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1. The dual space of a symmetric space. Let S be a symmetric
space (that is a Riemannian globally symmetric space), and let Io(S)
denote the largest connected group of isometries of S in the compact
open topology. It will always be assumed that S is of the noncompact
type, that is Io(S) is semisimple and has no compact normal subgroup

{ e }. Let denote the rank of S; then S contains flat totally geodesic
submanifolds of dimension 1. These will be called planes in S.

Let o be any point in S, K the isotropy subgroup of G= Io(S) at o
and t0 and go their respective Lie algebras. Let go= fo+po be the cor-
responding Cartan decomposition of go. Let E be any plane in S
through o, ao the corresponding maximal abelian subspace of 0o and
A the subgroup exp(ao) of G. Let C be any Weyl chamber in a0o. Then
the dual space of a0o can be ordered by calling a linear function X on
a0o positive if X(H)>0 for all H C. This ordering gives rise to an
Iwasawa decomposition of G, G-KAN, where N is a connected nil-
potent subgroup of G. It can for example be described by

N= { z G lim exp(- tH)z exp(tH) = e

H being an arbitrary fixed element in C. The group N depends on the
triple (o, E, C). However, well-known conjugacy theorems show that
if N' is the group defined by a different triple (o', E', C') then
N'=gNg-l for some gEG.

DEFINITION. A horocycle in S is an orbit of a subgroup of the form
gNg-l, g being any element in G.

Let t-- y(t) (t real) be any geodesic in S and put Tt = st12so where s,
denotes the geodesic symmetry of S with respect to the point Y(r).
The elements of the one-parameter subgroup T (t real) are called
transvections along y. Two horocycles 41, 42 are called parallel if there
exists a geodesic y intersecting 41 and 2 under a right angle such that
T- = 2 for a suitable transvection T along y. For each fixed g G,
the orbits of the group gNg- form a parallel family of horocycles.
/ Let M and M', respectively, denote the centralizer and normalizer
of A in K. The group W= M'/M, which is finite, is called the Weyl
group.
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PROPOSITION 1.1. The group G acts transitively on the set of horocycles
in S. The subgroup of G which maps the horocycle N o into itself equals
MN.

Let S denote the set of horocycles in S. Then we have the natural
identifications

S = G/K, 9 = G/MN

the latter of which turns S into a manifold, which we call the dual
space of S.

PROPOSITION 1.2.
(i) The mapping

4: (kM, a) -- kaK

is a differentiable mapping of (K/M) XA onto S and a regular w-to-
one mapping of (K/Il) XA' onto S'.

(ii) The mapping

q: (kM, a) --> kaMN

is a diffeomorphism of (K/M) XA onto S.

In statement (i) which is well known, w denotes the order of W,
A' is the set of regular elements in A and S' is the set of points in S
which lie on only one plane through o.

PROPOSITION 1.3. The following relations are natural identifications
of the double coset spaces on the left:

(i) K\G/K =A/W;
(ii) MN\GI/MN= A X W.

Statement (i) is again well known; (ii) is a sharpening of the
lemma of Bruhat -(see [6]) which identifies MAN\G/MAN with W.

The proofs of these results use the following lemma.

LEMMA 1.4.
(i) Let so denote the geodesic symmetry of S with respect to o and

let 0 denote the involution g--sogso of G. Then

(N(N)) n K = {e}.

(ii) Let C and C' be two Weyl chambers in ao and G = KAN,
G= KA N' the corresponding Iwasawa decompositions. Then

(NN') n (MA) = {e}.

2. Invariant differential operators on the space of horocycles. For
any manifold V, C(V) and C (V) shall denote the spaces of C-
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functions on V (respectively, C functions on V with compact sup-
port). Let D(S) and D(3), respectively, denote the algebras of all G-
invariant differential operators on S and S. Let S(ao) denote the
symmetric algebra over ao and J(ao) the set of W-invariants in S(ao).
There exists an isomorphism r of D(S) onto J(ao) (cf. [7, Theorem 1,
p. 260], also [9, p. 432 ]). To describe D(3), consider S as a fibre bun-
dle with base KIM, the projection p: S--K/M being the mapping
which to each horocycle associates the parallel horocycle through 0.
Since each fibre F can be identified with A, each UE S(ao) determines
a differential operator UF on F. Denoting by fJ F the restriction of a
function f on S to F we define an endomorphism Du on C(S) by

(Duf) F = Up(f I F) f E C(.),
F being any fibre. It is easy to prove that the mapping U-->D is a
homomorphism of S(ao) into D(S).

THEOREM 2.1. The mapping U-->Du is an isomorphism of S(ao) onto
D(S). In particular, D(3) is commutative.

Although G/MN is not in general reductive, D(3) can be deter-
mined from the polynomial invariants for the action of MN on the
tangent space to G/MN at MN (cf. [8, Theorem 10]). It is then
found that the algebra of these invariants is in a natural way iso-
morphic to S(ao), whereupon Theorem 2.1 follows. Let P denote the
inverse of the mapping U--Du.

3. The Radon transform. Let be any horocycle in S, dst the vol-
ume element on . For fE C (S) put

(Q).= f(s)dst, E .

The function J will be called the Radon transform of f.

THEOREM 3.1. The mapping f- is a one-to-one linear mapping of
c (S) into C ().

