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A DUALITY IN INTEGRAL GEOMETRY; SOME
GENERALIZATIONS OF THE RADON

TRANSFORM 1

SIGURDUR HELGASON

1. Introduction. It was proved by J. Radon in 1917 (see [26]) that
a differentiable function f of compact support on a Euclidean space
can be determined from the integrals of f over each hyperplane in the
space. Whereas Radon was primarily concerned with the dimensions
2 and 3, the following formulation for an arbitrary Euclidean space
Rn was given by John [23], [24]. If w is a unit vector let J(co, p) de-
note the integral of f over the hyperplane {xERnI (x, w)=p} where
( , ) denotes the inner product. Then, if d denotes the surface ele-
ment on the unit sphere 2 = Sn-l, and A the Laplacian,

<7 1

ni

-s 

's R

._:Z!:
'I· l

1
;20;
;,u a M

1 zI

(1)

(2)

f(x) = (2iri)A-2 s J(w, (w, x))d
U

dw d(w, p)
f. -oo p - (Co, x)

-n (n-2) /2
f(x) = (2ri) Ax

(n odd),

(n even),

where in the last integral, the Cauchy principal value is taken.
Applications. The applications of these formulas are primarily

based on the following property: Consider the integrand in the inte-
gral over 2, say the function J(co, (co, x)) in (1). For a fixed w this
function x--J(w, (, x)) is a plane wave, that is a function which is
constant on each member of a family of parallel hyperplanes. Aside
from the Laplacian, formulas (1) and (2) give a continuous decom-
position of f into plane waves. Since a plane wave only amounts to a
function of one real variable (along the normal to the hyperplanes)
the formulas (1) and (2) can sometimes reduce a problem for n real
variables to a similar problem for one real variable. This principle
has been used effectively on partial differential equations with con-
stant coefficients (see Courant-Lax [2], Gelfand-Shapiro [10], John
[24], Borovikov [1], Garding [4]) and even for general elliptic equa-
tions (John [24]).

Generalizations. The above representation of a function by means of
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its plane integrals suggests the general question of determining a
function f on a space from the knowledge of the integrals of f over
certain subsets of the space. Radon himself discussed in [26] the
problem of determining a function on the non-Euclidean plane from
the integrals of the function over all geodesics, Funk [3 ] proved that
a function f on the 2-sphere, symmetric with respect to the center,-
can be determined by means of the integrals of f over the great circles.
The theory of representations of noncompact semisimple Lie groups,
in particular the Plancherel formula, raises the problem of deter-
mining a function on a semisimple Lie group by means of its integrals
over all conjugacy classes and their translates (see Gelfand-Naimark
[9], Harish-Chandra [12], [14], Gelfand-Graev [6]). Other examples
can be found in Gelfand [5], Gelfand-Graev [7], Gelfand-Graev-
Vilenkin [8], Hachaturov [11], Harish-Chandra [13], Helgason
[16], [19], [21], John [24], Kirillov [25] and Semyanistyi [30].

Notation. If M is any manifold, 8(M) denotes the space of C- func-
tions on M, )D(M) the space of C functions on M with compact
support. If M is a complete Riemannian manifold, S(M) denotes the
space of rapidly decreasing functions on M as defined in [21]. We
recall that fES(M) if and only if the following condition is satisfied.
Let A1, · · , A, be the Laplace-Beltrami operators of the various
factors in the local de Rham decomposition of M into irreducible
parts [27]. Each Ai can be viewed as a differential operator on M.
Then fES(M) if and only if P(A1, · · · , An)f goes to zero at o faster
than any power of the distance from a fixed point.

2. Dual integral transforms. As mentioned above, formulas (1)
and (2) give a continuous decomposition of f into plane waves. We
shall now focus attention on a kind of a projective duality which
appears in (1). Formula (1) contains two integrations, dual to each
other: first one integrates over the set of points in a given hyperplane,
then one integrates over the set of hyperplanes passing through a
given point. Guided by this duality we adopt the following general
setup.

(i) Let X be a manifold and G a transitive Lie transformation
group of X. Let Z be a family of subsets of X, permuted transitively
by G; in particular, there is induced a G-invariant differentiable
structure on S. The manifold Z will be called the dual of X. Let
D(X) and D(z) denote the algebras of G-invariant differential oper-
ators on X and Z, respectively.

