
HYDROTHERMAL MODELING FOR OPTIMUM TEMPERATURE CONTROL:
AN ESTIMATION-THEORETIC APPROACH

by

Bradley P. Schrader and Stephen F. Moore

Energy Laboratory Report No. MIT-EL 76-007

July 1976

�_�__E__II1_C__UWILI X-�l_·X^·^l··.l·_�- -LT^-l --- ·- �IPI�-�llill



_ �1�11 ... .-- C .-· ·-· I ..-- ---I



HYDROTHERMAL MODELING FOR OPTIMUM TEMPERATURE

CONTROL: AN ESTIMATION-THEORETIC APPROACH

by

Bradley P. Schrader

and

Stephen F. Moore

Energy Laboratory

and

Department of Civil Engineering

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

sponsored by
New England Power Company

under the

MIT Energy Laboratory Electric Power Program

Energy Laboratory Report No. MIT-EL 76-007

July 1976

> _^I..... _ A. *_ - -__ I-ly -��·1--···-�--14--.-i·IIP-·----l -----· *__II-__·U·LII.�ill_�--l-· ·.-.1- _.._._..___ IIIIIUU··UIIIIII·.�LmU·l



I- I I -Yu - ---- I - �--- --



HYDROTHERMAL MODELING FOR OPTIMUM TEMPERATURE
CONTROL: AN ESTIMATION-THEORETIC APPROACH

ABSTRACT

A short-term temperature forecasting (STF) system is proposed to
predict and control plant intake and discharge temperatures at Salem
Harbor Electric Generating Station. It is desired to minimize re-
ceiving-water (i.e., intake-water) temperatures during peak power
demand periods, in order to minimize the cost of complying with the
maximum discharge water temperature limit. This study addresses
the hydrothermal modeling requirements of an STF system.

An important element of an STF system is a predictive model of
plant intake water temperatures. For application to Salem Harbor
Station, strict model performance criteria exist, defining a model
development problem: Develop a simple model to predict plant intake
water temperatures 24 hours ahead, predicting daily peak intake tem-
peratures within 10 F on 90% of the days, and using only existing
measurements. An estimation-theoretic approach to model development is
used, which quantifies and minimizes the uncertainties in the model.
The approach employs optimal filtering and full-information maximum-
likelihood (FIML) estimation to obtain optimum parameter estimates.
A two-basin, two-layer hydrothermal model of Salem Harbor is developed.
The model computes hourly intake temperatures, incorporating tidal
flushing, stratification, surface heat exchange, and wind advection of
the plume. Twenty-eight model parameters and five noise statistics
are estimated from intake-temperature data.

Preliminary best-fit parameter values are obtained subjectively,
followed by FIML parameter estimation using a data base of 96 hourly
measurements (7/29 - 8/2/74). The model is tested for 106 days (5/17-
9/20/74) and various performance measures are computed, including sum-
of-squares of measurement residuals (S), whiteness (P), percent of daily
peak temperature predictions within 1F of actual (T), and others.
Visual inspection of 24-hour intake temperature predictions shows that
the two-basin, two-layer model performs qualitatively well. However,
the model fails statistical tests on S and P, indicating structural
weaknesses. FIML estimation yields physically unrealistic values for
certain parameters, probably compensating for inadequate model struc-
ture. Despite structural flaws in the two-basin, two-layer model, FIML
estimation yields parameters with consistently better performance than
the preliminary estimates (by a small amount).
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It is concluded that the two-basin, two-layer model is presently
unsuitable for STF use, largely due to structural weaknesses. Pos-
sible corrections are suggested; however, a statistical model of
hourly temperatures appears to offer greater potential accuracy than
physically-derived models. FIML parameter estimation is shown to be
useful for water quality model development on a real system, particularly
after subjective model development has been exhausted.
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CHAPTER ONE

INTRODUCTION

1.1 Background

The focus of this study is a proposed computerized system for

short-term forecasting and control of discharge temperatures at Salem

Harbor Electric Generating Station. Salem Harbor Station is a 750 mega-

watt steam-electric generating station located in Salem, Massachusetts,

on the Atlantic Coast just north of Boston (see Figure 1-1). The New

England Power Company (NEPCO) owns and operates the fossil-fueled sta-

tion. The plant employs a once-through condenser-cooling system, with-

drawing seawater from Salem Harbor, and discharging the heated water

back into the Harbor (see Figure 1-2). When the temperature of this

discharged water threatens to exceed the State maximum discharge tem-

perature limitation (T max), the plant must reduce power production to

reduce the heat added to the discharge. These unscheduled load re-

ductions force the station to purchase make-up power, frequently at

peak prices (during peak demand periods).

The objective of the proposed short-term temperature forecasting

(STF) system is to reduce the cost of compliance with the present dis-

charge limitation. Hourly electric power generation is economically

scheduled, taking into account the heat retention capacity of Salem

Harbor, the difference in wholesale electric power costs between day

and night, and the maximum discharge temperature limitation. The

system is based on the assumption that a fraction of discharged heat

re-enters the cooling system (6 to 12 hours later), as warmer-than-

-9-
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normal cooling water. This recirculated heat adds an increment to the

total discharge temperature, Crawford (personal communication) suggests

that if generation is reduced late at night, the power plant could pro-

duce more power the next evening during peak demand, since the intake

water would be cooler. Experiments by Kenison and Galli (1975) support

this suggestion.

This approach to generation control is economically attractive be-

cause make-up power is cheaper late at night than during peak demand

periods (1$ - 2/MWH vs. $5 - 10/MWH). The proposed STF system allows

economic generation control, by determining the nighttime load reduction

necessary to ensure that the discharge stays below T during the nextmax

day's peaking time, The system also computes the net savings from

following the recommended load pattern instead of that originally fore-

cast, The relationship between discharge temperature, power production,

and power costs is depicted for a hypothetical case in Figure 1-3,

showing the potential advantage of STF. Figure 1-4 summarizes the STF

system in flow-chart form.

The STF system for power plant discharge control can be broken

down into three principal components:

1. An accurate model of intake temperatures as a function of

previous discharge temperatures and other environmental

factors:

Tin = fl(Tout, environmental variables)in 1Tout'

- 12 -
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2. An accurate model of AT (from intake to discharge) as a function

of plant operating characteristics: AT = f2(plant operations)

3. Control laws for the optimal control of plant operations

under existing economic and environmental objectives.

Because T = T. + AT, one can combine the models from 1 and 2, This
out in

yields a recursive model of Tout as a function of environmental factors

(which one cannot control) and plant operations (which one can control):

Tout(n+l) = f3[Tout(n,n-1,...), Environment (n,n-l,...),

Plant operations (n,n-l,...)].

Control laws use this model to define minimum-cost plant-operation

schedules which ensure T < T
out - max

STF forecasts of discharge temperatures must be fairly accurate to

achieve economic control of generation. The risk is that a costly night-

time load reduction, recommended by the STF system, may not be necessary

to meet discharge limitations. Kenison and Galli (1975), estimate that

the predicted peak temperature for the next day must be accurate to with-

in + 1F of the actual, 90% of the time, to justify using the STF system.

(This is a subjective estimate; probabilistic analysis of expected

savings with this system might show a lower accuracy to be acceptable).

To minimize STF operating costs, the system must employ computer

programs which are small and inexpensive to run. This also encourages

a simple system which is easy for field personnel to understand.

1.2 The Model Development Problem

An STF system requires a model of intake water temperatures at

Salem Harbor Station. From the preceding background discussion, the

model development problem may be stated as follows:

- 15 -
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Develop a simple and accurate model of intake tem-
peratures at Salem Harbor Station, The model must
predict up to 24 hours into the future. It must pre-
dict the daily peak intake temperature within + 10 F,
90% of the time. It must be developed using existing
data from Salem Harbor.

The present study focuses on this model development problem. Develop-

ment of other STF components is not treated herein.

Considerable data exists on the hydraulic and thermal behavior of

Salem Harbor, providing a good basis for model development and verifi-

cation. Available data includes three years of hourly records of

temperatures, weather, tides, and power plant operations, combined with

occasional synoptic temperature measurements (outside Salem Harbor).

Appendix B summarizes the types and sources of data available.

1.3 An Estimation-Theoretic Approach

Estimation theory is a unified body of theories and algorithms for

estimation of variables in uncertain systems (see Schweppe, 1973). Al-

gorithms exist for obtaining optimal (minimum uncertainty) estimates of:

states, initial and boundary conditions, inputs, parameters, and model

structures.

These estimation techniques share a common approach to analysis of

the uncertainties in a system. Information about a system is acknowledged

to exist both in a model of the system and in measurements of the system.

It is also acknowledged that there are imperfections in both the model

and the data. Under these conditions, a best estimate of the system

states, parameters, or other attributes is obtained by combining the

information from the model and data. The uncertainty in an estimate can

be quantified, and thus an optimal (minimum uncertainty) estimate may be

obtained.

- 16 -

·--- ----1--------- -� L�--- � -h_--_I ._ I_ II_�� _�_ ___ _ __ �� _ _ _ _



This report approaches the above model development problem in

estimation-theoretic terms, as a problem in model identification, para-

meter estimation, and state estimation. The approach to this problem

follows that proposed by Schweppe (1973):

1. Hypothesize a model structure

2. Estimate parameters

3. Evaluate the resulting model

To do the estimation, selected tools of estimation theory are employed:

Kalman Filtering - for optimal estimation of states and initial

conditions

Full-Information Maximum-Likelihood Parameter Estimation - for

optimal parameter estimation.

The type of model development problem examined herein is unique

among the water quality modeling literature, in specifying an accuracy

criterion for a water quality model of a real system. The only similar

study, by Kenison and Galli (1975), treats the same Salem Harbor pro-

blem considered herein.

The maximum-likelihood parameter estimation scheme employed in the

present study is also unique among water quality models. The closest

analog is the work of Young et al (1971) and Young and Whitehead (1974).

They develop an Instrument Variable-Approximate Maximum Likelihood

(IVAML) method for parameter estimation, and apply it to a river BOD/DO

system. The IVAML approach is theoretically suboptimal, but the method

may yield near-optimum estimates at potentially lower costs than a full-

information maximum-likelihood method. Also related to this work are

- 17 -
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the investigations reported by Shastry et al (1973). They employ

maximum-likelihood and weighted least-squares methods (without filtering)

to estimate the parameters in alternative BOD/DO models.

A variety of other parameter estimation techniques are reported for

water quality models. Young and Beck (1974) apply the Extended Kalman

Filter to estimate parameters in a BOD/DO system. Water Resources

Engineers, Inc. (1973) also employ the Extended Kalman Filter, to

estimate ground water basin parameters. Lee and Hwang (1971) use a

quasi-linearization approach to estimate BOD/DO model parameters.

Ulanowicz et al (date unknown) use a multiple regression to estimate para-

meters of a Lotka-Volterra plankton population model; in addition, they use

the F-values from the regression to identify and delete unimportant

terms in the model, Koivo and Phillips (1971) employ a stochastic

approximation method to estimate parameters of a BOD/DO system, in both

simulated and real rivers. Koivo and Philips (1972) obtain least-

squares estimates of BOD/DO model parameters, again for both simulated

and real rivers,

Though unfamiliar to water quality modeling, experience with

maximum-likelihood parameter estimation is common in other applications,

such as aeronautics (Rault, 1973), industrial processes (Gustavsson,

1973) and electric power systems (Baeyens and Jacquet, 1973).

