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HYDROTHERMAL MODELING FOR OPTIMUM TEMPERATURE
CONTROL: AN ESTIMATION-THEORETIC APPROACH

ABSTRACT

A short—-term temperature forecasting (STF) system is proposed to
predict and control plant intake and discharge temperatures at Salem
Harbor Electric Generating Station. It is desired to minimize re-
ceiving-water (i.e., intake-water) temperatures during peak power
demand periods, in order to minimize the cost of complying with the
maximum discharge water temperature limit. This study addresses
the hydrothermal modeling requirements of an STF system.

An important element of an STF system is a predictive model of
plant intake water temperatures. For application to Salem Harbor
Station, strict model performance criteria exist, defining a model
development problem: Develop a simple model to predict plant intake
water temperatures 24 hours ahead, predicting daily peak intake tem-
peratures within 1°F on 90% of the days, and using only existing
measurements. An estimation-theoretic approach to model development is
used, which quantifies and minimizes the uncertainties in the model.
The approach employs optimal filtering and full-information maximum-
likelihood (FIML) estimation to obtain optimum parameter estimates.

A two-basin, two-~layer hydrothermal model of Salem Harbor is developed.
The model computes hourly intake temperatures, incorporating tidal
flushing, stratification, surface heat exchange, and wind advection of
the plume. Twenty-eight model parameters and five noise statistics
are estimated from intake temperature data.

Preliminary best-fit parameter values are obtained subjectively,
followed by FIML parameter estimation using a data base of 96 hourly
measurements (7/29 - 8/2/74). The model is tested for 106 days (5/17-
9/20/74) and various performance measures are computed, including sum-
of-squares of measurement residuals (S), whiteness (P), percent of daily
peak temperature predictions within 1°F of actual (T), and others.
Visual inspection of 24-hour intake temperature predictions shows that
the two-basin, two-layer model performs qualitatively well. However,
the model fails statistical tests on S and P, indicating structural
weaknesses. FIML estimation yields physically unrealistic values for
certain parameters, probably compensating for inadequate model struc-
ture. Despite structural flaws in the two-basin, two-layer model, FIML
estimation yields parameters with consistently better performance than
the preliminary estimates (by a small amount).







It is concluded that the two~basin, two-layer model is presently
unsuitable for STF use, largely due to structural weaknesses. Pos-
sible corrections are suggested; however, a statistical model of
hourly temperatures appears to offer greater potential accuracy than
physically~derived models. FIML parameter estimation is shown to be
useful for water quality model development on a real system, particularly
after subjective model development has been exhausted.
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CHAPTER ONE

INTRODUCTION

1.1 Background

The focus of this study is a proposed computerized system for
short-term forecasting and control of discharge temperatures at Salem
Harbor Electric Generating Station. Salem Harbor Station is a 750 mega-
watt steam-electric generating'station located in Salem, Massachusetts,
on the Atlantic Coast just north of Bostdn (see Figure 1-1). The New
England Power Company (NEPCO) owns and operates the fossil-fueled sta-
tion. The plant employs a once-through condenser-cooling system, with-
drawing seawater from Salem Harbor, and discharging the heated water
back into the Harbor (see Figuré 1-2). When the temperature of this
discharged water threatens to exceed the State maximum discharge tem-
perature limitation (Tmax), the plant must reduce power production to
reduce the heat added to the discharge. These unscheduled load re-
ductions force the station to purchase make-up power, frequently at
peak prices (during peak demand periods).

The objective of the proposed short-term temperature forecasting
(STF) system is to reduce the cost of compliance with the present dis-
charge limitation. Hourly electric power generation is economically
scheduled, taking into account the heat retention capacity of Salem
Harbor, the difference in wholesale electric power costs between day
and night, and the maximum discharge temperature limitation. The
system is based on the assumption that a fraction of discharged heat

re-enters the cooling system (6 to 12 hours later), as warmer-than- .
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normal cooling water. This recirculated heat adds an increment to the
total discharge temperature, Crawford (personal communication) suggests
that if generation is reduced late at night, the power plant could pro-~
duce more power the next evening during peak demand, since the intake
water would be cooler. Experiments by Kenison and Galli (1975) support
this suggestion.

This approach to generation control is economically attractive be-
cause make~up power is cheaper late at night than during peak demand
periods (1$ - 2/MWH vs. $5 - 10/MWH). The proposed STF system allows
economic generation control, by determining the nighttime load reduction
necessary to ensure that the discharge stays below Tmax during the next
day's peaking time. The system also computes the net savings from
following the recommended load pattern instead of that originally fore-
cast. The relationship between discharge temperature, power production,
and power costs is depicted for a hypothetical case in Figure 1-3,
showing the potential advantage.of STF. Figure 1-4 summarizes the STF
system in flow-chart form.

The STF system for power plant discharge control can be broken
down into three principal components:

1. An accurate model of intake temperatures as a function of

previous discharge temperatures and other envirommental
factors:

T, = fl (Tou , environmental variables)

in t

- 12 -
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2. An accurate model of AT (from intake to discharge) as a function
of plant operating characteristics: AT = fz(plant operations)
3. Control laws for the optimal control of plant operatioms
under existing economic and environmental objectives.
Because T0 = Tin + AT, one can combine the models from 1 and 2. This

ut
yvields a recursive model of Tout as a function of environmental factors
(which one cannot control) and plant operations (which one can control):
Tout(n+1) = f3[Tout(n,n—l,...), Environment (n,n-1l,...),
Plant operations (n,n~1l,...)].

Control laws use this model to define minimum-cost plant-operation

schedules which ensure T

out i'Tmax'

STF forecasts of discharge temperatures must be fairly accurate to
achieve economic control of generation. The risk is that a costly night-
time load reduction, recommended by the STF system, may not be necessary
to meet discharge limitations. Kenison and Galli (1975), estimate that
the predicted peak temperature for the next day must be accurate to with-
in + 1°F of the actual, 90% of the time, to justify using the STF system.
.(This is a subjective estimate; probabilistic analysis of expected
savings with this system might show a lower accuracy to be acceptable).

To minimize STF operating costs, the system must employ computer
programs which are small and inexpensive to run. This also encourages

a simple system which is easy for field personnel to understand.

1.2 The Model Development Problem

An STF system requires a model of intake water temperatures at
Salem Harbor Station. From the preceding background discussion, the

model development problem may be stated as follows:
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Develop a simple and accurate model of intake tem=-

peratures at Salem Harbor Station. The model must

predict up to 24 hours into the future. It must pre-

dict the daily peak intake temperature within % 1°F,

90%Z of the time. It must be developed using existing

data from Salem Harbor.

The present study focuses on this model development problem. Develop—
ment of other STF components is not treated herein.

Considerable data exists on the hydraulic and thermal behavior of
Salem Harbor, providing a good basis for model development and verifi-
cation. Available data includes three years of hourly records of
temperatures, weather, tides, and power plant operations, combined with
occasional synoptic temperature measurements (outside Salem Harbor).

Appendix B summarizes the types and sources of data available.

1.3 An Estimation-Theoretic Approach

Estimation theorﬁ is a unified body of theories and algorithms for
estimation of variables in uncertain systems (see Schweppe, 1973). Al-
gorithms exist for obtaining optimal (minimum uncertainty) estimates of:
states, initial and boundary conditions, inputs, parameters, and model
structures.

These estimation techniques share a common approach to analysis of
the uncertainties in a system. Information about a system is acknowledged
to exist both in a model of the system and in measurements of the system.
It is also acknowledged that there are imperfections in both the model
and the data. Under these conditions, a best estimate of the system
states, parameters, or other attributes is obtained by combining the
information from the model and data. The uncertainty in an estimate can

be quantified, and thus an optimal (minimum uncertainty) estimate may be

obtained.

- 16 -




This report approaches fhe above model development problem in
estimation-theoretic terms, as a problem in model identification, para-
meter estimation, and state estimation. The approach to this problem
follows that proposed by Schweppe (1973):

1. Hypothesize a model structure

2. Estimate parameters

3. Evaluate the resulting model
To do the estimation, selected tools of estimation theory are employed:

Kalman Filtering - for optimal estimation of states and initial

conditions

Full-Information Maximum-Likelihood Parameter Estimation - for

optimal parameter estimation.

The type of model development problem examingd herein is unique
among the water quality modeling literature, in specifying an accuracy
criterion for a water quality model of a real system. The only similar
study, by Kenison and Galli (1975), treats the same Salem Harbor pro-
blem considered herein.

The maximum-likelihood parameter estimation scheme employed in the
present study is also unique among water quality modeis. The closest
analog is the work of Young et al (1971) and Young and Whitehead (1974).
They develop an Instrument Variable-Approximate Maximum Likelihood
(IVAML) method for parameter estimation, and apply it to a river BOD/DO
system. The IVAML approach is theoretically suboptimal, but the method
may yieid near-optimum estimates at potentially lower costs than a full-

information maximum-likelihood method. Also related to this work are

- 17 -




the investigations reported by Shastry et al (1973). They employ
maximum-likelihood and weighted least-squares methods (without filtering)
to estimate the parameters in alternative BOD/DO models.

A variety of other parameter estimation techniques are reported for
water quality models. Young and Beck (1974) apply the Extended Kalman
Filter to estimate parameters in a BOD/DO system. Water Resources
Engineers, Inc. (1973) also employ the Extended Kalman Filter, to
estimate ground water basin parameters. Lee and Hwang (1971) use a
quasi-linearization approach to estimate BOD/DO model parameters.
Ulanowicz et al (date unknown) use a multiple regression to estimate para-
meters of a Lotka-Volterra plankton population model; in addition, they use
the F-values from the regression to identify and delete unimportant
terms in the model. Koivo and Phillips (1971) employ a stochastic
approximation method to estimate parameters of a BOD/DO system, in both
simulated and real rivers. Koivo and Philips (1972) obtain least-~
squares estimates of BOD/DO model parameters, again for both simulated
and real rivers,

Though unfamiliar to water quality modeling, experience with
maximum~likelihood parameter estimation is common in other applicatioms,
such as aeronautics (Rault, 1973), industrial processes (Gustavsson,
1973) and electric power systems (Baeyens and Jacquet, 1973).

The software for optimal filtering and maximum-likelihood para-
meter estimation in this study is provided by GPSIE - "General Purpose
System Identifier and Evaluator' - developed by Peterson and Schweppe

(1974). GPSIE is a powerful model development tool offering, among

- 18 -




other options: simulation, optimal filtering, maximum-likelihood
parameter estimation (including several non-linear optimization
routines), plotting, bad data detection, and calculation of various
measures of model performance (such as whiteness-of-residuals, the
hessian at the optimal parameter estimate, etc.). GPSIE can be used in
either interactive or batch mode, and is applicable to any model in
linear, state-space, white-process form. Petersen (1975) applies GPSIE
in developing a dynamic model of U.S. energy demand.

