RADON-FOURIER TRANSFORMS ON SYMMETRIC SPACES AND RELATED GROUP REPRESENTATIONS ${ }^{1}$

BY S. HELGASON

Communicated by G. D. Mostow, May 7, 1965
In §2 we announce some results in continuation of [10], connected with the Radon transform. $\S 1$ deals with tools which also apply to more general questions and $\S \S 2-3$ contain some applications to group representations. A more detailed exposition of $\S 2$ appears in Proceedings of the U. S.-Japan Seminar in Differential Geometry, Kyoto, June, 1965.

1. Radial components of differential operators. Let V be a manifold, v a point in V and V_{v} the tangent space to V at v. Let G be a Lie transformation group of V. A C^{∞} function f on an open subset of V is called locally invariant if $X f=0$ for each vector field X on V induced by the action of G.

Suppose now W is a submanifold of V satisfying the following transversality condition:

$$
\begin{equation*}
\text { For each } w \in W, V_{w}=W_{w}+(G \cdot w)_{w} \quad \text { (direct sum). } \tag{T}
\end{equation*}
$$

If f is a function on a subset of V its restriction to W will be denoted \bar{f}.
Lemma 1.1. Let D be a differential operator on V. Then there exists a unique differential operator $\Delta(D)$ on W such that

$$
(D f)^{-}=\Delta(D) f
$$

for each locally invariant f.
The operator $\Delta(D)$ is called the radial component of D. Many special cases have been considered (see e.g. [1, §2], [4, §5], [5, §3], [7, §7], [8, Chapter IV, § §3-5]).
Suppose now $d v$ (resp. $d w$) is a positive measure on V (resp. W) which on any coordinate neighborhood is a nonzero multiple of the Lebesgue measure. Assume $d g$ is a bi-invariant Haar measure on G. Given $u \in C_{c}^{\infty}(G \times W)$ there exists [7, Theorem 1] a unique $f_{u} \in C_{c}^{\infty}(G \cdot W)$ such that

$$
\int_{G \times W} F(g \cdot v) u(g, w) d g d w=\int_{\nabla} F(v) f_{u}(v) d v \quad\left(F \in C_{c}^{\infty}(G \cdot W)\right)
$$

Let $\phi_{u} \in C_{c}^{\infty}(W)$ denote the function $w \rightarrow \int u(g, w) d g$.

[^0]Theorem 1.2. Suppose G leaves dv invariant. Let T be a G-invariant distribution on $G \cdot W$. Then there exists a unique distribution \bar{T} on W such that

$$
\bar{T}\left(\phi_{u}\right)=T\left(f_{u}\right), \quad u \in C_{c}^{\infty}(G \times W) .
$$

If D is a G-invariant diferential operator on V then

$$
(D T)^{-}=\Delta(D) \bar{T}
$$

The proof is partly suggested by the special case considered in [7, §9]. See also [12, §4].
2. The Radon transform and conical distributions. Let G be a connected semisimple Lie group, assumed imbedded in its simply connected complexification. Let K be a maximal compact subgroup of G and X the symmetric space G / K. Let $G=K A N$ be an Iwasawa decomposition of G (A abelian, N nilpotent) and let M and M^{\prime}, respectively, denote the centralizer and normalizer of A in K. The space Z of all horocycles ξ in X can be identified with $G / M N[10, \S 3]$. Let $D(X)$ and $D(\Xi)$ denote the algebras of G-invariant differential operators on X and Ξ, respectively; let $S(A)$ denote the symmetric algebra over the vector space A and $I(A)$ the set of elements in $S(A)$ which are invariant under the Weyl group $W=M^{\prime} / M$. There are isomorphisms Γ of $D(X)$ onto $I(A)[6$, p. 260], $[9$, p. 432] and $\hat{\Gamma}$ of $D(\Xi)$ onto $S(A)$ [10, p. 676].