(ii) Given xEX, let x= {tE IxE}. It is assumed that each f
and each x have measures, say and v, respectively, such that the
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(iii) If f and g are suitably restricted functions on X and Z, respec-
tively, we can define functions f on X, on X, by

() = f f(x)d(x), g(x) = f g()dv().

We shall now discuss several examples within this framework. The
problems which will be considered are:

A. Relate function spaces on X and Z by means of the integral trans-
forms f-- and g--g.

B. Does there exist a map D--45 of D(X) into D(Z) and a map
E---> of D() into D(X) such that

(Df)A = Dj, (Eg)v = 

for general f and g?
C. In case the transforms f--j and g--g are one-to-one, find explicit

inversion formulas. In particular, find the relationships between f and
(J) and between g and ()".

3. Points and hyperplanes in a Euclidean space. Let X = R n (n > 1)
and let G be the group of all rigid motions of X and Z the set of all
hyperplanes in X. If xGX, E4 the measure s/ on is the ordinary
Euclidean measure and the measure v on i is the unique measure on
the compact set x, invariant under all rotations around x, normalized
by v(x) = 1. A hyperplane fEZ is determined by a unit normal vector
X and a real number p such that pwhE. The pairs (co, p) and (-o, -p)
give the same ~, the manifold Sn- X R is a double covering of and
C- functions on Z will be identified with C* functions F on S-1 XR
satisfying F(wc, p) = F( -co, -p). Accordingly, let 8(Z) denote the set
of rapidly decreasing functions F on the Riemannian manifold
S"-1XR, satisfying F(o, r)= F(-co, -r). Similarly D(Z) and 8(z)
are defined. Let SH(Z) denote the set of FES(Z) such that for each
integer k>_ 0, the integral f2 F(w, p)pkdp can be written as a homo-
geneous kth degree polynomial in c1, CO,,n. Let DH(Z)
= sD(Z)fSR(Z). Finally, let 8*(X) =S*(Rn) denote the set of fG8(X)
satisfying ff(x)p(x)dx=O for each polynomial p and 8*(z) the set of
functions FES(Z) satisfying fF(w, p)pkdp=O0 for all w and all
integers /t > O.

THEOREM 3.1. The algebra D(X) is generated by the Laplacian A,
and the algebra D(Z) is generated by the differential operator E: g(o, p)
-->d2 /dp2 (g(Wc, p)). Moreover

r

437i9641[July



SIGURDUR HELGASON [July
A

(Af)^ = ll,

for fES(X), gE G(Z).

(L]g)' = Ai

1964]

THEOREM 3.2. The Radon transform f--3 is a linear one-to-one map-
ping of D (X) onto DH(,), of S(X) onto SH(:), and of S*(X) onto S*(Z).

Theorem 3.1 is proved in [21]. The first statement of Theorem 3.2
holds in the following sharper form [21]: If fES(X) and if J(F) =0
for all at distance > R from 0 then f(x) vanishes identically for
I x I >R. The second part of Theorem 3.2 is, in a different form,
stated in Gelfand-Graev-Vilenkin [8]. The proof given there (pp.
34-39) seems incomplete in some respects; for example, it uses (1)
§1 and therefore leaves out the even-dimensional case. A different
proof is given in [21] using the relation

(1) F(rw) = ](, p)e-iprdp

connecting the Radon transform ] and the Fourier transform J of f.
The last part of Theorem 3.2 is stated in Semyanistyi [29].

THEOREM 3.3. The following inversion formulas hold.
If n is odd,

(2)
f = cA(-1)2((J)),
g= C(n-1)/2 (Q)^)

f S(X);

gE s*(),
where the constant c is given by

c = r (2ri) 1-n"n/2.

If n is even,

(3)
f= cJ1(() ),
g = C2J2((g) ) ,

fE s(X);
g E s*(Z),

where J1 and J2 are given by analytic continuations

Jl: f(x) -- anal. cont. ff(y) I x -y dy,
a =1-2n Rn

Cl 

r(_
2
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2 In the notation of Schwartz [28, p. 45], Jlf=(Pf.r l-" n) * f, J2F=(Pf.r) *F.
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Concerning Probl
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The odd-dimensional case in Theorem 3.3 is a direct consequence
of (1) §1 and Theorem 3.1. The inversion formula (3) can be derived
from (2) §1 by means of some computation involving the distribution
Pf.rl-2 " (see [21]). The formula for g then follows by use of the
Fourier transform.