1.4 Policy Aspects of an STF System

The ultimate utility of a new environmental control technology
is determined by its fit with applicable environmental policy. Thus, in
conjunction with developing a new technology, it is wise to explore the
policy aspects of the proposed work. Policy issues associated with an
STF system are analyzed in Schrader (1976). Environmental impacts and
economic benefits of STF are uncertain, but appear to be low. Therefore,
use of STF (if this occurs) is not expected to raise policy issues.
1.5 Objectives
To summarize the foregoing discussion, this study has two objectives:
1. Solve the STF model development problem posed above, i.e.,
develop a simple model of intake temperatures at Salem
Harbor Station that predicts the daily peak intake tem~
perature within 1°F, 90% of the time.
2. Apply optimal filtering and maximum likelihood parameter
estimation to a water quality model of a real system using

field data. Evaluate the advantages and disadvantages of
using these techniques in this application.
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1.6 Overview of Contents

To introduce the estimation methods used in the model development
process, Chapter 2 presents a review of state and parameter estimation.
Chapter 3 presents alternate model structures for this problem, and
describes the structure ultimately selected. In Chapter 4, estimation
methods are applied to the appropriate model structure. Chapter 4 pre~
sents the results of the estimation process, and evaluates the perform-
ance of the resulting model, Chapter 5 presents a summary, conclusions,

and recommendations.
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CHAPTER TWO

STATE AND PARAMETER ESTIMATION METHODS

This chapter reviews the state and parameter estimation methods
used to develop the model of intake water temperatures. This review
" explains (qualitatively) the mathematical tools used herein, and
establishes a basis for interpreting the usefulness of these tools.
The chapter presents only the basic concepts of how the estimation
methods work; the reader is referred to Schweppe (1973) for complete
derivations. .

2.1 Review of Optimal Filtering and Maximum-Likelihood Parameter

Estimation
Fundamental to most of estimation theory is the State-~Space, White
Process Model for uncertaih dynamic systems (Schweppe, 1973). For the
linear; timc-varying case, this form is:
x(n) = E(n-1)x (n-1) + B(n-1)u(n-1) + w(n-1)

z() = H(n)x(n) + v(n)

where: x(n) = vector of state variables at time n

g(n) = gtate transition matrix

gﬂﬁ) = vector of deterministic, exogenous inputs
B(n) = matrix of input gains

w(n) = vector of model noise

z(n) = vector of measurements (or "observations')

H(n) = measurement matrix

v(n) = vector of measurement noise

- 21 -




Model noise, measurement noise, and uncertain initial conditions are

modeled as follows:

E[x(0)] = x_ ‘ Elu(n)] = 0 E[v(n)] = 0
| Q(n), m=n . R(n), m=n
E[x(0)x'(0)] = ¥ E[fw(m)w'(n)] = E[vm)v'(n)] =
0, m¢ n 0, n#n
E[x(0)w'(m)] = 0 E[x(0)y'(m)] = 0 . E[w@my’ (n)]-= 0 All m,n

Future estimates of the state-vector are predicted using chis
model. The error covariance 2 is a measure of the uncertainty in the

state estimate:

i) = E[(x(m) - £(@) &) - £()']
where: x(n) = true value of state vector
i(n) = estimated state vector
E[ ] = expectation operator.

Schweppe (1973) shows that I is given by:

Z(n) = E(n-1) E(n-1)£'(n-1) + Q(n-1)

Z() = ¥

Measurements can also yield an estimation of the state. In appli-
cations to real systems, neither the model nor measurements is perfect;
thus the resulting state estimate from either will be uncertain. The
"filtering'" result of estimation theory provides a method for optimally

combining the information in the model and the measurements. The
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filtered state estimate that is produced has less uncertainty than an
estimate based on either model or measurements alone; optimal filtering
(also called Kazlman Filtering) yields the minimum-variance state
estimate (Schweppe{ 1973).
A heuristic explanation of the filtering process is as follows:
1. Begin at time n with a filtered state estimate incorporating
measurements through time n: ﬁ(n[n). Predict the state at time n+l:
£(atl|n) = E(n) X(a|n) + B(n)uln)
This is the best estimate of x(n+l) based on the model alone. The un-
certainty in this estimate is:
L(n+lin) = E(@)Z (n|n)E'(n) + Q(n)
2. Take a measurement at time n+l: 2z(n+l). A state estimate
based solely-on this measurement is (Schweppe, 1973):

£(n#1) = [ (DR (kD E@H) ] B (k)R (041) 2 (n+1)

The uncertainty in this estimate is:
g@+l) = [B' (DR (oD 17
3. Estimate é(n+l!n+l). The filtered estimate (or "updated"
estimate) is a weighted average of the state estimate based on the model
and the estimate based on the measurement. The weighting scheme is
- determined by the relative uncertainty of the two estimates (Schweppe,
19%3):

x(n+l|nt+l) = ;(h+11n+1)[}=1'<n+1)1=1‘1(n+1)3(n+1) + ;“l(n+1|n)§(n+1[n)]
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The uncertainty in the filtered estimate is:

I (atl|n+l) = [B' (DR (D EG@H) 7 (atd|n)] 7t

Note that this uﬁcertainty>is less than éither ;(n+1ln), the uncertainty
in the model estimate, or Z(nt+l), the uncertainty in the measurement
estimate.

The model parameters are the variables in the model which are
independentldf the states and the inpﬁﬁs. In thé State—~Space, White
Process Mbdel,.the p;rameters include the initial conditions 50; the
elements of the matrices EF(n), H(n), and B(n); and the elements of thg
covariance matrices Q(n) and R(n). If some of ﬁhese parameters are
unknown or poorly known, they may be estimated from measurements on the
systeﬁ. Maximum-likelihood paraﬁeter estimation is a toql for obtaining
optimal parametef estimates under conditions of uﬁcertainty in the
model and measurements.

The previous model can be re-written to indicate that it incor-
porates uncertain parameters, which are to be estimated:

x(n) = E(a,n+l) x(n-1) + B(g,n-1)u(n-1) + w(n-1)
z(n) = H(g,n)x(n) + v(n)
where g = vector of unknown parameters.

Maximum-likelihood parameter estimation is essentially an iterative
searching procedure over alternate parameter estimates gj. Define the
véctor of all observations through time n:

[z (1)]

Z
¢

z(n)
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Then the overall maximum~likelihood parameter estimation procedure is
as follows (see Schweppe, 1973):
1. Propose a parameter estimate gj
2. Run the model througb‘time n, using o = 24
3. Compute tge likelihood k(gjlgn) of model j. (Note that
z(gjlgn) = Pj[gn], the probability that the observations z,
would be generated by model j.)
4. Propose a new % and repeat, until the o, with the maximum
likelihood is obtained. |
The key step in this process is the computation of the likelihood.
A recursive method is described below which employs a filtering algorithm
to generate optimal state estimates for the likelihood computation.
By definition of conditional probability: .

Bylz,] = Bylz(n) I_Z:n_ll * Plz ]

For convenience, the log-likelihood is considered, instead of the like-

lihood itself:

L}

Log~likelihood Ej(n) = 4n Pj [En]

= f ’
fn Pj I,_g._(n)l_zr_,ﬂ__l] + 2n Pj[gn_l]

= By [z(a) [z, 4] + £,(n-1)

where gj(o) = 0.
If one assumes that the noise processes X w(n) and v(n) are all

Gaussian, then the conditional probability distribution Pj[gjn)lgnnll
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is Gaussian, and can be computed for any value of z(n) (Schweppe, 1973).
Taking the log of this distribution, and multiplying across by 2, one

obtains:

2t plzz, ] -

-~k !}n 27 - Jln{detgz (nl_n-l)] - _6_; (n);fgl (nl'n--l)ﬁz (n)

where:
k = dimension of z(n)
jz(n) = measuremént residual
=z(n) - z(n|o-1) = z(n) - E(0) x (aln-1)
Ez (nln—l) = covariance of measurement residual

H (0)I (a|n-1)E' (n) + R (n)

The residual §z(n) is computed at each time step from éﬁn[n—l), which

is in turn a one-step prediction from x(n-1 a-1) . Likewise,gé(n|n-ﬂis

computed directly from the filter results for time n-1, ég(n—lln—l).

In summary, the recursive algorithm for gomputing model likelihood
in one pass through the data is:i

1. Given Ej(n-l), éﬂn-lln—l) and X (n-1]n-1), preéict
éﬂn[n—l) and Ez(nln-l).

2. Use z(n) with z (nln-1) and Ez (n|n~1) to'compute
£n.Pj[z(n)[zn_l], and add to Ej(n—l) to get Ej(n).

3. Use z(n) with optimal filter to update model: gﬁnln) and

I (n|n).
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The likelihood calculated in this way employs all information available
on the modeled system, and is called the "full-information" likelihood

in this thesis. The estimation method is called "Full-Information

Maximum Likelihood (FIML) estimation.

- 27 -




2.2 Alternate Measures of Model Performance

The model development problem posed in Chapter One specifies that
the error in daily (24-hour) peak temperature predictions shall be less
than 1°F, in 902 of the predictions. The implied measure of performance
is computed as folléws:

1. From initial conditions, make an unfiltered forecast of in-
take temperatures over the next 24 hours.

2. Compute the error between the predicted and observed peak
temperatures for this period.

3. Repeat steps 1 and 2 for m consecutive 24-hour periods.

This méasure of performance is T, defined as:

T = percentage of 24-hour periods fo: which the error
in peak intake temperature prediction is less than
or equal to 1°F.

The mcdel development problem specifies the accuracy criterion:
T >90%. .
The full-information.likelihood is a different measure of model
performance, not strictly equivalent to T. One important difference is
that the full-information likelihood involves updating of the model at
every time step (via optimal filtering), whereas T involves an un-updated,
24—hour prediction. A second difference is that the full-information
likelihood incorporates prediction-measurement discrepancies at every
time-step in a 24-~hour period, whereas T only accounts for the dis-

crepancy in peak temperatures in any 24-hour period. In qualitative

terms, T is a measure of the fit of the mcdel to daily peak temperatures,
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when the model is updated (re~initialized) once every 24 hours. By
comparison, the full-information likelihood is a measure of the model's
fit to the complete stream of hourly temperatures, when the model is
updated every hour.

A variety of other measures of model performance also suggest
themselves. Several of the measures are used to evaluate model per-
formance in Crapter Four:

1. Sum of squares of normalized measurement residuals, S:

s - 3 4 [6'@) It (n|n-1) § ()]

i=l n=1 ° ° 2

where m = number of days.
Schweppe (1973) shows that for a perfect model, S is a chi-square
distributed variable with d degrees of freedom:

s = x2(d,2d)
where d = (24'm'k)_- h
h = dimension of &

The variance of § is 02 = 24d.

S

These results are helpful for distinguishing local from global

S
to doubt the validity of the model with parameters Ej' It may be that

maxima on the likelihood surface. If Sj # E[S] + 20, there is reason

one's initidl estimates for Q and 5 are too large. This will inflate
gz,cthereby reducing S and artificially improving £ . Thus, a false
maximum-likelihood point may be located. Improved estimates of Q and R
are ones sufficiently low to make S 2 F[S], if possible. A second maxi-

mum~likelihood estimation, using improved Q and R, will yield better
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estimates of g. (This measure of performance applies only to fully
updated models).

2. Mean-square Error of Predicted Hourly Temperatures, M:

1 o % 2
M == 3% {= ¢ [z(nll) - z(n)]"} , where z = intake temper-
m . 24
i=1 n=1 ) ature

For each day i, an unfiltered 24-hour forecast is made (just as would
be done using the STF system). The mean-square error of the hourly
predictions is computed, and averaged over m days. M is an absolute
measure of the error in a prediction. However, it can give an erroneous
estimate of model accuracy if used alone, because it fails to account
for potential mezsurement errors and random variations in inputs.

3. Mean-square Error of Predicted Daily Peak Temperatures, D:

«

K %
vwhere z; and z

; are the predicted and measured peak intake temperatures,

respectively, for day i. Unfiltered 24-hour forecasts are used to
generate 2:. D is related to T. If one assumes that the error, €, in
peak temperature predictions is normally distributed, ¢ ~ N(o,oz), then
D is an estimate of oz. Under this assumption, to achieve T > 90%, one
must achieve D < 0.78.