The Radon transform $f \rightarrow \hat{f}\left(f \in C_{o}^{\infty}(X)\right)$ and its dual $\phi \rightarrow \check{\phi}\left(\phi \in C^{\infty}(\Xi)\right)$ are defined by

$$
f(\xi)=\int_{\xi} f(x) d m(x), \quad \check{\phi}(x)=\int \phi(\xi) d \mu(\xi) \quad(x \in X, \xi \in \Xi)
$$

where $d m$ is the measure on ξ induced by the canonical Riemannian structure of X, x is the set of horocycles passing through x and $d \mu$ is the measure on \check{x} invariant under the isotropy subgroup of G at x, satisfying $\mu(\check{x})=1$. The easily proved relation

$$
\begin{equation*}
\int_{X} f(x) \check{\phi}(x) d x=\int_{Z} \hat{f}(\xi) \phi(\xi) d \xi \quad\left(f \in C_{c}^{\infty}(X), \phi \in C_{c}^{\infty}(\xi)\right) \tag{1}
\end{equation*}
$$

$d x$ and $d \xi$ being G-invariant measures on X and Ξ, respectively, suggests immediately how to extend the integral transforms above to distributions.

Let \mathbb{F} and \mathfrak{N} be the Lie algebras of G and A, respectively, and $\mathfrak{G} *$
the dual space of \mathfrak{A}. Let $\lambda \rightarrow c(\lambda)$ be the function on $\mathfrak{2} *$ giving the Plancherel measure $|\mathrm{c}(\lambda)|^{-2} d \lambda$ for the K-invariant functions on X (Harish-Chandra [6, p. 612]). Let j be the operator on rapidly decreasing functions on A which under the Fourier transform on A corresponds to multiplication by c^{-1}. Let ρ denote the sum (with multiplicity) of the restricted roots on \mathfrak{X} which are positive in the ordering given by N. Let e^{ρ} denote the function on Ξ defined by $e^{\rho}(k a M N)=\exp [\rho(\log a)](k \in K, a \in A)$. Viewing \boldsymbol{Z} as a fibre bundle with base K / M, fibre A [10, p. 675] we define the operator Λ on suitable functions ϕ on Ξ by $\left(e^{\rho} \Lambda \phi\right) \mid F=j\left(\left(e^{\rho} \phi\right) \mid F\right)$, where $\mid F$ denotes restriction to any fibre F. Similarly, the complex conjugate of c^{-1} determines an operator $\overline{\mathrm{A}}$. By means of the Plancherel formula mentioned one proves (cf. [11, §6]).

Theorem 2.1. There exist constants $c, c^{\prime}>0$ such that

$$
\begin{align*}
\int_{X}|f(x)|^{2} d x & =c^{\prime} \int_{\Xi}|\Lambda \hat{f}(\xi)|^{2} d \xi, \tag{2}\\
f & =c(\Lambda \overline{\mathrm{~L}} \hat{f})^{2} \tag{3}
\end{align*}
$$

for all $f \in C_{c}^{\infty}(X)$.
If all Cartan subgroups of G are conjugate, the operators j and Λ are differential operators (c^{-1} is a polynomial). Considering $j \bar{\jmath}$ is an element in $I(A)$ we put $\square=\Gamma^{-1}(j \bar{j}) \in D(X)$. Then (3) can be written in the form

$$
f=c \square\left((\check{f})^{\vee}\right), \quad f \in C_{c}^{\infty}(X),
$$

which is more convenient for applications [10, §7]. For the case when G is complex a formula closely related to (3) was given by GelfandGraev [2, §5.5].
Let x_{0} and ξ_{0} denote the origins in X and Ξ, respectively. The space $B=K / M$ can be viewed as the set of Weyl chambers emanating from x_{0} in X. If $\xi=k a \cdot \xi_{0}(k \in K, a \in A)$ we say that the Weyl chamber $k M$ is normal to ξ and that a is the complex distance from x_{0} to ξ. If $x \in X$, $b \in B$ let $\xi(x, b)$ be the horocycle with normal b passing through x, and let $A(x, b)$ denote the complex distance from x_{0} to $\xi(x, b)$.

Theorem 2.2. For $f \in C_{c}^{\infty}(X)$ define the Fourier transform \dot{f} by

$$
\tilde{f}(\lambda, b)=\int_{X} f(x) \exp [(-i \lambda+\rho)(A(x, b))] d x \quad\left(\lambda \in \mathfrak{t}^{*}, b \in B\right) .
$$