The software for optimal filtering and maximum-likelihood para-

meter estimation in this study is provided by GPSIE - "General Purpose

System Identifier and Evaluator" - developed by Peterson and Schweppe

(1974). GPSIE is a powerful model development tool offering, among

- 18 -
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other options: simulation, optimal filtering, maximum-likelihood

parameter estimation (including several non-linear optimization

routines), plotting, bad data detection, and calculation of various

measures of model performance (such as whiteness-of-residuals, the

hessian at the optimal parameter estimate, etc.). GPSIE can be used in

either interactive or batch mode, and is applicable to any model in

linear, state-space, white-process form. Petersen (1975) applies GPSIE

in developing a dynamic model of U,S. energy demand.

1.4 Policy Aspects of an STF System

The ultimate utility of a new environmental control technology

is determined by its fit with applicable environmental policy. Thus, in

conjunction with developing a new technology, it is wise to explore the

policy aspects of the proposed work. Policy issues associated with an

STF system are analyzed in Schrader (1976). Environmental impacts and

economic benefits of STF are uncertain, but appear to be low. Therefore,

use of STF (if this occurs) is not expected to raise policy issues.

1.5 Objectives

To summarize the foregoing discussion, this study has two objectives:

1. Solve the STF model development problem posed above, i.e.,
develop a simple model of intake temperatures at Salem
Harbor Station that predicts the daily peak intake tem-
perature within 1F, 90% of the time.

2. Apply optimal filtering and maximum likelihood parameter
estimation to a water quality model of a real system using
field data. Evaluate the advantages and disadvantages of
using these techniques in this application.

- 19 -
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1.6 Overview of Contents

To introduce the estimation methods used in the model development

process, Chapter 2 presents a review of state and parameter estimation.

Chapter 3 presents alternate model structures for this problem, and

describes the structure ultimately selected, In Chapter 4, estimation

methods are applied to the appropriate model structure. Chapter 4 pre-

sents the results of the estimation process, and evaluates the perform-

ance of the resulting model, Chapter 5 presents a summary, conclusions,

and recommendations.

- 20 -

__�� _ __ __ __ ___ I_ 1�1 1 _ __ _ _ _ I_ I·



CHAPTER TWO

STATE AND PARAMETER ESTIMATION METHODS

This chapter reviews the state and parameter estimation methods

used to develop the model of intake water temperatures. This review

explains (qualitatively) the mathematical tools used herein, and

establishes a basis for interpreting the usefulness of these tools.

The chapter presents only the basic concepts of how the estimation

methods work; the reader is referred to Schweppe (1973) for complete

derivations.

2.1 Review of Optinal Filtering and Maximum-Likelihood Parameter

Estimation

Fundamental to most of estimation theory is the State-Space, White

Process Model for uncertain dynamic systems (Schweppe, 1973). For the

linear, timc-varying case, this form is:

x(n) = F(n-l)x (n-l) + B(n-l)u(n-l) + w(n-l)

z(n) = H(n)x(n) + v(n)

where: x(ni) = vector of state variables at time n

F(n) = state transition matrix

u(n) = vector of deterministic, exogenous inputs

(n) = matrix of input gains

w(n) = vector of model noise

z(n) = vector of measurements (or "observations")

H(n) = measurement matrix

v(n) = vector of measurement noise

- 21 -
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Model noise, measurement noise, and uncertain initial conditions are

modeled as follows:

E[x(o)] = x E[w(n)] = 0 E[v(n)] - 0

(n), man (R(n), m n

E[x(o)x'(o)] = f E[w(m)w'(n)] = E[v(m)v'(n)] =
O, m n O. min

E[x(o)w'(n)] = 0 E[x(o)v'(n)] = O E[w(m)v'(n)] = O All m,n

Future estimates of the state-vector are predicted using this

model. The error covariance . is a measure of the uncertainty in the

state estimate:

_=(n) = E[(x(n) - (n)) (x(n) - (n)) ' ]

where: x(n) = true value of state vector

£(n) = estimated state vector

E[ ] = expectation operator.

Schweppe (1973) shows that is given by:

£(n) = F(n-l) (n-l)f' (n-l) + (n-1)

£(o) = v_

Measurements can also yield an estimation of the state. In appli-

cations to real systems, neither the model nor measurements is perfect;

thus the resulting state estimate from either will be uncertain. The

"filtering" result of estimation theory provides a method for optimally

combining the information in the model and the measurements. The

- 22 -
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filtered state estimate that is produced has less uncertainty than an

estimate based on either model or measurements alone; optimal filtering

(also called Kalman Filtering) yields the minimum-variance state

estimate (Schweppe, 1973),

A heuristic explanation of the filtering process is as follows:

1. Begin at time n with a filtered state estimate incorporating

measurements through time n: x(nln). Predict the state at time n+l:

X(n+ln) = F(n) (n n) + B(n)u(n)

This is the best estimate of x(n+l) based on the model alone. The un-

certainty in this estimate is:

;(n+lln) - (n) (nln) '(n) + (n)

2. Take a measurement at time n+l: z(n+l), A state estimate

based solely on this measurement is (Schweppe, 1973):

(n+l) = [I' (n+l)R (n+l)H(n+l) ]-1 H'(n+l)R (n+l)z(n+i)

The uncertainty in this estimate is:

(n+l) = [H' (n+l)R (n+lH(l ) n+l)]

3. Estimate (n+l!n+l). The filtered estimate (or "updated"

estimate) is a weighted average of the state estimate based on the model

and the estimate based on the measurement. The weighting scheme is

determined by the relative uncertainty of the two estimates (Schweppe,

1973):

=(n+lln+l) = (n+ln+i)[H'(n+l)R-l(n+l)z(n+l) + -l (n+lln)x(n+ln)]

- 23 -
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The uncertainty in the filtered estimate is:

(n+lln+l) = '(n+l)l (n+l)(n+l) -1 (n+ln)]-l

Note that this uncertainty is less than either (n+lln), the uncertainty

in the model estimate, or (n+l), the uncertainty in the measurement

estimate.

The model parameters are the variables in the model which are

independent of the states and the inputs. In the State-Space, White

Process Model, the parameters include the initial conditions x ; the

elements of the matrices F(n), H(n), and B(n); and the elements of the

covariance matrices (n) and R(n). If some of these parameters are

unknown or poorly known, they may be estimated from measurements on the

system. Maximum-likelihood parameter estimation is a tool for obtaining

optimal parameter estimates under conditions of uncertainty in the

model and-measurements.

The previous model can be re-written to indicate that it incor-

porates uncertain parameters, which are to be estimated:

x(n) = F(,n+l) x(n-lj) + (a,n-l)u(n-l) + w(n-l)

z(n) = H(a,n)x(n) + v(n)

where a = vector of unknown parameters.

Maximum-likelihood parameter estimation is essentially an iterative

searching procedure over alternate parameter estimates a.. Define the
-J

vector of all observations through time n:

z (1)

z(n)

z(n)
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Then the overall maximum-likelihood parameter estimation procedure is

as follows (see Schweppe, 1973):

1. Propose a parameter estimate a.

2. Run the model through time n, using a = aj

3. Compute the likelihood Z(ajlz ) of model j. (Note that

(ajln ) = Pj[z ], the probability that the observations z

would be generated by model j.)

4. Propose a new 2k and repeat, until the ai with the maximum

likelihood is obtained.

The key step in this process is the computation of the likelihood.

A recursive method is described below which employs a filtering algorithm

to generate optimal state estimates for the likelihood computation.

By definition of conditional probability:

Pj[Zn] = Pj[z(n)jlzl] P[Z n]

For convenience, the log-likelihood is considered, instead of the like-

lihood itself:

Log-likelihood = Sj(n) = n Pj [zn]

in Pj [z(n)z -l] + n P[z 

= Zn P.j [Z(nll + (n-l)

where $j(o) = 0.

If one assumes that the noise processes x , w(n) and v(n) are all

Gaussian, then the conditional probability distribution Pj[z(n)zn..1 ]

- 25 -
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is Gaussian, and can be computed for any value of z(n) (Schweppe, 1973).

Taking the log of this distribution, and multiplying across by 2, one

obtains:

2 n Pjl (n) lzl] -

-k n 2 - ,n[detE (njn-1)] - 6' (n)Zzl (njn-1)6 (n)
-Z -- - -- -

where:

k - dimension of z(n)

6 (n) = measurement residual

= z(n) - z(n in-1) = z(n) - H(n) x (nln-1)

E (nIn-1) = covariance of measurement residual

= Hi (n)E (nin-l)H' (n) + R (n)

The residual 6 (n) is computed at each time step from z(nln-1), which

is in turn a one-step prediction from x(n-1 n-l) Likewise, (nIn- is

computed directly from the filter results for time n-l, (n-l n-1).

In summary, the recursive algorithm for computing model likelihood

in one pass through the data is:

1. Given j(n-1), x(n-lIn-1) and Z (n-lln-1), predict

z(n n-l) and (n n-l).

2. Use z(n) with z (nln-l) and Z (nln-l) to compute

In Pj [z(n) ln ], and add to 5j(n-1) to get Fj(n).

3. Use z(n) with optimal filter to update model: (nln) and

E (nin).
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The likelihood calculated in this way employs all information available

on the modeled system, and is called the "full-information" likelihood

in this thesis. The estimation method is called "Full-Information

Maximum Likelihood (FIML) estimation.
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2.2 Alternate Measures of Model Performance

The model development problem posed in Chapter One specifies that

the error in daily (24-hour) peak temperature predictions shall be less

than 1F, in 90% of the predictions. The implied measure of performance

is computed as follows:

1. From initial conditions, make an unfiltered forecast of in-

take temperatures over the next 24 hours.

2. Compute the error between the predicted and observed peak

temperatures for this period.

3. Repeat steps 1 and 2 for m consecutive 24-hour periods.

This-measure-o ferformance-is T, defined as:

T = percentage of 24-hour periods fo.: which the error
in peak intake temperature prediction is less than
or equal to 1F.

The model development problem specifies the accuracy criterion:

T > 90%.

The full-information.likelihood is a different measure of model

performance, not strictly equivalent to T. One important difference is

that the full-information likelihood involves updating of the model at

every time step (via optimal filtering), whereas T involves an un-updated,

24-hour prediction. A second difference is that the full-information

likelihood incorporates prediction-measurement discrepancies at every

time-step in a 24-hour period, whereas T only accounts for the dis-

crepancy in peak temperatures in any 24-hour period. In qualitative

terms, T is a measure of the fit of the model to daily peak temperatures,

- 28 -
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when the model is updated (re-initialized) once every 24 hours By

comparison, the full-information likelihood is a measure of the model's

fit to the complete stream of hourly temperatures, when the model is

updated every hour..

A variety of other measures of model performance also suggest

themselves. Several of the measures are used to evaluate model per-

formance in Capter Four:

1. Sum of squares of normalized measurement residuals, S:
m 24

S = (['(n) z- 1 (nln-1) 6 (n)
i=l n=l

where m = number of days.