4. Normalized Whiteness of Residuals, P(a):

Peterson (1975) defines the whiteness test matrix:

P@y = R@y - BR@ y Dioge,
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where P(a)ik = number of standard deviations by which the ikth
element of the whiteness matrix differs from its

expected value.

N-a

1 w’ o~
g(a) iy z [ﬁz(n)ﬁz (n+a)]
n=1
= whiteness matrix for lag a
n -1/2
8, = ) (n[n-1)8, (n)

Y2/N, for R(o)ii

GR(a)ik =¢(/1/N, for R(o) i#k

ik’

Y1/N - a/Nz, for R(a), a # o

E[R(a)] ={
lg. s #0

for perfect model

Peterson (1975) indicates that this is an extremely sensitive measure of

model performance. He suggests as a rule of thumb that the elements of

B(0), g(l), P(2) and P(3) should be less than four or five, to indicate

an acceptable model. This measure of performance applies only to fully

updated models.

5. Covariance of 24-hour Predicted Temperature, cf (n + 24]n):

03 (n + 24|n) = ith diagonal element of I (n + 24|n) for
z

which z, = intake temperature

Note that cj(n + 24|n) is not constant, but a function of n.
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Although the model development problem is posed in terms of T,
parameter estimation is done using the full-information maximum-like-
lihood criterion. This choice is made for several reasoms. First, the’
full-information likelihood incorporates into the parameter estimation
ail available infofmation about the system. The off-peak behavior of the
~system contains useful information fof model developmént, which T
ignores. Second, because it is derived from probabilistic assumptions
about the modeled system, the maximum-1likelihood approach allows one to
infer how well the resulting ﬁarametéf estimate will perform on data
not included in the estimation. If the probabilistic‘assumptioﬁs are
true, then the full-information maximum-likelihood paraueter estimate is
the optimal estimate (Schweppe, 1973). Under these conditions, maxi-
mizing the full-information likelihood is sufficient (but.not necessary)
te maximize T.

In addition to being theéretically optimal, the full-information
maximum-likelihood approach offers other advantages. By modelling.the
full, hourly behavior of the system, one automatically solves the problem
of predicting the time of peak intake temperature. The time of the peak
is needed (fairly accurately), so that the STF system may determine
temperature~-control measures with reasonable confidence. A parameter
estimation based on T requires additional manipulation to fit time-of-
peak records, which may be impossible without reducing T.

Cost is also a factor in the present case, wherein a full, hour-by-
hour filtering algorithm is required to initialize the model each day

.(see Appendix C). . The full-information likelihood (using the
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filtering results also used to initialized the model) incorporates 24
data points for each day, compared to 1 data point per day (i.e.,.the
peak temperatur@ for T. Thus, an estimation using T must span 2% times
as many days as one using the full-information likelihood, to have the
same "sizé" data b;se. If the same model (with full filtering for ini-
tial conditions) is used in both estimations, the estimation using T
requires roughly 24 times more computation than one using the full-
information likelihood. (The opposite wouid be true if full filtering
for initial conditions were not required); |

One further advantage of this approach is that computational delay

and inconverience are minimized by GPSIE, which offers fully-implemented

routines for full-information maximum-likelihood parameter estimation.
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2.3 Optimization Procedure

For a‘given set of data, 2z the log-likelihood is a non-linear
- function of oy
g(n) = £y z) .

Ma#imum—likelihood parameter estimation requires an iterative search for
the values of g which maximize £(n). This is essentially a non-linear
optimization problem, for which a variety of solutions exist (see
Aoki, 1971). ' The present study uses a method originally proposed by
Powell (1964) and refined by Zangwill (1967), for minimizing a function
‘without calculating derivatives.

The basic approach of the Powell search is to iteratively revise
a set of orthogonal sea;éh directions, until a set.of &irections is
found along which no further increase in the function can-be achieved.
See Zangwill (1967) for the detailed search algorithmé. Zangwiil proves
that this method converges to the minimum of any strictly convek function.
By symmetry, the method is equally valid for finding thg'maximum of a
strictly concave function.

It is impossible to define a priori which optimization procedure
is best for the maximum-likelihood identification problem at hand. The
shape of the log-likelihood function, £(n) = f(gﬂlgn), is not generally
known a priori. The function may be multi-modal, in which case no
optimization procedure can assure the user of finding the global maxi-
mum. Thus, selection of an optimization procedure is based on the user's
intuition about the problem and about the soluticn procedures available.

The Powell search is chosen for the present study mainly because of
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Peterson's (1975) success using the method on a 20-variable FIML para-
meter estimation. Also, the Powell search is potentially less expensive
than gradient searches for cases initialized relatively near the optimum
point. The Powell‘search is also chosen because it is conveniently
available on GPSIE. (Also available, but not used in this study, are
the Newton Search (see Aoki, 1971) and Davidon-Fletcher-~Powell Search
(Fletcher and Powell, 1963)).

This concludes a review qf'the tools used for state and parameter

estimation in this study. The following chapter develops the basic

model, to which these tools are applied.
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CHAPTER THREE

MODEL STRUCTURE

3.1 Alternate Model Structures

A taxonomy of possible models for Salem Harbor is presenﬁed in
Figure 3-1. Two basiclmodel structures are considered, representing
fundamentally different-approaches to model development. In the
statistical approach, states and/or measurements of interest are
viewed as random processes, outputs of a stochastic input-output
system. A model, in this paradigm, is perceived as a relation be-
tween the inputs and outputs. Model development consists of itera-
tively revising these relatioms, in an effort to explain as much as
possible of the variance of the output process(es). Such models
may also be termed empirical.

In the physically-derived approach, states, inputs, and measure~
. ments are perceived to be related to each other by deterministic laws
reflecting causality. Model development, in this paradigm, consists
of findiﬁg the true value of weékly known parameters, and the true
.representation of causal mechanisms. |

There are advantages to each approach. The advantage of statis-
tical models is their relative algebraic simplicity, making the dy-
namic relationships between the variables clearer than in physically-
derived models. The structural modifications necessary to achieve
a desired output are thus easier to perceive. Although more com—
plex, physically-derived models offer the advantage of incorporating

all of one's intuition and experience about the system being modeled.
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This thoroughness facilitates modeling of systems for which little
or no operating data is available.

Statistical models.of water quality are uncommon. One likely"
reason is that ap adequate data base at any one site is rare. Also,
stétistical models do not build from comprehensive, general laws,
in contrast tc most water quality models. 'This unrealistic approach
may leave some modelers uncomfortable. Nevertﬁelesé, és existing
environmental monitoring programs accumulate fairly long records for
particular sites, empirically derived models should be considered
for some applications.

Two types of statistical mpdels and two types of physically-
derived models are considered for the Salem Hé;bor intake tempera-
ture problem (Figure 3-1):

1. '"Peak-to-peak exfrapolatibn“ models use today's peak intake
temperature, plus other weatﬁer, ﬁide,and plant generation data,
to predict tomorrow's peak intake temperature and tﬁe hour in which
it will occur. No intervening temperatures are predicted.

»2. Time series models predict temperatures at regular time
intervals. This is the most general form of statistical model.

3. "Basin-type' models divide the water body into a suitable
number of cells (or "lumped elements"), and use physicgl principles
of mass and energy transfer between cells to predict cell tempera-
tures at fixed time intervals. As defined here, basin-type models
do not explicitly observe the conservation of momentum; water flow

between cells is governed by flows at the boundaries and by assump-

tions on cell depth.
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4, Fully physically-derived models are derived from the govern-
ing equations of fluid flow. These models are essentially numerical
solutions of the governing equations, suitably discretized in space
and time, and with suitable assumptions. The details of each model
type are assembled in Table 3-1.

A physically derived, basin;type‘model structure is selected
for the present study. Statistical structures are rejected because
their potential accuracy-appears too low (Table 3-1). The basin- |
type model appears tc offer a2 higher chance for success, by incorporat-
ing a more refined represéntation of the suspected dominant physical
processes (tide, wind, surface heat exchange, plant operation, énd
stratification). A fully physically-derived model of harﬁor tempera-
tures is rejected because: 1) it appears to be too complex and ex-~
pensive to meet the original objective of a simple model; 2) there
is doubt whether such complexity will in fact enhance accuracy, or
whether this ccmplexity will introduce more uncertainty than it
eliminates.

The basin~type model offers an intermediate level of refinement:
- simpler than a fully physically-derived model, yet incorporating
more physical intuition than statistical models. The choice assumes
that a simple, physically-derived treatment of the dominant physical
processes, ''tuned" by optimal estimation of parameters, will yield
sufficient accuracy with sufficient simplicity. The specifics
of the resulting model structure are described in the following sec-

tion.
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3.2 A Simple Two-Basin, Two-Layer Model for Temperature in Salem

Harbor

Based on physical principles and past engiuneering experience with
hydrothermal systems, harbor temperatures (on an hourly time scale)
appear to be dominated by the following factors: stratification,
tides, surface heat exchange, wind, and power plant operations.

This is suggested by the subjective-intuitive mocdel of Kenison and
Galli (1975), and by inspection of temperature data.

To incorporate these dominant factors in a model, a simple
schematization of Salem Harbor (see Figure 3-2) is used. The ideal-~
ized harbor consists of two basins, each having a surface and a
bottom layer. The boundary between the two basins is determined
by the breakwater jutting out from the power plant. The harbor is
thus broken into four cells, each assumed well-mixed. Across the
open boundary from Basin #2 is Salem Sound, also represented by a
surface and bottom layer. To simulate harbor temperatures, the
model tracks mass and energy tranfers between the cells, the atmos-
phere, and the sound; conservation of mass and energy are observed.
In each time-step, water (and hence, energy) is advected between
cells and the sound, according to tidal and power plant flows.
Energy is also transferred across the air-water interface. At the
end of each time-step, the temperature of each cell is computed;
plant intake temperature is then computed from the cell temperatures.

The model thus consists of two finite-difference equations for

each cell: an equation for conservation of mass, and an equation
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for conservation of energy (the latter yielding cell temperature).

The following paragraphs develop these equatioms, highlighting impor-
tant assumptions and explaining the unknown parameters to be estimated
in Chapter Four. For reference, the resulting equations for each
cell are listed ;t the end of this section in Tables 3-2 and 3-3.

A summary list of symbols is also provided at the begirning of the

report. Sources of data used for model development are summarized

in Appendix B.

3.2.1 Conservation of Mass

Basin #1, Surface Laver:

o s = %y = Oggy * (1 - MY @
where

VSl = Volume of Basin #1, surface layer

Qq, = Flow rate from Basin #2, surface layer into Basin #1,

surface layer

QSBl = Flow rate in Basin #1, from surface to bottom

QP = Flow rate through Salem Harbor Station

Y = Plume re-circulation factor (described below)

The heated plant effluent is discharged via a surface discharge
canal; hence, the model assumes that allplant discharge enters the
surface layers. To allow for plume re-circulation, a fraction ¥
of the discharge is assumed to enter the surface layer of Basin #2

directly. This re~circulation factor is related to the tide as follows:
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v, - v,) (-h) .
Y = Yz + 1 52 —_—

o
A
o

Thus, for Yl > YZ’ re~circulation will reach a maximum at peak ebb
tide. Y, is a parameter defining the proportion of discharge '"mor-
mally" entering Basin #2 (during flood tide); Y, is a parameter
determining the maximum amount 6f‘re—circulation at peak ebb.

QP is known a priori from planned power plant operating schedules.
The area of each basin (Al or Az) is constant, since thé harbor is
idealized as a rectangular prism. The thickness of the surface
layer (hs) is assumed constant and eqdal in both basins. (This
approximation appears roughly valid for the summer months, based
on observed temperature profiles. It is worthy of refinement,
however, in later work.)

