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1. The dual space of a symmetric space. Let S be a symmetric
space (that is a Riemannian globally symmetric space), and let Iy(.S)
denote the largest connected group of isometries of .S in the compact
open topology. It will always be assumed that S is of the noncompact
type, that is Io(S) is semisimple and has no compact normal subgroup
# {e} . Let l denote the rank of .S; then S contains flat totally geodesic
submanifolds of dimension /. These will be called planes in S.

Let 0 be any point in S, K the isotropy subgroup of G=1I,(S) at o
and ¥y and g, their respective Lie algebras. Let go="{o-+o be the cor-
responding Cartan decomposition of go. Let E be any plane in S
through o, a, the corresponding maximal abelian subspace of p, and
4 the subgroup exp(ao) of G. Let C be any Weyl chamber in ao. Then
the dual space of ay can be ordered by calling a linear function A on
ao positive if N(H) >0 for all HEC. This ordering gives rise to an
Iwasawa decomposition of G, G=KAN, where N is a connected nil-
potent subgroup of G. It can for example be described by

N = {ZEG

lim exp(—tH)z exp(tH) = e} ,

{— e

H being an arbitrary fixed element in C. The group N depends on the

triple (o, E, C). However, well-known conjugacy theorems show that
if N’ is the group defined by a different triple (¢o/, E’, C’) then
N'=gNg~! for some gEQG.

- DEFINITION. A horocycle in S is an orbit of a subgroup of the form
gNg™1, g being any element in G.

Let t—y () (¢ real) be any geodesic in S and put T';= 5250 where s,
denotes the geodesic symmetry of S with respect to the point (7).
The elements of the one-parameter subgroup T'; (¢ real) are called
transvections along v. Two horocycles &, & are called parallel if there
exists a geodesic v intersecting £; and & under a right angle such that
T-£1=§; for a suitable transvection T along . For each fixed gEG,
the orbits of the group gNg—! form a parallel family of horocycles.

7/ Let M and M’, respectively, denote the centralizer and normalizer
of 4 in K. The group W= M'/M, which is finite, is called the Weyl
group.
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ProrosiTioN 1.1. The group G acts transitively on the set of horocycies
in S. The subgroup of G which maps the horocycle N -0 into itself equals
MN.

Let S denote the set of horocycles in S. Then we have the natural
identifications

S = G/K, S =G/MN

the latter of which turns S into a manifold, which we call the dual
space of S.

ProrosiTiON 1.2.
(1) The mapping
¢: (M, a) — kaK
is a differentiable mapping of (K/M)XA onto S and a regular w-tc-

one mapping of (K/M)XA' onto S'.
(i1) The mapping

é: (kM, a) — kaM N
is a diffeomorphism of (K/M) XA onto S.

In statement (i) which is well known, w denotes the order of W,
A’ is the set of regular elements in 4 and S’ is the set of points in .S
which lie on only one plane through o.

ProprosiTiON 1.3. The following relations are natural identifications
of the double coset spaces on the left:
(i) K\G/K=4/W;
(i) MN\G/MN=AXW.

Statement (i) is again well known; (ii) is a sharpening of the
lemma of Bruhat (see [6]) which identifies MAN\G/MAN with W.
The proofs of these results use the following lemma.

LEmMma 1.4. -
(1) Let so denote the geodesic symmetry of S with respect to o and
let 0 denote the involution g—sogso of G. Then

(NO(N)) N K = {e}.
(i) Let C and C' be two Weyl chambers in ao and G=KAN,
G=KAN’' the corresponding Iwasawa decompositions. Then
(NNYN (M A) = {e}.

2. Invariant differential operators on the space of horocycles. For
any manifold V, C*(V) and C;(V) shall denote the spaces of C*
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functions on V (respectively, C* functions on V with compact sup-
port). Let D(S) and D(S), respectively, denote the algebras of all G-
invariant differential operators on S and S. Let S(ao) denote the
symmetric algebra over ap and J(ao) the set of W-invariants in S(ao).
There exists an isomorphism I' of D(S) onto J(ao) (cf. [7, Theorem 1,
p. 260], also [9, p. 432]). To describe D(S), consider S as a fibre bun-
dle with base K/M, the projection p: S—K/M being the mapping
which to each horocycle associates the parallel horocycle through 0. -
Since each fibre F can be identified with 4, each UE S(a,) determines
a differential operator Ur on F. Denoting by f ] F the restriction of a
function f on S to F we define an endomorphism Dy on C*(5) by

(Duf) | F = Us(f| F)  fE C=(J),

F being any fibre. It is easy to prove that the mapping U—Dy is a
homomorphism of S(ao) into D(S).

THEOREM 2.1. The mapping U—Dy is an 1,somorplusm of S(ao) onto
D(S). In particular, D(S) is commutative.

Although G/MN is not in general reductive, D(S) can be deter-
mined from the polynomial invariants for the action of M N on the
tangent space to G/MN at MN (cf. [8, Theorem 10]). It is then
found that the algebra of these invariants is in a natural way iso-
morphic to S(as), whereupon Theorem 2.1 follows. Let I' denote the
inverse of the mapping U—Dy. :

3. The Radon transform. Let £ be any horocycle in S, ds; the vol-
ume element on £. For f&C.°(S) put

o = L fs)dsy,  EES.

The function f will be called the Radon transform of f.

THEOREM 3.1. The mapping f—F is a one-to-one linear mapping of
C2(S) into C2(S).