Then

$$
\begin{align*}
f(x) & \left.=\int_{\mathfrak{V} * \times B} \tilde{f}(\lambda, b) \exp (i \lambda+\rho)(A(x, b))\right]|c(\lambda)|^{-2} d \lambda d b \tag{4}\\
\int_{X}|f(x)|^{2} d x & =\int_{\mathfrak{T} * \times B}|\tilde{f}(\lambda, b)|^{2}|c(\lambda)|^{-2} d \lambda d b
\end{align*}
$$

where $d b$ is a suitably normalized K-invariant measure on B.
Remarks. (i) In view of the analogy between horocycles in X and hyperplanes in R^{n} formula (4) corresponds exactly to the Fourier inversion formula in R^{n} when written in polar coordinate form.
(ii) If f is a K-invariant function on X, Theorem 2.2 reduces to Harish-Chandra's Plancherel formula [6, p. 612]. Nevertheless, Theorem 2.2 can be derived from Harish-Chandra's formula.
(iii) A "plane wave" on X is by definition a function on X which is constant on each member of a family of parallel horocycles. Writing (4) in the form

$$
f(x)=\int_{B} f_{b}(x) d b
$$

we get a continuous decomposition of f into plane waves. On the other hand, if we write (4) in the form

$$
f(x)=\int_{\mathfrak{a}^{*}} f_{\lambda}(x)|c(\lambda)|^{-2} d \lambda
$$

we obtain a decomposition of f into simultaneous eigenfunctions of all $D \in D(X)$.

We now define for Ξ the analogs of the spherical functions on X.
Definition. A distribution (resp. C^{∞} function) on $\Xi=G / M N$ is called conical if it is (1) $M N$-invariant; (2) eigendistribution (resp. eigenfunction) of each $D \in D(\xi)$.

Let $\xi_{0}=M N, \xi^{*}=m^{*} M N$, where m^{*} is any element in M^{\prime} such that the automorphism $a \rightarrow m^{*} a m^{*-1}$ of A maps ρ into $-\rho$. By the Bruhat lemma, Ξ will consist of finitely many $M N A$-orbits; exactly one, namely $\Xi^{*}=M N A \cdot \xi^{*}$, has maximum dimension and given $\xi \in \Xi^{*}$ there exists a unique element $a(\xi) \in A$ such that $\xi \in M N a(\xi) \cdot \xi^{*}$ [10, p. 673]. Using Theorem 1.2 we find:

Theorem 2.3. Let T be a conical distribution on Ξ. Then there exists $a \psi \in C^{\infty}\left(\Xi^{*}\right)$ such that $T=\psi$ on $\mathbb{\Xi}^{*}$ and a linear function $\mu: \mathfrak{H} \rightarrow \mathbf{C}$ such that

$$
\begin{equation*}
\psi(\xi)=\psi\left(\xi^{*}\right) \exp [\mu(\log a(\xi))] \quad\left(\xi \xi \in \Xi^{*}\right) \tag{5}
\end{equation*}
$$

In general ψ is singular on the lower-dimensional $M N A$-orbits. However, we have:

Theorem 2.4. Let $\mu: \mathfrak{A} \rightarrow \boldsymbol{C}$ be a linear function and let $\psi \in C^{\infty}\left(\boldsymbol{\Xi}^{*}\right)$ be defined by (5). Then ψ is locally integrable on $\boldsymbol{\Xi}$ if and only if

$$
\begin{equation*}
\operatorname{Re}(\langle\alpha, \mu+\rho\rangle)>0 \quad(\operatorname{Re}=\text { real part }) \tag{6}
\end{equation*}
$$

for each restricted root $\alpha>0$; here \langle,$\rangle denotes the inner product on \mathfrak{H}^{*}$ induced by the Killing form of (5). If (6) is satisfied then ψ, as a distribution on $\boldsymbol{\Xi}$, is a conical distribution.

Theorem 2.5. The conical functions on Ξ are precisely the functions ψ given by (5) where for each restricted root $\alpha>0$,

$$
\begin{equation*}
\frac{\langle\mu, \alpha\rangle}{\langle\alpha, \alpha\rangle} \text { is an integer } \geqq 0 . \tag{7}
\end{equation*}
$$

Definition. A representation π of G on a vector space E will be called (1) spherical if there exists a nonzero vector in E fixed by $\pi(K)$; (2) conical if there exists a nonzero vector in E fixed by $\pi(M N)$.

The correspondence between spherical functions on X and spherical representations is well known. In order to describe the analogous situation for $\boldsymbol{\Xi}$, for an arbitrary function ϕ on $\boldsymbol{\Xi}$, let E_{ϕ} denote the vector space spanned by the G-translates of ϕ and let π_{ϕ} denote the natural representation of G on E_{ϕ}.