Schweppe (1973) shows that for a perfect model, S is a chi-square

distributed variable with d degrees of freedom:

S X2 (d,2d)

where d = (24m k) - h

h = dimension of a

2
The variance of S is S = 2d.

These results are helpful for distinguishing local from global

maxima on the likelihood surface. If Sj 0 E[S] + 2oS there is reason

to doubt the validity of the model with parameters a. It may be that

one's initial estimates for q and R are too large. This will inflate

E ,cthereby reducing S and artificially improving i . Thus, a false

maximum-likelihood point may be located. Improved estimates of Q and R

are ones sufficiently low to make S FrS], if possible. A second maxi-

mum-likelihood estimation, using improved Q and , will yield better
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estimates of . (This measure of performance applies only to fully

updated models).

2. Mean-square Error of Predicted Hourly Temperatures, M:
m 24 2

M =m L {24 z 2 (n4l - z(n)] } , where z = intake temper-
m i 2 n=l

i nil n ature

For each day i, an unfiltered 24-hour forecast is made (just as would

be done using the STF system). The mean-square error of the hourly

predictions is computed, and averaged over m days. M is an absolute

measure of the error in a prediction. However, it can give an erroneous

estimate of model accuracy if used alone, because it fails to account

for potential measurement errors and random variations in inputs.

3. Mean-square Error of Predicted Daily Peak Temperatures, D:

m

D - m £ [zi - Zi]
i=l

where zi and zi are the predicted and measured peak intake temperatures,

respectively, for day i. Unfiltered 24-hour forecasts are used to

generate z. D is related to T. If one assumes that the error, , in

2
peak temperature predictions is normally distributed, - N(o,a ), then

2
D is an estimate of a . Under this assumption, to achieve T > 90%, one

must achieve D < 0.78.

4. Normalized Wliteness of Residuals, P(a):

Peterson (1975) defines the whiteness test matrix:

P(a)ik = (R(a)ik - E[R(a) ik)/R(a)P~a ik R(a)ik

- 30 -
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where P(a)ik = number of standard deviations by which the ikth

element of the whiteness matrix differs from its

expected value.

i N-a , 
R(a) N a O [6z (n) z (n+a)]N-a -z -Xn--l

= whiteness matrix for lag a

-1/2
6 (n) = (nln-l)6 (n)

1/2/N, for R(o)ii

R(a)ik =/I7IN, for R(o)ik' i $ k

/IN - a/N2, for R(a), a o

I, a = 0
E[R(a)] -= for perfect model

0,a 0 O

Peterson (1975) indicates that this is an extremely sensitive measure of

model performance. He suggests as a rule of thumb that the elements of

P(O), P(l), (2) and P(3) should be less than four or five, to indicate

an acceptable model. This measure of performance applies only to fully

updated models.

5. Covariance of 24-hour Predicted Temperature, az (n + 241n):

o2 (n + 241n) = ith diagonal element of (n + 241n) for
z -Z

which zi = intake temperature

Note that a2(n + 241n) is not constant, but a function of n.
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Although the model development problem is posed in terms of T,

parameter estimation is done using the full-information maximum-like-

lihood criterion. This choice is made for several reasons. First, the

full-information likelihood incorporates into the parameter estimation

all available information about the system. The off-peak behavior of the

system contains useful information for model development, which T

ignores. Second, because it is derived from probabilistic assumptions

about the modeled system, the maximum-likelihood approach allows one to

infer how well the resulting parameter estimate will perform on data

not included in the estimation. If the probabilistic assumptions are

true, then the full-information maximum-likelihood parameter estimate is

the optimal estimate (Schweppe, 1973). Under these conditions, maxi-

mizing the full-information likelihood is sufficient (but not necessary)

to maximize T.

In addition to being theoretically optimal, the full-information

maximum-likelihood approach offers other advantages. By modelling the

full, hourly behavior of the system, one automatically solves the problem

of predicting the time of peak intake temperature. The time of the peak

is needed (fairly accurately), so that the STF system may determine

temperature-control measures with reasonable confidence. A parameter

estimation based on T requires additional manipulation to fit time-of-

peak records, which may be impossible without reducing T.

Cost is also a factor in the present case, wherein a full, hour-by-

hour filtering algorithm is required to initialize the model each day

(see Appendix C). The full-information likelihood (using the
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filtering results also used to initialized the model) incorporates 24

data points for each day, compared to 1 data point per day (i.e.,.the

peak temperatur for T. Thus, an estimation using T must span 24 times

as many days as one using the full-information likelihood, to have the

same "size" data base. If the same model (with full filtering for ini-

tial conditions) is used in both estimations, the estimation using T

requires roughly 24 times more computation than one using the full-

information likelihood. (The opposite would be true if full filtering

for initial conditions were not required).

One further advantage of this approach is that computational delay

and inconvenience are minimized by CPSIE, which offers fully-implemented

routines for full-information maximum-likelihood parameter estimation.
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2.3 Optimization Procedure

For a given set of data, z , the log-likelihood is a non-linear

function of a.:

(n)=-f(ajl

Maximum-likelihood parameter estimation requires an iterative search for

the values of a which maximize (n). This is essentially a non-linear

optimization problem, for which a variety of solutions exist (see

Aoki, 1971). The present study uses a method originally proposed by

Powell (1964) and refined by Zangwill (1967), for minimizing a function

without calculating derivatives.

The basic approach of the Powell search is to iteratively revise

a set of orthogonal search directions, until a set of directions is

found along which no further increase in the function can-be achieved.

See Zangwill (1967) for the detailed search algorithms. Zangwill proves

that this method converges to the minimum of any strictly convex function.

By symmetry, the method is equally valid for finding the maximum of a

strictly concave function.

It is impossible to define a priori-which optimization procedure

is best for the maximum-likelihood identification problem at hand. The

shape of the log-likelihood function, (n) = f(ajz ), is not generally

known a priori. The function may be multi-modal, in which case no

optimization procedure can assure the user of finding the global maxi-

mum. Thus, selection of an optimization procedure is based on the user's

intuition about the problem and about the solution procedures available.

The Powell search is chosen for the present study mainly because of
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Peterson's (1975) success using the method on a 20-variable FIML para-

meter estimation. Also, the Powell search is potentially less expensive

than gradient searches for cases initialized relatively near the optimum

point. The Powell search is also chosen because it is conveniently

available on GPSIE. (Also available, but not used in this study, are

the Newton Search (see Aoki, 1971) and Davidon-Fletcher-Powell Search

(Fletcher and Powell, 1963)).

This concludes a review of the tools used for state and parameter

estimation in this study. The following chapter develops the basic

model, to which these tools are applied.
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CHAPTER THREE

MODEL STRUCTURE

3.1 Alternate Model Structures

A taxonomy of possible models for Salem Harbor is presented in

Figure 3-1. Two basic model structures are considered, representing

fundamentally different approaches to model development. In the

statistical approach, states and/or measurements of interest are

viewed as random processes, outputs of a stochastic input-output

system. A model, in this paradigm, is perceived as a relation be-

tween the inputs and outputs. Model development consists of itera-

tively revising these relations, in an effort to explain as much as

possible of the variance of the output process(es). Such models

may also be termed empirical.

In the physically-derived approach, states, inputs, and measure-

ments are perceived to be related to each other by deterministic laws

reflecting causality. Model development, in this paradigm, consists

of finding the true value of weakly known parameters, and the true

representation of causal mechanisms.

There are advantages to each approach. The advantage of statis-

tical models is their relative algebraic simplicity, making the dy-

namic relationships between the variables clearer than in physically-

derived models. The structural modifications necessary to achieve

a desired output are thus easier to perceive. Although more com-

plex, physically-derived models offer the advantage of incorporating

all of one's intuition and experience about the system being modeled.
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This thoroughness facilitates modeling of systems for which little

or no operating data is available.

Statistical models of water quality are uncommon. One likely

reason is that an adequate data base at any one site is rare. Also,

statistical models do not build from comprehensive, general laws,

in contrast to most water quality models. This unrealistic approach

may leave some modelers uncomfortable. Nevertheless, as existing

environmental monitoring programs accumulate fairly long records for

particular sites, empirically derived models should be considered

for some applications.

Two types of statistical models and two types of physically-

derived models are considered for the Salem Harbor intake tempera-

ture problem (Figure 3-1):

1. "Peak-to-peak extrapolation" models use today's peak intake

temperature, plus other weather, tide,and plant generation data,

to predict tomorrow's peak intake temperature and the hour in which

it will occur. No intervening temperatures are predicted.

2. Time series models predict temperatures at regular time

intervals. This is the most general form of statistical model.

3. "Basin-type" models divide the water body into a suitable

number of cells (or "lumped elements"), and use physical principles

of mass and energy transfer between cells to predict cell tempera-

tures at fixed time intervals. As defined here, basin-type models

do not explicitly observe the conservation of momentum; water flow

between cells is governed by flows at the boundaries and by assump-

tions on cell depth.
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4. Fully physically-derived models are derived from the govern-

ing equations of fluid flow. These models are essentially numerical

solutions of the governing equations, suitably discretized in space

and time, and with suitable assumptions. The details of each model

type are assembled in Table 3-1.

A physically derived, basin-type model structure is selected

for the present study. Statistical structures are rejected because

their potential accuracy-appears too low (Table 3-1). The basin-

type model appears to offer ahigher chance for success, by incorporat-

ing a more refined representation of the suspected dominant physical

processes (tide, wind, surface heat exchange, plant operation, and

stratification). A fully physically-derived model of harbor tempera-

tures is rejected because: 1) it appears to be too complex and ex-

pensive to meet the original objective of a simple model; 2) there

is doubt whether such complexity will in fact enhance accuracy, or

whether this complexity will introduce more uncertainty than it

eliminates.

The basin-type model offers an intermediate level of refinement:

simpler than a fully physically-derived model, yet incorporating

more physical intuition than statistical models. The choice assumes

that a simple, physically-derived treatment of the dominant physical

processes, "tuned" by optimal estimation of parameters, will yield

sufficient accuracy with sufficient simplicity. The specifics

of the resulting model structure are described in the following sec-

tion.
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3.2 A Simple Two-Basin, Two-Layer Model for Temperature in Salem

Harbor

Based on physical principles and past engineering experience with

hydrothermal systems, harbor temperatures (on an hourly time scale)

appear to be dominated by the following factors: stratification,

tides, surface heat exchange, wind, and power plant operations.

This is suggested by the subjective-intuitive model of Kenison and

Galli (1975), and by inspection of temperature data.

To incorporate these dominant factors in a model, a simple

schematization of Salem Harbor (see Figure 3-2) is used. The ideal-

ized harbor consists of two basins, each having a surface and a

bottom layer. The boundary between the two basins is determined

by the breakwater jutting out from the power plant. The harbor is

thus broken into four cells, each assumed well-mixed. Across the

open boundary from Basin 12 is Salem Sound, also represented by a

surface and bottom layer. To simulate harbor temperatures, the

model tracks mass and energy tranfers between the cells, the atmos-

phere, and the sound; conservation of mass and energy are observed.

In each time-step, water (and hence, energy) is advected between

cells and the sound, according to tidal and power plant flows.