With these assumptions, the left-hand side above is zero, and

Basin #1, Bottom Layer:

d =

at V1) = %12 * U (3
where

VBl = Volume of Basin #1, bottom layer

QBlz = Flow rate from Basin #2, bottom layer into Basin #1,

bottom layer.
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Recalling that basin area is constant, Eq. (3) becomes:

d -
& g = Qi * Qp (4)
where hBl = depth of bottom layer, Basin #1.

From published tide tables (of the U.S. Natiomal Oceanographic
and Atmospheric Administration), the tidal height h (relative to
mean iow water) may be obtained for a given time. Interpolation
between high and low tides is done by fitting one-half of a sine
wave between each two such points. With a time-step size of 15
minutes or less, this estimated tidal height may be considered uni-
form throughtout the harbor. The depth of each basin at mean low

water is thus:

l,rdn = hs + hBl,min
By,min T s ¥ P2 nin
Where hBl,mln and hBZ,min are the minimum bottom layer depths.

The rate-of-change of tidal height, ﬁ, may be considered

uniform throughout the harbor. Thus,
h=t o =h +h. =h )

since surface layer thickness is constant. Substituting back into

Eq. (4):
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Q12 * Qgp; = A | (6)

The total tidal flow entering Basin #1 is

A proportion al of this flow enters via the surface layer; thus
Qg12 = *1Ya » 80d Qgpp = (1 - )0y | @)

The apportionment of flow is assumed to be related to the relative

layer thicknesses:

- h,, | hg)
@ =by_ 5, and (1-0)) =b =] 9
hs + hBl S Bl

The parameter blvis related to the horizontal veldcity pfofile
at the.boundary of basins 1 and 2:

Depth

ﬁ‘ g b=1
hS + hBl ~

Velocity
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1

Given b,, and thus &, , the inter-cell flows for Basin #1 are:
E R -

Q10 ™ al[Al h- (@1 - Y)QP]

S

Qpp = (L -opla h- -yl (10)

Basin #2, Surface Layer:

B2 = Q523 7 %12 7 (1 - MG (1)
where:
QSBZ = Flow rate, in Basin #2, from surface to bottom layer

Qg23 = Flow rate from the surface layer of Salem Sound into

Basin #2, surface layer

Cooling water is assumed to be withdrawn solely from the sur-
face layer of Basin #2. This rather unusual assumption is forced
by the data available for model development: "intake temperature"
is measured at a point 2 feet below the water surface, and AT
across the plant is computed between this point and the discharge.
Since the model is designed to use these AT values, it is necessary
to assume intake water is withdrawn from the surface layer, at the
"intake temperature", in order to maintain the proper heat balance:

Heat discharged = QP T

out P CP = QP(Tin + AD)p cP'
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Basin #2, Bottom Layer:

d —
acr Vp2) = Q3 + Qgpy = Yo (12)

where: '
Vgo, = Volume of Basin #2, bottom layer
QB23 = Flow rate from the bottom layer of Salem Sound into

Basin #2, bottom layer

Employing Eqs. (11) and (10), and simplifying:

Qgoq + Qpp3 = (Al +A,) h = Q) = total flow into harbor
(13)
By analogy to Basin #1, bottom layer:
Qgyy = @, (A) +A))h
Q323 = (1 - ‘Jtz)(A.1 + Az)h (14)
where
[ by | (15)
a, = b, [~—1]
2 2 hS + hBZ

3.2.2 Conservation of Energy

Basin #1, Surface Layer:

d
acBgp) = P cplQgplay Tgy + (1 - a)) Tgy) + L - QT 0

= Qgpy (8 Tgy + (1= 2y)) Tp)] + (0g; - ¢57) A
(16)
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where:

Esl = Total thermal energy in Basin #1, surface lgyer
p = Density of salt water = 64 1bm/ft§

¢ = Heat capacity of salt water = 1 BTU/lbm °F

T = Temperature of Basin #1,'surface layer

TSZ = Temperature of Basin #2, surface layer

Ty; = Temperature of Basin #1, bottom layer
T = Plant discharge temperature
out
¢Sl = Net surface heat flux, Basin #1
¢Bl = Surface-bottom heat transfer, Basin #1
& %12 > 0
a =
1
o %12 < 0
R Qpy > ©
a -
2 0, Qgpy < 0

The switches a;» etc. ensure that the proper energy balance applies,
under varying flow directioms.

The net surface heat flux (¢81) intoor out of the surface
layer is computed separately from each basin using equations adapted
from Harleman ard Stolzenbach (1975); the equations are summarized
in Appendix A. All heat fluxes are in units of BTU/ftz-hr.

The conductive heat transfer between surface and bottom layers

(¢Bl) is modeled as a linear function of the temperature difference:
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gy =k (Tgy = Tpy) a7
The discharge temperature, Tout’ is computed by:
T =T, _ + AT (18)

out in

In simulation of historical temperatures, measured (not simulated)
AT values are used. Tin is modeled as a function of temperatures
in the surface layer in Basin #2 (see below).

An expansion of the left-hand side yields:

.d_.(E

& (19)

. a4
g1’ = (P cphg A)) Fr (Tgy)

Simplifying, one obtains the equation for the temperature of this

cell:

4 -l - - ‘
at Ts1) hSAl[Q812 (a) Tgp + (@ = 2)) Tgy) + (L = NQT .

- QSBl (ay Tgy + (1 - a,) TBl)] + ?‘c;—h:—lg (20)
ﬂasin #1, Bottom Layer:
9 @E.)=pc, [Q., (a, T., + (1 - a)T..)
at ‘Bl P ““p12 ‘23 B2 3’%p1
*Qgpy (@ Tgy + (1= 2T )] + dgy 4 (21)
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where:

By, = total thermal energy in Basin #1, bottom layer
TB2 = temperature of Basin #2, bottom layer
>
L. %12 > 0
a, = {
o Qi 20

Expanding the left-hand side:

d .
at Epy) = P cp Ay [bgy Ty + Ty byl
Recalling Eq. (6), Eq. (21) is re-arranged to yield:

d 1
—_— T L2 c—— -
ac Tp) =3 by [0g;, a3 (Tp; = Tgy) + Qgpp 2, (Tgy
1081
®51
P cphy

Basin #2, Surface Layver:

d _
at Egp) = P cp [Qgy5(a, Tgy + (1 - 2)T,)

= Qgp (] Tgp + (L - 2)) Tg)) = Qv T

t

= Qgpy (a5 Tgy + (1 - ag) Tp)l + (¢, - ¢

- 51 =

B2

(22)

- 1
Tpy)d

(23)

-T, )

in

)A,
&

(24)




where:

5]
"

Total thermal energy in Basin #2, surface layer

Ss2
TS3 = Temperature of water in the surface layer of Salem
Sound, at the open boundary
¢SZI = Net surface heat flux, Basin #2
¢BZ = Surface~bottom heat flux, Basin #2
Lo Q30
a, ={
o, Qgp3 £ 0
o %m0
ag ={
0 » Q=20

Intake‘temperature Tin is modeled as a function of surface

layer temperature (TSZ) and of wind speed and diréctipn:

Tin = TSZ + fwind

Since Tin in this case is measuraed 2 feet below the surface, it can

be realistically approximated by T The additional temperature

s2°
increment due to wind is based on a hypothesis that wind of the
right magnitude and direction will blow the plume in towards the
intake. This hypothesis is partially supported by wind and tempera-
ture data, and by the fairly successful subjective~intuitive model
(Kenison and Galli, 1975) using this hypothesis. This experience
suggests that the temperature increment increases in a high-order

way with wind speed. Temperature increase also appears to reach a

maximum around a particular wind direction. To allow enough vari-
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ability to reproduce these relationships, the wind function used

is:
[ , g2 e + gg ~ WD 2,
wing T (B T By WS + 83 WS+ g, WSTllgg * gy exp ~(— )
. (25)

where:

WS = wind speed in miles/hcur

WD = wind direction in °North

8, = parameters of wind function.

The open-boundary condition TS3 is modeled as follows:
1) Ebb Tide (Qgy5 < 0)

Tg3(n) = Tgyim)
i >
2) Flood Tide (0_Sz3 0)
7D ow
= ~ T - s
Ts3(™ = T5p 10w = 152,100 ™ Ts,s0umd’ TH7 (26)

where:

TSZ,low = TS2 at most recent low tide

n = time of mest recent low tide

low
T = background surface temperature of Salem Sound
S,sound
(unaffected by plant)
C1 = fraction cf initial temperature difference over

which TS3 will vary during flood tide

That is, on ebb tide the temperature at the boundary equals the
temperature of exiting water. On flood tide, the boundary tempera-

ture changes linearly from hottest (at low tide) to background (at
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high tide), if Ci =1, 1If Cl < 1, boundary temperature will not drop

all the way to baékground. For historical simulation runs, daily

average values of T are obtained from interpolation of bi-~

S,sound
weekly surface temperature measurements.

Re-arranging Eq. (24), as was done above for the surface, Basin
#1, one obtains:
d 1
ac (Tsy) hoA, [Qgp5 (2, Tg3 + (1 - 2)T5))

= Qgyp (a) Tgy + (1= ap) Tgy) - QOT 0 - Ty)

- Qgpy (a5 Ty + (1 - a )T, 1+ gs‘iP—-——}::j?-z— 27)
Basin #é, Bottom Layer:
4 (E..) = pc, [Q (a, T, + (1L - a,)T..)
dt ‘““B2 P ““B23 ‘%6 “B3 6’ B2
+ Qgpy (a5 Tgy + (1 - 25)Ty))
" Qgp (a3 Tpp + (- ap) Tyl + 0p0h, (28)

where:
EBz = total thermal emergy in Basin #2, bottom layer
TB3 = temperature of bottom layer of Salem Sound at open
boundary
1w Q3> 0
ag ={
0+ Q320
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Open-boundary temperature T_, is modeled analogously te T

B3 s3°

Ebb Tide (Qp,4 < 0) - (29)

Tgy(n) = Tp,(n)

Flood Tide (QBZ3 >0) - o
low
TB3(n) = TBZ,low - CZ(TBZ,low - TB,sound)( 5 )
o )
TB,sound is assumed to be 1.5 F less: than TS,sound for any day.

Expanding the left-hand side of Eq. (28), and recailing Eq.
(12), Eq. (28) simplifies to:
) = —— [q

Bpoty

- (T

t ‘“B2 a

d
d 523 26 (Tp3 = Tpa)

+ Qgpy 35 (Tgy = Tp)

+ Qpyy (L= ag)(Tg, = Tyl + - (30)

Bl

P cp by
This completes the development of the propoéed basin-type model.