4. Points and antipodal manifolds in compact two-point homo-
geneous spaces. Let X be a compact two-point homogeneous space,
that is, a compact Riemannian manifold with the property that the
group G of all isometries of X acts transitively on the set { (x, y) EX
XX Id(x, y)=r} for each fixed r>0. Here d denotes distance. Let L
denote the diameter of X. If xGX, let A. denote the corresponding
antipodal manifold, that is, the set of points yEX at distance L from
x. This A, is a totally geodesic submanifold of X and with the
Riemannian structure on A, induced by that of X, Ax is another two-
point homogeneous space. Also x$y=~A 2 vAv. Let : denote the set
of antipodal manifolds, with the differentiable structure induced by
the transitive action of G. The Lie group G is a compact semisimple
Lie group (ignoring the trivial case dim X = 1). Changing the Rie-
mannian structure on X by a constant factor we may assume it in-
duced by the negative of the Killing form of the Lie algebra of G.
On we choose the Riemannian structure such that the diffeomor-
phism : x-->A is an isometry. Let A and a denote the Laplace-
Beltrami operators on X and 5, respectively. The measures /A and v
on the manifolds and will be those induced by the Riemannian
structures of X and S. If xEX, then = {+(y) I yEq(x)}. Conse-
quently

g(x) = f; g()dv(l) = I )
ve0 X)

y l-dy,

g(c(y))dv(c(y)) = f o(go ) (y)dM(y)
(X)

so

- q dq,

* f, J2F=(Pf r- f) *F.

g= (go ) o.
Because of this correspondence between the integral transforms f--J
and g--* it suffices to consider the first.

Concerning Problems A, B and C the following theorem holds.
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THEOREM 4.1. The mapping f-->J is a linear one-to-one mapping of
g(X) onto 8(z) and

(Af)^= 
Except for the case when X is an even-dimensional real projective space,

f= p(A)(), f G(X),
where P is a polynomial, independent of f, explicitly given below. The
algebras D(X) and D(z) are generated by A and , respectively.

This theorem is proved in [21] by an elaboration of the method in
[16, p. 284], where the case of odd-dimensional projective spaces
is settled. The general case requires Wang's classification [31 ] of com-
pact two-point homogeneous spaces as the following spaces: The
spheres S (n = 1, 2, .-), the real projective spaces P"(R)
(n=2, 3, · · · ), the complex projective spaces P"(C) (n=4, 6, · · · ),
the quaternion projective spaces pn(H) (n=8, 12, ), and the
Cayley projective plane P16(Cay). The superscript denotes the real
dimension. The antipodal manifolds in the respective cases are a
point, P"-'(R), P-2(C), Pn-4(H), S8. The polynomial P(A) above has
degree equal to one half the dimension of the antipodal manifold,
and is a constant multiple of

1 (the identity) X = S n

(A - K(n - 2)1)(A - K(n - 4)3) ·. (A - K(n - 2)) X = P(R)

(a - K(n - 2)2)(A- K(n - 4)4) ... (A - K2(n - 2)) ' X = P(C)
[( - K(n - 2)4)( - (n - 4)6) · · · ( - K8(n - 6))]

[(A - tK4(n- 4))(A - K4(n- 2))] X = P(H)

points and hyperpl
phism of X onto th
the polarity with r(
mapping of X -{ 

planes which do no
underlying the app
in place of the spai

5. Points and tot
Let n be an integer

Q(Z)= z

on the Euclidean s
with the Riemann
O(n, 1) of linear t
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tive Lie group of i,
of X of dimension 
planes in R'n+ thr,
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so the set of totall
be identified with
identified. This ide
quadratic form Q
ture (n-1, 1) and
In group-theoretic

X = O(n, 1)

(A - 112K) 2 (A - 120K) 2 X = P16 (Cay).

In each case K= (r/(2L)) 2 , where L is the diameter of X.
In the exceptional case when X is an even-dimensional real projec-

tive space there is still an inversion formula f =K((J) ) but now K
is an integral operator. Considering functions on X as symmetric
functions on Sn, K is given by a suitably regularized integral operator

(K )(x) = c F( -, - ; sin2 (d(x, y)) (y)dw(y),
2 2 2

where d& is the volume element of Sn, c is a constant and F is the
hypergeometric function (Semyanistyi [30]).