Energy is also transferred across the air-water interface. At the

end of each time-step, the temperature of each cell is computed;

plant intake temperature is then computed from the cell temperatures.

The model thus consists of two finite-difference equations for

each cell: an equation for conservation of mass, and an equation
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for conservation of energy (the latter yielding cell temperature).

The following paragraphs develop these equations, highlighting impor-

tant assumptions and explaining the unknown parameters to be estimated

in Chapter Four. For reference, the resulting equations for each

cell are listed at the end of this section in Tables 3-2 and 3-3.

A summary list of symbols is also provided at the beginning of the

report. Sources of data used for model development are summarized

in Appendix B.

3.2.1 Conservation of Mass

Basin #1, Surface Layer:

d
dt (Vs 1 ) Q S12 QSB1 + (1 Y)Qp (1)

where

VS = Volume of Basin #1, surface layer

QS12 = Flow rate from Basin #2, surface layer into Basin #1,

surface layer

QSBl = Flow rate in Basin #1, from surface to bottom

= Flow rate through Salem Harbor Station

y = Plume re-circulation factor (described below)

The heated plant effluent is discharged via a surface discharge

canal; hence, the model assumes that allplant discharge enters the

surface layers. To allow for plume re-circulation, a fraction y

of the discharge is assumed to enter the surface layer of Basin #2

directly. This re-circulation factor is related to the tide as follows:
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> 
Y Y2

(Y1 - 2 ) (-h)
y := Y2 + - < 

5

Thus, for 1 > Y2' re-circulation will reach a maximum at peak ebb

tide. Y2 is a parameter defining the proportion of discharge "nor-

mally" entering Basin #12 (during flood tide); y1 is a parameter

determining the maximum amount of re-circulation at peak ebb.

Qp is known a priori from planned power plant operating schedules.

The area of each basin (A1 or A2) is constant, since the harbor is

idealized as a rectangular prism. The thickness of the surface

layer (hs ) is assumed constant and equial in both basins. (This

approximation appears roughly valid for the summer months, based

on observed temperature profiles. It is worthy of refinement,

however, in later work.)

With these assumptions, the left-hand side above is zero, and

QSB1 QS12 + (1- )Qp (2)

Basin #1, Bottom Laver:

d d (V Q + Q ~~~~~~~~~~~~(3)
dt( 31) 1= B2 + QSB

where

VB1 = Volume of Basin #1, bottom layer

QB12 = Flow rate from Basin #2, bottom layer into Basin #1,

bottom layer.
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Recalling that basin area is constant, Eqo (3) becomes:

A d (h Q + Q (4)
1 dt (B) QB12 +QSB1

where hB! = depth of bottom layer, Basin #1.

From published tide tables (of the U.S. National Oceanographic

and Atmospheric Administration), the tidal height h (relative to

mean low water) may be obtained for a given time. Interpolation

between high and low tides is done by fitting one-half of a sine

wave between each two such points. With a time-step size of 15

minutes or less, this estimated tidal height may be considered uni-

form throughtout the harbor. The depth of each basin at mean low

water is thus:

hl. = h +h
hirt in s Bl,min

h2 ,mi -h +hh2min hs + hB2,min

Where h and h are the minimum bottom layer depths.
Blmin B2,min

The rate-of-change of tidal height, h, may be considered

uniform throughout the harbor. Thus,

1 S+ Bl Bl

since surface layer thickness is constant. Substituting back into

Eq. (4):
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(6)QB12 + QSB1 Al

The total tidal flow entering Basin #1 is

Q12 Q12 + QB12 A1 h - (1 - Y)Qp (7) 

A proportion 1 of this flow enters via the surface layer; thus

(8)
QS12 1Q1 2 and QB2 = (1- )Q12

The apportionmentof flow is assumed' to be related to the relative

layer thicknesses:

hB ]

= b h ] , and (1 - a1 ) = b[h + l
[hS + Bl S Bl

(9)

The parameter b is related to the horizontal velocity profile

at the boundary of basins 1 and 2:

Depth

hS + h1

hBl

0 Velocity
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Given b, and thus a, the inter-cell flows for Basin #1 are:
.L 

QS12 a [Al - (1 - )Qp]

QB12 (1 - a) [A - (1 - Y)Q] (10)

Basin #2, Surface Layer:

QSB2 QS23 - QS12 (1 - Y)QP (11)

where:

QSB2 - Flow rate, in Basin #2, from surface to bottom layer

QS23 = Flow rate from the surface layer of Salem Sound into

Basin #2, surface layer

Cooling water is assumed to be withdrawn solely from the sur-

face layer of Basin #2. This rather unusual assumption is forced

by the data available for model development: "intake temperature"

is measured at a point 2 feet below the water surface, and AT

across the plant is computed between this point and the discharge.

Since the model is designed to use these AT values, it is necessary

to assume intake water is withdrawn from the surface layer, at the

"intake temperature", in order to maintain the proper heat balance:

Heat discharged = Q Tout p cp = Q(T + AT) c.
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Basin #2, Bottom Layer:

d
dt (VB2 ) 

TM B23 + QSB2

VB2

QB23

(12)- QB12

= Volume of Basin #2, bottom layer

- Flow rate from the bottom layer of Salem Sound into

Basin #2, bottom layer

Employing Eqs. (11) and (10), and simplifying:

QS23 + QB23 -- (A1 + A) h Q23 = total flow into harbor

(13)

By analogy to Basin #1, bottom layer:

Qs2 3 a2 (A1 + A2)h

QB23 = (1 - a 2) (A1 + A2 )h

where
hS

2 b2[hS +hB 2

3.2.2 Conservation of Energy

Basin #1, Surface Layer:

(14)

(15)

d
d (ES1 ) = P c[IQ 12 (a1 T + ( a1) TS1 ) + (1 - )Qp Tu t

- SB1 (a2 TS1 + (1 - a2) TB1)] + ( S1 - B1) A1

(16)
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where:

ES1

p

cp

T
S1

TS2

TB1

T
out

~S1

%B1

= Total thermal energy in Basin #1, surface layer

- Density of salt water 64 lbm/ft3

= Heat capacity of salt water 1 BTU/lbm F

= Temperature of Basin #1, surface layer

= Temperature of Basin #2, surface layer

= Temperature of Basin #1, bottom layer

= Plant discharge temperature

=Net surface heat flux, Basin #1

= Surface-bottom heat transfer, Basin #1

1,
a1 {

0,

1,
a2

0,

QS12 > 0

QS12 < 0

QSB1 > .

QSbl < 0

The switches a1, etc. ensure that the proper energy balance applies,

under varying flow directions.

The net surface heat flux ( S) into or out of the surface

layer is computed separately from each basin using equations adapted

from Harleman and Stolzenbach (1975); the equations are summarized

in Appendix A. All heat fluxes are in units of BTU/ft -hr.

The conductive heat transfer between surface and bottom layers

(B1) is modeled as a linear function of the temperature difference:
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B1 k (Ts - TBl) (17)

The discharge temperature, Tout , is computed by:

TouT = Tin + AT (18)
out in

In simulation of historical temperatures, measured (not simulated)

AT values are used. T is modeled as a function of temperatures

in the surface layer in Basin #2 (see below).

An expansion of the left-hand side yields:

d d
% (ESl) -- (P cp hs A) d (Tsl) (19)

Simplifying, one obtains the equation for the temperature of this

cell:

d ((ls!) )+)'
dt ( Si, hsAl [ Q S12 (al TS2 + (1 al) TS) + Tout

QSB1 (a2 TS1 + (1- a 2) TB1)] + p hS (20)2~~~ Blp hs (2h)

Basin #1, Bottom Layer:

d

dt (EB1) - Pcp [B12 (a3 TB2 ( 3 Bl)

+ QSB1 (a2 TS1 + (1- a2)TB1)] + B1 1 (21)
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where:

EB1

TB2

a 3

- total thermal energy in Basin #1, bottom layer

-= temperature of Basin #2, bottom layer

1

0 ,

QB12> 0

QB12 -° 

Expanding the left-hand side:

d (E ) = P cp A1 [h1 TB1 + TB1 B1I

Recalling Eq. (6), Eq. (21) is re-arranged to yield:

d 1

dt (BA) AlhB1 [QB12 3 (TB2

+ B
p cp hB

Basin #2, Surface Layer:

d (E ) cp [IQs23(a TS3 + (1dt S2 B 'S23 4 T +(

- TB1) + QSB1 a2 (T 1 - TB1) 

(23)

- a4)Ts2 )

- S12 (al TS2 + (1- a1 ) TSi) - Qp(y Tou t - Tn )

- QSB2 (as TS2 + (1 - a5 ) TB2)] + (S2- B2

(24)

- 51 -

(22)

_I�_LC·�__ 1_ _·__··I _·· �·__·_I L__II_·^_____ I__ _ ·___I·II_ Ill_�··--l__·l·__._L. I.-.-.- 1 I·LL·I�-II---·UI ._ --- -



where:

ES2 = Total thermal energy in Basin #2, surface layer

TS3 = Temperature of water in the surface layer of Salem

Sound at the open boundary

OS2 = Net surface heat flux, Basin #2

OB2 = Surface-bottom heat flux, Basin #2

1 , %23>'S
a4 QS23 

0 ,
QS23 0

1 ,
a 1 QSB2 > 0
a5 ={

0 , B< 0
QSB2 0

Intake temperature Tin is modeled as a function of surface

layer temperature (Ts2) and of wind speed and direction:

Tin TS2 fwind

Since Tin in this case is measured 2 feet below the surface, it can

be realistically approximated by T 2. The additional temperature

increment due to wind is based on a hypothesis that wind of the

right magnitude and direction will blow the plume in towards the

intake. This hypothesis is partially supported by wind and tempera-

ture data, and by the fairly successful subjective-intuitive model

(Kenison and Galli, 1975) using this hypothesis. This experience

suggests that the temperature increment increases in a high-order

way with wind speed. Temperature increase also appears to reach a

maximum around a particular wind direction. To allow enough vari-
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ability to reproduce these relationships,

is:

2 la g6 - TID2

fwind = [gl + g2 WS + g 3 WS + g4 WS ][g8 + g5 exp -( g )2]

(25)

where:

WS = wind speed in miles/hour

WD = wind direction in °North

gi = parameters of wind function.

The open-boundary condition T3 is modeled as follows:

1) Ebb Tide (QS23 < 0)

Ts 3(n) = T 2(n)

2) Flood Tide (QS23 > 0)

n- nlow

s3(n) Ts2 1 2,ow - T S,sound)( 6.2 (26)

where:

Ts2,1o0 w = T 2 at most recent low tide

nlow = time of most recent low tide

TSsound = background surface temperature of Salem Sound

(unaffected by plant)

Cl = fraction of initial temperature difference over

which T3 will vary during flood tide

That is, on ebb tide the temperature at the boundary equals the

temperature of exiting water. On flood tide, the boundary tempera-

ture changes linearly from hottest (at low tide) to background (at
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high tide), if C = 1. If C1 < 1, boundary temperature will not drop

all the way to background. For historical simulation runs, daily

average values of T sound are obtained from interpolation of bi-

weekly surface temperature measurements.

