eigendistributions of D(G/ MN) are given by

(9) q'( ) = K/ f(k aM N ) e ( ' +p)(°ga) da dS (kM) ( E ~(.))
/M

where X E a* and S E 'D'(B). The eigenvalues are polynomials in A, indepen-
dent of S.

Let 2A)T(-) denote the space of the distributions T' in (9). Of particular
interest are the analogs of the spherical functions on G/K, namely the
MN-invariant distributions +' in (9), the so-called conical distributions. In
contrast to the situation for spherical functions it was natural to conjecture
that the set of conical distributions in "' would be parametrized by W.
Theorems 4.10, 4.12 give a partial confirmation of this. In order to determine
these distributions we decompose according to the Bruhat decomposition
of G. For each s E W fix m, E K such that Ad(m)lIa = s. Then if 5s =
m,MN, -S = MNA * ,, we have = Usw-, (disjoint union). If E Es we
write a(() for the (unique) A factor in = mna(5) a. Let + (respectively
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E-) denote the set of positive (negative) roots of g with respect to a, 1+ (Z )

the corresponding sets of reduced roots. If

(10) Re<(i, a) > 0 for a E E+ ns-',

then the function ~ e (isA+spXloga(U) on -, viewed as a distribution on _, is a
conical distribution I', E 6DA. Moreover, if r is the Gamma function and we
put a0 = a/<a, a>, the mapping

AX -\,t = ( 'I
a So ns- r2-

(iA, a 0>))-I
r'((ix, a>)) I'

extends to a holomorphic function on a* with values in ,''(i) and each A,,s

is a conical distribution in %@(-) [10d, p. 88]. Let

r(A)= II (A, a>
a E:

and let e(A)' denote the denominator in Harish-Chandra's c-function,

(11) e(X)-'= I r( (m + I + Kiao>))I (m + m,, + iX, ao>)).

ma and m2 denoting the respective multiplicities. Then we have, by [10d, p.
96] and [10g, Theorem 6.1],

THEOREM 4.10. Let X E a* and assume

(12) i7(X)e(X) #- 0.

Then the linear combinations E ewc,'I', c, E C, constitute all the conical
distributions in G6D (7).

Of the orbits ', above, exactly one, say -,, is an open subset of -, the
others have lower dimension. For the corresponding distribution 'I,.. we
have

THEOREM 4.1 1. The distribution 'a.,* is given by a locally integrable function
on _ if and only if

Re((iX, a>) > 0 for a EE+ .

and by a C function on .' if and only if

iX - p, a0 > E Z+ for a E +.

For X of rank one, Hu [14a, b] managed to eliminate the discrete set of X
which violates condition (12). Since all 'I0., (s E W) are proportional, an
additional conical distribution to E 6Ld is needed. It is defined as follows.
The function eP(lga(e)) on the open dense subset -s is not locally integrable
on -, but the following regularization

(s) = (P() - 0o())eP(l ga( ) d,

where for E '(), %i is given by 0o(kaMN) = 0(aM), gives a well-
defined conical distribution in U,'. Defining conical distributions by means of
the full isometry group G of X instead of G (this makes a difference only for
G = SL(2, R)), Hu proved the following result.

THEOREM 4.12.

(co' 0 + c' Ie for

At the poles of
transversal derive
Theorem 4.12 see
that the dual Ra
joint eigenspaces
joint eigenhyperfi
Theorem 4.9 is o1
not necessarily a

5. Eigenspace r
results on the eig
spaces G/K (Pro
symmetric space
tains a spherical f
form

Here A E a* is ai
the representatior

PD is W-invarian
different tools the

THEOREM 5.1. 7

(1)

in the notation of(

For the non-Eui

the criterion (1) 
eigenvalue 4c(c -

Next we consic
all isometries. Foi

L being the Laph

THEOREM 5.2 []
only if A = O0.

For A = 0 the 
proper invariant
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espect to a, I (o)

istribution on -, is a
ima function and we

) )'() and each 't' s

i's c-function.

+ m2a + <(i, a0 >)).

we have, by [10d, p.

titute all the conical

pen subset of E, the
Distribution q'xs. we

!ly integrable function

the discrete set of A
are proportional, an
s defined as follows.
iot locally integrable

THEOREM 4.12. If X has rank one the linear combinations c',S, + C tA,,e

.(co'0 + C'"oe, for A = 0) constitute all the conical distributions in 'I (i).