Tables 3-2 and 3~3 summarize.its basic elements. The harbor is ideal-
ized as a rectangular, 2-basin, 2-layer system; water is assumed
well-mixed in each cell. The surface layer is assumed of constant
depth; the bottom layer rises and falls with the tide. Tidal levels
" are known a priori from published tide tables; these levels "drive"
the inter-cell flows of water. Surface heat flux includes the pro-
cesses of short- and long-~wave absorption, reflection, and radiatiom;
evaporation; and conduction. Special assumptions are made about open-

boundary conditions, and about re-circulation of power plant discharge.
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Table 3-2

Flow Equations for Two~Basin, Two-Layer Model

Qgyp = %, [4 B = (1 - 7)Q,]
Qpyp = L - apla h - Q- Y)Qp]
Qp; =

Qg3 = @, (&) + Ak
9823 = (1~ o) (&) + 40

Qgpy = Q3 = Qg =~ 1 - M
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Table 3~3

Temperature Equations for Two~Basin, Two Layer Model

I - -
ac Tsp? = hoh [og), (a) Tgy + (1= aTg) + Q-GG T\

(Pe = O4)
- s1~ %1
- Qgpy (a) Tgy + (1 - 2,))Ty)] + 5 cp B ¢

d SR S - -
at (Tpp) = ho A, (Qpy, 25 (Tpy = Tpy) + Qgpp 8,(Tgy = Tpy)]
L
P cP hBl
d 1 o
ac (Ts2) = hoh lagy3 (s, Tgy + (1 - 2,)T2)

o

= Qg (8 Ty + (1= 2)Tgy) = Qp (Y T, = Ty)

(s = ¢.,)
N s2 ~ ®g2
- Qgpy (a5 Tgy + (1 - 2a)Tp))] + 3 cp Bg

d 1 .o )
ac (Tpp) = hpph, [Qpa3 35 (Tgg = Tgp) + Qgyy a5 (Tgy = Tgy)

B1
+Qpyy (- a)(Ty, - Tyl +5 e, b,
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3.3 The Model in State-Space Form

To employ parameter—estimation techniques, the model must be
fransformeq into stochastic state-space form. The steps in this
transformation are executed below.

First, the médel is discretized. Since a basin-type model is
inherently discretized in space; it remains only to discretize in

time the equations of Tables 3-2 and 3-3. The following discretiza-

- tions are used:

Tide:
%t_ () | = Bt 1;(&:1)1(:1 -1)
n
Temperature: \
%E_(T) | = T(n + zi - 'I'(Q

n

Second, the appropriate state-variables are identified. 1In
this case, there are six state-variables: the volume—averaged
temperature of each of the four cells, plus the two low-tide open-
boundary conditions from the most recent low tide (which influence
future values of the other states via flood-tide open boundary condi-
tions). Note that the inter-cell flows are considered exogenous
inputs, not states. These flows can be computed directly from the
tidal levels and plant discharge, known a priori.

Third, the model equations are transformed to explicit, linea:,
recursive equations for each state variable. Since the net surface

heat flux is non-linear with surface temperature, a linearization is
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performed‘(Appendix A).

Fourth, a model of the observations as a function of the states
is developed. The only observaﬁions in this case are hourly plant
intake temperatures (measured two feet below the éurface). The

observation equation is T{n = TS2 + fwind'

Last, a stochastic component is added to the heretofore deter-
ministic model. The random variables LA and Vis added to the model
equations, are assumed to be zero-mean and uncorfelated in time.

The governing equations from Tables 3-3 and 3-4 are transformed

as above into state-space, white process form. In vector-matrix

form, the proposed model is:

z(m + 1) = F (u(n), &, n) x(n) + b(u(n), 2, n) + w(n)

z(n) = x3(n) + fwind(g(n), a) + v(n)

T,@ h@ |
To Qp (n)
Tg, WS (n)
x(n) = Tao u(n) =| Wb(n)
Ts2,10w (™ Tair ™
T82. 10w(™ Tgew (™)
— — c(n)
Tgound ™
T(n)

a = vector of unknown parameters (see Table 4-1 for

listing)
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)

=T
in,measured
F( ) = state transition matrix

|o*

()

~
n

vector function of exogenous inputs
w(n), -v(n) = white noise processes

The model is now in a form allowing application of the estima-
tion techniques described in Chapter Two. In this form, several
noteworthy characteristics of the model are evident.. The model is
linear in the states, though non-linear in the inputs; thus, it is
amenable to filtering. Model coefficients are time-varying; thus,
simplifying assumptions about a "steady-state filter" are not appli-
cable. The model is highly unobservéble: the dimension of the mea-
surement vector is 1, while the dimension of the state-vector is 6.

Thus, accurate estimation of the states is difficult,
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"CHAPTER FOUR
PARAMETER ESTIMATION AND MODEL EVALUATION

The proposed structure contains thirty-three unknown or éoorly
known parameters, summarized in Taﬁle 4-1. 1In this chapter full infor-
mation maximum-likelihood (FIML) estimation is employed to obtain
optimal estimates of these parameters. Section 4.1 presents initial
parameter values and their rationale. Section 4.2 presents the steps cf
the estimation process and the resulting parameter estimates. The data
base for parameter estimation is described in Section 4.3. Results
of model performance tests are presented ;n Section 4.4.‘
In Section 4.5 an evaluation of the model is presented. All estimationm,
testiné, and plotting is done using GPSIE.

4.1 1Initial Parameter. Values

Initial parameter estimates are listed in the first column of
Table 4-2. The rationale for these initial values is given below:
8, ~ 8g* Estimated so that fwind.cortesponds-to subjective wind
function in Kenison and Galli (1975)
F.-F,: From Harleman and Stolzenbach (1975)
F2’F4‘ From Harleman and Stolzenbach (1975), divided by 24 to
F55F7: yield hourly walues

F6'F8: Initially set to 1, to be equivalent to Harleman and
Stolzenbach (1975)

bl - b2: Subjectively chosen to represent a vertical velocity pro-

.file at basin interfaces.
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Parameter

hBl,min’

hBZ,min

2 2
%s1° %p1°
2 2
052> %B2

TABLE 4-1

PARAMETERS TO BE ESTIMATED

Description
Parameters of wind function £ .

wind
Parameters of surface heat flux equations

Velocity profile factors

Flood~-tide heat return factors for open boundary
condition

Plume re-circulation factors
Basin surface areas
Surface layer thickness

Minimum depth of bottom layers

Surface-bottom heat exchange coefficient

Variance of model noise

Variance of measurement noise
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C1 - CZ: Subjectively chosen to represent maximum heat return to
harbor during flood tide.

Y,: Subjectively chosen to represent full re-circulation of dis-
charge plume into Basin #2 at peak ebb tide.

72: ' Subjectiﬁely chosen to represent zero plume re-circulation
during flood tide.

Al - A2: Estimated from harbor measurements .

h_: Estimated from temperature profiles

. P £
hBZ,min'. Estimated from harbor hydrography

k: Subjectively chosen

2 2
%1’ %m1
o 2 o 2 ,

S§2° "B2: Subjective estimates of model accuracy
ui: Subjective estimate of measurement accuracy

The model noise statistics Osi - GBg represent the first four di-
agonal elements of the covariance matrix Q. The last two diagonal
elements, O 2 “and © 2 are assumed equal to © 2 nd © 2
> 782,low B2,low’ a qu s2 @ B2 °

respectively, and are not estimated separately. This assumption is made
because of the c}ose physical relation between TSZ and TSZ,low’ being
identically equal once every tidal cycle (and similarly, in the bottom

layer). Off-diagonal elements of Q (i.e., cross—covariances of model

noise) are assumed zero.
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4.2 The Estimation Process

Parameter estimation is done in two phases: Phase I - Preliminary
Estimation, and Phase II -~ Global Optimal Estimation. Phase I provides
a coarse and somewhat subjective refinement of selected initial para-
meter estimates. The results of Phase I provide initial conditions for
the global optimization of all parameters in Phase II.

Each phase of the estimation process involves several steps, pre-
sented below. In the discussion, a distinction is made betweén
structural parameters and noise parameters. Structural parameters are
those in the state and measurement equations. There are 28 unknown
structural parameters in the present problem (the first 28 variables in
Table 4-1). Noise parameters are those defining the covariances of the
model and measurement noise; there are 5 unknown noise parameters in the
present problem (see Table 4-1).

Phase I includes the following steps:

(1) Powell search for FIML estimates of 8.8’ the parameters of fw

ind’®

The wind function parameters are the least well-known of the
parameters to be estimated; thus, the preliminary estimation begins
by refining these values.

(2) Manual search of selected structural parameters for FIML estimates

within realistic bounds. This step uses the modeler's judgment

to bound a preliminary manual search for improved estimates within
realistic limits. Parameters appearing to offer the greatest

potential for model improvement are manually optimized. Rough
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bounds on what is realistic are drawn from data on Salem Harbor

and engineering experience with thermal discharges.

(3) Manual search for FIML estimates of noise parameters Ui:‘

Using the above estimates of structural parameters, revised

estimates of the noise statistics o, are developed via manual

search.’

Step 3 concludes the preliminary estimation. The preliminary
parameter estimates are the revised wind parameters, other revised
structural parameters, the revised noise statistics, and the initial
estimates of all other unrevised parameters. These estimates form the

"starting point for the global estimation.

Part II of the process includes the following steps:

(4) Powell search for FIML estimates of all structural parameters.

The 28 structural parameters are estimated simultaneously{ using
a Powell search to find the global FIML estimate. Noise statistics
are not included in the Powell search because of potential problems
if the search explores negative values for the covariances. (A

- bounded search is not possible using GPSIE). Cost of estimaticn is
approximately $300.

(5) Manual search for noise statistics with improved S. At the global

FIML estimates from the previous step, S is much less’ than E[S], as
shown-in Table 4-2. (The S statistic is discussed in Section 2.2).
To increase S, the noise statisti:cs are manually adjusted in this

step until S is approximately equal to E{S].
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(6) Final Powell search for FIML estimates of struc;ural parameters.
The revised noise statistics are significantly different from their
previous values kat the end of step 3). To ensure parameter
estimation wigh the proper noise statistics, all structural para-
meters are re-estimated in this step using the revised noise
statistics. Cost of the estimation is approximately $500.- The S

value for this estimation is almost within 2¢_ of its expected

S
value; thus the noise statistics are not decreased further. The
estimation is checked to see if increasing the noise statistics
(towards theig previous values) improves the log-likelihood. The
check indicates that the noise statistics do not need to be changed
further, and the estimation process is ended (see Appendix D). The

results of this step are the.final parameter estimates.

The step-wise evolution of the parameter estimates is summarized in

Table 4-2. These results are discussed in Sectiomn 4.5.
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PARAMETER ESTIMATES AT STEPS OF THE ESTIMATION PROCESS

TABLE 4-2:

PHASE I - PRELIMINARY

PHASE II - FINAL
PARAM—_ I
| ETER a2 = g8 &
m' | R By
o |E® |3Ee |3z |E%32 |3.g|ES:d
O = N | == Wi | g &)
=2 g a2 5 S8 BAlIEEE 2885|3528
S S 98 L |Z2RES 25 2S5 =0 235
A H £lon 2 = E ~ = S R=
= “gE = HHS =
58 |2R J|2.22 |322E|c6EE |3.%|E5E
=4 SR |Sy2s (S 2BIRE5R oA |EAEn~
gl 0 -.707 . 0409 2,53
g3 .015 .015 . 0157 .0145
g, -.0005] -.00054 -.00045 -.00041
g5 2. 1.9 2.76 3.47
g6 145. 133. 155. -116.
85 L0, 36.6 298. 1510
88 -1. -.8 -1.4 -1.5
F .65 .95 1.88 1.46
F, 4,34 7.34 2.40
F3 17 11.8 8.8
F4 6.64 6.10 7180.
FS .584 2.0 18.5 5.54
F6 1.0 1.2 -4011 -3o43
F7 1.66 218. 210.
F8 10 .518 0378
b1 1. 9.03 3.16
b2 1. 5.23 2.94
Cl 1. 6.87 <105
C2 1.64 1.01
Yl lo 05 - 0115 _1404
T -3.51 -11.8
A 20x10° 19x10° 4x108
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(continued)

TABLE 4-2

PARAMETER ESTIMATES AT STEPS OF THE ESTIMATION PROCESS

FINAL

SYALAWVIVA
TVEALINYLS
40 JLVRILSH
TW1d/TTIM0d

8x10

9.83

3.6
2.59

14.5
-87.0
40.4

63.

11.2

(S) SYALANVIVd
dSION 40
HOYVAS 'IVONVI

.04
92.5

3.
2
-109.3

92.