Re-arranging Eq. (24), as was done above for the surface, Basin

#1, one obtains:

d1d j (T~2 i1x~ [QS23 (a T + (1 - aT 2 )
dt (S2) hsA2 S23 4 S3 .

QS12 (al TS2 + (1- a ) T) Qp(YTout in

~SB2 'S2 't 2 (27)-QSB2 (as TS2 + (1 -as)TB2 ] + p5 h

Basin #2, Bottom Layer:

d -(E3 ) P c [ (a T + (-a)%T
dt (B2) P EQB23 6 B3 a6) 2)

+ QSB2 (a5 TS2 + (1- a5 )TB2 )

-QB12 (a TB2 + (1- a) T)] + (28)B12 3B 3. Bl B2 2

where:

EB2 = total thermal energy in Basin #2, bottom layer
B2

TB3 = temperature of bottom layer of Salem Sound at open

boundary

1 QB23 > 0
a ={6 -

0 ~QB23 < 0
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Open-boundary temperature TB3 is modeled analogously to TS3:

Ebb Tide (QB23 0) - (29)

TB3 (n) TB2(n)

Flood Tide (QB23 > ) -
n -nlow

T (n) =T -c (T -T lo
B3() B2,low 2( B2,low B,sound)( 6.2 

TBsound is assumed to be 1.5 F less: than Tsound for any day.

Expanding the left-hand side of Eq. (28), and recalling Eq.

(12), Eq. (28) simplifies to:

d 1
dt (TB2) A h QB2 [Q3 a6 (TB3 - B2)

+ sB2 aS (Ts2 TB2)

OB1
+ QB12 ( - a3)(TB2 B1)] +P c h 2 (30)

This completes the development of the proposed basin-type model.

Tables 3-2 and 3-3 summarize its basic elements. The harbor is ideal-

ized as a rectangular, 2-basin, 2-layer system; water is assumed

well-mixed in each cell. The surface layer is assumed of constant

depth; the bottom layer rises and falls with the tide. Tidal levels

are known a priori from published tide tables; these levels "drive"

the inter-cell flows of water. Surface heat flux includes the pro-

cesses of short- and long-wave absorption, reflection, and radiation;

evaporation; and conduction. Special assumptions are made about open-

boundary conditions, and about re-circulation of power plant discharge.

- 55 -

__. __ _� ��_ ..._._.___ ���_�_�_ _��_�r_-CLI·-·-l· I-U·l-_--�I�1II .-· I. II�-YI-YLYLWIICII



Table 3-2

Flow Equations for Two-Basin, Two-Layer Model

QS12 1 hAl 

QB12 (1- al)[A1 A

QSB1 - QS12

- (1 - )Qp]

- (1- Y)Qp]

+ (1 - Y)Qp

QS23 = 2 (A1 + A2 )h

qB23 (1 - a2)(A + A2)n

QSB2 Qs23 QS12 (- Y)QP
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Table 3-3

Temperature Equations for Two-Basin, Two Layer Model

d

d 3
Si(T ) 1 IQSl+ (a1T +(- a)T ) + (1- )Q Tdt Tsi) hsA1 S12 a TS2 1S u

- QSB1 (a2 TS1 +

d (TB 1) hBA] LQB12 3

(OS1 - 1)
(1- a2)TBl)] + pcp h 

S

(TB2 - TB1) + QSB1 a2 (TS1

B1
+pcp hB

P Bi

d 1d (T ) - 1
dt S2 hSA [QS23 (a4 TS3 + (- a)Ts2)S23 4 S3 4QT 5 2

- QS12 (al TS2 + (1 - a)T 1 ) Qp (Y Tout - Tin)

- QSB2 (aS TS2 + (1

d _T - 1 IQB 3 a6 (T
dt (TB2) h A2 B23 6

+ QB12 (1 - a 3 ) (T B 2

(S2 - B2)
- a)TB 2)] + c

B3- TB2) + QSB2 a5 (T s 2 - TB2)

- T) + o -hB!
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3.3 The Model in State-Space Form

To employ parameter-estimation techniques, the model must be

transformed into stochastic state-space form. The steps in this

transformation are executed below.

First, the model is discretized. Since a basin-type model is

inherently discretized in space, it remains only to discretize in

time the equations of Tables 3-2 and 3-3. The following discretiza-

tions are used:

Tide:

dt (h) h(n + 1) - h(n- 1)
dt 2(At)

n

Temperature:

d (T) T(n + ) - T(n)
dt At

n

Second, the appropriate state-variables are identified. In

this case, there are six state-variables: the volume-averaged

temperature of each of the four cells, plus the two low-tide open-

boundary conditions from the most recent low tide (which influence

future values of the other states via flood-tide open boundary condi-

tions). Note that the inter-cell flows are considered exogenous

inputs, not states. These flows can be computed directly from the

tidal levels and plant discharge, known a priori.

Third, the model equations are transformed to explicit, lineal,

recursive equations for each state variable. Since the net surface

heat flux is non-linear with surface temperature, a linearization is
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performed (Appendix A).

Fourth, a model of the observations as a function of the states

is developed. The only observations in this case are hourly plant

intake temperatures (measured two feet below the surface). The

observation equation is T = TS2 fwind
in S2 wind'

Last, a stochastic component is added to the heretofore deter-

ministic model. The random variables w and v, added to the model

equations, are assumed to be zero-mean and uncorrelated in time.

The governing equations from Tables 3-3 and 3-4 are transformed

as above into state-space, white process form. In vector-matrix

form, the proposed model is:

x(n + 1) = F (u(n), , n) x(n) + b(u(n), a, n) + w(n)

z(n) x3 (n) + fwind(U(n), ) + v(n)

TSli(n) h(n)

TB1 QP (n)

TS2 WS(n)

T= B2 u(n) = WD(n)

TS2, lew (n)air(n)

(n) Tdew (n)
B2. ow dew(n)

--_ ~~ c(n)

Tsound (

T(n)

= vector of unknown parameters see

listing)

Table 4-1 for
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z(n) = Tin,measure d -)

F( = state transition matrix

b ) = vector function of exogenous inputs

w(n), vC(n) = white noise processes

The model is now in a form allowing application of the estima-

tion techniques described in Chapter Two. In this form, several

noteworthy characteristics of the model are evident.. The model is

linear in the states, though non-linear in the inputs; thus, it is

amenable to filtering. Model coefficients are time-varying; thus,

simplifying assumptions about a "steady-state filter" are not appli-

cable. The model is highly unobservable: the dimension of the mea-

surement vector is 1, while the dimension of the state-vector is 6.

Thus, accurate estimation of the states is difficult.
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CHAPTER FOUR

PARAMETER ESTIMATION AND MODEL EVALUATION

The proposed structure contains thirty-three unknown or poorly

known parameters, summarized in Table 4-1. In this chapter full infor-

mation maximum-likelihood (FIML) estimation is employed to obtain

optimal estimates of these parameters. Section 4.1 presents initial

parameter values and their rationale. Section 4.2 presents the steps of

the estimation process and the resulting parameter estimates. The data

base for parameter estimation is described in Section 4.3. Results

of model performance tests are presented in Section 4.4.

In Section 4.5 an evaluation of the model is presented. All estimation,

testing, and plotting is done using GPSIE.

4.1 Initial Parameter Values

Initial parameter estimates are listed in the first column of

Table 4-2. The rationale for these initial values is given below:

l - 8: Estimated so that fwind Corresponds-to subjective wind

function in Kenison and Galli (1975)

F1-F3: From Harleman and Stolzenbach (1975)
1 3

F2,AF41 From Harleman and Stolzenbach (1975), divided by 24 to

FF : yield hourly values
5 7*

F6-F: Initially set to 1, to be equivalent to Harleman and

Stolzenbach (1975)

b1 - b2 Subjectively chosen to represent a vertical velocity pro-

.file at basin interfaces.
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Parameter

gl- g8

F -F
1 8

b1 - b2

C1 - C2

Y1 - Y2

- A2

hS

Bil,min-

h 2,min

k

2 2

aSl' B1'
2 2

aS2' aB2

2
°z

TABLE 4-1

PARAMETERS TO BE ESTIMATED

Description

Parameters of wind function fwind

Parameters of surface heat flux equations

Velocity profile factors

Flood-tide heat return factors for open boundary
condition

Plume re-circulation factors

Basin surface areas

Surface layer thickness

Minimum depth of bottom layers

Surface-bottom heat exchange coefficient

Variance of model noise

Variance of measurement noise
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C -C : Subjectively chosen to represent maximum heat return to
1 2

harbor during flood tide.

Yi~ Subjectively chosen to represent full re-circulation of dis-

charge plume into Basin #2 at peak ebb tide.

Y2: Subjectively chosen to represent zero plume re-circulation
2:

during flood tide.

A - A2 : Estimated from harbor measurements

h: Estimated from temperature profiles
Zs

hBl,min'

hB 2 ,min

k:

2 02
S1' Bl

2 2

a52' aB2:

9

Estimated from harbor hydrography

Subjectively chosen

Subjective estimates of model accuracy

o': Subjective estimate of measurement accuracy
Z

2 2
The model noise statistics S1 - B2 represent the first four di-

agonal elements of the covariance matrix Q. The last two diagonal

elements, aS2,low and B2,low are assumed equal to aS2 and B2 

respectively, and are not estimated separately. This assumption is made

because of the close physical relation between TS2 and T2,low, being

identically equal once every tidal cycle (and similarly, in the bottom

layer). Off-diagonal elements of (i.e., cross-covariances of model

noise)are assumed zero.
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4.2 The Estimation Process

Parameter estimation is done in two phases: Phase I - Preliminary

Estimation, and Phase II - Global Optimal Estimation. Phase I provides

a coarse and somewhat subjective refinement of selected initial para-

meter estimates. The results of Phase I provide initial conditions for

the global optimization of all parameters in Phase II.

Each phase of the estimation process involves several steps, pre-

sented below. In the discussion, a distinction is made between

structural parameters and noise parameters. Structural parameters are

those in the state and measurement equations. There are 28 unknown

structural parameters in the present problem (the first 28 variables in

Table 4-1). Noise parameters are those defining the covariances of the

model and measurement noise; there are 5 unknown noise parameters in the

present problem (see Table 4-1).

Phase I includes the following steps:

(i) Powell search for FIML estimates of gl-8' the parameters of fwind

The wind function parameters are-the least well-known of the

parameters to be estimated; thus, the preliminary estimation begins

by refining these values.

(2) Manual search of selected structural parameters for FIML estimates

within realistic bounds. This step uses the modeler's judgment

to bound a preliminary manual search for improved estimates within

realistic limits. Parameters appearing to offer the greatest

potential for model improvement are manually optimized. Rough
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bounds on what is realistic are drawn from data on Salem Harbor

and engineering experience with thermal discharges.

(3) Manual search for FIL estimates of noise parameters °.

Using the above estimates of structural parameters, revised

estimates of the noise statistics a are developed via manual
i

search.-

Step 3 concludes the preliminary estimation. The preliminary

parameter estimates are the revised wind parameters, other revised

structural parameters, the revised noise statistics, and the initial

estimates of all other unrevised parameters. These estimates form the

starting point for the global estimation.