At the poles of ',I, the residues are conical distributions which are certain
transversal derivatives of ,A,e. For an algebraic approach giving part of
Theorem 4.12 see Lepowsky [23]. In view of Theorems 4.5-4.6 and the fact
that the dual Radon transform maps joint eigenspaces of D(G/MN) into
joint eigenspaces of D(G/K) [10d, p. 93] it would be natural to consider the
joint eigenhyperfunctions of D(G/MN). While the necessary adjustment in
Theorem 4.9 is obvious, one might wonder whether a conical hyperfunction is
not necessarily a distribution?

5. Eigenspace representations. In this section we state without proof some
results on the eigenspace representations for certain classes of homogeneous
spaces G/K (Problem C in §2). Again we start with the case when G/K is a
symmetric space of the noncompact type. Since each joint eigenspace con-
tains a spherical function ((2), §4) it is clear that each joint eigenspace has the
form

xA(X) = {f E C (X)JDf = PD ()f forD E D(G/K)}.

Here A E a* is arbitrary and PD is the polynomial in (4), §3. Let T denote
the representation of G on h, (X) given by (T ( g)f)(x) = f(g-' x). Since

PoD is W-invariant we have G ,, = A,, T,, = T for all s E W. Using many
different tools the following result is proved in [10g].

THEOREM 5. 1. The eigenspace representation T is irreducible if and only if

(1) e(X)e(- A) # 0

in the notation of (11), §4.

For the non-Euclidean disk with the Riemannian metric

ds2 = (1 - X2 _ y2)-2(dx2 + dy2)

the criterion (1) gives the following: The eigenspace of the Laplacian L with
eigenvalue 4c(c - 1) is irreducible if and only if c is not an integer.

Next we consider the case when G/K = Rn (n > 1) and G is the group of
all isometries. For A E C let Ax (Rn) denote the eigenspace

E(Rn) = { fEC (Rn)Lf = -A 2f),

L being the Laplacian.

iMN), gives a well-
ibutions by means of
a difference only for

THEOREM 5.2 [10f]. The natural action of G on (R) is irreducible if and
only if X : O.

For A = 0 the harmonic polynomials of degree < k clearly form a closed,
proper invariant subspace. But for eigenvalue 0 the eigenspace of L is
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mapped into itself by a transformation of R" provided L is just quasi-in-
variant under 7, i.e., satisfies L' = 4L where p is a function (this amounts to
stability in Lie's sense (§1)). For example the conformal map

r: z -- (az + b)(cz + d)-l
of R2 U {oo} satisfies L' = Icz - al4 L. More generally, Orsted [40] shows
that if X is a conformal vector field on R' then the operator

THEOREM 5.6.

each homomorph
functions f on G/

Let x denote the
the irreducible fin

nl(X)f = Xf 2n (divX)f, f C° (R"), For the eigensl
following irreduc

THEOREM 5.7.

For simply co
tions have been
the Lie algebra
satisfying X([f, f]

subgroup corresy

THEOREM 5.8 [
all nonzero home
sentations of L ((

We finally inc
arises from eigi
G/MN and how
suitable vector bi

Let 6 be an iri
1rea denote the sl

and 7n8x the natu
the principal serie.

Extending t
consider the ass(
structure of D(G,
eigenspace represi

In conclusion
proved by Takah
[39], in general, ti
Casimir operator
G/K. It would
D 6 (G/K) on the
above.

Related realize
operator on cert;
[30] and Schmid [
G which make ui

and X -, r(X) is a representation of the Lie algebra X of conformal vector
fields on R on C (R"). By (3) the space ,0 (R") of harmonic functions is
71-invariant. We have then the following complement to Theorem 5.2 (cf.
[10h]).

THEOREM 5.3. The representation X -- 'q(X) of the conformal algebra on the
space of harmonic functions is scalar irreducible (that is, the only commuting
operators are the scalars).

For a coset space U/K of compact groups K and LU the irreducibility
question for the eigenspace representations is quite easy.

PROPOSITION 5.4. For compact Lie groups K c U the eigenspace representa-
tions for U/K are all irreducible under the action of U.

In fact, each joint eigenspace is finite dimensional and can be decomposed
into a direct sum of U-invariant subspaces. Each of these contains a spherical
function so the irreducibility follows from the fact that a spherical function
on U/K is completely determined by the eigenvalues of D( U/ K).