Now extend a0o to a Cartan subalgebra o of go; of the corresponding
roots let P+ denote the set of those whose restriction to o is positive
(in the ordering defined by C). Put p=j EeP+a and let p->'p de-
note the unique automorphism of S(a0) given by 'H=H-p(H)
(HEa 0) (cf. [7, p. 260]).

THEOREM 3.2. Let 'D(3) be given by

'D(S) = {E E D(3) I '(F'(E)) E J(ao)},
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and let D--15D denote the isomorphism of D(S) onto 'D(S) such that

'((D)) = r(D), D E D(S).

Then

(Df) = ] for fEC (S).
In view of the duality between points and horocycles there is a

natural dual to the transform f--f. This dual transform associates to
each function , G E C() a function E C (S) given by

+(p) = f (, dm(t),
.pS==

p s,

where the integral on the right is the average of ¢1 over the (compact)
set of horocycles passing through p. We put

If= (), fE C (S)

and wish to relate f and If.

THEOREM 3.3. Suppose the group G= Io(S) is a complex Lie group.
Then

(1) r I = cf, f Cc (S),

where c is a constant #0 and O is a certain operator in D(S), both inde-
pendent of f.

We shall now indicate the definition of l. Let J denote the com-
plex structure of the Lie algebra go. Then the Cartan subalgebra o
above can be taken as ao+Jao and can then be considered as a com-
plex Cartan subalgebra of go (considered as a complex Lie algebra).
Let A' denote the corresponding set of nonzero roots and for each
aEA' select Ha' in t)o such that B'(H ', H) =a(H) (HE-o) where B'
denotes the Killing form of the complex algebra go. Then Ha' Ea0 and
the element ILa, Ha' in S(ao) is invariant under the Weyl group W.
Then [- is the unique element in D(S) such that

r(El) = II Ha'.

The proof of Theorem 3.3 is based on Theorem 3 in Harish-Chandra
[5] (see also Gelfand-Nalmark [4, p. 156]), together with the Dar-
boux equation for S ([9, p. 442]). In the case when S is the space of
positive definite Hermitian nXn matrices a formula closely related
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to (1) was given in Gelfand [1]. Radon's classical problem of repre-
senting a function in R n by means of its integrals over hyperplanes
was solved by Radon [13] and John [10]. Generalizations to Rie-
mannian manifolds of constant curvature were given by Helgason
[8], Semyanistyi [15] and Gelfand-Graev-Vilenkin [3].

4. Applications to invariant differential equations. We shall now
indicate how Theorem 3.3 can be used to reduce any G-invariant
differential equation on S to a differential equation with constant
coefficients on a Euclidean space. The procedure is reminiscent of the
method of plane waves for solving homogeneous hyperbolic equations
with constant coefficients (see John [11]).

DEFINITION. A function on S is called a plane wave if there exists a
parallel family 4 of horocycles in S such that (i) S= UE t; (ii) For
each GE 4, f is constant on .

Theorem 3.3 can be interpreted as a decomposition of an arbitrary
function fE C (S) into plane waves.

Now select gG such that Z is the family of orbits of the group
gNg-. The manifold gAg-l o intersects each horocycle E orthog-
onally. A plane wave f (corresponding to ) can be regarded as a
function f* on the Euclidean space A. If DED(S), then Df is also a
plane wave (corresponding to ) and (Df) * =DAf*, where DA is a
differential operator on A. Using the fact that aNa-'CN for each
aEA it is easily proved (cf. [7, Lemma 3, p. 247] or [12, Theorem 1 ])
that DA is invariant under all translations on A. Thus an invariant
differential equation in the space of plane waves (for a fixed )
amounts to a differential equation with constant coefficients on the
Euclidean space A. Using Theorem 3.3, and the fact that [1 com-
mutes elementwise with D(S), an invariant differential equation for
arbitrary functions on S can be reduced to a differential equation
with constant coefficients (and is thus, in principle, solvable).

EXAMPLE: THE WAVE EQUATION ON S. For an illustration of the
procedure above we give now an explicit global solution of the wave
equation on S (Io(S) assumed complex).

Let A denote the Laplacian on S and let f EC, (S). Consider the
differential equation

(1) A = ·
Ot2

with initial data

(2) U(p, 0) = 0; - u(p, t) = f(p) (p E S).
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Let AA denote the Laplacian on A (in the metric induced by E), IPII
the length of the vector p in §3. Given aEA, let log a denote the
unique element HEao for which exp H=a. For simplicity, let e de-
note the function a--+eP (og a) on A. Let denote the horocycle N. o.

Given xeG, kEK, consider the function

Fk,(a) = f(xka s)dse

and the differential equation on A XR,

(3)

(a E A)

(AA - IIPII Vkz = - Vk,X,
09

2

with initial data

Vk. = 0; Vk Z}
t-O

= eFk,..

Equation (3) is just the equation for damped waves in the Euclidean
space A and is explicitly solvable (see e.g. [14, p. 88]). The solution
of (1) is now given by

u(p, t) = c p(V(p, t)),

where

(4) V(xK, ) = fVk,,(e)dk.

Here dk is the normalized Haar measure on K and c is the same con-
stant as in Theorem 3.3. It is not hard to see that the integral in (4)
is invariant under each substitution x--xu (uEK) so the function
V(p, t) is indeed well defined.
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