13.5

PHASE II

SYALARVIV

TVINIONYLS
40 ALVA1ISH
IH14/T1AM0d

15.9x10

6.82

5.16
4.19
3.88
-170,2
13.

63.

11.2

(IWIA)
SYALARVIVI
4SION J0

HOYVAS "TVANVH |

-196.3

PRELIMINARY

(TR1d)
SHALANVIVA
TVENIONYLS J0
HOWVAS IVNNVH

15x10°

PHASE I -

. nnwsm
J0 JLVHILSH
TWIA/T1aN0d

(NOT RE-

CORDED)

JLVRILSH
"TVILINI

12x10

.04

PARAM~
ETER

S -

Log-
Likeli-

hood

E[S]
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4.3 Data Base for Estimation and Testing

Model development and testing is done on data ffom late spring and
summer of 1974. This season is chosen because it is of greatest concern
relative to water temperature control. Developing the model strictly
for late spring and‘summer max;mizes its applicability to the dominant
hydrothermal processes of this season. The studﬁ is confined to 1974
data because this_ié the only year for which comprehensive and consis-
tent data is available (though furfher data is being coilected).

During late spring and summer of 19?4 there are four:périods in
which complete, uﬁinterrupted data are available. These data periods are
(fo the hour): 2100, May 17 to 1400, June 13; 1700, June 25 to 1000,
July 22; 2100, July 29 to 1500, August 21; 2400, August 23 to 2400,
September 20. Parameter estimation is done on a small subset of‘this
data. Model testing is dome onythe complete data base.

Selecting the base period length fof parameter estimation involves
a trade-off between uncertainty and co;ﬁ. Since littie prior eiperience
exists on FIML estimation for this type of modeling problem, the base
periods for Pﬁases I and II are chosen fairly subjectively; The length
of the base period for global estimation is chosen so that the number
of data pdints is approximately four times the number of unknowns
(dimension of‘g): A longer base period may improve the parameter esti—
mates; however, this relationship is not_eiamined in this study: Since

the estimations in Phase I involve fewer parameters and less numerical
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detail than Phase II (see below), Phase I may employ a longer base
period. The following base periods are used:
Phase I: 294 hours (12 days) 2100, 7/29 - 0300, 8/10
Phase II: 96 hours ( 4 days) 2100, 7/29 - 2000, 8/2
These dates are chosen to be roughly characteristic of mid-summer weather,
water and generation conditions. For maximum comparability, both base

periods are chosen to begin with the start of a data period.
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4.4 Model Performance

Model performance is evaluated for two reasons: first, to evaluate
whether the model meets the accuracy criterion of the original model
devélopment problem; and second, to assess the effectiveness of the final
parameter estimatio; process. Visu#l:and quantitative'indicators of
model performance are computed to provide data for these eyaluations.

The preliminary mcdel (using the parameter estimates in Columns 1-
4 of Table 4-2) and the final model (using the parameter estimates in
Columhs 6-7 of Table 4-2) are tested. For ease of comparison, the
noise statistics in the preliminary model are equated to the noise sta-
tistics of the final model. The identical noise covariances ensure that
any differences in likelihood or S-statistic are due only to differences
in residuals from each model.

Figures 4-1 through 4-3 allow.visual assessment of final model be-
havior. These plots showrunfiltered 24~hour predictions pf intake
temperatures, for three days (one month prior to the base period). The
measurements and the confidence bounds of the predictions are plotted
concurrently. For comparison, similar plots from the preliminary model
are shown in Figures 4-4 through 4-6. These results are discussed in
Section 4.5.

A variety of measures of model performance are useful (Section 2.2):

£ - The full-information likelihood

T - The percent of daily peak temperature predictions within 1°F
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FIGURE 4-1

PREDICTED INTAKE TEMPERATURES FROM FINAL MODEL (6/29 - 6-30/74)
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FIGURE 4-2

‘PREDICTED INTAKE TEMPERATURES FROM FINAL MODEL 6/30 - 6/31/74
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FIGURE 4-3

PREDICTED INTAKE TEMPERATURES FROM FINAL MODEL 6/31 - 7/1/74

T e SRR T N A 1

. . . < ol" N .
L] Ll * A m. . V L]

. . < oii . 5 .

* ¢ < o H * > ¢

. . A 0_ * V ’ .
. L LA B T R (A A |
a L] - A. . ml v *

. . . < ® °li > .

. . . < ® H 5 e

L [ ] L] A . mﬂ V.

- —- . . < e ° B > °

- I TR T TR D N R A
. ..h.._... . . < PY ‘H > .

- m,\ . . < ° He > .
D88 S ;

o8 oo < He >
R - e :
. DPag™ . . ° e .
“aoog < of >

+ AEOo0 . . < © "H D ‘

. P . . <o °*°H > *

- me(p . : <oy > . :
sk ok 3¢ o ¥k 2% i 3k 3 3 3 ol 3 3K o 3 3 e s oA ok oK e o 3 ool ok v S o 3k ok ok ok ok koo K@D sokok ok s ok ok ko k 0 °Q -
606 0°08 ooL 0°09 0069

(3,) Panmiezadws], oyejug

Hour (O = Midnight)
-~ 74 -




FIGURE 4-4

PREDICTED INTAKE TEMPERATURES FROM PRELIMINARY MODEL (6/29-6/30/74)
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FIGURE 4-5
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FIGURE 4-6

PREDICTED INTAKXE TEMPERATURES FROM PRELIMINARY MODEL (6/31-7/1/74)
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of measured peak. (Original accuracy criterion specified in
these terms).
D - The mean-square error in daily peak temperature predictionms.

M

The mean-square error in 24-hour temperature predictioms.
S - The sum-of-squares of normalized measurement residuals.
P(a)- The whiteness-test matrix for lag a.

02 - The covariance of a 24-hour prediction.

z

The final model is run for the four data periods representing late-
spring and summer of 1974, and model performance is computed using the
above measures. For comparison, performance of the preliminary model
is also computed.

The results of this model performance evaluation are presented in
Table 4-3. (Note that the T value is computed to show percent of daily

peak intake temperature predictions within 1°F, 2°F, and 3°F of observed

temperatures.)
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4.5 Model Evaluation

The performance tests provide a rich background for evaluating the
model and estimation techniques used in this séudy. Since the study
objectives and methodology are new to water quality modeling, it is not
surprising that several unlikely results are observed for which there
is no definite expianatibn. From the present analyses potential expla-
nations may be suggested but not confirmed. In several cases, .questions
must remainlunanswered, awaiting further study.

4.5.1 Discussion of Parameter Estimates

The structural parameter values developed in the preiiminary esti-
mation are relatively close to-their initial values. The Powell-FIML
estimation of wind function parameters yields only a slight revision in
values. A manual search of other structural parameters is deliberately
kept within realistic bounds.

The re-estiméted noise statistics at the end of Phase I'(column 4
of Table 4-~2) are much larger than their initial values or their final
values. A possible explanation is that the much longer Phase I base
period requires largef noise convariances to explain the data. Note
that re-estimation of the noise statistics in Phase II, with a much
shorter base period, produces much smaller convariances.

In'the global estimation phase, several structural parameters
assume unrealistic values. Examples from the final parameter estimates

are:
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A ,Az: Final values total only 1/3 of the actual harbor surface

1
area,
. . ]

F7,F4. The coefficients of ¢br (radiative heat loss) and ¢br are
too large by factors of 100 and 1000, respectively.

-Fl : Cannof be greater than 1; otherwise, on very cloudy days
insolent radiation is negative.

F6 : Cannot be negative; otherwise, ¢br will decrease with in-

creasing surface temperature.
Yl’YZ: Cannot be negative; otherwise, there will be_"negative

recirculation" of discharge water from intake to discharge.

bl,bzz Values greater than 2 suggest unrealistically high flow
velocities in the surface layer.

hs ¢ Surface layers deeper than 6 feet are not observed in Salem
Harbor.

'hBl,min’hBZ,min: Basin ##2 should be deeper than basin #1, to fol-

low the harbor profile.

The unrealistic final parameter estimates suggest that there are
significant structural flaws in the model. Observations of model be-
havior with realistic parameter values (eg., Figures 4-4 - 4-6) show
that it_consistantly predicts erroneously high temperatures. The global,
FIML-Powell parameter estimates correct this behavior (eg;; Figure 4-~1
~ 4-3), but in so doing are forced to assume unrealistic values; In
effect, the unrealistic parameter estiﬁates compensate for an unrealis-

tic model structure.
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. Unrealistic parameter estimates do not invalidate the model, but
they do interfere with a physical interpretation of the model. In the
present situation, it is best to abandon physical concepts, and to view
the model instead as an abstract mathematical structure describing a
time-series of data. By this view, the parameters are merely coeffi-
cients in the model, with no physical significance and no_g priori
bounds on their values.

Although both the first and second global estimations produce un-
realistic values, the second contains more unrealistic values than the
first. This result suggests that the estimation is sensifive to the
size of the noise statistics used. Inspection of the log-likelihood

equation,
26(n) = 26(n-1) - kin 21 - faldet L,(aln-1)1-8! ()L, (n]n-1)8, ()

helps to explain this result. As the noise covariances decrease, §Z
decreases; hence,_ the last term in the likelihood equation becomes
larger. Thus, the likelihood is increasingly sensitive to the predic- .
tion residuals, as the covariances decrease. In the present case the

final estimation, having smaller noise covariances, allows proportion-

ally less error in model predictions. To achieve this tighter fit to

the data, parameter values are estimated which are more extreme than

those under larger noise statistics (see Appendix D).
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4.5.2 Evaluation of Final Model Based on Statistical and Visual Analysis

intake temperature predictions from the final model (eg., Figures
4-1 to 4-3) show qualitatively reasonable performance. The predictions
frequently differ from the measurements by several degrees, but follow
the data pattern fairly well. |

However, model test results in Table 4-3 indicate that statistically
~ the f:l.nalvmodel is unacceptable. The model fails the test on the
S-value (Section 2.2). 1In only one data period is S found within 2Gs'of
its expected value; in the othef three éeriods, S is considerably below
Ef{S]. The model also fails the whiteness tesg (Section 2.2). Signifi-
cant autocorrelation of the residuals is observed, in all data periods.
P(a) is frequently greater than 5, whereas an acceptable model should
have all P(a) less than 5. |

Based on least-squares performance measures, the final model also
appears unsatisfactory. Both M (mean-squareerror of hourly predictions)
and D (mean-square error of daily peak predictions) are undesirably
high (greater than 10.0) in all four data periods.

The low S values are probably not due to erroneous noise statistics.
The final noise estimates are so small that §, dufing the base
period, is almost within 2 Og of its expected value. Further reduction
is unrealistic, and probably cannot correct the large discrepancies
‘qbserved for the test periods.

Failure to pass the statistical tests (on S and whiteness) indicates
flaws in either the structural‘or probabilistic aspects of the model.
The fundamental assumptions of FIML parameter estimation are that:

‘ 1. The proposed linear model structure is the true structure.

2. Model disturbances represent a white, Gaussian process.

- 83 -




1f these assumptions are met, then FIML parameter estimates are
optimal (Section 2.1). Peterson (1975) further demonstrates, with
simulation experiments, that under ;hese assumptions FIML_estimation

is a very accurate parameter estimation method. Thus, if the true
model structure is known and linear, FIML parameter estimates will
be close to fhe true estimates (on the average) and will pass the
statistical tests. Not passing the tests suggests errors in model
structure and/or probabilistic assumptions, prohibiting successful FIML
estimation.