Part II of the process includes the following steps:

(4) Powell search for FL estimates of all structural parameters.

The 28 structural parameters are estimated simultaneously, using

a Powell search to find the global FIML estimate. Noise statistics

are not included in the Powell search because of potential problems

if the search explores negative values for the covariances. (A

bounded search is not possible using GPSIE). Cost of estimation is

approximately $300.

(5) Manual search for noise statistics with improved S. At the global

FIML estimates from the previous step, S is much less than ES], as

shown in Table 4-2. (The S statistic is discussed in Section 2.2).

To increase S, the noise statistics are manually adjusted in this

step until S is approximately equal to ES].
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(6) Final Powell search for FIML estimates of structural parameters.

The revised noise statistics are significantly different from their

previous values (at the end of step 3). To ensure parameter

estimation with the proper noise statistics, all structural para-

meters are re-estimated in this step using the revised noise

statistics. Cost of the estimation is approximately $500. The S

value for this estimation is almost within 2aS of its expected

value; thus the noise statistics are not decreased further. The

estimation is checked to see if increasing the noise statistics

(towards their previous values) improves the log-likelihood. The

check indicates that the noise statistics do not need to be changed

further, and the estimation process is ended isee Appendix D- The

results othis step are te. inal parameter estimates.

The step-wise evolution of the parameter estimates is summarized in

Table 4-2. These results are discussed in Section 4.5.
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TABLE 4-2:

PARAMETER ESTIMATES AT STEPS OF THE ESTIMATION PROCESS

PHASE I - PRELIMINARY
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TABLE 4-2 (continued)

PARAMETER ESTIMATES AT STEPS OF THE ESTIMATION PROCESS
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4.3 Data Base for Estimation and Testing

Model development and testing is done on data from late spring and

summer of 1974. This season is chosen because it is of greatest concern

relative to water temperature control. Developing the model strictly

for late spring and summer maximizes its applicability to the dominant

hydrothermal processes of this season. The study is confined to 1974

data because this is the only year for which comprehensive and consis-

tent data is available (though further data is being collected).

During late spring and summer of 1974 there are four periods in

which complete, uninterrupted data are available. These data periods are

(to the hour): 2100, May 17 to 1400, June 13; 1700, June 25 to 1000,

July 22; 2100, July 29 to 1500, August 21; 2400, August 23 to 2400,

September 20. Parameter estimation is done on a small subset of this

data. Model testing is done on the complete data base.

Selecting the base period length for parameter estimation involves

a trade-off between uncertainty and cost. Since little prior experience

exists on FIML estimation for this type of modeling problem, the base

periods for Phases I and II are chosen fairly subjectively. The length

of the base period for global estimation is chosen so that the number

of data points is approximately four times the number of unknowns

(dimension of a). A longer base period may improve the parameter eti-

mates; however, this relationship is not examined in this study. Since

the estimations in Phase I involve fewer parameters and less numerical
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detail than Phase II (see below), Phase I may employ a longer base

period. The following base periods are used:

Phase I: 294 hours (12 days) 2100, 7/29 - 0300, 8/10

Phase II: 96 hours ( 4 days) 2100, 7/29 - 2000, 8/2

These dates are chosen to be roughly characteristic of mid-summer weather,

water and generation conditions. For maximum comparability, both base

periods are chosen to begin with the start of a data period.
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4.4 Model Performance

Model performance is evaluated for two reasons: first, to evaluate

whether the model meets the accuracy criterion of the original model

development problem; and second, to assess the effectiveness of the final

parameter estimation process. Visual and quantitative indicators of

model performance are computed to provide data for these evaluations.

The preliminary model (using the parameter estimates in Columns 1-

4 of Table 4-2) and the final model (using the parameter estimates in

Columns 6-7 of Table 4-2) are tested. For ease of comparison, the

noise statistics in the preliminary model are equated to the noise sta-

tistics of the final model. The identical noise covariances ensure that

any differences in likelihood or S-statistic are due only to differences

in residuals from each model.

Figures 4-1 through 4-3 allow visual assessment of final model be-

havior. These plots show unfiltered 24-hour predictions of intake

temperatures, for three days (one month prior to the base period). The

measurements and the confidence bounds of the predictions are plotted

concurrently. For comparison, similar plots from the preliminary model

are shown in Figures 4-4 through 4-6. These results are discussed in

Section 4.5.

A variety o measures of model performance are useful (Section 2.2):

- The full-information likelihood

T - The percent of daily peak temperature predictions within °F
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FIGURE 4-1

PREDICTED INTAKE TEMPERATURES FROM FINAL MODEL (6/29 - 6-30/74 )
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FIGURE 4-2

.PREDICTED INTAKE TEMPERATURES FROM FINAL MODEL 6/30 - 6/31/74
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FIGURE 4-3

PREDICTED INTAKE TEMPERATURES FROM FINAL MODEL 6/31 - 7/1/74
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FIGURE 4-4

PREDICTED INTAKE TEMPERATURES FROM PRELIMINARY MODEL (6/29-6/30/74)/
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FIGURE 4-5

PREDICTED INTAKE TEMPERATURES FROM PRELIMINARY MODEL (6/30-6/31/74)
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FIGURE 4-6

PREDICTED INTAXE TEMPERATURES FROM PRELIMINARY MODEL (6/31-7/1/74)
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of measured peak. (Original accuracy criterion specified in

these terms).

D - The mean-square error in daily peak temperature predictions.

M - The mean-square error in 24-hour temperature predictions.

S - The sum-of-squares of normalized measurement residuals.

P(a)- The whiteness-test matrix for lag a.

O2 - The covariance of a 24-hour prediction.
z

The final model is run for the four data periods representing late-

spring and summer of 1974, and model performance is computed using the

above measures. For comparison, performance of the preliminary model

is also computed.

The results of this model performance evaluation are presented in

Table 4-3. (Note that the T value is computed to show percent of daily

peak intake temperature predictions within 1°F, 2F, and 3°F of observed

temperatures.)
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4.5 Model Evaluation

The performance tests provide a rich background for evaluating the

model and estimation techniques used in this study. Since the study

objectives and methodology are new to water quality modeling, it is not

surprising that several unlikely results are observed for which there

is no definite explanation. From the present analyses potential expla-

nations may be suggested but not confirmed. In several cases, questions

must remain unanswered, awaiting further study.

4.5.1 Discussion of Parameter Estimates

The structural parameter values developed in the preliminary esti-

mation are relatively close to their initial values. The Powell-FIML

estimation of wind function parameters yields only a slight revision in

values. A manual search of other structural parameters is deliberately

kept within realistic bounds.

The re-estimated noise statistics at the end of Phase I (column 4

of Table 4-2) are much larger than their initial values or their final

values. A possible explanation is that the much longer Phase I base

period requires larger noise convariances to explain the data. Note

that re-estimation of the noise statistics in Phase II, with a much

shorter base period, produces much smaller convariances.

In the global estimation phase, several structural parameters

assume unrealistic values. Examples from the final parameter estimates

are:
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A1,A2: Final values total only 1/3 of the actual harbor surface

area,

F ,F4: The coefficients of br (radiative heat loss) and *r are

too large by factors of 100 and 1000, respectively.

F1 : Cannot be greater than 1; otherwise, on very cloudy days

insolent radiation is negative.

F6 : Cannot be negative; otherwise, %r will decrease with in-

creasing surface temperature.

YlY2: Cannot be negative; otherwise, there will be "negative

recirculation" of discharge water from intake to discharge.

bl,b2: Values greater than 2 suggest unrealistically high flow

velocities in the surface layer.

h S : Surface layers deeper than 6 feet are not observed in Salem

Harbor.

hBlmin hB 2 ,mi : Basin #2 should be deeper than basin #1, to fol-

low the harbor profile.

The unrealistic final parameter estimates suggest that there are

significant structural flaws in the model. Observations of model be-

havior with realistic parameter values (eg., Figures 4-4 - 46) show

that it consistently predicts erroneously high temperatures. The global,

FIML-Powall parameter estimates correct this behavior (eg., Figure 4-1

- 4-3), but in so doing are forced to assume unrealistic values. In

effect, the unrealistic parameter estimates compensate for an unrealis-

tic model structure.
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Unrealistic parameter estimates do not invalidate the model, but

they do interfere with a physical interpretation of the model. In the

present situation, it is best to abandon physical concepts, and to view

the model instead as an abstract mathematical structure describing a

time-series of data. By this view, the parameters are merely coeffi-

cients in the model, with no physical significance and no a priori

bounds on their values.

Although both the first and second global estimations produce un-

realistic values, the second contains more unrealistic values than the

first. This result suggests that the estimation is sensitive to the

size of the noise statistics used. Inspection of the log-likelihood

equation,

2 (n) 2 (n-1) - kin 2 - Inrdet z(nrn-l)-6S(n)Z (nin-l)6Z(n)

helps to explain this result. As the noise covariances decrease, 

decreases; hence,_ the last term in the likelihood equation becomes

larger. Thus, the likelihood is increasingly sensitive to the predic-

tion residuals, as the covariances decrease. In the present case the

final estimation, having smaller noise covariances, allows proportion-

ally less error in model predictions. To achieve this tighter fit to

the data, parameter values are estimated which are more extreme than

those under larger noise statistics (see Appendix D).
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4.5.2 Evaluation of Final Model Based on Statistical and Visual Analysis

Intake temperature predictions from the final model (eg., Figures

4-1 to 4-3) show qualitatively reasonable performance. The predictions

frequently differ from the measurements by several degrees, but follow

the data pattern fairly well.

However, model test results in Table 4-3 indicate that statistically

the final model is unacceptable. The model fails the test on the

S-value (Section 2.2). In only one data period is S found within 2oS of

its expected value; in the other three periods, S is considerably below

E[S]. The model also fails the whiteness test (Section 2.2). Signifi-

cant autocorrelation of the residuals is observed, in all data periods.

P(a) is frequently greater than 5, whereas an acceptable model should

have all P(a) less than 5.

Based on least-squares performance measures, the final model also

appears unsatisfactory. Both M (mean-squareerror of hourly predictions)

and D (mean-square error- of daily peak predictions) are undesirably

high (greater than 10.0) in all four data periods.

The low S values are probably not due to erroneous noise statistics.

The final noise estimates are so small that S, during the base

period, is almost within 2 S of its expected value. Further reduction

is unrealistic, and probably cannot correct the large discrepancies

observed for the test periods.

Failure to pass the statistical tests (on S and whiteness) indicates

flaws in either the structural or probabilistic aspects of the model.

The fundamental assumptions of FIML parameter estimation are that:

1. The proposed linear model structure is the true structure.

2. Model disturbances represent a white, Gaussian process.
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If these assumptions are met, then FIML parameter estimates are

optimal (Section 2.1). Peterson (1975) further demonstrates, with

simulation experiments, that under these assumptions FIML estimation

is a very accurate parameter estimation method. Thus, if the true

model structure is known and linear, FIML parameter estimates will

be close to the true estimates (on the average) and will pass the

statistical tests. Not passing the tests suggests errors in model

structure and/or probabilistic assumptions, prohibiting successful FIML

estimation.

