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RADON-FOURIER TRANSFORMS ON SYMMETRIC
SPACES AND RELATED GROUP REPRESENTATIONS 1

BY S. HELGASON

Communicated by G. D. Mostow, May 7, 1965

In §2 we announce some results in continuation of [10], connected
with the Radon transform. §1 deals with tools which also apply to
more general questions and § §2-3 contain some applications to group
representations. A more detailed exposition of §2 appears in Pro-
ceedings of the U. S.-Japan Seminar in Differential Geometry, Kyoto,
June, 1965.

1. Radial components of differential operators. Let V be a mani-
fold, v a point in V and V, the tangent space to V at v. Let G be a Lie
transformation group of V. A C- function f on an open subset of V is
called locally invariant if Xf= 0 for each vector field X on V induced
by the action of G.

Suppose now W is a submanifold of V satisfying the following
transversality condition:

(T) For each w E W, V, = W + (G-w) (direct sum).

Iff is a function on a subset of V its restriction to W will be denoted 7.

LEMMA 1.1. Let D be a differential operator on V. Then there exists a
unique differential operator A(D) on W such that

(Df)- = A(D)f

for each locally invariant f.

The operator A(D) is called the radial component of D. Many special
cases have been considered (see e.g. [1, §2], [4, §5], [5, §3], [7, §7 ],
[8, Chapter IV, §§3-5]).

Suppose now dv (resp. dw) is a positive measure on V (resp. W)
which on any coordinate neighborhood is a nonzero multiple of the
Lebesgue measure. Assume dg is a bi-invariant Haar measure on G.
Given u E Cc (G X W) there exists [7, Theorem 1] a unique
f, G C (G * W) such that

fX F(g . w)u(g, w) dgdw = f F(v)f,(v) dv

Let CEG Cc (W) denote the function w-+fu(g, w)dg.

'Work supported in part by the National Science Foundation, NSF GP-2600.
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THEOREM 1.2. Suppose G leaves dv invariant. Let T be a G-invariant
distribution on G W. Then there exists a unique distribution T on W
such that

T(¢u) = T(f), u E Cc(G X W).

If D is a G-invariant differential operator on V then

(DT)- = A(D)T.

The proof is partly suggested by the special case considered in [7,
§9]. See also [12, §4].

2. The Radon transform and conical distributions. Let G be a con-
nected semisimple Lie group, assumed imbedded in its simply con-
nected complexification. Let K be a maximal compact subgroup of
G and X the symmetric space G/K. Let G =KAN be an Iwasawa
decomposition of G (A abelian, N nilpotent) and let M and M', re-
spectively, denote the centralizer and normalizer of A in K. The space
' of all horocycles in X can be identified with G/MN [10, §3]. Let
D(X) and D(z) denote the algebras of G-invariant differential oper-
ators on X and X, respectively; let S(A) denote the symmetric alge-
bra over the vector space A and I(A) the set of elements in S(A)
which are invariant under the Weyl group W= M'/M. There are iso-
morphisms r of D(X) onto I(A) [6, p. 260], [9, p. 432] and of
D(S) onto S(A) [10, p. 676].

The Radon transformf- Cj(fE C (X)) and its dual q- (E C (Z))
are defined by

the dual space c
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f() = f(x)dm(x), (x)= = (d( (x E X, E )

where dm is the measure on t induced by the canonical Riemannian
structure of X, x is the set of horocycles passing through x and d/ is the
measure on x invariant under the isotropy subgroup of G at x, satisfy-
ing IA(x) =1. The easily proved relation

f(x)(x)d = f f(t)(fdt

dx and dS being G-invariant measures on X and 5, respectively, sug-
gests immediately how to extend the integral transforms above to
distributions.

Let @0 and W be the Lie algebras of G and A, respectively, and W9*
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the dual space of W. Let X--c(X) be the function on * giving the
Plancherel measure I c(X) I -2dX for the K-invariant functions on X
(Harish-Chandra [6, p. 612]). Let j be the operator on rapidly de-
creasing functions on A which under the Fourier transform on A
corresponds to multiplication by c-1. Let p denote the sum (with
multiplicity) of the restricted roots on [ which are positive in the
ordering given by N. Let ep denote the function on Z defined by
eP(kaMN) = exp [p(log a) ] (kCK, aCA). Viewing ' as a fibre bundle
with base K/M, fibre A [10, p. 675] we define the operator A on
suitable functions ¢ on Z by (ePA) I F=j((ePo) F), where I F denotes
restriction to any fibre F. Similarly, the complex conjugate of c-l
determines an operator . By means of the Plancherel formula men-
tioned one proves (cf. [11, §6]).

THEOREM 2.1. There exist constants c, c' >0 such that

(2)

(3)

If(x) dx = c' il Af() 2d,

f = c(A. )-

for all f C (X).

If all Cartan subgroups of G are conjugate, the operators j and A
are differential operators (c-l is a polynomial). Considering jj is an
element in I(A) we put F] =r-(jj)ED(X). Then (3) can be written
in the form

f CC_(X),

al Riemannian
x and d is the
G at x, satisfy-

C), CC(;))

which is more convenient for applications [10, §7 ]. For the case when
G is complex a formula closely related to (3) was given by Gelfand-
Graev [2, §5.5].

Let xo and 40 denote the origins in X and Z, respectively. The space
B = K/M can be viewed as the set of Weyl chambers emanating from
xo in X. If = ka-o (kCK, aCA) we say that the Weyl chamber kM
is normal to and that a is the complex distance from xo to . If xCX,
bEB let (x, b) be the horocycle with normal b passing through x,
and let A (x, b) denote the complex distance from x0 to (x, b).