An alternate explanation is that the base period for estimation is
abnormal or too short. The consistent performance improvement between
the preliminary and final models (see Section 4.5.5.) suggests that
the base period used here is adequate. However, evaluation of statis-
tical performance for different base periods is not done, so the
importance of this effect is not known. As further estimation experiencé
_with water quality models accumulates, a better rule-of-thumb for base
period length may evolve.

4.5.3 Evaluation of Model Performance in Terms of Original Performance

Criteria

| The final model does not meet the accuracy criteriomn specified in
the original model development problem (T > 90%). 1In its best data
period (8/23-9/20), the final model yields T = 27%Z. Over all four
data periods, the final model yields an average T = 17%. Thus, the
model developed in this study should not be used for STF applicationmns

at present.
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~ The final model does meet the other performance criteria, i.e., it
is simple, and it performs real-time prediction using only existing

sensors.
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4.5.4 Comparison of Final Model with Results of Earlier Studies

Earlier efforts to model intake water temperatures at Salem Harbor
Station are reported by Kenison and Galli (1975). Two types of peak-
to-peak extrapolation models are reported (Section 3.1): a subjective
-model using human intuition to make predictions, and a multiple regres-
sion model. A comparison of model performance between past and pre;ent

studies Is presented in Table 4-4. (T is the only model performance

measure reported_ﬁ}iEEHIEEﬁWénd'ﬁsiii).

Based on Table &-4, no model achieves the original accuracy criterion,
T > 90%Z. Subjective peak-to-peak prediction performs best, and multiple
regression peak-to-peak prediction is second best. Both peak-to-peak
extrapolation models perform better than the basin-type model. Possible
explanations for these differences in performance are proposed below.

The results in Table 4~4 compare initial model development efforts

‘for three model structures. .It appears that, in the initial stages of.
~model development, a subjective peak-to-peak model is most effective.
The present modeling problem is well-suited for subjective peak-to-peak
modeling, in the following ways:

- the system has a long time-constant relative to the desired
prediction interval (ie., dayéto-day changes in peak temperature
are typically 1° - 2°F)

~ only one or two states must be predicted

- measurements from only one or two locations are used

-
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TABLE 4-4

PAST AND PRESENT MODEL PERFORMANCE

Model Evaluation Period T

Kenison and Galli 6/1 - 7/31/74 437

— Subjective ‘

Kenison and Galli 6/1 - 7/31/74 ;;gﬁi:j

— Multiple regression

Present study 6/25 - 7/22/74 '16%

- Basin-type 8/23 - 9/20/74 (best) 27%
5/17 - 9/20/74 (overall) 17%

(Where T equals the percentage of daily peak intake temperature

predictions within + 1°F of observed.)
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Under these conditions, much of the\variation in peak intake temperatures
may be explained by a simple, subjective, peak-to-peak model structure.
Sihce none of the models achieves the desired accuracy, one or more
must be developed further. Although the peak-to-peak models yield
initially high T values, further accuracy improvements for this model
structure are not expected to be major; ﬁltimately, hourly temperature
models are expected to yield maXiﬁum_accuracy. Present peak-to-peak

models capture the major factors influencing peak temperatures, but
are likely to require detailed treatment of hourly processe; to achieve
improved accuracy. i )

It appears from table 4-4 that models for hydrothermal control
problems similar to that addressed in this thesis may be more effectively
developed from statistical concepts than from physicél concepts. A
statistical model can be algebraically much simpler than a physically-
derived model of the same process. Whereas a physiﬁal model requires
calculation of temperature within every discretized cell, a statistical
model may.eliminate all state variables except those to be controlled.
‘The model comparisbn above suggests that by eliminating extraneous
considerations, a simple statistical model may predict the controlled
"variable(s) more accurately than a physical model. Statistical models
offer tﬁo additional advantages: First, parameter estimation costs are
much less for simpler models; ako model structure revision is easier,
allowing faster evolution of the model. For these reasons, pursuit of

a statistically-derived, hourly model appears to offer the greatest

potential accuracy.
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4.5.5 Comparison Of Final And Preliminary Models

Phase I of the estimation process produces preliminary parameter
values, representing the best subjective estimates obtainable. Final
parameter values are refined from the preliminary values, in phase II
using global FIML estimation. Comparing the performance of the pre-
liminary and fiﬁal models indicates how much model performance is
improved by glpbal FIML parameter estimation.

Such a ccmparison shows that the final model performs slightly
better than the preliminary model throughout the latter three (summer)
data periods. Inspection of Table 4-3 shows for these periods:

Log-likehood: Final model is consistently better by a slight
amount (A £ = 50).

'S: Final model yields S consistently higher, and closer to E [S].

T: Final model is better for one périod; models are equivalent
for other two periods. T(2°9) and T(3°) are consistently better for
final model.

D: Final model is consistently better.

M: Final model is better for two periods, worse for one.

ﬁhiteness: Final model is consistently better for P(0) and P(3);
~ consistently worse for P(1) and P(2).

‘ 02(24[1): Final model is better.
The improvement in performance observed in the teét periods is comparable

to that achieved for the base period.
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The late - spring period (5/17 - 6/13) is anomolous. For this period,
the preliminary model is better than the final model by almost all mea-
sures. A likely explanation is that different processes dominate habor
temperatures during the late-spring period, than during the summer period
for which the final parameters are estimated. An important example is
stratification, which is only partly established during the late spring
period, but fully established during the summer periods. Because this
period is anomolous, further comparison of final and preliminary models
considers only the latter three data periods.

Though the final model generally yields bétter measures of perfor-
mance than the preliminary model, the differences are often small.

The performance of the final model is poor (see statistical evaluation);
relative to the amount of improvement needed, the improvement achieved
by FIML estimation is also small. In addition, the final model is not
always superior to the preliminary model (for example; see the white-
ness and T vaiues). For these reasons the final model is considered
only slightly better than the preliminary model.

The limited improvemen; in>performance achieved by FIML estimation
is probably due to two factors. First, the preliminary estimates are
likely to be very good. These estimates incorporate extensive engineering
experience, plus adjustments to fit the model to a 294-hour base period.
Thus, the preliminary estimates are likely to perform fairly close to
the optimum for this model structure.

Flaws in the model structure are the seconq factor likely to be
limiting model improvement from FIML estimation. Structural flaws may

restrict model performance to low levels, even at the optimum.
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Previous analysis (Section 4.5.2) strongly suggests that structural
flaws exist in the model, inhibiting significant model improvement via
parameter estimation.

Given a model with structﬁral-flaws, the improved performance of
the final model is .an important result. It demonstrates that FIML
estimation can yield improved parameter estimates, even in the presence
of a structurally weak model. This robust character is essential for a
practical parameter .estimation tool, since few model development pro-
blems begin with an accurate model structure. .

4.5.6 Structural Flaws In The Model

Several results indicate that structural errors exist in the modei:

~ S#E[S]

- P(a) >5

- M and D>10

- Unrealistic final parameter values

"= Limited model improvement achieved by FIML estimation

‘Structural weaknesses are most likely in the following areas of the
present model: . St

- Formulation of net surface heat flux: These processes
a;e‘not well understood, particularly on an hourly time scale. Recent
experiments by Hecker and Nystrom (1975) indicate that the formulation
used hefeiﬁ will underestimate surface heat loss, on the average.
This partially explains the chronically high temperature predictions.
obtained from the preliminary model. |

- Treatment of tidal flushing:
A better model of the open boundary condition is desirable, taking into

account heat losses in Salem Sound.
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- Discretization: The four cells in the present model are
assumed well-mixed, though they actually are not. For example, concen-
trations of heat near the discharge (ie., the thermal plume) ére averaged

“into the overall température of the inner cell. Hence on ebb tide,

this heat is nof all flushed out as it is in naturé, leading to abnormally'

high temperature predictions. A finer discretization may be required.
Furfher effort refining the present model is not recommended.

Rathef, future modei development efforﬁ should focus on houriy statistical

models as recommended in Section 4.5.4.

4.5.7 Applicability of FIML Estimation

In the present model development problem, subjective model develop-

- ment yields large initial performance improvements; FIML estimation

yields consistent (but smallj improvement, in this initial iteration
of model development. However, future refinement . of model accuracy
requires more detailed treatment of many factors, on an hourly time
scale. FIML estimatiqn becomes increasingly valuable in the latter
iterations of model development,~as structural complexity increases
(and approachés the true structure). |

In other modeling problems more complex than the present, subjective
developrment yields smaller improvements. FIML estimation is proportion-
ately more valuable for these modeling problems, where:

a. Several states are predicted simultaneoulsy, and it is
desired to minimize the overall uncertainty.

b. Relatively frequent predictions (on the order of measure-

ment frequency) are made, and it is desired to minimize
the uncertainty over the whole time-stream.
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The system has a relatively short time-constant,
necessitating more detailed modeling of system
behavior.

Point predictions in time and space are desired, rather
than averages. :

Several measurements are taken simultaneously, and it is
desired to make optimal use of all informatiom.

Long data records are to be processed for model development.
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CHAPTER FIVE

SUMMARY AND CONCLUSIONS

5.1 Summary

The objectives of this study are:

1. To solve the model development problem: ie., develop a
simple model of intake water temperatures at Salem
Harbor Station thgt predicts the daily peak intake tem-
perature within 1 F, 90% of the time.

. 2. To apply optimal filtering and maximum likelihcod para-
meter estimation to a water quality model of a real
system using field data. Evaluate the advantages of
these techniques in this application.

No previous hydrothermal model is éevelqped and evaluated in terms
of a pre-specified accuracy criterion. Nor, is a water quality model
previously developed for a real system using full-information maximum
likelihood paraheter estimation.

A short-term temperature forecasting (STF) system is proposed,
to minimize the cost of meeting the discharge water temperature limit
at Salem Harbor Electric Generating Station. The STF system requires
accurate predictions of power. plant intake water temperatures, to
determine reduced-cost power generation schedules.

Tools of estimation theory are shown to be potentiallﬁ useful
for model development. Optimal filtering and maximum likelihood
parameter estimation are methods for estimating the states and para-

meters, respectively, of an uncertain dynamic system. Filtering-

.yields optimal (minimum uncertainty) state estimates by combining
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linformation from a model and from measurements. Full-information
maximum likelihcod (FIML) parameter estimation uses the filtered state
estimates to compute model 1ikelih60d. 'The maximum likelihood is found
by searching alternate parameter values, using Powell's method for non-
‘linear optimization.‘ |

Statistical and physiéally—derived ﬁodal structures are considered
for the model development problem. A simple two-basin, two-layer hydro-
thermal model of Salem Harbor is develofed. The model includes effects
of power plant dischargé, tidal flushing, stratification, Sufface heat
flux, and wind advection of the plume, to yield hourly predictions of
intake water temﬁeratures. The model is transformed into state-space,
white procesz form, to allow application of estimation:tools. In state~
" space form, the model is linear (non~linear in the inputs) and time-
varying, and has six state variébles and one observation.

Thirty-three parameters are either poorly known or unknown, and
are estimated from intake temperature data. Initial values are chdsen
based on engineering judgement and data in the literature. Following
preliminary, subjective tuning (over a 294-hour period), FIML estimation
is used to obtain globally optimal parameter esfimates (over a 96-hour
period). The resulting model's perfofmance is tested for 106 days
during late spring énd summer of 1974. Quantitative and qualitative
measures of performance are computed. The model and the FIML estima-
tion method are evaluated from analysis of the test results, and

from comparisons with earlier models.
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5.2 Conclusions

1. The two-basin, two-layer model developed in this study is
qualitatively correct, but fails statistical tests for accep-
tability.