Now extend a, to a Cartan subalgebra §, of go; of the corresponding
roots let P, denote the set of those whose restriction to a is positive
(in the ordering defined by C). Put p=3% Y ecp,a and let p—'p de-
note the unique automorphism of S(ay) given by ‘H=H—p(H)
(HEao) (cf. [7, p. 260]).

THEOREM 3.2. Let ‘\D(S) be given by
‘D) = {E € DEO) | \T'(B)) € J(an)},
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and let D—D denote the isomorphism of D(S) onto ‘D(S) such that
(D)) =T(D), DE D).
Then

(D)~ = Df for fECI(S).

In view of the duality between points and horocycles there is a
natural dual to the transform f—f. This dual transform associates to
each function ¢ EC=(S) a function ¥ € C=(S) given by

iw=[ v, res,

§Np=p
where the integral on the right is the average of ¥ over the (compact)
set of horocycles passing through p. We put

=0, fecis
and wish to relate f and I;.

THEOREM 3.3. Suppose the group G=1I1,(S) is a complex Lie group.
Then

1 O =¢d, fECIS),

where ¢ is a constant %0 and [ is a certain operator in D(S), both inde-
pendent of f.

We shall now indicate the definition of []. Let J denote the com-
plex structure of the Lie algebra go. Then the Cartan subalgebra b,
above can be taken as ap+Jao and can then be considered as a com-
plex Cartan subalgebra of go (considered as a complex Lie algebra).
Let A’ denote the corresponding set of nonzero roots and for each
a&A’ select H, in §o such that B (H, H) =a(H) (HEY,) where B’
denotes the Killing form of the complex algebra go. Then H. &ae and
the element [ Jaear HJ in S(ao) is invariant under the Weyl group W.
Then [] is the unique element in D(S) such that

@ = II &4.
acA? ’
The proof of Theorem 3.3 is based on Theorem 3 in Harish-Chandra
[5] (see also Gelfand-Naimark [4, p. 156]), together with the Dar-
boux equation for S ([9, p. 442]). In the case when S is the space of
positive definite Hermitian # X7 matrices a formula closely related
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to (1) was given in Gelfand [1]. Radon’s classical problem of repre-
senting a function in R* by means of its integrals over hyperplanes
was solved by Radon [13] and John [10]. Generalizations to Rie-
mannian manifolds of constant curvature were given by Helgason
[8], Semyanistyi [15] and Gelfand-Graev-Vilenkin [3].

4. Applications to invariant differential equations. We shall now
indicate how Theorem 3.3 can be used to reduce any G-invariant
differential equation on S to a differential equation with constant
coefficients on a Euclidean space. The procedure is reminiscent of the
method of plane waves for solving homogeneous hyperbolic equations
with consiant coefficients (see John [11]).

DEFINITION. A function on S is called a plane wave if there exists a
parallel family & of horocycles in S such that (i) S=U;ex £; (ii) For
each £€ E, f is constant on £.

Theorem 3.3 can be interpreted as a decomposition of an arbitrary
function f& C;°(S) into plane waves.

Now select g&G such that = is the family of orbits of the group
gNg=1. The manifold g4g~!-0 intersects each horocycle ¢€X orthog-
onally. A plane wave f (corresponding to =) can be regarded as a
function f* on the Euclidean space 4. If DED(S), then Df is also a
plane wave (corresponding to ) and (Df)*=Df*, where D4 is a
differential operator on A. Using the fact that aNe~'CN for each
a& A it is easily proved (cf. [7, Lemma 3, p. 247] or [12, Theorem 1])
that Dy is invariant under all translations on 4. Thus an invariant
differential equation in the space of plane waves (for a fixed X)
amounts to a differential equation with constant coefficients on the
Euclidean space 4. Using Theorem 3.3, and the fact that [] com-
mutes elementwise with D(S), an invariant differential equation for
arbitrary functions on .S can be reduced to a differential equation
with constant coefficients (and is thus, in principle, solvable).

EXAMPLE: THE WAVE EQUATION ON S. For an illustration of the
procedure above we give now an explicit global solution of the wave
equation on S (Zo(.S) assumed complex).

Let A denote the Laplacian on S and let f&C;’ (S). Consider the
differential equation
) A o*u

* a2
with initial data

d
@ w0 =0 {au@,n} ~1)  GES.
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Let A4 denote the Laplacian on 4 (in the metric induced by E), |||

the length of the vector p in §3. Given a& A4, let log a denote the

unique element H&ay for which exp H =a. For simplicity, let e* de-

note the function a—e*°e® on 4. Let ¢ denote the horocycle N-o.
Given x&G, k€K, consider the function

Fy .(a) = ff(xka-s)ds; (a € A)
£

and the differential equation on 4 XR,

2 t 62 t
(3) (Aa = ||ol Wi = PYy Vi.z,

with initial data

0 d ¢
Vie= 0; — Vi = eka_,-.
6t t=0

Equation (3) is just the equation for damped waves in the Euclidean
space 4 and is explicitly solvable (see e.g. [14, p. 88]). The solution
of (1) is now given by

uw(p, ) =c¢ T(V(p, 1)),

where
= l:.t d .
4 V(xK, 1) fKV =(e)dk

Here dk is the normalized Haar measure on K and ¢ is the same con-
stant as in Theorem 3.3. It is not hard to see that the integral in (4)
is invariant under each substitution x—xu (#&K) so the function -
V(p, t) is indeed well defined.
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