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In §2 we announce some results in continuation of [10], connected
with the Radon transform. §1 deals with tools which also apply to
more general questions and §§2-3 contain some applications to group
representations. A more detailed exposition of §2 appears in Pro-
ceedings of the U. S.-Japan Seminar in Differential Geometry, Kyoto,
June, 1965.

1. Radial components of differential operators. Let V be a mani-
fold, v a point in V and V, the tangent space to V atv. Let G be a Lie
transformation group of V. A C* function f on an open subset of V is
called locally invariant if Xf=0 for each vector field X on ¥ induced

by the action of G.
Suppose now W is a submanifold of V satisfying the following

transversality condition:
(T) Foreachw E W, Vy = Wy + (G-w)» (direct sum).
If fis a function on a subset of V its restriction to W will be denoted f.

LeEMMA 1.1. Let D be a differential operator on V. Then there exists a
unique differential operaior A(D) on W such that

(Df)~ = A(D)f
for each locally invariant f.

The operator A(D) is called the radial component of D. Many special
cases have been considered (see e.g. [1, §2], [4, §5], [5, 8§31, [7, §71,
[8, Chapter IV, §§3-5]).

Suppose now dv (resp. dw) is a positive measure on V (resp. W)
which on any coordinate neighborhood is a nonzero multiple of the
Lebesgue measure. Assume dg is a bi-invariant Haar measure on G.
Given # € C°(G X W) there exists [7, Theorem 1] a unique
fu€C (G- W) such that

Flgwyulg,w) dgio = [ FOLD) & (F € Co(G-W)).
exw v
Let ¢,&C2 (W) denote the function w— fu(g, w)dg.
1 Work supported in part by the National Science Foundation, NSF GP-2600.
757




758 S. HELGASON [September

THEOREM 1.2. Suppose G leaves dv invariant. Let T be a G-invariant
distribution on G-W. Then there exists a unique distribution T on W
such that

T(¢w) = T(fa), u € C2(G X W).
If D is a G-invariant diﬁ’erentidl operator on V then
(DT)~ = A(D)T.

The proof is partly suggested by the special case considered in [7,
§9]. See also [12, §4].

2. The Radon transform and conical distributions. Let G be a con-
nected semisimple Lie group, assumed imbedded in its simply con-
nected complexification. Let K be a maximal compact subgroup of
G and X the symmetric space G/K. Let G=KAN be an Iwasawa
decomposition of G (4 abelian, N nilpotent) and let M and M’, re-
spectively, denote the centralizer and normalizer of 4 in K. The space
& of all horocycles £ in X can be identified with G/MN [10, §3]. Let
D(X) and D(%) denote the algebras of G-invariant differential oper-
ators on X and JF, respectively; let S(4) denote the symmetric alge-
bra over the vector space 4 and I(4) the set of elements in S(4)
which are invariant under the Weyl group W= M’/ M. There are iso-
- morphisms T of D(X) onto I(4) [6, p. 260], [9, P. 432] and T of
D(E) onto S(4) [10, p. 676].

The Radon transform f—f (f€ C2 (X)) and its dual g—¢ (qSE C~(E))
are defined by

10 = [ 1@ime, i =[o0uo  wexicn

where dm is the measure on £ induced by the canonical Riemannian
structure of X, x is the set of horocycles passing through x and du is the
measure on ¥ invariant under the isotropy subgroup of G at x, satisfy-
ing u(x) =1. The easily proved relation

W [ b= [ joswe (e, s € coa)

dx and df being G-invariant measures on X and , respectively, sug-
gests immediately how to extend the integral transforms above to
distributions.

Let @ and ¥ be the Lie algebras of G and A4, respectively, and %*
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the dual space of . Let A—c(\) be the function on UA* giving the
Plancherel measure Ic()\)[“zd)\ for the K-invariant functions on X
(Harish-Chandra [6, p. 612]). Let j be the operator on rapidly de-
creasing functions on 4 which under the Fourier transform on A4
corresponds to multiplication by c~! Let p denote the sum (with
multiplicity) of the restricted roots on 2 which are positive in the
ordering given by N. Let e¢* denote the function on & defined by
e?(ka M N) =exp[p(log a) ] (kEK, aE A4). Viewing X as a fibre bundle
with base K/M, fibre A [10, p. 675] we define the operator A on
suitable functions ¢ on = by (ePAqS)‘ F= j((equ)l F), where l F denotes
restriction to any fibre F. Similarly, the complex conjugate of ¢!
determines an operator A. By means of the Plancherel formula men-
tioned one proves (cf. [11, §6]).

THEOREM 2.1. There exist constants c, ¢’ >0 such that

©) Jlselar= ¢ [ ] ajco e
® = caB)”
for all fEC (X).

If all Cartan subgroups of G are conjugate, the operators j and A
are differential operators (¢! is a polynomial). Considering jj is an
element in I(4) we put []=T"1(j7) €ED(X). Then (3) can be written
in the form

f=e¢0WNN, fe cx(X),

which is more convenient for applications [10, §7]. For the case when
G is complex a formula closely related to (3) was given by Gelfand-
Graev [2, §5.5].

Let xo and &, denote the origins in X and &, respectively. The space
B=K/M can be viewed as the set of Weyl chambers emanating from
xoin X. If E=ka-& (REK, aE A) we say that the Weyl chamber kM
is normal to £ and that a is the complex distance from x, to £. If xE X,
b&B let £(x, b) be the horocycle with normal b passing through «,
and let 4 (x, b) denote the complex distance from x, to £(x, b).