REMARK. There is an important difference in the duality above be-
tween points and antipodal manifolds and in the duality between

where O(n) is the
two elements. Sinc
taken as the measu
of X and ; concert
Riemannian struct
of S.

Concerning Prot

THEOREM 5.1. 2.
Laplace-Beltrami o;

If n is odd,

f = c(A + 1(n
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points and hyperplanes in §3. In the first case we have a diffeomor-
phism of X onto the manifold : of antipodal manifolds. In the second
the polarity with respect to the unit sphere I xI = 1 gives a one-to-one
mapping of X- 0 } onto the subset of Z consisting of those hyper-
planes which do not pass through 0. This special role of 0 is the reason
underlying the appearance of the spaces D)H(2), SH(:) in Theorem 3.2
in place of the spaces D() and S(,).

5. Points and totally geodesic hypersurfaces in a hyperbolic space.
Let n be an integer > 1 and consider the quadratic form

9 0 9 Z = (, ··· , zn+l,
on the Euclidean space Rn+'. Let X denote the quadric Q(Z) +1 =0
with the Riemannian structure induced by Q. Let G be the group
O(n, 1) of linear transformations of Rn+l leaving Q invariant. The
Riemannian manifold X has constant curvature -1 and G is a transi-
tive Lie group of isometries of X. The totally geodesic submanifolds
of X of dimension n -1 are obtained as intersections of X with hyper-
planes in R"+ through the origin. A normal (with respect to Q) to
such a hyperplane intersects the quadric Q(X)- 1=0 in two points
so the set of totally geodesic hypersurfaces-the dual space -- can
be identified with the quadric Q(X)-1 =0 with symmetric points
identified. This identification is consistent with the action of G. The
quadratic form Q induces a pseudo-Riemannian structure of signa-
ture (n-1, 1) and constant curvature +1 on Z (see [17, p. 146]).
In group-theoretic terms we have

X = O(n, )/O(n), z = (n, 1)/((n - 1, 1) X Z2),

where O(n) is the orthogonal group in RI and Z2 is the group with
two elements. Since the group G acts isometrically, /u and can be
taken as the measures induced by the pseudo-Riemannian structures
of X and :; concerning v one has to remark that for xEX the pseudo-
Riemannian structure of Z is nondegenerate on the submanifold 
of .

Concerning Problems A, B and C we have the following results.

1 THEOREM 5.1. The algebras D(X) and D(z) are generated by the
Laplace-Beltrami operators A and A on X and , respectively, and

(Af) = i for fE D(M).

If n is odd,

f = c(A + l(n - 2))(A + 3(n - 4)) ... (A + ( - 2)1)(?)v

[July 441

Q(Z) z + - + Z' Z'l

.I

II

t



SIGURDUR HELGASON [July

where c is a constant, independent of f.

The last formula is proved in [16]. An inversion formula for the
even-dimensional case, more complicated to state, can be found in
[30].

For the space X the volume of a ball of radius r increases with r
like e(n-l)r. This explains the growth condition in the next result. Let
o be a fixed point in X; if xEX, EZ then d(o, x) and d(o, ) denote
the corresponding distances from o.

THEOREM 5.2. Suppose f G(X) satisfies
(i) For each integer m > 0, f(x)emd(ox) is bounded;
(ii) (~) =0 if d(o, ) > R.

Then

f (x) = for d(o, x) > R.

6. Points and horocycles in a symmetric space [19]. Let X be a
symmetric space of the noncompact type [18] and G the largest con-
nected group of isometries of X in the compact open topology. The
group G has center reduced to the identity element and thus can be
identified with its adjoint group. This matrix group contains maximal
unipotent subgroups, all known to be mutually conjugate, and their
orbits in X are called horocycles. The group G acts transitively on the
set Z of all horocycles. The transform f-f is defined by integration
over each horocycle , the volume element being that induced by the
Riemannian structure of X. The transform g--g is defined by averag-
ing over each x, xEX, the compact isotropy subgroup of G at x acting
transitively on x.

Let G=KAN be an Iwasawa decomposition of G where the sub-
groups K, A, N are compact, abelian and unipotent, respectively. Let
M denote the centralizer of A in K. Then we have the following
identifications from the natural action of G on X and ,

X = G/K, A = G/MN.

and Z(G/K), can be
R" is invariant und
in the hyperplane, 
cycle in X.