An alternate explanation is that the base period for estimation is

abnormal or too short. The consistent performance improvement between

the preliminary and final models (see Section 4.5.5.) suggests that

the base period used here is adequate. However, evaluation of statis-

tical performance for different base periods is not done, so the

importance of this effect is not known. As further estimation experience

with water quality models accumulates, a better rule-of-thumb for base

period length may evolve.

4.5.3 Evaluation of Model Performance in Terms of Original Performance

Criteria

The final model does not meet the accuracy criterion specified in

the original model development problem (T > 90%). In its best data

period (8/23-9/20), the final model yields T = 27%. Over all four

data periods, the final model yields an average T = 17%. Thus, the

model developed in this study should not be used for STF applications

at present.
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The final model does meet the other performance criteria, i.e., it

is simple, and it performs real-time prediction using only existing

sensors.
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4.5.4 Comparison of Final Model with Results of Earlier Studies

Earlier efforts to model intake water temperatures at Salem Harbor

Station are reported by Kenison and Galli (1975). Two types of peak-

to-peak extrapolation models are reported (Section 3.1): a subjective

model using human intuition to make predictions, and a multiple regres-

sion model. A comparison of model performance between past and present

studies is presented in Table 4-4.- (Tis the only model performance

measure reported by Kenison and Galli).

Based on Table 4-4, no model achieves the original accuracy criterion,

T > 90%. Subjective peak-to-peak prediction performs best, and multiple

regression peak-to-peak prediction is second best. Both peak-to-peak

extrapolation models perform better than the basin-type model. Possible

explanations for these differences in performance are proposed below.

The results in Table 4-4 compare initial model development efforts

for three model structures. It appears that, in the initial stages of

model development, a subjective peak-to-peak model is most effective.

The present modeling problem is well-suited for subjective peak-to-peak

modeling, in the following ways:

- the system has a long time-constant relative to the desired

prediction interval (ie., day-to-day changes in peak temperature

are typically 10 - 20F)

- only one or two states must be predicted

- measurements from only one or two locations are used
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TABLE 4-4

PAST AND PRESENT MODEL PERFORMANCE

Evaluation Period

Kenison and Galli

- Subjective

Kenison and Galli

- Multiple regression

Present study

- Basin-type

6/1 - 7/31/74

6/1 - 7/31/74

6/25 - 7/22/74
8/23 - 9/20/74

5/17 - 9/20/74(overall) 17%

(Where T equals the percentage of daily peak intake temperature

predictions within + 1F of observed.)
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Under these conditions, much of the variation in peak intake temperatures

may be explained by a simple, subjective, peak-to-peak model structure.

Since none of the models achieves the desired accuracy, one or more

must be developed further. Although the peak-to-peak models yield

initially high T values, further accuracy improvements for this model

structure are not expected to be major. Ultimately, hourly temperature

models are expected to yield maximum accuracy. Present peak-to-peak

models capture the major factors influencing peak temperatures, but

are likely to require detailed treatment of hourly processes to achieve

improved accuracy.

It appears from table 4-4 that models for hydrothermal control

problems similar to that addressed in his thesis may be more effectively

developed from statistical concepts than from physical concepts. A

statistical model can be algebraically much simpler than a physically-

derived model of the same process. Whereas a physical model requires

calculation of temperature within every discretized cell, a statistical

model may eliminate all state variables except those to be controlled.

The model comparison above suggests that by eliminating extraneous

considerations, a simple statistical model may predict the controlled

variable(s) more accurately than a physical model. Statistical models

offer two additional advantages: First, parameter estimation costs are

much less for simpler models; also model structure revision is easier,

allowing faster evolution of the model. For these reasons, pursuit of

a statistically-derived, hourly model appears to offer the greatest

potential accuracy.
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4.5.5 Comparison Of Final And Preliminary Models

Phase I of the estimation process produces preliminary parameter

values, representing the best subjective estimates obtainable. Final

parameter values are refined from the preliminary values, in phase II

using global FIML estimation. Comparing the performance of the pre-

liminary and final models indicates how much model performance is

improved by global FIML parameter estimation.

Such a ccmparison shows that the final model performs slightly

better than the preliminary model throughout the latter three (summer)

data periods. Inspection of Table 4-3 shows for these periods:

Log-likehood: Final model is consistently better by a slight

amount (A i = 50).

S: Final model yields S consistently higher, and closer to E [S].

T: Final model is better for one period; models are equivalent

for other two periods. T(20) and T(30) are consistently better for

final model.

D: Final model is consistently better.

M: Final model is better for two periods, worse for one.

Whiteness: Final model is consistently better for P(O) and P(3);

consistently worse for P(1) andP(2).

2(2411): Final model is better.
Z

The improvement in performance observed in the test periods is comparable

to that achieved for the base period.

- 89 -

1_I�C�__��I__� L



The late - spring period (5/17 - 6/13) is anomolous. For this period,

the preliminary model is better than the final model by almost all mea-

sures. A likely explanation is that different processes dominate habor

temperatures during the late-spring period, than during the summer period

for which the final parameters are estimated. An important example is

stratification, which is only partly established during the late spring

period, but fully established during the summer periods. Because this

period is anomolous, further comparison of final and preliminary models

considers only the latter three data periods.

Though the final model generally yields better measures of perfor-

mance than the preliminary model, the differences are often small.

The performance of the final model is poor (see statistical evaluation);

relative to the amount of improvement needed, the improvement achieved

by FIML estimation is also small. In addition, the final model is not

always superior to the preliminary model (for example, see the white-

ness and T values). For these reasons the final model is considered

only slightly better than the preliminary model.

The limited improvement in performance achieved by FIML estimation

is probably due to two factors. First, the preliminary estimates are

likely to be very good. These estimates incorporate extensive engineering

experience, plus adjustments to fit the model to a 294-hour base period.

Thus, the preliminary estimates are likely to perform fairly close to

the optimum for this model structure.

Flaws in the model structure are the second factor likely to be

limiting model improvement from FIML estimation. Structural flaws may

restrict model performance to low levels, even at the optimum.

- 90 -

___II___ � ___ _ �__ __·__ __ _I_ __ _�_1 I ·Ii_�



Previous analysis (Section 4.5.2) strongly suggests that structural

flaws exist in the model, inhibiting significant model improvement via

parameter estimation.

Given a model with structural.flaws, the improved performance of

the final model is an important result. It demonstrates that FIML

estimation can yield improved parameter estimates, even in the presence

of a structurally weak model. This robust character is essential for a

practical parameter estimation tool, since few model development pro-

blems begin with an accurate model structure.

4.5.6 Structural Flaws In The Model

Several results indicate that structural errors exist in the model:

- S#E[S]

- P(a) >5

- M and D>10

- Unrealistic final parameter values

- Limited model improvement achieved by FIML estimation

·Structural weaknesses are most likely in the following areas of the

present model:

- Formulation of net surface heat flux: These processes

are not well understood, particularly on an hourly time scale. Recent

experiments by Hecker and Nystrom (1975) indicate that the formulation

used herein will underestimate surface heat loss, on the average.

This partially explains the chronically high temperature predictions.

obtained from the preliminary model.

- Treatment of tidal flushing:

A better model of the open boundary condition is desirable, taking into

account heat losses in Salem Sound.
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- Discretization: The four cells in the present model are

assumed well-mixed, though they actually are not. For example, concen-

trations of heat near the discharge (ie., the thermal plume) are averaged

into the overall temperature of the inner cell. Hence on ebb tide,

this heat is not ail flushed out as it is in nature, leading to abnormally

high temperature predictions. A finer discretization may be required.

Further effort refining the present model is not recommended.

Rather, future model development effort should focus on hourly statistical

models as recommended in Section 4.5.4.

4.5.7 Applicability of FIM Estimation

In the present model development problem, subjective model develop-

ment yields large initial performance improvements. FIML estimation

yields consistent (but small) improvement, in this initial iteration

of model development. However, future refinement. of model accuracy

requires more detailed treatment of many factors, on an hourly time

scale. FIML estimation becomes increasingly valuable in the latter

iterations of model development, as structural complexity increases

(and approaches the true structure).

In other modeling problems more complex than the present, subjective

development yields smaller improvements. FIML estimation is proportion-

ately more valuable for these modeling problems, where:

a. Several states are predicted simultaneoulsy, and it is
desired to minimize the overall uncertainty.

b. Relatively frequent predictions (on the order of measure-
ment frequency) are made, and it is desired to minimize
the uncertainty over the whole time-stream.
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c. The system has a relatively short time-constant,

necessitating more detailed modeling of system
behavior.

d. Point predictions in time and space are desired, rather
than averages.

e. Several measurements are taken simultaneously, and it is
desired to make optimal use of all information.

f. Long data records are to be processed for model development.
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CHAPTER FIVE

SUMMARY AND CONCLUSIONS

5.1 Summary

The objectives of thisstudy7are:

1. To solve the model development problem: ie., develop a
simple model of intake water temperatures at Salem
Harbor Station that predicts the daily peak intake tem-
perature within 1 F, 90% of the time.

2. To apply optimal filtering and maximum likelihood para-
meter estimation to a water quality model of a real
system using field data. Evaluate the advantages of
these techniques in this application.

No previous hydrothermal model is developed and evaluated in terms

of a pre-specified accuracy criterion. Nor, is a water quality model

previously developed for a real system using full-information maximum

likelihood parameter estimation.

A short-term temperature forecasting (STF) system is proposed,

to minimize the cost of meeting the discharge water temperature limit

at Salem Harbor Electric Generating Station. The STF system requires

accurate predictions of power plant intake water temperatures, to

determine reduced-cost power generation schedules.

Tools of estimation theory are shown to be potentially useful

for model development. Optimal filtering and maximum likelihood

parameter estimation are methods for estimating the states and para-

meters, respectively, of an uncertain dynamic system. Filtering

yields optimal (minimum uncertainty) state estimates by combining
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information from a model and from measurements. Full-information

maximum likelihood (FIML) parameter estimation uses the filtered state

estimates to compute model likelihood. The maximum likelihood is found

by searching alternate parameter values, using Powell's method for non-

linear optimization.

Statistical and physically-derived model structures are considered

for the model development problem. A simple two-basin, two-layer hydro-

thermal model of Salem Harbor is developed. The model includes effects

of power plant discharge, tidal flushing, stratification, surface heat

flux, and wind advection of the plume, to yield hourly predictions of

intake water temperatures. The model is transformed into state-space,

white process form, to allow application of estimation tools. In state-

space form, the model is linear (non-linear in the inputs) and time-

varying, and has six state variables and one observation.

Thirty-three parameters are either poorly known or unknown, and

are estimated from intake temperature data. Initial values are chosen

based on engineering judgement and data in the literature. Following

preliminary, subjective tuning (over a 294-hour period), FIML estimation

is used to obtain globally optimal parameter estimates (over a 96-hour

period). The resulting model's performance is tested for 106 days

during late spring and summer of 1974. Quantitative and qualitative

measures of performance are computed. The model and the FIML estima-

tion method are evaluated from analysis of the test results, and

from comparisons with earlier models.
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5.2 Conclusions

1. The two-basin, two-layer model developed in this study is
qualitatively correct, but fails statistical tests for accep-
tability.