Theorem 2.6. The mapping $\psi \rightarrow \pi_{\psi}$ maps the set of conical functions on $\boldsymbol{\Xi}$ onto the set of finite-dimensional, irreducible conical representations of G. The mapping is one-to-one if we identify proportional conical functions and identify equivalent representations. Also

$$
\psi\left(g \cdot \xi_{0}\right)=\left(\pi_{\psi}\left(g^{-1}\right) e, e^{\prime}\right)
$$

where e and e^{\prime}, respectively, are contained in the highest weight spaces of π_{ψ} and of its contragredient representation. Finally, μ in (5) is the highest weight of π_{ψ}.

Corollary 2.7. Let π be a finite-dimensional irreducible representation of G. Then π is spherical if and only if it is conical.

The highest weights of these representations are therefore characterized by (7). Compare Sugiura [13], where the highest weights of the spherical representations are determined.
3. The case of a complex G. If G is complex, M is a torus and some of the results of $\$ 2$ can be improved. Let \mathfrak{F} be a Cartan subalgebra
of \mathbb{G} containing \mathfrak{A} and H the corresponding analytic subgroup of G. Now we assume G simply connected.

Let $D(G / N)$ denote the algebra of all G-invariant differential operators on G / N. Let $\nu_{0}, \nu^{*} \in G / N$ be constructed similarly as ξ_{0} and ξ^{*} in §2. Then §1 applies to the submanifold $W=H \cdot \nu^{*}$ of $V=N H \cdot \nu^{*}$ and for each differential operator D on $G / N, \Delta(D)$ is defined and can be viewed as a differential operator on H.

Theorem 3.1. The mapping $D \rightarrow \Delta(D)$ is an isomorphism of $\boldsymbol{D}(G / N)$ onto the (real) symmetric algebra $S(\mathfrak{G})$. In particular, $D(G / N)$ is commutative.

As a consequence one finds that the N-invariant eigenfunctions $f \in C^{\infty}(G / N)$ of all $D \in D(G / N)$ have a representation analogous to (5) in terms of the characters of H. Let E_{f} denote the vector space spanned by the G-translates of f and let π_{f} be the natural representation of G on E_{f}.

Theorem 3.2. The mapping $f \rightarrow \pi_{f}$ is a one-to-one mapping of the set of N-invariant holomorphic eigenfunctions of all $D \in D(G / N)$ (proportional f identified) onto the set of all finite-dimensional ${ }^{2}$ irreducible holomorphic representations of G (equivalent representations identified). Moreover

$$
f\left(g \cdot \nu_{0}\right)=\left(\pi_{f}\left(g^{-1}\right) e, e^{\prime}\right)
$$

where e and e^{\prime}, respectively, are contained in the highest weight spaces of π_{f} and of its contragredient representation.

References

1. F. A. Berezin, Laplace operators on semisimple Lie groups, Trudy Moskov. Mat. Obšč. 6 (1957), 371-463; Amer. Math. Soc. Transl. 21 (1962), 239-299.
2. I. M. Gelfand and M. I. Graev, The geometry of homogeneous spaces, group representations in homogeneous spaces and questions in integral geometry related to them. I, Trudy Moskov. Mat. Obšč. 8 (1959), 321-390; Amer. Math. Soc. Transl. 37 (1964), 351-429.
3. R. Godement, A theory of spherical functions. I, Trans. Amer. Math. Soc. 73 (1952), 496-556.
4. Harish-Chandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc. 83 (1956), 98-163.
5. -_, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87-120.
6. -, Spherical functions on a semisimple Lie group. I, II, Amer. J. Math. 80 (1958), 241-310, 553-613.

[^1]7. ——, Invariant distributions on Lie algebras, Amer. J. Math. 86 (1964), 271309.
8. S. Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959), 239-299.
9. ——, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
10. ——, Duality and Radon transform for symmetric spaces, Amer. J. Math. 85 (1963), 667-692.
11. - A duality in integral geometry; some generalizations of the Radon transform, Bull. Amer. Math. Soc. 70 (1964), 435-446.
12. P-D. Methée, Sur les distributions invariantes dans le groupe des rotations de Lorentz, Comment. Math. Helv. 28 (1954), 225-269.
13. M. Sugiura, Representations of compact groups realized by spherical functions on symmetric spaces, Proc. Japan Acad. 38 (3) (1962), 111-113.

Institute for Advanced Study

[^0]: ${ }^{1}$ Work supported in part by the National Science Foundation, NSF GP-2600.

[^1]: ${ }^{2}$ Compare the problem indicated in [3, p. 553].