Next we consider the horocycle space G/MN associated with the noncom-
pact symmetric space G/K. The joint eigenspaces (of distributions) are the
spaces 6i,(.) (A E a*) defined in §4. Let Tr denote the representation of G on
ilD. A representation is called conical if there is a fixed vector under

'(MN); is called spherical if there is a fixed vector under (K). The
following result describes the finite-dimensional subrepresentations of T' (cf.
[10d, p. 144]).

THEOREM 5.5. Let OI,aG denote the space of G-finite vectors in "'i-. Then:
(i) D,G { (0}) X (iX - p, a0> E Z+ for a E + (ao = a/<a, a>).
(ii) The representation ox of G on O' G is finite dimensional and irreducible.
(iii) The representations are precisely the finite-dimensional irreducible

conical representations of G.
(iv) The representations ox are precisely the finite-dimensional irreducible

spherical representations of G.
(v) The lowest weight of ox has restriction to a given by - iX + p.

For the case when G is complex this can be stated in a somewhat sharper
form.

(2)

satisfies

(3) Lr (X)f- q (X)Lf= -(2/n)(div X)Lf
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L is just quasi-in-
)n (this amounts to
lp

THEOREM 5.6. Let G be complex semisimple and simply connected and for
each homomorphism X: D(G/N) C let x be the space of holomorphic
functions f on G/ N satisfying

Df = x(D)f for D E D(G/N).
Orsted [40] shows

tor
Let rx denote the representation of G on :k'x. As X varies, x runs through all
the irreducible finite-dimensional holomorphic representations of G.

For the eigenspace representation r of the real semisimple G on '9A(Y) the
following irreducibility criterion holds [22a, p. 631], [10g, §12]

THEOREM 5.7. Tr is irreducible if and only if e(A)e( - X) # 0.

)f conformal vector
rmonic functions is
o Theorem 5.2 (cf.

mal algebra T on the
the only commuting

U' the irreducibility

genspace representa-

can be decomposed
contains a spherical
a spherical function
,( U/ K).
:d with the noncom-
istributions) are the
Presentation of G on
fixed vector under
r under T(K). The
!sentations of T' (cf.

,rs in L'D. Then:
= a/<a, a>).
al and irreducible.
tensional irreducible

iensional irreducible

- iX + p.

a somewhat sharper

For simply connected nilpotent Lie groups L the eigenspace representa-
tions have been investigated by A. Hole [11]. For a linear function XA 0 on
the Lie algebra I of L, let f c I be a subalgebra of maximal dimension
satisfying X([f, fl) = 0 and put 1 = f n kernel(A). Let H c L be the analytic
subgroup corresponding to 1.

THEOREM 5.8 [11]. The eigenspace representations for L/H are irreducible for
all nonzero homomorphisms : D(L/H) - C. The unitary irreducible repre-
sentations of L (cf. [20]) can be realized in this way.

We finally indicate how the principal series of a semisimple Lie group G
arises from eigenspace representations on suitable vector bundles over
G/MN and how the discrete series arises from eigenspace representations on
suitable vector bundles over G/ K.

Let 6 be an irreducible unitary representation of M on V and X E a*. Let
Fre denote the space of C' functionsf: G - V satisfying

f ( gman)- S (m)- le(iA -p)(loga)f( g)

and %;,' the natural representation of G on FA. These representations form
the principal series for G.

Extending 8 to a representation of MN on V by 8 (mn)= 6(m), we
consider the associated vector bundle E over G/MN. It is clear from the
structure of D(G/ MN) ((8), §4), that the members of the principal series are the
eigenspace representations of D(G/ MN) on the section space F(E.).

In conclusion we recall that if G has a compact Cartan subgroup it was
proved by Takahashi [37] for the de Sitter group, by Hotta [12] and Wallach
[39], in general, that the discrete series of G can be realized on eigenspaces of the
Casimir operator on the space of square integrable sections of vector bundles over
G/K. It would be of interest to know the action of the bigger algebra
D 8 (G/K) on these sections as well as of the algebra D(G/MN) on F(ES)
above.

Related realizations of the discrete series on nullspaces of the Dirac
operator on certain vector bundles over G/K were given by Parthasarathy
[30] and Schmid [34]; this is extended by Wolf in [41] to the representations of
G which make up the Plancherel measure of G.
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