2. The two-basin, two-layer model does not meet the accuracy
criterion specified in the model development problem.

3. Simple peak-to-peak extrapolation models predict daily peak
intake temperature more accurately than a simple hourly
basin-type model.

4. Different processes dominate harbor temperatures during late-
spring than during summer. In the two-basin, two layer model,
different parameter values are required to model each period.

5. Structural inadequacieé exist in the two-basin, two léyer
model, causing limited model performance. Possible improve-
ments in model structure are discussed below.

6. PFull-information maximum likelihood parameter estimation is
useful for development of water quality models. In an
application to a real system, using field data, this method:

a. Estimates thlrtj-three unknown parameters from
ninety—Slx data points. :

b. Improves parameter estimates from their best a -
priori values, despite flaws in the model structure.

7. Full-information maximum likelihood parameter estimation is
most useful for development of water quality models where:

a. Subjective model development is thoroughly exercised
b. Several states are predicted simultaneously

c. Relatively frequent predlctions ~(on the order of

measurement frequency) are made
d. The system has a short time-constant
e. Point predictions in time and space are made
f. Several variables are measured

g. Long data records are to be processed
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‘5.3 Recommendations For Future Work

1. Future model development for hydrothermal control probléms
should use an hourly statistical model, rather than physically-derived
structures. Statiéticallmodels offer: =L

a. Faster development
b. Potentially greater accuracy
c. Lower cost
2. To improve the two-basin, two-layer model, the following
changes are'suggested: |

a. Revise the formulation for net surface heat flux.
Consider a simpler formulation, with parameters
estimated from a long period of hourly data.

b. Revise the open boundary condition

c. Use a finer discretization of Salem Harbor

3. Further evaluation of FIML estimation should be dome:
| -;. Compare model performance using FIML estimates

from a 96~hour data base with performance using
estimates from a longer data base.

b. Compare performance using FIML estimates with

performance of ordinary least squares estimates.
Also compare estimation costs.
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APPENDIX A

MODEL EQUATIONS FOR NET SURFACE HEAT FLUX

Except where otherwise noted, the following developmenf of heat flux
térms is taken from Harleman and Stolzenbach (1975). Where appropriate,
their equations (for daily fluxes) are modified with unknowﬁ parameters;
Fi’ to producg hourly values. All fluxes are cogputed in units of
BTU/ftz-hour.

Harleman and Stolzembach (1975) indicate that net surface.heat flux
is the sum of fluxes due to several heat exchange processes occurring at

the water-air interface:

Net Surface Heat Flux = ¢_=¢_ _+ ¢
n sn an

-4 - +6) D
where ¢sn = pnet shortwave insolation

¢

¢b* = longwave radiation from water surface

an net atmospheric radiation (longwave)
¢e +-¢c = evaporétive and conductive heat flux
Net shortwave insolation is the product of several factors:

¢sn = ¢sc . f1 (time-of-day) f2 (cloudiness) (2)

wﬁete ¢sc = pnet daily clear-sky insolation
- fl = proportion of total daiiy insolation occurring in a given
hour
f2 = radiation reduction factor due to cloudiness

These factors are computed as follows:
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27

¢sc = [38.4 sin (5= °* Julian Day +‘g) + 490] « F (3)

365 8

where Julian Déy = day number, consecutive from 5anuary 1

Fé = bias adjustment parameter
Equation (3) fits the curve developed by Hamon et al (1954) for maximum
total daily sunshine at 42°N latitude. The equation is modified by F8
to correct potential bias in ¢n. A bias in ¢n is an;icipated because

equations originally developed for daily flux computatioms are being

adapted for hourly computations (below).

.5 sin [%’01 (t - 6)1, for 0600 < t < 2100 (%)
f =
1o , for t < 0600 or t > 2100
where t = time-of-day (from 0001 to 2400),
c-1
f2 1-31( 3 ) (5)

where ¢ = cloudiness (ranging from 1 (cléar) to 4 (very cloudy))

F1 = maximum radiation reduction, |

This equation is suggested by Harleman and Stolzembach (1975) who use
f2 = 1-65 cz, with ¢ varying from 0 to 1. The exponent is dropped here,
to increase sensitivity to partial cloudiness.

Net atmospheric radiation is also the product of several factors:

1y2, (6)

-15 \6 c -
q>an F2 10 77 (460 + Tair) 1+ F3 ( 3

= r) o
where Tair air temperature (°F)
Fz = net atmospheric radiation parameter

F3 = maximum radiation increase due to cloudiness
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Note that the first factor in Eq. (6) represents net clear-sky atmosphe-
ric radiation. The second factor accounts for increased atmospheric
radiation with increased cloudiness.

The longwave back-radiation from the water is modeled by:

4

& = Fp x 107 [460 + (F, + Q)] )
. vhere T = temperature of surface layer (°F)

F7 = back-radiation.parametef

F6 = back-radiation temperature sénsitivity parameter,
Since TS varies between basins, ¢br is computed separately for each-
basin. |

The evaporative and conductive heat flux is modeled by:

¢e + ¢c = FS * WS [(es - eair) + .255 (TS - Tair)] (8)

where WS = wind speed
e, = vapor pressure at water surface

e = vapor pressure of air

air
FS = evaporative~conductive heat flux parameter,
The saturated vapor pressure, e is obtained from Harleman et al (1973):

e, = -2.4875 + .2907 Tg - .00445 T2 + .0000663 T 9)

By substituting in Eq. (9) the dewpoint temperature for Tg, one may
also obtain e i Evaporative and conductive heat flux must be compu~

ted separately for each basin.
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In order to apply optimal filtering, the heat flux equations must
be linear in TS. Non-linearities exist in the above formulations of
¢br and ¢e + ¢c. These are linearized about the filtered state estimate,

fs(n[n), using a first-order Taylor series expansion:
~ 'A "A . -A
f(TS(n)) f(TS(n]n)) + £ (Ts(nln)) [Ts(n) TS(n[n)]

For £ = ¢br’ the derivative is:

60 = F, x 1071460 + (F, * T (aln))1?

where F4

For £ = ¢e + ¢c, the derivative is:

linearized back-radiation parameter,

(§, + ¢,)" = F (WS)[.5457 - .0089 (Es(nln)) + .0001989 (;S(nln))zl_
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APPENDIX B

SOURCES OF DATA

I. Data Used To Run Hourly Two-Basin, Two-Layer Model

(For Period 17 May 1974 to 20 September 1974)

Data

Intake
Temperature

Discharge
Temperature

Wind Speed and
Wind Direction

Condensor
Flow Rate

Cloudiness

Air
Temperature

Dewpoint
Temperature

Frequency/Measurement Point

Hourly instantaneous mea-
surements. Floating sen-
sor 2 ft. below water sur-
face, 30 ft. offshore of

unit #3.

Hourly instantaneous mea-
surements hourly. Float-

ting sensor 2 ft. below
surface, in discharge

canal 200 ft. from mouth.

Hourly instantaneous

measurements. Sensor
at 100 ft. elevation,
atop Breaker House at
Salem Harbor Station.

Continuous records for

each unit showing when -

circulating water pumps
are on or off.

Three-hourly measure-
ments. Subjective
assessment by station
personnel.

Hourly instantaneous
measurements. Sensor
at 20 ft. elevation,
atop Gate House at
Station.

Three-hourly instanta-

neous measurements at
Logan Airport, Boston.
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Source

New England Power
Company (NEPCO) compu-
terized environmental
data bank.

NEPCO computerized
environmental data
bank.

NEPCO computerized
environmental data
bank.

Mechanical log of
each unit at Salem
Harbor Station.

Environmental log
of Salem Harbor
Station.

NEPCO computerized

environmental data
bank.

"Local Climatological
Data, Logan Inter-
national Airport",
National Oceanic and
Atmospheric Administra-
tion.




Data

Frequency/Measurement Point

Tide Level

Temperature
of Salem
Sound

Predicted time and height
of high and low tides
(corrected to Salem,Ma.).

Bi-weekly instantaneous
measurements at location
#5 of Chesmore et al
(1972-1973).

II. Other Data Used In Model Development

Infra-red
Overflights

Boat Surveys of
Temperature

Bathythermograph
Surveys

Continuous
Harbor
Temperatures

Water
Velocity

Synoptic
Studies

Electric
Generation
Load

Source

"Times and Heights of

High and Low Waters, Boston,
MA, 1974,", National .
Oceanic and Atmospheric
Administration

Chesmore et al (1972-
1975).

Reported in Chesmore et al (1972-1975).

Reported in Chesmore et al (1972-1975)

Reported in Chesmore et al (1972-1975).
Additional data obtained from B. Ketschke
Cat Cove Marine Laboratory, Salem, MA.

August, 1972 surveys of Salem Sound
by R/V "Ferrel" (National Oceanic and
Atmospheric Administration-unpublished).

Locations "C'" and "D" maintained and
reported by Chesmore et al (1972- S
1975). Hourly data obtained from B.
Ketschke (as above).

Reported in Chesmore et al (1972-1975).

Interim Report:

Salem Hydrothermal Survey

Raytheon Environmental Research Labora-
tory, (August, 1972). (Done for NEPCOJ

Hourly instantaneous measurements for
each unit at Salem Harbor Station.
See electrical log of each unit.
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APPENDIX C

USING OPTIMAL FILTERING TO ESTIMATE UNMEASURED INITIAL CONDITIONS

To run the proposeéd model for real-time STF predictions, initial
conditions %(0) must be estimated. Data on harbor temperature (from |
buoy recorders, boat surveys, etc.) is infrequently collected, and thus
is not likely to be available when a model run is desired. The only
data available in real time are measurements of plant intake tempera-
tures (z(n)).

Without direct measurements of ® (0), one approach islto subjective-
ly estimate the harbor temperatures &(0) from z(0). Such an estimate
is very uncertain, especially since the six elements of R(0) are esti-
mated from only one measured value. An alternative approachlis to
estimate R(0) from the previous 24 hours of data, using optimal filter-
ing. |

The approach begins at n = ;244with an uncertain estimate, R(-24).
The model is run forward from n = -24 to n = 0 and combined with data
z(n), to obtain filtered estimates R(n|n). The initial conditions for

the STF prediction are thus:

2(0) = %(0|n = =24 to 0).
Figure C-1 presents an example of this approach, showing filtering of
initial.conditions, followed by unfiltered ﬁrediction. Experiments
with this approach indicate that 24 measuremenﬁs are sufficient to

minimize the uncertainty in ﬁ(Oln).

P al
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Appendix D

APPENDUM - TMPROVEMENT IN FINAL MODEL BY REDUCING
MODEL NOISE (Q)

Following completion of this report, an additional computer run
was done testing the optimality of the final noise statistics (ci).

Tests (CF. Chapter Four) show that increasing Gi decreases model perform-

ance as measured by S, the sum-of-squares of measurement residuals. The
addition analysis just completed shows that further reducing Ui below
their "final" values improves model performance (see Table D-1). The
S-statistic is very near its expected value, and the log-likelihood

is also increased.

Thus, the noise statistics in Table D-1 are more nearly optimum
than those in the "final" model presented in Chapter Four. At these
revised noise levels, the optimum structural parameters may also be
different (and perhaps more realistic) than the "final" model; however,

a FIML estimate for new parameter values is not domne.

- 111 -




TABLE D-1

IMPROVEMENT IN FINAL MODEL BY REDUCING MODEL NOISE (Q )

PARAMETER FINAL MODEL MODIFIED FINAL MODEL
2
%1 3. 1.
2
%1 2. 1.
2
o
S2 1.5 1.
2
o
B2 2. 1.5
2
% .04 .04
Log- -87.0 -76.9
Likelihood
S 40.4 66.6
E [5 63. 63.
s 11.2 11.2
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