Let W be the We
let S(A) be the syl
ments in S(A), inv;

The mapping a
I(A) [15, Theorem
to an isomorphism
described explicitly
and C we have the

THEOREM 6.1. T,
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The isomorphisrr
position above con
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positive restricted i
the automorphism
fD=t-1((D)') for

THEOREM 6.2. St
there exist operators

(1)

(2)

where dx and d, a?
normalized.

The manifolds X and Z have the same dimension. The polar coordi-
nate decomposition of Euclidean space, i.e. the mapping (w, p)--pC
of S n-1 XR onto R" has an analog for X, namely the differentiable
mapping 4: (kM, a)--÷kaK of (K/M) XA onto G/K. Both maps are
singular on certain lower dimensional sets. In contrast, the dual
Z(Rn) of Rn (in the sense of §3) is doubly covered by Sn-1 XR and
the dual Z(G/K) of G/K is diffeomorphic to (K/M) XA under the
map : (kM, a)--kaMN. This difference between the duals, Z(Rn)

We shall indicate
uct of the positive
identified with its
algebra of G then
constant factors, A
the image of 7r und

Theorem 6.2 ho
class of Cartan sub
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and Z(G/K), can be traced to the fact that whereas a hyperplane in
Rn is invariant under the geodesic symmetry with respect to a point
in the hyperplane, the analogous statement does not hold for a horo-
cycle in X.

Let W be the Weyl group of G/K acting on the Euclidean space A,
let S(A) be the symmetric algebra over A and I(A) the set of ele-
ments in S(A), invariant under W.

The mapping ¢ above gives rise to an isomorphism r of D(X) onto
I(A) [15, Theorem 1], [18, p. 432]; the mapping also gives rise
to an isomorphism of D(A) onto S(A). These isomorphisms can be
described explicitly in Lie algebra terms. Concerning Problems A, B
and C we have the following results [19], [22].

THEOREM 6.1. The mapping f--f is a linear one-to-one mapping of
20(X) into D(E). There is an isomorphism D--Di of D(X) into D(z)
such that

(Df) ̂ = Dffor f C (X).

The isomorphism Di--+ is defined as follows. The Iwasawa decom-
position above corresponds to an ordering of the dual space of the
Euclidean space A. In particular, the restricted roots of the sym-
metric space X are ordered; as usual let 2p denote the sum of the
positive restricted roots, counted with multiplicity. Let p->p' denote
the automorphism of S(A) given by H' =H+p(H) for HEA. Then
D = -1(r(D)') for DED(X).

THEOREM 6.2. Suppose the Lie group G is a complex Lie group. Then
there exist operators G ED(X), A ED(Z) with the following property:

f G where the sub-
Lt, respectively. Let
have the following
and Z,

(1)

(2)

f = o ((]) 7),

X fX) dx = () l 2d,

f (X),

fE D(X),

. The polar coordi-
lapping (co, p)-po
y the differentiable
/K. Both maps are
contrast, the dual
ed by Sn-i XR and
/M) XA under the
n the duals, Z(Rn)

where dx and d are the G-invariant measures on X and , suitably
normalized.

We shall indicate the definition of 1I and A. Let 7r denote the prod-
uct of the positive restricted roots (without multiplicity). If A is
identified with its dual by means of the Killing form of the Lie
algebra of G then rES(A) and r2CI(A). Then, except for certain
constant factors, A equals P-l(7r') and [] equals r-(r2). (Here 7r' is
the image of 7r under the automorphism p-*p' above.)

Theorem 6.2 holds more generally if G has only one conjugacy
class of Cartan subgroups, but the differential operators and A are

[July 443
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then defined somewhat differently. For a general real G, the operators
[] and A are integro-differential operators, and the analog of (2) is
still valid. (See [22].)

Applications. It was mentioned earlier how the inversion formula
(1) §1, to a certain extent, can reduce a partial differential equation
with constant coefficients to an ordinary differential equation. Simi-
larly, since O naturally commutes elementwise with D(X), the inver-
sion formula in Theorem 6.2 can reduce an invariant differential
equation on X to a differential equation on the Euclidean space A
(see [19]); this differential equation on A is obtained via the mapping
r, in particular it has constant coefficients, hence solvable.