THEOREM 2.2. For f& C;°(X) define the Fourter transform f by

70,8 = [ f@ epl(—in + (4G DIz (€W 5 € B).

Then
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@ 1@ = [ 7008 exp Gr + ) (AGs, )] | o0 |t

Jlr@pa= [ 17000 o,

where db is a suitably normalized K-invariant measure on B.

" REMARKS. (i) In view of the analogy between horocycles in X and
hyperplanes in R formula (4) corresponds exactly to the Fourier in-
version formula in R* when written in polar coordinate form.

(ii) If f is a K-invariant function on X, Theorem 2.2 reduces to
Harish-Chandra’s Plancherel formula [6, p. 612]. Nevertheless,
Theorem 2.2 can be derived from Harish-Chandra’s formula.

(iii) A “plane wave” on X is by definition a function on X which is
constant on each member of a family of parallel horocycles. Writing
- (4) in the form

@) f@) = fB fuls) db

we get a continuous decomposition of f into plane waves. On the
other hand, if we write (4) in the form

@) 1) = fSI A oy |2 an

we obtain a decomposition of f into simultaneous eigenfunctions of
all DED(X).

We now define for 5 the analogs of the spherical functions on X.

DEFINITION. A distribution (resp. C* function) on E=G/MN is
called comical if it is (1) MN-invariant; (2) eigendistribution (resp.
eigenfunction) of each DED(E).

Let £o=MN, £*=m*MN, where m* is any element in M’ such
that the automorphism e—m*am*~! of 4 maps p into —p. By the
Bruhat lemma, & will consist of finitely many MNA-orbits; exactly
one, namely Z*=MNA-t* has maximum dimension and given
£EE* there exists a unique element a(¢) €4 such that EEMNa(§) - £*
[10, p. 673]. Using Theorem 1.2 we find:

THEOREM 2.3. Let T be a conical distribution on 5. Then there exists
aY & C*(E*) such that T =y on E* and a linear function u: Y—C such
that

(5) ¥(8) = ¥(&*) explu(log a(¥))] (HE =¥).
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In general ¢ is singular on the lower-dimensional M NA-orbits.
However, we have:

THEOREM 2.4. Let u: A—C be a linear funciion and let Y C C*(E*)
be defined by (5). Then ¢ is locally integrable on Z if and only if

(6) Re ({a,p +p)) >0 (Re = real part)

for each restricted root a>0; here (, ) denotes the inner product on A*
induced by the Killing form of &. If (6) is satisfied then ¥, as a dis-
tribution on =, is a conical distribution.

THEOREM 2.5. The conical functions on Z are precisely the functions
Y given by (5) where for each restricted root a>0,

(u, )

(7

is an integer =0.
(o, @

DEFINITION. A representation w of G on a vector space E will be
called (1) spherical if there exists a nonzero vector in E fixed by 7(K);
(2) conical if there exists a nonzero vector in E fixed by #(MN).

The correspondence between spherical functions on X and spheri-
cal representations is well known. In order to describe the analogous
situation for &, for an arbitrary function ¢ on &, let E4; denote the
vector space spanned by the G-translates of ¢ and let w4 denote the
natural representation of G on E,.

THEOREM 2.6. The mapping y—my maps the set of conical functions
on E onto the set of finite-dimensional, irreducible conical representa-
tions of G. The mapping is one-to-one if we identify proportional conical
functions and identify equivalent representations. Also

¥(g-40) = (mu(g™e, &),

where e and €', respectively, are contained in the highest weight spaces
of my and of its contragredient representation. Finally, u in (5) is the
highest weight of .

COROLLARY 2.7. Let w be a finite-dimensional irreducible representa-
tion of G. Then w is spherical if and only if it is conical.

The highest weights of these representations are therefore char-
acterized by (7). Compare Sugiura [13], where the highest weights
of the spherical representations are determined.

3. The case of a complex G. If G is complex, M is a torus and some
of the results of §2 can be improved. Let § be a Cartan subalgebra
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of ® containing ¥ and H the corresponding analytic subgroup of G.
Now we assume G simply connected.

Let D(G/N) denote the algebra of all G-invariant differential oper-
ators on G/N. Let vy, v*&G/N be constructed similarly as &, and £*
in §2. Then §1 applies to the submanifold W=H-v* of V=NH-»*
and for each differential operator D on G/N, A(D) is defined and can
be viewed as a differential operator on H.

THEOREM 3.1. The mapping D—A(D) is an isomorphism of D(G/N)
onto the (real) symmetric algebra S(D). In particular, D(G/N) is com-
mutative.

As a consequence one finds that the N-invariant eigenfunctions
fEC*(G/N) of all D&D(G/N) have a representation analogous to
(5) in terms of the characters of H. Let E; denote the vector space
spanned by the G-translates of f and let o be the natural representa-
tion of G on E;.

THEOREM 3.2. The mapping f—ns is a one-to-one mapping of the
set of N-invariant holomorphic eigenfunctions of all D& D(G/N) (pro-
portional f identified) onto the set of all finite-dimensional® irreducible
holomorphic representations of G (equivalent representations identified).
Moreover

f(g-vo) = (mr(g Ve, €),

where e and €', respectively, are contained in the highest weight spaces
of w; and of its contragredient representation.
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