2. The two-basin, two-layer model does not meet the accuracy
criterion specified in the model development problem.

3. Simple peak-to-peak extrapolation models predict daily peak
intake temperature more accurately than a simple hourly
basin-type model.

4. Different processes dominate harbor temperatures during late-
spring than during summer. In the two-basin, two layer model,
diffexentparameter values are required to model each period.

5. Structural inadequacies exist in the two-basin, two layer
model, causing limited model performance. Possible improve-
ments in model structure are discussed below.

6. Full-information maximum likelihood parameter estimation is
useful for development of water quality models. In an
application to a real system, using field data, this method:

a. Estimates thirty-three unknown parameters from
ninety-six data points.

b. Improves parameter estimates from their best a
priori values, despite flaws in the model structure.

7. Full-information maximum likelihood parameter estimation is
most useful for development of water quality models where:

a. Subjective model development is thoroughly exercised

b. Several states are predicted simultaneously

c. Relatively frequent predictions (on the order of
measurement frequency) are made

d. The system has a short time-constant

e. Point predictions in time and space are made

f. Several variables are measured

g. Long data records are to be processed
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5.3 Recommendations For Future Work

1. Future model development for hydrothermal control problems

should use an hourly statistical model, rather than physically-derived

structures. StatiStical models offer:

a. Faster development

b. Potentially greater accuracy

c. Lower cost

2. To improve the two-basin, two-layer model, the following

changes are suggested:

a. Revise the formulation for net surface heat flux.
Consider a simpler formulation, with parameters
estimated from a long period of hourly data.

b. Revise the open boundary condition

c. Use a finer discretization of Salem Harbor

3. Further evaluation of FLML estimation should be done:

a. Compare model performance using FIML estimates
from a 96-hour data base with performance using
estimates from a longer data base.

b. Compare performance using FIML estimates with
performance of ordinary least squares estimates.
Also compare estimation costs.
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APPENDIX A

-MODEL EQUATIONS FOR NET SURFACE HEAT FLUX

Except where otherwise noted, the following development of heat flux

terms is taken from Harleman and Stolzenbach (1975). Where appropriate,

their equations (for daily fluxes) are modified with unknown parameters,

Fi, to produce hourly values. All fluxes are computed in units of

BTU/ft 2-hour.

Harleman and Stolzenbach (1975) indicate that net surface heat flux

is the sum of fluxes due to several heat exchange processes occurring at

the water-air interface:

Net Surface Heat Flux = sn + an - br - (e + c) (1)

where sn = net shortwave insolation

an - net atmospheric radiation (longwave)an

Obr longwave radiation from water surface

Oe + c evaporative and conductive heat flux

Net shortwave insolation is the product of several factors:

9sn ~sc * fl (time-of-day) *f2 (cloudiness) (2)

where 4sc 'net daily clear-sky insolation

fl proportion of total daily insolation occurring in a given

hour

f2 - radiation reduction factor due to cloudiness

These factors are computed as follows:
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c = [38.4 sin (365 ' Julian Day + ) + 490] F8 (3)

where Julian Day = day number, consecutive from January 1

F 8 = bias adjustment parameter

Equation (3) fits the curve developed by Hamon et al (1954) for maximum

total daily sunshine at 42'N latitude. The equation is modified by F8

to correct potential bias in . A bias in n is anticipated because

equations originally developed for daily flux computations are being

adapted for hourly computations (below).

{5 sin [3 (t - 6)], for 0600 < t < 2100 (4)

0 , for t < 0600 or t > 2100

where t time-of-day (from 0001 to 2400).

f2 1-F l(c 3 1 (5)

where c = cloudiness (ranging from 1 (clear) to 4 (very cloudy))

F1 = maximum radiation reduction,

This equation is suggested by Harleman and Stolzenbach (1975) who use

f2 = 1-65 c , with c varying from 0 to 1. The exponent is dropped here,

to increase sensitivity to partial cloudiness.

Net atmospheric radiation is also the product of several factors:

ir (6)an=F2 =F 105 (460 + T ) [l + F 3 (6)

where Tair = air temperature (F)

F2 = net atmospheric radiation parameter

F3 = maximum radiation increase due to cloudiness
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Note that the first factor in Eq. (6) represents net clear-sky atmosphe-

ric radiation. The second factor accounts for increased atmospheric

radiation with increased cloudiness.

The longwave back-radiation from the water is modeled by:

94(7)
~br = F7 x 10 [460 + (F6 TS)] (7)

where T S = temperature of surface layer.(°F)

F7 = back-radiation parameter

F6 - back-radiation temperature sensitivity parameter.

Since T S varies between basins, br is computed separately for each

basin.

The evaporative and conductive heat flux is .modeled by:

+ = F WS (es - eair) + .255 (T S Tir)] (8)

where WS = wind speed

e I vapor pressure at water surface

eair - vapor pressure of air

F5 - evaporative-conductive heat flux parameter.

The saturated vapor pressure, es, is obtained from Harleman et al (1973):

e = -2.4875 + .2907 T - .00445 T + .0000663 T (9)

By substituting in Eq. (9) the dewpoint temperature for T, one may

also obtain eair. Evaporative and conductive heat flux must be compu-

ted separately for each basin.
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In order to apply optimal filtering, the heat flux equations must

be linear in TS. Non-linearities exist in the above formulations of

Obr and e + c. These are linearized about the filtered state estimate,

Ts(nn), using a first-order Taylor series expansion:

f(TS(n)) f(Ts(nn)) + f'(Ts(nln)).[Ts(n) - Ts(nln)]

For f = 4 br' the derivative is:

F4 x 10-9 [460 + (F6· Ts(nln))]

where F = linearized back-radiation parameter.

For f = ~e + c' the derivative is:

(e + ,c)' = F(WS)[.5457 - .0089 (Ts(nln)) + .0001989 (Ts(nln)) ] .
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APPENDIX B

SOURCES OF DATA

I. Data Used To Run Hourly Two-Basin, Two-Layer Model
(For Period 17 May 1974 to 20 September 1974)

Data Frecfuency/Measurement Point Source

Intake
Temperature

Discharge
Temperature

Wind Speed and
Wind Direction

Condensor
Flow Rate

Cloudiness

Air
Temperature

Dewpoint
Temperature

Hourly instantaneous mea-
surements. Floating sen-
sor 2 ft, below water sur-
face, 30 ft. offshore of
unit #3.

Hourly instantaneous mea-
surements hourly. Float-
ting sensor 2 ft. below
surface, in discharge
canal 200 ft. from mouth.

Hourly instantaneous
measurements. Sensor
at 100 ft. elevation,
atop Breaker House at
Salem Harbor Station-.

Continuous records for
each unit showing when
circulating water pumps
are on or off.

Three-hourly measure-
ments. Subjective
assessment by station
personnel.

Hourly instantaneous
measurements. Sensor
at 20 ft. elevation,
atop Gate House at
Station.

Three-hourly instanta-
neous measurements at
Logan Airport, Boston.

New England Power
Company (NEPCO) compu-
terized environmental
data bank.

NEPCO computerized
environmental data
bank.

NEPCO computerized
environmental data
bank.

Mechanical log of
each unit at Salem
Harbor Station.

Environmental log
of Salem Harbor
Station.

NEPCO computerized
environmental data
bank.

"Local Climatological
Data, Logan Inter-
national Airport",
National Oceanic and
Atmospheric Administra-
tion.

-.
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Data

Tide Level

Temperature
of Salem
Sound

Frequency/Measurement Point

Predicted time and height
of high and low tides
(corrected to Salem,Ma.).

Bi-weekly instantaneous
measurements at location
#5 of Chesmore et al
(1972-1975).

Source

"Times and Heights of
High and Low Waters, Boston,
MA, 1974,", National
Oceanic and Atmospheric
Administration

Chesmore et al (1972-
1975).

II. Other Data Used In Model Development

Infra-red Reported in Chesmore et al (1972-1975).
Overflights

Boat Surveys of
Temperature

Bathythermograph
Surveys

Continuous
Harbor
Temperatures

Water
Velocity

Synoptic
Studies

Reported in Chesmore et al (1972-1975)

Reported in Chesmore et al (1972-1975).
Additional data obtained from B. Ketschke
Cat Cove Marine Laboratory, Salem, MA.

August, 1972 surveys of Salem Sound
by R/V "Ferrel" (National Oceanic and
Atmospheric Administration-unpublished).

Locations "C" and "D" maintained and
reported by Cesmore et al (1972-
1975). Hourly data obtained from B.
Ketschke (as above).

Reported in Chesmore et al (1972-1975).

Interim Report: Salem Hydrothermal Survey
Raytheon Environmental Research Labora-
tory, (August, 1972). (Done for NEPCO.)

Electric
Generation
Load

Hourly instantaneous measurements for
each unit at Salem Harbor Station.
See electrical log of each unit.

- 108 -

1BeLIP�,�..������� �� _�



APPENDIX C

USING OPTIMAL FILTERING TO ESTIMATE UNMEASURED INITIAL CONDITIONS

To run the proposed model for real-time STF predictions, initial

conditions (O) must be estimated. Data on harbor temperature (from

buoy recorders, boat surveys, etc.) is infrequently collected, and thus

is not likely to be available when a model run is desired. The only

data available in real time are measurements of plant intake tempera-

tures (z(n)).

Without direct measurements of 2 (0), one approach is to subjective-

ly estimate the harbor temperatures (0O) from z(O). Such an estimate

is very uncertain, especially since the six elements of (O) are esti-

mated from only one measured value. An alternative approach is to

estimate (O) from the previous 24 hours of data, using optimal filter-

ing.

The approach begins at n = -24 with an uncertain estimate, (-24).

The model is run forward from n -24 to n = 0 and combined with data

z(n), to obtain filtered estimates (nln). The initial conditions for

the STF prediction are thus:

i(O) I- (O0n -24 to 0).

Figure C-1 presents an example of this approach, showing filtering of

initial conditions, followed by unfiltered prediction. Experiments

with this approach indicate that 24 measurements are sufficient to

minimize the uncertainty in (On).
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Appendix D

APPENDUM - IMPROVEMENT IN FINAL MODEL BY REDUCING

MODEL NOISE ()

Following completion of this report, an additional computer run

was done testing the optimality of the final noise statistics (ai).

Tests (CF. Chapter Four) show that increasing a. decreases model perform-i
ance as measured by S, the sum-of-squares of measurement residuals. The

addition analysis just completed shows that further reducing i below

their "final" values improves model performance (see Table D-l). The

S-statistic is very near its expected value, and the log-likelihood

is also increased.

Thus, the noise statistics in Table D-1 are more nearly optimum

than those in the "final" model presented in Chapter Four. At these

revised noise levels, the optimum structural parameters may also be

different (and perhaps more realistic) han the "final" model; however,

a FIHL estimate for new parameter values is not done.
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TABLE D-1

IMPROVEMENT IN FINAL MODEL BY REDUCING MODEL NOISE (Q )

PARAMETER FINAL MODEL MODIFIED FINAL MODEL

2

B1 2. 1.

S2 1.5 1.

1,2
B2 2. 1.5

. . , : . - .-.04 .04

Log- -87.0 -76.9
Likelihood

S 40.4 66.6

E [S] 63. 63.

's 11.2 11.2
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