In the case when G is not complex better results are obtained by
restricting the transform f-f to radial functionsf on X, that is func-
tions invariant under the action of K on X. In fact it turns out that
this transform converts each operator DED(X) into a differential
operator on A with constant coefficients, resulting in the existence of
a fundamental solution for D. The proofs of these results are based on
Harish-Chandra's work on harmonic analysis on the group G (see
[20] and the references given there).

7. p-planes and q-planes in R+q+l. Let p and q be two integers
>0 and put n=p+q+1. A p-plane E in Rn is by definition a trans-
late of a p-dimensional vector subspace of Rn. Let G(p, n) denote the
manifold of p-planes in Rn and G*(p, n) the set of p-planes which do
not pass through 0. The projective duality between points and hyper-
planes in Rn, realized by the polarity with respect to Sn-l generalizes
to a duality between G*(p, n) and G*(q, n). In fact, if a#0 in R", let
E,_l(a) denote the polar hyperplane. If a runs through a p-plane
EvEG*(p, n) then the hyperplanes En_(a) intersect in a unique q-
plane EEG*(q, n) and the mapping E,--E,, is the stated duality.

We have now an example of the framework in §2, although con-
vergence difficulties make the results (Theorem 7.1) very restrictive.
Let X= G(p, n) and G the group of rigid motions of Rn, acting on X.
Given a q-plane Eq consider the family ~ = ~(Eq) of p-planes intersect-
ing Eq. If E' #E,' then (Eq') 0(E "); thus the set of all families
--the dual space -- can be identified with G(q, n). In accordance

with this identification, if E, =xEX then = (Ep) is the set of q-
planes Eq intersecting x.

The manifold G(p, n) is a fibre bundle with base space G,,,, the
manifold of p-planes in Rn through 0, the projection r of G(p, n) on
G,,n being the mapping which to any p-plane associates the parallel
p-plane through 0. Thus the fibre of this bundle (G(p, n), G,., 7r) is
Rn-P. If fES(G(p, n)) let f] F denote the restriction of f to an arbi-
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Rq, respectively. T
S*(X) onto S*(:) s

If n is odd then

where c is a constai

1. W. A. Boroviko-
with constant coefficient.

2. R. Courant and
ferential equations witA
Pure Appl. Math. 8 (1(

3. P. Funk, ber,
Math. Ann. 77 (1916),

4. L. Girding, Tra
Math. France 89 (1961

5. I. M. Gelfand, I
lions, Uspehi Mat. Nal

6. I. M. Gelfand 
classical groups, Trudy

7. , The geo
geneous spaces and ques
Ob. 8 (1959), 321-39

8. I. M. Gelfand, 

444 i9641 A



1964] A DUALITY IN INTEGRAL GEOMETRY

d G, the operators
te analog of (2) is

inversion formula
Terential equation
al equation. Simi-
a D(X), the inver-
ariant differential
euclidean space A
d via the mapping
olvable.
s are obtained by
)n X, that is func-
t it turns out that
into a differential
in the existence of
.sults are based on
the group G (see

q be two integers
definition a trans-
7(p, n) denote the
p-planes which do
points and hyper-
:o Sn- 1 generalizes
, if a-O in Rn, let
hrough a p-plane
.ct in a unique q-
stated duality.
§2, although con-
) very restrictive.
' Rn, acting on X.
-planes intersect-

set of all families
a). In accordance
p) is the set of q-

,e space Gp,n, the
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trary fibre F and let AF denote the Laplacian on F. The linear trans-
formation Cp of 8(G(p, n)) given by

(aplf)I F = AF(f F), f E (G(p, n)),

for each fibre F, is a differential operator on G(p, n). Because of
convergence difficulties we do not define the measures u and v directly
but define f by

a(E) =fj (L,
Eq aEE2

whenever these integrals exist. Here dup is the invariant measure on
the Grassmann manifold of p-planes through a with total measure 1,
dq is the Euclidean measure on Eq. The transform g--g' is defined
similarly (interchanging p and q). For p = 0 we get the situation in §3.
Let S*(Rn) be as in §3 and let S*(X) be the image of S*(Rn) under the
operator L:f--fE f(a)dp(a) (fES*(Rn)). Then the following result
holds [21].

THEOREM 7.1. The algebras D(X) and D(a) are generated by [Up and
I,r respectively. The mapping f- is a linear one-to-one mapping of
8*(X) onto S*(Z) such that

(opf)^ = -qf.
If n is odd then

f = C(p )(n-l)2((j) ), f *(X),
where c is a constant, independent of f.
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