THEOREM 2.2. For fE C~ (X) define the Fourier transform f by
pectively, sug-
)rms above to f(x, b) = f(x) exp[(-iX + p)(A(x, b))]dx (x C * , b E B).

tively, and 92*
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f() = (X b) exp (i + p)(A(x, b))] c(X) -2dXdb
*xB

In general b,
However, we ha

f (X) 12 d = I(X, b) 12 c(x) -2ddb,
,XB

THEOREM 2.4.
be defined by (5).

where db is a suitably normalized K-invariant measure on B.

REMARKS. (i) In view of the analogy between horocycles in X and
hyperplanes in Rn formula (4) corresponds exactly to the Fourier in-
version formula in Rn when written in polar coordinate form.

(ii) If f is a K-invariant function on X, Theorem 2.2 reduces to
Harish-Chandra's Plancherel formula [6, p. 612]. Nevertheless,
Theorem 2.2 can be derived from Harish-Chandra's formula.

(iii) A "plane wave" on X is by definition a function on X which is
constant on each member of a family of parallel horocycles. Writing
(4) in the form

(4') f(x) = fb(x) db

we get a continuous decomposition of f into plane waves. On the
other hand, if we write (4) in the form

(4/") f(x) = fx(x)l (X) -2 dX

we obtain a decomposition of f into simultaneous eigenfunctions of
all DE D(X).

We now define for Z the analogs of the spherical functions on X.
DEFINITION. A distribution (resp. C function) on =G/MN is

called conical if it is (1) MN-invariant; (2) eigendistribution (resp.
eigenfunction) of each DED(Z).

Let o = MN, * *=m*MN, where m* is any element in M' such
that the automorphism a--+m*am*- l of A maps p into -p. By the
Bruhat lemma, Z will consist of finitely many MNA-orbits; exactly
one, namely * = MNA .*, has maximum dimension and given
EZ* there exists a unique element a(t) EA such that EMNa(}) .*
[10, p. 673]. Using Theorem 1.2 we find:

THEOREM 2.3. Let T be a conical distribution on S. Then there exists
aPGeC(*) such that T=p on * and a linear function t: I->-C such
that

(5()) = V,(/*) exp[u(log a(t))] (NE *).
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II c(X) -2dXdb
In general I is singular on the lower-dimensional MNA-orbits.

However, we have:

THEOREM 2.4. Let j4: A---C be a linear function and let 4f C°(E*)
be defined by (5). Then 4' is locally integrable on Z if and only if

Re ((a,. + p)) > 0 (Re = real part)
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for each restricted root a> 0; here ( , ) denotes the inner product on 2i*
induced by the Killing form of ®. If (6) is satisfied then {, as a dis-
tribution on ~, is a conical distribution.

THEOREM 2.5. The conical functions on Z are precisely the functions
a given by (5) where for each restricted root a > O,

(7)
(I, ) .
-" "~ is an integer > 0.
(a, a)

DEFINITION. A representation r of G on a vector space E will be
called (1) spherical if there exists a nonzero vector in E fixed by r(K);
(2) conical if there exists a nonzero vector in E fixed by r(MN).

The correspondence between spherical functions on X and spheri-
cal representations is well known. In order to describe the analogous
situation for ~, for an arbitrary function f on ~, let Ek denote the
vector space spanned by the G-translates of 4 and let 7r, denote the
natural representation of G on En.

THEOREM 2.6. The mapping 4--try maps the set of conical functions
on onto the set of finite-dimensional, irreducible conical representa-
tions of G. The mapping is one-to-one if we identify proportional conical
functions and identify equivalent representations. Also

i,(g o)= (ro(g-1)e, e'),

where e and e', respectively, are contained in the highest weight spaces
of rg and of its contragredient representation. Finally, tu in (5) is the
highest weight of iri.

COROLLARY 2.7. Let 7r be a finite-dimensional irreducible representa-
tion of G. Then wr is spherical if and only if it is conical.

The highest weights of these representations are therefore char-
acterized by (7). Compare Sugiura [13], where the highest weights
of the spherical representations are determined.

3. The case of a complex G. If G is complex, M is a torus and some
of the results of §2 can be improved. Let . be a Cartan subalgebra

on B. (6)

itl[September
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of (D containing W and H the corresponding analytic subgroup of G.
Now we assume G simply connected.

Let D(G/N) denote the algebra of all G-invariant differential oper-
ators on GIN. Let o, v*eG/N be constructed similarly as 0o and *
in §2. Then §1 applies to the submanifold W=H.v* of V=NH.,*
and for each differential operator D on G/N, A(D) is defined and can
be viewed as a differential operator on H.

THEOREM 3.1. The mapping D--A(D) is an isomorphism of D(G/N)
onto the (real) symmetric algebra S(). In particular, D(G/N) is com-
mutative.

As a consequence one finds that the N-invariant eigenfunctions
fC C°(G/N) of all DCD(G/N) have a representation analogous to
(5) in terms of the characters of H. Let Ef denote the vector space
spanned by the G-translates of f and let 7rf be the natural representa-
tion of G on Ef.

7. , Invaric
309.

8. S. Helgason, 1
(1959), 239-299.

9. ---- , Differe
1962.

10. , Dualit
(1963), 667-692.

11. , A duG
form, Bull. Amer. Ma

12. P-D. Methee,
Lorentz, Comment. M

13. M. Sugiura, 1

on symmetric spaces, I

INSTITUTE FOR Ar

THEOREM 3.2. The mapping f-->rf is a one-to-one mapping of the
set of N-invariant holomorphic eigenfunctions of all DED(G/N) (pro-
portional f identified) onto the set of all finite-dimensional2 irreducible
holomorphic representations of G (equivalent representations identified).
Moreover

f(g o) = (rf(g-1)e, e'),

where e and e', respectively, are contained in the highest weight spaces
of crf and of its contragredient representation.
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